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Preface 

The 2010 edition of the European Conference on Computer Vision was held in 
Heraklion, Crete. The call for papers attracted an absolute record of 1,174 
submissions. We describe here the selection of the accepted papers: 

● Thirty-eight area chairs were selected coming from Europe (18), USA and 
Canada (16), and Asia (4). Their selection was based on the following 
criteria: (1) Researchers who had served at least two times as Area Chairs 
within the past two years at major vision conferences were excluded; (2) 
Researchers who served as Area Chairs at the 2010 Computer Vision and 
Pattern Recognition were also excluded (exception: ECCV 2012 Program 
Chairs); (3) Minimization of overlap introduced by Area Chairs being former 
student and advisors; (4) 20% of the Area Chairs had never served before in 
a major conference; (5) The Area Chair selection process made all possible 
efforts to achieve a reasonable geographic distribution between countries, 
thematic areas and trends in computer vision. 

● Each Area Chair was assigned by the Program Chairs between 28–32 papers. 
Based on paper content, the Area Chair recommended up to seven potential 
reviewers per paper. Such assignment was made using all reviewers in the 
database including the conflicting ones. The Program Chairs manually 
entered the missing conflict domains of approximately 300 reviewers. Based 
on the recommendation of the Area Chairs, three reviewers were selected per 
paper (with at least one being of the top three suggestions), with 99.7% being 
the recommendations of the Area Chairs. When this was not possible, senior 
reviewers were assigned to these papers by the Program Chairs, with the 
consent of the Area Chairs. Upon completion of this process there were 653 
active reviewers in the system. 

● Each reviewer got a maximum load of eight reviews––in a few cases we had 
nine papers when re-assignments were made manually because of hidden 
conflicts. Upon the completion of the reviews deadline, 38 reviews were 
missing. The Program Chairs proceeded with fast re-assignment of these 
papers to senior reviewers. Prior to the deadline of submitting the rebuttal by 
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  the authors, all papers had three reviews. The distribution of the reviews was 
the following: 100 papers with an average score of weak accept and higher, 
125 papers with an average score toward weak accept, 425 papers with an 
average score around borderline. 

● For papers with strong consensus among reviewers, we introduced a 
procedure to handle potential overwriting of the recommendation by the Area 
Chair. In particular for all papers with weak accept and higher or with weak 
reject and lower, the Area Chair should have sought for an additional 
reviewer prior to the Area Chair meeting. The decision of the paper could 
have been changed if the additional reviewer was supporting the 
recommendation of the Area Chair, and the Area Chair was able to convince 
his/her group of Area Chairs of that decision. 

● The discussion phase between the Area Chair and the reviewers was initiated 
once the review became available. The Area Chairs had to provide their 
identity to the reviewers. The discussion remained open until the Area Chair 
meeting that was held in Paris, June 5–6. Each Area Chair was paired to a 
buddy and the decisions for all papers were made jointly, or when needed 
using the opinion of other Area Chairs. The pairing was done considering 
conflicts, thematic proximity, and when possible geographic diversity. The 
Area Chairs were responsible for taking decisions on their papers. Prior to 
the Area Chair meeting, 92% of the consolidation reports and the decision 
suggestions had been made by the Area Chairs. These recommendations were 
used as a basis for the final decisions. 

● Orals were discussed in groups of Area Chairs. Four groups were formed, 
with no direct conflict between paper conflicts and the participating Area 
Chairs. The Area Chair recommending a paper had to present the paper to the 
whole group and explain why such a contribution is worth being published as 
an oral. In most of the cases consensus was reached in the group, while in the 
cases where discrepancies existed between the Area Chairs’ views, the 
decision was taken according to the majority of opinions. 

● The final outcome of the Area Chair meeting, was 38 papers accepted for an 
oral presentation and 284 for poster. The percentage ratios of submissions/ 
acceptance per area are the following: 
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Thematic area # submitted % over 
submitted

# accepted % over 
accepted

% acceptance 
in area

Object and Scene Recognition 192 16.4% 66 20.3% 34.4%

Segmentation and Grouping 129 11.0% 28 8.6% 21.7%

Face, Gesture, Biometrics 125 10.6% 32 9.8% 25.6%

Motion and Tracking 119 10.1% 27 8.3% 22.7%

Statistical Models and Visual 
Learning

101 8.6% 30 9.2% 29.7%

Matching, Registration, Alignment 90 7.7% 21 6.5% 23.3%

Computational Imaging 74 6.3% 24 7.4% 32.4%

Multi-view Geometry 67 5.7% 24 7.4% 35.8%

Image Features 66 5.6% 17 5.2% 25.8%

Video and Event Characterization 62 5.3% 14 4.3% 22.6%

Shape Representation and 
Recognition

48 4.1% 19 5.8% 39.6%

Stereo 38 3.2% 4 1.2% 10.5%

Reflectance, Illumination, Color 37 3.2% 14 4.3% 37.8%

Medical Image Analysis 26 2.2% 5 1.5% 19.2%

 

● We received 14 complaints/reconsideration requests. All of them were sent to the 
Area Chairs who handled the papers. Based on the reviewers’ arguments and the 
reaction of the Area Chair, three papers were accepted––as posters––on top of 
the 322 at the Area Chair meeting, bringing the total number of accepted papers 
to 325 or 27.6%. The selection rate for the 38 orals was 3.2%.The acceptance 
rate for the papers submitted by the group of Area Chairs was 39%.  

● Award nominations were proposed by the Area and Program Chairs based on 
the reviews and the consolidation report. An external award committee was 
formed  comprising David Fleet, Luc Van Gool, Bernt Schiele, Alan Yuille, 
Ramin Zabih. Additional reviews were considered for the nominated papers 
and the decision on the paper awards was made by the award committee. We 
thank the Area Chairs, Reviewers, Award Committee Members, and the 
General Chairs for their hard work and we gratefully acknowledge Microsoft 
Research for accommodating the ECCV needs by generously providing the 
CMT Conference Management Toolkit. We hope you enjoy the proceedings. 

 

September 2010 Kostas Daniilidis  
Petros Maragos  
Nikos Paragios 
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Abstract. In this paper, we propose a novel type of explicit image fil-
ter - guided filter. Derived from a local linear model, the guided filter
generates the filtering output by considering the content of a guidance
image, which can be the input image itself or another different image.
The guided filter can perform as an edge-preserving smoothing opera-
tor like the popular bilateral filter [1], but has better behavior near the
edges. It also has a theoretical connection with the matting Laplacian
matrix [2], so is a more generic concept than a smoothing operator and
can better utilize the structures in the guidance image. Moreover, the
guided filter has a fast and non-approximate linear-time algorithm, whose
computational complexity is independent of the filtering kernel size. We
demonstrate that the guided filter is both effective and efficient in a great
variety of computer vision and computer graphics applications including
noise reduction, detail smoothing/enhancement, HDR compression, im-
age matting/feathering, haze removal, and joint upsampling.

1 Introduction

Most applications in computer vision and computer graphics involve the concept
of image filtering to reduce noise and/or extract useful image structures. Simple
explicit linear translation-invariant (LTI) filters like Gaussian filter, Laplacian
filter, and Sobel filter are widely used in image blurring/sharpening, edge detec-
tion, and feature extraction [3]. LTI filtering also includes the process of solving
a Poisson Equation, such as in high dynamic range (HDR) compression [4], im-
age stitching [5], and image matting [6], where the filtering kernel is implicitly
defined by the inverse of a homogenous Laplacian matrix.

The kernels of LTI filters are spatially invariant and independent of any
image content. But in many cases, we may want to incorporate additional in-
formation from a given guidance image during the filtering process. For exam-
ple, in colorization [7] the output chrominance channels should have consistent
edges with the given luminance channel; in image matting [2] the output alpha
matte should capture the thin structures like hair in the image. One approach
to achieve this purpose is to optimize a quadratic function that directly enforces
some constraints on the unknown output by considering the guidance image.
The solution is then obtained by solving a large sparse matrix encoded with the
information of the guidance image. This inhomogeneous matrix implicitly de-
fines a translation-variant filtering kernel. This approach is widely used in many
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applications, like colorization [7], image matting [2], multi-scale decomposition
[8], and haze removal [9]. While this optimization-based approach often yields
the state-of-the-art quality, it comes with the price of long computational time.

The other approach is to explicitly build the filter kernels using the guidance
image. The bilateral filter, proposed in [10], made popular in [1], and later gen-
eralized in [11], is perhaps the most popular one of such filters. Its output at a
pixel is a weighted average of the nearby pixels, where the weights depend on the
intensity/color similarities in the guidance image. The guidance image can be the
filter input itself [1] or another image [11]. The bilateral filter can smooth small
fluctuations and preserve edges. While this filter is effective in many situations,
it may have unwanted gradient reversal artifacts [12,13,8] near edges (further
explained in Section 3.4). Its fast implementation is also a challenging problem.
Recent techniques [14,15,16,17] rely on quantization methods to accelerate but
may sacrifice the accuracy.

In this paper we propose a new type of explicit image filter, called guided
filter. The filtering output is locally a linear transform of the guidance image.
This filter has the edge-preserving smoothing property like the bilateral filter,
but does not suffer from the gradient reversal artifacts. It is also related to the
matting Laplacian matrix [2], so is a more generic concept and is applicable in
other applications beyond the scope of ”smoothing”. Moreover, the guided filter
has an O(N) time (in the number of pixels N) exact algorithm for both gray-scale
and color images. Experiments show that the guided filter performs very well
in terms of both quality and efficiency in a great variety of applications, such
as noise reduction, detail smoothing/enhancement, HDR compression, image
matting/feathering, haze removal, and joint upsampling.

2 Related Work

2.1 Bilateral Filter

The bilateral filter computes the filter output at a pixel as a weighted average
of neighboring pixels. It smoothes the image while preserving edges. Due to this
nice property, it has been widely used in noise reduction [18], HDR compression
[12], multi-scale detail decomposition [19], and image abstraction [20]. It is gen-
eralized to the joint bilateral filter in [11], in which the weights are computed
from another guidance image rather than the filter input. The joint bilateral
filter is particular favored when the filter input is not reliable to provide edge
information, e.g., when it is very noisy or is an intermediate result. The joint bi-
lateral filter is applicable in flash/no-flash denoising [11], image upsamling [21],
and image deconvolution [22].

However, it has been noticed [12,13,8] that the bilateral filter may have the
gradient reversal artifacts in detail decomposition and HDR compression. The
reason is that when a pixel (often on an edge) has few similar pixels around
it, the Gaussian weighted average is unstable. Another issue concerning the
bilateral filter is its efficiency. The brute-force implementation is in O(Nr2)
time, which is prohibitively high when the kernel radius r is large. In [14] an
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approximated solution is obtained in a discretized space-color grid. Recently,
O(N) time algorithms [15,16] have been developed based on histograms. Adams
et al. [17] propose a fast algorithm for color images. All the above methods require
a high quantization degree to achieve satisfactory speed, but at the expense of
quality degradation.

2.2 Optimization-Based Image Filtering

A series of approaches optimize a quadratic cost function and solve a linear
system, which is equivalent to implicitly filtering an image by an inverse ma-
trix. In image segmentation [23] and colorization [7], the affinities of this matrix
are Gaussian functions of the color similarities. In image matting, a matting
Laplacian matrix [2] is designed to enforce the alpha matte as a local linear
transform of the image colors. This matrix is also applicable in haze removal
[9]. The weighted least squares (WLS) filter in [8] adjusts the matrix affinities
according to the image gradients and produces a halo-free decomposition of the
input image. Although these optimization-based approaches often generate high
quality results, solving the corresponding linear system is time-consuming.

It has been found that the optimization-based filters are closely related to the
explicit filters. In [24] Elad shows that the bilateral filter is one Jacobi iteration
in solving the Gaussian affinity matrix. In [25] Fattal defines the edge-avoiding
wavelets to approximate the WLS filter. These explicit filters are often simpler
and faster than the optimization-based filters.

3 Guided Filter

We first define a general linear translation-variant filtering process, which in-
volves a guidance image I, an input image p, and an output image q. Both I and
p are given beforehand according to the application, and they can be identical.
The filtering output at a pixel i is expressed as a weighted average:

qi =
∑

j

Wij(I)pj , (1)

where i and j are pixel indexes. The filter kernel Wij is a function of the guidance
image I and independent of p. This filter is linear with respect to p.

A concrete example of such a filter is the joint bilateral filter [11]. The bilateral
filtering kernel W bf is given by:

W bf
ij (I) =

1
Ki

exp(−|xi − xj |2
σ2

s
) exp(−|Ii − Ij |2

σ2
r

). (2)

where x is the pixel coordinate, and Ki is a normalizing parameter to ensure
that

∑
j W bf

ij = 1. The parameters σs and σr adjust the spatial similarity and the
range (intensity/color) similarity respectively. The joint bilateral filter degrades
to the original bilateral filter [1] when I and p are identical.
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3.1 Definition

Now we define the guided filter and its kernel. The key assumption of the guided
filter is a local linear model between the guidance I and the filter output q. We
assume that q is a linear transform of I in a window ωk centered at the pixel k:

qi = akIi + bk, ∀i ∈ ωk, (3)

where (ak, bk) are some linear coefficients assumed to be constant in ωk. We use
a square window of a radius r. This local linear model ensures that q has an edge
only if I has an edge, because ∇q = a∇I. This model has been proven useful in
image matting [2], image super-resolution [26], and haze removal [9].

To determine the linear coefficients, we seek a solution to (3) that minimizes
the difference between q and the filter input p. Specifically, we minimize the
following cost function in the window:

E(ak, bk) =
∑
i∈ωk

((akIi + bk − pi)2 + εa2
k). (4)

Here ε is a regularization parameter preventing ak from being too large. We will
investigate its significance in Section 3.2. The solution to (4) can be given by
linear regression [27]:

ak =
1
|ω|
∑

i∈ωk
Iipi − μkp̄k

σ2
k + ε

(5)

bk = p̄k − akμk. (6)

Here, μk and σ2
k are the mean and variance of I in ωk, |ω| is the number of pixels

in ωk, and p̄k = 1
|ω|
∑

i∈ωk
pi is the mean of p in ωk.

Next we apply the linear model to all local windows in the entire image.
However, a pixel i is involved in all the windows ωk that contain i, so the value
of qi in (3) is not the same when it is computed in different windows. A simple
strategy is to average all the possible values of qi. So after computing (ak, bk)
for all patches ωk in the image, we compute the filter output by:

qi =
1
|ω|

∑
k:i∈ωk

(akIi + bk) (7)

= āiIi + b̄i (8)

where āi = 1
|ω|
∑

k∈ωi
ak and b̄i = 1

|ω|
∑

k∈ωi
bk.

With this modification ∇q is no longer scaling of ∇I, because the linear
coefficients (āi, b̄i) vary spatially. But since (āi, b̄i) are the output of an average
filter, their gradients should be much smaller than that of I near strong edges.
In this situation we can still have ∇q ≈ ā∇I, meaning that abrupt intensity
changes in I can be mostly maintained in q.

We point out that the relationship among I, p, and q given by (5), (6), and (8)
are indeed in the form of image filtering (1). In fact, ak in (5) can be rewritten
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as a weighted sum of p: ak =
∑

j Akj(I)pj , where Aij are the weights only
dependent on I. For the same reason, we also have bk =

∑
j Bkj(I)pj from

(6) and qi =
∑

j Wij(I)pj from (8). It can be proven (see the supplementary
materials) that the kernel weights can be explicitly expressed by:

Wij(I) =
1

|ω|2
∑

k:(i,j)∈ωk

(1 +
(Ii − μk)(Ij − μk)

σ2
k + ε

). (9)

Some further computations show that
∑

j Wij(I) = 1. No extra effort is needed
to normalize the weights.

3.2 Edge-preserving Filtering

Fig. 1 (top) shows an example of the guided filter with various sets of parameters.
We can see that it has the edge-preserving smoothing property. This can be
explained intuitively as following. Consider the case that I = p. It is clear that
if ε = 0, then the solution to (4) is ak = 1 and bk = 0. If ε > 0, we can consider
two cases:

Case 1: ”Flat patch”. If the image I is constant in ωk, then (4) is solved by
ak = 0 and bk = p̄k;

Case 2: ”High variance”. If the image I changes a lot within ωk, then ak

becomes close to 1 while bk is close to 0.
When ak and bk are averaged to get āi and b̄i, combined in (8) to get the

output, we have that if a pixel is in the middle of a ”high variance” area, then
its value is unchanged, whereas if it is in the middle of a ”flat patch” area, its
value becomes the average of the pixels nearby.

More specifically, the criterion of a ”flat patch” or a ”high variance” is given
by the parameter ε. The patches with variance (σ2) much smaller than ε are
smoothed, whereas those with variance much larger than ε are preserved. The
effect of ε in the guided filter is similar with the range variance σ2

r in the bilateral
filter (2). Both parameters determine ”what is an edge/a high variance patch
that should be preserved”. Fig. 1 (bottom) shows the bilateral filter results as a
comparison.

3.3 Filter Kernel

The edge-preserving smoothing property can also be understood by investigating
the filter kernel (9). Take an ideal step edge of a 1-D signal as an example (Fig. 2).
The terms Ii−μk and Ij −μk have the same sign (+/-) when Ii and Ij are on the
same side of an edge, while they have opposite signs when the two pixels are on
different sides. So in (9) the term 1 + (Ii−μk)(Ij−μk)

σ2
k+ε

is much smaller (and close
to zero) for two pixels on different sides than on the same sides. This means
that the pixels across an edge are almost not averaged together. We can also
understand the smoothing effect of ε from (9). When σ2

k � ε (”flat patch”), the
kernel becomes Wij(I) = 1

|ω|2
∑

k:(i,j)∈ωk
1: this is a low-pass filter that biases

neither side of an edge.
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input

σs=2

σs=4

σs=8

σr=0.1

Bilateral Filter

σr=0.4σr=0.2

ε=0.12

r=2

r=4

r=8

Guided Filter

ε=0.42ε=0.22

Fig. 1. The filtered images of a gray-scale input. In this example the guidance I is
identical to the input p. The input image has intensity in [0, 1]. The input image is
from [1].

Fig. 3 shows two examples of the kernel shapes in real images. In the top
row are the kernels near a step edge. Like the bilateral kernel, the guided filter’s
kernel assigns nearly zero weights to the pixels on the opposite side of the edge.
In the bottom row are the kernels in a patch with small scale textures. Both
filters average almost all the nearby pixels together and appear as low-pass
filters.
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μ
σ

σ

Ii

Ij

Ij

Fig. 2. A 1-D example of an ideal step edge. For a window that exactly center on the
edge, the variables μ and σ are as indicated.

Guidance I Guided Filter’s Kernel Bilateral Filter’s Kernel 

Fig. 3. Filter kernels. Top: a step edge (guided filter: r = 7, ε = 0.12, bilateral filter:
σs = 7, σr = 0.1). Bottom: a textured patch (guided filter: r = 8, ε = 0.22, bilateral
filter: σs = 8, σr = 0.2). The kernels are centered at the pixels denote by the red dots.

3.4 Gradient Preserving Filtering

Though the guided filter is an edge-preserving smoothing filter like the bilateral
filter, it avoids the gradient reversal artifacts that may appear in detail enhance-
ment and HDR compression. Fig. 4 shows a 1-D example of detail enhancement.
Given the input signal (black), its edge-preserving smoothed output is used as
a base layer (red). The difference between the input signal and the base layer is
the detail layer (blue). It is magnified to boost the details. The enhanced signal
(green) is the combination of the boosted detail layer and the base layer. An
elaborate description of this method can be found in [12].

For the bilateral filter (Fig. 4 left), the base layer is not consistent with input
signal at the edge pixels. This is because few pixels around them have similar
colors, and the Gaussian weighted average has little statistical data and becomes
unreliable. So the detail layer has great fluctuations, and the recombined signal
has reversed gradients as shown in the figure. On the other hand, the guided
filter (Fig. 4 right) better preserves the gradient information in I, because the
gradient of the base layer is ∇q ≈ ā∇I near the edge. The shape of the edge is
well maintained in the recombined layer.
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Bilateral Filter Guided Filter

Detail Layer

Enhanced Signal

Input Signal
Base Layer

reversed 
gradients

Fig. 4. 1-D illustration for detail enhancement. See the text for explanation

3.5 Relation to the Matting Laplacian Matrix

The guided filter can not only be used as a smoothing operator. It is also closely
related to the matting Laplacian matrix [2]. This casts new insights into the
guided filter and inspires some new applications.

In a closed-form solution to matting [2], the matting Laplacian matrix is
derived from a local linear model. Unlike the guided filter which computes the
local optimal for each window, the closed-form solution seeks a global optimal.
To solve for the unknown alpha matte, this method minimizes the following cost
function:

E(α) = (α − β)TΛ(α − β) + αTLα, (10)

where α is the unknown alpha matte denoted in its matrix form, β is the con-
straint (e.g., a trimap), L is an N×N matting Laplacian matrix, and Λ is a
diagonal matrix encoded with the weights of the constraints. The solution to
this optimization problem is given by solving a linear system: (L + Λ)α = Λβ.

The elements of the matting Laplacian matrix are given by:

Lij =
∑

k:(i,j)∈ωk

(δij −
1
|ω|(1 +

(Ii − μk)(Ij − μk)
σ2

k + ε
)). (11)

where δij is the Kronecker delta. Comparing (11) with (9), we find that the
elements of the matting Laplacian matrix can be directly given by the guided
filter kernel weights:

Lij = |ω|(δij − Wij), (12)

Following the strategy in [24], we can further prove (see the supplementary
materials) that the output of the guided filter is one Jacobi iteration in op-
timizing (10). If β is a reasonably good guess of the matte, we can run one
Jacobi step and obtain an approximate solution to (10) by a guided filtering
process: αi ≈

∑
j Wij(I)βj . In Section 4, we apply this property to image mat-

ting/feathering and haze removal.
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3.6 O(N) Time Exact Algorithm

One more advantage of the guided filter over the bilateral filter is that it auto-
matically has an O(N) time exact algorithm. O(N) time implies that the time
complexity is independent of the window radius r, so we are free to use arbitrary
kernel sizes in the applications.

The filtering process in (1) is a translation-variant convolution. Its computa-
tional complexity increases when the kernel becomes larger. Instead of directly
performing the convolution, we compute the filter output from its definition
(5)(6)(8). All the summations in these equations are box filters (

∑
i∈ωk

fi). We
apply the O(N) time Integral Image technique [28] to calculate the output of a
box filter. So the guided filter can be computed in O(N) time.

The O(N) time algorithm can be easily extended to RGB color guidance
images. Filtering using color guidance images is necessary when the edges or
details are not discriminable in any single channel. To generalize to a color
guidance image, we rewrite the local linear model (3) as:

qi = aT
k Ii + bk, ∀i ∈ ωk. (13)

Here Ii is a 3 × 1 color vector, ak is a 3 × 1 coefficient vector, qi and bk are
scalars. The guided filter for color guidance images becomes:

ak = (Σk + εU)−1(
1
|ω|

∑
i∈ωk

Iipi − μkp̄k) (14)

bk = p̄k − aT
k μk (15)

qi = āT
i Ii + b̄i. (16)

Here Σk is the 3×3 covariance matrix of I in ωk, and U is a 3×3 identity matrix.
The summations are still box filters and can be computed in O(N) time.

We experiment the running time in a laptop with a 2.0Hz Intel Core 2 Duo
CPU. For the gray-scale guided filter, it takes 80ms to process a 1-megapixel
image. As a comparison, the O(N) time bilateral filter in [15] requires 42ms
using a histogram of 32 bins, and 85ms using 64 bins. Note that the guided
filter algorithm is non-approximate and applicable for data of high bit-depth,
while the O(N) time bilateral filter may have noticeable quantization artifacts
(see Fig. 5). The algorithm in [16] requires 1.2 seconds per megapixel using 8
bins (using the public code on the authors’ website). For RGB guidance images,
the guided filter takes about 0.3s to process a 1-megapixel image. The algorithm
for high-dimensional bilateral filter in [16] takes about 10 seconds on average to
process per 1-megapixel RGB image.

4 Applications and Experimental Results

In this section, we apply the guided filter to a great variety of computer vision
and graphics applications.
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(c) (d)(b) (c)(a)

zoom-in of (b)

zoom-in of (c)

Fig. 5. Quantization artifacts of O(N) time bilateral filter. (a) Input HDR image (32bit
float, displayed by linear scaling). (b) Compressed image using the O(N) bilateral filter
in [15] (64 bins). (c) Compressed image using the guided filter. This figure is best
viewed in the electronic version of this paper.

Detail Enhancement and HDR Compression. The method for detail en-
hancement is described in Section 3.4. For HDR compression, we compress the
base layer instead of magnifying the detail layer. Fig. 6 shows an example for
detail enhancement, and Fig. 7 shows an example for HDR Compression. The re-
sults using the bilateral filter are also provided. As shown in the zoom-in patches,
the bilateral filter leads to gradient reversal artifacts.

Bilateral FilterGuided FilterOriginal 

Fig. 6. Detail enhancement. The parameters are r = 16, ε = 0.12 for the guided filter,
and σs = 16, σr = 0.1 for the bilateral filter. The detail layer is boosted ×5.

Flash/No-flash Denoising. In [11] it is proposed to denoise a no-flash image
under the guidance of its flash version. Fig. 8 shows a comparison of using the
joint bilateral filter and the guided filter. The gradient reversal artifacts are
noticeable near some edges in the joint bilateral filter result.

Matting/Guided Feathering. We apply the guided filter as guided feather-
ing: a binary mask is refined to appear an alpha matte near the object boundaries
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Original HDR Guided Filter Bilateral Filter

Fig. 7. HDR compression. The parameters are r = 15, ε = 0.122 for the guided filter,
and σs = 15, σr = 0.12 for the bilateral filter.

Guidance I Guided Filter

Filter Input p Joint Bilateral Filter

Fig. 8. Flash/no-flash denoising. The parameters are r = 8, ε = 0.22 for the guided
filter, and σs = 8, σr = 0.2 for the joint bilateral filter.

(Fig. 9). The binary mask can be obtained from graph-cut or other segmentation
methods, and is used as the filter input p. The guidance I is the color image. A
similar function “Refine Edge” can be found in the commercial software Adobe
Photoshop CS4. We can also compute an accurate matte using the closed-form
solution [2]. In Fig. 9 we compare our results with the Photoshop Refine Edge
and the closed-form solution. Our result is visually comparable with the closed-
form solution in this short hair case. Both our method and Photoshop provide
fast feedback (<1s) for this 6-mega-pixel image, while the closed-form solution
takes about two minutes to solve a huge linear system.

Single Image Haze Removal. In [9] a haze transmission map is roughly esti-
mated using a dark channel prior, and is refined by solving the matting Laplacian
matrix. On the contrary, we simply filter the raw transmission map under the
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Guidance I Binary Mask p Guided Filter Output q

Closed-formGuided Filter Photoshop Closed-formGuided Filter Photoshop

Fig. 9. Guided Feathering. A binary mask p is filtered under the guidance of I . In
the zoom-in patches, we compare with the Photoshop Refine Edge function and the
closed-form matting. For closed-form matting, we erode and dilate the mask to obtain
a trimap. The parameters are r = 60, ε = 10−6 for the guided filter.

(d)(a) (b) (e)(c)

Fig. 10. Haze Removal. (a) Hazy image. (b) Raw transmission map [9]. (c) The raw
transmission map is refined by the guided filter (r = 20, ε = 10−3). (e) Recovered
image using (c). (d) The result in [9].

guidance of the hazy image. The results are visually similar (Fig. 10). The guided
filter takes about 0.1s to process this 600×400 color image, but the running time
is over 10 seconds as reported in [9] .

Joint Upsampling. Joint upsampling [21] is to upsample an image under the
guidance of another image. Taking the application of colorization [7] as an exam-
ple. A gray-scale luminance image is colorized through an optimization process.
To reduce the running time, the chrominance channels are solved at a coarse res-
olution and upsampled under the guidance of the full resolution luminance image
by the joint bilateral filter [21]. This upsampling process can also be performed
by the guided filter. The result is visually comparable (Fig. 11).
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Colorized image (upsampled using GF)

NN JBF GFNN GFJBF

Gray scale image with color strokes

Fig. 11. Joint Upsampling for Colorization. The upsampling methods includes: nearest-
neighbor (NN), joint bilateral filter (JBF), and guided filter (GF).

5 Discussion and Conclusion

In this paper, we have presented a novel filter which is widely applicable in com-
puter vision and graphics. Different from the recent trend towards accelerating
the bilateral filter [14,15,16,17], we define a new type of filter that shares the
nice property of edge-preserving smoothing but can be computed efficiently and
exactly. Our filter is more generic and can handle some applications beyond the
concept of ”smoothing”. Since the local linear model (3) can be regarded as
a simple case of learning, other advanced models/features might be applied to
obtain new filters.

As a locally based operator, the guided filter is not directly applicable for
sparse inputs like strokes. It also shares a common limitation of other explicit
filter - it may have halos near some edges. In fact, it is ambiguous for a low-
level and local operator to determine which edge should be smoothed and which
should be preserved. Unsuitably smoothing an edge will result in halos near it.
However, we believe that the simplicity and efficiency of the guided filter still
make it beneficial in many situations.
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Abstract. Motion blurs confound many computer vision problems. The
fluttered shutter (FS) camera [1] tackles the motion deblurring problem
by emulating invertible broadband blur kernels. However, existing FS
methods assume known constant velocity motions, e.g., via user specifi-
cations. In this paper, we extend the FS technique to general 1D motions
and develop an automatic motion-from-blur framework by analyzing the
image statistics under the FS.

We first introduce a fluttered-shutter point-spread-function (FS-PSF)
to uniformly model the blur kernel under general motions. We show that
many commonly used motions have closed-form FS-PSFs. To recover
the FS-PSF from the blurred image, we present a new method by an-
alyzing image power spectrum statistics. We show that the Modulation
Transfer Function of the 1D FS-PSF is statistically correlated to the
blurred image power spectrum along the motion direction. We then re-
cover the FS-PSF by finding the motion parameters that maximize the
correlation. We demonstrate our techniques on a variety of motions in-
cluding constant velocity, constant acceleration, and harmonic rotation.
Experimental results show that our method can automatically and ac-
curately recover the motion from the blurs captured under the fluttered
shutter.

1 Introduction

Restoring motion blurred images is a challenging task as it relies on both accurate
kernel estimation and robust deconvolution. Most existing approaches assume
the blurs are caused by constant velocity motion and model the kernel as a box
filter. Tremendous efforts have been focused on designing robust deconvolution
methods, from the earlier approaches based on regularization [2] to the latest
ones using image statistics [3] and edge priors [4]. However, since the box filter
destroys high-frequency features that are difficult to recover post-capture, results
using these deconvolution methods may still contain strong artifacts.

Several computational photography methods have recently been proposed to
change the frequency profile of the blur kernel. The fluttered shutter (FS) camera
developed by Raskar et al. [1] opens and closes the shutter during the exposure
process according to a pre-determined sequence. The pseudo-random sequence
creates a broad-band filter that preserves high frequency details and is robust

K. Daniilidis, P. Maragos, N. Paragios (Eds.): ECCV 2010, Part I, LNCS 6311, pp. 15–30, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



16 Y. Ding, S. McCloskey, and J. Yu

Fig. 1. Motion estimation and deblurring of harmonic rotation using our approach.

to deconvolve. However, most existing fluttered shutter methods assume known
constant velocity motions and rely on either user inputs [1] or alpha matting [5]
to find the blur extent.

This paper addresses two fundamental problems when using the fluttered
shutter: 1) how to apply the FS to handle a broader class of motions and 2) how
to automatically recover the motion from the blurred image. For the first, we
introduce a new fluttered-shutter point-spread-function (FS-PSF). FS-PSF uni-
formly models the blur kernel of arbitrary motions by computing how long each
pixel gets exposed to the moving scene point throughout the shutter sequence.
We show that many common motions such as constant velocity, acceleration,
and harmonic rotation have closed-form FS-PSFs.

For the second, we present a new motion-from-blur method based on im-
age power spectrum statistics. Schaaf and Hateren [6] have shown that cir-
cular power spectrum statistics of blur-free images follow the 1/ω-exponent
model. We extend their analysis to model the linear power spectrum of motion
blurred images captured under the FS. We show that the Modulation Transfer
Function (MTF) of the 1D FS-PSF should be strongly correlated to the lin-
ear statistics of the blurred image along the motion direction. We then develop
a matching algorithm using a sign-of-derivative metric to find the motion pa-
rameters that yield the strongest correlation. We demonstrate our techniques
on real images of various motion types. We show that our method can auto-
matically and accurately recover the motion parameters from blurs under the
fluttered shutter. Furthermore, the recovered motion can be used to modify the
initial shutter sequence with improved invertibility in cases that have not previ-
ously been addressed in literature on coded exposure. Our specific contributions
are:

1. A new motion-from-blur framework analyzing Fourier image statistics.
2. A closed-form formulation of the fluttered shutter point-spread-function (FS-

PSF) to model general 1D motion blurs under the FS.
3. A new image statistics analysis that correlates the MTF of the FS-PSF with

linear power spectrum statistics of the blurred image.
4. A sign-of-derivative matching algorithm to find the motion parameters that

maximize the correlation. Our method also leads to the new design of the
motion-aware fluttered shutters.
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2 Related Work

Existing algorithms related to motion blur have focused on three main aspects:
blur kernel (PSF) estimation, image deconvolution and, most recently, image
acquisition.

PSF Estimation: PSF estimation from a single image is known to be ill-posed.
Existing methods make it tractable in a number of ways. Yuan et al. [7], for exam-
ple, use a blurred/noisy image pair of the same scene. Other approaches employ
regularization, such as the classical Wiener filter [2]. Still other approaches tackle
the PSF estimation problem by constraining the space of potential PSFs. Assum-
ing that blur arises from a traditional shutter with linear, constant-velocity mo-
tion constrains the potential PSFs to box filters. The cepstrum methods [8,9,10]
have been proposed to characterize the motion by the number and position of
zeros in the image power spectrum. However, these methods cannot be applied
to fluttered shutter images that are acquired specifically to avoid such zeros.
Recently, Dai and Wu [11] treat motion blurs as an alpha matte for estimating
the PSF. Agrawal and Xu [5] apply a similar approach on the fluttered shutter.
The implicit assumption in alpha-matte-based PSF estimation is the existence
of high-contrast edges in the latent sharp image. Since the alpha matte only
provides the blur extent, such methods cannot distinguish between the infinite
number of velocity/acceleration combinations that might produce that extent.

Image Deconvolution: Numerous methods in the category of blind deconvo-
lution [12] have been presented to mitigate the effects of motion or optical blur
in images. Most motion deconvolution methods are based on the assumption
that the object is moving along a straight line with constant velocity, in which
case the PSF is a 1D box filter. Levin [4] examines the consequences of this type
of blur on image statistics in order to perform blind deconvolution on blurred
regions. It is also well understood that the magnitude of the Fourier transform of
such a PSF has many zero points, where the frequency cannot be fully recovered.
These missing frequencies lead to artifacts when using standard deconvolution.
Though the scene’s content at these spatial frequencies is irrecoverable, outside
information in the form of gradient or edge priors [13,14,15,3,16] can be used to
produce visually pleasing images.

Acquisition: Sharp image acquisition of fast-moving can also be achieved using
short exposure duration with high-powered flashes, which is impractical in most
settings. Many modern digital cameras have adaptive optical elements controlled
by inertial sensors to reduce the effects of moderate camera motion due to hand
shakes. Using video with varying exposure durations, Agrawal et al. [17] capture
multiple images with partial coverage of the spatial frequency spectrum, which
are combined to produce a single sharp image with coverage of all spatial fre-
quencies. Hybrid cameras [18,19,20] use additional images/video to obviate or
simplify the kernel estimation step.

Our work is motivated by the Flutter Shutter (FS) method by Raskar et
al. [1], in which a single image is acquired by randomly opening and closing the
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camera’s shutter during image capture. For constant velocity motion, the result-
ing blur kernel is invertible and standard image decovolution can be directly used
for deblurring. However, existing FS techniques assume known motion extent,
e.g., via user specifications. In contrast, we set out to actively recover the motion
from the blur. Our work is also related to Depth-from-Defocus (DfD) methods
based on the coded apertures [21]. Although both DfD and motion estimation
can be formulated as kernel estimation problems, motion blur kernels are usu-
ally complex yet spatially-invariant whereas defocus blur kernels are simple but
spatially variant. As a result, motion estimation methods can uniformly treat
groups of pixels, e.g., via image statistics [3] while DfD techniques rely on other
types of priors such as smoothness or edges [22,23]. In this paper we analyze
image statistics under the fluttered shutter for motion estimation.

3 Fluttered Shutter Point Spread Function (FS-PSF)

We start with defining the point-spread-function under the fluttered shutter that
we call FS-PSF. We represent the shutter’s fluttering pattern as a sequence of
chops with 1/0 values denoting the open/closed shutter states. We set every
chop to have the same period wchop and will use wchop as the time unit t in the
following analysis. Let S(t) denote the flutter sequence, we have:

S(t) =
{

0 shutter closed
1 shutter open , t = 1, 2, 3, · · · , Ms (1)

where t represents time, Ms is the number of chops in the sequence, and Es =
wchop

∑Ms

t=1 S(t) is the total exposure time.
The normalized FS-PSF p(x) describes how much each pixel x gets exposed

to a moving scene point Q. Therefore, it is a function of both the shutter se-
quence S(t) and the motion of Q. To simplify our analysis, we adopt the same
assumption in [1] that the moving object is frontal-planar and the FS-PSF is
spatially-invariant. We measure the motion parameters such as displacement,
velocity, and acceleration in unit of pixels, e.g., velocity as pixel/chop.

Recall that pixel x gets exposed to Q when Q’s image passes through x. The
exposure duration w(x) is inverse proportional to Q’s velocity ν(x) as:

w(x) =
1

ν(x)
(2)

Notice that, for general motions, it is natural to describe the velocity and dis-
placement in terms of t. Thus, we can rewrite w(x) = 1

ν(t(x)) , where t(x) is the
inverse of the displacement function x(t). In this paper, we assume that x(t)
is monotonic throughout the shutter sequence, i.e., there is no back and forth
motion, so that x(t) is invertible.

Finally, we combine the shutter sequence and the exposure w(x) to compute
the un-normalized FS-PSF p0(x)1 as:
1 p0(x) is later be normalized to FS-PSF p(x).
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p0(x) = S(t(x))w(t(x)) =
S(t(x))
ν(t(x))

(3)

Eq. (3) indicates that the FS-PSF can be viewed as an envelope of w(x) sampled
by the shutter pattern S(t) as shown in Fig. 2. To derive the FS-PSF for arbitrary
motions, we simply need to derive t(x).

3.1 Constant Velocity

For constant velocity motion at νcpixels/chop, we assume the first exposed pixel
is the 0-th pixel, and we have x(t) = νc · t and t(x) = x/νc. The FS-PSF is thus:

p0(x) =
S(t(x))

νc
=

S( x
νc

)
νc

, x = 1, · · · , νcMs (4)

Since the last exposed pixel coordinate has x(Ms) = νcMs, we can compute the
normalized FS-PSF as:

p(x) =
p0(x)∑νcMs

x=1 p0(x)
=

S( x
νc

)
νcEs

, x = 1, · · · , νcMs (5)

Eq. (5) indicates that varying the velocity νc will result in spatial scaling in
the PSF p(x), while the envelope of p(x) remains as a rectangle. An example is
shown in Fig. 2(left); the discretization of x in pixels may result in non-integer
values. Our FS-PSF approximates non-integer pixels as the closest integer pixels
with partial exposure intensity.

Recall that existing methods [1,5] directly treat the shutter sequence as the
PSF, i.e., p(x) = S(x). It is a special case of Eq. (4) where νc = 1pixel/chop,
and was achieved by manually re-sampling the captured image.

3.2 Constant Acceleration

Let νs and νe denote the velocity of Q at the start and end of the shutter
sequence. The acceleration a can be computed as: a = νe−νs

Ms
. The velocity ν(t)

and displacement x(t) are:

ν(t) = νs + a · t, x(t) = νs · t +
a

2
· t2 (6)

We can invert Eq. (6) to compute t(x) as:

t(x) =
−νs +

√
ν2

s + 2a · x
a

(7)

Finally, we can derive its FS-PSF using Eq. (3):

p0(x) =
S(t(x))
ν(t(x))

=
S(−νs+

√
ν2

s+2a·x
a )√

ν2
s + 2a · x

(8)
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Fig. 2. FS-PSFs of common motions: constant velocity (left), constant acceleration
(middle), and harmonic motion (right). Top row shows the time-velocity function sam-
pled by the shutter (in red). Bottom row shows the corresponding FS-PSF.

The envelope of the constant acceleration FS-PSFs can be approximated as a
trapezoid, as shown in Fig. 2 (middle); changing the starting velocity or the
acceleration varies the slope and the shape of the trapezoid. We use νs and a as
the parameters for constant acceleration motion.

3.3 Linear Harmonic Motion

Linear harmonic motion is a periodic motion, where an object oscillates about
an equilibrium position in a sinusoidal pattern, such as the commonly studied
spring-mass system and the pendulum (recall Fig. 1).

We parameterize the linear harmonic motion by the amplitude A, the angular
speed Ω, and the initial phase Φ. We first compute x and ν as functions of t:

x(t) = A sin(Ωt + Φ), ν(t) = AΩ cos(Ωt + Φ) (9)

we solve t as an inverse function of x from Eq. (9):

t(x) =
arcsin( x

A − Φ)
Ω

(10)

Finally, we re-write Eq. (3) and compute the corresponding FS-PSF:

p0(x) =
S(t(x))
ν(t(x))

=
S(arcsin( x

A−Φ)
Ω )

AΩ cos(Ω · arcsin( x
A−Φ)

Ω + Φ)
(11)

Fig. 2(right) illustrates harmonic motion with A = 30, Φ = π/2, Ω = π/30.

4 Recovering Motion PSFs

We have shown many commonly observed motions have closed-form PSFs. Our
goal is to recover the FS-PSF by analyzing blurred images. Recall that the
process of motion blur can be modeled as standard convolution:

i(x, y) = j ⊗ p(x, y) + n(x, y) (12)
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where ⊗ is the convolution operator, j is the latent sharp image, i is the degraded
image, p is the blur kernel, and n is noise.

If we ignore n, we can model the amplitude spectrum of Eq. (12) as:

|I| = |JP | = |J ||P | (13)

where i/I, j/J , and p/P are Fourier pairs, and | · | is the modulus operator. |P |
is also called the Modulation Transfer Function for 1D PSFs.

4.1 Power Spectrum Statistics

Our FS-PSF estimation algorithm is based on power spectrum statistics in nat-
ural images. van der Schaaf and van Hateren [6] have shown that, for a natural
image j without motion blur, its circular power spectrum statistics follows the
1/ω-exponent model: if we parameterize |J | in polar coordinates (ω, φ) where ω
is the radius (absolute frequency) and φ is the angle, we can average |J | over φ
for every ω and the resulting circular averaged power spectrum circω(|J |) ≈ C

ωm ,
where m and C are constants. Statistically, if we assume every frequency is an in-
dependent and identically distributed random variable, circular statistics reveals
that the expected value of |J(u, v)| is:

E[|J(u, v)|] =
C

(u2 + v2)m/2 (14)

Fig. 3(a) shows example traces of the power spectra of five natural images.
Our goal is to use power spectrum statistics to recover the FS-PSF from the

blurred image i. In this paper, we assume the motion type (constant velocity,
acceleration, etc.) is known and we focus on recovering its corresponding motion
parameters α. Given an candidate α, we can compute the closed-form FS-PSF p
as shown in Sec. 3 and calculate its MTF |P |. The latent image power spectrum
|J | can then be computed as |I|/|P | from Eq. (13). If α is the correct motion
estimate, J should be motion blur free and its circular averaged power spec-
trum circω(|J |) should follow C

ωm distribution. A naive approach for testing if
α is a good motion estimation, then, would be to check if circω(|I|/|P |) has a
C

ωm distribution. However, since circω(|J |) only represents the statistics of |J |,
incorrectly estimated motion parameters may still produce such distributions.
Therefore, we set out to match the statistics between |P | and |I| instead.

4.2 Linear Power Spectrum Statistics

We first replace circular power spectrum statistics with linear statistics. Specif-
ically, we project the 2D power spectrum onto a line l that corresponds to the
motion direction in the spectral domain. We rotate the Fourier plane so that l
is aligned with the u axis and apply the projection by integrating over v. This
process can be alternatively viewed as applying a Radon Transform [25] along
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Fig. 3. Power Spectrum Statistics on Five Randomly Selected Images from the Berkeley
Segmentation Database [24]. (a) The circular power spectrum vs. the spatial frequency
ω in a log-log scale. The red lines show the fits of the 1/ω-exponent model. The scaling
of the vertical axis belongs to the top trace. (b) The linear statistics along v vs. u in
a log-log scale. The red curves show our estimated linear statistics from the circular
statistics. For clarity, traces in both plots are shifted -1, -2, -3, and -4 log-units.

the v direction. In the discrete case, we can compute the linear averaged power
spectrum of an image |J | as:

Ru[|J |] =
1
V

V∑
v=0

|J(u, v)| (15)

where V is the v-dimension resolution. Ru[|J |] represents the horizontal power
spectrum statistics and can be approximated using Eq. (14) as:

Ru[|J |] ≈ E[
1
V

V∑
v=0

|J(u, v)|] =
1
V

V∑
v=0

C

(u2 + v2)m/2 (16)

Fig. 3(b) illustrates that our Ru[·] estimation is accurate and robust.
We can further apply the Ru operator to both sides of Eq. (13):

Ru[|I|] =
V∑

v=0

|J(u, v)||P (u)| = |P (u)| · Ru[|J |] (17)

Eq. (17) allows us to separate Ru[|J |] and |P |. We can further take the log of
Eq. (17) as:

log(Ru[|I|]) = log(|P |) + log(Ru[|J |]) (18)

4.3 Motion Estimation

Fig. 4 illustrates our motion estimation algorithm. We first determine the motion
direction and align it with the u axis. For every candidate motion parameter α,
we compute its FS-PSF pα and MTF |Pα|, and use it to estimate the latent
image power spectrum |Jα| = |I|/|Pα|. We then compute the linear statistics
Ru[|Jα|], and Ru[|I|]. Finally, we compute the match score μ between log(|Pα|)
and log(Ru[|I|]) − log(Ru[|Jα|]). The optimal motion parameter α corresponds
to the one that maximizes μ.
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Fig. 4. Steps of Our Power-Spectrum-Based Motion Estimation Algorithm

Estimating the Motion Direction. We adopt a similar approach to [26] that
finds the direction with most muted high frequencies. This assumes that the
latent sharp image is not highly anisotropic, i.e., the power spectrum distribution
along all directions have similar characteristics (variance, mean values). Since
1D motion blur attenuates the middle- and high-frequency information in the
direction of motion, it amounts to a detection of a direction in which they are
most muted. We do this by inspecting the Radon-power spectrum of the blurred
image in all directions and choosing the one with the maximal variance.

Computing Linear Statistics of |Jα|. A crucial step in our motion estimation
algorithm is to derive the linear statistics of |Jα| = |I|/|Pα| from the circular
statistics. Since we assume Jα is motion blur free, its circular statistics should
follow 1/ω-exponent distribution. To estimate C and m, we compute the discrete
circular averaged power spectrum and apply line fitting between log(circω [|Jα|])
and log(ω). We then approximate the linear statistics Ru[|Jα|] using Eq. (16).

Matching Log-Linear Statistics. Recall that our ultimate goal is to match
f1=log(|Pα|) and f2=log(Ru[|I|])− log(Ru[|Jα|]) under some metric μ. A native
μ is to measure the squared difference at sampled points on f1 and f2. Since the
power spectrums of images generally have much smaller values in high frequency,
directly computing the correlation between the estimate f1 and f2 results in
unequal contributions from different frequencies.

We employ a metric based on the signs of the function derivatives to equally
treat all frequencies. Specifically, we use a derivative sign function Γ (·):

Γ (χ(u)) =
{

1, dχ
du ≥ 0

−1, dχ
du < 0

(19)

where χ is a 1D function on u.
Finally, we sample f1 and f2 at discrete points u1, u2, · · ·, un, and compute:

μ(f1, f2) =
n∑

i=1

Γ
(
f1(ui)

)
Γ
(
f2(ui)

)
(20)

4.4 Motion-Aware Fluttered Shutter

Although not the focus of the paper, we briefly discuss how to use our techniques
to develop motion-aware flutter shutters. The standard flutter shutter method
has been focused on deblurring a single image. For videos, the object’s motion
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Fig. 5. Motion Estimation and Deblurring Results on an Iris Image and a Bar Code
Image. (a) shows our motion stage and the fluttered shutter camera. Column 2: The
ground truth blur-free images. Column 3: Blurred images caused by constant veloc-
ity motion under the FS. Column 4: The matching metric vs. the motion parameter
(velocity). Column 5: The deblurred results using our recovered motion parameter.

may vary across the frames. Therefore, we aim to use the recovered motion to
further update the initial shutter sequence to better match the motions.

Our strategy is to first determine the shutter sequence in the spatial domain
and then map the sequence to the temporal domain. Recall that we have shown
in Sec. 3 that the FS-PSF can be viewed as a motion envelope sampled by the
shutter sequence: the envelope is a function of recovered motion parameters α
and the sampling is determined by the shutter sequence. We can directly model
the FS-PSFs as a dot product of the envelope w(x) and a binary sequence b(x)
in the spatial domain and apply the same search scheme in [1] and [5] to locate
an optimal b(x) so that w(x)b(x) is ”most” invertible, i.e., the one that has
the maximal minimum magnitude in its MTF. Finally, we determine the flutter
pattern s(t) from b(x) by using the motion model:

s(t) = s(t(x)) = b(x(t)) (21)

Fig. 8 compares the deblur results using the initial const velocity optimal se-
quence and using our motion aware sequence.

5 Results

We have applied our technique to all of the publicly available flutter shutter im-
ages [1], and find that our method produces estimates that are within 1 pixel of
the ground truth values, giving high-quality reconstructions. In order to test the
broader types of blur (acceleration, harmonic motion) handled by our method,
we have acquired additional test images using a Point Grey Flea2 camera trig-
gered via the serial port of the controlling computer. The camera supports an
external shutter mode that accumulates exposure over several chops, after which
a single readout produces the flutter shutter image. To deblur the image from
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our recovered FS-PSF, we use the linear system solution [1] for constant velocity
motions and the Gaussian-derivative-prior method [21] for constant acceleration
and harmonic rotation motions.

5.1 Constant Velocity

We first validate our algorithm on constant velocity motion. The only parameter
here is the velocity. We captured the images from a fixed camera observing a
motion stage to which textured objects are attached as shown in Fig. 5(a). Our
motion stage can simulate different velocity motions via voltage controls. To
measure the ground truth velocity, we use a step edge calibration target and
measure its blurred width in an image with a known exposure time. We choose
the shutter sequence as in [1] whose MTF has the maximum min magnitude and
has a chop duration of vc = 1pixel/chop. With this setup, we obtain the ground
truth FS-PSF using Eq. (5).

Fig. 5 shows two examples acquired using this setup, an iris image (b) with
little texture and a bar code image (f) with repetitive texture. The iris and 2D
barcode targets move from left to right with a constant velocity, giving the flutter
shutter images (c) and (g). In both cases the motion is axis-aligned horizontal.
Our estimated motion direction is within 1◦ degree of this ground truth. The
plots (d) and (h) show the matching metric μ computed over a range of potential
PSF sizes (proportional to velocities in this case), which have pronounced peaks
exactly at the ground truth values (35 pixels for the iris image and 42 pixels for
the barcode image). The resulting FS-PSF estimates are then used to deblur (c)
and (g). Our deblurred results (e) and (i) contain sufficient detail to perform
recognition on the de-blurred images. The iris template extracted from our de-
blurred image was successfully matched to a separate image of the same eye,
and the barcode image can be decoded to extract its payload. Neither the iris
recognition nor the barcode decoding were successful on Lucy-Richardson [27]
de-blurred versions of traditional shutter images captured with the same setup.

5.2 Constant Acceleration

For constant acceleration, the motion parameters α are the starting velocity and
acceleration. We capture accelerated motion images using a toy car on a slanted
track, using a dead drop for which gravity provides the only acceleration. Because
of the unknown timing between the release of the car and the image capture,
we are unable to determine the ground truth FS-PSF for these images. Instead,
we validate our motion estimation by the quality of the deblurred results. The
shutter sequence used in these experiments is computed under the constant
velocity assumption and does not account for acceleration. Because the velocity
and acceleration are unknown a priori, these images are generated with what is
essentially a random flutter shutter sequence.

Fig. 6 (a) shows the image captured as the toy train undergoes accelerated
motion. Though the track is slanted at 55◦, the camera is rotated so that the
motion appears nearly horizontal. We first apply our motion direction estimation
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Fig. 6. FS-PSF Estimation and Deblurring Results on Constant Accelerations. A toy
car sliding down a slanted track at 55◦. The camera is rotated so that the motion
appears horizontal. For clarity, a textured cardboard was attached to the car. (a): The
motion blurred image under the fluttered shutter. (c) and (d) show the functions t(x)
and the corresponding PSFs using constant velocity assumption and our recovered
constant acceleration motion. (e) The deblurred result using the FS-PSF of constant
velocity (vc=1.51pixels/chop). (f) The deblurred result using our algorithm’s FS-PSF
estimation for constant acceleration (vs=1.16pixel/chop, ve=1.85pixel/chop). (b), (g),
and (h) are close-up views for (a), (e), and (f).

algorithm, which produces an estimate of 1◦. Next, we apply our power spectrum
statistics approach to determine the acceleration motion parameter, which gives
t(x) and the FS-PSF shown in (d). The deblurred result is shown in (f), and
a close-up in (h). Given the severe blur in (a) and the fact that the fluttering
sequence is not optimal under accelerated motion, the amount of detail present
in the close-up is significant. Note that reconstruction artifacts in (f) are due
to the stationary background’s intensity interacting with the moving foreground
object. We also present the deblurred result assuming a constant velocity motion
model. Our algorithm first estimates the motion velocity and plots the t(x) and
PSF in (c). As shown in (e) and (g), using incorrect motion model, the deblurred
images contain severe artifacts.

5.3 Harmonic Rotation

Finally, we experiment our approach on planar harmonic rotation. The harmonic
rotation consists of 3 parameters, i.e., A, Ω, and Φ. As shown in Fig. 7(a), we em-
ulate harmonic rotation by hanging a heavy rigid object below a fixed stick using
two approximately rigid, weightless cords. These two cords are connected to the
same point. By swinging the object back and forth freely within a plane, we syn-
thesize a periodic harmonic rotation. Notice that the rotation is 2-dimensional,
with spatially varying blur kernels for different pixels (Fig. 7(b)).

In order to simplify the analysis, we transform the harmonic rotation into a
linear harmonic motion. Specifically, we track feature points and estimate the
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Fig. 7. FS-PSF Estimation and Deblurring Results on a Harmonic Rotational Tea Bag
(g). (a) and (b): The captured blur image under the FS. (d): Warped (b) under polar
coordinates. (e) and (h): Our motion deblurred result under the polar and the cartesian
coordinates. (f): Our recovered FS-PSF. (c) and (i): Close-up views for (b) and (h).

rotation center by solving a least squares problem [16]. We then warp the image
along the radial directions to form a spatially invariant linear harmonic motion
blur (d). Our algorithm recovers the harmonic motion parameters (f) and then
deblurs the image (d) and obtain (e). Finally, we warp the image back to the
original cartesian coordinate system (h).

5.4 Motion Aware Shutter Sequence

We pick a fluttered shutter sequence originally designed optimal for constant
velocity motion (v=1.0pixel/chop) as the initial shutter sequence. We then use
this sequence to capture an accelerated motion with vs=0.8 pixels/chop and
ve=1.8pixels/chop. The resulting FS-PSF is shown in Fig. 8(c). Notice that it
has small values at several frequencies. We synthetically blur a sharp image (b)
using the FS-PSF with additive Gaussian white noise of σ=0.01. We then deblur
it using our motion estimation algorithm, with constant acceleration. Although
our method recovers highly accurate motion parameters (vs=0.790, ve=1.805),
the resulting deblurred results contain strong ringing artifacts.

Using the recovered motion parameter, we apply the random search scheme
as in [1] to find the optimal flutter shutter sequence. The new FS-PSF is shown
in Fig. 8(d). Compared with the old FS-PSF, it maintains large values at all
frequencies. We use the new FS-PSF to blur the sharp image and also add
Gaussian white noise σ=0.01. Finally, we apply our power spectrum statistics
method to recover the motion parameter and obtain a new deblurred image as
shown in (h). (i) and (j) show the close-up views of the deblurred results under
the old and new FS-PSF. The motion-aware FS-PSF yields much less artifacts.
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Fig. 8. Motion-aware Fluttered Shutter. (a) is the PSF and the MTF under con-
stant velocity. (c) is the PSF/MTF under acceleration motion (vs=0.8pixels/chop,
ve=1.8pixels/chop) using the same sequence as in (a). (d) is the PSF/MTF using our
motion-aware sequence. (e) and (f) are synthetically blurred images of (b) using accel-
eration PSFs in (c) and (d). (g) and (h) are the corresponding deblurred images, (i)
and (j) show the close-up views.

6 Conclusion and Limitations

We have presented a new fluttered-shutter-based motion estimation and deblur-
ring framework. Our method adopts the fluttered-shutter point-spread-function
(FS-PSF) model to uniformly describe blur kernels under general motions. We
have developed an automatic motion-from-blur technique that recovers the
FS-PSF by analyzing image power spectrum statistics. We have introduced a
new linear statistics model that can be directly estimated from circular power
spectrum statistics. We have shown that the MTF of 1D FS-PSF should be
statistically correlated to the linear statistics of the blurred image’s power spec-
trum along the motion directions. To find the optimal FS-PSF, our method
searches the space of motion parameters to find the one that yields the maximum
correlation.

The use of fluttered shutters is crucial in our motion-from-blur algorithm.
Recall that the first step in our linear statistics estimation is to compute the
latent image power spectrum |J | = |I|/|P |. The implicit assumption there is
that |P | does not contain zeros, the most important property of the fluttered
shutter. For conventional shutters where P is a sinc function and has many zeros,
the resulting |J | will contain points with large values and robustly fitting 1/ω-
exponent distribution to circular power spectrum statistics is difficult. Thus, our
technique is not directly applicable to the box filters.

Another limitation of our framework is that it is restricted to 1D motions.
1D motions allows us to efficiently separate the FS-PSF from linear statistics of
the latent image (Eq. (17)). Intuitively, our technique may be directly applied
to 2D motions. For example, once we compute C and m of the 1/ω-exponent
model, we can approximate |J(u, v)| ≈ C/(u2+v2)m/2 and directly match the 2D
function |I|/|J | with |P |. However, since the 1/ω-exponent model is a statistical



Analysis of Motion Blur with a FS Camera for Non-linear Motion 29

model, the actual |J | values may significantly deviate from their expected values.
Therefore, matching 2D |I|/|J | with |P | is not reliable. A possible solution for
future work is to approximate the 2D FS-PSF as combinations of 1D FS-PSFs
and then reapply our linear statistics method to fit along their corresponding
directions. Another important future direction is to use our motion-aware flutter
shutter for video deblurring. The challenge there is to determine the optimal
shutter sequence from the estimated motions in real-time (e.g., 30fps). Recall
that majority of our computations lie in the spectral space and computing image
statistics is similar to texture filtering. Therefore, we plan to re-implement our
algorithm on the GPU for real-time motion estimation and shutter selection.
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Abstract. Gradient-domain compositing is an essential tool in com-
puter vision and its applications, e.g., seamless cloning, panorama
stitching, shadow removal, scene completion and reshuffling. While easy
to implement, these gradient-domain techniques often generate bleeding
artifacts where the composited image regions do not match. One option
is to modify the region boundary to minimize such mismatches. However,
this option may not always be sufficient or applicable, e.g., the user or
algorithm may not allow the selection to be altered. We propose a new
approach to gradient-domain compositing that is robust to inaccuracies
and prevents color bleeding without changing the boundary location. Our
approach improves standard gradient-domain compositing in two ways.
First, we define the boundary gradients such that the produced gradient
field is nearly integrable. Second, we control the integration process to
concentrate residuals where they are less conspicuous. We show that our
approach can be formulated as a standard least-squares problem that can
be solved with a sparse linear system akin to the classical Poisson equa-
tion. We demonstrate results on a variety of scenes. The visual quality
and run-time complexity compares favorably to other approaches.

Keywords: gradient-domain compositing, visual masking.

1 Introduction

Gradient-domain compositing is an essential technique at the core of many
computer vision applications such as seamless cloning [1–4], panorama stitch-
ing [5–7], inpainting [8], shadow removal [9], scene completion [10], and reshuf-
fling [11]. These methods first delineate the composited regions, then compute
a target gradient field and boundary conditions from these regions, and finally
solve the Poisson equation to reconstruct an image. A major issue with gradient-
domain compositing is that the combined gradient field may not be integrable;
that is, an image with gradients that match the target field as well as the spec-
ified boundary conditions may not exist. Existing work mitigates this issue by
moving the boundary to more carefully combine the merged regions. However,
when the combined images are widely different, this strategy may not be suf-
ficient. Or, if the user has specified the boundary by hand, he or she may not
want it to be altered. For instance in Figure 1, the selection cannot be modified
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(a) Foreground (b) Copy-and-paste (c) Poisson (d) Our result

Fig. 1. We present an image-compositing technique tolerant to selection inaccuracies.
In this example, a user wishes to add trees to an image of the Egyptian pyramids, but it
is not possible to select the trees without cutting through the foliage (a). Moreover, to
ensure a good insertion behind the pyramids, it is not possible to modify the selection
boundary. A direct copy of the pixels yields a undesirable visible seam (b). Standard
gradient-domain compositing minimizes the seam, but leads to bleeding artifacts where
the foliage is cut (c). Our method characterizes where color leakage should be avoided,
producing a seamless composite without bleeding artifacts (d).

because the tree trunks have to abut the pyramids. Even with boundary refine-
ment, the target gradient fields may be far from integrable, yielding color leaks
and halos typical of Poisson-based methods.

In this paper, we present an algorithm for minimizing artifacts in gradient-
domain image compositing. We characterize the origin of typical bleeding ar-
tifacts and analyze the image to locate the areas where they would be most
and least conspicuous. Based on this analysis, we propose a two-step algorithm.
First, we process the gradient values on the boundary to minimize artifacts in
regions where bleeding would be visible. Second, we describe a weighted integra-
tion scheme that reconstructs the image from its gradient field so that residuals
are located in textured regions where they are less visible. Our results show
that the combination of these two steps yields significantly better composites.
Moreover, our method is formulated as a least-squares optimization that can
be solved using a sparse linear system, which makes our approach computa-
tionally efficient. We demonstrate our approach on scenarios in which boundary
mismatches are likely to occur: user-driven seamless cloning [1], heterogeneous
panorama stitching [7], and scene reshuffling [11].

1.1 Related Work

Gradient-domain techniques are useful to a variety of problems in computer
vision, including image stitching, intrinsic images, shadow removal, and shape-
from-shading [5, 12–15]. In most of these problems, the gradient field contains
non-integrable regions and many authors have noted that reconstruction ar-
tifacts are often due to boundary conditions. As a result, a variety of meth-
ods have been introduced to minimize artifacts by refining the boundary lo-
cation [2, 4, 5, 16]. Rather than moving the boundary, which may not always
be possible, we focus on reconstructing the final image from the target gradi-
ent field once the boundary is specified. Our approach is complementary and
orthogonal to boundary-refinement methods. We show that our image anal-
ysis combined with a careful study of the numerical scheme reduces visible
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artifacts. Our approach could benefit many computer vision algorithms that
rely on gradient-domain reconstruction as a subroutine.

The general formulation of the gradient-domain reconstruction problem is to
seek an image I that approximates the target field v in a least-squares sense
(with ∇, the gradient operator):

argminI

∫
||∇I − v||2 (1)

which can be minimized by solving the Poisson equation:

ΔI − div(v) = 0 (2)

where Δ is the Laplacian operator ∂2/∂x2 + ∂2/∂y2 and div is the divergence
operator ∂/∂x+∂/∂y. To solve this equation, one also needs boundary conditions
that depend on the application. We illustrate how to compute the target gradient
v in the context of seamless compositing using three inputs: the background
image, B; the foreground image, F ; and a selection, S with a boundary β [5].

v(x, y) =

⎧⎪⎨
⎪⎩
∇F if (x, y) ∈ S, (x, y) 
∈ β

∇B if (x, y) 
∈ S
1
2 (∇F + ∇B) if (x, y) ∈ β

(3)

Other cases such as panorama stitching are similar except that the images are
not named “foreground” and “background.” For the sake of simplicity, we will
name the images foreground and background.

The gradients from the foreground image F and background image B are
integrable since they are computed directly from images. But the gradients along
the boundary between the two images may not be integrable, creating a source of
errors that the integration routine must manage. Farbman et al. [17] address this
issue by relying on users to identify the leaks. The gradients of marked regions are
ignored, which removes the leaks. In comparison, our method analyzes the image
to automatically adapt the integration process. Our approach shares similarities
with the method of Lalonde et al. [16] who propose to take the image gradient
magnitude into account during the reconstruction process. However, color leaks
may still appear with this technique when boundaries are not accurate.

Besides image compositing, gradient-domain methods have also been used in
computer vision for surface reconstruction problems, such as shape-from-shading
and photometric stereo. In these problems, an algorithm estimates the gradient
of a surface at every pixel and then a robust Poisson solver is used to find the
surface that best fits the estimated gradients. We refer to the recent work of
Agrawal et al. [14], Reddy et al. [18], and the references therein for detail. Al-
though image compositing and robust integration techniques both reconstruct a
2D signal from its gradients, the two problems are fundamentally different. The
gradients from surface-reconstruction methods are noisy everywhere, whereas
image-compositing gradients are problematic only at the boundary between fore-
ground and background. In this paper, we exploit this specificity to improve the
quality of the results. We also rely on visual masking to locate integration resid-
uals where they are less conspicuous.
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1.2 Contributions

In this paper, we introduce several contributions.
� Low-curl boundaries. We describe a method that limits the artifacts by min-

imizing the curl of the target gradients on the foreground-background boundary.
� Weighted Poisson equation. We show how to add weights to the Poisson

equation so that integration residuals lie in textured regions where they are less
visible due to visual masking.

� Efficient non-bleeding compositing. We combine the two previous contribu-
tions to obtain a compositing algorithm that prevents bleeding artifacts while
remaining linear akin to the original Poisson equation.

1.3 Overview

Our algorithm consists of two steps. First, we focus on the boundary between the
foreground and background regions. We characterize the origin of the bleeding
artifacts and we show how to modify the gradient field v to minimize them. The
second step focuses on the location of the integration residuals. We show that
artifacts are less visible in textured regions due to visual masking. We describe
an algorithm that controls the integration residuals such that they are located
in textured areas. In the results section, we show that the combination of these
two steps yields visually superior results.

2 Low-Curl Boundary

A necessary condition for a gradient field u to be integrable is to have a zero
curl1. That is, if there exists an image I such that ∇I = u, then curl (u) =
∂uy/∂x − ∂ux/∂y = 0. For example, consider the configuration illustrated in
Figure 2(a). When all pixels come from one image, in this case the foreground
image, the derivatives are consistent and the curl is zero. Therefore, this region
is integrable, i.e., the image can be reconstructed from its gradients. The same
observation holds for regions from the background image.

In the image compositing problem, a non-integrable gradient field only occurs
on the boundary, as illustrated in Figure 2(b). On the boundary, the gradient
field is a mixture of two fields and may have non-zero curl since gradients come
from mixed sources. When the gradient field has a non-zero curl, we cannot
minimize the Poisson equation (2) exactly and residuals remain. These residuals
are often visible in composited images as halos, bleeding, or other artifacts.

2.1 Reducing the Curl on the Boundary

Since the non-integrability of regions along boundary is the source of artifacts,
we seek to alter the desired gradient field to minimize the bleeding artifacts.
Let v represent the desired gradient field of the composited image. To preserve
1 Note that for a 2D vector field u = (ux,uy), the curl is a scalar value that corresponds

to the z component of the 3D curl applied to the 3D vector field (ux,uy , 0).
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F F

FF

(a) Within fore-
ground

F

F B

B

(b) On boundary

Fig. 2. Estimating the curl on a discrete grid. Circles denote pixels and arrows denote
differences between pixels. If the curl is computed within the foreground region (a), all
the derivatives come from F and the curl is null. The background case is equivalent
(not shown). On the boundary (b), derivatives from diverse sources are used and in
general the curl is not zero.

the visual information of the two images, we do not modify the foreground or
background gradients in v. We only modify v values on the boundary such that
the curl is as small as possible.

A naive solution would be to seek curl (v) = 0 everywhere. But the following
counterexample shows that this approach would not achieve our goal. Consider
the standard copy-and-paste operation that directly combines the pixel values
and produces an image Iseam with visible seams. The curl of the gradient field of
Iseam is null since it is computed from an actual image. And, inside the selection,
gradients are equal to the foreground values since pixels have been copied. The
same holds outside the selection with the background values. However, on the
boundary, gradients are different from either the foreground or the background,
which generates the seams. We address the shortcomings of this naive solution
by seeking gradient values that minimize the curl and are close to the gradients
of the input images.

A Least-squares Approach. We formulate our goal using a least-squares energy
where the desired gradients v on the boundary are the unknowns. The first term
minimizes the curl:

∫
β [curl (v)]2 and the second term keeps the values close to

the input gradients
∫

β
(v − ∇F )2 +

∫
β
(v − ∇B)2. This last term has the same

effect as keeping v close to the average gradient. We combine the two terms to
obtain:

argminv

∫
β

([
curl (v)

]2 + Wβ

[
v − 1

2
(∇B + ∇F )

]2) (4)

where Wβ controls the importance of the second term.

Adaptive Weights. Figure 3 shows results for several values of Wβ . For large Wβ ,
we only minimize the proximity to the input gradients, which is the standard
gradient compositing with seamless boundaries but leaking artifacts. For a small
Wβ , we have the naive solution described above where we only minimize the curl.
There are no bleeding artifacts but the boundary is visible. We combine these
two behaviors by varying the weights according to the local image structure.
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(a) High weight (b) Low weight (c) Adaptive

Fig. 3. Influence of the curl term. With high weights Wβ, the composite is seamless
but suffers from bleeding (a). With low Wβ , bleeding disappears but seams become
visible (b). Our adaptive approach locally adjusts the weights to achieve seamless
results with no leaks (c).

Intuitively, a seamless boundary is desirable when both sides of the boundary
are smooth. This is the case for instance when we stitch a sky region with another
sky region. A seamless boundary is also acceptable when both sides are textured
because leaking is a low-frequencyphenomenon thatwill be hidden by visual mask-
ing. Figure 4 illustrates this effect that has also been used in the rendering litera-
ture [19–22]. In these two cases, we seek high values for Wβ . But when a textured
region is composited adjacent to a smooth region, we want to prevent bleeding be-
cause such regions would generate unpleasing artifacts on the smooth side, e.g. in
the sky. In this case, we want low values of Wβ. The following paragraph explains
how we compute Wβ based on the local amount of texture.

Estimating the Local Amount of Texture. Our strategy relies on the presence
or absence of texture in a given neighborhood. In this paragraph, we describe a
simple and computationally efficient texture estimator although one could use
other models [23, 24]. Formally, our scheme is:

Tσ1,σ2(g) =
Gσ1 ⊗ ||g||
Gσ2 ⊗ ||g|| n(||g||) (5)

where g is a gradient field, Gσ is a Gaussian of width σ, σ1 and σ2 are two
parameters such that σ1 < σ2, ⊗ is the convolution operator, and n(·) a noise-
controlling function. Our scheme relies on image gradients, for instance T (∇I)
is the texture map of the image I. We compare the average amplitude of the

(a) dots on a gray background (b) same dots on a photograph

black

black

blue
(sky)

green
(foliage)

Fig. 4. We show the same dots on a uniform background (a) and on a photograph (b)
but the two dots on the tree are not visible because of the texture of the foliage
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gradients in two neighborhoods defined by σ1 and σ2. If the image is locally
textured, then the average in the small neighborhood will be higher than in the
large neighborhood, corresponding to T > 1. Conversely, T < 1 corresponds to
regions with locally less texture than in the larger neighborhood. This scheme
would be sensitive to noise in smooth regions where gradients are mostly due
to noise. We address this issue with the function n that is equal to 0 for very
small gradient and 1 otherwise. In practice, we use a smooth step equal to 0 for
the bottom 2% of the intensity scale and 1 for 4% and above. In our context,
the goal is to differentiate textureless areas from textured regions; the relative
amount of texture in textured regions does not matter. Consequently, we use the
estimator T̄ = min(1, T ) that considers all textured regions to be equal.

Computing the Boundary Weights. Recall that we want Wβ to be large when
both foreground and background regions have the same degree of texture, either
both smooth or both textured. If one of them is smooth and the other textured,
we want Wβ to be small. We consider the difference D =

∣∣T̄ (∇F ) − T̄ (∇B)
∣∣ and

define Wβ using a function that assigns a small value w when D is large, 1 when
D is small, and linearly transitions between both values. Formally, we use:

Wβ =

{
w if D > τ

min (1 , w + λ (1 − D/τ)) otherwise
(6)

where λ and τ control the linear transition. We found that λ = 4, w = 0.05,
τ = 0.005, σ1 = 0.5, and σ2 = 2 work well in practice. All results are computed
with these values unless otherwise specified.

Discussion. Figure 5 illustrates the effect of our approach that reduces the curl
on the compositing boundary. Bleeding artifacts are significantly reduced. In
next section, we describe how to remove the remaining leaks. For color images,
we use RGB gradients in Equation (5) so that we account for luminance and
chrominance textures. From an efficiency standpoint, an important characteristic
of our approach is that it can be solved with a sparse linear system since our
least-squares energy (Eq. 4) involves only sparse linear operators and Wβ depends
only on the input data.

3 Controlling the Location of the Residuals

Althoughourboundary treatment reduces the curl of the gradientfieldv, ingeneral
v is not integrable. As with other gradient-domain methods, our goal is to produce
an image with a gradient field∇I as close as possible to v. Our strategy is to modify
the Poisson equation (Eq. 2) in order to locate the residuals as much as possible in
regions where they will be the least objectionable. Intuitively, we want to avoid er-
rors in smooth regions such as the skywhere theyproduce color leaks andhalos, and
put them in textured areas where visual masking will conceal the artifacts (Fig. 4).

3.1 Adapting the Poisson Equation
Let’s assume that we have a scalar map WP with high values in regions where
errors would be visible and low values otherwise. We discuss later how to compute
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(a) Poisson
compositing

(b) Boundary
adjustment only

(c) Weighted
reconstruction only

(d) Our result

Fig. 5. To reduce the color bleeding artifacts visible in a Poisson composite (a), we
proceed in two steps. We adjust the gradient values at the boundaries to minimize the
curl and weight the reconstruction process so that residual is mostly concentrated in
the textured regions. While these two steps improve the results when applied sepa-
rately (b,c), combining them achieves a visually superior composite (d).

such a function using our texture estimator T̄ . Given WP, we modulate the
least-squares strength so that we penalize less the regions where we prefer the
residuals to be, that is, regions with low WP values:

argminI

∫
WP ||∇I − v||2 (7)

Since we want to reduce the difference between ∇I and v, WP has to be strictly
positive everywhere. Moreover, to keep our approach computationally efficient,
we will design WP such that it does not depend on the unknown image I. In this
case, Equation 7 is a classical least-squares functional that can be minimized by
solving a linear system. To obtain a formula similar to the Poisson equation (2),
we apply the Euler-Lagrange formula [25]. Recall that WP does not depend on I.
Thus, we obtain the following linear system:

div
(
WP(∇I − v)

)
= 0 (8)

In Section 3.2, we show that although this equation is simple, it has favorable
properties.

Computing the Weights. To keep our scheme linear, we do not use any quantity
related to the unknown I. We use the desired gradient field v to estimate the
texture location in the image. Although v is not equal to the gradient of final
output, it is a good approximation that is sufficient to compute the weights WP.
Since we want high weights in smooth regions and low weights in textured areas,
we use the following formula: WP = 1 − p T̄ (v) where p is a global parameter
that indicates how much we control the residual location. For instance, p = 0
corresponds to no control, that is, to the standard Poisson equation, whereas
larger values impose more control. p has to be strictly smaller than 1 to keep
WP > 0. We found that values close to 1 performs better in practice. We use
p = 0.999 in all our results. We also found that it is useful to have a more local
estimate of the texture, which we achieve using σ1 = 0 to compute T̄ while
keeping the other parameters unchanged.
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3.2 Analysis of the Residual Structure

Independentof the actualdefinitionofWP,we can show that the residuals produced
by our approach have structure that is aligned with the image content. Wang et
al. [26] have demonstrated that such structural similarity produces more accept-
able results. To better understand the role of WP, we distribute the divergence in
Equation 8: WP div(∇I − v) + ∇WP · (∇I − v) = 0. With WP 
= 0, the relation
div(∇I) = ΔI, and the logarithmic gradient ∇WP/WP = ∇ log WP, we obtain:

ΔI − div(v)︸ ︷︷ ︸
Poisson term

+ ∇ log WP · (∇I − v)︸ ︷︷ ︸
new term

= 0 (9)

The left term is the same as the standard Poisson equation (2) while the right
term is new. In regions where WP is constant, the new term is null and our scheme
behaves as the Poisson equation, that is, it spreads the residuals uniformly. In
other regions where WP varies, our scheme differs from the Poisson equation
and allows for discontinuities in the residual. Since WP measures the amount of
texture, it means that residual variations are aligned with texture edges, which
ensures the structural similarity that has been shown desirable by Wang et
al. [26]. We provide illustrations of this property in supplemental material.

3.3 Relationship with Existing Methods

For this section, we make explicit the variable WP, that is, Equation 7 becomes∫
WP(v) ||∇I − v||2, and Equation 8, div

(
WP(v) (∇I − v)

)
= 0. We discuss the

relationships among our work and related methods independently of the actual
definition of WP.

The Poisson Equation and its Variants. Rewriting the Poisson equation (2) as
div(∇I − v) = 0, we see that our linear system has the same complexity since
we do not introduce new unknowns nor new coefficients in the system; we only
reweight the coefficients. Agrawal et al. [14] also describe an anisotropic variant
that is linear. However, while this method performs well in shape-from-shading,
it does not prevent bleeding when applied to image compositing (Fig. 6). The L1
reconstruction method that Reddy et al. [18] propose in the context of shape-
from-shading has the same difficulty with image compositing (Fig. 6).

Edge-preserving Filtering. Our method is also related to Farbman’s edge-
preserving filter [27] that minimizes an attachment term plus

∫
WP(I0) ||∇I||2

where I0 is the input image. Farbman projects the formula on the x and y axes
but we believe that it does not have a major impact on the results. More im-
portantly, Farbman’s method and ours share the idea of using a modulation WP
that depends on fixed quantities and preserves the least-squares nature of the
problem; Farbman uses the input image I0 and we use the target gradient field
v. Finally, our work has common points with Perona and Malik’s nonlinear
anisotropic diffusion filter [28]: ∂I/∂t = div

(
WP(∇I)∇I

)
. The difference is that

our modulation term WP is not a function of the image I which makes our equa-
tion linear, and we have a term ∇I−v instead of ∇I, which can be interpreted as
Perona and Malik “diffuse gradients” whereas we “diffuse integration residuals.”
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(a) Foreground (b) Copy and paste (c) Poisson (d) Max. gradient

(e) Diffusion tensor (f) Lalonde (g) L1 norm (h) Our result

Fig. 6. We compare several approaches on an example where we composite a tree on
a sky background. To test the robustness against selection accuracies, we introduce
three errors (a): a small error on the left, a large error on the right, and the trunk
is inserted in the ground. A direct copy-and-paste produces an image with visible
seams in the sky region (b). Poisson compositing [1] (c), maximum gradient [1] (d),
diffusion [14] (e), Photo Clip Art [16] (f), and robust Poisson reconstruction using the
L1 norm [18] (g) generate seamless boundaries but suffer from bleeding artifacts where
the selection cuts through the foliage and also at the contact between the trunk and
the ground. In comparison, our method (h) produces artifact-free results. We provide
more comparisons in supplemental material.

4 Results

We demonstrate our approach on a typical hand-made compositing scenario
which may generate inaccurate selections (Fig. 6). We also show that our ap-
proach applies to heterogeneous panorama stitching [7] (Fig. 10) and image
reshuffling [11] (Fig. 11). More results are in our supplemental material. All
the results are computed using the same parameters unless otherwise specified.
These settings performed well in all of our experiments. Parameter variations
are also shown in the supplemental material.

Quantitative Evaluation. We use direct compositing and Poisson compositing
as baselines to estimate how much bleeding occurs. For direct compositing, we
directly copy pixel values and the result Id exhibits visible seams but not bleed-
ing. For Poisson compositing, we copy gradient values and solve the Poisson
equation. The result IP is seamless but colors leak where the selection is inac-
curate. Then we consider an image I, pick a pixel p in the potential leaking
area, and compute: ||I(p) − Id(p)|| / ||IP(p) − Id(p)||. Expressed in percentages,
0% indicates no bleeding at all and 100% indicates as much bleeding as Poisson
compositing. Figure 7 compares the results for several methods.
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41%
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Textureless Area

Fig. 7. We numerically evaluate bleeding introduced by different methods. We selected
two 11 × 11 regions in the tree example (Fig. 6), one within the textured area below
the trunk and one in the sky on right of the foliage. We compute the L2 RGB differ-
ence between the image before and after compositing, normalized relative to Poisson
compositing; that is, 100% indicates as much bleeding as Poisson and 0% indicates no
bleeding. In the textured region (left), all methods bleed but the bleeding is masked by
the high frequency texture. In the textureless area (right), most methods cause visible
bleeding, which is particularly visible in this smooth region. The L1-norm and our
method achieve similarly low values which confirm minimal bleeding. But in a number
of cases, the L1-norm method introduces an undesirable color cast shown in the tree
example, whereas our method yields a satisfying output.

Fig. 8. This plot locates each method according to its speed and how much bleeding it
introduces in the sky region on Figure 6 as reported in Figure 7. Our method is as fast
as the standard Poisson solver while introducing almost no bleeding. In comparison,
the other methods are slower and generate color leaks. Note that the L1 method does
not produce bleeding artifact on this example but it creates a severe color cast (Fig. 6).

Complexity. We compute the final result in two linear steps. This is equivalent
to a single linear system because I is a linear function of v (Eq. 8) and v
is a linear function of B and F (Eq. 4). Further, only sparse operators are
involved: divergence, curl, and weights that correspond to diagonal matrices.
Compared to the Poisson equation, we solve for the same number of unknowns,
that is, the number of pixels in I. The only overhead is the computation of
v, for which the number of unknowns is orders of magnitude smaller, since
only pixels on the boundary are concerned. To summarize, our method has the
same complexity as the Poisson equation. In comparison, nonlinear methods [18]
require more complex iterative solvers. Figure 8 shows that our implementation
achieves timings similar to the Poisson reconstruction, resulting in a run-time
faster than most other implementations while introducing almost no bleeding.
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Fig. 9. In some cases, when compared to the input (a), Poisson compositing (b) and
our approach(c) discolor the pasted region. See text for details.

Fig. 10. For heterogeneous panorama, Photoshop Auto Blend [6] produces strong
bleeding near the cut. In comparison, our method significantly improves the result.
Our approach also performs better than to other methods on this challenging case as
shown in supplemental material.

Fig. 11. Compared to the blending approach proposed by Cho et al. [11] (a,b), our
approach (c,d) improves the result of image reshuffling. We used the same patch loca-
tions and boundaries as Cho et al. but applied our method which yields better results
than the Poisson-based blending proposed in the original article [11]. In particular, our
result produces more faithful colors but does have local color leaks as can be seen on
the close-up (zoom of a region above the girl’s hat). This result may be better seen in
the supplemental material. Data courtesy of Tim Cho.
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Discussion. Although our method produces high quality outputs, a close exam-
ination reveals that the boundary can be sometimes overly sharp. This minor
issue is difficult to spot at first and less conspicuous than color leaks. Nonethe-
less, matching the sharpness of other edges in the image would be an interesting
extension to this work. As other gradient-domain methods, our method can yield
some discoloration (Fig. 9 and supplemental material). This effect is often desir-
able to achieve seamless blending. If one wishes to preserve the original colors,
matting can be solution but it often requires a more careful user input. We also
found that our approach is useful in challenging applications such as heteroge-
neous panorama stitching [7] where mismatches are common place (Fig. 10). In
this case, we found that our method performs better with a smoother transition
from seamless and leak-free compositing, which is achieved by setting τ = 0.01
in Equation (6).

5 Conclusion

We have described an image-compositing method that is robust to selection inac-
curacies. The combination of low-curl boundaries and a weighted reconstruction
based on visual masking produces artifact-free results on a broad range of inputs,
in particular where other methods have difficulties. In addition, the solution is
linear and has similar complexity to the standard Poisson equation. With robust
results and speed, our method is a suitable replacement for the standard Poisson
equation in many computer vision applications.
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Abstract. We address the problem of inferring homogeneous reflectance
(BRDF) from a single image of a known shape in an unknown real-world
lighting environment. With appropriate representations of lighting and
reflectance, the image provides bilinear constraints on the two signals,
and our task is to blindly isolate the latter. We achieve this by leverag-
ing the statistics of real-world illumination and estimating the reflectance
that is most likely under a distribution of probable illumination environ-
ments. Experimental results with a variety of real and synthetic images
suggest that useable reflectance information can be inferred in many
cases, and that these estimates are stable under changes in lighting.

1 Introduction

The optical properties of a material often provide a clue for how it will behave
when acted upon. They help inform us, for example, if the material is hard, soft,
hot, cold, rigid, pliable, brittle, heavy, or lightweight. It makes sense, then, that
people can infer materials’ optical properties from their images; and building
similar functionality into computer vision systems seems worthwhile.

The optical properties of many materials are adequately summarized by the
bidirectional reflectance distribution function (BRDF), which describes how flux
at a surface patch is absorbed and reflected over the output hemisphere. The
BRDF provides a complete description of lightness, gloss, sheen, and so on; and
in this paper, we explore when and how it can be recovered from an image.
This task is made difficult by the fact that reflectance is confounded with shape,
lighting, and viewpoint, all of which may be unknown. Even when the shape
and relative viewpoint are provided (say, by contours, shadows, or other cues),
the blind separation of BRDF from lighting is something that computer vision
systems cannot yet do well.

This paper considers the following problem, depicted in Fig. 1. We are given
a single high dynamic range (HDR) image of a known shape under an unknown,
real-world lighting environment, and our task is to infer the material’s BRDF.
Our approach is to compute the BRDF that is most likely under a distribution
of probable lighting environments—a strategy that is motivated by previous
successes for other ill-posed vision problems, including color constancy and blind
image deblurring. In our case, we show that by choosing an appropriate BRDF
representation, we can leverage the statistics of real-world lighting to accurately
infer materials’ optical properties in a variety of lighting environments.

K. Daniilidis, P. Maragos, N. Paragios (Eds.): ECCV 2010, Part I, LNCS 6311, pp. 45–58, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Fig. 1. Our goal is estimating the BRDF from an image of a known shape in unknown
real-world lighting. Top: The trivial solution is a mirror-like BRDF, which exactly
predicts the input for a carefully-crafted “blurry” environment. Bottom: To avoid this,
we choose a BRDF that predicts the input for a distribution of probable environments.

2 Background and Related Work

People are quite adept at inferring reflectance information from images, and
there have been a number of psychophysical studies that explore the underlying
mechanisms [1,22,7,33,31,35]. Results suggest that people do not require contex-
tual knowledge of the environment to infer reflectance [7], but that performance
decreases when the directional statistics of the environment deviate significantly
from those found in nature [7,4,5]. These findings provide motivation for our
work, which also leverages the directional statistics of natural environments.

When it comes to computational approaches for recovering reflectance from
images, most have been developed for controlled or known lighting (e.g., [30,14,9]).
Fewer methods have been designed for cases where the lighting is not known,
and of these, most assume reflectance to be well-represented by a pre-chosen
“parametric” BRDF model, such as the Phong, Ward, or Lafortune models
(e.g., [21,36,11]). Parametric BRDF models place considerable restrictions on
reflectance, and as a result, they allow inferring quite a bit about a scene. For
example, the method of Georghiades [8] can simultaneously infer everything—
shape, lighting and reflectance—provided that the material is well-represented
by a simplified Torrance-Sparrow model (and that lighting consists of a moving
point light source). While parametric models continue to improve (e.g., [20]),
their use typically has two significant limitations. First, it severely restricts the
space of materials (see [19,32]); and second, because these models are non-linear
in their parameters, the required computation ends up being model-specific and
cannot easily be transferred from one material class to another.

An attractive alternative to parametric BRDF models is using a linear combi-
nation of reflectance basis functions. This way, the representation can be grown
to include the entire world of BRDFs, at least in theory. Moreover, when ob-
ject shape is known, it leads to a simple bilinear relationship between the un-
known reflectance parameters (i.e., the coefficients in the basis) and the lighting
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parameters. This bilinearity has already been exploited in both vision [13,10]
and graphics (e.g., [25,18]), and it is the key to making our approach tractable.

The choice of bases for reflectance and lighting are important, and we dis-
cuss them in detail in subsequent sections. But once these choices are made, we
obtain a bilinear inferrence problem that resembles others in vision: Given an
image of a known shape, we must find probable lighting and reflectance param-
eters that could have created it. Color constancy and blind image deblurring
can be formulated analogously [2,6,12], and our work leverages insight gained
from their analyses. Specifically, instead of simultaneously estimating the BRDF
and environment that best explain a given image, we obtain better results by
estimating the BRDF that is most likely under a distribution of lighting envi-
ronments (Fig. 1). This process is termed “MAPk estimation” in the context of
blind deblurring [12], and the same basic idea forms the core of our approach.

A natural comparison for our approach is the framework of Ramamoorthi
and Hanrahan [24,26], which uses spherical harmonics to represent lighting and
reflectance and expresses their interaction as a convolution. Since spherical har-
monics are eigenfunctions of the convolution operator, this leads to elegant
closed-form expressions for the lighting and reflectance coefficients. But this
representation cannot easily incorporate a meaningful prior probability distribu-
tion for natural lighting environments (see [5]), and it either requires that the
entire 4D light field is available as input or that the BRDF can be restricted to
being a “radially-symmetric” function over a one-dimensional domain.

Another natural comparison is the method of Haber et al. [10], which also
represents lighting and reflectance using linear bases. Their approach differs in
terms of its input and output (multiple images instead of one; spatially-varying
BRDFs instead of uniform) and has two technical distinctions. It does not ex-
plicitly model the statistics of natural lighting, and it jointly estimates lighting
and reflectance instead of marginalizing over a distribution of environments.

3 Approach

We assume all sources and reflecting surfaces in the environment to be far from
the object in question so that the angular distribution of incident lighting does
not vary over the object’s surface. This allows the unknown lighting L to be
represented as an “environment map”—a positive-valued function on the sphere
of directions; L: S2 → R+. We also assume that the camera and object geometry
are known, that mutual illumination is negligible, and that the unknown BRDF
(F ) is isotropic. Then, a linear measurement made at pixel i can be written

Ii =
∫

Ω

Li(ω)Vi(ω)Fi(ω)(ni · ω)dω, (1)

where ni is the surface normal at the back-projection of pixel i, Li(ω) is the
hemisphere of the unknown lighting centered at direction ni, and Vi(ω) is a
binary-valued hemispherical “visibility” function that encodes the object’s self-
shadowing at the back-projection of i (e.g., [18,10]). Finally, Fi is a 2D slice of
the unknown BRDF determined by the normal ni and the local view direction.
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Since everything in Eq. 1 is known except the lighting and BRDF, an image
I = {Ii} imposes a set of constraints upon them. One approach to estimating the
BRDF, then, is to define prior probability distributions for the unknown lighting
p(L) and BRDF p(F ) and find the functions that maximize the posterior

p(L, F |I) ∝ p(I|L, F )p(L)p(F ), (2)

using a likelihood p(I|L, F ) based on Eq. 1. This is closely related to the approach
of Haber et al. [10], and it suffers from a preference for the trivial mirror-like
solution. Any image can be perfectly explained by a mirror-like BRDF and a
carefully crafted “blurry” environment that exactly matches the image [7], so
the likelihood (and usually the posterior) are maximal for these functions.

In this paper we avoid this problem in the following manner. Instead of select-
ing the single BRDF/lighting pair that best explain an input image, we select
the BRDF that is most likely under a distribution of lighting environments. We
do this by computing the mean of the marginalized posterior:

Fopt �
∫

Fp(F |I)dF =
∫

F

(∫
p(F, L|I)dL

)
dF . (3)

The intuition here—adapted directly from the related problem of blind image
deblurring [6,12]—is that instead of selecting a BRDF that perfectly explains
the image for a single lighting environment (the trivial solution), we select one
that reasonably explains the image for many probable lighting environments.

Evaluating the expression on the right of Eq. 3 requires prohibitive compu-
tation, and to make it feasible, we employ a variational Bayesian technique.
Following [16,17] we approximate the posterior using a separable function,

p(L, F |I) ≈ q(L, F ) = q(L)q(F ), (4)

with components having convenient parametric forms. Given an input image, we
compute the parameters of this approximate posterior using fixed point iteration,
and then we trivially approximate the solution (Eq. 3) as the mean of q(F ).

Pursuing this approach requires suitable representations for lighting and re-
flectance. In particular, we require each to be a linear combination of basis
functions, and we require the prior probability distributions of their coefficients
to be well-approximated by exponential forms. We describe our choices next.

3.1 Representing Illumination

We represent spherical lighting using a wavelet basis. As depicted in Fig. 2 and
following [34], we do this by mapping the sphere to a plane with an octahedral
map [23] and using a Haar wavelet basis in this plane. Notationally, we write L =∑M

m=1 �mψm with ψm the basis functions and �m the corresponding coefficients.
This choice of basis is motivated by the fact that statistics of band-pass filter
coefficients of real-world lighting display significant regularity. Much like real-
world images, the distributions of these coefficients are highly kurtotic, having
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heavy tails [4,5]. Our choice is also motivated by the apparent utility of the
related image statistics for tasks like compression, denoising, and deblurring.

To develop prior distributions for the coefficients � � {�m}, we collected 72
environments (nine from the ICT Graphics Lab1 and the remainder from the
sIBL Archive2), normalized each so that it integrates to one, and studied the
coefficient distributions at different scales. Like Dror et al. [4,5], we found these
statistics to be notably non-stationary, especially at coarser scales. Figure 2
shows empirical distributions and parametric fits for a variety of scales using a
32 × 32 discretization of the sphere. At the finest scales (scales 4 and 5), the
distributions are quite stationary, and we employ a single zero-mean Gaussian
mixture for all of the coefficients at each scale (with 4 and 5 components, respec-
tively). At the middle scales (scales 2 and 3), the statistics change significantly
depending on elevation angle and basis type (vertical, diagonal, horizontal), and
accordingly we use distinct distributions for each basis type both above and
below the horizon. Each distribution is a zero-mean Gaussian mixture, and we
use three components for groups in scale 3 and two components for groups in
scale 2. Finally, at the coarsest scale (scale 1) we use zero-mean, two-component
Gaussian mixtures for the diagonal and horizontal basis types, and a Gaussian
rectified at a negative value for the vertical basis type to capture the fact that
lighting is dominant from above. Note that the DC value �1 is the same in all
cases since the illuminations are normalized. Additional details are in [28].

With these definitions we can write our illumination prior as

p(�) =
M∏

m=2

Nm∑
n=1

πnm pnm(�m), (5)

with Nm the number of mixture components for coefficient m and πnm the
mixing weights. The group structure described above is implicit in this notation:
All coefficients in any one group share the same Nm, πnm and pnm.

3.2 Representing Reflectance

We represent BRDFs as a linear combination of non-negative basis functions
learned through non-negative matrix factorization (NMF) of all 100 materials
in the MERL/MIT database [15]. This produces the linear representation F =∑K

k=1 fkφk and has the advantage of allowing non-negativity constraints on the
recovered BRDF F to be naturally enforced through non-negativity constraints
on the coefficients f � {fk}. Also, we find that the empirical distributions of the
resulting coefficients fk can be well-approximated by exponentials (see Fig. 3,
right), making them well-suited for inference using variational Bayes.

Each BRDF in the database is represented using a 90×90×180 discretization
of the 3D isotropic BRDF domain, parameterized in terms of the half-vector and
difference-vector [29]. For computational convenience, we reduce each material to

1 http://www.debevec.org/probes; http://gl.ict.usc.edu/Data/HighResProbes
2 http://www.hdrlabs.com/sibl/archive.html

http://www.debevec.org/probes
http://gl.ict.usc.edu/Data/HighResProbes
http://www.hdrlabs.com/sibl/archive.html
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Fig. 2. Left : We represent lighting using a Haar wavelet basis on the octahedral domain
[23] discretized to 32 × 32. Statistics of wavelet coefficients are non-stationary, so we
fit distinct distributions for coefficients above and below the horizon. Right : Empirical
distributions and their parametric fits for a variety of wavelet coefficient groups.

the 90×90 bivariate domain of Romeiro et al. [27] and scale it to have a maximum
value of one before computing the NMF. The bivariate reduction allows handling
the entire database (and potentially much more) without resulting to out-of-
core methods, and as shown in [27], it has a limited effect on accuracy. The
resulting basis functions are defined on the two dimensional domain (θh, θd) ∈
[0, π/2) × [0, π/2), where θh and θd are the halfway angle and difference angle,
respectively (see [29]). We can visualize the basis functions as images, and two
of them are in the right of Fig. 3. In this visualization, specular reflection is
at small halfway angles (top edge), grazing effects are at large difference angles
(top-right corner) and retro-reflection is at small difference angles (left edge).

The left of Fig. 3 qualitatively evaluates the NMF model’s fit to the original
BRDF data for different numbers (K) of basis functions. We also compare to
a parametric BRDF model (Cook-Torrance) as fit by Ngan et al. [19]. While it
remains perceptually distinguishable from ground truth for some materials, we
find that the NMF model’s fit with ten basis functions (K = 10) provides a good
balance between complexity and accuracy. It provides fits that are comparable
to the Cook-Torrance model, but it is linear, which is important to our approach.

We can also evaluate the fit quantitatively by computing RMS error in the
BRDF domain. According to this metric, the NMF approach significantly out-
performs the parametric model. The mean and median RMS error computed
using the green channels of all materials are 1.58 and 0.45 for the NMF model,
and 46.91 and 17.11 for the Cook-Torrance fit. Some of this significant differ-
ence is due to the fact that we have chosen to perform NMF based on L2 cost
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Fig. 3. Left : Qualitative evaluation of the NMF BRDF model. Top to bottom: NMF
model with 3, 5, and 10 basis functions; ground truth; and Cook-Torrance fit from [19].
Right : Empirical distributions and parametric fits for NMF coefficients corresponding
to basis elements that roughly account for grazing (top) and specular (bottom) effects.

in the BRDF domain, whereas the parametric Cook-Torrance fit is performed
with an approximate perceptual metric [19]. In fact, one can view the metric used
in NMF as a choice that can be tuned for each application. If one ultimately seeks
to infer BRDFs for the purposes of material recognition, then the L2 cost used
here may be preferred. If the inferred BRDF is to be used for image synthesis,
however, it may be more desirable to use a perceptual metric (e.g., [35]) within
a kernel-NMF framework (e.g., [3]).

Having computed basis functions φk and the parameters λk of the coefficient
distributions, we obtain the following prior distribution for reflectance:

p(f) =
K∏

k=1

λk exp(−λkfk), fk ≥ 0. (6)

3.3 A Bilinear Likelihood

Having defined linear representations of the lighting and reflectance, we can write
an expression for the likelihood of their coefficients given a particular image. We
begin by updating the imaging model to include a camera exposure parameter
(γ) and a crude model for noise:

Ii = γ

∫
Ω

Li(ω)Vi(ω)Fi(ω)(ni · ω)dω + ε, (7)

with ε ∼ N(0, σ2). The exposure parameter compensates for the difference be-
tween the absolute scale of the intensity measurements and the combined scale of
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the illumination and reflectance functions. This is important because the prior
distributions for lighting and reflectance are estimated from normalized data
while the intensity measurements may be at an arbitrary scale.

Substituting L =
∑

�mψm and F =
∑

fkφk into this expression, one can
re-write this as (see details in [28]):

Ii = γ�T Mif + ε, (8)

where the per-pixel matrices Mi are determined by the shape (Vi, ni), view
direction, and the lighting and reflectance basis functions {ψm} and {φk}. For
an input image of a known shape, these matrices can be pre-computed, and we
assume them to be constant and known.

By treating the pixels of an input image as independent samples, this mea-
surement model leads directly to our desired expression for the likelihood of a
set of model parameters given image I:

p(I|�, f, σ, γ) =
N∏

i=1

σ−1
√

2π
exp

(
−σ−2

2
(Ii − γ�T Mif)2

)
. (9)

We treat the exposure and noise variance (γ, σ2) as model parameters to be
estimated along with illumination and reflectance, and for these we define prior
distributions p(σ−2) ∼ Γ (a, b) and p(γ) ∼ Exp(λγ).

3.4 Inferrence

The definitions of the previous sections (Eqs. 5, 6, 9, and the noise and exposure
priors) provide everything we need to write the posterior

p(�, f, γ, σ−2|I) ∝ p(I|�, f, γ, σ−2)p(�)p(f)p(γ)p(σ−2). (10)

As described in Sect. 3, we wish to marginalize over lighting (as well as noise,
and exposure) and compute the mean of the marginalized posterior. Following
Miskin and MacKay [16,17], we do this by approximating the posterior with a
separable function, p(θ|I) ≈ q(θ) = q(�)q(f)q(σ−2)q(γ), with θ � (�, f, σ−2, γ).
The function q(θ) is computed by minimizing a cost based on the Kullback-
Leibler divergence between it and the posterior [16,17]:∫

q(θ)
(

log
q(�)
p(�)

+ log
q(f)
p(f)

+ log
q(σ−2)
p(σ−2)

+ log
q(γ)
p(γ)

− log p(I|θ)
)

dθ (11)

We provide an overview of the optimization here, and details can be found in [28].
The basic idea is to use coordinate descent, with each distribution q(·) being
updated using the current estimates of the others. The update equations are
derived by integrating all of the terms but one in Eq. 11 (the one containing
q(f), say), taking the derivative with respect to the remaining distribution (q(f)
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in this example) and equating the result to zero. In our case, this procedure
reveals that the approximating distributions q(·) are of the following forms

q(f) =
∏

qk(fk), with qk ∼ NR(uk, wk), (12)

q(�) =
∏

qm(�m), with qm ∼
{

N(um, wm) if m 
= 3
NRC(um, wm, T ) otherwise,

(13)

q(γ) ∼ NR(uγ ; wγ) and q(σ−2) ∼ Γ (σ−2; ap, bp), (14)

where NR is a Gaussian distribution rectified at 0, and NRC is a Gaussian distri-
bution rectified at T . The same procedure also provides closed form expressions
for the updated parameters of each distribution q(·) in terms of the current pa-
rameters of the others (see [28]). One strategy, then, is to cycle through these
distributions, updating each in turn; but as described in [16,17], convergence can
be accelerated by updating all parameters in parallel and then performing a line
search between the current and updated parameter-sets.

Specifically, we define intermediate variables that are sufficient to determine
all of the distribution parameters: Φ = (Φ1, Φ2, Φ3, Φ4, Φ5, Φ6, Φ7) where Φ1 and
Φ2 are K-vectors such that Φ1(k) = uk

wk
and Φ2(k) = log ( 1

wk
); Φ3 and Φ4 are M -

vectors such that Φ3(m) = um

wm
and Φ4(m) = log ( 1

wm
); Φ5 = log ( bp

ap
); Φ6 = uγ

wγ
;

and Φ7 = log ( 1
wγ

). These intermediate variables are iteratively updated accord-
ing to Algorithm 1, and once they converge, they determine the distribution
q(f), whose mean is the BRDF we seek. The noise variable Φ5 is not updated at
every iteration, but only when the other variables have converged at the current
noise level. This is a strategy borrowed from Miskin’s implementation3.

We initialize the algorithm with the posterior means {u(0)
k } and {u(0)

m } corre-
sponding to a random BRDF and lighting environment, respectively. The initial
posterior variances {w(0)

m } and {w(0)
k } are set to relatively large values (10−1) to

account for the uncertainty in our initial estimates. Exposure parameters uγ and
wγ are initialized to 1 and 10 respectively. Finally, parameter bp

ap
is initialized to

1 so that we have a broad initial posterior on the inverse noise variance.

4 Evaluation and Results

We begin our evaluation using images synthesized4 with the MERL/MIT BRDF
data and our collection of measured illumination environments. Using these tools,
we can render HDR images for input to our algorithm as well as images with
the recovered BRDFs for comparison to ground truth.

There is a scale ambiguity for each image because we can always increase
the overall brightness of the illumination by making a corresponding decrease
in the BRDF. Accordingly, we only seek to estimate the BRDF up to scale. We
3 http://www.inference.phy.cam.ac.uk/jwm1003/train_ensemble.tar.gz.
4 PBRT: http://www.pbrt.org/

http://www.inference.phy.cam.ac.uk/jwm1003/train_ensemble.tar.gz
http://www.pbrt.org/
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Algorithm 1. Fit ensemble of approximating distributions

φ
(0)
1 (k) ← u

(0)
k

w
(0)
k

, φ
(0)
2 ← log ( 1

wk(0)
), φ

(0)
3 (m) ← u

(0)
m

w
(0)
m

, φ
(0)
4 ← log ( 1

wm(0)
)

φ
(0)
5 ← log (1), φ

(0)
6 ← u

(0)
γ

w
(0)
γ

, φ
(0)
7 ← log ( 1

wγ (0)
), i = 0

repeat
repeat

Φ∗ = Update(Φ(i)) (see [28] for update equations), ΔΦ = Φ∗ − Φ(i)

α∗ = arg minα CKL(Φ(i) + αΔΦ) (see [28] for cost expression CKL)
Φ(i+1) = Φ(i) + α∗ΔΦ, Φ

(i+1)
5 = Φ

(i)
5 , i = i + 1

until |C(i+1)
KL − C

(i)
KL| < 10−4

Φ
(i)
5 = Φ

(i−1)
5 + α∗ΔΦ5

until ||Φ(i)
5 − Φ

(i−1)
5 || < 10−4

also ignore wavelength-dependent (color) effects by performing inference on the
luminance channel and recovering a monochrome BRDF as output. Inferring
wavelength-dependent reflectance effects (i.e., a spectral BRDF) would require
solving the color constancy problem in conjunction with the reflectometry prob-
lem, and we leave this problem for future research.

While we operate in grayscale, we display the input and output using color in
this paper. The displayed input is the color image prior to extracting luminance,
and the displayed output is the outer product of the recovered monochromatic
BRDF and the RGB vector that provides the best fit to the ground truth. This
visualization strategy produces artifacts in some cases. For example, the color-
visualization of the recovered red material in Fig. 6 does not (and cannot) match
the highlight colors of the reference image.

Given a rendered input image of a defined shape (we use a sphere for sim-
plicity), we collect observations from 12,000 normals uniformly sampled on the
visible hemisphere. We discard normals that are at an angle of more than 80
degrees from the viewing direction (since the signal to noise ratio is very low at
these points) as well as normals that are close to the poles of our parametriza-
tion of the sphere (as Eq. 8 is not a good approximation in these regions). This
results in an observation vector I of length 8,600.

Each column of Fig. 4 shows a BRDF recovered from a single input image
synthesized with either the St. Peter’s Basilica or Grace Cathedral environment.
Following [27], the recovered BRDFs are compared to ground truth by synthesiz-
ing images in a novel environment, and close inspection shows them to be visually
quite accurate. Figure 5 further explores stability under changes in lighting. For
this, we run our algorithm twice for each material using two different environ-
ments and compare the recovered BRDFs. We visualize these BRDFs along with
ground truth by using them to synthesize a “spheres image” inspired by [32].
The BRDF estimates are quite consistent across the two environments, and they
provide imperfect but reasonable approximations to ground truth.

The same procedure was applied to the captured data from [27]. As above we
operate on the luminance channel of HDR images and estimate a monochrome
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Appearance predicted in a novel environment using the recovered BRDF. Bottom:
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GOLD METALLIC PAINTALUMINA OXIDE ALUM BRONZE

G
T

R
E

C
 S

T
 P

E
T

E
R

S
R

E
C

 G
R

A
C

E

Fig. 5. Stability under changes in lighting: BRDFs recovered when the same material
is seen in different environments. Top to bottom: BRDF recovered in the St. Peter’s
environment; ground truth; and BRDF recovered in the Grace Cathedral environment.

BRDF, but now we visualize the output in color by taking the outer product of
the monochrome BRDF and the median RGB color of the input image. Figure 6
shows results with the BRDFs recovered from single input images (top row) being
used to render synthetic images of the same material under novel environments
(more precisely, the same environment from a different viewpoint). Accuracy is
assessed by comparing these synthetic images to real images captured in the same
novel environments. While the recovered reflectance is clearly distinguishable
from ground truth, we see that useful qualitative reflectance information is still
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Fig. 6. Evaluation with captured input. Top: Image used as input. Middle: Appearance
predicted in a novel environment using the recovered BRDF. Bottom: Ground truth
images captured in the same novel environments. (Image data provided by [27].)

obtained. Based on the inferred BRDFs, for example, it would be straightforward
to create an ordering of the four materials based on gloss.

These results reveal two limitations of the approach. First, one should ex-
pect less accuracy when the input image contains significant mesostructure
(e.g., green metallic) or texture because these small variations effectively
increase noise. Second, performance will be diminished when the illumination
is “inadequate”, meaning that it does not induce significant specular, grazing,
and/or retro reflections, and does not sufficiently constraint the BRDF (e.g., red
specular and yellow plastic). This latter limitation is consistent with per-
ceptual findings [7] and frequency-domain arguments [26], and it has been doc-
umented for cases in which the environment is known [27]. Romeiro et al. [27]
also describe why quantitative analysis of the conditions for adequate illumi-
nation are difficult: Unlike the spherical harmonic approach [26], lighting and
reflectance are not related by a convolution operator in the present case. Per-
haps a quantitative description of the conditions for “adequate illumination” in
material recognition will be a fruitful direction for future work.

5 Discussion

Our results suggest that for a range of homogeneous diffuse and glossy materials,
reflectance information can be inferred from unknown real-world illumination
when the object shape is known. They also suggest that these estimates are
fairly stable when the illumination undergoes a change.
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The approach has at least two features worth highlighting. First, it uses a
linear basis for reflectance. This allows a seamless trade between complexity and
accuracy, and it is very different from “parametric” BRDF models (Phong, etc.)
that are non-linear in their variables and are only suitable for a particular mate-
rial class. Second, it is an inference system built upon a probabilistic generative
image model, and this makes it amenable to combination with other contextual
cues and vision subsystems. In particular, we might explore combinations with
shape-from-X techniques (shading, contours, shadows, etc.) to assess how well
reflectance can be recovered when shape is not known a priori.

Acknowledgments. The authors thank Bill Freeman and Yair Weiss for helpful
discussions regarding bilinear inference problems. This work was supported by
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Abstract. We present a photometric stereo method for non-rigid ob-
jects of unknown and spatially varying materials. The prior art uses time-
multiplexed illumination but assumes constant surface normals across
several frames, fundamentally limiting the accuracy of the estimated
normals. We explicitly account for time-varying surface orientations, and
show that for unknown Lambertian materials, five images are sufficient
to recover surface orientation in one frame. Our optimized system imple-
mentation exploits the physical properties of typical cameras and LEDs
to reduce the required number of images to just three, and also facilitates
frame-to-frame image alignment using standard optical flow methods, de-
spite varying illumination. We demonstrate the system’s performance by
computing surface orientations for several different moving, deforming
objects.

1 Introduction

Photometric stereo [16] uses multiple images of an object illuminated from dif-
ferent directions to deduce a surface orientation at each pixel. In this work, we
address accuracy limits for estimating surface orientations for dynamic scenes
using photometric stereo, and in particular for deforming (non-rigid) objects.
Photometric stereo for moving scenes is complicated because the world has only
one illumination condition at a time, and the scene may move as one tries to
change the lighting. Using a color camera and colored lights from different direc-
tions, one can measure shading for light from three directions in one image, but
this only determines the surface orientation if the object reflectance is known
and uniform.

The prior art for photometric stereo with deforming objects of varying or un-
known materials uses time-multiplexed illumination (TMI) [15] to capture video
while changing the lighting from frame to frame. Subsequent frames are aligned
using optical flow, and the surface orientation is assumed to be constant across
those frames. Assuming fixed surface normals for dynamic scenes is a contradic-
tion and represents a fundamental accuracy limit for current TMI photometric
stereo methods for non-rigid objects. For commonly occurring motions, we show
this leads to significant errors in estimated surface orientations and albedos.

K. Daniilidis, P. Maragos, N. Paragios (Eds.): ECCV 2010, Part I, LNCS 6311, pp. 59–72, 2010.
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We present a photometric stereo method for deforming objects that is robust
to changing surface orientations. We use time and color illumination multiplexing
with three colors, but ensure an instantaneous measurement in every frame,
either of the surface normal or of a subset of the material imaging properties.
We use optical flow to account for varying motion at each pixel. Unlike the prior
art, given accurate optical flow, our estimated surface normals are not corrupted
if those normals are time-varying. Optical flow for TMI video is challenging
because the intensity constancy assumption does not hold. Our optimized system
implementation ensures constant illumination in one color channel, facilitating
optical flow between subsequent frames using standard methods, despite varying
illumination. Photometric stereo results for several deforming objects verify the
performance of the system.

2 Background

Although the literature on shape capture of deforming objects is vast, Nehab et
al. [9] observed that orientation-sensing technologies like photometric stereo are
more accurate for high frequency shape details, while range sensing technologies
(such as multi-view stereo) are better for low frequency shape. They devised an
efficient method to combine the two forms of data to estimate precise geome-
try. These two forms of shape estimation are fundamentally different, so we will
restrict our review to photometric stereo methods. The traditional photometric
stereo [16] formulation assumes a static object imaged by a fixed camera un-
der varying illumination directions. For a moving rigid object, many methods
combine shading information with motion or multi-view stereo, assuming either
fixed illumination (for example, [11,1,8]) or even varying lighting [6]. In this
work, however, we aim to measure the surface orientation of deforming (non-
rigid) objects, whose shape may vary from frame to frame, and whose motion
cannot be represented simply as a rigid transformation.

Petrov [10] first addressed photometric stereo with multi-spectral illumina-
tion. One challenge of multi-spectral photometric stereo is the camera color
measurements depend not only on the surface normal and light direction, but
also on the interaction between the light spectra, material spectral responses,
and the camera color spectral sensitivities. The method of Kontsevich et al. cal-
ibrates these dependencies using the image of the object itself, assuming the
surface has a sufficient distribution of orientations [7]. The technique works for
uncalibrated objects and materials, but is sensitive to the object geometry and
unwieldy for multi-colored objects. Hernández et al. [5] presented a photometric
stereo method that uses colored lights to measure surface normals on deforming
objects. They show impressive results capturing time-varying clothing geometry,
but the method requires the objects to consist of a single uniform material.

Wenger et al. [15] propose using time-multiplexed illumination (TMI) for pho-
tometric stereo. Their system uses high-speed video of an actor under 156 differ-
ent lighting conditions and aligns images to target output frames using optical
flow. Their goal is performance relighting, but they also compute surface nor-
mals and albedos for deforming objects and changing materials. Vlasic et al. [13]
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extend this idea to multi-view photometric stereo, using an array of cameras
and time-multiplexed basis lighting. Both methods assume fixed normals across
the images used to compute each output frame. Weise et al. [14] explicitly han-
dle deforming objects with TMI to sense depth (not orientation) using a stereo
phase-shift structured light technique.

De Decker et al. [3] combine time and color multiplexing to capture more illu-
mination conditions in fewer frames than TMI alone. Their photometric stereo
method does not explicitly address changing surface orientations. It also neglects
light–sensor crosstalk, causing significant errors for common cameras (including
theirs). The method computes optical flow using a filter that “removes the light-
ing, but preserves the texture” by normalizing for local brightness and contrast.
For photometric stereo, however, the image texture and lighting are not separa-
ble. Imagine the dimples on a golf ball lit from one side, and then the other—the
changing texture is itself the shading information. Assuming it to be a fixed
feature for optical flow will corrupt the estimated normals.

In this paper, we describe how to use time and color multiplexing for photo-
metric stereo given changing surface orientations. We start by adding a changing
surface normal to the traditional photometric stereo formulation.

3 Dynamic Photometric Stereo with Time and Color
Multiplexed Illumination

The observed intensity of a Lambertian surface with surface normal n̂, illumi-
nated from direction l̂ is

I = l̂ · n̂
∫

S(λ)ρ(λ)ν(λ)dλ, (1)

where S(λ) is the light energy distribution versus wavelength, ρ(λ) is the ma-
terial spectral reflectance, and ν(λ) is the camera spectral sensitivity. For fixed
material, camera and light spectra, the integral is represented by the albedo, α:

I = α̂l · n̂. (2)

If the surface is fixed, a minimum of three measurements with non-planar, known
lighting directions are required to determine the normal and albedo[16]:⎡

⎣I1
I2
I3

⎤
⎦ = α

⎡
⎣l̂1l̂2
l̂3

⎤
⎦ n̂ (3)

For a dynamic scene, we assume the material reflectance is constant, but the sur-
face normal varies between measurements. The system is now under-constrained:⎡

⎣I1
I2
I3

⎤
⎦ = α

⎡
⎣l̂1 · n̂1

l̂2 · n̂2

l̂3 · n̂3

⎤
⎦ (4)
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Using a trichromatic camera and three lights of different colors, we measure
shading under three different lighting directions simultaneously and thus for
a single consistent surface orientation. Consider a camera with three color 1

channels labeled r, g, and b. Let us assume that each light, indexed by j, is from
direction l̂j, and that each light j is composed of a weighted combination of a
small number of light colors, indexed by k. For simplicity, first consider a single
light of a single color k and intensity wkj , and direction l̂j. The pixel intensity
of a material illuminated by that light is

I =

⎡
⎣Ir

Ig

Ib

⎤
⎦ =

⎡
⎣αkr

αkg

αkb

⎤
⎦wkj l̂�j n̂ (5)

Here, (αkr , αkg , αkb)� are the responses of each camera color channel to the
material illuminated (from the normal direction) by light of color k. For example,

αkr =
∫

Sk(λ)ρ(λ)νr(λ)dλ. (6)

We refer to αk = (αkr , αkg , αkb)� as a vector of “imaging coefficients.” They
are not just a property of a specific material; rather, they vary for each different
combination of light, material and sensor colors. For a single light of direction l̂j
comprised of a linear combination of colors k, the measured pixel intensity is

I =

⎡
⎣Ir

Ig

Ib

⎤
⎦ =

(∑
k

αkwkj

)
l̂�j n̂. (7)

For multiple lights, barring occlusions, we sum intensities due to each light:

I =

⎡
⎣Ir

Ig

Ib

⎤
⎦ =

∑
j

(∑
k

αkwkj l̂�j

)
n̂ =

∑
k

⎛
⎝αk

⎛
⎝∑

j

wkj l̂�j

⎞
⎠
⎞
⎠n̂ =

∑
k

(
αklk�

)
n̂,

(8)
where

lk =
∑

j

wkj l̂j. (9)

Here, lk can be considered the effective direction and intensity of light of color
k. If αk are known and linearly independent, and lk are known and linearly
independent, then we can measure n̂ in a single image.

Of course, although the lk may be known in advance for calibrated lights,
the reflectance coefficients αk for materials in a dynamic scene are generally
1 Color scientists might cringe at our usage of the words color, red, green, and blue

for non-perceptual quantities. For the sake of readability, we use red, green and blue
as a shorthand for visible spectra with most of the energy concentrated in longer,
medium or shorter wavelengths, respectively. When we say the color of two lights
are the same, we mean the spectra are identical up to a scale factor.
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unknown. For scenes with spatially varying or unknown materials (and thus
unknown αk), we use additional time-multiplexed measurements with changing
lk, producing a series of measurements:

It = (
∑

k

αklt�k )n̂t

I(t+1) = (
∑

k

αkl
(t+1)�
k )n̂(t+1)

I(t+2) = (
∑

k

αkl
(t+2)�
k )n̂(t+2)

...

(10)

We assume, for now, that we can align these measurements perfectly using optical
flow. The lk are known in advance, but the αk and normals are not. In general,
Equation 10 is difficult to solve. If we use F frames and three light colors (k = 3),
we have 9+2F unknowns for the reflectance coefficients and per-frame normals,
but only 3F measurements. We need not, however, recover the surface normal
for every frame. Instead, we will use one image with three spatially separated
colored lights to measure the surface normal instantaneously, and use additional
frames with carefully chosen lighting conditions to recover imaging coefficients
αk independently of the changing surface orientation.

We consider the minimum of three light colors; using more only adds more
unknown imaging coefficients. With three sensor colors and three light colors,
Equation 8 can be rewritten as

I =

⎡
⎣Ir

Ig

Ib

⎤
⎦ =

3∑
k=1

(αklk)n̂ =

⎡
⎣α1r α2r α3r

α1g α2g α3g

α1b α2b α3b

⎤
⎦
⎡
⎣l�1l�2
l�3

⎤
⎦ n̂. (11)

Now we will show that using four images, we can compute the unknown αk

up to a single global scale factor. We capture three images, each lit by a single
color, with the lighting directions being linearly independent and the colors being
different for all images. For a point on the moving surface, this yields color pixel
intensities I1, I2, and I3. The image for I1 is taken under illumination of color
k = 1 with scaled direction l1 = wk1̂l1, and so on. We take another image using
lights of all three colors from a single direction, producing the follow system:

I1 = α1l�1 n̂1 = α1s1 (12)
I2 = α2l�2 n̂2 = α2s2 (13)
I3 = α3l�3 n̂3 = α3s3 (14)
I4 = (α1 + α2 + α3)l�4 n̂4 = (α1 + α2 + α3)s4 (15)

We have used s1 to represent the unknown scale factor l1�n̂1 in the first equa-
tion, and so on. Solving the top three equations for α1, α2, and α3, respectively,
and substituting into the fourth yields

I4 = (I1/s1 + I2/s2 + I3/s3)s4, (16)
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or

I4 =
[
I1 I2 I3

] ⎡⎣s4/s1
s4/s2
s4/s3

⎤
⎦ (17)

We solve this system for s1, s2, and s3 up to a scale factor 1/s4, and use Equations
12-14 to get α1, α2, and α3 up to the same factor. As Equation 8 shows, this
ambiguity does not prevent recovery of the normal using a fifth image taken with
spatially separated colored lights. In practice, five different images may be too
many to capture at video rates, and aligning the set of images may be difficult
due to occlusions and varying illumination. In the next section, we explore ways
to optimize this method.

4 Implementation

We have presented a theory for instantaneously measuring either surface orien-
tation or imaging properties that vary with the materials. In this section, we
investigate using fewer images, facilitating accurate optical flow to align those
images, and using commonly available hardware.

Camera and Light Spectral Characteristics. A straightforward way to reduce the
unknowns at each pixel, and thus require fewer images, is to ensure that some
of the imaging coefficients are zero. We might try to use red, green and blue
lights such that there is no ”crosstalk” between lights and camera color sensors
of different colors. Materials illuminated by only the green light, for example,
would not register on the camera’s red or blue color channels. This corresponds to
the simplified component-wise (R, G, B) imaging model often used in computer
graphics and also by a recent work on dynamic photometric stereo using colored
lights [3]. Each material and light color is described by an RGB triplet, and
the reflected intensity from a Lambertian surface with normal n̂ and reflectance
A = (AR, AG, AB) lit by light of color L = (LR, LG, LB) from direction n̂ is

C = (CR, CG, CB) = (ARLR, AGLG, ABLB)(n̂ · l̂). (18)

We explored this approach using a typical single-chip color video camera, the
Point Grey Research Flea2 FL2-08S2. With gamma correction off, the Flea2 has
a linear response over most of its range. For lighting we use red, green and blue
Luxeon K2 light emitting diodes (LEDs). These LEDs are inexpensive, bright,
switch quickly (important for TMI), and have relatively narrow spectral power
distributions.

Figure 1 shows the spectral characteristics of our camera and LEDs, and re-
veals two relevant properties. First, the spectra of the blue and green LEDs
and the blue and green color sensors significantly overlap. Generally speaking,
single-chip color sensors (as well as our own eyes) use color sensors with wide
spectral responses for increased sensitivity, so crosstalk is unavoidable (in this
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Fig. 1. Overlapping LED spectra and camera color responses necessitate using a com-
plete imaging model, not a simplified component-wise RGB one. (Left) Relative spec-
tral power distributions for different color Luxeon K2 LEDs. (Right) Relative spectral
response for the red, green and blue pixels on the SONY ICX204 image sensor used in
our camera.

case, more than one color sensor responds to the same light color). On the other
hand, the red and blue color channels are decoupled; the red LED spectra has
virtually no overlap with the blue color sensor, and vice versa. Because we are
now assigning color labels like ”red” to our lights, we will switch to using capital
letters instead of numbers to label light colors. We will use upper case R, G,
and B for light colors, while still using lower case r, g, and b to for camera
color channels. For the decoupled blue and red color channels in our system,
we expect αRb = αBr = 0. Using images of the patches on a Gretag Macbeth
color checker [4] illuminated one color LED at a time, we verified that αBr

and αRb are negligible for our hardware. Unfortunately, the crosstalk for the
red/green and green/blue color combinations is significant and varies greatly for
different materials. We found that αBg/αBb varies across materials from 0.24 to
0.42, αGb/αGg varies from 0.08 to 0.29, αRg/αRr varies from 0.03 to 0.06, and
αGr/αGg is on the order of a percent. These ratios are significant and change
greatly from patch to patch, meaning that all non-zero imaging coefficients must
be measured for any unknown material.

The LED and camera characteristics and the Macbeth experiment suggest
an efficient way to eliminate two more imaging coefficients. We place Edmund
Optics Techspec 550nm shortpass filters over the green LEDs to block the longer
wavelengths sensed by the red camera color sensor, and Thorlabs FB650-40 filters
over the red LEDs to ensure that they does not excite the green camera sensor.
Now each measured color pixel corresponds to a much simpler equations. For
an image taken with illumination from three spatially separated colored lights
whose intensities and directions are described by lR, lG, and lB, Equation 8
yields ⎡

⎣Ir

Ig

Ib

⎤
⎦ =

⎡
⎣αRr 0 0

0 αGg αBg

0 αGb αBb

⎤
⎦
⎡
⎣l�Rl�G
l�B

⎤
⎦ n̂ =

⎡
⎣1 0 0

0 α′
Gg α′

Bg

0 α′
Gb α′

Bb

⎤
⎦
⎡
⎣l�Rl�G
l�B

⎤
⎦ (αRrn̂) (19)

Here, we have substituted α′
Gg = αGg/αRr, α′

Bg = αBg/αRr, and so on.
We can compute the normal direction from Equation 19 if we know α′

Gg, α′
Gg,

α′
Gg, and α′

Gg. These values can be measured using just two additional images:
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one with red and green lights from the same direction lRG, the other with red
and blue lights from the same direction lRB. The first images gives⎡

⎣Ir

Ig

Ib

⎤
⎦ =

⎡
⎣αRr 0 0

0 αGg αBg

0 αGb αBb

⎤
⎦
⎡
⎣l�RG

l�RG

0�

⎤
⎦ (n̂RG) =

⎡
⎣αRr

αGg

αBb

⎤
⎦ (l�RGn̂RG). (20)

Despite the unknown normal n̂RG, we can solve for α′
Gg = αGg/αRr = Ir/Ig and

α′
Gb = αGb/αRr = Ir/Ib. Similarly, the second image with red and blue lights

from direction lRB determines α′
Bg and α′

Bb.

Time-Multiplexed Illumination and Optical Flow. Our system uses optical flow to
align the two frames for measuring imaging coefficients to the frame illuminated
with spatially separated red, green and blue lights. The red light is used for
every frame. To facilitate optical flow, we set the red lighting to be constant and
from the direction of the camera. Although the green and blue lights vary, they
do not affect the red camera sensor, so the red video channel appears to have
constant illumination. Setting the red light to arrive from the same direction
as the camera prevents any shadows in the red channel of the video. We can
robustly estimate optical flow for the red channel between adjacent frames using
standard algorithms.

We output orientation measurements at half the video camera frame rate
using the following lighting sequence:

Rc + Gc Rc + G + B Rc + Bc Rc + G + B . . .

Here, Rc, Gc, Bc, indicate red, green and blue lights from the direction of the
camera, and G and B indicate the additional green and blue light directions
used to estimate the normal. Each Rc + G + B image is adjacent to an Rc + Gc

and an Rc + Bc image.
Because our method measures material properties independently of the surface

normal, the optical flow need not be pixel-accurate. As long as the alignment
maps regions of the same material to each other, the surface normal estimate
will be correct. Segmentation-based optical flow methods, for example, often
have this property, even if subtle changes in shading from frame to frame may
distort flow estimates within segments of the same material.

Hardware Design. Figure 2 shows a schematic of our system and the actual
hardware. The setup has three spatially separated red, green and blue lights,
labeled G, B, and Rc. The LEDs are positioned and filtered as described in the
previous section. A simple microcontroller circuit triggers the LEDs and camera.
We trigger the camera at 30Hz, but compute normal information for a video at
half that rate. This is not a fundamental limit of our technique; upgrading to
a 60Hz camera would enable normal map computations for a 30Hz sequence.
Similar to Hernández et al., we use images of a diffuse plane at multiple known
orientations to estimate the light intensities and directions lG, l̂Rc, lB, l̂Gc, and
l̂Gc. The lights next to the camera are assumed to have unit intensity, and the
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Green BlueGc BcRc

Camera

Subject

Fig. 2. A schematic diagram and the actual hardware used in our system. Each light is
made of three LEDs with lenses mounted in a triangle pattern on the wooden boards
(some LEDs shown on the boards are not used). The camera (outlined in red) aims
through the square notch (shown in yellow) in the top right corner of the bottommost
board.

magnitudes of vectors lG and lB specify the intensity ratios between lights G
and Gc, and B and Bc, respectively. For each set of three images, we use the
optical flow method of Black and Anandan[2] (but using only the red channel)
to compute the location of each point in the Rc+G+B image in the neighboring
Rc +Gc and Rc +Bc images. The material imaging coefficients from those points
are used to estimate the normals for the Rc + G + B frame.

5 Results

In this section, we present simulations to show the errors caused by (1) assuming
constant normals for photometric stereo using alternating white lights, and (2)
using a component-wise RGB imaging model in the presence of crosstalk. After
that we show surface reconstructions and renderings produced using our method
for challenging scenes.

5.1 Simulations

Changing Surface Orientations. Our first simulation investigates the accuracy of
photometric stereo for Lambertian deforming objects using traditional TMI with
alternating white lights. We will assume perfect optical flow to align the moving
images, so the errors are due purely to the changing surface orientation between
measurements. We simulated a system with three alternating white lights, cap-
turing a rotating white surface with albedo α = 1.0. The three measurements
are the dot product of the normal and lighting directions: I1 = l̂1 ·n̂1, I2 = l̂2 ·n̂2,
and I3 = l̂3 · n̂3. Combining these observations and assuming a constant normal
is equivalent to solving the system I = Ln̂c, where the rows of L are l̂1, l̂2, and
l̂3; and I = (I1, I2, I3)�.

We simulated a 30fps camera pointing along the negative z axis, viewing a
surface at the origin with 1Hz rotational motion. 1Hz is actually a conserva-
tive number; people often turn their heads, hands or fingers at this rate. Many
interesting performances such as dancing or martial arts involve rotational defor-
mations that are much more rapid. We used three lighting directions, 15◦ from
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Fig. 3. Traditional photometric stereo using alternating white lights errs if the normal
is changing. Here we show a histogram of the angular errors for estimated surface
orientations using three alternating white lights, a 30fps camera, and a surface with
1Hz rotational deformation. We evenly sampled a range of surface orientations and
rotational axes, for light directions 15◦ and 30◦ off the z axis. In both cases, we see a
broad distribution of angular errors as high as 10◦.

and evenly spaced around the z axis, and then repeated the simulations with
the lighting 30◦ off the z axis. The surface normal for the middle frame was a
vector (0, 0, 1) pointing at the camera and rotated up or down (i.e. about the y
axis) anywhere from -50◦ to 50◦, in 10◦ increments. To simulate object motion,
this normal rotated backward and forward 12◦ (for 30Hz rotation filmed with
a 30fps camera) to generate the first and third measurements. We also changed
the axis of rotation itself, using axes in the x-y plane, evenly spaced from 0◦ to
360◦ in 10◦ increments.

Figure 3 shows a histogram of the angular error between the true and com-
puted surface normals for the middle frame. For the 15◦ off-axis lights, the mean
and standard deviation of the angular error is 5.9◦ and 2.3◦. For the 30◦ off-axis
lights, the mean and standard deviation of the angular error is 5.7◦ and 1.7◦.
The computed normals are not simply averages of the observed ones; because of
the varying lighting directions, even for a surface normal rotating in a plane, the
computed orientation may not lie in the same plane. Orientation errors are also
accompanied by reflectance errors. The mean albedo error (relative to the ground
truth of 1.0) was 0.032 for light directions at 15◦ to the z axis, and 0.042 for
32◦, with standard deviations of 0.039 and 0.050. Of course, these errors might
change for different parameters. Regardless, they are a fundamental accuracy
limit for dynamic photometric stereo with TMI if one ignores the time-varying
normal.

RGB Component-Wise Imaging Models. Our second simulation investigated the
errors from using a component-wise RGB camera for photometric stereo in the
presence of crosstalk. In practice, such a system would alternate between red,
green and blue light from a single direction in order to measure material re-
flectances, and spatially separated lights to measure surface orientation. We im-
plemented the RGB component-wise imaging model using actual imaging data
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2.9◦,0.09 2.6◦,0.04 3.9◦,0.05 7.1◦,0.15 6.2◦,0.09 1.2◦,0.02 3.8◦,0.10 0.7◦,0.01

8.1◦,0.12 13.4◦,0.20 3.6◦,0.07 7.8◦,0.11 12.0◦,0.13 8.5◦,0.14 1.5◦,0.03 0.4◦,0.01

17.5◦,0.27 9.2◦,0.10 7.8◦,0.08 11.7◦,0.11 8.4◦,0.16 4.2◦,0.07 1.1◦,0.02 Hue Plot

Fig. 4. Photometric stereo using colored lights with a simplified component-wise
(R,G, B) model causes inaccurate normal and reflectance estimates. This simulation
used red, green and blue lights 15◦ off the z-axis. These visualizations show hue plots
of the surface normal directional error for spheres with colors corresponding to the
Macbeth color checker patches. We show each patch’s imaged color (inset squares),
the maximum angular error (degrees) for estimated normals over the sphere, and the
maximum albedo error (defined as the error for the computed normal’s length, which
should be 1.0). The white patch, used to fit the model, had negligible error.

for the Macbeth color checker and our LEDs and Flea2 camera, and simulated
a stationary object (so these are ideal results). We took three pictures of the
Macbeth chart illuminated by a single red, green, or blue LED, and computed
the coefficient matrix M for each light, material and sensor combination. We
let the color of the white Macbeth checker be (1, 1, 1) and used the component-
wise model to compute the color of each light, and then of all the checkers. We
used the real-world imaging data to simulate Lambertian reflection off a sphere
illuminated by a red, a green, and a blue light from 15◦ off the z axis, as before.
To be conservative, we only simulated surface normals at angles less than 85◦

from all three lights.
Figure 4 shows that the angular orientation error using the component-wise

model can be quite large. For the white patch, the simplified model works per-
fectly. The other patches show a fairly even spread of errors from nearly zero
for the other grayscale patches to as high as 17◦. The computed normals are
all accurate at (0, 0, 1) because the lights in these simulations are evenly spaced
around the z axis, so the Lambertian shading terms are all equal at that one
point. The clear axes in the error visualizations are due to our system having
strong crosstalk between only two of the three color channels. These data show
that using the component-wise imaging model leads to large surface orientation
errors, especially at oblique angles. By contrast, our system, without sacrificing
frame rate (i.e. still computing normals for every other input frame), computes
accurate orientation despite significant crosstalk in two color channels.
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Fig. 5. Results from our photometric stereo system. From top to bottom, the rows
are (1) a video frame illuminated with spatially separated red, green and blue LEDs
(2) reconstructed geometry (3) geometry rendered from a new view, and (4) geometry
rendered from the camera view and textured with measured appearance data. The
hands are rotating around the axis of the arms, the pillow is being creased, and the mat
is being waved. The pillow shows that we are computing consistent normals despite
changing material colors. The artifacts at color edges are due to resampling during
image alignment. We recover the fine quilted surface detail of the mat well despite its
colorful pattern. The supplemental material video shows the entire input and output
video sequences.

5.2 Dynamic Photometric Stereo with Real Objects

Figure 5 shows three results using our system capture the shape and appearance
of different moving and deforming objects. After computing surface normals, we
reconstructed the surface geometry by integrating the surface normals, equiv-
alent to solving a Poisson equation[12]. As the images show, we recovered the
fine detail on the hands and glove (veins, wrinkles, etc.) well. The geometry
for the creasing pillow is consistent despite sudden color changes. The mat is
particularly interesting; the color texture is very complicated and prominent,
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yet barely detectable in the recovered geometry. The reader is encouraged to
view the supplemental videos showing the motion in the input images, the re-
constructed geometry, and the textured geometry for all three sequences. The
hands rotate at roughly 1/6Hz, and the fingers curl even more rapidly.

6 Discussion

The fundamental goal of photometric stereo for moving, non-rigid objects is to
estimate time-varying surface orientations. The prior art using TMI, however,
assumes constant surface orientations across the frames used for the estimates,
fundamentally limiting their accuracy. By contrast, our time and color multi-
plexed photometric stereo method is the first that is robust to changing surface
orientations for non-rigid scenes. We have shown that for Lambertian surfaces
and general imaging models, five images with appropriately chosen lighting are
sufficient to recover the time-varying surface orientation for one frame. Our opti-
mized implementation requires only three images. Because our method measures
reflectance coefficients independently of the changing surface orientations, it pre-
serves the key strength of colored lights for photometric stereo: an instantaneous
orientation estimate in one frame, given known material reflectances.

Like the prior art, we use optical flow to align measurements from several
video frames. Shading changes due to the deforming surfaces may complicate
this alignment. Even in the ideal case of perfect optical flow, however, time-
varying surface normals lead to errors for the prior art. By contrast, our method
does not even require pixel accurate alignment. As long as surfaces of the same
material are aligned to each other, the imaging coefficients are estimated cor-
rectly. Our implementation not only tolerates less than pixel-accurate alignment,
but also makes the alignment more robust by fixing the apparent illumination
for video in the camera red color channel. Using standard optical flow meth-
ods for that channel alone, we can directly align the frames used to measure
material properties to the one with spatially separated lights for the orientation
estimates. We need not assume linear motion across multiple frames, nor capture
extra images to serve as optical flow key frames.

Our system is simple, consisting of an ordinary camera and LEDs with filters,
yet captures detailed shapes of moving objects with complicated color textures.
Like other three-source photometric stereo methods, it can err in the presence
of non-Lambertian reflectance, interreflection, occlusions and mixed pixels. One
might argue for a system with three completely isolated color channels (a red
sensor that only responds to a red light, and so on). In addition to being dif-
ficult to implement in practice, such a design has another drawback: it cannot
measure materials with no reflectance in one or more of the color channels. Our
implementation suffers such limitations, but to a lesser extent. Saturated colors
are not uncommon. Because our theory assumes a general imaging model with
crosstalk, the five image solution could be used with broad-spectrum light colors
and color sensors to capture the shapes of materials with a very wide range of
colors (the constraint is that the three αk must be linearly independent).
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Fully Isotropic Fast Marching Methods on Cartesian
Grids
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Abstract. The existing Fast Marching methods which are used to solve the
Eikonal equation use a locally continuous model to estimate the accumulated
cost, but a discontinuous (discretized) model for the traveling cost around each
grid point. Because the accumulated cost and the traveling (local) cost are treated
differently, the estimate of the accumulated cost at any point will vary based on
the direction of the arriving front. Instead we propose to estimate the traveling
cost at each grid point based on a locally continuous model, where we will inter-
polate the traveling cost along the direction of the propagating front. We further
choose an interpolation scheme that is not biased by the direction of the front.
Thus making the fast marching process truly isotropic. We show the significance
of removing the directional bias in the computation of the cost in certain appli-
cations of fast marching method. We also compare the accuracy and computation
times of our proposed methods with the existing state of the art fast marching
techniques to demonstrate the superiority of our method.

Keywords: Fast Marching Methods, Isotropic Fast Marching, Segmentation,
Tracking, FMM, Eikonal Equation, minimal cost path.

1 Introduction

A large number of computer vision applications such as segmentation, tracking, opti-
mal path planning etc. use the minimal cost path approach. The Fast Marching Method
which is widely used to solve the minimal path problem was first introduced by
Sethian [1,10] and Tsitsiklis [11]. Cohen and Kimmel [4,5] later noticed that the mini-
mal cost problem satisfies the Eikonal equation,

‖∇u‖ = τ. (1)

For the Eikonal equation 1 defined on a Cartesian Grid, τ(x) would be the traveling
cost at a given grid point and u(x), the accumulated cost. Since we solve the Eikonal
equation numerically on Cartesian Grids, it is impossible to find the exact solution.
Some modifications have been suggested in [6, 7] to improve the accuracy of the Fast
Marching method. Authors in [6, 8, 9, 11] also suggest using an 8-connected neighbor
scheme to improve accuracy. All these techniques use a locally continuous model to
estimate the accumulated cost, but assume the traveling cost to be constant (discretized)
around each grid point. Only [6] interpolates τ by shifting it to the center of the grid
with a nearest neighbor interpolation, but it still assumes a discretized shifted grid for
τ . In this paper we propose to use a locally continuous model to estimate τ as well.

K. Daniilidis, P. Maragos, N. Paragios (Eds.): ECCV 2010, Part I, LNCS 6311, pp. 73–85, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Fig. 1. Overlap in the influence areas of τB and τC

For the geometry shown in Figure 1, the Fast Marching Method uses linear approxi-
mation to compute the accumulated cost at the point C, but it uses a constant traveling
cost τC for each of the four grid cells containing the point C. The influence area of the
cost function given at a grid point will include all the four quadrants around it. Thus,
there is an overlap in the areas of influence of the grid points B and C. This means
the value of uC will vary depending on the direction from which the front is arriving.
Ideally, for isotropic fast marching, the accumulated cost should be independent of the
direction of the arriving front. For the image shown in Figure 2, we use the traveling
cost, τ(x) = I(x), where I(x) is the intensity at each pixel. The accumulated cost in
traveling from point A to B should be equal to the cost in traveling from B to A. But,
due to the dependence on the direction of marching, there will be a difference in the ac-
cumulated costs. Figure 2 compares the minimal path obtained using back propagation
from end point B to the source point A with the minimal path obtained by reversing
the direction of front propagation. The difference in the two paths highlights the error
caused by the directional dependence of the Fast Marching method.

Fig. 2. Image with random noise
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In this paper we propose two methods to overcome the above-mentioned shortcom-
ings. The first method uses a linear/bilinear model locally to estimate τ along the di-
rection of the propagating front within each grid cell. Here we use a continuous model
to estimate τ and also take the direction of arrival into consideration. We also discuss
how the scheme can be made truly isotropic by removing any bias due to the march-
ing direction. We call this method the Interpolated Fast Marching Method and it is
discussed in detail in Section 2. In the second method we calculate u on an upsam-
pled grid. In upsampling the grid, τ in the neighborhood of each grid point becomes
constant, which eliminates the need to estimate τ using a continuous model. We will
use the value of τ from the direction of arriving front. The upsampled version of the 4
and 8-connected neighbor schemes are discussed in Section 3. Finally, in Section 4 we
describe a few numerical experiments conducted to highlight the significance of mak-
ing the fast marching method independent of direction and we test the accuracy of the
proposed methods.

2 Interpolated Fast Marching Method

For interpolated Fast Marching scheme we will assume τ to be continuous around each
grid point and use linear/bilinear interpolation to estimate the value of the local traveling
cost within each grid cell. Here we will derive the equations for the linear and bilinear
Interpolated Fast Marching schemes. To estimate the traveling cost in a grid cell, the bi-
linear scheme will use the value of τ from all the grid points for a given quadrant. Since
only 2 neighbors are used in each quadrant to calculate u in a 4-connected neighbor
scheme, we only discuss the 8-connected neighbor scheme with bilinear interpolation.

(a) 4-Connected Neighbors
Scheme

(b) 8-Connected Neighbors
Scheme

(c) Isotropic triangulation of a
Grid Cell

Fig. 3. Triangulation of Grid cells

2.1 Linear Interpolation

4-Connected Neighbors Scheme. Consider a front arriving at the grid point C from
the quadrant AB and intersecting AB at E as shown in Figure 3(a). We will use the

linear interpolation of the local traveling cost along the path
→

EC to compute uC . Thus
the accumulated cost at C will be,

uC = min
0≤t≤1

{
uB(1 − t) + uAt +

∫ 1

0
τ(p)

√
t2 + (1 − t)2dp

}
. (2)
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Substituting, τ(p) = τC + (τA − τC)p(1− t) + (τB − τC)pt, 0 ≤ p ≤ 1, in (2) we get,

uC = min
0≤t≤1

{
uB(1 − t) + uAt +

√
t2 + (1 − t)2

(
τA + τC

2
+

τB − τA

2
t

)}
. (3)

We get the necessary optimality condition to obtain the minimum of uC by solving
duC

dt = 0, which yields,

uA − uB +
√

t2 + (1 − t)2
(

τB − τA

2
t

)

+
2t − 1√

t2 + (1 − t)2

(
τA + τC

2
+

τB − τA

2
t

)
= 0.

(4)

8-Connected Neighbors Scheme. The geometry for 8-connected neighbors is shown

in Figure 3(b). Using linear interpolation to estimate the local traveling cost along
→

EC,
the accumulated cost, uC , will be,

uC = min
0≤t≤1

{
uB(1 − t) + uAt +

∫ 1

0
τ(p)

√
1 + t2dp

}
. (5)

Substituting, τ(p) = τC + (τB − τC)p + (τA − τB)pt, 0 ≤ p ≤ 1, in (5) we get,

uC = min
0≤t≤1

{
uAt + uB(1 − t) +

√
1 + t2

(
τB + τC

2
+

τA − τB

2
t

)}
. (6)

Again the minimizer of uC can be obtained by solving duC

dt = 0. Thus we have,

uA − uB +
√

1 + t2
(

τA − τB

2

)
+

t√
1 + t2

(
τB + τC

2
+

τA − τB

2
t

)
= 0. (7)

Isotropic linear interpolation scheme. Figure 3(a) and 3(b) show the triangulation
of a grid cell for the 4 and 8 neighbor schemes respectively. Depending on the front
direction one of the quadrant/octant will be chosen to estimate the accumulated cost.
But this will induce a directional bias. To overcome this directional bias, we will have
to consider all possible triangulations shown in Figure 3(c). In effect the accumulated
cost across a grid cell must be the minimum of the solutions obtained using the 4 and 8
neighbor schemes. This would make the scheme completely unbiased to direction and
we call this scheme the Iso-Linear scheme.

2.2 Bilinear Interpolation

8-Connected Neighbors Scheme. The bilinear interpolation to estimate the local trav-

eling cost along
→

EC is given by,

τ(p) = τA(p)(pt) + τB(p)(1 − pt) + τC(1 − p)(1 − pt) + τD(1 − p)(pt).
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It is inherently independent of any directional bias within a grid cell. Substituting, this
value of τ(p) for 0 ≤ p ≤ 1, in (5) we get,

uC = min
0≤t≤1

{
uAt + uB(1 − t) +

√
1 + t2

(
τB + τC

2
+

τA − τB

3
t +

τD − τC

6
t

)}
.

(8)
We will again solve duC

dt = 0, which yields,

uA − uB +
√

1 + t2
(

τA − τB

3
+

τD − τC

6

)

+
t√

1 + t2

(
τB + τC

2
+

τA − τB

3
t +

τD − τC

6
t

)
= 0.

(9)

Algebraic manipulations on (4), (7) and (9) will yield quartic equations. We used the
Ferrari and Newton methods to solve these quartic equations. We compared the so-
lutions from both techniques and found that they generate equally accurate solutions.
Since Newton’s method has a quadratic convergence, three iterations were sufficient for
convergence. Fixing the number of iterations in each update step also ensures that we
have the same computation complexity in each update. This makes the technique suit-
able to implement on hardware. The solution to Newton’s method has fewer (logical
and mathematical) operations in comparison to finding the Ferrari (analytic) solution;
hence using Newton’s method is computationally efficient. We compare the compu-
tation times of the two methods on a 500x500 grid in the Table 1. Here we call the
4 and 8-connected neighbor linear Interpolated Fast Marching schemes, Linear-4 and
Linear-8 respectively and the 8-connected neighbor bilinear Interpolated Fast Marching
scheme, Bilinear-8. The computation times were measured on a laptop with a 1.73 GHz
Processor.

Table 1. Comparison of computation times

Linear-4 Linear-8 Bilinear-8
Analytic (Ferrari) 1.51s 2.83s 3.23s
Newton’s Method 0.51s 0.52s 0.65s

2.3 Marching Forward Loop

We will still follow the main loop as explained in the basic Fast Marching method [10].
But, when a trial point is accepted in the min heap structure we will compute the
value of u from both the quadrants/octants which include the newly accepted point and
replace the newly calculated u with the minimum of the two solutions and the existing
value of u (if the point is marked as trial).

Consider the example in Figure 4(a) where B is the newly accepted point and the
accumulated cost at neighbor C is to be computed. As opposed to the basic fast march-
ing technique, uC does not solely depend on uA,uB,uE and the local traveling cost,
τC , but it also depends on the costs at all the other 8-connected neighbors. Thus, using
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(a) 4-Connected Neighbors
Scheme

(b) 8-Connected Neighbors
Scheme

(c) Isotropic Fast Marching
Scheme

Fig. 4. B is the newly accepted grid point and uC is to be computed

the quadrant containing the minimum of uA and uE will not necessarily guarantee the
minimum solution to (3). Hence we have to consider both the quadrants that contain B.
If the front also arrives at C from the other two quadrants, they will be considered when
the corresponding neighbors become accepted. The same argument can be extended to
the 8-connected neighbor case shown in Figure 4(b). Here we only need to calculate uC

from the two octants containing AB and FB once point B is accepted. For the front
arriving at point C as shown in Figure 2(c), we will consider the possibilities of the
front arriving from AB,BD and DA.

We depart from the traditional Fast Marching method only in the update procedure
for the accumulated cost, but follow the same main (outer) loop. Thus the parallel al-
gorithm explained in Bronstein et al. [2], can be extended for the implementation on
hardware.

3 Upsampled Fast Marching Method

Figure 5 shows that there is no overlap in the influence areas of τ on the upsampled
grid. Here the solid circles are the grid points from the original grid. Since the traveling
cost is constant in each grid cell, there is no directional bias in the calculation of u. We
will compute u on the upsampled grid and then downsample the output on the original
grid.

3.1 4-Connected Neighbors Scheme

In the upsampled grid, τ is constant in each quadrant around a grid point. Again the
constant traveling cost within each grid cell makes this scheme isotropic. Depending on
the direction of the front we will choose the value of τ in calculating u. For example, if
the front arrives at E from the north-west then we would use τA (Figure 5). At the point
G we would use τA for a front arriving from the west and τB for a front arriving from
the east. We would use τA to calculate uA irrespective of the direction of the arriving
front. Since the value of τ is constant along the direction of the front at a sub-pixel
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Fig. 5. No overlap in the influence areas of τA, τB , τCand τD

level, it is not necessary to assume a locally continuous model in interpolating τ . Thus,
the accumulated cost at E with the front arriving from the north-west would be,

uE = min
0≤t≤0.5

{
uF t + uG(0.5 − t) + τA

√
t2 + (0.5 − t)2

}
(10)

This minimization leads to the closed form solution,

uE =

{
(uF +uG+

√
δ)

2 if δ ≥ 0
min(uF , uG) + τA

2 otherwise

where, δ = τ2
A

2 − (uF − uG)2.

3.2 8-Connected Neighbors Scheme

As in the case with 4-connected neighbors, τ is constant in each octant around a grid
point in the upsampled grid. We note that there will be exactly one point in each octant
that corresponds to a point in the original grid. We will use the corresponding value of
τ to compute u.

By following the procedure described in Section 2.3, we calculate u only from the
two octants that contain the newly accepted point. If F is the newly accepted point, we
will calculate uE in the octants containing FA and FD (Figure 5). The solution will
be the minimum of the two values obtained. Thus, for a front arriving from north-west,
the accumulated cost at E will be,

uE = min
0≤t≤0.5

{
uAt + uF (0.5 − t) + τA

√
0.5 + t2

}
(11)

giving the closed form solution,

uE =

⎧⎪⎨
⎪⎩

uF + τA

2 if uF ≤ uA

uA +
√

2 τA

2 if τA ≤ 2
√

2(uF − uA)

uF +
√

τ2
A−4(uF −uA)2

2 otherwise
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4 Numerical Experiments

We conducted a few experiments to compare the proposed methods to the basic Fast
Marching Method (FMM) [10], Tsitsiklis scheme [11], Shifted-Grid Fast Marching
(SGFM) [6] and Multi-stencil Fast Marching (MSFM) [7]. We also compare the upsam-
pled 4 and 8-connected neighbor Fast Marching schemes with the upsampled version
of the SGFM scheme (upSG).

(a) Cardiac Data (b) Random noise

Fig. 6. Test Images

In the first experiment we pick a random point, marked by the ‘x’ in the images
shown in Figure 6, and compute u at every point of the image. We then compute the
total cost in propagating a front from each point of the image back to the point marked
by the ‘x’. We take the average of the difference (error) across the entire image. The
numerical values are listed in the Table 2, under the column labeled Average Back
Propagation Error (ABPE). We used the cost function, τ(x) = 1

1+|∇I|2 for the cardiac
image and τ(x) = I(x) for the random noise image.

In Figure 7 we present the results of segmenting the left ventricles in a 2D cardiac
slice. To segment the image we pick a point on the boundary of the object and compute
the saddle points as described in [5]. From each saddle point we then obtain two mini-
mal paths back to the initial point; these paths will give the segmentation of the object.
The minimal paths were obtained using a sub-pixel level back propagation scheme. We
then choose the saddle point which minimizes the Chan-Vese [3] energy of the obtained
segmentation. Images in Figure 7 show the overlay of segmentation curves initialized
with 2 different user given points on the boundary. We see that the segmentation curves
are not consistent and they depend on the initialization. This is mainly due to the differ-
ence in the marching direction in each case and weak image features at certain locations.
We highlight certain regions in these images to compare the segmentation obtained from
the different methods.

In the images shown in Figure 8, we compare the minimal paths obtained in trav-
eling from point ‘0’ to points ‘1’,‘2’ and ‘3’ with the corresponding paths obtained
by reversing the direction. We see that using interpolated FMM gives consistent paths,
even in the absence of any strong image feature. The results are in accordance to the
Average Back Propagation Errors listed in Table 2. The ABPE for the Tsitsiklis scheme
is the highest and accordingly the paths obtained with the Tsitsiklis scheme show a
lot of variation. Although the SGFM shows lower average error there are variations in
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(a) FMM (b) Tsitsiklis

(c) SGFM (d) Iso-Linear

Fig. 7. A comparison of segmentation

the obtained minimal paths. This is because the interpolation of the cost function in
SGFM is equivalent to image smoothing for the τ (τ(x) = I(x)) used in this exam-
ple. This decreases the corresponding average error, but it also decreases the difference
in the geodesic distances of the various paths. Thus with the change in the marching
direction, the back propagation takes different paths between two given points.

In the next example we compare the accuracy of the various techniques for two cost
functions on a 50x50 grid,

τ1(x, y) = 1/20
√

(sin x
20cos y

20 )2 + (cos x
20sin y

20 )2,
τ2(x, y) = 1/10

√
(sin x

20cos y
10 )2 + (cos x

20sin y
10 )2.

The iso-contours of uanalytic are shown in Figure 9. The geodesics from the center
(26, 26) of the grid will be straight lines for τ1 and curved for τ2. Since, we have the
analytic solution for these cost functions, we can compare the L1, L2 and L∞ norms
for each method.

L1 = mean(|u − uanalytic|),
L2 = mean(|u − uanalytic|2),
L∞ = max(|u − uanalytic|).
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(a) FMM (b) Tsitsiklis

(c) SGFM (d) Iso-Linear

Fig. 8. A comparison of tracking

(a) Iso-contour: u1 (b) Iso-contour: u2

Fig. 9. Iso-contours

The numerical errors in using cost functions τ1 and τ2 are listed in Table 2. Notice that
the error norms show significant improvement for the proposed methods, especially in
the case with curved geodesics (τ2). The iso-contours of the errors for τ2 while using
FMM, SGFM, Iso-Linear and up8 are shown in Figure 10.
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(a) FMM (b) SGFM

(c) Iso-Linear (d) Upsampled-8

Fig. 10. Iso-contours of errors for τ2
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Table 2. Error norms for τ1 and τ2, Average Back Propagation Errors and Computation times

τ1 τ2 ABPE Time
L1 L2 L∞ L1 L2 L∞ I1 I2 (s)

FMM 2.46x10−2 6.73x10−4 0.0380 4.37x10−2 2.07x10−3 0.1060 0.0725 0.3901 0.27
Tsitsiklis 2.14x10−2 4.89x10−4 0.0281 3.81x10−2 1.57x10−3 0.0825 0.1007 0.4348 0.26
MSFM 2.36x10−2 6.07x10−4 0.0349 4.23x10−2 1.94x10−3 0.1007 0.0825 0.3572 0.29
SGFM 2.33x10−3 6.32x10−6 0.0051 1.25x10−2 2.14x10−4 0.0580 0.0022 0.0277 0.33
Linear4 1.10x10−2 1.71x10−4 0.0285 1.69x10−2 4.01x10−4 0.0875 0.0122 0.1036 0.51
Linear8 2.25x10−3 6.82x10−6 0.0046 4.46x10−3 3.43x10−5 0.0596 0.0028 0.0355 0.52

IsoLinear 2.25x10−3 6.82x10−6 0.0046 4.03x10−3 3.11x10−5 0.0596 0.0109 0.0911 0.91
Bilinear8 2.74x10−3 9.42x10−6 0.0052 5.01x10−3 4.10x10−5 0.0607 0.0028 0.0101 0.65

Up4 1.79x10−3 7.60x10−6 0.0101 3.14x10−3 2.89x10−5 0.0655 0.0451 0.1919 1.37
Up8 2.99x10−4 1.96x10−7 0.0014 1.54x10−3 7.81x10−6 0.0289 0.0011 0.0221 1.42

UpSG 1.96x10−3 4.15x10−6 0.0035 1.20x10−2 1.94x10−4 0.0566 0.0015 0.0141 1.42

We also enlist the computation times for each of these methods on a 500x500 grid
in the last column of Table 2. All computation times were measured on a laptop with a
1.73 GHz Processor.

5 Conclusion

In this paper we present techniques to make the fast marching method independent of
the marching direction and thus improve the accuracy of the Fast Marching Method.
One approach interpolates the local traveling cost along the front and the other com-
putes u on an upsampled grid. We also showed that combining the 8 and 4-connected
neighbor schemes further reduces the inaccuracy by considering all possible directions
of the arrival of the front. We have compared both our approaches to the existing Fast
Marching techniques and we have shown a significant improvement over them. Al-
though both our approaches have higher computation times, they can be implemented
efficiently on hardware and they are practical solutions to eliminate the inaccuracies of
existing techniques.
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Abstract. We describe a single-shot method to differentiate unscat-
tered and scattered components of light transmission through a hetero-
geneous translucent material. Directly-transmitted components travel in
a straight line from the light source, while scattered components orig-
inate from multiple scattering centers in the volume. Computer vision
methods deal with participating media via 2D contrast enhancing soft-
ware techniques. On the other hand, optics techniques treat scattering as
noise and use elaborate methods to reduce the scattering or its impact on
the direct unscattered component. We observe the scattered component
on its own provides useful information because the angular variation is
low frequency. We propose a method to strategically capture angularly
varying scattered light and compute the unscattered direct component.
We capture the scattering from a single light source via a lenslet array
placed close to the image plane. As an application, we demonstrate en-
hanced tomographic reconstruction of scattering objects using estimated
direct transmission images.

Keywords: computational photography, direct transmission, scattered
transmission, multiple scattering, image decomposition.

1 Introduction

The separation of direct and scattered components of incident light is a chal-
lenging topic in computer vision and graphics, a task that is confounded by the
complex behavior of light in participating media, e.g., reflection, refraction, and
scattering in haze, underwater or in volumetric translucent objects. These com-
plex characteristics of light are one of the main factors hindering an analytical
solution for direct-scattered separation. For this reason, active coding methods
have been proposed. Nayar et al. [1] project high-frequency patterns onto a
reflective scene. Such active coding methods achieve accurate and robust sepa-
ration. Narasimhan et al. [2] use structured light to estimate the 3-D shape of
objects in scattering media, including diluted suspensions. Gu et al. [3] also use
structured light, exploiting compressive sensing techniques, to decrease the data
acquisition time. Atcheson et al. [4] estimate the 3-D shape of non-stationary
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(a) Normal Photo

(b) Direct-only Image

(c) Scattered-only Image

(d) Normal Photo

(e) Direct-only Image

(f) Scattered-only Image

Fig. 1. Recovery of an opaque object in participating media with milky water. (a) and
(d) Normal photos according to concentration 0.03%–0.17% in which water is 7500ml
and milk is increased by 1.5ml from 2ml. (b) and (e) Recovered direct-only images
computed using angular-domain filtering with a lenslet array. Note enhanced visibility
for sharp features and edges in the descattered image. (c) and (f) scattered-only images
preprocessed to acquire the direct-only images.
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gas flows. In many existing approaches, only scattering scenes composed of low
density materials (eg. smoke, liquid, and powder) are allowed, such that a sin-
gle scattering mode is dominant. Using the methods outlined in this paper, we
demonstrate direct-scattered separation for scenes in which multiple scattering
is predominant.

In this paper we use a passive, single-shot imaging method to achieve separa-
tion of transmitted light for a scene containing heterogeneous scattering media.
Specifically, we use a lenslet(or pinhole) array close to the image plane to sep-
arate direct and scattered components of incident light (albeit while reducing
the resolution of the recovered direct and scattering component images since
the projection of each lenslet or pinhole provides a single pixel in the recovered
images). Using a sequence of such images, we are able to recover an estimate of
the volumetric attenuation using existing tomographic reconstruction methods,
demonstrating benefits for both dehazing and 3D shape recovery.

1.1 Contributions

We describe a method for single-exposure separation of direct and scattered com-
ponents of transmitted light passing through scattering media using a lenslet or
pinhole array placed closely to the image sensor. In the direct-only image, high-
frequency details are restored and provide strong edge cues for scattering objects.
Due to its single-shot nature, this method is well-suited for analyzing dynamic
scenes. We demonstrate enhanced tomographic reconstruction of scattering ob-
jects using direct component images. These separation methods are well-suited
for applications in medical imaging, providing an internal view of scattering ob-
jects such as human skin using visible or near-visible wavelength light sources,
rather than X-rays.

1.2 Related Work

Direct-Scattered Separation: Direct-scattered separation of light is widely
studied in diverse fields spanning computer vision, graphics, optics, and physics.
Due to the complexities of scattering, reflection, and refraction, analytical meth-
ods do not achieve satisfactory results in practical situations. In computer vision
and graphics, Nayar et al. [1] present an effective method to separate direct and
scattered components from a scene by projecting a sequence of high-frequency
patterns. Their work is one of the first to handle arbitrary natural scenes. How-
ever, it requires temporally-multiplexed illumination, limiting the utility for dy-
namic scenes. Nasu et al. [5] present an accelerated method using a sequence
of three patterns. In addition, Rosen and Abookasis [6] present a descattering
method using speckle analysis.

Microscopy: The scattering in microscopic objects is addressed by careful op-
tical methods. Hisashi [7] present a method to achieve a sharp in-focus signal in
a confocal microscope setup. They use two pinholes to sense in- and out-of-focus
signals and acquire a sharp in-focus signal by subtracting the two. This requires
two exposures and careful alignment for each spot. In addition, scanning process
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(a) Acutal Setup (b) Schematic Diagram

Fig. 2. (a) Imaging system consisting of an LED and a lenslet array. A single LED is
used to back-illuminate a scattering scene. A diffuser is used to form an image through
a lenslet array. A high-resolution camera captures the array of lenslet images in a single
exposure. (b) A schematic diagram of the actual setup.

is required to recover a whole scene. Sheppard et al. [8] present a method to im-
prove lateral and axial resolution. They achieve enhanced lateral resolution by
subtracting a weighted traditional signal from a confocal imaging signal. Their
method also increases axial resolution by using a number of detectors in different
sizes. These are multi-exposure methods but are similar to our method where a
simple linear transformation of intensities in a neighborhood recovers the sharp
component. Levoy et al. [9] record 4D light field using a microlens array for
digital refocusing and acquiring angular views with a single snapshot photo in
microscope. In our method, the angular variation recorded by the similar way is
exploited explicitly making it robust to non-homogeneous local variations. Our
method requires no complicated light sources or mechanical scanning or change
in aperture settings.

3D Recovery in Scattering Media: Narasimhan et al. [2] and Gu et al. [3]
use sequential structured light patterns to recover 3D shape of static opaque ob-
jects in low density scattering media. Our method requires simple light sources
and only a single photo per view. Atcheson et al. [4] recover non-stationary gas
flows using Schlieren imaging and multiple cameras. The method is suitable for
refracting but not scattering media. Rosen and Abookasis [6] proposed a method
to recovery shape of binary objects between 2 layers of scattering media based
on refocusing principles. Trifonov et al. [10] consider tomographic reconstruction
of transparent objects using large number of photos and index matching liquids.
Our emphasis is on scattering objects.

2 Imaging System

2.1 Overview

The actual setup and schematic diagram of our proposed imaging system is
shown in Figure 2. We note that our direct-scattered separation method handles
solid objects and liquid mixtures. In particular, we consider the case when a
solid object is enclosed by a scattering media, as is typical in medical imaging
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(a) Without any optical component (b) With lenslet or pinhole

Fig. 3. Recovering the direct component from a mixed direct-scattered region. There
is no way to separate direct and scattered rays in (a). The rays are spatially separated
by a lenslet or pinhole in (b). We use the estimate from the pure-scattered region to
subtract the scattered component in the central region.

applications. The property of the solid object can be most types of scattering
except significant internal refraction. Refraction is treated as scattering and ap-
propriately separated from direct component but the low frequency fitting of
our method(RTE scattering model) becomes inaccurate. Thin glass objects and
thin boundary of media with minor refraction are fine. Under a simple geomet-
ric scattering model, light rays are emitted from a point source (an LED in our
system). When each direct ray impinges on a scattering center, a new scattering
light source is effectively created(Figure 2(b)). Both direct and scattered rays
form an image through a pinhole or lenslet array onto a diffuser screen which
is captured by a camera. We apply radiative transport equation(RTE) [11] to
model the angular variation of this scattering center. We assume, at a basic level,
that the heterogenous scattering media will be dominated by multiple scattering
events [12] [13].

2.2 Imaging with Lenslets or Pinhole Arrays

We use a Canon EOS Digital Rebel XSi, with a resolution of 4272×2848 pixels.
The lenslet array is separated from the diffuser in order to form an image of the
scattering volume focusing on the entire volume with large DOF(centimeters al-
most infinite) of lenslet(Figure 2(b)). Lanman et al. [14] used a similar imaging
setup to compute a single shot lightfield of opaque objects while we address scat-
tering to compute direct component of translucent objects. From Figure 3(b),
we infer there are two regions in the image under each lenslet. The first region
consists of a mixed signal due to cross-talk between the direct and scattered
components. The second region represents a pure scattered component. In the
following section, we show a simple method for analyzing such imagery to sep-
arate direct and scattered components for multiple-scattering media. As shown
in Figure 3(b), the angular sample directly under each lenslet can be used to es-
timate the combined direct plus scattered transmission along the ray between a
given pixel and the light source. Similarly, any non-zero neighboring pixels(not
beneath the lenslet) can be fully attributed to scattered illumination due to
volumetric scattering.
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(a) Without Scattering

(b) With Scattering

(c) Estimation

(d) Subtraction

Fig. 4. Comparison of direct and scatter components without and with scattering
media. (a) Central region under each lenslet is sharp without scattering. (b) Direct as
well as scattered component is included in the central region. (c) Measured (red) and
estimated (brown) values for scattering-only component. (d) The direct-only image
formed by subtracting (c) from (b).
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(a) Measured Data (b) q=0.9, T=1.4 (c) q=0.7, T=1.4 (d) q=0.2, T=1.4

(e) q=0.9, T=2.0 (f) q=0.2, T=2.0 (g) q=0.9, T=4.0 (h) q=0.2, T=4.0

Fig. 5. RTE(Radiative Transport Equation) modeling of scattering values through a
pinhole. (a) Measured data (b)-(h) RTE Modeling with different q and T. (f) is in
minimum fitting error with the measured data.

3 Direct-Scattered Separation

3.1 Separation via Angular Filtering

In this section we consider direct-scattered separation for a 1-D sensor and a
2-D scene, while the results can be trivially extended to 2-D sensors and 3-D
volumes. In the following analysis, we consider only lenslet arrays, however a
similar analysis holds for pinhole arrays. As shown in Figure 4(a), the diffuser-
plane image, a reference image to be captured in a calibrated setup, consists of
a set of sharp peaks under each lenslet in the absence of any scattering media
between the light source and diffuser. As shown on 4(b), the lenslet images
contain extended, blurred patterns when a scattering object is placed between
the light source and camera. Ultimately, the scattered light causes samples to
appear in pixels neighboring the central pixel under each lenslet. A single lenslet
image is defined by two separate regions: a pure scattered component region and
a region of mixed direct and scattered components. We represent the received
intensity at each diffuser-plane pixel as, {L0, L1, . . . , Ln}, when a scattering ob-
ject is placed between the light source and the diffuser. The individual sensor
values are modeled as

L0 = G0 + D0

...
Ln = Gn + Dn,

(1)

where {Gn} and {Dn} represent the underlying scattered and direct intensities
measured in the sensor plane, respectively. As shown in Figure 4(b), a straight-
forward algorithm can be used to estimate the direct and scattered components
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(a) Normal Photo (b) Direct-only Image

(c) Scattered-only Image (d) SNR Comp.

Fig. 6. (a)-(c) Intensity profiles show that signals in direct-only images are significantly
enhanced compared with those in normal photos(Intensity scale 0-65535) (d) SNR
comparison between normal and direct-only images shows that our method is effective
at scattering-dominent scene.

received at each lenslet. First, we estimate the non-zero region in (a) which is
captured with no object present. Next, we approximate values of the scatter-
ing component {Gn} in the region using a scattering model, described in next
section, as shown in (c). Note that this region is subject to mixing in (b) and
the scattering component must be approximated from the known scattered val-
ues in (c). Finally, a direct-only image can be estimated by subtracting the
estimated scattering component for the central pixel under a lenslet, such that
D0 ≈ L0 − G0.

3.2 Mathematical Model for Multiple Scattering

We describe the multiple scattering model used in the descattering algorithm
described in the previous section. Numerical Monte-Carlo techniques have been
widely used for tracing scattered rays but it needs high computational cost for
a large number of rays. To implement efficient descattering algorithm, we use
the physics-based model presented by Narasimhan and Nayar [11]. Multiple scat-
tered intensity through a pinhole can be described by RTE (Radiative Transport
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(a) Room-light Photo (b) Direct+Scattered
with a backlight

(c) Direct-only

Fig. 7. Direct-scattered separation with a pinhole array. Direct-only images enhance
high frequency features of an object enclosed by a scattering solid object.

Equation) and the solution of it is a function of three parameters, T(optical thick-
ness), q(forward scattering parameter) and x(spatial position) as explained in
the Narasimhan and Nayar’s paper. RTE is used to fit measured 2D data, Figure
5(a), under each lenslet of our imaging condition. (b)-(h) show varied intensity
distributions according to different T and q. By an iterative error-minimization
method, the best matching profile, (f), can be found for the measured 2D signal
(a) and any unknown scattered value for nearby regions can be approximately
calculated by the fitted model.

3.3 Experimental Results

From Section 3.1, we separate direct signals {Dn} and scattered signals {Gn}
in each lenslet region. By collecting and combining the direct signals in each
lenslet (or pinhole) region, we can generate a direct image. The scattered image is
obtained by a similar process, collecting scattered signals. The original image(or
normal photo) can be considered as the summed image of the direct and scattered
signals. The resolution of the direct and scattered component images are identical
to the number of lenslets (or pinholes), because there is only one signal value for
direct and scattered components for each lenslet region. In our experiment, the
image size is 150×100.

Figure 1 compare normal photos of a scattering scene, consisting of an opaque
horse-shape object enclosed in an aquarium with milky water, and direct-only
images generated by our proposed separation process in lenslet array setup.
From left to right, the images show results acquired at higher concentrations
of milky water. Figure 6 (a)-(c) compare signals at the position of the red line
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(a) IR Imaging Setup

(b) Normal Photo (c) Direct-only (d) Scattered-only

Fig. 8. Direct-scattered separation images for human fingers using infrared imaging
setup. Direct-only images show sharper shapes of finger veins than normal photos. (a)
The camera focuses on the pinhole array plane. The IR-pass filter cut visible light and
only pass IR light.

in Figure 1(a) for normal photos, direct-only images and scattered only images
at different concentrations. (b) shows the signals are enhanced compared with
signals in normal photos, (a). As the concentration of milky water is increased,
the intensity of the signal in direct-only images, (b), is decreased. The opposite
effect is observed in scattered-only images, (c), which follows physical reason-
ing. (d) compares the signal-to-noise ratio(SNR) between normal photos and
direct-only images according to concentration. At low concentration, the SNR
of a normal photo is larger than one of a direct-only image. However, as concen-
tration is increased, the SNR of a direct-only image gradually becomes higher
than the SNR of a normal photo. Note that the signal of normal photos, (a), is
significantly decreased from the concentration 0.03% to 0.09% compared with
the signal change in direct-only images in (b).

Figure 7 shows experimental results using a pinhole array instead of a lenslet
array. (a) shows the room-light photo of a solid object placed in the scattering
medium. (b) displays ground-truth photos which are acquired by summing all
direct and scattered values under each lenslet. (c) contains the direct-only image.
By comparing (b) and (c), we find that the direct-only images give the sharpest
image boundaries for the scattering objects.

We tested our method for human fingers with a near-infrared imaging setup
where finger veins are well visualized with infrared light. Direct-only images in
Figure 8 (c) shows sharper shape of the veins than normal photos do. This is
an initial experiment for a strongly scattering challenging object but the image
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(a) Normal Photo (b) 3D result

(c) Direct-only images (d) 3D result

Fig. 9. Tomographic reconstruction resutls. (a) and (b) show eight normal photos
captured at different light-projection angles and 3D result using them, respectively.
(c) and (d) are direct-only images for the each normal photo and 3D result using the
direct-only images.

formation model is identical to Figure 1 and our results are comparable to [15]
which uses specialized narrow wavelength profile light source. As in Figure 1, veins
closer to the skin are more prominently visible as they are decomposed in the direct
component although the finger is strongly scattering. Such enhanced visualization
of a human body will benefit medial, biometrics and HCI applications.

3.4 Volumetric Reconstruction Using ART

We use an algebraic reconstruction technique (ART) presented by Roh et al. [16]
to reconstruct 3-D shape of scattering objects following traditional short-baseline
tomography approaches. Figure 9(b) and (d) compare two 3-D reconstruction
results using eight normal photos and eight descattered images. We captured
eight photos sequentially with a LED mounted at different position to get multi-
ple angular views of the targeted inside object, the bottle, in Figure 7 (bottom).
In the 3D reconstruction, Figure 9(b), the bottle is rendered by blue color to add
distinguishability from the outer scattering container. Note that the rendering
isn’t accurate for the bottle since the bottle shape in the captured images has
been hazed by scattering. The 3D result using direct-only images in (d) shows a
more accurate rendering result for the inside bottle object.

4 Benefits and Limitations

Benefits: This paper makes three primary contributions: (1) robust separation
of direct and scattered components of incident light passing through heterogenous
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(a) Inset Photo (b) direct-only(wide DOF) (c) direct-only(short DOF)

Fig. 10. Direct-only images by Nayar et al. [1] method for a horse-shaped object en-
closed in an aquarium with diluted milk(Concentration 0.11%) (a) Inset of a captured
photo with a projected high-frequency pattern (b) Direct-only image with wide pro-
jector’s DOF (c) Direct-only image with short projector’s DOF

scattering media, (2) 3-D volumetric reconstruction of the mixed scattering ob-
jects, and (3) a novel technique to enable effective volumetric analysis of solid
scattering objects in multiple-scattering conditions. For direct and scattered sep-
aration, our method requires only a simple system consisting of a lenslet(or pin-
hole array) and a point light source. Compared with other methods, like using a
projector to generate temporally-multiplexed patterns, our method can achieve
separation in a single exposure. Also, our method requires simple local compu-
tations, performed independently on each lenslet image. Furthermore, dynamic
applications are possible.

Our 3-D reconstruction technique for scattering objects has potential appli-
cations extending beyond computer vision and graphics, including non-invasive
medical imaging [17]. Specific parts of biological organisms, including human
fingers, can be modeled by scattering and translucent material similar to objects
considered in this work. As a result, it is possible to view the inner 3-D shape of
certain parts in human and animal bodies by this technique. Most importantly,
such visible-wavelength separation methods may allow hazardous X-ray imaging
to be replaced in certain applications. Such applications include the personal
identification field. For example, 3-D shape recognition of finger veins can pro-
vide strong cues for identification. Furthermore, such features may overcome
several limitations of traditional fingerprints, which change due to aging.

For transmission-mode descattering, the proposed method has several unique
advantages in comparison to the closely related method of Nayar et al. [1]. One
of the key limitations of Nayar et al. [1] is that the assumption of high-frequency
projected patterns aren’t satisfied in dense media(Figure 10 (a)). Another lim-
itation of any projector-based solution, such as that of Nayar et al., arises due
to the finite DOF(Depth of Field) achieved in practice. For transmission-mode
descattering, the projector must focus on the scattering media and the screen
at the same time—unlike the case of reflection-mode acquisition. Thus, the pro-
jector requires a wide DOF. Figure 10(c) shows a direct image by [1] when the
projector’s DOF isn’t wide enough to cover both inside object and screen. Our
proposed method is free from such focusing problems. Furthermore, our proposed
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(a) Room Light Photo (b) Direct-only (c) Scattered-only

Fig. 11. Limitation of refraction. Our method results for a translucent horse-shaped
object enclosed in an aquarium with diluted milk(Concentration 0.11%).

imaging system is much simpler and inexpensive, containing a single LED. Fi-
nally, our method is well-suited for less dense parts of human bodis, such as
fingers as shown in Figure 8.

Limitations: In the current method, the primary limitation is due to the loss
of resolution incurred by the lenslet or pinhole array. In addition, pinhole ar-
rays require long exposures. While lenslets could be used to overcome exposure
issues, loss of resolution remains. Also, the separated results can be affected
by refraction. Figure 11 shows separated results of a translucent horse-shape
object in milky water. Note that the legs and the end of the tail in (b) look
dark by refraction although they have similar density with the body area as
shown in (a). The proposed 3D reconstruction method requires control of the
lighting environment and, as a result, cannot be directly extended to natural
environments. Furthermore, this reconstruction method requires a temporally-
multiplexed set of images for tomographic reconstruction, limiting dynamic scene
reconstruction. We emphasize, however, that direct-scattered separation can be
performed in a single exposure. Most importantly, we anticipate challenges in
strongly-scattering environments. In such circumstances, the scattering term will
dominate the proposed low-order polynomial approximation and the direct term
will not be reliably recovered.

5 Conclusion

In this paper, we show a new method to separate direct and scattered compo-
nents of transmitted light from translucent objects. The direct-only images pro-
vide sharp shape information for such scattering objects. We have demonstrated
a volumetric reconstruction technique, following classic methods of limited-
baseline tomography, to reconstruct scenes using direct-only images. These re-
sults can be achieved with low-cost hardware consisting of LEDs, diffusers, and
lenslet array(or printed pinhole array mask). In particular, we show that visible-
wavelength radiation can be applied for attenuation-based tomography when
such separation methods exist in the transmission-mode. We hope that our
research will inspire others to pursue low-energy, non-invasive imaging in the
medical and biological sciences.
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Abstract. The goal of this work is to build video cameras whose spa-
tial and temporal resolutions can be changed post-capture depending on
the scene. Building such cameras is difficult due to two reasons. First,
current video cameras allow the same spatial resolution and frame rate
for the entire captured spatio-temporal volume. Second, both these pa-
rameters are fixed before the scene is captured. We propose different
components of video camera design: a sampling scheme, processing of
captured data and hardware that offer post-capture variable spatial and
temporal resolutions, independently at each image location. Using the
motion information in the captured data, the correct resolution for each
location is decided automatically. Our techniques make it possible to
capture fast moving objects without motion blur, while simultaneously
preserving high-spatial resolution for static scene parts within the same
video sequence. Our sampling scheme requires a fast per-pixel shutter on
the sensor-array, which we have implemented using a co-located camera-
projector system.

1 Introduction

Traditional video cameras offer a fixed spatial resolution (SR) and temporal
resolution (TR) independent of the scene. Given a fixed number of measurements
(voxels) to sample a space-time volume, the shape of the voxels can vary from
‘thin and long’ (high SR, low TR) to ‘fat and short’ (high TR, low SR) as shown
in Figure 1. For conventional cameras, the shape of the voxels is fixed before
capture (scene independent), and is the same for the entire spatio-temporal
volume. Can we design video cameras that can choose different spatio-temporal
resolutions post-capture, depending on the scene content? We show that it is
achievable by a careful choice of per-pixel temporal modulation along with well-
designed reconstruction algorithms.

While a high spatial resolution camera captures the fine detail in the static
scene parts, it blurs fast moving objects. On the other hand, a high-speed camera
captures fast temporal variations but unnecessarily trades off light throughput
and spatial resolution for the static and slowly moving scene parts. This fun-
damental capture limitation can be overcome by designing video cameras with
the following two properties: (a) The flexibility to decide the spatio-temporal
resolution post-capture in a content-aware (scene dependent) manner, and (b)

K. Daniilidis, P. Maragos, N. Paragios (Eds.): ECCV 2010, Part I, LNCS 6311, pp. 100–114, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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(a) High Spatial Resolution(b) High Temporal Resolution (c) Motion-aware Video

(d) (e) (f)

Fig. 1. Different samplings of the space-time volume: For conventional video
cameras, the sampling of the space-time volume is decided before the scene is cap-
tured. Given a fixed voxel budget, a high spatial resolution (SR) camera (a) results
in large motion blur and (d) aliasing. A high-speed camera (b) results in low SR even
for the static/slow-moving parts of the scene (drums in (e)). With our sampling and
reconstruction scheme, the spatio-temporal resolution can be decided post-capture, in-
dependently at each location in a content-aware manner (c): notice the reduced motion
blur for the hands (f) and high SR for the slow-moving parts of the scene.

the ability to make this choice independently at each video location. In this pa-
per, we take an initial step towards achieving these goals by demonstrating a
hardware setup that enables fast per-pixel temporal modulation, by designing
a necessary space-time sampling scheme and by developing simple yet effective
motion-aware post-processing interpolation schemes.

We determine necessary conditions for a sampling scheme to allow captur-
ing multiple space-time resolutions simultaneously. Data captured with a sam-
pling scheme which satisfies these conditions can be reconstructed at different
spatio-temporal resolutions, independently at each image location. The recon-
struction problem is posed as interpolation of scattered samples using well-known
anisotropic diffusion techniques. Since the shape of diffusion tensor determines
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the local smoothing orientations, by designing different diffusion tensors, we
can essentially achieve a continuum of effective spatio-temporal resolutions. The
correct resolution is automatically determined by designing spatially and tempo-
rally varying local diffusion tensors based on motion information in the captured
data.

Hardware implementation of our sampling scheme requires fast independent
shutter control of each pixel, which is not possible with available commer-
cial cameras. We have built a prototype using a projector-camera setup which
achieves rapid per-pixel temporal modulation during camera integration time.
This setup emulates a flexible spatio-temporal resolution camera with a maxi-
mum frame rate of 240 Hz, even though the frame rate of the original camera
is only 15 Hz. We show several real results that demonstrate variable resolution
trade-off in space and time post capture.

1.1 Related Work

Content-based re-sampling and compressive sampling: Content-based
re-sampling and representation of data is central to most image/video compres-
sion algorithms. Adaptive sampling of data has been used for building content-
aware multi-resolution image and video pyramids for fast data transmission [1].
Recently, the field of compressive sensing has exploited sparsity in data at acqui-
sition time, thus reducing the sensing over-head significantly [2,3]. In contrast,
our sampling scheme allows re-allocating the saved resources to another dimen-
sion in a content-aware manner. If the captured video-stream is sparse in spatial
domain, high-frequency detail can be preserved in the temporal dimension and
vice-versa.

Multi-dimensional imaging: Several methods trade off spatial resolution to
sample other dimensions such as dynamic range [4], wavelength [5], angular di-
mensions in lightfield [6] and color/polarization [7]. Ben-Ezra et al. [8] used
precise sub-pixel detector shifts for increasing the spatial resolution of a video
camera. In contrast, our goal is to increase TR much beyond the native frame
rate of the camera by trading off SR. Recently, a variety of approaches [9,10,11]
which increase TR by trading off SR have been introduced. However, these meth-
ods provide the same spatio-temporal resolution tradeoff over the entire image.
Further, the technique in [11] requires long integration time for a single im-
age capture, making it ill-suited for videos. The method presented in [9] simply
rearranges/rebins the captured samples to produce different spatio-temporal res-
olutions, leading to visual artifacts due to aliasing. Our implementation allows
choosing different resolutions for each image location independently, performs
fast acquisition (results on dynamic scenes with up to 240 Hz), requires no
masks, mitigates aliasing, and is simpler to implement with a regular camera,
projector and a beam-splitter.

Spatio-temporal super-resolution using multiple cameras: Hybrid reso-
lution imaging has been used for enhancing the resolution of videos with still
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images [12], and for motion deblurring [13]. Wilburn et al. [14] used an array
of cameras with temporally staggered short exposures to simulate a high-speed
camera. Shechtman et al. [15] combined a set of videos captured at different
spatial and temporal resolutions to achieve space-time super-resolution. Agrawal
et al. [16] used multiple cameras with multiplexed coding for temporal super-
resolution. All these techniques use multiple cameras for capturing videos at
different resolutions that need to be decided pre-capture. The number of re-
quired cameras scales (at least linearly) with the required temporal speed-up. In
contrast, our implementation requires only a single camera and projector, even
for large temporal speed-ups.

2 Multi-resolution Sampling of the Space-Time Volume

In this section, we present our multi-resolution space-time sampling scheme. We
show that this sampling can provide us with multiple spatio-temporal resolutions
at each video location independently, using the same number of measurements
as a conventional camera. Consider the group of 4 pixels in Figure 2a. We divide
the integration time of each pixel into 4 equal intervals. Each of the 4 pixels
is on for only one of the intervals (white indicates on, black indicates off). By
switching on each pixel during a different time-interval, we ensure that each pixel
samples the space-time volume at different locations.

Different spatio-temporal resolutions can be achieved by simply re-binning
these measurements, as illustrated in Figure 2b. For example, the four mea-
surements can be arranged as temporal blocks (marked in red), spatial blocks
(marked in blue) or as 2 × 2 spatio-temporal blocks (marked in green). We de-
fine the [TR, SR] factors for a reconstruction as the gain in temporal and spatial
resolution respectively over the acquired video. Thus, the [TR, SR] factors for
these arrangements are [4, 1

4 ], [1, 1
1 ] and [2, 1

2 ] respectively.
In general, consider the space-time volume Vmn defined by a neighborhood of

m×n pixels and one camera integration time, as illustrated in Figure 2, bottom-
left. The integration time is divided into K = mn distinct sub-intervals, resulting
in K2 distinct space-time locations. Different divisions of this volume into K
equal rectilinear blocks correspond to different spatio-temporal resolutions. An
illustration is shown in Figure 2. For the rest of the paper, we will use K for the
pixel neighborhood size.

Each division of the volume corresponds to a spatio-temporal resolution1. A
sampling scheme which facilitates all the resolutions corresponding to the differ-
ent divisions should satisfy the following property: each block in every division
must contain at least one measured sample. Since the total number of measured
samples is only K (one for each pixel), each block will contain exactly one sam-
ple. Let xp be the indicator variable for location p ∈ {1, 2, . . . , K2}, such that xp

is 1 if the pth location is sampled; it is 0 otherwise. Let Bij be the ith block in

1 The total number of such divisions is the number of distinct factors of K. For ex-
ample, for K = 16, we can have 5 distinct resolutions.
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(a) Our sampling (b) Possible interpretations (c) Sequential sampling [9]

Fig. 2. Simultaneously capturing multiple spatio-temporal resolutions: (a)
For a group of K neighboring pixels, each pixel is on for a temporal sub-segment of
length 1

K
(white indicates on, black indicates off). For top row, K = 4. (b) These

measurements can be interpreted post-capture as 4 temporal measurements (red), 4
spatial measurements (blue) or 4 spatio-temporal measurements (green). (c) Sequential
sampling captures only a small sub-set of possible spatio-temporal resolutions. Bottom
row: The temporal firing order for a group of 4 × 4 pixels (K = 16) and the possible
resulting interpretations. With this sampling, we can achieve a temporal resolution
gain of up to 16X.

the jth division of the volume. Then, for any pixel-neighborhood of a given size,
a multi-resolution sampling can be computed by solving the following binary
integer program:∑

p∈Bij

xp = 1 ∀Bij ,

K2∑
p=1

xp = K, xp ∈ {0, 1} ∀p (1)

The first constraint ensures that every block in every division contains exactly
one sample. The second constraint enforces the total number of samples to be
equal to the number of pixels. For any given Vmn, the constraints can be gener-
ated automatically by computing different recti-linear divisions of the volume.
The bottom row of Figure 2 shows the sampling order for a group of 4×4 pixels



Flexible Voxels for Motion-Aware Videography 105

(a) [1, 1
1

] (b) [2, 1
1

] (c) [4, 1
4

] (d) [8, 1
8

] (e) [16, 1
16

]

Fig. 3. Generating multiple spatio-temporal resolutions by re-binning cap-
tured data: (a) An image acquired with the temporal firing order given in Figure 2
bottom-left. The pixel neighborhood size is 4 × 4. (a-e) Different re-arrangements of
the measurements, as given in Figure 2, and the corresponding [TR, SR] factors. From
left to right, motion blur decreases but spatial resolution decreases as well. Simple
re-binning of samples results in coded blur artifacts in the reconstructions.

computed by solving the integer program (1). The numbers denote the temporal
firing order within an integration time. With this firing order, the samples can
be arranged into 5 different spatio-temporal arrangements, shown on the bot-
tom right. These arrangements correspond to resolutions with [TR, SR] factors
of [1, 1

1 ], [2, 1
2 ], [4, 1

4 ], [8, 1
8 ] and [16, 1

16 ] as compared to the acquired image. In
contrast, sequential sampling [9] does not satisfy the constraints of the above
binary integer program. As a result, it is amenable to a small sub-set of possible
spatio-temporal resolutions. For the sequential sampling given in Figure 2c, the
2 × 2 arrangement is not possible since not all the blocks are sampled.

Simulating multi-resolution sampling: To verify the feasibility of our multi-
resolution sampling scheme, we used a Photron 1024 PCI camera to capture
high-speed images at 480 Hz. The spatial resolution of the images is 640 × 480.
The image is divided into neighborhoods of 4 × 4 pixels. For each set of 16
consecutive frames, we weighted them according to the per-pixel code given on
the bottom-left of Figure 2 and added them together. The resulting video is as
if captured by a 30 Hz camera with a per-pixel shutter operating at 480 Hz. The
scene consists of a person playing drums. While the hands move rapidly, the rest
of the body moves slowly, and the drums move only on impact. An example image
from the sequence is given in Figure 3 (top-left). Notice the per-pixel coded blur
on the captured image (Figure 3a) as compared to usual smooth motion blur
in regular cameras. This is because pixels encode temporal information as well.
By rearranging the pixels according to Figure 2, we get sequences with different
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(a) Low TR, High SR (b) Medium TR, Medium SR (c) High TR, Low SR

Fig. 4. Anisotropic diffusion for generating multiple spatio-temporal reso-
lutions: By interpolating the captured data with diffusion tensors of varying spectral
shapes, we can achieve multiple spatio-temporal resolutions. The diffusion process also
mitigates the effects of aliasing. Notice that coded blur artifacts are significantly re-
duced in comparison to the simple rebinning scheme of Figure 3.

combinations of spatio-temporal resolutions, as shown in Figure 3 (b-e) . From
left to right, temporal resolution increases but the spatial resolution decreases.

3 Interpreting the Captured Data

In this section, we present post-capture algorithms for interpreting the data cap-
tured using our sampling scheme. One approach is simply re-arranging the mea-
sured samples to generate different spatio-temporal resolutions, as mentioned
in the previous section. This scheme has two disadvantages: first, it restricts
the possible spatio-temporal resolutions of the reconstructions to a few discrete
choices. Second, it does not account for aliasing due to sub-sampling. Conse-
quently, we witness disturbing visual artifacts such as coded blur (Figure 3) and
temporal incoherence (pixel swimming). Such artifacts are specially noticeable
in the presence of highly textured scene objects. In the following, we present a
reconstruction algorithm which effectively addresses these limitations.

3.1 Interpolation of Sub-sampled Data Using Anisotropic Diffusion

Let I(0) be the initial space-time volume defined over a regular 3D grid. Our
sampling scheme measures samples at a few locations in this volume. The re-
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maining locations are considered missing data, as illustrated in Figure 4. We
pose the reconstruction problem as inpainting the missing data by interpolating
the measured samples using anisotropic diffusion [17,18]. The key idea is that
by diffusing the intensities with tensors T of different spectral shapes (orien-
tation), we can achieve different effective spatio-temporal resolutions. Consider
the evolution of the image data with the number of iterations n:

∂I

∂n
= trace(TH) , where H =

⎡
⎣Ixx Ixy Ixt

Iyx Iyy Iyt

Itx Ity Itt

⎤
⎦ (2)

is the 3 × 3 Hessian matrix of the 3D image data I. The 3 × 3 diffusion tensor
defined by T = c1λλT + c2ψψT + c3γγT [18] is characterized by its eigen values
c1, c2, c3 and eigen vectors λ, ψ, γ. The solution of the PDE of Eqn. 2 is [18]:

I(n) = I(0) ∗ G(T,n) , where G(T,n)(x) =
1

4πn
exp(−xT T−1x

4n
) , (3)

where x = (x y t)T . Starting with the initial volume I(0), this PDE has the
effect of progressively smoothing the data with oriented 3D Gaussians2 defined
by the tensor T . The PDE is repeatedly applied only on the missing data lo-
cations until the intensities from the measured samples diffuse to fill in the
holes.

A continuum of spatio-temporal resolutions: By designing diffusion ten-
sors of different spectral shapes, we can achieve different spatio-temporal reso-
lutions of the reconstructed volume. Consider the set of axis-aligned ellipsoidal
kernels T = diag (c1, c2, c3). If c3 >> c1 and c3 >> c2, low-pas filtering occurs
primarily in the temporal direction. Consequently, high-frequency content in the
spatial direction is preserved. The resulting reconstruction, thus, has high spa-
tial resolution and low temporal resolution, as illustrated in Figure 4a. On the
other hand, if c3 << c1 and c3 << c2, then most of the smoothing happens
in the spatial direction, thus preserving high-frequency content in the temporal
direction (Figure 4c). With c1 = c2 = c3, the data is diffused isotropically in
all three directions (Figure 4b). The reconstructions achieved with the simple
scheme of re-arranging samples correspond to special cases of the diffusion ten-
sor. For example, the [1, 1

1 ] reconstruction can be achieved by using a tensor
with c1 = c2 = 0, c3 = 1. Similarly, with c1 = c2 = 1, c3 = 0, we can achieve the
[16, 1

16 ] reconstruction.

Aliasing artifacts: The diffusion process interpolates and regularizes the data
on the 3D grid, thus mitigating the effects of aliasing due to sub-sampling. Con-
sequently, coded blur and temporal coherence artifacts are significantly reduced
in the reconstructions. See the project web-page [19] for comparisons.

2 An equivalent representation of the tensor T is in terms of oriented ellipsoids.
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(a) (b) (c)

Fig. 5. Motion-aware video reconstruction: (a) Quiver plot of the optical flow
between two successive frames of a high TR reconstruction. (b) Color coded magnitude
of the optical flow. Red indicates fast moving objects, green indicates slow moving
and blue indicates stationary objects. Raw data is interpolated with diffusion tensors
oriented along the optical flow vectors (c) to achieve a motion aware reconstruction.
The resulting frame is shown in Figure 1f.

4 Motion-Aware Video

The reconstruction algorithms discussed so far are independent of the captured
data, which, although sparse, can provide useful information about the scene.
In this section, we present an algorithm to use the motion information in the
captured data to drive the reconstruction process. We call the resulting recon-
struction motion-aware: the spatio-temporal resolution trade-off at each loca-
tion is resolved according to the motion information at that location. Such a
reconstruction would minimize the motion blur for fast moving objects while si-
multaneously maximizing the spatial frequency content for slow moving or static
objects. Following is the algorithm we use for computing such a reconstruction:

Step 1: High TR reconstruction: It can be extremely difficult to recover
faithful motion information in the presence of large motion blur. Thus, a high
temporal resolution reconstruction is imperative for computing accurate motion
information. Our first step is to do a high TR reconstruction using an axis-
aligned tensor T = diag (c1, c2, c3) with (c1, c2, c3) = (1.0, 1.0, 0.05). Such a
reconstruction would smooth primarily in the spatial dimensions, thus preserving
high-frequency temporal content. A small value is assigned to c3 to mitigate
temporal flickering artifacts.

Step 2: Computing optical flow: We compute motion information in the
form of optical flow between successive frames of the high TR reconstruction.
For this, we used an implementation of the optical flow method given by Brox et
al [20]. Since computed on a high TR reconstruction, the optical flow estimates
are fairly robust, even for fast moving objects. Figures 5a and 5b illustrate the
optical flow between two successive frames of the drums sequence using a quiver
plot and color coded magnitudes respectively. Red indicates fast moving objects,
green indicates slow moving and blue indicates stationary objects. Although the
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(a) (b) (c)

Fig. 6. Hardware setup for simulating per-pixel shutter: (a-b) Our setup con-
sists of co-locating and temporally synchronizing a camera (15 Hz) and a projector
(240 Hz). Under no global illumination, a camera pixel receives light only when the
corresponding projector pixel is on. (c) The observed irradiance at a camera pixel is
modulated according to the binary pattern on the corresponding projector pixel.

optical flow vectors have high temporal resolution, their spatial resolution is
much lesser than that of the scene itself. Thus, computing optical flow at a
low spatial resolution does not result in significant spatial aliasing. In contrast,
optical flow estimates on the original captured data are unreliable due to the
presence of large, albeit coded motion blur.

Step 3: Motion driven diffusion: The key idea is to design diffusion tensors
at each location so that they smooth along the motion direction. Let (u, v, 1)
be the optical flow vector at a given location. We define the diffusion tensor as
T = c1λλT + c2ψψT + c3γγT , where

λ =
(u, v, 1)√

u2 + v2 + 1
, ψ = λ × (0, 0, 1) , γ = λ × ψ (4)

form an ortho-normal set of unit vectors. By choosing c1 = 0.95, c2 = 0.05, c3 =
0.05, we orient the diffusion tensor sharply along λ, the motion direction. Note
that this results in a variable diffusion tensor field over the space-time volume
(Figure 5c) as different locations have different optical flow vectors. An example
frame from the motion-aware reconstruction of the drums sequence is given in
Figure 1f. Note that the motion blur is minimized on the fast moving hands
while the drums and the body retain high spatial resolution. Results with real
experimental data are given in Figures 7 and 8.

5 Hardware Implementation of Per-Pixel Shutter

The sampling scheme discussed in the previous sections requires a fast (K times
the frame-rate of the camera) per-pixel shutter on the sensor array. Currently
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available cameras have fast global shutters3 implemented as external trigger
modes [22]. However, these modes do not provide per-pixel control. Recently,
DMD arrays have been used to provide precise, per-pixel temporal modula-
tion [9,23]. These devices are commonly used as light modulators in off-the shelf
DLP projectors. We have implemented per-pixel shutter using a DLP projector
in conjunction with a camera. The projector is used to provide fast, per-pixel
light modulation externally.

The projector and the camera are co-located using a beam-splitter, as shown
in Figure 6. The setup is placed in a dark room. We assume that there is no
ambient or global illumination. Co-location is achieved by aligning the camera
and the projector so that the camera does not observe any shadows cast by
the projector. This procedure takes about 15 mins. Co-location ensures that
the camera and the projector image planes are related by a single homography
irrespective of the scene.

The camera and the projector are temporally synchronized so that for each
camera integration time, the projector cycles through K binary patterns. The bi-
nary patterns consist of tiles of K pixels repeated spatially. Each tile encodes the
sampling scheme being used. Since there is no ambient illumination, a camera
pixel receives light only when the corresponding projector pixel is on. Conse-
quently, the irradiance at a camera pixel is modulated according to the binary
pattern on the corresponding projector pixel. An illustration is shown in Fig-
ure 6c. This modulation acts as per-pixel shutter. The temporal frequency of
modulation (hence the shutter), is given by the frame rate of the projector.

We used a Point-Grey Flea2 camera and a Multi-Use-Light-Engine (MULE)
projector [24]. With a 60 Hz video input, the MULE projector can project binary
bit-planes at up to 60 × 24 = 1440 Hz. To implement the coding scheme given
in Figure 3a, we operated the projector at 240 Hz, thus achieving a frame-rate
of 240 Hz even though the frame rate of the camera is 15 Hz.

5.1 Real Experiments and Results

Fan rotating scene (Figure 7): The first sequence consists of a rotating fan
acquired with a camera running at 7.5 Hz. The frames have significant mo-
tion blur and temporal aliasing. In this case, the pixel neighborhood size was
2 × 4; thus, K = 8. The second and the third columns show 1 frame each from
two reconstructions done with the diffusion tensors T = diag (0.05, 0.05, 1) and
T = diag (1, 1, 0.05) respectively. We call these motion-independent reconstruc-
tions, as these reconstructions do not use any motion information. The high TR
reconstruction has a temporal resolution of 7.5× 8 = 60 Hz. The fourth column
shows optical flow magnitudes between two successive frames of the high TR re-
construction. The optical flow information is used for computing a motion-aware
reconstruction (last column), as discussed in Section 4.

3 Fast global shutters have been used in the past for motion deblurring [21], but
modulate all pixels simultaneously.
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Captured Low TR High TR Optical Flow Motion-aware
Frames High SR Low SR︸ ︷︷ ︸

Motion independent reconstructions

Magnitudes Reconstruction

Fig. 7. Motion-aware video of rotating fan: (First column) Raw frames from the
captured sequence. (Second and the third columns) One frame each from two recon-
structions done with different diffusion tensors. (Fourth column) Optical flow mag-
nitudes between two successive frames of the high TR reconstruction. (Last column)
Motion aware reconstruction. Notice the much reduced motion blur on the fan and
high-spatial resolution on the static background. Zoom in for details.

Multiple Balls Bouncing (Figure 8): This sequence consists of multiple balls
colliding with each other at high velocities. The camera is running at 15 Hz. We
used a pixel neighborhood of 4×4; thus, K = 16. The second and third columns
show one frame each from reconstructions with tensors T = diag (0.05, 0.05, 1)
and T = diag (1, 1, 0.05) respectively. The last column shows motion-aware re-
construction. Notice that one of the balls is almost invisible in the captured
frame of third row due to large motion blur. In the motion aware reconstruction,
it can be easily localized.

6 Discussion and Limitations

The goal of this work was to build video cameras whose spatial and temporal
resolutions can be changed post-capture depending on the scene. We have pre-
sented the first example of an imaging system which allows multiple space-time
resolutions at each image location independently - using programmable, fast
per-pixel shutters and a content-aware post-processing scheme.

A limitation of our sampling scheme is that the pixels collect light over only
a fraction of the integration time leading to low signal-to-noise ratio (SNR).
The trade-off between temporal resolution and SNR is well known for video
cameras. High-speed cameras suffer from significant image noise in low-light
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Captured Low TR High TR Optical Flow Motion-aware
Frame High SR Low SR︸ ︷︷ ︸

Motion independent reconstructions

Magnitudes Reconstruction

Fig. 8. Motion-aware video of multiple bouncing balls: (First column) Raw
frames from the captured sequence. (Second-third columns) One frame each from two
reconstructions done with different diffusion tensors. (Fourth column) Optical flow
magnitudes between two successive frames of the highest TR reconstruction. (Last
column) Motion aware reconstruction.

(a) (b)

Fig. 9. Multiplexed sampling: By using multiplexed codes (a), each pixel gathers
more light resulting in higher SNR (white indicates on, black indicates off). Post-
capture reshaping of voxels (b) can be achieved by de-multiplexing the captured data.
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conditions. This trade-off can be countered by incorporating multiplexing into
our sampling scheme. With multiplexed codes, as shown in Figure 9a, each pixel
gathers more light as compared to identity codes (Figure 2a). This is similar in
spirit to capturing images using multiplexed illumination for achieving higher
SNR [25]. Post-capture reshaping of voxels can be achieved by de-multiplexing.

Our implementation of per-pixel shutter using a projector-camera system is
limited to scenes with low global and ambient illumination. Passive implemen-
tations using either a DMD array [9,23] or variable integration on sensor chip
can effectively address these limitations.
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Abstract. Partial differential equations (PDEs) have been successfully applied
to many computer vision and image processing problems. However, designing
PDEs requires high mathematical skills and good insight into the problems. In
this paper, we show that the design of PDEs could be made easier by borrowing
the learning strategy from machine learning. In our learning-based PDE (L-PDE)
framework for image restoration, there are two terms in our PDE model: (i) a reg-
ularizer which encodes the prior knowledge of the image model and (ii) a linear
combination of differential invariants, which is data-driven and can effectively
adapt to different problems and complex conditions. The L-PDE is learnt from
some input/output pairs of training samples via an optimal control technique. The
effectiveness of our L-PDE framework for image restoration is demonstrated with
two exemplary applications: image denoising and inpainting, where the PDEs are
obtained easily and the produced results are comparable to or better than those of
traditional PDEs, which were elaborately designed.

1 Introduction

1.1 Prior Work

Partial differential equations (PDEs) have been successfully applied to solve many prob-
lems in computer vision and image processing. This kind of methods can date back to
the 1960s [1,2]. However, this technique did not draw much attention until the introduc-
tion of the concept of scale space by Koenderink [3] and Witkin [4] in the 1980s. The
Perona-Malik (P-M) anisotropic equation [5] and the mean curvature motion (MCM)
equation [6] further drew great interest from researchers toward designing PDEs for
various problems in computer vision and image processing. In general, there are two
types of methods for designing PDEs for vision tasks [7]:

1. Variational Design: Basically, variational methods first define an energy functional
to collect the desired properties of the output image, including the image prior mod-
els (e.g., the Tikhonov regularizer [8] and the total variation (TV) regularizer [9]),
and then derive the evolution equations by computing the Euler-Lagrange equation
of the energy functional.

� Corresponding author.

K. Daniilidis, P. Maragos, N. Paragios (Eds.): ECCV 2010, Part I, LNCS 6311, pp. 115–128, 2010.
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2. Direct Design: Direct methods involve writing down the PDEs directly, based on
the mathematical and physical understandings of the problem. This method requires
proficiency in the properties of differential operators, in particular nonlinear ones.
Famous examples include anisotropic diffusion [5], shock filter [10] and curve evo-
lution [6].

In a geometric view, most traditional PDEs in computer vision and image processing
are obtained by either optimizing some global geometric quantities (e.g., length, area,
and total squared curvature) or by computing geometric invariants under certain trans-
formation groups. All of these methods require good skills when choosing appropriate
PDE forms and predicting the final effect of composing related terms such that the ob-
tained PDEs roughly meet the goals. A lot of trial and error may also be necessary
for designing a good PDE. As a result, current methods for designing PDEs greatly
limit the applications of PDEs to wider and more complex scopes. This motivates us
to explore whether we can acquire PDEs that are more powerful but require much less
human effort.

1.2 Our Approach

Inspired by learning-based methods in machine learning, we would like to explore a
framework for learning PDEs to accomplish various computer vision and image pro-
cessing tasks. In this paper, as preliminary work, we propose a learning-based PDE
(L-PDE) framework for image restoration. For image restoration problems, we know
that the output image should obey some statistical models of natural images. Such sta-
tistical models can serve as the regularizer term in our PDE, which controls the output
image, making it a natural image. Hence this term is called the regularization term. The
other term in our PDE is to cope with different image restoration problems and different
data. As most image restoration problems are translationally and rotationally invariant,
i.e., when the input image is translated or rotated by some amount the output image is
also translated or rotated by the same amount, this second term must be functions of
fundamental differential invariants [11] that are invariant under translation and rotation.
We assume that the second term is a linear combination of the fundamental differential
invariants. Although a linear combination is simple, our PDE model is already general
enough and many existing PDEs can be viewed as a special case of our model. The lin-
ear combination coefficients are learnt from real data so that the learnt PDE can adapt to
different image restoration problems and different data. Hence the second term is called
the data-driven differential invariant term.

To learn the coupling coefficients among the differential invariants in the data-driven
term, we prepare some input/output training image pairs and adopt a technique called
PDE-based optimal control [12]. Once the coefficients are computed, the L-PDE is ob-
tained and can be applied to test images. Hence with our framework, the most effort
on obtaining a PDE is preparing some input/output training image pairs. So our L-PDE
framework might be a possible way of designing PDEs for vision tasks in a lazy manner.
Though the optimal control technique has already been applied to some computer vision
problems, such as optical flow estimation [13] and tracking [14], we use it in a differ-
ent way. We aim at determining the form (coefficients) of the PDEs, while the existing
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work uses the optimal control to determine the outputs of their PDEs, which are known
apriori. In short, our L-PDE framework connects PDE-based methods and learning-
based methods via optimal control.

2 Learning-Based PDE Model

In this section, we present the form of the PDEs in our L-PDE framework for image
restoration. We denote f as the input image and u as the desired output image. The
meaning of the notations that will be used hereafter can be found in Table 1.

Table 1. Notations

Ω An open bounded region of R
2 ∂Ω Boundary of Ω

(x, y) (x, y) ∈ Ω, spatial variable t t ∈ (0, Tf ), temporal variable
Q Ω × (0, Tf ) Γ ∂Ω × (0, Tf )
‖ · ‖ L2 norm ∇u Gradient of u

Hu Hessian of u div(u) Divergence of u

℘ ℘ = {(0, 0), (0, 1), (1, 0), (0, 2), (1, 1), (2, 0)}, index set for differentiation

κ(u) κ(u) = div
(

∇u
‖∇u‖

)
, mean curvature of u

2.1 Description of Our PDE Model

Our PDE model is an evolutionary PDE combining a TV regularizer and a linear com-
bination of fundamental differential invariants:⎧⎨

⎩
∂u
∂t = L(u, a), (x, y, t) ∈ Q,

u = 0, (x, y, t) ∈ Γ,
u|t=0 = f, (x, y) ∈ Ω,

(1)

where L(u, a) = κ(u) + F (u, a). The Dirichlet boundary condition1 is for ease of
mathematical deduction. The forms and the geometric meanings of κ(u) and F (u, a)
will be presented below.

Total Variation Regularization Term: The TV regularization has been successfully
incorporated in PDEs for a large class of computer vision and image processing problems
due to its mathematical tractability and effectiveness in representing the statistical model
of natural images. It was first introduced to computer vision and image processing by
Rudin, Osher and Fatemi (ROF) in their paper on edge preserving image denoising [9]. It
first defines a variational minimization model min

u

∫
Ω ‖∇u‖dΩ in the bounded variation

space (which allows for piecewise constant images) and then derives the mean curvature
κ(u) as the regularization term in its associated Euler-Lagrange equation [9,7]. The TV
regularization is especially useful in applications, e.g., image restoration, where edges
are to be respected. That is why our PDE model incorporates κ(u).

1 As in real applications f will be padded with zeros of several pixels’ width around the input
image, the difference between the Dirichlet boundary condition in our model and the Neumann
boundary condition in traditional PDEs is slight.
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Table 2. The fundamental differential invariants up to the second order

inv(u) = [inv0(u), ..., inv5(u)]T

i invi(u)
0 f

1 u Zeroth Order
2 ‖∇u‖2 = u2

x + u2
y First Order

3 tr(Hu) = uxx + uyy

Second Order4 tr(H2
u) = u2

xx + 2u2
xy + u2

yy

5 (∇u)T Hu(∇u) = u2
xuxx + 2uxuyuxy + u2

yuyy

Data-Driven Differential Invariant Term: As we have explained in Section 1.2, the
data-driven differential invariant term is a linear combination of fundamental differen-
tial invariants that are invariant under translation and rotation. For 2D scalar images,
there are five such fundamental differential invariants up to the second order [11]. They
are listed in Table 2 (f is added as the zeroth invariant due to the following geometric
considerations). All the differential invariants have geometric meanings. inv0(u) = f
is the input image. inv1(u) = u is the desired output image. inv2(u) = ‖∇u‖2 is
the squared norm of the gradient. inv3(u) = tr(Hu) is the Laplacian, which has been
widely used to measure the smoothness of an image [15]. inv4(u) = tr(H2

u), known as
“deviation from flatness”, is another useful way to measure the local “unflatness” of the
image. inv5(u) = (∇u)T Hu(∇u) is a kind of image “curvature”, which has been used
as a general purpose visual front-end operation [16]. Using such differential invariants,
all local intrinsic properties of images, which should be invariant to coordinate trans-
formation, can be described. Therefore, the data-driven term for our L-PDE model can
be written as:

F (u, a) = a(t)T inv(u), (2)

where a(t) = [a0(t), ..., a5(t)]T are coefficient functions, which are used to control the
evolution of u. For different problems, a(t) is different. They are learnt from training
images and hence our L-PDE can adapt to different problems and data. We will present a
PDE-based optimal control framework to learn these coefficient functions in Section 3.

2.2 Connection between L-PDE and Traditional PDEs

In this subsection, we discuss the relationship between our L-PDE model and some
well-known related work.

Traditional PDEs were designed with different insights. However, as shown in Ta-
ble 3, many of those for image restoration in fact share a common formulation and are
all special cases of our proposed L-PDE model. The difference between these PDEs
lies in the choice of a(t) and the regularization term. However, our L-PDE model and
the traditional PDEs present intrinsically different perspectives on interpreting the form
of PDEs. Traditional PDEs are all crafted by people with skills, based on their insight
to the problems, whereas our model automatically determines the PDEs from real data.
One can easily see that manually designed PDEs only correspond to trivial coefficient
functions, where only popular differential invariants, e.g., the Laplacian and the zeroth
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Table 3. Reformulating some popular PDEs in our L-PDE model

PDE a(t) in data-driven term Regularization term
Gaussian scale space [3] a(t) = [0, 0, 0, 1, 0, 0]T –

Tikhonov [8] a(t) = [1,−1, 0, 1, 0, 0]T –
ROF [9], TV inpainting [17] a(t) = [1,−1, 0, 0, 0, 0]T κ(u)

order invariants, are used. Moreover, the nonzero coefficients are also special constants.
In comparison, the coefficients in our L-PDEs can be much more flexible. They may
not be sparse. They can be arbitrary real numbers and can even vary with time. So our
L-PDE model can be much more adaptive to the input images and solve different image
restoration problems in a unified framework.

3 Learning Coefficients via Optimal Control

3.1 The Objective Functional

Given the form of the general data-driven term in (2), we have to determine the coef-
ficient functions a(t) in order to obtain a workable PDE. We may prepare some pairs
of input/output training samples (fk, ũk), where fk is the input image and ũk is the
expected output image. Since the final output of our PDE should be close to the ground
truth, the coefficient functions should minimize the following functional:

J({uk}K
k=1,a) =

1
2

K∑
k=1

∫
Ω

(uk(Tf ) − ũk)2dΩ +
1
2

5∑
i=0

αi

∫ Tf

0
a2

i (t)dt, (3)

where uk(Tf ) is the output image at time t = Tf
2 computed from (1) when the input

image is fk, and αi are positive weighting parameters3. The first term of J requires
the final output of our PDE to be close to the ground truth. The second term is for
regularization so that this optimal control problem is well-posed.

3.2 Solving the Optimal Control Problem

Then we have the following optimal control problem with PDE constraints:

min
a

J({uk}K
k=1,a), s.t.

⎧⎨
⎩

∂uk

∂t = L(uk,a), (x, y, t) ∈ Q,
uk = 0, (x, y, t) ∈ Γ,

uk|t=0 = fk, (x, y) ∈ Ω.
(4)

By introducing the adjoint equation of (4), the Gâteaux derivative of J can be com-
puted and consequently, the (locally) optimal a(t) can be computed via gradient based

2 For different problems, Tf may be different. How to determine the optimal Tf is left to future
work.

3 In this paper, we simply fix αi = 10−7, i = 0, ..., 5.
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algorithms (e.g., conjugate gradient [18]). Here, we give the adjoint equation and
Gâteaux derivative directly due to the page limit4.

Adjoint Equation: The adjoint equation of (4) is:⎧⎪⎪⎨
⎪⎪⎩

∂ϕk

∂t +
∑

(p,q)∈℘

(−1)(p+q) ∂p+q(σpq(uk)ϕk)
∂xp∂yq = 0, (x, y, t) ∈ Q,

ϕk = 0, (x, y, t) ∈ Γ,
ϕk|t=Tf

= ũk − uk(Tf ), (x, y) ∈ Ω,

(5)

where

σpq(u) =
∂L(u)
∂upq

=
∂κ(u)
∂upq

+
5∑

i=0

ai
∂invi(u)

∂upq
and upq =

∂p+qu

∂xp∂yq
.

Gâteaux Derivative of the Functional: With the help of the adjoint equation, at each
iteration the derivative of J with respect to a(t) is as follows:

∂J

∂ai
= αiai −

K∑
k=1

∫
Ω

ϕkinvi(uk)dΩ, i = 0, ..., 5. (6)

where the adjoint function ϕk is the solution to (5).

3.3 Initialization of a(t)

A good initialization of a(t) results in a better approximation power of the learnt PDE
and also makes the optimization process shorter. Here we propose a heuristic method
for initializing the coefficient functions. At each time step, ∂uk(t)

∂t is expected to be
ũk−uk(t)

Tf−t so that uk tends to the expected output ũk. On the other hand, with ∂uk(t)
∂t =

L(uk,a), we want a(t) to minimize:

K∑
k=1

∫
Ω

(
L(uk,a) − ∂uk(t)

∂t

)2

dΩ =
K∑

k=1

∫
Ω

[pk(t)T a(t) − dk(t)]2dΩ, (7)

where pk(t) = inv(uk) and dk(t) = ũk−uk(t)
Tf−t − κ(uk). So the initial a(t) can be

obtained by solving the following system5:

P(t)a(t) = d(t), (8)

where P(t) =
K∑

k=1

∫
Ω

pk(t)pk(t)T dΩ and d(t) =
K∑

k=1

∫
Ω

pk(t)dk(t)dΩ.

4 For more details and a more mathematically rigorous exposition, please see Supplementary
Material and refer to [19,20,21].

5 For notational convenience, we simply write integrals here. In real computation, the integrals
should be discretized.
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4 Our L-PDE Framework for Image Restoration

We now summarize our L-PDE framework for image restoration in Algorithm 1. After
the PDE is learnt, it can be applied to new test images by solving (1), whose input f is
the test image and the solution u(Tf) is the desired output image.

Algorithm 1. (The framework to learn PDEs for image restoration)
Require: Training image pairs (fk, ũk), k = 1, ..., K; Tf .
1: Initialize a(t), t ∈ [0, Tf ), by solving (8).
2: while not converged do
3: Compute ∂J

∂ai
, i = 0, ..., 5, using (6).

4: Decide the search direction using the conjugate gradient method [18];
5: Perform golden search along the search direction and update a(t).
6: end while

Ensure: The coefficient functions a(t), t ∈ [0, Tf ).

5 Experimental Results

In this section, we demonstrate the applications of our L-PDE framework for image
restoration to two problems, denoising and inpainting. Our experiments are done on
grayscale images. For the best visual comparison, the readers are encouraged to inspect
the images in this section on screen.

5.1 Image Denoising

For the image denoising problem, we compare our learnt PDE to the state-of-the-art
PDE denoising methods, P-M [5], ROF [9] and TV-L1 [22], on images with both syn-
thetic and real noise. For each experiment, 6 noisy images and their ground truths are
randomly chosen to train the coefficients in the L-PDE, and the remaining images are
the test images. The parameters in the three compared PDEs are tuned to so that the
mean peak signal to noise ratio (PSNR) of all test images are the highest.

Denoising Images with Synthetic Noise. We perform two simulation experiments on
images with synthetic noise. The images are chosen from the Berkeley image database
[23]. There are 86 images in total6 and the image size is 321 × 481 pixels. For the first
experiment, zero-mean Gaussian white noise with σ = 25 is added to the images. For
the second experiment, a mixture of zero-mean Gaussian white noise (σ = 50), Poisson
noise (λ being the pixel values) and the salt & pepper noise (d = 0.1) is added to the
images. For both experiments, Tf is chosen as 2.

Fig. 1 compares the results of the L-PDE with those of the traditional PDEs on im-
ages with Gaussian noise. It shows that the L-PDE preserves details better than the
traditional PDEs. Moreover, the L-PDE also achieves higher PSNRs. Fig. 2 shows the
comparison of denoising results on mixture noise. One can see that the P-M model can-
not remove the salt & pepper noise well. Although ROF and TV-L1 perform better than

6 We randomly choose 6 images for training and the remaining 80 images for testing.



122 R. Liu et al.

- 20.49dB 22.16dB 23.18dB 22.61dB 24.52dB

- 20.48dB 23.02dB 24.08dB 23.27dB 25.81dB

- 20.76dB 23.73dB 25.63dB 24.94dB 26.50dB
(a) original (b) noisy (c) P-M (d) ROF (e) TV-L1 (f) L-PDE

Fig. 1. The results of denoising images with Gaussian noise. (a) Original noiseless image. (b)
Noisy image with additive Gaussian noise (σ = 25). (c)-(f) Denoised images using the P-M,
ROF, TV-L1, and our L-PDE models, respectively. The PSNRs are presented below each image.

- 12.09dB 16.79dB 18.79dB 19.37dB 19.65dB

- 12.15dB 18.10dB 19.81dB 20.75dB 22.46dB

- 12.29dB 18.35dB 19.53dB 20.26dB 21.26dB
(a) original (b) noisy (c) P-M (d) ROF (e) TV-L1 (f) L-PDE

Fig. 2. The results of denoising images with mixture noise. (a) Original noiseless image. (b) Noisy
image with mixture noise. (c)-(f) Denoised images using the P-M, ROF, TV-L1, and our L-PDE
models, respectively. The PSNRs are shown below each image.
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Fig. 3. Performance of denoising as measured in PSNR. In each experiment, the average PSNR
(colored bar) and standard deviation (thick vertical line) of the denoised images in the test set is
shown.

P-M, their denoised images remain noisy. In comparison, our L-PDE suppresses almost
all of the noise while preserving the details well.

The quantitative results of the experiments on two kinds of noise are summarized in
Fig. 3. One can see that none of the three traditional PDEs can work well on both kinds
of noise. On Gaussian noise, ROF outperforms P-M and TV-L1 and has comparable
results with L-PDE, because this model is specifically designed for Gaussian noise.
However, ROF does not work well on mixture noise. On mixture noise, the performance
of TV-L1 is better than ROF and P-M. This is because TV-L1 incorporates a contrast
invariant fidelity term, which makes it more adaptive to unknown noise than ROF and
P-M. So the performance of the traditional PDEs heavily depends on the test data. In
contrast, our L-PDE outperforms all the compared traditional PDEs in both denoising
experiments. This is because our L-PDE is data-driven. It learns the form of the PDE
from training data to fit the noise, no matter whether the noise distribution is known or
unknown.

Denoising Images with Really Unknown Noise. To further testify to the data-driven
nature of our L-PDE, in this experiment we test on images with really unknown noise.
We take 240 images, each with a size 300 × 300 pixels, of 8 objects using a Canon
30D digital camera, setting its ISO to 1600. For each object, 30 images are taken with-
out changing the camera settings (by fixing the focus, aperture and exposure time) and
without moving the camera position. The mean image of them can be regarded as the
noiseless ground truth image. We randomly choose 6 objects. For each object we ran-
domly choose one noisy image. These noisy images and their ground truth images are
used to train an L-PDE, where Tf is set as 1. Then we compare our L-PDE with the
traditional PDEs on images of the remaining 2 objects. In Fig. 4, we show the com-
parison of these results. The zoomed-in regions show that the output of the L-PDE has
less severe artifacts and is sharper than that of other algorithms. As shown in Table 4,
the PSNRs of our L-PDE are dramatically higher than those of traditional PDEs. This
shows that our L-PDE framework can easily adapt to different types of noise and obtain
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- 27.70dB 29.44dB 29.08dB 29.19dB 33.41dB

- 27.82dB 29.36dB 29.03dB 29.14dB 33.18dB
(a) noiseless (b) noisy (c) P-M (d) ROF (e) TV-L1 (f) L-PDE

Fig. 4. The results of denoising images with really unknown noise. The second and fourth rows
show the corresponding zoomed-in regions in the boxes in the first and third rows, respectively.
(a) The estimated noiseless image. (b) Captured noisy image. ((c)-(f) Denoised images using the
P-M, ROF, TV-L1, and our L-PDE models, respectively. The estimated PSNRs are shown below
each image.

Table 4. Denoising results (in PSNR, presented in “mean ± std-dev dB”) of the images of the
remaining two objects, each object having 30 noisy images

Object Noisy P-M ROF TV-L1 L-PDE
1 27.97 ± 0.19dB 29.55 ± 0.28dB 29.22 ± 0.26dB 29.34 ± 0.27dB 33.25 ± 0.10dB
2 28.01 ± 0.31dB 29.89 ± 0.48dB 29.50 ± 0.44dB 29.63 ± 0.45dB 33.36 ± 0.09dB

L-PDEs that fit for different types of noise well. In contrast, as the traditional PDEs
were designed under specific assumptions on the types of noise, they may not fit for
other types of noise as well as our L-PDEs.

5.2 Image Inpainting

In this subsection, we apply our L-PDE framework to the image inpainting problem.
Obviously, to obtain a “good” inpainting result, proper information of the image and
the structure of the missing pixels are needed to impose certain priors on the solution.
Different from the TV inpainting model [17], which only propagates κ(u) to fill in the
missing region R, our L-PDE learns the structure of the missing pixels in R from the
training data and applies both κ(u) and the data-driven term to the test image. As the
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data inside the region R of missing pixels is unavailable, we cannot involve the input
image f , which is inv0(u), in our L-PDE model. So we limit the coefficient a0(t) to be
0 throughout the optimal control process. In this experiment, Tf = 4.

Fig. 5 shows a typical result of noisy image inpainting. We use 6 noisy images
(masked by dense text) with their ground truths to train an L-PDE and then apply it
to test images. Comparing to the FoE inpainting model [24], which is not a PDE-based
method, both TV inpainting [17] and our L-PDE can simultaneously denoise the image
and fill in the missing pixels. Moreover, the visual quality and PSNR of our L-PDE
are both better than those of TV inpainting [17]. We also apply this L-PDE to other
images with purely random masks. Fig. 6 shows that the proposed method also works
well.

(a) noisy and masked (b) FoE

(c) TV (d) L-PDE

noisy and masked FoE TV L-PDE

(e)

Fig. 5. The results of noisy image inpainting. Gaussian noise with σ = 15 is added and then
texts are overlaid. PSNRs are computed on the whole image. (a) Noisy image with overlaid
text; PSNR = 14.29dB. (b) Inpainting result from FoE; PSNR = 24.42dB. (c) Inpainting result
from TV; PSNR = 26.84dB. (d) Inpainting result from L-PDE; PSNR = 27.68dB. (e) Close-up
comparison of these algorithms.
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Fig. 6. The results of purely randomly masked image inpainting (50% pixels are masked), using
our L-PDE. The first and the third columns show the masked images. The second and fourth
columns show the corresponding inpainted images.
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Fig. 7. Learnt coefficients ai(t), i = 0, 1, ..., 5, of PDEs for different image restoration problems.
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Finally, we show the curves of the learnt coefficients of PDEs for different image
restoration problems in Figure 7. Currently we are unable to analyze the obtained PDEs
in depth as this work seems to be non-trivial. So we leave the analysis to future work.

6 Conclusions and Future Work

In this paper, we have presented a framework of learning PDEs from training data for
image restoration. The experiments on natural image denoising and inpainting show
that our framework is effective. Compared to the traditional PDEs, our L-PDEs are
obtained much more easily. In the future, we would like to improve and enrich our
work in the following aspects. First, solve the theoretical issues in our L-PDE model,
e.g., the existence and uniqueness of the solution to (1). Second, develop more efficient
numerical algorithms to solve our optimal control problem (4). Third, we will also
consider incorporating the idea of diffusion tensor [25] and generalizing our framework
for vector/matrix/tensor valued images. Finally, we will also apply our framework to
more computer vision and image processing problems.
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Abstract. Compressive sensing (CS) is a new approach for the acqui-
sition and recovery of sparse signals and images that enables sampling
rates significantly below the classical Nyquist rate. Despite significant
progress in the theory and methods of CS, little headway has been made
in compressive video acquisition and recovery. Video CS is complicated
by the ephemeral nature of dynamic events, which makes direct exten-
sions of standard CS imaging architectures and signal models infeasible.
In this paper, we develop a new framework for video CS for dynamic
textured scenes that models the evolution of the scene as a linear dy-
namical system (LDS). This reduces the video recovery problem to first
estimating the model parameters of the LDS from compressive measure-
ments, from which the image frames are then reconstructed. We exploit
the low-dimensional dynamic parameters (the state sequence) and high-
dimensional static parameters (the observation matrix) of the LDS to
devise a novel compressive measurement strategy that measures only
the dynamic part of the scene at each instant and accumulates measure-
ments over time to estimate the static parameters. This enables us to
considerably lower the compressive measurement rate considerably. We
validate our approach with a range of experiments including classification
experiments that highlight the effectiveness of the proposed approach.

1 Introduction

Recent advances in the field of compressive sensing (CS) [4] have led to the
development of imaging devices that sense at measurement rates below than
the Nyquist rate. Compressive sensing exploits the property that the sensed
signal is often sparse in some transform basis in order to recover it from a small
number of linear, random, multiplexed measurements. Robust signal recovery
is possible from a number of measurements that is proportional to the sparsity
level of the signal, as opposed to its ambient dimensionality. While there has
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been remarkable progress in CS for static signals such as images, its application
to sensing temporal sequences or videos has been rather limited. Yet, video
CS makes a compelling application towards dramatically reducing sensing costs.
This manifests itself in many ways including alleviating the data deluge problems
faced in the processing and storage of videos.

Existing methods for video CS work under the assumption of the availability
of multiple measurements at each time instant. To date, such measurements have
been obtained using a snapshot imager [20] or by stacking consecutive measure-
ments from a single pixel camera (SPC) [8]. Given such a sequence of compressive
measurements, reconstruction of the video has been approached in multiple di-
rections. Wakin et al. [21] use 3D space-time wavelets as the sparsifying basis for
recovering videos from snapshots of compressive measurements. Park and Wakin
[12] use a coarse-to-fine estimation framework wherein the video, reconstructed
at a coarse level, is used to estimate motion vectors that are subsequently used to
design dictionaries for reconstruction at a finer level. Vaswani [16] and Vaswani
and Lu [17] propose a sequential framework that exploits the similarity of sup-
port and the value the signal takes in this support between adjacent frames of a
video. All of these algorithms require a large number of measurements at each
time instant and, in most cases, the number of measurements is proportional to
the sparsity of an individual frame. This is unsatisfactory as at this compression
ratio it is possible to stably reconstruct the individual frames by themselves.

Video CS stands to benefit immensely with the use of strong models char-
acterizing the signals. Park and Wakin [12] use MPEG-like block-matching to
improve sparsity of the signal by tuning a wavelet. Veeraraghavan et al. [18]
propose a compressive sensing framework of periodic scenes using coded strob-
ing techniques. In this paper, we explore the use of predictive/generative signal
models for video CS that are characterized by static parameters. Predictive
modeling provides a prior for the evolution of the video in both forward and
reverse time. By relating video frames over small durations, predictive modeling
helps to reduce the number of measurements required at a given time instant.
Models that are largely characterized by static parameters help in eliminating
problems arising from the ephemeral nature of dynamic events. Under such a
model, measurements taken at all time instants contribute towards estimation
of the static parameters. At each time instant, it is only required to sense at the
rate sufficient to acquire the dynamic component of the scene, which could be
significantly lower than the sparsity of an individual frame of the video. One dy-
namic scene model that exhibits predictive modeling as well as high-dimensional
static parameters is the linear dynamical system (LDS). In this paper, we de-
velop methods for the CS of dynamic scenes modeled as LDS motivated, in part,
by the extensive use of such models in characterizing dynamic textures [5,7,14],
matching shape sequences [19], and activity modeling and video clustering [15].

In particular, the paper makes the following contributions. We propose a
framework called CS-LDS for video acquisition using a LDS model coupled with
sparse priors for the parameters of the LDS model. The core of the proposed
framework is a two-step measurement strategy that enables the recovery of LDS
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parameters directly from compressive measurements. We solve for the param-
eters of the LDS using an efficient recovery algorithm that exploits structured
sparsity patterns in the observation matrix. Finally, we demonstrate stable re-
covery of dynamic textures at very low measurement rates.

2 Background and Prior Work

Compressive sensing: Consider a signal y � RN , which is K-sparse in an
orthonormal basis Ψ ; that is, s � RN , defined as s � ΨT y, has at most K non-
zero components. Compressive sensing [4,6] deals with the recovery of y from
undersampled linear measurements of the form z � Φy � ΦΨs, where Φ � RM�N

is the measurement matrix. For M � N , estimating y from the measurements
z is an ill-conditioned problem. Exploiting the sparsity of s, CS states that the
signal y can be recovered exactly from M � O�K log�N�K�� measurements
provided the matrix ΦΨ satisfies the so-called restricted isometry property (RIP)
[1].

In practical scenarios with noise, the signal s (or equivalently, y) can be
recovered from z by solving a convex problem of the form

min �s�1 subject to �z	 ΦΨs� 
 ε (1)

with ε a bound on the measurement noise. It can be shown that the solution
to (1) is with high probability the K-sparse solution that we seek. The the-
oretical guarantees of CS have been extended to compressible signals [10]. In
a compressible signal, the sorted coefficients of s decay rapidly according to a
power-law.

There exist a wide range of algorithms that solve (1) under various approxi-
mations or reformulations [4,3]. Greedy techniques such as CoSAMP [11] solve
(1) efficiently with strong convergence properties and low computational com-
plexity. It is also easy to impose structural constraints such as block sparsity
into CoSAMP giving variants such as model-based CoSAMP [2].

Dynamic textures and linear dynamical systems: Linear dynamical
systems represent a class of parametric models for time-series data. includ-
ing dynamic textures [7], traffic scenes [5], and human activities [19,15]. Let
�yt, t � 0, . . . , T � be a sequence of frames indexed by time t. The LDS model
parameterizes the evolution of yt as follows:

yt � Cxt wt wt � N�0, R�, R � R
N�N (2)

xt�1 � Axt  vt vt � N�0, Q�, Q � R
d�d (3)

where xt � Rd is the hidden state vector, A � Rd�d the transition matrix, and
C � RN�d is the observation matrix.

Given the observations �yt�, the truncated SVD of the matrix �y�1:T �
�y1,y2, . . . ,yT � can be used to estimate both C and A. In particular, an estimate
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of the observation matrix C is obtained using the truncated SVD of �y�1:T . Note
that the choice of C is unique only up to a d� d linear transformation. That is,
given �y�1:T , we can define �C � UL, where L is an invertible d� d matrix. This
represents our choice of coordinates in the subspace defined by the columns of
C. This lack of uniqueness leads to structured sparsity patterns which can be
exploited in the inference algorithms.

3 Compressive Acquisition of Linear Dynamical Systems

For the rest of the paper, we use the following notation. At time t, the image
observation (the t-th frame of the video) is yt � RN and the hidden state is
xt � Rd such that yt � Cxt, where C � RN�d is the observation matrix. We use
z to denote compressive measurements and Φ and Ψ to denote the measurement
and sparsifying matrices respectively. We use “:” subscripts to denote sequences,
such as x1:T � �x1,x2, . . . ,xT � and ���1:T to denote matrices, such as �y�1:T is
the N � T matrix formed by y1:T such that the k-th column is yk.

One of the key features of an LDS is that the observations yt lie in the subspace
spanned by the columns of the matrix C. The subspace spanned by C forms a
static parameter of the system. Estimating C and the dynamics encoded in the
state sequence x1:T is sufficient for reconstructing the video. For most LDSs,
N � d, thereby making C much higher dimensional than the state sequence
�xt�. In this sense, the LDS models the video using high information rate static
parameters (such as C) and low information rate dynamic components (such
as xt). This relates to our initial motivation for identifying signal models with
parameters that are largely static. The subspace spanned by C is static, and
hence, we can “pool” measurements over time to recover C.

Further, given that the observations yt are compressible in a wavelet/Fourier
basis, we can argue that the columns of C need to be compressive as well, either
in a similar wavelet basis. This is also motivated by the fact that columns of
C encodes the dominant motion in the scene, and for a large set of videos,
this is smooth and has sparse representation in a wavelet/DCT basis or in a
dictionary learnt from training data. We can exploit this along the lines of the
theory of CS. However, note that yt � Cxt is a bilinear relationship in C and
xt which complicates direct inference of the unknowns. Towards alleviating this
non-linearity, we propose a two-step measurement process that allows to estimate
the state xt first and subsequently solve for a sparse approximation of C. We
refer to this as the CS-LDS framework.

3.1 Outline of the CS-LDS Framework

At each time instant t, we take two sets of measurements:

zt �

��zt�zt

�
�

� �Φ�Φt

�
yt � Φtyt, (4)

where �zt � R
�M and �zt � R

�M , such that the total number of measurements at
each frame is M � �M  	M . Consecutive measurements from an SPC [8] can be



Compressive Acquisition of Dynamic Scenes 133

Fig. 1. Block diagram of the CS-LDS framework

aggregated to provide multiple measurements at each t under the assumption
of a quasi-stationary scene. We denote �zt as common measurements since the
corresponding measurement matrix �Φ is the same at each time instant. We denote�z as the innovations measurements.

The CS-LDS, first, solves for the state sequence �x�1:T and subsequently, esti-
mates the observation matrix C. The common measurements ��z�1:T are related
to the state sequence �x�1:T as follows:

��z�1:T �

�z1 �z2 � � � �zT

�
� �ΦC



x1 x2 � � � xT

�
� �ΦC�x�1:T . (5)

The SVD of ��z�1:T � USV T allows us to identify �x�1:T up to a linear trans-
formation. In particular, the columns of V corresponding to the top d singular
values form an estimate of �x�1:T up to a d � d linear transformation (the am-
biguity being the choice of coordinate). When the video sequence is exactly an
LDS of d dimensions, this estimate is exact provided �M � d. The estimate can
be very accurate, when the video sequence is approximated by a d-dimensional
subspace as discussed later in this section.

Once we have an estimate of the state sequence, say ��x�1:T , we can obtain C
by solving the following convex problem:

�P1� min
d�

k�1

�ΨT ck�1, subject to �zt 	 ΦtC�xt�2 
 ε,�t (6)

where ck is the k-th column of the matrix C, and Ψ is a sparsifying basis for the
columns of C. In Section 3.3, we show that the specifics of our measurements
induce a structured sparsity in the columns of C, and this naturally leads to an
efficient greedy solution.

To summarize (see Figure 1), the design of the measurement matrix as in
(4) enables the estimation of the state sequence using just the common mea-
surements, and subsequently solving for C using the diversity present in the
innovations measurements ��z�t.
3.2 Random Projections of LDS Data

As mentioned earlier, when �y�1:T lies exactly in the (column) span of thematrix
C, then ��z�1:T lies in the span of �ΦC. Hence, the SVD of ��z�1:T can be used to
recover the state sequence up to a linear transformation, provided �M � d
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��z�1:T � USV T , ��x�1:T � SdV
T
d (7)

where Sd is the d � d principal sub-matrix of S and Vd is the T � d matrix
formed by columns of V corresponding to the largest d singular values. In prac-
tice, the observations yt lie close to the subspace spanned by C such that pro-
jection of onto C makes for a highly accurate approximation of yt. In such
a case, the estimate of the state sequence from the SVD of ��z�1:T is accurate
only when the observations yt are compressible [9]. In our case, this is equiv-
alent to imposing a power-law decay on the singular values. Figure 2 shows
the accuracy of the approximation of the estimated state sequence for various
values of �M . This suggests that, in practice, xt can be reliably estimated with�M�d.

3.3 Structured Sparsity and Recovery with Modified CoSAMP

The SVD of the common compressive measurements �zt introduces an ambiguity
in the estimates of the state sequence in the form of ��x�1:T � L�1�x�1:T , where L
is an invertible d� d matrix. Solving (P1) using this estimate will, at best, lead
to an estimate �C � CL satisfying zt � Φt

�C�xt. This ambiguity introduces addi-
tional concerns in the estimation of C. Suppose the columns of C are K-sparse
(equivalently, compressible for a certain value of K) each in Ψ with support Sk

for the k-th column. Then, the columns of CL are potentially dK-sparse with
identical supports S �


k Sk. The support is exactly dK-sparse when the Sk are

disjoint and L is dense. At first glance, this seems to be a significant drawback,
since the overall sparsity of �C has increased to d2K. However, this apparent
increase in sparsity is alleviated by the columns having identical supports. The
property of identical supports on the columns of CL can be exploited to solve
(P1) very efficiently using greedy methods.

Given the state sequence, we use a modified CoSAMP algorithm to estimate
C. The modification exploits the structured sparsity induced by the columns of
C having identical support. In this regard, the resulting algorithm is a particular
instance of the model-based CoSAMP algorithm [2]. One of the key properties
of model-based CoSAMP is that stable signal recovery requires only a num-
ber of measurements that is proportional to the model-sparsity of the signal,
which in our case is equal to dK. Hence, we can recover the observation matrix
from O�dK log�Nd�� measurements [2]. Figure 3 summarizes the model-based
CoSAMP algorithm used for recovering the observation matrix C.

3.4 Performance and Measurement Rate

For a stable recovery of the observation matrix C, we need in total O�dK log�Nd��
measurements. In addition to this, for recovering the state sequence, we need a
number of common measurements proportional to the dimensionality of the state
vectors

MT � dK log�Nd�, �M � d. (8)
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Fig. 2. Average error in estimating the state sequence from common measurements for
various values of state dimension d and the ratio �M�d. Statistics were computed using
114 videos of 250 frames taken from the DynTex database [13].

C = CoSaMP Model Sparsity Ψ,K, zt,xt, Φt, t 1, . . . , T

Notation:

supp vec;K returns the support of K largest elements of vec
A Ω, represents the submatrix of A with rows indexed by Ω and all columns.
A ,Ω represents the submatrix of A with columns indexed by Ω and all rows.

t,Θt ΦtΨ

t,vt 0 R
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Ωold φ

While (stopping conditions are not met)

R t Θ
T
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T
t R R

N d
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d
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R2 k, i r R
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Ω Ωold supp r; 2K

Find A R
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zt Θt ,ΩAxt 2
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Ω supp b;K
S Ω, B Ω, S Ωc , 0
Ωold Ω

C ΨB

t,vt zt ΘtSxt

Fig. 3. Pseudo-code of the model-based CoSAMP algorithm for CS-LDS
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Compared to Nyquist sampling, we obtain a measurement rate �M�N� given
by

M

N
�

dK log�Nd�

NT
. (9)

This indicates extremely favorable operating scenarios for the CS-LDS frame-
work, especially when T is large (as in a high frame rate capture). Consider a
segment of a video of fixed duration observed at various sampling rates. The
effective number of frames, T , changes with the sampling rate, fs (in frames per
second), as T�fs. However, the complexity of the video measured using the state
space dimension d does not change. Hence, as the sampling rate fs increases,	M can be decreased while keeping Mfs constant. This will ensure that (8) is
satisfied, enabling a stable recovery of C. This suggests that as the sampling
rate fs increases our measurement rate decreases, a very desirable property for
high-speed imaging.

3.5 Extensions

Mean + LDS: In many instances, a dynamical scene is modeled better as an
LDS over a static background, that is, yt � Cxt  μ. This can be handled with
two minimal modifications to the algorithm described above. First, the state
sequence �x̂�1:T is obtained by performing SVD on the matrix ��z�1:T modified
such that the each row sums to zero. This works under the assumption that
the sample mean of �z1:T is equal to �Φμ, the compressive measurement of μ.
Second, we use model-based CoSAMP to estimate both C and μ simultaneously.
However, only the columns of C enjoy the structured sparsity model. The support
of μ is not constrained to be similar to that of C.

4 Experimental Validation

We present a range of experiments validating various aspects of the CS-LDS
framework. Our test dataset comprises of videos from DynTex [13] and data we
collected using high speed cameras. For most experiments, we chose �M � 2d,
with d and K chosen appropriately. We used the mean+LDS model for all the
experiments with the 2D DCT as the sparsifying basis for the columns of C as
well as the mean. Finally, the entries of the measurement matrix were sampled
from iid standard Gaussian distribution. We compare against frame-by-frame
CS where each frame of the video is recovered separately using conventional CS
techniques. We use the term oracle LDS for parameters and video reconstruction
obtained by operating on the original data itself. The oracle LDS estimates
the parameters using a rank-d approximation to the ground truth data. The
reconstruction SNR of the oracle LDS gives an upper bound on achievable SNR.
Finally, the ambiguity in observation matrix (due to non-uniqueness of the SVD
based factorization) as estimated by oracle LDS and CS-LDS is resolved for
visual comparison in Figures 5 and 6.
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Fig. 4. Reconstruction of T � 1024 frames of a scene of resolution N � 64� 64 pixels
shown as a mosaic. The original data was collected using a high speed camera operating
at 1000 fps. Compressive measurements were obtained with �M � 30 and �M � 20,
thereby giving a measurement rate M�N � 1.2%. Reconstruction was performed using
an LDS with d � 15 and K � 150. Shown above are 64 uniformly sampled frames from
the ground truth (left) and the reconstruction (right).

(a) Ground truth observation matrix CG

(b) Estimated observation matrix �CL �L � �C�CG�
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(c) Ground truth state sequence (d) Estimated state sequence

Fig. 5. Ground truth and estimated parameters corresponding to Figure 4. Shown
are the top 10 columns of the observation matrix and state sequences. Matlab’s “jet”
colormap (red� �large and blue� �large) is used in (a) and (b).
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(a) Mosaic of frames of a video, with each column a different time instant, and each row a different

algorithm. (top row to bottom) ground truth, oracle LDS, CS-LDS, and frame-by-frame CS.

(b) Mosaic of ground truth (top) and estimated (bottom) observation matrix

Fig. 6. Reconstruction of a fire texture of length 250 frames and resolution of N �
128 � 128 pixels. Compressive measurements were obtained at �M � 30 and �M � 40
measurements per frame, there by giving a measurement rate of 0.42% of Nyquist.
Reconstruction was performed with d � 20 and K � 30. Frames of the videos are
shown in false-color for better contrast.

Reconstruction: Figure 4 shows reconstruction results from data collected
from a high speed camera of a candle flame. Figure 5 shows the estimated ob-
servation matrix as well as the state sequence.

Figure 6 shows video reconstruction of a dynamic texture from the DynTex
dataset [13]. Reconstruction results are under a measurement rate M�N � 1�234
(about 0.42% ), an operating point where a frame-to-frame CS recovery is com-
pletely infeasible. However, the dynamic component of the scene is relatively
small (d � 20) which allows us to recover the video from relatively few mea-
surements. The SNR of the reconstructions shown are as follows: Oracle LDS =
24.97 dB, frame-to-frame CS: 11.75 dB and CS-LDS: 22.08 dB.
Performance with measurement noise: It is worth noting that the video
sequences used in the experiments have moderate model fit error at a given
value of d. The columns of C with larger singular values are, inherently, better
conditioned to deal with this model error. The columns corresponding to the
smaller singular values are invariably estimated at higher error. This is reflected
in the estimates of the C matrix in Figures 5 and 6.

Figure 7 shows the performance of the recovery algorithm for various levels of
measurement noise. The effect of the measurement noise on the reconstructions
is perceived only at much lower SNR. This is, in part, due to the model fit error
dominating the performance of the algorithm when the measurement noise SNR is
very high. As the measurement SNR drops significantly below the model fit error,
predictably, it starts influencing the reconstructions more. This provides a certain
amount of flexibility in the design of potential CS-LDS cameras especially in sce-
narios where we are not primarily interested in visualization of the sensed video.
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Fig. 7. Resilience of the CS-LDS framework to measurement noise. (Left) Reconstruc-
tion SNR as a function of measurement rates and input SNR levels computed using 32
Monte-Carlo simulations. The “black-dotted” line shows the reconstruction SNR for
an d � 20 oracle LDS. (Right) Snapshots at various operating points. The dynamic
texture of Figure 6 was used for this result.

Sampling rate: Figure 8 shows reconstruction plots of the candle sequence
(of Figure 4) for 1 second of video at various sampling rates. We use (9) to
predict the required measurement rates at various sampling rates to maintain a
constant reconstruction SNR. As expected, the reconstruction SNR remains the
same, while the measurement rate decreases significantly with a linear increase in
the sampling rate. This makes the CS-LDS framework extremely promising for
high speed capture applications. In contrast, most existing video CS algorithms
have measurement rates that, at best, remain constant as the sampling rate
increases.

Application to scene classification: In this experiment, we study feasibility
of classification problems on the videos sensed and reconstructed under the CS-
LDS framework. We consider the UCSD traffic database used in [5]. The dataset
consists of 254 videos of length 50 frames capturing traffic of three types: light,
moderate, heavy. Figure 9 shows reconstruction results on a traffic sequence
from the dataset. We performed a classification experiment of the videos into
these three categories. There are 4 different train-test scenarios provided with
the dataset. Classification is performed using the subspace-angles based metric
with a nearest-neighbor classifier on the LDS parameters [14]. The experiment
was performed using the parameters estimated directly without reconstructing
the frames. For comparison, we also perform the same experiments with fitting
the LDS model on the original frames (oracle LDS). Table 1 shows classification
results. We see that we obtain comparable classification performance using the
proposed CS-LDS recovery algorithm to the oracle LDS. This suggests that the
CS-LDS camera is extremely useful in a wide range of applications not tied to
video recovery.
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(a) Ground truth

(b) fs � 256 Hz, �M � 30, �M � 170, Meas. rate = 5%, SNR = 13.73 dB.

(c) fs � 512 Hz, �M � 30, �M � 70, Meas. rate = 2.44%, SNR = 13.73 dB.

(d) fs � 1024 Hz, �M � 30, �M � 20, Meas. rate = 1.22%, SNR = 12.63 dB.

Fig. 8. As the sampling frequency fs increases, we maintain the same reconstruction
capabilities for significantly lesser number of measurements. Shown are reconstructions
for N � 64 � 64 and various sampling frequencies, achieved measurement rates, and
reconstruction SNRs.

Table 1. Classification results (in %) on the traffic databases for two different values
of state space dimension d. Results are over a database of 254 videos, each of length
50 frames at a resolution of 64� 64 pixels under a measurement rate of 4%.

(a) d 10

Expt 1 Expt 2 Expt 3 Expt 4

Oracle LDS 85.71 85.93 87.5 92.06
CS-LDS 84.12 87.5 89.06 85.71

(b) d 5

Expt 1 Expt 2 Expt 3 Expt 4

Oracle LDS 77.77 82.81 92.18 80.95
CS-LDS 85.71 73.43 78.1 76.1

5 Discussion

In this paper, we proposed a framework for the compressive acquisition of dy-
namic scenes modeled as LDSs. We show that the strong scene model for the
video enables stable reconstructions at very low measurement rates. In partic-
ular, this emphasizes the power of video models that are predictive as well as
static.

Extensions of the CS-LDS framework: The CS-LDS algorithm proposed in
this paper requires, at best, O�d� measurements per time instant. This roughly
corresponds to the number of degrees of freedom in the dynamics of the video un-
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(a) Original frames (b) Reconstructed frames

(c) Estimates of observation matrix C

Fig. 9. Reconstructions of a traffic scene of N � 64� 64 pixels at a measurement rate
4%, with d � 15 and K � 40. The quality of reconstruction and LDS parameters is
sufficient for capturing the flow of traffic.

der a d-dimensional LDS model. However, the state transition model of the LDS
further constrains the dynamics by providing a model for the evolution of the
signal. Incorporating this might help in reducing the number of measurements
required at each time instant. Another direction for future research is in fast re-
covery algorithms that operate at multiple spatio-temporal scales, exploiting the
fact that a global LDS model induces a local LDS model as well. Finally, much of
the proposed algorithm relies on sparsity of the observation matrix C. Wavelets
and Fourier (DCT) bases do not sparsify videos where the motion is localized in
space. This suggests the use of dyadic partition methods such as platelets [22],
which have been shown to have success in modeling bounded shapes.

Newer models for video CS: While the CS-LDS framework makes a com-
pelling case study of LDSs for video CS, its applicability to an arbitrary video
is limited. The LDS model is well-matched to a large class of dynamic textures
such as flames, water, traffic etc. but does not extend to simple non-stationary
scenes such as people walking. The importance of video models for CS motivates
the search for models that are more general than LDS. In this regard, a promis-
ing line of future research is to leverage our new understanding of video models
for compression algorithm-based CS recovery.
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Abstract. Image retargeting algorithms often create visually disturb-
ing distortion. We introduce the property of scene consistency, which
is held by images which contain no object distortion and have the cor-
rect object depth ordering. We present two new image retargeting algo-
rithms that preserve scene consistency. These algorithms make use of a
user-provided relative depth map, which can be created easily using a
simple GrabCut-style interface. Our algorithms generalize seam carving.
We decompose the image retargeting procedure into (a) removing im-
age content with minimal distortion and (b) re-arrangement of known
objects within the scene to maximize their visibility. Our algorithms op-
timize objectives (a) and (b) jointly. However, they differ considerably
in how they achieve this. We discuss this in detail and present examples
illustrating the rationale of preserving scene consistency in retargeting.

1 Introduction

The increasing diversity of modern displays calls for methods able to transform
images so as to best exploit the display form factor. Such media retargeting
has received much attention lately [1, 2, 4–8, 10, 11, 14, 18, 19, 22, 23]. Recent
success can be attributed to two developments: firstly, the use of “content-aware”
algorithms with more accurate image models; secondly, the formulation of the
problem as a graph labelling problem, for which efficient solvers exist [3, 21].

Most existing approaches are fully automatic, using low level visual saliency
to determine image region importance. These suffer problems with structured
objects, which low level saliency is not able to detect. However, we assume that a
relative depth map is available, provided by the user. By a relative depth map, we
refer to object segmentations with a depth order label, as illustrated in Fig. 1(b).

Given this depth map, our novel retargeting algorithms are capable of retar-
geting such that objects are protected (i.e. not distorted) and maintain their
correct depth ordering. We term this condition scene consistency. We extend
the well-known seam carving algorithm [1] to achieve this. To the best of our
knowledge, these are the first retargeting algorithms that are able to re-arrange
objects such that object occlusions are created, as illustrated in Fig. 1.

K. Daniilidis, P. Maragos, N. Paragios (Eds.): ECCV 2010, Part I, LNCS 6311, pp. 143–156, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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(a) (b) (c) (d)

Fig. 1. For image (a) with relative depth map (b), illustrated in 3D in (c), we produce
the scene consistent retargeted image (d) by the new scene carving algorithm

We acknowledge that assuming our additional input is a strong assumption,
but the improvement in the output can make its acquisition worthwhile. Fur-
thermore, recent developments allow the input to be acquired relatively easily.
Firstly, efficient interactive user interfaces are now available for such annotation.
In our work we make use of an interface employing the GrabCut algorithm [13],
with which all our depth maps were created within a few minutes. Secondly,
recent work [9, 16] has begun to succeed in detecting occlusion boundaries and
acquiring 3D models from single images. These techniques could be used in au-
tomating, at least partially, the annotation process. Thirdly, commercial stereo
cameras are hitting the market.1 With state-of-the-art stereo depth estimation
techniques [17], this technology may allow complete automation of this process.

In the next section we discuss related work on image retargeting. In Sect. 3
we discuss the properties of scene consistent retargeted images. Sections 4 and 5
contain the proposed algorithms. Real world examples are shown in Sect. 6 and
we conclude with a discussion on future work in Sect. 7.

2 Related Work

There exists a large body of literature on media retargeting. In this section we
discuss work which is most relevant to ours. Please note that we focus on image
retargeting, although many algorithms have been extended to video.

On Retargeting. Two main strategies exist for image retargeting: minimizing
applied distortion or maximizing similarity between the input and output images.

Arguably the simplest retargeting methods are cropping and scaling. These
methods usually are not content aware and tend to give inferior results to al-
gorithms that are. Some work exists on content-aware scaling and cropping
[15, 19, 20] but these methods alone have limited ability to retain content or
can cause distortions such that interesting parts of the image are no longer
clearly visible.

Seam carving [1, 14] has received a lot of attention due to its elegance. It
iteratively removes connected paths of pixels so as to minimize the resulting
distortion. It can be thought of as forgetting the input image altogether, as the
1 E.g. Fuji FinePix 3D W1.
www.fujifilm.com/products/3d/camera/finepix_real3dw1

www.fujifilm.com/products/3d/camera/finepix_real3dw1
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distortion it measures is relative only to the previous image. Together with our
algorithms and other extensions [7, 8, 15], it falls under the first strategy. We
build on it for reasons of speed and because of the ability to explicitly control
the modifications of pixels. We discuss this in greater detail in Sect. 4.1.

The second strategy requires a notion of distance between the input and
output image. Many have been proposed and used in retargeting, based on e.g.
patch colour similarity [2, 15, 19] with dominant colours [5], saliency with image
gradients [22] or with face attention [18], and colour and gradient difference [11].

On Protecting Objects. Object protection (i.e. non-distortion) is important
for the realism of synthesized images. In dynamic video synopsis [12], objects are
detected using background subtraction, and protected in the synopsis. In [6] the
user is requested to mark parts of the image where shape should be preserved.
In [1], users can specify regions to be protected or removed during retargeting.

The method proposed by [18] is closest to our approach with regard to object
protection. Importance maps are created automatically, from which important
regions are detected. The retargeted output is constructed by removing the im-
portant regions, inpainting the resulting holes in the background, rescaling the
background, and finally re-inserting and re-arranging the removed regions to
create the output. The important regions thus avoid the rescaling, and so are
protected. The authors show results which are visually pleasing, but the method
relies on the strength of the inpainting algorithm. Also, unlike our methods, it
is not able to create consistent object occlusions.

3 Scene Consistency

We first introduce the key concept of scene consistency. We model image for-
mation as projection of flat fronto-parallel objects at different depths onto a
background plane. An image can be decomposed into such a model as illus-
trated in Fig. 1(c). A retarget of the image is scene consistent if objects (1) are
not distorted but kept as in the original image and (2) are placed in their correct
depth ordering. We also define the concept of object consistency, which is held
by retargets for which property (1) holds, that objects are not distorted.

This concept provides a formalization of scene realism, which we want to
maintain during retargeting. To do so requires the model decomposition of the
original image, which for a single image can be described simply in terms of
a relative depth map, giving object segmentations each with a depth ordering
label as illustrated in Fig. 1(b). Object segmentations alone allow scene consis-
tent retargeting, by enforcing no distortion for the objects, but with the depth
information, scene consistent occlusions may also be generated. The benefits of
scene consistent retargeting are illustrated for a toy image in Fig. 2. Note that
we distinguish between occlusions that require reappearance and those that do
not, a distinction we find arises in practice. By “reappearance” we refer to pixels
previously occluded becoming visible again while iterative retargeting.
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(a) (b) (c) (d) (e) (f) (g)

Fig. 2. Toy image (a) with depth layers (b) is retargeted by seam carving [1] (c), seam
carving with object protection (Sect. 4.1, [1]) (d) and (e), seam carving with occlusions
(Sect. 4.2) (f) and scene carving (Sect. 5) (g). Our two new algorithms (f, g) may
form occlusions: in seam carving with occlusions (f), occlusions that do not require
reappearance may be formed (see Sect. 4.3); in scene carving (g), all scene consistent
occlusions may be formed

Occlusion in the original image means some parts of the model decomposi-
tion are unknown. We refer to these as holes. Holes constrain scene consistent
retargeting: all holes must be kept occluded, to prevent the need to inpaint.

We use the following notation throughout. The image intensity is Ir,c for pixels
(r, c) in the image domain P . An object map is defined over the same domain
as O(r, c) = o at pixels belonging to object o > 0; otherwise, O(r, c) = 0.

4 Towards Scene Consistent Seam Carving

In this section, we recap seam carving (S.C.) (Sect. 4.1), which we extend to be
able to create scene consistent object occlusions (Sect. 4.2) by enabling seams
to pass through occlusion boundaries. This extension we call seam carving with
object occlusions (S.C.+Obj. Occ.). We discuss a complication of this algorithm,
namely that it does not easily allow for object reappearance, in Sect. 4.3.

4.1 Seam Carving

Our algorithms build on seam carving with forward energy [14]. Seam carving
greedily removes seams with minimum energy from an image. A seam is an 8-
connected path through the image, containing a single pixel on each row (assum-
ing vertical seams are removed as we do throughout without loss of generality).
Removing pixel (r, c) causes the following distortions: it brings into horizontal
contact its Left (r, c−1) and Right neighbours (r, c+1) in row r. Depending on
where the seam passed in row r − 1, it may additionally bring into vertical con-
tact its Upper and Left or its Upper and Right neighbours. The energy of these
distortions is captured in the following terms, used as illustrated in Fig. 3(a):

ELR
r,c = |Ir,c−1 − Ir,c+1|

ELU
r,c = |Ir,c−1 − Ir−1,c|

EUR
r,c = |Ir−1,c − Ir,c+1| . (1)

These terms measure distortion by magnitude similarity of neighbouring pixels.
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c-1 c c+1
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r-1
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c-1 c c+1
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r,c
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r,c∞

∞

∞

(b)

Fig. 3. Graphs for dynamic programming (a) and graph cut (b) optimization of forward
energy seam carving. Only terms related to pixel (r, c) are shown. The red arc in (a)
corresponds to the red cut in (b), removing pixels (r − 1, c − 1) and (r, c)

The seam that corresponds to minimal energy can be efficiently found using
dynamic programming (D.P.), or using a graph cut (G.C.) [14]. In the latter, the
problem is cast as a binary graph labelling problem. The corresponding graph is
shown in Fig. 3(b). After the graph is cut, the pixel on each row directly left of
the cut is the seam pixel, as exemplified by the red arc and cut in Fig. 3. These
two frameworks are equivalent but have different properties [14].

The aim of this paper is to maintain scene consistency in retargeting. A simple
method for preventing object distortion is given in [1], which we refer to as seam
carving with object protection (S.C.+Obj. Prot.). The energies of all arcs pointing
to pixels that belong to an object are set to infinity:

ELR
r,c = ELU

r,c = EUR
r,c = ∞ ∀(r, c) ∈ {(r, c) : Or,c > 0} . (2)

This ensures that no seams pass through objects. As seams are progressively
removed, objects are moved together until they abut. Continuing to remove
seams, with infinite energy, would lead to great distortion (see Fig. 2(d)). For
object consistency we enforce that seams may then pass only through edges of
the image, resulting instead in a cropping (see Fig. 2(e)).

Neither of these methods allows seams to cut through the occlusion bound-
aries, moving objects behind one another. This would allow more flexibility for
seams to be removed. In the next section we present an algorithm to do this.

4.2 Seam Carving with Object Occlusions

We now describe seam carving with object occlusions (S.C.+Obj. Occ.). This
algorithm behaves like seam carving in background regions, but protects objects
and allows seams to pass through occlusion boundaries between objects, as il-
lustrated in Fig. 4(a). Two modifications are made, to the energies at occlusion
boundaries and to the graph structure, with the use of “supernodes”.

Occlusion Boundaries. For background pixels that border the edge of the
image or an object, the standard forward energy does not apply. Removing
these pixels can be viewed as an occlusion, with no visual distortion created. We
replace the energies for these pixels with a small value us = 10. For ELR

r,c ,
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ELR
r,c = us ∀(r, c) ∈ {(r, c) : Or,c = 0 ∧ ((r, c − 1) /∈ P ∨ (r, c + 1) /∈ P)}

∪{(r, c) : Or,c = 0 ∧ (Or,c−1 > 0 ∨ Or,c+1 > 0)} (3)

gives the formal condition for use of this term, with similar definitions for ELU
r,c

and EUR
r,c . This energy modification could also be applied to S.C.+Obj. Prot.

Introducing Supernodes. We must allow seams to run along object occlusion
boundaries while protecting objects. With occlusions possible, object protection
cannot be ensured by infinite energy terms as in (2). Consider the object in
Fig. 4(a) that is occluded and separated into two parts. Consistency requires
that seams pass all visible parts of an object on the same side, so seam (b)
in the figure is invalid. As can be seen, consistency does not exhibit optimal
substructure and cannot be optimized with dynamic programming.

We resolve this problem by considering the graph cut formulation and mod-
ifying the graph structure to protect objects. We introduce supernodes, nodes
that subsume a group of pixel nodes. A supernode takes only a single label, so
pixels subsumed by the supernode are assigned the same label.

Supernodes are constructed as follows, as illustrated in Fig. 4(b). Recall that
in the graph cut formulation, the seam pixels are those directly left of the cut
(c.f. Fig. 3(b)). We take the object closest to the camera and create a supernode
from all object pixels as well as their right neighbours. This procedure is now
iterated from the closest to the furthest object. At each step all object pixels and
their right neighbours are included in the supernode, if they are not already in
an existing supernode (e.g. the node in the second row, fourth column in 4(b)).

Energy Terms for Supernodes. The energy of object-background occlusion
was defined in (3). We now define the energy of object-object occlusion. We set
the energy terms of pixels in the occlusion boundary to a term uo where

uo =
uobj

|{(r, c) : Or,c = o}| (4)

for a fixed constant uobj. Setting this constant high increases the energy of
occlusion of an object pixel, and even more so for smaller objects. We use uobj =
107. Note that the borders of the image are treated in the same way, as an
occluding object. Note also that if the occlusion is not valid, because it would
lead to reappearance of part of an object behind another or because the objects
next to each other are at the same depth, we can simply merge the supernodes
for the two objects to prevent any further occlusion occurring.

Occlusion boundaries cannot be carved with the algorithm so far described if
it is not possible for an 8-connected seam to pass through them. We therefore
relax the connectivity constraint around objects, allowing seams to jump through
horizontal occlusion boundaries. We do this by not attaching to supernodes the
infinite cost arcs that enforce this constraint (e.g. the arc from (r − 1, c + 1) →
(r, c) in Fig. 3(b)). An example of a seam this allows is the red cut in Fig. 4(b).
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4.3 Limitation to Non-reappearance

The described algorithm can only remove pixels, hence the need to prevent
occlusions that would cause part of an object to reappear. We would like to
relax this constraint and include an energy term for this reappearance, as in
many images this is necessary to create useful occlusions as in Fig. 2(g). However,
we found that extending the algorithm so far described to this would lead to an
energy with higher order potentials, which are in general non-submodular and
cannot be optimized efficiently. We demonstrate this with an example before
describing, in Sect. 5, an algorithm which does not suffer this limitation.

Consider Fig. 5. Without reappearance, seams simply determine object move-
ments: if the object is to the right of the seam, it is moved left, and if it is to
the left, it maintains its position, relative to the left edge of the image. With-
out loss of generality we assume the same rule even with reappearance. The
seams passing through the boundaries between the blue and purple objects sim-
ply determine the behaviour at this boundary: seams on the left (c) and (f)
lead to reappearance on the right, and similarly with seams (d) and (e). Hence
the reappearance energy can be associated with passing through the boundaries.
However, no such relationship exists for the occlusion boundary between the blue
and green objects (seams (e) and (f)), where the reappearance also depends on
the purple object. In general, it would be necessary to encode the reappearance

(a)

(b)

(a)

uo

uo

us

us

us

us

us us us

usus

(b)

Fig. 4. Left: The blue “C” shaped object
is occluded (indicated by transparency) and
thus split into two separate parts. Hence the
red seam (b) does not preserve object con-
sistency, while seam (a) does.
Right: Two objects, their corresponding su-
pernodes and changed energy terms. The
object with black pixels is closest and cre-
ates the supernode containing nodes in the
dark grey area. The supernode of the blue
object is the light shaded region. Also shown
are those energy terms that changed com-
pared to seam carving. The red line indicates
a possible cut along the objects

(a) (b)

(c) (d)

(e) (f)

Fig. 5. S.C.+Obj. Occ. with reap-
pearance requires higher order terms.
The seams passing through occlusion
boundaries in (a) are shown in (b) re-
sulting in (c) to (f). The objects are
shown with transparency, with purple
in front of blue in front of green. Reap-
pearing pixels are highlighted in red
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energy to depend on the positioning of all of the objects. This energy would
contain higher-order potentials and in general be non-submodular.

5 Scene Carving

In seam carving, including the described extensions, the seam determines the
movement of objects. This led to the problem that objects and background
reappearance could not be optimized for efficiently. We resolve this problem
by using a layered decomposition (Sect. 5.1) and adding the possibility of re-
moving background holes (Sect. 5.2). This yields the scene carving (Sc. Carve)
algorithm.

5.1 Layered Decomposition

The main idea of scene carving is the use of a layered image decomposition as
illustrated in Fig. 1(c). Each object is stored in a separate layer. The last layer
is referred to as the background image. This contains the background, with holes
where the background is occluded by objects. From this representation an image
can be created by “flattening” the layers onto the background image. Scene
consistency is inherent if object layers are only translated in the plane, but have
no pixels removed. We then only find seams in the background image.

This decomposition allows us to store an over-complete representation of the
image. Pixels that are occluded in the flattened image are still stored in their
respective layer and thus may reappear at a later iteration, as in Fig. 2(g).

The algorithm proceeds as shown in Fig. 6. At each iteration we consider
all object positionings, and for each find the seam in the background image.
Since the background image contains no objects, as in S.C., this can be done
efficiently using dynamic programming. We calculate the total energy as the
sum of the seam energy and object positioning energy, and take the joint min-
imum. Note that for V object movements and N objects, there are V N object
positionings to test at each iteration. We use the V = 2 movements of S.C.:
the object stays in the same position or moves one pixel to the left, relative to
the left of the image. In Sect. 5.3 we describe a speed up for this combinatorial
problem.

For all
object
positionings

Find
optimal
seam in
background

Take joint
lowest energy
object
positioning
and seam

Total Energy =
Seam Energy 
+ Object Position-
ing Energy

Scene carved
result

Fig. 6. Scene carving jointly optimizes for a new object positioning and a seam to be
removed from the background image
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5.2 Seams in the Background Image

Since the seam does not carry the burden of determining object movement it
may pass anywhere in the background image, including through holes. The only
restriction is to ensure that all holes are occluded in the resulting image. We
now define the energy of such a seam in the background image.

Distortion Domain. We can distinguish two choices for seam energies, calcu-
lating the distortion of either (1) the flattened image or (2) the background only.
S.C. advocates (1) and our extension in Sect. 4.2 also follows this rationale.

However strategy (1) comes at the expense of allowing high distortion to be
created in the background image at no cost behind objects. This could severely
limit our ability to move objects in further iterations and allow increased distor-
tion in the background. Empirical results show that this occurs in our images.
See Fig. 8(f) and 8(g), where this method is referred to as Sc. Carve-D.2

We therefore take the second approach (2) and optimize at each iteration
jointly for the highest fraction of objects to be visible and for the minimally
distorting seam in the background image. This leads us to the scene carving
algorithm. We pay the cost for introducing distortions that are not currently
visible (but may be at future iterations), therefore sacrificing some potential
improvement in the image at this iteration for a potentially better result image.

Seam Energy. We noted we find a seam only in the background image, so
we are able to use D.P. for better runtime behaviour than S.C.+Obj. Occ. We
construct the seam energy as follows. We reuse the graph of S.C. with the energies
of (1). Energy terms for pixels next to the image boundary or holes are set as in
(3) to a small constant, here us = 6. As seams may pass through holes, we set
energy terms for hole pixels to a non-infinite constant uh. Given a binary hole
mask H taking value 0 where the background is known and 1 otherwise:

ELR
r,c = ELU

r,c = EUR
r,c = uh ∀(r, c) ∈ {(r, c) : Hr,c = 1} . (5)

We set uh = 0 to encourage removal of hole pixels.
Remaining hole pixels constrain object movement, as all must be kept oc-

cluded by an object. This constraint is ensured by setting the following energy:

ELR
r,c = ELU

r,c = EUR
r,c = ∞ ∀r, c ∈ {c : c > cmax

r ∨ c < cmin
r } (6)

where: cmin
r = max{c : Hr,c = 1 ∧ Or,c > 0 ∧ Or,c−1 = 0}

cmax
r = min{c : Hr,c = 1 ∧ Or,c = 0} .

This constrains the seam at a row r to pass between the columns cmin
r and cmax

r .3

2 Details on how to define the energy for (1) and optimize it, taking all changes into
account, can be found in the supplementary material, along with additional results.

3 Small scale non-convexities in object segmentations can limit seams through this
constraint, so we remove these by simple dilation and erosion processes.
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Fig. 7. (a) Describes a 3 step hierarchical approximation to speed up scene carving. We
set the parameters based on (b) and (c). (b) shows the relative frequency that the M
object positionings checked in step 3 includes the optimal full resolution positioning,
(c) the relative frequency against optimization time per pixel, assuming N = 5 objects

Object Positioning Energy. We compute the final energy by adding to the
energy of the optimal seam an object positioning energy term: the negative of
the unary used in S.C.+Obj. Occ. (4). At each iteration we take the joint object
positioning and background image seam with the lowest energy.

5.3 Speeding Up

Scene carving has computational complexity D.P.× 2N at each iteration. While
dynamic programming is very efficient, this algorithm is still infeasible for large
numbers of objects. We use two approaches to give a speed up.

Firstly, for a constant factor speed up, we note that objects only affect the
energy on the rows they span, c.f. (6). We iterate through object positionings in
a unit distance code, reusing the graph above and below the object moved.

Secondly, we use a hierarchical speedup, as described in Fig. 7(a). We set
M = 5 and d = 6 based on the following analysis. On 11 images containing 2-8
objects we removed 300 seams using scene carving at the full resolution and at
lower resolutions. Our results are shown in Fig. 7(b) and Fig. 7(c). Choosing
d = 6 (red curve) and M = 5 places us at the “knee” of the trade-off curves of
Fig. 7(b). Here, the optimal object positioning is obtained approximately 97% of
the time. Fig. 7(c) then shows that if we want to find the optimum approximately
97% of the time, greater downsampling would not increase the speed.

This method is still combinatorial in the number of objects, but with a lower
multiplying factor. In most cases we expect a low number of objects to be labelled
(up to 10), such that optimizing over all combinations of positionings is feasible.

6 Results

We now present results for our algorithms, and compare these results to those
gained from our implementation of seam carving.4 For convenience the key prop-
erties of these algorithms are summarized in Table 1.
4 All code is available at www.vision.ee.ethz.ch/~mansfiea/scenecarving/ under

the GNU General Public License.

www.vision.ee.ethz.ch/~mansfiea/scenecarving/
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(a) (b) (c) (d)

(e) (f) (g) (h) (i)

Fig. 8. People image (a) with depth map (b) retargeted by S.C. (c), S.C.+Obj.
Prot. (d), S.C.+Obj. Occ. (e), Sc. Carve-D. (f) with bkg. image (g), Sc. Carve (h)
with bkg. image (i) (300 seams removed). Note the distortion introduced by S.C., and
cropping with S.C.+Obj. Prot. and S.C.+Obj. Occ. Sc. Carve keeps all objects, with
the red boxes highlighting background distortion from Sc. Carve-D. not in Sc. Carve

The power of our algorithms can be demonstrated with the example of the
People image (from [11]) in Fig. 8. Seam carving (Fig. 8(c)) can be seen to create
visually disturbing distortion of the people. Ensuring object consistency prevents
this, but because there is no occlusion handling, this results in a cropped image
with the two left-most people removed completely. (Fig. 8(d)).

Our algorithms guarantee scene consistency. S.C.+Obj. Occ. (Fig. 8(e)) moves
the people together until reappearance would occur. Further seams are removed
at the edges of the image, again cropping one person out. With Sc. Carve-D.,
reappearance is possible, but the ability to hide high gradients behind parts of
objects allows distortion to be created in the background image, which are visible
in the resulting image. These distortions are shown in Fig. 8(g), highlighted in
the red box. Scene carving (Fig. 8(h)) is able to keep all people in the image,
scene consistently, combined with a pleasing background (Fig. 8(i)).

Further results, demonstrating the same effects, are shown in Fig. 9.
Limitations of our methods can also be seen in these images. For example, in

the Boat image, it can be seen that our freedom to edit the background image

Table 1. Properties of the algorithms tested

Scene Creates With re- Optimization
consistent occlusions appearance

S.C. [1, 14] × × × DP or GC
S.C.+Obj. Prot. [1, 14] � × × DP or GC
S.C.+Obj. Occ. (Sect. 4.2) � � × GC
Sc. Carve (Sect. 5) � � � DP

(
5 + 2N/62

)
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Table 2. Time taken to produce results with our Matlab/Mex implementation

People Sledge Dancers London eye Boat

No. objects 8 5 4 3 2
Size 640 × 427 1024 × 759 500 × 333 1024 × 683 1016 × 677
No. seams removed 300 500 200 500 500
S.C. [1, 14] 22s 62s 14s 49s 64s
S.C.+Obj. Prot. [1, 14] 28s 69s 9s 60s 54s
S.C.+Obj. Occ. (Sect. 4.2) 4515s 46152s 328s 2079s 19941s
Sc. Carve (Sect. 5) 352s 596s 73s 711s 619s

has shrunk the boat reflection so it no longer spans the whole boat. Another
effect, caused by inaccurate segmentations, is shown in the London eye image,
where sky can be seen through the wheel, where the building should be visible.

Table 2 shows the time taken to produce our results. In all cases, Sc. Carve is
the fastest algorithm that allows for object occlusions. S.C.+Obj. Occ., while
a non-combinatorial optimization problem, in practice produces a graph that is
slow to optimize. S.C. and S.C.+Obj. Prot. are much faster, but may respectively
lead to object distortion, or cropping and bad background distortion.

7 Conclusions and Future Work

In this work we considered the problem of scene consistent image retargeting.
We developed two algorithms to perform such image retargeting, given a relative
depth map: seam carving with object occlusions and scene carving.

The former was derived by making use of supernodes, enabling correct occlu-
sion handling for the first time. This algorithm has the appealing property of
requiring a single optimization in each step. However, accounting for reappear-
ing material leads to graphs which cannot be optimized efficiently. Even without
reappearance, the graph can be slow to optimize in practice.

Scene carving utilizes a layered decomposition of the image to allow flexible ob-
ject re-arrangement. We find the joint global optimum seam and re-arrangement
at each iteration with dynamic programming, at the expense of an overall com-
binatorial problem. We presented a more efficient hierarchical approximation,
which still finds the global optimal in almost all iterations.

In summary, we recommend scene carving as the better algorithm, given that
it is usually faster and produces visually superior results. Seam carving with
occlusions may be competitive only when very many objects are present.

There are several possible routes to be followed. First we want to automate
relative depth map creation using either high-level computer vision such as object
detection, or stereo vision. Also, the seam carving algorithm can be understood
as “forgetting” the previous input at each iteration. Other methods optimize an
energy defined between the input and output image [5, 11, 15, 18, 19, 22]. We
plan to derive a similar retargeting method for our problem scenario.

Acknowledgements. We thank the following users of Flickr for placing their
work under the Creative Commons License: badkleinkirchheim (Sledge), William
Hamon (Dancers), Alain Bachellier (Boat), wallyg (London eye).
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Abstract. We discuss a few new motion deblurring problems that are
significant to kernel estimation and non-blind deconvolution. We found
that strong edges do not always profit kernel estimation, but instead
under certain circumstance degrade it. This finding leads to a new metric
to measure the usefulness of image edges in motion deblurring and a
gradient selection process to mitigate their possible adverse effect. We
also propose an efficient and high-quality kernel estimation method based
on using the spatial prior and the iterative support detection (ISD) kernel
refinement, which avoids hard threshold of the kernel elements to enforce
sparsity. We employ the TV-�1 deconvolution model, solved with a new
variable substitution scheme to robustly suppress noise.

1 Introduction

Motion deblurring was hotly discussed in the computer vision and graphics com-
munity due to its involvement of many challenges in problem formulation, reg-
ularization, and optimization. Notable progress has been made lately [1–6]. The
blur process caused by camera shake is generally modeled as a latent image
convolved with a blur point-spread-function (a.k.a. kernel).

The success of recent single-image methods partly stems from the use of var-
ious sparse priors, for either the latent images or motion blur kernels [1, 3, 6].
It was found that without these constraints, iterative kernel estimation is easily
stuck in local minima and possibly results in a dense kernel and many visual ar-
tifacts in the restored image. However, minimizing a non-convex energy function
with the kernel-sparsity prior is usually costly.

Another group of methods seek high efficiency and resort to explicitly detect-
ing salient image structures. They use the Gaussian kernel priors [4, 5, 7] instead
of the sparse ones. These approaches greatly shorten the computation time; but
the Gaussian priors sometimes issue in noisy or dense kernel estimates, which
need to be post-processed by threshold-like operations.

Despite the efficiency and accuracy issues, another critical motion deblurring
problem that was not known yet is on how image structure influences kernel
estimation. Our intriguing finding is that salient edges do not always help kernel
refinement, but instead in some commonly encountered circumstances greatly
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increase the estimation ambiguity. We will analyze this problem and propose an
automatic gradient selection algorithm to exclude the detrimental structures.

Our method also makes several other contributions. 1) First, we propose a
novel two-phase kernel estimation algorithm to separate computationally expen-
sive non-convex optimization from quick kernel initialization, giving rise to an
efficient and robust kernel estimation process. 2) We introduce a new spatial
prior to preserve sharp edges in quick latent image restoration. 3) In the kernel
refinement stage, we employ the Iterative Support Detection (ISD) algorithm,
which is a powerful numerical scheme through iterative support detection, to
adaptively enforce the sparsity constraint and properly preserve large-value el-
ements. Soft-threshold-like effect is achieved in this step. 4) Finally, to restore
the latent image, we employ a TV-�1 objective function that is robust to noise
and develop an efficient solver based on half-quadratic splitting.

We applied our method to challenging examples, where many images are
blurred with very large PSFs (spanning up to 100 pixels in width or height)
due to camera shake. Our “robust deblurring” project website is put online1,
which includes the motion deblurring executable and image data.

1.1 Related Work

Shift-invariant motion blur can be modeled as image convolution with a PSF.
We briefly review the blind and non-blind deconvolution methods.

Blind Deconvolution. Early work on blind image deconvolution focuses on es-
timating small-size blur kernels. For example, You and Kaveh [8] proposed a
variational framework to estimate small Gaussian kernels. Chan and Wong [9]
applied the Total Variation regularizers to both kernels and images. Another
group of methods [10–12] did not compute the blur kernels, but studied the
reversion of a diffusion process.

Lately, impressive progress has been made in estimating a complex motion
blur PSF from a single image [1, 3, 6]. The success arises in part from the
employment of sparse priors and the multi-scale framework. Fergus et al. [1] used
a zero-mean Mixture of Gaussian to fit the heavy-tailed natural image prior. A
variational Bayesian framework was employed. Shan et al. [3] also exploited the
sparse priors for both the latent image and blur kernel. Deblurring is achieved
through an alternating-minimization scheme. Cai et al. [6] introduced a framelet
and curvelet system to obtain the sparse representation for kernels and images.
Levin et al. [13] showed that common MAP methods involving estimating both
the image and kernel likely fail because they favor the trivial solution. Special
attention such as edge re-weighting is probably the remedy. It is notable that
using sparse priors usually result in non-convex objective functions, encumbering
efficient optimization.

Another group of methods [4, 5, 7] do not use sparse priors, but instead employ
an explicit edge prediction step for the PSF estimation. Specifically, Joshi et
al. [4] predicted sharp edges by first locating step edges and then propagating

1 http://www.cse.cuhk.edu.hk/~leojia/projects/robust_deblur/index.html

http://www.cse.cuhk.edu.hk/~leojia/projects/robust_deblur/index.html


Two-Phase Kernel Estimation for Robust Motion Deblurring 159

the local intensity extrema towards the edge. This method was used to handle
complex PSFs with a multi-scale scheme [7]. Cho and Lee [5] adopted bilateral
filtering together with shock filtering to predict sharp edges. These methods
impose simple Gaussian priors, which avail to construct quick solvers. These
priors however cannot capture the sparse nature of the PSF and image structures,
which occasionally make the estimates noisy and dense.

Non-blind deconvolution. Given a known blur PSF, the process of restoring an
unblurred image is referred to as non-blind deconvolution. Early work such as
Richardson-Lucy (RL) or Weiner filtering is known as sensitive to noise. Yuan et
al. [14] proposed a progressive multi-scale refinement scheme based on an edge-
preserving bilateral Richardson-Lucy (BRL) method. Total Variation regularizer
(also referred to as Laplacian prior) [9], heavy-tailed natural image priors [1, 3]
and Hyper-Laplacian priors [15–18] were also extensively studied.

To suppress noise, Bar et al. [19] used the �1 fidelity term together with
a Mumford-Shah regularizer to reject impulse noise. Joshi et al. [20] incorpo-
rated a local two-color prior to suppress noise. These methods used the iterative
re-weighted least square to solve the nonlinear optimization problem, which in-
evitably involves intensive computation. In this paper, we developed a fast TV-�1
deconvolution method based on half-quadratic splitting [16, 18], to efficiently re-
ject outliers and preserve structures.

2 Two-Phase Sparse Kernel Estimation

By convention, the blur process is modeled as

B = I ⊗ k + ε,

where I is the latent image, k is the blur kernel, ε is the image noise, ⊗ denotes
convolution and B is the observed blur image. In this section, we introduce a two-
phase method for PSF estimation. The first stage aims to efficiently compute a
coarse version of the kernel without enforcing much sparsity. In the second phase,
although non-convex optimization is employed, with the initial kernel estimate
propagated from stage one, no significant computation is required to produce
the final result.

2.1 Phase One: Kernel Initialization

In the first step, we estimate the blur kernel in a multi-scale setting. High effi-
ciency can be yielded as we use the Gaussian priors where closed-form solutions
exist. The algorithm is sketched in Alg. 1. with three main steps – that is, sharp
edge construction, kernel estimation, and coarse image restoration.

In the first place, like other motion deblurring methods, we filter the im-
age and predict salient edges to guide the kernel initialization. We use Gaussian
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Algorithm 1. Kernel Initialization
INPUT: Blur image B and an all-zero kernel (size h × h)
Build an image pyramid with level index {1, 2, · · · , n}.
for l = 1 to n do

Compute gradient confidence r for all pixels (Eq. (2)).
for i = 1 to m (m is the number of iterations) do

(a) Select edges ∇Is for kernel estimation based on confidence r (Eq. (4)).
(b) Estimate kernel with the Gaussian prior (Eq. (6)).
(c) Estimate the latent image Il with the spatial prior (Eq. (8)), and update
τs ← τs/1.1, τr ← τr/1.1.

end for
Upscale image Il+1 ← Il ↑.

end for
OUTPUT: Kernel estimate k0 and sharp edge gradient map ∇Is

(a) (b)

Fig. 1. Ambiguity in motion deblurring. Two latent signals (green dashed lines) in (a)
and (b) are blurred (shown in blue) with the same Gaussian kernel. In (a), the blurred
signal is not total-variation preserving, making the kernel estimation ambiguous. In
fact, the red curve is more likely the latent signal than the green one in a common
optimization process. The bottom orange lines indicate the input kernel width.

filtering to pre-smooth the image and then solve the following shock filtering
PDE problem [10] to construct significant step edges:

∂I/∂t = −sign(ΔI)‖∇I‖, I0 = Gσ ⊗ Iinput, (1)

where ∇I = (Ix, Iy)′ and ΔI = I2xIxx + 2IxIyIxy + I2yIyy are the first- and second-
order spatial derivatives respectively. I0 denotes the Gaussian smoothed input
image, which serves as an initial input for iteratively updating ∂I/∂t.

Selective Edge Map for Kernel Estimation. Insignificant edges make PSF
estimation vulnerable to noise, as discussed in [3–5, 13]. We however observe a
different connection between image edges and the quality of kernel estimation –
that is, salient edges do not always improve kernel estimation; on the contrary, if
the scale of an object is smaller than that of the blur kernel, the edge information
could damage kernel estimation.

We give an example in Figure 1. Two step signals (the green dashed lines) in
(a) and (b) are blurred with a large PSF. The observed blur signals are shown
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(a) Blurred input (b) Fergus [1]et al. (c) Shan [3]et al. (d) mapr

(e) (f) (g) (h)

(i) (j) (k) (l)

Fig. 2. Image structure influence in kernel estimation. (a) Blurred image. (b) Result of
Fergus et al. [1]. (c) Result of Shan et al. [3]. (d) r map (by Eq. (2)). (e)-(g) ∇Is maps,
visualized using Poisson reconstruction, in the 1st, 2nd and 7th iterations without
considering r. (h) Deblurring result not using the r map. (i)-(k) ∇Is maps computed
according to Eq. (4). (l) Our final result. The blur PSF is of size 45×45.

in blue. Because the left signal is horizontally narrow, the blur process lowers
its height in (a), yielding ambiguity in the latent signal restoration. Specifically,
motion blur methods imposing sparse priors on the gradient map of the latent
image [1, 3] will favor the red dashed line in computing the unblurred signal
because this version presents smaller gradient magnitudes. Moreover, the red
signal preserves the total variation better than the green one. So it is also a
more appropriate solution for the group of methods using sharp edge prediction
(including shock filtering and the method of [4]). This example shows that if
image structure magnitude significantly changes after blur, the corresponding
edge information could mistake kernel estimation.

In comparison, the larger-scale object shown in Figure 1(b) can yield sta-
ble kernel estimation because it is wider than the kernel, preserving the total
variation of the latent signal along its edges.

Figure 2 shows an image example. The blurred input (shown in (a)) contains
rich edge information along many small-scale objects. The results of Fergus et
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al. [1] (b) and Shan et al. [3] (c) are computed by extensively hand-tuning pa-
rameters. However, the correct kernel estimate still cannot be found, primarily
due to the aforementioned small structure problem.

We propose a new criterion for selecting informative edges for kernel estima-
tion. The new metric to measure the usefulness of gradients is defined as

r(x) =
‖
∑

y∈Nh(x) ∇B(y)‖∑
y∈Nh(x) ‖∇B(y)‖ + 0.5

, (2)

where B denotes the blurred image and Nh(x) is a h × h window centered
at pixel x. 0.5 is to prevent producing a large r in flat regions. The signed
∇B(y) for narrow objects (spikes) will mostly cancel out in ‖

∑
y∈Nh(x) ∇B(y)‖.∑

y∈Nh(x) ‖∇B(y)‖ is the sum of the absolute gradient magnitudes in Nh(x),
which estimates how strong the image structure is in the window. A small r
implies that either spikes or a flat region is involved, which causes neutralizing
many gradient components. Figure 2(d) shows the computed r map.

We then rule out pixels belonging to small r-value windows using a mask

M = H(r − τr), (3)

where H(·) is the Heaviside step function, outputting zeros for negative values
and ones otherwise. τr is a threshold. The final selected edges for kernel estima-
tion are determined as

∇Is = ∇Ĩ · H(M‖∇Ĩ‖2 − τs), (4)

where Ĩ denotes the shock filtered image and τs is a threshold of the gradient
magnitude. Eq. (4) excludes part of the gradients, depending jointly on the
magnitude ‖∇Ĩ‖2 and the prior mask M. This selection process reduces ambiguity
in the following kernel estimation.

Figures 2(e)-(g) and (i)-(k) illustrate the computed ∇Is maps in different it-
erations without and with the edge selection operation. The comparison shows
that including more edges do not necessarily benefit kernel estimation. Opti-
mization could be misled especially in the first a few iterations. So an image
edge selection process is vital to reduce the confusion.

To allow for inferring subtle structures during kernel refinement, we decrease
the values of τr and τs in iterations (divided by 1.1 in each pass), to include more
and more edges. So the maps in (g) and (k) contain similar amount of edges.
But the quality notably differs. The method to compute the final results shown
in (h) and (l) is detailed further below.

Fast Kernel Estimation. With the critical edge selection, initial kernel es-
timation can be accomplished quickly. We define the objective function with a
Gaussian regularizer as

E(k) = ‖∇Is ⊗ k −∇B‖2 + γ‖k‖2, (5)
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(a) Blurred input (b) ∇Is map (c) Gaussian prior (d) Our spatial prior

Fig. 3. Comparison of results using the sparse ‖∇I‖2 and spatial ‖∇I −∇Is‖2 priors.
The spatial prior makes the result in (d) preserve more sharp edges.

where γ is a weight. Based on the Parseval’s theorem, we perform FFTs on all
variables and set the derivative w.r.t. k to zero. The closed-form solution is given
by

k = F−1

(
F(∂xIs)F(∂xB) + F(∂yIs)F(∂yB)

F(∂xIs)2 + F(∂yIs)2 + γ

)
, (6)

where F(·) and F−1(·) denote the FFT and inverse FFT respectively. F(·) is
the complex conjugate operator.

Coarse Image Estimation with a Spatial Prior We use the predicted sharp
edge gradient ∇Is as a spatial prior to guide the recovery of a coarse version of
the latent image. The objective function is

E(I) = ‖I ⊗ k − B‖2 + λ‖∇I −∇Is‖2, (7)

where the new spatial prior ‖∇I−∇Is‖2 does not blindly enforce small gradients
near strong edges and thus allows for a sharp recovery even with the Gaussian
regularizer. The closed-form solution exists. With a few algebraic operations in
the frequency domain, we obtain

I = F−1

(
F(k)F(B) + λ(F(∂x)F(Isx) + F(∂y)F(Isy))

F(k)F(k) + λ(F(∂x)F(∂x) + F(∂y)F(∂y))

)
. (8)

Figure 3 compares the deconvolution results using the spatial and Gaussian
priors respectively (the latter is usually written as ‖∇I‖2). The regularization
weight λ = 2e−3. The image shown in Figure 3(d) contains well preserved sharp
edges.

2.2 Phase Two: ISD-Based Kernel Refinement

To obtain sparse PSFs, previous methods [1, 3, 5, 21] apply hard or hysteresis
thresholding to the kernel estimates. These operations however ignore the inher-
ent blur structure, possibly degrading the kernel quality. One example is shown
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(a) (b) (c)

g. t. [1] [3]

S k
s

k
0

S S1 2 3

Fig. 4. Sparse Kernel Refinement. (a) A blurred image [13]. (b) Kernels. The top row
shows respectively the ground truth kernel, the kernel estimates of Fergus et al. [1],
Shan et al. [3], and of our method in phase one. ks in the bottom row is our final result
after kernel refinement. S1-S3 show the iteratively detected support regions by the ISD
method. (c) Our restored image using ks.

in Figure 4(b), where only keeping the large-value elements apparently cannot
preserve the subtle structure of the motion PSF.

We solve this problem using an iterative support detection (ISD) method that
can ensure the deblurring quality while removing noise. The idea is to iteratively
secure the PSF elements with large values by relaxing the regularization penalty.
So these elements will not be significantly affected by regularization in the next-
round kernel refinement. This strategy was shown in [22] capable of correcting
imperfect estimates and converging quickly.

ISD is an iterative method. At the beginning of each iteration, previously
estimated kernel ki is used to form a partial support; that is, large-value elements
are put into a set Si+1 and all others belong to the set Si+1. Si+1 is constructed
as

Si+1 ← {j : ki
j > εs}, (9)

where j indexes the elements in ki and εs is a positive number, evolving in
iterations, to form the partial support. We configure εs by applying the “first
significant jump” rule [22]. Briefly speaking, we sort all elements in ki in an
ascending order w.r.t. their values and compute the differences d0, d1 · · · between
each two nearby elements. Then we exam these differences sequentially starting
from the head d0 and search for the first element, dj for example, that satisfies
dj > ‖ki‖∞/(2h · i), where h is the kernel width and ‖ki‖∞ returns the largest
value in ki. We then assign the kernel value in position j to εs. More details are
presented in [22]. Examples of the detected support are shown in the bottom row
of Figure 4(b). The elements within each S will be less penalized in optimization,
resulting in an adaptive kernel refinement process.

We then minimize

E(k) =
1
2
‖∇Is ⊗ k −∇B‖2 + γ

∑
j∈Si+1

|kj | (10)
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Algorithm 2. ISD-based Kernel Refinement
INPUT: Initial kernel k0, ∇B, and ∇Is (output of Algorithm 1)
Initialize the partial support S0 on k0 (Eq. (9)).
repeat

Solve for ki by minimizing Eq. (10).
Update S (Eq. (9)).
i ← i + 1.

until ‖ki+1−ki‖
‖ki‖ ≤ εk (εk = 1e−3 empirically)

OUTPUT: Kernel estimate ks

for PSF refinement. The difference between this function and those used in [3, 6]
is on the definition of the regularization terms. Thresholding applies softly in our
function through adaptive regularization, which allows the energy to concentrate
on significant values and thus automatically maintains PSF sparsity, faithful to
the deblurring process. The algorithm is outlined in Alg. 2..

To minimize Eq. (10) with the partial support, we employed the iterative
reweighed least square (IRLS) method. By writing convolution as matrix mul-
tiplication, the latent image I, kernel k, and blur input B are correspondingly
expressed as matrix A, vector Vk, and vector VB. Eq. (10) is then minimized by
iteratively solving linear equations w.r.t. Vk. In the t-th pass, the corresponding
linear equation is expressed as

[AT A + γdiag(VS̄Ψ−1)]V t
k = AT VB, (11)

where AT denotes the transposed version of A and VS̄ is the vector form of S. Ψ
is defined as Ψ = max(‖V t−1

k ‖1, 1e−5), which is the weight related to the kernel
estimate from the previous iteration. diag(·) produces a diagonal matrix from
the input vector. Eq. (11) can be solved by the conjugate gradient method in
each pass (we alternatively apply the matrix division operation in Matlab). As
PSFs have small size compared to images, the computation is very fast.

Our final kernel result ks is shown in Figure 4(b). It maintains many small-
value elements; meanwhile, the structure is appropriately sparse. Optimization
in this phase converges in only a few iterations. Figure 4(c) shows our restored
image using the computed PSF. It contains correctly reconstructed textures and
small edges, verifying the quality of the kernel estimate.

3 Fast TV-�1 Deconvolution

Assuming the data fitting costs following a Gaussian distribution is not a good
way to go in many cases. It possibly makes results vulnerable to outliers, as
demonstrated in many literatures. To achieve high robustness, we propose a
TV-�1 model in deconvolution, which is written as

E(I) = ‖I ⊗ k − B‖ + λ‖∇I‖. (12)
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Algorithm 3. Robust Deconvolution
INPUT: Blurred image B and the estimated kernel ks

Edge taping in Matlab
I ← B, β ← β0.
repeat

Solve for v using Eq. (18)
θ ← θ0

repeat
Solve for w using Eq. (17)
Solve for I in the frequency domain using Eq. (15)
θ ← θ/2

until θ < θmin

β ← β/2
until β < βmin

OUTPUT: Deblurred image I

It contains non-linear penalties for both the data and regularization terms. We
propose solving it using an efficient alternating minimization method, based on
a half-quadratic splitting for �1 minimization [16, 18].

For each pixel, we introduce a variable v to equal the measure I ⊗ k − B. We
also denote by w = (wx, wy) image gradients in two directions. The use of these
auxiliary variables leads to a modified objective function

E(I, w, v) =
1
2β

‖I ⊗ k − B − v‖2 +
1
2θ

‖∇I − w‖2
2 + ‖v‖ + λ‖w‖, (13)

where the first two terms are used to ensure the similarity between the measures
and the corresponding auxiliary variables. When β → 0 and θ → 0, the solution
of Eq. (13) approaches that of Eq. (12).

With the adjusted formulation, Eq. (13) can now be solved by an efficient
Alternating Minimization (AM) method, where the solver iterates among solving
I, w, and v independently by fixing other variables. w and v are initialized to
zeros.

In each iteration, we first compute I given the initial or estimated w and v by
minimizing

E(I; w, v) = ‖I ⊗ k − B − v‖2 +
β

θ
‖∇I − w‖2

2. (14)

Eq. (14) is equivalent to Eq. (13) after removing constants. As a quadratic func-
tion, Eq. (14) bears a closed form solution in minimization according to the
Parseval’s theorem after the Fourier transform. The optimal I is written as

F(I) =
F(k)F(B + v) + β/θ(F(∂x)F(wx) + F(∂y)F(wy))

F(k)F(k) + β/θ(F(∂x)F(∂x) + F(∂y)F(∂y))
. (15)

The notations are the same as those in Eq. (6).
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(a) Noisy input (b) [15] (c) [17] (d) Ours

Fig. 5. Deconvolution result comparison. The blurred images in the top and bottom
rows are with Gaussian and impulse noise respectively.

In solving for w and v given the I estimate, because w and v are not coupled
with each other in the objective function (they belong to different terms), their
optimization is independent. Two separate objective functions are thus yielded:{

E(w; I) = 1
2‖w −∇I‖2

2 + θλ‖w‖2
E(v; I) = 1

2‖v − (I ⊗ k − B)‖2 + β‖v‖ (16)

Each objective function in Eq. (16) categorizes to a single-variable optimization
problem because the variables for different pixels are not spatially coupled. The
optimal solutions for all wxs can be derived according to the shrinkage formula:

wx =
∂xI

‖∇I‖2
max(‖∇I‖2 − θλ, 0). (17)

Here, isotropic TV regularizer is used – that is, ‖∇I‖2 =
√

(∂xI)2 + (∂yI)2. wy

can be computed similarly using the above method.
Computing v can be even simpler because it is an one-dimensional shrinkage:

v = sign(I ⊗ k − B)max(‖I ⊗ k − B‖ − β, 0), (18)

where β and θ are two small positive values to enforce the similarity between the
auxiliary variables and the respective terms. To further speed up the optimiza-
tion, we employ the warm-start scheme [3, 16]. It first sets large penalties (β and
θ in our algorithm) and gradually decreases them in iterations. The details are
shown in Alg. 3.. We empirically set β0 = 1, θ0 = λ−1, and βmin = θmin = 0.01.

Figure 5 shows examples where the blurred images are with Gaussian and
impulse noise respectively. The TV-�1 model performs comparably to other state-
of-the-art deconvolution methods under the Gaussian noise. When significant
impulse-like sensor noise exists, it works even better. In terms of the computation
time, the methods of [15] and [17] spend 3 minutes and 1.5 seconds respectively
to produce the results in Figure 5 with the provided implementation while our
deconvolution algorithm, albeit using the highly non-linear function, uses 6s in
Matlab. All methods deconvolve three color channels independently.
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(a) Input (b) [1] (c) [3] (d) no M (e) with M

Fig. 6. Small objects such as the characters and thin frames are contained in the image.
They greatly increase the difficulty of motion deblurring. (d)-(e) show our results using
and not using the M map. The blur kernel is of size 51×51.

(a) Input (b) [1] (c) [3] (d) [5] (e) Ours

Fig. 7. Comparison of state-of-the-art deblurring methods

4 More Experimental Results

We experimented with several challenging examples where the images are blurred
with large kernels. Our method generally allows using the default or automati-
cally adapted parameter values. In the kernel estimation, we adaptively set the
initial values of τr and τs, using the method of [5]. Specifically, the directions of
image gradient are initially quantized into four groups. τs is set to guarantee that
at least 2

√
Pk pixels participate in kernel estimation in each group, where Pk is

the total number of pixels in kernel k. τr is similarly determined by allowing at
least 0.5

√
PIPk pixels to be selected in each group. PI is the total number of

pixels in the input image. In the coarse kernel estimation phase, we set λ = 2e−3

and γ = 10 to resist noise. In the kernel refinement, we set γ = 1. λ in the final
image deconvolution is set to 2e−2.

Our two-phase kernel estimation is efficient because we put the non-convex
optimization into the second phase. Our Matlab implementation spends about
25 seconds to estimate a 25×25 kernel from an 800×600 image with an Intel
Core2Quad CPU@2.40G. The coarse kernel estimation uses 12s in the multi-
scale framework while the kernel refinement spends 13s as it is performed only
in the finest image scale.

In Figure 6(a), we show an example that contains many small but structurally-
salient objects, such as the characters, which make high quality kernel estimation
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(a) (b) (c)

Fig. 8. One more example. (a) Blurred image. (b) Our result. (c) Close-ups.

very challenging. The results (shown in (b) and (c)) of two other methods contain
several visual artifacts due to imperfect kernel estimation. (d) shows our result
without performing edge selection. Compared to the image shown in (e), its
quality is lower, indicating the importance of incorporating the gradient mask
M in defining the objective function.

Figure 7 shows another example with comparisons with three other blind
deconvolution methods. The kernel estimates of Fergus et al.[1] and Shan et
al.[3] are seemingly too sparse, due to the final hard thresholding operation. The
restored image is therefore not very sharp. The deblurring result of Cho and Lee
[5] contains some noise. Our restored image using Alg. 3. is shown in (e). We have
also experimented with several other natural image examples. Figure 8 shows
one taken under dim light. More of them are included in our supplementary file
downloadable from the project website.

5 Concluding Remarks

We have presented a novel motion deblurring method and have made a number of
contributions. We observed that motion deblurring could fail when considerable
strong and yet narrow structures exist in the latent image and proposed an
effective mask computation algorithm to adaptively select useful edges for kernel
estimation. The ISD-based kernel refinement further improves the result quality
with adaptive regularization. The final deconvolution step uses a �1 data term
that is robust to noise. It is solved with a new iterative optimization scheme. We
have extensively tested our algorithm, and found that it is able to deblur images
with very large blur kernels, thanks to the use of the selective edge map.
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Abstract. We present a novel single image deblurring method to esti-
mate spatially non-uniform blur that results from camera shake. We use
existing spatially invariant deconvolution methods in a local and robust
way to compute initial estimates of the latent image. The camera mo-
tion is represented as a Motion Density Function (MDF) which records
the fraction of time spent in each discretized portion of the space of all
possible camera poses. Spatially varying blur kernels are derived directly
from the MDF. We show that 6D camera motion is well approximated
by 3 degrees of motion (in-plane translation and rotation) and analyze
the scope of this approximation. We present results on both synthetic
and captured data. Our system out-performs current approaches which
make the assumption of spatially invariant blur.

1 Introduction

Image blur due to camera shake is a common problem in consumer-level pho-
tography. It arises when a long exposure is required and the camera is not held
still. As the camera moves, the image formation process integrates a stream of
photographs of the scene taken from slightly different viewpoints.

Removing blur due to camera shake is currently a very active area of research.
Given only a single photograph, this blur removal is known as blind deconvo-
lution, i.e., simultaneously recovering both the blur kernel and the deblurred,
latent image. Commonly, it is assumed that the blur kernel is spatially invari-
ant, reducing the set of camera motions that may be modeled.

An open problem is to model more general camera motions, which are quite
common and can cause spatially varying blur. We focus on generalizing the cam-
era motion to include both 2D translation and in-plane rotation. Thus, starting
from a single image, we seek to recover the latent image, and the spatially varying
blur kernels that arise from this more general camera motion.

We develop a novel formulation of the camera shake deblurring problem by
generalizing spatially invariant (2D) kernels. Although a full model of motion
would require 6 degrees of freedom, we show that for typical scenarios, 6D general
motion can be reasonably approximated with a 3-dimensional motion (only in-
plane rotation and translation). The problem is still substantially more under-
constrained than the standard in-plane translation-only case.
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c© Springer-Verlag Berlin Heidelberg 2010
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Rather than directly recovering the spatially varying blur kernels at each
image point, we observe that camera motion is a 1D curve through camera pose
space. We model the time spent in each pose over the exposure as a density
function in a higher dimensional camera motion space; we call this a Motion
Density Function (MDF). The MDF can be used to generate the kernel at any
location in the image without knowing the temporal ordering of the motion curve.
Our system takes as input (1) a blurred image, (2) its EXIF tags specifying sensor
resolution and approximate focal length, and (3) an estimate of the maximum
blur kernel size, and recovers both the latent image and the MDF using a non-
linear optimization scheme similar to a more traditional spatially invariant blind-
deconvolution method. Altogether, we demonstrate an automatic method for
single image deblurring under a range of spatially-varying, camera motion blurs.

The paper is organized as follows. In Section 2, we survey related work. In
Sections 3 and 4, we propose and analyze our optimization formulation and then
discuss our solution of this formulation in Section 5. In Section 6, we show the
results of our approach and finally conclude with a discussion of limitations and
future work in Section 7.

2 Related Work

Image deblurring has received a lot of attention in the computer vision commu-
nity. Deblurring is the combination of two tightly coupled sub-problems: PSF
estimation and non-blind image deconvolution. These problems have been ad-
dressed both independently and jointly [1]. Both are longstanding problems in
computer graphics, computer vision, and image processing.

Image blur arises from multiple causes. Image blur due to camera motion
has recently received increased attention, as it is a very common problem in
consumer-level photography. In most recent work, image blur is modeled as the
convolution of an unobserved latent image with a single, spatially invariant blur
kernel [1,2,3,4,5,6,7,8,9,10,11].

Software-based methods use image priors and kernel priors to constrain an
optimization for the blur kernel and the latent image [2,3,4,5,6,12,13,14].

Fergus et al. [4] recover a blur kernel by using a natural image prior on image
gradients in a variational Bayes framework. Shan et al. [2] incorporate spatial
parameters to enforce natural image statistics using a local ringing suppression
step. Jia et al. [13] use transparency maps to get cues for object motion to recover
blur kernels by performing blind-deconvolution on the alpha matte, with a prior
on the alpha-matte. Joshi et al. [14] predict a sharp image that is consistent
with an observed blurred image. They then solve for the 2D kernel that maps
the blurred image to the predicted image.

Levin et al. [15] give a nice overview of several of these existing deblurring
techniques. Common to all of them is that they assume spatial invariance for
the blur. Levin et al. show that spatial invariance is often violated, as it is only
valid in limited cases of camera motion. Their experiments show that in practice
in-plane camera rotation (i.e., roll), which leads to spatially varying blur kernels,
is quite common.
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There is relatively little work on handling spatially-varying blur. Tai et al. [16]
developed a hybrid camera which captured a high frame rate video and a blurred
image. Optical flow vectors from the video are used to guide the computation of
spatially-varying blur kernels which are in turn used for deblurring. This method
is limited by the requirement of a hybrid camera and faces problems in regions
where optical flow computation fails. Tai et al.[17] use a coded exposure to
produce a stroboscopic motion image and estimate motion homographies for the
discrete motion steps with some user interaction, which are then used for deblur-
ring. Their method requires close user interaction and relies on non-overlapping
texture information in the blurred regions. Dai et al. [18] propose a method to
estimate spatially varying blur kernels based on values of the alpha map. The
method relies strongly on the pre-computation of a good alpha matte and as-
sumes the scene to be a foreground object moving across a background. Shan et
al. [19] propose a technique to handle rotational motion blur. They require user
interaction for rotation cues and also rely on constraints from the alpha matte.

One approach to model the spatial variation of blur kernels is to run a blind
deconvolution method at each pixel. Joshi et al. [14] do this in a limited sense,
where they run their method for non-overlapping windows in an image and use
this to remove spatially varying defocus blur and chromatic aberration; however,
they do not address camera motion blur, nor do they try to recover a global
model of the blur. Levin et al. [12] take a similar approach for object motion
blur, where an image is segmented into several areas of different motion blur
and then each area is deblurred independently. Hirsch et al.[20] also propose
a multi-frame patch-based deblurring approach but do not impose any global
camera motion constraints on the spatially-varying blur.

Unfortunately, these approaches have several limitations. First, running blind
deconvolution for each pixel, window, or segment can be slow. Furthermore, it is
unclear how best to handle boundaries between areas with different blur kernels,
which can lead to artifacts. Second, deblurring techniques often use natural
image priors, which is inherently a global constraint, and may not apply to all
local areas in an image, thus leading to unreliable blur kernels and artifacts in
the deblurred result.

In comparison, we do not try to recover the spatially varying blur kernels
directly, but rather recover the camera motion (specifically the MDF) from which
the blur kernels can be derived. In a concurrent work, Whyte et al.[21] describe
a similar framework where they recover 3-dimensional rotational camera motion
(roll, pitch, and yaw) to explain the spatially-varying blur. In contrast, we recover
a different set of 3D camera motions (roll and x,y-translations). Our results show
that these two approaches are similar for sufficiently long focal lengths due to
the rotation-translation ambiguity in that focal length range. However at shorter
focal lengths, each system will result in different types of artifacts depending on
the errors in approximating the actual underlying camera motion. Thus, the two
papers taken together form a nicely complementary set of results. We present a
more detailed analysis of this rotation-translation ambiguity in Section 4.
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3 A Unified Camera Shake Blur Model

In this section, we develop a unified model relating the camera motion, the latent
image and the blurred image for a scene with constant depth.

3.1 Image Blur Model

Let l be the latent image of a constant depth scene and b be the recorded blurred
image. The blurred image can be written as a convolution of the latent image
with a kernel k and the addition of some noise n. The convolution model does
not account for variations in depth and view-dependent illumination changes
and we do not handle them here:

b = k ⊗ l + n, (1)

For simplicity, we assume Gaussian noise, n ∼ N (0, σ2).
This convolution model can also be written as a matrix-vector product:

B = KL + N, (2)

where L, B, and N denote the column-vector forms of l, b, and n respectively. K
is an image filtering matrix that applies the convolution – each row of K is the
blur kernel placed at each pixel location and unraveled into a row vector. For
this reason, we also refer to K as the blur matrix. With spatially invariant blur
each row has the same values that are just shifted in location. This matrix-vector
form becomes particularly useful for formulating spatially varying blur – as each
row contains a different blur kernel for each pixel [22], as we will discuss in the
next section.

3.2 Blur Matrix as Motion Response

We assume the camera initially lies at the world origin with its axes aligned
with the world axes. A camera motion is a sequence of camera poses where
each pose can be characterized by 6 parameters - 3 rotations and 3 translations.
Any camera motion can be represented as a 1D continuous path through this
6-dimensional space, which we call camera pose space. In a discretized version of
this space, the camera spends a fraction of the exposure time at each pose; we call
this proportion the density at that pose. Taken all together, these densities form
a Motion Density Function from which a blur kernel can be directly determined
for any point on the image. The MDF for all the camera poses forms a column
vector over the discrete positions in the camera pose space. We denote the MDF
by A where each element aj denotes the density at the camera pose j.

The observed blurred image B is an integration over the images seen by the
camera over all the poses in its path. In the discrete motion space, B is a summa-
tion over the images seen by the camera in all possible poses, each weighted by
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the proportion of time spent by the camera in that pose, which in our notation
is the pose’s density. We write this mathematically as:

B =
∑

j

aj(KjL) + N, (3)

where Kj is a matrix that warps L, the latent image or the un-blurred image seen
by the camera in the original pose, to the image seen in pose j. N is the noise
model introduced in Section 3.1. Given a particular 6D pose (indexed by j) of a
camera, we denote the corresponding homography that warps a fronto-parallel
scene at depth d as Pj :

Pj = C(Rj +
1
d
tj [0 0 1])C−1, (4)

where Rj and tj are the rotation matrix and translation vector for pose j and
C is the matrix of camera intrinsics, which we form from the information in the
image EXIF tags. For now we assume the depth d is known. Kj is an image
warping matrix where each row contains the weights used to compute the values
of pixels in the warped image by applying the inverse homography. We use
bilinear interpolation for the warps and thus there are at most four non-zero
values per row of Kj. For clarity, we note that Kj is a square matrix where each
dimension is the width times the height of the image l.

Rearranging the linear operations in Equation 3 and comparing it with Equa-
tion 2, allows us to write the blur matrix K as:

K =
∑

j

ajKj . (5)

Thus the Kj ’s form a basis set whose elements can be linearly combined using the
MDF to get the corresponding blur matrix for any camera path. By definition,
the blur matrix also gives us the blur kernels for each pixel location in the
image. We call this basis set the Motion Response Basis (MRB). We note that
the MRB can represent any basis in the more traditional sense, e.g., each basis
matrix could actually correspond to an aggregate blur matrix itself where it
captures some region of support in the 6D space.

In this work, we choose a particular basis that we found meaningful for mod-
eling typically occurring camera motion blurs. Specifically, we choose to reduce
motion in the 6D space to a 3D subspace: rotation around the z axis (roll) and x
and y translation (modeling x translation and yaw and y translation and pitch
together, respectively and neglecting the affect on z translation). We then com-
pute the basis by point-sampling this 3D space. We discuss the validity of using
a 3D space and details about creating basis sets in Section 4.

3.3 Optimization Formulation

Equation 3 relates the MDF to the latent image and the blurred image. In the
process of deblurring, each basis matrix Kj is pre-computed and we solve for
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the variables L and A. To do this we pose the problem in a Bayesian framework
and seek to recover the latent image and MDF that is most likely given the
observation and priors on the image and MDF.

We compute the maximum a posteriori (MAP) estimate, which we formulate
as the minimization of the following energy function (in the interest of space, we
have left out the intermediate derivation steps from the Bayesian formulation):

E = ||[
∑

j ajKj]L − B||2 + prior(L) + prior(A), (6)
prior(L) = φ(|∂xL|) + φ(|∂yL|), (7)
prior(A) = λ1||A||γ + λ2||∇A||2. (8)

prior(L) is the global image prior with the same parameter settings as used by
Shan et al. [2]. φ assigns a linear penalty to small gradients and quadratic penal-
ties to large gradients and approximates the heavy-tailed gradient distribution
priors for natural images [23].

prior(A) models priors that are important to recovering an accurate MDF.
Specifically in 6D, the camera motion is a 1D path that captures the trajectory
that the camera takes during the exposure window. This holds in the 3D space
as well. Ideally, one would enforce a path prior directly on the MDF; however,
this is a computationally challenging constraint to optimize. Thus we enforce
two other computationally more tractable constraints.

The first component of prior(A) is a sparsity prior on the MDF values. We
note that while blur kernels in the 2D image space may seem quite dense, in the
higher dimensional MDF space, a 1D path represents an extremely sparse popu-
lation of the space. The second component of prior(A) is a smoothness prior on
the MDF, which also incorporates the concept of the MDF representing a path,
as it enforces continuity in the space and captures the conditional probability
that a particular pose is more likely if a nearby pose is likely.

We also note that we can choose to use the whole blurred image for the
optimization or some selected parts by masking out rows in L, B, and the cor-
responding matrices.

4 Forming the Motion Response Basis

As introduced in Section 3, the Motion Response Basis (MRB) is the set of image
warping matrices Kj’s that correspond to a warp operation relating the image
in the original camera pose to that in camera pose j. We can pre-compute the
MRB; however, the size of the basis set is critical for the computational feasibility
of the system. We now discuss the issues involved in this computation.

4.1 Dependence on Scene Depth

As discussed in Section 3.2, it is necessary to know the scene depth d to compute
the homographies Pj and corresponding basis matrices Kj. Unfortunately, recov-
ering the depth of a scene from a single image is an under-constrained problem.
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Fig. 1. PSNR of the deblurred result (by recovering yaw using x translation) with
respect to the ground truth image. Cropped parts from deblurred images for some plot
samples are also shown for qualitative comparison.

Fortunately, given our assumption of a constant depth or fronto-parallel scene,
we observe that we do not need to know the exact depth and rather can consider
1
d tj as a single 3-dimensional variable, which allows us to remove the dependence
on depth and instead only concern ourselves with the image parallax. Given this,
the number of degrees of freedom of our system does not change, depth is not
needed as a separate variable. Computing a basis that captures the parallax
reduces to sampling the total resulting image plane translation, appropriately.
We discuss how to choose the sampling resolution in Subsection 4.3.

4.2 Computational Reduction in d.o.f for the Camera Motion

We observe that instead of using 6 degrees of freedom for the camera motion, we
can use only 3 degrees of freedom - roll (rotation about z-axis) and x and y trans-
lations. This reduction makes the problem computationally more feasible since
the size of the MRB is dependent on the number of degrees of freedom. Given
the projective camera model, it is known that small camera rotations about the
x (pitch) and y (yaw) axes can be approximated by camera translations when
perspective affects are minimal (i.e., longer focal lengths). Joshi et al [24] show
that in most cases the camera shake motion lies in this operating range. To
validate this approximation, we performed an experiment with a ground truth
image blurred using a synthetic camera motion involving yaw. We then solve for
an MDF limited to only x translations. Figure 1 shows the PSNR values com-
paring the resulting deconvolved images to the ground truth as we vary the focal
length. We varied the amount of yaw in relation to focal length to keep the blur
kernels approximately the same size (∼ 11 pixels wide) so that deconvolution
errors due to differences in blur kernel size do not affect the analysis. The PSNR
improvement levels out quickly, which means that the recovered translations
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Fig. 2. Our System Pipeline

start to accurately approximate the yaw as the focal length increases to a value
that covers most standard camera settings. A similar argument also holds for
pitch to be approximated by y translations. We do a similar analysis for the effect
of z translations of the camera and found that their contribution is also negligible
under typical camera shake motion. We provide more analysis including similar
figures for pitch and z translations on the project webpage [25].

As a result, the full 6D space of camera motion can be accurately approxi-
mated using only samples of the 3D space of roll, x and y translations across a
wide range of focal lengths. We note that 6D motions can still be theoretically
solved using our framework, but the high dimensionality makes the solution
computationally prohibitive.

4.3 Sampling Range and Resolution of the Camera Motion Space

The number of matrices Kj is the number of motion poses that we sample.
The number of samples along each d.o.f. affects the size of the MRB and hence
we want to keep the sampling as coarse as possible. We hypothesize that the
sampling needs to only be dense enough that the neighboring voxels in the
discretized motion space project to within a pixel width at any image location.
The range of the motion can be chosen to cover the estimate of the kernel size
that is initially specified by the user. Hence we automatically choose the sampling
range and resolution along the 3 degrees of freedom and pre-compute the Kj’s.

5 Our System

The proposed optimization in Equation 6 is non-linear in the variables L and A.
We solve this using an alternating, iterative EM-style procedure which takes an
initialization for L and then optimizes for A and L successively. Figure 2 shows
the steps in our system pipeline, and we explain each of the steps now.

5.1 Generating an Initial Estimate for the Latent Image

We first select uniformly distributed patches on the blurred image which we
independently deblur for generating an initial estimate for the latent image L.
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The patch sizes are proportional to the estimated maximum blur kernel size in
the image, which is an input parameter for our system. Since kernel estimation
techniques require a good distribution of edge orientations [14], we filter out the
patches having a low average value of the Harris corner metric. The Harris corner
metric measures the presence of gradients in orthogonal directions in an image
region and hence is a good estimate for the success of kernel estimation. We em-
pirically choose this threshold value to be 0.1. We denote these selected patches
as pi’s. We then use the blind deconvolution approach proposed by Shan et al [2]
to deblur each of these patches independently. We denote the corresponding de-
blurred patches and blur kernels as di’s and ki’s, respectively. These deblurred
patches are the initial estimates for the latent image in corresponding regions.

5.2 Ransac-Based Optimization for the MDF

Assuming we know L, we can solve for A by minimizing the following function
which is a reduced form of Equation 6.

E = ||
∑

j

aj(KjL) − B||2 + λ1||A||γ + λ2||∇A||2 (9)

Here we only use the parts of the image regions of L and B which are covered by
patches pi’s. This optimization is performed using an iterative re-weighted least
squares (IRLS). We use the values of γ = 0.8, λ1 = 0.1 and λ2 = 0.5 in all our
experiments. In practice, we see that using five iterations of IRLS works well.

We have found that using all the deblurred patches from the initialization
phase does not give good results. This is because blind blur kernel estimation on
a patch can vary in performance based on the quality and quantity of texture
information and image noise. Ideally, we would want to select the best deblurred
patches in the image for fitting the MDF. Unfortunately, this is a hard problem to
solve in itself. There are numerous metrics that have been used in the literature
for this classification – penalizing based on a heavy-tailed gradient distribution
([23]) and slope of the power spectrum ([26]); however, we have not found these
to work well.

Instead, we use a RANSAC-based scheme to robustly choose a set of “good”
patches from the initial set of deblurred patches. Each RANSAC iteration ran-
domly chooses 40% of the patches and fits an MDF to them by minimizing
Equation 9. We classify each of the patches, pi’s, as inliers or outliers by how
well the MDF describes the corresponding blur kernel. We consider this a con-
tribution of using an MDF – the process of fitting a lower-dimensional MDF to
blurred/deblurred patch pairs allows us to measure the quality of deblurring in
local image patches, which is otherwise difficult.

Specifically, to compute the inlier metric, let k′
i be the recovered kernel using

the MDF, the residual error is given as, ||di ∗ k′
i − bi||2. A patch is an inlier if its

residual error is less than 1.2 times the median of all the errors in the patch set.
From all the RANSAC iterations, we select the set of patches which gives the
minimum average residual error on the inliers. Finally, we fit an MDF using all
the inlier patches.
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Fig. 3. Deblurred results using different schemes for choosing good deblurred patches
for initialization. Handpicking patches works better than RANSAC-based selection
which works better than no selection at all.

To test the performance of our RANSAC approach, we ran our complete
deblurring pipeline on three cases – (A) using all the initially deblurred image
patches, (B) automatically choose inliers from the initially deblurred patches
using RANSAC, and (C) handpicking patches to be deblurred. Figure 3 shows
the deblurring results for these three cases, and we see that using handpicked
patches works better than RANSAC which in turn works better than doing no
patch selection. We use the RANSAC-based scheme in all our experiments since
it is robust, automatic, and gives reasonable results.

5.3 Optimization for the Latent Image

Assuming we know the MDF A, we can solve for L by minimizing the following
function which is another reduced form of Equation 6. This is essentially a non-
blind image deconvolution:

E = ||
∑

j

(ajKj)L − B||2 + φ(|∂xL|) + φ(|∂yL|). (10)

We solve this optimization as described by Shan et al. [23] in their paper. We
feed the solution back into the RANSAC-based MDF optimization and repeat
the overall procedure until the latent image converges. We have observed that
2-3 iterations are enough for convergence of the recovered latent image in all our
experiments.

6 Experiments and Results

We run our deblurring experiments on a quad dual-core 3.0GHz PC with 64GB
RAM. Running our system on a 768X512 sized image takes about 1 hour and
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Fig. 4. Model validation. (A) Ground truth image, (B) Synthetic camera motion, (C)
Blurred image, (D) Deblurred output using ground truth initialization, (E) Deblurred
output using handpicked locally blind deblurred image regions for initialization, (F)
Result with a globally spatially invariant deblurring system. (Please zoom in to com-
pare.)

takes up around 8 GBs of RAM. As there are no existing single image automatic
deblurring systems for a general (spatially-varying) camera motion blur, we per-
form all our comparisons with the recent blind deconvolution method of Shan et
al [2], who have code available online.

6.1 Model Validation Using Synthetic Data

Figure 4 shows the visual validation of our model formulation and illustrates sensi-
tivity to the initialization values. We take a sharp image (A) and use a specified 6D
camera motion (B) to blur it (C). We then optimize for the 3D MDF, (z-rotation
and x, y-translations) using the original sharp image as the initialization (D) and
using some handpicked locally blind deblurred image regions for initialization (E).
(F) shows the corresponding result for a blind spatially invariant deblurring sys-
tem. We see that (D) is very close to the ground truth which means that if we start
with the ideal initialization, we can recover a very accurate 3D approximation of
the true 6D MDF. We do see some artifacts (upper left corner) in (E) which shows
that our system is sensitive to the initial latent image. But we still out-perform the
result in (F), which assumes only a translational motion of the camera or in other
words, a spatially invariant blur kernel. We show more such comparison sets with
synthetic data on the project webpage [25].



182 A. Gupta et al.

(A) Blurred (B) Spatially-invariant (C) Our result

(B
) S

pa
tia

lly
-in

va
ria

nt
(C

) O
ur

 R
es

ul
t

Fig. 5. Deblurring result. (A) Blurred image, (B) Deblurred image using spatially
invariant approach, (C) Deblurred result using our system. Recovered blur kernels at
few locations are shown in yellow boxes.
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Fig. 6. Deblurring result. (A) Blurred image, (B) Deblurred image using spatially
invariant approach, (C) Deblurred result using our system. Recovered blur kernels at
few locations are shown in yellow boxes.
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6.2 Results and Comparisons on Real-World Data

Figure 5 shows one of our results for real-world blurred images of scenes captured
using a Canon EOS-1D camera. It shows the original blurred image (A), the de-
blurred result using spatially invariant deconvolution (B), our deblurred result
(C), and the inset comparisons between (B) and (C). Our approach shows a sig-
nificant improvement over the spatially invariant approach in all the cases. Our
current implementation does not handle depth variance in the scene. Figure 6
is a difficult example as it has large depth variation, yet our deblurring method
performs better than the spatially invariant approach and gives a reasonable
looking deblurred result. This shows that our system can handle depth variation
until the point where it starts to cause a large amount of spatial variation in
the blur kernels. We also provide more results and intermediate step images for
each of these results on the project webpage [25].

7 Discussion and Future Work

We presented a unified model of camera shake blur and a framework to recover
the camera motion and latent image from a single blurred image. One limita-
tion of our work is that it depends on imperfect spatially invariant deblurring
estimates for initialization. Two things could improve this: (a) using other blur
estimation methods for initialization and (b) a better metric to judge the accu-
racy of a particular kernel estimate, which is still a very open and interesting
problem.

Another interesting area of work is to explore other motion response bases.
Instead of using a uniform sampling with delta functions, a more sophisticated
basis with larger, more complex support regions may be more appropriate for
modeling common camera blurs.
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Abstract. We propose a convergent iterative regularization procedure
based on the square of a dual norm for image restoration with general
(quadratic or non-quadratic) convex fidelity terms. Convergent iterative
regularization methods have been employed for image deblurring or de-
noising in the presence of Gaussian noise, which use L2 [1] and L1 [2]
fidelity terms. Iusem-Resmerita [3] proposed a proximal point method
using inexact Bregman distance for minimizing a general convex func-
tion defined on a general non-reflexive Banach space which is the dual
of a separable Banach space. Based on this, we investigate several ap-
proaches for image restoration (denoising-deblurring) with different types
of noise. We test the behavior of proposed algorithms on synthetic and
real images. We compare the results with other state-of-the-art itera-
tive procedures as well as the corresponding existing one-step gradient
descent implementations. The numerical experiments indicate that the
iterative procedure yields high quality reconstructions and superior re-
sults to those obtained by one-step gradient descent and similar with
other iterative methods.
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1 Introduction

Proximal point methods have been employed to stabilize ill-posed problems in
infinite dimensional settings, using L2 [1] and L1 data-fitting terms [2], respec-
tively. Recently, Iusem-Resmerita [3] proposed a proximal point method for mini-
mizing a general convex function defined on a general non-reflexive Banach space
which is the dual of a separable Banach space. Our aim here is to investigate and
propose, based on that method, several iterative approaches for image restora-
tion.

In Tadmor et al [4], an iterative procedure for computing hierarchical (BV, L2)
decompositions has been proposed for image denoising, and this was extended to
more general cases for image restoration and segmentation in [5]. Osher et al [1]
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proposed another iterative procedure for approximating minimizers of quadratic
objective functions, with the aim of image denoising or deblurring, providing
significant improvements over the standard model introduced by Rudin, Osher,
Fatemi (ROF) [6]. This turned out to be equivalent to proximal point algorithm
on a nonreflexive Banach space as well as to an augmented Lagrangian method
for a convex minimization problem subject to linear constraints. In addition,
He et al [2] generalized the Bregman distance based iterative algorithm [1] to
L1 fidelity term by using a suitable sequence of penalty parameters, and proved
the well-definedness and the convergence of the algorithm with L1 fidelity term,
which is an iterative version of L1-TV considered by Chan and Esedoglu [7],
and presented denoising results in the presence of Gaussian noise. Benning and
Burger [8] derived basic error estimates in the symmetric Bregman distance be-
tween the exact solution and the estimated solution satisfying an optimality
condition, for general convex variational regularization methods. Furthermore,
the authors of [8] investigated specific error estimates for data fidelity terms cor-
responding to noise models from imaging, such as Gaussian, Laplacian, Poisson,
and multiplicative noise.

Recently, Iusem and Resmerita [3] combine the idea of [1] with a surjectivity
result, shown in [9] and [10], in order to obtain a proximal point method for
minimizing more general convex functions, with interesting convergence prop-
erties. For the optimization case where the objective function is not necessarily
quadratic, they use a positive multiple of an inexact Bregman distance associ-
ated with the square of the norm as regularizing term; a solution is approached
by a sequence of approximate minimizers of an auxiliary problem. Regarding the
condition of being the dual of a Banach space, we recall that nonreflexive Banach
spaces which are duals of other spaces include the cases of l∞ and L∞, l1 and
BV (the space of functions of bounded variation) which appear quite frequently
in a large range of applications.

Here we apply the proximal point method introduced in [3] to general ill-
posed operator equations and we propose several algorithms for image restora-
tion problems, such as image deblurring in the presence of noise (for Gaussian
or Laplacian noise with corresponding convex fidelity terms). Finally, numeri-
cal results are given for each image restoration model. Comparisons with other
methods of similar spirit or one-step gradient descent models are also presented.

2 Proposed Iterative Method for Solving Ill-Posed
Operator Equations

Our proposed iterative method is based on the proximal point method and con-
vergence results of Iusem-Resmerita from [3]. We first recall the necessary def-
initions and terminology. Let X be a nonreflexive Banach space and X∗ its
topological dual. For u∗ ∈ X∗ and u ∈ X , we denote by 〈u∗, u〉 = u∗(u) the
duality pairing. Denote by h(u) = 1

2‖u‖2, for u ∈ X .
For ε > 0, the ε-subdifferential of h at a point u ∈ X is [11]

∂εh(u) = {u∗ ∈ X∗ : h(v) − h(u) − 〈u∗, v − u〉 ≥ −ε, ∀v ∈ X}.
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The normalized ε-duality mapping of X , introduced by Gossez [9], extends
the notion of duality mapping as follows

Jε(u) = {u∗ ∈ X∗ : 〈u∗, u〉 + ε ≥ 1
2
‖u∗‖2 +

1
2
‖u‖2}, (1)

and an equivalent definition for the ε-duality mapping is Jε(u) = ∂ε

( 1
2‖u‖2

)
.

The inexact Bregman distances with respect to the convex function h and to
an ε-subgradient ξ of h were defined in [3] as follows:

Dε(v, u) = h(v) − h(u) − 〈ξ, v − u〉 + ε. (2)

Note that Dε(v, u) ≥ 0 for any u, v ∈ X and Dε(u, u) = ε > 0 for all u ∈ X .
Given ε ≥ 0 and a function g : X → R ∪ {+∞}, we say that ū ∈ dom g =

{u ∈ X : g(u) < ∞} is an ε-minimizer of g when

g(ū) ≤ g(u) + ε (3)

for all u ∈ dom g.
The following proximal point algorithm is proposed in [3] by Iusem and

Resmerita.

Initialization
Take u0 ∈ dom g and ξ0 ∈ Jε0(u0).

Iterative step
Let k ∈ N. Assume that uk ∈ dom g and ξk ∈ Jεk

(uk) are given. We proceed
to define uk+1, ξk+1. Define Dεk(u, uk) = h(u) − h(uk) − 〈ξk, u − uk〉 + εk and
ε̄k = λkεk+1.

Determine uk+1 ∈ dom g as an ε̄k − minimizer of the function gk(u) defined
as

gk(u) = g(u) + λkDεk(u, uk), (4)

that is to say, in view of (3),

g(uk+1) + λkDεk(uk+1, uk) ≤ g(u) + λkDεk(u, uk) + ε̄k (5)

for all u ∈ dom g.
Let ηk+1 ∈ ∂g(uk+1) and ξk+1 ∈ Jεk+1(uk+1) such that

ηk+1 + λk(ξk+1 − ξk) = 0, (6)

using two exogenous sequences {εk} (summable) and {λk} (bounded above) of
positive numbers. By comparison to other iterative methods, Iusem-Resmerita
method has several advantages: it allows very general function g and very general
regularization; at each step, it is theoretically sufficient to compute only an ε̄k-
minimizer, thus some error is allowed. On the other hand, Iusem-Resmerita
method requires the use of the full norm on X (and not only a semi-norm), thus
the method may be in practice computationally more expensive.
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We now apply this general Iusem-Resmerita algorithm [3] to linear ill-posed
inverse problems. Large classes of inverse problems can be formulated as operator
equations Ku = y.

We define the residual g(u) = S(y, Ku) for any u ∈ X , where S is a similarity
measure (see, e.g., [12], [8]). The iterative method introduced in [3] can be applied
to this exact data case setting and provides weakly∗ approximations for the
solutions of the equation, provided that at least one solution exists.

Usually, the above equations Ku = y are ill posed, in the sense that the opera-
tor K may not be continuously invertible which means that small perturbations
in the data y lead to high oscillations in the solutions.

Consider that only noisy data yδ are given, such that

S(yδ, y) ≤ r(δ), δ > 0, (7)

where r = r(δ) is a function of δ with

lim
δ→0+

r(δ) = 0. (8)

Denote
gδ(u) = S(yδ, Ku).

We show now that the general iterative method presented above yields a regu-
larization method for such problems. We will use the following

Assumptions (A)

– The operator K : X → Y is linear and bounded, and yields an ill-posed
problem.

– X and Y are Banach spaces. In addition, X is the topological dual of a
separable Banach space.

– The similarity measure S is such that
1. The function gδ(u) = S(yδ, Ku) is convex and weakly∗ lower semicon-

tinuous.
2.

lim
δ→0+

gδ(uδ) = 0 ⇒ lim
δ→0+

Kuδ = y, (9)

whenever {uδ}δ>0 is a net in X , the last limit being understood with
respect to the norm of Y .

We consider a positive constant parameter c. The method reads as follows:

Algorithm 1. Take u0 ∈ dom gδ and ξ0 ∈ Jε0(u0).

Iterative step
Let k ∈ N. Assume that uk ∈ dom gδ and ξk ∈ Jεk

(uk) are given. We proceed
to define uk+1, ξk+1. Define Dεk(u, uk) = h(u) − h(uk) − 〈ξk, u − uk〉 + εk and
ε̄k = cεk+1.
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Determine uk+1 ∈ dom gδ as an ε̄k-minimizer of the function gδ
k(u) defined

as
gδ

k(u) = gδ(u) + cDεk(u, uk),

that is to say,

gδ(uk+1) + cDεk(uk+1, uk) ≤ gδ(u) + cDεk(u, uk) + ε̄k

for all u ∈ dom gδ.
Let ηk+1 ∈ ∂gδ(uk+1) and ξk+1 ∈ Jεk+1(uk+1) such that

ηk+1 + c(ξk+1 − ξk) = 0.

A posteriori strategy. We choose the stopping index based on a discrepancy
type principle, similarly to the one in [1]:

k∗ = max{k ∈ N : gδ(uk) ≥ τr(δ)}, (10)

for some τ > 1.
We show that the stopping index is finite and that Algorithm 1 together with

the stopping rule stably approximate solutions of the equation (proof included
in a longer version of this work [13]).

Proposition 1. Let ũ ∈ X verify Kũ = y, assume that inequality (7) is satis-
fied, assumptions (A) hold and that the sequence {εk} is such that

∞∑
k=1

kεk < ∞. (11)

Moreover, let the stopping index k∗ be chosen according to (10). Then k∗ is finite,
the sequence {‖uk∗‖}δ is bounded and hence, as δ → 0, there exists a weakly∗-
convergent subsequence {uk(δn)}n in X. If the following conditions hold, then the
limit of each weakly∗ convergent subsequence is a solution of Ku = y:

i) {k∗}δ>0 is unbounded;
ii) Weak∗-convergence of {uk(δn)}n to some u ∈ X implies convergence of

{Kuk(δn)}n to Ku, as n → ∞ with respect to the norm topology of Y .

A priori strategy. One could stop Algorithm 1 by using a stopping index which
depends on the noise level only, by contrast to the previously chosen k∗ which
depends also on the noisy data yδ. More precisely, one chooses

k(δ) ∼ 1
r(δ)

. (12)

One can also show that the sequence {uk(δ)}δ>0 converges weakly∗ to solutions
of the equation as δ → 0.

Proposition 2. Let ũ ∈ X verify Kũ = y, assume that inequality (7) is satis-
fied, assumptions (A) hold and that the sequence {εk} obeys (11). Moreover, let
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the stopping index k(δ) be chosen according to (12). Then the sequence {‖uk(δ)‖}δ

is bounded and hence, as δ → 0, there exists a weakly∗- convergent subsequence
{uk(δn)}n in X. If the following condition holds, then the limit of each weak∗

convergent subsequence is a solution of Ku = y: weak∗-convergence of {uk(δn)}n

to some u ∈ X implies convergence of {Kuk(δn)}n to Ku, as n → ∞ with respect
to the norm topology of Y .

3 Several Proximal Point Based Approaches for Image
Restoration

We present a few image restoration settings which fit the theoretical framework
investigated in the previous section. We assume that noisy blurry data f corre-
sponding to yδ is given, defined on a open and bounded domain Ω of RN . First,
we briefly mention prior relevant work in image processing.

In Tadmor et al [4], an iterative procedure for computing hierarchical (BV, L2)
decompositions has been proposed for image denoising, and this was extended
to more general cases for image restoration and segmentation in [5]. For image
deblurring in the presence of Gaussian noise, assuming the degradation model
f = Ku + n, the iterative method from [5] computes a sequence uk, such that
each uk+1 is the minimizer of λ02k‖vk −Kuk+1‖2

2 +
∫

Ω
|Duk+1|, where v−1 = f ,

k = 0, 1, ... and vk = Kuk+1 + vk+1. The partial sum
∑k

j=0 uj is a denoised-
deblurred version of f , and converges to f as k → ∞.

Osher et al [1] proposed an iterative algorithm with quadratic fidelity term
S and a convex regularizing functional h (e.g. TV-regularizer h(u) =

∫
Ω
|Du|):

starting with u0, uk+1 is a minimizer of the functional

gk(u) = S(f, Ku)+D(u, uk) =
λ

2
‖f−Ku‖2

2+[h(u)−h(uk)−〈pk, u−uk〉], (13)

where pk = pk−1 + λK∗(f − Kuk) ∈ ∂h(uk) and λ > 0 is a parameter. The
authors of [1] proved the well-definedness and the convergence of iterates uk,
and presented some applications to denoising or deblurring in the presence of
Gaussian noise, obtaining significant improvement over the standard Rudin et
al. model [6,14], which is

min
u

{
λ

2
‖f − Ku‖2

2 +
∫

Ω

|Du|
}

. (14)

We also refer to [15] where convergence rates for the iterative method (13) are
established.

He et al [2] modified the above iterative algorithm [1] by using the varying
parameter 1

2kλ with λ > 0 instead of fixed parameter λ > 0, inspired by [16] and
[4]:

gk(u) = S(f, u) + D(u, uk) = S(f, u) +
1

2kλ
[h(u) − h(uk) − 〈pk, u − uk〉], (15)
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where S(f, u) = s(f − u) with s being a nonnegative, convex, and positively
homogeneous functional, which is continuous with respect to weak∗ convergence
in BV , e.g. s(f −u) = ‖f −u‖2

2 or s(f −u) = ‖f −u‖1. Thus, the authors proved
the well-definedness and the convergence of the algorithm with L1 fidelity term,
which is also the iterative version of the L1-TV model considered by Chan and
Esedoglu [7], and presented denoising results in the presence of Gaussian noise.

Below we set the general iterative algorithm for image deblurring in the pres-
ence of Gaussian and Laplacian noise, with the corresponding (convex) fidelity
terms.

3.1 Image Deblurring in the Presence of Noise

Let X , Y be Banach spaces, X ⊂ Y , where X is the dual of a separable Banach
space. We consider the standard deblurring-denoising model given by f = Ku+n
where f ∈ Y is the observed noisy data, K : Y → Y is a convolution operator
with blurring kernel K (i.e. Ku := K ∗ u), u ∈ X is the ideal image we want to
recover, and n is noise.

Here, we present two noise models in infinite dimension prompted by the
corresponding finite dimensional models based on the conditional probability
p(f |Ku): the Gaussian model and the Laplace model. In finite dimensional
spaces, the conditional probability p(f |Ku) of the data f with given image Ku
is the component of the Bayesian model that is influenced by the type of distri-
bution of the noise (and hence the noisy data f).

Assuming X = BV (Ω) and Y = Lp(Ω) with p = 1 or 2, we have

h(u) =
1
2
‖u‖2

BV =
1
2

(∫
Ω

|u|dx +
∫

Ω

|Du|
)2

.

Here Ω is a bounded and open subset of R
N .

In addition, we consider convex functions of the form g(u) = S(f, Ku) for any
u ∈ X , where S is convex with respect to u for a fixed f . Then, we propose the
following general iterative algorithm to recover u:

Algorithm 4.1. Let u0 = 0, ξ0 = 0, ε0 = 0 and iterate for k ∈ Z, k ≥ 0.

– Given (uk, ξk), define ε̄k = cεk+1, and compute uk+1 as a ε̄k − minimizer
of the functional gk(u) = S(f, Ku) + c[h(u) − h(uk) − 〈ξk, u − uk〉 + εk].

– Determine ηk+1 ∈ ∂uS(f, Kuk+1) and ξk+1 ∈ Jεk+1(uk+1) such that ηk+1 +
c(ξk+1 − ξk) = 0.

Note that we use the gradient descent method to minimize gk(u). In what follows,
in practice, we assume that we work with functions u ∈ W 1,1(Ω) ⊂ BV (Ω).
Also, we make the functional h(u) differentiable by substituting it with h(u) ≈
1
2

( ∫
Ω

√
ε2 + u2dx +

∫
Ω

√
ε2 + |∇u|2dx

)2
, ε > 0 small. The subgradient in this

case becomes

∂h(u) ≈
(∫

Ω

√
ε2 + u2 +

√
ε2 + |∇u|2dx

)[
u√

ε2 + u2
−∇ · ∇u√

ε2 + u2

]
.
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Also, we refer to [17, Section 3.4.1] for the relation between Gateaux differentia-
bility and ε̄k-minimizers. If u is an ε̄k-minimizer of the Gateaux-differentiable
function gk(u), then we must have ‖∂gk(u)‖ ≤ ε̄k. In practice, we use time-
dependent gradient descent to approximate an ε̄k-minimizer u by solving ∂u

∂t =
−∂gk(u) + ε̄k to steady state.

Remark 1. We can start with u0 = 0, ξ0 = 0, ε0 = 0. Although our theory
considers positive parameters εk in order to ensure existence of the iterates
uk, one could still initialize the algorithm with u0 = 0, ξ0 = 0, ε0 = 0 in
many situations, including the particular ones investigated below. In such cases,
existence of u1 and ξ1 is not based on the surjectivity result employed in [3], but
rather on direct analysis of the function S(f, Ku) + ch(u) to be minimized.

Gaussian noise. If the data is f = Ku + n ∈ Y = L2(Ω) with Gaus-
sian distributed noise and with the expectation Ku, the conditional probability

p(f |Ku) is described as p(f |Ku) ∼ e−
‖f−Ku‖2

2
2σ2 , where σ2 is the variance of the

noise n. Maximizing p(f |Ku) with respect to u, is equivalent to minimizing −ln
p(f |Ku), thus we obtain a convex fidelity term to be minimized for u ∈ BV (Ω),
S(f, Ku) = 1

2‖f − Ku‖2
2. The function g(u) = S(f, Ku) satisfies the conditions

enforced in Assumptions (A) in dimension one and two. Moreover, let r(δ) = δ2/2
(see (7)).

Since such a quadratic S is Gâteaux-differentiable, its subgradient is given by
∂uS(f, Ku) = K∗(Ku − f) which leads to ξk+1 = ξk − 1

cK∗(Kuk+1 − f). We
propose the following numerical algorithm:

Numerical Algorithm.

I. Let u0 = 0, ξ0 = 0, ε0 = 0 and iterate for k ∈ Z, k ≥ 0 until ‖f−Kuk+1‖2 ≤ σ:

– For u = uk+1, use ∂u
∂t = K∗(f − Ku)− c[∂h(u) − ξk] + cεk+1

– For ξk+1, use ξk+1 = ξk + 1
cK∗(f − Kuk+1).

In addition, following [1], we let ξk = K∗vk

c so that we have vk+1 = vk + (f −
Kuk+1).

With v0 = 0, since cξ0 = 0 = K∗0 = K∗v0, we may conclude inductively
that cξk ∈ Range(K∗), and hence there exists vk ∈ Y ∗ = L2(Ω) such that
cξk = K∗vk. Hence, we can have the following alternative numerical algorithm:

II. Let u0 = 0, v0 = 0, ε0 = 0 and iterate for k ∈ Z, k ≥ 0 until ‖f −Kuk+1‖2 ≤
σ:

– For u = uk+1, use ∂u
∂t = K∗(f + vk − Ku) − c∂h(u) + cεk+1

– For vk+1, use vk+1 = vk + (f − Kuk+1).

Laplacian noise. If the data is f = Ku + n ∈ Y = L1(Ω) with n being
a Laplacian distributed random variable with mean zero and variance 2σ2, we
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Table 1. Results using different εk (u∗: original image)

Gaussian noise, Shape image, σ = ‖f − K ∗ u∗‖2 = 15 (Fig. 1)

εk (k > 0) a = ‖f − K ∗ uk‖2, b=RMSE vs k = 1, 2, 3, 4, 5 with λ = 0.1
0 a 28.8376 16.1033 14.9578 14.3887 13.9292

b 38.3389 27.7436 22.0875 20.1510 19.4987
1
2k a 28.8054 16.1075 14.9587 14.3877 13.9277

b 38.3168 27.7422 22.0875 20.1473 19.4980

Laplacian noise, Rectangles image, σ = ‖f − K ∗ u∗‖1 = 10 (Fig. 5)

εk (k > 0) a = ‖f − K ∗ uk‖1, b=RMSE vs k = 1, 2, 3, 4, 5 with λ = 0.05
0 a 16.2208 10.3479 9.9939 9.9768 9.9615

b 25.2332 6.1003 2.4687 2.2553 2.4489
1
2k a 15.8850 10.3339 9.9935 9.9768 9.9617

b 24.3540 6.0411 2.4938 2.2898 2.4733

Table 2. Stopping criteria and comparisons, σ2 ∼ noise variance

Noise Model Stopping criteria Comparison with
Gaussian ‖f − K ∗ uk‖2 ≤ σ iterative algorithm using TV (13) or RO (14)
Laplacian ‖f − K ∗ uk‖1 ≤ σ iterative (15) or one-step L1-TV deblurring model

have p(f |Ku) ∼ e−
‖f−Ku‖1

σ . Then, similarly, we minimize with respect to u the
quantity −ln p(f |Ku), thus we are led to consider the convex fidelity term

S(f, Ku) =
∫

Ω

|f − Ku|dx.

Moreover, let r(δ) = δ. Again, the function g(u) = S(f, Ku) satisfies the condi-
tions in Assumptions (A) in dimension one and two.

Unless Ku ≡ f , one can think of ∂uS(f, Ku) = K∗sign(Ku − f) almost
everywhere, and moreover we have

ξk+1 = ξk − 1
c
K∗sign(Kuk+1 − f) a.e.

We propose the following numerical algorithm:

Numerical algorithm.

I. Let u0 = 0, ξ0 = 0, ε0 = 0 and iterate for k ∈ Z, k ≥ 0 until ‖f−Kuk+1‖1 ≤ σ:

– For u = uk+1, use ∂u
∂t = K∗sign(f − Ku)− c[∂h(u) − ξk] + cεk+1

– For ξk+1, use ξk+1 = ξk + 1
cK∗sign(f − Kuk+1).

Now again letting ξk = K∗vk

c , we can have vk+1 = vk + sign(f − Kuk+1) a.e.
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(a) original u∗ (b) f = K ∗ u∗ + n (c) ‖f − K ∗ uk‖2 vs k (d) ‖u∗ − uk‖2 vs k

(a) u1 (b) u2 (c) u3 (d) u4 (e) u5

Fig. 1. Results for the Gaussian noise model obtained by the proposed iterative
method. 2nd and 3rd row: recovered images uk and the corresponding residuals
f − K ∗ uk. Data: Gaussian blur kernel K with the standard deviation σb = 0.7,
and Gaussian noise with σn = 15, λ = 0.1. ‖f − K ∗ u3‖2 = 14.9658. u3 is the best
recovered image (RMSE=21.8608).

Fig. 2. Results of the iterative algorithm (13) proposed by Osher et al with the same
data in Fig. 1. The best recovered image u3 (‖f−K∗u3‖2 = 14.7594, RMSE=21.0500),
residual f − K ∗ u3, and energies ‖f − K ∗ uk‖2, ‖u∗ − uk‖2 vs k.

With v0 = 0, since cξ0 = 0 = K∗0 = K∗v0, we may conclude inductively
that cξk ∈ Range(K∗), and hence there exists vk ∈ Y ∗ = L∞(Ω) such that
cξk = K∗vk. Hence, we have the alternative numerical algorithm:
II. Let u0 = 0, v0 = 0, ε0 = 0 and iterate for k ∈ Z, k ≥ 0 until ‖f −Kuk+1‖1 ≤
σ:
– For u = uk+1, use ∂u

∂t = K∗[sign(f − Ku) + vk] − c∂h(u) + cεk+1
– For vk+1, use vk+1 = vk + sign(f − Kuk+1).
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(a) f = K ∗ u∗ + n (b) ROF model (c) ‖f − K ∗ uk‖2 vs k (d) ‖u∗ − uk‖2 vs k

(a) u1 (b) u2 (c) u3 (d) u4 (e) u5

Fig. 3. Stopping index k(δ) ∼ δ−1 and comparison with RO model (RMSE=16.5007).
Data: same blur kernel K and parameter c = 0.1 with Fig. 1, but different Gaussian
noise with σn = 7.5. u8 is the best recovered image (RMSE=13.5407).

(a) original u∗ (b) f = K ∗ u∗ + n (c) ‖f − K ∗ uk‖2 vs k (d) ‖u∗ − uk‖2 vs k

(a) u1 (b) u2 (c) u3 (d) u4 (e) u5

Fig. 4. Results for the Gaussian noise model obtained by the proposed method. Data:
Gaussian blur kernel K with σb = 1, and Gaussian noise with σn = 10. Parameters:
c = 0.1. u3 is the best recovered image (RMSE=12.2217).
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(a) original u∗ (b) f = K ∗ u∗ + n (c) ‖f − K ∗ uk‖2 vs k (d) ‖u∗ − uk‖2 vs k

(a) u1 (b) u2 (c) u3 (d) u4 (e) u5

Fig. 5. Results for the Laplacian noise model obtained by the proposed method. Data:
Gaussian blur kernel K with σb = 3, and Laplacian noise with σn = 10. Parameters:
λ = 0.05. ‖f − K ∗ u3‖1 = 9.9629. u3 is the best recovered image (RMSE=2.4417).

4 Numerical Results

We assume |Ω| = 1. First, with fix the parameter λ,and then we test each model
with different εk, either εk = 1

2k or εk = 0. These different values of εk produce
almost the same results according to the measured values in Table 1 as well as
visually. Thus, in all the other examples, we numerically set εk = 0. Since our
experimental results are done on artificial tests, we can compare the restored
images uk with the true image u∗.

First, we consider the residual S(f, Kuk) and the L2 distance between iterates
uk and the original image u∗, ‖u∗ − uk‖2 (or root mean square error, denoted
RMSE). As k increases, the image uk recovers more details and fine scales, and
eventually gets noise back. Thus, in practice, the residual g(uk) = S(f, Kuk)
keeps decreasing even when εk 
= 0 (see Table 1), while ‖u∗ − uk‖2 has a mini-
mum value at some k′. But, note that k′ does not correspond to the optimal k∗ =
min{k : g(uk) = S(f, Kuk) ≤ σ2}, i.e k′ > k∗, which is not surprising because in
the presence of blur and noise, uk′ can have lower RMSE since uk′ may become
sharper than uk∗ even though uk′ becomes noisier than uk∗ . However, the visual
quality is also best at the optimal k∗. For example, in Fig. 1 with Gaussian noise,
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(a) original u∗ (b) f = K ∗ u∗ + n (c) ‖f − K ∗ uk‖2 vs k (d) ‖u∗ − uk‖2 vs k

(a) u1 (b) u2 (c) u3 (d) u4 (e) u5

Fig. 6. Results for the Laplacian noise model obtained by the proposed method. Data:
Gaussian blur kernel K with σb = 2, and Laplacian noise with σn = 15. Parameters:
λ = 0.02. ‖f − K ∗ u3‖1 = 14.9234. u3 is the best recovered image (RMSE=17.3498).

(a) u3: 2.4417 (b) L1-TV: 7.8411 (c) u3: 17.3498 (d) L1-TV: 17.8202

Fig. 7. Comparison with one-step L1-TV [7]. (a), (c): our iterative method. (b), (d):
one-step L1-TV (‖f − K ∗ u‖1: (b) 9.8649 , (d) 14.9650 ). Recovered images u and
RMSE values.

u3 (k∗ = 3) recovers the details well enough leading to the best visual quality
while ‖u∗ − uk‖2 is still decreasing, and uk for k > 3 becomes noisier. Thus the
optimal k∗ is a reasonable choice for Gaussian and Laplace noise models.

In Figures 1-4, we test the Gaussian noise model using L2 fidelity term, and
moreover we compare our result with the iterative algorithm (13) proposed by
Osher et al. In Figures 1 and 4, u3 recovers texture parts or details better than in
the previous iterates, with less noise, while the next iterate u4 becomes noisier.
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In addition, from Figures 1 and 2, we observe that our iterative algorithm and
the one from (13) proposed by Osher et al provide similar best recovered images
and similar behavior. Fig. 3 verifies the a-priori property for the stopping index
(12); with less noise (σn = 7.5), the stopping index k∗ = 8 is twice larger than
the one (k∗ = 3) with σn = 15. Moreover, Fig. 3 shows that our iterative scheme
provides superior result to the Rudin-Osher model [?] by recovering details or
texture parts better, leading to much better RMSE.

In Figures 5-7, we show the recovered images uk in the presence of Lapla-
cian noise with L1 fidelity term, and we compare our results with the iterative
algorithm (15) proposed by He et al and the one-step L1-TV model (analyzed
by Chan and Esedoglu [7] when K = I). In Figures 5 and 6, uk restores fine
scales and becomes sharper until the optimal k∗ = 3, 2 respectively, and uk∗
gives cleaner images than uk for k > k∗. We have also compared with the it-
erative algorithm (15), which produces slightly worse result than ours. In Fig.
7, we observe that our iterative method gives cleaner and sharper images and
moreover smaller RMSE than by the one-step L1-TV model with blur.

5 Conclusion

We introduced a generalized iterative regularization method based on the norm
square for image restoration models with general convex fidelity terms. We ap-
plied the proximal point method [3] using inexact Bregman distance to several ill-
posed problems in image processing (image deblurring in the presence of noise).
The numerical experiments indicate that for deblurring in the presence of noise,
the iterative procedure yields high quality reconstructions and superior results
to the one-step gradient-descent models and similar with existing iterative mod-
els. For an extended version of this work, we refer the reader to [13], where the
details of the proofs are given, the data fidelity term arising from Poisson noise
distribution is also considered, together with the deblurring problem using car-
toon + texture representation for better texture preservation in the restoration
problem.
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One-Shot Optimal Exposure Control

David Ilstrup and Roberto Manduchi

University of California, Santa Cruz

Abstract. We introduce an algorithm to estimate the optimal exposure
parameters from the analysis of a single, possibly under- or over-exposed,
image. This algorithm relies on a new quantitative measure of exposure
quality, based on the average rendering error, that is, the difference be-
tween the original irradiance and its reconstructed value after processing
and quantization. In order to estimate the exposure quality in the pres-
ence of saturated pixels, we fit a log-normal distribution to the brightness
data, computed from the unsaturated pixels. Experimental results are
presented comparing the estimated vs. “ground truth” optimal exposure
parameters under various illumination conditions.

Keywords: Exposure control.

1 Introduction

Correct image exposure is critical for virtually any computer vision application.
If the image is under- or over-exposed, features or texture are lost, colors are
washed out, and the overall perceptual quality of the image is decreased. Correct
exposure means that the best possible use is made of the quantization levels
provided by the digitization system – in other words, that the rendering error due
to the non-ideal imaging system is minimized, where the rendering error is the
difference between the true irradiance at a pixel and what can be reconstructed
based on the measured brightness.

In this paper we propose a quantitative measure for the quality of exposure,
along with an algorithm to estimate the optimal exposure based on single, possi-
bly under- or over-exposed, image. By using only one image (rather than several
images taken at different exposures) our algorithm enables a fast mechanism for
exposure control, a useful characteristic in many contexts. For example, vision
system mounted on mobile robots need to adapt quickly to new scenes imaged as
the robots moves around. Surveillance systems require prompt response to sud-
den changes in illumination, such as a light turned on or off. Likewise, through-
the-lens (TTL) digital cameras systems for the consumer or professional market
may benefit from fast and accurate exposure control.

Our definition of exposure quality requires estimation of the rendering error
and of its expected behavior with varying exposure parameters. Unfortunately,
the rendering error can only be computed if the original, unprocessed irradiance
data is available - a luxury that is not usually available. In particular, if some
of the pixels are saturated, their value and thus their rendering error is simply

K. Daniilidis, P. Maragos, N. Paragios (Eds.): ECCV 2010, Part I, LNCS 6311, pp. 200–213, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



One-Shot Optimal Exposure Control 201

unknown. We note in passing that, in general, a correctly exposed image contains
a certain amount of saturated pixels: an exposure control strategy that simply
avoids saturation is usually sub-optimal. We propose a procedure to estimate the
rendering error for saturated pixels based on a prior statistical model of the image
brightness. Basically, we fit a parametric distribution model to the unsaturated
data; the “tail” of this distribution tells us what to expect beyond the saturation
point. Computing this model boils down to a problem of parameter estimation
from right-censored data, a well-studied statistical technique. Combined with
the brightness histogram of the unsaturated data, the model-based distribution
for the saturated data allows us to predict how the rendering error changes as
one increases or decreases the exposure time, and thus to estimate the optimal
exposure, as the one that minimizes the rendering error.

This paper is organized as follows. After presenting related work in Sec. 2,
we introduce our quantitative definition of exposure quality in Sec. 3. Next
Sec. 4 shows how the exposure quality can be evaluated from a single image,
and introduces our parametric statistical model for the unobserved (saturated)
pixels. This concept is brought forward in Sec. 5, where we describe how to
estimate the rendering error for various exposures from observation of an image
at a fixed exposure, enabling a mechanism for estimating the optimal exposure.
Quantitative experiments are described in Sec. 6.

2 Related Work

Much of the existing literature for automatic exposure control appears as patents
(e.g. [1,2,3]). A common theme in all these works is the use of some scene eval-
uation heuristics. Scene evaluation can range from relatively simple goals such
identifying back-lit and front-lit scenes [4] to the complex task of face detection
[5]. Once the most important areas of the scene are determined, exposure con-
trol is adjusted so that some statistic of these pixels, such as the mean, reaches
a desired value, often near the middle of the pixel range (e.g. 128 for an 8-bit
image). Adjustment is normally achieved via dynamic control algorithms [6,7,8].

A per-pixel control algorithm where the objective function is based on a model
of the camera’s response function is given in [9]. The goal of this system is to
modify the exposure of each pixel (or, in this case, the transmittance of a coupled
spatial light modulator) so that the irradiant energy is just below saturation. If
the pixel is unsaturated, then the next exposure is computed trivially. If the
pixel is saturated, then the exposure is decreased by a large constant fraction.

Schulz et al. [10] measure the goodness of exposure by the integral of the
brightness histogram within the bounds of the camera’s dynamic range (from
the minimum brightness above noise level to the maximum brightness before
saturation). Although this measure of goodness may resemble the one proposed
in this paper, it lacks a sound theoretical justification, and may give very different
results from ours.

Recent work on high-dynamic range (HDR) imaging has addressed the issue
of how to efficiently combine low-dynamic range(LDR) images into an HDR stack
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(see e.g. [11]). The goal is to find a minimal image-bracketing set that covers
all of the scene dynamics. In order to minimize the acquisition time, one needs
an efficient strategy for selecting the exposure of the next LDR image to take.
Barakat et al. [12] propose three different approaches: Blind acquisition; Clair-
voyant acquisition; and Blind acquisition with feedback. Under this terminology,
our proposed approach can be defined as a blind acquisition system that tries to
best capture the scene dynamics after observation of just one previous image.

3 Exposure Quality: A Quantitative Definition

A pixel in a camera’s focal plane converts irradiant energy into a number (bright-
ness). For a given exposure time (or, concisely, exposure) T , the irradiant energy
IT is a function of the irradiant power integrated over the pixel’s surface1, I:

IT = I · T (1)

Note that the irradiant power I is approximately a linear function of the iris
aperture area, especially for pixels near the center of the image, which adds one
multiplicative factor in (1). We will assume constant iris aperture in this paper.

Conversion from irradiant energy IT to brightness BT normally comprises two
steps: (a) transformation of IT into electrical charge; (b) quantization of a voltage
signal that is a function of this charge. For the sake of simplicity, subsequent
operations on the digital data (such as white balancing, gamma correction, or
sub-quantization) are neglected in this work. We note that, at least for cameras
in the higher market segments, these operations can usually be overridden by
proper configuration setting.

Formally, this conversion can be represented as follows:

BT = Q (f(IT )) (2)

The sensor’s characteristic f can usually be modeled as an invertible noisy
function, and can be estimated using standard methods (see e.g. [13,14]). The
inverse function of f will be denoted by g: g(f(IT )) = IT . Note that embedded
in the sensor’s characteristic f is also the variable gain amplification, which can
be also used as an exposure parameter.

The non-invertible quantization operator Q maps values of f(IT ) into num-
bers between 0 and 2N − 1, where N is the number of bits. Using a mid-tread
model [15], the quantization operation can be formalized as follows:

Q(x) =
{

round(x/Δ) , x < (2N − 1)Δ
2N − 1 , x ≥ (2N − 1)Δ (3)

where Δ is the quantization step. In practice, values of IT within an equivalent
bin [Δ(i), Δ(i + 1)], where Δ(i) = g(iΔ), are mapped to BT = i (see Fig. 1).

1 Without loss of generality, it will be assumed that the pixel has unit area in an
appropriate scale.
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IT

f(IT)

0

1

2

…

BT

(1) (2)…(0)

Fig. 1. Conversion of irradiant energy IT into brightness BT

Values of IT above g((2N − 1)Δ) are saturated to 2N − 1. Note that in the case
of linear sensor characteristic (f(x) = ax), increasing the exposure by a factor
of k (T → kT ) is completely equivalent to reducing the quantization step by the
same factor (Δ → Δ/k).

We define by rendering error eT at a pixel the difference between the true
irradiant power, I, and the best reconstruction from the brightness BT :

eT = I − g(BT Δ)/T (4)

The irradiant power I is independent of the exposure setting (for constant iris
aperture) and thus represents a more natural domain for the definition of render-
ing error eT than the radiant energy IT . Note that the dependence of eT on T as
we analyze it is only due to the presence of the quantizer (but see Appendix B).
When IT < g((2N − 1)Δ), the signal is said to be in the granular region.

If the equivalent quantization bins are small enough that the sensor’s charac-
teristic f(IT ) has constant slope within each individual bin, then one easily sees
that, when IT is within the i-th equivalent bin, the error eT is confined between
−α(i)Δ/2 and α(i)Δ/2, where α(i) = g′((i+1/2)Δ). When IT > g((2N − 1)Δ),
the signal is said to be in the overload region, generating an unbounded error
(meaning that the pixel is saturated).

In order to assess the effect of quantization, we can define a positive measure of
the rendering error L(eT (m)) at each pixel m, and average it over the whole image:

ET =
N∑

m=1

L(eT (m))/M (5)

where M is number of pixels in the image. The optimal exposure for a particular
scene is the value of the exposure T that minimizes the associated error ET .
The goal of exposure control is thus one of finding the optimal exposure, given
the observations (images) available. In this paper, we describe an algorithm that
attempts to find the optimal exposure from analysis of a single image, taken
with a known (and presumably suboptimal) exposure T0.

Our definition of exposure quality promotes a “good” balance between the
overload error due to saturation and the granular error for unsaturated pixels.
The optimal exposure depends on the chosen error measure L. One may choose,
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Fig. 2. The error ET as a function of exposure T for an 8-bit system with L(eT ) = |eT |p.
Blue circles: p = 2. Magenta squares: p = 1. Red triangles: p = 0.5. The minimizer
of each curve represents the optimal exposure Topt for the corresponding measure.
The optimally exposed image for the each measures are also shown, along with the
percentage of saturated pixels Psat.

for example, L(eT ) = |eT |p for an appropriate value of the exponent p. Larger
values of p penalize the overload error more (since it can grow unbounded). For
example, in Fig. 2 we show the error ET for p = 0.5, 1 and 2 as a function of T
using 8-bit pixel depth for a particular scene. (For this and other experiments we
synthesized 8-bit images from a 12-bit image as discussed in Appendix A, and
used data from the 12-bit image as “ground truth”). Optimally exposed images
for the three measures chosen (corresponding to the minimizers of the curves)
are also shown in the image. Note that using p = 0.5, a brighter image with more
saturated pixels (1.4% of the image) is obtained, while p = 2 allows for much
fewer saturated pixels only. Other error measures (e.g. robust measures such as
Tukey’s biweight function) could also be considered. For all experiments in this
paper, we used the measure L(eT ) = |eT |.

4 Evaluating Exposure Quality

Computation of (5) is only feasible if the irradiance I is known for each pixel,
an unrealistic assumption in any practical situation. Instead, one may estimate
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ET by means of the expected error measure over a suitable probability density.
More precisely, we model the values of irradiant power at the pixels as samples
independently drawn from a density p(I). Thus, the expected value ET of L(eT )
can be written as:

ET =
∫ ∞

0
L(eT )p(I) dI = Eg

T + Eo
T (6)

Eg
T =

2N−2∑
i=0

∫ Δ(i+1)/T

Δ(i)/T

L(eT )p(I) dI ; Eo
T =

∫ ∞

g((2N−1)Δ)/T

L(eT )p(I) dI (7)

In the following analysis we only consider the effect of quantization noise. While
the overall level and variance of photon noise can be significant, in Appendix B we
argue that this has little effect on the optimum exposure value Topt, especially
compared to the effect of changing L in (5) or changes in the distribution of
irradiance at the sensor.

If the density p(I) can be considered constant within each equivalent bin
(“high rate” assumption [15]), and still assuming that the sensor characteristic
has linear slope within each equivalent bin, the granular error is uniformly dis-
tributed within −α(i)Δ/2T and α(i)Δ/2T . This enables easy computation of
the granular error Eg

T . The dependence of Eg
T on T is normally complex, except

when the sensor has a linear characteristic f(IT ), in which case the following
identity holds:

Eg
T = ΦT · Prob(I < (2N − 1)Δ/T ) (8)

where ΦT is a quantity that decreases with T but does not depend on the density
p(I). For example, if L(eT ) = |eT |p, then ΦT = (Δ/T )2/12 for p = 2, ΦT = Δ/4T
for p = 1, and ΦT =

√
2Δ/T/3 for p = 0.5.

Eq. (8) formalizes a very intuitive concept, termed “Expose to the right”
(ETTR) in the photography community [16]: increasing the exposure time im-
proves the rendering quality for the non-saturated pixels. At the same time,
increasing the exposure leads to more saturated pixels as well as to higher over-
load error for the saturated pixels.

4.1 Modeling the Irradiance Distribution

What is a good model for the density p(I)? Suppose for a moment that all pixels
in the image, taken at exposure T , are unsaturated. Let us define the “continuous
domain” histogram as the piecewise constant function hT (x) representing the
proportion of pixels with BT = round(x). Note that hT (2N −1) is the proportion
of saturated pixels in the image. The continuous domain histogram hT (x) can be
used to model the density p(I) by means of the auxiliary function h̄T (I), defined
by (9) where f ′ is the dervative of f .

h̄T (I) = hT (f(IT )/Δ) · f ′(IT ) · T/Δ (9)



206 D. Ilstrup and R. Manduchi

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.5

1

1.5

2

2.5

3

3.5
x 10

3

Irradiance

D
en

si
ty

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

3

Irradiance

D
en

si
ty

Fig. 3. The histogram function h̄T (I) for the “ground truth” 12-bit image (blue) and
for a derived synthetic 8-bit image (red) are shown along with the lognormal density
q̄T (I) fitted to the right-censored data from the 8-bit image for two different scenes.
Note that the 8-bit images saturates for I = g((28 − 1)Δ)/T .

But what if the image has saturated pixels? The brightness value of these pix-
els is not observed, and thus the histogram provides only partial information.
For these case, we propose to model p(I) by means of a parametric function,
with parameters learned from the unsaturated pixels. Parameter estimation from
“right-censored” data is a well studied methodology, and standard methods
exist [17,18]. In our experiments, we used the Matlab function mle.m which
performs ML parameter estimation with right-censored data for a variety of
parametric distributions.

We decided to use the lognormal parametric function for representing the
marginal probability density function (pdf) of the irradiance data.This choice
was suggested by the theoretical and experimental analysis of Richards [19] and
Ruderman [20]. In particular, Richards [19] observed that random variables
modeling distributions of important contributors to scene brightness, such as
illumination sources and angles, surface reflectance, and the viewing angle for
non-Lambertian surfaces, affect recorded brightness in a multiplicative fashion.
Thus, the logarithm of brightness should be distributed as a sum of random vari-
ables, which the central limit theorem approximates as a normal distribution. It
should be clear that any choice for a prior distribution of the brightness data is
bound to fail in certain instances. For example, the presence of a strong illumina-
tor, or even of the sky in an image, generates a peak in the brightness histogram
that cannot be easily accounted for by a parametric distribution, especially if
these peaks belong to the saturated region. Still, we believe that the chosen fit
provides a simple and, in most cases, realistic estimation of the behavior of the
irradiance even for the pixels that are saturated. An example of parametric fit
is shown in Fig. 3 for two different scenes. Note that in both cases the 8-bit
image saturates; the irradiance values for the saturated pixels are modeled by
the lognormal fit.
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Let qT (B) be the parametric model learned from the right-censored brightness
data taken with exposure T . Similarly to (9), a model q̄T (I) for p(I) based on
qT (B) can be defined as by:

q̄T (I) = qT (f(IT )/Δ) · f ′(IT )T/Δ (10)

At this point, we have two different representations for p(I): the histogram-
based function h̄T (I), which is the best model for the unsaturated data; and the
parametric density function q̄T (I), which models the saturated and thus unob-
servable data. We propose a “composite” model p̄T (I) for p(I) that combines
the two models above:

p(I) ≈ p̄T (I) =
{

h̄T (I) , I < g((2N − 1)Δ)/T
q̄T (I) KT , I ≥ g((2N − 1)Δ)/T

(11)

where KT is a normalization constant:

KT = hT (2N − 1)/
∫ ∞

g((2N−1)Δ)/T

q̄T (I) dI (12)

where we used the fact that hT (2N − 1) is the proportion of saturated pixels in
the image. Basically, the image histogram is used to model p(I) for values of the
radiant power I that do not generate saturation. For larger values (the “tail”
part), the parametric model is used. Note that if all pixels are unsaturated, then
the tail part of the density vanishes because KT = 0. Note that, ideally, p̄T (I)
should not change with T . The dependence of p̄T (I) on T is due to the fact that
both histogram and fitting distribution are computed from a single image taken
at exposure T .

Using the density p̄T (I) as an approximation to p(I), one may compute the
expected error ET for a given image, taken at exposure T , as by (6). Note that,
in the case of linear sensor characteristic, term ΦT in the expression (8) of the
granular error component Eg

T can be pre-computed, as it does not depend on
the data. The term Prob(I < 2NΔ/T ) in (8) simply represents the portion
of non-saturated pixels, and can be easily computed from the histogram. The
overload error can be computed by integration of the parametric function qT (I)
via numerical or Monte Carlo methods.

5 Predicting the Optimal Exposure

In the previous section we showed how to estimate the expected rendering error
for a given image. Now we extend our theory to the prediction of the expected
error when T varies. Formally, we will try to predict the exposure error ET at
any value of T based on the observation of just one image taken with (known)
exposure T0. We will do so by modeling p(I) with our composite model p̄T0(I)
in (11). Then, the expected error at any value of exposure T can be estimated
via (6).
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Here are some details about our prediction algorithm (see also Fig. 4). We
begin by considering values of T larger than T0. The granular component Eg

T

is easily computed from (7) or (8). The overload component Eo
T is equal to the

sum of two terms. The first term represents the “projection” of the histogram
h̄T0 into the overload area, that is, for I between g(2NΔ)/T and g(2NΔ)/T0.
Integration of L(eT )p̄T (I) over this segment amounts to a sum using histogram
values. The second term is obtained by integration of the error weighed by the
parametric density q̄T (I) for values of I above g(2NΔ)/T0. This term can be
computed offline and stored in a look-up table for various parameters of the
parametric function used.

I/T0

pT (I)

/T I

pT (I)

/T I

pT (I)

T = T0 T > T0 T < T0

Fig. 4. A representation of the composite density function p̄T (I), under three different
exposures. The shaded are represents the granular region. The area of the density
within the shaded ares represents Prob(I < (2N − 1)Δ/T ).

The predicted values for the granular and overload error components, Ēg
T and

Ēo
T , can be expressed in a relatively simple form if the sensor’s characteristic

f(IT ) is linear. In this case, the following identities hold:

T < T0 : Ēg
T =

[
(1 − hT0(2N − 1)) + KT

∫ (2N−1)/T

(2N−1)/T0
q̄T0(I) dI

]
ΦT

Ēo
T = KT

∫∞
(2N−1)/T

L(I − (2N − 1)/T ) q̄T0(I) dI

T > T0 : Ēg
T =

[∑floor((2N−1)T0/T )
m=0 hT0(m)

]
ΦT

Ēo
T =

∑2N−2
m=ceil((2N−1)T0/T ) L(m/T0 − (2N − 1)/T ) hT0(m)

+KT

∫∞
(2N−1)/T0

L(I − (2N − 1)/T ) q̄T0(I) dI

(13)

At this point, one may sample the estimated error ĒT = Ēg
T + Ēo

T for various
values of T in order to find the estimated optimal exposure T̄opt.

6 Experiments

We have used synthetically generated 8-bit images from a “ground truth” 12-
bit image as discussed in the Appendix. The 12-bit images were taken with a
Dragonfly 2 camera from Point Grey that has a very linear sensor characteristic
f(IT ) [13,14,21]. The ground-truth 12-bit image is used for the computation of
the ground-truth error ET and of the optimal exposure Topt that minimizes ET .
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starting from different values of T0 (thin colored lines, one line per choice of T0) for
two different scenes. For each ĒT plot, the large ’+’ signs is placed at T0: the whole
plot is built from the analysis of the image at T0. The large circles within each line
represent the minimum of the plot, corresponding to the optimal exposure.
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Fig. 6. Experiments with the proposed algorithm for estimating the optimal exposure
Topt from a single image. Each color represents a different scene. For each scene, the
image exposed at T0 was used to find the estimate T̄opt using the algorithm in (13).
The ratio T̄opt/Topt is shown for each image with varying T0. A value of T̄opt/Topt equal
to 1 means that the algorithm found the optimal exposure correctly.

Fig. 5 shows a number of estimated error plots ĒT as a function of exposure
T . Each plot corresponds to a different starting point T0. The thick black line is
the “ground-truth” error ET . Note that the left part of ET has linear 45◦ slope
in log-log space. This is because, for our choice of L(eT ) = |eT |, the expected
granular error is equal to Δ/4T as mentioned in Sec. 4. However, for very small
values of T , the granular error characteristic is not linear anymore, due to the
fact that the “high rate” assumption does not hold true in these cases. The
estimated error curves ĒT are generally good when the starting point T0 is in
a location with few saturated pixels. The more challenging (and interesting)
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situations are for larger T0, chosen when a considerable portion of the image is
saturated. In these cases, the estimated ĒT may fail to represent ET in some
areas, possibly leading to errors in the estimation of Topt.

Results showing the quality of estimation of the optimal exposure from an
image taken at exposure T0 for different values of the “start” exposure T0 are
shown in Fig. 6 for various scenes. The optimal exposure Topt for each scene was
computed as discussed in Sec. 3. The plots in Fig. 6 show the ratio T̄opt/Topt,
which is indicative of the quality of the algorithm (values equal to 1 indicate cor-
rect estimation). Note that the different scenes had different optimal exposures
Topt. In most situations, our algorithm predicts the optimal exposure with good
accuracy. However, when T0 is much smaller or higher than Topt, the estimate
may become incorrect. Small values of T0 mean that the histogram has little
information due to high quantization step. Large values of T0 mean that the
“start” image had a considerable number of saturated pixels.

7 Conclusion

We have presented a technique to estimate the optimal exposure from analysis
of a single image. This approach relies on a definition of exposure quality based
on the expected rendering error. Predicting the exposure quality for varying
exposure times requires accessing the saturated (and thus unobservable) pixels.
We proposed the use of a parametric distribution that fits the observable data,
and allows reasoning about the saturated data. Our experiments show that this
model enables accurate one-shot estimation of the correct exposure as long as
the image being analyzed does not contain too many saturated pixels, or is not
too under-exposed.

One main limitation of our approach is that we do not consider sensor noise
and the use of gain as an exposure parameter. Future work will address both
these issues, along with the possibility of using more accurate models for the dis-
tribution of irradiance in the image. Eventually, our algorithm will be integrated
in a dynamic loop for real-time exposure control in video applications.
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Appendix A

This Appendix describes the process used to generate synthetic 8-bit images at
different exposure T starting from a 12-bit image. We used a Dragonfly 2 camera
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Fig. 7. The standard deviation of the error BT,8 − BT,12 between the synthetic and
the real 8-bit images as a function of the exposure T

from Point Grey that has a very linear sensor characteristic f(IT ) [13,14,21] and
provides images both at 12-bit and 8-bit pixel depth. Images were taken at
12 bits, carefully choosing the exposure T0 so as to best exploit the camera’s
dynamic range while avoiding saturation. Images with more than 0.1% pixels
saturated were discarded. The brightness data BT0,12 was dithered by adding
white noise with uniform distribution between 0.5 and 0.5, then divided by
212−8 = 16. This quantity is multiplied by T0/T and then quantized with Δ = 1
in order to obtain the equivalent 8-bit image for exposure T , named BT,12. In
this way, multiple 8-bit synthetic images can be obtained for different exposure
value T .

In order to assess the error that should be expected with this processing,
we took a number of real 8-bit images (BT,8) of a static scene with various
exposures T , and then compared them with their synthetic counterparts obtained
by synthesis from a 12-bit image of the same scene. The results, in terms of
standard deviation of the error BT,8 −BT,12, are plotted in Fig. 7. As expected,
the error increases with increasing exposure T (remember that the dithered
12-bit image is multiplied by T/T0). Note that for most of the exposure, the
standard deviation stays below 1 (PSNR = 48 dB), and it reaches a maximum
of about 2.5 (PSNR = 40 dB).

Appendix B

In this Appendix we consider the effect of photon noise in the determination of
the optimal exposure. For a given value of irradiant power I and of exposure T ,
the variance of the rendering error due to photon noise is equal to σ2

pht = qI/T ,
where q is the electrical charge of an electron, and I is measured in terms of
photoelectronic current [22]. Let Nsat be the full well capacity of the sensor. It is
reasonable to assume that (in the absence of amplification gain), the quantizer
saturates when the sensor saturates, that is, Δ(2N − 1) = qNsat.

When computing the optimal exposure, both quantization and photon noise
should be considered. Unfortunately, the resulting rendering error depends on
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Fig. 8. Monte Carlo simulation of Topt for L(eT ) = |eT |, red: photon noise and quanti-
zation noise considered, green: quantization noise only, triangles: σ = 0.5, plus marks:
σ = 1, dots: σ = 1.5, circles: σ = 2.0

the characteristics of the irradiance distribution. For example, one can easily
derive the expression of the quadratic norm of the granular error under the
assumption of linear sensor characteristic:

Eg
T =

q2Nsat

T 2

(
Nsat

12(2N − 1)2
+

TE[I]
qNsat

)
(14)

where E[I] is the average value of the irradiant power. The second term within
the parenthesis is a number that represents the “average degree of saturation”.
In particular, when no pixel is saturated, then TE[I]/qNsat < 1. Note that for
(14), the relative effect of the term due to photon noise is increased as Nsat
decreases. Unfortunately, computation of the average error under different met-
rics (in particular, L(eT ) = |eT |, which is the metric considered in this paper)
requires knowledge of the probability density function of the irradiance I.

Fig. 8 shows results of a Monte Carlo simulation to find Topt for L(eT ) = |eT |,
assuming a log-normal distribution with parameters μ and σ. Fixed parameters
in the simulation are Nsat = 6000 (representing a sensor with a relatively small
well capacity) and bit depth N = 8. Two million points are sampled to generate
error values for each T used in the search for Topt. Results shown in Fig. 8 suggest
that the ratio of Topt with photon noise considered, relative to Topt where it is
not, is a small positive value. Topt appears more sensitive to a choice of L or
change in the irradiance distribution at the sensor than to the consideration of
photon noise.
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Abstract. Computational depth estimation is a central task in computer vision
and graphics. A large variety of strategies have been introduced in the past
relying on viewpoint variations, defocus changes and general aperture codes.
However, the tradeoffs between such designs are not well understood. Depth es-
timation from computational camera measurements is a highly non-linear pro-
cess and therefore most research attempts to evaluate depth estimation strategies
rely on numerical simulations. Previous attempts to design computational cam-
eras with good depth discrimination optimized highly non-linear and non-convex
scores, and hence it is not clear if the constructed designs are optimal. In this
paper we address the problem of depth discrimination from J images captured
using J arbitrary codes placed within one fixed lens aperture. We analyze the
desired properties of discriminative codes under a geometric optics model and
propose an upper bound on the best possible discrimination. We show that under
a multiplicative noise model, the half ring codes discovered by Zhou et al. [1]
are near-optimal. When a large number of images are allowed, a multi-aperture
camera [2] dividing the aperture into multiple annular rings provides near-optimal
discrimination. In contrast, the plenoptic camera of [5] which divides the aperture
into compact support circles can achieve at most 50% of the optimal discrimina-
tion bound.

1 Introduction

Estimating scene depth from image measurements is a central goal of computer vi-
sion research. Historical depth estimation strategies utilize viewpoint or defocus cues.
This includes stereo [3] and plenoptic cameras [4, 5], depth from focus and depth from
defocus techniques [2, 6]. Recent computational cameras combine and extend these
strategies using coded apertures [1, 7, 8] and phase masks [9, 10].

The large variety of computational cameras calls for a systematic way to compare
their performance and understand limitations. However, despite the large amount of re-
search on the subject, the problem is far from being understood. Historical comparisons
between stereo and DFD approaches have attracted a lot of research [11–13], leading
to different conclusions based on different experimental setups. An important analytic
analysis is proposed by Schechner and Kiryati [11], who point that to compare the two
approaches the same physical dimensions should be used, and the stereo baseline should
be equal to the lens aperture. Despite the important contribution of their analysis, many
open questions remain. In particular, they model noise sensitivity on a per-frequency
basis and do not analyze how the discrimination information is combined over multiple
frequencies.

The problem of computational camera analysis is gaining increased attention [1, 10,
11, 14–17]. Recently, success has been achieved in understanding the related problem
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of removing defocus blur given depth [10, 16, 17]. However, while the accuracy of
depth estimation has an important effect on the quality of defocus deblurring, depth
discrimination accuracy is often omitted from the analysis [10, 17], or evaluated nu-
merically only [14, 16]. Some authors [1, 8] address the depth discrimination problem
directly and propose explicit scores for discrimination accuracy. However, depth dis-
crimination is a non linear process and the proposed discrimination scores are highly
non linear as well. Specifically, Zhou et al. [1] searched for discriminative codes using
a genetic algorithm. While the discovered codes are interesting, it is not clear if they are
optimal since there is no way to test whether the global optimum of the discrimination
score was reached by the optimization algorithm. This optimization also did not offer
concrete understanding of the characteristics of good codes.

In this manuscript we address depth discrimination in a setting similar to [1]. One is
allowed to capture J ≥ 2 images of a scene using J different aperture code masks. All
images, however, are taken by a fixed static camera, using a standard lens at a fixed focus
setting. The aperture codes are allowed to have any general shape within the maximal
lens aperture width. This problem formulation is general enough to cover most existing
depth estimation strategies. For example, depth from defocus can be expressed using
disc aperture masks with different widths, and stereo can be expressed using code masks
with holes allowing light at opposite ends of the aperture. We note that in this setting
all designs have the same physical dimensions since they are bounded within the same
maximal aperture which provides an upper bound on their discrimination performance.
We restrict the discussion to the geometric optics model and our results are valid only
up to the extent at which this model is valid.

We ask what is the quality of depth discrimination that a given codes set can provide,
and what are the best results one can hope to achieve. We build on the discrimination
score derived by [1] but notice that it can be analyzed analytically using the derivatives
of the code spectra, and larger variations improve discrimination. We use Parseval’s the-
orem and the fact that the primal support of the codes is bounded to show that the max-
imal derivative power is bounded. This analysis allows us to derive an analytic upper
bound on the maximal possible depth discrimination. It also provides an understanding
of the desired properties of good aperture codes. We use this to analyze existing depth
discrimination strategies. For the case of J = 2 images and multiplicative noise, we
show that the half ring codes discovered by [1] are indeed near optimal. When a large
number J of images is allowed, near optimal discrimination can be obtained when the
aperture is divided to multiple annular rings, along the lines of the multi-aperture cam-
era of [2]. In contrast, dividing the aperture into small compact squares or circles as
done by the plenoptic camera of [5] can achieve no more than 50% of the discrimina-
tion bound.

2 Depth Discrimination from Coded Apertures

Problem formulation: We consider a camera with a standard lens focused at depth
d0. J images are captured via J codes which block light at different regions of the
aperture. The codes can be expressed as J functions a1, . . . , aJ bounded within a maxi-
mal aperture radius R. That is: ∀x, y 0 ≤ aj

(x,y) ≤ 1, aj
(x,y) = 0 if |x|2+|y|2 > R2. We
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also restrict the J codes to disjoint parts of the aperture so that the J images can be
captured simultaneously (e.g. [2, 5]). That is, for each x, y there is a single j for which
aj
(x,y) > 0. However, many of our results hold without the disjointness requirement.

Let I denote an ideal sharp version of a scene, and assume we observe J images
B1, . . . , BJ . If the depth is locally constant the observed images of an object at depth d
can be described as a local convolution of the sharp version I with Point Spread Func-
tions (PSFs) φd. In the frequency domain the imaging is expressed as multiplication
with an Optical Transfer Function (OTF) φ̂d:1

B̂j
ωx,y

= φ̂d,j
ωx,y

Îωx,y + nj
ωx,y

, (1)

where ωx,y = (ωx, ωy) denote spatial frequency coordinates and nj is an imaging
noise. Through this paper we index depth using the corresponding light field slope s =
(d − d0)/d, since the PSF and OTF vary as a linear function of s and not of d. Using a
geometric optics model, it was shown [7, 8] that the PSFs and OTFs are scaled versions
of the aperture codes:

φ̂s,j
ωx,y

= âj
(s·ωx,y) (2)

The scaled PSF model, however, does not take into account wave optics effects. The
geometric optics model is a reasonable approximation to the true optics when the holes
in the code are not too small. The optimality arguments in this paper are only valid to
the extant at which the geometric model is valid.

Noise model: We follow the affine noise model (e.g. [16]). For simplicity this model as-
sumes the noise is a zero mean Gaussian whose variance η2 is constant over the image,
and it is a combination of a constant additive term, the read noise, and a multiplicative
term, the photon noise:

(ηj)2 = αjη2
mult + η2

add, (3)

where αj is the amount of light gathered by the j’th aperture αj =
∫∫

ajdωxdωy . For
modern sensors under good illumination conditions the noise is dominated mostly by
the multiplicative term and (ηj)2 ≈ αjη2

mult. We often assume that all J apertures have
equal area and omit the j index from α, η.

Given a set of observed images B1, . . . , BJ , estimating the scene depth is equiva-
lent to estimating at every local image window a slope index s such that locally Bj

was blurred with φs,j . Our goal in this paper is to analyze the quality of depth discrim-
ination that a set of aperture codes can provide. We note that all codes are bounded
within the same maximal aperture radius R and the maximal radius is the parameter
upper-bounding the performance of all codes. We start with a brief review of the depth
discrimination score proposed in [1]. In Section 3, we derive bounds on this discrimi-
nation score and study the desired properties of optimal discrimination codes.

2.1 Descrimination Score

One often assumes a zero mean Gaussian prior on the sharp signal Î . For sim-
plicity the classical 1/f2 law is used and the variance in frequency ωx,y is set to
σ2

ωx,y
= 1/|ωx,y|2. We denote with bold fonts the J dimensional vectors B̂BBωx,y =

[B̂1
ωx,y

, . . . , B̂J
ωx,y

], φ̂̂φ̂φ
s

ωx,y
= [φ̂s,1

ωx,y
, . . . , φ̂s,J

ωx,y
], â̂âaωx,y = [â1

ωx,y
, . . . , âJ

ωx,y
]. The

1 Through this manuscript we useˆ to denote the Fourier transform of the corresponding signal.
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probability of the observed images factorizes as an independent product over individual
frequencies P (B̂1, . . . , B̂J) =

∏
ωx,y

P (B̂BBωx,y). Since B̂BBωx,y is obtained from Î as a

linear transformation plus Gaussian noise, P (B̂BBωx,y) follows a Gaussian distribution

with covariance Ψs
ωx,y

= φ̂̂φ̂φ
s

ωx,y
σ2

ωx,y
φ̂̂φ̂φ

s∗
ωx,y

+ η2I, where I denotes a J × J identity
matrix and ∗ denotes the conjugate transpose. Let Us

ωx,y
be a J × (J − 1) matrix com-

pleting φ̂̂φ̂φ
s

ωx,y
to an orthogonal basis, that is, the J × J matrix Ũs

ωx,y
= [

φ̂̂φ̂φ
s

ωx,y

|φ̂̂φ̂φs

ωx,y
|
, Us

ωx,y
]

is orthogonal. We can then express:

Ψs
ωx,y

= Ũs
ωx,y

D
(
|φ̂̂φ̂φs

ωx,y
|2σ2

ωx,y
+ η2, η2, . . . , η2

)
Ũ∗

ωx,y
, (4)

Ψs
ωx,y

−1 = Ũs
ωx,y

D

(
1

|φ̂̂φ̂φs

ωx,y
|2σ2

ωx,y
+ η2

,
1
η2

, . . . ,
1
η2

)
Ũ∗

ωx,y
, (5)

where D(· · · ) denotes a diagonal matrix. We assume the signal variance is sufficiently

above the noise level: |φ̂̂φ̂φ
s

ωx,y
|σ2

ωx,y
> η2 (other frequencies provide little discrimina-

tion and their contribution can be ignored). Ψ allows high variance along the OTFs
direction φ̂̂φ̂φωx,y

and low variance at all orthogonal directions. The expected negative log
likelihood of an observation whose correct depth is s0 under possible explanation s is:

EP (B|s0)[−2 log P (B|s)] = EP (B|s0)[B
∗ΨsB] + log |Ψs| (6)

=
∑

ωx,y

[ |φ̂̂φ̂φs0
ωx,y

|2σ2
ωx,y

+ η2

|φ̂̂φ̂φs0
ωx,y

|2η2

∣∣∣Us∗
ωx,y

φ̂̂φ̂φ
s0
ωx,y

∣∣∣2 +
η2

|φ̂̂φ̂φs

ωx,y
|2(|φ̂̂φ̂φs

ωx,y
|2σ2 + η2)

∣∣∣φ̂̂φ̂φs∗
ωx,y

Us0
ωx,y

∣∣∣2

+
|φ̂̂φ̂φs0

ωx,y
|2σ2

ωx,y
+ η2

|φ̂̂φ̂φs

ωx,y
|2|φ̂̂φ̂φs0

ωx,y
|2(|φ̂̂φ̂φs

ωx,y
|2σ2

ωx,y
+ η2)

∣∣∣φ̂̂φ̂φs∗
ωx,y

φ̂̂φ̂φ
s0
ωx,y

∣∣∣2 +
∣∣∣Us∗

ωx,y
Us0

ωx,y

∣∣∣2 + log |Ψs
ωx,y

|
]

(7)

≈
∑

ωx,y

σ2
ωx,y

η2

∣∣∣Us∗
ωx,y

φ̂̂φ̂φ
s0
ωx,y

∣∣∣2 (8)

where the approximation of Eq. (8) follows from the fact that Eq. (7) is dominated by
the first term when the noise is small relative to the signal, and the log |Ψs

ωx,y
| term is

relatively constant. That means that a good discrimination is obtained when φ̂̂φ̂φ
s

and φ̂̂φ̂φ
s0

are as orthogonal as possible.
The discrimination score in Eq. (8) is a simple extension of the one derived by [1]

from the two image case to the J image case. In [1] the discrimination score was eval-
uated discretely over a sample of s values. Since discrimination is usually most chal-
lenging at the neighborhood of the true solution2 we propose to replace the discrete
sample with an analytic derivative of the OTF as a function of depth: ∇sφ̂

s

ωx,y
=

∂φ̂̂φ̂φ
s

ωx,y

∂s (∇sφ̂
s
ωx,y

is a J-dimensional vector). We note that since Us∗
ωx,y

φ̂̂φ̂φ
s

ωx,y
= 0,

Us∗
ωx,y

φ̂̂φ̂φ
s0

ωx,y
= Us∗

ωx,y
(φ̂̂φ̂φ

s0

ωx,y
− φ̂̂φ̂φ

s

ωx,y
) ≈ Us∗

ωx,y
∇sφ̂

s
ωx,y

. We denote by Ds
ωx,y

(φ̂̂φ̂φ) the
local discrimination score at frequency ωx,y:

Ds
ωx,y

(φ̂̂φ̂φ) =
σ2

ωx,y

η2

∣∣∣Us∗
ωx,y

∇sφ̂
s
ωx,y

∣∣∣2 =
σ2

ωx,y

η2

(∣∣∣∇sφ̂
s
ωx,y

∣∣∣2 − 1

|φ̂̂φ̂φs

ωx,y
|2
∣∣∣φ̂̂φ̂φs∗

ωx,y
∇sφ̂

s
ωx,y

∣∣∣2
)

,

(9)

2 This model does not penalize the symmetry of the PSF in front and behind the focus depth.
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which implies that discrimination is maximized when there is a large variation of the
OTFs as a function of s, in the direction orthogonal to φ̂̂φ̂φ

s
. We wish to find OTFs maxi-

mizing discrimination integrated over all frequencies (up to spatial resolution Ω):

Ds(φ̂̂φ̂φ) =
∫ Ω

−Ω

∫ Ω

−Ω

Ds
ωx,y

(φ̂̂φ̂φ)dωxdωy. (10)

3 Discrimination Budget

To understand how to maximize the discrimination score we study some of the physical
constraints on the OTF. Let aj , âj denote the aperture code of the j’th view and its
Fourier transform. The PSF and OTF are known to be scaled versions of the aperture
code [7, 8]:φ̂s,j

ωx,y
= âj

(s·ωx,y). This implies that

∇sφ̂
s,j
ωx,y

= |ωx,y|∇ωx,y âj
(sωx,y) = |ωx,y|

(
ωx

|ωx,y|
∂âj

∂ωx
+

ωy

|ωx,y |
∂âj

∂ωy

)
. (11)

The |ωx,y| factor multiplying the derivative in Eq. (11) is canceled by σ2
ωx,y

= 1/|ωx,y|2
in Eq. (9), and the discrimination score of Eq. (9) can be expressed as a function of the
derivatives of the aperture spectra âj weighting all entries equally:

Definition 1. Consider a set of aperture codes â̂âa. The depth discrimination score at
spatial frequency ωx,y is defined as

Dωx,y (â̂âa) =
1
η2

(∣∣∇ωx,y â̂âaωx,y

∣∣2 −
∣∣â̂âa∗

ωx,y
∇ωx,y â̂âaωx,y

∣∣2
|â̂âaωx,y |2

)
(12)

and the total discrimination score at depth s as

Ds(â̂âa) =
1
s2

∫ sΩ

−sΩ

∫ sΩ

−sΩ

Dωx,y(â̂âa)dωxdωy. (13)

We note that the discrimination around depth s is integrated up to a cut-off frequency
sΩ but multiplied by the density 1/s2. We often omit the s index from Eq. (13) and
consider the case s = 1 which is usually the more challenging case. (the 1/s2 factor
improves the score of low s values and in addition, there is usually more energy at the
low frequencies).

The discrimination score cannot be made arbitrarily large. Our goal is to show that
the best possible discrimination score is bounded and then understand the desired prop-
erties of aperture codes with optimal discrimination. We define two useful quantities:

Definition 2. The center-oriented derivative power at frequency ωx,y is

Cωx,y (â̂âa) =
1
η2

∑
j

∣∣∣∇ωx,y âj
ωx,y

∣∣∣2 =
1
η2

∑
j

∣∣∣∣ ωx

|ωx,y|
∂âj

∂ωx
+

ωy

|ωx,y|
∂âj

∂ωy

∣∣∣∣2 , (14)

the total center-oriented derivative power is Cs(â̂âa) = 1
s2

∫ sΩ

−sΩ

∫ sΩ

−sΩ
Cωx,y(â̂âa)dωxdωy.
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Definition 3. The gradient power at frequency ωx,y is

Gωx,y (â̂âa) =
1
η2

∑
j

∣∣∣∇âj
ωx,y

∣∣∣2 =
1
η2

∑
j

[∣∣∣∣ ∂âj

∂ωx

∣∣∣∣2 +
∣∣∣∣ ∂âj

∂ωy

∣∣∣∣2
]

(15)

and the total gradient power is Gs(â̂âa) = 1
s2

∫ sΩ

−sΩ

∫ sΩ

−sΩ
Gωx,y(â̂âa)dωxdωy .

Note that while we use the terms derivative and gradient, the quantities in Eqs. (14) and
(15) are actually normalized by the noise variance η2. The definition of the discrimina-
tion score in Eq. (12) implies that it is bounded by the center-oriented derivative power
Dωx,y(â̂âa) ≤ Cωx,y(â̂âa). Also the oriented derivative power is bounded by the gradient
power Cωx,y(â̂âa) ≤ Gωx,y(â̂âa). We observe that the total gradient power cannot be made
arbitrarily high. We show that there is a fixed energy budget which is determined by the
primal support of aj , and this budget is preserved in the frequency domain as a con-
sequence of Parseval’s theorem. Bounding the gradient power provides a bound on the
best possible discrimination score.

Claim 1. Let a1, . . . aJ be a set of disjoint codes inside an aperture of radius R. Their
total gradient power is bounded and satisfies

J∑
j=1

1
η2

∫∫ ∣∣∣∇âj
ωx,y

∣∣∣2 dωxdωy =
J∑

j=1

1
η2

∫∫ ∣∣∣aj
(x,y)

∣∣∣2 (x2 + y2)dxdy ≤ B (16)

for

B = max
0<λ<R

π
2

(
R4 − (R − λ)4

)
π
J
(R2 − (R − λ)2)η2

mult + η2
add

(17)

Proof. Differentiating âj can be expressed as a convolution of âj with derivative filters
fωx , such that ∇ωx âj = fωx ⊗ âj . In the primal domain this convolution translates
to multiplication f̂(x,y) · aj

(x,y). The Fourier transform of an ideal derivative filter is

|f̂(x,y)| = |x|. Parseval’s theorem implies that the frequency derivatives power is pre-
served in the primal domain, and thus:∫∫ ∣∣∣fωx ⊗ âj

∣∣∣2 dωxdωy =
∫∫

|aj
(x,y)|

2x2dxdy. (18)

A similar property applies for ∇ωy âj . Therefore

1
η2

∫∫ ∣∣∣∇âj
ωx,y

∣∣∣2 dωxdωy =
1
η2

∫∫ ∣∣∣aj
(x,y)

∣∣∣2 (x2 + y2)dxdy. (19)

We now ask what is the maximal value that the RHS of Eq. (19) can obtain. If aj is
open over a large area the integral value is increased, but if η2

mult > 0, a larger aperture
area also increases the noise (see Eq. (3)). Thus, the optimal aperture area should trade
discrimination v.s. noise, and depends on the ratio between η2

mult to η2
add. However, for

every fix aperture area, we can ask what is the maximal value of the integral in the RHS
of Eq. (19), among all codes with the same fixed area. The highest value is obtained by
a ring attached to the aperture boundaries, since the x2 +y2 values averaged in Eq. (19)
are large when they are adjacent to the aperture boundary. Let rλ denote a code open at
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an outer ring of width λ, rλ
(x,y) = 1 iff (R − λ)2 ≤ x2 + y2 ≤ R2. The gradient power

of the code rλ is the highest among all codes with the same area. Standard calculus
implies that the area and gradient power of a ring rλ are∫∫

rλ
(x,y)dxdy = π

(
R2 − (R − λ)2

)
,

∫∫
rλ
(x,y)(x

2 + y2)dxdy =
π

2
(
R4 − (R − λ)4

)
.

(20)
Therefore the gradient power of a code is bounded by:

1
η2

∫∫ ∣∣∣∇âj
ωx,y

∣∣∣2 dωxdωy ≤ max
0<λ<R

π
2

(
R4 − (R − λ)4

)
π(R2 − (R − λ)2)η2

mult + η2
add

. (21)

For J disjoint codes, the best gradient power is obtained when their union forms an
outer ring and Eq. (16) follows.

Corollary 1. The total depth discrimination score, oriented derivative power and gra-
dient power are bounded in the following order

D(â̂âa) ≤ C(â̂âa) ≤ G(â̂âa) ≤ B. (22)

Optimal discrimination codes should therefore satisfy the following three properties:
1. The total gradient power should approach the bound G(â̂âa) → B.
2. For every ωx, ωy, the oriented derivative power should approach the gradient

power Cωx,y(â̂âa) → Gωx,y(â̂âa)
3. For every ωx, ωy , the discrimination score should approach the oriented derivative

power Dωx,y(â̂âa) → Cωx,y(â̂âa)

To understand the first property note that the proof of Claim 1 implies that the gradient
power is maximized when the codes let in light at a ring at the periphery of the aperture.
The exact ring width is a function of the ratio between the multiplicative and additive
noise components. If the noise is fully additive (ηmult = 0) it is best to collect light
over the entire aperture area. When the noise is mostly multiplicative (η2 ≈ αη2

mult),
the best is to have a very narrow ring at the periphery of the aperture.

The oriented derivative power is equal to the gradient power if and only if for all
js, the gradient direction at spatial frequency ωx,y equals ωx,y. Having all gradients
oriented toward the center implies that âj should be radially symmetric.

The last property of Corollary 1 requires that the OTFs vector is orthogonal to its
derivative. This property is the hardest to analyze, but in the next section we consider
examples of codes which approach this requirement.

4 Analyzing Aperture Code Designs

In this section we consider a few aperture code designs and analyze their optimality. We
start with designs capturing two images and then move to multiple images.

4.1 Two Image Designs

We consider the aperture code pairs visualized in Figure 1. The first one is a stan-
dard stereo setting with two disc holes. Another design is two halves of a ring (bananas),
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Multiplicative noise σ2
mult = 20σ2

add

(a) D(â̂âa) = 0.25B (b) D(â̂âa) = 0.85B (c) D(â̂âa) = 0.12B (d) D(â̂âa) = 0.37B (e) D(â̂âa) = 0.33B

Additive noise σmult = 0

(a) D(â̂âa) = 0.12B (b) D(â̂âa) = 0.58B (c) D(â̂âa) = 0.15B (d) D(â̂âa) = 0.12B (e) D(â̂âa) = 0.52B

Fig. 1. Aperture codes and their discrimination score. Top group: multiplicative noise (σ2
mult =

20σ2
add), Lower group: additive noise (σ2

mult = 0). Each group visualizes in the upper row aper-
ture codes (primal domain) and in the second row their discrimination score Dωx,y (â̂âa) provided
in each spatial frequency (frequency domain). The portion of the upper bound utilized by D(â̂âa)
is reported at the bottom.

inspired by the optimized codes of [1]. We then consider pseudo random codes in each
view. We consider random codes in the entire aperture area (Fig 1(c)) and only in the
periphery ring (Fig 1(d)). Finally we consider a depth from defocus like pair (Fig 1(e))-
an outside ring plus an inner disc.

We consider two noise situations, well illuminated scenes at which η2
mult = 20η2

add,
and the purely additive noise case ηmult = 0. Apart for the random designs, we searched
numerically for good parameters in each pair family (e.g. the width of the rings and
discs, or the exact shape of the banana parameterized as a spline with 5 keypoints). The
parameters optimization is done independently for each noise situation. For multiplica-
tive noise, narrower holes or rings at the periphery are favored and at the additive noise
case wide code areas are selected.

For each pair, the second row of Fig 1 visualizes the map of discrimination score at
each spatial frequency. At the bottom we report the portion of the bound achieved by
the total discrimination scores. The best discrimination is obtained by the two halved
rings, which at the multiplicative case utilize 85% of the gradient power upper bound.
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All other designs utilize at most 50% of the bound. Below we discuss some of the
interesting properties of each design.

Note that in designs (a-d) the codes are flipped versions of each other a1
(x,y) =

a2
(−x,−y), and hence the spectra are conjugate. To analyze the discrimination scores

of code pairs of this type we derive the following lemmas. The first lemma shows that
the spectrum derivative consists of the magnitude derivative plus the phase derivative,
and for conjugate spectra the portion of the derivative lost in the non orthogonal direc-
tion is the derivative of the magnitude. Using this observation we will later aim to show
that for discriminative code pairs the magnitude derivative is small relative to the phase.

Lemma 1. Let â1, â2 be a conjugate pair of aperture spectra,

â1
ωx,y

= mωx,yeiζωx,y , â2
ωx,y

= mωx,ye−iζωx,y . (23)

where mωx,y is the magnitude and ζωx,y the phase. The discrimination score equals the
magnitude times the phase derivative power which is also the derivative power minus
the magnitude derivative power.

Dωx,y(â̂âa) = 2
∣∣mωx,y

∣∣2 ∣∣∇ωx,yζωx,y

∣∣2 =
∣∣∇ωx,y â̂âa

∣∣2 − 2
∣∣∇ωx,y |â|

∣∣2 . (24)

Proof. The derivatives are the sum of the magnitude derivative and the phase derivative:

∇ωx,y â1
ωx,y

= eiζωx,y ∇ωx,ymωx,y + mωx,yeiζωx,y i∇ωx,yζωx,y (25)

∇ωx,y â2
ωx,y

= e−iζωx,y ∇ωx,ymωx,y − mωx,ye−iζωx,y i∇ωx,yζωx,y . (26)

Since the two phase derivatives have opposite signs they cancel each other when we
take the inner product with â̂âa and we are left with the magnitude derivative only:∣∣â̂âaωx,y

∗∇ωx,y â̂âaωx,y

∣∣2
|â̂âaωx,y |2

= 2
∣∣∇ωx,ymωx,y

∣∣2 (27)

and Eq. (24) follows from the definition in Eq. (12).
Next, we note that to analyze the spectra â̂âa along direction θ we can apply the slicing

theorem [18] and look at the projection of the primal codes aaa in the orthogonal direction.
Let ρj,θ denote the projection of aj onto direction θ

ρj,θ
(x) =

∫
aj

(x
−→
θ +y

−→
θ

+
)
dy, (28)

for
−→
θ = (cos(θ), sin(θ)),

−→
θ

+
= (−sin(θ), cos(θ)). Let |ρj,θ|2 =

∫
|ρj,θ

(x)|2dx denote

the total power and τ j,θ the power center of mass:

τ j,θ =
1

|ρj,θ|2
∫

|ρj,θ
(x)|

2x dx. (29)

If a1, a2 are a flipped pair, their powers are equal and their mass centers satisfies τ1,θ =
−τ2,θ . Therefore we can think of 2|τ j,θ| as the average disparity along direction θ.

The following lemma shows that if the projection has a relatively wide disparity,
there will be a large discrimination in that direction. Figure 2 visualizes projections of
the codes in Figure 1(a-d). As we will explain below, the more discriminative codes
have a wider disparity in most orientations.
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Lemma 2. Let a1, a2 be a pair of flipped aperture codes. The frequency domain dis-
crimination score along direction θ is at least the square of the averaged disparity times
the total power ∫

D
ω
−→
θ
(â̂âa)dω ≥ 2

η2
|τ j,θ|2|ρj,θ|2 (30)

Proof. The slicing theorem [18] implies that a slice of âj in direction
−→
θ is the 1D

Fourier transform of ρj,θ. Therefore, we can apply a 1D variant of Claim 1 to compute
the total derivative magnitude of âj along direction

−→
θ .∫ ∣∣∣∇−→

θ
âj(ω

−→
θ )
∣∣∣2 dω =

∫
(xρj,θ

(x))
2dx. (31)

We note that ∫
(xρj,θ

(x))
2dx =

∫
(x − τ j,θ)2(ρj,θ

(x))
2dx + |τ j,θ|2|ρj,θ|2. (32)

Our goal is to show that∫ ∣∣∇−→
θ
m

ω
−→
θ

∣∣2 dω ≤
∫

(x − τ j,θ)2|ρj,θ
(x)|

2dx, (33)

and then Eq. (30) will follow directly from Lemma 1 (the factor 2 is because we sum
over 2 code spectra). For that note that for any phase χ

ω
−→
θ

,

∣∣∣∇−→
θ

(
m

ω
−→
θ

eiχ
ω
−→
θ

)∣∣∣2 =
∣∣∇−→

θ
m

ω
−→
θ

∣∣2 +
∣∣m

ω
−→
θ

∣∣2 ∣∣∇−→
θ
χ

ω
−→
θ

∣∣2 ≥
∣∣∇−→

θ
m

ω
−→
θ

∣∣2 . (34)

In particular, we can choose a phase χ such that m
ω
−→
θ
eiχ

ω
−→
θ will be the Fourier trans-

form of |ρj,θ
(x−τ j,θ)|

2 (that is, a centered version of ρ). Applying Claim 1 again, the total
derivative power in that centered version is∫

(xρj,θ

(x−τj,θ)
)2dx =

∫
(x − τ j,θ)2(ρj,θ

(x))
2dx (35)

and Eq. (33) follows.
Another intuitive argument which follows from the above proof is that when most

of the mass of ρj,θ is located in a narrow region, but the average disparity is large,
the magnitude derivative power is small relative to the total derivative power. This is
because the total derivative power is

∫
(xρj,θ

(x))
2dx, and the magnitude derivative power

is bounded by
∫
(xρj,θ

(x−τ j,θ))
2dx. The x2 values to which (ρj,θ

(x−τ j,θ))
2 assigns non-zero

weight are small compared to the non-zero values of (ρj,θ
(x))

2. Since Lemma 1 shows that
the portion of the derivative power lost in the non-orthogonal direction is the magnitude
derivative power, if the magnitude derivative power is low, most of the derivative power
C(â̂âa) contributes to the discrimination score D(â̂âa).

We now use Lemmas 1,2 to analyze the code pairs in Fig 1.
Stereo pair: (Fig 1(a)). The main problem with this design is that it provides dispar-

ity only in the horizontal direction. The discrimination map in Fig 1(a) is high around
the horizontal spatial frequency axis and low around the vertical one. Similarly, the
projections in Fig 2(a) show that the average disparity is large in the vertical direction,
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but reduces as the projection angle changes, with zero disparity horizontally. Stereo vi-
olates the second optimal discrimination property of Corollary 1. The spectra are not
radially symmetric, but the gradient is mostly in the horizontal direction at all spatial
frequencies. To see this, let mωx,y denote the spectrum of a disc centered at (0, 0). The
spectrum of a disc centered at a point τ = [τx, τy] is a phase shifted version of m:

â1
ωx,y

= mωx,yei(τxωx+τyωy), â2
ωx,y

= mωx,ye−i(τxωx+τyωy). (36)

According to Lemma 1, the magnitude derivative does not contribute to the discrimina-
tion, and the phase gradient has a constant direction τ . In fact, this implies that the total
discrimination score of a stereo pair cannot pass 50% of the total gradient power. To
see this, note that the discrimination score at frequency ωx,y is a function of the inner

produce of τ and the direction ωx,y/|ωx,y|: Dωx,y(â) = 2|mωx,y |2
|ωx,y|2

∣∣ω∗
x,yτ

∣∣2 (the factor
2 results from summing J = 2 spectra). Since m is radially symmetric, averaged over
all directions, this inner product utilizes only half of the power of τ . Hence:

Dωx,y(â) =
∫∫

2|mωx,y |2

|ωx,y|2
∣∣ω∗

x,yτ
∣∣2 dωxdωy =

∫∫
|mωx,y |2|τ |2dωxdωy ≤ 1

2
Gωx,y (â).

(37)
In Fig 1(a) we see that for multiplicative noise two smaller holes at the far ends of

the aperture are preferred, while for additive noise it is better to have wide holes at the
expense of reducing the disparity between them.

Halved rings: (Fig 1(b)). Our numerical calculation shows that for multiplicative noise
this design utilizes 85% of the bound. There is no simple closed-form formula for these
code spectra. However, we provide below a few intuitive arguments to justify this suc-
cess. The important property of halved rings is a large disparity along most orientations.
Fig 2(b) visualizes the 1D oriented code projections. Apart from the horizontal projec-
tion, the mean disparity at most other orientations is close to the aperture boundary, and
hence Lemma 2 implies high discrimination at most orientations.

For this near-optimal pair we can verify empirically that all three properties of Corol-
lary 1 hold. Property 1: the open code area is next to the periphery of the aperture disc.
Property 2: for most orientations, the projections in Fig 2(b) are similar, and have the
shape of a narrow peak at the right plus a tail (the exact tail shape varies between differ-
ent projection directions). Since most projections are similar, most oriented slices from
the spectra are similar, and the spectra are relatively radially symmetric except of a nar-
row angle range around the vertical direction. Property 3: according to the discussion
after Lemma 2 the fact that the 1D projections have most mass around a narrow peak
implies that the magnitude derivative power is small, which implies by Lemma 1 that
most of the derivative power is discrimination power.

When the noise is additive the codes area is wider and the optimal shape resemble
the one discovered by Zhou et al. [1] (who assume an additive noise). The banana’s
shape of the ends reduces the degeneracy around the vertical direction.

Pseudo random codes: (Fig 1(c,d)) obtain the worst discrimination scores. In terms of
Lemma 2, the fact that light is collected from all around the aperture means that there
is no real disparity, and the mean projections in Fig 2(c,d) are close to zero. Also, these
codes violate properties 2 and 3 of Corollary 1. They are not radially symmetric and
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Fig. 2. 1D projections ρθ for the first 4 codes of Figure 1, multiplicative noise. We plot projections
at 4 sampled orientations 0o (red), 30o (green), 60o (blue) and 90o (magenta). For each projection
direction the center of mass (mean disparity) is marked by a dashed line.

(a) D(â̂âa) = 0.48B (b) D(â̂âa) = 0.88B (c) D(â̂âa) = 0.85B

Fig. 3. Top row: Aperture codes which divide the aperture into multiple images. Second row: The
discrimination Dωx,y(â̂âa) they provide in each spatial frequency. At the bottom we provide the
portion of the upper bound achieved by D(â̂âa) for the additive noise case.

the derivatives are not orthogonal to the OTFs. In the multiplicative noise case the full
aperture code (Fig 1(c)) has another major problem since it lets in light over the entire
aperture area and not only around the boundaries. This is solved by a code in the outer
ring (Fig 1(d)), but properties 2,3 are still problematic.

Ring and disc pair: (Fig 1(e)). This design should simulate the concept of depth from
defocus (DFD). Intuitively, its drawback is enabling only half of the possible disparity-
from the aperture boundary to the center, instead of from end to end. While this design
is perfectly radially symmetric and satisfies property 2 of Corollary 1, for multiplicative
noise it violates property 1, as it lets in light at the center of the aperture and holes at the
center of the aperture do not contribute to spectra gradients. This design also violates
property 3 since the OTFs vector is not orthogonal to its derivative.

Stereo v.s. depth from defocus: Our analysis predicts that DFD overcomes stereo. The
disadvantages of stereo are having disparity only along one axis, and in the additive
noise case it also suffers because it blocks light. This is consistent with previously
reported evaluations of stereo v.s. DFD under similar physical dimensions [11–13].

4.2 Multiple Image Designs

We now consider some designs which capture a large number of images. We note that
while an image captured from an inner aperture area is less discriminative than an image
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from an outer ring, adding additional images always improves the discrimination score.
Therefore if we are allowed to capture a large number of images we do want to utilize
the entire aperture area. If the images number is unlimited, better results can be obtained
if we restrict the area of each code such that α → 0 and the noise reduces η2 → η2

add.
The first example divides the aperture into multiple subsquares (Fig 3(a)). It is sub-

optimal and must lose at least 50% of the gradient power budget, since as in the stereo
case the gradients have a constant direction. This design is similar to the plenoptic cam-
era implementation of [5] which divides the aperture area and captures multiple views
([5] divides the sensor area as well).

In contrast, Fig 3(b,c) show two near-optimal designs utilizing over 85% of the
bound. The first one generalizes Fig 1(b) with a set of half rings. To remove the de-
generacy in one direction, it alternates vertical and horizontal pairs. The second near-
optimal design is a set of annular rings, like the multi-aperture camera of [2]. Despite
the sub-optimality of the ring and disc in Fig 1(e), multiple rings can approach the
bound.

5 Discussion

In this paper we have analyzed the depth discrimination accuracy provided by a gen-
eral set of aperture codes. We propose an analytic upper bound on the best achievable
discrimination, and study the desired characteristics of an optimal solution. We show
that under multiplicative noise, the two half-ring codes of [1] provide near-optimal dis-
crimination. When a large number of images are allowed, a multi-aperture camera [2]
dividing the aperture into annular rings provides near-optimal discrimination. In con-
trast, a plenoptic camera can achieve at most 50% of the bound.

Our analysis and bounds can be extended to more general families of computational
cameras such as cameras including phase plates (optical elements with non standard
curvature) and not only amplitude masks. This, however, requires an analysis of the
lens kernels in the 4D light field spectrum space, as proposed in [10].
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Abstract. We present a novel multi-person pose estimation framework, which
extends pictorial structures (PS) to explicitly model interactions between people
and to estimate their poses jointly. Interactions are modeled as occlusions be-
tween people. First, we propose an occlusion probability predictor, based on the
location of persons automatically detected in the image, and incorporate the pre-
dictions as occlusion priors into our multi-person PS model. Moreover, our model
includes an inter-people exclusion penalty, preventing body parts from different
people from occupying the same image region. Thanks to these elements, our
model has a global view of the scene, resulting in better pose estimates in group
photos, where several persons stand nearby and occlude each other. In a compre-
hensive evaluation on a new, challenging group photo datasets we demonstrate
the benefits of our multi-person model over a state-of-the-art single-person pose
estimator which treats each person independently.

1 Introduction

Look at the photo in Figure 1a. A group of people poses for a souvenir picture. The
majority of body parts of the people in the back row are occluded by the people in the
front row. Many photos of this kind can be found in personal photo collections or on
community sites like Flickr or Facebook.

Unfortunately, even state-of-the-art 2D articulated human pose estimation (HPE) al-
gorithms [1–3] typically fail on such photos (Fig. 1b). These failures are due to treating
every person independently, disregarding their interactions. As HPE algorithms lack a
global view on the scene, they cannot handle occlusions between people.

In this paper we propose a pose estimation approach which explicitly models inter-
actions between people and estimates their poses jointly. Our model handles occlusions
between people and prevents body parts of neighboring persons from covering the same
image region (Fig. 1c).

Our main contributions are: (i) an algorithm to predict the probability that a body
part of a person is occluded given only the locations of all persons in the image (without
knowing their poses); (ii) a novel model extending pictorial structures to jointly estimate
the pose of multiple persons. This model incorporates the occlusion predictor as well as
mutual exclusion terms preventing body parts from different people in the same image
region. We also give an efficient inference technique for this model; (iii) a new dataset
of group photos fully annotated with a labeling of which body parts are visible/occluded
and with the location of visible parts.

K. Daniilidis, P. Maragos, N. Paragios (Eds.): ECCV 2010, Part I, LNCS 6311, pp. 228–242, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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(a) (b) (c)

Fig. 1. Group photo scenario. (a) example image; (b) result of independent pose estimation [1];
(c) result of our joint multi-person pose estimation.

We demonstrate experimentally on the new group photo dataset that (i) the occlusion
predictor performs well and better than various baselines, including an occlusion prior
probability estimated from a training set; (ii) the whole joint multi-person algorithm
considerably outperforms a state-of-the-art single-person estimator [1]. Our source code
is available at [4].

Related Works. In this work we explore interactions between people to improve HPE
in group photos. In this section we briefly review recent works on relevant topics.

Recovering articulated body poses is a challenging task. We build on Pictorial Struc-
tures [5], a popular paradigm for single-person HPE in still images [2, 3, 5, 6] (sec. 3.1).

As a part of our multi-person model we look at occlusions. In articulated HPE some
previous works model self-occlusions [7–10]. Here instead we consider occlusions be-
tween people. Modeling interactions between people is at the core of our work. They
were exploited before by multi-person trackers in the tracking-by-detection paradigm
[11–14] (e.g. in [13] as space-time constraints preventing multiple people from occu-
pying the same 3D space at the same time). In [14] the authors learn the behavior of
people in crowded urban scenes and predict the path of a pedestrian given the loca-
tion and direction of others. All these trackers [11–14] handle occlusions at the level of
entire persons, who are considered as atomic units (and not at the level of body parts).

To the best of our knowledge, we are the first to propose a joint multi-person
occlusion-sensitive model for articulated HPE, where interactions between people are
modeled at the level of body parts.

2 We Are Family - Scenario and Dataset

A typical group photo contains several people standing nearby and occluding each oth-
ers’ body parts. We argue that for such photos a joint multi-person reasoning is benefi-
cial over estimating the pose of each person independently.

To investigate this claim we collected a new dataset of group photos, e.g. classmates,
sport teams and music bands. We collected the images from Google-Images and Flickr
using queries composed of words like “group”, “team”, “people”, “band” and “family”.
The resulting dataset has 525 images with 6 people each on average. People appear
upright in near-frontal poses and often occlude one another (Fig. 1a). They sometimes
are even lined up in a few rows, which results in many occlusions. Across different
images people appear at a variety of scales and illumination conditions.

The six upper-body parts have been annotated (head, torso, upper and lower arms).
For each person, the annotation includes an occlusion vector H indicating which body
parts are visible/occluded, and a line segment for each visible body part. Moreover, the
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depth order of the people in each image is also annotated, so we know who is in front
of who. We plan to release this new dataset freely on-line.

3 Multi-person Pictorial Structure Model (MPS)

We first introduce the pictorial structure (PS) framework [5] for HPE of single persons
(sec. 3.1), then we describe a naive extension to multiple persons and discuss its short-
comings (sec. 3.2) and finally we sketch our novel joint multi-person method (sec. 3.3).

3.1 Single-Person Pictorial Structures (1PS)

PS Model. In the PS framework [5], a person’s body parts are nodes tied together
in a Conditional Random Field [15]. Parts li are rectangular image patches and their
position is parametrized by location (x, y), orientation θ, scale s, and sometimes fore-
shortening [5, 16]. This parametrization constitutes the state-space of the nodes in the
PS. The posterior of a configuration of parts L = {li} given an image I is

P (L | I,Θ) ∝ exp

⎛
⎝ ∑

(i,j)∈E

Ψ(li, lj) +
∑

i

Φ(li | I,Θ)

⎞
⎠ (1)

The pairwise potential Ψ(li, lj) is a prior on the relative position of two parts. It embeds
kinematic constraints (e.g. the upper arms must be attached to the torso) and, in a few
works, also other relations such as self-occlusion constraints [7] or the coordination
between parts [17] (e.g. the balance between arms and legs during walking).

In many works the model structure E is a tree [2, 3, 5, 6], which enables exact
inference, though some works explored more complex topologies [2, 7, 16, 17].

The unary potential Φ(li | I, Θ) corresponds to the local image evidence for a part
in a particular position (likelihood) and it depends on appearance models Θ describing
how parts look like.

Appearance Models. The success of PS depends critically on having good appearance
models Θ, which limit the image positions likely to contain a part. In an effort to op-
erate on a single image, with unknown part appearances, Ramanan [6] proposes image
parsing. In this approach Θ are improved iteratively, by adding person specific appear-
ance models computed from previously estimated pose, where the first pose is obtained
using only generic edge models as unary potentials.

Person Detection. As in several recent HPE methods [1, 12, 18], we use a generic per-
son detector to determine the approximate location and scale of the persons in an image.
This was shown to be useful for estimating pose in uncontrolled, cluttered images [2],
as it reduces the state-space of the PS nodes by fixing the scale and reducing the (x, y)
search region to an enlarged area around the detection window. In this paper, the set of
detection windows D also determines the set of people P in the image.

In [1] authors also use the initial detection to obtain person-specific appearance mod-
els Θ from a single image (as an alternative to [6]). They propose to compute Θ using
part specific segmentation priors, learned wrt D, and then improve Θ using an appear-
ance transfer mechanism that exploits between part appearance dependencies.
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3.2 Naive Multi-person Algorithm

Given an image with a set of people P , a simple algorithm for multi-person HPE could
be: (1) estimate the pose of the first person using an off-the-shelf algorithm, e.g. [1, 3];
(2) remove the support of the estimated pose from the image, e.g. erase pixels covered
by the pose; (3) repeat (1)-(2) for the next person.

We call front-to-back order (FtB) Z the sequence in which people are processed by
the algorithm. Since the true depth ordering is unknown, one must run the algorithm
for |P|! different orders and then pick the best one according to some criterion, e.g. the
product of eq. (1) over people.

There are three problems with the naive algorithm: (i) it is infeasible to run due to the
factorial complexity in the number of people |P|; (ii) such a greedy algorithm doesn’t
have a global view on the scene, so people interactions are limited to removing image
evidence; (iii) typical HPE algorithms [1, 3] don’t handle occlusions and always try
to find an image position for all body parts (except [7] for self-occlusions). Therefore,
even if the naive algorithm ran over all the orders, it would not find out which parts are
occluded. Removing image evidence in step (2) might even lead to double-counting,
e.g. when both arms of a person are assigned to the same image region.

3.3 Our Approach to Multi-person Pose Estimation (MPS)

We propose a joint multi-person Pictorial Structures model which explicitly takes com-
plex interactions between people into account:

P (L | I, Θ, Z)∝exp

⎛
⎝∑

p∈P

∑
(i,j)∈E

Ψ(lpi , lpj ) +
∑
p∈P

∑
i

Φ(lpi | I, Θ, Z) +
∑

(p,q)∈X

∑
i

∑
j

aijω(lpi , lqj )

⎞
⎠
(2)

where the first term is a kinematic constraint as in the 1PS model (eq. (1)), but with
additional summations over people p ∈ P .

Interactions between people are at the core of our work and play an important role
in two terms of our joint model. First, the unary potential Φ is updated to depend on the
FtB order Z and to include an occlusion state (sec. 5.3). The probability of the occlusion
state is estimated specific to each person and body part before running PS inference, as
a function of the location of all other persons in the image as given by the detection
windows D. Moreover, in sec. 4 we propose techniques to strongly reduce the number
of FtB orders that the algorithm has to try out, also based on the spatial distribution of
detection windows. The second point where people interactions are modeled is the new
inter-people exclusion term ω, which prohibits body parts from different persons (p, q)
to occupy the same region (sec. 7), X is the set of interacting people (sec. 4).

In section 6 we show how to perform efficient approximate inference in our MPS
model. Finally, sec. 9 presents a quantitative evaluation of the occlusion predictor and
a comparison of our joint MPS model to 1PS.

4 Reducing the Number of Front-to-Back Orders

We propose exact and approximate ways to reduce the number of FtB orders Z .
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(a) (b)

Fig. 2. FtB Orders. (a) Group example (b) Calculating distinct FtB orders, red: maximal cliques
found, blue: position of the common node in each FtB order

4.1 Exact Reductions

A person can influence another person only if they are within a certain proximity. We
define two persons to be interacting if they are closer than their arm extents (more
precisely, if their enlarged detection windows overlap (Fig. 2a)). An image can then be
represented as an interaction graph X with nodes corresponding to people and edges
corresponding to interactions (Fig. 2a).

Group Independence. We define groups of people as connected components G in the
interaction graphX . The first reduction is found by observing that any two persons from
different groups cannot interact (i.e. groups are independent). Hence, pose estimation
can be run on each group independently, and so the effective total number of orders is
reduced from |P|! to

∑
G∈G

|G|!

Order Equivalence. Within a group, different FtB orders might lead to the same pose
estimation result. This is the case for orders 132 and 312 in the graph 1-2-3, as there is
no direct interaction between nodes 1 and 3 (Fig. 2a). We say that the two orders are
equivalent. If person 2 is in the back then the order between 1 and 3 has no influence
on pose estimation results. Analogously, orders 213 & 231 are also equivalent. Hence,
there are only 4 distinct FtB orders instead of 3! = 6 in the graph 1-2-3.

This intuition is formalized in the following algorithm to find all distinct FtB orders
in a group G: (1) find the maximal clique M of G; (2) keep a record which nodes are
in M and then remove all intra-clique edges from G; (3) compute sub-orders of the
maximal clique M as all permutations of its nodes (Z12 and Z23 in Fig. 2b); (4) repeat
until there are no edges in G; (5) compute the distinct orders of G as all permutations
between sub-orders of all maximal cliques MG found, concatenated at the position of
the common node (Z in Fig. 2b).

Group independence and order equivalence reduce the number of orders to:∑
G∈G

∏
M∈MG

|M |! (3)

where MG is the set of maximal cliques found in group G.

4.2 Approximate Reductions

As the vast majority of group photos are taken parallel to the ground plane, the people
appearing higher in the image are typically further away from the camera. Moreover if
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Fig. 3. Inter People Occlusion Probability. (a): detection windows (solid), enlarged detection
windows (dashed), (b) Distribution of relative locations of occluders f wrt the occluded person b
over the training set, (c) relative contribution of the training points for test point [-0.5,0.5,1]

a person appears larger then another, then it is likely closer to the camera. We propose
two heuristics based on the spatial arrangement of the detected persons P that capture
these observations. Both estimate which person in a pair (p, q) is in front of the other:

Relative Size. If p is more than 2.5 times bigger than q, then p is in front of q.

Relative Position. If the center of p is higher than the top of q, then p is behind q.

5 Occlusion Probability (OP)

The visibility of the body parts of a person depends on her position with respect to other
persons and wrt to the image border. We take both aspects into account by defining two
types of occlusion probabilities. One type defines the probability that a part of a person
is occluded, given the locations of all other persons and their FtB order (sec. 5.1). The
other type defines the probability that a part is not visible, given the location of the per-
son wrt to the image borders (sec. 5.2). We combine both probabilities specific to each
person p and body part i into a single occlusion prediction Op

i (details in sec. 6), which
is then used to set the energy of a new occlusion state in our MPS model (sec. 3.3).

5.1 Inter People Occlusion Probability (POP)

When two people are standing nearby it is likely that one is occluding some body parts
of the other. The inter people occlusion probability (POP) is defined between a pair
of interacting persons. One person f is considered to be in the front (occluder) and
the other b in the back (according to the FtB order). POP tells how likely a body part
l of b is occluded given the relative location Rb(f) of f in b’s coordinate frame (i.e.
Rb(f) = [(xb − xf )/wb, (yb − yf )/hb, hf/hb], with x, y, w, h the center, width, and
height of a window (Fig. 3a).

Learning. We model POP as a non-parametric distribution P (lbi = o | f, T ) where lbi
is part i of the back person and T is a set of training person pairs. For each pair (f, b),
the training data is Rb(f), defined as above, and the ground-truth occlusion vector Hb

of the back person b (which is annotated in our dataset (sec. 2)) (Fig. 3b).
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To take into account the uncertainty of the detector around the true position of a
person, we run it on the training images and then associate detection windows to the
annotated persons (as in [1]). This gives the person windows used for training.

Every pair of interacting persons (f, b) leads to a training sample (Rb(f),Hb) (two
persons interact if their enlarged windows overlap, sec. 4.1). We determine which is f
using the true FtB order, which is annotated in our dataset (sec. 2).

Test Time. At test time, we compute the probability that a body part i of a new person
p is occluded by a person q in front of her:

P (lpi = o |q, T ) =
∑

(f,b)∈T

αqpfbHb
i with αqpfb=

N (‖Rp(q) −Rb(f)‖ | 0, σ)∑
(d,c)∈T N (‖Rp(q) −Rc(d)‖ | 0, σ)

(4)

The weights αqpfb are set according to normalized Gaussian-weighted Euclidean dis-
tances between the relative location of the test pair (q, p) and those of the training pairs
T (Fig. 3c). The resulting POP value is always in [0, 1].

For a given FtB order Z , if person p is behind more than one occluder then the POP
probability of her part i is:

P (lpi = o | Z, T ) = max
f∈Fp

Z

P (lpi = o | f, T ) (5)

with Fp
Z the set of occluders of p in FtB order Z .

FtB orders for POP. Only the immediate neighborhood Vp of person p in the interac-
tion graph has an influence of her POP values. Therefore, the FtB orders for calculating
POP are node-specific (as opposed to the FtB orders for pose estimation, which are
group-specific (sec. 4.1)). Since Vp has a star-like topology, all its maximum cliques
M have size 2, so the number of FtB orders affecting POP values for person p is
|Zp| = 2|V

p|, typically much smaller than the number of FtB orders in her group.

5.2 Border Occlusion Probability (BOP)

Some parts of a person might not be visible due to her proximity to an image border.
We model here the probability of a part being occluded given the location of the person
wrt to image borders B = {top, bottom, side}.

We define BOP as P (lpi = o | d(Dp, B), ζB
i ) the probability that part i of person p

is not visible given the normalized distance d(Dp, B) of her detection window Dp to a
border B (Fig. 4a). ζB

i are the parameters of the distribution.

Learning. To learn BOP we use our group photo dataset to collect training detection
windows TD and associate them to ground-truth occlusion vectors TH (as in sec. 5.1).
For each type of body part i (e.g. right upper arm) and type of border B, we construct
the occlusion P (d(D, B) | li = o) and non-occlusion P (d(D, B) | li 
= o) likelihoods
as non-parametric kernel density estimates on the training data D ∈ TD (Fig. 4b). The
Bayesian posterior of li being occluded given the distance to B is (Fig. 4):

P (li =o | d(D, B))=
P (d(D,B) | li =o)P (li =o)

P (d(D,B) | li =o)P (li =o)+P (d(D, B) | li �=o)(1 − P (li =o))
(6)
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Fig. 4. Border occlusion probability. (a) Distances to border types. (b) Distribution of d(D, B)
wrt the bottom (y-axis) and side (x-axis) borders over the training set TD. Red dots: windows
of persons with occluded upper arm. Blue dots: not occluded. (c) Top: example of occlusion
likelihoods P (d(D, B) | li = o) for upper arms wrt to side and bottom borders (dashed and
solid curves respectively). Middle: as top but for non-occlusion likelihoods P (d(D, B) | li �= o).
Bottom: as top but for posterior distributions P (li = o | d(D, B)) (in black) and their parametric
approximations Yζ(x) (in magenta) cropped to the range of the posteriors.

where P (li = o) is a prior calculated as the frequency of occlusion of part i over
the training set. We approximate the non-parametric posterior estimates P (li = o |
d(D, B)) with a parametric function Yζ(x) = cN (x | μ, σ), fitted in the least square
sense. This makes BOP more compact and does not restrict the image size at test time.
As Fig. 4c shows, the fitted functions are very close to the non-parametric posteriors.

Test Time. At test time, we compute the probability that a body part i of a new person
p is not visible wrt to each border type B ∈ B and then select the maximum:

P (lpi = o |Dp,B, ζB
i )=max

B∈B
P (lpi = o |d(Dp, B), ζB

i )=max
B∈B

YζB
i

(d(Dp, B)) (7)

where ζB
i = {c, μ, σ}B

i are the parameters of the posterior approximation Yζ(x) for
border type B and part type i.

5.3 Incorporating Occlusion in the MPS Model

To handle occlusions in our MPS model (eq. (2)) we add an occlusion state to the
state-space of the nodes (body parts). This results in an additional entry in the unary
appearance likelihood Φ(li | I, Θ, Z) and an additional row and column in the pairwise
kinematic prior Ψ(li, lj).

We consider the head as the root of the kinematic tree and set the pairwise term so
that if a node is occluded, then all its children must be occluded as well. We consider
the head to be always visible and give it no occlusion state.

We use the occlusion prediction Op
i to set the energy of the occlusion state in the ex-

tended MPS model (and the energies of the corresponding row/columns in the pairwise
term). Therefore, the MPS model sees Op

i as a prior for a part to be occluded.

6 Inference

To find the optimal configuration of body parts in our joint MPS model (eq. (2)) we must
minimize its energy also over FtB orders Z . This is infeasible due to the factorial num-
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(a) (b) (c)

Fig. 5. Inference. (a) an inference example, (b) a stack of samples drawn from the joint probabil-
ity of configuration of the left person, (c) puppet state-space graphical model (eq. (8)), the lowest
energy configuration according to the joint model is marked by the cyan line.

ber of orders in the number of persons and the relatively high cost of pose estimation for
a person. The techniques we propose in sec. 4 bring us closer to the goal, as they greatly
reduce the number of orders to be considered. Yet, it remains inconveniently expensive
to find the exact global optimum. Therefore, we show here how to perform efficient
approximate optimization of eq. (2) over L. Notice that the optimization is done only
once as all FtB orders are marginalized out while computing POP (sec. 5.1).

Person-level model. The key idea is to rewrite eq. (2) on a coarser level, where a node
is a person rather than a body part:

P (L | I,Θ) ∝ exp

⎛
⎝∑

u∈U

∑
p∈P

u(Lp | I,Θ) +
∑

(p,q)∈X

Ω(Lp, Lq)

⎞
⎠ (8)

where U is the set of unary terms related to one person and Ω is the inter-person ex-
clusion term (as ω in eq. (2) but now defined on the person level). A single state for a
node in eq. (2) was a particular location of a body part of a person, whereas in eq. (8)
it is a spatial configuration of all body parts of a person - a puppet (Fig. 5c). All terms
of eq. (2) relating to one person become unary terms u in eq. (8) (also the pairwise
kinematic prior Ψ(li, lj) between parts). The set of model edges corresponds to the in-
teraction graph X . The exclusion term Ω is detailed in the next section, as it can be
computed very efficiently by exploiting the properties of the puppet-space and of the
inference algorithm below.

Efficient inference. This remodeling of the problem enables to take advantage of two
important facts: (i) the occlusion probabilities POP/BOP depend on the output from the
person detector only; (ii) the number of FtB orders that affects the occlusion probabili-
ties is much smaller than the number of FtB orders affecting pose estimation (sec. 5.1).
Based on these facts, we design the following approximate inference on the joint MPS
model:
(1) Compute the occlusion probability Op

i for every part of every person by combin-
ing POP (eq. (5)) and BOP (eq. (7)). As at test time the FtB order is not given, we
marginalize it out when computing POP (it does not affect BOP anyway):

Op
i = max

{
P (lpi = o | Dp,B, ζB

i ), 1
|Zp|

∑
Z∈Zp

P (lpi = o | Z, T )
}

(9)

(2) Sample a small set of candidate puppets Sp for every person. We reduce the joint
model to contain only the image likelihood Φ and kinematic prior Ψ terms for one
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Fig. 6. (a)-(c) Exclusion between people. (a) Blue and red overlays show likely body configura-
tion for a single person HPE algorithm [1], magenta depicts image areas covered by both persons.
(b) top: fast IoU between two rectangles using Sutherland-Hodgman clipping algorithm [20], bot-
tom: bound on intersection of two rectangles, (c) limb-pairs contributions into the overall between
people exclusion Ω. (d) Anti double-counting. Limb-pair contributions (sec. 8)

person p and plug Op in the occlusion states as described in sec. 5.3. Then we sample
1000 puppets according to the posterior of the reduced model - a proposal distribution
(Fig. 5b). When implemented efficiently, this sampling has computational complexity
similar to finding the best puppet in the 1PS model eq. (1).
(3) Optimize the joint model. We setup the state-space of each person p in the joint
model (eq. (8)) to contain only the sampled puppets Sp (Fig. 5c). As the interaction
graph may contain loops, we use TRW-S [19] to run inference in this model. The com-
putation time of this operation is negligible.
Additional terms. The final model eq. (8) contains additional unary terms inU , defined
on individual persons, designed to compensate flaws of the original PS formulation [5].
We explain them in more detail in sec. 8.

7 Exclusion between People Ω, ω

We explain here the inter-people exclusion term Ω, which penalizes configurations
where different people have body parts in the same image region (Fig. 6a).

We define it as Ω(Lp, Lq) =
∑

i

∑
j aijω(lpi , lqj ) where ω(lpi , lqj) is the exclusion

defined on per body part level and aij are per limb pair (i, j) weights (eq. (2)); ω(lpi , l
q
j )

is defined as log(1 − IoU(lpi , lqj )) where IoU(lpi , lqj ) ∈ [0, 1] is the area of intersection-
over-union between body parts lpi , lqj of two persons p, q and a body part is approximated
by a rectangle of constant aspect-ratio (Fig. 6a).

The inference approach of sec. 6 must compute the exclusion term between all pairs
of body parts between all pairs of sampled puppets between all pairs of interacting
people. If implemented directly this requires |S|2 ∗ |L|2 ∗ |X | IoU computations, where
|S| is the number of puppet samples, |L| the number of body parts, and |X | the number
of edges in the interaction graph X . Although one IoU can be computed efficiently
based on the Sutherland-Hodgman clipping algorithm [20] (Fig. 6b top), doing it for all
pairs is very expensive.

We can drastically reduce the number of IoU computations without doing any ap-
proximation by observing that two rectangles i, j can have non-zero IoU only if the dis-
tance d(ci, cj) between their centers is smaller then the sum of the radii ri, rj of their
circumscribing circles (Fig. 6b bottom). Therefore, we compute this bound for all pairs
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of rectangles and then only compute IoU for the small minority with d(ri, rj) < ri+rj .
The cost of computing the bound is negligible compared to the cost of IoU.

Learning weights aij . In our model (eq. (2)), the exclusion terms between different
pairs of body parts (i, j) between two persons are combined in a sum weighted by aij .
We learn these weights from the training set as follows. For each pair of parts (i, j), we
compute the average IoU mij between all pairs of interacting ground-truth stickmen
(to avoid a bias, only pairs of not occluded parts contribute to the average). We then
set aij = 1 − mij . As the arm of a person can be partially in front of her neighbor’s
torso and yet both are visible, we want to penalize this situation little. Instead, we want
to exclude that the arm of a person can overlap with the head of another. The learned
weights follow these intuitions, and give a high weight for head-arm overlaps but lower
weight to arm-torso overlaps (Fig. 6c).

8 Additional Single-Person Cues

We include in our joint model (eq. (8)) additional terms defined on individual persons,
designed to compensate shortcomings of a plain PS model (sec. 3.1).

Anti Double-Counting Γ . The original PS formulation (eq. (1)) lacks a mechanism for
discouraging two parts of the same person from explaining the same image region. This
double-counting typically happens between left/right arms or legs. Several methods
were proposed to tackle this problem including non-tree models [2, 17] and sequential
image likelihood removal [16].

Interestingly, we can easily incorporate anti double-counting penalties in our model
simply by adding a term analog to the inter-people exclusion ω, but now between pairs
of body parts of the same person. This is more principled than manually adding depen-
dencies between parts incline to double-counting [2], as it enables to learn a weight for
every part pair (in the same way as for ω, sec. 7). The learned weights nicely lead to the
desired behavior, e.g. high weights between all combinations of upper and lower arms,
but low weights between arms and torso, resulting in a model that does not penalize
configurations where the arms are in front of the torso (Fig. 6d).

Foreground-Fill Λ. Foreground-fill Λ encourages configurations of body parts colored
differently then the background, similar to [21, 22]. It gives intermediate energies when
body parts are occluded.

Symmetric Arm Appearance Υ . Symmetric Arm Appearance Υ encourages config-
urations where the left and right upper arms (as well as the left and right lower arms)
have similar appearance. If one in a the pair is occluded, then it gives an intermediate
energy to both.

9 Experiments and Conclusions

We present a comprehensive evaluation of (i) the algorithm’s complexity drop when
using the FtB orders reductions (sec. 4); (ii) the ability of the method to predict which
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Fig. 7. Evaluation. (a) ROC curves for binary occlusion classification (y-axis = true-positive
rate, x-axis = false-positive rate). Baselines: occlusion prior - constant OP for each part set to the
part’s frequency of occlusion over the training set; head&torso - head and torso always visible
and all other parts always occluded. Modes for our method: people+order - ground-truth person
detections and order Z given; people - only ground-truth detections given; automatic - true test
scenario with nothing given; automatic approxZreductOFF - as automatic but without using the
heuristics for reducing the number of FtB orders.
(b) PCP curves for pose estimation: 1PS - [1]+[3], 1PS+addU - [1]+[3] + additional single person
terms ΓΛΥ (sec. 8); oclMPS - the lowest energy puppet sampled from the proposal distribution of
our MPS model including occlusion probabilities (sec. 6); oclMPS+addU - oclMPS with ΓΛΥ ;
fullMPS - oclMPS with ΓΛΥ and the inter-people exclusion term Ω (the full multi person model).

body parts are occluded (sec. 5); (iii) the pose estimation accuracy of our joint MPS
model, compared to a state-of-the-art 1PS estimator [1] (sec. 6).

We split the group photo dataset into training (first 350 images) and testing (remain-
ing 175 images). We use the training set to learn all the parameters. The test set is used
for evaluating both the occlusion predictor and pose estimation performance.

Automatic parameter setting. In order to incorporate the occlusion probabilities in
the MPS model (sec. 5.3) we need just two parameters (the scaling for the unary energy
of the occlusion state and the real-to-occlusion state transition energy in the pairwise
terms). We search over a grid of values and retain those maximizing the performance
of the HPE algorithm (i.e. the Percentage of Correct body Parts) on the training set
(sec 9.(iii)). The optimal weights between the various terms of MPS (eq. (8)) are learned
using a constraint generation algorithm inspired by [23], again to maximize PCP. In the
complete model, we train both types of parameters jointly (i.e. by running the constrain
generation algorithm at every point on the grid). All other parameters of our model are
learned as described in the respective sections 5.1, 5.2, 7, 8.

Person Detector. Since our approach relies on a person detector, we need one yielding
high detection rates and low false positive rates, also on images where people are only
visible from the waist up (Fig. 8). For this we combine a face detector [24] with the
upper and full human body models in the detection framework of [25]. This detector
achieves 86% detection-rate at 0.5 false positives per image on our group photo dataset.

(i) FtB Orders Reduction. Without any of the FtB orders reductions proposed in sec-
tion 4, the median number of required pose estimations per image over the entire dataset
is 600. When utilizing the exact reductions (sec. 4.1) this decreases to 80, and with also
approximate reductions to 48 (sec. 4.2).
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Fig. 8. Results. First column: top - results of single person model 1PS+addU, bottom - full multi-
person model fullMPS. Other columns: more results returned by our full model.

(ii) Occlusion Prediction (OP). Given a test image, we compute occlusion probabil-
ities using eq. (9). This estimates a probability of occlusion Op

i for each person p and
body part i in the image. We evaluate the quality of this estimation by using it to classify
body parts as occluded or not-occluded. For this, we draw ROC curves by thresholding
the probability at increasing values in [0, 1] (Fig. 7a).

Fig. 7a shows the performance of our method in 3 modes, differing in the amount
of information given to the algorithm, and a few intuitive baselines to compare against.
Our OP predictor in all modes clearly outperforms even the strongest baseline (occlu-
sion prior). The influence of the order marginalization (eq (9)) on the prediction qual-
ity is visible by comparing people+order to people. This approximation only causes a
modest performance drop. The influence of using our automatic (and imperfect) person
detector can be seen by comparing people to automatic. The performance of the oc-
clusion predictor decreases only marginally compared to using ground-truth detections.
Finally, comparing automatic and automatic-approxZreductOFF demonstrates that the
heuristics for reducing the number of FtB orders (sec. 4.2) do help the OP predictor.
The good performance of the automatic mode shows that our predictor can reliably es-
timate the occlusion probabilities of persons’ body parts given just their (automatically
detected) image locations.

(iii) Pose Estimation. We evaluate the impact of our joint MPS model, which explicitly
models interactions between people, on pose estimation performance. For each body
part of every person, our method returns a line segment or deems the part as occluded.
We evaluate performance using the framework of [1] (on-line) modified to account for
occlusions. The performance is measured by average PCP (Percentage of Correctly
estimated body Parts) over all persons correctly localized by the person detector. An
estimated part is considered correct if its segment endpoints lie within a fraction of the
length (pcp-threshold) of the ground-truth segment from their annotated location. An
occluded body part is considered correct only if it is also occluded in the ground-truth.
Fig. 7b shows PCP performance for pcp-threshold in [0.1, 0.5].

We compare to, and based our model on, the single-person HPE of [1] with added the
excellent body part models of [3] (1PS). This achieves sharper part posterior marginals
than [1] alone, which is beneficial to our sampling procedure (sec. 6). We also compare
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to the complete HPE of [3] using the code released by the authors1, initialized from the
same person detections as 1PS and MPS. As Fig. 7b shows, extending 1PS into our MPS
by incorporating the occlusion probability prediction brings a substantial gain of 10%
PCP (1PS vs oclMPS). Further adding the additional unary cues improves performance
by another 2% (oclMPS+addU). Adding also the inter-people exclusion term Ω brings
another 2% improvement (fullMPS). This shows that all components presented in this
paper are valuable for good performance in group photos. Overall, our full multi-person
model improves over 1PS by 15% (at pcp-threshold = 0.2). Note how already our 1PS
outperforms [3] on this dataset. Fig. 8 shows some qualitative results (illustrations for
the entire test set are available at [4]).

10 Conclusions

We presented a novel multi-person pose estimation framework that explicitly models
interactions between people and estimates their poses jointly. Both occlusion proba-
bility and pose estimation evaluations confirm our claims that joint multi-person pose
estimation in the group photo scenario is beneficial over estimating the pose of every
person independently.
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Abstract. We present a framework for vision-assisted tagging of per-
sonal photo collections using context. Whereas previous efforts mainly
focus on tagging people, we develop a unified approach to jointly tag
across multiple domains (specifically people, events, and locations). The
heart of our approach is a generic probabilistic model of context that cou-
ples the domains through a set of cross-domain relations. Each relation
models how likely the instances in two domains are to co-occur. Based
on this model, we derive an algorithm that simultaneously estimates the
cross-domain relations and infers the unknown tags in a semi-supervised
manner. We conducted experiments on two well-known datasets and ob-
tained significant performance improvements in both people and location
recognition. We also demonstrated the ability to infer event labels with
missing timestamps (i.e. with no event features).

1 Introduction

With the ever increasing popularity of digital photos, vision-assisted tagging
of personal photo albums has become an active research topic. Existing efforts
in this area have mostly been devoted to using face recognition to help tag
people. However, current face recognition algorithms are still not very robust to
the variation of face appearance in real photos. To address this issue, various
methods [1] have been proposed to exploit contextual cues to aid recognition.
While obtaining some improvement, these methods focus on the people domain,
and neglect other important domains such as events and locations.

The most important questions in regard to personal photo tagging are who,
what, when, and where. With an aim of answering these questions coherently, we
consider the domains of people, events, and locations, as a whole. Our work is
motivated by the insight that the domains are not independent and knowledge
in one domain can help the others. For example, if we know the event that a
photo was captured in, we can probably infer who was in the photo, or at least
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Fig. 1. Our framework comprises three types of entity: (1) The people, event, and
location domains, together with their instances. (2) The observed features of each
instance in each domain. (3) A set of contextual relations between the domains. Each
relation is a 2D table of coefficients that indicate how likely a pair of labels is to co-
occur. Although only the people-event relation is shown in this figure, we consider four
different relations in this paper. See body of text for more details.

reduce the set of possibilities. On the other hand, the identities of the people in
a photo may help us infer when and where the photo was taken.

Ideally, if a strong classifier is available to recognize the instances in a domain
accurately, one can utilize the labels in this domain to help the recognition in
others. However, a challenge arises in real system is that we often do not have a
strong classifier to start with in any domain. One of our primary contributions
is to develop a unified framework that couples the recognition in these domains.
We also derive a joint learning and inference algorithm that would allow us to
achieve accurate recognition in all domains by exploiting the statistical depen-
dency between them to reinforce individual classifiers.

Our framework, outlined in figure 1, consists of three domains: people, events,
and locations. Each domain contains a set of instances. In order to account for
the uncertainty due to missing data or ambiguous features, we consider the labels
in all three domains as random variables to be inferred. Pairs of domains are
connected to each other through a set of cross-domain relations that model the
statistical dependency between them.

In this paper, we specifically consider four relations: (a) the people-event re-
lation models who attended which events, (b) the people-people relation models
which pairs of people tend to appear in the same photo, (c) the event-location
relation models which event happened where, and (d) the people-location relation
models who appeared where. These relations embody a wide range of contextual
information, which is modeled uniformly under the same mathematical frame-
work. It is important to note that each pair of related domains are symmetric
with respect to the corresponding relation. This means, for example, that utiliz-
ing the people-event relation, event recognition can help people recognition, and
people recognition can also help event recognition.

Based on this framework, we formulate a joint probabilistic model to integrate
both feature similarity and contextual relations. However, we face a challenge
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that specially arises in the application of personal photo tagging. Unlike other
classification problem such as object recognition where one can learn the contex-
tual models from training data, the relational models (e.g. people-event relation)
estimated from one photo collection are generally not applicable to other col-
lections. In fact, the set of people or events may well be completely different in
two different photo collections. It is also infeasible to require a user to prepare
training data for each of their albums. Instead, we develop an algorithm that
simultaneously estimates the relations and infers the labels across all domains
by solving a unified optimization problem in a semi-supervised way.

We tested our approach on two well-known datasets. For people labeling, the
error rate is reduced from 27.8% to 3.2% on one data set, and from 26.3% to
14.6% on the other. We also obtained a huge improvement in location labeling
(16.7% to 1.3%). Finally, we demonstrate the ability to estimate event labels for
photos in the presence of missing timestamps (i.e. with missing event features.)

2 Related Work

Related prior work can be roughly split into two categories: context-aided face
recognition, and object/scene classification using context. We now review this
related work and clarify the key differences from our approach.

Over the last decade, there has been a great deal of interest in the use of con-
text to help improve face recognition accuracy in personal photos. A recent sur-
vey of context-aided face recognition can be found in [1]. Zhang et al. [2] utilized
body and clothing in addition to face for people recognition. Davis et al. [3,4]
developed a context-aware face recognition system that exploits GPS-tags, time-
stamps, and other meta-data. Song and Leung [5] proposed an adaptive scheme
to combine face and clothing features based on the time-stamps. These meth-
ods treat various forms of contextual cues as linearly additive features, and thus
oversimplifies the interaction between different domains.

Various methods based on co-occurrence have also been proposed. Naaman et
al. [6] leveraged time-stamps and GPS-tags to reduce the candidate list based on
people co-occurrence and temporal/spatial re-occurrence. Gallagher and Chen [7]
proposed an MRF to encode both face similarity and exclusivity. In later work
by the same authors [8], a group prior is added to capture the tendency that
certain groups of people are more likely to appear in the same photo. In addi-
tion, Anguelov et al. [9] developed an MRF model to integrate face similarity,
clothing similarity and exclusivity. Finally, Kapoor et al. [10] proposed a frame-
work that uses Gaussian Processes to capture contextual constraints. Whereas
these models provide a more flexible way to capture the interaction between
co-occuring instances, they are nearly all formulated within the people domain.
An exception is Naaman et al. [6], which uses time and locations, however the
model is heuristic and the time and location labels are treated as noiseless.

In contrast to prior contextual face recognition work, our framework treats all
three domains in a uniform manner. The labels in each domain (including events
and locations) are modeled as random variables, rather than noiseless quanti-
ties, and the relation connecting each pair of domains can be utilized for the
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inference in both domains. Moreover, instead of using heuristics to utilize time
and locations, we develop a principled approach that establishes a joint proba-
bilistic model over these domains. Labeling and estimation are thus performed
as a unified optimization process.

Our framework is also related to the use of context in object recognition and
scene classification. For example, Torralba et al. [11,12] used scene context as
a prior for object detection and recognition. Rabinovich et al. [13] proposed
a CRF model that utilizes object co-occurrence to help object categorization.
Galleguillos et al. [14] extended this framework to use both object co-occurrence
and spatial configurations for image segmentation and annotation. Li-Jia and
Fei-Fei [15] proposed a generative model that can be used to label scenes and
objects by exploiting their statistical dependency. In later work [16], the same
authors extended this model to incorporate object segmentation. Cao et al. [17]
employed a CRF model to label events and scenes coherently.

While these approaches share some technical similarity with our work, three
key differences distinguish our work:

(1) As mentioned above, it is infeasible in personal photo tagging to provide a
separate training set to estimate the contextual model. To meet this challenge,
we designed an algorithm where the model is estimated directly from the photo
collection to be tagged, along with inference being performed. This should be
contrasted with the conventional approach to object/scene classification, where
the models are learned offline on a training set.

(2) The instances to be labeled in object/scene recognition are typically in-
stances (e.g. objects) within a single image. The context models the relations
(spatial, co-occurrence) within that image. On the other hand, our contextual
model is over the entire photo collection. It models inter-photo dependencies
rather than just intra-image relations. This makes it possible to reliably esti-
mate the relational models without the need of a priori training.

(3) The application domain is different. Rather than considering generic object
recognition and scene classification, we consider the problem of context-assisted
face, location, and event recognition in personal photo collections.

3 Probabilistic Model Formulation

In this section, we formalize our framework as a Bayesian model. Suppose there
are M domains: Y1, . . . ,YM . Each domain is modeled as a set of instances, where
the i-th instance in Yu is associated with a label of interest, modeled as a random
variable yi

u. While the user can provide a small number of labels in advance, most
labels are unknown and to be inferred. Specifically, we consider three domains
for people, events, and locations. Each detected face corresponds to a person
instance in people domain, and each photo corresponds to both an event in-
stance and a location instance. Each domain is associated with a set of features
to describe its instances. In particular, person instances are characterized by
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their facial appearance and clothing; while events and locations are respectively
characterized by time-stamps and the background color distribution.

To exploit the statistical dependency between the labels in different domains,
we introduce a relational model Ruv between each pair of related domains Yu

and Yv. It is parameterized by a 2D table of coefficients that indicate how likely
a pair of labels is to co-occur. Taking advantage of these relations, we can use
the information in one domain to help infer the labels in others.

Formally, our goal is to jointly estimate the posterior probability of the labels
Y and relations R conditioned on the feature measurements X:

p(Y, R|X) ∝ p(Y |R,X)p(R). (1)

Here, we use Y and X to represent the labels and features of all domains. The
formulation has two parts: (1) p(Y |R,X): the joint likelihood of the labels given
the relational models and features (section 3.1). (2) p(R): the prior put on the
relations to regularize their estimation (section 3.2).

3.1 Joint Probability of Labels

We propose to directly model the joint label distribution conditioned on the
observed features, rather than assuming a parametric feature distribution for
each class as in generative models. This approach is generally more effective
when the number of labeled samples in each class is limited. In particular, we
propose the following model for p(Y |R,X):

p(Y |X; R) =
1
Z

exp

⎛
⎝ M∑

u=1

αuΦu(Yu;Xu) +
∑

(u,v)∈R
αuvΦuv(Yu, Yv; Ruv)

⎞
⎠ . (2)

The proposed likelihood contains: (1) an affinity potential Φu(Yu,Xu) for each do-
main Yu to model feature similarity, and (2) a relation potential Φuv(Yu, Yv; Ruv)
for each pair of related domains (u, v) ∈ R. They are combined with weights αu

and αuv, which can be set by cross-validation in practice.
1. The affinity potential Φu captures the intuition that two instances in Yu

with similar features are likely to be in the same class:

Φu(Yu;Xu) =
Nu∑
i=1

Nu∑
j=1

wu(i, j)I(yi
u = yj

u). (3)

Here, wu(i, j) is the similarity between the features of the instances correspond-
ing to yi

u and yj
u. I(·) denotes the indicator that equals 1 when the condition

inside the parenthesis holds. The similarity function wu depends on the features
used for that domain (see section 5 for details). If the instances in a domain
can be described by different types of features, we define affinity potentials for
different features, and use their sum as the overall potential.

Intuitively, Φu considers all instances of Yu over the entire collection, and
attains large value when instances with similar features are assigned the same
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labels. Maximizing Φu should therefore result in clusters of instances that are
consistent with the the feature affinity. This is in contrast to standard CRF
models [18] that require learning class-specific feature coefficients for each class.

When clothing is used as one of the features in the people domain, a modifi-
cation is necessary. As people may change clothes, comparing clothing features
is only appropriate when the two person instances were in the same event. To
model this, we modify the affinity potential for clothing features to be:

Φ(YP ;XC) =
N∑

i=1

N∑
j=1

wC(i, j)I(yi
p = yj

p)I(y
ph(i)
e = yph(j)

e ). (4)

Here, YP and XC denote the people labels and clothing features, wc(i, j) is
the similarity between the clothes of the i-th and j-th person instances, and
y

ph(i)
e and y

ph(j)
e are the event labels of the corresponding photos. The factor

I(yph(i)
e = y

ph(j)
e ) only turns on rest of the term within the same event.

2. The relational potential Φuv(Yu, Yv; Ruv) models the cross-domain in-
teraction between the domains Yu and Yv. The relational model Ruv is param-
eterized as a 2D table of co-occurring coefficients between pairs of labels. For
example, for people domain Yu and event domain Yv Ruv(k, l) indicates how
likely it is that the person k attended the event l. Then, we define Φuv to be:

Φuv(Yu, Yv; Ruv) =
∑
i∼j

∑
k,l

Ruv(k, l)I(yi
u = k)I(yj

v = l). (5)

Here, i ∼ j means that yi
u and yj

v co-occur in the same photo. Intuitively, large
value of Ruv(k, l) indicate that the pair of labels k and l co-occur often, and
will encourage yi

u to be assigned k and yj
v be assigned l. Hence, maximizing Φu

should lead to the labels that are consistent with the relation.

3.2 Relational Model Prior

In real application, only a relatively small number of instances are tagged in
advance by user (often just one or two per class). The model is estimated from
these user-given labels. While the estimation can also use the labels inferred in
previous step in our iterative algorithm, the inferred labels could be noisy and
actually depend on the user-given labels. To avoid over-fitting, it is important to
regularize the relational models. To this end, we incorporate the following prior:

p(R) =
1

Zprior
exp

⎛
⎝−β1

∑
(u,v)∈R

||Ruv||1 − β2

∑
(u,v)∈R

||Ruv||22

⎞
⎠ . (6)

Here, ||Ruv||1 and ||Ruv||2 are L1 and L2 norm of the relational matrix. Intu-
itively, the first term encourages sparsity of the relational coefficients, and there-
fore can effectively suppress the coefficients due to occasional co-occurrences,
retaining only those capturing truly stable relations. Furthermore, it is often the
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case that a small number of people may appear hundreds of times, while others
only several times. This could result in exceptionally large coefficients for those
dominant classes, and as a consequence, some instances in small classes may be
incorrectly assigned the labels of large classes. The second term regularizes the
coefficients, and thus can help to inhibit such errors that could otherwise occur
when class sizes are imbalanced.

4 Joint Inference and Learning

We derive a variational EM algorithm where the goal is to jointly infer the labels
of instances and estimate the relational model. With a few labels in different
domains provided in advance by user (denoted as YL), the algorithm iterates
between two steps: (1) Infer the distribution of the unknown labels (denoted as
YU ) based on both the extracted features and the current relational model R.
(2) Estimate and update the relational model R using the labels provided by
user and the hidden labels inferred in previous iteration.

We can derive such iterative procedure by considering the task of Maximum-
a-posteriori (MAP) estimation of R

R∗ = argmax
R

p(R|YL;X), where p(R|YL;X) ∝ p(R)
∑
YU

p(YU , YL|R,X). (7)

Note that computing p(R|YL;X) requires marginalizing over the unknown labels
YU and is intractable. The variational methods tackle this problem by maximiz-
ing a tractable lower a bound of the log posterior. Formally, if q denotes any
valid distribution of YU , then using Jensen’s equality it is easy to obtain a lower
bound of log[p(R)p(YL|R,X)], given by

J(R, q) = Eq{log p(YU , YL|R,X)} + log p(R) + Hq(q(YU )) (8)

Further, it is well known (put some ref here) that equality holds when q(YU ) =
p(YU |YL; R,X). In other words, maximizing the lower bound J(R, q) with respect
to both R and q will not only provide us with an estimate of R but also the
posterior distribution over YU . The optimization of J(R, q) w.r.t. R and q can
be performed by iterating between the following steps.

q̂(t+1) = argmax
q

J(R̂(t), q), (E-step) (9)

R̂(t+1) = argmax
R

J(R, q̂(t+1)). (M-step) (10)

The E-step in Eq.(9) infers the posterior distribution of the unknown labels YU

using the current model R̂(t). The M-step in Eq.(10) estimates the relational
model R based on the updated distribution q̂(t+1)(YU ). However, solving Eq.(9)
and Eq.(10) under our formulation is intractable and we need to resort to vari-
ational approximations.

Inferring Unknown Labels (E-STEP): The optimization problem in Eq.(9)
can be made tractable using mean field approximation [19]. Formally, we restrict
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q to be a factorized distribution: q(YU ) =
∏M

u=1
∏

i∈Uu
qi
u(yi

u). Here, Uu corre-
spond to all unlabeled instances in domain Yu. The approximation results in the
following closed form expressions for updating the posteriors:

q̂i
u(k) =

1
Zi

u

exp(ψi
u(k)). (11)

where, Zi
u =

∑
k′ exp(ψi

u(k′)) is the normalization constant, and ψi
u(k) is:

ψi
u(k) = αu

Nu∑
j=1

wu(i, j)qj
u(k) +

∑
v:(u,v)∈R

αuv

∑
j:i∼j

Kv∑
l=1

Ruv(k, l)qj
v(l). (12)

Note that despite the factorized form, the parameters of qi
u for different instances

are coupled to each other and effect each other. Further, as observed in Eq.(12),
both feature similarity (first term) and cross-domain relations (second term) are
utilized in the inference, leading to an estimate of the posterior that considers
both within-domain and cross-domain information.

Estimating Relational Model (M-STEP): Given the inferred distribution
q, we can estimate the relational model R by solving Eq.(10):

R∗ = argmax
R

Eq{log p(YL, YU |X; R)} − log Z(X; R) + log p(R). (13)

Note that the log-partition function log Z(X; R) is intractable here. We use tree-
reweighted approximation [20] to make it tractable. The basic idea is to divide the
original model into tractable sub-models, and replace log Z(X; R) with a convex
combination of the log-partition functions of the sub-models. The substitution
results in an upper bound of log Z(X; R) [20]. In particular, we divide the joint
model into affinity models and cross-domain relations, leading to the following
upper bound:

M∑
u=1

θuAu +
∑
u↔v

θuvBuv(Ruv/θuv) (14)

Here Au is the log-partition of the affinity model for Yu that is independent
of R, and Buv is the log-partition of the cross-domain relation. The coefficients
θu and θuv are the weights of the convex combination of the models. Such an
approximation simplifies the maximization step and now each relation can be
estimated respectively by solving:

R∗
uv = argmax

Ruv

Eq{Φuv(Yu, Yv; Ruv)} − θuvBuv(R/θuv) + log p(Ruv). (15)

For simplicity, we set the weights to be θuv = 1/#relations. The objective is
concave with a unique optimum and we use L-BFGS algorithm [21] to solve it.

5 Experiments

There are two publicly available datasets that are commonly used to evaluate re-
search in personal photo tagging, which we call E-Album [22] and G-Album [23].
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Since ground-truth labels are not provided, we estimate ground-truth by man-
ually tagging each detected face. We also manually tag the event and location
of each photo. We excluded the photos without any detected faces, and those
whose ground-truth event and location labels could not be determined, leaving
a subset of each album. In particular, E-Album contains 108 photos taken at
21 locations in 19 events, and 19 different people with 145 detected faces. G-
Album contains 312 photos taken at 117 events, and 13 different people with
441 detected faces. The two albums give rise to different challenges. The sizes
of the people classes in the E-Album are more unbalanced, while the G-Album
has many more events, each containing only a small number of photos.

Feature extraction was performed as follows. For the people domain, we used
the facial features proposed in [24]. A color histogram was used for the clothing.
The location of the clothing relative to the face was determined using a simple
geometric rule. For events we used the time-stamps as features. For locations,
we used a color histogram of the background scene. For each feature, a distance
measure is required. For the face features, we followed the algorithm in [24].
For clothes and location features, we used the Earth-mover’s distance [25]. For
events, we defined the distance to be 0 if the time-stamps were on the same day,
and 1 otherwise. Finally, we need to compute the affinity weights wu(i, j). We
experimented with a number of alternatives, and found that the best approach
is to connect each unlabeled instance to just the closest K labeled instances, and
set wu(i, j) = exp(−d2(xi,xj)/σ2). The value of wu(i, j) for the other instances
is set to zero. Here d(xi,xj) is the distance between the features xi and xj . We
determined the optimal values of K and σ by cross validation.

Our algorithm outputs an estimate of the posterior probability of each label
for each instance. To compute an error metric for our algorithm, we sort the
candidate labels in terms of their posterior probabilities. We then compute rank-
k error rates, the proportion of unlabeled instances whose top k candidate labels
are all incorrect. To evaluate our algorithm, we generate a pre-labeled subset
for each album by random sampling. For the people domain, we randomly chose
19 instances (13%) for the E-Album, and 49 instances (11%) for the G-Album.
Here, we require that at least one instance is pre-labeled for each class. However,
this requirement can be readily removed using active learning (see section 5.5),
by which one can introduce new labels interactively.

5.1 People Labeling

We compare the performance of four different variants of our algorithm: (1) us-
ing only people affinity (no contextual information), (2) with the people-people
relation, (3) with the people-event relation, and (4) with both relations.

The results of quantitative evaluation are shown in Figure 2. We note three
observations: First, on both albums the people-people relation alone provides
only a limited improvement (rank-1 errors reduced from 27.8% to 27.0% for
the E-Album). Second, the people-event relation gives a much bigger improve-
ment (rank-1 errors reduced from 27.8% to 11.9% for the E-Album). Third, the
combination of the people-event relation and the people-people relation yields
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P_Only PP PE PP+PE

Rank 1 27.8% 27.0% 11.9% 3.2%
Rank 2 19.0% 16.7% 0.8% 0.8%
Rank 3 13.5% 9.7% 0.0% 0.0%
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(a) Error rates on E-Album

P_Only PP PE PP+PE

Rank 1 26.3% 25.3% 20.1% 14.6%
Rank 2 8.2% 6.4% 2.3% 4.6%
Rank 3 4.9% 3.6% 0.0% 0.0%
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(b) Error rates on G-Album

Fig. 2. Comparison of people labeling performance with different configurations.

Above:  Errors when only face recognition is used 
Left:  Errors when both P-E and P-P relations are used 

Fig. 3. All rank-1 errors for the E-
Album. Above the delimiter: Errors
made by our algorithm with no con-
textual relations (27.8%). Below the de-
limiter: Errors made by our algorithm
with both the people-event and people-
people relations (3.2%).
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Fig. 4. The results of statistical signifi-
cance testing obtained on E-Album with
different percentages of pre-labeled in-
stances. Curves from top to bottom ob-
tained by: using only face, using people-
people, using people-event, and using
both relations.

another significant improvement (rank-1 errors down to 3.2% on the E-Album).
To illustrate our results visually, we include a collage of all of the errors for the
E-Album in Figure 3. In the supplemental material, we include a similar figure
for the G-Album, together with movies illustrating the results.

These results show: (1) that the people-event and people-people relations pro-
vide complementary sources of information, and (2) the people-event relation
makes the people-people relation more effective than without it. The most likely
explanation is that the group-prior and exclusivity are more powerful when used
on the small candidate list provided by the people-event relation.

Overall, we found the G-Album to be more challenging. Partly, this is due to
the fact that the G-Album contains a very large number of events (117), each
with very few photos (3.8 on average.) The people-event relation would be more
powerful with more photos per event. Note, however, that our framework still
yields a substantial improvement, reducing the rank-1 error rate from 26.3%
to 14.6%. Note also, that the rank-3 error rate is reduced to zero on both al-
bums, a desirable property in vision-assisted tagging system where a short-list
of candidates is often provided for the user to choose from.
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Fig. 5. Comparison between baseline
approaches and ours on E-Album
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Fig. 6. Location error rates on E-Album

We also evaluated the performance of our framework with clothes features
incorporated as conditional features. With both the people-event and people-
people relations used, there are only three errors (3.2%) on the E-Album (see
Figure 3). The clothing features are unable to correct any of these errors. For
the G-Album, the conditional clothing features yield a slight improvement, with
the best error rate reduced from 14.6% to 14.3%. The people-event and people-
people relations are such powerful contextual cues that clothing adds little.

To validate the statistical significance of our results, we randomly generated
multiple pre-labeled sets, with the percentage of pre-labeled instances varying
from 15% to 55%. Figure 4 contains the median rank-1 results (signified by the
central mark) along with the 25th and 75th percentiles (signified by lower and
upper bars) obtained on E-Album. We also performed such testing on G-Album,
and the results are provided in supplemental materials. The improvement is
significant across the entire range of pre-labeling percentage in both data sets.

5.2 Comparison with Other Approaches

Direct comparison with published methods is difficult due to: (1) lack of a stan-
dard testing protocol, e.g. which instances are tagged in advance, and (2) differ-
ent features were used in different papers, and the features used in prior work
are not available. Hence, the most appropriate way to make a fair comparison
with other approaches is to implement them and evaluate them using exactly
the same data and features that we used. In particular, we compared with a
combination of face feature and time-stamp cues (as in [3]), a combination of
face feature and clothes feature, and an adaptive combination of face feature and
clothes feature conditioned on time stamps (as in [5]). We also note that previ-
ous work that used an MRF to capture exclusivity and the group prior (e.g. [8])
is essentially the special case of our framework where only the people-people
relation is used. In all cases, we performed cross-validation to ensure that the
best possible parameters were set for each particular algorithm.

Figure 5 contains the results on the E-Album. All of the feature-based algo-
rithms yield a reasonable improvement with the rank-1 error rate being reduced
from 27.8% to around 20%− 22%. While the MRF model using just the people-
people relation (group prior and exclusivity) does not yield a notable reduction of
rank-1 errors, it improves the rank-2 and rank-3 performance far more (the error
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100% Missing 50% Missing 30% Missing 10% Missing
LE 94.7% 59.9% 50.0% 40.0%
PE 94.7% 50.0% 46.9% 40.0%
PE+LE 94.7% 27.8% 15.6% 0.0%

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

(a) Event labeling

100% 
Missing

50% 
Missing

30% 
Missing

10% 
Missing

0% 
Missing

27.0% 19.8% 13.5% 7.1% 3.2%

0%

5%

10%

15%

20%

25%

30%
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Fig. 7. The error rates of event, people and location labeling with varying percentages
of missing time-stamps. For (b) the results were obtained with the P-E relation, and
for (c) with the L-E relation.

rates are reduced from 19.0% and 13.5% to 16.7% and 9.7% respectively.) How-
ever, the performance improvement obtained by all of these methods is dwarfed
by the improvement obtained by our algorithm when both the people-event and
people-people relations are used (the rank-1 error is reduced to 3.2%).

Among the reasons that lead to such an improvement, the effective utiliza-
tion of cross-domain context is the most important. Consider the people-event
relation. When the event of a photo is inferred, the people classes that are not
related to this event will be effectively ruled out from label selection (see Equa-
tions (5) and (12)), leaving only a very small subset of candidate labels to choose
from. This resolves a great deal of ambiguity and makes recognition far easier.

5.3 Location Labeling

Figure 6 shows results for location estimation on the E-Album. We compare the
results without any contextual information (location only) with those obtained
using the event-location relation. The rank-1 error rate is reduced from 16.7%
to 1.3%, and the rank-2 and rank-3 rates to 0%. Note that the event-location
relation plays a similar role to the temporal priors used in video clustering [26].

5.4 Event Labeling with Missing Time-Stamps

The feature used for event labeling is the time-stamp of the photo. When present,
this feature is very powerful; a temporal clustering of most photo collections
breaks it naturally into events. In some cases time-stamps may be missing. For
example, social networking sites such as Facebook remove timestamps. Further-
more, when merging two sets of photos collected on different cameras, it may not
be wise to trust the time-stamps. In this section, we investigate what happens
when time-stamps are missing.

We first investigated if we could estimate the event of a photo without the
time-stamp. We randomly discarded 100%, 50%, 30%, and 10% of the time-
stamps. The performance of event labeling under such conditions is shown in
Figure 7(a). Note that we only compute the error rates over the photos without
time-stamps. If all time-stamps are missing, we can only infer the event la-
bels by random guessing, resulting in nearly 95% errors. If we know some of the
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time-stamps, both event-location and people-event relations can be used to es-
timate a significant fraction of the event labels correctly. These two relations
provide very complementary sources of information. The combination of the two
is far better than either in isolation.

Next we investigated how the presence of missing time-stamps affects the
performance of people and location labeling. In Figure 7(b) we see that the
degradation in people-labeling performance with more and more missing time-
stamps is very graceful. For location labeling, the removal of up to 50% of the
timestamps hardly affects the performance. See Figure 7(c). So long as some
photos captured in the same event retain their timestamps, the contextual benefit
of the event-location relation is retained.

5.5 Labeling with Active Learning

As our framework estimates the posterior probabilities of the labels, it can be
used for active learning [10]. By carefully choosing the order in which instances
are pre-labeled, we can reduce the number of instances that need to be labeled to
obtain a given recognition rate. We conducted preliminary experiments to illus-
trate this ability. In each iteration, we determine the unlabeled person instance
that would lead to the maximum information gain and add it to the pre-labeled
set. On average on the E-Album, it takes 30 iterations to obtain a rank-1 recog-
nition rate of 95% for the people domain. In comparison, it requires 46 iterations
with random sampling of the instances to be pre-labeled.

5.6 Timing Results

Our C# implementation runs in less than 2 seconds for both albums on a 2.0GHz
Core-Duo laptop.

6 Conclusion

We have proposed the use of cross-domain relations as a mechanism to model
context in multi-domain labeling (people, events, locations). Relation estimation
and label inference are unified in a optimization algorithm. Our experimental
results show that cross-domain relations provide a elegant, powerful, and general
method of modeling context in vision-assisted tagging applications.
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Abstract. In this paper, we propose a novel temporal template, called
Chrono-Gait Image (CGI), to describe the spatio-temporal walking pat-
tern for human identification by gait. The CGI temporal template en-
codes the temporal information among gait frames via color mapping to
improve the recognition performance. Our method starts with the ex-
traction of the contour in each gait image, followed by utilizing a color
mapping function to encode each of gait contour images in the same
gait sequence and compositing them to a single CGI. We also obtain the
CGI-based real templates by generating CGI for each period of one gait se-
quence and utilize contour distortion to generate the CGI-based synthetic
templates. In addition to independent recognition using either of individ-
ual templates, we combine the real and synthetic temporal templates for
refining the performance of human recognition. Extensive experiments on
the USF HumanID database indicate that compared with the recently
published gait recognition approaches, our CGI-based approach attains
better performance in gait recognition with considerable robustness to
gait period detection.

1 Introduction

Biometric authentication is useful in many applications such as social security,
individual identification in law enforcement and access control in surveillance.
Compared with other biometric features such as face, iris and fingerprint, the
advantages of gait include: 1) the acquisition of gait data is non-contactable,
non-invasive, and hidden; 2) gait is the only perceptible at a distance. However,
the performance of gait recognition suffers from some exterior factors such as
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shoes, briefcases, clothing, and environmental context. Moreover, it depends on
whether the spatio-temporal relationship between gait frames in a gait sequence
can be effectively represented. Although it is a challenging task, the nature of
gait indicates that it is a irreplaceable biometric [1] and can benefit the remote
biometric authentication.

1.1 Related Work

The extraction of gait features plays a crucial role in improving the performance
of gait recognition. There are two main extraction methods: model-based and
model-free approaches. Model-based approaches recover the underlying math-
ematical construction of gait with a structure/motion model [2]. Wang et al.
adopted procrustes analysis to capture the mean shapes of the gait silhou-
ettes [3]. However, procrustes analysis is time consuming and vulnerable to noise.
Veres et al. [4] and Guo and Nixon [5] employed the analysis of variance and
mutual information respectively to discuss the effectiveness of features for gait
recognition. Bouchrika and Nixon proposed a motion-based model by using the
elliptic Fourier descriptors to extract crucial features from human joints [6].
Wang et al. [7] combined structural-based and motion-based models by em-
ploying a condensation framework to refine the feature extraction. Although the
structure-based models can to some degree deal with occlusion and self-occlusion
as well as rotation, the performance of the approaches suffers from the localiza-
tion of the torso and it is not easy to extract the underlying model from gait
sequences [2,6]. Furthermore, it is necessary to understand the constraints of gait
such as the dependency of neighboring joints and the limit of motion to develop
an effective motion-based model [2].

As for the model-free approaches, we can divide them into two major cate-
gories based on the manners of preserving temporal information. The first strat-
egy keeps temporal information in recognition (and training) stage [8,9,10,11].
Sundaresan et al. utilized a hidden Markov models (HMMs) based framework to
achieve gait recognition [9]. Sarkar et al. [11] utilized the correlation of sequence
pairs to preserve the spatio-temporal relationship between the galley and probe
sequences. Wang et al. [8] applied principal component analysis (PCA) to extract
statistical spatio-temporal features of gait frames. However, large-scale training
samples are generally needed for probabilistic temporal modelling methods (such
as HMMs) to obtain a good performance. A disadvantage for the direct sequence
matching methods is the high computational complexity of sequence matching
during recognition and the high storage requirement of the dataset. The second
strategy converts a sequence of images into a single template [1,12,13,14,15]. Liu
et al. [12] proposed to represent the human gait by averaging all the silhouettes.
Motivated by their work, Han and Bhanu [1] proposed the conception of gait
energy image (GEI), and constructed the real and synthetic gait templates to
improve the accuracy of gait recognition. Bashir et al. [16] also explored the
invariant gait subspaces based on entropy. With a series of grayscale averaged
gait images, Xu et al. employed discriminant analysis with tensor representa-
tion (DATER) for individual recognition [13]. Chen et al. proposed multilinear
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Fig. 1. From left to right: a gait sequence, gait energy image, and chrono-gait image

tensor-based non-parametric dimension reduction (MTP) [15] for gait recogni-
tion. However, the above template-based methods lose the temporal information
of gait sequences more or less. For example, averaging template methods throw
out all the temporal order information of the gait sequence. Moreover, the time
and space computational complexities of those tensor-based approaches are too
high to be employed in real applications [13,14,15].

1.2 Our Contribution

In the recent years, the visualization community has studied how to effectively
represent a sequence of images with a single colored image. For displaying time-
varying data, especially for volumetric data, Woodring and Shen [17] investigated
several different color-mapping strategies by encoding the time varying informa-
tion of the data into color spectrum. Jänicke et al. [18] measured local statistical
complexity for multifield visualization. More recently, Wang et al. [19] claimed
that critically important areas are the most essential aspect of time-varying data
to be detected and highlighted. However, it is difficult to directly employ such
methods to generate a good temporal template for gait recognition since these
algorithms are inefficient to compress gait sequences (in which gaits always have
large overlapped regions between frames) into a 2-dimensional gait image.

Considering the pros and cons of gait recognition methods mentioned before,
we focus on the single-template method in this paper because of its simplicity
and low computational complexity. But in order to well preserve temporal infor-
mation of gait patterns, we borrow some ideas from color temporal encoding in
the visualisation community. In brief, we propose a novel temporal template to
encode a gait sequence to a color image, named as Chrono-Gait Image (CGI). To
further improve the discriminant ability of CGIs, we also propose a simple strat-
egy to generate real and synthetic templates. An example of a gait sequence, GEI
and CGI is shown in Fig. 1. In comparison with the state-of-the-art methods, our
major contributions are: 1) Simple and easy to implement, CGI effectively pre-
serves the temporal information in a gait sequence with a single-template image.
2) Unlike intensity, color, which has higher variance than grayscale, can enlarge
the distance between gait sequences from different subjects and thus benefit gait
recognition. 3) CGI is robust to different gait period detection methods which are
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usually a basis of constructing gait templates. 4) To the best of our knowledge,
color encoding gait images as a temporal template for gait recognition is not yet
exploited in the biometric authentication community. Experiments indicate that
compared with several recently published approaches, the CGI temporal template
attains competitive performance on USF HumanID benchmark database.

The remainder of the paper is organized as follows. The proposed CGI temporal
template is detailed in Section 2. We discuss the generation of real and synthetic
CGI templates and the corresponding human recognition procedure in Section
3. Experiments are provided and analyzed in Section 4. Section 5 concludes the
paper.

2 Chrono-Gait Images

In this paper, we attempt to achieve individual recognition under a particular
human motion. Note that the motion, regular human walking, is generally used
in most of current approaches of individual recognition by gait.

2.1 Motivation and Pre-processing

Because of the basic structure of human body, regular human walking always has
a fixed cycle with a particular frequency. However, some methods lose the gait
cycle information when performing a individual recognition by gait. Meanwhile,
other methods need high computational cost for preserving such information. To
address the issue, several fundamental assumptions in this paper are: 1) most
of normal people have a similar gait gesture such as the stride length. 2) each
person has his/her unique gait behavior, such as the shape of the torso, the
moving range of limbs, and so on; 3) color can be used as a function of time.
Under these assumptions, we can encode time-varying gait cycle information
into a single chrono-gait image by color.

To obtain the CGIs, we directly employ the silhouette images that are ex-
tracted by the baseline algorithm proposed by Sarkar et al. [11]. Then we encode
temporal information in the silhouette images with additional colors to generate
a chrono-gait image. The goal of CGIs is to compress the silhouette images into a
single image without losing too much temporal relationship between the images.

2.2 Period Detection

Regular human walking is a periodical motion. To preserve the temporal infor-
mation, we need to detect the period in the gait sequence firstly. We propose
to calculate average width W of the leg region in a gait silhouette image I as
follows:

W =
1

βH − αH

βH∑
i=αH

(Ri − Li), 0 ≤ α ≤ β ≤ 1 (1)

where H is the height of an image, Li and Ri are the positions of the leftmost and
rightmost foreground pixels in the ith line of the silhouette images, respectively.
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To alleviate the influence of some exterior factors such as briefcase, shadow and
surface that might be misclassified into the silhouette image, parameters α and
β are used to constrain the computation of the gait period to the leg region.
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Fig. 2. Comparison between our method and baseline algorithm on gait period detec-
tion. The X-axis denotes the order of gait frames. The Y -axis represents the average
width of each frame for our method, and the number of foreground pixels in the lower
half of the silhouette for baseline method. Both of them are normalized to [0, 1].

Sarkar et al. [11] proposed to detect such key frames by counting the number of
foreground pixels in the lower half of the silhouettes in their baseline algorithm.
A comparison of these two detection methods is illustrated as in Fig. 2, from
which it can be seen that two detection methods pay attention to different parts
of gait sequence. In the proposed period detection method, the average width
W will have a local maximum when the two legs are farthest apart from each
other and reach a local minimum when the two legs wholly overlap. Fig. 2 also
indicates that our method produces sharper peaks and valleys, and thus preserves
the correct temporal order well compared with the baseline algorithm [11].

2.3 Color Mapping

It is worth mentioning that in the visualization community, Woodring and
Shen [17] used pseudo-color to visualize time-varying information for volume
rendering. They proposed four integration functions: 1) Alpha Compositing; 2)
First Temporal Hit; 3) Additive Colors; 4) Minimum/Maximum Intensity. How-
ever, their methods can not directly be applied to generate a temporal template
since they assume that there is little overlapped foreground region between con-
tinuous frames, while in our case, the overlap of foreground silhouettes is serious
between gait frames. Some results using their recommended four functions are
illustrated in Fig. 3. All these images are generated from the same gait sequence.
Due to the serious overlap between gait frames, we can see that the resulting
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Fig. 3. Some results for visualizing gaits using Woodring and Shen’s algorithm [17]. a)
Alpha Compositing; b) First Temporal Hit; c) Additive Colors; d) Minimum/Maximum
Intensity.

images lose many important features. Naturally, such results are not truly infor-
mative to represent gait patterns.

Since the outer contour of the silhouette images is an important feature [3,8],
and preserve the spatial information with small degree of overlap, we thus at-
tempt to extract the contours instead of silhouettes. There are various edge
detection techniques such as gradient operator, LoG operator and local informa-
tion entropy [20], to extract the contours of the silhouette images. We use local
information entropy to obtain the gait contour since it provides more abun-
dant features than gradient and LoG operators. The local information entropy
is defined as:

ht(x, y) = −(
n0

|ωd(x, y)| ln
n0

|ωd(x, y)| +
n1

|ωd(x, y)| ln
n1

|ωd(x, y)| ) (2)

where the d-neighborhood of point (x, y) based on D8 distance (chessboard dis-
tance) is ωd(x, y) =

{
(u, v)|max{|u − x|, |v − y|} ≤ d

}
, and n0 and n1 are the

numbers of foreground pixels and background pixels, respectively. Term t repre-
sents the frame label, and x and y denote the values in the 2-d image coordinate.

Then we normalize the entropy by the following formula:

h′
t(x, y) =

ht(x, y) − minx,y ht(x, y)
maxx,y ht(x, y) − minx,y ht(x, y)

. (3)

We also propose a liner interpolation function to encode the temporal informa-
tion to three color components (R=Red, G=Green, B=Blue) as follows:

R(kt) =
{

0 kt ≤ 1/2,
(2kt − 1)I kt > 1/2 (4)

G(kt) =
{

2ktI kt ≤ 1/2,
(2 − 2kt)I kt > 1/2 (5)

B(kt) =
{

(1 − 2kt)I kt ≤ 1/2,
0 kt > 1/2 (6)

where kt = (Wt − Wmin)/(Wmax − Wmin). Wi represents the degree of two
legs apart from each other, which is explained in Equ. 1. Wmax and Wmin are
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Fig. 4. An example of generating a CGI temporal template

the extreme widths of the period which the ith frame belongs to, and I is the
maximum of intensity value, e.g., 255.

2.4 Representation Construction

We calculate the colored gait contour image Ct of the tth frame in the gait
sequence as:

Ct(x, y) =

⎛
⎝h′

t(x, y) ∗ R(kt)
h′

t(x, y) ∗ G(kt)
h′

t(x, y) ∗ B(kt)

⎞
⎠ (7)

Given the colored gait contour images Ct, a CGI temporal template CG(x, y) is
defined as follows:

CG(x, y) =
1
p

p∑
i=1

PGi(x, y), (8)

where p is the number of 1/4 gait periods, and PGi(x, y) =
∑ni

t=1 Ct(x, y) is the
sum of the total ni colored contour images in the ith 1/4 gait period.

The whole process to generate CGI is shown in Fig. 4. The first row shows
9 silhouettes in the αth 1/4 gait period. And the second row shows the corre-
sponding colored gait contour images after edge detection and color mapping.
Then we sum all these 9 images to obtain the first one PGα in the third row,
representing this 1/4 period. The second to the eighth images on the third row
represent PGs corresponding to other different 1/4 periods in the same gait se-
quence. At last, we average all these frames to get the final CGI shown as the last
one in the third row. It is not difficult to see that we obtain better visualization
result and more informative gait template (which will be demonstrated in gait
recognition experiments).
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3 Human Recognition Using CGI Template

To employ the proposed CGI temporal template for individual recognition, one
way is to directly measure the similarity between the gallery and probe tem-
plates. However, there are probably several disadvantages of doing so: 1) the
templates obtained from the gait sequences may lead to overfit since such se-
quences are collected under similar physical conditions; 2) the number of CGIs is
too small to characterize the topology of essential gait space; 3) when one pixel is
viewed as one dimension, we will face to the problem of curse of dimensionality.
Therefore, one solution to this is to generate two types of templates, namely real
templates and synthetic templates. Meanwhile, we can project the templates into
certain low-dimensional discrimination subspace with the dimension reduction
method.

Specifically, we generate the real templates by referring to the colored image
of each period (i.e., averaging continuous 4 PGs in one period) as a temporal
template. One advantage is that such a template keeps the similar gait temporal
information as the CGI of the whole sequence owns. Synthetic templates are used
to enhance the robustness to the exterior factors such as the noise of shadow.
Similar to Han and Bhanu [1], we cut the bottom 2 × i rows from the CGI and
resize to the original size using the nearest neighbor interpolation. If parameter
i varies from 0 to K − 1, then a total of K synthetic templates will be generated
from each CGI template.

To address the curse of dimensionality issue, we employ Principal Compo-
nent Analysis and Linear Discriminant Analysis (PCA+LDA) to project the
real and synthetic templates in the gallery set into a low-dimensional subspace.
And the real/synthetic templates in the probe set will be mapped into the low-
dimensional subspace by using the projection matrix obtained by PCA+LDA.
Let R̂p and Ŝp be the real and synthetic templates of the individual in probe
sets, respectively, and let Ri and Si be the real and synthetic templates of the
ith individual in the gallery sets, respectively. In the subspace, the real/synthetic
templates are identified based on the minimal Euclidean distances (d(R̂p,Rj) or
d(Ŝp,Sj)) between the probe real/synthetic feature vectors to the class center of
the gallery real/synthetic feature vectors. To further improve the performance,
we fuse the results of these two types of templates using the following equation:

d(R̂p, Ŝp,Ri,Si) =
d(R̂p,Ri)

minjd(R̂p,Rj)
+

d(Ŝp,Si)
minjd(Ŝp,Sj)

, i, j = 1, · · · , C (9)

where C is the number of classes, i.e., the number of subjects here. We assign
the probe template to the kth class if:

k = argmin
i

d(R̂p, Ŝp,Ri,Si), i = 1, · · · , C (10)

More details about real and synthetic templates can be referred in Han and
Bhanu’s work [1]. Note that although we use distance measurements and fusion
functions different from those used in [1], extensive experiments indicate that
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Fig. 5. Some gait examples with two additional lines. The upper line is at 3/4H and
the lower one is at 15/16H (H is the height of a gait image). All of these cases are
collected from different probe sets. The forth and fifth images are with briefcase and
others are without briefcase.

the differences between the proposed fusion criterion and theirs are quite minor
with respect to recognition accuray.

4 Experiments

We evaluate the CGI algorithm on the USF HumanID gait database (silhou-
ette version 2.1) [11]. The gait database consists of 122 individuals walking in
elliptical paths on concrete and grass surface, with/without a briefcase, wear-
ing different shoes, and sampling in elapsed time. Sarkar et al. [11] selected the
sequences with “Grass, Shoe Type A, Right Camera, No Briefcase, and Time
t1” for the gallery set, and developed 12 experiments, each of which is under
some specific conditions. More details can be referred to Sarkar et al.’s work[11].
Because the USF database has provided the silhouette images after background
subtraction and image alignment, all of our experiments are based on these sil-
houette images.

We evaluate the “Rank1” and “Rank5” performances of several recent ap-
proaches including baseline algorithm (based on silhouette shape matching) [11],
GEI [1], HMM [21], IMED+LDA [14], 2DLDA [14], DATER [13], MTP [15] and
Tensor Locality Preserving Projections (TLPP) [22]. The Rank1 performance
means the percentage of the correct subjects ranked first while the Rank5 per-
formance means the percentage of the correct subjects appeared in any of the
first five places in the rank list. We also report the average performance by com-
puting the ratio of correctly recognized subjects to the total number of subjects.

In Section 2.2, we introduce two parameters α and β. For the USF HumanID
database, we choose α = 3/4 and β = 15/16. Some examples in the database are
shown in Fig. 5. From the figure, we can see that most of the briefcase is above
the first 3/4H line and most of the shadow is under the 15/16H line. Therefore, it
means that the the influence of briefcase and shadow can be effectively decreased.

To evaluate the performance of the proposed CGI temporal template, we em-
ploy a simple 1-nearest neighbor classifier (1-NN) on the original GEI and CGI
without using real/synthetic templates and PCA/LDA. We also provide the per-
formance of baseline algorithm [11] for comparison. The neighborhood parameter
d introduced in Section 2.3, which is used to describe the size of locality, is set to
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Table 1. Comparison of Recognition Performance on USF HumanID Database using
1-NN. Here, V–View, S–Shoe, U–Surface, B–Briefcase, T–Time, C–Clothing

Exp. Gallery Size Difference Rank1 Performance (%) Rank5 Performance (%)
baseline [11] GEI CGI baseline GEI CGI

A 122 V 73 84 89 88 93 98
B 54 S 78 87 91 93 94 94
C 54 SV 48 72 74 78 93 94
D 121 U 32 19 20 66 45 40
E 60 US 22 18 18 55 53 43
F 121 UV 17 10 11 42 29 23
G 60 USV 17 13 13 38 37 32
H 120 B 61 56 76 85 77 90
I 60 SB 57 55 75 78 77 93
J 120 VB 36 40 57 62 69 80
K 33 TSC 3 9 6 12 15 24
L 33 TUSC 3 3 9 15 15 24

Avg. 40.96 41.13 48.33 64.54 61.38 65.45

1 in our experiment. The results are summarized in Tab. 1. It can be seen from
the Tab. 1 that 1) CGI achieves the best average performance among all the al-
gorithms. 2) As illustrated in Exp. H, I, J, the performance of CGI is very robust
to the briefcase condition, and in such conditions, the accuracy is improved by
almost 20% compared with GEI. 3) Compared with GEI, CGI has better Rank5
performance than GEI in 8 out of 12 specific conditions. 4) In all the remaining
4 conditions, both GEI and CGI perform worse than the baseline algorithm in
the surface condition. We can infer that the gait templates are more sensitive
to the surface condition than the baseline algorithm because of the shadows or
some other factors.

To discover which components of the proposed CGI temporal templates are
crucial to the performance of gait recognition, we compare several variants of the
contour-based temporal template with the silhouette-based template, which is
employed by most of the gait recognition systems [13]. Here GEI-contour means
that we compute the GEI based on contour images, and CGI-gray means that
we average each CGI into a graysclale image.

We also employ the fusion of real and synthetic templates introduced in Sec-
tion 3 to further improve the performance. To make the experiment fair, we use
the same strategy to generate real and synthetic templates, assigning the same
parameters to PCA and LDA to reduce the data set into a subspace. The fusion
results are obtained using the same formula. More precisely, the reduced dimen-
sion is obtained when using 99% as the PCA cumulative contribution rate and
the regularization parameter of LDA is set to 108 for real templates. And for
synthetic templates, we set parameter K to 6, in other words, we cut the last 10
rows of each gait image to generate 6 synthetic templates. We use 99.5% as the
PCA cumulative contribution rate and set the LDA parameter to 0. The size of
locality d is also set to 1 here.
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Table 2. Comparison of Recognition Performance of GEI, GEI-contour, CGI-gray, CGI
using the Same Experiment Settings

Exp. Rank1 Performance (%) Rank5 Performance(%)
GEI GEI-contour CGI-gray CGI GEI GEI-contour CGI-gray CGI

A 87 85 86 92 96 96 97 96
B 93 91 93 93 94 96 96 94
C 74 72 81 76 94 93 94 93
D 34 27 38 47 66 52 70 75
E 38 37 42 48 63 60 68 70
F 21 11 31 34 47 31 53 54
G 23 17 28 40 47 42 58 57
H 57 74 72 82 81 93 93 94
I 58 73 75 73 80 88 87 93
J 52 57 59 62 78 82 82 83
K 9 9 9 6 21 30 27 27
L 6 12 9 15 24 36 27 24

Avg. 49.06 49.90 55.74 60.54 70.46 69.52 75.89 76.83

Table 3. Comparison of Recognition Performance of GEI, CGI using two period detec-
tion method. We refer the period detection method proposed in Sarkar et al. [11] as
“C” and our method proposed in section 2.2 as “W”.

Exp. Rank 1 Performance (%) Rank 5 Performance (%)
GEI+C GEI+W CGI+C CGI+W GEI+C GEI+W CGI+C CGI+W

A 87 88 85 92 96 95 93 96
B 93 91 87 93 94 96 94 94
C 74 76 78 76 94 93 93 93
D 34 40 47 47 66 66 72 75
E 38 38 53 48 63 63 70 70
F 21 25 30 34 47 45 55 54
G 23 28 37 40 47 50 55 57
H 57 58 76 82 81 78 93 94
I 58 50 68 73 80 80 88 93
J 52 42 58 62 78 76 84 83
K 9 12 3 6 21 27 24 27
L 6 6 18 15 24 27 24 24

Avg. 49.06 49.06 57.20 60.54 70.46 70.04 75.68 76.83

For saving space, we only report the fusion result in Tab. 2. From the Tab. 2 it
can be seen that 1) GEI-contour and CGI obtain a remarkable improvement on
Exp. H, I, J compared with GEI, and CGI is slightly better than GEI-contour.
It means the key to the improvement on briefcase condition is the contour. One
possible reason is that contour weakens the influence from regions inside the
briefcase’s silhouettes. 2) We also notice that CGI and GEI perform much more
better than GEI-contour on Exp. D, E, F, G. It indicates that although contour
instead of silhouette reduces the recognition rate on surface condition, using the
proposed CGI temporal template can make up for such loss and further improve
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Table 4. Comparison of Recognition Performance on USF HumanID Database using
Different Methods, Rank1 Performance (%).

A B C D E F G H I J K L Avg.
Baseline[11] 73 78 48 32 22 17 17 61 57 36 3 3 40.96
HMM[21] 89 88 68 35 28 15 21 85 80 58 17 15 53.54

IMED+LDA[14] 88 86 72 29 33 23 32 54 62 52 8 13 48.64
2DLDA[14] 89 93 80 28 33 17 19 74 71 49 16 16 50.98
DATER[13] 87 93 78 42 42 23 28 80 79 59 18 21 56.99
TLPP[22] 87 93 72 25 35 17 18 62 62 43 12 15 46.95
MTP[15] 90 91 83 37 43 23 25 56 59 59 9 6 51.57

GEI+Real[1] 89 87 78 36 38 20 28 62 59 59 3 6 51.04
GEI+Synthetic[1] 84 93 67 53 45 30 34 48 57 39 21 24 51.04
GEI+Fusion[1] 90 91 81 56 64 25 36 64 60 60 6 15 57.72

CGI+Real 90 89 81 28 30 15 13 82 75 60 3 3 51.98
CGI+Synthetic 89 89 67 53 53 27 33 59 60 56 3 15 54.49
CGI+Fusion 92 93 76 47 48 34 40 82 73 62 6 15 60.54

Table 5. Comparison of Recognition Performance on USF HumanID Database using
Different Methods, Rank5 Performance (%).

A B C D E F G H I J K L Avg.
Baseline[11] 88 93 78 66 55 42 38 85 78 62 12 15 64.54
HMM[21] – – – – – – – – – – – – –

IMED+LDA[14] 95 95 90 52 63 42 47 86 86 78 21 19 68.60
2DLDA[14] 97 93 93 57 59 39 47 91 94 75 37 34 70.95
DATER[13] 96 96 93 69 69 51 52 92 90 83 40 36 75.68
TLPP[22] 94 94 87 52 55 35 42 85 78 68 24 33 65.18
MTP[15] 94 93 91 64 68 51 52 88 83 82 18 15 71.38

GEI+Real[1] 93 93 89 65 60 42 45 88 79 80 6 9 68.68
GEI+Synthetic[1] 93 96 93 75 71 54 53 78 82 64 33 42 72.13
GEI+Fusion[1] 94 94 93 78 81 56 53 90 83 82 27 21 76.30

CGI+Real 96 94 93 64 62 45 50 94 93 85 27 33 73.90
CGI+Synthetic 93 96 85 71 72 47 50 91 85 82 21 30 73.28
CGI+Fusion 96 94 93 75 70 54 57 94 93 83 27 24 76.83

the performance of gait recognition. 3) Compared with CGI-gray, CGI has better
Rank1 performance in 9 out of 12 specific conditions and improve the average
recognition ratio by about 5%. We can thus infer that with color encoding, the
temporal information of the gait sequence benefits individual recognition by gait.

With the same parameter setting, we also investigate the influence of gait
period detection as tabulated in Tab. 3. We observe from Tab. 3 that the diver-
gence between the two detection methods is minor in almost all the experiments
expect few groups of experiments highlighted in the table. One reason is that
GEI, which uses the arithmetic average to generate the gait energy image, is
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insensitive to key frame selection and period detection. At the same time, this
experiment indicates that our method is robust to the period detection, it can
work well using a basic period detection, and may work better if employing an
advanced period detection method. Furthermore, CGI performs better than GEI
when using both period detection methods.

Finally, we also compare the proposed algorithms with several state-of-the-art
published results are illustrated as in Tab. 4 and Tab. 5. It is obvious that the pro-
posed CGI outperforms others in both average Rank1 and Rank 5 performances,
and is robust under most of the complex conditions. It is worth mentioning that
since the time and space complexities of CGI are the same as those of GEI, the
proposed CGI temporal template is very effective and competitive for real-world
applications.

5 Conclusion

In this paper, we have proposed a simple and effective temporal template CGI.
We extract a set of contour images from the corresponding silhouette images
using local entropy principle, then color encoding the temporal information of
gait sequence into the CGI. We also generate real and synthetic temporal tem-
plates and exploit fusion strategy to obtain better performance. Experiments in
a benchmark database have demonstrated that compared with state-of-the-art,
our CGI template can attain higher recognition accuracy.

In the future, we will study how to enhance CGI’s robustness in more complex
conditions, and investigate how to select a more general color mapping function
instead of the current linear mapping function. Furthermore, we will consider to
generalize the proposed frameworks into other human-movement-related fields
[23] such as gesture analysis and abnormal behavior detection.
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Abstract. Recently, Facial Trait Code (FTC) was proposed for solv-
ing face recognition, and was reported with promising recognition rates.
However, several simplifications in the FTC encoding make it unable
to handle the most rigorous face recognition scenario in which only one
facial image per individual is available for enrollment in the gallery set
and the probe set includes faces under variations caused by illumination,
expression, pose or misalignment. In this study, we propose the Proba-
bilistic Facial Trait Code (PFTC) with a novel encoding scheme and a
probabilistic codeword distance measure. We also proposed the Pattern-
Specific Subspace Learning (PSSL) scheme that encodes and recognizes
faces robustly under aforementioned variations. The proposed PFTC was
evaluated and compared with state-of-the-art algorithms, including the
FTC, the algorithm using sparse representation, and the one using Local
Binary Pattern. Our experimental study considered factors such as the
number of enrollment allowed in the gallery, the variation among gallery
or probe set, and reported results for both identification and verifica-
tion problems. The proposed PFTC yielded significant better recognition
rates in most of the scenarios than all the states-of-the-art algorithms
evaluated in this study.

1 Introduction

Face recognition remains a popular topic in the recent two decades, and many
algorithms were proposed. Ahonen et al. proposed using Local Binary Pattern
(LBP) for face recognition [1]. In their algorithm, a face was spatially decom-
posed into several non-overlapping blocks. The histograms of the local binary
patterns extracted from these blocks were concatenated to form a new feature
vector. For the application to face recognition, the distance between two faces
was evaluated using the weighted Chi square distance between their feature vec-
tors. The LBP approach has been reported to be quite robust to the facial
variations caused by illumination and expression changes [1]. A face recogni-
tion algorithm using Sparse Representation proposed by Wright et al. [2] has
aroused some attention recently. They treated a test sample as a sparse linear
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combination of training samples, and computed this sparse representation us-
ing l1-minimization. The face recognition algorithm proposed in [2], denoted as
SRC, yielded robust results when faces were occluded or corrupted. It is worthy
to mention that both algorithms, LBP and SRC, do not involve a training stage
that learns knowledge specific to human faces.

In contrast to LBP and SRC, the Facial Trait Code (FTC) proposed by Lee
et al. learned some face-specific knowledge. It has been shown in [3] that patterns
exist in many of the facial components and can be extracted, and the extracted
patterns can be used to decompose and encode a face. The facial components
with patterns good for discriminating faces were called facial traits, and the
associated face coding scheme was called the Facial Trait Code. It is reported
the patterns leaned from a small set of human faces can be generalized to human
face unseen in the training stage, and FTC yielded comparable face identification
rates with the LBP approach, and significantly better verification rates [3].

Although the three algorithms were reported to be successful, they are limited
in some aspects. The SRC approach assumed any probe, an image in the probe
set1, could be represented as a linear combination of the gallery images. It is not
known whether SRC performs well when there is only few, or even one image
per individual allowed for enrollment in gallery. Like SRC, the LBP approach
does not learn any illumination- or expression-invariants among human faces. If
the probes were taken under conditions (i.e. illumination or facial expression)
significantly different from those the images in gallery were taken, the perfor-
mance of the LBP approach is expected to degrade noticeably. FTC does not
require many samples per individual for enrollment, and it learns a way to en-
coding faces robustly under illumination variation. However, it suffers from the
following aspects:

1. Because the distance measure in the FTC code space is given by Hamming
distance, the similarities between one facial trait patch and all facial trait
patterns except the most similar one are ignored.

2. Because the impacts from illumination, expression, and pose2 variations
upon the facial trait patterns have not been studied thoroughly, a systematic
way to encompass these impacts into the FTC has yet to develop.

3. Because of the above and a few simplifications, the FTC cannot handle the
most rigorous face recognition scenario in which only one facial image per
individual is available for enrollment in the gallery set and the probe set
includes faces under variations in illumination, expression and pose (e.g.
John has a smiling, uniformly-lit face enrolled in the database, and we want
to recognize John’s face which is left-lit and with neutral expression).

1 According to the FRVT 2006[4], the target set contains facial images for enrollment
to the face recognition system, and the probe set contains images to be recognized.
If if only one image per individual is allowed for enrollment, then the target set is
called the gallery set. In this paper, we do not distinguish between the target set
and the gallery, and we will use the term gallery in the rest of this paper.

2 Or, out-of-plane rotation. We will use the two terms interchangeably in the rest of
this paper.
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In this paper, we propose the Probabilistic Facial Trait Code (PFTC) that solves
all of the above issues. A comprehensive performance evaluation of some state-of-
the-art algorithms as well as the proposed PFTC are also given. All the aforemen-
tioned algorithms, LBP, SRC and FTC, were evaluated under several different
scenarios, which differ in the number of enrollment allowed in the gallery set, the
variations among the gallery and the probe set, and the definitions of training
set, gallery and probe set. The results in AR dataset [5] in which faces were
taken under controlled variations, as well as a mixed dataset in which faces were
taken uncontrolled conditions were given. The proposed PFTC yielded signifi-
cantly better recognition rates than the three recent face recognition algorithms
in most of the scenarios considered in this paper.

This paper begins with an introduction to Facial Trait Code (Sec. 2). The
development of the Probabilistic Facial Trait Code was given in Sec. 3. A com-
parative study on the face recognition performance using the PFTC and other
algorithms were reported in Sec. 4. The conclusion and contribution of our study
were summarized in Sec. 5.

2 Introduction to Facial Trait Code

Two face datasets are needed for the construction of FTC, one is the Trait
Extraction Set, denoted as TES, and the other the Trait Variation Set, denoted
as TVS. The former consists of a large number of frontal facial images with
neural expression and evenly distributed illumination, and is used to determine
the facial traits and the patterns in each trait (Sec. 2.1). The latter consists
of facial images taken under various illumination conditions, and is used as an
add-on to the facial trait samples so that each trait pattern can have samples
with illumination changes (Sec. 2.2). For the Facial Trait Code and the proposed
Probabilistic FTC, samples in TES were used to extract patch patterns and to
select facial traits. When facial traits and associated patterns were determined,
samples in both TVS and TES were used to train trait-specific SVMs.

2.1 Facial Trait Extraction and Associated Codewords

A local patch on a face can be specified by a rectangle bounding box {x, y, w, h},
where x and y are the 2-D pixel coordinates of the bounding box’s upper-left
corner, and w and h are the width and height of this bounding box, respectively.
A large amount of patches with different sizes and locations on faces can be
defined, and slightly more than a couple thousands of patches for a face with
80x100 pixels in size are used in [3]. In the following, we assume M patches in
total obtained from a face.

Assuming K faces available from the TES, and all faces aligned by the cen-
ters of both eyes, we will obtain a stack of K patch samples in each patch. To
cluster the K patch samples in each patch stack, the Principal Component Anal-
ysis (PCA) followed by the Linear Discriminant Analysis (LDA) [6] are applied
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to extract the features. It is assumed that these low dimensional patch features
in each patch stack can be modeled by a Mixture of Gaussian (MoG), then the
unsupervised clustering algorithm proposed by Figueiredo and Jain [7] can be
applied to identify the MoG patterns in each patch stack. Assuming M patch
stacks are available, this algorithm can cluster the low dimensional patch features
into ki clusters in the i-th patch stack, where i = 1, 2, ..., M . The ki clusters in
the i-th patch stack were considered the patterns existing in this patch stack,
and they are called the patch patterns.

A scheme was proposed in [3] that selects some combination of the patches
with their patch patterns able to best discriminate the individuals in the TES
by their faces. This scheme first define a matrix, called Patch Pattern Map
(PPM), for each patch. PPM shows which individuals’ faces reveal the same
pattern at that specific patch. Let PPMi denote the PPM for the i-th patch, i =
1, 2, ..., M . PPMi will be L×L in dimension in the case with L individuals, and
the entry at (p, q), denoted as PPMi(p, q), is defined as follows: PPMi(p, q) = 0
if the patches on the faces of the p-th and the q-th individuals are clustered into
the same patch pattern and PPMi(p, q) = 1 otherwise.

Given N patches and their associated PPMi’s stacked to form a L × L × N
dimensional array, there are L(L− 1)/2 N -dimensional binary vectors along the
depth of this array because each PPMi is symmetric matrix and one can only
consider the lower triangular part of it. Let vp,q (1 ≤ q < p ≤ L) denote one of
the N -dimensional binary vectors, then vp,q reveals the local similarity between
the p-th and the q-th individuals in terms of these N local patches. More unities
in vp,q indicates more differences between this pair of individuals, and on the
contrary, more zeros shows more similarities in between.

The binary vector vp,q motivated the authors in[3] to apply the Error Correct-
ing Output Code (ECOC) [8] to their study. If each individual’s face is encoded
using the most discriminant patches, then the induced set of [vp,q]1≤q<p≤L can
be used to define the minimum and maximum Hamming distance [9] among all
encoded faces in the corresponding code space. The vp,q with the least (most)
of unities gives the minimum (maximum) Hamming distance. To maximize the
robustness against possible recognition errors in the decoding phase, authors in
[3] proposed an Adaboost algorithm to maximize the dmin, the minimum Ham-
ming distance, for the determination of the most discriminating from the overall
patches3. Patches that best discriminate faces of different individuals were called
the facial traits, and the associated patch patterns were dubbed as the dis-
tinctive trait patterns.

Assuming N facial traits selected from the the overall M patches, and each
has kj , j = 1, 2, ..., N , trait patterns, one can now define the codewords in FTC.
Each codeword is of length N and n-ary where n is the largest number of the
trait patterns found in one single trait, and each digit in a codeword is an integer
number indicating a trait pattern. In summary, given a large collection of faces
as the TES, one can define N facial traits,

∑N
j=1 kj trait patterns, and

∏N
j=1 kj

faces (or FTC codewords).

3 Due to the page limit, please refer to [3] for the details on this Adaboost algorithm.
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2.2 FTC Encoding and Decoding

To apply the FTC to face recognition, the images in a gallery set are firstly
encoded into gallery codes using a trait-specific SVM (Support Vector Ma-
chines) classifier [10] able to classify each facial trait into a symbolized trait
pattern. This SVM classifier can be made using the trait samples from both
the TES and the TVS for encompassing possible variations in each trait. In the
decoding phase when a probe, an image from a probe set, is given, it is also
firstly encoded into a probe code, and then matched against the gallery codes
using Hamming distance as the measure. Given two codewords, one is a gallery
code gc = [g1g2...gN ] and the other probe code pc = [p1p2...pN ], the Hamming
distance is give by the code difference dc = [d1d2...dN ] where di = 0 if pi = gi,
and di = 1 otherwise. Then the Hamming distance between gc and pc is given
by D(gc,pc) =

∑N
i=1 di.

3 Probabilistic Facial Trait Code

FTC suffers from the following aspects: the simplified integer codewords ignore
the similarities between one facial trait patch and all facial trait patterns; a
systematic way to handle the impacts from illumination, expression, or pose is yet
to be developed for robust encoding. In this paper, we proposed the Probabilistic
Facial Trait Code, or PFTC, that considers and solves the above issues. The
primary differences from the original FTC include the following:

1. Instead of using only one integer to denote a facial trait in the encoding
phase, we allow the probabilities of the trait belonging to all trait patterns
in the codeword. The gain, to be shown in our experimental study, is the
superb accuracy, on the price of more memory occupied by such a codeword.
This leads to a complete revision of the distance measure between codewords
and also the encoding and decoding schemes, as will be described in Sec. 3.1.

2. In addition to the maximization of the discrimination of the faces in the
TES, we also maximize the discrimination of the trait patterns in each trait,
based on a new TVS that includes variations caused by illumination, expres-
sion, and pose, as well as a new Trait Enrichment Set (TRS) that includes
imprecisely aligned trait patches. This scheme makes the proposed PFTC
robust in recognizing faces under aforementioned variations, and it will be
described in 3.2.

3.1 Probabilistic Encoding and Decoding

Consider a N -trait FTC codeword g = [g1g2...gN ], where each gi is an integer
representing the gi-th pattern that the i-th trait sample belongs to. It will take
the form G = [G1G2...GN ] in the PFTC, where each Gi is a vector with each
element measuring the probability of this trait sample to one specific pattern
of that trait. The dimension of Gi is the same as the number of the patterns
extracted from the TES for that trait. We measure the probability of a trait



276 P.-H. Lee et al.

Table 1. Comparison between the hard and probabilistic codewords encoded by N
facial traits

codeword type hard probabilistic
data N integers N k-by-1 real arrays

structure (typically, k < 100)
encoding complexity N SVM classifications
decoding complexity N integer N Bhattacharyya

comparisons distance calculations

sample belonging to a trait pattern using its distance to the support hyperplane
given by the SVM classifier of that trait pattern. To make Gi a distribution,
we normalize its magnitude so that ||Gi|| = 1. The distance between two PFTC
codewords, Ga = [Ga,1Ga,2...Ga,N ] and Gb = [Gb,1Gb,2...Gb,N ], is defined as the
following:

D(Ga,Gb) =
N∑

i=1

B(Ga,i,Gb,i) (1)

where B(Ga,i,Gb,i) is the Bhattacharyya distance [?] between the two pattern
distributions Ga,i and Gb,i at the i-th trait.

We denote the integer codewords described in [3] as the hard codewords,
and denote the proposed ones as the probabilistic codewords. The recogni-
tion results using both types of codewords will be reported and compared in
our experimental study. The probabilistic codewords require a bit more storage
space and computation than the hard ones, in exchange of superior recognition
accuracy. TABLE 1 gives a comparison between the hard and the probabilistic
codewords. Consider a FTC with 64 facial traits, and each facial trait has at
most 64 trait patterns. A corresponding hard codeword requires only 48 Bytes
for storage, while a probabilistic codewords requires 16 KBytes, when single
precision numbers are used.

3.2 Trait Enrichment Set and the Pattern-Specific Subspace
Learning

Similar to FTC, for the application of the PFTC to face recognition problem, a
given face is encoded into a codeword, and matched, or decoded, into one of the
gallery codeword. Ideally, if two faces belong to the same individual, they should
be encoded exactly the same. However, in practice the facial variations in illumi-
nation conditions, expressions, poses or even the misalignments of facial images
pose challenges for robust encoding. To recognize face correctly under a very
strict scenario where only one facial image is allowed for enrollment and probe
images are under aforementioned variations (e.g. John has a smiling, uniformly-
lit face enrolled in the database, and we want to recognize John’s face which is
left-lit and with neutral expression), PFTC is required to encode faces of the
same individual similarly, no matter under what conditions these facial images
are taken.
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Fig. 1. Illustration of the pattern-specific subspace learning scheme. In this illustration,
we extract four patterns for this trait using the facial images in TES. With patches in
TVS and TRS added, we learn the pattern-specific subspace where patches of different
patterns are well separated. Given a patch from an enrolled face, it is projected into
the pattern-specific subspace, and then its distance to the four one-to-the-rest SVMs
are calculated and concatenated to form the trait-specific probabilistic distribution.
The associated distribution of a probe patch is also calculated and compared with the
enrolled distribution.

The Pattern-Specific Subspace Learning scheme, denoted as PSSL, proposed
in this paper is the solution to this requirement. We learn subspaces in which trait
patterns can be best discriminated and impacts of variations in illuminations,
expressions, poses and misalignments are minimized. The proposed PFTC using
the PSSL scheme is illustrated in Fig. 1, and it is composed of the following
steps:

1. We collect a large set of faces taken under variations caused by illumination,
facial expression and pose and add them into the TVS.4

2. The facial trait pattern extraction is the same as that in the [3]: extrac-
tion of patch patterns using the clustering approach given in [7] and then
the Adaboost selection scheme upon the PPMs using the faces from the
TES.

3. All facial images in this work were aligned by centers of eyes, and thus
the localization errors of eyes lead to the misalignment of facial images in
practice. To handle this problem, for each image in the TES and TVS, we
allowed the center of one eye to have 2 pixel offset from the true center in
each direction, up, down, right, left. This gave 5 possible eye centers for
an eye, and both eyes resulted in 25 possible eye-center pairs. We cropped

4 The TVS in [3] contained only facial images taken under minor illumination varia-
tions.
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the face using these 25 pairs, left the one with true centers in the TES or
TVS, and moved the rest 24 to a new set defined in this paper, the Trait
Enrichment Set (TRS).5

4. Since the individuals in the TVS and TRS must be in TES, each varia-
tional facial trait sample from the TVS and TRS must have at least one
corresponding neural trait sample6 in TES. We merged the neural trait
samples and the variation trait samples in each trait, and then applied the
Linear Discriminant Analysis (LDA) to extract the features that maximize
the scattering between different trait patterns while minimize the scattering
within each trait pattern. This step forced each trait feature to include the
trait’s variations caused by illumination, expression, pose, and misalignment.

5. For each trait pattern in a facial trait, a SVM classifier was trained using
the one-to-the-rest scheme with the LDA features extracted in Step-4. This
gave the same number of SVM classifiers as that of the patterns existing in
the facial trait.

6. In the encoding phase, a gallery face was firstly decomposed into a set of
facial traits, and each trait was encoded using its normalized distances to the
hyperplanes of all SVM classifiers for that specific trait. This step converts
a gallery face into a gallery codeword.

7. In the decoding phase, a probe face was also converted into a probe codeword
in the same manner, and then the distance measure given by (1) was used
to determine if it matched any gallery codeword.

As shown in Fig. 1, assume we have an enrolled patch and a probe patch both
belong to John, and John’s patch belongs to the first pattern. The enrolled
patch is taken under uniform lighting with mouth smiling, and it is the only
enrolled patch for John. Although we do not know the actual appearance of
a left-lit patch with neutral expression of John, as long as we have a training
individual whose patches are under the same condition and also belong to the
first pattern, we can recognize John’s probe patch shown in Fig. 1 through the
proposed PSSL scheme. This scheme exploits an observation on human facial
images: if the neutral patches (i.e. uniformly-lit patches with neutral expressions)
of two individuals are classified into the same pattern, the patches of the two
individuals under the same illumination condition will have similar appearance,
so will those make the same facial expression. Fig. 2 illustrates this observation.
The proposed PSSL scheme grants the PFTC the ability to handle the most strict
scenario where only one facial image is allowed for enrollment and probe images
are under aforementioned variations, and it will be validated in our experimental
study in Sec. 4.

5 Similarly, one can tolerate larger degree of misalignment of the eyes by allowing the
center of one eye to have more than two pixel offset.

6 An evenly lighted frontal face without facial expression.
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(a) pattern #1 (b) pattern #2

Fig. 2. Illustration of patches of two patterns under different illumination conditions
and facial expressions. (a) Patches belong to three different individuals that are classi-
fied into pattern #1. The first row: neutral patches; the second row: patches under a
similar illumination condition; the third and the fourth row: patches make two facial
different expressions. (b) Patches belong to three different individuals that are classified
into pattern #2. The first row: neutral patches; the second and the third row: patches
under two different illumination conditions; the fourth and the fifth row: patches make
two different facial expressions.

4 Performance Evaluation–A Comparative Study

The training set, the gallery (or target) set, and the probe set are generally three
disjoint sets. The training set is composed of the TES, TVS and TRS datasets
for building up the facial traits and their associated trait patterns. If the gallery
set happens to be the training set, i.e., the trait patterns are all learned from the
gallery set, the performance of the FTC is expected to reach its best. It would
be interesting to study the difference in performance between this best case and
the general case that the trait patterns are already defined from the training
set, and the gallery set can only be encoded using the training-set defined trait
patterns. Therefore, two test protocols are considered as follows:

– Protocol-1: the training set and gallery set are the same;
– Protocol-2: the training set and gallery set are two disjoint sets.

Both protocols were tested on the AR face database [5] and a dataset composed
of samples from several face databases. The tests on the AR database gave a way
to compare the FTC against other algorithms with reported performance on AR
database. However, to reveal that the facial traits can be better defined from
a large set of faces collected from different resources, and compared with other
algorithms in performance, a mixed dataset was used. The mixed dataset is com-
posed of images collected from AR [5], FERET [12], FRGC [13], FVI [16], PIE
[14] and XM2VTS [15]. The mixed dataset includes 6405 facial images from 903
individuals taken under uncontrolled illumination conditions, facial expressions,
and poses, or using different image acquisition devices. The pose variations cover
at most 20o toward both sides, up and down. The details of the samples selected
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Table 2. The mixed dataset: the details of the samples selected from the six datasets

Dataset #subjects #faces #face/subject note
AR [5] 126 1764 14 all facial images without occlusion

such as sunglass and scarf
FERET [12] 200 400 2 ba(neutral) and bk(with illumination variation)
FRGC [13] 201 1957 1 ∼ 25 1957 images with their illumination conditions,

facial expressions and poses manually annotated
FVI 38 760 20 10 images from one session and 10 from another session.

Images in the two sessions were collected two weeks apart.
PIE [14] 43 344 8 random 8 images for each person taken under

room lights on with flash lights of different directions
XM2VTS [15] 295 1180 4 the speech shot

total 903 6405 7.09

from the six datasets are given in TABLE 2. All facial images in both datasets
were aligned to the centers of the eyes, and normalized to 80x100 pixels in size.

Two typical face recognition tasks were carried out: identification and veri-
fication. In identification, each probe image had one unique match to identify
in the gallery set. In verification, each probe image with a claimed subject were
both presented to the verification algorithm, which would either accept or reject
the claim. A claim would be rejected when the probe failed to match the claimed
subject, no matter whether the subject of the probe was in the gallery set or
not.

Table 3. The test protocols. ’E’, ’P’, ’D’, and ’SPE’ stands for ’Experiment’, ’Protocol’,
’Dataset’, and ’the number of Sample-Per-Enrollee’ respectively. ’S’ and ’F’ stands for
’Subject’ and ’Face’ respectively.

E P D training gallery
probe

SPE descriptions of the data partitions
enrollee imposter

1 1
AR

A1 A2 - 7 A1 and A2, two disjoint sets from AR,
126S, 882F 126S, 882F parted by different shotting time.

2 B1 B2a B2b - 1∼7 B1 and B2, two disjoint sets from AR,
63S 63S 63S parted by different subject.
882F 63F∼441F 441F B2 further divided into B2a and B2b,

parted by different shotting time.
3 2

mixed
C1 C2a C2b C3 1 C1, C2 and C3, three disjoint sets from

304S 303S 303S 296S the mixed dataset, parted by different
2630F 303F 975F 1950F subject.C2 further divided into C2a and

C2b,parted by different shotting time.

We compared the FTC’s performance with LBP [1] and the algorithm using
Sparse Representation (SRC) [2]. SRC is acknowledged as one of the most po-
tential approaches for face recognition published recently. Our comparison also
included on algorithm using local patches [17], one algorithm using ECOC [18],
as well as two baseline methods, Eigenface [19] and Fisherface [20]. The early
version of FTC [3] with hard codewords was also included in this comparison
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Table 4. Results of Experiment 1 (in percentage). The ’IDT’ and ’EER’ stand for
’identification rate’ and ’equal-error rate measured when FAR equals to FRR’, respec-
tively.

algorithm IDT
HIT at FAR equals to

EER10−1 10−2 10−3

Eigenface [19] 77.8 90.1 67.8 48.5 10.2
Fisherface [20] 80.5 89.7 69.8 52.7 10.0
Heisele03 [17] 82.2 93.7 87.3 78.1 9.82
ECOC [18] 83.3 92.5 88.9 82.8 7.26

LBP [1] 92.4 93.0 78.6 57.8 8.31
SRC [2] 90.5 99.7 96.9 91.0 2.0
FTC [3] 96.8 99.8 99.4 97.2 1.1

PFTC 95.0 98.9 96.2 85.6 2.4

and dubbed as FTC. The proposed PFTC using both PSSL scheme and proba-
bilistic codewords is dubbed as PFTC. For the SRC algorithm, we implemented
the Eigen+SRC described in [2], which applied the PCA features. The imple-
mentation of ECOC applied [127 , 15 , 27] binary BCH code to generate the
codewords7.

TABLE 3 summarizes the three experiments performed in this study. The
training set is the set of images for training algorithms: it was used to extract
the eigen-component in Eigenface, Fisherface, and SRC ; it was divided into TES
and TVS in FTC-based algorithms. The probe set contains faces for testing. If
a probe, a face in the probe set, also exists in the gallery, then it is known as an
enrollee; otherwise, it will be referred to as an imposter.

Experiment 1 studied the performance under Protocol-1, where the gallery set
is the same as the training set. Experiment 2 studied performance variations with
SPE (number of Sample-Per-Enrollee). Experiment 3 studied the performance
variations caused by illumination, expression and pose under most challenging
scenario where SPE = 1. The experimental results and discussions are listed
below:

– TABLE 4 gives the results of Experiment 1. Both FTC and PFTC out-
performed most algorithms, except for SRC. FTC and PFTC outperformed
SRC in identification rate, but SRC appeared slightly better than PFTC in
hit rate and ERR. However, FTC appeared to give the best overall perfor-
mance.

– The identification and hit rates for Experiment 2 are shown in Fig. 3 (a) and
(b), respectively. The performance of most algorithms degraded significantly
when SPE decreased, except FTC and PFTC. PFTC (the red dotted lines)
gives the best overall performance in this test.

– TABLE 5 summarizes the results of Experiment 3, in terms of identification
and verification rates. With the most challenging scenario considered, where

7 According to our unpublished results, ECOC did not achieve good recognition rates
when using codewords less than 127 bits.
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(a) Identification Rate (b) HIT at FAR equals to 1%

Fig. 3. Recognition results for Experiment 2

Table 5. Results of Experiment 3 (in percentage). The ’IDT’ stands for the identifica-
tion rate; ’HIT’ is the hit rate measured at FAR=0.01; ’EER’ stands for the equal-error
rate, the rate at which both accept and reject errors are equal. The neutral set in-
cludes frontal faces with no variation; the illumination, expression and pose set
includes faces taken under variation in illumination, expressions and pose, respectively.

subset neutral set
variant set

illumination set expression set pose set variant overall

#faces 1806 490 410 219 1119

algorithm IDT
verification

IDT
verification

IDT
verification

IDT
verification

IDT
verification

HIT EER HIT EER HIT EER HIT EER HIT EER
Eigenface [19] 54.8 51.2 21.9 19.4 14.3 30.0 47.3 34.2 22.8 52.1 54.6 21.6 36.0 29.5 25.7
Fisherface [20] 68.5 60.9 15.1 60.4 49.0 14.3 57.8 49.2 16.8 63.5 59.1 13.6 60.1 51.0 15.1

ECOC [18] 50.5 66.2 13.9 39.6 55.8 14.7 43.2 60.5 17.2 35.4 58.3 14.8 40.1 58.0 15.6
LBP [1] 77.7 62.1 15.1 60.4 56.1 20.2 72.6 65.6 16.5 59.4 44.1 27.6 64.7 57.2 20.3
SRC [2] 70.1 76.3 13.8 21.5 29.4 33.1 47.4 52.8 22.3 66.7 69.5 16.2 39.8 45.8 25.8
FTC[3] 80.9 85.1 6.89 68.1 77.9 7.91 60.0 66.3 9.99 58.3 74.8 8.61 63.2 73.0 8.81
PFTC 87.8 88.0 4.83 84.0 85.0 5.22 68.4 67.1 8.34 83.3 86.3 6.51 78.1 78.7 6.62

each enrollee has only one facial sample for enrollment (SPE=1), PFTC
gave the best overall performance. It outperformed FTC, SRC and LBP by
14.9% 38.3% 13.4% respectively in identification rate. Similar performance
was observed in hit rates and ERRs as well.

5 Conclusions and Future Works

In this paper, we proposed the Probabilistic Facial Trait Code to handle the most
rigorous face recognition scenario with one gallery face per individual and probe
faces under variations caused by illumination, expression and pose. The PFTC
comes with novel encoding scheme, and it gives a much better performance than
its predecessor, the [3]. Instead of using only one integer to denote a facial trait
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in the encoding phase, PFTC allows the probabilities of the trait belonging
to all trait patterns in the codeword. Furthermore, we included facial images
under variations caused by illumination, expression, pose and misalignment, and
learnt a pattern-specific subspace, which makes the proposed PFTC robust in
recognizing faces under aforementioned variations.

The extensive experimental study given in this paper also evaluated three
recent face recognition algorithms, one based on local binary pattern, one using
the sparse representation, and the Facial Trait Code approach, under several
scenarios with different definitions of training set, gallery and probe set and
different conditions facial images were taken. The proposed PFTC outperformed
all the state-of-the-art algorithms compared in this paper, especially when there
is only one single image per individual allowed in the gallery.
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Abstract. Detection, tracking, segmentation and pose estimation of
people in monocular images are widely studied. Two-dimensional mod-
els of the human body are extensively used, however, they are typically
fairly crude, representing the body either as a rough outline or in terms of
articulated geometric primitives. We describe a new 2D model of the hu-
man body contour that combines an underlying naked body with a low-
dimensional clothing model. The naked body is represented as a Contour
Person that can take on a wide variety of poses and body shapes. Cloth-
ing is represented as a deformation from the underlying body contour.
This deformation is learned from training examples using principal com-
ponent analysis to produce eigen clothing. We find that the statistics of
clothing deformations are skewed and we model the a priori probability
of these deformations using a Beta distribution. The resulting generative
model captures realistic human forms in monocular images and is used
to infer 2D body shape and pose under clothing. We also use the coef-
ficients of the eigen clothing to recognize different categories of clothing
on dressed people. The method is evaluated quantitatively on synthetic
and real images and achieves better accuracy than previous methods for
estimating body shape under clothing.

1 Introduction

Two-dimensional models of the human body are widely used in computer vision
tasks such as pose estimation, segmentation, pedestrian detection and tracking.
Such 2D models offer representational and computational simplicity and are
often preferred over 3D models for applications involving monocular images and
video. These models typically represent the shape of the human body coarsely,
for example as a collection of articulated rectangular patches [1,2,3,4]. None of
these methods explicitly models how clothing influences human shape. Here we
propose a new fully generative 2D model that decomposes human body shape
into two components: 1) the shape of the naked body and 2) the shape of clothing
relative to the underlying body. The naked body shape is represented by a 2D
articulated Contour Person (CP) [5] model that is learned from examples. The
CP model realistically represents the human form but does not model clothing.

K. Daniilidis, P. Maragos, N. Paragios (Eds.): ECCV 2010, Part I, LNCS 6311, pp. 285–298, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Fig. 1. Samples from the Dressed Contour Person model. Different body
shapes and poses (blue) are dressed in different types of eigen clothing (red).

Given training examples of people in clothing with known 2D body shape, we
compute how clothing deviates from the naked body to learn a low-dimensional
model of this deformation. We call the resulting generative model the Dressed
Contour Person (DCP) and samples from this model are shown in Fig. 1.

The DCP model can be used just like previous models for person detection,
tracking, etc. yet it has several benefits. The key idea is to separate the model-
ing of the underlying body from its clothed appearance. By explicitly modeling
clothing we infer the most likely naked body shape from images of clothed people.
We also solve for the pose of the underlying body, which is useful for applica-
tions in human motion understanding. The learned model accurately captures
the contours of clothed people making it more appropriate for tracking and seg-
mentation. Finally, the model supports new applications such as the recognition
of different types of clothing from images of dressed people.

There are several novel properties of the DCP model. First we define eigen
clothing to model deformation from an underlying 2D body contour. Given train-
ing samples of clothed body contours, where the naked shape of the person is
known, we align the naked contour with the clothing contour to compute the de-
formation. The eigen-clothing model is learned using principal component anal-
ysis (PCA) applied to these deformations. A given CP model is then “clothed”
by defining a set of linear coefficients that produce a deformation from the naked
contour. This is illustrated in Fig. 1.

There is one problem, however, with this approach. As others have noted,
clothing generally makes the body larger [6,7]. A standard eigen-model of cloth-
ing could generate “negative clothing” by varying the linear coefficients outside
the range of the training samples. While non-negative matrix factorization could
be used to learn the clothing model, we show that a simple prior on the eigen
coefficients addresses the issue. In particular, we show that the eigen coefficients
describing clothing deformations are not Gaussian and we model them using
Beta distributions that capture their asymmetric nature.

We also demonstrate the estimation of a person’s 2D body shape under cloth-
ing from a single image. Previous work on estimating body shape under clothing
has either used multiple images [6] or laser range scan data [7]. These previous
approaches also did not actually model clothing but rather tried to ignore it.
Both of the above methods try to fit a naked body that lies inside the measure-
ments (images or range scans) while strongly penalizing shapes that are “larger”
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than the observations. We show that there is a real advantage to a principled
statistical model of clothing. Specifically we show accuracy in estimating naked
body shape that exceeds that of Bălan and Black [6], while only using one
uncalibrated image as opposed to four calibrated views.

Finally we introduce a new problem of clothing category recognition. We
show that the eigen coefficients of clothing deformations are distinctive and can
be used to recognize different categories of clothing such as long pants, skirts,
short pants, sleeveless tops, etc. Clothing category recognition could be useful
for person identification, image search and various retail clothing applications.

In summary, the key contributions of this paper include: 1) the first model of
2D eigen clothing; 2) a full generative 2D model of dressed body shape that is
based on an underlying naked model with clothing deformation; 3) the inference
of 2D body shape under clothing that uses an explicit model of clothing; 4) shape
under clothing in a single image; 5) avoiding “negative clothing” by modeling
the skewed statistics of the eigen-clothing coefficients; 6) the first shape-based
recognition of clothing categories on dressed humans.

2 Related Work

Very little work in computer vision has focused on modeling humans in clothing.
What work there is focuses on modeling 3D human shape under clothing without
actually modeling the clothing itself. Bălan and Black [6] present a system based
on the 3D SCAPE [8] body model that uses multiple camera views to infer the
body shape. They make the assumption that the estimated body shape belongs
to a parametric family of 3D shapes that are learned from training bodies. They
fit the body to image silhouettes and penalize estimated body shapes that extend
beyond the silhouette more heavily than those that are fully inside. This models
the assumption that body shape should lie inside the visual hull defined by the
clothed body. In essence their method attempts to be robust to clothing by
ignoring it. More recently, Hasler et al. [7] take a similar approach to fitting a
3D body to laser range scans of dressed humans. Rosenhahn et al. [9] model
clothing explicitly on a 3D mesh but do so for the purpose of tracking, not body
shape estimation. Our approach differs from the above by focusing on 2D models
and explicitly modeling clothing deformations on the body using eigen clothing.

The vast majority of work on modeling clothing has focused on the recovery of
3D mesh models of the clothing itself (e.g. [10]). We know of no work on modeling
eigen clothing or 2D clothing deformation models. Of course other types of 2D
deformable shape models (e.g. active shape models [15]) have been widely used
in vision applications and a review is beyond our scope.

Almost all work on 2D person detection and pose estimation implicitly as-
sumes the people are clothed (though [11] is a notable counterexample). Despite
this, few authors have looked at using clothing in the process [12] or at actually
using a model of the clothing. Recent work by Bourdev and Malik [13] learns
body part detectors that include upper and lower clothing regions. They do not
model the clothing shape or body shape underneath and do not actually recog-
nize different types of clothing. One recent paper does try to recognize clothing
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types for Internet retail applications [14]. The garments, however, are assumed
to lie in a plane and are hence not actually on a human body.

3 The Contour Person Model

We start with a Contour Person (CP) model [5], which is a low-dimensional,
realistic, parameterized generative model of 2D human shape and pose. The CP
model is learned from examples created by 2D projections of multiple shapes
and poses generated from a 3D body model such as SCAPE [8]. The CP model
is based on a template, T , corresponding to a reference contour that can be de-
formed into a new pose and shape. This deformation is parameterized and factors
the changes of a person’s 2D shape due to pose, body shape, and the parameters
of the viewing camera. This factorization allows different causes of the shape
change to be modelled separately. Let BT (Θ) = (x1, y1, x2, y2, . . . xN , yN )T

denote the parametric form of the CP, where N is the number of contour points
and Θ is a vector of parameters that controls the deformation with respect to T .
The CP model represents a wide range of 2D body shapes and poses, but only
does so for naked bodies. Examples of such body contours, BT (Θ), are shown in
blue in Fig. 1. See Freifeld et al. [5] for mathematical details.

The CP model may contain internal or occluded portions of the body contour.
However, here our clothing training data consists only of silhouettes with no
internal structure. Consequently, we restrict the poses we consider and define
BT (Θ) to be a CP model corresponding to a bounding body contour without
holes. In future work, we will generalize the DCP model to take advantage of
the ability of the CP to accommodate self occlusions.

4 Clothing Model

We directly model the deformation from a naked body contour to a clothed body
by virtually “dressing” the naked contour with clothing. We start with a training
set (described below) of clothing outlines and corresponding naked body outlines
underneath. The CP model is first fit to the naked body outline to obtain a CP
representation. For each point on the CP, we compute the corresponding point
on the clothing outline (described below) and learn a point displacement model
using PCA [15]. We further learn a prior over the PCA coefficients using a Beta
distribution to prevent infeasible displacements (i.e. “negative clothing”).

The DCP model can be thought of as having two “layers” that decouple the
modeling of body pose and shape from the modeling of clothing. The first layer
generates a naked body deformation from the template contour and the second
layer models clothing deformation from this deformed naked contour. The first
layer is the CP model, which is compositional in nature and based on deforma-
tions of line segments (see [5]). The second layer, described here, is simpler and
is based directly on displacements of contour points. The layered representation
is desirable because it allows constraints to be imposed independently on the
body and the clothing.
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4.1 Data Sets

Our method requires training contours of people in clothing for which we know
the true underlying naked body shape. We describe two such training sets below.

Synthetic data set. Synthetic data provides ground truth body shapes that
enable accurate quantitative evaluation. We use 3D body meshes generated from
the CAESAR database (SAE International) of laser range scans and dress these
bodies in simulated clothing (Fig. 2). We used 60 male and 100 female bodies
spanning a variety of heights and weights and use commercial software (OptiTex
International, Israel) to generate realistic virtual clothing. The clothing simula-
tion produces a secondary 3D mesh that lies on top of the underlying body mesh
by construction. Given a particular camera view, we project the body mesh into
the image to extract the body outline and do the same for the combined body
and clothing meshes. This provides a pair of training outlines.

For the synthetic dataset we restrict the clothing to a single type (Army
Physical Training Uniforms) but in different sizes, as appropriate for the body
model. While narrow, this dataset provides nearly perfect training data and
ground truth for evaluation.

Real data set. To model real people in real clothing we use the dataset de-
scribed by Bălan and Black in [6] (Fig. 2) which contains images of 6 subjects
(3 males, 3 females) captured by 4 cameras in two conditions: 1) the “naked
condition” in which the subjects wear tight fitting clothing; 2) the “clothed
condition” in which they wear different types of “street” clothing. The dataset
contains four synchronously captured images of each subject, in each condition,
in a fixed set of 11 postures. For each posture the subjects are dressed in 6-10
different sets of clothing (trials). Overall there are 47 trials with a total of 235
unique combinations of people, clothing and poses.

For each image of a dressed person, we use standard background subtraction
[6] to estimate the clothed body silhouette and extract the outline. To obtain the
underlying naked body contours, we fit a 3D parametric body model using the 4
camera views in the naked condition [6]. We take this estimated 3D body shape
to be the true body shape. We then hold this body shape fixed while estimating
the 3D pose of the body in every clothing trial using the method of [6] which is
robust to clothing and uses 4 camera views.

The process produces a 3D body of the “true” shape, in the correct pose, for
every trial. We project the outline of this 3D body into a selected camera view
to produce a training 2D body contour. We then pair this with the segmented
clothed body in that view. Note that the fitting of the 3D body to the image
data is not perfect and, in some cases, the body contour actually lies outside
the clothing contour. This does not cause significant problems and this dataset
provides a level of realism and variability not found in the synthetic dataset.

4.2 Correspondence

Given the naked and clothed outlines defined above, we need to know the corre-
spondence between them. Defining the correspondence between the naked outline
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Fig. 2. Example training data. Left: Pairs of synthetic 3D bodies, unclothed and
clothed. Projecting the silhouette contours of these pairs produces training contours.
Right: Training contours derived from multi-camera data (see text); the estimated
ground truth 3D body is shown as a translucent overlay.

and the clothing outline is nontrivial and how it is done is important. Baum-
berg and Hogg, for example, model the outline of pedestrians (in clothing) using
PCA [17]. In their work, correspondence is simply computed by parameterizing
all training contours with a fixed number of evenly sampled points. Incorrect
correspondence (i.e. sliding of points along the contour) results in eigen shapes
that are not representative of the true deformations of the contours.

Instead, we start with the trained parametric CP representation BT (Θ) and
optimize it to fit the 2D naked body that minimizes the difference between the
CP silhouette and the naked body silhouette. This gives a CP representation of
the naked body that consists of N = 1120 points. We then densely sample M
points on clothing outline, where M >> N and select the N clothing contour
points that best correspond to the CP points. During matching, the relative
order of the points is maintained to guarantee the coherence of the match. Let
the CP contour be represented by a list of points P = {p1, p2, ..., pN} and let the
sampled clothing outline be represented by Q = {q1, q2, ..., qM}. We pick a subset
of N points G = {qk1 , qk2 , ..., qkN } from Q that minimizes

∑N
i=1 ‖pi − qki‖2 over

the indices ki such that the ordering, kr < ks, is preserved for 1 ≤ r < s ≤ N .
We use the dynamic programming method proposed in [18]. Example alignments
are shown in Fig. 3.

4.3 Point Displacement Model

We convert the point list G to a vector Ĝ = (x1, y1, x2, y2, . . . , xN , yN )T and
now we have BT (Θ) for the naked body contour and Ĝ for clothing contour,
both of which have N corresponding points. The clothing displacement for a
particular training example, i is then defined by δi = Ĝi − BT (Θi). We collect
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Fig. 3. Correspondence between body and clothing contours. In each pair:
the left image shows the sample points of the body contour in blue and the densely
sampled clothing contour in red. The right image shows the final sub-sampled clothing
contour with a few matching points highlighted as larger dots. Nearby dots illustrate
corresponding points (in some cases they are on top of each other).

(a) mean (b) PC1 (c) PC2 (d) PC4

Fig. 4. Eigen clothing. The blue contour is always the same naked shape. The red
contour shows the mean clothing contour (a) and ±3 std from the mean for several
principal components (b)-(d).

the training displacements into a matrix and perform PCA. We take the first 8
principal components accounting for around 90% of the variance to define the
eigen-clothing model. Figure 4 shows the mean and first few clothing eigenvec-
tors for the real data set. This illustrates how the principal components can
account for various garments such as long pants, skirts, baggy shirts, etc. Note
that simply varying the principal components can produce “negative clothing”
that extends inside the blue body contour. We address this in the following
section.

Using this model we generate new body shapes in new types of clothing by
first sampling CP parameters Θ to create a naked body contour BT (Θ) and then
using the following equation to generate a clothed body

C(Θ, η) = BT (Θ) + Δmean +
Nη∑
i=1

ηi · Δi (1)

where Nη is the number of eigenvectors used, the ηi’s are coefficients, Δmean is
the mean clothing displacement, and Δi is the ith eigen-clothing vector.



292 P. Guan, O. Freifeld, and M.J. Black

4.4 Prior on Point Displacement

Although the PCA model captures clothing deformation, it allows point displace-
ments in both inward and outward directions, which violates our assumption that
clothing only makes the body appear bigger. This assumption is confirmed by
examining the statistics of the linear eigen coefficients in the training data. Fig-
ure 5 shows several such distributions, which may be skewed or symmetric. In
particular we find that coefficients for the principal components that capture
the most variance are typically positively or negatively skewed while coefficients
for the lower-variance components tend to be more normally distributed. The
first few eigenvectors capture the gross clothing displacements, which are always
away from the body. Of course clothing also exhibits many fine details and folds
and these are captured by the lower variance eigenvectors. These “detail” eigen-
vectors modify the main clothing contour both positively and negatively (e.g.
out and in) and hence tend to have more symmetric statistics.

Based on the observation of natural clothing statistics, we learn a prior on
the PCA coefficients to penalize infeasible clothing displacements. We make the
assumption that the eigenvectors are independent (not necessarily true since the
data is not Gaussian) and independently model a prior on each coefficient using
a Beta distribution. The Beta distribution is defined on [0, 1] and is characterized
by two parameters α and β that can be varied to capture a range of distributions
including positively skewed, negatively skewed and symmetric shapes:

Beta(x; α, β) =
Γ (α + β)
Γ (α)Γ (β)

xα−1(1 − x)β−1. (2)

Given L training body/clothing pairs, and the associated clothing displacements,
we project each displacement onto the PCA space to obtain coefficient ηl

m for
instance l, (l ∈ [1, L]), on eigenvector m. We normalize η1

m, η2
m, ..., ηL

m to [0, 1] to
obtain η̃1

m, η̃2
m, ..., η̃L

m and fit these with the Beta distribution. The probability
of observing a normalized coefficient x̃m for the mth eigenvector is given by
Beta(x̃m, αm, βm), where αm and βm are the estimated parameters of the Beta
distribution. If we observe a coefficient during testing that is out of the scope of
the training coefficients, we threshold it to be between the minimal and maximal
value in the training set and normalize it to compute its prior probability. If
thresholded, however, we still use the original value to reconstruct the shape.
Figure 5 shows how the Beta function can represent a variety of differently
shaped distributions of clothing displacement coefficients.

4.5 Inference

The inference problem is to estimate the latent variables Θ and η by only observ-
ing a single image of a person in clothing. We define a likelihood function in terms
of silhouette overlap. We adopt a generative approach in which C(Θ, η), the
clothed body (Eq. 1), defines an estimated silhouette, Se(C(Θ, η)), and compare
it with the observed image silhouette So. We follow [6] and define the asymmet-

ric distance between silhouettes Sr and St as d(Sr, St) =
∑

i,j Sr
i,jHi,j(St)∑

Sr
i,j

, where
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(a) PC1 (b) PC2 (c) PC8

Fig. 5. The statistics of clothing displacements. Example histograms and Beta
distribution fits to linear eigen-clothing coefficients. Note the skew that results from
the fact that clothing generally makes the body appear larger.

Sr
i,j is a pixel inside silhouette Sr and Hi,j(St) is a distance function which is

zero if pixel (i, j) is inside St and is the distance to the closest point on the
boundary of St if it is outside.

We then define the data term as the following symmetric data error function

Edata(Θ, η) = d(Se(C(Θ, η)), So) + d(So, Se(C(Θ, η))). (3)

The first part of Eq. 3 penalizes the regions of the synthesized clothing instance
Se(C(Θ, η)) that fall outside the observed clothing silhouette So, and the second
part makes Se(C(Θ, η)) explain So as much as possible.

Edata alone is not sufficient to estimate Θ and η correctly, because there are
ambiguities in estimating smaller bodies with larger clothing and larger bodies
with smaller clothing. As was mentioned in Sec. 4.4, we use the Beta prior
to penalize unlikely displacements. Recall that η̃m represents the normalized
coefficient for the mth basis. The prior term is defined as

Eprior(η) = −
∑
m

log(Beta(η̃m, αm, βm)). (4)

The final energy function we minimize is

E(Θ, η) = Edata(Θ, η) + λEprior(η) (5)

where λ indicates the importance of the prior. Problems with “negative clothing”
and clothing that is unusually large are avoided due to the prior. Optimization
is performed using MATLAB’s fminsearch function.

5 Results

We consider two novel applications of the proposed method. The first is the
estimation of 2D body shape under clothing given a single image of a clothed
person. The second is the recognition of different clothing categories by clas-
sifying the estimated clothing deformation parameters. We evaluate our model
on three tasks: body shape estimation from synthetic data, body shape estima-
tion from real data, and clothing type classification from real data. We compare



294 P. Guan, O. Freifeld, and M.J. Black

(a) male (b) compared to GT (c) female (d) compared to GT

Fig. 6. Synthetic data results. For each pair of images, the DCP result is on the left
and NM result is on the right. The first pair shows an estimated body silhouette (red)
overlaid on the clothing silhouette (green); overlapped regions are yellow. The second
pair shows the estimated body (red) overlaid on the ground truth (GT) body (green).
The third and fourth pairs show the same but for a female. NM typically overestimates
the size of the body.

the results of the first two tasks with approaches that do not explicitly model
clothing deformation.

Body estimation under clothing from synthetic data. We use the syn-
thetic dataset of 60 males and 100 females, in and out of synthetic clothing, as
described above. We randomly select 30 males and 50 females as the training
set and the remaining 80 bodies as the test set. A gender-specific CP model is
learned for males and females separately while a gender-neutral eigen model is
learned for clothing deformations. We estimate the underlying bodies for the test
samples using the Dressed Contour Person (DCP) and measure the estimation
error as

err(SEST , SGT ) =

∑
i,j |SEST

i,j − SGT
i,j |

2
∑

i,j SGT
i,j

(6)

where SEST is a silhouette corresponding to the estimated naked body contour
and SGT is the ground truth underlying naked body silhouette. The results
of DCP are also compared with a naive method (NM) in which we simply fit
the CP model to the image observations of clothed people. As in [6], the NM
attempts to account for clothing by penalizing contours more if the estimated
body silhouette falls outside of the clothing observation than if it does not fully
explain the clothing observation. The average estimation errors obtained with
NM for males and females are 0.0456 and 0.0472 respectively while DCP achieves
0.0316 and 0.0308. Our DCP model improves accuracies over NM by 30% (male)
and 35% (female) relatively. While the synthetic dataset has only one clothing
type, the bodies span a wide range of shapes. The results show a principled
advantage to modeling clothing deformation compared with ignoring clothing.
Figure 6 shows some representative results from the test set.

Body estimation under clothing from real data. Figure 7 shows 8 different
poses from the real dataset (Sec. 4.1). For each pose there are 47 examples
having unique combinations of subjects and clothing types. Since the number of
body/clothing pairs is limited in each pose, we use a leave-one-out strategy where
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Table 1. Comparison on real data: DCP, NM, and NP3D methods (see text)

Method, AAE Pose1 Pose2 Pose3 Pose4 Pose5 Pose6 Pose7 Pose8 Average
DCP 0.0372 0.0525 0.0508 0.0437 0.0433 0.0451 0.0503 0.0668 0.0487
NP3D 0.0411 0.0628 0.0562 0.0484 0.0494 0.046 0.0472 0.0723 0.0529
NM 0.0865 0.0912 0.0846 0.0835 0.0877 0.0921 0.0902 0.1184 0.0918
Significance (p-value)
DCP vs NP3D 0.38 0.13 0.34 0.46 0.36 0.89 0.66 0.54 0.07
DCP vs NM 6.4e-7 4.9e-4 2.1e-4 2.1e-4 6.7e-8 1.0e-5 1.0e-6 2.3e-4 9.9e-17

Fig. 7. Sample DCP results of estimated body shape overlaid on clothing.
The estimated body contour and synthesized clothing contour are depicted by blue
and red outlines respectively. Body shape is the transparent region encompassed by
the body contour. Results are shown for a variety of poses (left to right: 1-8) and
viewing directions.

we estimate the body of instance i using the eigen-clothing model learned from
all remaining 46 instances excluding i. We use DCP to estimate the underlying
body shape for a total of 47 ∗ 8 = 376 instances (Fig. 7) and compare the results
with two other methods: 1) NM described in the previous experiment; and 2)
“Naked People estimation in 3D”(NP3D) proposed in [6]. Since DCP and NM
are 2D methods using a 2D CP model, they only use one camera view. NP3D,
however, estimates a 3D body model from four camera views [6]. To compare with
NP3D we project the estimated body from NP3D into the image corresponding
to the camera view used by our method.
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Fig. 8. Comparisons of DCP, NM, and NP3D. For each group of images: the first
3 images (left to right) show overlap of the estimated silhouette (red) and the ground
truth silhouette (green) for DCP, NP3D, and NM (yellow is overlap); the 4th image
shows the body estimated by NM overlaid on a clothing image. NM overestimates body
shape as expected.

Fig. 9. Color coded clothing type. We consider three types of upper clothing: long
sleeves (red), short sleeves (black) and sleeveless tops (blue) and four types of lower
clothing: short pants (green), long pants (magenta), short skirts (coffee), and long skirts
(cyan). Classification results for the 7 clothing types in all 8 poses are shown in the
right figure compared to “Chance”.

Table 1 shows the Average Estimation Error (AEE) computed by averaging
err(·, ·) (Eq. 6) over the 47 instances for each pose (or over all poses in the
last column). Figure 8 shows details of the fitting results. We find that DCP
has lower error than both NM and NP3D. In the case of NM these differences
are statistically significant (paired t-test, p < 0.05) for all poses and in the
aggregate. While DCP has lower error than NP3D in all but one pose, and lower
error overall, the differences are not significant at the p < 0.05 level. Recall that
NP3D is using significantly more information. These results suggest that using
a learned statistical model of clothing is preferable to simply trying to ignore
clothing [6].

Clothing category recognition. We now ask whether the clothing deforma-
tion coefficients contain enough information about clothing shape to allow the
classification of different types of clothing. Note that this task involves recogniz-
ing clothing on the body as it is worn by real people. We separate upper clothing
and lower clothing and define 7 different categories (as color coded in Fig. 9).

We use a simple nearest neighbor (NN) classifier with Euclidean distances
computed from the coefficients along the first 8 principal components. Since
we have a limited number of clothing instances (47) for each pose, we use a
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leave-one-out strategy and assume that we know the categories of all the in-
stances except the one we are testing. Each instance is then assigned a category
for both upper clothing and lower clothing based on its nearest neighbor. Clas-
sification results are shown in Fig. 9 along with chance performance for this
task.

6 Conclusions

We have presented a new generative model of the 2D human body that combines
an underlying Contour Person representation of the naked body and layers on
top of this a clothing deformation model. This goes beyond previous work to
learn an eigen model of clothing deformation from examples and defines a prior
over possible deformations to prevent “negative clothing”. While previous work
has examined 3D body models captured with multiple cameras or laser range
scanners, we argue that many computer vision applications use 2D body models
and that these applications will benefit from a more realistic generative model
of clothed body shape. By modeling clothing deformations we estimate 2D body
shape more accurately and even out-perform previous multi-camera systems on
estimating shape under clothing. Finally we define a new problem of clothing
category recognition on the human body and show how the coefficients of the
estimated eigen clothing can be used for this purpose. This new dressed person
model is low dimensional and expressive, making it applicable to many problems
including 2D human pose estimation, tracking, detection and segmentation.

Our method does have some limitations. The method assumes there is a cor-
respondence between body contour points and clothing contour points. When
there is significant limb self occlusion, the clothing silhouette may not contain
features that correspond to that limb. Dealing with significant self occlusion is
future work. Also, here we assume that the rough viewing direction (frontal or
side) and rough pose are known.

There are several directions for future work. First, we plan to model clothing
deformation as a function of human movement. This may require a model more
like the original CP model in which deformations are defined as scaled rotations
of contour line segments [5]. This representation allows the factoring of contour
changes into different deformations that can be composed. Second, we will ex-
plore what we call “eigen separates”; that is, separate eigen models for tops and
bottoms as well as for hair/hats and shoes. Having separate eigen spaces reduces
the amount of training data required to capture a wide range of variations. Fi-
nally we plan to extend these methods to model 3D clothing deformations from
a 3D body model. Again data acquisition for 3D clothed and unclothed training
data is very difficult, and we plan to use realistic physics simulation of clothing.
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Abstract. This paper presents a new approach for fitting a 3D mor-
phable model to images of faces, using self-adapting feature layers
(SAFL). The algorithm integrates feature detection into an iterative
analysis-by-synthesis framework, combining the robustness of feature
search with the flexibility of model fitting. Templates for facial features
are created and updated while the fitting algorithm converges, so the
templates adapt to the pose, illumination, shape and texture of the indi-
vidual face. Unlike most existing feature-based methods, the algorithm
does not search for the image locations with maximum response, which
may be prone to errors, but forms a tradeoff between feature likeness,
global feature configuration and image reconstruction error.

The benefit of the proposed method is an increased robustness of
model fitting with respect to errors in the initial feature point positions.
Such residual errors are a problem when feature detection and model
fitting are combined to form a fully automated face reconstruction or
recognition system. We analyze the robustness in a face recognition sce-
nario on images from two databases: FRGC and FERET.

1 Introduction

Fitting generative models such as 3D morphable models (3DMM) or active ap-
pearance models (AAM) to images of faces has turned out to be a promising
approach to obtain a face-specific encoding of faces for recognition purposes. Due
to the 3D representation, 3DMMs can help to recognize faces at arbitrary poses
and illuminations [1]. A bottleneck in the development of automated fitting al-
gorithms is the initialization of the optimization. While early work has started
from a coarse alignment [2], later versions have relied on manually defined fea-
ture point positions [1]. Recently, a fully automated 3DMM fitting algorithm
has been presented [3] which uses Support Vector Machines (SVM) for the de-
tection of faces and facial features. However, the quality of the fit turned out to
depend critically on the precision of the facial features. The goal of this paper
is to integrate feature detection into the 3DMM fitting procedure.

In order to leverage the fact that 3DMM fitting can be applied to any pose and
illumination, it is important to have feature detectors that are either invariant,
or to rely on a set of different detectors, or - as we propose here - to have
adaptive feature detectors. In our approach, the feature detector is updated by
rendering an image of the current estimate of the face at the current estimate
of the imaging parameters several times during the optimization, and forming
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templates from predefined face regions. Unlike more powerful feature detectors
such as SVM or AdaBoost [4], template matching (TM) does not require multiple
training samples.

The second contribution of this paper is a novel way to include facial features
into model fitting. Most existing algorithms find the image position with max-
imum response of the feature detector and pull the corresponding point of the
model towards this position. However, on difficult images, it may occur that the
feature response at the correct position is not the global maximum. Therefore, we
propose a strategy that forms a tradeoff between high feature detector response
and a plausible overall configuration. This is achieved by including the value of
the feature detector response as an additional term in the cost function of 3DMM
fitting, rather than the 2D distance between the current feature position of the
model and the position of the global maximum. Each feature detector response
forms an additional 2D array, or layer, that is used along with the three color
channel layers which form the image. On a more general level, the approach in-
troduces a new, high-level criterion for image similarity to analysis-by-synthesis
strategies. In fact, this can be implemented with any feature detector or any
other local descriptor of image properties.

2 Related Work

Detection of facial features and integration into face recognition systems have
been studied extensively in recent years. Still, robust feature detection in difficult
imaging conditions continues to be a challenge.

AdaBoost [4] is a well-known approach for face and facial feature detection. [5]
use it to first detect candidates for eyes, nose and lips separately. From the can-
didates, the combination with highest log-likelihood is chosen. Many approaches
use coarse-to-fine strategies: [6] detect the head using AdaBoost and get a first
guess of the iris position using linear regression. At the next step a weighted sup-
port vector machine (SVM), using only a small number of pixels of the whole
search area, refines the iris position. [7] use a cascade of global deformation,
texture fitting and feature refinement to refine eye, mouth, nose and eyebrow
positions. [8] use a hierarchical face model composed of a coarse, global AAM and
local, detailed AAMs for each feature for refinement. This restricts the influence
of noise to the features directly nearby, and prevents it from affecting the rest of
the face. [9] and [10] both use a prior distribution map analyzing AdaBoost face
detection output as a starting condition, and refine the feature positions using
color values and a decision tree classifier [9], or using a HarrisCornerDetector
and a SVM to classify whether the detected corners belong to a feature or not
[10]. [11] find facial features indirectly by using templates for parts of the face
in connection with vectors that point from these regions to the positions of the
features. The final feature positions are weighted combinations of the vectors.

Instead of refining the positions as in a coarse-to-fine approach, [12] combine
conventional algorithms in a sequence to get better initial values for character-
istic points: face detection by skin-color and luminance constraints, eye detection
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by TM and symmetry enforcement, mouth and eyebrow detection both using
luminance and geometry constraints. Other combined approaches have been
proposed by [13] who classify SURF local descriptors with SVMs: one SVM
to decide whether they belong to the face or not, followed by special SVMs for
each feature. [14] combine four feature detectors (DCT, GaborWavelets, ICA,
non-negative Matrix Factorization) on images at a reduced resolution. SVM
is performed to get the most reliable positions (highest SVM scores) for each
feature, and a graph based post-processing method is used to pick the best com-
bination of feature positions. Refinement of the feature positions at the end is
done using DCT again on full resolution.

A number of algorithms introduce local features to Active Shape Models (ASM)
and Active Appearance Models (AAM): [15] extend the ASM by fitting more land-
marks, using 2D-templates at some landmark positions and relaxing the shape
model wherever it is advantageous. To improve the result further, they use the first
alignment as start value for a second fitting with the new ASM. [16] combine ASM
and Haar wavelets. [17] use a similar approach to ours, yet their 2D AAM model
is designed for frontal or nearly frontal views of faces only. They form facial fea-
ture detectors from an AAM and update them in an iterative search algorithm.
In each iteration, they find the feature positions with a plausible 2D configuration
(high prior probability) and, at the same time, a high feature detector output. In
contrast, we use a 3D model that contains additional parameters for pose and il-
lumination, use different methods to create feature detectors and to fit the model,
andwe integrate the feature point criterion into a cost function that includes overall
image difference for a global analysis-by-synthesis.

The first combination of feature detection with 3D morphable models (3DMM)
was presented by [18] who created local feature detectors for face recognition
from a 3DMM. Unlike our approach, they first reconstructed a face from a gallery
image, created virtual images using the 3DMM and then relied on SVM-based
local classifiers for recognition. [19] presented a patch based approach that is re-
lated to ours because it combines local feature detectors and a 3D shape model.
In contrast to our algorithm, however, the feature detectors are trained prior to
fitting, and the model fitting minimizes the 2D distances between image points
with maximum response of the feature detectors and the corresponding model
points. [20] first identify all potential feature points in the image by using SIFT
as a criterion for saliency, then reject those that are similar to none of the points
in the appearance model, and subsequently find the configuration of features in
the image and the mapping to features of the 3DMM that has a maximum like-
lihood. The resulting feature locations can be used to initialize a 3DMM fitting
procedure. [3] use SVM for detecting faces, estimating pose angles and finding
facial features. From a number of nose point candidates, a model-based crite-
rion selects the most plausible position. Then, these data are used to initialize
a 3DMM fitting algorithm and compute 3D reconstructions. Our approach may
be used in a similar general approach, but with an increased robustness to un-
precise initial feature positions. In a Multi-Features Fitting Algorithm for the
3DMM, [21] use a cost function that adds color difference, edge information and
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the presence of specular highlights in each pixel. The algorithm is related to ours
because multiple features are used and a tradeoff is found for the match of each
feature plus a prior probability term. However, we use features that are derived
from facial appearance, and we update these features during the optimization.

3 Morphable Model of 3D Faces

For the reconstruction of a high-resolution 3D mesh, we use a Morphable Model
of 3D faces (3DMM, [2]), which was built by establishing dense correspondence
on scans of 200 individuals who are not in the test sets used below. Shape vectors
are formed by the x, y, z-coordinates of all vertices k ∈ {1, . . . , n}, n = 75, 972 of
a polygon mesh, and texture vectors are formed by red, green, and blue values:

S = (x1, y1, z1, x2, . . . , xn, yn, zn)T (1)
T = (R1, G1, B1, R2, . . . , Rn, Gn, Bn)T . (2)

By Principal Component Analysis (PCA), we obtain a set of m orthogonal prin-
cipal components sj, tj , and the standard deviations σS,j and σT,j around the
averages s and t. In this paper, only the first 99 principal components of shape
and texture are used, because they cover most of the variance observed in the
training set. A larger number would increase the computation time while not
improving the results significantly.

In an analysis-by-synthesis loop, we find the face vector from the Morphable
Model that fits the image best in terms of pixel-by-pixel color difference between
the synthetic image Imodel (rendered by standard computer graphics techniques),
and the input image I:

EI =
∑
x,y

(I(x, y) − Imodel(x, y))2. (3)

The squared differences in all three color channels are added in EI . We suppress
the indices for the separate color channels throughout this paper. The optimiza-
tion is achieved by an algorithm that was presented in [1,2]. In each iteration, the
algorithm evaluates EI not on the entire image, but only on 40 random vertices.
For the optimization to converge, the algorithm has to be initialized with the
feature coordinates of at least 5 feature points.

The goal is to minimize the cost function

E = ηI · EI + ηM · EM + ηP · EP (4)

where EM is the sum of the squared distances between the 2D positions of the
marked feature points in the input image, and their current positions in the model.
EP is the Mahalanobis distance of the current solution from the average face, which
is related to the log of the prior probability of the current solution. ηI , ηM and ηP

are weights that are set heuristically: The optimization starts with a conservative
fit (ηM and ηP are high), and in the final iterations ηM = 0 and ηP is small.

The algorithm optimizes the linear coefficients for shape and texture, but also
3D orientation and position, focal length of the camera, angle, color and intensity
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of directed light, intensity and color of ambient light, color contrast as well as
gains and offsets in each color channel.

4 Self-Adapting Features

Our proposed self-adapting feature approach is built on top of the 3DMM and
introduces a novel criterion in the cost function. The goal is to reduce the in-
fluence of the (potentially unreliable) initial feature positions that are used in
EM : they are only used for the first coarse alignment of the head, and discarded
later. After coarse alignment and a first estimation of the illumination, the term
EM in the cost function (Eqn. 4) is replaced by new EFi , that will be explained
below, with i = 1 . . . 7, for the set of 7 feature positions to be refined, weighted
with ηF :

E = ηI · EI + ηF ·
7∑

i=1

EFi(xFi , yFi) + ηP · EP (5)

The features are: the tip of the nose, the corners of the mouth, and the inner
and outer corners of the eyes. For feature point i, we know which vertex ki of
the model it corresponds to, and using perspective projection we get the current
position (xFi , yFi) in the image Imodel.

Once every 1000 iterations, the entire current fitting result Imodel is rendered,
and templates are cut out around the current feature positions (xFi , yFi). Tem-
plate sizes are pre-defined relative to the head size sH (distance between a vertex
on the top of the forehead and one on the bottom of the chin, in pixel units):
eyes: (1

9sH) × (2
9sH), nose: ( 1

18sH) × ( 1
18sH) and mouth: (2

9sH) × (1
9sH). We

chose these sizes to make sure that each template contained enough diagnostic
features, such as part of the eyebrows in the eye template.

The new EFi in (5), based on TM, are

EFi
(xFi , yFi) = 1 − CFi

(xFi , yFi). (6)

where CFi is the normalized cross correlation [22], which we found to be more
reliable than alternative choices:

CF(x, y) =

∑
(p,q)∈R

(I(x + p, y + q) · R(p, q)) − N · Ī(x, y) · R̄√ ∑
(p,q)∈R

(I(x + p, y + q))2 − N · (Ī(x, y))2 · σR

(7)

where I is the original image and Ī(x, y) its local mean value around the current
position (x, y) in a template-sized area, R is the current template (or reference
image) and R̄ its mean value (over all (p, q)), σR is the variance of the template
values and N is the number of template values (width · height). Only Ī has to
be computed for every (x, y). The other three components (R̄, σR, N) can be
precomputed. Note that ∀(x, y) ∈ I : CF(x, y) ∈ [−1, 1], with 1 representing a
maximum match and −1 a maximum mismatch. For color images, CF(x, y) =
1
3 (CF,red(x, y) + CF,green(x, y) + CF,blue(x, y)).

The weight ηF is constant and scales the sum of all EFi to the same range of
values as the image difference EI .
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Templates R and cross correlations CFi
are updated once every 1000 iterations

of the fitting algorithm. To reduce computation time, CFi
(x, y) for each feature

i is calculated only in a region of interest (ROI: 1
9sH × 1

9sH) around the current
position (xFi , yFi). Even in the first iteration, these positions can be assumed to
be approximately correct, and also the head size sH that defines the (constant)
template size will be in the right order of magnitude, due to the vague initial
feature coordinates.

In intermediate iterations, CFi
remain fixed, but the positions (xFi , yFi) for

looking up CFi
(xFi , yFi) will change. This reflects the fact that the locations of

feature points may change faster during the optimization than the appearances
of features do. Fig. 1 gives an overview of the algorithm.

Fig. 2 shows how the templates (here: outer corner of the left eye) change over
fitting iterations when fitting to different images (rows in Fig. 2). Over the first
six template-adaptions, not much change is observed. At the seventh template
in each row, the change is already visible at the eyebrow, after the eighth and
ninth adaption the whole templates changed significantly. The major change can
be observed at step eight and nine, because this is where fine adjustment starts:
The head model is broken down in different regions, and these are optimized
separately (see [2]).

Fig. 3 shows an example of how the cross correlation result, matching the left
corner of the left eye, changes over the fitting iterations. The detail belongs to the
result of the third line of Fig. 8. There, first the position of the corner of the eye
has been displaced to the right to evaluate robustness. As the fitting proceeds,
it moves to the left and upward until it reaches the correct position eventually.
The position of the ROI also shows where the feature has been positioned when
computing the cross correlation. The ROI position reveals the drift of the feature
to the correct position.

It can be seen that the cross correlation turns into a single, wide optimum
as the template adapts to the appearance in the image. Note that if the model
adapts perfectly to the feature in the input image, CFi

(x, y) will converge to the
autocorrelation function, and the width of maxima and minima will be deter-
mined by the frequency spectrum of the template.

5 Results

We tested our algorithm on 300 randomly chosen images from the FRGC data
base [23], using three images per person and a set of 50 women and 50 men.
The only constraint in random selection was that the person did not show an
extreme facial expression. Typical examples of the randomly chosen samples,
some of them in difficult imaging conditions (focus, illumination, expressions)
can be found in Fig. 4. The database contains front view images only. We show
results on non-frontal views later in this section.

For ground truth in every image, five feature positions (outer corners of the
eyes, nose and corners of the mouth) were labelled manually. To simulate scenar-
ios with an unreliable initial feature detector, we perturbed the feature positions
randomly:
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Fig. 1. Self-adapting feature layers: Blue arrows show actions performed only ev-
ery 1000 iterations: Templates are cut out from the current fitting result. They are
compared to the original image I using normalized cross correlation at a certain ROI
and from these, the ’feature layers’ are generated. Red lines show actions performed
every iteration: Imodel is compared to I , and for each feature i the error value EFi is
taken from the corresponding ’feature layer’ at the current feature position (xFi , yFi).

Fig. 2. Templates changing over fitting iterations. Each line is from fitting to one
input image. In the first two examples (upper row), convergence was correct, in the
last two (lower row), the corner of the eye moved to the eyebrow.

1. randomly select two (of the five) features to be perturbed
2. randomly select a displacement direction for each
3. displace feature positions by a fixed distance

In three different test conditions, we used distances of 5%, 12% and 25% of the
vertical distance between eyes and nose. This corresponds to distances of 0.2cm,
0.48cm and 1.0cm in reality on an average sized head. The perturbation ranges
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Fig. 3. Cross correlation results in the ROI, changing over fitting iterations. Dark
pixels indicate good matches. These results correspond to the templates in the first
line of Fig. 2).

Fig. 4. Typical examples of images per person: Each line shows three pictures
of the same individual [23]. Here not the whole pictures, but only the facial regions
(scaled to the same size) are shown.

are visualized as the radii of the circles in the upper row of Fig. 5. The lower row
shows a typical example for each test condition. By using displacement distances
relative to the eye-nose distance in the image, rather than fixed pixel distances,
we were able to use images at different resolutions.

To have an independent criterion for the quality of the reconstructions, we
evaluate recognition rates from model coefficients in an identification task. Given
the linear 3DMM coefficients for shape and texture of the entire face and the
facial regions (eyes, nose, mouth and surrounding area), which are concatenated
into coefficient vectors c, the algorithm finds the individual from the gallery set
with a minimum distance, measured in terms of a cosine criterion d = 〈c1,c2〉

‖c1‖·‖c2‖
(see [1,3]). For each probe image, a comparison with the other two images of
that person and with all three images of all 99 other individuals is performed.

Recognition is tested with the standard 3DMM fitting algorithm ([1], see
Section 3) and with our new SAFL approach for the manually marked feature
positions and each perturbation range. The percentages of correct identification
can be found on the left side of Fig. 7.

Due to the difficult imaging conditions, the overall recognition rate is below
50%. In the unperturbed case, both the standard algorithm and the new self-
adapting feature layers (SAFL) deliver similar results, indicating that SAFL do
not downgrade the system when correct feature positions are given. However,
with perturbed features, the recognition rate for the standard algorithm rapidly
decreases as the displacements get larger. In contrast, SAFL identification rates
remain stable. This demonstrates that SAFL increases the robustness of the
fitting for face recognition.
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Fig. 5. Perturbation ranges and typical examples of perturbed positions: In
the upper row circles mark the perturbation ranges of the three different test conditions,
from left to right: 5%, 12% and 25%. In the lower row green crosses mark manually
labelled feature positions and red crosses mark perturbed positions.

We have also evaluated the distances between the ground truth feature po-
sitions and the optimized positions after fitting. Fig. 6 shows the distribution
of the average 2D distances of the five features in each test image: The vertical
axis is the absolute number of test images (out of a total of 300) where the aver-
age feature distance is below the distance threshold indicated on the horizontal
axis.

If we do not perturb the starting positions of features, most test images have
an average error in final feature positions of 5% to 10% of the vertical distance
between eyes and nose, which corresponds to approximately 2mm to 4mm. The
standard algorithm performs slightly better than SAFL because EM keeps the
features fixed to the ground truth positions during part of the optimization.
It should be noted that the ground truth positions may have some residual
uncertainty, because it is difficult to identify corresponding feature positions
(pixel in the image - vertex on the model) exactly by hand. This may explain
why the benefit of SAFL in this evaluation criterion becomes visible only on a
larger scale of feature distances, i.e. when larger perturbations are applied (Fig. 6,
second diagram). These results are consistent with the face identification rates
on the left of Fig. 7, where we found similar performance for unperturbed initial
features, but a significant improvement for perturbed features.

To demonstrates that SAFL is not restricted to frontal views we did some
additional tests on the FERET database. The setting was chosen like for the
FRGC data. In a rank 1 identification experiment (1 out of 194) we used ba
images as gallery and bb (rotated views with a mean rotation angle φ of 38.9◦,
cf. [1]) as query images also considering perturbation ranges from 0% to 25%.
The percentages of correct identification can be found on the right of Fig. 7.
Compared to [1] the recognition rates of both (standard and SAFL) are lower.
This is due to the fact that in [1] more than the five feature positions are used,
e.g. at the ear and at the contour, which are useful for non-frontal views. But
our goal here is to demonstrate the usefulness of the new algorithm compared
with the standard one.
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Fig. 6. Movement of feature positions: Left diagram: The manually labelled fea-
ture positions (without perturbation) were used for initialization of the reconstruction.
Right diagram: 25% perturbation. x-axis: Average distance between the manually la-
belled positions and the resulting positions after reconstruction for a given test image.
y-axis: Cumulative error distribution (absolute number of images with distance below
threshold, total 300.) Black line: standard 3DMM fitting algorithm, red line: proposed
algorithm SAFL.

To test the new algorithm in a real world scenario we chose the feature de-
tector of [3] to automatically detect the feature positions on the 300 faces taken
from the FRGC database. Performing a rank 1 identification experiment again
the standard algorithm delivers a recognition rate of 29.6̄% and the new algo-
rithm yields a recognition rate of 39.0%. This results are comparable to the
recognition rates of the former experiment with random perturbation of 12%.

To confirm our choice of making the features self-adapting and of using the
image layer approach rather than considering only the position of maximum
feature response, we evaluated some alternative versions of the algorithm:

a. Standard algorithm, but the initial (perturbed) feature positions (which con-
tribute to EM ) are replaced after iteration 1000 by the position of the max-
imum output of template matching (TM). The idea is that a single TM
early in the process would be enough to refine the perturbed feature posi-
tions. The template is created after a coarse estimation of pose, lighting and
appearance.

b. Use self-adapting templates that are adapted every 1000 iterations, but con-
sider only the maximum TM output rather than layers EFi , and use it in
EM instead of the initial features (standard algorithm). This condition tests
whether the layer approach EFi is superior to EM which just pulls features
to the positions of maximum TM output.

c. Compute the cross correlation results only once for each feature, and use
this to get EFi(xFi , yFi) for the rest of the reconstruction algorithm. This
condition verifies the benefit of adaptiveness in the SAFL algorithm.

Table 1 shows the recognition rates of the standard algorithm, the proposed
SAFL and the additional tested versions a,b and c listed above. The results
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Fig. 7. Comparison of recognition rates: measured in terms of correct identifi-
cations (one out of n individuals). The left diagram is for frontal faces of the FRGC
database (n = 100) and the right diagram is for non-frontal faces using images from
the FERET database ba as gallery and bb as query images (n = 194). The accuracy in
the right plot is better than in the left plot because FERET is easier to classify (the
images are from a single session).

Table 1. Recognition rates: percentage of correct identifications for all algorithms
tested on all perturbation ranges

perturbation in % 0 5 12 25
standard 44.6 41.0 31.0 12.3

a 25.0 25.3 25.0 19.6
b 14.0 14.3 11.3 11.3
c 42.0 40.6 39.0 33.0

SAFL 43.3 41.0 41.0 38.3

Table 2. Computation times: in seconds, measured on an IntelR CoreTM 2 Duo
CPU E8300 @ 2.83GHz (single threaded)

facial region std. a b c SAFL
5412px 64 92 103 146 160
10542px 67 120 232 331 456

of the versions (a) and (b) are much lower than all others, indicating that the
cost function EFi performs better than searching for the maximum output of
TM only. The recognition rates of setting (c) come close to the ones of the
SAFL approach, but are still inferior, showing that self adaptation is useful.
We conclude that both main ideas proposed in this paper make a significant
contribution to the stability of 3DMM fitting in a recognition scenario with
partially unreliable initial features.

The computation times for the different approaches according to different
facial region sizes can be found in Tab. 2. When TM is used, computation times
depend critically on the size of the facial region. It would have been worth
considering to perform template matching at a lower image resolution.
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Fig. 8. Reconstruction examples: Each row shows 3DMM fitting for one test im-
age. In the examples in row 1, 2, 3, 4, we used 0%, 5%, 12% and 25% perturbation,
respectively, relative to eye-nose distance. From left to right: positions marked on the
input image, close-ups of the perturbed feature positions (green: manually labelled, red:
perturbed position used), reconstruction with the standard algorithm, reconstruction
with the new SAFL approach.

Fig. 8 shows 4 reconstruction results of frontal views. For lack of space, we
show only one perturbation level per example in this figure in order to give an
idea of what the reconstructions look like but more results can be found in the
supplementary material. In the left column, the feature positions are marked on
the input images with colored crosses: green for manually labelled positions and
red for perturbed positions. The second column shows close-ups of the features
randomly chosen for perturbation. In the first row, the manually labelled fea-
ture positions were used. Here the SAFL approach got into a local minimum,
moving the eyes to the eyebrow positions. In the second row, two randomly cho-
sen feature positions were perturbed 5%. Here the perturbation is quite small,
but SAFL outperforms the standard algorithm in reconstruction. In the third
row, two randomly chosen feature positions were perturbed 12%. Here it can be
seen how much the perturbed feature positions influence the standard algorithm.
The reconstruction using SAFL is plausible. In the fourth row, two randomly
chosen feature positions were perturbed 25%. We would like to add that both
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Fig. 9. Reconstruction examples of rotated views: Examples were chosen ran-
domly out of the reconstruction results with a perturbation range of 12%. Each pair
of images shows reconstructions using the standard algorithm (left) and SAFL (right).

algorithms may produce suboptimal results occasionally, and we selected four
typical examples here.

Results of non-frontal views are shown in Fig. 9. We show only this randomly
chosen examples with a perturbation range of 12% in this figure in order to give
an idea of what the reconstructions look like but more results can also be found
in the supplementary material. At the upper line the SAFL approach improved
the reconstruction. On the left side it is obvious but on the right side it can only
be seen at the forehead and at the chin. At the lower line the SAFL approach
does not really improve the reconstruction. On the left side the model fits better
to the image (it is rotated) but it is still too small and on the right side it fits
better at the forehead and at the ear but chin and nose are deformed.

6 Conclusion

We have presented a new approach for using feature detectors in 3DMM fit-
ting. The algorithm involves adaptive features, which is crucial to leverage the
advantages of 3DMMs, and it is based on a new type of cost function that
forms a tradeoff between feature similarity and some more global criteria such
as geometric configuration, correct reproduction of color values and high prior
probability.

The evaluation is based on a scenario where the 3DMM fitting is initialized
by a set of potentially unreliable feature detectors, and the algorithm iteratively
refines the feature positions. The results indicate that the proposed algorithm
improves recognition rates significantly. The second part of our evaluation is
focused on the contributions of different design options in our algorithm, and
it demonstrates that both the adaptiveness and the new type of cost function
increase the robustness.
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Abstract. This paper addresses the question of computationally inex-
pensive yet discriminative and robust feature sets for real-world face
recognition. The proposed descriptor named Patterns of Oriented Edge
Magnitudes (POEM) has desirable properties: POEM (1) is an oriented,
spatial multi-resolution descriptor capturing rich information about the
original image; (2) is a multi-scale self-similarity based structure that re-
sults in robustness to exterior variations; and (3) is of low complexity and
is therefore practical for real-time applications. Briefly speaking, for ev-
ery pixel, the POEM feature is built by applying a self-similarity based
structure on oriented magnitudes, calculated by accumulating a local
histogram of gradient orientations over all pixels of image cells, centered
on the considered pixel. The robustness and discriminative power of the
POEM descriptor is evaluated for face recognition on both constrained
(FERET) and unconstrained (LFW) datasets. Experimental results show
that our algorithm achieves better performance than the state-of-the-art
representations. More impressively, the computational cost of extracting
the POEM descriptor is so low that it runs around 20 times faster than
just the first step of the methods based upon Gabor filters. Moreover, its
data storage requirements are 13 and 27 times smaller than those of the
LGBP (Local Gabor Binary Patterns) and HGPP (Histogram of Gabor
Phase Patterns) descriptors respectively.

1 Introduction

Good pattern representation is one of key issues for all pattern recognition sys-
tems. In face recognition, a good representation is one which minimizes intra-
person dissimilarities whilst enlarging the margin between different people. This
is a critical issue, as variations of pose, illumination, age and expression can
be larger than variations of identity in the original face images. For real-world
face recognition systems we also believe that a good representation should be
both fast and compact: if one is testing a probe face against a large database
of desirable (or undesirable) target faces, the extraction and storage of the face
representation has to be fast enough for any results to be delivered to the end
user in good time. In this paper, we propose a novel feature descriptor named
Patterns of Oriented Edge Magnitudes (POEM) for robust face recognition, a
descriptor which we argue satisfies these criteria. Experimental results on both

K. Daniilidis, P. Maragos, N. Paragios (Eds.): ECCV 2010, Part I, LNCS 6311, pp. 313–326, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



314 N-.S. Vu and A. Caplier

FERET and LFW databases show that POEM method achieves comparable and
better performance when compared with state-of-the-art representations. More
impressively, the runtime required to extract our descriptor is around 20 times
faster than that of even the first step of methods based upon Gabor filters.

We briefly discuss related work in Section 2, describe our method in Section
3. Section 4 details the use of POEM for face recognition. Experimental results
are presented in Section 5 and conclusions are given in Section 6.

2 Related Work

There is an extensive literature on local descriptors and face recognition. We refer
readers to [1, 2] for an in-depth survey, and describe here those high-performing
algorithms which are most relevant to our work [3–8].

Local descriptors [1, 7, 9] are commonly employed for many real-world ap-
plications because they can be computed efficiently, are resistant to partial oc-
clusion, and are relatively insensitive to changes in viewpoint. Mikolajczyk and
Schmid [1] recently evaluated a variety of local descriptors and identified the
SIFT (Scale-invariant feature transform) [9] algorithm as being the most resis-
tant to common image deformations. As a dense version of the dominating SIFT
feature, HOG [6] has shown great success in object detection and recognition
[6, 10] although has not seen much use in face recognition.

For the specific problem of face recognition, there are also many represen-
tational approaches, including subspace based holistic features and local ap-
pearance features. Heisele et al. [11] compared local and global approaches and
observed that local systems outperformed global systems for recognition rates
larger than 60%. Due to increasing interest, in recent surveys stand-alone sec-
tions have been specifically devoted to local methods.

Two of the most successful local face representations are Gabor features
[3, 4, 8, 12–15] and Local Binary Patterns (LBP) [5, 13, 16, 17]. Gabor filters,
which are spatially localized and selective to spatial orientations and scales, are
comparable to the receptive fields of simple cells in the mammalian visual cor-
tex [8]. Due to their robustness to local distortions, Gabor features have been
successfully applied to face recognition. Both the FERET evaluation and the
FVC2004 contests have seen top performance from Gabor feature based meth-
ods. Recently, Pinto et al. [14, 15] use V1-like and V1-like+, the Gabor filter
based features, as face representation and report good recognition performance
on the unconstrained LFW set. Gabor features are typically calculated by con-
volving images with a family of Gabor kernels at different scales and orientations,
which is a costly stage. Despite recent attempts at speeding this process up (e.g.
the Simplified Gabor Wavelets of Choi et al. [18]) the process of extracting these
features is still prohibitive for real-time applications.

More recently, the spatial histogram model of LBP has been proposed to
represent visual objects, and successfully applied to texture analysis [19], and
face recognition [5]. LBP is basically a fine-scale descriptor that captures small
texture details, in contrast to Gabor features which encode facial shape and
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appearance over a range of coarser scales. By using LBP, Ahonen et al. [5] have
reported impressive results on the FERET database. Several variants of LBP are
also presented and successfully applied to different applications, such as Center-
Symmetric LBP (CSLBP) [20], Three-Patch LBP (TPLBP), Four-Patch LBP
(FPLBP) [16], etc.

A combination approach was introduced by Zhang et al. [3] extending LBP to
LGBP by introducing multi-orientation and multi-scale Gabor filtering before
using LBP and impressively improved the performance when compared with
pure LBP. In a similar vein, they further proposed HGPP [4] combining the
spatial histogram and the Gabor phase information encoding scheme. In [13], a
model fusing the multiple descriptor sets is presented with very high performance
on constrained datasets. More recently, Wolf et al. [17] combine LBP, TPLBP,
FPLBP, Gabor and SIFT with different similarity measures, showing promissing
results on the LFW set.

These combination methods try to bring the advantages of LBP and Gabor
filters together, but they also bring the disadvantages of Gabor based systems;
namely computational cost and storage requirements.

Fig. 1. Main steps of POEM feature extraction

The aim of this study is to find a feature descriptor that can inherit various
good properties from existing features but with low computational cost. We pro-
pose applying the LBP based structure on oriented magnitudes to build a novel
descriptor: Patterns of Oriented Edge Magnitudes (POEM). Briefly speaking, in
order to calculate the POEM for one pixel, the intensity values in the calcula-
tion of the traditional LBP are replaced by the gradient magnitudes, calculated
by accumulating a local histogram of gradient directions over all pixels of a
spatial patch (“cell”). Additionally, these calculations are done across different
orientations. We use the terms cell and block, as in [6], but with a slightly dif-
ferent meaning. Cells (big squares in Figure 1a) refer to spatial regions around
the current pixel where a histogram of orientation is accumulated and assigned
to the cell central pixel. Blocks (circular in Figure 1c) refer to more extended
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spatial regions, on which the LBP operator is applied. Note that our use of
oriented magnitudes is also different from that in [6] where HOG is computed
in dense grids and then is used as the representation of cell. On the contrary,
in POEM, for each pixel, a local histogram of gradient over all pixels of cell,
centered on the considered pixel, is used as the representation of that pixel.
Similarly, the term pattern in POEM is not as local as in the conventional LBP
based methods. LBP methods often calculate the self-similarity within a small
neighborhood while the block used in POEM is rather extended (see details in
sections 3.2 and 5.1).

In combination approach [3], Gabor filters are first used for capturing large
scale information and LBP operator is then applied for encoding the small de-
tails. On the contrary, POEM first characterizes object details in small scale and
then uses the LBP based structure to encode information over larger region.

3 POEM Descriptor

Similar features have seen increasing use over the past decade [6, 7, 9]; the fun-
damental idea being to characterize the local object appearance and shape by
the distribution of local intensity gradients or edge directions. We further apply
the idea of self-similarity calculation from LBP-based structure on these distri-
butions since we find that combining both the edge/local shape information and
the relation between the information in neighboring cells can better character-
ize object appearance. As can be seen in Figure 1, once the gradient image is
computed, the next two steps are assigning the cell’s accumulated magnitudes
to its central pixel, and then calculating the block self-similarities based on the
accumulated gradient magnitudes by applying the LBP operator.

3.1 POEM Feature Extraction in Detail

The first step in extracting the POEM feature is the computation of the gradient
image. The gradient orientation of each pixel is then evenly discretized over
0-π (unsigned representation) or 0-2π (signed representation). Thus, at each
pixel, the gradient is a 2D vector with its original magnitude and its discretized
direction (the blue continuous arrow emitting from pixel p in Figure 1a).

The second step is to incorporate gradient information from neighbouring pix-
els (the discontinuous arrows in Figure 1a) by computing a local histogram of
gradient orientations over all cell pixels. Vote weights can either be the gradient
magnitude itself, or some function of the magnitude: we use the gradient mag-
nitude at the pixel, as in [6]. At each pixel, the feature is now a vector of m
values where m is the number of discretized orientations (number of bins).

Finally, we encode the accumulated magnitudes using the LBP operator within
a block. The original LBP operator labels the pixels of an image by thresholding
the 3× 3 neighborhood surrounding the pixel with the intensity value of central
pixel, and considering the sequence of 8 result bits as a number (as shown in
Figure 2). Only uniform patterns, which are those binary patterns that have at
most 2 transitions from 0 to 1, are typically used to accelerate the method.
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Fig. 2. LBP operator

We apply this procedure on the accumulated gradient magnitudes and across
different directions to build the POEM. Firstly, at the pixel position p, a POEM
feature is calculated for each discretized direction θi:

POEMθi

L,w,n(p) =
n∑

j=1

f(S(Iθi
p , Iθi

cj
))2j , (1)

where Ip, Icj are the accumulated gradient magnitudes of central and surround-
ing pixels p, cj respectively; S(., .) is the similarity function (e.g. the difference
of two gradient magnitudes); L, w refer to the size of blocks and cells, respec-
tively; n, set to 8 by default in this paper, is number of pixels surrounding the
considered pixel p; and f is defined as:

f(x) =
{

1 if x ≥ τ,
0 if x < τ,

(2)

where the value τ is slightly larger than zero to provide some stability in uniform
regions, similar to [16].

The final POEM feature set at each pixel is the concatenation of these unidi-
rectional POEMs at each of our m orientations:

POEML,w,n(p) = {POEMθ1 , ..., POEMθm}, (3)

3.2 Properties of POEM

We discuss here the good properties of this novel descriptor for object represen-
tation postponing the question of complexity until Section 5.4. For each pixel,
POEM characterizes not only local object appearance and shape, but also the re-
lationships between this information in neighboring regions. It has the following
properties:

– POEM is an oriented feature. Since the number of discretized directions
can be varied, POEM has the ability to capture image information in any
direction and is adaptable for object representation with different levels of
orientation accuracy.

– Computed at different scales of cells and blocks, POEM is also a spatial
multi-resolution feature. This enables it to capture both local information
and more global structure.

– Using gradient magnitudes instead of the pixel intensity values for the con-
struction makes POEM robust to lighting variance. In [21, 22], edge magni-
tudes have been shown to be largely insensitive to lighting.
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Fig. 3. Implementation of POEM for face description

– The oriented magnitude based representation contains itself the relation be-
tween cell pixels. POEM further calculates dissimilarities between cells and
therefore has the ability to capture multi-scale self-similarities between im-
age regions. This makes POEM robust to exterior variations, such as local
image transformations due to variations of pose, lighting, expression and
occlusion that we frequently find when dealing with faces.

Patch-based or multi-block LBP [16] also considers relationships between regions
in a similar way to our POEM descriptor. However the richer information coming
from the use of gradients at multiple orientations gives us greater descriptive
power, and a greater insensitivity to lighting variations.

4 Face Recognition Based on POEM

For face recognition, we use a similar procedure to that described in [5], except
that each pixel is characterized with the POEM features instead of a LBP code
(cf., Figure 3).

POEM Histogram Sequences for Face Recognition

In practice, the Oriented Edge Magnitude Image (oriented EMI) is first calcu-
lated from the original input image (section 3.1) and divided into m uni-oriented
EMIs through gradient orientations of pixels. Note that the pixel value in uni-
oriented EMIs is gradient magnitude. For every pixel on uni-oriented EMIs, its
value is then replaced by the sum of all values in the cell, centered on the cur-
rent pixel. These calculations are very fast (using the advantage of integral image
[23]). Result images are referred to accumulated EMIs (AEMIs). LBP operators
are applied on these AEMIs to obtain the POEM images (Figure 3). In order
to incorporate more spatial information into the final descriptor, the POEM im-
ages are spatially divided into multiple non-overlapping regions, and histograms
are extracted from each region. Similar to [5, 16], only uniform POEM codes
are used. Finally, all the histograms estimated from all regions of all POEMs
are concatenated into a single histogram sequence (POEM-HS) to represent the
given face.

Given two histogram sequences of POEM representing two face images, we
use the chi-square distance between histograms [5] to measure the similarity
between two images.
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5 Experiments and Discussions

In this section, we conduct comparison experiments on two face databases,
FERET (controlled variations) [24] and LFW (unconstrained environments) [25],
in order to validate the efficiency of the proposed descriptor for face recognition.

5.1 Parameter Evaluation

In this section we consider how the parameters of POEM influence its final
performance. Parameters varied include the number m and type (unsigned or
signed) of orientations, the cell size (w ∗ w), and block size (L ∗ L). As for the
cell/block geometry, two main geometries exist: rectangular and circular. In this
paper we use circular blocks including bilinear interpolation for the values since
they provide the relation between equidistant neighboring cells [5]. Square cells
are used, meaning that pixel information is calculated using its neighborhood in
a square patch.

The experiments checking the effects of parameters are conducted on the
FERET face database, following the standard evaluation protocol: Fa containing
1196 frontal images of 1196 subjects is used as Gallery, while Fb (1195 images of
expression variations), Fc (194 images of illumination variations), Dup I & Dup
II(722 & 234 images taken later in time) are the Probe sets.

The facial images of FERET are first cropped and aligned using the given
coordinates of two eyes. We roughly fixe the width and height of face about two
times of distance between the centers of the two eyes, and then resize image to
110x110 pixels (cf., the first image in Figure 3). We do not use any other par-
ticular face mask, such as in [5] for example. In our experiments, we divide each
image into 10x10 non overlapping patches. Since this paper concentrates on the
feature sets, we use a simple nearest neighbor classifier to calculate the recogni-
tion rates and consider classifier choice beyond the scope of the current paper.
But we believe that better classifier could enhance recognition performance.

Experiment 1, concerning the number of orientations and signed/
unsigned representation. Nearly six hundred cases are considered, recog-
nition rates are calculated on 3000+ face images with different parameters:
L = {5, 6, 7, 8, 9, 10, 11}, w = {3, 4, 5, 6, 7, 8}, the numbers of discretized ori-
entations are m = {2, 3, 4, 5, 6, 7} in the case of unsigned representation, and are
doubled to m = {4, 6, 8, 10, 12, 14} in the case of signed representation. Cells can
overlap, notably when blocks are smaller than cells, meaning that each pixel can
contribute more than once.

For each Probe set, the average rates are calculated over different numbers and
types of orientation. Figure 4 shows the recognition rates obtained on Probe sets
Fb, Fc, Dup1, and Dup2. The average recognition rates obtained on Probe set
Fb (as shown in the Figure 4 a) are arround 96.5%, representing an improvement
of about 3.5% in comparison with LBP [5].

Considering the question of using a signed or an unsigned representation,
we find similar results to [6], in that including signed gradients decreases the
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Fig. 4. Recognition rates obtained with different numbers of orientations on Probe
sets: Fb (a), Fc (b), Dup1 (c), and Dup2 (d). These rates are calculated by averaging
recognition rates with different sizes of cell/block.

performance of POEM even when the data dimension is doubled to preserve more
original orientation resolution. For face recognition, POEM provides the best
performance with only 3 unsigned bins. This should be noted as one advantage
of POEM since the data dimension for face description is not greatly increased
as in LGBP or HGPP [3, 4]. It is clear from Figure 4 (c,d) that using too many
orientations degrades significantly the recognition rates on Dup1 and Dup2 sets.
This can be explained by the fact that increasing the number of orientation bins
makes POEM more sensitive to wrinkles appearing in face with time.

Summarizing, the number m and signed/unsigned orientations do not affect
the recognition performance in the case of expression variations (Fb set); the
unsigned representation is more robust than signed representation, notably to
lighting; using few orientations (1, 2) is not enough to represent face information
but too many (more than 3) makes POEM sensitive to aging variations. Thus,
the best case is 3 unsigned bins.

Experiment 2, concerning the size of cells and blocks. Average recogni-
tion rates of all four Probe sets are first calculated with different sizes of cells
and blocks with 3 unsigned bins of orientation discretization. As can be seen
from Figure 5, using POEM built on 10x10 pixel blocks with histogram of 7x7
pixel cells provides the best performance.

To verify the correctness of these parameters, we further calculate the average
rates across cell sizes and across block sizes, meaning that these parameters are now
considered independent. Also, in this test, both 10x10 pixel block and 7x7 pixel cell
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Fig. 5. Recognition rates as the cell and block sizes change

performed the best. This procedure has been repeated with different numbers of
orientation bins, and the same optimal parameters have been obtained.

In conclusion, the optimal POEM parameters for face recognition are: unsigned
representation with 3 bins, built on 10x10 pixel blocks and 7x7 pixel cells.

5.2 Results Based Upon the FERET Evaluation Protocol

We consider the FERET’97 results [24], results of the LBP [5], HGPP [4],
LGBPHS [3], and more recent results in [12, 13, 26]. These results, to the best
of our knowledge, are the state-of-the-art with respect to the FERET dataset.

As can be seen from Table 1, in comparison with the conventional LBP and
HOG (the perfomance of HOG for face recognition is reported in [26]), our
POEM descriptor is much more robust to lighting, expression & aging, illus-
trated by significant improvements in recognition rates for all probe sets. While
compared with LGBP and HGPP, reported as being the best performing de-
scriptors on FERET database, POEM provides comparable performance for the
probe sets Fb and Fc. When we consider the more challenging probe sets Dup1
and Dup2, POEM outperforms LGBP and is comparable to HGPP.

Concerning the results of [12, 13], they are only suitable for very limited
reference since they are obtained by using a more complex classification phase,
and we wish to concentrate upon the performance of the descriptor rather than
the classifiers. In [12], Zou et al. use Gabor jets as local facial features which
are compared using normalized inner products at different scales, and results
are combined using the Borda Count method. Moreover, Zou et al. do not use
only the pure face area, as defined in [27]. In [13], Tan and Triggs fuse two
feature sets, Gabor & LBP, and use a complex dimensionality reduction and
classification phase, PCA & Kernel DCV. Their method suffers from the dis-
advantage that adding a new individual to the gallery requires recalculating all
existing coefficients: PCA coefficients of Gabor & LBP features, and the KDCV
coefficients of the fused features.
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Table 1. Recognition rate comparisons with other state-of-the-art results tested with
Feret evaluation protocol

Methods Fb Fc Dup1 Dup2
LBP [5] 93.0 51.0 61.0 50.0
LGBPHS [3] 94.0 97.0 68.0 53.0
HGPP [4] 97.6 98.9 77.7 76.1
HOG [26] 90.0 74.0 54.0 46.6
POEM 97.6 96 77.8 76.5
Retina filter [28] + POEM 98.1 99 79.6 79.1

Results of [12] 99.5 99.5 85 79.5
Results of [13] 98 98 90 85

We further employ the real-time retina filtering presented by Vu and Caplier
in [28] as preprocessing step since this algorithm, as pointed out by authors,
not only removes the illumination variations but also enhances the image edges,
upon which our POEM is constructed. It is clear from Table 1 that the retina
filter enhances the performance of POEM, especially for the probe set Fc.

5.3 Results on LFW Dataset

In order to test the performance of the POEM descriptor across different
databases, we duplicate these experiments on another well-known dataset, LFW
[25], containing 13233 face images of 5749 individuals. This database is described
as “unconstrained”, meaning that face images are subject to a large range of
“natural” variations. The operational goal of this set differs from above FERET
database; it is aimed at studying the problem of face pair matching (given two
face images, decide whether they are from the same person or not). We follow
the standard procedure described in [25] and report the mean classification ac-
curacy ± standard error computed from 10 folds of the “Image-Restricted View
2” portion of LFW set.

Fig. 6. Examples of LFW images used in our tests

As mentioned above, the goal of the current paper is to demonstrate the effi-
ciency of the novel descriptor, not to compete in the LFW challenge. We therefore
report the obtained results using POEM descriptor in a simple threshold-on-
descriptor-distance classification context [16], meaning that for each test fold,
an optimal threshold giving the highest separation score on the 5400 examples
of the training set is chosen and then is used to calculate the classification accu-
racy for the 600 examples of the test set. We only compare our results with other
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Table 2. Recognition results of differents methods on LFW set, Image-Restricted
Training, View 2

Reference Descriptors (similarity measure) Performance

Pinto2008 [14]
V1-like 0.6421 ± 0.0069
V1-like+ 0.6808 ± 0.0045

Wolf2009 [17]

LBP Euclidean/SQRT 0.6824/0.6790
Gabor Euclidean/SQRT 0.6849/0.6841
TPLBP Euclidean/SQRT 0.6926/0.6897
FPLBP Euclidean/SQRT 0.6818/0.6746
SIFT Euclidean/SQRT 0.6912/0.6986
All combined 0.7521 ± 0.0055

This paper
POEM 0.7400 ± 0.0062
POEM Flip 0.7542 ± 0.0071

descriptor-based results and refer readers to [29] for further algorithm classifiers
reported on the LFW dataset.

In our experiments, the LFW gray images aligned automatically by Wolf et
al. [17] are used and cropped to 100 x 116 pixels around their center. As is
clear from the Figure 6, there is significant pose variation within this dataset.
In order to address this we flip image 1 of each pair on the vertical axis, and
take the smaller of the two histogram distances as our measure. This simple pre-
processing step improves recognition rates and is refered to as POEM-Flip in
following results. Because of the poor quality of the images in the LFW dataset,
retina filtering does not improve the recognition results. With low quality images,
the retina filter enhances the image contours and removes illumination variations
but also enhances image artifacts (such as those arising from compression). The
similar performance is obtained in both cases that the retina filter is used or not.
Otherwise, we do not employ any other preprocessing technique.

It is clear from Table 2 that POEM method outperforms all other competing
descriptors: LBP, TPLBP, FPLBP, Gabor filters and SIFT. When compared
with these descriptors, the POEM based method represents around 20% reduc-
tion in classification error. Our POEM-flip mean recognition rate 75.42% is bet-
ter than that of the “combined” method of [17]. It is worth noting that Wolf et
al. [17] combine 10 descriptor/mode scores using SVM classification. The results
in [14], based upon Gabor filters, are much worse than ours.

5.4 A Consideration of Computational Cost

In this section we compare the complexity of POEM with two of the most widely
used descriptors for face recognition: LBP and Gabor wavelet based methods.
Considering the pure one-LBP-operator method, POEM based face recognition
requires a computational complexity which is 3 times higher (the calculation of
integral gradient image is very fast when compared to the calculation of POEM
features and the construction of POEM-HS) but at the same time, there are
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Table 3. Runtime required to extract the whole POEM descriptor and the initial step
of Gabor based feature extraction. Calculated using the implementation in Matlab,
these times are only suitable for rough comparisons of computational complexity.

Methods Times (seconds)
Convolution with 40 Gabor kernels 0.4349
POEM extraction 0.0191

remarkable improvements in recognition rates on the FERET database (+5%,
+45%, +16.6% and +26.5% for the probe sets Fb, Fc, Dup1 and Dup2, respec-
tively). And on the LFW set, POEM method also outperforms other variants of
LBP, TPLBP and FPLBP.

When we consider Gabor filter based descriptors, only the runtime required
for the convolution of the image with the family of Gabor kernels (8 orientations
and 5 scales) is necessary. From Table 3, we see that the computation of the
whole POEM descriptor is about 23 times faster than that of just this first step
of Gabor feature extraction.

We do not calculate here the time required to extract SIFT descriptor and do
not compare directly it to POEM, but as argued in [20], SIFT is about 3 times
slower than 3×3 grid Center-Symmetric LBP (CSLBP), a variant of LBP (3×3
grid CSLBP means that the descriptor is obtained concatenating the histogram
of CSLBP features over grid of 3 × 3). Thus it seems that POEM and SIFT
have the similar time complexity. However, for face recognition, POEM clearly
ourperforms SIFT, representing about 20% reduction in classification error on
LFW set. Retina filtering is a linear and real-time algorithm. Its calculation time
is about 1/5 of that required to extract POEM.

Considering data storage requirements, for a single face, the size of a complete
set of POEM descriptors is 13 and 27 times smaller than that of LGBP and
HGPP (LGBP calculates LBP on 40 convolved images while HGPP encodes
both real and imaginary images). Note that these comparisons are roughly done
considering all 256 patterns of our POEM features. However, in this paper, we
use only 59 uniform POEMs, meaning that the size of POEM descriptors used
here is 58 and 116 times smaller that of LGBP and HGPP (these ones use
all 256 feature values). When compared to the “combined” method of Wolf et
al. [17], the space complexity of POEM descriptor is considerably smaller. For
one patch, the size of POEM-HS is 59 × 3, while the size of method in [17] is
59 × 2 + 16 (the size of LBP, TPLBP, and FPLBP per patch are 59, 59 & 16,
respectively) + 128 (dimension of SIFT) + size of Gabor based descriptor (which
is equal to the size of patch × number of scales × number of orientations as in
[17, 26]).

Thus we agrue that the POEM descriptor is the first to allow high performance
real-time face recognition. Low complexity descriptors provide worse results;
whilst representations based upon multiple feature types can achieve similarly
high performance but are too slow for real-time systems.
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6 Conclusion

By applying the LBP operator on accumulated edge magnitudes across different
directions, we have developed a novel descriptor for face representation which has
several desirable features. It is robust to lighting, pose and expression variations,
and is fast to compute when compared to many of the competing descriptors. We
have shown that it is an effective representation for face recognition in both con-
strained (FERET) and unconstrained (LFW) face recognition tasks outperform-
ing all other purely descriptor based methods. This high performance coupled
with the speed of extraction suggests that this descriptor is a good candidate
for use in real-world face recognition systems.

Future work will involve testing the POEM descriptor in a broader range of
computer vision tasks, such as face detection and object recognition. We will also
investigate the use of more powerful classifiers alongside the POEM descriptor
within the face recognition domain.

References

1. Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. IEEE
TPAMI 27, 1615–1630 (2005)

2. Zhao, W., Chellappa, R., Corporation, S., Rosenfeld, A., Phillips, P.J.: Face recog-
nition: A literature survey. ACM Computing Surveys (2000)

3. Zhang, W., Shan, S., Gao, W., Chen, X., Zhang, H.: Local gabor binary pattern
histogram sequence (lgbphs): a novel non-statistical model for face representation
and recognition. In: ICCV, vol. 1, pp. 786–791 (2005)

4. Zhang, B., Shan, S.S., Chen, X.: Gao: Histogram of gabor phase patterns (hgpp):
A novel object representation approach for face recognition. IEEE Trans. on Image
Processing 16, 57–68 (2007)

5. Ahonen, T., Hadid, A., Pietikainen, M.: Face recognition with local binary patterns.
In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3021, pp. 469–481.
Springer, Heidelberg (2004)

6. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In:
CVPR, Washington, DC, USA, pp. 886–893. IEEE Computer Society, Los Alamitos
(2005)

7. Ke, Y., Sukthankar, R.: Pca-sift: A more distinctive representation for local image
descriptors. In: CVPR (2004)

8. Liu, C., Wechsler, H.: Gabor feature based classification using the enhanced fisher
linear discriminant model for face recognition. IEEE Trans. on Image Processing 11,
467–476 (2002)

9. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. Journal
of Computer Vision 60, 91–110 (2004)

10. Felzenszwalb, P., McAllester, D., Ramanan, D.: A discriminatively trained, multi-
scale, deformable part model (2008)

11. Heisele, B., Ho, P., Wu, J., Poggio, T.: Face recognition: component-based versus
global approaches. Computer Vision and Image Understanding 91, 6–21 (2003)

12. Zou, J., Ji, Q., Nagy, G.: A comparative study of local matching approach for face
recognition. IEEE Trans. on Image Processing 16(10), 2617–2628 (2007)



326 N-.S. Vu and A. Caplier

13. Tan, X., Triggs, B.: Fusing gabor and lbp feature sets for kernel-based face recog-
nition. In: Zhou, S.K., Zhao, W., Tang, X., Gong, S. (eds.) AMFG 2007. LNCS,
vol. 4778, pp. 235–249. Springer, Heidelberg (2007)

14. Pinto, N., DiCarlo, J., Cox, D.: Establishing good benchmarks and baselines for
face recognition. In: Faces in Real-Life Images Workshop in ECCV (2008)

15. Pinto, N., DiCarlo, J., Cox, D.: How far can you get a modern face recognition
test set using only simple features? In: CVPR (2009)

16. Wolf, L., Hassner, T., Taigman, Y.: Descriptor based methods in the wild. In:
Real-Life Images workshop at ECCV (2008)

17. Wolf, L., Hassner, T., Taigman, Y.: Similarity scores based on background samples.
In: ACCV (2009)

18. Choi, W., Tse, S., Wong, K., Lam, K.: Simplified gabor wavelets for human face
recognition. Pattern Recognition 41, 1186–1199 (2008)

19. Ojala, T., Pietikainen, M., Maenpaa, T.: Multiresolution gray-scale and rotation
invariant texture classification with local binary patterns. IEEE TPAMI 24, 971–
987 (2002)

20. Heikkila, M., Pietikainen, M., Schmid, C.: Description of interest regions with local
binary patterns. Pattern Recognition 42, 432–436 (2009)

21. Chen, H.F., Belhumeur, P.N., Jacobs, D.W.: In: search of illumination invariants.
In: CVPR (2000)

22. Ling, H., Soatto, S., Ramanathan, N., Jacobs, D.: A study of face recognition as
people age. In: ICCV (2007)

23. Viola, P., Jones, M.: Robust real-time face detection. Int. Journal of Computer
Vision 57, 137–154 (2004)

24. Phillips, J., Moon, H., Rizvi, S.A., et al.: The feret evaluation methodology for
face-recognition algorithms. IEEE TPAMI 22, 1090–1104 (2000)

25. Huang, G.B., Manu Ramesh, T.B., Learned-Miller, E.: Labeled faces in the wild:
A database for studying face recognition in unconstrained environments. Technical
report, University of Massachusetts, Amherst (2007)

26. Meyers, E., Wolf, L.: Using biologically inspired features for face processing. Int.
Journal of Computer Vision 76, 93–104 (2008)

27. Chen, L., Liao, H., Lin, J., Han, C.: Why recognition in a statistics-based face recog-
nition system should be based on the pure face portion: a probabilistic decision-
based proof. Pattern Recognition 34(5), 1393–1403 (2001)

28. Vu, N., Caplier, A.: Illumination-robust face recognition using the retina modelling.
In: ICIP (2009)

29. LFWresults: http://vis-www.cs.umass.edu/lfw/results.html

http://vis-www.cs.umass.edu/lfw/results.html


Spatial-Temporal Granularity-Tunable Gradients
Partition (STGGP) Descriptors for Human

Detection

Yazhou Liu, Shiguang Shan, Xilin Chen, Janne Heikkila,
Wen Gao, and Matti Pietikainen

Key Laboratory of Intelligent Information Processing, Institute of Computing
Technology

Chinese Academy of Sciences (CAS), China
Machine Vision Group, Department of Electrical and Information Engineering

University of Oulu, Finland
{yzliu,sgshan,xlchen,wgao}@jdl.ac.cn

{Janne.Heikkila,Matti.Pietikainen}@ee.oulu.fi

Abstract. This paper presents a novel descriptor for human detec-
tion in video sequence. It is referred to as spatial-temporal granularity
-tunable gradients partition (STGGP), which is an extension of
granularity-tunable gradients partition (GGP) from the still image do-
main to the spatial-temporal domain. Specifically, the moving human
body is considered as a 3-dimensional entity in the spatial-temporal do-
main. Then in 3D Hough space, we define the generalized plane as a
primitive to parse the structure of this 3D entity. The advantage of the
generalized plane is that it can tolerate imperfect planes with certain
level of uncertainty in rotation and translation. The robustness to the
uncertainty is controlled quantitatively by the granularity parameters
defined explicitly in the generalized plane. This property endows the
STGGP descriptors versatile ability to represent both the deterministic
structures and the statistical summarizations of the object. Moreover, the
STGGP descriptor encodes much heterogeneous information such as the
gradients’ strength, position, and distribution, as well as their temporal
motion to enrich its representation ability. We evaluate the STGGP on
human detection in sequence on the public datasets and very promising
results have been achieved.

1 Introduction

Human detection research has received more and more attention in recent years
because of increasing demands in practical applications, such as smart surveil-
lance system, on-board driving assistance system and content based image/video
management system. Even through remarkable progress has been achieved
[1,2,3,4,5,6,7], finding the human is still considered as one of the hardest task for
object detection. The difficulties come from the articulation of human body, the
inconsistency of clothes, the variation of the illumination and the unpredictabil-
ity of the occlusion.
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Human detection from the still images has been one of the most active re-
search fields during the recent years. Varieties of features have been invented
to overcome the difficulties mentioned above. Earlier works for human detec-
tion started from Haar-like features, which have been applied to face detection
task successfully [8,9,10]. Because of the large variation of human clothes and
background, some researchers turned to the contour based descriptors. Gavrila
[11] presented a contour based hierarchical chamfer matching detector. Lin et al.
[12,13] extended this work by decomposing the global shape models into parts
to construct a parts template based hierarchical tree. Ferrari el al. [14] used
the network of contour segments to represent the shape of the object. Wu and
Nevatia [15] used edgelet to represent the local silhouette of the human.

After the invention of the SIFT descriptor[16], more researchers have used
the statistical summarization of the gradients to represent human body. Such as
the position-orientation histogram features proposed by Mikolajczyk et al. [17];
the histograms of oriented gradients (HOG) proposed by Dalal et al. [18,19]
and it’s improvements [20]; the covariance matrix descriptor proposed by Tuzel
et al. [21]; and the HOG-LBP descriptor proposed by Wang et el. [2]. More
recently, granularity-tunable gradients partition (GGP) for human detection was
proposed by Liu et al. [22], in which granularity is used to define the spatial
and angular uncertainty of the line segments in the Hough space. By adjusting
the granularity, GGP provides a container of descriptors from deterministic to
statistic.

Even with these powerful representation methods, the appearance of human
body is still not discriminative enough, especially in some complex environments.
Therefore, some works use the motion information to improve the performance
of human detection. As mentioned in [23], certain kinds of movement are char-
acteristics of humans, so detector performance can potentially be improved by
including motion information. Viola et al. [24] used the Haar-like filters to ex-
tract the appearance from the single image and extract the motion information
from the consecutive frames. By including the motion information, they can
improve the performance of their system remarkably. Dalal et al. [23] used ori-
entated histograms of differential optical flow to capture the motion information
of the human, and then they combined the motion descriptors with histogram of
oriented gradient appearance descriptors. The combined detector can reduce the
false alarm rate by a factor of 10. Similar improvements have also been reported
by Wojek et al. in their resent work [25].

These works show that incorporating the motion and appearance information
is a promising way to improve the performance of human detection. Therefore,
this work extends the granularity-tunable gradients partition (GGP) [22] from
the image domain to the spatial-temporal domain. This new descriptor is referred
to as spatial-temporal granularity-tunable gradients partition, or STGGP for
short. In STGGP, human and their motions are modeled in the joint spatial-
temporal domain. The spatial-temporal volume representations has been widely
used in the action recognition research, as in [26,27,28], and very promising
results have been reported. But for human detection research, most of the well-
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Fig. 1. The spatial-temporal representation of human body

known methods, such as[24,23,25], model the human appearance and motion
information as two separate channels. This work considers the moving human
body as a 3-dimensional entity in the spatial-temporal domain. Then we use the
generalized planes to parse the structure of this 3D entity.

The generalized planes are defined in the Hough space, which extend the rep-
resentation of the plane from a point to a cuboid region. The size of the cuboid
region is related to a certain level of robustness to rotation and translation uncer-
tainty. Therefore, by changing the size of the cuboid region, the robustness can be
controlled explicitly. Hence, a family of descriptors with different representation
abilities can be generated that range from the specific geometrical representa-
tion to the statistical summarization of the object. This multiple representation
property is referred to as granularity-tunability and the size parameters of the
cuboid region is referred to as granularity parameters, or granularity for short.
This property enables the STGGP descriptor to represent the complex human
pattern in the spatial-temporal domain.

The rest of the paper is organized as follows: Section 2 introduces the human
representation method in the spatial-temporal domain; Section 3 defines the
generalized plane; Section 4 presents the mapping method of the generalized
plane from the Hough space to the spatial-temporal domain; Section 5 gives the
computational details; and Section 6 contains the experimental results.

2 Spatial-Temporal Volume Representation of Human
Body in Video

The spatial-temporal volume (STV) is used as one of the basic representations
of the human body in video, refer to Fig.1 for example. This volume contains
two image axes X and Y , and a temporal axis T , therefore it can encode both
the appearance and motion information of the human body. Unlike the previ-
ous works [24,23] which extract the appearance and motion information as two
separate channels, in this work, the moving human body is considered as a 3D
entity in the spatial-temporal domain. This 3D entity comes from the motion
of the contours/edges. When a contour/edge in the image plane moves along
the temporal axis, its trajectory will extend a surface in the spatial-temporal
domain. Take Fig.2 for example, the line L in frame I0 translates to the line
L′ in frame IT−1 through a uniform linear motion. Its trajectory from frame
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Fig. 2. The 3D planes that generated by the human motion and its mapping in the
Hough space

I0 to IT−1 can expand a plane S. When the contour/edge is not linear or the
motion is not uniform, the plane will change to a surface, called by us the spatial-
temporal surface. Therefore, the moving human body can be considered as the
combination of many spatial-temporal surfaces.

There are two challenges for this surface based human representation: firstly,
since the contours/edges in the real-world images are usually not well defined
geometrical structures and the motions of the human body are usually complex,
the spatial-temporal surfaces may not be in any well defined geometrical forms
and can not be explained analytically; secondly, due to the imperfections in
either the image data or the edge detector, the contours/edges in the images
may not be smooth and continuous. Therefore the smoothness and continuity of
the spatial-temporal surfaces can not be guaranteed.

For the first challenge, a possible solution is to use the combination of smaller
3D facets to approximate the surfaces with arbitrary structure. In this way,
the 3D planes (facets) are further introduced as the primitives to represent the
spatial-temporal surface, and the moving human body can be parsed as a combi-
nation of these planes. Regarding the second challenge, we extend the definition
of the plane to make it to tolerate the discontinuity using spatial and angular un-
certainty. This relaxed definition of the plane is referred to as generalized plane,
in which the uncertainty of the rotation and translation are defined explicitly.
More details will be presented in the following sections.

3 The Definition of the Generalized Plane

In the 3D spatial-temporal domain, a plane is represented by its explicit equa-
tion as t = ax + by + c. Here, we can use a 3D Hough space corresponding to
the parameters a, b and c. However, this formulation suffers from the following
problem: as the planar direction becomes vertical, the values of some parame-
ters will become too big and even infinite. This means some planes are not well
defined in this a − b − c Hough space.
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To avoid the above problem, we parameterize the plane by its normal direction
n = (nx, ny, nt) and its perpendicular distance ρ from the origin instead, as
in Fig.2(a). This is also called Hesse normal form of the plane, and can be
represented as follows:

ρ = p · n (1)

where p = (x, y, t) is the coordinates of the points on the plane. As there is a
constraint on the magnitude of the normal of the plane, i.e. ||n|| = 1, there are
only two degrees of freedom for n = (nx, ny, nt). Therefore, the normal direction
n can be represented by the spherical coordinates of a unit sphere (φ, θ) as:

n = (sin φ cos θ, sin φ sin θ, cosφ) (2)

where the inclination φ ∈ [0, π] is the angle between the zenith direction and
n; the azimuth θ ∈ [0, 2π) is the angle between the reference direction on the
chosen plane and the projection of n on the plane, as shown in Fig.3(b).

Therefore, by replacing the Equ.2 into the Equ.1, we can get the representation
of the plane in the spherical coordinates as:

ρ = x sin φ cos θ + y sinφsinθ + t cosφ (3)

In this definition, there are three parameters φ, θ and ρ, and the Hough space
can be defined accordingly. We refer to this Hough space as the φ− θ− ρ Hough
space and all the planes can be well defined in this space. Any plane S in the
STV space can map to a point P in this Hough space, as shown in Fig.2(b). Any
point (x, y, t) on this plane satisfies the definition:{

(x, y, t)|ρ = F (x, y, t; φ, θ), (x, y, t) ∈ χ3)
}

(4)

where F (x, y, t; φ, θ) is the plane’s representation in the spherical coordinates as
in Equ.3 and χ3 denotes the range of the definition of the coordinate (x, y, t).

Theoretically, there is a one-to-one mapping between the planes in the STV
space and the points in the Hough space with φ, θ and ρ as axes. Taking Fig.2
for example, a plane S in the STV space corresponds to a point P (φ0, θ0, ρ0) in
the Hough space.

But as mentioned in previous section, for many applications in image pro-
cessing and computer vision, we can seldom find a plane that strictly meets the
geometry definition as in Equ.4 due to the imperfections in either the image data
or the edge detector. In addition, due to the translation and rotation uncertainty,
a nonideal plane in the STV space evidently does not occupy a single point in
the Hough space but a cluster of points instead, as mentioned in [22]. In order to
make the definition to accommodate these nonideal planes, we extend the defi-
nition of the planes in the Hough space by extending a single point P (φ0, θ0, ρ0)
into a cuboid region R parameterized by the center position (φ0, θ0, ρ0) and
the cuboid size (2τφ, 2τθ, 2τρ). This means that all the facets that fall into this
cuboid region in the Hough space will still be considered as a plane. This plane
is not a conventional plane that can fulfill the restriction in Equ.4, but it is a
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Fig. 3. The 3D orientation partition based on sphere polar coordinates

plane that can tolerate certain degree of rotation and translation uncertainty.
This motivates us to generalize the definition of the plane as:{

(x, y, t)|ρ = F (x, y, t; φ, θ), (x, y, t) ∈ χ3,

|ρ − ρ0| ≤ τρ, |φ − φ0| ≤ τφ, |θ − θ0| ≤ τθ)} (5)

We refer to this definition as a generalized plane. The geometrical explanation
of this definition is that a generalized plane can be a combination of facets that
fall into a cuboid region in the Hough space. This endows the generalized plane
with robustness to the uncertainty of rotation and translation. Three important
properties of the generalized plane are summarized here:

1. It can represent the nonideal planes which can be discontinuous and even
with certain level of rotation and translation uncertainty.

2. The robustness to the uncertainty of rotation and translation can be con-
trolled quantitatively by the parameters (τφ, τθ, τρ). More specifically, the
robustness to rotation can be controlled quantitatively by (τφ, τθ) and we
refer to it as the rotation uncertainty; the robustness to translation can be
controlled by τρ and we refer to it as the translation uncertainty.

3. When we restrict the window size to zero, i.e. τφ = 0, τθ = 0,and τρ = 0,
then the generalized plane can degenerate into normal plane as defined in
Equ.4. Therefore, the generalized plane can be considered as a superset of
the plane.

The advantage of Equ.5 is that it can incorporate the uncertainty control into
the plane’s definition explicitly. Therefore, we can produce planes with differ-
ent description characteristics by varying the uncertainty parameters that are
specified by (τφ, τθ, τρ).

4 Orientation-Space Partition in the STV Space

According to the description in section 3, the generalized plane is defined in
the Hough space and can be considered as a 2τφ × 2τθ × 2τρ cuboid region that
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centered at (φ0, θ0, ρ0). However, the description of this generalized plane is in
the STV space. Therefore, we need to back-project the cuboid region from the
Hough space into the STV space.

Intuitively, the back-projection of this cuboid region in the STV space is a
sandglass-shaped region. We refer to this region in the STV space as a partition to
distinguish it from the cuboid region in the Hough space. Based on this extension,
we can find a one-to-one mapping between a cuboid region in the Hough space
and a partition in the STV space. We achieve this goal by orientation partition
and space partition.

4.1 Orientation Partition

Orientation partition is the back-projection of the angular uncertainty (τφ, τθ)
from the Hough space to the STV space. As we have mentioned in previous
section, the normal direction of the plane is determined by the parameters φ
and θ, and they have very specific meanings in the spherical coordinates: the
inclination φ is the angle between the zenith direction and the normal direction;
the azimuth θ is the angle between the reference direction on the chosen plane
and the projection of the normal direction on the plane. The space expanded by
φ and θ can be represented on a unit sphere, as shown in Fig.3. There is a one to
one mapping between the points on this sphere and the unit directional vectors.
Therefore, the partition on this unit sphere corresponds to a partition on the
orientation space. We apply the 2-dimensional quantization on the unit sphere
by step size τφ and τθ, as shown in Fig.3(a). Thus, the unit sphere is divided
into a group of disjoint patches, and the directional vectors that map to the
same path are quantized to the same direction. By this means, the uncertainty
parameters τφ and τθ can be mapped from the Hough space to the STV space.

More specifically, given a point (x, y, t) on the spatial-temporal volume V ,
the first-order derivatives (using filter [1, 0,−1]) of the intensity along the three
directions are represented as (Vx, Vy , Vt). Then the normal direction of this point
can be calculated as: ⎧⎨

⎩
nx = Vx/s
ny = Vy/s
nt = Vt/s

(6)

where s =
√

V 2
x + V 2

y + V 2
t is the strength of the gradient. The orientation

parameters φ and θ can be calculated as:{
θ = arctanny/nx

φ = arctan
√

(n2
x + n2

y)/n2
t

(7)

By Equ.3, we can calculate the distance parameter ρ also. Therefore, any point
on the STV can be represented by a septet [x, y, t, s, φ, θ, ρ]. Then we quantize
the angles φ and θ by step size τφ and τθ respectively, according to the rotation
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uncertainty defined in Equ.5. Thus far, the original STV has been divided into
m × n disjoint directional channels:{

[x, y, t, s, ρ]φ1−θ1 , . . . , [x, y, t, s, ρ]φi−θj , . . . , [x, y, t, s, ρ]φm−θn} (8)

where:
m, n — number of index by quantization, m = �π/τφ�, n = �π/τθ�;
φi, θj — the quantized inclination and azimuth angles, φi = i ∗ τφ, θj =j ∗ τθ;
φi − θj — the symbol that represents the principal orientation of each channel;
For each channel [x, y, t, s, ρ]φi−θj , only the voxels whose normal angle can be
quantized as its principal orientation φi − θj are preserved and all the other
voxels are set to zero. We refer to this operation as the orientation partition, as
shown in Fig.4(a)-(c).

For simplicity, we will use Vφi−θj to denote the channel [x, y, t, s, ρ]φi−θj .
Therefore, the results of orientation partition can be represented as:{

Vφi−θj |i = 1, . . . , m; j = 1, . . . , n
}

(9)

where
⋃i=m,j=n

i=1,j=1 Vφi−θj = V and Vφi−θj

⋂
Vφp−θq = ∅, i 
= q, j 
= q.

4.2 Space Partition

Space partition is used to back-project the translation uncertainty τρ into the
STV space. For each channel [x, y, t, s, ρ]φi−θj , it can be further partitioned by
a group of parallel planes, and we refer to these planes as the partition planes.
Moreover, the normal directions of all the partition planes are equal to the
principal direction φi − θj of the current channel and the distances between the
adjacent partition planes are equal to the translation uncertainty parameter τρ.
The region between the two adjacent partition planes can be considered as a
generalized plane and all the voxels located within this region belong to the
same generalized plane. By this means, we can explicitly control the plane’s
robustness to the translation uncertainty.

The space partitions can be now represented as [x, y, t, s]ρk

φi−θj
. We denote it

by P ρk

φi−θj
for simplicity. These partitions fulfill the following definition:{

P ρk
φi−θj

|k = 1, . . . , o;
⋃o

k=1
P ρk

φi−θj
= Vφi−θj ; P ρm

φi−θj

⋂
P ρn

φi−θj
= ∅, m �= n

}
(10)

where o is the number of spatial partition, as shown in Fig.4(d).
Moreover, the strength of the gradient within each partition can be repre-

sented as:
gρk

φi−θj
= q(P ρk

φi−θj
) (11)

where q(·) is the function that calculates the summation of gradient strength
within a partition.

By the orientation and space partition, we can associate a cuboid region in
the Hough space with a partition in the STV space. The representation property
of the generalized plane can be controlled by (τφ, τθ, τρ) during the partition
procedure. The overall orientation-space partition procedure can be seen in Fig.4.
The statistical description of the generalized plane can be calculated easily within
each partition, which will be detailed in the following section.
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5 Computation of STGGP Descriptor

Thus far, we have mapped the generalized plane from the Hough space to the
STV space by orientation-space partition. In this section, we will present how
to calculate the descriptors for the generalized plane in the STV space.

The descriptor of the generalized plane is 9-dimensional heterogeneous vector.
It can encode the gradient strength, position and shape information of the plane.
For any channel Vφi−θj , its descriptor can be represented as:
(imax, gmax, σ, mx, my, mt, vnorm, vtangX , vtangY )φi−θj .

Given a feature that is specified by a cuboid C(x0, y0, t0, w, h, l) and the uncer-
tainty parameters (τφ, τθ, τρ), we firstly perform the orientation-space partition
within C as mentioned above. Then for each channel Vφi−θj , we can get the space
partitions P ρk

φi−θj
as Equ.10. The gradient strength gρk

φi−θj
of each partition can

be calculated as in Equ.11. In the following section, we will drop the orientation
subscript φi − θj for simplicity. The items of the descriptor can be calculated as
follows:

– imax: is the normalized index value of the space partition with the maxi-
mum gradient strength. It can be calculated as imax = i′max

o , where i′max =
arg max

k
(gρk) is the index of the space partition with the maximum gradient

strength and o is the number of space portions.
– gmax: is the normalized maximum gradient strength, where gmax = g′

max∑o
k=1 gρk

,
g′max = max(gρk).

– σ: is the standard deviation of the gradient strength, and can be calculated

as σ =
√

1
o

∑o
k=1(gρk − ḡ)2, where ḡ = 1

o

∑o
k=1 gρk .

– (mx, my, mt): is the normalized mean position of all the non-zero points in
partition P ρi′max , for example, mx is calculated as follows:

mx =
1
z

z∑
i=0

(xi − x0)
w

(12)

where:
z — the number of non-zero points in the partition P ρi′max ;
x0 — the center point of the feature cuboid C;
w — the size of the feature cuboid C;

– (vnorm, vtangX , vtangY ): denote the standard deviation of the non-zero points
in partition P ρi′max , for example, vnorm is be calculated as follows:

vnorm =

√√√√ 1
z

z∑
i=1

(ri,norm − mnorm)2 (13)

where ri,norm and mnorm are the new position of the points and their means
in the rotated coordinates;

The reason for coordinate rotation is to align the normal direction of the gener-
alized plane with the axis of the new coordinate frame. In this new coordinate
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frame, the distribution of the non-zero points can be easily described. And the
rotation matrix A of the current channel φi − θj is defined as:

A = AφiAθj

=

⎡
⎣ cos φi cos θj − cos φi sin θj − sin φi

sin θj cos θj 0
sin φi cos θj − sin φi sin θj cos φi

⎤
⎦ (14)

The new coordinate frame is referred to as norm − tangX − tangY . In this
new coordinate frame, the generalized plane is parallel to the tangX − tangY
plane and its norm is aligned with the norm axis. In this new coordinate, the
shape property of the generalized planed can be easily characterized. For exam-
ple, vnorm is the standard deviation along the normal direction, and it can be
considered as the ”thickness” of the generalized plane; and (vtangX , vtangY ) can
be used to describe the ”shape” of the plane.

Thus far, for each channel Vφi−θj , we have obtained a 9-dimensional fea-
ture vector, i.e., (imax, gmax, σ, mx, my, mt, vnorm, vtangX , vtangY )φi−θj . Then,
by concatenating the feature vectors of all the channels/orientations, we can
get the final STGGP descriptor.
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6 Experiments

In this section, the proposed STGGP is evaluated on the public dataset. Firstly,
since STGGP is a heterogeneous vector, we evaluate the contributions of the
different components; secondly, we investigate how the temporal length affects
the the performance of the method; thirdly, we evaluate the proposed method
against the state of the art methods. In our experiments, the linear SVMs are
used as the classifiers with parameter C = 0.1. For easy comparison, we plot the
”recall” vs. ”false positive per image” curve.

We use the ETHZ as the benchmarking dataset[29]. The size of normalized
STV is 96×64×5 and the size of SGTTP feature is 16×16×5. With 2 translation
uncertainty settings, τ ∈ {4, 8}, we use 78 STGGP features for representing a
STV. The orientation uncertainty parameters are set as: τφ = π/5 and τθ = π/5,
therefore, there are 25 orientation channels. The overall dimension of a STV
descriptor is 17550.

Since STGGP is a heterogeneous feature vector, it contains the gradients’
strength, position and shape information. Therefore, in the first experiment, it
is worth to evaluate the contributions of these different components. We reorga-
nized the components of the GGP descriptors as follows:

– STGGP C1: (gmax) only contains the maximum gradients’ strength of the
partitions, and its description ability is close to HOG.

– STGGP C2: (gmax, imax, σ) adds partition index and the standard deviation
of the gradient strength to represent the strength distribution information
within the feature region.

– STGGP C3: (gmax, imax, σ, mx, my) adds the mean positions of all the non-
zero pixels to represent the poison information.

– STGGP : (gmax, imax, σ, mx, my, vnorm, vtang) the STGGP descriptor that
adds the standard deviations of positions to represent the shape of non-zero
pixels in the partition.

The evaluation results can be seen in Fig.5(a). From these results, we can make
a few observations: firstly, the performance can be improved monotonically as
long as the new components are heterogeneous to the previous ones; secondly,
the position information is critical of the performance, and the most prominent
improvements can be observed after the position information have been added.

In the second experiment, we evaluate how the number of frames can affect the
performance of STGGP. Therefore, we re-generate the sample sets with different
frame numbers and train the detectors from these sets. Here we use STGGP fn
to represent the detectors that trained with different frame numbers and n is the
number of frame. For STGGP f1, we just use the original GGP detector that
use only the static features. The results of these detectors can be seen in Fig.5(b).
When we add frame number from 1 to 5, a monotonously improvement can be
observed; but when we add more frames, the performance actually dropped. A
possible explanation of is that for a longer temporal duration, the ego-motion of
the camera will substantially affect the spatial-temporal shape of the human.
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Fig. 5. Parameter evaluation on ETH-01 set

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

false positive per image

re
ca

ll

 

 

Ess et el.[ICCV07]
Wojek el al. [CVPR09]
Schwartz el al. [ICCV09]
STGGP

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

false positive per image

re
ca

ll

 

 

Ess et el.[ICCV07]
Wojek el al. [CVPR09]
Schwartz el al. [ICCV09]
STGGP

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

false positive per image
re

ca
ll

 

 

Ess et el.[ICCV07]
Wojek el al. [CVPR09]
Schwartz el al. [ICCV09]
STGGP

(a) Evaluation results on ETHZ-01 (b) Evaluation results on ETHZ-02 (c) Evaluation results on ETHZ-03

Fig. 6. Evaluation results on the ETHZ human dataset

In the third experiment, the STGGP detector is evaluated against the state
of the art methods [29,25,3]. On ETH-01 set, the STGGP yields comparable
results to the best results in [25], as shown in Fig.6(a); On ETH-02 and ETH-
03 sets, the STGGP outperforms the other methods, as shown in Fig.6(b)(c).
Another observation is that the features combining both appearance and motion
outperform the appearance only based detector by a big margin. Some samples
of the detection results can be found in Fig.7.

Fig. 7. Sample detection results on ETHZ dataset

7 Conclusion

In this paper we have developed a spatial-temporal granularity-tunable gra-
dients partition (STGGP) descriptor to represent the human’s motion pattern
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in the spatial-temporal domain. Firstly, the generalized plane is defined in the
Hough space. By incorporating the rotation and translation uncertainties in the
definition of the plane, it can describe the object with a family of descriptors
with different representation ability, from the detailed geometrical representation
to the statistical description. Then, by orientation-space partition, the general-
ized plane can be back-projected from the Hough space to the spatial-temporal
space. Finally, we form the heterogeneous descriptor in the generalized plane.
The heterogeneous descriptor contains gradient’s strength and spatial distribu-
tion information, which further improve its representation ability. The STGGP
descriptor is tested for human detection in image sequences and promising results
have been achieved.
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Abstract. Given a photo of person A, we seek a photo of person B
with similar pose and expression. Solving this problem enables a form
of puppetry, in which one person appears to control the face of another.
When deployed on a webcam-equipped computer, our approach enables
a user to control another person’s face in real-time. This image-retrieval-
inspired approach employs a fully-automated pipeline of face analysis
techniques, and is extremely general—we can puppet anyone directly
from their photo collection or videos in which they appear. We show
several examples using images and videos of celebrities from the Internet.

Keywords: Image retrieval, facial expression analysis, puppetry.

1 Introduction

“Ever wanted to be someone else? Now you can.”
—tagline from the film Being John Malkovich

In the film Being John Malkovich, a puppeteer (played by John Cusack) discovers
a portal that allows him to control the real life movements of John Malkovich
(played by himself). While puppeteering real people might seem a bit far fetched,
it should be possible to control digital likenesses of real people. In particular,
we seek to construct a photographic simulation (i.e., avatar) of John Malkovich
that you can control by moving your face; when you smile, move your head, or
close your eyes, you see John Malkovich doing the same.

One way to attack this puppetry problem might be to create a photo-realistic
3D model of John Malkovich’s head, instrumented with several degrees of free-
dom (e.g., mouth open, head rotate, etc.), and map the user’s head motions
to the model. Indeed, most prior work on avatars and puppetry has followed a
similar approach [1,2,3,4]. However, creating a sufficiently accurate model of a
real person is a major challenge, particularly if we don’t have access to the actor
to pose for a scanning session.

Instead, we recast the puppetry problem as image retrieval: given a query
image or video of person A (the user), and a set of images of person B (John

K. Daniilidis, P. Maragos, N. Paragios (Eds.): ECCV 2010, Part I, LNCS 6311, pp. 341–353, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Fig. 1. One person’s expressions (top row) are mapped to another person’s face (bot-
tom row) by real-time matching to an image database. In this case, the input is a video
of Cameron Diaz, and the database is formed from a video (John Malkovich, bottom-
left 4 images) or an unstructured set of photographs downloaded from the Internet
(George W. Bush, bottom-right 4 images).

Malkovich), find and display the best matching image or image sequence of
person B. This approach has a number of key advantages, as follows. First,
we avoid the complexity and technical difficulty of creating a 3D model and
parameterizing expressions. Second, because the output are real photos, we can
capture all the complexities of the face (hair, light scattering, glasses, etc.) that
are difficult to simulate. And finally, the approach operates on just about any set
of photos or video, and is fully automatic. I.e., it is possible to create an avatar
simply by typing an actor’s name on an image/video search site and processing
the resulting images and/or videos. The approach can also be used to drive one
video with another; Fig. 1 shows Cameron Diaz driving John Malkovich and
George W. Bush.

The main challenge to making this image retrieval approach work is defining a
metric that can reliably match an image of person A to an image of person B with
similar pose and expression. Significantly complicating this task is the fact that
the facial characteristics, lighting, and sex of the two people may be different,
resulting in large appearance variation between person A and person B. The main
contribution of this paper, in addition to posing puppetry as image retrieval, is a
processing pipeline that yields high-quality real-time facial image retrieval, and
that operates reliably on both video and unstructured photo collections. While
this pipeline is based on existing pieces from the literature, we argue that it is
not at all straightforward to create a real-time system that achieves the results
presented here; the contribution is the system and the novel application.

Our approach operates as follows: images of the target face (person B) are pro-
cessed using a combination of face detection, extracting fiducial features (e.g.,
eyes, nose, mouth), estimating pose, and aligning/warping to a frontal pose.
The user (person A) is tracked to determine head-pose at video rates. After
alignment, the user’s face is compared to all aligned images of the target face
using a fast implementation of Local Binary Patterns (LBP) and chi-square
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matching, and the best match is returned. We incorporate additional terms for
temporal coherence. We’ve found the resulting approach to work remarkably
well in practice. Fig. 2 shows our interactive web-cam-based system in action
for a case of a user driving George Clooney. Video captures can be found on the
paper’s website: http://grail.cs.washington.edu/malkovich/.

1.1 Related Work

There is quite a large literature on avatars, puppetry, and performance-driven
animation. We therefore limit our discussion to methods that specifically involve
tracking video of a user’s face to drive the appearance of a different person or
model. And while tracking mocap markers to drive scanned or hand-crafted
animated models is a mainstay of digital special effects (famous examples in
movies include Polar Express and Avatar), we focus here on markerless solutions
that operate from photos alone.

While there are a number of markerless puppetry techniques, the vast majority
of these methods assume the availability of a 3D model of the target face, e.g.,
[3]. A very recent example is the work of Weise et al. [4], who demonstrate very
impressive puppetry results using a real-time structured light scanner to drive
a previously captured 3D model. 3D puppetry via face tracking is starting to
becoming mainstream—Logitech’s webcams now come with software that tracks
a users’s face and gestures to control an animated on-screen avatar.

Pighin et al. [1] were among the first to demonstrate purely image-based
face capture and puppetry. In this work, the model was created by manually
specifying a set of correspondences between features on a 3D head model and
features in several photos of the person. More recent work in this vein includes
Zhang et al. [2] who used video to create the 3D model and simplified the manual
work to 5 features in two views.

Although they do not relate to puppetry per se, we are inspired by Kumar et
al.’s face search [5] and Bitouk et al.’s swapping [6] work, which operate robustly
on large collections of images downloaded from the Internet, and Goldman et al.
[7] who enable mouse-based face posing from a database of tracked video frames.

We note however, that no prior work has enabled puppetry with arbitrary,
unstructured photo collections. This capability dramatically broadens the appli-
cability of puppetry techniques, to any person whose photos are available.

2 Overview

Our system allows fully automatic real time search of similar facial expressions
of a target person given image queries from a webcam. The user can be any
person; there is no need to train the system for a specific user. The user can
make expressions to the camera, as well as change the pose of the head, and
get in real time similar expressions and poses of the target face. The target
face can be represented by a video or by a set of photos (e.g., photos of a
celebrity downloaded from the Internet). In each query frame the face is tracked

http://grail.cs.washington.edu/malkovich/
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Fig. 2. Our puppeteering system. Left - our setup. Right - screen capture of our system:
the face tracker applied on an input webcam video; Top grayscale small pair - the input
face after cropping and warping to frontal view and the matching target face found by
our method; Bottom large pair - user face and matching target image (raw input).

automatically, the 3D position of the face is recovered, then the detected face
region is fitted to a template 3D model of a face and is warped to a frontal pose.
In the process, we estimate the location of the eyes and mouth of the user’s face.
We consider each of these regions independently and for each region compute a
Local Binary Patterns (LBP) feature vector. The same is done for each photo (or
video frame in case a movie is available) of the target person. We then compute
distances between the mouth region of the target face and the mouth region
of the user face, and similarly for the eyes regions. These two distances define
our appearance distance. In addition, we compute the distance between the 3D
pose of the user and the 3D pose of the target in each image, and a temporal
continuity distance. These three distances are combined together to find the best
match in terms of appearance, pose and continuity. We describe our geometric
alignment method in Section 3, and the appearance representation in Section 4.
In Section 5 we present our distance function. Results and evaluations of the
method are presented in Section 6.

3 Image Alignment to Canonical Pose

In this section we present a framework to align the images of the user and target
faces to a canonical (frontal) pose. The input to the method is a live video feed
(e.g., webcam) or a video of a person. We first automatically track the face in
each frame of the video, using the algorithm of Saragih et al. [8]. The aim here
is to estimate the location of the face and its pose in each given frame, and use
these to perform warping of each image to a canonical pose.

[8] is based on fitting a parametrized shape model to an image such that
its landmarks correspond to consistent locations on the face. In particular, in
each frame, predictions regarding locations of the model’s landmarks are made
by utilizing an ensemble of local feature detectors, and then combined by en-
forcing a prior over their joint motion. The distribution of the landmark loca-
tions is represented non-parametricaly and optimized via subspace constrained
mean-shifts.
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Fig. 3. Results of our warping procedure (based on 3D pose estimation and using 3D
template model). Top row: images aligned in 2D. Bottom row: warped images (3D
alignment).

For the target person, in case we have a video available we estimate the lo-
cation of the face and landmarks using the same procedure as the user’s face.
In case the target face is represented by a collection of photos we cannot use
tracking. We instead apply a face detector [9] followed by a fiducial points detec-
tor [10] that provides the landmarks (the left and right corners of each eye, the
two nostrils, the tip of the nose, and the left and right corners of the mouth).
Given the landmark positions we recover the 3D position of the face. For this we
use a neutral face model from the publicly available spacetime faces dataset [11]
as our template model. Given the points on the image and the corresponding
pre-labeled points on the 3D template model we first subtract the centroid from
each of the point arrays, recover a linear transformation between them and then
find rotation and scale using RQ decomposition. The yaw, pitch and roll angles
are then estimated from the rotation matrix.

Given the estimated pose we can transform the template model to the orien-
tation of the face in the image, and consequently warp the image to a frontal
pose. In Figure 3 we show a few examples of images warped using this procedure.

4 Appearance Representation

Once the images have been aligned and warped to a frontal pose, the next step
is to compare the appearance of the faces to find similar facial expressions. Since
all images are aligned to a template model we can identify the areas in the image
that correspond to different face regions. In this paper we concentrate on the
regions that correspond to eyes and mouth, however one can consider comparing
other regions as well (e.g., position of eyebrows).

To compare appearance of facial regions we have chosen to use the Local
Binary Pattern (LBP) histograms [12], which have previously proven effective-
ness for face recognition [13] and facial expression recognition. These methods
however were applied on frontal faces captured with similar conditions (lighting,
resolution etc.). In our case (especially in the case of unstructured photo col-
lections) these conditions do not often hold. However our alignment step that
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warps the face to frontal position compensates for pose differences and allows us
to effectively use LBP features for comparison of facial regions.

LBP operates by converting each pixel into a code which encodes the relative
brightness patterns in a neighborhood around that pixel. In particular, each
neighbor is assigned a 1 or 0 if it is brighter or darker than the center pixel. This
pattern of 1’s and 0’s defines a binary code that is represented as an integer.
Explicitly the LBP code is defined as:

LBP (c) =
|N |−1∑
p=0

2pH(Ip − Ic), (1)

where H(x) = 1 if x > 0 and 0 otherwise, Ic and Ip are the intensities of the
center pixel and neighboring pixel correspondingly, and N is a set of neighbors
of the center pixel c. The histogram of these codes defines the descriptor for each
facial region. For example in case the neighborhood around a pixel is chosen to
be 3x3 square, there are 8 neighbors, and so there are 28 = 256 labels (or bins in
the histogram). Intuitively each code can be considered as a micro pattern, that
encodes local edges, homogenous areas and other primitives. The binarization
quantization achieves robustness to small lighting changes and robustness to
small motions is obtained by forming the histogram. Following [12] for each
pixel we use a circular neighborhood around it and bilinearly interpolate values
at non-integer pixel coordinates. We further use the extended version of the
operator, called uniform code, that reduces the length of the feature vector. A
code is called uniform if it contains at most two transitions between 0 to 1 or
vice versa. In the computation of the LBP histogram each uniform code has its
own label and all non-uniform codes get a single label.

5 Distance Metric

Distance between two facial regions is defined by χ2-distance between the cor-
responding LBP descriptors. χ2 is defined as:

χ2(x, y) = 1/2
∑

i

(xi − yi)2/(xi + yi), (2)

where in our case x and y are two LBP descriptors. To compare the mouth region
we divide it to 3x5 cells and sum up the distances of all cells, each eyes region
is divided to 3x2 cells (the whole face is divided to 15x7 cells). Figure 4 shows
the masks we use.

Given an input image i we compare it to all target’s images j. Our appearance
distance function between each frame i and image j is defined as

dappear(i, j) = αmdm(i, j) + αede(i, j) (3)

where d{m,e} are the LBP histogram χ2-distances restricted to the mouth and
eyes regions, respectively, and α{m,e} are the corresponding weights for these
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Fig. 4. The regions we use in our appearance distance. The image is aligned to a
canonical pose and divided to 15x7 cells. The mouth region (marked in red) is divided
to 3x5 cells and each eye region (marked in green) is divided to 3x2 cells.

regions. For example, assigning αm = 1 and αe = 0 will result in only the
mouth region being considered in the comparison. Prior to the combination of the
mouth and eyes distances we normalize each of these by subtracting the minimum
distance (over the target images) and dividing by the maximum distance.

Our complete distance function also includes difference in pose and a temporal
continuity term. The difference in pose is measured separately for yaw Y , pitch
P and roll R, and each of these is normalized using a robust logistic function.
The pose term is:

dpose(i, j) = L(|Yi − Yj |) + L(|Pi − Pj |) + L(|Ri − Rj |) (4)

where the logistic function L(d) is defined as

L(d) =
1

1 + e−γ(d−T )/σ
(5)

with γ = ln(99). It normalizes the distances d to the range [0, 1], such that the
value d = T is mapped to 0.5 and the values d = T ± σ map to 0.99 and 0.01
respectively. The temporal continuity term computes the appearance distance
between the previous input frame i−1 and all the target images j. The complete
distance function is then:

D(i, j) = dappear(i, j) + αpdpose(i, j) + αtdappear(i − 1, j) (6)

where αp,αt are the weights of the pose and continuity terms. The best match
per input frame is the target image that minimizes D(i, j).

6 Results

In this section we give details on our experimental setup. The performance of the
method ismuchbetter conveyed throughvideos; for thevideo captures andmore re-
sults please see the paper’s website: http://grail.cs.washington.edu/malkovich/.
We have experimented with controlled experiments as well as videos of celebrities

http://grail.cs.washington.edu/malkovich/
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(a) Full measure

(b) Without mouth similarity

(c) Without eyes similarity

Fig. 5. Puppeteering evaluation. We recorded a video of person A (70 frames) and a
video of person B of similar length. (a) 7 frames from person A video (first row); The
corresponding frames of person B using the combined measure - mouth+eyes+pose
(second row); (b) The corresponding frames without mouth measure - only expressions
with high correlation between the eyes and mouth (like surprise) have similar mouth
expression (third row). (c) Person A and the corresponding matches of B without eyes
measure - the eyes are flickering across consecutive output frames.

downloaded from the Internet1. We also used the unstructured collection of photos
of George W. Bush from the LFW database [14] as a target dataset. We begin by
describing the implementation details of our system and then describe the expri-
mental results.

1 Cameron Diaz–http://www.youtube.com/watch?v=fWHgZz809Pw
George Clooney–http://www.youtube.com/watch?v=iZyw5-Sm0Zk
John Malkovich–http://www.mefeedia.com/watch/23930904

http://www.youtube.com/watch?v=fWHgZz809Pw
http://www.youtube.com/watch?v=iZyw5-Sm0Zk
http://www.mefeedia.com/watch/23930904
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Fig. 6. Puppeteering George Clooney. A few frames of the user captured by a webcam,
followed by the corresponding retrieved faces of George Clooney (the target database
consists of 1197 video frames).

(a) A sample of good matches

(b) Some failure cases

Fig. 7. Puppeteering Cameron Diaz. (a) A few frames of the user captured by a web-
cam, followed by the corresponding retrieved faces of Cameron Diaz (the database is a
video of 1240 frames). (b) Some failure cases - most failures are due to a combination
of an expression with pose of the user that do not exist in the target database. In this
example the proportion of good/bad matches was around 0.7/0.3.
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Fig. 8. Puppeteering an unstructured dataset of George W. Bush. A few frames of the
user captured by a webcam, followed by the corresponding retrieved faces of George
W. Bush (the target database is a collection of 870 photographs of George W. Bush).

6.1 Implementation Details

We use the following parameters for all experiments: αm = αe = 1, T = 5,
σ = 2, αp = αy = αr = 0.2, αt = 0.2. Before we apply our distance function we
ignore from consideration target images that differ in pose from the user image
by more than 5o (for yaw, pitch and roll). The LBP histogram is calculated per
image cell using Gaussian weighting as a function of pixel’s distance from the
center of the cell. The sigma we used is the width of the cell with a margin in
the size of half of the cell.

The system runs at 7fps on a 2.26GHz Intel Core 2 Duo Macbook Pro. The
images or video used to create the target dataset are processed using the same
pipeline as the input video of the user, i.e., tracking the face (or detecting in
case of unstructured photo collection), estimating the pose in each frame and
calculating the feature vectors. When constructing the target dataset from a
video, we sample every 3rd frame of the video. Processing a video of 1000 frames
takes approximately 2.5 minutes.

6.2 Controlled Experiments

To evaluate performance, we captured videos of two people with different facial
characteristics making similar facial expressions and used one person’s video to
drive the other video. We also evaluated the effect of comparing different regions
of the face (eyes only or mouth only) on overall performance. Figure 5 shows the
results of this experiment. We can see that the match is remarkably good when
both eyes and mouth are used, despite the different facial appearance of these
two users (note that one is Asian and has a mustache while the other has neither
of these characteristics). When the mouth is omitted in the metric, the pose and
eyes are matched, but the expression remains relatively constant, except for the
example in column 4, where eyes of the “surprise” expression are well-correlated
with the mouth. Similarly, when the eyes are left out of the distance metric, the
output sequence exhibits random blinks.
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Fig. 9. Puppeteering John Malkovich with a video of Cameron Diaz

6.3 Videos of Celebrities

We downloaded and processed videos and still photos for several celebrities from
the Internet. Figure 6 shows an example of puppeteering George Clooney; the
user (top row) makes facial expressions and the best matching frame from George
Clooney’s video is shown at the bottom. Note how both, the eyes of the user
and the eyes of George Clooney close in the 3rd example from the left, and how
the mouth changes are quite consistent. Figure 7 shows results of puppeteering
Cameron Diaz, (a) shows a sample of the good matches and in (b) we show
some failure cases. Most of the failure cases seem to be due to the combination
of an expression and pose that do not exist in the video/collection of photos
of the target face. Similarly, we show an example where a user is able to drive
an unstructured photo collection of George W. Bush obtained from the Internet
(Figure 8). We also show an example of driving a video using another video in
Figure 9. More examples are shown in Figure 1.

In our experiments, we observed that when the user and the target face are
of the same gender (woman to woman and man to man) the output sequence
is smoother and better captures the expressions, due to similar facial features.
However, we observed that the method also works quite well with a man driving
a woman and vice versa (as shown in these figures).

7 Conclusions

We presented a real-time puppetry system in which the user can make a celebrity
or other person mimic their own facial gestures. As with traditional puppetry,
part of the fun is learning how to master the controls. In particular, the user
often learns to best drive the celebrity (rather than the other way around); to
make John Malkovich smile, the user may have to smile in a similar style to the
celebrity.
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Unlike most prior work in this area which maps an image to a model, our
formulation is photo to photo, using metrics that seek to match facial pose and
eye/mouth similarity. The key advantage of this approach is its generality—
it operates fully automatically and works on just about any video or photo
collection of a person.

Beyond our puppetry application, this is also a general solution for face image
retrieval, i.e., one can search for photos by acting out a particular expression
and pose. In addition this allows to use unlabeled datasets and to retrieve facial
expressions that are difficult to define with keywords.

There are several aspects of performance that could be improved. While LBP
provides some robustness to lighting changes, shadows and other strong effects
sometimes bias the match to similar lighting instead of similar expression. Better
tracking and modeling of head shape could also increase the operating range,
particularly with near-profile views. Finally, we use a first order model for tem-
poral coherence; a more sophisticated model could result in temporaly smoother
output.

Acknowledgments. The authors gratefully acknowledge Jason Saragih for pro-
viding the face tracking software [8]. This work was supported in part by Adobe
and the University of Washington Animation Research Labs.
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Abstract. It is a challenging vision problem to discover non-rigid shape
deformation for an image ensemble belonging to a single object class, in
an automatic or semi-supervised fashion. The conventional semi-
supervised approach [1] uses a congealing-like process to propagate man-
ual landmark labels from a few images to a large ensemble. Although
effective on an inter-person database with a large population, there is
potential for increased labeling accuracy. With the goal of providing
highly accurate labels, in this paper we present a parametric curve rep-
resentation for each of the seven major facial contours. The appearance
information along the curve, named curve descriptor, is extracted and
used for congealing. Furthermore, we demonstrate that advanced features
such as Histogram of Oriented Gradient (HOG) can be utilized in the
proposed congealing framework, which operates in a dual-curve congeal-
ing manner for the case of a closed contour. With extensive experiments
on a 300-image ensemble that exhibits moderate variation in facial pose
and shape, we show that substantial progress has been achieved in the
labeling accuracy compared to the previous state-of-the-art approach.

Keywords: Facial contour, congealing, semi-supervised, ensemble,HOG.

1 Introduction

This paper addresses the problem of estimating semantically meaningful facial
contours from an image ensemble using semi-supervised congealing. The shape
of an object can be described by object contours, which include both the overall
object boundary and boundaries between key components of the object. By
facial contour, in particular, we refer to the boundary of chin and cheek, as well
as the facial features including eyes, eyebrows, nose, and mouth. Given a large
set of face images, semi-supervised congealing [1, 2] is defined as a process of
propagating the labeling, which is the facial contour in this work, across the
entire ensemble from a few labeled examples (See Fig. 1).

There are many applications of semi-supervised congealing. In computer vi-
sion, landmark labeling is necessary for learning models of the object shape, such
as Active Appearance Models (AAM) [3, 4] and Boosted Appearance Model [5]
for faces, which is often conducted manually for a large set of object instances/
images. However, this is a labor-intensive, time-consuming, and error-prone pro-
cess. Our semi-supervised approach will dramatically alleviate this problem.

K. Daniilidis, P. Maragos, N. Paragios (Eds.): ECCV 2010, Part I, LNCS 6311, pp. 354–368, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Fig. 1. Given an image ensemble with an overlayed initial contour via face detection
(top right), together with manual labels of contours on a few images (top left), our
proposed algorithm estimates the contour parameters for all images in the ensemble
(bottom), regardless of the variations of facial shape, pose, and unseen subjects.

Furthermore, our approach can be used to discover the non-rigid shape defor-
mation of a real-world object, when applied to an image ensemble of an object
class.

Given the wide application space of semi-supervised congealing, there is a
surprisedly limited amount of prior work concerning ensemble-based non-rigid
shape estimation for objects with greatly varying appearance, such as faces. The
work by Tong et al. [1] might be the most relevant one to ours. They use least-
square-based congealing to estimate the set of landmarks for all images in an
ensemble given the labels on a few images. The least square term between any
image pair is evaluated on a common rectangle region, which is where the image
pair warps toward based on the landmark location. By gradually reducing the
size of rectangle, the precision of landmark estimation is improved.

Although [1] has shown some promise, the accuracy of the labeling has poten-
tial for further improvement. First of all, the coarse-to-fine scheme and measure-
ment in the warped space poses fundamental limitation on the accuracy. Also,
the intensity feature is not salient enough to capture edge information, which
is where all landmarks reside. To alleviate these problems, we propose a novel
approach in this paper. With the goal of providing high accuracy in labeling, we
use a parametric curve to represent the facial contour, rather than a landmark
set. Hence, the appearance feature along the curve, named curve descriptor, can
be extracted and drives the congealing process. Since two curve functions are
used to represent a closed contour such as the eye, we present a dual-congealing
algorithm operating jointly on both curves, with the help of a geometric con-
straint term. We demonstrate that advanced features such as HOG [6] can be
utilized in the proposed congealing framework. With extensive experiments, we
show that large progress has been achieved in the labeling accuracy compared
to the state-of-the-art approach.
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2 Prior Work

There is a long history of unsupervised group-wise registration in computer
vision [7], particularly in the area of medical image analysis. Learned-Miller [2, 8]
names this process “congealing”, where the basic idea is to minimize a cost
function by estimating the warping parameters of an ensemble. The work by Cox
et al. [9] is a recent advance in least-squares-based congealing (LSC) algorithm.
However, these approaches estimate only affine warping parameters for each
image, rather than the non-rigid deformation addressed here.

There is also work on unsupervised image alignment that allows more general
deformation models, such as [10–18]. However, almost all approaches report
results on images with small intra-class appearance variation, such as brain im-
age, digits, and faces of a small population. In contrast, the semi-supervised
congealing algorithm of [1] demonstrates promising performance on an ensemble
of over 1000 images from hundreds of subjects, which motivates us to use the
semi-supervised approach for facial contours.

There is a rich literature concerning contour and edge detection [19]. We
should note that in dealing with real-world images, the dominant edge from
low-level image observations might not be consistent with the high-level semantic-
meaningful contour. For example, the double eyelid can have stronger edge infor-
mation compared to the inner boundary between the conjunctiva and the eyelid,
which is often what we are interested in extracting for describing the shape of
eyes. Thus, semi-supervision seems to be a natural way to allow the human ex-
pert to label the to-be-detected contours on a few examples, so as to convey the
true contour that is of real interests for the application at hand.

3 Semi-supervised Least-Squares Congealing

First we will describe the basic concept and objective function of the conventional
semi-supervised least-square congealing (SLSC) by using image warping [1].

Congealing approaches operate on an ensemble of K unlabeled images I =
{Ii}i∈[1,K], each with an unknown parameter pi, such as the landmark set in [1],
that is to be estimated. Semi-supervised congealing also assumes there is a small
set of K̃ labeled images Ĩ = {Ĩn}n∈[1,K̃], each with a known parameter p̃n. We
denote the collection of all unknown parameters with P = [p1, · · · ,pK ]. The
goal of SLSC is to estimate P by minimizing a cost function defined on the
entire ensemble:

ε(P) =
K∑

i=1

εi(pi). (1)

The total cost is the summation of the cost of each unlabeled image εi(pi):

εi(pi) =
1 − α

K − 1

K∑
j=1,j �=i

‖f(Ij ,pj) − f(Ii,pi)‖2 +
α

K̃

K̃∑
n=1

‖f(Ĩn, p̃n) − f(Ii,pi)‖2,

(2)
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where f(I,p) is the feature representation of image I evaluated at p. Hence,
εi(pi) equals the summation of the pairwise feature difference between Ii and
all the other images in the ensemble, including both the unlabeled images (the
1st term of Eqn. 2) and the labeled image (the 2nd term of Eqn. 2).

In [1], the feature representation is defined as,

f(I,p) .= I(W(x;p)), (3)

where W(x;p) is a warping function that takes x, which is a collection of pixel
coordinates within the common rectangle region, as input, and outputs the cor-
responding pixel coordinates in the coordinate space of image I. Given this
warping function, I(W(x;p)) denotes the corresponding warped image vector
obtained by bilinear interpolation of the image I using the warped coordinates
W(x;p). Note that in [1], W(x;p) is a simple 6-parameter affine warp, rather
than a complex non-rigid warp such as the piecewise affine warp [4]. This is
due to the high dimensionality in the non-rigid warp, as well as the needs to
optimize p for all images simultaneously. Hence, by applying affine-warp-based
optimization multiple times, each at a different rectangle region with decreasing
size, the non-rigid natural of the warp can be approximated.

Since the total cost ε(P) is difficult to optimize directly, [1] chooses to iter-
atively minimize the individual cost εi(pi) for each Ii. The well-known inverse
warping technique [20] is utilized and after taking the first order Taylor expan-
sion, Eqn. 2 can be simplified to:

1 − α

K − 1

K∑
j=1,j �=i

‖bj + cjΔpi‖2 +
α

K̃

K̃∑
n=1

‖b̃n + c̃nΔpi‖2, (4)

where

bj =f(Ij ,pj)−f(Ii,pi), cj =
∂f(Ij ,pj)

∂pj

. (5)

The least-square solution of Eqn. 4 can be obtained by setting the partial deriva-
tive of Eqn. 4 with respect to Δpi to be equal to zero. We have:

Δpi =−

⎡
⎣ 1 − α

K − 1

K∑
j=1,j 	=i

cT
j cj +

α

K̃

K̃∑
n=1

c̃T
n c̃n

⎤
⎦−1⎡⎣ 1 − α

K − 1

K∑
j=1,j 	=i

cT
j bj +

α

K̃

K̃∑
n=1

c̃T
n b̃n

⎤
⎦ .

(6)

4 Facial Contour Congealing

In this section, we will present our facial contour congealing approach in detail.
Three key technical components will be covered: parametric curve representa-
tion, curve descriptor, and contour congealing.
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t=0

t=1

t=0.5

t=0.25 t=0.75

(a) (b)

Fig. 2. (a) The entire facial shape is described by contours on 7 facial components;
(b) The closed contour (such as the eye) is represented by two connected parametric
curves, where each curve’s parameter can be estimated via curve fitting on labeled
landmarks (5 landmarks in this case).

4.1 Parametric Curve Representation

In computer vision, it has been very popular to use a set of landmarks to describe
the shape of an object by placing the landmarks along the object contour, such
as the Point Distribution Model (PDM) applied to faces. However, there are dis-
advantages to using the landmark representation. First, an excessive number of
landmarks are needed in order to approximate the true contour of facial images,
especially for high quality images. Second, for the semi-supervised congealing
application, little constraint can be applied on the distribution of landmarks
since there are very few labeled images, which poses a challenge for landmark
estimation on unlabeled images.

In this paper, we propose to use a parametric curve representation to describe
the facial contour. As shown in Fig. 2(b), we use two parametric curves to
represent the closed contour of one of the seven facial components, such as eye.
For simplicity of notation, we will initially focus on one of the two curves, which
covers half of the contour. A 2D parametric curve is defined by the n-order
polynomials:

x(t) = px,ntn + px,n−1t
n−1 · · · + px,1t + px,0, (7)

y(t) = py,ntn + py,n−1t
n−1 · · · + py,1t + py,0, (8)

where usually we consider t ∈ [0, 1], and the collection of coefficients,

p = [px py ]T =
[
px,n px,n−1 · · · px,1 px,0 py,n py,n−1 · · · py,1 py,0

]T
, (9)

is called the curve parameter, which fully describes the shape of the curve. Given
a known p, we can generate any number of points on the curve by varying t.

In practice, when we manually label face images, we label landmarks rather
than the curve directly. Suppose there are m landmarks being manually labeled
along the contour, we have:

x = [x(t1) y(t1) · · · x(tm) y(tm) ]T = Tp, (10)
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Fig. 3. An array of point coordinates are computed within the band following the target
curve. Appearance information, such as pixel intensity or HOG, can be extracted from
these coordinates and form a curve descriptor for the target curve.

where

T =

⎡
⎢⎢⎢⎢⎣

tn1 tn−1
1 · · · t1 1 0 0 · · · 0 0

0 0 · · · 0 0 tn1 tn−1
1 · · · t1 1

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
tnm tn−1

m · · · tm 1 0 0 · · · 0 0
0 0 · · · 0 0 tnm tn−1

m · · · tm 1

⎤
⎥⎥⎥⎥⎦ . (11)

By assuming the landmarks are evenly spaced, we have [t1, t2, · · · ,
tm] = [0, 1

m−1 , · · · , 1]. Hence, the curve parameter can be directly computed
from the landmark set:

p = (TT T)−1TT x. (12)

4.2 Curve Descriptor

Having introduced the mapping between the curve parameter and the landmark
set, we will present our method to extract the appearance feature for a curve,
which is called curve descriptor, given the known curve parameter.

For landmark-based shape representation, e.g. Active Shape Model (ASM) [21],
the appearance information is often extracted within a small rectangle region
around the landmark. Similarly, for curve-based representation, the curve descrip-
tor will be extracted from a band-like region along the curve.

As shown in Fig. 3, let us denote the U points along the central target curve
as {[x̆u,0, y̆u,0]}u=1,··· ,U , where [x̆u,0, y̆u,0] = [x(tu), y(tu)]. We can allocate V
synthetic curves on both sides of the target curve, where the distance between
any neighboring curves is r. Specifically, for the uth point on the curve, we have
a point [x̆u,v, y̆u,v] on its normal direction with a distance |v|r, which is then
located on the vth synthetic curve,[

x̆u,v

y̆u,v

]
=
[
x(tu) − vrsinθu

y(tu) + vrcosθu

]
, (13)

where θu is the tangent angle for the uth point on the curve:
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θu = arctan(
dy

dx
|tu) = arctan(

T′
upy

T′
upx

), (14)

and T′
u is the derivative of polynomial evaluated at tu:

T′
u =

[
ntn−1

u (n − 1)tn−2
u · · · 1 0

]
. (15)

Hence, with a set of point coordinates x̆ = {[x̆u,v, y̆u,v]}u=1,··· ,U,v=−V,··· ,V , as
well as their corresponding angles θ = {θu}u=1,··· ,U , we can extract the curve
descriptor. The simplest descriptor is to use the pixel intensity evaluated at x̆,
i.e., f(I,p) .= I(x̆). Motivated by the work of [6, 22, 23], we can also use the
powerful HOG feature as the curve descriptor:

f(I,p) .= h(x̆, θ) = [ĥ(x̆u,v, y̆u,v, θu)]u=1,··· ,U,v=−V,··· ,V , (16)

which is a concatenation of U(2V +1) L2-normalized HOG vectors, each centered
at [x̆u,v, y̆u,v] with angle θu. Note that the HOG feature we employ makes use
of the tangent angle θ. Hence it will better capture the appearance information
along the curve, as well as on either side of the curve.

4.3 Contour Congealing

With the presentation on contour representation and curve descriptor, we now
introduce how to conduct contour congealing for an ensemble of facial images.
The basic problem setup is the same as the SLSC in Section 3. That is, given
the unlabeled image set {Ii} and its initial label {p′

i}, as well as a small number
of labeled images {Ĩn} and their known labels {p̃n}, we need to estimate the
true curve parameters {pi}.

In this work, our semi-supervised contour congealing is applied on each of
the seven components independently. Notice that 5 out of the 7 components are
closed contours, where two curve functions are needed to represent the entire
contour. In contrast to the SLSC in Section 3, now we face a new challenging
problem of congealing two sets of curve parameters simultaneously, where simply
applying Eqn. 2 is not sufficient.

By denoting p1 and p2 as the curve parameters for the top curve and bot-
tom curve respectively, we can utilize one simple geometric constraint. That is,
the points on both ends of the 1st curve should overlap with those of the 2nd

curve. With that, our semi-supervised congealing for a closed contour utilizes
the following objective function:

εi(p1
i ,p

2
i ) = εi(p1

i ) + εi(p2
i ) + β‖x1

i − x2
i ‖2, (17)

where x1
i = T01p1

i , x2
i = T01p2

i , and T01 is a sub-matrix of T including its first
two rows and last two rows. This objective function is basically the summation
of the error terms from two curves, and their geometric constraint weighted by
β.
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By employing inverse warping technique [20] and similar simplification as
Eqn. 4, we have:

εi(Δp1
i , Δp2

i ) =
1 − α

K − 1

K∑
j=1,j �=i

(‖b1
j + c1

jΔp1
i ‖2 + ‖b2

j + c2
jΔp2

i ‖2)+

α

K̃

K̃∑
n=1

(‖b̃1
n + c̃1

nΔp1
i ‖2 + ‖b̃2

n + c̃2
nΔp2

i ‖2) + β‖x1
i − x2

i − ei(Δp1
i − Δp2

i )‖2,

(18)

where ei = ∂x1
i

∂p1
i

= ∂x2
i

∂p2
i

= T01, and b∗
j and c∗j can be defined similarly as Eqn. 5.

The curve parameter updates Δp1
i and Δp2

i can be estimated by solving a
linear equation system as: ⎧⎨

⎩
∂εi(Δp1

i ,Δp2
i )

∂Δp1
i

= 0,
∂εi(Δp1

i ,Δp2
i )

∂Δp2
i

= 0.
(19)

Substituting Eqn. 18 to Eqn. 19, we have:[
A1, B
B, A2

] [
Δp1

i

Δp2
i

]
= −

[
C1
C2

]
, (20)

where

A1 =
1 − α

K − 1

K∑
j=1,j �=i

(c1
j)

T c1
j +

α

K̃

K̃∑
n=1

(c̃1
n)T c̃1

n + βeT
i ei, (21)

A2 =
1 − α

K − 1

K∑
j=1,j �=i

(c2
j)

T c2
j +

α

K̃

K̃∑
n=1

(c̃2
n)T c̃2

n + βeT
i ei, (22)

B = −βeT
i ei, (23)

C1 =
1 − α

K − 1

K∑
j=1,j �=i

(c1
j)

T b1
j +

α

K̃

K̃∑
n=1

(c̃1
n)T b̃

1
n − βeT

i (d1
i − d2

i ), (24)

C2 =
1 − α

K − 1

K∑
j=1,j �=i

(c2
j)

T b2
j +

α

K̃

K̃∑
n=1

(c̃2
n)T b̃

2
n + βeT

i (d1
i − d2

i ). (25)

The above solution is straightforward to implement as long as we know how
to compute b∗

j and c∗j , among which ∂f(I,p)
∂p will likely take the most effort to

compute. Hence, from now on we will focus on the computation of ∂f(I,p)
∂p when

the curve descriptor is the HOG feature. For the case of the intensity feature,
∂f(I,p)

∂p is relatively easier and will be omitted from this discussion.
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Fig. 4. Performances of the contours on two eyes using our algorithm, the baseline and
initialization, when the number of labeled images K̃ is 10, 20, and 50

Note that our HOG feature is a L2-normalized version, ĥ = h
‖h‖2

, due to the
proven superior performance over the non-normalized version [6]. Hence,

∂ĥ
∂p

=
∂ĥ
∂h

∂h
∂p

(26)

= (
I32

‖h‖2
− 1

(‖h‖2)3/2 hhT )(
∂h

∂x̆u,v

∂x̆u,v

∂p
+

∂h
∂y̆u,v

∂y̆u,v

∂p
+

∂h
∂θu

∂θu

∂p
), (27)

where I32 is a 32 × 32 identity matrix,

∂x̆u,v

∂p
=

∂x̆u,0

∂p
− vrcosθu

∂θu

∂p
, (28)

and

∂θu

∂p
=

1
1 + (tanθu)2

∂
T′

upy

T′
upx

∂p
(29)

=
1

1 + (tanθu)2
[
− T′

upy

(T′
upx)2 T

′
u 0 1

T′
upx

T′
u 0
]
. (30)

The partial derivatives ∂h
∂x̆u,v

, ∂h
∂y̆u,v

, and ∂h
∂θu

can be computed using the defini-

tion of derivative in the discrete case, i.e., ∂h
∂x̆u,v

= h(x̆u,v, y̆u,v, θu) − h(x̆u,v −
1, y̆u,v, θu). Similar ways of computing ∂h

∂x and ∂h
∂y have been used in [22].

For the case of open facial contour, such as nose and chin, we use the first
term of Eqn. 17 as the objective function. Its solution is a simplified case of the
above derivation, and hence will be omitted here.
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5 Experimental Results

In this section, we will present the extensive experiments that demonstrate the
capability of our proposed algorithm. For our experiments, we choose a subset of
350 images from the publicly-available PUT face database [24], which exhibits
moderate variation in pose and facial expression (Fig. 1). The entire image set
is partitioned into two sets: one with 300 images is used as the unlabeled image
ensemble I, the other with 50 images will be randomly chosen as the labeled
image set Ĩ. All images have manually labeled ground-truth on the facial contours
of 7 components (Fig. 2). For example, the contour of an eye is labeled with 20
landmarks. There are 166 total landmarks labeled for all 7 contours. This ground-
truth will not only provide the known curve parameter p̃n for labeled image Ĩn

(via Eqn. 12), but also be used in quantitative evaluation of the performance.
Since the very recent work of Tong et al. [1] is the most relevant to ours, it

is chosen as the baseline approach for comparison. We have implemented both
algorithms in Matlab and ensure they are tested under the same condition. Al-
though PUT is a high quality face database, we downsample the face size to be
around 70 pixels eye-to-eye, mostly based on the concern that the efficiency of
the baseline algorithm largely depends on the average face size. For the labeled
set, both algorithms have their p̃ parameters computed from the manually la-
beled 166 landmarks per image. For the unlabeled set, both algorithms use the
PittPatt face detector [25] to compute the initial p, by placing an average set
of landmarks/contours (see the top-right of Fig. 1), which is computed from the
small set of labeled images, within the detected face rectangle. This is a valid
initialization since face detection is almost a commodity.

For our algorithm, once the estimation of curve parameters is completed, we
compute the average of the distances between each ground-truth landmark and
the estimated curve, and then divide it by the distance between the two eye
centers. This quantitative evaluation is called Normalized Point to Curve Error
(NPCE), and is expressed as a percentage. We also compute NPCE for the
baseline because a curve function can be fitted to the estimated landmarks via
the baseline algorithm.

5.1 Performance Comparison

We will first present the performance comparison between our algorithm and
the baseline approach. For each unlabeled image in our algorithm, once the av-
erage contour is placed within the face detection rectangle, we have the initial
curve parameters for all seven components. Then the contour congealing is con-
ducted on each component independently. Note that we only use the very basic
face detection functionality and no additional landmark detection, such as eye
and nose, is conducted using the PittPatt SDK. Hence, it is obvious that face
detection can have quite a large variation on localization, especially for smaller
components. However, our algorithm does surprisingly well in handling this real-
world challenging initialization and congealing all components independently. Of
course, one potential future work is to use the better-congealed components, and
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Fig. 5. Comparison of our algorithm, the baseline and initialization (K̃ = 10) for (a)
two eyebrows, (b) mouth, (c) chin, (d) nose

global spatial distribution of components learned from labeled data, to produce
a better initialization for other components.

For both algorithms, we perform three sets of experiments, each with a dif-
ferent number of labeled images, K̃=10, 20, and 50. For all components in our
algorithm, we use 4th-order polynomials (n = 4) in the curve function, and the
2 × 2 cell 8-bin HOG feature for the curve descriptor, where V ∈ [3, 5] and
r ∈ [1, 2] for various components. We fix α = 0.5 and β = 50 throughout the
experiments.

To better understand the system performance, we plot the comparison for two
eye components in Fig. 4. The cumulative distribution function (CDF) of NPCE
is plotted for the results of our algorithm, the baseline, and the initialization via
face detection. It is clear that our algorithm improves the initialization with a
large margin, while the baseline performs slightly worse than the initialization.
We attribute this worse performance of the baseline to the pose variation in the
data, which makes the image warping and progressive affine approximation less
likely to work well. Note that for our algorithm, more than 90% of the unlabeled
images have the final eye localization error less than 2% of eye-to-eye distance.
For the right eye, it takes our algorithm 13 − 15 iterations (about 3.5 hours on
the conventional PC) to converge for the entire test set when K̃ is 10 or 20.

In comparing the results with various K̃, we can see that our approach at
K̃ = 10 is almost as good as when K̃ = 50. This is a very important prop-
erty since it means our approach can be used with a very small set of labeled
images. The similar property is also observed in the comparison of other compo-
nents. Hence, due to limited space, we show the results of other components only
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(a)

(b)

(c)

(d)

Fig. 6. The initialization and results of our algorithm on various facial components:
(a) left eyebrow (K̃ =20), (b) left eye (K̃ =50), (c) mouth (K̃ =10), and (d) whole face
(K̃ = 10). It can be seen that some of the images, especially those with background
displayed, are of faces with noticeable pose variation. Notice the large amount of shape
variation exhibited in the data that can be handled by our algorithm.
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Fig. 7. The confidence of labeling the eye component increases from the top row to
bottom row. We observe that almost all failed cases can be found in the category with
lowest confidence score.

when K̃ =10 in Fig. 5. Again, for all the remaining components, our algorithm
performs substantially better than the baseline, which also improves over the
initialization except the chin contour. We attribute the improvement of our al-
gorithm to three reasons: 1) the partition scheme and using a set of affine warps
to approximate non-rigid deformation of [1] pose limitation on the accuracy; 2)
the feature extracted along the curve better describes the appearance informa-
tion than the feature in the partitioned rectangle of [1]; 3) the HOG feature is
more suitable for localization than the intensity feature in [1]. We also illustrate
the congealing results of our approach on various components in Fig. 6.

5.2 Labeling Confidence

Knowing when an algorithm does not converge is often as important as overall
algorithm performance. This is especially true for semi-supervised algorithms.
Hence, a confidence score is desirable for practical applications in order to eval-
uate the quality of labeling without ground truth. For this we use εi(p1

i ,p
2
i ) in

Eqn. 17. A smaller εi indicates a higher-confidence in labeling. By partitioning
the 300 confidence scores into 5 bins, Fig. 7 shows labeled left eye component
from the lowest 20% to the highest 20% confidence scores, in our 300-image en-
semble (K̃ =10). Fig. 8 also illustrates the distribution of the estimated εi versus
the actual labeling error represented by the NPCE for the left eye component.
With the increase of the εi, the landmark labeling error increases significantly.
Hence, it is clear that this confidence score is indicative of labeling performance.
The linear correlation between εi and NPCE can also be shown by the computed
Pearson correlation coefficient, which is 0.715. Similar phenomena have been ob-
served for experiments on other facial components. In practice, after labeling,
one can use this confidence score to select only high-confident samples for a
training set, or to select low-confident samples for other appropriate additional
processing.
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Fig. 8. The correlation between the labeling confidence (εi) and actual labeling error
(NPCE). The Pearson correlation coefficient between these two variables is 0.715.

6 Conclusions

Real-world objects can exhibit a large amount of shape deformation on 2D im-
ages due to intra-object variability, object motion, and camera viewpoint. Rather
than the conventional landmark-based representation, we propose to use curve
functions to describe the facial contour. We demonstrate a complete system that
is able to simultaneously align facial contour for a large set of unlabeled images
with face detection results, given a few labeled images. Extensive experiments
demonstrate that our system has achieved much more accurate labeling results
compared to the previous state-of-the-art approach on face images with moder-
ate changes in pose and expression.
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Abstract. We propose a novel approach to increase the robustness of
object detection algorithms in surveillance scenarios. The cascaded con-
fidence filter successively incorporates constraints on the size of the ob-
jects, on the preponderance of the background and on the smoothness
of trajectories. In fact, the continuous detection confidence scores are
analyzed locally to adapt the generic detector to the specific scene. The
approach does not learn specific object models, reason about complete
trajectories or scene structure, nor use multiple cameras. Therefore, it
can serve as preprocessing step to robustify many tracking-by-detection
algorithms. Our real-world experiments show significant improvements,
especially in the case of partial occlusions, changing backgrounds, and
similar distractors.

1 Introduction

Monocular multi-object detection and tracking with static cameras is a chal-
lenging, but practically important problem. The task is inherently difficult due
to the variability of object and background appearances. Most current methods
depend on careful camera placement, as to avoid occlusions, see Fig. 1(a). How-
ever, in many settings this is virtually impossible, with deteriorating detection
results as a consequence as illustrated in Fig. 1(b).

(a) i-LIDS dataset (b) SCOVIS dataset

Fig. 1. (a) Typical state-of-the art methods for object detection perform quite well
when applied to current datasets, i.e. the maximum of the detection confidence map
clearly corresponds to the fully visible person. (b) However, the detection confidence
map is highly ambiguous in more cluttered scenes such as the SCOVIS dataset due to
partial occlusions and similar structures in the background.

K. Daniilidis, P. Maragos, N. Paragios (Eds.): ECCV 2010, Part I, LNCS 6311, pp. 369–382, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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(a) geometric filter (b) background filter (c) trajectory filter (d) final detections

Fig. 2. The proposed Cascaded Confidence Filter (CCF) refines the noisy confidence
map to robustify tracking-by-detection methods. It combines prior information about
the object size (a), predominant background (b) and smooth trajectories (c) in or-
der to detect objects which move smoothly on the ground plane (d). The confidences
correspond to the foot-points on the ground plane.

Currently, most object detectors consist of a learned appearance model, e.g.,
[1,2]. Despite significant, recent improvements, e.g., [3], their accuracy is still far
from perfect. Further improvements increasingly come from the analysis of the
detection context rather than merely analyzing the object patch, e.g., consid-
ering perspective [4]. In fact, context is also beneficial in pre-processing [5] or
during learning of object detectors to better match training data to test data.
In particular, classifier grids [6] learn separate object detectors at each image
location in an on-line manner. However, unsupervised learning of such models
might lead to label noise and deterioration of results [7].

Tracking-by-detection methods, e.g., [8,9], apply object detection indepen-
dently in each frame and associate detections across frames to bridge gaps and
to remove false positives. The use of continuous detection confidence scores in
combination with thresholded detections and specific object models has been
shown to facilitate target association [10]. Furthermore, scene specific knowledge,
like entry/ exit zones to initialize trackers, helps to improve tracking results [9].
Yet, in tracking-by-detection with a static camera, one might also benefit from
long-term observations of the scene, similar to detection and tracking in early
surveillance scenarios which involved background models and change detection,
e.g., [11].

We introduce a cascaded filtering of the detector confidence map, coined Cas-
caded Confidence Filtering or CCF. CCF incorporates constraints on the size of
the object, on the preponderance of the background and on the smoothness of
trajectories. In fact, the results of any sliding window detection algorithm can
be improved with CCF in case of a static camera. As an example, Fig. 2 shows
the successively refined detector confidence map from Fig. 1(b), finally allowing
for detection of all three persons in that scene.

Contribution. CCF adapts a generic person detector to a specific scene. In
particular, CCF combines a number of the reviewed approaches, trying to inherit
their strengths while avoiding their weaknesses.
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– CCF refrains from globally thresholding the detections. Instead, the continu-
ous confidence scores of the detector are modeled at each position separately,
similar to classifier grid approaches. In contrast to the latter, we rather use
a fixed object model and analyze the detection confidences similar to color
background modeling. The embedded use of a discriminative object model
in background modeling allows to circumvent difficulties with noisy blobs,
partial occlusions and different objects with similar shape.

– Detection responses are put into their spatial and temporal context as with
tracking-by-detection. But these confidence levels are first filtered on a small
spatial and a short temporal scale before reasoning about longer trajecto-
ries or scene structure. In fact, the smoothness of trajectories is ensured
through a process analogous to vessel filtering in medical imaging. Those
additional constraints permit to keep the advantages of an object detector
while suppressing detections on background structures.

The refined detection confidence map can then be given to various existing
tracking-by-detection frameworks modeling the scene structure and learning spe-
cific object models. It is shown that the filtered detections can be associated to
long trajectories employing a typical tracking-by-detection method. Conversely,
the same tracking-by-detection method performs dismally using the unfiltered
detections.

The remainder of the paper is organized as follows. In Sec. 2 we present our
CCF approach. Detailed experiments as well as improved object detection and
tracking results are shown in Sec. 3. Finally, Sec. 4 suggests further work and
concludes the paper.

2 Cascaded Confidence Filtering Approach

The input for our algorithm are confidence scores S, which are proportional
to the likelihood that the object of interest appears at a certain position, i.e.,
P (obj) ∝ S. More formally, let S(I, x, y, s) ∈ R be the continuous confidence
score of the object detector at the center position (x, y) and scale s in an image
I. Then, the goal of our method is to successively filter the detection confidence
responses by including spatial and temporal context as depicted in Fig. 2 and
more detailed in Fig. 3. Summarizing, any object of the object class of interest
moving smoothly on a ground plane fulfills the assumptions of the filter steps
and their detection scores are enhanced accordingly. Each individual filtering
step is described in one of the following subsections.

2.1 Geometric Filter

The geometric filter incorporates the assumption that the objects move on a
common ground plane restricting their possible size in the image, see second
row of Fig. 3. This constraint has already been used either as post-processing
in order to suppress inconsistent detections (e.g., [4]) or more recently as pre-
processing to fit the image better to the training data of the detector, e.g., [5].
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Following the latter approach, we only evaluate the object detection scores S′

within appropriate candidate windows

P (obj|geometry) ∝ S′ = S(I, x, y, s) (1)

where (x, y, s) satisfy the geometric constraints.

2.2 Background Filter

The second filter benefits from long-term observations as typically provided in
surveillance situations. We follow a similar approach as in traditional background
modeling. However, instead of modeling the pixel color values as in [11], we
model the geometrically filtered confidence scores S′. Those are modeled using
mixture of Gaussians ensuring robustness against environmental changes, e.g.,
of illumination. In fact, the detector confidence scores S′ are modeled separately
at each location as

P (S′) =
K∑

k=1

wkη(S′, μk, σ2
k) (2)

where η(S′, μ, σ2) =
1√

2πσ2
e−

(S′−μ)2

2σ2 . (3)

Updating the K mixture components and their weights wk is done in the same
on-line manner as described in [11]. We also use the heuristic assumptions of the
latter approach to identify the mixture components belonging to background
activities, i.e. by selecting the Gaussian distributions which have the most sup-
porting evidence (mixture weights wk) and the least variance σ2

k. In fact, the
mixture components are sorted according to w/σ2 and the first B components
are selected to model a defined portion T of the data. Finally, the probability of
the object belonging to the foreground class is given by

P (obj|geometry, background) ∝ S′′ =

⎧⎪⎨
⎪⎩1 −

B∑
b=1

wbη(S′, μb, σ
2
b ) if ∀b : S′ > μb

0 otherwise

where B = argmin
b

( b∑
i=1

wi > T
)
. (4)

The intuition behind this heuristic is that the variance in the detection confi-
dence of a background activity is smaller than the variance of moving objects of
interest. Moreover, the background is generally expected to be present more of-
ten than moving objects. In contrast to [11], we only consider confidences higher
than the mean of the assumed background distribution, since object presence
should always lead to a higher detection confidence even when the background
confidence is already quite high.
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Fig. 3. The detection confidences are successively refined by our cascaded filtering
approach incorporating a-priori constraints on scene, objects and trajectories
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The proposed background filter can also be seen as location specific threshold
adaptation for detection. Consequently, (i) systematically occurring false posi-
tives are removed, which increases precision, whereas (ii) the sensitivity in other
regions (e.g., containing occluders) is increased, which possibly increases recall.
An example is depicted in the third row of Fig. 3.

2.3 Trajectory Filter

The background filtered confidence map is supposed to suppress static back-
ground structures. The trajectory filter is designed to exclude other moving
objects which might pass the previous filter step. In fact, there are two obser-
vations which are not likely to be correct for other moving objects. Firstly, an
object appearance usually causes multiple (similar) responses within a local re-
gion in the image (see Fig. 1(a) or the related discussion in [1]). Secondly, the
confidences should also be continuously changing over time, i.e. the object is not
disappearing completely from one frame to the next.

We propose to analyze the volume spanned by the temporal aggregation of
the confidence maps. In that volume, we enhance geometrical structures which
resemble tubes while suppressing spurious or multiple responses. Therefore we
apply the vessel filter approach proposed by Frangi et al. [12] in our context
of trajectory filtering. In fact, the approach was originally designed to enhance
vascular or bronchial vessel structures in medical data like magnetic resonance
images. So a fitted ellipsoid in the defined spatial/ temporal volume Θ is used
to extract the direction of elongation of high confidences. The approach does
analyze the eigenvectors of the Hessian matrix to calculate the principal direc-
tions in which the local second order structure of the image can be decomposed.
Therefore the eigenvalues λ1, λ2, λ3 (sorted ascend with respect to their abso-
lute value) directly describe the curvature along the vessel. An ideal vessel has
corresponding eigenvalues which fulfill the constraints

|λ1| ≈ 0 and |λ1| � |λ2| and λ2 ≈ λ3, (5)

,i.e., more or less no curvature along the first principle axis and similar (higher)
curvature along the other two axes. The sign of the eigenvalues is negative in our
case as locations on the trajectories are indicated through higher P (obj|geometry,
background). The “vesselness” measure is obtained on the basis of all eigenvalues
of the Hessian matrix as

V (Θ) =

⎧⎨
⎩

0 if λ2 > 0 ∨ λ3 > 0(
1 − e

− λ2
1

2|λ2λ3|α2

)
e
− λ2

2
2λ2

3β2

(
1 − e−

λ2
1+λ2

2+λ2
3

2c2

)
otherwise

(6)
where α, β and c are thresholds which control the sensitivity (please refer to [12]
for more details). This function provides the probabilistic output

P (obj|geometry, background, trajectory) ∝ V (Θ). (7)
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Fig. 4. Left: filtered detector confidence volume by our CCF approach with four trans-
parent planes at selected time instances. Middle: confidence maps for the 4 instances
projected onto the ground plane. Right: the corresponding frames overlaid with the
detection results. As it can be seen, all the detections at this stage (white) correspond
to true positives. There are no false positives among them in this example. Only one
person was left undetected (dotted red).

An example is shown in the fourth row of Fig. 3. Additionally, a longer sequence
(about half a minute) with corresponding images overlaid with the detections is
depicted in Fig. 4.

2.4 Post-Processing

After applying the trajectory filter, possible trajectory-like structures are en-
hanced, but not yet segmented. Inspired by particle filtering methods of [13] for
segmentation of coronaries and [10] for multi-object tracking, we use a simple
particle filter to resolve ambiguities and output detections, see last row of Fig. 3.
This last filtering step has a similar purpose as the common non-maxima sup-
pression, used for instance in [1] to get non-overlapping detections. However, in
the case of video streams, one should benefit from the temporal information.
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We use a bootstrap filter, where the state of a particle x = (x, y, u, v) consists
of the 2D position (x, y) on the ground plane and the velocity components (u, v).
For prediction, we assume a constant velocity motion model, i.e.,

(x, y)t = (x, y)t−1 + (u, v)t−1 · Δt + ε(x,y) (8)
(u, v)t = (u, v)t−1 + ε(u,v) (9)

where the process noise ε(x,y), ε(u,v) for each state variable is independently
drawn from zero-mean normal distributions.

As observations we use the values from the filtered spatial/ temporal volume.
The importance weight w(i) for each particle i at time step t is then described
by:

w
(i)
t ∝ w

(i)
t−1 · P (obj|(x, y)t, geometry, background, trajectory) (10)

From that weight distribution, re-sampling in each time step is performed using
a fixed number of N particles.

For tracklet initialization, the filtered confidence must be above a certain user
defined threshold θinit.

Furthermore, the particles are gated in order to remove the multi-modality
provided by particle filtering if the filtered confidence exceeds another user-
defined threshold θgating ≥ θinit.

For each image, the particle with the highest filtered confidence corresponds to
the assumed position of the object in this frame. The object can then be detected
in the image by mapping it back to the corresponding image coordinates.

3 Experimental Results

In principle, the proposed CCF approach can be used with any sliding windows
object detector, e.g., to locate cars or faces, as long as the camera remains static.
However, our experiments are focused on the task of human detection.

Datasets. We use two video sequences for evaluation: (i) the public i-LIDS AB
Easy dataset1 and (ii) our recorded SCOVIS dataset.

The SCOVIS dataset was captured at a workstation in a car manufacturing
site. It is challenging due to the industrial working conditions (e.g., sparks and
vibrations), difficult structured background (e.g., upright racks, and heavy oc-
clusions of the workers in most parts of the image), and other moving objects
(e.g., welding machines and forklifts). Of the total 8 hours of video we evaluated
a sequence of 5,000 frames after 5,000 frames used to initialize the background
statistics. We manually annotated every 10th frame for evaluation purposes.

3.1 Implementation Details

In this section, we shortly report the details of our implementation. Most sub-
parts are publicly available and should make our experiments easily repeatable.
1 Available at http://www.elec.qmul.ac.uk/staffinfo/andrea/avss2007_d.html,

2010/03/10

http://www.elec.qmul.ac.uk/staffinfo/andrea/avss2007_d.html
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Person detector (HoG). We use the OpenCV 2.0 implementation of the
histogram of oriented gradients (HoG) person detector [2]2. Please note that
more sophisticated part-based approaches, e.g., [3], could also be used.

Geometric filter (GF). We assume one common ground plane in the scene
with a flat horizon. The ground plane calibration, i.e., determining the scale
of a typical person at each position on the ground plane is done manually. The
detector is evaluated on a virtual grid in the image plane with 32×297 resolution
in the SCOVIS and 32× 375 resolution in the i-LIDS dataset.

Background filter (BF). We use the on-line mixture of Gaussians implemen-
tation of Seth Benton3 with K = 2 mixture components. The time constant for
updating the distributions, see [11], is set to α = 10−4 in both datasets. The
background model is expected to capture at least 80% of the mixture model,
i.e., we set T = 0.8 in Eq.(4). Both parameters are set to ensure that standing
persons are not easily integrated in the background model.

Trajectory filter (TF). We use Dirk-Jan Kroon’s implementation4 of the
Frangi vessel filter [12] with default parameters and scale parameter set to 3.

Particle filter (PF). We use N=150 particles, the variance for the position
noise is set to σ2

x=0.8 and σ2
y=0.2 and the variance for the velocity noise is set

to σ2
u,v = 0.1, all variances are set with respect to the grid in the image plane.

Person detection takes approximately 600 ms per frame, BF about 6 ms, TF
about 14 ms and PF about 10 ms using a single core of a 3 GHz processor. The
computational bottleneck is clearly the detection part, the proposed filter steps
are essentially real-time.

3.2 Improving Object Detection

Our CCF approach combines the strength of background and appearance based
approaches, whereas the individual ones are going to fail, as depicted in Fig. 5.
For instance, pixel-wise color background subtraction will simply focus on all
moving objects. Besides, occluded persons are hard to discern in the noisy fore-
ground mask. Furthermore, the pre-trained detector ignores temporal informa-
tion completely and a global threshold does not allow to detect occluded persons
in the presence of difficult background. Our approach overcomes those limitations
since the location specific detection confidence values are modeled temporally.

Details. Two typical detector confidence distributions and the fitted Gaus-
sian mixture models are visualized in Fig. 6. At the position marked in green
in Fig. 6(a), one Gaussian is considered to represent the background activities,

2 Available at http://sourceforge.net/projects/opencvlibrary, 2010/02/24
3 Available at
http://www.sethbenton.com/mixture_of_gaussians.html, 2010/03/07

4 Available at
http://www.mathworks.com/matlabcentral/fileexchange/

24409-hessian-based-frangi-vesselness-filter ,2010/02/24

http://sourceforge.net/projects/opencvlibrary
http://www.sethbenton.com/mixture_of_gaussians.html
http://www.mathworks.com/matlabcentral/fileexchange/24409-hessian-based-frangi-vesselness-filter
http://www.mathworks.com/matlabcentral/fileexchange/24409-hessian-based-frangi-vesselness-filter
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(a) image (b) change detection (c) person detector (d) our approach

Fig. 5. Confidence scores of different methods. (b) simple background modeling with
change detection also reports other moving objects while partially occluded persons are
difficult to retrieve, (c) appearance based object detectors have difficulties in detecting
occluded persons and discriminating the background, (d) our approach successfully
refines the confidence map allowing for better detection results.

(a) image (b) position “green” (c) location “white”

Fig. 6. Two typical mixture of Gaussians obtained by background modeling of [11]
applied on detector confidence values. Mixture components which are considered to
belong to the background model are shown in red, with T = 0.8.

whereas the second Gaussian (with a larger variance) is considered to model the
activity of the object of interest at this location. At the second location depicted
in 6(b), no persons are present (the welding machine is there) only parts of
persons or sparks. Hence, both Gaussians with relatively high mean confidences
belong to the background model. This also explains the drawbacks of using one
global threshold for the whole image. Please note that these confidence statis-
tics are computed over a relatively long time interval to not quickly integrate
standing persons into the background model.

Evaluation. For a quantitative evaluation, we use recall-precision curves
(RPCs). The recall corresponds to the detection rate whereas the precision re-
lates to the trustfulness of a detection. In particular, a detection is accepted
as true positive if it fulfills the overlap criterion of [14], i.e., a minimal overlap
a0 = (area(Bp) ∩ area(Bgt))/(area(Bp) ∪ area(Bgt)) of 50 % is needed between
the predicted bounding box Bp and the ground truth bounding box Bgt to count
as true positive. Additionally, we also report recall and precision at maximized
F-measure which is the harmonic mean between recall and precision.
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filter5 recall prec. F-m.

HoG [2] (input) 0.3 % 0.1 % 0.2 %
GF 17.0 % 18.9 % 17.9 %
GF+BF 30.1 % 38.6 % 33.8 %
GF+BF+TF 52.7 % 52.7 % 52.7 %
GF+BF+TF+PF 55.4 % 60.2 % 57.7 %

GF GF+BF GF+BF+TF GF+BF+TF+PF

Fig. 7. Recall-precision curves for each individual filter step in the SCOVIS dataset.
Bottom: Example detections at maximized f-Measure

The RPC of each individual filter step in the SCOVIS dataset is depicted in
Fig. 7 in conjunction with example detections. Improved results are manifested
after each individual filter step of CCF in terms of increased recall and precision.
Since the filtering steps are complementary the performance can be boosted by
roughly 15-20 % in terms of f-Measure each. In particular, the geometric fil-
ter does not consider detections at inappropriate scales, the background filter
adjust locally the detection thresholds (increasing the sensitivity) while the tra-
jectory filter enforces temporal consistency. The post-processing to better align
the detections increases precision and recall only slightly.

Comparisons. Quantitative and qualitative comparisons are shown in Fig. 8
and Fig. 9 for the i-LIDS AB Easy dataset and the challenging SCOVIS dataset,
respectively. As baseline, we consider the detection results after the geometric
filter since similar assumptions, e.g., about the ground plane, are often found
in literature, e.g., [4]. The i-LIDS AB Easy datasets was chosen intentionally
to illustrate the formidable performance of the person detector which is not
lowered by CCF. In particular, the datasets contains several standing persons
whose detection is shown to not be affected by the filter cascade.

However, in the more challenging SCOVIS dataset with poor detection results,
CCF significantly improves the results by about 40 % in terms of f-Measure. De-
tailed results of applying our algorithm on both datasets are depicted in Fig. 10.

5 HoG: Histogram of Gradients person detector [2]; GF: geometric filter; BF: back-
ground filter; TF: trajectory filter; PF: particle filter.
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approach recall prec. F-m.

HoG [2]+GF 54.7 % 86.6 % 67.0 %
simple fusion 54.3 % 87.5 % 67.0 %
our approach 53.3 % 89.4 % 66.8 %

Fig. 8. Results for the i-LIDS dataset in comparison to other approaches. Please note
that the ground truth includes fully occluded persons which are impossible to detect.
This said, the input is nearly perfect and all approaches perform similarly.

approach recall prec. F-m.

HoG [2]+GF6 17.0 % 18.9 % 17.9 %
simple fusion 12.9 % 47.2 % 20.2 %
det. grid [6] 17.6 % 29.5 % 22.1 %
our approach 55.4 % 60.2 % 57.7 %

HoG + GF simple fusion det. grid our approach

Fig. 9. Results for the SCOVIS dataset in comparison to other approaches

Additionally, we also evaluated a simple combination of traditional back-
ground modeling and human detection, i.e., a detection is only taken into account
if at least 20 % of the bounding box is not modeled as foreground. However, this
combination does not improve the results significantly as it is just a verification
step a posteriori. We also compared our improved detections to the recently
proposed approach of learned location specific classifiers [6]7 which aims to in-
clude background information during learning. Whereas they are able to show
improved results on common datasets, the results clearly shows that such an
approach can not cope well with the challenges of the SCOVIS dataset.

6 The part-based person detector of [3] achieved a recall of 2.3 % at a precision of
63.3 % with geometric filtering and default parameters.
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Fig. 10. Short tracklets obtained by using the proposed CCF approach to improve on
the HoG detection confidence. More examples are given on the authors’ web page.

Fig. 11. Complete trajectories found by [9] using the improved detection results of our
approach. The approach performs dismally if the HoG detections are directly passed
to their detection association method.

3.3 Improving Tracking-by-Detection

Recent work explores tracking-by-detection [8,9], i.e. applying an object detec-
tor in each frame and then associating the detections across frames. The post-
processing of CCF links the detections similarly, but at a lower level without ex-
trapolation. To indicate improved tracking-by-detection results, we employ the
approach of [9] which performs global trajectory association in an hierarchical
manner7. The experiment was run twice, (i) providing the raw HoG detections
and (ii) the improved ones obtained by CCF. Whereas the approach is per-
forming dismally using the raw detections (not shown here), long trajectories
are output when using CCF as pre-processing. Tracking results are depicted in
Fig. 11.

7 We gratefully thank the authors for applying their code on the SCOVIS dataset.
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4 Conclusion and Future Work
We presented a novel method for filtering the detection confidences in surveil-
lance scenarios. Our approach reamins very general, only requiring a static cam-
era and a sliding-windows object detector. CCF involves geometric constraints,
long-term temporal constraints to suppress the background confidence distribu-
tion and short-term smoothness constraints on possible trajectories. The experi-
mental evaluation on the task of person detection shows significant improvement
over the input object detection results, especially in the case of occlusions and
cluttered background. The approach does not learn specific object models, in-
corporate scene specific constraints, reason about complete trajectories, or use
multiple cameras. All those extensions remain to be explored to further robustify
tracking-by-detection methods.

Acknowledgments. This research was supported by the European Communi-
tys Seventh Framework Programme under grant agreement no FP7-ICT-216465
SCOVIS. We further thank Lee Middleton and Christine Tanner for inspiring dis-
cussions.
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Abstract. We propose a novel system for associating multi-target tracks
across multiple non-overlapping cameras by an on-line learned discrim-
inative appearance affinity model. Collecting reliable training samples
is a major challenge in on-line learning since supervised correspondence
is not available at runtime. To alleviate the inevitable ambiguities in
these samples, Multiple Instance Learning (MIL) is applied to learn an
appearance affinity model which effectively combines three complemen-
tary image descriptors and their corresponding similarity measurements.
Based on the spatial-temporal information and the proposed appearance
affinity model, we present an improved inter-camera track association
framework to solve the “target handover” problem across cameras. Our
evaluations indicate that our method have higher discrimination between
different targets than previous methods.

1 Introduction

Multi-target tracking is an important problem in computer vision, especially
for applications such as visual surveillance systems. In many scenarios, multi-
ple cameras are required to monitor a large area. The goal is to locate targets,
track their trajectories, and maintain their identities when they travel within or
across cameras. Such a system consists of two main parts: 1) intra-camera track-
ing, i.e. tracking multiple targets within a camera; 2) inter-camera association,
i.e. “handover” of tracked targets from one camera to another. Although there
have been significant improvements in intra-camera tracking , inter-camera track
association when cameras have non-overlapping fields of views (FOVs) remains
a less explored topic, which is the problem we focus on in this paper.

An illustration for inter-camera association of multiple tracks is shown in
Figure 1. Compared to intra-camera tracking , inter-camera association is more
challenging because 1) the appearance of a target in different cameras may not be
consistent due to different sensor characteristics, lighting conditions, and view-
points; 2) the spatio-temporal information of tracked objects between cameras
becomes much less reliable. Besides, the open blind area significantly increases
the complexity of the inter-camera track association problem.

Associating multiple tracks in different cameras can be formulated as a cor-
respondence problem. Given the observations of tracked targets, the goal is to
find the associated pairs of tracks which maximizes a joint linking probability,

K. Daniilidis, P. Maragos, N. Paragios (Eds.): ECCV 2010, Part I, LNCS 6311, pp. 383–396, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Camera 1 Camera 2Open Blind Area

Fig. 1. Illustration of inter-camera association between two non-overlapping cameras.
Given tracked targets in each camera, our goal is to find the optimal correspondence
between them, such that the associated pairs belong to the same object. A target may
walk across the two cameras, return to the original one, or exit in the blind area. Also,
a target entering Camera 2 from blind area is not necessarily from Camera 1, but may
be from somewhere else. Such open blind areas significantly increase the difficulty of
the inter-camera track association problem.

in which the key component is the affinity between tracks. For the affinity score,
there are generally two main cues to be considered: the spatio-temporal informa-
tion and appearance relationships between two non-overlapping cameras. Com-
pared to spatial-temporal information, the appearance cues are more reliable
for distinguishing different targets especially in cases where FOVs are disjoint.
However, such cues are also more challenging to design since the appearances of
targets are complex and dynamic in general. A robust appearance model should
be adaptive to the current targets and environments.

A desired appearance model should incorporate discriminative properties be-
tween correct matches and wrong ones. Between a set of tracks among two non-
overlapping cameras, the aim of the affinity model is to distinguish the tracks
which belong to the same target from those which belong to different targets.
Previous methods [1,2,3] mostly focused on learning the appearance models or
mapping functions based on the correct matches, but no negative information
is considered in their learning procedure. To the best of our knowledge, online
learning of a discriminative appearance affinity model across cameras has not
been utilized.

Collecting positive and negative training samples on-line is difficult since no
hand-labelled correspondence is available at runtime. Hence, traditional learning
algorithms may not apply. However, by observing spatio-temporal constraints of
tracks between two cameras, some potentially associated pairs of tracks and some
impossible pairs are formed as “weakly labelled samples”. We propose to adopt
the Multiple Instance Learning (MIL) [4,5,6] to accommodate the ambiguity
of labelling during the model learning process. Then the learned discrimina-
tive appearance affinity model is combined with spatio-temporal information to
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compute the crucial affinities in the track association framework, achieving a
robust inter-camera association system. It can be incorporated with any intra-
camera tracking method to solve the problem of multi-object tracking across
non-overlapping cameras.

The rest of the paper is organized as follows. Related work is reviewed in
Section 2. The overview of our approach is given in Section 3. The framework
of track association between two cameras is described in Section 4. The method
of learning a discriminative appearance affinity model using multiple instance
learning is discussed in Section 5. The experimental results are shown in Sec-
tion 6. The conclusion is given in Section 7.

2 Related Work

There is large amount of work, e.g. [7,8,9], for multi-camera tracking with over-
lapping field of views. These methods usually require camera calibration and
environmental models to track targets. However, the assumption that cameras
have overlapping fields of view is not always practical due to the large number
of cameras required and the physical constraints upon their placement.

In the literature, [10,11,12] represent some early work for multi-camera track-
ing with non-overlapping field of views. To establish correspondence between
objects in different cameras, the spatio-temporal information and appearance re-
lationship are two important cues. For the spatio-temporal cue, Javed et al. [13]
proposed a method to learn the camera topology and path probabilities of objects
using Parzen windows. Dick and Brooks [14] used a stochastic transition matrix
to describe people’s observed patterns of motion both within and between fields
of view. Makris et al. [15] investigated the unsupervised learning of a model of
activity from a large set of observations without hand-labeled correspondence.

For the appearance cue, Porikli [1] derived a non-parametric function to model
color distortion for pair-wise camera combinations using correlation matrix anal-
ysis and dynamic programming. Javed et al. [2] showed that the brightness
transfer functions(BTFs) from a given camera to another camera lie in a low di-
mensional subspace and demonstrated that this subspace can be used to compute
appearance similarity. Gilbert and Bowden [16] learned the BTFs incrementally
based on Consensus-Color Conversion of Munsell color space [17].

Besides, there is some work addressing the optimization framework of multiple
targets correspondence. Kettnaker and Zabih [12] used a Bayesian formulation to
reconstruct the paths of targets across multiple cameras. Javed et al. [13] dealt
with this problem by maximizing the a posteriori probability using a graph-
theoretic framework. Song and Roy-Chowdhury [18] proposed a multi-objective
optimization framework by combining short-term feature correspondences across
the cameras with long-term feature dependency models.

Learning a discriminative appearance affinity model across non-overlapping
cameras at runtime makes our approach different from the existing ones. Most
previous methods did not incorporate any discriminative information to distin-
guish different targets, which is important for inter-camera track association
especially when the scene contains multiple similar targets.
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Fig. 2. The block diagram of our system for associating multiple tracked targets from
multiple non-overlapping cameras

3 Overview of our Approach

Our system contains three main components: the method of collecting online
training samples, the discriminative appearance affinity model, and track as-
sociation framework. We use a time sliding window method to process video
sequences. The learned appearance affinity models are updated in each time
window. The system block diagram of our method is shown in Figure 2.

The collection of online training samples is obtained by observing the spatio-
temporal constraints in a time sliding window. Assuming that the multi-object
tracking is finished in each camera, a training sample is defined as a pair of tracks
from two cameras respectively. Negative samples are collected by extracting pairs
of tracks in two cameras which overlap in time. It is based on the assumption
that one object can not appear in two non-overlapping cameras at the same
time. Positive samples could be collected by similar spatio-temporal information.
However, it is difficult to label the positive training sample in an online manner
since it is indeed the correspondence problem that we want to solve. Instead
of labelling each sample, several potentially linked pairs of tracks constitute
one positive “bag”, which is suitable for the Multiple Instance Learning (MIL)
algorithm.

The learning of appearance affinity model is to determine whether two tracks
from different cameras belong to the same target or not according to their ap-
pearance descriptors and similarity measurements. Instead of using only color
information as in previous work, appearance descriptors consisting of the color
histogram, the covariance matrix, and the HOG feature, are computed at multi-
ple locations to increase the power of description. Similarity measurements based
on those features among the training samples establish the feature pool. Once
the training samples are collected in a time sliding window, a MIL boosting
algorithm is applied to select discriminative features from this pool and their
corresponding weighted coefficients, and combines them into a strong classifier
in the same time sliding window so that the learned models are adapted to the
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current scenario. The prediction confidence output by this classifier is trans-
formed to a probability space, which cooperates with other cues (e.g. spatial
correspondence and time interval) to compute the affinity between tracks for
association.

The association of tracks in two cameras is formulated as a standard assign-
ment problem. A correspondence matrix is defined where the pairwise association
probabilities are computed by spatio-temporal cues and appearance information.
This matrix is designed to consider all possible scenarios in two non-overlapping
cameras. The Hungarian algorithm is applied to solve this problem efficiently.

4 Track Association between Cameras

To perform track association across multiple cameras, we firstly focus on the
track association between two cameras and then extend it to the case of mul-
tiple cameras. Previous methods often model it as an MAP problem to find
the optimal solution via Bayes Theorem [12,3], a graph theoretic approach [13],
and expected weighted similarity [19]. We present an efficient yet effective ap-
proach which maximizes the joint linking probability. Assuming that the task
of single camera tracking has been already solved; there are m tracks in cam-
era Ca denoted by T a = {T a

1 , · · · , T a
m} and n tracks in camera Cb denoted by

T b = {T b
1 , · · · , T b

n} respectively. We may simply create a m by n matrix and
find the optimal correspondence between T a and T b. However, in the case of
non-overlapping cameras, there exist “blind” areas where objects are invisible.
For example, an object which leaves Ca does not necessarily enter Cb as it may
either go to the exit in the blind area or return to Ca. We define an extended
correspondence matrix of size (2m + 2n) × (2m + 2n) as follows:

H =

⎡
⎢⎢⎣

Am×m Bm×n

Dn×m En×n

Fm×m −∞m×n

−∞n×m Gn×n

Jm×m −∞m×n

−∞n×m Kn×n
0(m+n)×(m+n)

⎤
⎥⎥⎦ (1)

This formulation is inspired by [20], but we made the necessary modification
to accommodate all situation which could happen between the tracks of two
non-overlapping cameras. The components of each matrix are defined as follows:
Bij = log Plink(T a

i → T b
j ) is the linking score of that the tail of T a

i links to the
head of T b

j . It models the situation that a target leaves Ca and then enters Cb; a
similar description is applied to Dij = log Plink(T a

j → T b
i ). Aij = log Plink(T a

i →
T a

j ) if i 
= j is the linking score of that the tail of T a
i links to the head of T a

j .
It models the situation that a target leaves Ca and then re-enters camera a
without travelling to camera Cb; a similar description is also applied to Eij =
log Plink(T b

i → T b
j ) if i 
= j. Fij or Gij if i = j is the score of the T a

i or T b
j is

terminated. It models the situation that the head of target can not be linked
to the tail of any tracks. Jij and Kij if i = j is the score of that the T a

i or
T b

j is initialized. It models the situation that the tail of target can not link to
the head of any track. By applying the Hungarian algorithm to H, the optimal
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Table 1. A short summary of the elements in each sub-matrix in H, which models all
possible situations between the tracks of two non-overlapping cameras. The optimal
assignment is solved by Hungarian algorithm.

matrix description element
A the target leaves and returns to Ca Aij = −∞ if i = j

B the target leaves Ca and enters Cb Bij is a full matrix
D the target leaves Cb and enters Ca Dij is a full matrix
E the target leaves and returns to Cb Eij = −∞ if i = j

F the target terminates in Ca Fij = −∞ if i �= j

G the target terminates in Cb Gij = −∞ if i �= j

J the target is initialized in Ca Jij = −∞ if i �= j

K the target is initialized in Cb Kij = −∞ if i �= j

assignment of association is obtained efficiently. A summary of each sub-matrix
in H is given in Table 1.

The linking probability, i.e. affinity between two tracks Ti and Tj is defined
as the product of three important cues(appearance, space, time):

Plink(Ti → Tj) = Pa(Ti, Tj) · Ps

(
e(Ti), e(Tj)

)
· Pt

(
Ti → Tj |e(Ti), e(Tj)

)
(2)

where e(Ti) denotes the exit/entry region of Ti. Each of three components mea-
sures the likelihood of Ti and Tj being the same object. The latter two terms
Ps and Pt are spatio-temporal information which can be learned automatically
by the methods proposed in [15,3]. We focus on the first term Pa and propose a
novel framework of online learning a discriminative appearance affinity model.

5 Discriminative Appearance Affinity Models with
Multiple Instance Learning

Our goal is to learn a discriminative appearance affinity model across the cameras
at runtime. However, how to choose positive and negative training samples is a
major challenge since exact hand-labelled correspondence is not available while
learning online. Based on the spatio-temporal constraints, we are able to only
exclude some impossible links and retain several possible links, which are called
“weakly labelled training examples”.

Recent work [5,6] presents promising results on face detection and visual
tracking respectively using Multiple Instance Learning (MIL). Compared to tra-
ditional discriminative learning, MIL describes that samples are presented in
“bags”, and the labels are provided for the bags instead of individual samples.
A positive “bag” means it contains at at least one positive sample; a negative
bag means all samples in this bag are negative. Since some flexibility is allowed
for the labelling process, we may use the “weakly labelled training examples”
by spatio-temporal constraints and apply a MIL boosting algorithm to learn the
discriminative appearance affinity model.
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5.1 Collecting Training Samples

We propose a method to collect weakly labelled training samples using spatio-
temporal constraints. To learn an appearance affinity model between cameras,
a training sample is defined as a pair of tracks from two cameras respectively.
Based on the tracks generated by a robust single camera multi-target tracker,
we make a conservative assumption: any two tracks from two non-overlapping
cameras which overlap in time represent different targets. It is based on the
observation that one target can not appear at different locations at the same
time. Positive samples are more difficult to obtain since there is no supervised
information to indicate which two tracks among two cameras represent the same
objects. In other words, the label of “+1” can not be assigned to individual
training samples. To deal with the challenging on-line labelling problem, we
collect possible pairs of tracks by examining spatio-temporal constraints and
put them into a “bag” which is labelled “+1”. The MIL boosting is applied to
learn the desired discriminative appearance affinity model.

In our implementation, there are two set to be formed for each track: a set
of “similar” tracks and a set of “discriminative” tracks. For a certain track T a

j

in camera Ca, each element in its “discriminative” set Db
j indicates a target T b

k

in camera Cb which is impossible to be the same target with T a
j ; each element

in the “similar” set Sb
j represents a possible target T b

k in Cb which might be the
same target with T a

j . These cases are described as:

T b
k ∈ Sb

j if Ps(T a
j → T b

k ) · Pt(e(T a
j ), e(T b

k )) > θ

T b
k ∈ Db

j if Ps(T a
j → T b

k ) · Pt(e(T a
j ), e(T b

k)) = 0
(3)

The threshold θ is adaptively chosen to maintain a moderate number of instances
included in each positive bag. The training sample set B = B+ ∪ B− can be
denoted by

B+ =
{
xi : {T a

j , T b
k}, ∀T b

k ∈ Sb
j ; yi : +1

}
B− =

{
xi : (T a

j , T b
k ), if T b

k ∈ Db
j ; yi : −1

} (4)

where each training sample xi may contain multiple pairs of tracks which rep-
resents a bag. A label is given to a bag.

5.2 Representation of Appearance Model and Similarity
Measurement

To build a strong appearance model, we begin by computing several local features
to describe a tracked target. In our design, three complementary features: color
histograms, covariance matrices, and histogram of gradients (HOG) constitute
the feature pool. Given a tracked target, features are extracted at different loca-
tions and different scales from the head and tail part to increase the descriptive
ability.
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We use RGB color histograms to represent the color appearance of a local
image patch. Histograms have the advantage of being easy to implement and
having well studied similarity measures. Single channel histograms are concate-
nated to form a vector fRGBi

, but any other suitable color space can be used. In
our implementation, we use 8 bins for each channel to form a 24-element vector.
To describe the image texture, we use a descriptor based on covariance matrices
of image features proposed in [21]. It has been shown to give good performance
for texture classification and object categorization. To capture shape informa-
tion, we choose the Histogram of Gradients (HOG) Feature proposed in [22].
In our design, a 32D HOG feature fHOGi

is extracted over the region R; it is
formed by concatenating 8 orientations bins in 2 × 2 cells over R.

In summary, the appearance descriptor of a track Ti can be written as:

Ai = ({f l
RGBi

}, {Cl
i}, {f l

HOGi
}) (5)

where f l
RGBi

is the feature vector for color histogram, Cl
i is the covariance matrix,

and f l
HOGi

is the 32D HOG feature vector. The superscript l means that the
features are evaluated over region Rl.

Given the appearance descriptors, we can compute similarity between two
patches. The color histogram and HOG feature are histogram-based features
so standard measurements, such as χ2 distance, Bhattacharyya distance, and
correlation coefficient can be used. In our implementation, correlation coefficient
is chosen for simplicity. The distance measurement of covariance matrices is
determined by solving a generalized eigenvalues problem, which is described
in [21].

After computing the appearance model and the similarity between appearance
descriptors at different regions, we form a feature vector by concatenating the
similarity measurements with different appearance descriptors at multiple loca-
tions. This feature vector gives us a feature pool that we can use an appropriate
boosting algorithm to construct a strong classifier.

5.3 Multiple Instance Learning

Our goal is to design a discriminative appearance model which determines the
affinity score of appearance between two objects in two different cameras. Again,
a sample is defined as a pair of targets from two cameras respectively. The affin-
ity model takes a pair of objects as input and returns a score of real value by
a linear combination of weak classifiers. The larger the affinity score, the more
likely that two objects in one sample represent the same target. We adopt the
MIL Boosting framework proposed in [5] to select the weak classifiers and their
corresponding weighted coefficients. Compared to conventional discriminative
boosting learning, training samples are not labelled individually in MIL; they
form “bags” and the label is given to each bag, not to each sample. Each sample
is denoted by xij , where i is the index for the bag and j is the index for the sam-
ple within the bag. The label of each bag is represented by yi where yi ∈ {0, 1}.
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Although the known labels are given to bags instead of samples, the goal is to
learn the the instance classifier which takes the following form:

H(xij) =
T∑

t=1

αtht(xij) (6)

In our framework, the weak hypothesis is from the feature pool obtained by
Section 5.2. We adjust the sign and normalize h(x) to be in the restricted range
[−1, +1]. The sign of h(x) is interpreted as the predicted label and the magnitude
|h(x)| as the confidence in this prediction.

The probability of a sample xij being positive is defined as the standard
logistic function,

pij = σ(yij) =
1

1 + exp(−yij)
(7)

where yij = H(xij). The probability of a bag being positive is defined by the
“noisy OR” model:

pi = 1 −
∏
j

(1 − pij) (8)

If one of the samples in a bag has a high probability pij , the bag probability pi

will be high as well. This property is appropriate to model that a bag is labelled
as positive if there is at least one positive sample in this bag. MIL boosting uses
the gradient boosting framework to train a boosting classifier that maximizes
the log likelihood of bags:

log L(H) =
∑

i

yi log pi + (1 − yi) log(1 − pi) (9)

The weight of each sample is given as the derivative of the loss function log L(H)
with respect to the score of that sample yij :

wij =
∂ log L(H)

∂yij
=

yi − pi

pi
pij (10)

Our goal is to find H(x) which maximizes (9), where H(x) can be obtained by
sequentially adding new weak classifiers. In the t-th boosting round, we aim at
learning the optimal weak classifier ht and weighted coefficient αt to optimize
the loss function:

(αt, ht) = arg min
h,α

log L(Ht−1 + αh) (11)

To find to the optimal (αt,ht), we follow the framework used in [23,5] which
views boosting as a gradient descent process, each round it searches for a weak
classifier ht to maximize the gradient of the loss function. Then the weighted
coefficient αt is determined by a linear search to maximize log L(H +αtht). The
learning procedure is summarized in Algorithm 1.
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Algorithm 1. Multiple Instance Learning Boosting

Input:

B+ =
{
({xi1, xi2, ...}, +1)

}
: Positive bags

B− =
{
({xi1, xi2, ...},−1)

}
: Negative bags

F ={h(xij)}: Feature pools

1: Initialize H = 0
2: for t = 1 to T do
3: for k = 1 to K do
4: pk

ij = σ(H + hk(xij))
5: pk

i = 1 −
∏

j

(1 − pk
ij)

6: wk
ij =

yi − pk
i

pk
i

pk
ij

7: end for
8: Choose k∗ = arg max

k

∑
ij

wk
ijhk(xij)

9: Set ht = hk∗

10: Find α∗ = arg max
α

log L(H + αht) by linear search

11: Set αt = α∗

12: Update H ← H + αtht

13: end for

Output: H(x) =
∑T

t=1 αtht(x)

6 Experimental Results

The experiments are conducted on a three-camera setting with disjoint FOVs.
First, we evaluate the effectiveness of our proposed on-line learned discrimi-
native appearance affinity model by formulating the correspondence problem
as a binary classification problem. Second, for a real scenario of multiple non-
overlapping cameras, the evaluation metric is defined, and the tracking results
using our proposed system are presented. It is shown that our method achieves
good performance in a crowded scene. Some graphical examples are also pro-
vided.

6.1 Comparison of Discriminative Power

We first evaluate the discriminative ability of our appearance affinity model,
independent of the tracking framework that it will be embedded in. Given the
tracks in each camera, we manually label the pairs of tracks that should be as-
sociated to from the ground truth. Affinity scores are computed among every
possible pair in a time sliding window by four methods: (1) the correlation coef-
ficients of two color histogram; (2) the model proposed in Section 5 but without
MIL learning, i.e. with equal coefficients αt; (3) off-line MIL learning, i.e. learn-
ing is done on another time sliding window; (4) MIL learning on the same time
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Table 2. The comparison of the Equal Error Rate using different appearance affinity
models. It shows that the on-line learning method has the most discriminative power.

Camera pair color only no learning off-line learning on-line learning
C1,C2 0.231 0.156 0.137 0.094

C2,C3 0.381 0.222 0.217 0.159

window. In a three-camera setting, the experiments are done in two camera pairs
(C1,C2) and (C2,C3); equal error rate in two tasks is the metric to evaluate the
performance. In (C1,C2), the number of evaluated pairs is 434 and the number
of positive pairs is 35. In (C2,C3), the number of evaluated pairs is 148 and the
number of positive pairs is 18. The length of time sliding window is 5000. The
experimental results are shown in Table 2. In each camera pair, the model using
online MIL learning achieves the lowest equal error rate compared to the other
three methods.

6.2 Evaluation Metrics

In previous work, quantitative evaluation of multi-target tracking across multiple
cameras is barely mentioned or simply a single number e.g. tracking accuracy
is used. It is defined as the ratio of the number of objects tracked correctly to
the total number of objects that passed through the scene in [2,3]. However, it
may not be a suitable metric to measure the performance of a system fairly,
especially in a crowded scene where targets have complicated interactions. For
example, if two tracked targets exchange their identities twice while travelling
across a series of three cameras should be worse than if they exchange only
once. Nevertheless, these two situations are both counted as incorrect tracked
objects in the metric of “tracking accuracy”. We need a more complete metric
to evaluate the performance of inter-camera track association.

In the case of tracking within a single camera, fragments and ID switches are
two commonly used metrics. We adopt the definitions used in [24] and apply it
to the case of tracking across cameras. Assuming that multiple targets tracking
in a single camera is obtained, we only focus on the fragments and ID switches
which are not defined within cameras. Given the tracks in two cameras Ca

and Cb: T a = {T a
1 , · · · , T a

m} and T b = {T b
1 , · · · , T b

n}, the metrics in tracking
evaluation are:

• Crossing Fragments(X-Frag): The total number of times that there is a link
between T a

i and T b
j in the ground truth, but missing in the tracking result.

• Crossing ID switches(X-IDS): The total number of times that there is no
link between T a

i and T b
j in the ground truth, but existing in the tracking result.

• Returning Fragments(R-Frag): The total number of times that there is link
between T a

i and T a
j which represents a target leaving and returning to Ca in

ground truth, but missing in the tracking result.
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Table 3. Tracking results using different appearance models with our proposed metrics.
The lower the numbers, the better performance it is. It shows that our on-line learned
appearance affinity models achieve the best results.

Method X-Frag X-IDS R-Frag R-IDS
(a)input tracks 206 0 15 0
(b)color only 9 18 12 8
(c)off-line learning 6 15 11 7
(d)on-line learning 4 12 10 6

• Returning ID switches(R-IDS): The total number of times that there is no
link between T a

i and T a
j which means they represent different targets in ground

truth, but existing in the tracking result.
For example, there are T a

1 , T a
2 in Ca, and T b

1 , T b
2 in Cb. In the ground truth,

(T a
1 , T b

1 ) and (T a
2 , T b

2 ) are the linked pairs. If they switch their identities in the
tracking result, i.e. (T a

1 , T b
2 ) and (T a

2 , T b
1 ) are the linked pairs, that is considered

as 2 X-frag and 2 X-IDS. This metric is more strict but well-defined than the
traditional definition of fragments and ID switches. Similar descriptions apply
to R-Frag and R-IDS. The lower these four metrics, the better is the tracking
performance.

6.3 Tracking Results

The videos used in our evaluation are captured by three cameras in a campus
environment with frame size of 852×480 and length of 25 minutes. It is more
challenging than the dataset used in the previous works in the literature since
this dataset features a more crowded scene (2 to 10 people per frame in each
camera). There are many inter-object occlusions and interactions and people
walking across cameras occurs often. The multi-target tracker within a camera
we use is based on [24], which is a detection-based tracking algorithm with
hierarchical association.

We compare our approach with different appearance models. The results are
also shown in Table 3. The result of (a) represents the input, i.e. no linking
between any tracks in each camera. The result of (b) uses only color histogram
is used as the appearance model. In the result of (c), our proposed appearance
model is used but learned in an off-line environment, which means the coefficients
αt are fixed. The result of (d) uses our proposed appearance models. It shows
that our proposed on-line learning method outperforms these two appearance
models. This comparison justifies that our stronger appearance model with on-
line learning improves the tracking performance. Some association results are
shown in Figure 3. It shows that our method finds the correct association among
multiple targets in a complex scenen, e.g. people with IDs of 74, 75, and 76 when
they travel from camera 2 to camera 1.
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Fig. 3. Sample tracking results on our dataset. Some tracked people travelling through
the cameras are linked by dotted lines. For example, the targets with IDs of 74, 75,
and 76 leave Camera 2 around the same time, our method finds the correct association
when they enter Camera 1. This figure is best viewed in color.

7 Conclusion

We describe a novel system for associating multi-target tracks across multiple
non-overlapping cameras. The contribution of this paper focuses on learning
a discriminative appearance affinity model at runtime. To solve the ambigu-
ous labelling problem, we adopt Multiple Instance Learning boosting algorithm
to learn the desired discriminative appearance models. An effective multi-object
correspondence optimization framework for intra-camera track association prob-
lem is also presented. Experimental results on a challenging dataset show the
robust performance by our proposed system.
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Abstract. This paper presents an integrated framework for mobile street-level
tracking of multiple persons. In contrast to classic tracking-by-detection approa-
ches, our framework employs an efficient level-set tracker in order to follow indi-
vidual pedestrians over time. This low-level tracker is initialized and periodically
updated by a pedestrian detector and is kept robust through a series of consis-
tency checks. In order to cope with drift and to bridge occlusions, the resulting
tracklet outputs are fed to a high-level multi-hypothesis tracker, which performs
longer-term data association. This design has the advantage of simplifying short-
term data association, resulting in higher-quality tracks that can be maintained
even in situations where the pedestrian detector does no longer yield good de-
tections. In addition, it requires the pedestrian detector to be active only part of
the time, resulting in computational savings. We quantitatively evaluate our ap-
proach on several challenging sequences and show that it achieves state-of-the-art
performance.

1 Introduction

In this paper, we address the problem of multi-person tracking with a camera mounted
on top of a moving vehicle, e.g. a mobile robot. This task is very challenging, since mul-
tiple persons may appear or emerge from occlusions at every frame and need to be de-
tected. Since background modeling [1] is no longer applicable in a mobile scenario, this
is typically done using visual object detectors [2]. Consequently, tracking-by-detection
has become the dominant paradigm for such applications [3–8]. In this framework, a
generic person detector is applied to every frame of the input video sequence, and the
resulting detections are associated to tracks. This leads to challenging data association
problems, since the detections may themselves be noisy, containing false positives and
misaligned detection bounding boxes [2]. Several approaches have been proposed to
address this issue by optimizing over a larger temporal window using model selection
[5], network flow optimization [9], or hierarchical [8] or MCMC data association [10].

Intuitively, this complex data association seems to be at least to some degree an
overkill. Once we have detected a person in one frame, we know its appearance and
should be able to use this information in order to disambiguate future data associa-
tions. This has been attempted by using person-specific color descriptors (e.g. [4–6]) or
online-trained classifiers [11]. The difficulty here is however that no precise segmen-
tation is given – the detector bounding boxes contain many background pixels and the
persons’ limbs may undergo considerable articulations, causing the classifiers to drift.

K. Daniilidis, P. Maragos, N. Paragios (Eds.): ECCV 2010, Part I, LNCS 6311, pp. 397–410, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Another problem of tracking systems that only rely on detector input is that they will
not work in situations where the detectors themselves fail, e.g. when a person gets too
close to the camera and is partially occluded by the image borders. [6] explicitly point
out those situations as failure cases of their approach.

In this paper, we propose to address those problems by complementing the detection-
based tracking framework with a robust image-level tracker based on level-set (LS) seg-
mentation. In this integration, a high-level tracker only initializes new tracklets from ob-
ject detections, while the frame-to-frame target following and data association is taken
over by the image-based tracker. The resulting tracked target locations are then trans-
mitted back to the high-level tracker, where they are integrated into 3D trajectories using
physically plausible motion models.

This combination is made possible by the great progress LS segmentation and track-
ing approaches have made in recent years [12]. Approaches are now available that can
obtain robust tracking performance over long and challenging sequences [13]. In addi-
tion, LS trackers can be efficiently implemented using narrow-band techniques, since
they need to process only a small part of the image around the tracked contour. How-
ever, the targeted integration is far from trivial. The LS tracking framework has orig-
inally been developed for following individual targets over time and has mostly been
evaluated for tasks where a manual initialization is given [12, 13]. Here, we need to au-
tomatically initialize a large number of tracklets from potentially inaccurate detections.
In addition, we need to deal with overlaps and partial occlusions between multiple fol-
lowed persons, as well as with tracker drift from changing lighting conditions and poor
image contrast. Finally, we need to account for cases where a person gets fully occluded
for a certain time and comes into view again a few frames later. In this paper, we show
how those challenges can be addressed by a careful interplay of the system components.

Our paper makes the following contributions: (1) We demonstrate how LS trackers
can be integrated into a tracking-by-detection framework for robust multi-person track-
ing. (2) Our approach is based on the idea to track each individual pedestrian by an auto-
matically initialized level-set. We develop robust methods for performing this initializa-
tion from object detections and show how additional geometric constraints and consis-
tency checks can be integrated into the image-based LS tracker. (3) The tracked person
contours in each video frame are automatically converted to 3D world coordinates and
are transmitted to the high-level tracker, which integrates the position evidence into a
robust multi-hypothesis trajectory estimation approach making use of physical motion
models. This high-level tracker is responsible for initializing new tracks, correcting the
low-level tracker’s predictions when drift occurs, and tracking person identities through
occlusions. (4) We experimentally demonstrate that this proposed integration achieves
robust multi-person tracking performance in challenging mobile scenarios. In partic-
ular, as our approach does not depend on continuous pedestrian detection, it can also
continue tracking persons that are only partially visible. (5) An interesting property of
our integration is that it does not require the object detector to be executed for every
video frame. This is especially relevant for the deployment on mobile platforms, where
real-time performance is crucial and computational resources are notoriously limited.
We experimentally investigate at what intervals object detections are still required for
robust system-level performance.
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Fig. 1. System-level view of our proposed end-to-end tracking framework

The following section discusses related work. After that, Sec. 2 presents our pro-
posed end-to-end tracking framework. Sec. 3 introduces the basic algorithmic compo-
nents for LS tracking and trajectory estimation. Sec. 4 then describes the details of the
integration, and Sec. 5 presents experimental results.

Related Work. Multi-object tracking from a mobile platform is a core capability for
many applications in mobile robotics and autonomous vehicles [14]. While early ap-
proaches have been developed for aerial scenarios [15, 16], an application on ground-
level poses significant additional difficulties. Robust multi-person tracking in such chal-
lenging situations has only recently become feasible by the development of powerful
tracking-by-detection approaches [4–7, 14]. Various strategies have been developed for
solving the challenging data association problems encountered here. However, most of
them regard only a single-layer tracker [3, 5–7, 11], which sometimes makes the prob-
lem unnecessarily hard. Most directly related to our approach are the multi-layer models
of [15, 16], which also initialize a number of low-level trackers to follow individual ob-
jects and later integrate their results in a high-level tracker. However, their frameworks
are based on aerial scenarios, where adaptive background modeling is still feasible. [8]
also propose a hierarchical data association framework that links detection responses
to form tracklets at an image level, before fusing the tracklets and integrating scene
constraints at higher levels. Their approach is however targeted at a surveillance appli-
cation with a static camera. [17] integrates multiple short and low-confidence tracklet
hypotheses into consistent tracks using MCMC. In contrast, our approach creates long
and highly confident tracklets for individual persons under specific conditions of an
LS tracker and integrates them into an EKF-based multiple-hypothesis tracker. To our
knowledge, ours is the first approach that integrates segmentation-based LS-trackers
[12, 13] with a tracking-by-detection framework for street-level mobile tracking.

2 Integrated Tracking Framework

Fig. 1 shows a system-level overview of our proposed integrated tracking framework.
The system is initialized by detections from a pedestrian detector. For each detected
person, an independent LS tracker (a tracklet) is initialized, which follows this person’s
motion in the image space. The LS tracker is kept robust through a series of consistency
checks and transmits the tracked person’s bounding box to the high-level tracker after
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Fig. 2. Level-set segmentation. The contour separates object Ωf from background Ωb in a ref-
erence frame given by the warp W (x,p), which is related to the person’s bounding box by the
displacement V (x,p′). This contour is the zero level-set of the embedding function Φ.

every frame. The high-level tracker in turn converts the bounding boxes to ground plane
coordinates and integrates them into physically plausible trajectories using the model
selection framework described in Sec. 3.2. During regular operation, the object detector
only needs to be activated in regular intervals in order to prevent existing tracklets
from degenerating and to start new ones for newly appearing pedestrians. In addition,
tracklets can request new detections when they become uncertain. Overall, this results
in considerable computational savings, as we will show in Sec. 5.

Setup. Similar to previous work on mobile pedestrian tracking [5, 6, 14], we assume
a setup of a stereo camera rig mounted on a mobile platform. From this setup, we
obtain structure-from-motion (SfM), stereo depth, and a ground plane estimate for every
frame. All subsequent processing is then performed only on the left camera stream.

3 Algorithmic Components

3.1 Level-Set Tracking

Like [13], we use a probabilistic level-set framework, which first performs a segmenta-
tion and in the next frames a rigid registration and shape adaptation. The object shape
is defined by the zero level-set of an embedding function Φ(x) (Fig. 2) acting on pixel
locations x with appearance y. This level-set is evolved in order to maximize the accor-
dance with learned foreground and background appearance models Mf and Mb, while
fulfilling certain constraints on the shape of the embedding function and of the contour.

Segmentation. The variational level-set formulation for the segmentation consists of
three terms which penalize the deviation from the foreground and background model,
the deviation of the embedding function from a signed distance function [18], and the
length of the contour. A segmentation is achieved by optimizing this energy functional
with the following gradient flow [13]:

∂P (Φ,p|Ω)
∂Φ

=
δε(Φ)(Pf − Pb)
P (x|Φ,p,y)︸ ︷︷ ︸

deviation from fg/bg model

− 1
σ2

[
∇2Φ − div(

∇Φ
|∇Φ| )

]
︸ ︷︷ ︸

deviation from signed dist. fct.

+λδε(Φ)div(
∇Φ
|∇Φ| )︸ ︷︷ ︸

length of contour

(1)
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where P (xi|Φ,p,yi) = Hε(Φ(xi))Pf + (1 − Hε(Φ(xi)))Pb, ∇2 is the Laplacian,
Hε is a smoothed Heaviside step function and δε its derivative, a smoothed Dirac delta
function. Ω = {Ωf ,Ωb} denotes the foreground/background pixels in the object frame.

Pf and Pb are the pixel-wise posteriors of the foreground and background models
given the pixel appearance. Those models are obtained from the pixels inside and out-
side the contour during the first segmentation. The segmentation is performed in several
iterations and the models are rebuilt in every iteration. In the subsequent tracking steps,
the model parameters Mf and Mb are only slightly adapted to the current image in
order to achieve higher robustness.

Tracking. Similar to image alignment, the tracking part aims at warping the next frame
such that its content best fits the current level-set. This way, the location of the tracked
object is obtained. The warp W (x,p) is a transformation of the reference frame with
parameters p. Any transformation forming a group can be used here, e.g. affine trans-
formations. In our application for pedestrian tracking, we currently use only transla-
tion+scale. For optimizing the location, the next image is incrementally warped with
Δp until convergence [13]:

Δp=

[
N∑

i=1

1
2P (xi|Φ,p,yi)

[
Pf

Hε(Φ(xi))
− Pb

(1−Hε(Φ(xi)))

]
JTJ

]−1

×
N∑

i=1

(Pf −Pb)JT

P (xi|Φ,p,yi)
(2)

with J = δε(Φ(xi))∇Φ(xi) ∂W
∂Δp , where ∂W

∂Δp is the Jacobian of the warp.

Appearance Models. [13] only uses color for the foreground and background model.
We found that in our application, this yields rather unreliable segmentations for pedes-
trians, since other people or background structures often contain similar colors. We
therefore extend the approach by also including stereo depth information.

For segmentation, we use the median depth of the foreground area. Unlike the color
distribution, the median depth will not stay the same during the following frames. For
tracking, we therefore use a simple motion model which computes an expected distance
range for each pedestrian according to the last median depth and a maximum velocity.
Each depth value in the image is then assigned a probability according to a Gaussian
distribution around the median depth or the expected depth, respectively. The color
models are represented as L*a*b histograms with 323 bins. The two probabilities for
color and depth are individually normalized as in [13] and then merged with a weighting
factor α (set to 0.1 in all of our experiments).

Pi = (1 − α)Pi,color + αPi,depth, i ∈ {f, b} , (3)

3.2 Tracking-by-Detection

For the high-level tracker, we use a simplified version of the robust multi-hypothesis
tracking framework by [5]. We first describe the basic approach, as it would be ap-
plied for pure tracking-by-detection. Section 4 then details how this approach is adapted
through the integration with the level-set tracker.

In brief, the approach works as follows. Detected pedestrian locations are converted
to 3D world coordinates using the current camera position from SfM together with an
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(a) (b) (c) (d) (e) (f)

Fig. 3. Initialization of the LS tracker: (a) detection box (green), initial object frame (yellow),
and initialization of the level-set (magenta); (b,c) evolved level-set after 40 and 150 iterations; (d)
level-set transferred to next frame; (e) after warping; (f) after shape adaptation (5 iterations).

estimate of the scene’s ground plane. These measurements are collected in a spacetime
volume, where they are integrated into multiple competing trajectory hypotheses. The
final hypothesis set is then obtained by applying model selection in every frame.

Trajectory Estimation. We model pedestrian trajectories by Kalman filters with a
constant-velocity motion model on the ground plane, similar to [6]. When new obser-
vations become available in each frame, we first try to extend existing trajectory hypo-
theses by the new evidence. In addition, we start a new trajectory hypothesis from each
new detection and try to grow it by applying a Kalman filter backwards in time through
the spacetime volume of past observations. This step allows us to recover lost tracks
and bridge occlusions. As a consequence of this procedure, each detection may end up
in several competing trajectory hypotheses.

Model Selection. For each frame, we try to find the subset of trajectory hypotheses that
provides the best explanation for the collected observations. This is done by performing
model selection in a Minimum Description Length framework, as in [5]. A trajectory’s
score takes into account the likelihood of the assigned detections under its motion and
appearance model (represented as a color histogram). Trajectory hypotheses interact
through penalties if they compete for the same detections or if their spacetime footprints
overlap. For details of the mathematical formulation we refer to [5].

Assigning Person Identities. As the model selection procedure may choose a different
hypothesis set in each frame, a final step is required in order to assign consistent person
IDs to the selected trajectories. This is done by maintaining a list of active tracks and
assigning trajectories to them based on the overlap of their supporting observations.

4 Combined Tracker

We now present the stages of our combined tracking framework. The difficulty of the
street-level mobile tracking task brings with it a number of non-trivial challenges, which
we address by consistency checks and carefully modeled interactions between the com-
ponents of the tracking framework.

Object Detection. For pedestrian detection, we apply the widely used HOG detector
[19] in the efficient fastHOG GPU implementation by [20]. Detections inconsistent with
the scene geometry are filtered out by enforcing a ground plane corridor.
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(a) (b) (c) (d) (e) (f)

Fig. 4. Adaptation to lighting changes: (a-c) tracked shape becomes too small due to lighting
changes; (d,e) level-set re-initialization is triggered; (f) tracking can continue.

Level-Set Initialization. Upon initialization, the LS tracker tries to segment the torso
of the person inside a detection box. To this end, a new level-set embedding function
is initialized with a rectangular box (see Fig. 3), and the level-set segmentation is iter-
ated for 150 steps. In the next frame, the contour is tracked and the resulting warp is
applied to the object frame and the associated detection box in order to obtain the new
object position. Afterwards, the level-set shape is adapted for 5 iterations. We track
only the person’s torso, since this body part deforms only very little, requiring fewer
shape adaptation iterations than tracking the full body. This speeds up level-set tracking
and increases the robustness, since it limits the amount of “bleeding” that can occur
to similar-colored background pixels. To infer the person’s full extent, we maintain the
transformation V (x,p′) from the warped reference frame to the original bounding box.

Multi-Region Handling and Overlap Detection. When tracking several persons, each
of the tracked contours is represented by its own level-set. Even if there are overlaps, the
level-sets will not interact directly (as, e.g., in [21]). Instead, we use the stereo depth in
order to resolve overlaps. All tracked persons are sorted according to their distance from
the camera and the closest person is updated first. All pixels belonging to the resulting
segmentation are masked out, such that they cannot be used by the remaining persons.

This leaves us with some persons that are only partially visible, which is in fact the
same case as a person leaving the image frame. We developed a method for dealing
with partial visibility without losing shape information. As can be seen in eq. (2), only
a narrow band of pixels around the contour, which is determined by δε(Φ), is taken into
account for tracking. If pixels are masked out or are outside the image frame, we set δε

to zero for those pixels, which will result in tracking only the visible part of the contour.
Thus, if an object becomes completely visible again, the shape will still fit. Objects are
discarded if only a small part of the area inside the contour (50% for person-person
occlusions, 20% for occlusions by image borders) remains visible.

Level-Set Re-initialization. Lighting changes or similar colors near the object can
cause the contour to shrink during tracking (see Fig. 4) or to bleed out during shape
adaptation. By periodically updating a tracklet bounding box with new detector bound-
ing boxes, it is possible to identify degenerating shapes based on their size in relation
to the bounding box. This is done by first performing the level-set tracking step for
adapting the contour to the new image and then matching the tracked location to new
detector boxes. If the box overlap (measured by intersection-over-union) is above 0.5,
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(a) (b)

(1)

(4)

(2)

(3)

(c) (d)

Fig. 5. Depth-based bounding box correction: (a) original bounding box; (b) depth map; (c) cor-
rection procedure; (d) corrected bounding box (see text for details)

the detection box is used to update the relationship V (x,p′) between box and warp.
The level-set contour itself is only updated if its area gets too small or too large with
respect to the updated box, or if 20% of its content lie outside the box. Thus, the tracklet
integrity is maintained and an ID change is avoided (c.f . Fig. 4).

Consistency Checks. For robust operation, it is necessary to check the consistency of
the tracking results. An object could be occluded, leave the image frame or be lost for
other reasons. This may not even have any effect on the convergence of the LS tracker,
which might get stuck on some local image structure, resulting in a wrong track. We
therefore perform the following checks in order to identify corrupted tracklets. (1) If the
object is occluded and only background colors remain, the shape will typically shrink
massively within a few frames. If such a case is detected, the tracklet is terminated. (2)
We keep track of the median depth inside the tracked contour and react if this value
changes too fast. We distinguish two cases here: If the median depth decreases too fast,
this indicates an occlusion by another object; if the depth increases too fast, the object
was probably lost. We terminate the tracklets in both cases. (3) Finally, objects whose
median depth does not fit their ground-plane distance are also discarded. Typically, a
failed consistency check indicates a tracking failure and will result in a request for the
detector to be activated in the next frame. An exception are cases where an occlusion
is “explained” by the high-level tracker (see below), or when the object is close to the
image boundary and is about to leave the image.

Depth-based Bounding Box Correction. Level-set (re-)initialization and high-level
3D trajectory integration require accurately aligned bounding boxes. In general, the
HOG detector however yields detections with a certain border area. Similarly, the boxes
provided by the LS tracker may drift due to articulations and shape changes of the
level-set contour and need to be corrected. We therefore apply the following correction
procedure both to new detections and after each level-set tracking step. Starting from
the original bounding box (Fig. 5(a)), we first compute the median depth around the
bounding box center (Fig. 5(b)). We then determine the corresponding 3D point us-
ing the camera calibration from SfM and project it onto the ground plane (Fig. 5(c),
steps(1)+(2)). We add a fixed offset in the viewing direction in order to determine the
person’s central foot point, and finally project the resulting 3D point back to the image
(Fig. 5(c), steps (3)+(4)). This determines the bottom line of the corrected bounding
box. The top line is found by searching for the highest point inside the bounding box
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that is within 0.5m of the median depth (Fig. 5(d)). As a final step, we verify that the re-
sulting bounding box aspect ratio is in the range [13 , 2

3 ]. Bounding boxes falling outside
this range are rejected as likely false positives.

Requesting New Detections. New detections are requested in the following cases: (1)
if a tracklet has not received an updated detection in the last k frames; (2) if a tracking
failure cannot be explained by an occlusion or by the tracked person leaving the image;
(3) if no request has been issued for k frames (e.g., since no object is currently tracked).
A tracklet will not request new detections if it is close to the image boundary, as the
chance for finding a detection there would be small. If a tracklet receives no updated
detection despite its request, it will repeat the request, but will continue to be tracked as
long as it passes the consistency and depth correction checks.

Integration with High-Level Tracker. The high-level tracker’s task is to integrate the
tracklet bounding boxes into physically plausible 3D trajectories. This is done by first
creating an observation at each tracked person’s 3D foot point and then associating this
observation to trajectory hypotheses. The overall procedure is similar to the general
tracking-by-detection framework described in Sec. 3. However, we make the following
changes in order to account for the additional information provided by the LS tracker.

Since we already know the tracklet identity of each observation from the LS tracker,
we can use this information in order to simplify data association. Thus, we first try to
extend each existing trajectory hypothesis by searching for an observation matching
the trajectory’s currently followed tracklet ID in a gating area around the Kalman filter
prediction. If such an observation can be found, it will directly be associated with the
trajectory. Note that in this case, only the motion model is considered; the appearance
is assumed to be correct due to the association performed by the LS tracker. In case no
observation with the correct tracklet ID can be found, we try to find the best-matching
observation under the trajectory’s motion and appearance model (again within a gating
area determined by the Kalman filter uncertainty). If such a new observation can be
found, the trajectory takes on the new tracklet ID, thus connecting the two tracklets.
This latter case can occur if the LS tracker diverges and fails the consistency checks (in
which case the tracklet will be terminated), if the tracked bounding box is rejected by
the depth correction (in which case the tracklet may persist for up to k frames and can
be recovered), or if the tracked object is occluded or leaves the image.

In addition to the above, each observation is used to start a new trajectory hypothesis,
which searches backwards in time in order to find a potentially better explanation for the
observed data. This makes it possible to automatically create tracks for newly appearing
persons and to correct earlier tracking errors. The final set of accepted tracks is then
obtained by performing model selection, as described in Section 3.2.

Tracking through Occlusions. As motivated above, a main advantage of the image-
based low-level tracker, compared to a pure tracking-by-detection approach, is that it
simplifies data association, thus making it easier to integrate observed pedestrian loca-
tions into valid tracks. The image-based tracklet generation will however fail when the
tracked person gets occluded, which often occurs in practice. This is a limitation of any
image-based tracking approach. While strategies can be devised to cope with short-term
occlusions at the image-level, they would make this component unnecessarily complex.
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Fig. 6. Example for the occlusion handling process: (top row) contours tracked by the LS tracker;
(bottom row) output of the high-level tracker. When the distant person is temporarily occluded, its
LS tracklet is terminated. As soon as the occlusion is over, a new tracklet is started. The high-level
tracker connects both tracklets through the occlusion and maintains the person’s identity.

In our approach, we instead address this issue by explicit occlusion handling on the
high-level tracker’s side. In order to bridge short-time occlusions, we keep potentially
occluded trajectories alive for up to 15 frames and extrapolate their position on the
ground plane using the Kalman filter. Since the latter’s positional uncertainty grows
with the absence of observations, the corresponding person can likely be associated to
the predicted trajectory again when reappearing from the occlusion.

In addition, the high-level tracker can predict person-person occlusions and reinitial-
ize the image-based tracker when those are over. For this, we backproject the predicted
3D bounding box of each tracked person into the image and compute the bounding box
overlap using the intersection-over-union criterion. If the overlap is larger than 0.5, then
an occlusion is likely to occur. This information is stored together with the occluded
trajectory and is transmitted to the corresponding LS tracklet, which will typically be
terminated 1-2 frames later when the consistency check fails. When the corresponding
object is predicted to become visible again a few frames later, the object detector is fired
in order to recover the person with as little delay as possible. This “safe termination”
and subsequent new tracklet generation strategy proved to be robust in our experiments.
It is similar in spirit to the track-suspend-fail strategy proposed in [15], but our approach
extends the idea through the integration of the robust multi-hypothesis tracking frame-
work.

Fig. 6 shows an example where this occlusion handling process is used in practice.
Cued by the occlusion prediction and the failed depth consistency check, the LS track-
let is terminated in order to avoid degeneracies (which would be likely in this case
due to the similar color distributions). On the high-level tracker’s side, the trajectory is
however extrapolated through the occlusion. As soon as the occluded person becomes
visible again, the object detector is fired again in order to initialize a new LS tracklet,
which is correctly associated to the trajectory, maintaining the person’s identity.
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Fig. 7. Examples demonstrating our approach’s capability to continue tracking persons close to
the camera and/or the image borders, where object detection is no longer applicable

5 Experimental Results

Datasets. We evaluated our approach on two challenging sequences from the Zurich
Mobile Pedestrian corpus generously provided by the authors of [6]. We used the se-
quences BAHNHOF (in the following: “Seq. A”) and SUNNY DAY (“Seq. B”). Both se-
quences were captured with a stereo rig (13-14fps, 640x480). Seq. A (999 frames, with
5193 annotated pedestrians of ≥ 60 pixels height) was taken on a crowded sidewalk on
a clouded day. Seq. B (999 frames, 354 of which are annotated with 1867 annotations)
was captured on a sunny day and contains strong illumination changes. Both sequences
come with stereo depth maps, structure-from-motion localization, and ground plane es-
timates. Similar to [6], we upscale all images to twice their original resolution in order
to detect also pedestrians at larger distances. Using the upscaled images, fastHOG per-
formed at 2-3fps (10fps for original images). In contrast to [5, 6], we however only use
the left camera stream for detection and tracking, thus reducing the necessary process-
ing effort. All system parameters were kept the same throughout both sequences.

Tracking Performance. Figure 7 shows qualitative results of our approach, demon-
strating its capability to continue tracking persons that appear close to the camera or
that are partially occluded by the image boundaries. This is a fundamental advantage
our tracking framework can offer over pure tracking-by-detection approaches.

In order to assess our approach’s performance quantitatively, we adopt the evaluation
criteria from [6] and measure the intersection-over-union of tracked person bounding
boxes and annotations in every frame. We accept detections having an overlap greater
than 0.5 as correct and report the results in terms of recall vs. false positives per image
(fppi). Fig. 8 shows the resulting performance curves when we set the maximum re-
initialization interval to k = 5 frames (in blue), together with the baseline of fastHOG
(in green). As can be seen, our approach achieves good performance, reaching 65%
and 76% recall at 0.5 fppi for Seq. A and Seq. B, respectively. As the bounding box
criterion penalizes the tracker’s property of predicting a person’s location through oc-
clusions (since those cases are not annotated in the test data), we additionally provide
the performance curve when filtering out tracked bounding boxes which are more than
50% occluded by other boxes (in black). This results in an additional improvement.

For comparison, we also provide the performance curve reported by [6] on Seq. A,
which is also based on HOG detections (shown in red, no such curve is available for
Seq. B). This approach integrates detections from both camera streams and thus obtains
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Fig. 8. (left) Quantitative tracking performance of our approach compared to different baselines.
(right) Track-level evaluation according to the criteria by [7].

Fig. 9. Example tracking results of our approach on several challenging test sequences

a higher recall. Its performance should be compared to our blue curve, since no occlu-
sion removal was performed in [6]. Still, it can be seen that our approach achieves bet-
ter performance in the high-precision range, despite only using a single camera stream.
This is a result of the better data association provided by the image-level tracklets.

Fig. 8 (right) also reports a track-level evaluation according to the criteria by [7],
showing that most pedestrians are correctly tracked and only few ID switches oc-
cur. Fig. 9 shows results of our combined tracker for both test sequences and visu-
alizes the obtained level-set contours. The corresponding result videos are provided on
www.mmp.rwth-aachen.de/projects/eccv2010. Our system is able to track most
of the visible pedestrians correctly in a very busy environment with many occlusions.

Efficiency Considerations. One of our goals was to reduce the dependence on the
costly detector. Even though efficient GPU implementations are now available for HOG
(e.g. [20]), the framerate is still not sufficient for real-time operation in a pure tracking-
by-detection context. In addition, the excessive power consumption of GPUs is a major
restriction for their use in mobile robotics applications. In contrast, the level-set tracking
approach employed here can be very efficiently implemented on regular CPUs. [13]

www.mmp.rwth-aachen.de/projects/eccv2010
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Fig. 10. (top) Tracking performance for the two test sequences when varying the maximum re-
initialization interval; (bottom) Frequency of detector activations for both sequences for an inter-
val of 5 (first) and 10 (second) frames. The red curve shows the number of tracked pedestrians.

report a framerate of 85Hz for tracking a single target of size 180 × 180 pixels in their
implementation. In our application, we track targets at a lower resolution of 80 × 100
pixels and therefore expect even faster performance once our code is fully optimized.

An important consideration in this respect is how often the pedestrian detector needs
to be activated for robust tracking performance. Our approach lets the LS tracker request
detections whenever required, but enforces a maximum re-initialization interval of k
frames. Fig. 10 shows the effective frequency of detector activations when setting this
interval to k ∈ {1, 5, 10}, together with the resulting tracking performance. A setting of
k = 5 provides the best tracking quality with a detector activation on average every 1.66
frames. By increasing the maximum interval to 10 frames, the detector activation rate
falls to every 2.71 frames at a small loss in recall that is still comparable to [6] at 0.5
fppi. Considering that [6] performed detection in both camera streams, our approach
thus requires 5.42 times less detector activations. Finally, we show the performance
when activating the detector at a fixed interval of 5 frames, without additional requests.
This results in a small drop in recall, but still yields good overall performance.

6 Conclusion

We have presented an integrated framework for mobile street-level multi-person track-
ing. Our approach combines the advantages of a fast segmentation-based tracker for
following individual persons with the robustness of a high-level multi-hypothesis track-
ing framework for performing longer-term data association. As our experiments have
shown, the approach reaches state-of-the-art performance, while requiring fewer detec-
tor evaluations than conventional tracking-by-detection approaches. Our results open
several interesting research perspectives. The requested detector activations for tracklet
re-initialization could be restricted to the tracklet’s immediate neighborhood, thus re-
sulting in further speedups. In addition, the obtained level-set segmentation could be a
possible starting point for articulated tracking that we plan to explore in future work.
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Abstract. Model updating is a critical problem in tracking. Inaccurate
extraction of the foreground and background information in model adap-
tation would cause the model to drift and degrade the tracking perfor-
mance. The most direct but yet difficult solution to the drift problem is
to obtain accurate boundaries of the target. We approach such a solution
by proposing a novel closed-loop model adaptation framework based on
the combination of matting and tracking. In our framework, the scribbles
for matting are all automatically generated, which makes matting appli-
cable in a tracking system. Meanwhile, accurate boundaries of the target
can be obtained from matting results even when the target has large
deformation. An effective model is further constructed and successfully
updated based on such accurate boundaries. Extensive experiments show
that our closed-loop adaptation scheme largely avoids model drift and
significantly outperforms other discriminative tracking models as well as
video matting approaches.

1 Introduction

Object tracking is a fundamental task in computer vision. Although numerous
approaches have been proposed, robust tracking remains challenging due to the
complexity in the object motion and the surrounding environment. To reliably
track a target in a cluttered background, an adaptive appearance model that can
discriminate the target from other objects is crucial. It has been shown that in
many scenarios context information can be adopted to increase the discriminative
power of the model [1,2].

One way of incorporating context information is to find auxiliary objects
around the target and to leverage the power of these objects to collaboratively
track the target [19]. However, these methods require the presence of objects
whose motion is consistently correlated to the target, which may not be satisfied
sometimes. Another way is to extract the features of the background around the
target, are then use them to enhance the distinction of the target against the
background, either by feature selection [1], or by training classifiers [21].

One critical issue that is rarely discussed in these methods is the degradation
of the model caused by the inaccuracy in the estimation of the foreground and
background. Most commonly the foreground and background are divided by a
bounding box or a region around the location of the target. No matter how tight
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Fig. 1. The framework of closed-loop adaptation for tracking

the region is, such a partition is too rough because some background regions
are treated as part of the foreground, especially when the location of the target
is not precise or the target is occluded. Accordingly, the updated model would
gradually be degraded and thus cause drift. Grabner et al.[18] proposed an online
semi-supervised boosting method to alleviate drift, and Babenko et al.[3] intro-
duced multiple instance learning to handle the problem. Despite such efforts, an
accurate boundary that clearly divides the target from the background is still
desirable.

To obtain a clear boundary of the foreground, one effective way is to perform
matting based on some prior information, which has been shown very successful
in estimating the opacity of the foreground. The boundary can then be easily
extracted from the opacity map. However, matting has never been combined
with tracking before because of the gap that matting needs user interaction
while tracking requires automatic processing. Video matting, although using
some tracking techniques (e.g. optical flow) to lighten the burden of human ef-
forts, still needs a large amount of user input and can not meet specific demands
of object tracking such as automatic processing, low resolution and occlusion
handling. In this paper, we bridge this gap by automatically providing suitable
scribbles for matting during the tracking process and make matting work very
well in the tracking scenario. Furthermore, we propose a practical model adapta-
tion scheme based on the accurate object boundary estimated by matting, which
largely avoids the drift problem. Such an interplay of matting and tracking there-
fore forms a closed-loop adaptation in an object tracking system, as shown in
Fig. 1. Compared to other tracking approaches, our closed-loop tracking system
has the following contributions and advantages:
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1. We address the automatic scribble generation problem for matting in the
tracking process. A coarse but correct partition of foreground and back-
ground is estimated during tracking, which is then used to automatically
generate suitable scribbles for matting. The supply of scribbles is non-trivial.
A small false scribble may lead to matting failure, while deficient scribbles
could also impair the performance. In our system, the generation of scribbles
is designed carefully to be correct and sufficient, which can yield comparable
matting results to the methods based on user input.

2. We construct a simple but practical model for tracking, which not only
captures short-term dynamics and appearances of the target, but also keeps
long-term appearance variations, which allows us to accurately track the
target in a long range under various situations such as large deformation, out
of plane rotation and illumination change, even when the target reappears
after complete occlusion.

3. Unlike other methods that tried to alleviate the aftereffects caused by in-
accurate labeling of the foreground, we successfully extract the accurate
boundary of the target and obtain refined tracking results based on alpha
mattes. Under the guidance of such a boundary, the short-term features of
the model are updated. Moreover, occlusion is inferred to determine the
adaptation of the long-term model. Benefiting from the matting results, our
model adaptation largely excludes the ambiguity of foreground and back-
ground, thus significantly alleviating the drift problem in tracking. Besides,
object scaling and rotation can also be handled by obtaining the boundary.

2 Related Work

Object tracking has been an active research area sine early 1980s and a large
number of methods were proposed during the last three decades. In the perspec-
tive of model design and update in tracking, early works tended to construct
the model by describing the target itself [22,23], while recently the adoption of
context information has become very popular [1,2,19,21,20,4,5,14].

The modeling of spatial context in these methods can be categorized to two
levels: higher object level and lower feature level. At the higher level, the interac-
tions between different targets are explored in multiple target tracking, either by
a Markov network [5] or by modeling their social behaviors [4]. Such interactions
are further extended to the auxiliary objects around the target [19]. By finding
the auxiliary objects whose motion is consistently correlated to the target at a
certain short period, it can successfully track the target even if the appearance
of the target is difficult to discriminate. However, such auxiliary objects are not
always present, which makes those methods sometimes not applicable.

At the lower level, the features of the background around the target are uti-
lized without analyzing their semantic meanings. Feature selection can be per-
formed by choosing the most discriminative ones between the target and its
background, which is first proposed in [1]. Avidan [21] trained an ensemble of
classifiers by treating the target as positive samples and the background as nega-
tive ones. These methods, however, more or less suffer from the inaccuracy in the
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estimation of the foreground and background, which obscures the discrimination
of their model and eventually leads to drift.

The drift problem was discussed in [6], in which they proposed a partial solu-
tion for template update. Grabner et al.[18] proposed an online semi-supervised
boosting method, and Babenko et al.[3] introduced multiple instance learning
to avoid the drift of positive samples. However, these methods all focused on
the alleviation of drift caused by foreground/background labeling errors. If an
accurate boundary of the target can be obtained, such errors would be mostly
reduced.

Image segmentation is one way to extract and track the object boundaries.
Ren et al.[16] combined spatial and temporal cues in a Conditional Random
Field to segment the figure from the background in each frame, and Yin et
al.[15] modified the CRF by adding shape constraints of the target. However
some tracking scenes may have cluttered backgrounds, which cause difficulties
to directly extract accurate boundaries using segmentation techniques.

Compared with image segmentation, alpha matting tries to exploit the linear
compositing equations in the alpha channel instead of directly handling the com-
plexity in natural images, therefore may achieve better foreground/background
separation performance based on a moderate amount of user input [7]. [8] pro-
vided an extensive review of recent matting techniques. Matting is further ex-
tended to videos by combining motion estimation approaches such as optical
flow and background estimation [9,10]. But video matting can not be directly
used in tracking, as they always need user interaction, which is not suitable in
automated tracking methods. Moreover, they can not well handle objects with
fast deformations and occlusions, which are very common in most tracking sce-
narios. To the best of our knowledge, our method is a first attempt to combine
matting with tracking to provide shape boundary of the target and to handle
occlusion.

3 Model Description

By incorporating the properties of discriminative models and descriptive models,
our tracking model tries to discriminate the foreground from the background as
well as maintain a long-term description for the target’s appearance. Apart from
the basic dynamics, the model is composed of three main components.

Short-term salient points. Sf denotes a set of salient points that are ex-
tracted from the foreground, while Sb is a set of salient points detected from
the surrounding background near the target, as shown in Fig. 2(a). Currently
SIFT [11] are used as salient points. Salient points are tracked in a short time
period and used to generate scribbles for matting and estimate the dynamics of
the model.

Discriminative colors. Color is another useful clue to discriminate the fore-
ground from the background. We select the most discriminative colors for the
foreground and the background respectively. Given a frame with known fore-
ground and background (either by manual initialization at the first frame or
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Fig. 2. Our model for tracking. (a) Short-term salient points, (b) discriminative color
lists, (c) long-term bags of patches.

by refined tracking results at the following frames), we can obtain the discrim-
inative color list of the foreground Cf based on the log-likelihood ratio of the
foreground/background color histogram.1 We can get a similar list of the back-
ground Cb, and maintain these two color lists respectively. Figure 2(b) gives
us an example. In Fig. 2(b), the pink color is the most distinctive one for the
foreground, while light blue is distinctive for the background. White, black and
yellow exist in both the foreground and background. Therefore neither of Cf and
Cb chooses them as discriminative colors. Such a description, although simple,
is observed very powerful to detect the foreground and the background.

Long-term bags of patches. We also constructed a long-term model to pre-
serve the appearance variation of the target in a long range, which helps locate
the target under occlusion and deformation. Given a target region, we divide it
to a M ×N grid. For example, in Fig. 2(c), the grid is 3× 3. At each crosspoint
of the grid, a patch is cropped and recorded.2 Therefore we have many patches
with different time stamps at each crosspoint, which captures the variation in
the local appearance at a relatively fixed position of the foreground. We call
the set of all the patches at the same crosspoint a bag of patches BoPi. For
example, in Fig. 2(c), BoP1 captures the long-term appearance at the top-left
corner of the target. The adaptations of those bags are performed independently
by foreground matching and occlusion inference, which avoids false update due
to partial occlusion. The geometric information (normalized by target size) of
these bags of patches is also implicitly encoded by their relative positions.

At each frame, the short-term features in the model are used to generate fore-
ground/background scribbles for matting, and the long-term model is utilized
to locate the object when it is under severe occlusion and the short-term features

1 We divide the color to 1024 bins in HSV space(16 bins, 8 bins and 8 bins in the H,
S and V channels respectively), and then get the color histogram.

2 The patch size is K × K. In practice we choose K = 25.
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are not reliable. Once the accurate foreground boundary is determined by mat-
ting, all the components of the model will be updated accordingly, which will be
introduced in the next two sections.

4 The Closed Loop: From Coarse Tracking to Matting

Given an input frame, we first use our model to perform coarse tracking. i.e.,
locate the target and obtain a coarse but correct partition of the foreground and
background. Based on such a partition, scribbles are automatically generated
for matting. The matting results heavily rely on the prior information of the
foreground and background. A false labeling of foreground or background may
cause a drastic erroneous matte. We carefully design the scribble generation
scheme to avoid false labeling and to yield good alpha mattes.

4.1 Short-Term Coarse Tracking

From frame to frame, we use two types of features to detect the foreground and
background and then generate scribbles: salient points and homogenous regions.

Salient points. Consider that Sf and Sb are the sets of salient points extracted
from the foreground and its neighboring background at the previous frame f t−1

respectively, and S′
f and S′

b are the corresponding salient point sets at the current
frame f t. First we perform SIFT matching between Sf and S′

f . However, we can
not guarantee that the salient points at f t−1 are still salient at f t. Therefore, for
those points in Sf that do not find their matching points in S′

f , they are tracked
by calculating SSD and gradient-based search to find new locations at f t [13]. At
last all the points in Sf will have matched locations at the current frame. Small
image regions that cover these new locations are then labeled as the foreground.
Similarly, we track all the salient points in Sb and label the regions covering
their new locations as the background, as we can see in Fig. 3(b). The sizes of
scribbles depend on the positions of salient points and their matching scores. If
a salient point is far from the object boundary at f t−1 and its matching score
is relatively high, the corresponding scribble will be relatively large, otherwise
it will be small to avoid false labeling.

It is worth notice that in our coarse tracking process, the tracking results of
these salient points are not necessary to be very accurate. It only requires that
Sf still stay in the object and Sb remain in the background, which is robust to
some fluctuations in salient points tracking. In our experiments we found that
such requirements are easily satisfied by the tracking results.

Discriminative color regions. Although the regions with salient points are
labeled, there are still large uncertain regions around the object, some of which
are very discriminative in color space. Therefore we choose discriminative color
regions as additional scribbles. Consider that the discriminative color lists Cf and
Cb have been updated at f t−1. At f t, we use these two lists to detect foreground
discriminative color regions and background regions at the possible locations of
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Fig. 3. Short-term coarse tracking. White regions denote foreground scribbles, while
black ones denote background scribbles. (a) The boundary of the target at previous
frame, (b) generating scribbles by salient point tracking, (c) Generating scribbles by
the discriminative color lists, (d) final scribbles and estimated alpha matte, (e) matting
result by user input.

the target. For each pixel, if its color is the same as one color in foreground
discriminative color list Cf , it will be labeled as foreground. Similarly, the pixels
with the same colors as in Cb are marked as background, as shown in Fig. 3(c).

The scribbles provided by salient points and the ones provided by discrimi-
native color regions are good complements to each other. As we can see in the
red square region in Fig. 3(b) (an enlarged view is provided in the lower-right
corner), salient points can be detected on the tail of Jerry. And in Fig. 3(c),
the region between two legs of Jerry is marked as background, where no salient
points exists. Combing two categories of scribbles, the final scribbles for matting
are drawn in Fig. 3(d), which ensures to produce a satisfying matte.

Given such scribbles, standard matting methods can be adopted to estimate
the matte of current frame. Here we use the closed-form solution proposed in
[7]. As we can see in Fig. 3(d), Our scribbles are already good and sufficient
to estimate a good matte, which is very competitive against the matting result
based on user input in Fig. 3(e).

4.2 Long-Term Target Locating

In most situations, the tracking results of salient points and the identification of
discriminative colors are satisfying to help generate a good alpha matte. How-
ever, in some cases, such a method is not applicable, especially when the target
is severely occluded and no sufficient salient points can be provided, or when the
target reappears from complete occlusion. To address those problems, we use
our long-term bag-of-patches model to locate the target.

Our model matching approach is based on an underlying assumption: no mat-
ter whether the target is severely occluded or first reappears, only a small part
of the target is visible. Therefore, only one or two bags in our model are in the



418 J. Fan, X. Shen, and Y. Wu

foreground at this time. That assumption significantly simplifies our matching
scheme. We sequentially use one of the bags to search the space. Each maintained
patch in that bag is used to find their most matched patch in the searching space
(the patch with the best SSD matching score). Among those matching scores,
the highest one is recorded as the matching confidence of that bag. We identify
the bag with the highest confidence as the searching results. i.e., the matched
patch by that bag is labeled as the foreground, and the location of the model
is also determined by that patch. For example, in Fig. 8, BoP7 has the highest
matching confidence at Frame 720, the target is then located according to BoP7.

If the target is severely occluded, we can still infer its possible location accord-
ing to previous tracking results, and the target can be searched in that possible
region. If the target reappears from complete occlusion, then searching in the
whole space may be needed. If the search space is too large, it is quite compu-
tationally expensive. Therefore we propose a coarse-to-fine method to relocate
the target. We perform search every 5 pixels and find the best one, then using
gradient-based SSD matching to find the local optimum. We observed that the
performance is sufficiently good in experiments by this fast method.

After locating the target, the matched patch provides a foreground scribble
for matting. Discriminative color detection is further performed again to gen-
erate additional scribbles around the target. Matting thus can be successfully
performed using these scribbles.

5 The Closed Loop: From Matting to Refined Tracking

In the other half loop of our system, estimated alpha mattes are first adopted to
refine tracking results (i.e. to obtain the accurate boundary and the dynamics
of the target). Each component in our model can then be sequentially updated
based on the clear foreground and background.

5.1 The Boundary

The alpha matte is a continuous map of opacity α. The α values near the bound-
ary of the target are hardly 0 or 1 but some values between them. Therefore,
to remove such ambiguity and to obtain a clear shape boundary of the target, a
certain α threshold αT must be chosen to cut this map.

The shape boundary of the previous frame is used as the guide to determine
αT . For example, given the boundary at Frame 166 in Fig. 4(a) and the estimated
matte at Frame 167 in Fig. 4(c), by setting different thresholds, we can obtain dif-
ferent shape boundaries, as shown in Fig. 4(d)-(g). We assume that although the
target may have large deformation, its shape in two consecutive frames should
not be too different. Therefore the one having the maximum likelihood with the
previous shape boundary is chosen as the boundary at the current frame. We
used the contour matching method in [12] to calculate the likelihood because
of its computational efficiency. The final chosen αT is 0.2, and the boundary of
the target determined by alpha matting is shown in Fig. 4(e). Compared with
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Frame 166 Frame 167 Alpha matte αT =0.1 αT =0.2 αT =0.6 αT =0.8 

(a) (b) (c) (d) (e) (f) (g) 

Fig. 4. Determining the boundary from estimated matte. Under the guidance of the
boundary at Frame 166 in (a), the threshold is selected to be 0.2, and the boundary
at Frame 167 is given in (e).

this selected threshold, a smaller αT takes some background as foreground(the
region circled using green color in Fig. 4), while a larger αT tends to exclude
some true foreground, as shown in the blue circle region in Fig. 4.

5.2 Estimating the Dynamics of the Target

The dynamics of the model are estimated from the motions of the salient points.
According to the positions of the salient points at the current frame and their
corresponding positions at the previous frame, their motion vectors vi between
these two frames are easily calculated, as shown in Fig. 5(a). Based on vi, a
dominant motion of the entire target can be estimated. We use Parzen window
method to generate a 2-D density map of salient point motion vectors.

f(v) =
1

nh2

n∑
i=1

K(
v − vi

h
) (1)

where h is the bandwidth, and K(x) is the window function. Here we set h = 3
and K(x) is a standard Gaussian function with mean zero and covariance matrix
σI (I is an identity matrix). If the motion vectors of salient points present
coherence, which means the entire target is also moving with a dominant motion,
the motion density map must have a sharp peak(Fig. 5(b)). Let vm denote the
motion with the maximum density. We calculate the motion density around vm:

P (vm) =
∫

‖v−vm‖<1

f(v)dv (2)

If P (vm) ≥ β, the peak is considered very sharp, and vm is the dominant motion
of the entire target. The location of the target is then determined by:

Lt = Lt−1 + vmΔt (3)

where Lt−1 is the location of the target at previous frame, and Δt = 1.
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Dominant Motion Non-dominant Motion
(a) (b) (c) (d)

Fig. 5. Dominant motion estimation

If P (vm) < β, it indicates that the motions of salient points are not coherent,
and the target may be rotating or deforming without a dominant motion, as in
Fig. 5(c). Therefore, the motion estimated by salient points is not reliable. In
that case, we directly use the long-term model to match the current foreground
and find the location of the model, as introduced in Sect. 4.2.

5.3 Model Updating

After obtaining the clear foreground, all the components in our model are up-
dated.

Updating salient points. Salient points are short-term features, therefore we
directly re-sample new points in the foreground and the neighboring background
to get obtain Sf and Sb.

Updating discriminative colors. During tracking, the background color may
largely change, while the foreground may also vary due to deformation and self
occlusion. Therefore, the discriminative color lists should be updated to remove
invalid colors and add new discriminative colors.

Once the target is located and the boundary is estimated, we first get the
color histograms of the foreground and background. Discriminative colors for the
foreground and the background are then extracted respectively by calculating
the log-likelihood ratio of these two histograms, as introduced in Sect. 3. For
each extracted foreground discriminative color at current frame, we compare it
with Cf and Cb. There are three cases:

1. Cb contains the same color, i.e., one of the color features in Cb and this newly
extracted discriminative color fall into the same color bin. It means that this
color feature is no more discriminative for the background, and thus will be
removed from Cb.

2. Cb does not contain this color while Cf does, then this color is discriminative
for the foreground but already exists in Cf . No update will be performed.

3. Neither of Cb and Cf has the same color. Apparently this color feature is a
new discriminative color for the foreground and will be added to Cf .
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Similarly, we extract new discriminative colors in the background, and compare
them with Cf and Cb. The colors in Cf which are no more discriminative are
removed, and new discriminative colors for the background are added to Cb.

Updating the long-term model. A bag of patches not only contains previ-
ously appeared patches, but also records their frequency, i.e., their recurrence
time. The bags of patches are updated independently only when their corre-
sponding positions (i.e. the crosspoints in the grid) are totally visible. By that
means, only the foreground are involved in model adaptation, thus avoiding
model drift caused by the intervention of background regions. Once locating the
model, the positions of the bags in the model are also determined. We compare
the support (a K × K square) of each bag with the foreground region. If the
support of the bag is entirely inside the foreground, it is considered to be visible,
and will be updated. Otherwise, it will be not updated at this time.

To update a bag of patches, we crop a new K × K patch at the bag’s po-
sition, and compared it with the maintained patches by calculating their SSD.
If the cropped patch is very similar to a previously maintained patch, then the
frequency of the maintained patch is increased by 1, otherwise the new patch is
added to the list with initial frequency as 1.3 With such a simple but efficient
model adaptation approach, the long-term local appearances of the target are
effectively captured and preserved.

6 Experiments

During tracking, if the size of the target is W × H , then a surrounding re-
gion with size 1.5W × 1.5H is considered as its neighboring background, where
salient points and discriminative color regions are extracted. We applied some
morphological operators such as erosion and dilation to reduce the small noises
in the scribbles. The computational cost of our approach is mostly ascribed to
the matting algorithm. It is related to the amount of the pixels with un- certain
alpha values before matting, which is generally dependent on the object size. In
our method, much more scribbles are provided compared with user input, which
makes matting faster. For example, our method can averagely process one frame
per second in Tom and Jerry sequence without code optimization in our Matlab
implementation, where the object size is around 150× 150. This implies a great
potential of a real-time implementation in C++. As a fast matting technique
[17] has been proposed recently, the computational complexity is no longer a
critical issue in our algorithm.

6.1 Comparison

We first compared our method with Collins’ method [1], in which they perform
feature selection to discriminate the foreground and background. In the Tom and

3 Actually it is a simple clustering process, and the frequencies of the patches are the
weights of the clusters.
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Frame 000 Frame 002 Frame 006 Frame 014 Frame 144 Frame 310

Fig. 6. Comparison with Collins’ online feature selection. Top: Tracking results by
online feature selection. Bottom: Tracking results by our method.

Fig. 7. Quantitative Comparison with Collins’ online feature selection

Frame 392 Frame 413 Frame 444 Frame 517 Frame 599 Frame 720

Fig. 8. Comparison with video matting. Top: Tracking results by video matting. Bot-
tom: Tracking results by our method.

Jerry sequence, our approach can accurately obtain the boundary of Jerry, es-
pecially when he is holding a spoon or carrying a gun, while Collins’ method
drifted in the very beginning due to the fast motion, as we can see in Fig. 6.
Notice that even we have a rough initialization at Frame 000 where some back-
ground is included, our method can still correctly get the boundary eventually.
We also provided a quantitative comparison(Fig. 7). Our method shows a higher
accuracy.

We also compared our method with video matting [9]. To make their method
work in the tracking scenario (i.e. automatic processing), all the user input
except for the first frame is removed. We both use the closed-form matting
method [7] for fair comparison. As we can see in Fig. 8, in video matting the
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Frame 000 Frame 015 Frame 060 Frame 114 Frame 160

Fig. 9. Tracking target with fast motion and large deformation

Frame 000 Frame 084 Frame 110 Frame 234 Frame 389 Frame 465

Fig. 10. Handling scale change and out-of-plane rotation

estimation of optical flow is not accurate at motion discontinuities and in homo-
geneous regions, therefore their cutout result is not satisfying. Furthermore, they
cannot handle occlusion. By contrast, our method can always adaptively keep
the boundary of the book. In this sequence, blue squares means that this bag is
not occluded and will be updated, while purple squares means that this bag is
currently under occlusion. At Frame 517, none of the bags is totally visible, the
model therefore stops updating. At Frame 720, when the book reappears from
complete occlusion, our model can successfully relocate it.

6.2 More Scenarios

We tested our method in more complex and challenging scenarios. The skating
sequence has very fast motion and significant deformation. Motion blur can be
clearly observed on each frame. The background keeps changing fast, especially
when the skater is jumping. Given the initialization at Frame 000, Our method
performs very well and gives a clear cutout for the skater, as shown in Fig. 9.
Our method can also handle scaling and out-of-plane rotation in Fig. 10.

7 Conclusion

This paper introduces matting into a tracking framework and proposes a closed-
loop model adaptation scheme. In our framework, the scribbles for matting are
automatically generated by tracking, while matting results are used to obtain
accurate boundaries of the object and to update the tracking model. Our work
validates the applicability of automated matting in a tracking system, and mean-
while largely avoids the model drift problem in tracking with the aid of matting
results. The proposed framework can be considered as a fundamental guideline on
the combination of matting and tracking. In such a framework, each component
in the closed loop can be further explored to improve the tracking performance.
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Abstract. We present an analysis of the spatial covariance structure of
an articulated motion prior in which joint angles have a known covari-
ance structure. From this, a well-known, but often ignored, deficiency of
the kinematic skeleton representation becomes clear: spatial variance not
only depends on limb lengths, but also increases as the kinematic chains
are traversed. We then present two similar Gaussian-like motion priors
that are explicitly expressed spatially and as such avoids any variance
coming from the representation. The resulting priors are both simple and
easy to implement, yet they provide superior predictions.

Keywords: Articulated Tracking, Motion Analysis, Motion Priors, Spa-
tial Priors, Statistics on Manifolds, Kinematic Skeletons.

1 Articulated Tracking

Three dimensional articulated human motion tracking is the process of estimat-
ing the configuration of body parts over time from sensor input [1]. One approach
to this estimation is to use motion capture equipment where e.g. electromagnetic
markers are attached to the body and then tracked in three dimensions. While
this approach gives accurate results, it is intrusive and cannot be used outside
laboratory settings. Alternatively, computer vision systems can be used for non-
intrusive analysis. These systems usually perform some sort of optimisation for
finding the best configuration of body parts. This optimisation is often guided
by a system for predicting future motion. This paper concerns such a predictive
system for general purpose tracking. Unlike most previous work, we build the
actual predictive models in spatial coordinates, rather than working directly in
the space of configuration parameters.

In the computer vision based scenario, the objective is to estimate the hu-
man pose in each image in a sequence. When only using a single camera, or a
narrow baseline stereo camera, this is inherently difficult due to self-occlusions.
This manifests itself in that the distribution of the human pose is multi-modal
with an unknown number of modes. To reliably estimate this pose distribution
we need methods that cope well with multi-modal distributions. Currently, the
best method for such problems is the particle filter [2], which represents the
distribution as a set of weighted samples. These samples are propagated in time
using a predictive model and assigned a weight according to a data likelihood. As
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such, the particle filter requires two subsystems: one for computing likelihoods
by comparing the image data to a sample from the pose distribution, and one
for predicting future poses. In terms of optimisation, the latter guides the search
for the optimal pose. In practice, the predictive system is essential in making the
particle filter computationally feasible, as it can drastically reduce the number
of needed samples.

1.1 The Kinematic Skeleton

Before discussing the issues of human motion analysis, we pause to introduce
the actual representation of the human pose. In this paper, we use the kinematic
skeleton (see Fig. 1a), which is by far the most common choice [1]. This repre-
sentation is a collection of connected rigid bones organised in a tree structure.
Each bone can be rotated at the point of connection between the bone and its
parent. We will refer to such a connection point as a joint.

(a) (b)

Fig. 1. (a) A rendering of the kinematic skeleton. Each bone position is computed by
a rotation and a translation relative to its parent. The circles, are collectively referred
to as the end-effectors. (b) The derivative of an end point with respect to a joint angle.
This is computed as the cross product of the rotational axis rn and the vector from
the joint to the end-effector.

We model the bones as having known constant length (i.e. rigid), so the direc-
tion of each bone constitute the only degrees of freedom in the kinematic skeleton.
The direction in each joint can be parametrised with a vector of angles, noticing
that different joints may have different number of degrees of freedom. We may
collect all joint angle vectors into one large vector θ representing all joint angles
in the model. This vector will then be confined to the N dimensional torus TN .

Forward Kinematics. From known bone lengths and a joint angle vector θ, it
is straight-forward to compute the spatial coordinates of the bones. Specifically,
the purpose is to compute the spatial coordinates of the end points of each bone.
This process is started at the root of the tree structure and moves recursively
along the branches, which are known as the kinematic chains.

The root of the tree is placed at the origin of the coordinate system. The end
point of the next bone along a kinematic chain is then computed by rotating
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the coordinate system and translating the root along a fixed axis relative to the
parent bone, i.e.

al = Rl (al−1 + tl) , (1)

where al is the lth end point, and Rl and tl denotes a rotation and a translation
respectively. The rotation is parametrised by the relevant components of the
pose vector θ and the length of the translation corresponds to the known length
of the bone. We can repeat this process recursively until the entire kinematic
tree has been traversed. This process is known as Forward Kinematics [3].

The rotation matrix Rl of the lth bone is parametrised by parts of θ. The
actual number of used parameters depends on the specific joint. For elbow joints,
we use one parameter, while we use three parameters to control all other joints.
These two different joint types are respectively known as hinge joints and ball
joints.

Using forward kinematics, we can compute the spatial coordinates of the end
points of the individual bones. These are collectively referred to as end-effectors.
In Fig. 1a these are drawn as circles. We will denote the coordinates of all end-
effectors by F (θ). We will assume the skeleton contains L end-effectors, such
that F (θ) ∈ R3L.

It should be clear that while F (θ) ∈ R
3L, the end-effectors does not cover all

of this space. There is, for instance, an upper bound on how far the hands can
be apart. Specifically, we see that F (θ) ∈ M ⊂ R3L, where M is a compact
differentiable manifold embedded in R3L (since TN is compact and F is an
injective function with full-rank Jacobian).

Derivative of Forward Kinematics. Later, we shall be in need of the Jaco-
bian of F . This consists of a column for each component of θ. Each such column
can be computed in a straightforward manner [4]. Let rn denote the unit-length
rotational axis of the nth angle and Δnl the vector from the joint to the lth

end-effector. The entries of the column corresponding to the lth end-effector can
then be computed as ∂θ[n]Fl = rn×Δnl. This is merely the tangent of the circle
formed by the end-effector when rotating the joint in question as is illustrated
in Fig. 1b.

Joint Constraints. In the human body, bones cannot move freely. A simple
example is the elbow joint, which can approximately only bend between 0 and
120 degrees. To represent this, θ is confined to a subset Θ of TN . With this
further restriction, M becomes a manifold with boundary.

For simplicity, Θ is often defined by confining each component of θ to an
interval, i.e. Θ =

∏N
n=1[ln, un], where ln and un denote the lower and upper

bounds of the nth component. This type of constraints on the angles is often
called box constraints [5].

1.2 Related Work

Most work in the articulated tracking literature falls in two categories. Either
the focus is on improving the image likelihoods or on improving the predictions.
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Due to space constraints, we forgo a review of various likelihood models as this
paper is focused on prediction. For an overview of likelihood models, see the
review paper by Poppe [1].

Most work on improving the predictions, is focused on learning motion specific
priors, such as for walking [6, 7, 8, 9, 10, 11, 12]. Currently, the most popular
approach is to restrict the tracker to some subspace of the joint angle space.
Examples include, the work of Sidenbladh et al [10] where the motion is confined
to a linear subspace which is learned using PCA. Similarly, Sminchisescu and
Jepson [8] use spectral embedding to learn a non-linear subspace; Lu et al [9] use
the Laplacian Eigenmaps Latent Variable Model [13] to perform the learning,
and Urtasun et al [14] use a Scaled Gaussian Process Latent Variable Model [15].
This strategy has been improved even further by Urtasun et al [12] and Wang
et al [7] such that a stochastic process is learned in the non-linear subspace
as well. These approaches all seem to both stabilise the tracking and make it
computationally less demanding. The downside is, of course, that the priors are
only applicable when studying specific motions.

When it comes to general purpose priors, surprisingly little work has been
done. Such priors are not only useful for studying general motion but can also
be useful as hyperpriors for learning motion specific priors. The common under-
standing seems to be that the best general purpose prior is to assume that the
joint angles follow a Gaussian distribution. Specifically, many researchers assume

pangle(θt|θt−1) ∝ N (θt|θt−1, Σθ) UΘ(θt) , (2)

where UΘ denotes the uniform distribution on Θ enforcing the angular con-
straints and the subscript t denotes time. We shall call this model the Angular
Prior. In practice, Σθ is often assumed to be diagonal or isotropic. This model
has, amongst others, been applied by Sidenbladh et al [10], Balan et al [16] and
Bandouch et al [17]. At first sight, this model seems quite innocent, but, as we
shall see, it has a severe downside.

1.3 Our Contribution and Organisation of the Paper

In Sec. 2 we provide an analysis of the spatial covariance of the common motion
prior from Eq. 2. While the formal analysis is novel, its conclusions are not
surprising. In Sec. 3, we suggest two similar motion priors that are explicitly
designed to avoid the problems identified in Sec. 2. This work constitutes the
main technical contribution of the paper. In order to compare the priors we
implement an articulated tracker, which requires a likelihood model. We briefly
describe a simple model for this in Sec. 4. The resulting comparison between
priors is performed in Sec. 5 and the paper is concluded in Sec. 6.

2 Spatial Covariance Structure of the Angular Prior

While the covariance structure of θt in Eq. 2 is straight-forward, the covariance
of F (θt) is less simple. This is due to two phenomena:
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1. Variance depends on distance between joint and end-effector. When
a joint angle is changed, it alters the position of the end point of the limb
attached to the joint. This end point is moved on a circle with radius corre-
sponding to the distance between the joint and the end point. This means
the end point of a limb far away from the joint can change drastically with
small changes of the joint angle.

2. Variance accumulates. When a joint angle is changed, all limbs that are
further down the kinematic chain will move. This means that when, e.g.,
the shoulder joint changes both hand and elbow moves. Since the hand also
moves when the elbow joint changes, we see that the hand position varies
more than the elbow position.

Neither of these two phenomena seem to have come from well-founded modelling
perspectives.

To get a better understanding of the covariance of limb positions, we seek an
expression for cov[F (θt)]. Since F (θt) lies on a non-linear manifold M in R3L,
such an analysis is not straight-forward. Instead of computing the covariance on
this manifold, we compute it in the tangent space at the mean value θ̄t = E(θt)
[18]. This requires the Logarithm map of M, which we simply approximate by
the Jacobian Jθ̄t

= ∂θt
F (θt)|θt=θ̄t

of the forward kinematics function, such that

cov[F (θt)] ≈ cov[Jθ̄t
θt] = Jθ̄t

cov[θt]JT
θ̄t

= Jθ̄t
Σθt

JT
θ̄t

. (3)

As can be seen, the covariance of the limb positions is highly dependent on the
Jacobian of F . A slightly different interpretation of the used approximation is
that we linearise F around the mean, and then compute the covariance.

We note that
∥∥∂θt[n]Fl

∥∥ = ‖Δnl‖, meaning that the variance of a limb is
linearly dependent on the distance between the joint and the limb end point. This
is the first of the above mentioned phenomena. The second phenomena comes
from the summation in the matrix product in Eq. 3. It should be stressed that
this behaviour is a consequence of the choice of representation and will appear in
any model that is expressed in terms of joint angles unless it explicitly performs
some means of compensation. We feel this is unfortunate, as the behaviour does
not seem to have its origins in an explicit model design decision. Specifically,
it hardly seems to have any relationship with natural human motion (see the
discussion of Fig. 2a below).

In practice, both of the above mentioned phenomena are highly visible in
the model predictions. In Fig. 2a we show 50 samples from Eq. 2. Here, the
joint angles are assumed to be independent, and the individual variances are
learned from ground truth data of a sequence studied in Sec. 5. As can be seen
the spatial variance increases as the kinematic chains are traversed. In practice,
this behaviour reduces the predictive power of the model drastically; in our
experience the model practically has no predictive power at all. Bandouch et
al [17] suggested using Partitioned Sampling [19] to overcome this problem. This
boils down to fitting individual limbs one at a time as the kinematic chains are
traversed, such that e.g. the upper arm is fitted to the data before the lower
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(a) pangle (b) pproj (c) pT

Fig. 2. Fifty samples from the different priors. The variance parameters for these dis-
tributions were assumed independent and was learned from ground truth data for a
sequence studied in Sec. 5. (a) The angular prior pangle. (b) The projected prior pproj.
(c) The tangent space prior pT .

arm. While this approach works, we believe it is better to fix the model rather
than work around its limitations. As such, we suggest expressing the predictive
model directly in terms of spatial limb positions.

3 Two Spatial Priors

Informally, we would like a prior where each limb position is following a Gaussian
distribution, i.e.

pidea(θt|θt−1) = N (F (θt)|F (θt−1), Σ) . (4)

This is, however, not possible as the Gaussian distribution covers the entire
R3L, whereas F (θt) is confined to M. In the following, we suggest two ways of
overcoming this problem.

3.1 Projected Prior

The most straight-forward approach is to define p(θt|θt−1) by projecting Eq. 4
onto M, i.e.

pproj(θt|θt−1) = projM [N (F (θt)|F (θt−1), Σproj)] . (5)

When using a particle filter for tracking, we only need to be able to draw samples
from the prior model. We can easily do this by sampling from Eq. 4 and pro-
jecting the result onto M. This, however, requires an algorithm for performing
the projection.

Let xt denote a sample from Eq. 4; we now seek θ̂t such that F (θ̂t) =
projM[xt]. We perform the projection in a direct manor by seeking

θ̂t = min
θt

∣∣∣∣xt − F (θt)
∣∣∣∣2 s.t. l ≤ θt ≤ u , (6)
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where the constraints corresponds to the joint limits. This is an overdetermined
constrained non-linear least-squares problem, that can be solved by any standard
algorithm. We employ a projected steepest descent with line-search [5], where
the search is started in θt−1. To perform this optimisation, we need the gradient
of Eq. 6, which is readily evaluated as ∂θt

‖xt − F (θt)‖2 = 2(xt − F (θt))T Jθt
.

In Fig. 2b we show 50 samples from this distribution, where Σproj is assumed
to be a diagonal matrix with entries that have been learned from ground truth
data of a sequence from Sec. 5. As can be seen, this prior is far less variant than
the Gaussian prior pangle on joint angles.

3.2 Tangent Space Prior

While the projected prior provides us with a suitable prior, it does come with
the price of having to solve a non-linear least-squares problem. If the prior is
to be used as e.g a regularisation term in a more complicated learning scheme,
this can complicate the models substantially. As an alternative, we suggest a
slight simplification that allows us to skip the non-linear optimisation. Instead
of letting F (θt) be Gaussian distributed in R3L, we define it as being Gaussian
distributed in the tangent space T of M at F (θt−1). That is, we define our prior
such that

pT (θt|θt−1) = NT (F (θt)|F (θt−1), ΣT ) , (7)

where NT denotes a Gaussian distribution in T . A basis of the tangent space is
given by the columns of the Jacobian Jθt−1 . From Eq. 3 we know that the co-
variance structure near F (θt−1) in this model is ΣT = Jθt−1ΣθJT

θt−1
. In general,

Jθt−1 is not square, so we cannot isolate Σθ from this equation simply by invert-
ing Jθt−1 . Instead, we take the straight-forward route and use the pseudoinverse
of Jθt−1 , such that

ptang(θt|θt−1) ∝ N
(
θt

∣∣θt−1,J†
θt−1

ΣT
(
J†

θt−1

)T)UΘ(θt) , (8)

where J†
θt−1

= (JT
θt−1

Jθt−1)
−1JT

θt−1
denotes the pseudoinverse of Jθt−1 . If we

consider Jθt−1 a function from TN to T then J†
θt−1

is indeed the inverse of this
function. One interpretation of this prior is that it is the normal distribution
in angle space that provides the best linear approximation of a given normal
distribution in the spatial domain.

To sample from this distribution, we generate a sample x ∼ N (0, ΣT ). This is
then moved into the joint angle space by letting θt =

(
J†

θt−1

)T
x+θt−1. In order

to respect joint limits, we truncate joint values that exceeds their limitations.
This simple scheme works well in practice.

In Fig. 2c we show 50 samples from this distribution, where ΣT is the same
as the projected prior in Fig. 2b. As can be seen, this prior behaves somewhat
more variant than pproj, but far less than pangle.
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4 Visual Measurements

To actually implement an articulated tracker, we need a system for making visual
measurements, i.e. a likelihood model. To keep the paper focused on prediction,
we use a simple likelihood model based on a consumer stereo camera1. This
camera provides a dense set of three dimensional points Z = {z1, . . . , zK} in
each frame. The objective of the likelihood model then becomes to measure
how well a pose hypothesis matches the points. We assume that each point is
independent and that the distance between a point and the skin of the human
follows a zero-mean Gaussian distribution, i.e.

p(Z|θt) ∝
K∏

k=1

exp
(
−D2(θt, zk)

2σ2

)
, (9)

where D2(θt, zk) denotes the square distance between the point zk and the skin
of the pose θt. To make the model robust with respect to outliers in the data we
threshold the distance function D such that it never exceeds a given threshold.

We also need to define the skin of a pose, such that we can compute distances
between this and a data point. Here, we define the skin of a bone as a cylinder
with main axis corresponding to the bone itself. Since we only have a single view
point, we discard the half of the cylinder that is not visible. The skin of the entire
pose is then defined as the union of these half-cylinders. The distance between
a point and this skin can then be computed as the smallest distance from the
point to any of the half-cylinders.

5 Experimental Results

To build an articulated tracker we combine the likelihood model with the sug-
gested priors using a particle filter. This provides us with a set of weighted
samples from which we estimate the current pose as the weighted average.

We seek to compare the three suggested priors, pangle, pproj and ptang. As the
base of our comparison, we estimate the pose in each frame of a sequence using
a particle filter with 10.000 samples, which is plenty to provide a good estimate.
This will then serve as our ground truth data. As we are studying a general
purpose motion model, we assume that each prior has a diagonal covariance
structure. These variances are then learned from the ground truth data to give
each prior the best possible working conditions.

We apply the three prior models to a sequence where a person is standing
in place and mostly moving his arms. We vary the number of particles in the
three tracking systems between 25 and 1500. The results are available as videos
on-line2 and some selected frames are available in Fig. 3. The general tendency
is that the projected prior provides the most accurate and smooth results for a
given number of particles. Next, we seek to quantify this observation.
1 http://www.ptgrey.com/products/bumblebee2/
2 http://humim.org/eccv2010/

http://www.ptgrey.com/products/bumblebee2/
http://humim.org/eccv2010/
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(a) pangle (b) pproj (c) pT

Fig. 3. Results attained using 150 and 250 samples superimposed on the image data.
Top row is using 150 particles, while bottom row is using 250 particles. (a) Using the
angular prior. (b) Using the projected prior. (c) Using the tangent space prior.

To compare the attained results to the ground truth data, we apply a simple
spatial error measure [20, 16]. This measures the average distance between limb
end points in the attained results and the ground truth data. This measure is
then averaged across frames, such that the error measure becomes

E =
1

TL

T∑
t=1

L∑
l=1

||alt − a′
lt|| , (10)

where alt is the spatial end point of the lth limb at time t in the attained results,
and a′

lt is the same point in the ground truth data. This measure is reported for
the different priors in Fig. 4a. As can be seen, the projected prior is consistently
better than the tangent space prior, which in turn is consistently better than
the angular prior. One explanation of why the projected prior outperforms the
tangent space prior could be that M has substantial curvature. This explanation
is also in tune with the findings of Sommer et.al [21].

If the observation density p(Zt|θt) is noisy, the motion model acts as a smooth-
ing filter. This can be of particular importance when observations are missing,
e.g. during self-occlusions. Thus, when evaluating the quality of a motion model
it can be helpful to look at the smoothness of the attained pose sequence. To
measure this, we simply compute the average size of the temporal gradient. We
approximate this gradient using finite differences, and hence use

S =
1

TL

T∑
t=1

L∑
l=1

||alt − al,t−1|| (11)
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as a measure of smoothness. This is reported in Fig. 4b. It can be seen that the
projected prior and the tangent space prior give pose sequences that are almost
equally smooth; both being consistently much more smooth than the angular
prior. This is also quite visible in the on-line videos.

So far we have seen that both suggested priors outperform the angular prior
in terms of quality. The suggested priors are, however, computationally more
demanding. One should therefore ask if it is computationally less expensive to
simply increase the number of particles while using the angular prior. In Fig. 4c
we report the running time of the tracking systems using the different priors. As
can be seen, the projected prior is only slightly more expensive than the angular
prior, whereas the tangent space prior is somewhat more expensive than the two
other models. The latter result is somewhat surprising given the simplicity of
the tangent space prior; we believe that this is caused by choices of numerical
methods. In practice both of the suggested priors give better results than the
angular prior at a fixed amount of computational resources, where the projected
prior is consistently the best.
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Fig. 4. Performance of the three priors. All reported numbers are averaged over several
trials. (a) The error measure E as a function of the number of particles. The average
standard deviation of E with respect to the trials are 0.018 for the angular prior, 0.008
for the projected prior and 0.009 for the tangent space prior. (b) The smoothness
measure S as a function of the number of particles. The average standard deviation of
S with respect to the trials are 0.0028 for the angular prior, 0.0009 for the projected
prior and 0.0016 for the tangent space prior. (c) The computational time as a function
of the number of particles.

We now repeat the experiment for a second sequence, using the same param-
eters as before. In Fig. 5 we show the tracking results in selected frames for the
three discussed priors. As before, videos are available on-line2. Essentially, we
make the same observations as before: the projected prior provides the best and
most smooth results, followed by the tangent space prior with the angular prior
consistently giving the worst results. This can also be seen in Fig. 6 where the
error and smoothness measures are plotted along with the running time of the
methods. Again, we see that for a given amount of computational resources, the
projected prior consistently provides the best results.
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(a) pangle (b) pproj (c) pT

Fig. 5. Results attained using 150 and 250 samples superimposed on the image data.
Top row is using 150 particles, while bottom row is using 250 particles. (a) Using the
angular prior. (b) Using the projected prior. (c) Using the tangent space prior.
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Fig. 6. Performance of the three priors. All reported numbers are averaged over several
trials. (a) The error measure E as a function of the number of particles. The average
standard deviation of E with respect to the trials are 0.021 for the angular prior, 0.007
for the projected prior and 0.015 for the tangent space prior. (b) The smoothness
measure S as a function of the number of particles. The average standard deviation of
S with respect to the trials are 0.002 for the angular prior, 0.0004 for the projected
prior and 0.001 for the tangent space prior. (c) The computational time as a function
of the number of particles.

6 Discussion

We have presented an analysis of the commonly used prior which assumes Gaus-
sian distributed joint angles, and have shown that this behaves less than desirable
spatially. Specifically, we have analysed the covariance of this prior in the tangent
space of the pose manifold. This has clearly illustrated that small changes in a
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joint angle can lead to large spatial changes. Since this instability is ill-suited
for predicting articulated motion, we have suggested to define the prior directly
in spatial coordinates.

Since human motion is restricted to a manifold M ⊂ R3L, we, however, need
to define the prior in this domain. We have suggested two means of accomplishing
this goal. One builds the prior by projecting onto the manifold and one builds
the prior in the tangent space of the manifold. Both solutions have shown to
outperform the ordinary angular prior in terms of both speed and accuracy. Of
the two suggested priors, the projected prior seems to outperform the tangent
space prior, both in terms of speed and quality. The tangent space prior does,
however, have the advantage of simply being a normal distribution in joint angle
space, which can make it more suitable as a prior when learning a motion specific
model.

One advantage with building motion models spatially is that we can express
motion specific knowledge quite simply. As an example, one can model a person
standing in place simply by reducing the variance of the persons feet. This type
of knowledge is non-trivial to include in models expressed in terms of joint angles.

The suggested priors can be interpreted as computationally efficient approx-
imations of a Brownian motion on M. We therefore find it interesting to in-
vestigate this connection further along with similar stochastic process models
restricted to manifolds. In the future, we will also use the suggested priors as
building blocks in more sophisticated motion specific models.
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Abstract. Dense and accurate motion tracking is an important require-
ment for many video feature extraction algorithms. In this paper we pro-
vide a method for computing point trajectories based on a fast parallel
implementation of a recent optical flow algorithm that tolerates fast mo-
tion. The parallel implementation of large displacement optical flow runs
about 78× faster than the serial C++ version. This makes it practical to
use in a variety of applications, among them point tracking. In the course
of obtaining the fast implementation, we also proved that the fixed point
matrix obtained in the optical flow technique is positive semi-definite. We
compare the point tracking to the most commonly used motion tracker -
the KLT tracker - on a number of sequences with ground truth motion.
Our resulting technique tracks up to three orders of magnitude more
points and is 46% more accurate than the KLT tracker. It also provides
a tracking density of 48% and has an occlusion error of 3% compared
to a density of 0.1% and occlusion error of 8% for the KLT tracker.
Compared to the Particle Video tracker, we achieve 66% better accuracy
while retaining the ability to handle large displacements while running
an order of magnitude faster.

1 Introduction

When analyzing video data, motion is probably the most important cue, and
the most common techniques to exploit this information are difference images,
optical flow, and point tracking. Since difference images restrict us to static cam-
eras and we want to extract rich and unrestricted motion information, we will
focus only on the last two techniques. The goal here is to enable accurate motion
tracking for a large set of points in the video in close to real time and in this
paper, we make substantial progress towards that goal. The quality of both the
estimated flow field and the set of point trajectories are very important as small
differences in the quality of the input features can make a high level approach
succeed or fail. To ensure accuracy, many methods only track a sparse set of
points; however, dense motion tracking enables us to extract information at a
much finer granularity compared to sparse feature correspondences. Hence, one
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wants to use the most recent motion estimation technique providing the most
reliable motion features for a specific task. For dense and accurate tracking there
are usually computational restrictions. Video data processing requires far more
resources than the analysis of static images, as the amount of raw input data is
significantly larger. This often hinders the use of high-quality motion estimation
methods, which are usually quite slow [1] and require expensive computer clus-
ters to run experiments efficiently. For this reason, ways to significantly speedup
such methods on commodity hardware are an important contribution as they
enable more efficient research in fields that build upon motion features. This is
important as more processing is usually required to utilize this motion informa-
tion for use in video processing applications. Fast implementations of the KLT
tracker and optical flow [2,3] are examples that have certainly pushed research.

In this paper we present a fast GPU implementation of large displacement op-
tical flow (LDOF) [4], a recent variational optical flow method that can deal with
faster motion than previous optical flow techniques1. The numerical schemes
used in [4] and most variational methods are based on a coarse-to-fine warping
scheme, where each level provides an update by solving a nonlinear system given
by the Euler-Lagrange equations followed by fixed point iterations and a linear
solver, as described in [5]. However, the relaxation techniques used in the linear
solver that work best for serial processors are not efficient on parallel processors.
We investigate alternative solvers that run well on parallel hardware, in partic-
ular, red-black relaxations and the conjugate gradient method. We show that
the conjugate gradient method is faster than red-black relaxations, especially on
larger images. We also prove that the fixed point matrix is positive semi-definite,
thus guaranteeing the convergence of the conjugate gradient algorithm. We ob-
tain a speedup of about 78×, which allows us to compute high quality LDOF
for 640×480 images in 1.8 seconds. Extrapolating the current progress in GPU
technology, the same code will even run in real-time in only a few years. While
additional speedups are often obtained at the cost of lower quality, we ensured
in our implementation that the quality of the original method is preserved.

We also propose a method for dense point tracking by building upon the
fast implementation of large displacement optical flow. Point trajectories are
needed whenever an approach builds on long term motion analysis. The domi-
nant method used for this task is the KLT tracker [6], which is a sparse tech-
nique that only tracks a very small number of designated feature points. While
for many tasks like camera calibration such sparse point trajectories are to-
tally sufficient, other tasks like motion segmentation or structure-from-motion
would potentially benefit from higher densities. In [1] and [7], a method for
point tracking based on dense variational optical flow has been suggested. The
method proposed in [1] is computationally very expensive and impractical to
use on large datasets without acceleration.The point tracking we propose uses
a similar technique, as points are propagated by means of the optical flow field;
however, we do not build upon another energy minimization procedure that de-
tects occluded points mainly by appearance, but do the occlusion reasoning by

1 Executables and mex functions can be found at the authors’ websites.
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a forward-backward consistency check of the optical flow. In a quantitative com-
parison on some sequences from [8], where close to ground truth optical flow
has been established by manually annotating the objects in the scene, we show
that we can establish much denser point trajectories with better quality than
the KLT tracker. At the same time, our method is more accurate and runs an
order of magnitude faster than the technique in [7]. Such fast, high quality track-
ing will enable new applications such as better video summarization or activity
recognition through improved tracking of limbs and balls in sports videos.

2 Related Work

Finding efficient solutions to variational optical flow problems has been an active
area of research. On serial hardware, multi-grid solvers based on Gauss-Seidel
have been proposed in [9]. A GPU implementation of the formulation in [9] has
been proposed using Jacobi solvers [10]. Compared to [10], our implementation
handles large displacements through dense descriptor matching. Such extensions
enable us to handle fast motion well [11], [4]. A multi-grid red-black relaxation
has been suggested in a parallel implementation of the linear CLG method [12].
Very efficient GPU implementations of other variational optical flow models have
been proposed in [3,13,14].

The conjugate gradient algorithm is a popular solver for convex problems and
has been used for optical flow problems with convex quadratic optimization [15].
In order to theoretically justify the use of conjugate gradients, we prove that
the system matrix of general variational optical flow methods is positive semi-
definite and thus the conjugate gradient solver is guaranteed to converge. It was
previously proven that the Horn-Schunck matrix is positive definite [16]. Our
proof is more general and applicable to most variational formulations [9], [5], [17]
and [11].

The most popular point tracker is the Kanade-Lucas-Tomasi (KLT) tracker [6],
which constructs an image pyramid, chooses points that have sufficient struc-
ture and tracks them across frames. New features are periodically detected to
make up for the loss of features because of occlusions and tracking errors. This
is generally considered to be fast and accurate, but it tracks only a few points.
Efficient GPU implementations of the KLT tracker have been released in [18]
and [2]. While the KLT algorithm itself is quite old, the implementation in [2]
compensates for changes in camera exposure to make it more robust. Non-local
point trackers that use global information have also been proposed [19].

The more advanced point tracker in [1] and [7] tracks points by building on
top of a variational technique. This comes with high computational costs. It
takes more than 100 seconds to track points between a pair of 720×480 frames.
Moreover, this technique cannot deal with large displacements of small structures
like limbs, and it has never been shown whether tracking based on variational
flow actually performs better than the classic KLT tracker.
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3 Large Displacement Optical Flow on the GPU

Large displacement optical flow (LDOF) is a variational technique that integrates
discrete point matches, namely the midpoints of regions, into the continuous en-
ergy formulation and optimizes this energy by a coarse-to-fine scheme to estimate
large displacements also for small scale structures [11]. As pointed out in [4], re-
gion matching can be replaced with matching other features like densely sampled
histograms of oriented gradients (HOG) [20]. These simpler features allow us to
implement both the variational solver and the discrete matching efficiently on
the GPU.

The considered energy functional that is minimized reads:

E(w) =
∫

Ω

Ψ1

(
|I2(x + w(x)) − I1(x)|2

)
+ γ Ψ2

(
|∇I2(x + w(x)) −∇I1(x)|2

)
dx

+β

∫
Ω

δ(x) ρ(x) Ψ3(|w(x) −w1(x)|2)dx +
∫

Ω

δ(x) |f2(x + w1(x)) − f1(x)|2dx

+α

∫
Ω

ΨS

(
|∇u(x)|2 + |∇v(x)|2

)
dx

(1)

where w = (u v)T and Ψ∗(s2) is a general penalizer function with its derivative
Ψ ′
∗(s2) > 0. A popular choice in the literature is Ψ∗(s2) =

√
s2 + ε2 [4].

Since speed and accuracy are foremost in solving the optical flow problem, it is
necessary to take advantage of the improvements in modern microprocessors to
aid the solution. In particular, parallelism has emerged as a key to performance
scaling. Hence, it is necessary to study and develop algorithms and techniques
that best utilize multiple processing elements simultaneously.

A parallel implementation of the descriptor matching is relatively straightfor-
ward since several points are being searched for in parallel without any depen-
dencies between them. It is important, however, to take advantage of coalesced
memory accesses (vector loads/stores) in order to maximize the performance of
the GPU. In the rest of the section, we will focus on the parallel implementation
of the variational solver that considers these point correspondences.

3.1 Variational Solver on the GPU

We minimize (1) by writing the Euler-Lagrange equations and solving them
through a coarse-to-fine scheme with fixed point iterations. This results in a
sequence of linear systems to be solved, where each pixel corresponds to two
coupled equations in the linear system:
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For details on the derivation of these equation we refer to [4]. From symmetry
considerations, the discretization usually produces a symmetric block pentadi-
agonal matrix with 2× 2 blocks (for a 5-point Laplacian stencil). From equation
(2), it is clear that only the diagonal blocks are dense, while the off-diagonal
blocks are diagonal matrices. In fact, for the isotropic functionals we consider
here, they are scaled identity matrices.

Positive semi-definiteness of the fixed point matrix. We have proven in
[21] that the fixed point matrix is symmetric positive semi-definite because (a)
the diagonal blocks are positive definite and (b) the matrix is block diagonally
dominant [22]. The detailed proof is provided in [21]. An interesting takeaway
from the proof is that it is not restricted to convex penalty functions Ψ∗. The only
restriction on Ψ∗ is that it should be increasing. Moreover, the proof technique
generalizes to most variational optical flow methods, e.g. [5], [9],[11] and [17].

Linear solvers. On the CPU, the linear system is usually solved using Gauss-
Seidel relaxations, which have been empirically shown to be very efficient in this
setting [23]. The Gauss-Seidel method is guaranteed to converge if the matrix
is symmetric positive definite. Unfortunately, the Gauss-Seidel technique is in-
herently sequential as it updates the points in a serial fashion. It is hard to
parallelize it efficiently on multi-core machines and even harder on GPUs.

It is possible to choose relaxation methods that have slightly worse conver-
gence characteristics, but are easy to parallelize, such as Red-black relaxation [24].
A single red-black relaxation consists of two half iterations - each half iteration
updates every alternate point (called red and black points). The updates to all
the red points are inherently parallel as all the dependencies for updating a red
point are the neighboring black pixels and vice versa. Usually, this method is used
with successive overrelaxation. Since we have a set of coupled equations, each
relaxation will update (ui, vi) using a 2 × 2 matrix solve. Red-black relaxations
have been used in a previous parallel optical flow solver [12].

Besides red-black relaxation, we consider the Conjugate gradient method. This
requires symmetric positive definiteness as a necessary and sufficient condition
for convergence. The convergence of the conjugate gradient technique depends
heavily on the condition number of the matrix κ = λmax

λmin
. The condition numbers

of the matrices obtained in the optical flow problems are very large and hence,
convergence is usually slow.

A standard technique for improving convergence for ill-conditioned matrices is
preconditioning to reduce the condition number of the system matrix. The pre-
conditioner must be symmetric and positive definite. The special structure of the
matrix allows for several regular pre-conditioners that work well in practice. In
particular, we know that the diagonal blocks of the matrix are positive definite.
Hence, a block diagonal matrix with only the diagonal blocks of the matrix is
symmetric and positive definite and forms a good pre-conditioner. This pre-
conditioner is usually referred to as a block Jacobi preconditioner. From now
on, unless specified, we use the term conjugate gradient solver to refer to the
preconditioned conjugate gradient solver with a block Jacobi preconditioner.
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Fig. 1. Left: (a) Initial points in the first frame using a fixed subsampling grid. Mid-
dle: (b) Frame number 15 Right: (c) Frame number 30 of the cameramotion sequence.
Figure best viewed in color.

Performing this algorithmic exploration is important as choosing the right
algorithm for the right platform is essential for getting the best speed-accuracy
tradeoff. This fast LDOF implementation can now be used to track points in
video.

4 Point Tracking with Large Displacement Optical Flow

We demonstrate the utility of our LDOF implementation by suggesting a point
tracker. In contrast to traditional local point trackers, like KLT [6], variational
optical flow takes global smoothness constraints into account. This allows the
tracking of far more points as the flow field is dense and tracking is not restricted
to a few feature points. Moreover, large displacement optical flow enables track-
ing limbs or other fast objects more reliably than conventional trackers.

Our tracking algorithm works as follows: a set of points is initialized in the
first frame of a video. In principle, we can initialize with every pixel, as the flow
field is dense. However, areas without any structure are problematic for tracking
with variational optical flow as well. For this reason, we remove points that do
not show any structure in their vicinity as measured by the second eigenvalue
λ2 of the structure tensor

Jρ = Kρ ∗
3∑

k=1

∇Ik∇I�k , (3)

where Kρ is a Gaussian kernel with standard deviation ρ = 1. We ignore all
points where λ2 is smaller than a certain portion of the average λ2 in the image.

Depending on the application, one may actually be interested in fewer tracks
that uniformly cover the image domain. This can be achieved by spatially sub-
sampling the initial points. Fig. 1 shows a subsampling by factor 8. The coverage
of the image is still much denser than with usual keypoint trackers.

Each of the points can be tracked to the next frame by using the optical flow
field w := (u, v)�:

(xt+1, yt+1)� = (xt, yt)� + (ut(xt, yt), vt(xt, yt))�. (4)

As the optical flow is subpixel accurate, x and y will usually end up between
grid points. We use bilinear interpolation to infer the flow at these points.
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The tracking has to be stopped as soon as a point gets occluded. This is
extremely important, otherwise the point will share the motion of two differently
moving objects. Usually occlusion is detected by comparing the appearance of
points over time. In contrast, we detect occlusions by checking the consistency
of the forward and the backward flow, which we found to be much more reliable.
In a non-occlusion case, the backward flow vector points in the inverse direction
as the forward flow vector: ut(xt, yt) = −ût(xt + ut, yt + vt) and vt(xt, yt) =
−v̂t(xt + ut, yt + vt), where ŵt := (ût, v̂t) denotes the flow from frame t + 1
back to frame t. If this consistency requirement is not satisfied, the point is
either getting occluded at t+1 or the flow was not correctly estimated. Both are
good reasons to stop tracking this point at t. Since there are always some small
estimation errors in the optical flow, we grant a tolerance interval that allows
estimation errors to increase linearly with the motion magnitude:

|w + ŵ|2 < 0.01
(
|w|2 + |ŵ|2

)
+ 0.5. (5)

We also stop tracking points on motion boundaries. The exact location of the
motion boundary, as estimated by the optical flow, fluctuates a little. This can
lead to the same effect as with occlusions: a tracked point drifts to the other
side of the boundary and partially shares the motion of two different objects. To
avoid this effect we stop tracking a point if

|∇u|2 + |∇v|2 > 0.01 |w|2 + 0.002. (6)

In order to fill the empty areas caused by disocclusion or scaling, in each new
frame we initialize new tracks in unoccupied areas using the same strategy as
for the first frame.

5 Results

The implementation platform consists of an Intel Core2 Quad Q9550 processor
running at 2.83GHz in conjunction with a Nvidia GTX 480 GPU. For the LDOF
implementations almost all of the computation is done on the GPU and only
minimal amount of data is transferred between the CPU and the GPU. We use
Nvidia CUDA tools (v3.0) for programming the GPU. The CPU implementation
is a well written hand coded serial C++ code that was vectorized using the Intel
compiler with all the optimizations enabled.

For the tracking experiments, the KLT tracker used also runs on GPUs. A
description of the algorithm is provided in [2]. The implementation in [2] also
compensates for changes in camera exposure and provides real-time performance
on the GPU considered. Default parameters were used unless otherwise specified.

5.1 GPU Accelerated Large Displacement Optical Flow

Runtime for large displacement optical flow has come down from 143 seconds
for the previous serial implementation on CPU to 1.84 seconds for the parallel
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implementation on GPU, a speedup of 78× for an image size of 640× 480. This
implementation searches for HOG matches in a neighborhood of ±80 pixels, uses
η = 0.95, 5 fixed point iterations and 10 Conjugate gradient iterations to achieve
the same overall AAE as the CPU version on the Middlebury dataset. It is also
possible to run the optical flow algorithm at a slightly reduced accuracy (AAE
increase of about 11%) at 1.1 seconds per frame. The performance of the linear
solver is critical to the overall application runtime. Hence we look closely at the
choice of the linear solver that enabled this speedup.

Performance of linear solvers. Figure 2 shows the convergence of differ-
ent solvers for the optical flow problem. We measure convergence through the
squared norm of the residual ||b − Axm||2. The rates of convergence are derived
from 8 different matrices from images in the Middlebury dataset [25]. Red-black
and Gauss-Seidel solvers use successive overrelaxation with ω = 1.85. The matri-
ces considered were of the largest scale (smaller scales show very similar results).
The initial vector in all the methods was an all-zero vector. Using a better ini-
tialization procedure (the result of a previous fixed point iteration, for instance)
also shows similar results.
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Fig. 2. Rates of convergence for different techniques considered. Y-axis shows the value
of the residual normalized to the initial residual value averaged over 8 different matrices.
Figure best viewed in color.

From Fig. 2, we can see why the Gauss-Seidel solver is the preferred choice
for serial platforms. It converges well and is relatively simple to implement. In
the numerical scheme at hand, however, we do not desire absolute convergence,
as solving any one linear system completely is not important to the solution
of the nonlinear system. It is more important to have a quick way of refining
the solution and removing all the large errors. For a few iterations (30 or less),
it is clear that the preconditioned conjugate gradient solver converges fastest.
Non-preconditioned conjugate gradient is not as efficient because of the high
condition number of the matrix.
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Table 1. Average time taken by the linear solvers for achieving residual norm < 10−2

Linear Solver Time taken
(in milliseconds)

Gauss-Seidel 395.13
Red-black 11.97

Conjugate Gradient 8.39

HOG Creation 

HOG Match 

Linear solver 

Matrix creation 

Interpolation & 
Warping 
Downsampling 

Filter 

Other 

(a) Serial (Gauss Seidel on CPU)

HOG Creation

HOG Match

Linear solver

Matrix creation

Interpolation & 
Warping
Downsampling

Filter

Other

Memcopy CPU-GPU

(b) Parallel (CG on GPU)

Fig. 3. Breakdown of execution times for serial and parallel variational optical flow
solvers. Both solvers are run at a scale factor of 0.95, with 5 fixed point iterations
and 25 Gauss-Seidel iterations/10 CG iterations to achieve similar AAE. Figure best
viewed in color.

Although it is clear from Fig. 2 that conjugate gradient converges quickly in
terms of the number of iterations required, a single iteration of conjugate gradi-
ent requires more computation than a Gauss-Seidel or a red-black iteration. Ta-
ble 1 shows the runtimes of the solvers. Even though red-black relaxations are also
parallel, we can see from Fig. 2 that we require roughly 3× as many red-black it-
erations as conjugate gradient iterations to achieve the same accuracy. Red-black
iterations are 1.4× slower than CG overall. Gauss-Seidel iterations, running on
the CPU, are 47× slower compared to conjugate gradient on the GPU.

Figure 3 shows the breakdown of the serial optical flow solver that uses Gauss-
Seidel and the parallel solver that uses conjugate gradient. The solvers were
run with η = 0.95, 5 fixed point iterations and 25 Gauss-Seidel iterations/10
Conjugate gradient iterations to achieve similar AAE on the Middlebury dataset.
From both Figure 3(a) and 3(b), it is clear that the HOG matching and the linear
solver are the most computation intensive components in the solvers. In both
cases, they take more than 75% of the total runtime.

The major bottleneck in the conjugate gradient solver is the sparse matrix-
vector multiply (SpMV). In order to optimize SpMV, the sparse matrix was laid
out in memory as a set of images each corresponding to a particular non-zero
diagonal. This, along with several other optimizations (caching in local scratch-
pad memory, avoiding control overheads, ensuring vector loads/stores) enables
the SpMV to run at 53 GFlops on the GPU. This is significant considering that
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Table 2. Average Angular Error (in degrees) for images in the Middlebury dataset

Data Dimetrodon Grove2 Grove3 Hydrangea RubberWhale Urban2 Urban3 Venus Average
AAE(CPU) 1.84 2.67 6.35 2.44 3.96 2.55 4.79 6.46 3.88
AAE(GPU) 1.84 2.51 5.94 2.37 3.91 2.47 5.43 6.38 3.86

the matrix is quite sparse (≤ 6 non-zeros per row). Under such conditions, most
of the time in the kernel is spent fetching data to and from GPU main memory.
Similar behavior is seen with the red-black relaxations, where 25% of the time
is spent in floating point operations, while 75% of the time is spent in memory
loads and stores. Red-black relaxations also have less computation to communi-
cation ratio (all the points are read, but only half the points are updated), which
reduces their performance.

Accuracy. Table 2 shows the average angular error measured using our tech-
nique on the Middlebury dataset. These results have been achieved with the
setting (γ = 4, β=30, α = 9, η = 0.95, fixed point iterations = 5, Gauss-Seidel
iterations = 25/CG iterations = 10). The data shows that the method provides
similar accuracy to the CPU version while running fast on the GPU.

For faster computations, we use the parameter set (η = 0.75, 5 fixed point
iterations, 10 linear solve iterations) to reduce the runtime by 38% with a degra-
dation in AAE of 11%.

5.2 Tracking

We measure the accuracy of the tracking algorithms with the MIT sequences [8].
This dataset provides the ground truth optical flow for whole sequences and the
sequences are much longer. This allows us to evaluate the accuracy of tracking
algorithms. After obtaining the point trajectories from both KLT and LDOF,
we track points using the given ground truth to predict their final destination.
Tracking error is measured as the mean Euclidean distance between the final
tracked position and the predicted position on the final frame according to the
ground truth for all the tracked points. LDOF is run with η = 0.95, 5 fixed point
iterations and 10 iterations for the linear solver in all the following experiments.
Since the default parameters for the KLT tracker failed in tracking points in
long sequences, we increased the threshold for positive identification of a feature
from 1000 to 10000 (SSD threshold parameter).

Accuracy. We compare the accuracy of the trackers for the entire length of the
sequences. Since tracking algorithms should ideally track points over long times
without losing points, we only consider those points that are tracked through
all the frames. Trackers like KLT keep losing features and need to be constantly
detecting new features every few frames to track well. From Table 3, it is clear
that LDOF tracks almost three orders of magnitude more points than KLT with
46% improvement in overall accuracy. For tracking only the common points, the
LDOF tracker is 32% better than KLT. These numbers exclude the fish sequence
since it has transparent motion caused by dust particles moving in the water.
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Table 3. Tracking accuracy of LDOF and KLT over the MIT sequences

All tracked points Common points only
Sequence Number LDOF KLT LDOF KLT

name of frames Mean error Points Mean error Points Mean error Points Mean error Points
in pixels tracked in pixels tracked in pixels tracked in pixels tracked

table 13 1.48 114651 3.78 363 1.04 293 1.39 293
camera 37 1.41 101662 3.78 278 1.01 185 2.64 185

fish 75 3.39 75907 35.62 106 3.12 53 5.9 53
hand 48 2.14 151018 3.11 480 1.87 429 2.39 429
toy 18 2.24 376701 2.88 866 1.70 712 1.89 712

Table 4. Tracking accuracy of LDOF and the Particle Video tracker over the 20
sequences used in [7]

Average All tracked points Common points only
number LDOF Particle Video LDOF Particle Video

of frames Mean error Points Mean error Points Mean error Points Mean error Points
in pixels tracked in pixels tracked in pixels tracked in pixels tracked

61.5 0.83 109579 3.20 8967 0.84 3304 2.51 3304

Table 5. Occlusion handling by KLT and LDOF trackers based on region annotation
from the MIT data set. Occluded tracks indicate tracks that are occluded according to
the ground truth data, but not identified as such by the trackers.

KLT LDOF
Sequence Number of Mean error Number of Mean error Tracking

occluded tracks with no occlusion occluded tracks with no occlusion Density (%)
table 11 2.73 853 1.41 39.6

camera 8 3.68 558 1.37 39.9
fish 30 31.79 8321 2.7 53.0

hand 10 2.90 2127 1.81 46.8
toy 31 2.58 5482 2.11 61.4

Although we were able to track this sequence well, performance on this sequence
is sensitive to parameter changes.

Compared to the Particle Video point tracker in [7], our tracker is 66% more
accurate for the common tracks. Since ground truth data does not exist for the
sequences used in [7], it is not possible to have objective comparisons on metrics
other than the average round trip error (The videos are mirrored temporally, so
all unoccluded pixels should return to their starting positions). For comparison,
we use only the full-length particle trajectories provided by the authors of [7]
at http://rvsn.csail.mit.edu/pv/data/pv. The average statistics of both trackers
over all the 20 sequences used in [7] are given in Table 4. More details on the
comparison can be found in [21].

Occlusion handling. We use the region annotation data from the MIT dataset
to measure the occlusion handling capabilities of the algorithms. The LDOF
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Table 6. Tracking accuracy of LDOF and KLT for large displacements in the tennis
sequence with manually marked correspondences. Numbers in parentheses indicate the
number of annotated points that were tracked.

LDOF KLT
Frames Mean error Points tracked Mean error Points tracked

in pixels on player in pixels on player
490-495 2.55 (22) 8157 3.21 (19) 21
490-500 2.62 (8) 3690 4.12 (4) 4

Fig. 4. (Top) Frame 490 of the tennis sequence with (left) actual image, (middle) KLT
points and (right) LDOF points. (Bottom) Frame 495 of the sequence with (left) actual
image, (middle) KLT points and (right) LDOF points. Only points on the player are
marked. KLT tracker points are marked larger for easy visual detection. Figure best
viewed in color.

tracker has an occlusion error of 3% (tracks that drift between regions/objects)
while the KLT tracker has an occlusion error of 8%. Given that KLT tracker
is already very sparse, this amounts to a significant number of tracks that are
not reliable (they do not reside on the same object for the entire time). After
excluding all the tracks that were known to have occlusion errors, LDOF outper-
forms KLT by 44%. Since all the ground truth occlusions are known, we measure
the tracking density (% of unoccluded points that the tracker was successful in
tracking through the entire sequence without any occlusion errors). The LDOF
tracker has an average tracking density of 48%, i.e., it tracks roughly half of the
points that are not occluded for the entire length of the sequence, while KLT
has a density of about 0.1%. Table 5 presents the data on occlusion handling.

Large displacements. The MIT sequences still mostly contain small displace-
ments and hence KLT is able to track them well (if it does not lose the features);
however, there are motion sequences with large displacements that are difficult
for a tracker like KLT to capture. In the tennis sequence [11], there are frames
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where the tennis player moves very fast producing motion that is hard to cap-
ture through simple optical flow techniques. Since ground truth data does not
exist for this sequence we manually labeled the correspondences for 39 points on
the player between frames 490, 495 and 500 2. These points were feature points
identified by KLT in frame 490. The results for the points tracked on the player
are shown in Table 6 and Figure 4. It is clear that the LDOF tracker tracks more
points with better accuracy, while capturing the large displacement of the leg.

Runtime. The cameramotion sequence with 37 frames of size 640×480, requires
135 seconds. Out of this, 125 seconds were spent on LDOF (both forward and
backward flow). Such runtimes allow for convenient processing of large video
sequences on a single machine equipped with cheap GPU hardware.

6 Conclusion

Fast, accurate and dense motion tracking is possible with large displacement op-
tical flow (LDOF). We have provided a parallel version of LDOF that achieves a
speedup of 78× over the serial version. This has been possible through algorith-
mic exploration for the numerical solvers and an efficient parallel implementation
of the large displacement optical flow algorithm on highly parallel processors
(GPUs). Moreover, we have proposed a dense point tracker based on this fast
LDOF implementation. Our experiments quantitatively show for the first time
that tracking with dense motion estimation techniques provides better accuracy
than KLT feature point tracking by 46% on long sequences and better occlusion
handling. We also achieve 66% better accuracy than the Particle Video tracker.
Our point tracker based on LDOF improves the density by up to three orders of
magnitude compared to KLT and handles large displacements well, thus mak-
ing it practical for use in a wide variety of video applications such as activity
recognition or summarization in sports videos which require improved tracking
of fast moving objects like balls and limbs.
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optical flow. In: Hamprecht, F.A., Schnörr, C., Jähne, B. (eds.) DAGM 2007. LNCS,
vol. 4713, pp. 214–223. Springer, Heidelberg (2007)

4. Brox, T., Malik, J.: Large displacement optical flow: descriptor matching in vari-
ational motion estimation. IEEE Transactions on Pattern Analysis and Machine
Intelligence (to appear, 2010)

5. Brox, T., Bruhn, A., Papenberg, N., Weickert, J.: High accuracy optical flow esti-
mation based on a theory for warping. In: Pajdla, T., Matas, J(G.) (eds.) ECCV
2004. LNCS, vol. 3024, pp. 25–36. Springer, Heidelberg (2004)

2 The manually labeled correspondence data can be found on the authors’ website.



Dense Point Trajectories by GPU-Accelerated LDOF 451

6. Shi, J., Tomasi, C.: Good features to track. In: CVPR, pp. 593–600 (1994)
7. Sand, P., Teller, S.: Particle video: Long-range motion estimation using point tra-

jectories. In: CVPR (2006)
8. Liu, C., Freeman, W.T., Adelson, E.H., Weiss, Y.: Human-assisted motion anno-

tation. In: CVPR (2008)
9. Bruhn, A., Weickert, J.: Towards ultimate motion estimation: Combining highest

accuracy with real-time performance. In: ICCV ’05: Proceedings of the Tenth IEEE
International Conference on Computer Vision (ICCV’05), Washington, DC, USA,
vol. 1, pp. 749–755. IEEE Computer Society, Los Alamitos (2005)

10. Grossauer, H., Thoman, P.: GPU-based multigrid: Real-time performance in high
resolution nonlinear image processing. In: Gasteratos, A., Vincze, M., Tsotsos, J.K.
(eds.) ICVS 2008. LNCS, vol. 5008, pp. 141–150. Springer, Heidelberg (2008)

11. Brox, T., Bregler, C., Malik, J.: Large displacement optical flow. In: CVPR (2009)
12. Gwosdek, P., Bruhn, A., Weickert, J.: High performance parallel optical flow al-

gorithms on the Sony Playstation 3. Vision, Modeling and Visualization, 253–262
(2008)

13. Wedel, A., Pock, T., Zach, C., Bischof, H., Cremers, D.: An improved algorithm for
TV-L1 optical flow. In: Statistical and Geometrical Approaches to Visual Motion
Analysis: International Dagstuhl Seminar, Dagstuhl Castle, Germany, July 13-18,
pp. 23–45 (2009), Revised Papers

14. Werlberger, M., Trobin, W., Pock, T., Wedel, A., Cremers, D., Bischof, H.:
Anisotropic Huber-L1 optical flow. In: Proc. of the British Machine Vision Con-
ference, BMVC (2009)

15. Lai, S.H., Vemuri, B.C.: Reliable and efficient computation of optical flow. Inter-
national Journal of Computer Vision 29 (1998)

16. Mitiche, A., Mansouri, A.R.: On convergence of the Horn and Schunck optical-flow
estimation method. IEEE Transactions on Image Processing 13, 848–852 (2004)

17. Bruhn, A., Weickert, J., Schnörr, C.: Lucas/Kanade meets Horn/Schunck: com-
bining local and global optic flow methods. Int. J. Comput. Vision 61, 211–231
(2005)

18. Sinha, S.N., Frahm, J.M., Pollefeys, M., Genc, Y.: Feature tracking and matching
in video using programmable graphics hardware. Machine Vision and Applications
(2007)

19. Birchfield, S.T., Pundlik, S.J.: Joint tracking of features and edges. In: CVPR
(2008)

20. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In:
CVPR (2006)

21. Sundaram, N., Brox, T., Keutzer, K.: Dense point trajectories by GPU-accelerated
large displacement optical flow. Technical Report UCB/EECS-2010-104, EECS
Department, University of California, Berkeley (2010)

22. Feingold, D.G., Varga, R.S.: Block diagonally dominant matrices and generaliza-
tions of the Gerschgorin circle theorem. Pacific J. Math. 12, 1241–1250 (1962)

23. Bruhn, A.: Variational Optic Flow Computation: Accurate Modelling and Efficient
Numerics. PhD thesis, Faculty of Mathematics and Computer Science, Saarland
University, Germany (2006)
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Abstract. We consider the problem of data association in a multi-
person tracking context. In semi-crowded environments, people are still
discernible as individually moving entities, that undergo many interac-
tions with other people in their direct surrounding. Finding the correct
association is therefore difficult, but higher-order social factors, such as
group membership, are expected to ease the problem. However, estimat-
ing group membership is a chicken-and-egg problem: knowing pedestrian
trajectories, it is rather easy to find out possible groupings in the data,
but in crowded scenes, it is often difficult to estimate closely interacting
trajectories without further knowledge about groups. To this end, we
propose a third-order graphical model that is able to jointly estimate
correct trajectories and group memberships over a short time window. A
set of experiments on challenging data underline the importance of joint
reasoning for data association in crowded scenarios.

Keywords: Grouping, Tracking, Data Association, Social Interaction.

1 Introduction

Tracking algorithms are an indispensable prerequisite for many higher-level
computer vision tasks, ranging from surveillance to animation to automo-
tive applications. Advances in observation models, such as object detectors or
classification-based appearance models, have enabled tracking in previously in-
feasible scenarios. Still, tracking remains a challenging problem, especially in
crowded environments. Tracking high numbers of pedestrians in such cases is
even hard for humans. Usually, a manual annotator has to rely on higher-level
reasoning, such as temporal information (that can go into the future) or so-
cial factors. Recent advances in the literature suggest that especially the latter
can improve tracking performance. Typically employed social factors include a
pedestrian’s destination, desired speed, and repulsion from other individuals. An-
other factor is grouping behavior, which so far however has been largely ignored.
For one, this is due to the fact that the grouping information (do two persons
belong to the same group?) is not easily available. Still, groups constitute an
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important part of a pedestrian’s motion. As we will show in this paper, people
behave differently when walking in groups as opposed to alone: when alone, they
tend to keep a certain distance from others, passing by closely only if necessary,
but mostly at different speeds. When in groups, they try to stay close enough
with other members, walking at the same speed.

In this paper, we therefore aim at exploiting the interaction between different
people for data association in a principled way. In particular, we model group
relations and study their effect on trajectory prediction. The grouping between
pedestrians is treated as a latent variable, which is estimated jointly together
with the trajectory information. Our model of choice is a third-order CRF, with
nodes in the lower level corresponding to pedestrians, connected by third-order
links that represent possible groupings. Recent advances in discrete optimization
provide powerful tools for carrying out (approximate) inference in such models.

In order to take advantage of as much information as possible, we adopt a
hypothesize-and-verify strategy over a frame-based tracking approach. By op-
erating on short time windows (typically, in the order of a few seconds), useful
statistics over pedestrians and group participation can be obtained, while only
introducing a small lag as opposed to global trackers. The proposed framework
operates in two steps: first, it generates possible trajectory hypotheses for each
person within the given time window, then it selects the best hypothesis, taking
into account social factors, while at the same time estimating group membership.

The paper is organized as follows: Related work is explored in Section 2. In
Section 3, our model for the joint estimation of trajectories and groupings using
social factors is introduced. The training of the model by natural statistics of
interaction is discussed in Section 4. The inference method is then presented in
Section 5. Finally, we show experimental results in Section 6, before concluding
the paper in Section 7.

2 Related Work

Social behavior modeling. Based on a variety of psychological, physical, and
social factors, people tend to keep certain distances from each other when inter-
acting. Already investigated in the 1960ies by Hall [1] as proxemics, these factors
are meanwhile also used for the modeling of pedestrian motion. Applications in-
clude simulation [2–4], computer graphics [5, 6], and, in the last few years, also
Computer Vision [7–14]. While all of these works include various social factors,
grouping information was mostly ignored. Helbing et al, in their seminal pa-
per on the Social Force Model [2], include an attraction potential to model the
group interaction. However, even in simulation applications, the notion of groups
is rarely employed. In this paper, we will focus on group relations between sub-
jects in a tracking setting, showing how to jointly estimate a person’s correct
trajectory and his group membership status. To the best of our knowledge, this
paper is the first to explore the joint estimation of pedestrian trajectories and
the grouping relations.
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Fig. 1. Assumed higher-order model for joint trajectory and group finding (see text)

Tracking. Fostered by recent progress in object detection, there is an impressive
body of work in single-person tracking-by-detection [15–20]. All propose different
ways of handling the data association problem, but do not take advantage of
any social factors beyond spatial exclusion principles. Only some researchers use
social structures to improve tracking, most notably in crowded scenarios [7], or
by modeling of collision avoidance-behavior [8, 11].

In this work, we focus on improving one building block of tracking—the data
association—by taking advantage of social factors in a principled fashion. The
proposed algorithm infers the best trajectory choice for each tracked object in
a short time window. This thus means some latency as opposed to typical on-
line trackers [15, 18, 19]. The method however does not need the entire time
window either, as global approaches [17, 20]. [21] model simple interactions of
targets in an MCMC framework, but not accounting for groups. [16] also use a
hypothesize-and-verify strategy, however, they do not model any social factors,
and a hypothesis contains an entire person’s past, as opposed to a small window
only. By operating in a shorter temporal window, our algorithm can take into ac-
count many more hypotheses, which is a requirement for tracking in challenging
scenarios.

3 Group CRF

To improve data association in crowded scenarios, we want to jointly estimate
pedestrian trajectories and their group relations. Fig. 1 shows the factor graph
for the third-order CRF model we assume for this problem.

Given a starting frame, each tracking target i (i = 1 . . .N) is modeled as a
variable node (red empty circle, Fig. 1), where each possible state corresponds to
the choice of one local trajectory hypothesis hm

i ∈ Hi = {hm
i }m=1...Mi , with Hi

the set of hypotheses for one person. As a trajectory hypothesis hm
i , we consider

a single subject’s possible future within a short time window. A joint assignment
of hypotheses to all the subjects is defined as Hq = [hq(1)

1 . . .hq(N)
N ], where q is

an assignment function that assigns each target i one hypothesis in Hi
1.

1 To reduce notational clutter, we drop the superscripts for h and for H in the
following.
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The group variable lc(ij) (green filled circle, Fig. 1) indicates the group relation
among the subjects i and j,

lc(ij) =
{

1 if subject i and j belong to the same group
0 otherwise , (1)

with c(ij) an index function.
Two subjects i and j and the group variable lc(ij) are linked by a factor of

order three (blue factor in Fig. 1). This link variable is essential to take advantage
of grouping relations in our model. Grouping is an equivalence relation, i.e. it
fulfills reflexivity, symmetry, and transitivity. While reflexivity and symmetry
are enforced by the graph construction, the transitivity constraint is encoded in
a third-order factor (black factor in Fig. 1): given three subjects i,j, and k for
which there exist the link variables lc(ij), lc(ik), and lc(kj):

(lc(ij) ∧ lc(ik)) → lc(kj) . (2)

The log-probability of a set of trajectories H and a set of grouping relations L,
given an image I and parameters Θ, is given by

log P (H,L|I, Θ) =
∑

i

φmotion
i (hi|Θφmotion ) +

∑
i

φapp
i (hi|I, Θφapp) + (3)

∑
c(ij)

γc(ij)(lc(ij)|Θγ) +
∑

ijc(ij)

ψpos
ijlc(ij)

(hi,hj , lc(ij)|Θψpos) +

∑
ijc(ij)

ψang
ijlc(ij)

(hi,hj , lc(ij)|Θψang ) +

∑
c(ij)c(ik)c(kj)

χc(ij)c(ik)c(kj)(lc(ij), lc(ik), lc(kj)|Θχ) − log Z(I, Θ),

where φapp and φmotion model, respectively, the appearance and motion of a
trajectory, γc(ij) models the prior over a relation being of type group or not,
ψpos

ijlc(ij)
, ψang

ijlc(ij)
model the grouping relation and Z(I, Θ) is the usual partition

function making sure that the probability density function sums to one.

4 Learning the Parameters

Learning the parameters of the model in Eq. 3 could be done by maximizing the
conditional likelihood of the parameters given the data. However, this is hard
because of the partition function Z. Instead, inspired by piecewise training [22],
we learn simple statistics from the data and define the terms in the Eq. 3 as a
combination of these statistics. In particular we overparametrize the trajectory
hi as a sequence [p0

i , s
0
i , α

0
i . . .pT−1

i , sT−1
i , αT−1

i ] of , respectively, position, speed
and orientation and extract simple statistics over these terms, rather than over
the whole trajectory. In doing so, we use a non-parametric approach, by building
histograms to estimate densities. The parameters Θ can be interpreted as the
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Fig. 2. A snapshot from the sequence used in this paper. We only use data inside the
red bounding box, to avoid stairs on the left and too heavy shadows in the upper part.

entries of these histograms. To reduce the notational clutter we will drop in the
following the dependence on Θ.

In the analysis of the data, we make, when appropriate, a distinction between
people walking and people standing. Besides believing that these two classes can
have different statistics indeed, we are motivated for making this distinction by a
technical limitation: the orientation estimate is hard and unreliable for standing
people, while it can be approximated by the direction of motion for moving
people. We therefore choose an empirical threshold of 0.15m/s 2 to distinguish
between the two modes.

In the following, we will show the relevant statistics that we used in our model.

4.1 Dataset

The data used to extract the statistics has been kindly provided by Lerner et
al [5]. The employed sequence shows a busy square from a stationary camera,
oblique view, with a total of 450 subjects in 5400 frames. Most of the subjects
walk from one of the borders of the scene to another and stay within the scene for
about 15 seconds, while some stand longer in the scene talking to other subjects
or waiting. An example frame is shown in Fig. 2. The sequence is particularly
challenging due to low image resolution, interlacing and compression artifacts,
cast shadows, as well as the large number of people. We manually annotated the
head position of each subject and estimated a homography matrix to retrieve
metric properties. In a second step, we annotated groups in the sequence, by
relying on several cues, such as people talking to each other or holding hands,
for example. For our purposes, we split the sequence in a training (3400 frames)
and testing section (2000 frames).

4.2 Independent Motion and Appearance

Pedestrians change the walking direction smoothly. Furthermore, the walking
speed is not arbitrary. This information is commonly exploited in motion prior
2 Note that the estimation of the homography matrix introduces a small scalar factor

compared to the real walking speed.
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Fig. 3. Statistics over a person’s movement: Left: the distribution P (st
i) over

speeds shows two peaks for people standing and walking. Right: the figure shows
Pst

i
≥0.15(α

t
i|αt−1

i ). For walking people, there is a preference to keep the current head-
ing. Red indicates the original data points, blue the histogram estimate.

for pedestrians in a constant velocity model. To model these factors we define
the motion term of Eq. 3 as

φmotion
i (hi) =

T−1∑
t=0

log[Pst
i<0.15(α

t
i|αt−1

i ) + Pst
i≥0.15(α

t
i|αt−1

i )] +
T−1∑
t=0

log P (st
i) .

(4)
Pst

i<0.15(αt
i|αt−1

i ) is assumed uniform while P (st
i) and Pst

i≥0.15(αt
i|αt−1

i ) are esti-
mated by building a normalized histogram (smoothed with a Gaussian kernel) of
the angles and speeds extracted from the training set and are shown in Fig. 3. As
one can expect, from the speed statistics it is easy to distinguish two modes, cor-
responding to standing and walking people. Fig. 3 shows also that the the choice
of 0.15m/s for telling apart walking and standing pedestrian is a reasonable one.

For the appearance term, we directly use the output of the tracker (see Sec 6).

φapp
i (hi|I) = log fapp(hi|I) . (5)

4.3 Grouping Relations

Given two pedestrians, one of the obvious features that makes it possible to
guess whether they belong to the same group or not, is proximity. So, when
two pedestrians belong to the same group, their distance is kept to a certain
value. If they are walking, the estimate of the orientation can give us further
information on how they are positioned with respect to each other. For two
pedestrians belonging to the same group, we therefore define

ψpos
ijlc(ij)

(hi,hj , lc(ij) = 1) =
T−1∑
t=0

log[Pst
i≥0.15∧st

j≥0.15(p
t
i|pt

jα
t
j , lc(ij) = 1, ) +

Pst
i<0.15∨st

j<0.15(d(pt
i,p

t
j)|lc(ij) = 1)] , (6)
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where d(pt
i,p

t
j) is the Euclidean distance between the positions pt

i and pt
j .

Pst
i≥0.15∧st

j≥0.15(pt
i|pt

jα
t
j , lc(ij) = 1) and Pst

i<0.15∨st
j<0.15(d(pt

i,p
t
j)|lc(ij) = 1) are

estimated using histograms as before and are shown in Fig. 4. For pedestrians do
not belong to the same group,we found it unnecessary to distinguish between walk-
ing or standing. The main feature, when dealing with the position of two individual
pedestrians, seems to be the repulsion effect: individuals try not to come close to
each other unless necessary. In this case, we define the motion term as

ψpos
ijlc(ij)

(hi,hj , lc(ij) = 0) =
T−1∑
t=0

log P (d(pt
i,p

t
j)|lc(ij) = 0) , (7)

where P (d(pt
i,p

t
j)|lc(ij) = 0) is again estimated using histograms and shown in

Fig. 4.
Another important feature of people when walking in the same group, is that

they have the same orientation. We therefore define

ψang
ijlc(ij)

(hi,hj |lc(ij) = 1) =
T−1∑
t=0

log P(st
i≥0.15∧st

j≥0.15)(α
t
i, α

t
j |lc(ij) = 1) . (8)

As before, this term is estimated with a smoothed histogram approach. The den-
sity is shown in Fig. 4 and, as expected, shows that subjects that walk together
keep the same orientation. We did not observe an interesting orientation pattern
among pedestrians that are not in the same group, therefore we assume uniform
P(st

i≥0.15∧st
j≥0.15)(αt

i, α
t
j |lc(ij) = 0) .

Finally, γc(ij)(lc(ij)) could be set by looking at the fraction of grouping re-
lations over the total number of relations. Although the correct value for the
fraction would be ∼ 23% for our dataset, we will vary this value to measure the
robustness of our model (see Sec. 6).

4.4 Transitivity Constraints

The hard constraint in Eq. 2 is modeled by penalizing impossible configurations
with an opportunely large constant cost.

5 Inference

We are looking for the most probable joint assignment of the trajectories H
together with the grouping relations L in Eq. 3. Exact inference is intractable,
as the graph contains cycles and the potentials are not restricted to a particular
kind (e.g., submodular). For the inference, we use Dual Decomposition (DD) [23],
building on the code made available by [24]. DD optimizes the Lagrangian dual
of the LP-relaxation of the original problem, by decomposing the problem into
a set of subproblems, each of which can be solved efficiently. By optimizing the
dual, it gives a lower bound that can be used to check whether the method
converged to a global optimum (i.e. when the solution given by the primal has
the same energy as the solution of the dual problem).



Improving Data Association by Modeling of Trajectories and Groupings 459

Fig. 4. Statistics over interacting people. Top-left: Pst
i≥0.15∧st

j≥0.15(p
t
i|pt

jα
t
j , lc(ij) =

1) in polar coordinates, such that radius is the distance d(pt
i,p

t
j) and the angle is

the angle under which j, with absolute orientation αt
j sees i. When moving in groups,

people keep a low distance from each other, trying to walk side by side. Top-right
shows P(st

i≥0.15∧st
j≥0.15)(α

t
i, α

t
j |lc(ij) = 1). As expected, people that walk together are

headed in the same direction. Bottom-Left shows Pst
i<0.15∨st

j<0.15(d(pt
i, p

t
j)|lc(ij) =

1). The distribution is less peaked than the distribution shown in the top-left figure,
probably reflecting the fact that when people are standing in groups, they allow for
more flexible configurations. Bottom-Right: the figure shows P (d(pt

i,p
t
j)|lc(ij) = 0).

Like for groups, the repulsion effect between individuals, used in many pedestrian
motion models [2, 11], is evident from the low value around 0.

In our case, we decompose the original graph first into a constraint layer
containing only transitivity constraints factors and a data layer containing all
the other factors. Then these sub-graphs are further decomposed into spanning
trees. We optimize each tree separately using standard Belief Propagation [25].
The primal solution, and therefore the upper bound to the optimal solution, is
found by using a heuristic similar to that described in [23].

6 Experiments

The proposed model requires a set of hypotheses to choose from. In this section,
we therefore first describe how to build up the model given an input frame,
before presenting experiments on real-world data.
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6.1 Model Construction

Hypothesis Generation. Given a starting frame t0, a separate set of hypotheses
Hi is generated for each currently tracked person i. Each hypothesis hi describes
a possible motion of the subject between t = t0 . . . tT−1. To this end, we start a
single-person tracker for each person i at t0, at each time step following the cost
function recursively according to a best-first paradigm. Following at each time
step t the M best options therefore yield a maximum of MT hypotheses per
person. As a cost function, we employ several cues: as a motion and appearance
model, we use a constant velocity assumption, respectively an HSV-color his-
togram at

i on the subject’s head. The product of the Bhattacharrya coefficients
d(·, ·) along the trajectory is then used to define fapp(hi|I) =

∏T−1
t=1 d(at

i|at−1
i ).

As a third cue, we consider a discrete set of detections in the current hy-
pothesis’ vicinity. The detections are obtained from a voting-based detector [26],
trained on both head and upper bodies from a total of 1145 positive and 1208
negative examples. Even though specifically trained on the same setup’s data,
the detector only reaches an equal error rate of 0.65 (head) respectively 0.76
(torso) (see Fig. 5). The reason for this low performance is a higher number of
false positives on strong cast shadows, as well as some false negatives when peo-
ple are standing very closely together. To account for frequent false negatives, up
to 50% of missing detections are allowed inside a trajectory, where the missing
parts are interpolated using the constant velocity model.

To handle the case of persons leaving the scene, we introduce a set of virtual
detections at the border of the image. Once a tracker selects such a detection, it
is terminated, and the corresponding trajectory corresponds to a linear extrap-
olation starting from that time step.

For computational reasons, in the presented experiments, we use a time step
of 0.2 seconds, and set T = 10 (thus always considering time windows of 2
seconds) and M = 4, yielding an average of 147 hypotheses per subject. We run

Fig. 5. Left: RPC curves for head detector (red) and torso detector (blue). Right:
Sample hypotheses for one frame, with blue corresponding to low confidence and red
to high. Especially in crowded areas, many possible hypotheses can be generated.
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Fig. 6. Left: Estimate of groups relations while varying the grouping prior γ. Right:
precision and recall curves for group relations for different γ values.

the experiment each 2 s for all pedestrians, starting from 40 different frames.
This results in 1236 subjects being tracked.

Link Modeling. To set up the links between individuals, Delaunay triangulation
is performed on the subjects positions in the input frame. Links longer than 3
meters are cancelled.

6.2 Groundtruth

Before using an actual detector to drive hypothesis generation, we perform a
baseline experiment, where we use the ground-truth annotations as detections
(note that we are operating on the test sequence, i.e., the training of the model
did not use this data at all). To measure the effect of the proposed model,
we compare the output of the inference stage with locally selecting the best
trajectories (i.e., the hypothesis with the maximum unary term). We report
the number of correctly selected trajectories as the ones that coincide with the
ground-truth completely. In Fig. 6 (left), we run this experiment for different
values of the grouping prior γ. As can be seen, the model does not blindly trust
the prior (unless set to the extreme positions), but moves towards the true frac-
tion of groupings (0.23) disregarding the starting position. The performance of
the model with respect to trajectory selection is hardly affected by the group-
ing: the unary makes 34 mistakes, whereas the full model, depending on the
chosen grouping prior, performs considerably better with 12± 2 mistakes. Only
when γ = 0, our model makes 22 mistakes. In Fig. 6 (right), we furthermore
plot recall and precision of finding groups, again varying over the prior γ. The
numbers stay quite constant for a large range of γ, underlining the stability of
the model. Choosing extreme values will naturally also lead to inferior results,
either in favor of groups or not. In the upcoming experiments, we will use an
uninformed prior, γ = 0.5.
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Table 1. Performance of model when using raw detections as input. The proposed
model not only improves the correctly chosen trajectories, but also recovers groups
with high recall and good precision.

Wrong Trajectories Groups
TP TN FP FN

Local 401 - - - -
Group CRF 363 389 1526 449 84

Fig. 7. Example situations (close-ups). Left: trajectories, with ground truth (red) and
solutions found by the unary term alone (green) and the group CRF (blue). Right:
grouping, with ground truth (white), true/false positives (green/red) (see text).
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6.3 Detector

When starting from a ground-truth point and generating hypotheses using de-
tections, the generation step has to deal with a considerable number of false
positives (generating excess wrong trajectories) and false negatives (in the worst
case, missing an entire trajectory). Due to these inaccuracies, we change the
notion of correct trajectory to an error < 0.5 m from the ground-truth at the
last trajectory position. The subject errors and the group statistics are reported
in Table 1. Note that this experiment is considerably harder, so the number
of errors in absolute terms increases. Still, our method improves ≈ 10% w.r.t.
using only the unary terms, i.e. without grouping. The group statistics show a
precision of 46% (about twice above the chance level of 23%) and 82% recall.

Some example images, comparing the two methods, are shown in Fig. 7. For
each sample, we report both the trajectories found by either choosing the local
optimum or the group CRF, as well as the recovered grouping by our model. In
the top row, the grouping information gives a twofold improvement, encourag-
ing the two persons to move together to the left side, as opposed to choosing
intersecting trajectories (yellow arrows). One single wrong link between the two
correctly inferred groups spurs the creation of additional wrong links through
transitivity. In the second row, grouping correctly enforces the two people in
the middle to walk together to the left as opposed to the local solution, which
erroneously goes to the right (yellow arrows). In the third row, the joint reason-
ing keeps the group CRF from choosing the wrong path leading through all the
pedestrians (yellow arrows), thus highlighting the spatial exclusion constraint.
Finally, in the last row, grouping encourages smoother trajectories that stay well
separated, with the group on the left correctly estimated.

7 Conclusions

In this paper we investigated the influence of pedestrian interactions on data
association in crowded scenes, having in mind a tracking application. Statis-
tics learned on natural video data show that people walking in groups behave
differently from people walking alone. Commonly hard-coded effects such as re-
pulsion/avoidance were also clearly visible in the data. These statistics were used
to train a graphical model encoding the interactions between pedestrians in a
principled manner. The model was optimized for the MAP estimate with a state
of the art approximate inference engine, giving a joint estimate about correct
trajectories and group memberships in the data.

The results show that interactions should be taken into account when rea-
soning about people trajectories. We not only showed that joint optimization is
beneficial in terms of tracking error, but we were able to recover, with a good
recall and a sufficient precision, group statistics.

The running time depends on the number of people in the scene. Our cur-
rent implementation of the system, far from being optimized, takes few minutes
( ≈ 10 ) to output trajectories of length 2 seconds and grouping relations.
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The focus of this paper was rather the effect of interactions as opposed to a
complete tracking application. We therefore only showed results on short time
windows initialized from ground-truth locations, not forming entire trajectories
automatically. Extending the model in this direction will be part of future work.
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Abstract. We propose a global optimisation approach to multi-target
tracking. The method extends recent work which casts tracking as an
integer linear program, by discretising the space of target locations. Our
main contribution is to show how dynamic models can be integrated in
such an approach. The dynamic model, which encodes prior expectations
about object motion, has been an important component of tracking sys-
tems for a long time, but has recently been dropped to achieve globally
optimisable objective functions. We re-introduce it by formulating the
optimisation problem such that deviations from the prior can be mea-
sured independently for each variable. Furthermore, we propose to sam-
ple the location space on a hexagonal lattice to achieve smoother, more
accurate trajectories in spite of the discrete setting. Finally, we argue
that non-maxima suppression in the measured evidence should be per-
formed during tracking, when the temporal context and the motion prior
are available, rather than as a preprocessing step on a per-frame basis.
Experiments on five different recent benchmark sequences demonstrate
the validity of our approach.

1 Introduction

Multi-target tracking in video sequences is a fundamental task of computer vision
and video processing, with applications in surveillance, semantic video search,
driver assistance, and many more. From a high-level point of view, the aim is to
estimate the spatial trajectories of a number of targets over time, i.e. the task is
solved when the locations of all targets at each time step are known.

Compared to single-target tracking, the multi-target problem poses additional
difficulties: data association needs to be solved, i.e. it has to be decided which
observation corresponds to which target; and constraints between targets need
to be taken into account – most importantly, no two targets can occupy the
same space at the same time. In probabilistic terms, one aims to maximise the
joint posterior of several variables, which are not independent. That posterior
depends on two factors: an observation model, which measures the agreement
between the observed image evidence and the expected appearance of a target;
and a dynamic model, which measures the agreement between a trajectory and
the expected motion pattern of a target.

In the recent past, a main research challenge in multi-target tracking has
been to develop schemes which are able to find (nearly) global maxima of the

K. Daniilidis, P. Maragos, N. Paragios (Eds.): ECCV 2010, Part I, LNCS 6311, pp. 466–479, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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posterior over the set of trajectories. Their common characteristic is that, in
order to enable global optimisation, the set of permissible target locations has
to be restricted to a manageable finite set. A-priori the set of possible locations
is infinite, or at least very large. There are two main strategies to restrict it
to a reasonably small set: either candidate locations are found by thresholding
and/or non-maxima suppression of the observation likelihood; or the tracking
region is sampled on a regular grid.

The dominant strategy so far has been the first one: the image evidence –
typically the output of object detection or background subtraction – is used to
identify the most promising target locations per frame. These serve as input
for the tracker, which links them to trajectories. A limitation of this strategy
is that candidate locations are implicitly assumed to correspond perfectly with
true target positions; there is no concept of localisation uncertainty. Another
problem is that the space is sampled only at promising locations, hence target
locations are not even defined in case of missing evidence (e.g. if two targets
were both missed by the observation model, it is no longer checked whether they
would collide in that frame).

The regular discretisation is attractive, because it is more generic, and because
it avoids intermediate hard decisions based on partial evidence, thus allowing
for principled probabilistic modelling. A disadvantage is that to keep tracking
computationally tractable the grid needs to be significantly coarser than typical
image resolutions, and therefore introduces aliasing. A particularly undesirable
consequence of the discretisation is that the space is no longer isotropic – the
smoothness of a trajectory depends on its alignment with the grid, and jagged
trajectories complicate the usage of reasonable dynamic models, which favour
smooth motion.

In this paper, we present a global optimisation approach to multi-target track-
ing on a regular grid, with an a-priori unknown number of targets. Original
contributions of the work are

– We “re-introduce” the dynamic model, which has traditionally been an in-
tegral part of tracking, but in previous work had to be dropped to achieve
objective functions, which can be solved to (near) global optimality. Specif-
ically, we include the constant heading prior.

– To best utilise the dynamic model and achieve smoother, more accurate tra-
jectories despite the discrete setting, we propose to use a hexagonal sampling
of the location space, rather than a rectangular one.

– We perform non-maxima suppression during tracking rather than indepen-
dently in every frame, allowing the tracker to recover the most likely locations
in the light of all evidence, rather than the locally best guess per frame.

Despite the proposed extensions the resulting maximisation of the posterior can
still be written as an integer linear program (ILP), by an extension to the for-
mulation of [1]. The ILP is solved efficiently through a linear programming re-
laxation, in most cases to global optimality.
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2 Related Work

Multi-target tracking algorithms can be roughly classified as either recursive
methods which base their estimate only on the state of the previous frame,
or methods which seek optimality over an extended period of time. Recursive
methods rely on a first-order Markov assumption, usually using either Kalman
filtering, e.g. [2,3], or – in the presence of more complex posteriors – particle
filtering, e.g. [4,5,6]. A different strategy is to aim for an optimal solution over
multiple frames. To this end the state space is restricted to a discrete number
of possible target locations, either by heuristics based on the single-frame target
likelihood, e.g. [7,8,9,10], or by sampling locations on a regular grid, e.g. [11,1].

The more popular strategy has so far been to use single-frame heuristics. Af-
ter measuring the likelihood that a target is present at any given image location
– in most cases by variants of object detection [12,13] or background subtrac-
tion [14] – the likelihood function is thresholded and/or its local maxima are
found; possible object locations are restricted to these maxima. The optimisa-
tion then chooses the best set of trajectories over time, based on the selected
locations. Depending on the formulation, this leads to an ILP which is solved
by relaxation [8], an integer quadratic program which is solved with problem-
specific search procedures [7], or a network flow problem [10], which is in fact
closely related to ILP, c.f. [15]. The pruning strategy would be entirely sufficient
if the per-frame processing were entirely correct. In practice it has an impor-
tant shortcoming: the evidence will never be perfect, so that the discrete set
after pruning will suffer from false positives (spurious maxima), false negatives
(missing maxima), and localisation errors (displaced maxima).

To still restrict the state space, without relying on the per-frame measure-
ments, it has therefore been proposed to sample locations on a regular grid rather
than at the modes. Research into grid-based trajectory optimisation started with
methods which greedily aim for an optimal trajectory per target, e.g. using dy-
namic programming [11]. In the radar tracking literature, it has been shown
long ago how to extend the dynamic programming approach to simultaneously
track multiple targets [16], however in practice the computational complexity
is prohibitive. An important step forward, which has also inspired our work, is
the recent work of Berclaz et al. [1]. Tracking is performed in a globally optimal
manner on a regular grid, by casting the problem as an ILP, again solved through
relaxation. Contrary to [8] the number of targets need not be known in advance,
which is achieved by adding source and sink nodes that can spawn, respectively
terminate, trajectories, similar to [10].

This elegant formulation has two main limitations: firstly, in order to arrive
at the ILP, the dynamic model had to be discarded. Object dynamics, which are
an important component of tracking, are included only in a simplistic way, by
allowing arbitrary motion within a grid point’s 8-neighbourhood. Secondly, we
found that a very peaky observation likelihood with sharp maxima at single grid
locations is required for the method to work well. As soon as the object evidence
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is blurry and “connecting the dots” becomes ambiguous, the method tends to
instantiate multiple trajectories for the same target. This is a price the method
pays for the desirable property that it allows for a variable number of targets.

The goal of the present work is to remedy these shortcomings by extending
the model appropriately, while still keeping it linear, and hence amenable to
global optimisation.

3 Model

In the following we give a detailed description of the proposed multi-view track-
ing method. We start with the formulation of maximum a-posteriori trajectory
estimation as an integer linear program, which is an extension of the formalism
introduced by [1]. Next, we introduce our observation model, a probabilistic vari-
ant of tracking-by-detection designed for tracking targets observed from multiple
viewpoints in world coordinates. Furthermore we propose to include non-maxima
suppression in the tracker, rather than viewing it as a preprocessing step. We
then write the dynamic model as a local soft constraint, by penalising the changes
between consecutive motion vectors. In this form it can be re-introduced into
the ILP-formulation of multi-target tracking. Finally we move to an important
technical issue: in the discrete setting the dynamic model suffers from grid alias-
ing, hence it is a lot more effective to quantise locations to a hexagonal rather
than a rectilinear grid.

3.1 Tracking as Integer Linear Program

To set the stage, we extend the ILP-formulation of multi-target tracking intro-
duced in recent work [8,10,1] for our purposes. The possible target locations are
discretised to a finite set of sites xi = (xi, yi). Among those sites a neighbour-
hood system S is defined, where a site’s neighbours {xj : j ∈ S(i)} are all sites
that can be reached from xi in a single time step, including xi itself.

Next, we define a tracklet Xt
ijk as an allowable path over 3 consecutive frames,

i.e. a set of three sites Xt
ijk ={xt−1

i ,xt
j ,x

t+1
k } such that j ∈ S(i) and k ∈ S(j).

The set of all index triplets (ijk) that produce a valid tracklet is denoted T .
The tracklets are the variables of our optimisation problem. They take on values
Xt

ijk ∈{0, 1}, where Xt
ijk =1 means that tracklet (ijk) is part of some trajectory,

and Xt
ijk = 0 means that it is not part of any. The reason for introducing the

tracklets is that the dynamic model cannot be included efficiently when operating
directly on the sites xt

i, as will become clear in Sec. 3.4.
Based on the observed evidence R, each tracklet is assigned a goodness-of-fit

ut
ijk = log

P (Xt
ijk=1|R)

P (Xt
ijk=0|R) which compares the hypotheses Xt

ijk = 1 and Xt
ijk =0 in

the light of the observation model (Sec. 3.2) and the dynamic model (Sec. 3.4).
Thus, multi-target tracking becomes maximising the posterior by picking the
best set of tracklets X∗ from T , under two constraints:

1. collision avoidance: no two tracklets can have the same midpoint xt
j ; when-

ever a tracklet Xt
ijk is selected, all other tracklets Xt

qjr must be discarded.
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2. continuity: tracklets must form continuous trajectories – whenever a certain
tracklet is used in a solution, Xt

ijk = 1, there must be exactly one tracklet
Xt+1

jkl in the next time step, which is also used. Targets entering or leaving
the tracking area are modelled by two virtual source and sink sites, which are
neighbours of all boundary sites and can emit, respectively absorb, targets.

The MAP estimation amounts to the following optimisation problem with the
vector X of all tracklets Xt

ijk as argument:

U∗ = max
X

∑
ijk∈T ,t

(
ut

ijk · Xt
ijk

)
(1)

s. t. ∀ ijk ∈ T , t :
∑

q:qjk∈T
Xt

qjk =
∑

r:jkr∈T
Xt+1

jkr (continuity) (2)

∑
q,r:qjr∈T

Xt
qjr ≤ 1 (collision avoidance) (3)

Xt
ijk ∈ {0, 1} (domain of variables) (4)

Optimisation. Maximising Eq. (1-4) is an integer linear program, and hence
NP-complete. However, it can be relaxed to a linear program by replacing the
condition Xt

ijk ∈ {0, 1}with 0 ≤ Xt
ijk ≤ 1. The relaxed problem can be efficiently

solved with the simplex algorithm or an interior-point method. Moreover, if all
variables Xt

ijk at the relaxed optimum X∗
LP take on integer values, then it is

also a global optimum of the original problem, X∗
LP = X∗

ILP . In practice, this
happens in most cases. Even if the solution is not completely integral, then in
practice the optimality gap is small, and only a tiny fraction of non-integer vari-
ables remains (in our experiments < 0.2%), and these are clustered in relatively
small connected components of the neighbourhood system. Hence, an optimum
of the ILP can be found using the branch-and-cut method with the relaxation as
bounding function (“mixed integer programming”), or by “probing”, i.e. round-
ing some non-integer values and solving for the others while monitoring the
objective value U (a similar strategy is known as QPBO-P in the graph-cuts
context [17]).

To gain some intuition why the LP-solution X∗
LP is largely integral, and

amenable to probing or bounding, it is instructive to look at the behaviour
of simple paths connecting the source to the sink (see also Fig. 1):

– trivially, all tracklets on a junction-free path Q have the same value XQ

because of the continuity constraint; XQ will always be integral, because
the total contribution of the path to the objective value is XQ

∑
uQ, which

attains its maximum at XQ =0 for
∑

uQ≤0, and at XQ =1 for
∑

uQ >0.
– if a path were to split into two branches Q and R at any point (including the

source) and converge again at a later point (including the sink), then one
branch would get all the weight, whereas the other would be suppressed: the
total contribution of the two branches is XQ

∑
uQ +(1−XQ)

∑
uR, which

attains its maximum at either XQ =1 or XQ =0.
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Fig. 1. LP-relaxation of multi-target tracking. On a junction-free path from source to
sink (cyan), all variables are X... =1. Branching within a path is impossible (e.g. orange
paths must have X... =0). A bridge (red) which permits to shift weight from one path
(green) to another (blue) may cause non-integer values in the dashed regions.

– the branching argument applies recursively, so non-integer values can only
occur when two different paths are connected by a “bridge”, so that weight
can be shifted from one to the other when their relative likelihood changes.

The solution X∗
ILP of the ILP is the maximum a-posteriori set of trajectories

over the observed time window Φ. In practice this time interval is bounded by the
available storage and computation power. The number M of variables and con-
straints to be stored grows linearly with Φ, and the average-case computational
complexity of LP-solvers is O(M), too. A practical solution is to solve Eq. (1)
for overlapping time intervals and constrain the solutions to be consistent by
fixing the first frame. Empirically, intervals of Φ=30 frames are sufficient.

3.2 Observation Model

We formulate tracking in world coordinates for the general case of multiple cam-
eras observing the scene from different viewpoints. Multi-camera setups greatly
improve tracking accuracy when the camera positions are low over the ground,
such that one has to accept inaccurate depth estimates as well as frequent occlu-
sions. The framework includes single-view tracking as a special case, by setting
the number of cameras to 1. As usual, the posterior is split into an observation
likelihood and a motion prior. We further decompose the observation into two
parts measuring object detection response, respectively colour similarity:

P (Xt
ijk =1|R) ∼ PO(R|Xt

ijk =1) · PA(R|Xt
ijk =1) · P (Xijk =1) . (5)

Object detection. To measure the support of targets in the image data, we use
our own implementation of the popular HOG detector [13]. The detector scans
the images It

ν (taken from viewpoints cν at all three frames of the tracklet) over all
positions u and scales s with a binary classifier trained to discriminate people from
background, and returns for every location and scale a classification score Rt

ν . The
scores are mapped from image locations (u, s) to locations x and target heights h
in the world coordinate system with appropriate projections, and aggregated over
all views and the three frames to obtain the total evidence R for a tracklet.
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Fig. 2. The evidence P (R|Xt
ijk) has smooth peaks, which are not precisely localised.

(left) tracking results in four views. (right) birds-eye view of the scene. Note that
the correct position for the green subject is not the one with the highest score. Our
algorithm avoids per-frame decisions and chooses the best location during tracking.

The evidence at this point depends not only on Xt
ijk, but also on the person

height h, via the detection scale s. In principle one could track directly in the
(x, h)-space, with a constraint that the height of any given person should not
change over time. To reduce the computational burden, we prefer to place a
Gaussian prior P (h) = N (h; h̄, σh) on the person height and marginalise it out,

PO(R|Xt
ijk =1) =

∑
q

(
PO(R|Xt

ijk =1, hq) · P (hq)
)

. (6)

Appearance. The generic object model is complemented with a target-specific
appearance model to better distinguish different targets. To this end, we demand
that the colour distribution of a target varies slowly over short time spans. All
sites of a tracklet Xt

ijk are projected back to the respective image locations u, and
at each location a colour histogram is extracted. The histograms of consecutive
sites in a tracklet are then compared with the Bhattacharyya distance dB , and
the results are combined over all pairs of sites and all viewpoints cν :

PA(R|Xt
ijk =1) ∼

∏
cν

exp
(
− dB(ut−1

i ,ut
j)+dB(ut

j ,ut+1
k )

σ2
B

)
(7)

3.3 Exclusion Constraints

Exclusion constraints between different tracklets ensure plausible interactions
between the targets. The simplest form of constraint, which has been widely
used in multi-target tracking, is the collision avoidance implemented by Eq. (3).
We argue that exclusion constraints can also be applied over larger neighbour-
hoods, to incorporate non-maximum suppression (NMS) in the tracking frame-
work rather than do it at the frame level, such that the retained location is the
one which is optimal for the entire time interval, rather than for a single frame.

A main limitation of most tracking schemes is that non-maxima suppression is
carried out on a per-frame basis. The evidence P (R|Xt

ijk) measured by the obser-
vation model is in practice not a set of perfect spikes, but a smooth distribution
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with peaks which are not well localised, see Fig. 2. To remedy this, the distribu-
tion is replaced by the modes only, found by some mode-seeking procedure like
mean-shift or morphological erosion. Traditional non-maxima suppression thus
commits to a location without taking into account the fact that target locations
should be consistent over time. Instead, we propose to integrate NMS into track-
ing, rather than detection: the detector output is left to be ambiguous around
the modes, and the optimisation can choose which location is most likely, given
also evidence from neighbouring frames and the dynamic model. However, in
this context an additional difficulty arises. Since the number of targets is not
known a-priori, the evidence for a target at its neighboring locations can still be
strong enough to generate multiple tracks. In other words, a prior is required,
which formalises the intuition that plaits of intertwined trajectories are unlikely.
To this end, we introduce a number of additional constraints, which prohibit
not only collisions of targets at the same location, but also tracklets starting at
immediately neighbouring locations (which amounts to the assumption that the
grid sampling distance is smaller than the minimal possible distance between
two targets),

∀ ijk ∈ T , t : r ∈ S(i) ⇒ Xt
ijk + Xt

rjk ≤ 1 (8)

These constraints prevent targets from moving too close to each other, and also
avoid trajectories crossing in such a way that a collision would happen in the
empty space between two grid locations.

We point out that the effect of the prior is not the same as single-frame
NMS: under the exclusion constraints the optimisation is free to choose a target
location xt, which is not a maximum of the detection score in frame t, in order
to achieve a smoother trajectory, or to avoid collisions with other targets.

3.4 Dynamic Model

An important ingredient of tracking is the dynamic model, which encodes prior
knowledge about likely motion patterns of the tracked objects. Using such dy-
namic models – mostly assuming constant heading, constant velocity or constant
acceleration – has a long and successful tradition, however such models have been
dropped in grid-based tracking.

To overcome this, we extend the grid-based formulation to incorporate the
constant heading model, i.e. we assume that objects tend not to change their
motion direction. A prerequisite for the ILP formulation is that the objective
function Eq. (1) be linear. To preserve the linearity, the motion prior P (Xt

ijk = 1)
must be formulated such that it can be computed locally for each variable (i.e.
its contribution must be part of the unary terms). This is the reason why we have
introduced the tracklets : checking for constant heading requires two consecutive
motion vectors, and hence three consecutive sites, thus the variables must cover
at least three consecutive frames.

Given the two motion vectors mij = (xj−xi, yj−yi, 1)� and mjk = (xk−xj , yk−
yj , 1)� in a tracklet Xt

ijk, one can include the prior by penalising the heading
change α between them, measured in (x, y, t)-space. The tracklet is assigned a
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Fig. 3. (left) The 12-neighbourhood and symmetry axes in a hexagonal tiling. (middle,
right) Aliasing of an example trajectory on a hexagonal grid and a rectangular grid
with the same sample density.

probability which grows inversely with α2(Xt
ijk), such that deviations from the

constant-heading assumption are penalised, as desired:

P (Xt
ijk =1) ∼ exp

(
− α2

σ2
α

)
where α = arccos

m�
ijmjk

|mij ||mjk| (9)

Note that the angle α is computed in (x, y, t)-space. The method can be trivially
extended to favour constant velocity by penalising the difference between mij

and mjk, however we found the angle to work better, probably because of the
varying step-length on a discrete grid.

The obvious effect of the dynamic model is that smoother, more accurate tra-
jectories are estimated in the presence of inaccurate or weak evidence. Beyond
its original purpose, the dynamic model also has a more subtle benefit on the op-
timisation: by penalising tracklets with strong heading changes, the motion prior
sharpens the posterior, and thus the objective function U . As a consequence, the
relaxation gap narrows, and fewer non-integer values occur. This effect is par-
ticularly strong in difficult circumstances, when the evidence P (R|Xt

ijk = 1) is
rather flat, such that the potential target locations spread out over a large num-
ber of tracklets. Therefore the dynamic model drastically reduces computation
time (in our experiments by at least a factor of 10). In some cases the number
of non-integer values without motion prior even becomes so high that it is no
longer tractable to find an integral solution with branch-and-cut or probing.

3.5 Hexagonal Discretisation

To make tracking amenable to global optimisation with ILP, in the spirit of [8,1],
the location space x must be discretised to a finite set of locations. As explained
above, we prefer not to heuristically prune the per-frame likelihood P (Xt

ijk|R)
to a small set of permissible locations, but rather sample the ground plane in
a regular lattice. A natural choice, which has been used in previous work, is a
rectilinear grid, similar to the image grid. Unfortunately, such a grid has a strong
preference for the two canonical directions along the x- and y-axes, whereas
target trajectories in other directions exhibit severe aliasing.

Aliasing is not a big problem in the absence of a dynamic model, but together
with the proposed motion model it creates difficulties: to check the deviation
from constant heading locally one needs to rely on the vectors between the grid
locations, thereby penalising trajectories which are not grid-aligned and hence
continuously change directions. To alleviate this effect and boost the positive
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effect of the dynamic model, we propose to use instead a hexagonal tiling of
the ground plane, inducing a tri-axial neighbourhood system. In this grid, the
8-neighbourhood is replaced by a 12-neighbourhood, which reduces staircasing
artifacts, and allows one to better enforce the constant heading assumption, see
Fig. 3. The hexagonal tiling has been used in other contexts in image processing
and computer vision [18,19], precisely because it has more preferred directions
and reduces aliasing artifacts. Note that the change of sampling grid does not
impair data quality: the transformation is performed when mapping the target
probabilities from images to the world coordinate system, so there is no addi-
tional resampling step that would further blur the data.

4 Experiments

We present experiments on five different public multi-view video sequences. Se-
quences campus-1 and campus-2 [11] were both recorded from 3 different cam-
era viewpoints, and have 2000, respectively 1400 frames showing up to 6 people
moving outdoors. Sequences terrace-1 and terrace-2 [20] were both recorded
from 4 viewpoints, and have 2000 frames each with up to 6 people, also moving
freely outdoors. Finally, as a benchmark for monocular tracking we use sequence
PETS-S2L1 from the VS-PETS 2009 benchmark. The sequence is better suited
for single-view tracking because of the elevated viewpoint. There are 795 frames
showing up to 8 people moving in a street. The entire dataset contains 52 indi-
vidual trajectories, which were manually annotated and used as ground truth.
Due to the low target speed, we processed only every other frame of PETS-S2L1
and every 6th frame in the remaining four sequences, such that targets move
approximately one grid unit from one frame to the next.

All experiments have been carried out with the same set of parameters. The
two free parameters of our method are the standard deviations σα and σB, which
govern the relative influence of detection score, colour similarity, and dynamic
model (c.f. Sec. 3.2 and 3.4). To keep the optimisation tractable for long se-
quences, we follow the usual strategy and process overlapping time windows.
This adds two further parameters, the number of frames Φ per window, and
the overlap Ω. We set Φ = 30 (when processing every 6th frame at 25 fps, this
amounts to ≈ 7 seconds) and Ω=10.

Figure 4 shows example results. Targets are tracked successfully over many
frames, new targets entering the scene are initialised automatically. Especially
the second example shows many targets moving in a small space. People are
often occluded simultaneously in several views. Long-term occlusion is a main
cause of failure, such as for the person marked in cyan.

In the PETS-L2S1 sequence, up to 7 targets are tracked in monocular video
over a large area of interest. Note the false positive on the tripod near the image
centre: false detections on background objects are the dominant cause of false
positives, since they tend to appear frequently on the same structures and, being
static, fulfil the constraints of the dynamic model.
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Fig. 4. Tracking results obtained with our algorithm. The left and middle column are
from the terrace-1 sequence, the right column is from PETS-L2S1. Displayed are three
sample frames (1st-3rd row), and a birds-eye view of target trajectories (last row). The
displayed frames are marked (top ©, middle ♦, bottom �). See text for details.

4.1 Comparison to Previous Work

We directly compare the trajectories estimated by our method to those of [1],
which we extracted from their published results. Their method is based on a
similar ILP formulation, but on a rectilinear grid without dynamic model. Fig. 5
shows sample trajectories from both methods, with similar grid resolutions. The
examples illustrate how late non-maxima suppression, together with the dynamic
model, avoids implausible jittering. We emphasise that the improvement is due to
the combination of all modelling choices: late non-maxima suppression preserves
the necessary evidence for flexible target placement, while the dynamic model
on a hexagonal grid supplies the constraints to handle the extra flexibility.



Globally Optimal Multi-target Tracking on a Hexagonal Lattice 477

0 10 20 30 40
0

10

20

30

0 10 20 30 40
0

10

20

30

0 10 20 30 40
0

10

20

30

0 10 20 30 40
0

10

20

30

0 10 20 30 40
0

10

20

30

0 10 20 30 40
0

10

20

30

Fig. 5. Improved trajectories with the proposed model. (left) manually annotated
ground truth for 200 frames of sequence terrace-1. (middle) trajectories reconstructed
by state-of-the-art tracking without dynamic model [1]. (right) trajectories estimated
by our system with dynamic model on a hexagonal grid.

4.2 Quantitative Evaluation

In the following we quantitatively evaluate our tracker against the baseline ILP
tracker without dynamic model and operating on a rectilinear grid with either
the standard 9-neighbourhood (8 neighbours and the central location itself) or a
larger 21-neighbourhood. We use several metrics: on one hand we compute the
clear metrics for multi-object tracking [21] because of their growing popularity;
on the other hand we count the number of trajectory fragments and ID switches,
similar to [22]. Finally, we also measure the smoothness of the estimated trajec-
tories by the average angle between the segments of all tracklets.

The evaluation results are summarised in Figure 6. As expected our model
greatly improves trajectory smoothness, with a three- to five-fold reduction in
the average tracklet angle for both multi-view and monocular tracking. The
smoother trajectories also improve tracking accuracy: clear-mota (measuring
false negatives, false positives, and miss-matches) increases by 10-20%, because
our model mitigates the effect of inaccurate and uncertain evidence. Using 21
instead of 9 neighbours also improves accuracy, but is still inferior to our result,
while taking ≈ 5 times longer to compute due to the larger number of vari-
ables. Tracking precision (clear-motp, measuring overlap of bounding boxes)
improves insignificantly, because the metric is dominated by the alignment error
due to the discrete location grid. At the same time, there is a dramatic reduc-
tion of fragmented tracks and identity switches (≈ 50% for the monocular case,
80-90% for the multi-view case). Trajectory fragments are generated when the
tracker drifts away from a target, which is less likely if late non-maxima suppres-
sion and the motion prior can correct inaccuracies of the evidence. ID switches
happen when data association fails for targets very close to each other. The
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Fig. 6. Tracking performance. (left) clear metrics – higher is better. (middle) frag-
mentation and ID switches – lower is better. (right) smoothness – lower is better.
Globally optimal tracking benefits significantly from dynamic models on the hexago-
nal grid, both in multi-view (top row) and in the monocular setting (bottom row).

motion prior improves correct data association, because it favours the option
with more plausible dynamics.

5 Conclusion

We have presented an algorithm for tracking a varying number of targets on a dis-
crete location grid. Multi-target tracking is cast as integer linear programming,
and solved through LP-relaxation, in most cases to global optimality. Compared
to previous research in this direction, we have argued that tracking should use
the original target evidence as input and perform non-maxima suppression dur-
ing trajectory estimation, and we have demonstrated how to include standard
dynamic models in the ILP formulation. We have also shown that best results
are achieved on a hexagonal rather than a rectilinear grid.

The experimental comparison on public benchmark videos confirms that be-
yond its theoretical appeal the proposed formulation delivers better tracking
results and achieves superior performance in quantitative comparisons.

In future work we plan to analyse the cases, in which the relaxation alone
does not return a global optimum. We believe that the problem structure can be
exploited to solve those cases more efficiently. We also plan to use the result of
the method as initialisation for a continuous optimisation scheme to overcome
limitations due to the restriction to the discrete grid.
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Abstract. A major reason leading to tracking failure is the spatial dis-
tractions that exhibit similar visual appearances as the target, because
they also generate good matches to the target and thus distract the
tracker. It is in general very difficult to handle this situation. In a selec-
tive attention tracking paradigm, this paper advocates a new approach of
discriminative spatial attention that identifies some special regions on the
target, called attentional regions (ARs). The ARs show strong discrimi-
native power in their discriminative domains where they do not observe
similar things. This paper presents an efficient two-stage method that di-
vides the discriminative domain into a local and a semi-local one. In the
local domain, the visual appearance of an attentional region is locally
linearized and its discriminative power is closely related to the prop-
erty of the associated linear manifold, so that a gradient-based search is
designed to locate the set of local ARs. Based on that, the set of semi-
local ARs are identified through an efficient branch-and-bound proce-
dure that guarantees the optimality. Extensive experiments show that
such discriminative spatial attention leads to superior performances in
many challenging target tracking tasks.

1 Introduction

Our computer vision research on target tracking always aims to develop meth-
ods that can work as good as the human. Large research efforts have been de-
voted to region-based tracking and have produced many outstanding methods,
e.g., the mean-shift tracker [17], the kernel-based tracker [3], and the ensemble
tracker [19], etc. The major research has been largely focused on effective im-
age region matching to handle large variations in images, and efficient search
to locate the target. However, many real applications in video analysis always
demand trackers that are more robust and can perform for a longer duration.

Among many reasons that lead to tracking failure, one of the most difficult
cases is due to the distractions in the environment that present similar visual
appearances as the target and thus exhibiting good matching to the target. These
� This work was conducted while the third author was a graduate student at North-
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distractions can be from the background clutter or from similar objects in the
scene. As the distractions produce false positives in target detection, they lead
to wrong association to the tracker, and thus fail the tracker. Because they do
give good matches to the target, it is difficult to detect such a distraction failure
promptly based on their matching scores.

It is known that our human dynamic visual perception is selective [18], which
allows the processing in our visual system to be concentrated on relevant and
important visual information. The selection occurs in all stages in visual process-
ing, and it can be based on both innate principles as well as learned heuristics.
It is the visual selection that makes our visual system efficient and adaptive in
following moving targets. Among many possible kinds of visual selections, spatial
attention focuses the computation on some selected local image regions on the
target, called Attentional Regions or ARs. Tracking the target is fulfilled by the
tracking of these ARs. This mechanism appears to be a key in handling clutters,
distractions and occlusions in target tracking.

To introduce spatial attention to the design of tracking algorithms, in addition
to the matching and searching of ARs, the selection of ARs is a critical issue
for persistent tracking. We often observe an interesting phenomenon in various
region-based tracking methods that the initialization of the target region may
largely influence the tracking performance. A slightly different initialization of
the target region sometimes ends up with a much better or worse result. Un-
fortunately, this phenomenon has not received much attention in the literature,
although it conveys a strong message that the selection of ARs cannot be ar-
bitrary. This paper is concerned on finding ARs on the target so as to achieve
more robust and persistent tracking.

More specifically, an AR is a local image region that has the largest discrim-
inative power among others in its spatial domain. This spatial selection task is
not trivial. For a given target, the number of its candidate attentional regions
(i.e., any sub image region on the target) are enormous. Although we can ex-
amine all ARs in a brute-force way, we cannot afford its O(n2) complexity in
practice because n (i.e., the number of candidates) is huge, and thus a more
efficient method is desirable.

This paper presents a novel and efficient solution to the spatial selection of
discriminative attentional regions. In the feature space, the feature of an AR
has a large margin to its nearest neighbors, and we can use this margin in the
feature space to represent the discriminative power of an AR. The larger the
margin, the more distinctive an AR is in its spatial domain. An AR needs to be
distinctive in both its small spatial neighborhood (i.e., local) and a larger domain
(i.e., semi-local) that is determined by the possible motion of this attentional
region. In the local domain, the local neighbors of an attentional region approx-
imately span a local linear manifold, so that we recast the discriminative power
to be a condition number measure of this local linear manifold, and design an
efficient gradient-based search for all local ARs. In the semi-local domain, as the
approximation does not hold, we design an effective branch-and-bound search
that largely reduces the complexity while achieving the optimality. Our extensive
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experiments show that the selected discriminative attentional regions are more
resilient to distractions and lead to robust tracking.

The novelty of this work includes the following four aspects. (1) Because most
existing tracking methods focus on matching but spatial distractions also exhibit
good matches, these methods are challenged. This paper explicitly handles the
distractions by discovering attentional regions that are resilient to distractions.
(2) The proposed approach to locating ARs considers both local and semi-local
distractions. This new approach leads to an efficient solution that integrates a
gradient-based search and a branch-and-bound search. (3) Based on the spatial
selection, this paper presents a new robust tracking algorithm that uses multiple
ARs and is adaptive to the appearance changes of the target and the dynamic
scene.

2 Related Work

In this section, we briefly review recent approaches related to our work. Region-
based tracking has been studied in [17,3,5,7,8,13]. In [7], the spatial configuration
of the regions is done by optimizing the parameters of a set of regions for a given
class of objects. However, this optimization needs to be done off-line. In [8], a
method for a well known local maximally stable extremal region (MSER) has
been proposed. As the backward tracking is integrated, it restricts its application
to off-line tracking.

There is a vast literature on salient region selection [10,15,4,11,12,6,1,2]. In
these works, spatial selection expects the regions to be located at corner-like
points. They emphasize the repeatability of the regions in matching. The re-
peatability of the regions is related to the local discrimination introduced in this
paper. But this paper goes one step further. Beside the local discrimination, this
paper also studies the semi-local case.

It is worth mentioning that the proposed AR selection mechanism is different
from the feature selection paradigms [9]. Feature selection aims to choose global
features that best discriminate the object from the background. The target is
treated as a whole in those approaches. While in the proposed method, the
target is represented by a set of spatial attentional regions. Such a difference in
modeling leads to the difference in the selection. In feature selection methods,
discriminative features are selected to separate the target and the background,
but the AR selection chooses local distinctive image sub-regions (rather than
the features). Since the spatial distracters exhibit similar visual appearances as
the target, choosing whatever features always results in similar feature vectors.
Therefore, feature selection methods are limited in handling this case. On the
contrary, the proposed spatial selection method pinpoints to the actual spatial
distinctions, and thus is well able to cope with such spatial distracters.

The most closely related work to the proposed method may be [5]. In [5],
a general framework of spatial selective attention was advocated for tracking.
The early selection process extracts a pool of ARs that are defined as the salient
image regions which have good localization properties, and the late selection pro-
cess dynamically identifies a subset of discriminative attentional regions through
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a discriminative learning on the historical data on the fly. However, this work is
a large leap from [5], not only because this work presents a much more in-depth
study of spatial selection, but also it makes the general selective attentional
tracking framework more practical and more effective in practice. The main
differences include: (1) The tracking method in [5] is a very specific implemen-
tation, and many components in this framework need further investigation and
improvement. Moreover, it selects the ARs that are only local discriminative,
and it is quite limited in handling the semi-local distraction which is much more
common and more challenging in practice. On the contrary, the proposed method
selects the ARs that are both local and semi-local discriminative. (2) We explic-
itly define discriminative margin, which is a new concept, and consider the local
discriminative and semi-local discriminative in a unified way. On the contrary,
the late selection in [5] is not as principled as the proposed approach.

3 Attentional Region (AR)

3.1 Spatial Discrimination

An attentional region (or AR) is a local image region which has the largest
discriminative power among others in its spatial domain. At the first step, we
need to define a general discriminative measure.

Given a region R(x) located at position x in an image, we denote the set of its
neighboring regions by {R(y),y ∈ N (x)}, where N (x) is the spatial neighbor-
hood of x, and we call it the discriminative domain. The visual features of R(x)
is represented by the feature vector f(x). Denote by D(·, ·) the metric to measure
the difference of two feature vectors. Then we define the general discriminative
score ρ(x) of the AR R(x) by:

ρ(x) � min
y∈N (x)

D(f(x), f(y)). (1)

It is clear that the larger the ρ(x) is, the more discriminative the AR R(x) is
from its neighbors. If ρ(x) = 0, i.e., there is a perfect match in the neighborhood,
then this AR has no discriminative power.

However, in practice, we recognize the fact that the most similar one is very
likely to be located in a very close vicinity L(x), i.e., min

y∈N (x)
D(f(x), f(y)) is

very likely equal to min
y∈L(x)

D(f(x), f(y)). Then this discriminative score can only

reflect the local discrimination. To characterize the semi-local discrimination,
we should exclude L(x) when we define the discriminative score. Let S(x) =
N (x)\L(x). So in practice, we define the discriminative scores ρS(x) and ρL(x)
for semi-local and local domains, respectively:

ρS(x) = min
y∈S(x)

D(f(x), f(y)), (2)

ρL(x) = min
y∈L(x)

D(f(x), f(y)). (3)
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Fig. 1. The discriminative margins for a certain AR

Figure 1 illustrates this concept. In the spatial domain, the red star represents
x, the blue squares represent some y ∈ L(x), and the green triangles represent
some y ∈ S(x). We also show them in the feature space where the distance be-
tween two points is determined by the distance measure D(·, ·). The hypersphere
OL is centered at x with a radius ρL(x). Therefore, all the blue squares are out
of the hypersphere, and there is at least one blue square on the boundary of the
hypersphere. It is clear that the discriminative score ρL(x) reflects the margin
between the target and the set of its local neighbors in the feature space. The
larger the ρL(x) is, the more local discriminative the AR R(x) is. Similarly, the
hypersphere OS is centered at x with the radius ρS(x). The discriminative score
ρS(x) reflects the margin between the target and the set of its nearest semi-local
neighbors in the feature space.

3.2 Attentional Region

An AR needs to be distinctive in both its local spatial neighborhood (i.e., the
local domain) and a larger domain (i.e., the semi-local domain).

We denote the set of local ARs by XL = {x : ρL(x) > εL} where εL > 0 is
a threshold for the local domain. Similarly, denote the set of semi-local ARs by
XS = {x : ρS(x) > εS}. By definition, an AR needs to be discriminative at both
local and semi-local domains. Therefore, the set of ARs X = XL ∩ XS .

The intuitive explanation of the difference between AR and a common region
is shown in Fig. 2. In Fig. 2, three representative patches are chosen, and the
matching scores between the selected patches and their neighbors are visualized.

As shown in Fig. 2, the matching error surfaces of the AR and the common
regions behave quite differently: The region at the chin has a poor local discrim-
inative power since its neighbors along the boundary looks quite similar. The
region at the eye has a poor semi-local discriminative power, because there is a
similar eye corner in the valid semi-local domain and it acts as the distractor.
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Fig. 2. Three regions and their matching error surfaces with their corresponding neigh-
bor regions

Fig. 3. ARs are related to their associated discriminative domain. The leftmost is the
local ARs. When N (x) becomes larger, there exists a less number of ARs. As shown in
the rightmost, only three ARs survive in the largest range we specified. The positions
are at the mouth and the joint part between the leg and the body of the zebra.

The region at the mouth has both strong semi-local and local discriminative
power as good matches are only focused in a very small neighborhood. Tra-
ditional methods [10,4,11,12] may examine those local ARs but are unable to
identify the semi-local ones, because they only consider the local properties.

Whether a region is discriminative or not is related to the range of the associ-
ated discriminative domain N (x). A region is an AR in a spatial domain if and
only if there are no distractors (i.e., good matches) in this domain. When the
domain becomes larger, some distractors may be present, and thus reduce the
discriminative power of this region in the larger domain. If the discriminative
power becomes below the threshold, this region is no longer an AR. Thus, when
we keep enlarging the discriminative domain, we have fewer and fewer ARs.
Figure 3 shows one example to illustrate this situation.

4 Spatial Selection of ARs

For a given target, denote the set of its candidate regions (i.e., any sub image
region on the target) by Λ. The spatial selection task, i.e., finding the ARs in Λ,
is not trivial. Comparing all regions with all of their neighbors in a brute-force
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way is computationally infeasible, because the number of the candidate regions
is huge, and thus a more efficient method is needed.

We propose a two-step method to find ARs: (1) we first obtain all local ARs
XL based on an efficient gradient-based search. (2) Then we select a subset of
XL, whose element has strong semi-local discriminative power to be ARs through
an efficient branch-and-bound search that guarantees the optimality.

4.1 Gradient-Based Search for Local ARs

For a region located at x, assume f(x) ∈ Rd. The visual features of its local
spatial neighbors constitute a linear manifold (up to two dimensional) at f(x)
in the feature space. Assume Δx = [Δu, Δv]T , we have

f(x + Δx) ≈ f(x) + ΦΔx, (4)

where Φ � [ ∂f
∂u

∂f
∂v ] is a d × 2 matrix.

Using L2 metric for matching, the local discriminative margin ρL(x) becomes:

ρL(x)2 = min
x+Δx∈L(x)

‖f(x + Δx) − f(x)‖2 ≈ min
x+Δx∈L(x)

(Δx)T AΔx, (5)

where A � ΦT Φ is a 2×2 matrix which characterizes this local linear manifold.
Case 1: rank(A) = 1. It is clear that ρL(x) = 0.
Case 2: rank(A) = 2. The minimum is obtained at the inner boundary of

L(x) due to the discretization of x. Assume the inner boundary of L(x) to be
‖Δx‖ = 1. Then we have

ρL(x)2 = min
‖Δx‖=1

(Δx)T AΔx. (6)

We perform SVD on Φ and obtain two singular values σ1 and σ2. Without loss
of generality, we assume σ1 ≥ σ2. As A = ΦT Φ, σ2

1 and σ2
2 are the eigenvalues

of A.
We can easily see that ρL(x)2 = σ2

2 . Therefore, maximizing the margin ρL(x)
is equivalent to maximizing σ2. It is clear that when det(A) becomes larger, ρL(x)
will become larger, and then the problem becomes meaningless. But considering
the fact that det(A) is bounded, i.e., det(A) ≤ χ2, and the fact that det(A) =
(σ1σ2)2, we have

σ2
2 = χ

σ2
2

χ
≤ χ

σ2
2

σ1σ2
= χ

1
σ1/σ2

. (7)

It is clear that maximizing σ2 amounts to minimizing the condition number
σ1/σ2 of Φ.

The above analysis reveals the relation between the discriminative power of a
region and the singularity property of its local linear manifold.

In practice, only obtaining the criterion for local AR placement is insufficient,
since it is not attractive to exhaustively evaluate this criterion all over the image.
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In [4], a gradient descent algorithm has been proposed to efficiently find good
placement where the condition number of ΦTΦ is locally minimized. We follow
that algorithm in this paper. First we randomly initialize a set of AR candidates.
Following the gradient of the condition number these ARs converge to their
corresponding local minima. The set of local minima is XL.

The matrix Φ depends on the choices of the feature space and the matching
metric. In this paper we use the contextual flow [16] as the feature vector, because
it is robust to small changes on local appearance that invalidate the constancy
in brightness.1

4.2 Branch-and-Bound Selection of ARs from XL

Based on the set of local ARs XL obtained in Sect. 4.1, we obtain ARs with a
strong semi-local discriminative power from XL. We solve a more general and
flexible problem as follows:

Given the set XL = {x1, · · · ,xN} (i.e., |XL| = N), we want to choose the
ARs x̂1, · · · , x̂M ∈ XL with the M largest discriminative score ρS(·).

Since the linear approximation is invalid in the semi-local discriminative do-
main S(x), differential approaches are not appropriate. A brute-force exhaustive
method is: ∀x ∈ XL, we calculate ρS(x), and then select the most discriminative
ones. The complexity is O(|S(x)| × N), and is still intensive in practice.

Here we use a branch-and-bound search which largely reduces the complexity
while maintaining the same optimal result as by the exhaustive search.

Let S(x) = {x+ Δl1, · · · ,x+ Δln}, where n = |S(x)|, and Δli is the relative
position between the target AR and its ith neighbor in the semi-local discrimi-
native domain. Denote ρi(x) = min

y∈{x+Δl1,··· ,x+Δli}
D(f(x), f(y)). Then we have

ρi(x) = min{ρi−1(x), D(f(x), f(x+Δli))}, thus ρ1(x) ≥ · · · ≥ ρn(x) = ρS(x). In
the beginning, we initialize an empty priority queue P to store the candidates.
For each xi ∈ XL, we calculate ρ̂(xi) = ρ1(xi) as the upper bound of ρS(xi).
Then we sort {ρ̂(xi)} in the descending order and push them sequentially into
P so that the top state has the largest ρ̂(·). For each x, we associate a variable
γ(x) to count the number of elements in S(x) which has been searched around
x.

At every iteration, we retrieve the top state (x, ρ̂(x)) from P , where ρ̂(x) is
the current upper bound of ρS(x), and ρ̂(x) = ργ(x)(x). If γ(x) = n, meaning
that we have already sought all the neighbors in S(x), we output x into the set
of ARs and remove x from P .

Otherwise γ(x) < n, we increase γ(x) by 1, calculate f(x + Δlγ(x)), and up-
date the upper bound

ρ̂(x) := min{ρ̂(x), D(f(x), f(x + Δlγ(x)))}. (8)

Then we insert (x, ρ̂(x)) into P maintaining the property that P is sorted with
the descending order of ρ(·) (replace the old x). Then we retrieve the top state

1 In [16], Φ is the contextual gradient and can be computed directly in a closed form.
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Table 1. The branch-and-bound algorithm for selecting ARs

Input x1,x2, · · · ,xN , Δl1, · · · , Δln
Output x̂1, · · · , x̂M

1. FOR i = 1 TO N DO
calculate f(xi), f(xi + Δl1),
set ρ̂(xi) = D(f(xi), f(xi + Δl1)),
γ(xi) = 1

Initialize P as empty priority queue. c = 0.
2. Sort {ρ̂(xi)} in descending order.

Let ρ̂(x̄1) ≥ · · · ≥ ρ̂(x̄N),
FOR i = N TO 1 DO

push (x̄i, ρ̂(x̄i)) into P
3. Retrieve top state (x, ρ̂(x)) from P .
4. If γ(x) = n

c = c + 1, x̂c = x, goto 3.
Else goto 5.

5. If c = M , Return. Else goto 6.
6. γ(x) = γ(x) + 1

Calculate f(x + Δlγ(x))
Set ρ̂(x) = min{ρ̂(x),D(f(x), f(x + Δlγ(x))}
Insert (x, ρ̂(x)) into P so that P is still sorted
w.r.t. ρ̂(·). Goto 3.

again iteratively until a number of M ARs are found. The algorithm is summa-
rized in Table 1.

The top state x of P has the largest upper bound of ρS(x), because for the
remaining xis in P , ρS(xi) is bounded by ρ̂(x). As each time we only consider the
most promising x of P , this significantly reduce the complexity. The complexity

is O(
N∑

i=1
γ(xi)), and this method guarantees the optimality.

In practice, the complexity versus the exhaustive search is measured by the

ratio r = 1
nN

N∑
i=1

γ(xi). The value of r is 0.18 on average for our testing sequences,

e.g., for sequence zebra, r = 0.18. For sequence dolphin, r = 0.16. This means
that our method significantly reduces the complexity in searching for ARs. Extra
operations in our method (i.e., insertion and sorting) have little computational
complexity, as those operations take much less time than computing D.

5 Discriminative Attentional Visual Tracking

As the ARs are not similar to the other regions in their discriminative domain,
the tracking performance of ARs is very robust. We propose a new attentional
tracking method by using AR, and it has three important steps: At the first step,
we extract ARs from images. Secondly, the contextual flow tracking algorithm
[16] is applied to track each ARs independently. Finally, the beliefs of all the
ARs are fused to determine the target location.
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(a) Initialization (b) local ARs (c) ARs

Fig. 4. AR selection

5.1 AR Selection/Tracking

At the first frame, the target is initialized by the user. We evenly initialize Nmax

tentative ARs inside the target (Fig. 4(a)). The local ARs are shown in Fig.
4(b). Figure 4(c) shows top five ARs. For each AR, we record the geometrical
relation between the ARs and the target (the relative position and the scale).

For each AR, the tracking is done based on the contextual flow method [16].

5.2 Attentional Fusion and Target Estimation

After obtaining the motion of each AR, we apply a Hough-voting scheme [14]
to estimate the target location based on the matching scores of ARs and the
recorded geometry. The estimated AR location casts a probabilistic vote about
the target centroid position with respect to the AR center. The better the match-
ing performance of a certain AR, the higher the probabilistic score. After the
votes from all ARs are aggregated into a Hough image, the target location can
be estimated as the peak in this image. This scheme is appropriate to handle
occlusion. If some ARs are occluded, their matching scores will be very low, thus
the probabilistic votes from those ARs are very low, and contribute less to the
object location prediction than the ARs which are not occluded.

The scale of the target is estimated by a voting-like approach based on the
scale estimation for each AR. To obtain a robust estimation, we only count the
ARs which have high matching scores.

5.3 Model Adaptation

As the appearance changes, due to view differences, illumination variations and
shape deformation, can ruin the observation, the model adaptation mechanism
is necessary. We adapt the model by updating the ARs when necessary. The
matching score of each AR measures the variation of its appearance. If the
matching performance is good enough, we call the AR active. Otherwise, for a
certain AR, if the matching score has been low for a long period of time (e.g.,
consecutive 10 frames), we call it inactive since it probably undergoes appearance
changes or short term occlusion.

At the current frame, after target estimation, we check the matching score
for each AR to see if it remains active. When there are m inactive ARs at the
current frame, we remove them and select m new ARs from the target.
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Fig. 5. Comparison of different placement of one AR. (Top) the AR from our method
(bottom) the local AR

6 Experiments

For tracking initialization, we evenly initialize Nmax = 100 tentative ARs inside
the target. The size of the ARs is 25 × 25. For a certain AR, the size of its
discriminative domain N (x) is determined by its possible motion and the maxi-
mum search range for tracking. The larger the possible motion, the larger N (x)
we use.

Without code optimization, our C++ implementation comfortably runs at
around 15 fps on average on Pentium 3G for 320× 240 images.

We compare our method with an attentional visual tracker (AVT) [5] that
reported excellent tracking performance. For fair comparison, we use the con-
textual flow as the feature vector, and use the Hough voting scheme in the
fusion process for both methods. In addition, we have included the late selection
procedure in AVT for comparison.

6.1 Using the Most Discriminative AR

ARs are resilient to distractors, because by definition an AR is not confused
by its neighboring regions in its discriminative range. In this experiment, we
compare the tracking performance by selecting different ARs and demonstrate
the effectiveness of our method. The AR with the largest discriminative power is
shown at the top row of Fig. 5. We choose some local ARs for comparison (one
example is shown at the bottom row of Fig. 5). It is observed that at the top
row, the texture of the best AR is quite different from its neighborhood. While
at the bottom row, the texture of the AR contains stripes which is not quite
discriminative in its semi-local discriminative domain. Therefore, the tracking
performance shows that the local AR is unstable during tracking (keep drifting)
while the AR at the top row succeeds and is very stable.

6.2 Handling Local Appearance Changes

Tracking targets undergoing local deformation is difficult in practice. However, if
the local deformation only occurs in some parts of the target, the ARs on other
parts can still make the tracking robust. These stable ARs contribute more in
the fusion process as they have strong matching, so the tracking performance is
still good. The comparison result is shown in Fig. 6 and 7. In Fig. 6, although the
target appearance changes at some parts, the bottom-right AR is persistently
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Fig. 6. A comparison of DAVT and AVT [dancing]. (Top) AVT (bottom) the proposed
method

Fig. 7. A Comparison of DAVT and AVT [cheetah]. (Top) AVT (bottom) the proposed
method

robust and thus dominates the fusion and gives good tracking results. The white
ARs indicate those that have relative bad matching. Although these white ARs
sometimes do not have strong matching, in most cases they are robust, since
they are located at the boundary of the face and there are no distractors nearby.
In Fig. 7, the textures of the cheetah are very similar. The ARs found by the
proposed method are near the back and thigh of the cheetah. These regions look
different from the body of the cheetah, so they hardly drift to some other regions
inside the body. However, for AVT, it only selects some local ARs. We observe
that there are some distractors in the semi-local domain of these local ARs and
AVT fails as shown in Fig. 7.

We manually labeled the ground truth of our testing sequences to evaluate the
tracking performance. Figure 8 shows the comparison of tracking error between
DAVT and AVT in tracking error over time on the bicycle sequence (we use
a different initialization as in [5]). At the 330th Frame, AVT is distracted and
fails, but our method keeps the track persistently.

6.3 Handling Scale, Rotation and Occlusion

The scale estimation can be handled since the selected ARs are stable and rarely
distracted. As in our matching method, the contextual descriptor is rotation
invariant if we only use color contexts, the ARs give accurate matching despite
of the motion. Then we estimate the rotation by measuring the relative position
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Fig. 8. Comparison: tracking errors between DAVT and AVT

Fig. 9. Three examples of the proposed method

between the ARs. The occlusion can be handled by the fusion process. The
model adaptation is also illustrated. Three examples are shown in Fig. 9. On the
bottom row, the blue ARs indicate those that have been updated.

7 Conclusion

Spatial distraction is a major culprit for tracking failure, because distractors also
exhibit good matching. This paper presents a novel approach of discriminative
spatial attention to overcome this challenge, by selecting a set of discriminative
attentional regions on the target. The discrimination power of an attentional
region is defined by the margin of its feature from that of those in its discrim-
inative domain. By integrating local and semi-local discrimination, this paper
proposes an efficient method in finding ARs. Extensive tests demonstrate that
the proposed discriminative spatial attention scheme significantly improves the
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robustness in tracking. The further analysis [20] reveals that the existing works
on local saliency detection share the common purpose of achieving good local-
ization properties. Therefore, our AR selection scheme is very flexible so that
those methods can be alternatively adopted for finding local ARs.
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Object, Scene and Actions: Combining Multiple
Features for Human Action Recognition
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Abstract. In many cases, human actions can be identified not only by the singu-
lar observation of the human body in motion, but also properties of the surround-
ing scene and the related objects. In this paper, we look into this problem and
propose an approach for human action recognition that integrates multiple feature
channels from several entities such as objects, scenes and people. We formulate
the problem in a multiple instance learning (MIL) framework, based on multiple
feature channels. By using a discriminative approach, we join multiple feature
channels embedded to the MIL space. Our experiments over the large YouTube
dataset show that scene and object information can be used to complement person
features for human action recognition.

1 Introduction

Action recognition “in the wild” is often a very difficult problem for computer vision.
When the camera is non-stationary, and the background is fairly complicated, it is often
difficult to infer the foreground features and the complex dynamics that are related to an
action. Moreover, motion blur, serious occlusions and low resolution present additional
challenges that cause the extracted features to be largely noisy.

Under such challenges, we argue that the features of the scene and/or moving objects
can be used to complement features extracted from people in the video. The intuition
behind this is straightforward: the presence (or absence) of particular objects or scene
properties can often be used to infer the possible subset of actions that can take place.
For example, if there is a pool within the scene, then “diving” becomes a possible action.
On the contrary, if there is no pool, but a basketball court, then the probability of the
“diving” action reduces. In this work, our aim is to capture such relationships between
objects, scenes and actions.

Our approach starts with extracting a large set of features for describing both the
shape and the motion information in the videos. All the features are extracted densely,
allowing spatial and temporal overlap, and we operate over tracks when the temporal
continuity is available. We do not use any explict object detectors, but treat each mov-
ing region as an object candidate. In the end, the videos are represented with multiple
feature vectors acquired from different feature channels.

We are particularly interested in human action classification in the real-world, i.e.
in unconstrained video sources like YouTube. In this problem, the videos are weakly
annotated; there is a class label for each video sequence, however we do not know
where or when in the video sequence the action occurs. Moreover, there may be more
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than one person or moving object in the video, and only a subset of the detected regions
are involved in the action. Our aim is to be able to train our action models in the presence
of such diverse conditions.

For this purpose, we formulate our problem within a multiple instance learning
(MIL) framework, where the training set is ambiguous and the training labels are associ-
ated with bags of instances, rather than single instances as in a fully supervised system.
The obvious advantage of using such an approach is to tolerate the large amount of
irrelevant instances or false detections in the input videos.

In order to accomodate multiple heterogenous feature types, we define an agglomer-
ative multiple instance learning framework, where each video is represented with mul-
tiple bags and each bag corresponds to a different feature channel. The MIL positivity
constraint on a bag is therefore extended over multiple bags, i.e., at least one bag is
required to contain one positive instance for the particular action. We then formulate a
discriminative learning strategy with globally weighted or unweighted combinations of
these multiple bags. We test our approach over the extensive YouTube dataset provided
by Liu et al [22], and the results demonstrate that the proposed framework effectively
combines different and noisy feature channels for accurate human action recognition.

2 Related Work

Human action recognition has been a very active research topic over the recent years.
This makes the comprehensive listing of the related literature impossible, while Forsyth
et al. [10] presents an extensive review of the subject. Some of the recent works in-
clude [8,29,18,20,16,13]. In most of the earlier works, the focus is on simpler sce-
narios, where the background was stable and the foreground human figure is easy to
extract [4,18]. However, this scenario is hardly realistic; videos from the real world are
fairly complicated, especially when taken in uncontrolled environments. Some recent
approaches try to deal with such complex scenarios [19,25,20,16].

Joint modeling of object and action interactions has been a recent topic of interest.
Moore et al.’s work [26] is one of the earliest attempts to consider actions and objects
together. They use belief networks for modeling object and hand movements extracted
from static camera sequences. Gupta et al. [12] try to improve the localization of both
objects and actions by using a graphical Bayesian model. Marszalek, et al. [24] use
movie scripts as automatic supervision for scene and action recognition in movies. Han
et al [13] use context and higher level bags-of-detection descriptors for action recog-
nition. They assume that the objects related to each action are known beforehand and
corresponding object detectors are available. In our case, we do not rely on explicit
object detectors and try to discover related objects in an unsupervised manner. We con-
sider each moving region as a candidate object region and we utilize shape and motion
descriptors for all candidate regions. While doing this, we have no explicit knowledge
about their class membership.

Multiple Instance Learning (MIL) paradigm has been explored in quite a number
of studies, both in machine learning( [2]) and computer vision( [23,31,5]). Computer
vision problems are in fact very suitable application domains for MIL algorithms, be-
cause of the high-level of ambiguity in the domain. There are also some recent works
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which use multiple instance learning for tracking and human actions. Babenko et al. [3]
introduce an online MIL algorithm for target tracking. Ali and Shah use multiple-
instance embedding [1] to facilitate classification with their kinematic mode features.
Hu et.al [14] utilize a simulated annealing based MIL algorithm for finding the exact
location of the actions over HOG features.

YouTube videos have been a focus of interest recently, due to its popularity being a
widespread source that contains various challenging videos. Niebles, et al. [27] present
a method for detecting moving people from such videos. Ikizler-Cinbis, et al. [17] use
web images to facilitate action recognition in uncontrolled videos. Tran, et al. [30] work
on YouTube Badminton videos. Recently, Liu, et al. [22] collected a large action dataset,
and presented a method based on PageRank algorithm to prune the large number of
space-time interest points in these videos.

3 Features

Features constitute the basic building blocks of our algorithm. Here, the idea is to ex-
tract as many meaningful and informative features as possible, both at the high and
low-level. These features are extracted densely, in the sense that there can be spatial
or temporal overlap between them. We will rely on the learning algorithm to extract
useful patterns that associate each action with the combination of these different sets
of features. There are three sets of features, namely “person-centric”,“object-centric”
and “scene-centric” features. All these feature channels are depicted in Fig. 1. In this
section, we first describe the video pre-processing steps and then go into the details of
the feature extraction procedure.

3.1 Stabilizing Videos

When there is camera motion and the background is not static, the optical flow of the
foreground objects is not easy to estimate, amidst the noisy flow field. Therefore, be-
fore extraction of features, especially the motion-related ones, the videos should be
stabilized. We use a dominant motion compensation procedure for this purpose.

In order to estimate the foreground flow field, we make use of a homography-based
motion compensation approach, similar to [21]. Assuming that the background is rela-
tively dominant in the scene, we can estimate the background flow by calculating the
homography between consecutive frames. For this purpose, we first extract Harris cor-
ner features from each frame. By establishing feature correspondences between frames,
we estimate the homography using RANSAC. Once the homography between consecu-
tive frames is estimated, it can be used for calculating both the background flow vector
per pixel mb(x, y) and as a prior to a block-based optical flow algorithm for computing
the overall flow mo(x, y). Then, the foreground flow at each pixel (x,y) is calculated as

mf (x, y) = (mo(x, y) − mb(x, y)). (1)

The noisy motion flow fields are mostly stabilized by this procedure. Example resultant
flows can be seen in Fig 2.
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Fig. 1. There are three main feature channels, namely person-centric, object-centric and scene
features. Once the videos are stabilized, we extract candidate person and object tracks. An ex-
ample track from a basketball sequence is shown above (for details of track extraction, see the
text). From each track, we extract multiple features. Each of the feature channels may contain
noisy detections, as well as the true detections. There can be multiple people and multiple objects
within the video. Since we do not have explicit supervision on which feature or detection region
may be relevant, each feature channel is defined as a MIL bag. We then combine these feature
channels using two different approaches.
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(b) overall
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Fig. 2. The videos include an extensive amount of camera motion, thus, uneven flow fields. We
use a homography based approach to estimate the flow of the foreground objects, following [21].
(a) shows the original frames from four videos. (b) shows the flow estimate (in green) without the
motion stabilization. (c) shows the foreground flow estimate obtained following stabilization. As
seen, this estimate gives us the ability to concentrate on the moving foreground objects.

3.2 Person-Centric Features

To extract person-centric features, first, one should have a rough estimate of the loca-
tion(s) of the person(s) and corresponding person tracks in the video. This is tough,
especially when the background clutter is dominant.

We approach the problem by using a “tracking-by-detection” method and use Felzen-
swalb et al.’s human detector [9]. This person detector has shown to perform quite well
in detecting people of various poses; however, due to motion blur and pose variations,
it is not able to locate the person in every frame. In order to compensate for this, we
use mean-shift tracking [6] to fill the gaps in which the person detector did not fire, by
using the person detection bounding box to initiate the tracker in each case. We initiate
a separate track for each individual person detection and discard the short tracks (with
≤ 5 frames) as being noise.

Figure 1 shows some example tracks. Here, we define a track as the series of bound-
ing boxes associated with the detected regions over the video. While the final tracks
are not perfect and some of the tracks may still be irrelevant, they provide fairly us-
able person localizations. From each detected track, we extract two types of features:
person-centric motion and shape features.

Person-centric motion features: Optical flow has been shown to be a useful feature
for describing human actions [8]. We use the intersection of the estimated foreground
flow (computed by stabilizing the video as in Sec.3.1) and the person tracks to locate
the regions of the optical flow map that belong to a person. We describe the flow in
each detection bounding box with a spatial histogram, by dividing the optical flow field
equally into 2 × 2 spatial regions, and represent each spatial bin with four major flow
orientations. In order to accommodate for the noise in the optical flow, we use a win-
dowing scheme over the tracks and extract histograms from every snippet of six frames.
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Each subwindow is considered as an instance in the MIL setting (see Section 4). The
final descriptor of each instance has 4 × 4 × 6 = 96 feature dimensions.

Person-centric shape features: We expect the shape feature to be complimentary to
motion features, especially when the motion field of the video has excessive noise. In
order to account for this shape information, we use the Histogram of Oriented Gradients
(HOG) [7]. We downsize each bounding box region to [64 × 32] pixels and extract
HOGs using 8 pixel cell size and 8 pixel cell step. We use eight orientation bins and use
a temporal window of five frames over the tracks to accumulate the temporal pattern.
The final descriptor has 8 × 8 × 4 × 5 = 1280 feature dimensions.

3.3 Object-Centric Features

Actions may involve certain objects. For example, for a throwing action, the presence
of a ball and/or the shape of its trajectory are important discriminative cues. With this
intuition, we find candidate object regions and extract object-centric features from these
regions. We do not use any explicit object detector for this purpose. We consider any
moving region that has sufficient temporal and spatial coherence as a “candidate ob-
ject”. Once a candidate object region is detected, we try to find the associated tracks
and the corresponding features from each track.

Extracting candidate object tracks: We extract candidate object regions as follows:
First, we estimate the foreground motion as described in Sec 3.1. Then, we find the con-
sistent regions among the estimated foreground motion fields. We do this by looking at
temporal, spatial and appearance consistency of the detections in sequential frames.
More formally, given a video frame and its estimated foreground flow, we first find the
connected components of the flow field, yielding possible object regions. We follow
an agglomerative clustering approach to group each of these regions based on their ap-
pearance and spatial coherence within the video. In this agglomerative clustering, the
similarity between regions is computed by using the χ2 distance of color histograms
and Euclidean distance of their midpoint coordinates. During this clustering, we allow
a temporal gap of up to 10 frames. In the end, the small clusters (i.e., less than 5 frames)
are considered to be noise and discarded. This clustering serves as an initial preprocess-
ing step to remove noisy and discontinuous detections.

After this initial step, we form tracks for each remaining region. We follow a greedy
approach for generating tracks: we start from the region with the largest area and we
track that region using mean-shift tracking [6], forward and backward in time. For the
remaining regions, we check if there is already a track that overlaps with that region to a
certain degree (30%). The degree of overlap is calculated as the ratio of the intersection
over the union of the corresponding bounding boxes. If there is no previous overlapping
track, we create a new track. Example outputs of this procedure are shown in Fig. 3.

Object-centric motion features: Once the candidate object tracks are found, we extract
the motion features from each track. We describe the flow region in each detection
bounding box by dividing it into 2 × 2 spatial partitions, and representing each spatial
partition with histograms of the four major flow orientations. We extract these motion
histograms over a snippet of 5 frames from each track. We apply a windowing scheme
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(a) diving (b) soccer juggling

(c) tennis swing (d) volleyball

Fig. 3. Objects are extracted by grouping the optical flow regions and tracking them over time.
Short tracks are eliminated, so that we are left with object regions that have a considerable amount
of motion throughout the sequence.

over each object track to extract all the instances that will be input to the MIL algorithm.
The final descriptor has 4 × 4 × 5 = 80 feature dimensions.

Object-centric shape features: This feature channel includes shape information for
the moving objects in the sequence. With this feature, we aim to capture the immediate
context information for the action by defining the shape of nearby objects, such as
bicycles, horses or smaller objects, like rackets, balls, etc. We define the shape of object
regions by using HOGs. Since the size and scale of the object bounding boxes are not
constant and we cannot define a single width/height ratio, we extract HOGs from the
spatial grids. That is, instead of using a regular cell and block size, we assume that the
object region is divided into an equal number of spatial blocks. We use 3 × 3 spatial
bins and represent each spatial bin with nine gradient orientations. We then normalize
each descriptor with respect to the object size. The final descriptor size for each object
bounding box has 9 × 9 = 81 feature dimensions.

3.4 Scene Features

Apart from the person and object related features, the overall properties of the scene can
give us related contextual information about the action taking place. For example, if we
see a basketball hoop and a court, the probability of observing people playing basketball
is higher. In order to exploit these properties, we extract shape and color features.

Scene shape features: To describe the scene structure, we extracted Gist [28] features
from five frames selected randomly from each video. We use the original parameter
settings provided in [28] and the final Gist descriptor has 512 feature dimensions.

Scene color features: Color features can be complementary to the shape information
for the scene. For example, the presence of a “blue rectangular region” (i.e., a swim-
ming pool) may be helpful in identifying the “diving” action. We extract color features
respecting the coarser spatial layout of the scene. For this purpose, we divide each scene
horizontally into three equal regions and extract color histograms from each region. For
the color histogram, we discretize the RGB colorspace into 16 bins. The final descriptor
has 16 × 3 = 48 dimensions. We do this for three randomly selected frames.
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4 Combining Features - A Multiple MIL Approach

In our problem, we are given a set of videos with labels that tell us the presence of an
action class in each video. However, we do not know the exact spatio-temporal location
of the specified action in each video, nor do we know what related objects or scene
information will contribute to the identification of that class. There may be many object
and/or person tracks extracted from each video. Some of these tracks may be relevant
to the action, e.g., the track of a basketball or a jumping person, whereas some of the
tracks may be irrelevant or caused by noise.

This scenario suggests the particular suitability of “multiple instance learning”(MIL)
[2]. In MIL, the given class label is associated with bags (rather than instances as in the
case of fully supervised learning), where each bag consists of one or more instances. A
bag is labelled as positive if at least one instance xij in the bag is known to be positive.
A bag is labelled as negative if all the instances in that bag are known to be negative.
Individual labels of the instances are unknown. Since the labels are given to bags rather
than instances, the learning procedure operates over the bags.

In our case, a bag contains all the instances extracted from a video sequence for
a particular feature channel. For example, for the Gist feature, the bag would contain
five instances, one Gist feature vector per each of the randomly selected frames from
the video. For the person-centric motion feature, there would be several feature vectors
xij extracted by employing the windowing procedure over each detected person track
and each of these feature vectors is considered to be an instance inside the bag of the
corresponding feature channel.

Formally, for each video i, we have one bag Bf
i per feature channel f ∈ {1, . . . , F}.

Each Bf
i contains multiple instances xij such that Bf

i = {xf
ij : j = {1, . . . nf

i }}.

Here, nf
i is the number of instances of that feature type in video i. Each bag has an

associated label Yi ∈ A, where A = {a1, ..., aM} is the possible set of M actions .
In order to represent these bags in the MIL framework, we first embed the original

feature space x, to the instance domain m(B), via the instance embedding framework
of [5]. In [5], each bag is represented by its similarity to each of the instances in the
dataset. In our case, this is infeasible, given the large size of the dataset and number of
instances per bag. Therefore, we cluster the data using k-means to find potential target
concept instances cf

l ∈ Cf . We do this for each action class separately, setting k to a
constant value (we use k = 50). The total size of Cf becomes N = k × M for each
feature channel. The similarity between bag Bi and concept cf

l is defined as

s(cf
l ,Bf

i ) = max
j

exp

(
−D(xij , c

f
l )

σ

)
, (2)

where D(xij , c
f
l ) measures the distance between a concept instance cf

l and a bag in-
stance xij . In our case, since all the features are histogram-based, we can use the χ2

distance D(xij , c
f
l ) = χ2(xij , c

f
l ) = 1

2

∑
d

(xij(d)−cf
l (d))2

xij(d)+cf
l (d)

, where d is a feature dimen-

sion of the instance feature vector. For the bandwidth parameter σ, we use the standard
deviation of each feature embedding.
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Each bag can then be represented in terms of its similarities to each of these target
concepts and this mapped representation m(Bf

i ) can be written as

m(Bf
i ) = [s(cf

1 , Bi), s(c
f
2 , Bi), . . . , s(c

f
N , Bi)]

T
. (3)

We convert the instances from each feature channel to their MIL representation sepa-
rately. Subsequently, we need a way to combine these different feature channels. For
this purpose, we propose two combination techniques. The first technique concatenates
all feature channels and treats the problem as a classification problem over the joint
set of features. More formally, in our first method, we represent each bag Bi with its
concatenated embeddings over F feature channels, such that

m̂(Bi) = [m(B1
i )m(B2

i ) . . .m(BF
i )]. (4)

We use an L2-regularized linear SVM for the classification over these concatenated bag
representations m̂(B). In this way, the positivity constraint of the MIL framework is
extended over multiple feature channels. If a Bf

i is empty for a particular f , we simply
assign the corresponding m(Bf

i ) to zero.
In the above formulation, each feature channel is treated equally. However, there may

be certain cases where a particular feature channel is more informative than the other
feature channels for a specific action . Likewise, some of the feature channels may
contain redundant information for specific actions. In this case, we may be interested in
learning global weights for individual feature channels.

This observation motivates the formulation of our second method, which employs
a joint formulation for learning the global weights for feature channels. This global
weighting is analogous to learning the kernel weights in multiple kernel learning (MKL)
[11]. In MKL, the task is to select informative kernels, whereas here we try to select
informative feature channels. We formulate the optimization as follows:

min
w,α,b

∑
f

(wf )T wf + βαT α + γ
∑

i

L

⎛
⎝yi,

∑
f

αf (wf )T mf + b

⎞
⎠, (5)

s.t. α ≥ 0

In this formulation wf is the weight vector for individual features in f th feature channel,
αf is the global weight of the whole feature channel, L is the loss function (we use
Hinge loss). β and γ are the regularization parameters and b is the bias term. Here,
each αf defines a global combination weight for the instances of feature channel f .
The first term in this objective function in Eq. 5 stands for the regularization of the
individual feature weights on each channel, whereas the second term corresponds to the
regularization on global feature channel weights. If a feature channel tends to be very
noisy, this global weighting scheme can help in deemphasizing that feature channel
completely by assigning the corresponding αf to a small value.

The objective function in Eq. 5 becomes convex when the α or w vector is fixed.
Therefore, we follow an iterative alternating optimization approach in the primal space,
which is a coordinate descent method. In this iterative approach, we first fix α and solve
for w and b, such that
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min
w,b

∑
f

(wf )T wf + C
∑

i

L

⎛
⎝yi,

∑
f

∑
z∈Gf

(wf
z )T (αfmf

z ) + b

⎞
⎠. (6)

Here, Gf represents the group of features for feature type f . Once Eq. 6 is optimized
with respect to w and b, we then fix the w and b, and optimize α such that,

min
α

βαT α + C
∑

i

L

⎛
⎝yi,

∑
f

αf ((wf )T mf ) + b

⎞
⎠. (7)

Note that in this formulation, both steps minimize the same objective, so convergence
is guaranteed. In our experiments, we observe that convergence to a local minimum is
achieved in ≈ 10 iterations.

5 Experiments

In order to test our approach, we use the YouTube dataset collected by Liu et al [22].
This is a very large dataset that consists of 1168 videos in total. This is a particularly
suitable dataset for studying the effects of object and scene properties of actions, since
there are actions involving specific objects (like basketball) and scenes (like diving).
The dataset contains videos of 11 actions; these are basketball shooting, biking/cycling,
diving, golf swinging, horse back riding, soccer juggling, swinging, tennis swinging,
trampoline jumping, volleyball spiking, and walking with a dog. It is a quite challeng-
ing dataset with lots of camera movement, cluttered backgrounds, different viewing
directions and varying illumination conditions. Videos for each category of action are
divided into 25 related subsets, and leave-one-out cross validation is applied over these
subsets, following the same evaluation methodology of [22].

5.1 Evaluation

Table 1 summarizes the overall quantitative results. The classification results here are
normalized with respect to the number of videos for each action type.

We first evaluate the performance of the individual feature channels. The first six
rows of Table 1 include the individual classification accuracies for each of the feature
channels represented in the embedded MIL domain. Note that, in our setup, the object
tracks are allowed to overlap with or include person tracks, so the object tracks may
sometimes include person track information as well. The results show that, even us-
ing the single feature channel Gist gives 53.20% average classification accuracy in this
dataset, whereas the simple color histogram feature is able to perform with 49.28% av-
erage accuracy. These numbers are noticably high, compared to the chance level in this
dataset, which is 9.09%. This observation shows that using scene features can provide a
great deal of useful information about the possible action, especially in this dataset. For
example, for the diving action, the simple color features achieve 86% accuracy, whereas
for volleyball spiking, the Gist features give 81%. These results suggest that when the
person is less visible, the scene features can be used for reducing the set of possible
actions considered. On the other hand, where the person is more visible (e.g. videos of
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Table 1. Overall performance evaluation of individual feature channels and their combination.
perOF/objOF: person/object optical flow features, perHOG/objHOG: person/object HOG fea-
tures. p+s: person and scene features, p+o : person and object features and o+s: object and scene
feature combinations. The best results for each action class are shown in bold. We see that action
recognition benefits from both object and scene features in most of the action types.

% correct classification using single feature channels
b shoot bike dive golf h ride s juggle swing t swing t jump v spike walk Avg

perOF 20.20 44.83 51.0 69.0 45.0 44.0 36. 0 32. 0 64. 0 29. 0 29.27 42.72
perHOG 28.28 57.93 56.0 40.0 51.0 36.0 43. 0 45. 0 34. 0 49. 0 39.84 43.64
objOF 14.14 45.52 24.0 36.0 51.0 20.0 42. 0 14. 0 59. 0 25. 0 33.33 33.09

objHOG 21.21 44.14 62. 0 55. 0 38. 0 22. 0 42. 0 44. 0 42. 0 45. 0 21.95 39.75
gist 38.38 60.69 69. 0 61. 0 66. 0 9. 0 42. 0 61. 0 54. 0 81. 0 43.09 53.20

color 33.33 44.83 86. 0 65. 0 43. 0 22. 0 27. 0 47. 0 57. 0 73. 0 43.90 49.28
% correct classification using combinations of channels

p+s 44.44 70.34 92. 0 87. 0 63. 0 35. 0 56. 0 75. 0 84. 0 84. 0 56.91 67.97
p+o 40.40 70.34 84. 0 91. 0 63. 0 54. 0 63. 0 60. 0 84. 0 78. 0 50.41 67.11
o+s 47.47 73.79 91. 0 90. 0 73. 0 35. 0 64. 0 75. 0 83. 0 89. 0 56.10 70.67

% correct classification using all feature channels
p+o+s 48.48 75.17 95. 0 95. 0 73. 0 53. 0 66. 0 77. 0 93. 0 85. 0 66.67 75.21

w[p+o+s] 43.43 75.17 96. 0 94. 0 72. 0 47. 0 65. 0 74. 0 93. 0 85. 0 67.48 73.83
Liu [22] 53.0 73.0 81.0 86.0 72.0 54.0 57.0 80.0 79.0 73.3 75.0 71.2

trampoline jumping, golf, juggling actions), the optical flow of the person detections
seems to be the most informative feature.

Second, we look at the joint performance of these feature channels. In Table 1, “p+o”
refers to combination of person-centric and object-centric features together, i.e. the first
four feature channels, ignoring the scene dimension. The rows “p+s” and “o+s” cor-
respond to combination of the “person and scene” and the “object and scene” feature
channels, respectively. Looking at these feature combinations, we see that, in most of
the cases, using them in combination improves classification accuracy significantly. For
example, for the trampoline jumping action, the maximum response from the individual
feature channels is 64% for person optical flow features, whereas, accuracy increases to
84% if person features are considered in combination with object or scene features.

Third, we look at the overall combination results. As described in Sec 4, we have
combined all feature channels using two different methods; the first method uses L2-
regularized linear SVM over the concatenated embedded feature channels (represented
as p+o+s in Table 1), the second method learns global combination weights over each
feature bag (w[p+o+s]). In 9 out of 11 actions, using all the features together yields
higher classification accuracy. These results demonstrate that all feature channels are
informative and complementary to each other, and that each of them introduces some
amount of useful information for the identification of the actions in this dataset. We
see that both of the proposed combination techniques introduce an improvement over
the best reported results in this dataset [22], while the average improvement is higher
without the global weights (4% and 2.6% respectively). We believe that this difference
is due to the the high amount of noise in some of the feature channels. The excessive
noise may cause the weighting scheme to underestimate the exact weights of that feature
channel during training.



Object, Scene and Actions: Combining Multiple Features 505

(a) t:dive c:dive (b) t:t swing c:t swing (c) t:golf c:golf (d) t:v spike c:v spike (e) t:t jump c:t jump

(f) t:b shoot c:v spike (g) t:t swing c:s juggle (h) t:swing c:golf (i) t:bike c:walk

Fig. 4. Example classification results. The person regions are shown in green and the candidate
objects are shown in blue. The subcaptions shows the true class label and output classification
label, respectively. See text for details.
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Fig. 5. Overall confusion matrix of [p+o+s]. The average accuracy is 75.21%.

Example classification results are shown in Fig. 4. The first row shows the correct
classifications. For the diving action in Fig. 4(a), both the person and the related object
(diving board) are detected and their features are complementary to the scene features.
In Fig. 4(b), the person detection has failed, but the tennis racket is found and helps the
identification of the tennis swing action. In Fig 4(e), the candidate objects are noisy, but
the person tracks seem reliable. Example misclassifications are shown in the second row
of Fig. 4. The failure cases are mostly caused by the multiple people, noisy detections,
and/or multiple actions. For instance, in Fig. 4(f) there are multiple people and many
candidate objects. In Fig. 4(i), although there is a biking person in the first half of the
video, in the second part there is a walking detection.

Figure 5 shows the confusion matrix of our approach. Most of the confusion occurs
between walking and biking actions. This is mostly due to the higher frequency of
close-up recording in these actions. When there is extensive close-up in the video, the
motion stabilization procedure fails to estimate the homography of the scene correctly,
because of the increased ratio of the moving regions. Basketball shooting and volleyball
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actions are also confused in some cases; this is largely because most of the time, the
basketball and volleyball sports use very similar courts.

In a typical video, our moving region grouping procedure results in 20-30 object
tracks on average in the YouTube dataset. While the complete annotation of these tracks
is infeasible, we estimate that approximately five tracks on average are relevant in each
video. The experiments indicate that our framework can succeed, even under such chal-
lenging conditions.

6 Conclusion

In this paper, we present an approach for combining features of the people, objects
and scene for better recognition of actions. The videos available for training our ap-
proach are only weakly annotated; we do not know where or when in the video the
action occurs, nor do we know which objects or scene features will contribute to the
identification of that action. To discover these automatically during training, we use a
MIL-based framework.

Our results show that, scene and object properties can indeed be used as complemen-
tary to person features for the correct identification of actions. This is especially true
when the person is seen from a far distance and the distinct features of the human body
are not fully visible. In that case, the moving regions nearby or the overall scene gist
can give an idea about what the person/people is up to in that scene.

Action recognition in YouTube videos is an especially good application domain for
our method. The low resolution and the unstable camera conditions can make a single
feature channel unreliable on its own. In that case, the recognition of actions is likely to
benefit from multiple feature channels, as we demonstrate in this work.

We use three main types of features and ignore the temporal and spatial relationships
of these features. Our framework can be extended to handle more feature channels,
like space-time interest points [29] and can benefit from more complex video object
segmentation methods like [15]. Future work includes exploring these techniques and
more feature channels, together with their spatio-temporal relationships.

Acknowledgments. This material is based upon work supported in part by the U.S.
National Science Foundation under Grant No. 0713168.
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Abstract. The popular bag-of-words paradigm for action recognition
tasks is based on building histograms of quantized features, typically at
the cost of discarding all information about relationships between them.
However, although the beneficial nature of including these relationships
seems obvious, in practice finding good representations for feature rela-
tionships in video is difficult. We propose a simple and computationally
efficient method for expressing pairwise relationships between quantized
features that combines the power of discriminative representations with
key aspects of Näıve Bayes. We demonstrate how our technique can aug-
ment both appearance- and motion-based features, and that it signifi-
cantly improves performance on both types of features.

1 Introduction

It is well known that classification and recognition problems in general cannot
be solved by using a single type of feature and that, instead, progress lies in
combinations of feature representations. But as there is as vast an array of ways
to combine and augment features as there are features themselves, the develop-
ment of such higher order methods is as difficult (and potentially rewarding) an
endeavor as direct feature construction. These meta-methods span a range of
approaches from those that make absolutely no assumptions on their base fea-
tures, and thus are consigned to black-boxes operating on vectors of numbers, to
those that are so intimately tied to their base features as to be virtually insepa-
rable from them. The former types of methods, such as multiple kernel learning
(MKL) techniques are attractive for their broad applicability, but the latter tend
to be more powerful in specific applications due to their strong coupling with
their underlying features.

However, between those extremes there are still augmentations that com-
promise between generality and power by being applicable to broad classes of
loosely-related base features. The popularity of statistical bag-of-words style
techniques [1,2] for action recognition and related video tasks creates an op-
portunity to take advantage of the broad similarities in these techniques. In
particular, these techniques rely on accumulating histograms of quantized fea-
tures extracted from video, features that are almost always localized in space
and time. Yet these methods typically do not take advantage of the spatial
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Fig. 1. Pairs of features probabilistically vote for action classes; pairs voting for the
correct action class are shown in yellow, with brighter color denoting stronger (more
informative) votes. For “answerPhone”, the relative motion of the hands is particularly
discriminative. These results employ trajectory fragments on the Rochester dataset [3],
but our method works with any localized video feature.

and temporal relationships between features. While it is obvious that in gen-
eral using such relationships should help, the subtleties of designing appropriate
representations have limited their use. Figure 1 shows examples of the types of
informative relationships between features that we are interested in.

Pairwise spatial relationships, in the form of star topologies, fans, constella-
tions, and parts models, have seen frequent use in static image analysis [4,5,6].
Practical limitations have made transitioning these methods to video difficult.
Sparse pairwise topologies (stars, fans, parts) often suffer from a lack of appro-
priately annotated training data, as they often require annotations that specify
the topology for training [7,8]. Alternatively, there are structured methods which
can operate without such annotations, but at the cost of significantly more com-
plicated and computationally expensive training or testing [9,10]. In the special
limited case of a fixed camera, the entire topology can be fixed relative to the
frame by simply using the absolute positions of features [11,12].

The key contributions of this paper can be summarized as follows: (1) we
propose an efficient method for augmenting quantized local features with relative
spatial-temporal relationships between pairs of features, and (2) we show that
our representation can be applied to a variety of base features and results in
improved recognition accuracy on several standard video datasets.

For the pairwise model, the most direct representation that is compatible with
bag-of-words techniques is to simply generate higher-order features by quantiz-
ing the possible spatio-temporal relationships between features. However, this
results in a significantly larger number of possible codewords; for example, 100
codeword labels and 10 possible relationships, would produce 100,000 possible
labels for the pairwise codewords. Attempts to mitigate this have centered on
dimensionality reduction and limiting the number of relationships. In the former
case, Gilbert et al . [13,14] employ data mining techniques to find frequently-
occurring combinations of features. Similarly, Ryoo and Aggarwal [15] use a
sparse representation of the resulting high-dimensional histograms, in addition
to using a relatively small relationship set. Taken to the extreme, Savarese
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et al . [16] consider effectively only one relationship: whether two features occur
within a fixed distance of each other, and likewise Sun et al . [17] also use a
simple proximity relationship.

The subtle difficulty is exposing enough information for discriminative ma-
chinery to gain traction, but not so much as to overwhelm it in the noise. We
strike this balance by selectively organizing estimated pairwise relationships,
thereby exploiting fine spatio-temporal relationships without having to resort to
an unmanageable representation for the classifier. Inspired by recent work on
the max-margin Hough transform [18], we propose accumulating probabilities in
a Näıve-Bayes like fashion into a reduced number of bins, and then presenting
these binned probabilities to discriminative machinery. By choosing our bins to
coincide with codeword labels, we produce vectors with size proportional to the
number of codewords while still taking advantage of discriminative techniques.

Since we propose a method for augmenting features with spatio-temporal re-
lationships, we wish to show that this augmentation performs well on a range of
features. To this end, we consider two radically different types of base features.
First, we consider features built from space-time interest points (STIPs) with
associated Histogram of Oriented Gradient (HOG) descriptors, which are sophis-
ticated appearance-based features popularized by Laptev et al . [1]. Second, we
consider a simple form of trajectory based features similar to those proposed by
Matikainen et al . [19] and Messing et al . [3], quantized through a fixed (training
data independent) quantization method. This selection of base features demon-
strates the effectiveness of our method on both appearance- and motion-based
features, as well as on sophisticated and simple feature extraction methods. In
particular, our simplified trajectory method produces a fixed number of features
per frame, and the feature labels are not derived from a clustering of training
data. The method is virtually certain to produce a large number of extraneous
features, and the feature labels are likely to be more sensitive to noise com-
pared to those produced through clustering. In contrast, STIP-HOG produces
relatively few features, which tend to be more stable due to the clustering.

As discussed above, our proposed approach formulates the problem in a Nav̈e
Bayes manner, but rather than independently summing per-feature probabilities
in log space, we pass them through a discriminative classifier. We train this
classifier by estimating all of the cross probabilities for feature labels, that is, for
each pair of labels and each action we build a relative location probability table
(RLPT) of the observed spatial and temporal relationships between features of
those labels under the given action. Then, any feature label can compute its
estimate of the distribution over action probabilities using the trained cross-
probability maps. These estimates are combined for each feature label, and the
final feature vector is presented to a classifier.

2 Base Features

The proposed method can augment a variety of common features employed in
video action recognition. To demonstrate our method’s generality, we describe
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how it can be applied to two types of features that represent video in very
different ways, as discussed below.

2.1 Base Feature: STIP-HOG

Laptev et al .’s space-time interest points (STIPs) [1], in conjunction with His-
togram of Oriented Gradient (HOG) descriptors have achieved state-of-the-art
performance on a variety of video classification and retrieval tasks. A variable
number of STIPs are discovered in a single video and the local space-time vol-
ume near each interest point is represented using an 72-dimensional descriptor.
These HOG descriptors are quantized using a codebook (typically pre-generated
using k-means clustering on a large collection) to produce a discrete label and a
space-time location (x, y, t) for each STIP.

2.2 Base Feature: Quantized Trajectories

In previous work [19], we considered trajectory-based features that we coined
trajectons ; these features describe video data in a very different manner from
STIP-HOG. First, Harris corner features are tracked in a given video using KLT
to produce a set of trajectories. Each trajectory is first converted from a list of
(xt, yt) position pairs into a list of discrete derivative pairs (dxt, dyt) = (xt −
xt−1, yt− yt−1). These trajectories are then broken up into overlapping windows
of fixed duration T , each of which is considered a new feature or trajectory
fragment. Unlike STIP-HOG, trajectory fragments seek to express longer-term
motion in the video. We generally follow our previous work, but substitute a
more straightforward quantization method.

Sequencing code map (SCM) quantization. In our earlier work, we quan-
tize trajectories using k-means. Fragments are clustered to produce a codebook.
Messing et al . [3] also use trajectory features but employ a different quantization
strategy in which trajectories are soft-assigned to Markov mixture components;
their strategy is similar to that of Sun et al . [17] who also consider quantized
transitions within a trajectory.

Both Messing et al .’s and our earlier approach can be computationally ex-
pensive depending on the number of mixture components or k-means centers,
respectively. Taking inspiration from both, we propose quantizing fixed-length
trajectories using a derivative table similar to Messing et al .’s, which we call a
sequencing code map (SCM), examples of which can be seen in Figure 3. How-
ever, rather than using quantized derivatives to look up probabilities, we simply
combine the quantized indices over the fixed length trajectory fragment into a
single label encoding quantized derivatives at specific times with each fragment
(see Figure 2).

In our method, a trajectory fragment is divided into k consecutive stages of
length t frames, such that kt ≤ T , where T is the total length of the fragment.
The total motion, or summed derivative, of each stage is computed as a (dx, dy)k

pair for each stage. This (dx, dy) vector is quantized according to the SCM into one
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Fig. 2. Sequencing code map (SCM) quantization breaks a trajectory fragment into a
number of stages (in this case three) that are separately quantized according to a map
(in this case a 6-way angular map). These per-stage labels, called sequence codes, are
combined into a final label for the fragment, which in this case would be 2156 = 8310.

Fig. 3. Examples of possible sequencing code maps (SCMs) or relative location maps
(RLMs). Our experiments focus on angular maps (second from left) but our method is
completely general.

of n stage labels, or sequence codes; the k sequence codes are combined to produce
a single combined label that can take on kn values. For example, with 3 stages and
an SCM containing 8 bins, there would be 83 or 512 labels total. Since the time
to quantize a stage is a single table lookup regardless of how the table was pro-
duced, this method is extremely computationally efficient (i.e., the computation
time does not grow with an increasing number of quantization bins).

Formally, we denote by M(dx, dy) the SCM function, which is implemented
as a two-dimensional lookup table that maps from a dx, dy to an integer label
in the range of 0 to n − 1 inclusive. We denote by (dx, dy)k the derivative pair
for stage k. Then the assigned label is given by l =

∑k
j=0 nj · M(dxj , dyj).

Besides the convenience of not having to build a codeword dictionary and
the reduced computational cost, our introduction of this quantization method is
meant to demonstrate that our pairwise features do not depend on data-driven
clustering techniques. The quantized labels produced by SCM quantization are
unlikely to correspond nicely to clusters of features in the dataset (e.g., , parts),
yet the improvement produced by our pairwise relationships persists.

3 Augmenting Features with Pairwise Relationships

In the following subsections we detail our approach for augmenting generic base
features with spatial and temporal relationships. While the previous discussions
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focused on STIP and trajectory fragment features, our proposed method for
pairwise spatio-temporal augmentation applies equally well to any type of feature
that can be quantized and localized. In the remainder of this section, a “feature”
is simply the tuple (l, x, y, t): a codeword label in conjunction with its spatio-
temporal position. The set of all observed features is denoted F .

3.1 Pairwise Discrimination with Relative Location Probabilities
(RLPs)

Starting with the observation that Näıve Bayes is a linear classifier in log space, in
this section we formulate the pairwise representation first in the familiar terms
of a Näıve Bayes classifier, and then demonstrate how to expose more of the
underlying structure to discriminative methods.

We start with the assumption that all pairs are conditionally independent
given the action class. Then, if features are quantized to L labels and the spatial
relationships between features are quantized to S labels, we could represent the
full distribution over pairs of features with a vector of L2S bins. Unfortunately,
for even as few as L = 100 trajectory labels and S = 10 spatial relationships,
there would be (1002)(10) = 100, 000 elements in the computed feature vector,
far too many to support with the merely hundreds of training samples typically
available in video datasets.

This feature vector must be reduced, but the direct approach of combining
bins is just equivalent to using a coarser quantization level. Instead, taking inspi-
ration from the Max-Margin Hough Transform [18] and Näıve Bayes, we build
probability maps of the spatial relationships between features, and instead of
summing counts, we accumulate probabilities, allowing pairs to contribute more
information during their aggregation.

Specifically, we produce a feature vector B of length AL, where A is the
number of action classes (e.g., walk, run, jump, etc.), and where each entry Ba,l

corresponds to the combined conditional probability of all pairs containing a
feature with label l given the action class a. In other words, a bin contains a
feature label’s probabilistic vote for a given action class, and we could compute
a Näıve Bayes estimate of the probability of all the observed features given
an action by summing all the votes for that action: log P (F |a) =

∑
l∈L Ba,l.

However, instead of summing these in a Näıve Bayes fashion, we present the
vector as a whole to discriminative machinery, in our case a linear SVM. We
now describe how we accomplish this feature vector reduction.

Notation. Formally, a video segment has a number of quantized features com-
puted from it. A feature fi ∈ F is associated with a discrete quantized label li ∈ L
as well as a spatio-temporal position (xi, yi, ti) indicating the frame and location
in the frame where it occurs. For a pair of features within the same frame and a
given action a ∈ A, there is a probability of the two features occurring together
in a frame P (li, lj |a) as well as the relative location probability (RLP) for their
particular spatial relationship P (xi, xj , yi, yj|li, lj, a). We make the simplifying
assumption that RLPs depend only on the relative spatial relationship between
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the two features, so that P (xi, xj , yi, yj|li, lj , a) = P (dx, dy|a, li, lj), where dx
and dy are slight abuses of notation that should be understood to mean xi − xj

and yi − yj where appropriate. This assumption enforces the property that the
computed relationships are invariant to simple translations of the feature pairs.

Probabilistic formulation. The reduction to a feature vector of length AL
is done by selectively computing parts of the whole Näıve Bayes formulation
of the problem. In particular, a full probabilistic formulation would compute
P (F |a) and select the a that maximizes this expression. Since Näıve Bayes takes
the form of multiplying a number of features’ probabilities, or in this case pair
probabilities, we can exploit the distributive and commutative properties of mul-
tiplication to pre-multiply groups of pair probabilities together, and then return
those intermediate group probabilities rather than the entire sum. This can be
seen as binning the pair probabilities.

Assuming feature pairs are conditionally independent, we can compute the
probability of a feature set F given an action a according to the equation

P (F |a) =
∏

fi∈F

P (li|a)
∏

fj∈F

P (lj |li, a)P (dx, dy|a, li, lj), (1)

which strictly speaking double-counts pairs since each pair is included twice in
the computation; however, since we are only interested in the most likely action,
this is not an issue.

In practice, we employ log probabilities both to avoid issues with numerical
precision from extremely small values and to formulate the problem as a linear
classifier. In this case the log probability expression becomes

log(P (F |a)) =
∑
fi∈F

log(P (li|a))+ (2)

∑
fj∈F

log(P (lj |li, a)) + log(P (dx, dy|a, li, lj)).

To simplify the expression we assume uniform probabilities for P (li|a) and
P (lj |li, a). Later we can include nonuniform label probabilities by simply con-
catenating the individual label histogram to the pairwise feature vector when
both are presented to the classifier. Thus, our probability expression becomes

log(P (F |a)) =∑
fi∈F

∑
fj∈F

log(P (dx, dy|a, li, lj)) + C, (3)

which is simply a formal way of stating that the whole log probability is the
sum of all the pairwise log probabilities. Since we are only interested in the
relative probabilities over action classes, we collect the uniform probabilities for
labels into a constant C which does not depend on the action a, and which is
omitted from the following equations for clarity. We now wish to divide this
expression into a number of sub-sums that can be presented to a classifier, and
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answerPhone chopBanana dialPhone drinkWater eatBanana

eatSnack lookupInPhonebook peelBanana useSilverware writeOnWhiteboard

Fig. 4. Relative location probabilities (RLPs) for feature labels 25 and 30 over all
actions in the Rochester dataset, using an 8-way angular map. Lighter (yellower) indi-
cates higher probability. We see that for the answerPhone action, features with label 30
tend to occur up and to the right of features with label 25, whereas for useSilverware,
features with label 30 tend to occur down and to the left of those with label 25.

this expression leaves us a great deal of flexibility, since we are free to compute
and return sub-sums in an arbitrary manner.

Discriminative Form. We rewrite Equation 3 in such a way as to bin proba-
bilities according to individual feature labels. In particular, we can rewrite it in
log form as

log(P (F |a)) =
∑
l∈L

log(P (bl|a)), (4)

where
log(P (bl|a)) =

∑
fi∈l

∑
fj

log(P (dx, dy|a, l, lj)). (5)

The expression log(P (bl|a)) is the bin probability, which directly corresponds to
an element of the feature vector according to Ba,l = log(P (bl|a)). Since there
are A actions and L labels, this B vector contains AL elements.

3.2 Estimating Relative Location Probabilities from Training Data

The previous section assumed that the relative location probabilities (RLPs)
were simply available. However, these probabilities must be estimated from real
data, requiring some care in the representation choice for the relative location
probability tables (RLPTs). An RLPT represents an expression of the form
log(P (dx, dy|a, li, lj)), where a, li, and lj are considered fixed. In practice this
means that it must represent a function from a (dx, dy) pair to a log probability,
and that we must represent one such function for every (a, li, lj) triplet of discrete
values. While many representations are possible, we use an approach similar to
that used for staged quantization.

We denote by M(dx, dy) a function that maps a (dx, dy) pair to an integer
bin label, allowing n such labels. We refer to this map as the relative location
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Fig. 5. Features with labels 17 and 23 are observed in a frame of a training video of
the class eatBanana. The feature with label 17 has a relative displacement of (dx, dy)
from that with label 23, which maps to bin #2 in an 8-way angular RLM. Thus, we
increment bin #2 in the corresponding table entry; these counts are all converted to
estimated log probabilities after the entire video collection is processed.

map (RLM), possible forms of which can be seen in Figure 3. Then the RLPT
for a given (a, li, lj) triplet is a list of n numbers, denoted Ta,li,lj . An RLP can
then be retrieved according to:

log(P (dx, dy|a, li, lj)) = Ta,li,lj [M(dx, dy)]. (6)

For example, with 216 labels, 10 actions, and 8 bins in the RLM, storing all the
RLPs would require (216)(10)(8) = 3, 732, 480 entries in 466,560 tables.

Estimating the RLPTs is simply a matter of counting the displacements falling
within each bin (see Figure 5), and finally normalizing by the total counts in
each map. Since some bins may receive zero counts, leading to infinities when
the log probability is computed, we use a prior to seed each bin with a fixed
number of pseudo-counts. Examples of RLPTs found in this way can be seen in
Figure 4.

This method could seemingly generate very sparse probability maps where
most bins receive few or no real counts. However, in practice almost all of the bins
receive counts. A typical situation (in this case our experiments on Rochester’s
Daily Living dataset) might have 10 classes, 216 feature labels, and a probability
map with 8 bins, for a total of (2162)(10)(8) = 3.7 · 106 bins. For Rochester
we have approximately 120 training videos, each of which is approximately 600
frames long. If we track 300 features per frame, and only consider in-frame pairs,
then across all videos we will have (3002)(600)(120) = 6.5 ·109 pairwise features.
Thus, on average each bin will receive over a thousand counts.

3.3 Extension to Temporal Relationships

The method is naturally extended to include temporal relationships. Rather
than representing the relationship between two features as a (dx, dy) pair, it is



Representing Pairwise Spatial and Temporal Relations 517

represented as a (dx, dy, dt) triple. The RLPT then contains entries of the form
log(P (dx, dy, dt|a, li, lj)), which are indexed according to a mapping function
M(dx, dy, dt), so that

log(P (dx, dy, dt|a, li, lj)) = Ta,li,lj [M(dx, dy, dt)]. (7)

Previously, the map M could be stored as a simple image, whereas with spatial-
temporal relationships this map is a volume or series of images. When counts
are accumulated or probabilities evaluated, only pairs of features within a slid-
ing temporal window are considered, since considering all pairs of features over
the entire video would both result in a prohibitively large number of pairs and
prevent the method from being run online on a video stream. Nevertheless, the
change from considering only pairs within a frame to pairs within a temporal
window vastly increases the number of pairs to consider, and depending on the
number of features generated by a particular feature detector, it may be neces-
sary to randomly sample pairs rather than considering them all. We find that
for STIP-HOG we can consider all pairs, while for SCM-Traj we must sample.

3.4 Classification

We train a linear SVM [20] to classify video clips, which is a straightforward
matter of presenting computed B vectors and corresponding ground truth classes
from training clips. Each bin in B can be interpreted as a particular label’s vote
for an action, in which case the classifier learns the importance of each label’s
vote.

Since, when considered in isolation, pairwise relationships are unlikely to be
as informative as the base features from which they are derived, we present a
simple method for combining the raw base feature histograms with the computed
pairwise log probability vectors. We do not present this combination method as
the canonical way of combining the two sources of information, but rather as
a convincing demonstration that the proposed pairwise relationships provide a
significant additional source of information rather than merely a rearrangement
of the existing data.

Supposing that H represents the histogram for the base features, and B rep-
resents the computed pairwise relationship vector, then one way of combining
the two would be to simply concatenate the two vectors into [H, B], and present
the result to a linear SVM. However this is unlikely to result in the best per-
formance, since the two vectors represent different quantities. Instead, we sepa-
rately scale each part, and then simply cross validate to find the scaling ratio p
that maximizes performance on the validation set, where the combined vector is
[pH, (1 − p)B]. This scaled vector is simply presented to the SVM.

4 Evaluation

We evaluate our pairwise method on a forced choice action classification task
on two standard datasets, the UCF YouTube dataset (UCF-YT) [21] and the
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Table 1. Action recognition accuracy on standard datasets. Adding pairwise features
significantly boosts the accuracy of various base features.

Method UCF-YT Rochester
STIP-HOG (single) (Laptev et al . [1]) 55.0% 56.7%
STIP-HOG (NB-pairwise alone) 16.4% 20.7%
STIP-HOG (D-pairwise alone) 46.6% 46.0%
STIP-HOG (single + D-pairwise) 59.0% 64.0%
STIP-HOG-Norm (single) (Laptev et al . [1]) 42.6% 40.6%
SCM-Traj (single) 42.3% 37.3%
SCM-Traj (NB-pairwise alone) 14.3% 70.0%
SCM-Traj (D-pairwise alone) 40.0% 48.0%
SCM-Traj (single + D-pairwise) 47.1% 50.0%

recently-released University of Rochester Activities of Daily Living [3]. To eval-
uate the contribution of our method for generating pairwise relationships, we
consider two different types of base features: the trajectory based features we
introduced earlier, and Laptev et al .’s space-time interest points. We consider
both our discriminative formulation (denoted D-pairwise) and a Näıve-Bayes for-
mulation (NB-pairwise) for our pairwise features, where the NB-pairwise results
are primarily intended as a baseline against which to compare.

Table 1 summarizes our results. Our experiments are designed to evaluate the
effect of adding spatial and temporal relations to the features and to understand
in detail the effect of various parameters on the performance of the augmented
features. Clearly, significantly more tuning and additional steps would go into
building a complete, optimized video classification system. In particular, we do
not claim that our performance numbers are the best that can be obtained by
using complete systems optimized for these data sets. We use the evaluation
metric of total accuracy across all classes in an n-way classification task.

On both datasets we use 216 base feature codewords for both trajectories and
STIP-HOG. The number 216 results from the choice of three stages with a 6-
way mask for the staged quantization (63 = 216), and we use the same number
for STIP-HOG to make the comparison as even as possible. Likewise, for both
datasets we use an 8-way spatial relationship binning for the RLPTs. Combined
results are produced by cross validating on the scaling ratio.

UCF-YT consists of 1600 videos in 11 categories acquired from YouTube clips.
For evaluation, we randomly split the dataset into a training set of approxi-
mately 1200 videos and a testing set of approximately 400 videos. This dataset
was chosen for its difficulty, in order to evaluate the performance of pairwise re-
lationships outside of highly controlled environments. In particular, this dataset
is challenging because the videos contain occlusions, highly variable viewpoints,
significant camera motion, and high amounts of visual clutter.

On UCF-YT we find that discriminative pairwise features are not as infor-
mative as the base features, which is not unexpected since the diversity of the
dataset means there are unlikely to be strong, consistent relationships between
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Table 2. Action recognition accuracy with temporal relationships on UCF-YT

Method STIP-HOG Traj-SCM
NB-Pairwise (baseline) 16.4% 14.3%
NB-T-Pairwise 22.2% 31.2%
D-Pairwise (baseline) 46.6% 40.0%
D-T-Pairwise 49.2% 39.7%

features. Nevertheless, we still find modest gains for combinations of pairwise and
individual features, on the order of 5%. This means that the pairwise features
are providing an additional source of information, rather than just obfuscating
the information already present in the individual feature histograms. The Näıve
Bayes pairwise evaluation performs poorly, but better than chance.

Furthermore, we can see that the performance of our simple fixed quantization
on trajectories performs similarly to normalized STIP-HOG features, but signif-
icantly worse than non-normalized STIP histograms. This suggests that much
of the discriminative power of STIP features might originate from the variation
in the quantity of features found in different videos.

The Rochester dataset consists of 150 videos of five individuals performing
a series of scripted tasks in a kitchen environment, acquired using a stationary
camera. Due to the limited pool of available data, we evaluate using 5-fold cross-
validation, using videos from four individuals for training and the fifth for testing,
in each fold.

On Rochester we observe that the pairwise features for STIP-HOG do not
perform as well as the individual STIP-HOG features, but that the combination
outperforms both, which is consistent with the results for UCF-YT. For tra-
jectory features, the pairwise features alone significantly outperforms the base
features, a reversal from UCF-YT. The combination of the two outperforms both
the individual and pairwise, but adds only a modest gain on top of the pairwise
performance.

For both types of features, the gains with pairwise relationships in combi-
nation are much larger than for UCF-YT, which is explained by the greater
consistency of spatial relationships between codeword labels due to the fixed
viewpoint and highly consistent actions. Qualitatively examining which pairs
contribute to a correct action identification supports this hypothesis: as can be
seen in Figure 1, the pairwise features supporting an action appear to be strongly
tied to that action. For STIP-HOG, the Näıve-Bayes pairwise formulation once
again performs poorly, however for trajectories the Näıve-Bayes pairwise is the
strongest performer. This suggests that for some applications, even simple rela-
tionships can give very good performance.

4.1 Effect of Temporal Relationships

The results with using spatial and temporal relationships on UCF-YT are shown
in Table 2 in which X-T-Pairwise denotes the classifier (discriminative or
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Näıve-Bayes) augmented with temporal relations. For these results, we have used
the same 8-way spatial relationship binning combined with a 5-way temporal
binning, for a total of 40 bins. The pairwise relationships are evaluated over
a 30 frame sliding window. For STIP-HOG, all pairs within the window are
considered, but for trajectories we sample 1/20 of the pairs in the interest of
tractability. Note that even with this sampling, a four second UCF-YT clip can
produce over 100,000,000 pairs when using trajectory features.

The performance of the discriminative pairwise relationships remains virtually
unchanged for Traj-SCM, but there is a modest performance boost for STIP-
HOG. The Näıve-Bayes versions continue to perform worse than the discrimi-
native ones, however the temporal relationships have a much larger impact on
their performance. The difference is especially dramatic for NB-Pairwise vs. NB-
T-Pairwise with STIP-HOG, where the temporal relationships have more than
doubled the accuracy from 14.3% to 31.2%.

4.2 RLPT Sparsity

Earlier we argued that the relative location probability tables should not be
sparse based on a simple counting argument. Empirically, we find that for the
Rochester dataset 71.6% of the entries receive counts, and that 91.7% of the ta-
bles have at least one count in one of the 8 bins. The number of tables containing
at least 100 counts is 41.1%, and 15.2% of tables have over 1000 counts. These
numbers validate our original claim that the tables are not sparse.

5 Conclusion

We present a simple yet powerful method for representing pairwise spatio-
temporal relationships between features in the popular bag-of-words framework.
Unlike näıvely expanding codewords to include all possible pairs and relation-
ships between features, our method produces an output whose size is propor-
tional to the number of base codewords rather than to its square, which reduces
the likelihood of overfitting and is more computationally efficient. We demon-
strate that our method can be used to improve action classification performance
with dissimilar STIP-HOG (appearance) and trajectory (motion) based features
on two different datasets, and that a discriminative formulation of our pairwise
features generally outperforms a Näıve-Bayes classification approach. Although
our method takes advantage of spatial relationships, it does not require any ad-
ditional annotation in the training data, making it appropriate for a wide range
of datasets and applications.

As we have only considered simple angular maps, there is potentially still con-
siderable power to be extracted from this method through the careful selection of
relative location maps. Additionally, we have presented a binning of probabilities
based on codeword label, but an interesting question is whether more intelligent
data-driven binnings can be found. We plan to explore these questions in future
work.
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Abstract. This paper introduces a very compact yet discriminative
video description, which allows example-based search in a large num-
ber of frames corresponding to thousands of hours of video. Our de-
scription extracts one descriptor per indexed video frame by aggregating
a set of local descriptors. These frame descriptors are encoded using a
time-aware hierarchical indexing structure. A modified temporal Hough
voting scheme is used to rank the retrieved database videos and esti-
mate segments in them that match the query. If we use a dense temporal
description of the videos, matched video segments are localized with ex-
cellent precision.

Experimental results on the Trecvid 2008 copy detection task and
a set of 38000 videos from YouTube show that our method offers an
excellent trade-off between search accuracy, efficiency and memory usage.

1 Introduction

We consider the problem of searching a transformed query video, or part of this
query, in a large database of videos. This is important, in particular, for detecting
video copies that may be illegally delivered on peer-to-peer networks and user
generated content sites such as YouTube. The most common transformations
observed in practice are camcording and re-encoding, though sophisticated video
post-processing is also encountered.

In recent evaluations [1, 2], the use of local descriptors [3–6] combined with
a frame voting system appeared to be the most successful architecture for video
copy detection. These state-of-the-art systems search individually for each local
descriptor of the query video in a structure indexing all local descriptors of the
video database. The typical memory requirement associated with representing
the set of local descriptors of a video frame ranges from 1 to 10 Kbytes. This
seriously limits the number of video frames that can be indexed in practice.
Therefore, the video frames are subsampled, which reduces the capability to
find very short clips and to determine the precise localization of the query in the
database videos. Furthermore, even with subsampling, very large video datasets
(several thousands hours of videos) cannot be handled efficiently.

The objective of this paper is to address these scalability and localization
issues, while maintaining a high recognition rate. Figure 1 gives an overview of
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Fig. 1. Overview of our video copy detection method. Local descriptors of a video frame
are aggregated into a single vector and the dimension of this vector is reduced. The
videos to be indexed are encoded using a temporal-aware indexing scheme. No encod-
ing is applied to the query frame descriptors. A weighted temporal Hough transform
provides the final ranking of the database videos w.r.t. the query.

our approach for querying and matching video segments. The individual steps
are:

1. Local descriptors are extracted from video frames (either query or database
video) and subsequently aggregated into a single vector. This aggregation
process is similar to recent approaches for descriptor aggregation [7, 8] which
outperform the popular bag-of-features (BOF) representation [9] with de-
scriptors of lower dimension.

2. The dimensionality of this frame descriptor is reduced with either a tech-
nique based on a multiplication with a sparse matrix or principal component
analysis (PCA).

3. On the database side, the reduced descriptors are encoded within an indexing
structure that takes into account the temporal regularity. The video is split
in segments. A first description is computed for a segment by minimizing a
fidelity criterion for frames of this segment. In the spirit of [10], this segment
descriptor is refined by a code based on a product quantizer.

4. Each frame’s approximate description is refined by encoding the difference
between the frame descriptor and the vector describing the segment it be-
longs to.

5. A modified temporal Hough voting scheme is used to fuse the votes obtained
at the frame level. Its main difference with the conventional method is that
the votes are weighted so that their contribution is penalized if 1) the query
frame has received a large amount of votes and 2) the database frame has
voted several times.

The paper is organized as follows. The frame description method is introduced
in Section 2. Section 3 describes how frame descriptors are indexed and retrieved
when a query frame descriptor is submitted. The voting scheme is presented in
Section 4. The contributions of the different steps are evaluated in Section 5.
Furthermore, we compare to the state of the art on the Trecvid 2008 bench-
mark, and obtain top results in terms of localization accuracy. The scalability of
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the approach is demonstrated by experiments on 38000 YouTube videos repre-
sented by more than 200 million frames. We show that these videos are indexed
in less than 5GB of memory.

2 Video Description

2.1 Local Description

The first step of our video description extracts a set of local features for each
frame. The same approach is used to extract descriptors for the query and
database videos. Here, regions are obtained with the scale-invariant Hessian de-
tector [11] and described by CSLBP [12]. Similar to SURF [13] and DAISY [14],
this descriptor is a variant of the SIFT descriptor which provides comparable
results and reduces the computation time significantly: extracting local descrip-
tors from a frame takes about 35 ms on one 2.4GHz processor core. Note that
for large databases, the time for feature extraction is not the critical operation
at query time, because it only depends on the query length, not the database
size.

2.2 Local Descriptor Aggregation: Non Probabilistic Fisher Kernel

Given a set of local descriptors {x1, . . . , xi, . . . } for each video frame, it is im-
possible to store all of them in memory in the case of large scale video search,
even if only a few bytes are required for each of them [15, 16]. In general, several
hundreds of local descriptors are extracted for each frame.

We, therefore, aggregate the local descriptors into a single vector. We adopt
a variant [8] of the Fisher Kernel image representation introduced by Perronnin
et al. [7]. The resulting vector, called vector of locally aggregated descriptors
(VLAD), provides a compact yet effective representation of images. Assuming
that a k-means codebook with k centroids {c1, . . . , cj , . . . , ck} has been learned,
we obtain the VLAD descriptor for a frame, denoted by μ, as follows:

1. As for the bag-of-features representation, each local descriptor xi of the frame
is assigned to the closest centroid in the codebook, i.e., to the quantization
index NN(xi) = argminj ||xi − cj ||.

2. Given the set of descriptors assigned to a centroid cj , the vector μj is ob-
tained by summing the differences between these descriptors and the cen-
troid:

μj =
∑

i:NN(xi)=j

xi − cj . (1)

3. The VLAD descriptor associated with a frame is obtained by concatenating
the vectors μj into a single vector.

4. As proposed in [17] for the Fisher Kernel image representation, we apply a
power-law normalization to the components to reduce the contribution of the
most energetic ones. Here, we use the signed square root of each component.
The vector is subsequently L2-normalized and is denoted μ in the following.
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The resulting vector is of dimension k times the dimensionality of the input
vector, e.g., k × 128 for the CSLBP descriptor. For the same codebook size, the
dimensionality of the descriptor is significantly larger than for the bag-of-features
representation [9]. However, the VLAD description is already discriminant for
low values of k in contrast to BOF, which requires very large codebooks (up to
1 million) to provide the best results [18, 19]. Therefore, the dimensionality of
the VLAD vector is typically lower than for BOF. It is worth noting that this
representation can be seen as a non-probabilistic version of the Fisher kernel. In
the latter, a Gaussian mixture model and soft assignment are used instead of
k-means centroids, and additional information (variance and count) are used to
obtain a richer (but longer) representation.

2.3 Dimensionality Reduction of Frame Descriptors

Local descriptor aggregation results in one VLAD descriptor per video frame.
This descriptor is highly dimensional: for a typical value of k = 64, the vector μ
has D = 128 × k = 8192 components. Such a vector is difficult to index due to
its dimensionality [8]. We, therefore, use and compare two different methods to
reduce the dimensionality:

1. Principal component analysis (PCA) allows to reduce the dimension D of the
VLAD descriptor to a smaller dimension d [8]. The vector μ is multiplied
with a projection matrix M formed by the first principal eigenvectors of
an empirical covariance matrix. The PCA matrix is pre-multiplied with a
random rotation to “whiten” the output;

2. Alternatively, we define M as a d×D sparse matrix obtained as M = P σ,
where σ is a D×D random permutation matrix and P is a d×D aggregation
matrix that sums several consecutive components. For example with D = 6
and d = 2, a possible matrix M is:

[
0 1 1 0 1 0
1 0 0 1 0 1

]
︸ ︷︷ ︸

M

=
[
1 1 1 0 0 0
0 0 0 1 1 1

]
︸ ︷︷ ︸

P

×

⎡
⎢⎢⎢⎢⎢⎣

0 0 1 0 0 0
0 0 0 0 1 0
0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
σ

. (2)

The two techniques are evaluated in Section 5. The advantage of using a struc-
tured matrix is that there is no need for a training stage. The dimensionality
reduction is also cheaper to compute, because the multiplication is more efficient
with the sparse matrix M than with the full matrix obtained by PCA. However,
during the search, the dimensionality reduction typically has a low computing
cost compared to the other steps.

The descriptor f ∈ �d of reduced dimensionality is obtained by multiplying
the matrix M with the VLAD descriptor μ and by L2-normalizing it. The re-
sulting vector f is used in the following as the frame descriptor. The dot product
is used as a similarity measure.
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Fig. 2. Hierarchical representation of the frame descriptors. At levels 1 and 2, segments
are represented by a frame descriptor. At level 1, the descriptor is quantized to a single
index, that is refined at Level 2 by a product quantizer code. At level 3, the individual
frames of the segment are represented as a refinement of their segment descriptor.
Typically, a segment descriptor is encoded in 4+64 bytes, while each frame is refined
by a 16-byte code.

3 Indexing Frame Descriptors with Temporal Integration

The objective of this section is to provide a compact representation and an
efficient search mechanism for the frames of a database video. Let us consider a
video to be indexed1, for which we have extracted a set f1, . . . , ft, . . . , fT of d-
dimensional descriptors using the method introduced in Section 2. The individual
descriptors will be approximated, indexed and searched using three successive
refinement levels:

1. joint description of a group of contiguous frames: all the frames associated
with the same time segment have the same coarse approximation;

2. refinement of this video segment descriptor;
3. refinement of the individual frame descriptors.

Each of these levels provides an improved approximation of an indexed frame
descriptor, as illustrated by Figure 2. This procedure is not used for the frames
of the query, i.e., their VLAD descriptors are not approximated. Our approach
is, to some extent, similar in spirit to the method proposed in [10]. However,
a major difference is the integration of the temporal aspect into the indexing
scheme.

3.1 Level 1: Coarse Segment Description

Due to the temporal dependency between frames, contiguous frame descriptors
of a video shot are similar. We exploit this property by providing a shared
description for consecutive frames. Let us define a segment {tb, . . . , te} as an

1 We treat several videos as a single long video, except that we constrain a segment
of frames not to cross video boundaries.
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interval of consecutive frames, for which the same level 1+2 approximation of
the descriptor is used.

If segments are of fixed size, we have te = tb + 1/r − 1, where r is the ratio
between the number of segments and the total number of frames in the video.
The first approximation is given by a coarse vector quantizer qc(.), for which
the codebook Cc = {c1, . . . , cL} is learned using a spherical k-means algorithm.
The coarse quantization index ic(tb : te) associated with the segment {tb, . . . , te}
aims at best representing the set of frame descriptors {ftb , . . . , fte} with respect
to the total square error, i.e.,

ic(tb : te) = arg min
i∈Cc

∑
t=tb:te

||ft − ci||2, (3)

which is equivalent to

cic(tb:te) = qc

(
r
∑

t=tb:te

ft

)
(4)

The vector cic(tb:te) is the level-1 approximation of the frame descriptors in the
segment {tb, . . . , te}. When searching the nearest neighbors of a given query
descriptor, only the database descriptors associated with the kc closest elements
in Cc are explored.

We have tested both a fixed and adaptive number of frames per segment. Sev-
eral variants for selecting keyframes have been tested in the adaptive case. Best
results were obtained when constructing the segments based on the consistency
of the k-nearest neighbors in Cc for the frame descriptors. However, experimental
results showed that no variant is better than uniform subsampling. We, therefore,
only use segments of fixed size in the following.

3.2 Level 2: Segment Descriptor Refinement

The index associated with a given video segment is not precise, as an approxima-
tion with a centroid in Cc introduces a large quantization error. Therefore, similar
to [10], we refine this first approximation by using a product quantizer qf , whose
codebook2 is denoted by Cf . The total number of centroids implicitly defined by
a product quantizer composed of mf subquantizers having Lf centroids each is
equal to (Lf)mf . This quantizer aims at reducing, over the set of frames associ-
ated with a given segment, the average energy of the error vector ft − cic(tb:te)
made by the first approximation qc(ft) = cic(tb:te). The new approximation of a
frame descriptor ft associated with the segment {tb, . . . , te} is, therefore, of the
form

ft ≈ cic(tb:te) + c′if (tb:te), (5)

2 A product quantizer decomposes the space into a Cartesian product of low dimen-
sional subspaces and quantizes each space separately. As a result, learning codebooks
and searching the quantization index have a low complexity even for very large code-
books. The codebook Cf has not to be stored explicitly.
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where the centroid c′if (tb:te) ∈ Cf is obtained by the minimization

c′if (tb:te) = arg min
c′i∈Cf

∑
t=tb:te

||ft − cic(tb:te) − c′i||2. (6)

The minimization is efficiently done using the decomposition associated with the
product quantizer. Note that this quantizer qf is more precise than the coarse
quantizer used in the first stage, because the set of centroids Cf that is implicitly
defined by the product quantizer is large: it is 28×64 for the typical 64-byte codes
we use (mf = 64, Lf = 256). The product quantizer decomposition is used to
obtain a complexity comparable to that of a quantizer comprising Lf elements.

3.3 Level 3: Refinement of Individual Frame Descriptors

So far, the frames of a segment are described by the same approximation. We now
refine the description of each individual frame ft by using another refinement
product quantizer qr induced by mr subquantizers with Lr centroids each. This
quantizer encodes the error resulting from the two previous approximations by
minimizing the quantization error of ft. For a time instant t such that t ∈
{tb, . . . , te}, this is done by quantizing the residual error vector ft − cic(tb:te) −
c′if (tb:te). The frame descriptor ft is therefore approximated by

f̂t = cic(tb:te) + c′if (tb:te) + qr(ft − cic(tb:te) − c′if (tb:te)). (7)

3.4 Search Procedure

Searching a query frame vector y in a database of frame descriptors B = {f1, . . . ,
fT } proceeds in a hierarchical manner.

1. The kc nearest neighbors of y in Cc identify the segments to be considered:
only those associated with one of the selected kc indexes are explored.

2. For each vector fi in the set of selected lists, the distance approximation

l2(fi, y) = l2 (fi − qc(fi), y − qc(fi)) ≈ l2 (qf (fi − qc(fi)) , y − qc(fi)) (8)

is efficiently obtained from the quantizer indexes qf (fi − qc(fi)) by exploiting
ADC method of [10]. The best segments corresponding to a query vector are
found based on the approximation of the square distance of Equation 8. This
step returns the set of the kf nearest segment descriptors.

3. The query frame descriptor y is now compared to all the approximated f̂t

frame descriptors associated with the kf segments found in the previous
stage. This step returns a set of kr nearest frame descriptors.

3.5 Complexity

The cost of searching a frame descriptor in a database containing T frames is
expressed in terms of the number Cdist of regular d-dimensional vector compar-
isons and the amount Cmem of memory scanned in the indexing structure. These
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are given by

Cdist = L + kc Lf +
kf

r
(9)

and
Cmem = α

kc

L
r T mf log2 Lf +

kf

r
mr log2 Lr, (10)

where log2 Lf = log2 Lr = 8 bits = 1 byte in our case. The factor α ≥ 1 accounts
for the fact that the probability to assign a frame descriptor to an index is not
uniform over Cc. As observed in [18] in the context of the BOF representation,
this increases the expectation of the number of elements that are processed. We
measured that α ≈ 8.4 with our parameters. Note that our calculation of Cdist
assumes that the level-2 search is optimized by using look-up tables computed
on-the-fly.

4 Temporal Alignment: Improved Hough Transform

Once each query frame has been matched to kr putative frames of the database,
the video search matches a sequence of query descriptors to sequence(s) from
the database. This sequence matching can be cast in terms of temporal sequence
alignment and addressed by dynamic programming techniques, such as dynamic
time warping. However, this type of approaches requires a complete frame-to-
frame matching cost matrix, which is not feasible at this stage of the detection
system. Furthermore, they require a good initialization of the starting and end-
point of the matching sequences.

Simplified approaches can be used instead, e.g., partial alignment [20] or clas-
sic voting techniques, such as Hough transform or RANSAC. We adopt a tem-
poral Hough transform [6], as it allows the efficient estimation of 1D temporal
shifts. Individual frame votes are re-weighted according to suitable normaliza-
tions. In particular, re-weighting is used to reduce the harmful influence of tem-
poral ”burstiness”, i.e., the presence of query frames that match strongly with
multiple, possibly unrelated frames in the database. This is similar to the bursti-
ness of local descriptors in images [21].

4.1 Hough Transform

As output of the indexing structure, we have a set of matches, each of them
represented by a score s(τ, t) > 0 between the query frame timestamp τ and
the database timestamp t. This score is given by the inner product between
the query frame descriptor and the approximation of the database descriptor in
Equation 7. We set to 0 the scores of frames that are not matched:

s(τ, t) =
{
〈yτ , f̂t〉 if t is retrieved by the index
0 otherwise.

(11)

The temporal Hough transform consists in computing a histogram h(δ) to ac-
cumulate these scores for all δ = t − τ hypotheses. Denoting by Y and B =
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{1, . . . , T} the sets of time instants on the query side and the database side,
respectively, the score is formally obtained as

h(δ) =
∑
τ∈Y

s(τ, τ + δ), (12)

where s(τ, t) = 0 if t /∈ B. Peaks (maximum values) are then searched in the
histogram h. We typically select 100 peaks and then apply non maximum sup-
pression, i.e., peaks that are closer than 1 minute to a stronger one are discarded.
For each peak identified by δ, the boundaries of the matching segments are then
identified by collecting all the matches (τ, t) associated with a hypothesis δ such
that |τ − t − δ| < 10. The final score is the sum of scores of these matches.

4.2 Handling the Temporal Burstiness

As mentioned in Section 3, consecutive video frames are often very similar, and
so are their descriptors. This temporal dependency biases the scores returned
by the Hough histogram, as bursts of votes occur for some frames, both on the
query and database. This emphasizes them, i.e., they gather an abnormally large
amount of scores.

We address this problem by modifying the scoring strategy in a way that
mitigates this effect, in the spirit of the re-weighting scheme proposed in [6].
This is done by updating the score, prior to the Hough histogram computation
in two steps:

s1(τ, t) = s(τ, t)/
√∑

τ∈Y
s(τ, t) and s2(τ, t) = s1(τ, t)/

√∑
t∈B

s1(τ, t), (13)

where the computation is done efficiently by considering only the non-zero score
values in the summations. The updated score s2 is used instead of the original
scores in Equation 12. We will show in Section 5 that this procedure significantly
improves the quality of the Hough estimation.

5 Experiments

5.1 Datasets and Evaluation Protocol

Trecvid’08. This dataset contains 200 hours of Dutch television broadcasts.
It was used for the copy detection pilot task in the Trecvid’08 evaluation
campaign. A set of 134 query clips was extracted from the dataset and 67 clips
from other videos were added as negatives, i.e., with no corresponding videos in
the database. Some clips were embedded in a distractor video and all were then
transformed with 10 different transformations, see Table 2. As a result, 2010
queries with varying degrees of difficulty are used to evaluate a system.

The performance measure used to evaluate the search quality in the Trecvid

competition is the Normalized Detection Cost Ratio (NDCR), which integrates
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the cost of missing a true positive with the cost of retrieving an incorrect video.
It is equal to 0 if all the true positives are returned before the false positives (no
matter how many there are) and lower values of the NDCR correspond to better
results. A result video segment is considered as a true positive if it overlaps with
the ground-truth. We have used this measure3 to compare our results with those
obtained by the participants of the Trecvid’08 evaluation, see Subsection 5.3.
STV (Small Trecvid). In order to evaluate the parameters of our approach, we
created a reduced version of the Trecvid dataset, referred to in the following
as STV. It uses a subset of 21 h of the videos. From these videos we extracted
a set of 100 clips not used by in the Trecvid’08 queries, embedded them in
an independent distractor set and transformed them with some of the most
challenging transformations.

This dataset is smaller than the Trecvid’08 dataset. However, the trans-
formations are more challenging on average. We, therefore, obtain comparable
conclusions with reduced runtime. Furthermore, using this dataset for param-
eter evaluation avoids optimizing parameters on the Trecvid query set, and
provides a fair comparison with the state of the art on this dataset.
YouTube. In order to evaluate the scalability of our system, we have collected
a dataset of YouTube videos. We downloaded a total of 38,000 videos from
YouTube, corresponding to 189 million frames (or 2100 h). Most of the videos
have a similar resolution as the Trecvid ones (about 352*288) and the number
of interest points extracted per frame is similar (about 300 per frame on average).
These videos are used as distractors in our large scale experiment in Section 5.4.

Evaluation measures. In addition to the NDCR measure used for Trecvid,
we have used two additional measures to evaluate performance, localization ac-
curacy and average precision. The localization accuracy for a result segment
is measured as the overlap between the ground-truth and the returned result:
Ω = |Tgt ∩ Tfound|/|Tgt ∪ Tfound|. If the match is incorrect, Ω = 0, and if the
localization of a match is perfect, Ω = 1. Better matches have a higher overlap.

We have used the overall Average Precision (AP) as a quality measure. The
results returned for all queries are evaluated together ranked by their scores.
A match is considered a true positive if the overlap measure is above 0.5. A
precision-recall curve evaluates the results as a function of the score. The area
under this curve is the AP measure.

5.2 Impact of Parameters

Unless stated otherwise, for the parameters introduced in Sections 2 and 3, we
have used the following values:

Descriptor D = 128 × k = 8192 d = 2048 r = 1/10
Coarse quantizer L = 2048 kc = 64
Fine quantizer Lf = 256 mf = 64 kf = 128
Refinement Lr = 256 mr = 16 kr = 32

3 NIST (the institute organizing Trecvid) provided the software to compute this
measure as well as the results of the other participants.
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Table 1. Evaluation of memory usage, search accuracy and timings on the STV
dataset. The method “Levels 1+2, r = 1” indicates that frames are directly considered
as segments in our method without any further refinement. The timings are given as a
slowdown factor w.r.t. the “real” video time for one single 2.4GHz processor core (not
including the frame description time).

structure/algorithm total mem Cmem Cdist AP time
none/brute-force search 62 GB 62 GB 19 M 96.7 89 ×
Levels 1+2, r = 1 122 MB 25 MB 18432 90.1 2.52 ×
Levels 1+2, no refinement 12 MB 2.71 MB 18432 74.1 1.10 ×
Levels 1+2+3 (mr = 16) 43 MB 2.73 MB 19710 91.2 1.33 ×
Levels 1+2+3 (mr = 32) 73 MB 2.75 MB 19710 90.5 1.42 ×
Levels 1+2+3 (mr = 64) 134 MB 2.79 MB 19710 91.7 1.43 ×

In the following, we measure the impact of these parameters. The performance
is reported for the STV dataset.

The dimensionality reduction is evaluated on the two first levels of the
method, i.e., without frame grouping (r = 1) nor refinement (Levels 1+2 only).
Our aggregation method is compared with PCA to reduce the D = 8192 di-
mensions of the frame descriptor to d = 2048. For this operating point, dimen-
sionality reduction with an aggregator (see Section 2.3) gives AP=87.7, and the
PCA-based dimensionality reduction achieves AP=90.1. In the following, we use
the PCA-based dimensionality reduction.

Indexing: impact of the quantization and of the refinement step.
Table 1 shows the influence of the descriptor quantization and frame grouping
on the search accuracy, memory usage and search time. Brute-force search gives
an upper bound on the performance that can be achieved by using our frame
descriptor, but is unreasonably expensive. We denote by Levels 1+2 the methods
that do not refine the segment level representation on the frame level. If r = 1,
then frames are directly considered as segments, while Level 1+2, no refinement
has the same effect as a subsampling, except that the average frame descriptor
over a segment is used instead of a particular frame of this segment. This variant
provides lower search quality, but is interesting to index very large datasets. One
can observe that subsampling the video and indexing subsampled frames strongly
degrades the performance, by 16 points of AP. The refinement improves the
results. Short codes (mr = 16 bytes) are sufficient to capture most of the possible
improvement. Note that, for large databases, this last refinement stage (Level 3)
is the limiting factor in terms of memory usage, even with the setting mr = 16.
Burstiness handling. We have evaluated the impact of our vote regulariza-
tion procedure which addresses the problem of burstiness (cf. section 4.2). This
method significantly improves the results, as shown below:

bursts regularization AP
none 83.8
database-side (using s1 in Equation13) 84.3
full regularization (s2) 91.2
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Table 2. Evaluation of our method relative to other Trecvid’08 participants. The
score is NDCR (the lower the better). The rank is obtained by taking the best run
from each of the 22 participants.

no transformation best second ours rank (/23)
1 camcording 0.079 0.363 0.224 2
2 picture in picture 0.015 0.148 0.321 4
3 insertion of patterns 0.015 0.076 0.079 3
4 strong re-encoding 0.023 0.095 0.064 2
5 change of gamma 0.000 0.000 0.023 3
6 photometric attacks 0.038 0.192 0.064 2
7 geometric attacks 0.065 0.436 0.140 2
8 3 random transformations from 6/7 0.045 0.076 0.437 5
9 5 random transformations from 6/7 0.038 0.173 0.693 5
10 5 random transformations 0.201 0.558 0.537 2

5.3 Comparison with State of the Art

Table 2 compares the NDCR scores of our system with the best and second
best run (from different participants) of the Trecvid’08 competition4. We also
provide the rank associated with our score. One can see that our system is very
competitive, in particular for the most interesting transformations encountered
on a peer-to-peer network: camcording and re-encoding. Note that the best score
for these transformations is obtained with the approach of [6]. This approach
requires 10 GB of RAM against 300 MB used here, i.e., it is difficult to scale
to very large video sets. Furthermore, it is more than 5 times slower than the
approach presented in this paper (13× “real time” against 2.47× here on a single
computing core).

We also compare our localization accuracy with the four best runs (from
different participants) of the Trecvid’08 competition. We measure the accuracy
on the 195 videos that were correctly retrieved by all 4 runs as well as by our
method (i.e. the resulting segment has an overlap with the the ground-truth
above 0.5). The measure used is average overlap. The results are:

rank of the participant 1 2 3 4 ours
mean overlap 0.952 0.858 0.846 0.884 0.973

We can observe that our approach localizes the segments very precisely, i.e.,
with a better precision than the competing approaches.

5.4 Large Scale Experiment

The large scale experiments are performed on the YouTube dataset merged with
our STV dataset. Figure 3 shows the AP obtained as the function of the growing
database size (up to 2316 hours). When performing the experiments on the whole
4 The competitors can not be identified by name due to the non disclosure agreement

of Trecvid.
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Fig. 3. Retrieval performance on the STV dataset combined with a varying number of
videos from the remaining Trecvid videos and YouTube

Fig. 4. Example results for video retrieval in our large scale dataset, (left) query and
(right) best retrieved video. Lefts pairs: correct retrieval results. Right pairs: incorrect
retrieval. Note the visual similarity between the queries and the retrieved videos.

set, the index requires 4.6 GB of RAM to index 208 million frames. The search is
slower on that scale: 23.5 real time for a single processor core. One can observe
that the AP measure decreases as to be expected, but that results are still good,
i.e., we obtain an AP=0.53 on the entire set. Typical retrieval results of our
system are shown in Figure 4.
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Abstract. In this paper, we present a framework for estimating what
portions of videos are most discriminative for the task of action recogni-
tion. We explore the impact of the temporal cropping of training videos
on the overall accuracy of an action recognition system, and we formal-
ize what makes a set of croppings optimal. In addition, we present an
algorithm to determine the best set of croppings for a dataset, and ex-
perimentally show that our approach increases the accuracy of various
state-of-the-art action recognition techniques.

1 Introduction

There exists an inherent ambiguity for actions – When does an action begin and
end? Unlike object boundaries in static images, where one can often delineate
the boundary between an object and its background, determining the temporal
extent of an action is often subjective. Consider the action “eating.” What is the
precise moment that someone begins eating? When food is placed on a table?
When a person picks up a fork? Moreover, when does the action end?

The problem is that the performance of an action recognition system may
vary tremendously depending on the temporal boundaries chosen for the train-
ing samples. Researchers commonly crop training videos qualitatively based on
the semantic definition of an action (which Cour et al . [2], Laptev et al . [3]
and others point out can be a very difficult task). On the contrary, we set out
to automatically determine temporal croppings for videos which optimize the
performance of an action recognition system. Our objective is to identify the
portions of each training video in a dataset, such that if an individual video is
made any shorter, it would not fully capture the true essence of the action being
performed. Conversely, if a cropped video is lengthened, it would add noise to
the data, making the video less discriminative.

In this paper, we formalize what makes a cropping optimal with respect to the
accuracy of a trained classifier, and we present an algorithm which identifies these
discriminative portions of videos. Our strategy of temporally cropping training
videos is applicable no matter what representation of an action is used. Therefore,
we study the effect of our method on a diverse set of action representations,
and show that on a wide variety of datasets we can consistently improve the
performance of a classifier by temporally cropping training videos to their most
discriminative portions.
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Frame 1 Frame 127

cropped training video

full training video

Frame 45 Frame 53

Fig. 1. The most discriminative portion of a training video is automatically extracted.
The cropped training video unambiguously belongs to the action category “running”
from [1].

Figure 1 illustrates the concept of cropping a training video to its most dis-
criminative portion. By running our algorithm on a video from the Hollywood-2
Human Actions and Scenes Dataset [1], we can automatically determine which
portion of the video is best for detecting the “running” action. Note that un-
like the original video from the dataset which contains ambiguous frames, our
cropped video clearly depicts the action and disregards the frames which are not
discriminative.

Collecting these types of videos, annotating their actions and delineating their
boundaries is a labor-intensive task. For sufficiently large datasets, it is often
impractical to do this manually. This process has been a focus of many research
groups in recent years. In [1], [2], [3] and [4] the authors leverage the availability
of movie scripts and closed captioning to get a rough idea of when actions occur in
movies or television shows. The authors then employ various structured learning
approaches to delineate these actions from their videos. Other work such as [5]
and [6], focus on assisting users in the painstaking task of delineating the exact
time and location of actions in videos.

Thus, it is impractical to label examples for supervised training by enforcing
strict definitions of the temporal cropping of actions. Instead, our model for
training involves taking video samples with approximate boundaries, and refining
the samples during training. Moreover, since the temporal extent of an action
is not a well-defined concept, we show that existing datasets can be further
cropped during training to create a more discriminative set of training samples
which improve the accuracy of a classifier, irrespective of what representation of
human actions is used.

To show the broad applicability of our algorithm, we use four unique action
representations: volumetric features, histograms of oriented gradients (HOG),
histograms of optic flow (HOF) and point-trajectory features (Trajectons), which
are a representative sampling of all major approaches. For each of these repre-
sentations, we empirically show that identifying the most discriminative portions
of each training video, and training a classifier on only those portions, improves
overall performance.
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2 Related Work

Our specific problem of temporally localizing the most discriminative portions
of an action can be modeled with multiple instance learning, first explored by
Dietterich et al . [7]. Recent work has demonstrated the importance of localizing
or segmenting objects from static images for the task of recognition (e.g., [8], [9]
and [10]). Similar methods do apply, with the key distinction that we are dealing
with a single interval on the temporal axis rather than a region in the image.
Buehler et al . [11] applied multiple instance learning in the temporal domain
with the unique goal of isolating individual exemplars for actions (sign language
gestures). Our effort however is focused on improving classifier performance, not
finding exemplars.

Recently, there have been a few attempts to mine action recognition datasets
to solve this problem. In [12], Nowozin et al . present an algorithm which searches
for discriminative subsequence patterns in videos. However, since there is no con-
straint that the subsequences be continuous, this solution is equivalent to finding
individual space-time features in the video which are discriminative, as opposed
to our algorithm which determines the most discriminative portion of each video.
Yuan et al . [13] propose a branch-and-bound algorithm which searches for a 3-D
bounding box, akin to our temporal cropping, by maximizing mutual informa-
tion of features and actions under a näıve Bayes assumption. Their method is
specific to an STIP action recognition model, and cannot be applied to other
systems. However, our algorithm treats the underlying action recognition system
as a black box and only requires the ability to train on a subset of the dataset
and evaluate its precision.

Most related to our work is that of Duchenne et al . [4]. Their work aims to
automatically find the location of actions in videos, in a semi-supervised man-
ner. By leveraging the availability of movie scripts and subtitles, their system
begins with a rough estimate of when an action occurs. The authors then refine
the location of this action using structured learning. A key distinction is that
their goal is to determine temporal boundaries that approximate the way a hu-
man would qualitatively crop the data. On the contrary, our algorithm directly
optimizes the accuracy of a classifier trained using the cropped videos. Unlike
the authors of [4], who strive to generate croppings which perform as well as
human-labeled data, we consider the performance of a classifier trained on man-
ually cropped actions to be a baseline. Thus, we can take training data such
as [4]’s “ground-truth” croppings, and further refine the temporal boundaries to
produce a classifier that outperforms human-labeled data on the task of action
recognition.

3 Problem Formulation and Overall Approach

We define an “optimal set of croppings” as the set of start f0 and end f1 frames
for each video Fi of class Ci in our training dataset which produces a classifier
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with the highest leave-one-out training accuracy. This can be quantified with
the following high-level equation:

argmax
{∀i:(f0

i ,f1
i )}

n∑
i=1

classify
(
train(F(1...n) �=i, f

0
i , f1

i ), Fi

)
= Ci. (1)

For n training videos, each with |f | frames, there are O(n|f |2) possible sets of
temporal croppings (in [4], n = 823 and |f | ≈ 280). Due to this exponentially
high-dimensional search space, it is intractable to test the accuracy of a classifier
trained on all possible sets of croppings. Thus, a major question we address is:
How can we optimize over the massive set of potential croppings?

In this paper we leverage the fact that portions of videos which are most
confidently and correctly classified by a trained action recognition system are
highly correlated with actions of the same class and differ from actions of other
classes. Therefore, these portions of the videos are discriminative and are a good
choice for training our classifier.

Our overall approach to determine a good cropping for an individual training
video is as follows:

1. Split the video we aim to crop into its |f |2/2 possible temporal croppings.
2. Train a classifier on the remaining training videos, excluding the one from

step 1.
3. Evaluate this classifier on each of the |f |2/2 croppings.
4. Select the individual cropping that was correctly classified with the highest

level of confidence.

This approach treats the underlying action recognition system as a black box;
thus, it can be applied to almost any classifier. It is a well-founded solution,
which takes the form of stacked generalization [14]. Depending on the specific
type of action representation being used, there are different considerations which
must be taken involving tractability and the overall method of classification.
Sections 4 and 5 explore two instances of this general approach: one based on
space-time representations using volumetric features, the other using a more
common bag-of-words representation.

4 Proof of Concept Experimentation

We begin by evaluating the effectiveness of our approach using Ke et al .’s volu-
metric features action recognition model [15]. This algorithm creates an action
model from a single training video by segmenting a person from their background
in each frame to create a 3-D silhouette. Detection is performed by comparing
the boundary of this 3-D template to the edges of over-segmented frames from a
testing video. We chose to experiment on Ke et al .’s volumetric features in this
section, as a representative sample of space-time action models; although, our
method can easily be applied to similar algorithms such as Rodriguez et al .’s
“Action MACH” or Shechtman et al .’s “Space-Time Behavior Based Correla-
tion” techniques [16] [17].
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Since [15]’s approach builds an action recognition model from a single video,
as opposed to many videos, there is only a quadratic number of croppings to con-
sider, as opposed to the super-exponential number of possible croppings when
training on multiple videos. Additionally, because the template comparison per-
formed in [15] approximates a convolution operation, which is commutative (i.e.,
the template and training video can be swapped), our methodology of running
a training video through a classifier as if it were a testing video to efficiently
identify discriminative portions is a theoretically well-founded approximation to
the high-dimensional optimization problem.
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Fig. 2. Plot showing the accuracy of volumetric feature templates extracted from dif-
ferent times for an instance of the “jumping jack” action from the Weizmann Actions
as Space-Time Shapes Dataset [18].

To quantify the benefits of temporally cropping a training video prior to cre-
ating an action recognition model, we begin by brute-force testing the accuracy
of fixed length templates centered at every frame of a training video from the
Weizmann Actions as Space-Time Shapes Dataset [18]. Figure 2 shows how the
accuracy of a model varies based on what portion of a video it is extracted from.
The periodic nature of the “jumping jack” action is quantifiable from the sinu-
soidal shape of the accuracy plot. A one-frame template is shown for the most
discriminative and least discriminative portions of the video. It is intuitive that
the most discriminative part of a jumping jack is when a person is in mid-air
with all limbs extended outwards; on the contrary, when the person lands, they
are momentarily indistinguishable from a person standing still. Note that the
accuracies of the models vary between 90% and 99%, indicating that there is
much to be gained by intelligently cropping training videos.

Table 1 reports the results of our approach on the entire Weizmann Actions
as Space-Time Shapes Dataset [18] (shown in Figure 3) which contains 10 ac-
tion classes. An interesting observation is that some classes such as “bend” and
“jumping jack” have a large gap between the best and worst temporal croppings;
however, actions like “run” and “walk” have less room for improvement. This is
intuitive since an action like “bend” occurs at a specific instance, while “walk”
has a relatively consistent appearance over time. The average accuracy of all 10
classes is also reported.
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(a) Bend (b) Jumping
Jack

(c) Run (d) Wave

Fig. 3. Example categories from the Weizmann Actions as Space-Time Shapes Dataset
[18].

Table 1. Effects of cropping the Weizmann Dataset using Ke et al .’s volumetric feature
action recognition model.

Worst Cropping Best Cropping
Action Accuracy Accuracy
Bend 90.63 98.00
Jumping Jack 90.94 97.70
Run 93.39 96.47
Walk 93.55 95.70
10-class Average 91.98 95.76

5 Temporal Refinment of Videos Using a Bag-of-Words
Approach

Datasets such as the KTH dataset [19], and the Weizmann dataset [18] used in
Section 4 have been criticized in recent years for not being a realistic sampling
of actions in the real world. To tackle more complex datasets, researchers have
extended the bag-of-visual-words technique from object recognition in images
into the temporal domain. For example, [1], [3] and [4] represent actions as
histograms of space-time interest points (STIPs), which encode both static image
gradients and optic flow. The authors of [20] and [21] propose a similar method
to STIPs-based systems; however, their features are based on the trajectories
of tracked interest points, which can better model motion than the optic flow
vectors used in previous work.

Therefore, in this section we show how our method from Section 3 can be
used to determine sets of training video croppings which improve the accuracy
of these bag-of-words based classifiers, which are a representative sampling of
state-of-the-art techniques. We evaluate the effectiveness of our approach on two
challenging datasets: Messing et al .’s University of Rochester Activities of Daily
Living [20] and Marsaza�lek et al .’s Hollywood-2 Human Actions and Scenes
Dataset [1].
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5.1 Determining the Best Croppings

To search for the best set of croppings for each video in our training set, we
augment the traditional SVM classification formulation as follows:

argmin
{∀i:(f0

i ,f1
i )},w,b,ξ

(
1
2
||w||2 + C

n∑
i=1

ξi

)
, (2)

subject to: ∀i : yi

⎛
⎝w · φ

⎛
⎝ f1

i∑
f=f0

i

Hi(f)

⎞
⎠+ b

⎞
⎠ ≥ 1 − ξi. (3)

Our max-margin formulation minimizes over f0 and f1, the starting and ending
frames for each training video (defined in Section 3), in addition to the other
standard SVM parameters. The constraints in Equation 3 include a histogram
accumulation of features between start and end frames. Hi(f) denotes the his-
togram of the quantized features from frame f of video i. As per [3] and [21],
we use 4000 histogram bins for HOF and HOG space-time interest points, and
512 bins for Trajecton features. All feature vectors are L1 normalized prior to
SVM training or classification. For consistency and simplicity, we use the same
C value and a linear kernel for all experiments in this section.

Since it is infeasible to solve this high-dimensional integer linear program, we
will focus on detecting the most discriminative portion of each video individu-
ally, using the approach we introduced in Section 3. This is done by training a
multiclass SVM on all uncropped training videos, excluding the one which we
aim to crop. We use Wu et al . [22]’s method of multiclass SVM classification
which not only assigns category labels, but also estimates the probability that an
instance belongs to each of the classes. We then evaluate the SVM on the |f |2/2
possible temporal croppings of the video excluded from training to determine
how discriminative each segment of the video is.

Figure 4 includes visualizations which indicate what portions of individual
videos from the Hollywood-2 Dataset [4] are most discriminative. Each pixel
in these images represents a different cropping (blue pixels indicate the least
discriminative croppings, and red signifies the most discriminative croppings).
The vertical and horizontal axis specify the starting and stopping frames (f0 and
f1), respectively. The lower left portion of each of these figures is blank, since
these are invalid croppings (i.e., f1 < f0). The upper right corner represents the
full uncropped video. These experiments were conducted using Laptev et al .’s
spatio-temporal feature extraction tool [3], and LIBSVM [23].

The leftmost heatmap in Figure 4 was generated from a video in which the
entire video contributes to its overall discriminative quality. The farther from
the diagonal f0 = f1, the longer the cropping, and the more discriminative the
video gets. For videos like this one, we cannot improve the classifier accuracy
with temporal cropping. On the contrary, the next heatmap shows a fascinating
property inherent to many videos. The rightmost portion of the heatmap has
a distinct vertical cyan stripe. This indicates that there are unusual features
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Fig. 4. Heatmaps showing which croppings are most discriminative for individual
videos from the Hollywood-2 Dataset [4].

contained in the final frames of the video, which make the video far less dis-
criminative. However, by trimming the last frames off of the video, independent
of the starting frame, the classifier’s performance can increase. Lastly, the two
rightmost heatmaps in Figure 4 depict videos where most croppings would make
a bad model for action recognition. For videos of this nature, it is important to
choose a cropping from within the specific region we identify to be discriminative.

It is combinatorially intractable to optimize over all O(n|f |2) possible combi-
nations of temporal croppings for a dataset with n training videos. Therefore,
we impose the constraint: ∀i, (f1

i −f0
i )/|fi| = α, which restricts our search space

to the set of cropped video clips which are the same fixed percentage α of their
full version. It is intuitive that if α is too low, we are throwing away too much
of the training data; conversely, if α is unnecessarily high, we are not sufficiently
cropping the training data to achieve the best possible results. Therefore, we run
cross-validation to identify the ideal value of α for each dataset.

This process begins by randomly splitting the training data into two parts:
a training set and a validation set. Heatmaps are generated for all videos in
the training set using the leave-one-out method described above. Using these
heatmaps, for a given value of α (which corresponds to a diagonal line in each
heatmap), we can pick the most discriminative cropping. We then iterate over
all values of α from 1% to 100%, and train a classifier on the set of croppings
which corresponds to each particular value of α. The validation set of data that
was withheld can now be used to determine the best value of α. By decoupling
the location and length parameters of the video segments we aim to extract, we
can efficiently identify discriminative combinations of cropped training videos.
This approximation scheme (which requires no parameter tuning) yielded good
results on all of the datasets with which we experimented.

Our algorithm scales linearly with the dataset size, and is parallelizable. Ad-
ditionally, our algorithm acts as a pre-processing step which only needs to be
run once prior to training. Therefore, computational expense is not a major
factor.
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Fig. 5. The predicted probabilities for each of the 12 action classes as a function of
time for a “sit down” video from [1]. The correct label is indicated in blue. Frames
from the video are shown on the x-axis at their timestamp.

5.2 Classification via Detection

The standard classification paradigm of training on one set of videos, and clas-
sifying another set of videos, is not a representative problem. It is unrealistic
to expect that a real-world application which uses an action recognition system
would have well-cropped test data, where each video is trimmed to the length
of an action. This has a major impact on how performance is evaluated (which
we discuss in Section 6). Therefore, rather than extracting features from each
video in its entirety, and classifying whole test samples, we employ a method-
ology which essentially detects the occurrence of an action in each video. This
paradigm does not require the test videos to be cropped to the temporal extent
of an individual action and can easily be altered to run on a stream of data.

For each testing video, we evaluate the multiclass SVM on a sliding window
of frames. The duration of the sliding window can be set to the median length
of the cropped training videos to achieve good results. We further improve the
accuracy (on the order of 1%) using cross-validation to tune this parameter.
During classification, we extract features from each set of frames in the sliding
window, and consider each of these segments of video independently of the test
video as a whole. Using [22]’s method, the probability that each of these segments
belongs to individual action classes is determined.

Figure 5 shows how predicted category labels can vary drastically depend-
ing on the portion of the test video used for classification. In this example, the
action “sit down” occurs almost instantaneously at approximately one-third of
the way through the video (as shown in the video frames below the x-axis). For
this brief portion of video, the event “sit down” (indicated in blue) is predicted
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(a) (b) (c) (d)

Fig. 6. Example categories from the Hollywood-2 Human Actions and Scenes Dataset
[1]. Pictured left to right: Drive, Kiss, Hug, Answer Phone.

Table 2. Effects of cropping the Hollywood-2 Dataset using three different action
representations.

Baseline Accuracy Our Accuracy Absolute Change % Improvement
(using full videos) (cropped videos) cropped - full (cropped - full)/full

Trajectons 37.84 41.85 4.01 10.60
HOG 33.08 33.71 0.63 1.90
HOF 38.47 43.48 5.01 13.02

(a) (b) (c) (d)

Fig. 7. Example categories from the University of Rochester Activities of Daily Liv-
ing [20]. Pictured left to right: Answer Phone, Dial Phone, Drink Water, Write on
Board.

Table 3. Effects of cropping the University of Rochester Dataset using three different
action representations.

Baseline Accuracy Our Accuracy Absolute Change % Improvement
(using full videos) (cropped videos) cropped - full (cropped - full)/full

Trajectons 46.00 54.00 8.00 17.39
HOG 54.67 60.00 5.33 9.75
HOF 79.33 80.00 0.67 0.84

by the SVM with high-confidence. At the beginning and end of the video, when
the actress is either standing or has already finished sitting down, the classi-
fier picks one of the other 12 classes (indicated in red), with a significantly
lower confidence. Because we want to evaluate the performance of our algorithm
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in the context of a classification task, we assign a single label to an entire testing
video by simply taking the peak response of the SVM classification from all
timestamps.

5.3 Experimental Analysis

To demonstrate the broad applicability of our approach, we evaluate the benefits
of temporally cropping videos using the method described in Section 5.1 on three
unique action representations: Histograms of Optic Flow (HOF) [3], Histograms
of Oriented Gradients (HOG) [3] and Trajectons [21].

Our goal is to empirically show that: By adjusting the temporal boundaries
of training videos as a pre-processing step, we can improve the accuracy of a
classifier, regardless of the action representation being used. The sole purpose of
the experimental analysis is to evaluate the added benefit of temporally cropping
training videos to their most discriminative portions.

To compare our work with other action classification papers, we can only
train a single multi-class SVM (and therefore can only use one set of croppings).
However, our solution is general and without modification to the algorithm, we
could determine a separate set of croppings for each action to train individual
SVMs.

Table 2 reports the improvements from cropping the Hollywood-2 dataset
prior to training. For consistency with other experiments in this paper, we use
overall percentage accuracy as our performance metric. The baseline accuracy is
the performance of a classifier which is trained and tested using full videos from
the dataset. We compare that to the accuracy of a classifier which is trained only
on the most discriminative portions of a video, using our cropping algorithm.
The final columns quantify the absolute and percentage improvements due to
cropping. Similarly, Table 3 reports the improvements from cropping the Uni-
versity of Rochester dataset prior to training. The key observation is that our
strategy consistently improves the performance of an action recognition system
independent of what types of features are used.

6 Discussion and Future Work

This research has begun to explore the benefits of identifying the most dis-
criminative portion of training videos. We presented a framework which uses
a trained classifier to predict the most discriminative part of each video, irre-
spective of the action representation being used. Our methodology has proven
to be broadly applicable, and shows the tremendous impact that the temporal
cropping of videos has on the accuracy of an action recognition system. Future
work will continue researching the effects of the identifying the most discrimi-
native portions of training videos. We hope that combining multiple croppings
and perhaps extending our approach to search for regions both spatially and
temporally will yield even further improvement.

As a final note, while studying this problem, we noticed an important property
inherent to many datasets. Because videos in most action recognition datasets
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are cropped to the approximate temporal extent of each action, the length of
each test sample tends to be highly correlated with its action label. For exam-
ple, 38% accuracy on the University of Rochester Dataset and 27% accuracy on
the Hollywood-2 Dataset can be achieved by classifying solely on the number
of frames in each video. This bias can easily be exploited if care is not taken
to explicitly normalize for this issue. For example, it is necessary to L1 normal-
ize feature histograms prior to training or classification. Not normalizing these
feature vectors can lead to a substantial boost in classifier accuracy (e.g., 15%
increase in accuracy using Trajectons on the University of Rochester Dataset).
Features themselves, such as those in [20], can also implicitly encode for the
length of videos, by not limiting the number of frames which they describe.

Although using these types of features or not explicitly normalizing to ignore
the number of frames in each video can yield better classification results, this
is an artifact of the dataset biases and cannot be generalized to other action
recognition tasks. As discussed in Section 5.2, it is not reasonable to assume
that videos will be cropped tightly to the temporal extent of each action. For
example, in the real-world problem of detecting the occurrence of actions in
video streams, models which implicitly encode for the length of actions are no
longer applicable. Moreover, if we knew how to crop these videos, this would be a
solved problem. That is why we chose to implement classification as a detection
problem.

This suggests ways to revisit the generation of datasets for action recognition
to avoid these biases. By providing test data that is not cropped to the temporal
boundaries of each action, it ensures that good action recognition systems are a
result of understanding and modeling actions, not exploiting properties inherent
to individual datasets.
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Content-Based Retrieval of Functional Objects
in Video Using Scene Context�
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Abstract. Functional object recognition in video is an emerging prob-
lem for visual surveillance and video understanding problem. By func-
tional objects, we mean objects with specific purpose such as postman
and delivery truck, which are defined more by their actions and behaviors
than by appearance. In this work, we present an approach for content-
based learning and recognition of the function of moving objects given
video-derived tracks. In particular, we show that semantic behaviors of
movers can be captured in location-independent manner by attributing
them with features which encode their relations and actions w.r.t. scene
contexts. By scene context, we mean local scene regions with different
functionalities such as doorways and parking spots which moving objects
often interact with. Based on these representations, functional models
are learned from examples and novel instances are identified from un-
seen data afterwards. Furthermore, recognition in the presence of track
fragmentation, due to imperfect tracking, is addressed by a boosting-
based track linking classifier. Our experimental results highlight both
promising and practical aspects of our approach.

1 Introduction

Functional object recognition in video is an emerging problem for visual surveil-
lance and video understanding problem. By functional objects, we mean objects
with specific purpose such as postman and delivery truck, which are defined more
by their actions and behaviors than by appearance. Yet, most object recogni-
tion algorithms attempt to classify objects based solely on appearance, largely
because static imagery was the only data available. With the recent, explosive
increase in video sensors, it is now possible to classify objects based on their
movements and activities in applications such as surveillance and aerial videos.

In this work, we present an approach for content-based learning and recogni-
tion of the function of moving objects given video-derived tracks. As an example,
Fig. 1(a) shows subset of our dataset where 1,442 tracks are computed from an
uncontrolled webcam video spanning 86 minutes (among total 7 days). Fig. 1(b)
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(a) Track collection (b) Postman example

Fig. 1. (a) Collection of 1442 tracks spanning 86 minutes of webcam video. (b) Suc-
cessfully identified sequence of a postman in a scene. His trajectory is fragmented into
seven red tracks where yellow circles mark the beginnings of tracks, and many other
simultaneous tracks are nearby (blue).

shows an example of a postman sequence (in red) which was successfully recog-
nized among concurrent tracks (in blue). The video was recorded from a webcam
located in Ocean City, NJ, USA. The frame rate is mostly 1Hz or worse, and
the pixel-level noise is very high, contributing to degraded tracking performance
typical in many surveillance video data.

The postman example illustrates the major challenges for functional object
recognition. First, functional models should capture location-independent behav-
ioral semantics, because location variability can be substantial across examples
and only limited number of training examples are often available for interest-
ing objects. Imagine the case of a delivery truck. It can literally stop at any
parking spots, and person from the truck may visit any store in a scene. In our
knowledge, learning of location-independent functional object models is novel,
and mostly unexplored territory. Another core challenge is that the trajectories
of target objects, marked in red in Fig. 1(b), are often fragmented into multiple
tracks, and many other tracks (blue) are nearby in the same time interval –
each track is too short to characterize the function, so that we must link tracks
to identify functions. Tracking errors are often innate. Tracking algorithms can
miss objects entirely, lose an object after tracking it for a while, or virtually any
combination of these. Trackers are often optimized to avoid identity switching
errors, which will result in greater track fragmentation.

Our solution for location-independent semantic behavior learning is to incor-
porate scene context. By scene context, we mean local scene regions with dif-
ferent functionalities such as doorways and parking spots which moving objects
often interact with. They are ’contexts’ because they are surrounding informa-
tion, providing additional cues about mover’s functions. Every track is encoded
with Boolean features which capture its interactions w.r.t. scene contexts, e.g.,
the activity of people walking into roads can be characterized by attributes
such as move on sidewalk, move towards road, and move on road. In partic-
ular, we explored the use of both manually and automatically obtained scene
contexts. Based on these representations, functional models are learned from ex-
amples, and novel instances are recognized from unseen data. To model behavior
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over time in the presence of track fragmentations, we have formulated a two-
level modeling scheme. At the lower level, collected tracks are clustered based
on features relating them to scene elements, resulting in elementary models cor-
responding to different categories of low-level behaviors such as “walking on
sidewalk” and “crossing road”. This scheme is motivated by the observation
that tracks tend to be fragmented when there are substantial changes in low-
level activities. At the higher level, composite full functional object models are
learned in a supervised fashion, using the elementary models as building blocks,
abstracting away low-level information. In terms of modeling regimes, we have
investigated three approaches: (1) unigrams, (2) bigrams, and (3) HMMs.

To address the fragmentation issues during recognition, we have developed a
track linking classifier based on Adaboost.M1 [1]. The classifier computes link
probabilities for every pair of tracks based on agreement between their features.
Then, sequences of tracks with higher link probabilities are formed into func-
tional behavior hypotheses to be evaluated against full functional object models.
Additionally, a pruning scheme has been developed to filter out large portion of
unrelated concurrent tracks prior to recognition, which leads to reduced number
of hypotheses and alleviates computational demand substantially.

2 Related Work

The concept of functional object recognition for static objects was pioneered
with work on recognizing chairs in static images [2]. Later, work has appeared on
integrating observed human limb activities in video for static object recognition
[3,4]. The notion of functional objects in this work goes beyond previous work
in that they are actively moving entities which interact with environments.

Most work on trajectory analysis [5,6,7] focuses on grouping trajectories based
on their locations and learning normalcy models. The resulting models are mostly
location-dependent, primarily due to the adopted track features which heavily
rely on either image or world coordinate information. In this work, we incor-
porate scene context features which largely abstract away location information.
Accordingly, resulting models in our work depends less on location information
and deliver interpretable semantics. A related work is [8] where the states of
HMMs are semantic primitives such as CloseTo and Moving. In our work, how-
ever, semantic primitives are learned in an unsupervised manner.

The tracklet link classifier in this work differs from previous work [9,10] in
that links are formed non-exclusively. The motivation is that we focus more on
improving true positive retrieval ratios of links that belong to occurrences of
functional objects, allowing multiple links to be formed from a track to other
tracks, aiming to examine as many linked hypotheses as possible. The potential
risk of exponential growth in number of formed hypotheses is compensated by
pruning seemingly unrelated tracks prior to linking (see Sec. 6). Previous work
addresses this issue by imposing exclusive linking constraints which is solved by
global solutions such as Hungarian algorithm [9] or cost-flow network [10]. Our
link classifier is learned within boosting framework with two noteworthy differ-
ences from hybrid boosting approach [10]. First, we directly learn binary link
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(a) Learning architecture (b) Recognition architecture

Fig. 2. (a) Architecture for learning functional object models. (b) Architecture for
recognition. Solid boxes denote algorithmic processing units or existing information.
Dashed boxes represent newly computed outcomes after every processing module.

classifier and do not need to adopt ranking-based methodology in [10], because
we do not impose exclusive linking constraint through global solution in latter
stages. Second, agreements between semantic Boolean features are used as cru-
cial information for linking in our work, different from detailed kinematics and
appearance features in [10]. In far-field videos, such features are less reliable due
to the challenges of mover detection with accurate tight bounding boxes.

3 Overview of System Architecture

The overall architecture of functional model learning is illustrated in Fig. 2(a).
Solid boxes denote algorithmic processing units or existing information. Dashed
boxes represent newly computed outcomes, e.g., learned models, after every pro-
cessing module. First, input video is stabilized and geo-registered (not shown),
then object tracks are extracted using our tracking method which uses back-
ground subtraction and performs global multi-object tracking, similar to [9].
Note that our overall approach does not depend on the tracker, and in principle
any video detection and tracking system could be used. For scene contexts (Sec.
4), manually labeled information can be used. Otherwise, scene contexts can
be automatically identified. Then, tracklet database is formed where each track
is attributed with comprehensive set of features, including its interaction with
scene contexts (Sec. 4). Then, four major modules are learned from the feature-
indexed database: (a) pruning function (Sec. 6), (b) a track linking function
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(a) Manual (b) Unsupervised (c) Image Distance map

Fig. 3. (a) Manual scene context labels: road (green), parking spots (light blue), side-
walks (yellow), building entrances (red), and trash cans (dark blue). (b) Unsupervised
scene context learning results with four clusters. (c) An example distance map on image
to trashcan context (in blue on the leftmost figure).

(Sec. 6), (c) shared elementary functional models (Sec. 5) , and (d) full com-
posite functional models of interest (Sec. 5). In particular, a set of elementary
functional models are learned from a large pool of tracks, relations and actions
using unsupervised clustering. Then, we learn full composite functional models of
interest from a selected set of linked positive examples where the pre-computed
elementary functional models are used as building blocks. A noteworthy advan-
tage of the current architecture is that most of the intermediate computational
results such as scene context clusters, generic linking function, and elementary
functional models can be reused to learn new functional models.

In the recognition phase shown in Fig. 2(b), novel data are fed into the system
either as video streams or a set of video clips from which object tracks are
extracted. The same features and relations used in learning phase are computed
for each track. Then, potentially irrelevant tracks w.r.t. the functional object
under search are pruned using learned pruning function, leaving only promising
ones for further processing. The survived set of tracks are linked via the learned
generic linking function to yield linked hypotheses. Then, every linked hypothesis
is quantized into a sequence of elementary functional models which will be scored
w.r.t. a full functional model. Finally, either ranking methodology or detection
thresholds are applied to suggest promising instances to operators.

4 Scene Context and Track Features

Scene Contexts. Once track(let)s are computed, the next level of representa-
tion is the characterization of tracks by relations between tracks and scene. In
particular, the manner and timing of semantic interactions between a moving
object and nearby static scene contexts can indicate significantly different types
or behaviors. Fig. 3(a) illustrates five different types of manually identified and
labeled scene contexts: road, parking spots, sidewalks, building entrances, and
trash cans. Such manual information is becoming increasingly available through
various geo-spatial databases, e.g., Google Maps. On the other hand, scene re-
gions with different functionalities can be automatically grouped in an unsu-
pervised manner. In this work, unsupervised scene contexts are obtained by
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Table 1. List of track features in three categories: (1-7) track-level, (8-46) contextual,
and (47-48) composite. The rightmost three columns indicate which features are used
for latter stages of linking (L), track clustering (C), and pruning (P).

ID Category Type Feature Description L C P

1 Track Continuous 2D initiating locations in world o

2 Track Continuous 2D terminating locations in world o

3 Track Continuous 2D initiating locations in image o

4 Track Continuous 2D terminating locations in image o

5 Track Continuous 2D average speed in world (m/s) o

6 Track Continuous Initiating time (in seconds) o

7 Track Continuous Terminating time (in seconds) o

8 Track Boolean Tracking bounding box size indicates person? o o o

9 Track Boolean Tracking bounding box size indicates vehicle? o o o

10 Track Boolean Fast moving (within normal vehicle speed)? o o o

11 Track Boolean Slow moving (within normal human speed)? o o o

12-26 Context Boolean Move on scene contexts within world? o o o

27-31 Context Boolean Move nearby scene contexts within world? o o o

32-36 Context Boolean Move nearby scene contexts within image? o o o

37-41 Context Boolean Move away from scene contexts within world? o o o

42-46 Context Boolean Move toward scene contexts within world? o o o

47 Composite Boolean Possibly a human? o o o

48 Composite Boolean Possibly a vehicle? o o o

accumulating the intersecting track behaviors per region, and clustering them,
similar to [11]. Additionally, it is worthwhile to note that functional scene region
detectors can be trained in a supervised manner, and can be used to detect se-
mantic concepts such as parking spots or doorways [12]. Fig. 3(b) shows the scene
context clusters obtained through this approach where parameters were tuned
to produce similar number of clusters. It can be seen that the results are fairly
interpretable and similar to manual labels. Each unsupervised cluster delivers
interpretations of road, sidewalk, parking spots, and short activity areas such
as garbage cans and partial doorways. The experimental results in Sec. 7 report
recognition results based on both manual and unsupervised scene contexts.

Track Features. Every track is attributed with three categories of features:
(1) track-level, (2) contextual, and (3) composite. Track-level features consists of
both continuous and Boolean features while the other two categories include only
Boolean features. Manual camera calibration provided a homography mapping
image locations to the ground plane. First, track-level features record informa-
tion such as speed and location. Second, context features capture the interactions
between tracks and computed scene contexts both on image and world coordi-
nates. Third, composite features roughly categorize tracks to be human or vehicle
based on heuristics using information such as bounding box size, speed, and loca-
tion (on sidewalk or road etc). This level of information should capture all salient
aspects of functional object behavior. The entire set of features are enlisted in
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(a) Vehicles parking. (b) People on sidewalk. (c) A location cluster.

Fig. 4. (a-b) Two cluster results based on our approach (among total eleven). Each
class delivers interpretable behaviors : parking and people on sidewalk. (c) A cluster
obtained by [6]. Green and red marks indicate track heads and tails.

Table 1. Note that Boolean features are not mutually exclusive, e.g., both com-
posite features can be true, indicating that a track maybe both human and a
vehicle, embracing the uncertainty and mitigating more strict decision to fu-
ture computational modules. Context features capture interactions based on the
changes of distance within every track to scene contexts. Fig. 3(c) shows a pre-
computed context distance maps on image for the trash can scene context (shown
in blue in Fig. 3(a)). Using distance maps on both image and world coordinates
in conjunction with tracking, we can compute interactions efficiently. While most
types of context features include 5 features, one each for every manual scene con-
text, Move on type includes 10 additional features, totaling 15. Tracks frequently
move across different scene contexts, and 10 additional unordered pairwise fields
were formed (out of 5), e.g., Move on Sidewalk and ParkingLot, to encode such
behavior. Note that different subsets of features are used at different future pro-
cessing modules (marked in Table 1) which include link classifiers (L), elementary
function clustering (C), and pruning function (P).

5 Functional Object Model Learning

To model functional object behavior over time in the presence of track frag-
mentations, we have formulated a two-level hierarchical approach. At the first
lower-level, a codebook for individual track quantization is learned to provide a
vocabulary of low-level activities based on encoded features. The learned code-
book is then used to assign every track to one of different elementary functions.
At the higher level, full function models are learned from a sequence of quantized
tracks, regardless of the detailed feature information encoded in every track.

Elementary Functional Model Learning. Identification of elementary func-
tional models is conducted by clustering all tracks based on contextual and com-
posite features. We have explored four different clustering methods: K-means,
mean-shift, spectral clustering [13], and affinity propagation [14]. The resulting
clusters represent a group of tracks that share a common set of features. We
have found that affinity propagation [14] produces superior clusters in terms of
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(a) Delivery truck (b) Road cleaning vehicle (c) Trash truck

Fig. 5. Three examples of functional objects: (a) delivery truck, (b) road cleaning
vehicle, and (c) trash truck. Tracks belonging to human and vehicle movers are shown in
red and green respectively where yellow circles mark the beginnings of tracks belonging
to functional objects. Blue tracks are concurrent movers.

interpretability with minimal parameter tuning efforts. Fig. 4(a-b) show tracks
within two sample clusters among total eleven, which deliver interpretations of
vehicles parking and people on sidewalks, all independent of event locations.
Although omitted for brevity, other clusters captured activities such as vehicles
passing through and people crossing roads. As a comparison, a trajectory anal-
ysis method [6] has been applied where a sample cluster dominated by spatial
distribution is shown in Fig. 4(c), only showing pedestrians on the left sidewalk.

Full functional object model learning. We adopted generative learning ap-
proaches for full functional model learning. This is because the size of positive
training examples are often limited and the identification of negative examples
are challenging for content-based retrieval problems. Our goal is to learn full
functional model for long-term object activities from a given set of positive ex-
ample which are assumed to be in the form of a sequence of manually linked
tracks. For example, four functional objects which include postman, delivery
truck, road cleaning vehicle and trash truck are shown in Fig. 1(b) and Fig. 5(a-
c). It can be seen that each example consists of fragmented tracks. For delivery
truck and trash truck, tracks even switch between multiple movers, i.e., people
(red) and vehicle (green). Three modeling regimes are explored : unigrams, bi-
grams, and HMMs. Unigram simply counts unique symbols individually, while
bigrams count the unique consecutive pairs. These three models provide different
spectrum on amount of information they can capture. Since we use elementary
functional models to discretize the tracks within sequences, every sequence ex-
ample is represented as a series of symbols. For example, a sequence may be
represented as: 1121 for a four-track sequence. Additionally, we insert gap vari-
ables, e.g., zero(0), whenever there is a temporal gap between tracks. This mod-
ification yields a sequence representation of : 1010201 (assuming temporal gaps
everywhere). The number of parameters to be estimated for each of the three
modeling regimes is in increasing order of unigrams, bigrams, and HMMs.

We use unigrams and bigrams within sample-based learning framework. This
approach effectively converges to nearest-neighbor classifier. There are several
well-known distance metrics that measure how distinct two bag-of-words distri-
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Fig. 6. (a) Boosting algorithm decreases linkage classification errors as increasing num-
ber of weak classifiers are learned. The x-axis shows the progress of boosting learning
as the number of weak classifiers, and y-axis shows classification error. Detected links
overlaid (in cyan) on sequences of (b) a postman and (c) a delivery truck.

butions are. In this work, we used Bhattacharyya distance. For HMM learning,
we used standard initialization with uniform priors and EM learning with Dirich-
let priors to compensate for limited amount of training examples. The number
of hidden states was set to be the number of elementary functions.

6 Track Linking, Pruning, and Linked Hypotheses

To recognize functional objects in the presence of track fragmentations, links
between tracks should be identified to generate linked hypotheses. Our insight
is that, if two fragmented tracks are a source and destination pair which belong
to an identical mover, then a large portion of the feature distributions on these
tracks will agree. Every track is encoded with comprehensive set of features (see
Table 1) which consist of two types of features : Boolean and continuous. If both
Boolean features in two separate candidate tracks agree, we assign ’True’ to
the corresponding dimension in the new pairwise feature, and ’False’ otherwise.
For continuous features such as velocity and location, the absolute difference
between the two values is computed. Additionally, we have included additional
features which may be potentially useful: the number of total agreed Boolean
features, and the distance between two tracks.

We have used ’Adaboost.M1’ [1] with decision stumps to learn a linking func-
tion. Fig. 6(a) shows decreasing errors w.r.t. the increasing number of weak
classifiers. Qualitative results of automatic linking on datasets of a postman and
a delivery truck are shown in Fig. 6(b) & (c). (see Fig. 1(b) and Fig. 5(a) for
originals) where the detected links (cyan) are overlaid. The tracks belonging to
the primary function tracks are well-linked, with minor number of confuser links.
Based on the outputs from Adaboost link classifier, track sequences with higher
link probabilities are formed into functional behavior hypotheses to be evaluated
against full functional models. The foremost concern with non-exclusive linking
approach is that the number of hypotheses can grow (approximately) exponen-
tially w.r.t. the identified potential links. For example, during our studies, we
have seen impractically large number of 1 billion hypotheses are generated from
15 minute query video. It is crucial that number of links to be reduced. There
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are two potential approaches to address this problem: (1) build object-specific
linking function, and (2) prune tracks that seemingly do not belong to the func-
tional object class of interest prior to linking. The first approach , however, did
not work well because the limited number of training examples per class (often
the case for content-based retrieval) made successful learning difficult.

Accordingly, a pruning scheme has been developed to filter out large portion of
unrelated concurrent tracks prior to recognition, which leads to reduced number
of hypotheses and alleviates computational demand substantially. Our approach
is to prune out tracks which demonstrate little similarity to the positive example
tracks belonging to the function class of interest. Our successful solution is to
directly use the available Boolean context features on a track to measure the
similarity against the provided training tracks (see Table 1). When there are
substantial number of identical Boolean context features between a candidate
track and tracks within positive training dataset, we assume that it is more
likely to be kept as candidate tracks, otherwise, it will be pruned out prior to
linking. Similar to linking, we have used the number of agreed Boolean features
as similarity score for pruning. To obtain a threshold θ for pruning, min-max
similarity across positive examples is used: θ = min({θi|θi = maxi�=j({θij})}).
Here, θij denotes the similarity between two training tracks. For a novel tracklet,
if there exists a training track with similarity score higher than the threshold, it
is kept, otherwise, it will be pruned. In our test, the pruning module eliminated
about 90% of negative examples while it kept most of the promising tracks
(>97%). We have also explored the use of related max-min thresholds, however,
it turned out to keep unnecessarily large number of tracks, lowering negative
example pruning rate close to 50%. In summary, as the result of combined prior-
pruning-then-linking approach, the number of generated hypotheses was reduced
by several orders of magnitude where the maximum from a set of 15 minute
videos was at most 2500, which is within manageable bounds.

7 Experimental Results

Link Classifier and Hypotheses Generation. To assess quantitative per-
formance of the developed linking and hypotheses generation framework (Sec.
6), we have tested our work along with two additional linking methods on tracks
collected from webcam data. First, we look into the generic linking accuracy of
developed linking functions. By generic linking, we mean that linker accuracy
will be assessed based on test dataset not being limited to the ones that contain
functional object sequences. Linker function outputs either link probabilities (the
case of Adaboost in our work) or link scores. Each of the i-th element in training
data for AdaBoost is in the form of (xi, yi) where xi is a multi-dimensional fea-
ture vector and yi ∈ {0, 1} is a label. For AdaBoost training, Np(≈ 250) positive
examples and Nn(≈ 500) negative examples were used. As competing methods,
we have implemented two additional linker functions and learned the parame-
ters through training. The first link function is learned based on RankBoost [10].
The training data consists of pair of feature vectors (xi,0, xi,1) where the prefer-
ence/rank of the the first item is higher than the second. All the features used for
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AdaBoost were re-used and additional track smoothness features which measure
the kinematic continuity between tracks used in [10] were included. RankBoost
learning process generates a strong rank function H(x) =

∑
t αtht(x) which

consists of linear chain of weak ranker ht(x) where we used decision stumps. It
is desirable to assess the learning capability of AdaBoost and RankBoost given
equal amount of training data. From the training data used for AdaBoost, we
created (Np +Nn) number of preference pairs where xi,0 and xi,1 belong to pos-
itive and negative training dataset respectively. In addition, as pointed out by
[10], the outputs of RankBoost classifier does not deliver precise interpretations
as probability within range [0,1]. We used logistic regression to map the outputs
of RankBoost to probabilities. The second link function implemented is based
on more traditional idea which outputs several costs {ci} based on kinematic
continuity and appearance similarity, e.g., [9]. In our work, we have considered
such costs between tracks as link features and learned a logistic regression func-
tion 1/(1+ e−

∑
wici) as a link classifier where the weight parameters {wi} were

learned from available training data. Newly developed contextual features were
not used for this linker for comparison purposes.

The generic-linking test results of all three link classifiers on test dataset of
(≈ 300) positive and (≈ 500) negative examples are shown on the left side of
Table. 2. Probability of detection (PD) and false positive rate (FP) are shown.
A standard threshold of 0.5 was used as decision boundary. It can be observed
that boosting-based methods outperform the traditional weighted score method
in terms of PD while FPs are all similarly low. Boosting-based methods ef-
fectively exploit diverse features. On the other hand, the conventional features
used for weighted score linker are presumably less reliable, mostly due to the
low resolution and low frequency characteristics of the video clips. For exam-
ple, low-level kinematics features which rely heavily on accurate high-frequency
dynamic information is not captured well and often rejects true links by mis-
take. The superiority of AdaBoost over RankBoost can be attributed from two
aspects. Theoretically, there is no guarantee that RankBoost will actually out-
perform AdaBoost for classification tasks. Accordingly, use of larger training
dataset may be needed for superior performance.

In addition, we conducted experiments to assess the benefits of various sub-
modules for identifying long-duration linked trajectories of functional objects,
using 13 video clips containing functional objects.We applied all three linker
functions along with two optional modules: pruning (P) prior to linking and
Hungarian method (H) to impose exclusive links. The results of three combi-
nations of approaches are reported on the right side of Table. 2. The average
number of tracks per video clip was 103.9 where the average number of gen-
erated hypotheses and the PD which denotes the ratio of datasets where the
generated hypotheses included full trajectories of functional objects are shown
in Table. 2. If both optional modules are turned off, the space of all linked hy-
potheses becomes impractically large occasionally and the results are omitted.
Two important observations can be made from Table. 2. First, the pruning pro-
cess indeed reduces the number of generated linked hypotheses, nonetheless, it
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Table 2. Average performance statistics of different linking algorithms over total 13
datasets that contain functional objects. ’P’ denotes the use of pruning step prior to
linking. ’H’ refers to the use of Hungarian method to impose exclusive linking.

Generic Linking Linked Hypotheses
PD FP #Tracks P H # Hypotheses PD� 341.8 0.85

AdaBoost (ours) 0.82 0.08 � 41.1 0.38� � 35.2 0.38� 180.1 0.30
RankBoost 0.70 0.05 103.9 � 29.3 0.08

(logistic regression) � � 24.8 0.08� 130.2 0.08
Weighted scores 0.61 0.09 � 24.4 0.0

(logistic regression) � � 19.7 0.0

does not affect the overall PD to be lower. Second, although exclusive linking
substantially lower the number of generated hypotheses, PDs lower as well. The
results suggest that, if considerations can make brute-force style search more
affordable, it will be worthwhile to pursue such direction.

Functional Object Recognition. Our primary metric for functional object
recognition is ROC curves. In our efforts, samples refer to the set of all generated
hypotheses. If a sample contains the entire sequence of ground truth tracks, it is
considered to be a ’hit’, i.e., a super-set hypothesis of a positive sample is still
a hit. Test samples are either scored by Bhattacharyya distances (for unigrams
and bigrams), or by data likelihood (for HMMs). In terms of decision thresholds,
we adopt top ranking number as such measure. Top ranking number denotes the
number of highest-scored hypotheses that are to be returned as retrieval results.

Four functional objects selected from our webcam dataset were considered:
postman, delivery truck, road cleaning vehicle, and trash truck. We have man-
ually cropped total of 13 video clips from our webcam dataset where durations
range from 3 to 15 minutes. Each of these clips loosely contains an example
object along with approxately 1 min of extra amount of video before and after
occurrences of examples. The original number of video clips for four functional
classes are : 2-3-4-4. To obtain additional realistic data, we perturbed the ob-
tained tracks to create three additional perturbed clones per track, resulting in
dataset sizes of : 8-12-16-16. For the learning of elementary functional models
and linking functions, we used original clips only (total 13). The exclusion of
perturbed dataset during training was to assess the generalization power across
different datasets. For every learning and recognition of full functional object
trajectories, leave-one-out experiments are conducted. In the case of postman
class, 7 positive examples are used in training process and one left-out example
is included in the test dataset along with all the other available datasets which do
not belong to the trained functional category (total 44). On average, the size of
the target functional object class data constitutes about 3% of each batch of test
sets. The ROC curve for a particular functional class is computed as the average
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Fig. 7. (a) ROC curve for delivery truck dataset. ’Manual’ and ’Auto’ refer to the use
of manual and learned scene context clusters respectively. Results of six different ap-
proaches: [Unigram, Bigram, HMM]×[Auto, Manual]. Note : bigram results are similar
to unigram results, and may not be visible due to unigram curves. (b) Average rank-
ing ratios of for four functional objects under six varied experimental settings. Higher
ranking ratios represent more accurate classification.

from multiple experiments conducted for that particular class. In particular, we
have conducted the whole pipeline of learning and recognition experiments using
both manual (see Fig 3(a)) and automatically obtained scene contexts (see Fig.
3(b)) to assess how much impact the accurate manual identification of scene
contexts make. Then, normalized average rankings (AR) were obtained from the
ranking results w.r.t. the total number of generated hypotheses. Accordingly, an
AR close to 1.0 indicate accurate classification.

An example ROC curve for delivery truck class is shown in Fig. 7(a). An in-
teresting outcome is the promising performance of unigrams and bigrams: both
achieve very high PDs at very low cost of FPs. Considering the simplicity and
computational efficiency associated with these models, the accurate identifica-
tion results show that they can capture the general characteristics of particular
functional classes well enough to yield favorable recognition. Another finding
from the ROC curve analysis is that simpler models such as unigrams and bi-
grams are outperforming more sophisticated counterpart such as HMMs. The
observed weak performance of HMMs can be explained from the generalization
point of view. Given the limited number of training samples which ranges from 7
to 15 samples, comparably far larger number of HMM parameters fail to capture
the general characteristics of data. These encouraging results for simpler models
are likely due to the current problem setting: content-based learning with limited
number of training examples. Analogous analysis can be drawn from the aver-
age ranking ratio results for all four functional objects under six experimental
settings, shown in Fig. 7(b). The ROC curves for the other three object classes
showed very similar characteristics (omitted for brevity). Note that among four
classes, delivery truck and trash trucks are more challenging because they in-
clude both person and vehicle movers. No hit hypothesis could be generated
from a few datasets belonging to these two classes, accordingly, corresponding
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ROC curves never achieve perfect PD of 1.0 (see Fig. 7(a)). Additional finding
is that the overall recognition degrades only marginally even when unsupervised
scene contexts are used, in comparison to more accurate manual contexts. This
observation suggests that rough identification of scene contexts may be sufficient
to deliver favorable functional object recognition results in many cases. It would
be worth noting that our results may be more optimistic than true reality, pri-
marily due to the facts that perturbed data is used and the ratio of true positive
examples may be less in practice than our current experimental setting, proba-
bly appearing less than 1% of time while these objects constitute average 3% of
data in this work. We plan to investigate these issues in our future work.
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Abstract. This paper proposes a novel approach to anomalous behaviour detec-
tion in video. The approach is comprised of three key components. First, dis-
tributions of spatiotemporal oriented energy are used to model behaviour. This
representation can capture a wide range of naturally occurring visual spacetime
patterns and has not previously been applied to anomaly detection. Second, a
novel method is proposed for comparing an automatically acquired model of nor-
mal behaviour with new observations. The method accounts for situations when
only a subset of the model is present in the new observation, as when multiple
activities are acceptable in a region yet only one is likely to be encountered at any
given instant. Third, event driven processing is employed to automatically mark
portions of the video stream that are most likely to contain deviations from the
expected and thereby focus computational efforts. The approach has been imple-
mented with real-time performance. Quantitative and qualitative empirical eval-
uation on a challenging set of natural image videos demonstrates the approach’s
superior performance relative to various alternatives.

1 Introduction

Detection of anomalous behaviour relative to some model of expected behaviour is a
fundamental task in surveillance scenarios. Examples include detection of movement
in an area where none should occur (as in a secure storage facility) and detection of
“wrong way motion” where movement of objects only should occur in one direction
yet are observed in a different direction (as in movement of traffic on a one-way road).
In particular, given the increase in video coverage of public and private spaces, an au-
tomated ability to monitor the acquired data and signal deviations from expected be-
haviour would be very useful, as it could serve to alert either human or artificial systems
to analyze further the data that is acquired.

A number of challenges must be surmounted for successful detection of anomalous
behaviour in surveillance video. In essence, these challenges arise from the need to
model a wide range of potentially complicated patterns of normal activity and detect
fine deviations from that model, even while being robust to changes that are insignif-
icant. Normal activity can range from simple no temporal change through single and
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multiple motions to complicated situations of dynamic textures (e.g., backgrounds of
fluttering vegetation or water waves), including multimodal behaviour. Modeling must
be flexible to encompass this entire range. Anomaly detection must be able to register
subtle changes of interest (e.g., changes in direction or speed of motion, presence of a
coherently moving object against a camouflaging background of texture and dynamic
clutter), while not signaling insignificant changes (e.g., naturally occurring illumination
changes during the diurnal cycle, differences between objects that are manifest purely in
terms of spatial appearance without behaviour differences). It also is desirable to allow
for partial matches of observations to the model, as complicated scenarios might en-
compass multimodal behaviour and observations that correspond to any modeled mode
are acceptable, while alternatives are not. Further, in many situations an ability to in-
corporate deviations that recur over time into the model is desirable, so that they are no
longer considered anomalous.

Related Work. One general class of approach to anomaly detection in video is based
on explicit tracking of viewed objects [22,31,9,18,5]. Such approaches acquire models
of typical trajectories from tracker output over some training period and subsequently
signal deviations in observed tracks as anomalies. A significant limitation to this class
of approaches is their reliance on (visual) tracking, a still unsolved challenge.

Background subtraction techniques that model typical appearance from a camera
view can be applied to detecting behaviour anomalies (see, [27] for review and,
e.g., [14,20,36,17] for a sampling of more recent work). The simplest techniques in-
volve unimodal background models of pixelwise image intensity and have limited ap-
plicability for complicated backgrounds. Increased sophistication in modeling static
background appearance comes through consideration of pixel attributes beyond image
intensity (e.g., gradients, edges, texture). More involved techniques account for dy-
namic backgrounds by acknowledging multimodal intensity distributions, parametric
modeling, kernel-based estimation and predictive filtering. An extension of predomi-
nantly intensity-based background modeling for video operates by indexing observa-
tions relative to a database of normal videos, with failures taken as anomalies [8]. A
limitation of appearance-based approaches is their inability to abstract purely dynamic
aspects of behaviour, which can lead to overly restrictive, under-generalized models
of normal behaviour (e.g. lack of invariance to different actors performing the same
activity).

More closely related to the approach proposed in the current paper are efforts that
have more explicitly modeled the dynamic behaviour of backgrounds. Typically, such
approaches make use of some type of spatiotemporal filtering to define normal local ac-
tivity with anomalies taken as deviations from the defined model. Along these lines,
some work has appealed directly to spatiotemporal gradient measurements [30,25].
Other work has been more restricted to considering only the temporal first derivative
(blurred and quantized) [35]. Alternatively, image flow measurements have been used
to define local activity models [7,4,23,2,24]. Still other work has abstracted local flow
measurements to a simpler consideration of whether or not a pixel typically is in mo-
tion to define locally normal behaviour [21]. Direct use of spatiotemporal gradients to
define normal activity has a number of limitations, including sensitivity to image con-
trast and spatial pattern, which lead to lack of robustness to changes in illumination and
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different appearing actors performing the same activity. Further, reliance on temporal
derivative alone leads to an inability to distinguish different motion directions. Alterna-
tively, approaches that rely on (local) flow measurements are limited in the complexity
of behaviours they can capture, e.g., multiple motions at a point, temporal flicker and
dynamic textures (e.g., water, wind-blown foliage) can be difficult to model, as they vio-
late the underlying assumptions of the flow computation (e.g., brightness conservation)
and thereby yield unreliable results in such scenarios.

A number of recent approaches are concerned with modeling of non-local behaviour
(but typically building on local measurements) with application to anomaly detection
[6,25,24,29,28,32,26]. While such approaches make strides in accounting for non-local
activity, they still can be limited by overly restrictive local representations, e.g., spa-
tiotemporal gradient models that are not invariant to spatial appearance and flow mod-
els that do not account for activity that is amenable to characterization as a single local
flow vector (e.g., multiple motions and more general dynamic textures).

To account for complicated local behaviour, measures of spatiotemporal oriented en-
ergy play a prominent role in the approach proposed in the current paper. Previously,
such measures have been used in a variety of vision processing tasks, including image
enhancement and motion estimation [16], video segmentation [12], pattern categoriza-
tion [34] and activity recognition (although not generic anomaly detection) [10,13,11].

Contributions. In the light of previous research, the present approach makes four main
contributions. 1) 3D, (x, y, t), spatiotemporal oriented energy measurements are used
to represent observations. While almost any approach to anomalous behaviour detec-
tion must employ spatiotemporal filtering of some type, no previous work has made use
of the energy filtering framework proposed here, which enjoys a number of benefits in
being able to capture a wide range of image dynamics (both standard motion as well as
more complex dynamic patterns, e.g., flickering lights, swaying vegetation and water),
even while being robust to irrelevant variations (e.g., overall illumination variation and
different appearing individuals engaged in the same behaviour). 2) A novel histogram
comparison method is presented to detect anomalous behaviour relative to an acquired
model. A key component of this measure is that it accounts for partial matches of new
observations to the acquired model. 3) Event-driven processing is used to automati-
cally mark portions of the video stream that are most likely to correspond to activities
and thereby focus computational efforts. 4) The proposed approach has been realized
in real-time implementations. A detailed empirical evaluation of the implementations
is presented, which documents the contributions of its individual components and its
strong overall performance relative to alternative approaches.

2 Technical Approach

The developed approach to detecting anomalous behaviour is based on observed de-
viations from an acquired model of normal behaviour. The model is image-based and
thereby indicates expected (normal) observations on a pixelwise basis as recorded from
a specific viewpoint.
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2.1 Spatiotemporal Energy Representation

In the developed approach, both model and newly acquired video observations are rep-
resented in terms of local distributions of 3D, (x, y, t), spatiotemporal oriented energy
as derived from input imagery via application of an orientation tuned filter bank. This
representation is selected as it captures the local first-order correlation structure of vi-
sual spacetime and thereby allows a wide range of dynamic activities to be captured
(e.g., both single and multiple motions as well as more general dynamic textures) with
robustness to illumination and purely spatial appearance [12]. In particular, the cur-
rent approach to spatiotemporal orientation for anomaly detection follows closely the
previous work [12], where it was used instead for video segmentation.

To extract the orientation measurements, oriented energy filtering is realized in terms
of second derivative of 3D Gaussian filters, G2θ

(x, y, t), and their Hilbert transforms,
H2θ

(x, y, t), where θ represents the direction of the filter’s axis of symmetry. These
particular filters are selected due to their (moderately) broad tuning, which allows for
a wide range of orientations to be captured with a relatively small number of filters.
Additionally, these filters admit a steerable and separable formulation [15], which leads
to efficient computations. The filters are taken in quadrature, to yield the following local
oriented energy measure,

Eθ(x, y, t) = (G2θ
∗ I)2 + (H2θ

∗ I)2, (1)

where I ≡ I(x, y, t) denotes the input imagery and ∗ symbolizes convolution.
For the case of dynamic spacetime orientation (e.g., as related to motion phenom-

ena), each of the oriented energy measurements, (1), is confounded with spatial orienta-
tion. Correspondingly, the same pattern of activity will yield different responses across
an ensemble of oriented energy filters depending on variations in the spatial appearance
of the viewed object/event: This is an undesirable state of affairs for dynamic anomaly
detection as it would not be possible to build models of normal behaviour that are ro-
bust to irrelevant details of purely spatial appearance (e.g., sensitivity to what people
are wearing, when the concern is for how they are moving). To remove this difficulty,
the spatial orientation component of the oriented energy responses is discounted by
marginalizing this attribute via pointwise, linear combination of energy measures, (1),
that support a single spacetime orientation, as specified by the unit normal, n, corre-
sponding to its frequency domain plane. (Recall that a pattern exhibiting a single space-
time orientation, e.g., velocity, manifests as a plane through the origin in the frequency
domain [33].) In particular, the energy measure, (1), is refined to become

Ẽn(x, y, t) =
N∑

i=0

Eθi(x, y, t), (2)

where θi represents one of N + 1 equal spaced orientation tunings consistent with
direction n and N = 2 is the order of the Gaussian derivative filter (1), for details see
[12].

The resulting oriented energies are confounded with local contrast. This makes it
impossible to determine whether a high response from a particular filter is indicative
of a close match with the underlying structure or is instead a low match that yields a
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high response due to significant contrast in the signal. To arrive at a purer measure of
oriented spacetime structure, the energy measures are normalized by the sum of the
oriented responses at each point,

Êni(x, y, t) =
Ẽni(x, y, t)∑

nj∈S
Ẽnj (x, y, t) + ε

, (3)

where S denotes the set of (marginalized) oriented energies, (2), with nj a particular
sample and ε a constant, set to 1% of the maximum filter response, introduced as both
a noise floor and to avoid instabilities at points where the overall energy is small.

In the currently implemented representation, K = 6 different directions, n, are made
explicit, that correspond to leftward, rightward, upward and downward motion (each
with peak response at 1 pixel/frame movement), static (orientation orthogonal to the
image plane) and flicker (orientation orthogonal to the temporal axis); although, due to
the broad tuning of the filters employed, responses arise to a wide range of orientations
about the peak tunings. By construction, these measures are marginalized for purely
spatial appearance and normalized for contrast, which allows for a degree of robustness
to unimportant variability in observations. Further, the representation is simply realized
by an alternating series of linear (i.e., separable convolution and pointwise addition)
and pointwise non-linear operations (i.e., squaring and division); thus, efficient compu-
tations are realized.

Finally, it is straightforward to extend the described approach to multiple scales. In
particular, the input imagery is brought under a pyramid representation [19] prior to
filtering. Subsequently, the oriented filtering, (1), appearance marginalization, (2), and
normalization, (3), are performed separately at each pyramid level to realize a multi-
scale oriented energy representation. In the current implementation σ = 5 scales are
employed, with factor of

√
2 subsampling between levels and commensurate lowpass

filtering prior to subsampling.

2.2 Model Acquisition and Maintenance

The proposed model is given in terms of a histogram of spatiotemporal orientations
observed over some period of time. Since behaviours of interest are (by definition)
dynamic, only measures of orientation that arise from non-static observations are ex-
plicitly represented in the model. In particular, a key component to the method is the
concept of accumulating statistics only on interesting events: The information is ag-
gregated at the pixel level only between frames containing dynamic energy. Dynamic
energy is captured in terms of a threshold, β, on the static channel EStatic: If static
energy is greater than β, it is considered that there is no activity at the current pixel. To
formalize the notion of event-driven processing, let

ψ(x, y, t) =
{

1 if EStatic < β
0 otherwise.

(4)

and the model histogram, m(x, y), be defined as

mn(x, y) = C

t=T∑
t=1

ψ(x, y, t)Ên(x, y, t) (5)
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where mn(x, y) is the histogram bin corresponding to orientation n at location (x, y),
C is a normalization factor ensuring the histogram sums to unity and t indexes from an
initial to frame T used in building the model. The histogram at a given spatial location
over a period of time is built by concatenating the relative energy of the K spacetime
orientations, n, at each of the σ scales, thus leading to a K × σ bin histogram.

Similarly, a new observation is made by constructing a histogram, o(x, y), analogous
to the model, except that it is accumulated only over a relatively small number of frames.
In particular,

on(x, y) = C

t0+�(k/2)�∑
t=t0−�(k/2)�

ψ(x, y, t)Ên(x, y, t) (6)

where on(x, y) is the histogram bin corresponding to spatiotemporal orientation n at
location (x, y), C is a normalization factor ensuring the histogram sums to unity and t
indexes across k frames, k << T , that are used in accumulating the current observation
at time t = t0.

Finally, the model mt(x, y) at time t is updated in an ongoing fashion so as to ac-
count for the current observation, ot(x, y), according to

mt+1(x, y) = [1 − δψ(x, y, t)]mt(x, y) + δψ(x, y, t)ot(x, y) (7)

on a bin-by-bin basis with δ controlling the update rate. Notice that update is only
performed when there is an event ψ(x, y, t), (4).

2.3 Comparison of Model and New Observations

Given a model, m(x, y), and a current observation, o(x, y), anomalous behaviour is
defined in terms of deviations of the observation from the model. Given that both
the model and observation are captured as histograms, various standard comparison
methods might be invoked (e.g., χ2 test of independence or Bhattacharyya coefficient).
However, such standard methods fail to capture two key points of relevance for anomaly
detection. First, the observation might only encompass a subset of modeled activity:
This easily can be the case, due to the fact that the model statistics typically are ac-
cumulated over a relatively large number of frames, possibly incorporating multiple
activities (e.g., left and right motions); whereas, the observation statistics capture rel-
atively shorter time periods that might not encompass all modeled activities (e.g., left
motion only). Second, it is desirable to model scenarios where a lack of activity in the
current observation histogram should not be considered anomalous, even if the previ-
ously acquired model for that particular pixel differs significantly.

To address the noted points, the χ2 test of independence [3] is taken as a point of
departure and modified, as follows. In the current context, the χ2 measure between
m(x, y) and o(x, y) is given as

χ2[m(x, y),o(x, y)] =
∑
n∈S

(mn(x, y) − on(x, y))2

mn(x, y) + on(x, y)
. (8)

The first point, regarding any particular current observation not encompassing all pos-
sibilities captured in the model, can be addressed by introducing a notion of subset
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inclusion, i.e., the observed behaviour must be a subset of the modeled behaviour; else,
it will be taken as anomalous. To indicate such anomalies, a function is needed that
selects particular orientations (histogram bins), n, where there is little response in the
model (e.g., relative to some threshold, τ0) even while there is significant response in
the observation (e.g., relative to some threshold, τ1); a corresponding function can be
defined as

φ(mn, on) =
{

1, if (mn < τ0) and (on − mn > τ1)
0, otherwise

(9)

The second point, regarding a particular observation not encompassing any activity,
can be addressed by assigning decreasing weight to an observation as fewer of the
frames observed in its construction drive event-based processing as indicated by (4).
This notion can be captured by an event ratio, ρ[o(x, y)], of the number of frames that
contributed to the event-based processing, γ[o(x, y)], to the total number of frames
observed, α[o(x, y)], i.e.,

ρ[o(x, y)] =
γ[o(x, y)]
α[o(x, y)]

. (10)

Combining the original χ2 formulation, (8), with the formalization of subset inclusion,
(9), and event ratio, (10) yields the final measure of distance between a model and
observation

D[m(x, y),o(x, y)] = ρ(o)
∑
n∈S

φ(mn, on)
(mn − on)2

mn + on
, (11)

with larger distances taken as increased evidence for behaviour anomaly at (x, y) and
final anomaly detection based on a comparison to a threshold, Δ. (Explicit reference
to image coordinates, (x, y), is suppressed on the right-hand side of the final distance
measure, (11), for the sake of notational compactness.)

3 Empirical Evaluation

Three implementations of the proposed approach to detecting anomalous behaviour
have been developed, which differ according to their software and hardware utilization
and are documented in Table 1. Algorithmic parameters are the same for all implemen-
tations: β = 0.35, δ = 0.005, τ0 = 1.5/h, τ1 = 0.15/h, where h is the number of
histogram bins, i.e., h = 6 (orientations) ×5 (scales) = 30, unless otherwise noted.
The reported timings are with respect to processing an image of size 160 × 120 and
attest to the applicability of the approach to real world operational scenarios. Detection
results reported below are with respect to the naive ANSI C implementation; although,
all implementations yield similar results.

The implementations have been evaluated on a test suite of video sequences, which
are documented in Figs. 1 and 2; actual videos are provided in the supplemental mate-
rial. All sequences are of spatial dimensions 320 × 240. Each sequence was manually
groundtruthed for anomalous behaviours relative to the depicted backgrounds. For the
sake of practicality, images were groundtruthed on a coarse spatial grid of cells, shown



570 A. Zaharescu and R. Wildes

Sample Recall / Precision Info

Representation Comparison

Title: Train Source: [1]
Desc: Very challenging train sequence
due to drastically varying lighting con-
ditions and camera jitter. Abnormali-
ties: People movement.
Total Frames: 19218; Training: 800

Title: Belleview Source: [1]
Desc: Cars moving through an inter-
section. Model construction during day;
testing continuing through night. Ab-
normalities: Cars entering thoroughfare
from left or right.
Total Frames: 2918; Training: 200

Title: Boat-Sea Source: [1]
Desc: A sea-boat is passing by (motion
on motion). Abnormalities: Boat move-
ment.
Total Frames: 450; Training: 200

Subset Inclusion versus χ2 Histogram Comparison

Title: Boat-River Source: [1]
Desc: Boat passing by on a river (mo-
tion on motion). Abnormalities: Boat
movement.
Total Frames: 250; Training: 80

Title: Subway-Exit Source: [2]
Desc: Surveillance camera observing
pedestrians at a subway exit. Abnormal-
ities: Wrong way motion (leftward and
downward).
Total Frames: 32426; Training: 6900

Title: Canoe Source: [21]
Desc: A canoe is passing by (motion on
motion); also, some wind-blown foliage
in background. Abnormalities: Canoe
movement.
Total Frames: 1050; Training: 200

Fig. 1. The first column shows a frame during the evaluation of the proposed method, using
the manually marked groundtruth information. The Colour coding is: green - true positive; red
- false positive; blue - false negative. The second column presents the Precision/Recall curves
(abscissa- Recall; ordinate - Precision), with each curve containing 20 measurements. The last
column provides additional documentation for each example.
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Table 1. Implemented instantiations of the approach for anomalous behaviour detection

Language Device Clock Cores Time
ANSI C Intel Core2Duo 2.4GHz 1 80 ms
SSE2 Intel Core2Duo 2.4GHz 1 24 ms
OpenCL NVIDIA 280GTX 1GHz 120 5 ms

Sample Recall / Precision Info

Event versus Non-Event Comparison

Title: Camouflage Source: [1]
Desc: A person in camouflage walking.
The right motion is learnt as the nor-
mal behaviour. There is a large pause in
the middle, to illustrate event based pro-
cessing. Abnormalities: Left motion.
Total Frames: 1629; Training: 160

Fig. 2. Same formatting as in Figure 1

overlaid on the images. All the videos, the groundtruth data, as well as the groundtruth
and the evaluation software are available online [1]. Quantitative evaluation is presented
in the form of Precision-Recall (PR) curves by varying the detection threshold, Δ, on
(11), where Recall = # True Positives

# Positives in Dataset and Precision = # True Positives
# True Positives + # False Positives . In

calculating the PR curves, false positive/negative cells adjacent to a true positive cell
are discarded.

As detailed in Section 2, the proposed approach to anomaly detection centres around
three key ideas: (i) behaviour modeling in terms of a distribution (histogram), (5), of
spatiotemporal oriented energy responses, (3), (ii) model and observation comparison
via subset inclusion, (11), and (iii) event-based processing, (4). The experiments docu-
ment how each of these components contribute to the success of the proposed approach.

Experiment 1. The benefits of representation via a distribution of spatiotemporal ori-
ented energies are manifested in cases that require robustness to variable illumination
and camouflage, even while making fine distinctions between normal and abnormal ac-

Fig. 3. Example images from Train sequence. Extreme background changes are present, as the
moving train passes through highly variable exterior lighting conditions.
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tivity. A striking example of variable illumination is presented in Train, which includes
sudden, extreme background changes caused by the moving train passing through tun-
nels, see Fig. 3 for two dissimilar backgrounds taken shortly apart and the supplemental
video. As discussed in Sec. 2.1, the bandpass nature, (1) , and response normalization,
(3), of the employed filtering make the representation invariant to additive and multi-
plicative intensity changes and these properties yield the strong performance in variable
illumination shown in Fig. 1. Robustness of the proposed approach to more gradual
changes in illumination is illustrated in Belleview, as the sequence begins during day
and progresses through night. Also of interest in this case is clutter caused by headlights
with the onset of dusk.

Spatial camouflage, where novel objects have the same texture patterns as their sur-
round also are not problematic for the proposed approach, as the representation empha-
sizes distinctions on the basis of dynamics; an example is shown in Camouflage where
the moving person is covered with the same spatial texture pattern as the background.
Dynamic camouflage can come about when normal behaviour is sufficiently erratic to
mask novel movement. Representation in terms of a distribution of spatiotemporal ori-
entations allows for such camouflage to be broken, as a wide range of image dynamics
can be captured and distinguished: The approach can encompass complicated back-
ground dynamics in its model (e.g., motion jitter and rapidly moving shadows/lights in
Train, and variable waves in Boat-Sea and Canoe), yet still detect novel moving ob-
jects as anomalies (e.g., people, boat and canoe in Train, Boat-Sea and Canoe, resp.).
Similarly, since different directions of motion can be distinguished, an observed set of
motion directions can be incorporated into the model, while alternative motion direc-
tions are marked as anomalous (e.g., wrong-way motion detection of Belleview, Subway
and Camouflage).

The benefits of the proposed representation are quantified by the PR curves for Train,
Belleview and Boat-Sea in Fig. 1, where a comparison is made to three alternatives. The
first is image intensity-based: Capturing behaviour via pixelwise image intensity Mix-
ture of Gaussians (MOG) [27], with a MOG model of normal behaviour acquired during
a training period and subsequent intensity observations judged as anomalies based on
the joint posterior probability that they belong to any of the modeled modes. The second
alternative representation is motion-based: Capturing behaviour via pixelwise Percent-
age of Fames Motion is Detected (PFMD) [21], with motion detection performed using
the opponent spatiotemporal energy magnitude (|Eup −Edown|2 + |Eleft −Eright|2 >
0.05), which in preliminary experiments yielded superiour performance to temporal dif-
ferencing used elsewhere for PFMD modeling [21]. (Notice that opponent spatiotem-
poral energy magnitude will be relatively large in response to a locally coherent motion
[34].) Both of these representations were embedded in the recently proposed behaviour
subtraction method of anomaly detection [21], as it readily handles both MOG and
PFMD models; whereas, the method proposed in the present paper is more special-
ized for distributed (histogrammed) measurements. The third alternative is based on
quantized optical-flow direction and magnitude computed at multiple, 5, scales (e.g., as
originally proposed for direction or magnitude [2] and subsequently extended to com-
bine 8 directions with magnitude [24]; the latter is used here, as it was found to pro-
vide superiour performance in preliminary experimentation). The quantized optical flow
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Input SpatioTemporal Optical Flow

Subset χ2 Subset χ2

Fig. 4. Comparison of proposed (subset inclusion), (11), vs. χ2, (8), histogram comparison mea-
sures for the Boat-River sequence (frame 161)

defines a histogram [2,24] that is substituted directly into the proposed approach by sub-
stituting for oriented energy; thus, a direct comparison is had between oriented energy
and optical flow, as all other system components are constant. With one exception, it is
seen that the alternative representations yield notably lower PR curves in comparison
to the proposed approach, as they are not able to encompass the complicated normal
behaviour that is present in the examples. The sole exception is the case of MOG ap-
plied to Boat-Sea where the appearance of boats (abnormal) are sufficiently different
from the acquired mixture that performance is comparable to the spatiotemporal repre-
sentation. Still, optical flow appears to be second best for the other two cases, Train and
Belleview.

Experiment 2. The main benefit of comparing model, (5), and observation, (6), his-
tograms via subset inclusion, (11), is that it allows for partial fits between observations
and models. This property is important so that every given observation does not need to
encompass the entire range of previously modeled behaviour. To illustrate the practical
importance of this consideration, Fig. 4 shows comparative image results of subset-
inclusion vs. χ2 histogram comparison (all other components are exactly the same as
those of the proposed method); associated PR curves are shown in Fig. 1. Here, PR
curves are shown for both spatiotemporal oriented energy as well as optical flow, as
quantized flow can be substituted directly for the energies in the proposed approach
(see Exp. 1) to show the benefits of subset inclusion beyond application to energy mea-
surements. Also, flow appeared to be the second best overall performer when com-
paring representations in Exp. 1. For Boat-River and Subway using energy as well as
flow, it is seen that for a given recall rate, χ2 has a strong tendency for lower precision
relative to subset-inclusion. For Canoe spatiotemporal energy already is performing ex-
tremely well with just χ2; however, addition of subset-inclusion allows flow to elevate
its level of performance to that of energy. These results are readily explained as χ2 is
not able to accept as normal partial matches to the model; whereas, subset inclusion is
with resulting higher precision in its detection, i.e., fewer false positives. The quantita-
tive summaries are supported in the pictorial results, especially for complicated back-
grounds (e.g., water in Boat-River and water/vegetation in Canoe, which encompass a
range of motions; whereas, any particular observations show only a subset and such
partial matches are reported as anomalies by χ2, but not by subset-inclusion. Finally,
notice that flow leads to similar performance to spatiotemporal oriented energy on Sub-
way. This can be accounted for by the fact that both normal and abnormal behaviours
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Input Event Non-Event Input Event Non-Event

Abnormal Direction - Frame 219 Normal Direction - Frame 1427

Fig. 5. Comparison of event vs. non-event based update schemes. Without event-based process-
ing, the normal behaviour (right motion) is forgotten after 300 frames of no activity (starting
at frame 803) and it is incorrectly detected as abnormal. Event-based processing successfully
maintains the model and it does not yield false positives.

(motion of pedestrians) can be captured well by flow (as well as by spatiotemporal
oriented energy). Just in this example alone, 10 orientations have been used for spa-
tiotemporal energies by adding 4 directions aligned with motion along diagonals (e.g.,
up-left, up-right, etc.) to the standard set of 6 (only 4 of which are aligned with motion
directions, left, right, up, down), in order to bring its directional discrimination more
on par with the optical flow representation, which explicitly encodes motion along di-
agonals in its histogram bins (as well as left, right, up and down, plus magnitude).
Using only 6 orientations for spatiotemporal energy in this example led to performance
slightly worse than flow in preliminary experiments, owing to poorer (motion) direction
resolution.

Experiment 3. Event-based processing influences construction of models, (5),(7), and
observations, (6), to focus computations on portions of the data where behaviour is oc-
curring, as signaled by events, (4). Not only does such processing reduce computational
load (e.g., fewer updates are performed), but it also keeps models and observations de-
fined in terms of dynamic behaviour. An interesting benefit of this processing is that
it ameliorates problems with forgetting aspects of normal behaviour during model up-
date: Without event-based processing, a modeled event will be discarded from the cur-
rent model after 1/δ frames by the update, (7). In contrast, by updating only on event
frames, the model is prevented from forgetting behaviour due to lack of activity.

Illustrative results are presented in the Camouflage example. In this case, after a nor-
mal model (rightward motion) is acquired, there is a relatively long period of time when
no activity takes place (300 frames); nevertheless, when activity resumes anomalous be-
haviour still is detected relative to the model acquired prior to the no activity period.
The benefit is quantified in the associated PR curve in Fig. 2, which compares the pro-
posed method with the same approach neglecting event-based processing. It is seen
that event-based processing yields higher precision at comparable recall for any detec-
tion threshold, Δ, as the model is better maintained. Without event-based processing
the activity following the period of no activity consistently is misclassified, as shown
in Fig. 5; whereas, with event-based processing it consistently is classified correctly.
Nevertheless, the approach still allows for the model to encompass newly recurring
behaviours (e.g. moving shadows/lights in Train), according to the update rule, (7).
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4 Discussion

This paper has presented a novel approach to detection of anomalous behaviour in tem-
poral image sequences. The approach centres around three key ideas. First, imagery is
represented in terms of distributions of spatiotemporal oriented energy to model normal
behaviour as well as record new observations. This representation allows the approach
to capture a wide range of naturally occurring behaviours while making fine grained
distinctions between model and new observation with robustness to variations in illu-
mination and purely spatial appearance. Second, model and observations are compared
via histogram subset inclusion matching. Subset inclusion matching allows for partial
matches between model and observation so that not every possible modeled activity
must occur at any given time instance to avoid being considered anomalous. Third,
event driven processing is employed to allow for focusing of computational effort on
portions of the image stream where anomalies might occur. A limitation of the current
approach is that it does not explicitly account for non-local phenomena (e.g., interac-
tions between separate local measurements in space and time). Future work will extend
the approach to deal with such matters, e.g., by overlaying a MRF on the approach’s
local observations to abstract interactions.

The entire approach has been instantiated in implementations that show real-time
performance. In empirical evaluation, the implementations yield strong performance in
being able to model a wide range of potentially complicated patterns of normal activity
and detect fine deviations from that model, even while being robust to changes that are
insignificant (e.g., illumination and spatial appearance variations). Various compared
alternative approaches were not able to yield comparatively strong results.

References

1. http://www.cse.yorku.ca/vision/research/anomalous-behaviour
2. Adam, A., Rivlin, E., Shimshoni, I., Reinitz, D.: Robust real-time unusual event detection

using multiple fixed-location monitors. PAMI 30, 555–560 (2008)
3. Affifi, A., Azen, S.: Statistical Analysis. Academic (1979)
4. Andrade, E., Blunsden, S., Fisher, R.: Modelling crowd scenes for event detection. In: ICPR,

pp. 175–178 (2006)
5. Basharat, A., Gritai, A., Shah, M.: Learning object motion patterns for anomaly detection

and improved object detection. In: CVPR (2008)
6. Bebezeth, Y., Jodoin, P., Saligrama, V., Rosenberger, C.: Abnormal events detection based

on spatio-temporal co-occurences. In: CVPR, pp. 2458–2465 (2009)
7. Black, M.: Explaining optical flow events with parameterized spatio-temporal models. In:

CVPR, pp. 326–332 (1999)
8. Boiman, O., Irani, M.: Detecting irregularities in images and in video. IJCV 74, 17–31 (2007)
9. Buxton, H.: Learning and understanding dynamic scene activity: A review. IVC 23 (2003)

10. Chomat, O., Crowley, J.: Probabilistic recognition of activity using local appearance. In:
CVPR, pp. 104–109 (September 1999)

11. Derpanis, K., Sizintsev, M., Cannons, K., Wildes, R.: Efficient action spotting based on a
spacetime oriented structure representation. In: CVPR (2010)

12. Derpanis, K., Wildes, R.: Early spatiotemporal grouping with a distributed oriented energy
representation. In: CVPR (June 2009)

http://www.cse.yorku.ca/vision/research/anomalous-behaviour


576 A. Zaharescu and R. Wildes

13. Dollar, P., Rabaud, V., Cottrell, G., Belongie, S.: Behaviour recognition via sparse spatio-
temporal features. In: PETS, pp. 65–72 (2005)

14. Elgammal, A., Durauswami, R., Harwood, D., Davis, L.: Background and foreground mod-
eling using nonparametric kernel density for visual surveillance. Proc. IEEE 90, 1151–1163
(2002)

15. Freeman, W., Adelson, E.: Design and use of steerable filters. PAMI 13, 891–906 (1991)
16. Granlund, G., Knuttson, H.: Signal Processing for Computer Vision. Kluwer, Dordrecht

(1995)
17. Heikkila, M., Pietkainin, M.: A texture-based method for modeling the background and de-

tecting moving objects. PAMI 28, 657–662 (2006)
18. Hu, W., Xian, X., Fu, Z., Xie, D., Tan, T., Maybank, S.: System for learning statistical motion

patterns. PAMI 28, 1450–1464 (2006)
19. Jahne, B.: Digital Image Processing. Springer, Heidelberg (2005)
20. Javed, O., Shafique, K., Shah, M.: A hierarchical approach to robust background subtraction

using color and gradient information. In: Motion Workshop, pp. 22–27 (2003)
21. Jodoin, P.M., Konrad, J., Saligrama, V.: Modeling background activity for behavior subtrac-

tion. In: ICDSC, pp. 1–10 (2008)
22. Johnson, N., Hogg, D.: Learning the distribution of object trajectories for event recognition.

IVC 14, 609–615 (1996)
23. Ke, Y., Sukthankar, R., Hebert, M.: Event detection in crowded videos. In: ICCV (2007)
24. Kim, J., Grauman, K.: Observe locally, infer globally: A space-time MRF for detecting ab-

normal activities with incremental updates. In: CVPR, pp. 2921–2929 (2009)
25. Kratz, L., Nishino, K.: Anomaly detection in extremely crowded scenes using spatio-

temporal motion pattern models. In: CVPR, pp. 1446–1453 (2009)
26. Li, L., Gong, S., Xiang, T.: Global behaviour inference using probabilistic latent semantic

analysis. In: BMVC (2008)
27. McIvor, A.: Background subtraction techniques. In: Proc. Vid. And Img. Comp., New

Zealand (2000)
28. Mehran, R., Oyama, A., Shah, M.: Abnormal crowd behavior detection using a social force

model. In: CVPR (2009)
29. Mittal, A., Monnet, A., Paragios, N.: Scene modeling and change detection in dynamic

scences: A subspace approach. CVIU 113, 63–79 (2009)
30. Pless, R.: Spatio-temporal background models for outdoor surveillance. In: EURASIP (2005)
31. Stauffer, C., Grimson, E.: Learning patterns of activity using real-time tracking. PAMI 22,

747–757 (2000)
32. Wang, X., Ma, X., Grimson, E.: Unsupervised activity perception by hierarchical bayesian

models. In: CVPR (2007)
33. Watson, B., Ahumada, A.: A look at motion in the frequency domain. In: Motion Workshop.

pp. 1–10 (1983)
34. Wildes, R., Bergen, J.: Qualitative spatiotemporal analysis using an oriented energy represen-

tation. In: Vernon, D. (ed.) ECCV 2000. LNCS, vol. 1843, pp. 768–784. Springer, Heidelberg
(2000)

35. Zhong, H., Shi, J., Visontai, M.: Detecting unusual activity in video. In: CVPR (2004)
36. Zhong, J., Sclaroff, S.: Segmenting foreground objects from a dynamic textured background

using a robust Kalman filter. In: ICCV, pp. 44–50 (2003)



Tracklet Descriptors
for Action Modeling and Video Analysis

Michalis Raptis and Stefano Soatto

University of California, Los Angeles
{mraptis,soatto}@cs.ucla.edu

Abstract. We present spatio-temporal feature descriptors that can be
inferred from video and used as building blocks in action recognition sys-
tems. They capture the evolution of “elementary action elements” under
a set of assumptions on the image-formation model and are designed to
be insensitive to nuisance variability (absolute position, contrast), while
retaining discriminative statistics due to the fine-scale motion and the lo-
cal shape in compact regions of the image. Despite their simplicity, these
descriptors, used in conjunction with basic classifiers, attain state of the
art performance in the recognition of actions in benchmark datasets.

1 Introduction

The analysis of “activities” (or “events” or “actions”) in video is important and
yet elusive as there is no obvious taxonomy and their measurable correlates are
subject to significant variability. While many activities can be classified based
on still images [33], the temporal evolution is important to tease apart more
subtle differences [12]; it is obvious that a viable approach has to successfully
combine both spatial and temporal statistics. We use the words “activities” or
“actions” in quotes, because we do not have a precise (operational) definition for
them. However, we postulate that such complex phenomena can be understood
as the composition of relatively simple spatio-temporal statistics, which we will
attempt to characterize in Sect. 2.

In this paper we define elementary spatio-temporal statistics under a set
of modeling assumptions about the image formation process (Sect. 2), propose
a model to infer them (Sect. 2.2), and evaluate the resulting descriptors on
classification tasks using benchmark datasets (Sect. 4).

We focus on low-level representation, to devise statistics of the spatio-temporal
signal that are insensitive to nuisance factors and yet sufficiently discriminative,
that can be used as building blocks for more sophisticated models that exploit
top-down structure and priors. Thus we purposefully operate with impoverished
models that emphasize the low level, keeping top-down processing, shape and
motion priors, and learning machinery to a minimum. Even with this impover-
ished representation, we show that we can achieve competitive performance in
end-to-end classification tasks on benchmark datasets. More importantly, how-
ever, we believe that our features can be profitably used by more sophisticated
models that do exploit top-down information in the form of global temporal
statistics or spatial context.
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1.1 Related ork

We propose spatio-temporal feature descriptors that capture the local struc-
ture of the image around trajectories tracked over time. We actively restrict our
attention to a subset of the spatial image domain and encode its “local pho-
tometry”. Our approach differs from “holistic” ones [3, 8, 43, 20, 42] that use the
entire video volume to extract global statistics, and compare them with stan-
dard norms, block correlation [43], or dynamic time warping [20]. Unlike these
approaches, we explicitly model “simple” nuisance variability (position, contrast
etc.), detect a corresponding frame with a co-variant detector, and “undo” it in
the descriptor, which is therefore by construction invariant to such nuisances.
The residual “complex” nuisances (local deformation, deviation from Lamber-
tian reflection, complex illumination changes) are instead averaged out in the
descriptor. Such averaging is performed relative to the structure of the nuisances,
learned during the training phase, and plays a similar role to spatial binning (a
form of “unstructured” averaging) in [23]. In this sense, our approach relates to
part-based representations for action recognition, including [34, 7, 21, 29, 40].

Different local descriptors have been proposed to capture shape [34, 7] or
joint motion and shape [18, 17, 4] by aggregating features within video cubes
centered at spatio-temporal interest points into a static descriptor. In contrast,
we retain in our tracklet descriptor the entire feature time series from birth
to death of each tracked region. Other recent works [38, 27, 25, 13] also use a
collection of trajectories to increase the discriminative power of local spatio-
temporal volumes, but utilize different representations: [38] uses the stationary
statistics of the Markov chain of instantaneous velocities to describe the evolution
of the trajectories, which suffers from small-sample effects, while we explicitly
maintain the entire time series and employ dynamic time warping to compare
our variable-length descriptors. Messing et al. [27] use velocities as observations
in a sequential graphical model.

We illustrate the general architecture of our descriptors using off-the-shelf de-
tectors and local motion estimators and perform averaging or aggregation using
the computational architecture of [23]. While more sophisticated instantiations
are possible, already these simple choices attain state-of-the-art performance
in the Activities of Daily Living (ADL)[27], the KTH [34] and the Hollywood
Human Action (HOHA) [17] datasets. The implementation of the proposed de-
scriptor is available at: http://vision.ucla.edu/~raptis/tracklets.

2 Spatio-temporal Tracklet Descriptors

We now describe the modeling assumptions under which we operate, and the pro-
cedure to infer the resulting representation (Sect. 2.2). While one would want
to assemble these elementary actions (dictionary elements) into a model that
captures the joint spatio-temporal statistics at a more global spatial scale (“con-
text”), in Sect. 4 we show that even a naive use of the dictionary labels as a
“spatial bag” yields competitive performance in end-to-end tasks.

W
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2.1 Model and Assumptions

We assume that each “object” is defined at rest as a compact region of space,
only part of which may be visible due to occlusions, and projected onto a subset
D of the image plane, yielding a function ρ : D ⊂ R2 → R+; x 7→ ρ(x) where
D ⊂ Ω is the base image region. There is no requirement that an entire object be
captured by one base region. Instead, we can expect objects to be over-segmented
in multiple base regions, with their spatio-temporal relations characterizing the
object.1 Base regions move under the action of a finite-dimensional group g(t) ∈
G, which we assume without loss of generality to be the group of rigid motions
G = SE(2), with the residual motion, that depends on the shape of the scene
and viewpoint, captured by a general diffeomorphism w : Ω → Ω;x 7→ w(x).
Finally, a contrast transformation is applied to the range of the image in the
base region, and all other photometric factors (specularities, translucency, inter-
reflections etc.) are lumped together as an additive component n(x, t). These
assumptions are summarized in the model:

ρ(x), x ∈ D ⊂ R2 base region

ρ ◦ g(t)
.
= ρ(g(t)x), g(t) ∈ SE(2) global motion

ρ ◦ w(x, t) ◦ g .
= ρ (w(g(t)x, t)) w : R2 → R2 local deformation

h(t) ◦ ρ ◦ w ◦ g .
= h(ρ(w(g(t)x, t)), t), h : R+ × R+ → R+ contrast

I(x, t) = (h ◦ ρ ◦ w ◦ g)(x, t) + n(x, t) complex illumination, noise, etc.

(1)
The above equation is valid only for those x ∈ R2 that intersect the domain of
the image Ω. Elsewhere, the image is due to phenomena other than the base
region, which we call clutter, β(x, t). So, the actual measured image is given by

I(x, t) =

{
h ◦ ρ ◦ w ◦ g(x, t) + n(x, t), ∀ x ∈ g−1(t)w−1(D, t) ∩Ω
β(x, t) elsewhere.

(2)

The components (hidden factors) of the extended temporal observation of an
object are the (multiple) base image regions ρi|D , their (variable) length T̂i =

Ti − τi, global trajectory {gi(t)}Ti
t=τi , their local deformation2 {wi(x, t); x ∈

gi(t)D}Ti
t=τi , the contrast transformation {hi(t)}Ti

t=τi , while everything else is
lumped in ni(x, t). In the rest of this section we will omit the index i and focus
on inference and representation: How can we “extract” the hidden components
from a time series {I(x, t), x ∈ Ω}Tt=τ? What components of the data-formation
process matter for classification? In order to make the inference tractable, we
make the following modeling assumptions: The effect of complex nuisances
n(x, t) is small relative to other factors, so we (a) seek explanations of the
data that minimize their effects (e.g. a suitable norm of n(x, t)). The contrast

1 Although it is precisely these contextual spatial relations that we ignore in Sect. 4,
to test the representational power of the descriptor alone.

2 Here giD = {gix | x ∈ D}.
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transformation h “contains no information” (i.e., we wish the outcome of the
task to be independent of contrast), so we (b) seek to eliminate it from the
representation. The global motion g(t) may or may not contain information,
depending on the task, so we (c) seek to infer it from the data for later use, or to
(d) provide a local reference where to compute the deformation field w(x, t). The
base region ρ and the local deformation w contain all the photometric, geometric
and dynamic information, respectively, embedded in the data. Therefore, the
inference problem can be stated as:

{ρ̂, ŵ, ĝ}Tt=τ = arg min
ρ,w,D,h,g

∫ T

τ

‖n(x, t)‖Ddt (3)

subject to (2), where ‖n(x, t)‖D =
∫
D
|n(x, t)|2dx, with the addition of an area

regularizer to avoid the trivial solution D = ∅. This formalizes (a). To eliminate
h, (b) we simply encode the estimate of the base image region ρ̂I(x)

.
= I ◦ ŵ−1 ◦

ĝ−1 using a complete contrast-invariant, such as the geometry of the level lines
(or its dual, the gradient orientation), or a local contrast normalization, e.g.

φ(ρ̂(x))
.
=

∇ρ̂I(x)

‖∇ρ̂I(x)‖ε or φ(ρ̂(x))
.
=

I − ∫
D
Idx

‖std(I|D )‖ε
(4)

where3 ‖I‖ε = min{‖I‖, ε}. We are then left with estimating (c) the global
motion g, and (d) the local deformation w. Rewriting eq. (3) we have a sequence
of equivalent optimizations in fewer and fewer unknowns:

arg min
h,ρ,w,g

∫ T

τ

∫
D

|I(x, t)− h ◦ ρ ◦ w ◦ g|dxdt = (thm. 7.4, p. 269 of [31])

= arg min
ρ,w,g

∫ T

τ

∫
D

|φ(I(x, t))− φ(ρ ◦ w ◦ g)|dxdt = (thm. 1, p. 4 of [37])

= argmin
w,g

∫ T

τ

∫
D

|φ(I(x, t))− φ(I(x, t+ 1) ◦ w ◦ g)|dxdt .
= {ĝ(t), ŵ(x, t)} (5)

This problem can be solved using variational optimization techniques [37]; a
more efficient, albeit suboptimal, solution can be arrived at by first assuming

w(x, t) = x and estimating ĝ(t) = argming
∫ T

τ

∫
D
|φ(I(x, t)) − φ(I(x, t + 1) ◦

g(t))|dxdt with any tracking algorithm [24, 35, 27]. Then, given {ĝ(t)}Tt=τ , esti-

mate ŵ(x, t) = argminw
∫ T

τ

∫
D
|φ(I(x, t)) − φ(I(x, t + 1) ◦ w ◦ ĝ(t))|dxdt with

any optical flow algorithm. Note that ŵ depends on ĝ, and there is no guaran-
tee that substituting ŵ, ĝ in (5) minimizes the cost. However, this approach is
sufficient for our purposes, otherwise one can revert to an infinite-dimensional
optimization of (5).

3 Since the gradient direction will be weighted by its norm in the averaging operation
to compute the descriptor (Sect. 2.2), the value of ε does not matter in practice. As
an alternative, when color images are available, one can use spectral ratios or local
normalization to eliminate contrast transformations.
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2.2 Simplest nstantiation and nference of the epresentation

Following the derivation above, given a video sequence {I(x, t), x ∈ Ω}Tt=1,
we first select candidate regions via any feature detector [23, 10, 1], and track
them over time using a contrast-compensated translational tracker to obtain a
number of trajectories {ĝi(t)}Ti

t=τi of varying length T̂i, addressing (c). Many
trackers also provide a rotational and scale reference; the latter can be used to
select the base regions Di ⊂ R

2. The former can be used to fix local orientation,
although we select the vertical image coordinate as reference. In the resulting
local frame {Di, ĝi(t)} we then estimate the local motion {ŵi(x, t)}Ti

t=τi using
any of a number of local optical flow algorithms, the simplest being [24]. This
addresses (d) and completes the (co-variant) frame selection process. Therefore,
we design an invariant descriptor by representing the image in the selected frame,
{Di, ĝi(t)} via the contrast invariant {φ(I ◦ ĝi)}, and concatenate that with the
motion field {ŵi(x, t) ◦ ĝi(t)} in the base region Di.

If we had priors on the intra-class variability dP (g, w), we would marginalize
the resulting descriptor; in their absence, it is common to assume that the object
or category of interest is described by an “uncertainty ball” around a reference
descriptor, that is therefore “blurred” in some sense, ideally by averaging with
respect to the prior, but more often by coarse spatial binning. In the latter case,
the descriptor for {φ(I ◦ ĝi)} corresponds to a histogram of gradient orienta-
tions (HoG) [23, 6], and the descriptor for {ŵi(x, t)◦ĝi(t)|Di

} corresponds to a

histogram of optical flow vectors (HoF).
Although many have used HoG/HoF descriptors [18, 22, 17, 4], they aggre-

gate them into a static signature, whereas our previous analysis and [36] suggest
retaining their temporal evolution. However, rather than averaging by spatial
binning (that presumes ergodicity), we prefer to use at least a crude approxi-
mation of the prior dP (g, w) in the form of samples {g(tj)}, {w(x, tj)} inferred
during the training phase. The resulting descriptor, which we call AoG (average
of gradient orientation) and AoF (average of optical flow), averages over the
training samples – inferred in a sliding temporal window {tj}Lj=1 and thought of
as samples from an importance distribution:

AoG(t|x, gi, Di) =

t+�L/2�∑
τ=t−�L/2�

φ(I(x, τ)) ◦ g−1
i (τ) x ∈ gi(τ)Di ∩Ω (6)

where giDi is defined in footnote 2. Although “oG” in AoG stands for the gra-
dient orientation, in analogy to HoG, any other contrast-normalizing statistic φ
can be used, as in (4). Similarly, we have

AoF (t|x, gi, Di) =

t+�L/2�∑
τ=t−�L/2�

(wi ◦ gi)(x, τ) x ∈ Di ∩Ω (7)

We call Tracklet Descriptor (TD) the concatenation of the entire time series of
either HoG/HoF, or AoG-HoF, and compare the two in Sect. 4, where we show

I I R
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the latter to yield marginally improved performance at a significantly lower
computational cost. Optionally, the TD can be augmented with some sample
statistic, for instance the trajectory relative to the spatial or spatio-temporal
mean.

πi(t|I) .
= {A/HoGi(t), A/HoFi(t)} (8)

As stated in Sect. 1, we postulate compositionality of our representation, so it
is natural to organize tracklet descriptors into a “dictionary.” However, because
we retain the entire time series, the process is more involved as descriptors of
different length have to be compared. In Sect. 3 we describe how this can be
done using dynamic time warping and clustering by affinity propagation. As an
alternative to averaging, one could consider histograms aggregated over time,
rather than space, with similar results, as advocated by [19].

3 Implementation

Following Sect. 2.2, we reduce the group G = R
2 to pure translations, and

estimate {ĝi(t) ∈ G}Ti
t=τi using [35], as implemented by [2], without affine consis-

tency check, similar to [27]. Features lost during tracking are replaced by newly
selected ones. We prune tracks that are less than Ti = 5-frames long, or that
move less than ĝi(Ti) = 3-pixels in standard deviation. Unlike [38], we do not
impose an upper bound on T̂i, and unlike [7, 34, 4, 25] we do not use a fixed
time-scale.

3.1 Constructing racklet escriptors

We capture the contrast-invariant statistics φ of the base regions Di using the
gradient orientation spatially binned (HoG) or averaged (AoG) in a sliding tem-
poral window, e.g., L = 5 with fixed scale and orientation, centered at each spa-
tial location ĝi(t) along the trajectory. The size of Di(t) could be adapted using
the scale component estimated on-line by the tracker. Although we estimate ro-
tation of the base regions Di we discard it, and use the vertical component of
the image plane as a reference. In yet a simpler instantiation, one can consider
the base regions Di fixed to, say, 18×18 or 32×32 pixels. We estimate the local
deformation ŵi(x, t) using [24] and aggregate it either in a spatial histogram
(HoF) or in an average (AoF) within each region Di. While HoG/HoF result
in a fixed 128-dimensional vector each, AoG/AoF have variable size depending
on |Di|; therefore they are quantized into a comparable number of components
(225 in the experiments, corresponding to 15× 15 patches). The two vectors are
concatenated4 and stacked sequentially over time into a matrix.

3.2 Tracklet ictionary

For each base image regionDi, a tracklet descriptor represents a multi-dimensional
time series, πi : [τi, Ti] → R

N . To define a distance between two descriptors we

4 Although one could introduce weights between the spatial and temporal component,
and optimize the weight to a particular dataset, we do not do so in Sect. 4.

T D

D
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must discount initial time, speed of execution, and duration of an action. There-
fore, we adopt the dynamic time warping (DTW) distance [32]:

d(πi, πj)
.
= inf

α,β∈H
1

M

M∑
t=1

‖πi(α(t))− πj(β(t))‖1 (9)

where α, β ∈ H are continuous monotonic transformations [39, 20] of the tempo-
ral domain. For HoG, HoF and AoG we use the 
1 distance. Optical flow vectors,
however, are not sparse, so 
2 should be used instead, allowing small discrep-
ancies. Therefore, AoG and AoF cannot be simply concatenated, but instead
separate dictionaries, and combinations of separate kernels, have to be learned.
The different structures of AoG and HoF also do not lead to a “meaningful”
compact descriptor. To make comparison as fair as possible, in Sect. 4 we test
AoG vs. HoG in isolation (Table 3). For a track of 100 frames, HoG takes 13 sec-
onds to be computed (in non-optimized C code), whereas AoG takes 0.6 seconds
(in Matlab).

Because of the variable length, many commonly used clustering algorithms
(e.g., k-means) are inapplicable to clustering time series. Agglomerative cluster-
ing [15] and k-medoids have been used to select cluster centers for time series.
We compute pairwise distances among tracklet descriptors, and set the distance
to infinity for pairs with length ratio not between 0.5 and 2, since DTW does not
provide a meaningful warping path for those cases [30]. We use affinity propaga-
tion [9] to cluster and select dictionary elements. This method is efficient due to
the sparsity of the initial distance matrix and effective to define discriminative
exemplars without the need of multiple random initializations that algorithms
like k-centers require. In our experiments the size of the dictionaries was not
pre-specified but it was automatically selected by affinity propagation.

It is not immediate to visualize our cluster centers, since our model is not
strictly generative. However, Fig. 1 shows parts of the tracks colored according to
their nearest neighbor in a tracklet dictionary. Fig. 2 shows a sample trajectory
with samples of the quantized histogram of gradient orientations and optical
flow super-imposed on the image. These histograms are concatenated to form a
temporal sample of the time series {πi(t)}.

3.3 A asic lassification cheme

The simplest recognition method we consider is akin to a bag-of-features (BoF)
[5], whereby we discard global temporal ordering, capturing only the local tem-
poral variation of a tracklet. This admittedly naive model achieves performance
already close to the state of the art. Given a codebook of TDs, we assign each
trajectory in a test frame to the closest codebook element (Sect. 3.2); then each
video is represented by a histogram of occurrences of dictionary elements. We
use a support-vector machine with either a RBF-χ2 kernel or an intersection ker-
nel. The penalty parameter is selected by 10-fold cross-validation in the training
set, whereas the scale parameter of the RBF kernel is selected as the mean χ2

distance of the training samples. The RBF-χ2 SVM achieves an improvement of
1− 2% over the intersection one.

C SB
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Fig. 1. Tracks extracted from ADL, KTH and HOHA datasets. Color indicates their
label based to the tracklet descriptor dictionary.

Fig. 2. A track with samples of the histogram of gradient orientation (left, blue) and
histogram of optical flow (right, red) along the trajectory. These are concatenated
to form a 256-dimensional temporal sample of the time series that represents that
elementary action.

4 Experimental Evaluation

We evaluate the proposed scheme on three publicly available datasets: KTH [34]
Activities of Daily Living (ADL) [27] and Hollywood Human Actions (HOHA)
[17]. As pointed out in Sect. 3.2, AoG cannot be simply concatenated with ei-
ther AoF or HoF, but has to be combined using multiple kernels. In our first two
experiments we use the compact tracklet descriptor based on the HoG/HoF, so
we can use one dictionary and one kernel, and have a fair comparison with exist-
ing local descriptors [7]. In the most challenging dataset (HOHA) the individual
components HoG and AoG are compared in Table 3, and their combination with
HoF is reported in Table 4.

KTH is chosen because of its popularity, though its modest spatial (160×120
pixels) and temporal (25 frames per second) resolution make for an impoverished
data stream that is not well suited for local representations. There are 6 actions
performed by 25 subjects in 4 scenarios (outdoors (s1), outdoors with scale vari-
ation (s2), outdoors with different clothes (s3) and indoor (s4)), resulting in
598 clips. The simplicity of these actions, combined with an uncluttered static
background, make this dataset ideally suited for global representations [20]. Nev-
ertheless, even without exploiting background subtraction or the global evolution
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of the silhouette (hard to obtain in most realistic scenarios), our scheme is com-
petitive with the state of the art (Table 1).

More specifically, we track an average of 340 trajectories per video with an
average length T̂i = 23 frames. Low resolution and the compression artifacts are
a challenge to tracking, so the average length is relatively small. Our base regions
Di are fixed at 18 × 18 pixels, similar to the spatial size of Cuboids [7, 28, 29].
Examples of tracks and the corresponding HoG descriptors are shown in Fig. 3.
The classification performance of algorithms that use spatio-temporal descriptors
computed in volumes around interest points [21, 17, 4, 29, 7, 28] has proven that
the choice of the temporal scale is crucial. Laptev et al. [17] construct static
HoG/HoF around points detected by spatio-temporal Harris-3D [16] at multiple
scales, using Δt = 25, 36; [4] computes a HoG/HoF around points detected by
[23] in a volume with Δt = 60. Instead, our descriptors have variable temporal
length depending on the image region Di. Moreover, the optical flow in the image
regions Di can be estimated reliably. This is not the case for the spatio-temporal
cubes around a specific interest point.

We use leave-one(person)-out cross validation and average the results over the
25 permutations. To construct the codebook we use a relatively small training
set, similar to [28], to examine the generalization of our algorithm. We only use
the descriptors extracted from the first two parts of the 72 videos of 3 subjects.
Those descriptors are excluded from the test and training sets. It should be noted
that [21, 4] used the videos of 24 subjects to construct the codebook, whereas
[17] used 8 subjects. Using a codebook with 1560 TDs of HoG/HoF, we achieve
94.5% recognition rate using RBF-χ2 SVM (Table 1) considering the dataset as
a single large set (all average in one). Using linear SVM with intersection kernel
we achieve 93.82% recognition rate. Considering each scenario separately the
recognition rate is : (s1) 98%, (s2) 92.67%, (s3) 91.95% , (s4) 96.67%.

Fig. 3. Example of the tracks and an instance of the corresponding appearance de-
scriptor of a boxing action on the KTH dataset

We could push the performance of our algorithm by optimizing the weights
between the different components of the features (spatial, motion), but our point
is not to propose an action recognition system, but just to evaluate descriptors,
so we refrain.

The ADL dataset has higher-resolution (1280 × 720 pixels at 30FPS) with
10 different complex activities targeted to an assisted living scenario (e.g.
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evaluation
Recognition Rate Structural

all scenarios in one average of all scenarios Information

Our tracklets Leave-One-Out 94.5% 94.8% No

Niebles et al. [28] Leave-One-Out 81.5% N/A No

Dollár et al. [7] Leave-One-Out 81.2% N/A No

Schuldt et al. [34] Split 71.7% N/A No

Nowozin et al. [29] Split 84.7% N/A No

Liu et al. [22] Leave-One-Out N/A 94.15% Yes

Lin et al. [20] Leave-One-Out 93.4% 95.8% Yes

Messing et al. [27] Split 74% N/A No

Yao et al. [41] Split 87.8% N/A Yes

Laptev et al. [17] Split 91.8% N/A Yes

Jhuang et al. [11] Split N/A 91.7% No

Schindler et al. [33] Split 92.7% 90.7% No

Yeffet et al. [42] Split 90.1% N/A Yes

Chen et al. [4] Leave-One-Out 95.0% N/A No

Table 1. Performance comparison on KTH dataset. Despite not using background
subtraction or structural information, our approach is competitive with the state of
the art.

swering phone (aP),” “eating snack (eS),” “eating banana (eB)”). Five subjects
perform each activity thrice for a total of 150 clips of duration varying between
10 and 60 seconds. It has drawbacks similar to KTH, in that all actions are
taken against a still background from a fixed vantage point, an incentive to
overfitting by using background subtraction and global statistics such as the
absolute position of tracks in the image. Despite not using absolute positions,
a simple classifier based on TDs HoG/HoF outperforms the state of the art
by a sizeable margin. We extract on average 1300 tracks with mean duration
T̂i = 110 frames. The base regions Di are fixed at 36 × 36 pixels. We again
use leave-one (person)-out evaluation, similar to [27, 26], and report the average
over the 5 permutations of the dataset. We randomly sampled 25K tracklets
from the training set and constructed a dictionary with 2900 elements. Using
this dictionary we achieve 82.67% average recognition rate using RBF-χ2 SVM
(Table 2). Comparison to [27] shows that our tracklet descriptor achieves com-
parable results without using any structural information (relative position or
absolute position). It outperforms [27] even when their classifier uses the posi-
tion of the extracted trajectories relative to the position of the face of the actor.
In order to have a fair comparison with existing methods that report results in
the ADL dataset, we incorporate a codebook of the absolute position (ḡi(t), t̄)
of the tracks with size 60 obtained using K-means. Combining linearly the two
χ2 kernels, we achieved 90% average recognition rate. We should note that, al-
though absolute position is relevant in this dataset, and in particular it helps
boost the performance of our algorithm as well as [27] significantly, it does so
only because all sequences are taken from the same vantage point, in an envi-
ronment with fixed layout. In general, we advocate not using absolute position,
even if it improves the performance in this particular dataset.

TheHOHA dataset overcomes the limitations of ADL and KTH. The dataset
contains 430 movie videos (240×450 at 24FPS) with challenging camera motion,
rapid scene changes and cluttered and unconstrained background. Moreover, the
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Recognition Rate

Our Tracklets 82.67%

Spatio-temporal cuboids [7] (implemented by [26] ) 43%

Velocity Histories [27] 63%

Latent Velocity Histories [27] 67%

Augmented Velocity Histories with Relative Position [26] 72%

Augmented Velocity Histories with Relative and Absolute Position [27] 89%

Table 2. Performance comparison on ADL. Despite not using structural information
or background subtraction, we improve the state of the art by a large margin. Using
structural information, which we do not advocate, we can further improve recognition
rate to 90%, highlighting the limitations of this particular dataset.

human actions that are included are not constrained to single actor behaviors,
e.g. “Sit down”, but also interactions between humans, e.g. “Kiss”, and objects,
e.g. “Get Out of a Car”. We evaluate our trajectory descriptors following the
experimental setting proposed by [17], i.e. the test set has 211 videos with 217
labels and the training set has 219 videos with 231 labels (manually annotated).
For each action we train a binary classifier and we evaluate our performance
with average precision (AP) of the precision/recall curve.

In order to manage the large variability of the image sequences contained in
the dataset, features [35] are detected in multiple scales. We extract on average
500 tracks with mean duration T̂i = 51 frames. For each image region Di a HoG,
HoF and AoG descriptor is constructed as described in (Sect. 3). First, a dictio-
nary is created for each individual component of our tracklet descriptors and we
evaluate its performance using RBF-χ2 SVM (Table 3). Our TD of optical flow
significantly outperforms the HoF proposed by Laptev et al. [17], proving to be
more robust to background motion and large viewpoint changes. We also note
that the performance of TD HoF is slightly worse than the trajectory transition
descriptor (TTD) [38], which is combined with spatio-temporal grid to incorpo-
rate some structural information in the descriptor. Our TD of AoG outperforms
marginally both our TD HoG and the HoG of [17], at a significantly reduced
computational cost. Next, we construct our compact HoG/HoF tracklet descrip-
tor and with a codebook with 2220 elements we achieve 32.1% mean average
precision (MAP) (Table 4). In order to fuse the TD AoG feature descriptor with
TD HoF feature in our classification framework, we build a kernel as a convex
combination of their χ2 kernels: KAoG−HoG = λKAoG + (1−λ)KHoF , λ was se-
lected using cross-validation in the training set. The performance of the obtained
kernel is 34.3% MAP. Our TD descriptors outperforms all the local descriptors
that have been evaluated in HOHA dataset in a bag-of-features setting [14, 25,
17] and we are competitive with the holistic approach proposed by [42] and the
methods that use multi-channel Gaussian kernels [17, 38] for combining the 48
or more channels provided by spatio-temporal grids.

5 Discussion

We have presented local spatio-temporal descriptors intended as low-level statis-
tics to be used in action recognition systems. Our descriptors are deduced from
an explicit model with all assumptions explicitly stated. They do not involve
top-down modeling and can be efficiently learned from data. They can capture
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Class
Our Tracklet Laptev et al. [17]

HoG HoF AoG HoG HoF
BoF BoF BoF BoF BoF

Answer phone 24.9% 22.1% 33% 13.4% 24.6%

Get out of car 21.1% 19.3% 22.3% 21.9% 14.9%

Hand shake 20.4% 19.1% 17.4% 18.6% 12.1%

Hug person 22.3% 28.2% 22.0% 29.1% 17.4%

Kiss 48.4% 47.0% 47.5% 52.0% 36.5%

Sit down 21.8% 22.2% 22.5% 29.1% 20.7%

Sit up 16.7% 17.5% 15.3% 6.5% 5.7%

Stand up 40.5% 59.9% 40.2% 45.4% 40.0%

MAP 27.1% 29.4% 27.5% 27.0% 21.5%

Table 3. Performance comparison on HOHA Dataset of Individual components of
Descriptors

Class

Our Tracklet Laptev et al. [17]
Yeffet et al. [42] Matikainen et al. [25] Kläser et al. [14]

Sun et al. [38]
HoG/HoF AoG-HoF

Single Combined
TTD TTD-SIFT

BoF BoF BoF BoF Combined Combined

Answer phone 26.7% 33.0% 26.7% 32.1% 35.1% 35.0% 18.6%

Get out of car 28.1% 27.0% 22.5% 41.5% 32.0% 7.7% 22.6%

Hand shake 18.9% 20.1% 23.7% 32.3% 33.8% 5.3% 11.8%

Hug person 25.0% 34.5% 34.9% 40.6% 28.3% 23.5% 19.8% N/A N/A

Kiss 51.5% 53.7% 52.0% 53.3% 57.6% 42.9% 47.0%

Sit down 23.8% 27.4% 37.8% 38.6% 36.2% 13.6% 32.5%

Sit up 23.9% 19.0% 15.2% 18.2% 13.1% 11.1% 7.0%

Stand up 59.1% 60.0% 45.4% 50.5% 58.3% 42.9% 38.0%

MAP 32.1% 34.3% 32.9% 38.4% 36.8% 22.8% 24.7% 30.3% 44.94%

Table 4. Performance comparison on HOHA Dataset

the discriminative statistics of the local causal structure of the data (temporal
ordering), and the local shape and deformation of each base region. However,
they do not enforce global shape or motion statistics, nor global temporal or-
dering. They could be used as a building block of more complex models for the
recognition and classification of actions.

Although our goal is not to present a complete action recognition system,
in order to test our descriptors we have employed them in simple classification
schemes to recognize actions in commonly used benchmark datasets. In all cases,
we obtain results comparable to or exceeding the state of the art, despite not
making use of top-down structure.
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Abstract. We present a method for spotting words in the wild, i.e., in
real images taken in unconstrained environments. Text found in the wild
has a surprising range of difficulty. At one end of the spectrum, Optical
Character Recognition (OCR) applied to scanned pages of well format-
ted printed text is one of the most successful applications of computer
vision to date. At the other extreme lie visual CAPTCHAs – text that
is constructed explicitly to fool computer vision algorithms. Both tasks
involve recognizing text, yet one is nearly solved while the other remains
extremely challenging. In this work, we argue that the appearance of
words in the wild spans this range of difficulties and propose a new word
recognition approach based on state-of-the-art methods from generic ob-
ject recognition, in which we consider object categories to be the words
themselves. We compare performance of leading OCR engines – one open
source and one proprietary – with our new approach on the ICDAR Ro-
bust Reading data set and a new word spotting data set we introduce in
this paper: the Street View Text data set. We show improvements of up
to 16% on the data sets, demonstrating the feasibility of a new approach
to a seemingly old problem.

1 Introduction

Finding words in images is an fundamental computer vision problem, and is es-
pecially challenging when dealing with images acquired in the wild. The field of
Optical Character Recognition (OCR) has a long history and has emerged as
one of the most successful practical applications of computer vision. However,
text found in the wild can take on a great variety of appearances, and in many
cases can prove difficult for conventional OCR techniques. Figure 1 shows ex-
amples of text on a spectrum of difficulty levels. When we consider the extreme
cases, the performance of OCR engines is known to be excellent when given
scanned text and very poor on text that is highly obscured. Indeed, the fact
that OCR has difficulty reading such text is the basis for systems that prevent
automated software bots from abusing internet resources, which are known as
CAPTCHAs [1]. Depending on the particular instance, text found in the wild
can appear similar to a scanned page, similar to a CAPTCHA, or somewhere
in-between.

Our use of the phrase in the wild is analogous to Labeled Faces in the Wild
(LFW) [2]: a data set constructed to study face recognition in unconstrained

K. Daniilidis, P. Maragos, N. Paragios (Eds.): ECCV 2010, Part I, LNCS 6311, pp. 591–604, 2010.
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Fig. 1. This figure shows examples of images of words ordered by difficulty. In the
extreme cases, the behavior of OCR engines is well understood: it is highly accurate
when reading scanned text (far left) and is inaccurate when reading a CAPTCHA[1]
(far right). In between these two extremes sits text found in the wild. Due to its
unconstrained nature, in some cases the image text is similar to scanned text and can
be read, while in others it cannot.

settings. Similar to text reading, face recognition under controlled settings is a
well understood problem with numerous effective algorithms. However, as LFW
shows, the variation in lighting, pose, imaging device, etc., introduce challenges
for recognition systems. Much as that dataset acted as a catalyst for renewing
progress in face recognition, an important goal of this work is to spur interest in
the problem of spotting words in the wild.

The word spotting problem contrasts with general text reading in that the goal
is to identify specific words. Ideally, there would be no distinction between the
standard text reading and word spotting; spotting words would simply amount to
filtering the output from OCR engines to catch the words of interest. However,
due to the challenges presented by text found in the wild, we approach the
word spotting problem directly, where we are presented with an image and a
lexicon of words to spot. We evaluate the performance of conventional OCR
engines and also present a new method rooted in ideas from object recognition.
In our new approach, we treat each word in a lexicon as an object category and
perform word category recognition. Figure 2(a) shows an analogy to generic
object recognition: just as instances of the object category vehicle can look
vastly different from image to image, the word ‘door’ can also take on a variety
of appearances depending on the font, lighting, and pose in a scene. In this
formulation, we can leverage techniques that have been designed to be robust
for recognizing generic categories and apply them to word recognition.

Our contributions are the following. (1) We introduce the Street View Text
data set: an outdoor image text data set annotated with a list of local busi-
ness names per image. (2) We benchmark conventional OCR engines on our
new data set and the existing ICDAR Robust Reading image text database
[3]. (3) We present a new word spotting approach that imports techniques from
generic object recognition and significantly outperforms conventional OCR based
methods.
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(a) Word recognition. (b) Pictorial structure for words.

Fig. 2. The left figure (a) shows our analogy to the generic object classification prob-
lem. In both cases, individual instances of the same class can take on vastly different
appearances. The right figure (b) is an illustration of modeling the word ‘PUBLIC’
using a pictorial structure.

2 Motivating Applications

Accurate word spotting plays an important role in systems for image retrieval
and navigation. Research in Content Based Image Retrieval (CBIR) [4] has ex-
plored different forms of querying large image collections, including queries by
keyword and image example. Integrating a word spotting component enables
queries by word occurrence, returning images in which the specified words ap-
pear. The work of [5] describes a system that allows for retrieval of historical
documents based on handwritten word spotting.

Word spotting is an essential component of a vision based navigation system.
In our case, this arises in the form of developing assistive technologies for the
blind. Two broad goals of the project are to develop a computer vision system
that can benefit the blind and visually impaired communities, and to study the
challenges of performing vision-based navigation in real world environments. For
navigation, it is important to be able to spot specific keywords in order to guide
a blind user. Detecting keywords on signage can be used, for example, to direct a
user to the correct aisle in a supermarket while detecting words from a shopping
list can be used to locate specific products.

3 Dataset

We introduce the Street View Text1 (SVT) data set harvested from Google
Street View2. Image text in this data exhibits high variability and often has low
resolution. Figure 3 shows examples from the SVT set and a histogram of word
heights. In dealing with outdoor street level imagery, we note two characteristics.
(1) Image text often comes from business signage and (2) business names are
easily available through geographic business searches. These factors make the
SVT set uniquely suited for word spotting in the wild: given a street view image,
the goal is to identify words from nearby businesses.

1 http://vision.ucsd.edu/project/grocr
2 http://maps.google.com

http://vision.ucsd.edu/project/grocr
http://maps.google.com
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Fig. 3. Examples from our Street View Text (SVT) data set and a histogram of word
heights. The words appearing in this data set have high variability in appearance, suffer
effects of cast shadows, and often have low resolution. The median height is 55 pixels.

Data Collection. We used Amazon’s Mechanical Turk3 to harvest and label
the images from Google Street View. To build the data set, we created several
Human Intelligence Tasks (HITs) to be completed on Mechanical Turk. We refer
to those that work on these HITs as workers.

Harvest images. Workers are assigned a unique city and are requested to acquire
20 images that contain text from Google Street view. They were instructed to:
(1) perform a Search Nearby:* on their city, (2) examine the businesses in the
search results, and (3) look at the associated street view for images containing
text from the business name. If words are found, they compose the scene to
minimize skew, save a screen shot, and record the business name and address.

Image annotation. Workers are presented with an image and a list of candidate
words to label with bounding boxes. This contrasts with the ICDAR Robust
Reading data set in that we only label words associated with businesses. We used
Alex Sorokin’s Annotation Toolkit4 to support bounding box image annotation.
All images were labeled by three workers, and bounding boxes were accepted
when at least two workers agreed with sufficient overlap.

For each image, we obtained a list of local business names using the Search
Nearby:* in Google Maps at the image’s address. We stored the top 20 business
results for each image, typically resulting in 50 unique words. To summarize,
the SVT data set consists of images collected from Google Street View, where
each image is annotated with bounding boxes around words from businesses
around where the image was taken. The data set contains 350 total images
(from 20 different cities) and 725 total labeled words. We split the data into a
training set of 100 images and test set of 250 images, resulting in 211 and 514
words in the train and test sets. In correspondence with ICDAR, we divide our
benchmark into SVT-SPOT (word locating), SVT-WORD (word recognition),
and SVT-CHAR (character recognition). In this work, we address SVT-WORD.
In total, the cost of acquiring the data from Mechanical Turk was under $500
USD.
3 http://mturk.com
4 http://vision.cs.uiuc.edu/annotation/

http://mturk.com
http://vision.cs.uiuc.edu/annotation/
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4 Related Work

4.1 Scanned Document OCR

The topic of OCR has been well studied [6] [7] and existing commercial products
are in widespread use. One example is Google Book Search5, which has scanned
more than 10 million volumes6, making them accessible for full text searches.
Another example is the Kurzweil National Federation of the Blind (KNFB)
reader.7 The KNFB reader is an OCR engine that runs on a mobile phone
and allows a person who is visually impaired to read printed text from an image
taken by the camera. The key to high performance for the KNFB reader is having
a high quality camera built into the mobile phone and a feedback loop to assist
the user in taking pictures in an ideal setting, thereby minimizing the effects of
motion blur, lighting, and skew.

A critical step for OCR accuracy is image binarization for character segmen-
tation. The survey of [8] identifies incorrect segmentation as one of the major
contributors to errors in using conventional OCR on scanned documents. Pre-
vious work on classifying hand written digits from the MNIST data set has
shown that when the correct segmentation is provided, it is possible to achieve
recognition rates nearing that of humans.8 The task of separating out individ-
ual characters was also identified in [9] as one of the distinguishing features of
CAPTCHAs being difficult for OCR while remaining manageable for humans.
Character segmentation is a significant challenge that conventional OCR engines
face when dealing with words in the wild.

4.2 Image Text OCR

OCR in non-scanned images is a relatively new area and has seen increasing
attention [10] [11] [12]. Existing work on image text typically breaks the process
into two subtasks: text detection and word recognition. Advances have been
made in detecting image text using an AdaBoost-based approach [13]. In that
work, detected text regions are sent to a conventional OCR engine to be decoded.
Others have explored the problem of improving recognition rates by combining
outputs of several different OCR engines to get a more robust reading [14].

The works that are most similar to ours are that of [15] and [5]. In [15], the au-
thors investigated methods of breaking visual CAPTCHAs. In their CAPTCHA
experiments, the problem was also one of word spotting: categorize the image
of a word as one of a list of possible keywords. Our new approach highlights
the similarities between words in the wild and with visual CAPTCHAs. In [5],
the authors performed word spotting in scanned handwritten historical docu-
ments. To perform word spotting, they clustered words together by appearance,

5 http://books.google.com/
6 http://googleblog.blogspot.com/2009/10/tale-of-10000000-books.html
7 http://www.knfbreader.com/
8 http://yann.lecun.com/exdb/mnist/index.html

http://books.google.com/
http://googleblog.blogspot.com/2009/10/tale-of-10000000-books.html
http://www.knfbreader.com/
http://yann.lecun.com/exdb/mnist/index.html
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Fig. 4. Word spotting overview. This is an illustration of a word spotting system
with two steps: text detection [13] and word recognition. In this work, we focus on
the latter problem where the input is an image region and a lexicon of words. In
our Street View Text data set, the lexicon was created out of local business searches
around where the image was acquired. We run character detectors to discover possible
character locations and then score words in our lexicon by modeling them as pictorial
structures.

manually provided labels to clusters, and propagated the labels to the cluster
members, allowing them to create a word index to browse a large corpus.

In our methods, we draw on work done using part-based methods for object
recognition; in particular, the modeling of objects using pictorial structures [16]
[17]. We also build on the work of [18], who studied the use of various features
and classification methods to classify individually cropped characters.

5 Word Recognition

In our approach, we first perform character detection for every letter in an al-
phabet and evaluate the configuration scores for the words in our lexicon to find
the most suitable one. Our method is designed to be used in conjunction with
a text detector. In our description, we use the term ‘input image’ to mean the
cropped out image region around a word provided by a text detector. Figure 4
shows a diagram of this pipeline.

5.1 Character Recognition

Character recognition in images was recently studied in [18]. In their work,
they benchmarked different features and classification algorithms for recognizing
cropped characters. In our experiments, we test our character detector using the
same data and methodology, and list accuracies next to those from their work.
For our character detector, we use Histograms of Oriented Gradient (HOG) [19]
features with a nearest neighbor classifier.

Character classification: To compare two images of cropped characters, we first
resize them to take on the same height and aspect ratio, then densely calculate
their HOG features. Each character is now represented as an array of dimension
m × n × d where m and n are the number of rows and columns after spatial
binning, and d is the number of dimensions in each histogram. We measure
the similarity between characters by performing Normalized Cross Correlation
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(NCC) between each dimension and averaging the scores. Since the characters
were resized to be the same dimension, the result is a single number. This is the
value we use for nearest neighbor classification.

Character detection: To perform character detection over an input image we
take all the training examples for a particular character class, resize them to
the height of the input image (while maintaining aspect ratio), and compare the
character’s HOG features to those of the input. Between each training example
and the input, we again calculate the NCC between each HOG dimension and
combine them again by averaging. The result will be a list of scores measuring
the similarity of a template to each location in the input image. This is done for
all the training examples of a class, and the results are combined together per
class by taking the max at each location. We perform non-maximum suppression
to discover peaks and consider those as candidate character locations.

This is done for every character class to create a list of character locations
with discrete spatial positions. Next, we use this list of detections to evaluate
the configuration of strings in our lexicon to the input image.

5.2 Word Configuration

After performing character detection, we consider each word in our lexicon and
measure its character configuration within the input image. We represent a word
using a pictorial structure [16] [17]. A pictorial structure is a mass-spring model
that takes into account costs of matching individual parts to image locations
and their relative placement. A word is naturally broken down into character
‘parts’ and takes on a simple chain structure. Figure 2(b) shows an example of
a string as a pictorial structure.

We formulate the problem of optimal character placement in an image of text
in the following way. Let G = (V, E) be an undirected graph representing a
string S. The vertices V = {v1, ..., vn} correspond to characters in S where n is
the length of S. Edges (vi, vj) ∈ E connect letters that are adjacent in S. This
creates a conceptual spring between pairs of letters. We use the terms parent
and child to refer to the left and right nodes in a pair of adjacent characters.
Let L = (l1, ..., ln) represent a particular configuration of characters in an image
where li is the spatial [x, y]� coordinate placement of character vi.

We measure cost mi(li) as one minus the similarity score of a character detec-
tion calculated in the previous step. To calculate the deformation cost di,j(li, lj),
we use our domain knowledge of character layout. We expect a child character
to appear one character width away from its parent. Let the expressions w(li)
and h(li) represent the width and height of a character detection at location li.
Let l∗i = li + [w(li), 0]� represent the expected position of a child of li. We spec-
ify a covariance matrix that normalizes the deformation cost to the dimensions

of the parent character: Σ =
[

w(li) 0
0 h(li)

]
. Our deformation cost is calculated
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as: di,j(li, lj) =
√

(l∗i − lj)�Σ−1(l∗i − lj). The objective function for our optimal
character configuration for a string S is computed as:

L∗ = argmin
L

⎛
⎝θ

n∑
i=1

mi(li) + (1 − θ)
∑

(vi,vj)∈E

dij(li, lj)

⎞
⎠ (1)

The parameter θ controls the balance between part match cost and deforma-
tion cost. The result is a configuration L∗ that represents the optimal character
placement for reading S in an image. Solving for L∗ can be done efficiently using
dynamic programming as described in [17]. We refer to this configuration cost
as Dc(L).

The score generated by L∗ can take into account a local measure of coherence
between a string and an image, but is uninformed of higher order and global con-
figuration costs. To supplement the score configuration score, we also incorporate
other domain knowledge-influenced measures into our final match score.

– Horizontal span: Given our input is an image of a cropped word from a
character detector, we assume that a suitable string is one whose characters
span most of the input image. We calculate this as the horizontal range of
the character configurations divided by the width of the input image and
call it Ds(L).

– Character distribution: Character spacing within a single string should be
consistent, and we factor this into the final score by measuring the standard
deviation of the spacing between every pair of adjacent characters in the
string, which we refer to as Dd(L).

The final cost D is a weighted sum of these terms: D(L) = α1Dc(L)+α2Ds(L)+
α3Dd(L) where α1 + α2 + α3 = 1. Through validation on our training data, we
determined reasonable parameters to be θ = .9, α1 = .5, α2 = .4, and α3 = .1.
These parameters were used in both the ICDAR and SVT benchmarks.

6 Experiments

We evaluate the performance of our character recognizer in isolation and our
word recognition system as a whole on existing public image text data sets.
The data sets we use are from the ICDAR 2003 Robust Reading challenge [3],
Chars74K [18], and our SVT data set. In our experiments, we compare to results
attained using conventional OCR systems ABBYY FineReader 9.0 and Tesseract
OCR9, referred to as ABBYY and TESS. In using the OCR engines, we exper-
imented with pre-thresholding the images using the technique from [13], where
they performed locally adaptive thresholding with a heuristic for a parameter
sweep at each pixel. However, we found that deferring the thresholding task to
the individual OCR engines resulted in better accuracy, and so we only report
those results. In all our experiments, we resized images to take on a height of 50
pixels and used 4 × 4 pixel cells with 10 orientation bins for the HOG features.
9 http://code.google.com/p/tesseract-ocr/

http://code.google.com/p/tesseract-ocr/
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6.1 Character Classification Results

We benchmarked our character classifier on the Chars74K-5, Chars74K-15, and
ICDAR03-CH data sets. The Chars74K-5 and Chars74K-15 contained 5 and 15
training instances per class, respectively, while the test sets included the same
15 instances of each character class. The ICDAR03-CH data set is the character
classification subproblem from the ICDAR Robust Reading data set. In all data
sets, the characters included upper and lowercase letters, and digits 0 through 9;
in total 62 symbols. Our evaluation methodology mirrored that of [18] and our
results are reported next to theirs in Table 1.

In Table 1, our classifier is labeled as HOG+NN and is displayed in bold
in the first row. The next three rows are reproduced from [18]. The first is
Multiple Kernel Learning (MKL), which is a combination of a number of features
described in [18]. In that work, results for MKL were only reported on the
Chars74K-15, accounting for the dashes in the other two columns. The next
two rows show performance using features from Geometric Blur (GB) [20] and
Shape Context (SC) [21], and classified using Nearest-Neighbor (NN) as reported
in [18]. The methods listed were the ones that performed best from [18].

Table 1. Results for character classification. Our HOG+NN approach performs best on
the three benchmarks, demonstrating the benefit of using HOG features for character
classification.

Feature Chars74K-5 Chars74K-15 ICDAR03-CH
HOG+NN 45.33 ± .99 57.5 51.5

MKL - 55.26 -
GB+NN 36.9 ± 1.0 47.09 27.81
SC+NN 26.1 ± 1.6 34.41 18.32
ABBYY 18.7 18.7 21.2
TESS 17.3 17.3 17.4

Our HOG+NN classifier outperforms those tested in [18] in all three bench-
marks, and more significantly on the Chars74K-5 and ICDAR03-CH. How-
ever, we note that any suitable classification technique that can produce a list
of discrete character detections can be substituted into the word recognition
pipeline.

6.2 Word Recognition Results

We ran experiments on the ICDAR03-WORD and SVT-WORD data sets: the
word recognition benchmarks of both data sets. Unlike SVT-WORD, ICDAR03-
WORD is not explicitly structured for word spotting. Therefore, in our experi-
ments, we construct lexicons synthetically using the ground truth. In both bench-
marks, we use the exact same parameter settings and character training data,
from ICDAR. In our comparisons to ABBYY and TESS, we provided the lex-
icons in the form of custom dictionaries and corrected OCR output to be the
word with the smallest edit-distance in the lexicon.
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Table 2. Number of trials for each lexicon size

Lexicon size 64 128 256 512 1065
Trials 16 8 4 2 1

64 128 256 512 1065 (all)
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Fig. 5. Subfigure (a) shows the performance of our method PICT, and OCR engines
Abbyy FineReader 9.0 (ABBYY) and Tesseract OCR (TESS) on the ICDAR word
benchmark. In this experiment, synthetic lexicons were created out of the ground truth
in each run. We provided custom dictionaries to ABBYY and TESS and corrected their
output to the nearest lexicon word by edit-distance. The y-axis marks word recognition
accuracy and the x-axis marks the lexicon size. The full test size is 1,065 word images.
In subfigure (b), the examples above the line are those that PICT only recognizes
correctly, and the examples below are when all methods fail.

ICDAR Robust Reading: Word Recognition. In this experiment, we com-
pare our approach, labeled as PICT, to the OCR engines ABBYY and TESS
on ICDAR03-WORD. For simplicity, we filtered out words containing symbols
other than letters and numbers, leaving 1,065 testing images. To formulate this
problem as word spotting, we constructed tests of various sizes where we built
synthetic lexicons out of the ground truth words for a particular test run. We
divided the test set according to Table 2.

For each size k, we took all our testing data, randomized the order, and tested
on contiguous chunks of size k until all of the test data was used. For example,
when k = 64, we randomized the order of the test data and sampled sections of
64 images at a time (16 sections). We evaluated the three systems on each group
of images where the lexicon consisted of words only from that set.

Figure 5 shows the word recognition results. The results are averaged over all
the trials for each lexicon size. In our results, we see that at a lexicon size of
1,065, PICT significantly outperforms both OCR engines by over 15% and has
more than 30% improvement when limiting the lexicon size to 64.

Street View Text: Word Recognition. In this benchmark, we tested AB-
BYY, TESS, and PICT on our Street View Text benchmark. On the SVT
benchmark, PICT used the exact same training data and parameters as used
in ICDAR03-WORD. No character training data from SVT was used. The test
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Fig. 6. In our analysis, we use a simple and intuitive heuristic based on edge detec-
tion to group images into EASY and HARD. The EASY examples are typically those
whose characters are well outlined, and the HARD ones typically contain more broken
characters and edges from the background and shadows. This is a coarse estimate of
those images that are more CAPTCHA-like.

size was 514 word images and each image had an associated list of businesses
to categorize from. The accuracies for TESS, ABBYY, and PICT were 31.5%,
47.7%, and 59.0% respectively. Our PICT approach shows significant improve-
ment over the OCR engines.

Implementation Details: The system was implemented in C++ using the
OpenCV framework. Average processing time to run PICT was under six seconds
on an Intel Core 2 processor.

7 Error Analysis

In an attempt to better understand the complexity of image text as it relates
to the performance of conventional OCR, we introduce a simple diagnostic to
gauge image difficulty. In both ICDAR and SVT data sets, there are examples
of words that span the difficulty spectrum: some are well-suited for OCR while
others present a challenge approaching that of a CAPTCHA. In our analysis,
we separate the data into two groups, ‘EASY’ and ‘HARD’, based on a simple
heuristic that is independent of either OCR engine. The intuition behind our
heuristic is that easy examples are likely to have continuous edges around each
character and few spurious edges from the background. We ran a Canny edge
detector [22] on the the data and separated the images by calculating the number
of continuous edges divided by the image’s aspect ratio. This value represents
approximately the number of line segments in a space typically occupied by
one to two characters. We placed images with values between 1 and 3.5 into
the EASY category, and all others into the HARD category; see Figure 6 for
examples of each category. In the EASY category, we can see that the edges
around characters are often reliably traced, whereas in the HARD category,
many edges are picked up from the background and shadows. Table 3 shows the
breakdown of results after separating the data.

While this is not meant to be a definitive method for categorizing the data
– indeed, there could be a more sophisticated heuristic to accurately identify
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Table 3. This table shows the breakdown of results after applying our image diagnostic
to categorize images as EASY and HARD. The proportion of the easy data for ICDAR
and SVT data sets were 40% and 33% respectively.

ICDAR (1065) SVT
METHOD ALL EASY (40%) HARD (60%) ALL EASY (33%) HARD (67%)

TESS 35.0 41.7 30.5 31.5 43.2 25.8
ABBYY 42.8 56.9 33.4 47.7 62.7 40.3
PICT 59.2 65.0 55.3 59.0 63.9 56.8

Table 4. This table shows the breakdown of how often the two OCR engines determine
the that image does not contain readable text. This situation constitutes a large portion
of the overall errors in each engine.

ICDAR (1065) SVT
METHOD ALL EASY (40%) HARD (60%) ALL EASY (33%) HARD (67%)

TESS 33.8 32.6 34.6 46.5 42.0 48.4
ABBYY 45.2 34.5 52.4 44.6 29.6 51.9

Fig. 7. This figure shows some advantages of using part based object detection. In
the images of ‘MARLBORO’ and ‘STUFF’, character segmentation is extremely chal-
lenging because of the cast shadows and letter designs. Using the character detection
approach allows us to avoid explicit segmentation and instead relies on local peaks from
our character detector. The configuration of the word ‘Marriott’ shows how a pictorial
structure model is tolerant of minor errors in the part detections. We can see that even
though the first ‘r’ is not in the correct position, the total configuration cost for the
word is better than that of the others associated with that image.

text that can be read at scanned document levels – it is a simple and intuitive
measure of image text complexity and provides a coarse estimate of how difficult
an image of text is to segment. We can see all the methods perform significantly
better on the EASY subset and the OCR methods suffer greater reductions on
the HARD subset.

One reason for the significant performance drop of the OCR methods is that
proper character segmentation is likely more challenging on the HARD set. The
improvement in performance of the PICT model can be attributed to the fact
that it avoids character segmentation, instead relying on character detection in
a sliding window fashion. These detections are collected using a part based word
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model designed that is robust to small errors. Figure 7 shows examples of these
situations. In the images for ‘MARLBORO’ and ‘STUFF’, they are complex in
appearance and suffer from cast shadows; as a result, accurate segmentation is
extremely challenging. However, the detection approach focuses on finding local
maxima in the response from the character classifier rather than segmentation.
In the ‘Marriott’ example, a single misdetected part, the letter ‘r’, still results
in word configuration score that allows it to be categorized correctly. While it
is the case that minor errors in character classification are corrected using edit-
distance for the OCR engines, we see from Table 4 that a common failure case is
when the OCR engine returns no reading at all, suggesting that significant errors
in segmentation can result in irrecoverable errors for OCR. The performance of
PICT on the HARD subsets is what sets it apart from the OCR methods.

8 Conclusion

In this paper we explored the problem of word spotting and evaluated different
methods to solve the problem. We have shown that approaching word spotting as
a form of object recognition has the benefits of avoiding character segmentation
– a common source of OCR errors – and is robust to small errors in character
detection. When dealing with words in the wild, it is often the case that accurate
segmentation is unattainable, and especially in these cases, our detection based
approach shows significant improvement. While there is still room for improve-
ment in performance, we have shown that framing the word spotting problem
as generic object recognition is a promising new direction.
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A Stochastic Graph Evolution Framework for
Robust Multi-target Tracking�
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Abstract. Maintaining the stability of tracks on multiple targets in
video over extended time periods remains a challenging problem. A few
methods which have recently shown encouraging results in this direction
rely on learning context models or the availability of training data. How-
ever, this may not be feasible in many application scenarios. Moreover,
tracking methods should be able to work across different scenarios (e.g.
multiple resolutions of the video) making such context models hard to
obtain. In this paper, we consider the problem of long-term tracking in
video in application domains where context information is not available a
priori, nor can it be learned online. We build our solution on the hypoth-
esis that most existing trackers can obtain reasonable short-term tracks
(tracklets). By analyzing the statistical properties of these tracklets, we
develop associations between them so as to come up with longer tracks.
This is achieved through a stochastic graph evolution step that considers
the statistical properties of individual tracklets, as well as the statistics
of the targets along each proposed long-term track. On multiple real-life
video sequences spanning low and high resolution data, we show the abil-
ity to accurately track over extended time periods (results are shown on
many minutes of continuous video).

1 Introduction

Multiple object tracking is the most fundamental task for higher level automated
video content analysis. Although a large number of trackers exist, stable, long-
term tracking is still a challenging problem. Common reasons which cause track-
ing failure are occlusion, illumination change, clutter and sensor noise. Moreover,
for multiple targets, we have to consider the interaction between the targets
which may cause errors like switching between tracks, missed detections and
false detections. Therefore, detection and correction of the errors in the tracks
is the key to robust long term tracking.

Many state-of-the-art tracking algorithms focus on how to avoid losing track.
They usually rely on training data or learning context models (e.g. some re-
cent papers like [1,11,16]). In many situations, there may not be enough data
for training or learning context models. For example, videos downloaded from

� This work was supported in part by NSF grant IIS-0712253 and subcontract from
Mayachitra Inc., through a DARPA STTR award (#W31P4Q-08-C-0464).

K. Daniilidis, P. Maragos, N. Paragios (Eds.): ECCV 2010, Part I, LNCS 6311, pp. 605–619, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



606 B. Song et al.

Youtube are usually a few minutes in length and from a variety of contexts.
Analysis of these videos requires tracking and there is no separate data available
to learn models.

In this paper, we consider the problem of long-term tracking in video in appli-
cation domains where context information is not available a priori, nor can it be
learned online. We are not proposing our method as an alternative to learning
models, rather as an approach for applications where such data is not available.
Building on the hypothesis that most existing trackers can obtain reasonable
short-term tracks (tracklets), we propose a stochastic graph evolution frame-
work to understand the association between tracklets so as to come up with
longer tracks by analyzing the statistical properties of individual tracklets, as
well as the statistics of the targets along each proposed long-term track.

Our approach is original in the following ways.

– We come up with a measure of the accuracy of the tracking, so that we can
determine when the tracking error is increasing and identify the tracklets.

– We propose a prediction-based affinity modeling approach by searching for
optimal associations in the target feature space using a stochastic sampling
method. We show that this provides higher accuracy as opposed to heuristi-
cally selecting a fixed affinity model. This process leads to a weighted graph
with the tracklets as nodes and affinity scores as weights.

– We consider long-term interdependencies between the target tracklet features
and use it to correct for wrong correspondences. This is achieved by evolving
the graph weights through a stochastic sampling approach. The underlying
hypothesis for this step is that along a correct track the variation of the
target features will be lower than along a wrong track.

Through this process, we are able to get stable long-term tracks of multiple
targets without the need for extra training data. Our method analyzes the video
in a time-window (maximum duration of a few minutes) in a batch process; thus
there is a delay in the analysis, which is often a non-issue in many applications.

1.1 Related Work

To track multiple objects, a lot of effort has been devoted to making data as-
sociation based on the results of object detection. Multi-Hypothesis Tracking
(MHT) [13] and Joint Probabilistic Data Association Filters (JPDAF)[2] are
two representative methods. In order to overcome the large computational cost
of MHT and JPDAF, various optimization algorithms such as Linear Program-
ming [9], Quadratic Boolean Programming [10], and Hungarian algorithm [12]
are used for data association. In [17], data association was achieved through a
MCMC sampling based framework. These methods rely on the precision of ob-
ject detection, which can not be guaranteed in complex scenarios. On the other
hand, some statical tracking methods (e.g. Kalman filter and particle filter [8])
and kernel tracking algorithm (e.g. mean-shift tracker [3]) release the require-
ment for object detection in every frame, but they are not powerful for tracking
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Fig. 1. Overview of proposed approach

multiple objects by themselves. In [7], particle filters were used to track multiple
objects by incorporating probabilistic MHT for data association.

Many state-of-the-art tracking algorithms focus on how to avoid errors in
tracking. In [18], the authors proposed a min-cost flow framework for global
optimal data association. A tracklet association based tracking method was pre-
sented in [5], which fixed the affinity model heuristically and focused on searching
for optimal associations. A HybridBoosted affinity model was learned in [11]. The
method is built on the availability of training data under a similar environment,
which may not be always feasible. The authors in [1] addressed the problem of
learning an adaptive appearance model for object tracking. Context information
was considered in [16] to help in tracking, by integrating a set of auxiliary ob-
jects which are learned online. Unfortunately, except for high resolution video,
it is not easy to find these auxiliary objects.

We would like to clearly differentiate our approach with traditional Data
Association Tracking (DAT) approaches which perform the tracking by detection
instead of running a tracking algorithm. Unlike the DAT methods, our data
association is done on the tracking results, not the detection result. Moreover,
in most methods, there is very little attention paid on error recovery, i.e., if
errors happen, how to detect and correct them. It is, however, at the heart of
the proposed strategy.

2 Overview of Solution Strategy

Our system is initialized when new targets are detected. A basic tracker using
particle filter is applied to generate the initial tracks. It can be replaced by any
existing tracker, without affecting the other modules. However, errors cannot be
avoided in the tracks generated by the basic trackers, especially in the presence
of occlusions, disappearance of targets and close proximity of targets. In order to
correct the errors, we propose a stochastic tracklet association and adaptation
strategy.

Fig. 1 shows an overview of our long-term tracking system. We begin by iden-
tifying tracklets, i.e., the short-term fragments with low probability of error,
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which are estimated from the initial tracks by evaluating the tracking perfor-
mance. Details on estimation of tracklets are provided in Section 3.

The tracklets are then associated based on their affinities. Although an opti-
mal affinity model could be learned [11], it requires the availability of training
data. Instead of using a heuristically selected fixed affinity model, we propose
a prediction based affinity modeling approach by searching for optimal predic-
tions in the feature space based on Markov chain Monte Carlo (MCMC) sampling
methods as detailed in Section 4. The tracklets are first extended in space and
time through new predicted positions generated using the Metropolis Hastings
algorithm. The affinity between two tracklets is modeled by the distance (in a
suitable feature space) of the predicted ending of one tracklet to the starting of
another. Using the affinity model, we create a tracklet association graph (TAG)
with the tracklets as nodes and affinity scores as weights. The association of
the tracklets can be found by computing the optimal paths in the graph. The
optimal path computation is based on the principles of dynamic programming
and gives the maximum a posteriori (MAP) estimate of tracklets’ connections
as the long-term tracks for each target. This is explained in Section 4.1.

The tracking problem could be solved optimally by the above tracklet as-
sociation method if the affinity scores were known exactly and assumed to be
independent. However, this can be a big assumption due to well known low-level
image processing challenges, like poor lighting conditions or unexpected motion
of the targets. The prediction based affinity model may not be enough to capture
the variation. This leads us to develop a graph evolution scheme as described in
Section 5. The affinities (i.e., the weights on the edges of TAG) are stochastically
adapted by considering the distribution of the features along possible paths in
the association graph to search for the global optimum. We design a loss func-
tion and an efficient optimization strategy for this process. The overall approach
is able to track stably over minutes of video in challenging domains with no
learning and context information.

3 Tracklet Identification

As mentioned earlier, we identify the tracklets from the initial tracks generated
from the basic tracker. Then the problem of tracking over long-term video is
equivalent to finding the best association between the tracklets. Note that al-
though the particle filter based basic tracker is replaceable, it was chosen because
the observation model is nonlinear and the posterior can temporarily become
multimodal due to background clutter. We now describe our implementation of
the basic tracker using a particle filter and the tracklet estimation scheme.

3.1 Particle Filter Based Basic Tracker

Initialization: We use motion detection to automatically detect moving objects.
The background modeling algorithm in [15] is used for its adaptability to illu-
mination change, and to learn the multimodal background through time. Using
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the learned background model, the moving objects can be detected. However,
the background model may not be precise due to noise, which could produce
false detections. By observing that most of our interested targets, like people
and vehicles, are on ground plane, we estimate the rough ground plane area
using the method proposed in [6]. Based on the ground plane information, false
alarms can be removed significantly. We reiterate that this process is just one
choice based on the current literature. It can be replaced and we do not assume
that this step should work perfectly. In fact, the following stages are designed to
correct for the errors here.

System model: The target regions are represented by rectangles with the state
vector Xt = [x, y, ẋ, ẏ, lx, ly], where (x, y) and (ẋ, ẏ) are the position and velocity
of a target in the x and y directions respectively, and (lx, ly) denote the size of
the rectangle. We consider a linear dynamic model: Xt = AXt−1 + nt,

where A defines the deterministic system model and nt is zero mean white
Gaussian noise (nt ∼ N (0, Σt)).

Observation model: The observation process is defined by the likelihood dis-
tribution, p(It|Xt), where Xt is the state vector and It is the image observation
at t. Our observation models were generated by combining an appearance and a
foreground response model, i.e.,

p(It|Xt) = p(Ia
t , If

t |Xt), (1)

where Ia
t is the appearance information of It and If

t is the foreground response
of It using the learned background model as described above. If

t is a binary
image with “1” for foreground and “0” for background.

It is reasonable to assume that Ia
t and If

t are independent and thus (1) becomes
p(It|Xt) = p(Ia

t |Xt)p(If
t |Xt). The appearance observation likelihood is defined as

p(Ia
t |Xt) ∝ exp{−B(ch(Xt), ch0)2}, where ch(Xt) is the color histogram associ-

ated with the rectangle region of Xt and ch0 is color histogram of the initialized
target. B(.) is the Bhattachayya distance between two color histograms. The fore-
ground response observation likelihood is p(If

t |Xt) ∝ exp{−(1−#F (Xt)
#Xt

)2}, where
#F (Xt) is the number of foreground pixels in the rectangular region of Xt and
#Xt is the total number of pixels in that rectangle. #F (Xt)

#Xt
represents the per-

centage of the foreground in that rectangle. The observation likelihood would be
higher if more pixels in the rectangular region of Xt belong to the foreground.

3.2 Tracklet Estimation

Errors cannot be avoided in the tracks generated by any basic tracker. There are
two common errors: lost track (when the track is no longer on any target, but
on the background) and track switching (when targets are close and the tracks
are on the wrong target). This leads us to the rules for tracklet estimation. We
estimate when these errors happen and identify their spatio-temporal location,
leading to the tracklets. An example is shown in Fig. 2.
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Fig. 2. An example of tracklet identification. The ground truth trajectories are repre-
sented by brown dotted lines. The estimated tracklets due to detection of a lost track
(track of the person in lower left corner due to occlusion) and targets’ close proximity
(the persons moving around the cars) are clearly shown in different colors.

Detection of lost track: The tracking error (TE) [2] or prediction error is
the distance between the current observation and its prediction based on past
observations. TE will increase when the tracker loses track and can be used
to detect the unreliability of the track result. In our observation model, TE of
tracked target X̂t is calculated by

TE(X̂t, It) = TEa(X̂t, It) + TEf (X̂t, It), (2)

where TEa(X̂t, It) =B(ch(Xt), ch0)2 and TEf (X̂t, It) =
(

1 − #F (Xt)
#Xt

)2

.

If a lost track is detected, it means the tracking result after this point is not
reliable; in the tracking procedure, we stop doing tracking after this point and
identify a tracklet. In the case of false detection (i.e., the detected target is a part
of background), or target passes through a region with similar color, or a target
stops, the background modeling algorithm will adapt to treat this as a part
of the background, and thus TEf will eventually increase. Then a lost track will
be detected.

Track Switching: When targets are close to each other, a track switch can
happen with high probability especially if the appearances of targets are simi-
lar. Thus, we inspect the distances between targets, and break the tracks into
tracklets at the points where targets are getting close, as shown in Fig. 2.

4 Prediction Based Tracklet Affinity Modeling

As mentioned in [11], in most previous work, simple affinity models are used by
heuristically selecting parameters. The approach in [11] is able to automatically
select among features and corresponding non-parametric models based on train-
ing data. However, without the availability of training data, searching in such an
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affinity function space is not trivial. Under this condition, rather than directly
search in the affinity function space, we propose a prediction based affinity mod-
eling approach by searching for optimal predictions in the feature space based
on MCMC sampling methods and using the predicted features to come up with
the affinity measurements. This provides more robustness compared to using a
fixed affinity measure, as shown in Table 3 in Section 6.

4.1 Tracklet Prediction and Association

The tracklet occurring earlier in time is referred to as the base-tracklet, while
a tracklet beginning after the base-tracklet ended is referred to as the target-
tracklet. In order to measure tracklet affinity, the base-tracklet is extended in the
image motion/appearance-space M steps, where M could represent the number
of frames that separate the end of the base-tracklet from the beginning of the
target-tracklet or a fixed number of pre-determined steps. In order to choose new
points for the base-tracklet, a form of MCMC called the Metropolis Hastings
Algorithm is used to generate chains of random samples.

MCMC is a versatile tool for generating random samples that can be used in
determining statistical estimates. By using this sampling method, the algorithm
is able to take advantage of the base object’s motion and appearance information
while also considering its relationship to the target-tracklet via the target dis-
tribution ptl(z). The target distribution relates points surrounding the starting
point of the target-track to a probability measure. MCMC has the advantage of
not requiring perfect knowledge of the target distribution ptl(z) – it is enough
to be able to evaluate it a particular point, but not sample from it.

D

~

~

~

Fig. 3. An illustration of propos-
ing a new point based on the pro-
posal distribution

The Proposal Distribution: The proposal
distribution qtl(y|z) allows us to generate
samples from a distribution that is easy to
sample from. Our proposal distribution was
based on a combination of motion and appear-
ance of each target. The direction of motion
of each target is modeled using the von Mises
distribution. The von Mises distribution has
close ties to the normal distribution, however
it is limited to angles about the unit circle as
shown in Fig. 3. The pdf for the von Mises
distribution takes the following form:

v(θ|μθ , κ) =
eκ cos(θ−μθ)

2πI0(κ)
. (3)

Here, I0(.) is the modified Bessel function of order zero. The parameters μθ and
κ correspond to mean and variance in a normal distribution, which are learned
within each base tracklet.

The speed of each target is modeled with a Normal distribution N (μD, σD),
where the mean μD and variance σD are learned within each base tracklet. The
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appearance model is described using a normal distribution on the color histogram
of each target as N (μA, ΣA), where the parameters are also learned within each
base tracklet.

So our proposal distribution is

qtl(w|x) ∝ v(Θ(w − x)|μθ , κ)N (D(w − x)|μD, σD)N (A(w)|μA, ΣA), (4)

where Θ(w−x) and D(w−x) represent the angle and distance between the pro-
posed point w and the end point of tracklet x respectively, and A(w) represents
the color histogram of proposed point w. A new point is proposed by randomly
producing motion direction, speed and appearance vector as shown in Fig. 3.

The Target Distribution: Proposed points from the base-tracklet were related
to the starting point of the target-tracklet through the target distribution. The
target distribution, ptl(z), was chosen as

ptl(z) ∝ e−dz, (5)

where dz =
√

d2
a + d2

m is a Euclidean combination of the normalized distance in
the motion-space, dm, and the Bhattacharyya distance, da, between the image
histograms of the average base and target appearances.

M-H Algorithm: Given the proposal distribution, qtl(w|x), where w was the
proposed point and x was the last point in the tracklet and the target distribution
ptl(w), the probability that a point was accepted was given as,

ρtl(x,w) = min
{

ptl(w)qtl(x|w)
ptl(x)qtl(w|x)

, 1
}

. (6)

This process results in a sequence of accepted points for M time steps. The
affinity between a base and target tracklet is computed as the distance dz in (5)
between the end of the predicted extension of the base tracklet and the beginning
of the target tracklet.

Tracklet Association We can now define a Tracklet Association Graph where
the nodes are the identified tracklets and the weights on the edges are the affinity
scores. By splitting the beginning and end of each tracklet into two subsets, the
problem of the tracklet association can be formulated as a maximum matching
problem in a weighted bipartite graph. In this paper, we use the Hungarian
algorithm [12] to find the maximum matching.

5 Tracklet Adaptation

If the affinity scores (edge weights) of the bipartite graph were known exactly and
assumed to be independent, the tracking problem could be solved optimally by
the tracklet association method described above. However, it is not uncommon
for some of the similarities to be estimated wrongly since they depend on detected
features which is not a perfect process. As we show in Fig. 4, if the similarity
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Fig. 4. (a) Tracklets of two targets obtained from Videoweb courtyard dataset of Sec-
tion 6: ground truth track of the person in green T-shirt is shown with orange line,
and the association results before adaptation are shown with blue line. (b)-(c): TAC
values along the incorrect and correct association results respectively, (note that the
range of the y-axis in (c) is much smaller than (b)). It is clear that TAC has a peak
at the wrong link; thus the variance of TAC along the wrongly associated tracklets is
higher than the correct one.

estimation is incorrect for one pair of tracklets, the overall inferred long track
may be wrong even if all the other tracklets are connected correctly.

We address this issue by constructing a graph evolution strategy, in which
the weights (i.e., affinity scores) on the edges of the tracklet association graph
are adapted by measuring the similarity of observed features along a path that
is generated after tracklet association. We adopt the affinity adaptation method
proposed in [14], but instead of adapting deterministically which may be stuck
at a local optimum, we propose a Metropolis-Hastings based adaptation scheme
with the potential to reach the global optimal.

5.1 Tracklet Association Cost Function

To model the spatio-temporal variation of the observed features along a path,
a Tracklet Association Cost (TAC) is defined motivated by [14]. Given an esti-
mated track for the qth target, λq, TAC is defined on each edge eij ∈ λq. The
feature vector of the tracklets before (in time) eij on λq and those after eij are
treated as two clusters. An illustration of TAC calculation is shown in Fig. 4 (a).

Let {X} be the set of feature (e.g., appearance) of all N tracklets along the
path and let them be clustered into {X(1)} and {X(2)} with respect to each
edge eij ∈ λq. Let the mean m of the features in {X} be m = 1

N

∑
x∈{X} x.

Let mi be the mean of Ni data points of class {X(i)}, i = 1, 2, such that mi =
1

Ni

∑
x∈{X(i)} x. Let ST be the variance of the all observed feature x along the

path, i.e., ST =
∑

x∈{X} |x−m|2 and SW be the sum of the variances along each

sub-path, {X(1)} and {X(2)}, i.e., SW =
∑2

i=1 Si =
∑2

i=1
∑

x∈{X(i)} |x − mi|2.
The TAC for eij is defined as

TAC(eij) =
|ST − SW |

|SW | � |SB|
|SW | . (7)



614 B. Song et al.

Thus the TAC is defined from Fisher’s linear discriminant function [4] and mea-
sures the ratio of the distance between different clusters, SB, over the distances
between the members within each cluster SW . If all the feature nodes along a
path belong to the same target, the value of TAC at each edge eij ∈ λq should be
low, and thus the variance of TAC over all the edges along the path should also
be low. If the feature nodes belonging to different people are connected wrongly,
we will get a higher value of TAC at the wrong link, and the variance of TAC
along the path will be higher. Thus, the distribution of TAC along a path can
be used to detect if there is a wrong connection along that path.

We can now design a loss function for determining the final tracks by ana-
lyzing features along a path. We specify the function in terms of the Tracklet
Association Cost (TAC) function. Thus, we adapt the affinity scores to minimize

L(λq) =
∑
λq

V ar(TAC(eij ∈ λ(n)
q )). (8)

5.2 Metropolis-Hastings Based Adaptation of Tracklet Association

Whenever there is a peak1 in the TAC function for some edge along a path,
the validity of the connections between the features along that path is under
doubt. As per the Metropolis-Hastings method, we will propose a new candidate
affinity score s′ij on this edge where the peak occurs using a proposal distribution
qaf (s′ij |sij), where sij is the affinity score on edge eij . The proposal distribution
qaf (s′ij |sij) is chosen to be an uniform distribution of width 2δ, i.e., U(sij −
δ, sij + δ), since without additional information, uniform distribution can be a
reasonable guess of the new weights. Any other distribution can be chosen based
on the application.

We then recalculate the maximum matching paths, λ′
q, of the new feature

graph. The target probability paf (.) is defined as paf (sij) ∝ exp(−L(λq)), and
paf (s′ij) ∝ exp(−L(λ′

q)). The candidate weight s′ij is accepted with probability
ρaf (sij , s

′
ij) as

ρaf (sij , s
′
ij) = min

{
paf (s′ij)qaf (sij |s′ij)
paf (sij)qaf (s′ij |sij)

, 1

}
. (9)

Our adaptation scheme is summarized below.

1. Construct a weighted graph G = (V, E, S), where the vertices are the track-
lets and edge weights are set as described in Section 4.

2. Estimate the optimal paths, λ̃q based on bipartite graph matching.
3. Compute the TAC for each eij ∈ λ̃q.
4. Propose a weight s′ij on the link where the TAC peak occurs based on a

proposal distribution.

1 The peak is detected if it is above a threshold, which is defined as E{TAC(eij ∈
λq)} + 2

√
V ar(TAC(eij ∈ λq)).
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Table 1. Evaluation metrics

Name Definition

GT Num of ground truth trajectories

MT% Mostly tracked: Percentage of GT trajectories which are covered by tracker output more

than 80% in time

ML% Mostly lost: Percentage of GT trajectories which are covered by tracker output less than

20% in time

FG Fragments: The total Num of times that the ID of a target changed along a GT trajectory

IDS ID switches: The total Num of times that a tracked target changes its ID with another target

RS% Recover from short term occlusion

RL% Recover from long term occlusion

5. Recalculate the maximum matching paths, λ′
q, of the new feature graph. We

accept the new graph with probability ρaf (sij , s
′
ij) in (9).

6. Repeat Steps 4 and 5 until either a predefined iteration number is reached
or the system reaches some predefined stopping criterion.

6 Experimental Results

To evaluate the performance of our system, we show results on two different data
sets. The CAVIAR (http:// homepages.inf.ed.ac.uk/rbf/CAVIARDATA1) is cap-
tured in a shopping mall corridor with heavy inter-object occlusion. The Videoweb
dataset (http://vwdata.ee.ucr.edu) is a wide area multi-camera dataset consist-
ing of low and high resolution videos. We consider two subsets of videos. The first
is a outdoor low resolution parking lot scene, and the second is a relatively high
resolution courtyard scene with intensive occlusion and clutter.

To evaluate the performance of our system quantitatively, we adopt the eval-
uation metrics for tracking defined in [11] and [18]. In addition, we define RS
and RL to evaluate the ability of recovering from occlusion (see Table 1). Al-
though we show results on datasets that others have worked with, it should be
noted that we are not proposing our method as an alternative to those that
use/learn context models, rather as an approach to be used when such models
are not available. Therefore, our results should be analyzed with the ground
truth, rather than against those that rely on such knowledge.

Results on CAVIAR dataset: In CAVIAR dataset, the inter-object occlusion
is high and includes long term partial occlusion and full occlusion. Moreover, fre-
quent interactions between targets such as multiple people talking and walking
in a group make tracking more challenging. We show our results on the relatively
more challenging part of the dataset which contains 7 videos (TwoEnterShop3,
TwoEnterShop2, ThreePastShop2, ThreePastShop1, TwoEnterShop1, OneSho-
pOneWait1, OneStopMoveEnter1)2. Table 2 shows the comparison among the
proposed method, the min-cost flow approach in [18], HybridBoosted affinity

2 Compared with other sequences in CAVIAR (e.g. TwoLeaveShop2, OneStopNoEn-
ter1 and OneStopMoveNoEnter1), the challenge of the set we test on is obvious.
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Table 2. Tracking Results on CAVIAR data set. Results of [11] and [18] are reported
on 20 sequences; basic particle filter and proposed method are reported on 7 most
challenging sequences of the dataset. Our test data has totally 12308 frames for about
500 sec.

GT MT ML FG IDS RS RL

Zhang et al.[18] 140 85.7% 3.6% 20 15 - -

Li et al.[11] 143 84.6% 1.4% 17 11 - -

Basic particle filter 75 53.3% 10.7% 15 19 18/42 0/8

Proposed method 75 84.0% 4.0% 6 8 36/42 6/8

Table 3. Tracking Results on one sequence of CAVIAR dataset. Proposed approach is
a combination of basic particle filter, prediction based affinity model and track adap-
tation.

GT MT ML FG IDS RS RL

Basic particle fitler 18 44.4% 22.2% 7 6 4/14 0/5

Simple Affinity model 18 66.6% 5.6% 2 4 12/14 2/5

Prediction-Based Affinity model 18 72.2% 0.0% 2 3 13/14 3/5

Proposed method 18 83.3% 0.0% 2 1 13/14 4/5

modeling approach in [11] and a basic particle filter. The results in [11,18] are
reported on 20 sequences in CAVIAR. It can be seen that our method achieves
similar performance as in [11,18]. It should also be noted that [11,18] are built
on the availability of training data under similar environment (e.g. other 6 se-
quences in CAVIAR are used for training in [18]), while our method does not
rely on any training; also our results are for the most challenging sub-part of
the dataset. Some sample frames with results are shown in Fig. 5 (a). In the
supplementary material, we show results on continuously tracking this data.

In order to show the achievement of each step (i.e., the prediction based affin-
ity modeling and tracklet adaptation) of our proposed method, we compare the
performances of the basic particle filter, a simple affinity model followed by bi-
partite graph match, prediction based affinity model without tacklet adaptation
step, and the complete proposed approach on one of the sequences (the one
shown in the supplementary material). The simple affinity model is constructed
by directly using the average angle and speed of motion and average color his-
togram similar to [18]. It is clearly shown in Table 3 that our method has much
less Fragments (FG) and ID Switches (IDS) and the adaptation part can further
correct the wrong connections.

Results on Videoweb dataset – Low-resolution Example: The first part
of Videoweb dataset we use is a low resolution parking lot scene. The target
categories include people, cars and motorcycle (any object which is below 15
pixels in width is not taken into account). The low resolution makes tracking
more challenging, especially in outdoor scenes since the illumination is always
unstable and the appearance is hard to extract. The results of our methods are
shown in Table 4. Some sample frames and tracking results are shown in 5 (b).
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Table 4. Tracking Results on parking lot scene of Videoweb dataset. 4 sequences of
totally 14673 frames (980 sec.) were used.

GT MT ML FG IDS RS RL

Basic particle filter 90 80% 10.0% 20 6 5/19 1/8

Proposed method 90 90% 4.4% 8 3 15/19 5/8

Table 5. Tracking Results on courtyard scene of Videoweb dataset, 4 sequences of
totally 8254 frames (550 sec.) were used.

GT MT ML FG IDS RS RL

Basic particle fitler 48 41.7% 14.6% 9 17 10/35 2/15

Proposed method 48 66.7% 6.25% 5 8 29/35 12/15

(a) CAVIAR scene

(b) Videoweb: Low Resolution

(c) Videoweb: High Occlusion and Clutter

Fig. 5. (a): Tracking results on CAVIAR dataset. (b): Tracking results on Videoweb
dataset - low resolution parking lot scene. (c): Tracking results on Videoweb dataset -
high clutter and occlusion courtyard scene.

Results on Videoweb dataset – High Occlusion and Clutter Example:
The second part of Videoweb dataset consists of multiple people interacting in a
courtyard. It is almost impossible to track with a basic tracker because of very
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high occlusion. Also, an adaptive background model is hard to build for this level
of occlusion. The tracking result shows our method using the proposed strategy
can get reasonable results even at this level of occlusion. The performance on
this dataset is shown in Table 5. Some sample frames with tracking results are
shown in 5 (c). Results on tracking about 45 seconds of this scene are shown in
the supplementary material.3

7 Conclusions

In this paper, we considered the problem of long-term tracking in video in ap-
plication domains where context information is not available a priori, nor can
it be learned online. We built our solution on the hypothesis that most existing
trackers can obtain reasonable short-term tracks (tracklets). We then developed
associations between them so as to come up with longer tracks. Finally, we pro-
posed a graph evolution method to search for optimal association, then providing
robustness to inaccuracies in feature similarity estimation. Promising results are
shown on challenging data sets.
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Abstract. Hough transform based object detectors learn a mapping
from the image domain to a Hough voting space. Within this space, ob-
ject hypotheses are formed by local maxima. The votes contributing to a
hypothesis are called support. In this work, we investigate the use of the
support and its backprojection to the image domain for multi-view object
detection. To this end, we create a shared codebook with training and
matching complexities independent of the number of quantized views.
We show that since backprojection encodes enough information about
the viewpoint all views can be handled together. In our experiments,
we demonstrate that superior accuracy and efficiency can be achieved
in comparison to the popular one-vs-the-rest detectors by treating views
jointly especially with few training examples and no view annotations.
Furthermore, we go beyond the detection case and based on the support
we introduce a part-based similarity measure between two arbitrary de-
tections which naturally takes spatial relationships of parts into account
and is insensitive to partial occlusions. We also show that backprojec-
tion can be used to efficiently measure the similarity of a detection to
all training examples. Finally, we demonstrate how these metrics can
be used to estimate continuous object parameters like human pose and
object’s viewpoint. In our experiment, we achieve state-of-the-art per-
formance for view-classification on the PASCAL VOC’06 dataset.

1 Introduction

As an important extension of the Generalized Hough Transform (GHT) [2], the
Implicit Shape Model (ISM) [3] trains a codebook of local appearance by clus-
tering a training set of sparse image features and storing their relative location
and scale with respect to the object center. For detection, sparse image features
are extracted from a test image and are matched against the codebook casting
probabilistic votes in the 3D Hough accumulator as illustrated in Fig. 1(a,b). The
support is composed of all the votes that contribute to a detection. The back-
projection of the support gives direct evidence of the object’s presence and can
be used as hypothesis verification, Fig. 1(c,d). For instance, by providing pixel-
accurate segmentation of the training data and storing this information in the
codebook, the backprojection can be augmented by top-down segmentation [3].
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Fig. 1. Object detection using Implicit Shape Models: (a) Features are matched against
the codebook C casting votes to the voting space V. (b) The local maxima of the voting
space is localized and the votes contributing to it are identified (inside the red circle).
(c) The votes are backprojected to the image domain creating the backprojection mask.
(d-e) Visualization of the backprojection mask. Note that the mask does not include
the area occluded by a pedestrian. The image is taken from UIUC cars dataset [1].

Although the support and its backprojection have been used for verification
and meta-data transfer [3,4], it has not yet been fully explored. In this work, we
address a broader question: what does the support tell us about the detection?
We show that additional properties of an object can be retrieved from the sup-
port without changing the training or the detection procedure. To this end, we
augment the codebook by some additional information to establish a link be-
tween the detection and the parts of different training examples. In particular,
we demonstrate two important properties of the support:

Firstly, the different views of an object can be handled by a single codebook
and even a single view-independent voting space since the support and its back-
projection encode enough information to deal with the viewpoint variations. This
is very relevant in practice since state-of-the-art GHT-based multi-view detec-
tors like [5,6] treat different viewpoints as different classes and train a battery
of one-vs-the-rest codebooks for each view. The training and detection time of
these approaches scale thus linearly with the number of quantized views. Un-
like these approaches, we train a single shared codebook for all views, i.e. the
complexity of training and matching a feature against it is independent of the
number of quantized views. The proposed training procedure also allows us to
make better use of training data by sharing features of different views. Having
the shared codebook and depending on the availability of view annotations and
amount of training data, two voting schemes are proposed which outperform the
battery of one-vs-the rest detectors both in terms of accuracy and computational
complexity, in particular, when only few training examples are available.

Secondly, not only we can detect objects under large view variations with a
single shared codebook, but also we can use the support for defining similarity
measures to retrieve nearest examples. One can then estimate continuous param-
eters (like object’s pose or view) of detections by the parameters of the nearest
examples. To this end, we introduce two similarity measures based on the sup-
port. The first one efficiently measures the similarity of a detection to all training
examples. We show that this measure is applicable to retrieve various continuous
parameters like the pose of a detected pedestrian. The second metric finds dense
feature correspondences and can be used as a similarity measure between any
two detections. This measure is particularly interesting as it is part-based and
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naturally takes the spatial relationships of the parts into account. It also inher-
its nice properties like good generalization and insensitivity to partial occlusions
from the ISM model. The power of the latter similarity metric is demonstrated
in the task of view-retrieval in presence of partial occlusions.

2 Related Work

Several approaches have been proposed for the creation of codebooks and to
learn the mapping of image features into the Hough space. While [3] clusters the
sparse image features only based on appearance, the spatial distribution of the
image features is also used as a cue for the clustering in [7,8]. [9] proposes to
store training features without clustering and use them as a codebook. Hough
forests [10] use a random forest framework instead of clustering for codebook
creation.

In order to vote with a codebook, matched codewords cast weighted votes.
While the work of [3] uses a non-parametric Parzen estimate for the spatial
distribution and thus for the determination of the weights, [11] re-weights the
votes using a max-margin framework for better detection. The voting structure
has been addressed in [12], where voting lines are proposed to better cope with
scale-location ambiguities.

In [3], the backprojection has been used for verification. To this end, the train-
ing data is segmented and the local foreground-background masks are stored
with the codebook. When a maximum is detected in the voting space, the local
segmentation masks are used to infer a global segmentation for the detection
in the image. The global segmentation is then in turn used to improve recog-
nition by discarding votes from background and reweighting the hypothesis. In
[4], the individual parts of an object (e.g. front wheel of a motorbike) are also
annotated in the training and used to infer part-labels for a test instance. In this
work, we neither focus on hypothesis verification nor require time consuming
segmentations and part annotations of the training data.

The handling of multiple object views has also been addressed in the litera-
ture, see e.g. [13]. Based on the ISM and a silhouette-based verification step [3],
the model can be extended by handling the viewpoint as additional dimension.
Thomas et al. [5] train a codebook for each annotated view and link the views to-
gether by appearance. [14] extends the voting scheme of ISM by a 4th dimension,
namely shape represented by silhouettes, to improve the segmentation based ver-
fication step. Although this approach uses a shared codebook for multi-aspect
detection of pedestrians, it is limited as it only considers pedestrians which are
already handled by the ISM. Other approaches use the statistical or geometric
relationships between views in the training data to reason about the 3D structure
of the object [15,16,17,18]. Since these approaches need many viewpoints of an
object, they are very expensive in data. Although some of the missing data can
be synthesized from existing data by interpolation [16,19], the interpolation still
requires a certain number of views in the training data. In [20], a discriminative
approach is proposed to handle aspects more general than for a specific class.
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To this end, latent variables that model the aspect are inferred and the latent
discriminative aspect parameters are then used for detection.

3 Multi-view Localization with ISMs

The object detection in our approach is based on the Implicit Shape Model
(ISM) [3]. In this framework, training consists of clustering a set of training
patches P train to form a codebook of visual appearance C and storing patch oc-
currences for each codebook entry. At runtime, for each test image Itest, all test
patches P test are extracted and matched against C. Each patch casts weighted
votes for the possible location of the object center. These votes are based on
the spatial distribution of the matching codebook entry to a Hough accumu-
lator V . This encodes the parameters of the object center, e.g. position and
scale in the image domain; see Fig. 1(a). This way all the votes are cast in V
(Fig. 1(b)). The probability of the presence of the object center at every location
of V is estimated by a Parzen-window density estimator with a Gaussian kernel.
Consistent configurations are searched as local maxima in V forming a set of
candidates vh ∈ V . For each candidate vh, its support Sh is formed by collecting
all the votes contributing to its detection.

In the following, we discuss the training of the shared codebook for all the
views in detail and explain the necessary augmentation of the codebook entries.
Then multi-view detection with this codebook is discussed. Afterwards, we look
into the support, Sh, and its backprojection to the image domain for bounding
box estimation and retrieving nearest training examples. Finally, we introduce a
similarity metric based on the support for comparing two arbitrary detections.

3.1 Training a Shared Codebook

To train the codebook C with entries c1 . . . c|C|, a set of training patches are
collected P train. Training patches are sampled from a set of bounding box an-
notated positive images and a set of background images. Each training patch,
P train

k = (Ik, lk,dk, θk), has an appearance Ik, class label lk, a relative position
to the object center and an occurrence scale dk = (xd, yd, sd), and additional
training data information θk, e.g. the identity of the training image it is sampled
from.

For building the codebook, we use the recently developed method of Hough
Forests [10] as it allows us to use dense features and also due to its superior
performance compared to other methods, e.g. the average-link clustering used
in [3]. Hough Forests are random forests [21] which are trained discriminatively
to boost the voting performance. During training, a binary test is assigned re-
cursively to each node of the trees that splits the training patches into two sets.
Splitting is continued until the maximum depth is reached or the number of
remaining patches in a node is lower than a predefined threshold (both fixed to
20 in the current implementation). The codebook consists of the leaves which
store the arrived training patches P train

k .
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The binary tests are selected using the same two optimization functionals
as [10], to reduce the uncertainty of class-labels and offset. The view annotations
are completely discarded. In our implementation, the label of each patch, lk, is
a binary value assigned to one if the patch was drawn from inside the bounding
box of a positive image and otherwise it is set to zero. However, all training data
information, including the label, can be recovered from θk.

3.2 Multi-view Detection

For detection of objects in a test instance, every patch of the test instance P test
i

is matched against the codebook C and its probabilistic votes are cast to the
voting space V . In particular, by matching the patch P test

i = (Ii, xi, yi, si) to
the codebook, the list of all occurrences Oi = {o = (I, l,d, θ)} stored in the
matching entries is obtained. In this paper, we propose two schemes for casting
these votes to V : joint voting and separate voting .

Joint Voting: Votes are cast to a 3D voting space V(x, y, s). Let us denote the
proportion of positive (same label) to negative (different label) patches of each
codebook entry by rpos

c and the number of positive occurrences by npos
c . Then

for each occurrence o = (I, l,d, θ) ∈ Oi, a vote with weight wo is cast to the
position v = (v1, v2, v3):

v1 = xi − xd(si/sd) (1)
v2 = yi − yd(si/sd) (2)
v3 = si/sd (3)
wo = rpos

c /npos
c (4)

After all votes are cast, the local maxima of V are found, forming a set of can-
didate hypotheses. In this voting scheme, votes from different training examples
and from different views can contribute to a hypothesis and detection is per-
formed without using the viewpoint annotations.

Separate Voting: Voting in separate voting is performed in a 4D voting
space V(x, y, s, view). For each view view, let us denote the number and the
proportion of positive occurrences in c with label view by nview

c and rview
c , respec-

tively. Then for each occurrence o, a vote is cast to the position v = (v1, v2, v3, v4)
with weight wo:

v1 = xi − xd(si/sd) (5)
v2 = yi − yd(si/sd) (6)
v3 = si/sd (7)
v4 = view (8)
wo = rview

c /nview
c (9)

The local maxima of V are found after all votes are collected to form a set of
candidate hypotheses. In this voting scheme, only votes from training examples
of a particular viewpoint can contribute to a hypothesis of that view.
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3.3 Detection Support and Backprojection

After the local maxima are localized in V , the candidate hypotheses are deter-
mined in terms of their center position and scale (and view in separate voting).
We then collect all votes in the support of a hypothesis (i.e. votes contributing
to its detection) and exploit it to get additional information about it. For a
hypothesis h in location vh ∈ V , we define its support Sh as (see Fig. 1(b)):

Sh = {v ∈ V|K(v − vh) > 0} . (10)

where K is a radially symmetric (in x and y) kernel with only local support
such that the set Sh contains only votes in the local neighborhood of vh. In the
current implementation, only votes from the same scale, and same view in the
case of separate voting, are considered as votes contributing in the support.

Additionally, we can define the backprojection as a mapping from V to the
image domain to form the backprojection mask M (see Fig. 1(c)):

B : {v ∈ V : condition} �→ M . (11)

where condition are constraints on the votes. Having a constraint, e.g. v ∈ Sh,
the mask is constructed by projecting all the votes satisfying the constraint back
to the image domain. Since each feature point x = (x, y) in the test image is
mapped to the voting space for detection, the mask can be calculated by mapping
every vote v = (v1, v2, v3) back to x with weight wo (see Fig. 1(d) for an example
of such a mask). The total weight of a mask wM is then defined as the sum of
the weights of all the votes mapped to it.

Bounding box estimation from backprojection: Most approaches (e.g.
[3,6,10]) estimate the extent of the object’s presence by placing the average
bounding box of training images scaled and translated to the detection center.
Although this measure is sufficiently accurate for the rather generous standard
evaluation criteria like [22], this measure is not applicable to multi-view detec-
tion with joint voting where aspect ratios of different views widely vary. Inspired
by [3], we propose using the backprojection of the supporting features for this
purpose. In our work, the backprojection mask is simply thresholded by an adap-
tive threshold (set to half the value range) to form a binary mask. The tightest
bounding box encompasing this mask is used as our bounding box estimate. Of
course this is an oversimplification and there is still the possibility of more so-
phisticated bounding box estimations, e.g. [23], but simple thresholding suffices
to obtain reasonable bounding box estimates.

Retrieving nearest training images: By conditioning the back-projection
of a hypothesis support Sh to the votes coming from a single training example
with identity tr, one can measure how much tr contributes to the detection of
h. Formally, we can write

B : {v ∈ V : v ∈ Sh ∧ θv = tr} �→ Mtr . (12)
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The total weight of Mtr, wMtr , can then be used as a holistic measure of sim-
ilarity between the hypothesis h and the training image tr. In principle, by
introducing additional constraints, one can enforce more specific similarity mea-
sures, e.g. similarity of the left side of h to the left side of tr. Since we sample
only a sparse set of patches from the training examples during training, this
measure establishes correspondences between sparse locations of the detection
and a training example. Fig. 7 shows some examples of Mtr.

Support intersection as a metric: Let I(o, Sh) be an indicator variable which
is one if there is any vote in Sh which comes from occurrence o ∈ O and zero
otherwise. We define the support intersection of two hypotheses h1 and h2 as:

Sh1 ∩ Sh2 =
∑

o∈O woI (o, Sh1) I (o, Sh2)∑
o∈O woI(o, Sh1)

. (13)

Note that the similarity measure is not symmetric due to the normalization fac-
tor. Yet, this factor is important as it makes the measure independent of the
detection weight and as it can also account for occluded regions. The support
intersection can be used as a similarity measure between two detections. This
similarity measure is a model-based similarity measure. There is a close link be-
tween the support intersection in (13) and the histogram intersection kernel used
in bag-of-words image classification [24]. This said, there are also substantial dif-
ferences between the two. Since the detection is done with ISM, the support of
the detection takes the spatial relationships of the features into account. There-
fore, there is no need for a fixed grid on top of the bag-of-words representation
as in the spatial pyramid kernel [24]. In addition, this metric is part-based and
benefits from the generalization capabilities of part-based methods and their
insensitivity to occlusions, as shown in the experiments.

It is worthwhile to note an important difference between the similarity mea-
sures (12) and (13). The similarity measure in (12) can only be used to find
the similarity between sparse patches of a detection and a training example, i.e.
only matching to the same patches sampled during training. But support inter-
section establishes a dense feature correspondence between any two detections.
Due to the dense correspondences in (13), for comparing two detections, this
similarity measure has a computational cost in the order of the number of votes
in its support. However, this is about the same cost it takes to consider sparse
correspondences to all training examples in (12).

4 Experiments

In order to assess the performance of the multi-view detectors described in
Sect. 3.2, we use three datasets. The multi-view Leuven-cars dataset [6] con-
tains 1471 training cars annotated with seven different views and a sequence of
1175 images for testing. The multi-view Leuven-motorbikes dataset [5] contains
217 training images annotated with 16 quantized views and 179 test images. And
the PASCAL VOC’06 cars datset [22]. Further experiments for nearest neighbor
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(a) (b)

Fig. 2. (a) Detection performance for the Leuven-cars dataset and comparison to Leibe
et al. [6]. Separate voting with bounding boxes estimated from backprojection (bp)
achieves the best performance despite much lower training and detection complexity
than baseline (one-vs-the-rest). Joint voting with even lower detection complexity and
without using view annotations gives competitive results. (b) Performance comparison
of joint-voting with state-of-the-art approaches on PASCAL VOC 2006 cars dataset.

retrieval are carried out on the TUD-pedestrians dataset introduced in [25] and
the cars datasets. The TUD-pedestrians dataset provides 400 training images
and 250 images for testing. Throughout the experiments, only bounding box
annotations of the training images are used. The segmentation masks that are
provided for some datasets are discarded.

4.1 Multi-view Detection

As a baseline comparison for the multi-view detection, we consider the popu-
lar one-vs-the-rest detector. For each view, the training is carried out with the
positive training images of a view versus random patches from the Caltech 256
clutter set plus all the positive training images of the other views. An edge de-
tector has been carried out both for training and testing and only features with
their center on an edge are considered.

In order to make fair comparisons, the training and detection parameters are
kept the same throughout the experiments. In particular, the number of trees
in each forest is set to 15. From each training image 100 patches are sampled
and the number of background patches is kept constant at 20000 patches. For
detection, the kernel used for the density estimation is a Gaussian with σ = 2.5
and the first 20 local maxima per image are considered. When the backprojection
is not used for bounding box estimation, non-maxima suppression is done by
removing all detections whose centers are within the bounding box (with 90% of
its size) of another detection with a higher weight. When using backprojection,
the hypothesis with the highest weight is included and its features are removed
from all other hypotheses, thereby decreasing their weights.

The results of this experiment are shown in Fig. 2. As can be seen, separate
voting with the help of backprojection performs best and estimating the bound-
ing box with backprojection slightly increases the performance of the system.
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(a) 350 images (b) 175 images (c) 70 images (d) 35 images

Fig. 3. The effect of training size on the performance of joint voting, separate voting,
and a battery of independent one-vs-the-background classifiers: With the abundance
of training data per view, the separate-voting works best. The advantage of sharing is
significant with lower number of training examples, especially compared to the separate
voting with an identical codebook although no view annotations are used. Joint and
separate voting outperform the independent detector in efficiency and/or accuracy.

Joint voting also shows a competitive performance. It is worthwhile to note that
the superior performance of separate voting is mainly due to the abundance of
training images per view in this dataset and the presence of additional view
information not used by joint voting. By sharing features across views, as e.g.
shown in the work of Torralba et al. [26], one expects to benefit mainly when the
training data is limited. In order to verify this, we did the following experiment.

We compare the performance of joint voting, separate voting, and a battery
of independent one-vs-the-background classifiers for 50, 25, 10, and 5 training
images per view (7 views). In all the experiments, the full background set from
Caltech 256 clutter is used and the set of training images for all three detec-
tors is identical. Joint voting and separate voting use identical shared codebooks
whereas a separate codebook is trained per view for the independent detector
(see Fig. 3). With fewer training examples, as expected, the performance of all
three detectors degrades, but that of joint voting far more gently. In particular,
the comparison of separate voting and joint voting for few training images is
very interesting. Although an identical codebook is used, joint voting signifi-
cantly outperforms separate voting. This performance gap seems to narrow by
using several codebooks (number of views) and thus more codebook entries for
the independent detector but the performance of joint voting is still superior in
terms of accuracy as well as training and detection time. In order to assess per-
formances on a more challenging dataset, we evaluated joint voting and separate
voting for the Leuven-motorbikes dataset [5] where the test set is provided by
the PASCAL VOC Challenge [27]. The motorbikes have more variability in their
appearance and the views are quantified finer because of the larger variability in
aspect ratios. For the sake of a fair comparison the same training and test set-
tings as in [5] is used. The results of this experiment are shown in Fig. 4(a). Note
that the detection result with joint voting is obtained only using the bounding
box annotations for the training data and using no view annotations. It is impor-
tant to note that the aim of the experiments is to show improvements over our
baselines with the same parameters throughout experiments. The performance
of joint voting and other state-of-the-art approaches is shown in Fig. 4(c) to give
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Fig. 4. (a) Joint voting achieves better results than separate voting because of in-
sufficient training data per view and finely quantized views although it does not use
view annotations. Estimating the bounding box from backprojection even leads to a
small improvement. (b) Sharing of features across views of motorbikes. (c) Performance
comparison to state-of-the-art multi-view detectors for the motorbikes dataset.

the reader an idea of the performance of other approaches compared to ours on
this dataset. Note that in Thomas et al. [5] and [17] pixel accurate segemented
training data is used. In contrast to our approach and [5], the sliding window
approach of Savarese et al. [17] explicitly uses the geometrical relationships of
different views. Although these relationships seem to be useful (better recall) for
detection it comes at high computational costs which makes this approach not
scalable to large datasets. In particular, testing with this approach has linear
complexity in the number of training examples compared to logarithmic in our
implementation. And training complexity is quadratic in the number of training
images (linear in our case). In addition, although this work does not use view an-
notations, unlike our approach it needs many views of several training examples
which are expensive to acquire.

Sharing features across views. One of the main advantages of training mul-
tiple views jointly is the sharing of features. In order to evaluate the capability of
our method in doing so, we are creating a sharing matrix of size nviews ×nviews.
Each element of this matrix shows, on average, how many features of the column
view are used for detection of the row view. Since the test set of none of the
datasets is annotated for views, this experiment is done on the set of training
data with a leave-one-out strategy. When running the detector on a training
instance, we are removing all the occurrences that are originating from that
instance from the forest. The sharing matrices for the Leuven-cars and Leuven-
motorbikes datasets are shown in Figs. 4(b) and 5(a).

4.2 Estimating View-Point with Nearest Neighbors

As described in Sect. 3.3, support intersection can be used as metric to com-
pare two detections. In order to assess the quality of this metric, we use it to
retrieve the viewpoint of the detected cars in the Leuven and PASCAL VOC’06
cars datasets. To this end, we have hand-annotated the viewpoint of the full
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(a) (b) (c) (d)

Fig. 5. (a) Sharing codebook occurrences across views for Leuven-cars. (b) Viewpoint
retrieval with the nearest neighbor using (13). (c) View-point classification for detected
cars in the VOC’06 dataset. As can be seen, the confusion appears to be limited only
to similar views. (d) Comparison to state-of-the-art [16,18] for view classificaiton on
VOC’06 (for a fair comparison detections up to 43% recall are considered; average accu-
racy 82%). Note that our nearest neighboring approach leads to superior performance
and more balanced estimation. Comparing the sharing pattern and view confusions is
also interesting; e.g. front and back views share many features but their view have been
separated well. This shows the presence of additional information in the support.

Leuven-cars test set. For the PASCAL VOC’06 cars set, the ground truth anno-
tations were used. For the Leuven-cars, we have run the detector on the positive
set of the training data and collected a set of detections. For the VOC’06 set,
the same procedure is carried out but on the validation set. All detections are
done with joint voting (see Sect. 3.2) and not using view annotations. By com-
paring the support of a test detection to the support of all positive collected
detections using (13), the nearest neighbor is retrieved and the estimated view
of it is assigned to the test detection. This has been done for all the true posi-
tives in the test set and their estimated viewpoint is stored. By comparing the
estimated viewpoint with the ground truth annotations, the confusion matrix
in Fig. 5(b) (with average diagonal of 43%) is created where the rows indi-
cate the ground-truth viewpoints and columns are the estimated viewpoints.
In order to see if retrieving more nearest neighbors would add robustness to
this process, this experiment is repeated by retrieving the 35 nearest training
detections for each test detection and assigning the viewpoint of the majority
to it (with average diagonal of 50%). The results for the VOC’06 are given in
Fig. 5(c,d). As can be seen, most confusion is happening between very similar
views. Note that the features used in our detection system are relatively invari-
ant with respect to small viewpoint changes and the training is done without
using viewpoint annotations and in a way to optimize detection performance.
In addition, there is a relatively large overlap in the annotation of nearby views
due to the difficulty of precise viewpoint estimation even for humans. A video
showing the estimated views for the entire Leuven-cars dataset is available under
http://www.vision.ee.ethz.ch/~nrazavi.

The effect of occlusion: In order to assess the quality of the support inter-
section similarity metric in the presence of occlusions, we have annotated all the
cars in every tenth frame of the Leuven-cars sequence based on the amount of

http://www.vision.ee.ethz.ch/~nrazavi
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(a) (b) (c)

Fig. 6. (a-b) The view retrieval performance using (13) together with the proportion
of the cars detected depending on the amount of occluded regions for a subset of the
Leuven-car sequence. (the last two sets, 50% and > 50%, have very few instances).
The recall and view retrieval performances were calculated independently for each
occlusion set. Interestingly, although the detection performance deteriorates from large
occlusions (a), the viewpoint retrieval performance is affected very little (b) which
shows robustness of this similarity measure to occlusions. (c) Distance between the
ankles estimated by the median of the k nearest training images using (12) compared
to mean and median as baselines. The estimation is robust even at high recall rates.

occlusion: not occluded, 10%, 20%, 30%, 40%, and > 50% occluded regions. In
this experiment, first the detector, with the same settings as in the multi-view
experiment, Sect. 4.1, is applied to all the images and a number of detections
are retrieved for each image. Then for each correct detection, its viewpoint is
estimated as described above. For each occlusion set, we have evaluated how ac-
curately the viewpoint is estimated. The results in Fig. 6(b) show the robustness
of this nearest neighbor metric with respect to partial occlusions.

4.3 Retrieving Nearest Training Examples

In Sect. 3.3, we have explained how backprojection can be used as a similarity
measure between object hypothesis and the training examples. In the following
experiment, we are using such information to estimate the distance between the
ankles of pedestrians as an indicator of their pose; see Fig. 7. We carried out our
experiments on the TUD-pedestrians dataset. Training data of this dataset has
annotations of the joint positions and this information is exploited for estimating
the Euclidean distance (in pixels) between the ankles of a test instance. For the
sake of evaluation, we have produced the same annotations for the test set. The
distance between the ankles of the test instance is then estimated as the median
of this distance in the k NNs. Figure 6(c) shows the deviation of the estimated
distance from the ground truth for different values of k. As a baseline, we also
show the deviation from the ground truth if the distance is estimated by the
mean or median distance of the whole training set.
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Fig. 7. Two test detections from TUD-pedestrians dataset and their top ten nearest
training examples (top row; nearest examples ordered from left to right) and backpro-
jections of detection support to them (bottom row) using (12). The blue box shows the
estimated bounding box from the backprojection mask (blended). Note the similarity
of the poses between the test instances and retrieved nearest training images.

5 Conclusions

We have introduced an extension of the Hough-based object detection to handle
multiple viewpoints. It builds a shared codebook by considering different view-
points jointly. Sharing features across views allows for a better use of training
data and increases the efficiency of training and detection. The performance im-
provement of sharing is more substantial with few training data. Moreover, we
have shown that the support of a detection and its backprojection can be ex-
ploited to estimate the extent of a detection, retrieve nearest training examples,
and establish an occlusion-insensitive similarity measure between two detections.

Although the verification of object hypotheses is not the focus of this work,
the detection performance is likely to improve by an additional verification step
like MDL [3]. Moreover, the backprojection masks could be used in combination
with a CRF to obtain object segmentations similar to [28]. The similarity metrics
could be used in the context of SVM-KNN [29] for verification.

Acknowledgments. We wish to thank the Swiss National Fund (SNF) for
support through the CASTOR project (200021-118106).
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Abstract. Metric learning aims at finding a distance that approximates
a task-specific notion of semantic similarity. Typically, a Mahalanobis
distance is learned from pairs of data labeled as being semantically sim-
ilar or not. In this paper, we learn such metrics in a weakly supervised
setting where “bags” of instances are labeled with “bags” of labels. We
formulate the problem as a multiple instance learning (MIL) problem
over pairs of bags. If two bags share at least one label, we label the
pair positive, and negative otherwise. We propose to learn a metric us-
ing those labeled pairs of bags, leading to MildML, for multiple instance
logistic discriminant metric learning. MildML iterates between updates
of the metric and selection of putative positive pairs of examples from
positive pairs of bags. To evaluate our approach, we introduce a large
and challenging data set, Labeled Yahoo! News, which we have manually
annotated and contains 31147 detected faces of 5873 different people
in 20071 images. We group the faces detected in an image into a bag,
and group the names detected in the caption into a corresponding set
of labels. When the labels come from manual annotation, we find that
MildML using the bag-level annotation performs as well as fully super-
vised metric learning using instance-level annotation. We also consider
performance in the case of automatically extracted labels for the bags,
where some of the bag labels do not correspond to any example in the
bag. In this case MildML works substantially better than relying on
noisy instance-level annotations derived from the bag-level annotation
by resolving face-name associations in images with their captions.

1 Introduction

Metric learning is a supervised technique that finds a metric over a feature
space that corresponds to a semantic distance defined by an annotator, who
provides pairs of examples labeled with their semantic distance (typically zero
or one). This semantic distance, in computer vision, might for instance express
that two images depict the same object, or that they possess roughly the same
layout. Once learned, the metric can be used in many different settings, e.g.
for k nearest neighbor classification [1] , matching and clustering samples based
on the semantic similarity [2,3], or indexing for information retrieval and data
visualization [4,5].

K. Daniilidis, P. Maragos, N. Paragios (Eds.): ECCV 2010, Part I, LNCS 6311, pp. 634–647, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Turkey’s Prime Minister Bulent Ecevit is
flanked by his new deputy and Foreign Minis-
ter Sukru Sina Gurel, right, and Finance Min-
ister Sumer Oral during a funeral service for
prominent journalist Metin Toher, whose pic-
ture is pinned to their chests, in Ankara, Mon-
day, July 22, 2002. The leader of a key par ty
in Turkey’s ruling coalition threatened Monday
to withdraw from the government if early elec-
tions are delayed.(AP Photo/Burhan Ozbilici)

Bulent Ecevit

Fig. 1. Viewing news images with captions as a Multiple Instance Learning problem.
The label “Bulent Ecevit” is assumed to be valid for at least one face in the face bag.
The correct face image for Bulent Ecevit is highlighted in green.

Metric learning has recently received a lot of attention [1,3,6,7,8,9,10]. Most
methods learn a Mahalanobis metric, which generalizes the Euclidean distance,
using a variety of objective functions to optimize the metric. On the one hand,
relatively large numbers of labeled pairs of examples are needed to learn Ma-
halanobis metrics, since the number of parameters scales quadratically with the
data dimensionality. On the other hand, increasing the number of labeled pairs
will immediately increase the run-time of metric learning algorithms, making
large scale applications difficult. Regularization towards the Euclidean metric is
often imposed to find a trade-off solution.

Large scale applications regularly arise in the field of computer vision, due to
the explosive growth over the last decades of available data resulting from the
advent of digital photography, photo sharing websites like Flickr and Facebook,
or news media publishing online. Rarely, though, does this data come with clean
annotations for the visual content. In an increasing number of cases, additional
information relating to the images is nevertheless present, e.g. tags in Flickr or
Facebook, captions for news images or surrounding text in web pages. Given this
observation, a question that naturally arises is whether this massive quantity
of weakly annotated data can be used to perform metric learning. Although
weak forms of supervision have been considered for a number of computer vision
related tasks [11,12], there is currently more work on metric learning from semi-
supervised settings [2,13] than from noisy and weak supervision [14].

In this paper, we focus on a particular form of weak supervision where data
points are clustered in small groups that we call bags. Bags appear naturally
in several computer vision settings: for instance, an image can be viewed as a
bag of several regions or segments [15] – each of which is described by a feature
vector– or a video sequence as a bag of frames [14]. Multiple instance learning
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(MIL) [16] refers precisely to the class of problems where data instances appear
in bags, and each bag contains at least one instance for each label associated
with the bag.

The work closest related to our is [17], where the authors learn a metric from
MIL data for image auto-annotation. Compared to their settings, though, we
will investigate the performance of metric learning when bag labels are noisy,
which means that the underlying assumption of MIL will not be true in general:
a bag may be assigned a label for which none of the instances is relevant.

More precisely, we focus on the problem of metric learning for face recognition.
The goal is to obtain a metric that relates to the identity of a person, despite wide
variations in pose, expression, illumination, hair style, etc. In our setting, bags
are images and instances are faces appearing in these images, as illustrated in
Figure 1. The labels are names automatically extracted from the image caption.
As we will see, in this setting the handling of noisy labels can be viewed as
a constrained clustering problem. Constrained clustering of faces using noisy
name-labels has been considered by various authors [18,19,20,21,22], but these
approaches do not integrate this with metric learning, except [2].

The paper is organized as follows: first we describe LDML [3], a recent state-
of-the-art metric learning algorithm. Next, we propose a MIL formulation for
learning similar types of metrics but on bag-level annotations which are poten-
tially noisy. We refer to it as MildML, for Multiple Instance Logistic Discriminant
Metric Learning. Then, we show how LDML can be adapted to infer instance-
level annotations from bag-level annotation, and how this can help handle noisy
data. In Section 3, we present the Yahoo! News data set, and our annotation
of it that is publicly available as the Labeled Yahoo! News data set, and our
feature extraction procedure. Section 4 presents our experimental results, and
we conclude in Section 5.

2 Metric Learning from Various Levels of Annotation

In this section we show how Mahalanobis metrics can be learned from strong
instance-level annotations to weaker bag-level forms of supervision. A Maha-
lanobis distance dM on RD generalizes the Euclidean distance, and for xi,xj ∈
R

D it is defined as

dM(xi,xj) = (xi − xj)�M(xi − xj), (1)

where M is a D×D symmetric positive semidefinite matrix, i.e. M ∈ S+
D. Note

that S+
D is a cone in RD×D, and therefore is a convex subset of RD×D.

Below, we first describe LDML, a recent supervised metric learning method
in Section 2.1, and modify it to learn low-rank matrices M. In Section 2.2 we
introduce MildML, a MIL extension of LDML that can handle noisy bag-level
annotations. Then, in Section 2.3 we cast MIL metric learning as an joint metric
learning and constrained clustering problem.
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2.1 Supervised Metric Learning

In fully supervised settings, data points xi are manually associated with their
true class labels coded by a binary vector yi ∈ {0, 1}C, where C is the number of
classes. Let us denote X the D × N matrix whose columns are the data vectors
xi, and Y = [yi] ∈ R

C×N the label matrix. Typically, exactly one component of
yi equals 1 and all the other equal 0.

This is the classical metric learning setup, and it has been extensively studied
[1,3,10]. Here, we focus on Logistic Discriminant Metric Learning (LDML) [3],
which maximizes the concave log-likelihood L of a logistic discriminant model.
Considering the convexity of S+

D , the optimization problem is convex, and can
be solved for example using projected gradient descent [23]. The objective of
LDML is:

maximize
M,b

L =
∑
i,j

tij log pij + (1 − tij) log(1 − pij), (2)

where tij denotes the equality of labels yi and yj, i.e. tij = y�
i yj, and

pij = p(yi = yj|xi,xj ,M, b) = σ(b − dM(xi,xj)), (3)

where σ(z) = (1 + exp(−z))−1 is the sigmoid function, and the bias b acts as a
threshold on the distance value to decide the identification of a new data pair.

We now modify LDML to learn metrics M of fixed low rank, which reduces
the number of free parameters and thus avoids over-fitting. As constraints on the
rank of M are non-convex, we can no longer use methods for convex optimization.
Instead, we choose to define M = L�L, where L is a d×D matrix, which ensures
that M is a positive semidefinite matrix of rank d. We now optimize L w.r.t.
L using gradient descend, and resort to multiple random initializations to avoid
poor local optima. The gradient of L with respect to L equals

∂L
∂L

= L
∑
i,j

(tij − pij)(xi − xj)(xi − xj)� (4)

= 2L
∑

i

xi

( ( ∑
j

tij − pij

)
x�

i −
∑

j

(tij − pij)x�
j

)
(5)

= 2LXHX�, (6)

where H=[hij]∈RN×N with hii =
∑

j �=i(tij − pij) and hij = pij − tij for j 	= i.
The gradient as in Equation 6 can be computed in complexity O(N(N +D)d)
which, since d 
 D, is significantly better than the original LDML projected
gradient, whose complexity is O(N(N +D)D+D3).

Note that the rows of L can be restricted to be in the span of the columns of
X�. This is possible since this is true for the gradient (Equation 6) and since
the Mahalanobis distance over the training data is invariant to perturbations of
L in directions outside the span of X. Hence, using L = AX�, we can write
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the Mahalanobis distance in terms of inner products between data points, which
allows us to use kernel functions to perform non-linear LDML like was done
in [9]. Straightforward algebra shows that to learn the coefficient matrix A we
simply replace X with the kernel matrix K in the learning algorithm, which
will then output the optimized matrix A. In Section 4 we only report results
using linear LDML; preliminary results using polynomial kernels did not show
improvements over linear LDML.

2.2 Multiple Instance Metric Learning

We now consider the case where the individual labels yi are unknown. Instead
of supervision on the level of single examples, or pairs of examples, we assume
here that the supervision is provided at the level of pairs of bags of examples.
This naturally leads to a multiple instance learning formulation of the metric
learning problem, which we refer to as MildML, for Multiple Instance Logistic
Discriminant Metric Learning.

Let us denote a bag of examples as Xd = {xd
1,x

d
2, . . . ,x

d
Nd

}, where Nd is the
number of examples in the bag. The supervision is given by labels tde ∈ {0, 1}
that indicate whether for a pair of bags Xd and Xe there is at least one pair of
examples (x1,x2) ∈ Xd × Xe such that x1 and x2 belong to the same class. If
there is such a pair of examples then tde = 1, and tde = 0 otherwise.

The objective in Equation 2 is readily adapted to the MIL setting by extending
the definition of the distance to compare bags [17] with:

dM(Xd,Xe) = min
x1∈Xd,x2∈Xe

dM(x1,x2). (7)

which, using pde = σ(b − dM(Xd,Xe)), leads to the following optimization:

maximize
M,b

L =
∑
d,e

tde log pde + (1 − tde) log(1 − pde). (8)

This objective makes bags that share a label closer, and pushes bags that do
not share any label apart. For a negative pair of bags, all the pairs of instances
that can be made from these two bags are pushed apart since the pair of examples
with minimum distance is.

We optimize the objective iteratively by alternating (i) the pair selection by
the min operator for a fixed metric, and (ii) optimizing the metric for a fixed
selection of pairs. The optimization in the second step is exactly of the same form
as the optimization of the low-rank version of LDML presented in the previous
section. At each iteration step, we perform only one line search in the direction
of the negative gradient, such that the pair selection is performed at each step of
the gradient descent. This way we do not spend many gradient steps optimizing
the metric for a selection of pairs that might still change later.

Note that since MildML does not try to specifically assign labels to instances,
and instead for each pair of bags only a single pair of instances is used to learn
the metric. The benefit is that this single pair is robust to noise in the data, but
the drawback is that many pairs of examples are lost, especially the negative
ones occurring inside a bag, which may impact the quality of the learned metric.



MIL Metric Learning from Automatically Labeled Bags of Faces 639

2.3 Estimating Instance Labels from Bag-Level Labels

In this section we consider the setting where we have partial knowledge of the
labels of the instances in a bag Xd, given by a label vector yd ∈ {0, 1}C, where
y
(n)
d = 1 indicates that the bag contains at least one example of class n. This

setting is also known as Multiple Instance Multiple Label Learning (MIML).
MildML is directly applicable in this case by defining tde = 1 if y�

d ye ≥ 1, and
tde = 0 otherwise. On the other hand, LDML must be adapted to explicitly
estimate the labels of the instances in each bag from the bag-level annotation.
By estimating the instance labels we obtain a larger set of training pairs suitable
for LDML, which may improve over the metric learned by MildML despite the
possibly noisy annotation.

To learn a metric in this setting, we optimize the objective in Equation 2
jointly over the metric parameterized by L and over the label matrix Y subject
to the label constraints given by the bag-level labeling:

maximize
Y,L,b

L =
∑
i,j

(y�
i yj) log pij + (1 − y�

i yj) log(1 − pij). (9)

Unfortunately, the joint optimization is intractable. For fixed Y, it is precisely
the optimization problem discussed in Section 2.1. When optimizing Y for fixed
L and b, we can rewrite the objective function as follows:

L =
∑
i,j

(y�
i yj)(log pij − log(1 − pij)) + c =

∑
i,j

wij(y�
i yj) + c, (10)

where c =
∑

ij log(1 − pij) and wij = b − dM(xi,xj) are constants. This opti-
mization problem is NP-hard, and we therefore have to resort to approximate
optimization techniques.

Observing that the only non-constant terms in Equation 10 are those for
data points in the same class, we can rewrite the objective for a particular
instantiation of Y as

maximize
Y

C∑
n=1

∑
i∈Yn

∑
j∈Yn

wij , (11)

where Yn is the set of indices of instances that are assigned to class n, i.e. Yn =
{i|y(n)

i = 1}. Equation 11 reveals that we are solving a constrained clustering
problem: we have to assign the instances to clusters corresponding to the classes
so as to maximize the sum of intra-cluster similarities wij . The non-zero entries
in the bag-level labels yd define the subset of possible clusters for the instances
in a bag Xd. If we have y�

d ye = 0 for a pair of bags, this implies cannot-link
constraints between all instance pairs that can be constructed from these bags.

To obtain an approximate solution for Y we perform a form of local optimiza-
tion. The label optimization is initialized by assigning all instances in a bag to
each permissible class according to the bag label. We then maximize L w.r.t. the
labels of the instances in each bag in turn, also enforcing that each instance is
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assigned to exactly one class. The optimization at bag level can be done exactly
and efficiently using bipartite graph matching [24].

In our experiments we compare the method presented in the current section
and MildML. Since both optimize an objective function based on LDML, differ-
ences in performance will be due to the strategy to leverage the bag-level labels:
either by selecting a single pair of instances for each pair of bag (MildML) or by
inferring instance level labels.

The method presented in this section is similar to the one presented in [17].
That work also infers instance level labels to perform metric learning in a MIL
setting. However, it is based on estimating prototypes, or cluster centers, for
each of the classes. The objective then tries to ensure that for each bag and
each class label of the bag, there is at least one instance of the bag close to one
of the centers of the class. A second term in the objective function forces the
centers of different classes to be maximally separated. The optimization scheme
is relatively complex, as in each iteration it involves minimizing a non-convex
cost function. Due to this complexity and the fact that we are mainly interested
in comparing the different strategies to leverage the bag-level annotation, we do
not include [17] in our experimental evaluations.

3 Dataset and Feature Extraction

The Yahoo! News database was first introduced by Berg et al. [19], and was
gathered in 2002–2003. It consists of news images and their captions describing
the event appearing in the image. We produced a complete ground-truth anno-
tation of the Yahoo! News database, which extends the annotation provided by
the Labeled Faces in the Wild1 [25]. Our annotation not only includes more face
detections and names, but also indicates which faces were detected in the same
image, and which names were detected in the caption of that image. We coin
our data set Labeled Yahoo! News .2

Face and Name Detection. We applied the Viola-Jones face detector face
detector on the complete Yahoo! News database to collect a large number of
faces. The variations in appearances with respect to pose, expression, and illu-
mination are wide, as shown in Figure 2. We kept all the detections, including
the incorrect ones. In order to collect labels for the faces detected in each image,
we ran a named entity recognition system [26] over the image captions. We also
used the set of names from the Labeled Faces in the Wild data set as a dictionary
for finding names in captions. Most often, the putative face labels collected in
this manner include the correct name for all faces in an image, although this
is not always true. Detected names without corresponding face detections are
more common in the data set.

Dataset Annotation. Documentswithno detected faces or nameswere removed,
and we manually annotated the 28204 remaining documents for the correct
1 Available online: http://vis-www.cs.umass.edu/lfw/index.html
2 Available at http://lear.inrialpes.fr/data/ together with the facial features.

http://vis-www.cs.umass.edu/lfw/index.html
http://lear.inrialpes.fr/data/
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Fig. 2. Examples of wide appearance variations in Labeled Yahoo! News

Alimzhan Tokhtakhounov, left in a cap,
Russian businessman Anzori Kikalishvili,
center, and French tennis player Henri Leconte,
right, watch a tennis match in Paris in this
1996 file picture. Tokhtakhounov, arrested on
July 31, 2002, in Italy on U.S. conspiracy
charges, is accused of scheming to persuade a
French judge to vote for the Russian pairs team
and a Russian judge to vote in turn for the
French ice dancing team. Both teams won gold
at the Salt Lake City Winter Olympics. Rus-
sian Olympic Committee spokesman Gennady
Shvets Thursday, Aug. 1, 2002, derided Amer-
ican charges against the reputed mobster say-
ing they were absolutely stupid and funny as a
cartoon. (AP Photo)

Alimzhan Tokhtakhounov
Anzori Kikalishvili

Fig. 3. On the left, example document from the Labeled Yahoo! News data set with
the detected faces and labels on the right. Here, the automatic annotation is incorrect
because the face of Alimzhan Tokhtakhounov was not detected. The correct face image
for Anzori Kikalishvili is highlighted in green.

association between detected faces and detected names. For faces detections
that are not matched to a name, the annotation indicates whether (a) it is a
false detection (not a face), (b) it depicts a person whose name is not in the
caption, or (c) it depicts a person whose name was missed by the name detector.

Likewise, for names that are not assigned to a face, the annotation indicates
whether the face is present in the image but was missed by the detector. Finally,
we also annotate the document when an undetected face matches an undetected
name. Illustrations of resulting bags are given in Figure 1 and Figure 3.

Definition of Test and Train Sets. In order to divide this data set into
completely independent training and test sets, we have proceeded the following
way. Given the 23 person queries used in [24,27,28], the subset of documents
containing these names is determined. This set is extended with documents
containing “friends” of these 23 people, where friends are defined as people that
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co-occur in at least one caption [28]. This forms set A. From the remaining set
of documents we discard the 8133 ones that contain a name or a face from any
person appearing in set A, such that it is now completely disjoint of set A.

Set A contains 9362 documents, 14827 faces and 1072 different names in the
captions: because of the specific choice of queries, it has a strong bias towards
politicians. Set B contains 10709 documents, 16320 faces and 4801 different peo-
ple, relatively many athletes. The average number of face images for each person
is significantly different between the two sets. Due to these differences between
the two sets, we report performance by averaging the results obtained from
training on either set and testing on the other.

Facial Feature Extraction. We computed a feature vector for each face detec-
tion in the following manner. First, we used the face alignment procedure of [29]
to reduce effects due to differences in scale and orientation of the detected faces.
Then, nine facial features are detected using the method of [20]. Around each of
these nine points we extracted 128-d SIFT descriptors [30] on 3 different scales
as in [3]. This results in 3456-d descriptors for every detected face.

4 Experimental Results

In this section we present our experimental results, and compare our different
methods to learn metrics from weak supervision. The metrics are evaluated for
two tasks: verification and clustering.

4.1 Metrics for Verification

Experimental Protocol. In the face verification task we have to classify a
pair of faces as representing the same person or not. Using our Labeled Yahoo!
News data set, and following the evaluation protocol of [25], we sample 20000
face pairs of both sets A and B, approximately half of which are positives and
half are negatives. Note that we can not use the same test set as Labeled Faces
in the Wild because of overlap between test and train sets in this case. We
measure average precision (AP) obtained at ten evenly spaced values of recall,
and compute the mean AP (mAP) of (a) training the metric on set A and testing
on set B’s pairs and (b) training the metric on set B to classify the pairs of set A.

Experimental Results. We study the performance of metric learning for
different levels of supervision as described in Section 2. As baseline methods we
consider the L2 metric in the original space and after applying PCA to reduce
the dimensionality. We compare the following settings for learning metrics:

(a) Instance-level manual annotations. This setting is only applicable to LDML,
which should be an upper-bound on performance.

(b) Bag-level manual annotations. This setting is applicable directly to MildML,
and indirectly to LDML, using instance-level annotations obtained by apply-
ing constrained clustering using the L2 metric to define the face similarities.

(c) Bag-level automatic annotations. Here, the labels are noisy, since the names
in the caption do not necessarily correspond to faces detected in the images.
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Table 1. Comparison of mean average precision on the Labeled Yahoo! News data set
for LDML and LDML� metrics. The two tables correspond to annotation settings (b)
and (c), respectively. Please refer to the text for more details.

Setting (b) Rank 4 8 16 32 64 128
LDML 77.8% 82.3% 84.9% 86.7% 87.4% 87.2%
LDML� 76.6% 82.4% 84.8% 86.5% 87.0% 87.0%
Setting (c) Rank 4 8 16 32 64 128
LDML 70.5% 74.3% 78.4% 81.3% 82.7% 83.4%
LDML� 68.1% 73.0% 76.9% 79.2% 80.8% 81.3%
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Fig. 4. Mean average precision for L2, PCA, LDML and MildML for the three settings
(a), (b) and (c) described in the text, when varying the metric rank

In Figure 4, we report the performance of PCA, LDML and MildML for a
wide range of dimensionalities and for the three settings (a), (b) and (c). As we
increase the rank from d = 4 to d = 128, we can see that the different meth-
ods reach a plateau of performance. For LDML with the instance-level annota-
tions (a), the plateau is attained approximately at d = 32, with a performance
of 88.4% of mAP, which is substantially above L2 and PCA metrics (77.9%).

When learning from manual bag-level annotations (b), we can still learn effec-
tive metrics: MildML and LDML are still substantially better than the L2 and
PCA metrics. Moreover, MildML matches the performance of the fully super-
vised LDML on the entire range of metric ranks, with at most 0.6% of improve-
ment for d = 4 and 0.2% of decrease at d = 8. Notably, MildML outperforms
the constrained clustering version of LDML using the same annotation (b), also
over the range of metric ranks, by around 2 points.
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When using the fully automatic annotation (c), performance drops for both
methods, which is understandable since the labels are now noisy. For d ≥ 16,
the performance is still better than L2 and PCA. Also in this setting MildML
performs best, reaching 84.3% for 128 dimensions. This score is closer to the
fully supervised LDML (89.0%) than to the Euclidean distance (77.8%) or PCA
(77.9%) for the same rank. Still, there is a significant gap between the supervised
learning and the learning from automatically generated labels, and it appears
that this gap narrows from low to higher dimensions: from 8.8% at d = 4 to
4.5% at d = 128 between the two levels of supervision for MildML.

Finally, we also considered a variant of LDML which re-estimates the instance
level labels using the current metric, and iterates until convergence. We refer to
this variant as LDML�. As shown in Table 1, it has little influence on performance
with the manual bag-level annotation of setting (b), at the cost of a much higher
training time. On setting (c), the performance drops consistently by around 2%.
We conclude that the noisy annotations penalize the clustering significantly.
Remarkably, [17] also relies on data clustering while MildML does not.

4.2 Metrics for Constrained Clustering

Experimental Protocol. In our second set of experiments, we assess the
quality of the learned metrics for constrained clustering. We use the cluster-
ing algorithm described in Section 2.3 on one set of Labeled Yahoo! News after
learning a metric on the other set. Note, the threshold b in Equation 11 directly
influences the number of faces that are indeed associated to a label, i.e. named
by our algorithm. Therefore, we can measure the precision (i.e. the ratio of cor-
rectly named faces over total number of named faces) of the clustering procedure
for various numbers of named faces by varying the value of b. The curve is ap-
proximated on a reasonable range of named faces using a dichotomic search on
the threshold value to obtain 50 approximatively evenly spaced points.

Experimental Results. We study the performance of metric learning for dif-
ferent levels of supervision as described in Section 2, while varying the parameter
of the clustering algorithm. As a baseline method we consider PCA with 128 di-
mensions, which performs comparably to the L2 metric. In addition to PCA, we
compare the following two learned metrics:

1. The fully supervised 128D LDML (which is comparable in performance to
the 128D MildML learned from manual bag-level supervision).

2. The 128D MildML learned from automatically labeled bags of faces.

In Figure 5, we show the naming precision of those three metrics for the two sets:
Figure 5(a) for clustering faces of set A, and (b) for set B. First, we notice that
the clustering algorithm which associates each instance with a label is efficient,
and is able to name several thousand faces with a precision above 80%. Second,
there is a large increase of performance using learned metrics on both sets. LDML
performs better than MildML, but the difference (of max. 6.0% between the two
curves over the two sets) is smaller than the benefit of using MildML compared
to PCA (up to +12.2%).
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(a) Precision curve for clustering set A after learning metrics on set B.
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Fig. 5. Precision of the clustering algorithm on set A (top) and B (bottom) for three
metrics of rank d = 128 with the parameter varied, corresponding to a certain percent-
age of named faces. PCA is an unsupervised metric and performs worst. LDML is fully
supervised at instace-level and performs best. MildML is learnt from automatically
labeled bags and achieves performance close to the fully supervised metric.
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5 Conclusion

In this paper, we have proposed a Multiple Instance Learning (MIL) formulation
of metric learning to allow metric learning from data coming in the form of
labeled bags. We refer to it as MildML, for multiple instance logistic discriminant
metric learning. We have also shown that it is possible to extend LDML, a
instance-level metric learning method, to learn from the same labeled bags using
constrained clustering.

On the large and challenging Labeled Yahoo! News data set that we have man-
ually annotated, we show that our proposed MildML approach leads to the best
results when using bag-level labels. When the bag-level labels are noise-free, the
results are comparable to the case where instance level labels are available. When
using noisy bag labels, performance drops, but remains significantly better than
that of the alternative methods. It appears that performing clustering to obtain
instance-level labels and then learning LDML on the labeled examples does not
perform well. The (costly) LDML� procedure that iterates metric learning and
instance label assignment does not remedy this problem.

In conclusion, we have shown that effective metrics can be learned from au-
tomatically generated bag-level labels, underlining the potential of weakly su-
pervised methods. In future work we will consider learning algorithms that scale
linearly with the number of data points, allowing learning from much larger data
sets. Using larger data sets we expect the difference in performance between
weakly supervised and fully supervised learning methods to diminish further.
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Abstract. In this paper, we propose Partition min-Hash (PmH), a novel hashing
scheme for discovering partial duplicate images from a large database. Unlike
the standard min-Hash algorithm that assumes a bag of words image representa-
tion, our approach utilizes the fact that duplicate regions among images are often
localized. By theoretical analysis, simulation, and empirical study, we show that
PmH outperforms standard min-Hash in terms of precision and recall, while being
orders of magnitude faster. When combined with the start-of-the-art Geometric
min-Hash algorithm, our approach speeds up hashing by 10 times without losing
precision or recall. When given a fixed time budget, our method achieves much
higher recall than the state-of-the-art.

Keywords: partition min-hash, min-hash, partial duplicate image discovery.

1 Introduction

In this paper, we introduce a new method for partial duplicate image discovery in a
large set of images. The goal of partial duplicate image discovery is to find groups
of images in a large dataset that contain the same object, which may not necessarily
occupy the entire image. Figure 1 shows examples of such groups of partial duplicate
images. Partial duplicate image discovery differs from partial duplicate image retrieval
in that there is no particular query image, but instead the task is to search for all groups
of duplicate images in a dataset. Such a task is useful for identifying popular images on
the web so that images can be ranked by their importance, for grouping similar images
returned by a web search so that users can navigate the returned results more easily and
intuitively, or for unsupervised discovery of objects.

Min-hash is a standard hashing scheme for discovering near-duplicate text docu-
ments or web pages [1]. Recently min-hash and its variants have been successfully
applied to discovering near duplicate images [2,3], image clustering, image retrieval
and object discovery [4]. In the min-hash algorithm, a hash function is applied to all
visual words in an image ignoring the location of visual words, and the visual word
with minimum hash value is selected as a global descriptor of the given image.

Unlike text documents which are usually represented by bag of words, images are
strongly characterized by their 2D structure—objects are often spatially localized in the
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Fig. 1. Examples of partial duplicate images. The duplicate region occupies a small portion of
each image.

image and there exist strong geometric constraints among the visual words in an object.
Figure 1 shows some examples where the objects, and therefore the duplicate regions,
are localized in the images. However, standard min-hash treats all visual words inde-
pendently. A straightforward application of min-Hash to images ignores both locality
and geometric constraints.

Geometric min-hash (GmH) [4] improves upon standard min-hash by considering
the dependency among visual words. It first computes a min-hash value in a way similar
to standard min-hash. The rest of the hash values in a sketch are then chosen only within
a certain proximity of the first visual word. However, the locality property is still ignored
in Geometric min-hash (GmH) when computing the first min-hash. If the first min-hash
does not repeat between two matched images, the containing sketch is not repeatable
and becomes useless.

Our ultimate goal is to detect partial-duplicate images from a web scale image
database, where both precision/recall and computational cost are critical for scalability.
In this paper, we aim to exploit locality and geometric constraints to improve preci-
sion/recall and to reduce computational cost. We propose Partition min-Hash (PmH), a
novel hashing scheme to exploit locality, i.e. the fact that duplicate regions are usually
localized in an image. In PmH, an image is first divided into overlapping partitions.
Hashing is then applied independently to the visual words within each partition to com-
pute a min-hash value.

Since the duplicate regions are localized, it is likely that one of the overlapping par-
tition contains the common region among partial-duplicate images. By hashing within
the partition instead of over all of the image, the min-hash is more repeatable among
partial-duplicate images. By theoretical analysis, simulation, and experiments on real
images, we show that PmH not only outperforms standard min-Hash in both precision
and recall, but is also more than ten times faster for hashing, and more than two times
faster overall including image preprocessing (at 1000 sketches/image). We also show
that, when alloted the same amount of time, the proposed method achieves much higher
recall than previous methods.

Partition min-hash and geometric min-hash can be used in conjunction by first par-
titioning images and then applying GmH to each partition. This improves the preci-
sion/recall of GmH, while speeding-up hashing by an order of magnitude.
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To further utilize geometric constraints among visual words, we augment PmH by
encoding the geometric structure in the sketches. Specifically, the geometric relation-
ship among visual words in a sketch is quantized into an ID. This ID is then concate-
nated to the sketch to form the final representation of the image region.

1.1 Related Work

Large scale partial duplicate image discovery is closely related to image retrieval, which
includes two popular themes. One theme represents an image as a bag of visual words,
and then applies approaches from the text domain for efficient image indexing and re-
trieval [5,6,7,8]. Another theme uses hashing schemes to efficiently find similar images
[3,9,10,11,12].

Naive application of image retrieval methods to partial duplicate image discovery
can be done by using every image in the set as a query image. This has the computa-
tional complexity of the retrieval method multiplied by the number of images, which
becomes prohibitive if the computational complexity of the retrieval method is more
than O(1). Hashing based methods are more suitable for partial duplicate image dis-
covery, because all images can be hashed into a hash table and hash collisions can be
retrieved as similar images, which can then be further expanded into more complete
image clusters by image retrieval [4].

In this paper, we focus on designing efficient hashing schemes for scalable partial
duplicate image discovery. Like previous works, we represent an image as a set of visual
words [5], which are obtained by quantizing local SIFT feature descriptors [13,14].
Min-hash [1] and its variants can then be applied to finding similar sets and therefore
similar images [3,4]. In particular, we are inspired by geometric min-hash [4].

2 Min-Hash Algorithm

In this section we present some background on the min-hash algorithm. Min-hash is
a Locality Sensitive Hashing scheme [15] that approximates similarity between sets.
When an image is represented as a set of visual words, the similarity between two
images can be defined as the Jaccard similarity between the two corresponding sets of
visual words I1 and I2:

sim(I1, I2) =
|I1 ∩ I2|
|I1 ∪ I2|

,

which is simply the ratio of the intersection to the union of the two sets.
Min-hash is a hash function h : I �→ v, which maps a set I to some value v. More

specifically, a hash function is applied to each visual word in the set I , and the visual
word that has minimum hashed value is returned as the min-hash h(I). One way to
implement the hash function is by a look-up table, with a random floating-point value
assigned for each visual word in the vocabulary, followed by a min operator. The com-
putation of the min-hash of a set I involves computing a hash of every element in the set
and the time taken is therefore linear in the size of the set |I|. More details on min-hash
can be found in [1,3].
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Fig. 2. (a) In standard min-hash, min-hash sketches are extracted from the entire image. (b) In
Partition min-hash, the image is divided into partitions and a min-hash sketch is extracted for each
partition. (c) Overlapping partitions (in thick blue solid/broken line) are more likely to capture
the entire duplicate region and lead to better performance. Sketches can be pre-computed for
each grid element (thin black line) to avoid most of the redundant computation for overlapping
partitions.

Min-hash has the property that the probability of hashing collision of two sets is
equal to their Jaccard similarity:

P (h(I1) = h(I2)) = sim(I1, I2).

Since the output of a min-hash function v is actually a visual word, it carries the position
and scale information of the underlying local feature for geometric verification.

In image retrieval or partial duplicate image discovery, we are interested in finding
images which have similarity greater than some threshold θ. In other words, we would
like the probability of collision to be a step function:

P (h(I1) = h(I2)) =
{
1 if sim(I1, I2) ≥ θ;
0 otherwise.

This step function can be approximated by applying k min-hashes to a set and concate-
nating them into a sketch. Then n sketches can be computed for an image and all of
them can be added to the hash table. Under this setting, two images will collide if they
share one common identical sketch. The probability for two images to collide in the
hash table becomes:

P (h(I1) = h(I2)) = 1 −
(
1 − sim(I1, I2)k

)n
, (1)

which approximates the step function. The sharpness of the “step” and threshold θ can
be controlled by varying the sketch size k and the number of sketches n.

This scheme of computing n min-hash sketches of size k will be the baseline for our
method, and we denote it as “standard min-hash”.

3 Partition Min-Hash

Based on the observation that duplicate regions among partial-duplicate images are usu-
ally localized, we propose a new method called Partition Min-Hash. It has better pre-
cision and recall and runs orders of magnitude faster than standard min-hash. It is also
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Algorithm 1. Partition min-hash
Initialize Ns independent min-hash sketch functions hi, where i = 1, · · · , Ns.
Initialize Ns hash tables Ti, which map a min-hash sketch s to image ID k.
for all Images Ik in database do

Divide image Ik into a grid, Ik,j , where j = 1, · · · , Ng

For each partition, determine the grid elements that are associated with the partition.
for i = 1, · · · , Ns do

for j = 1, · · · , Ng do
Extract sketch si ← hi(Ik,j)

for all Partitions do
Look up sketches sj extracted from grids that belong to current partition, and select
true min-hash sketch s∗

Add (s∗, k) to hash table Ti

very easy to implement and only has partition size and overlap as tuning parameters.
The rest of this section introduces the method and discusses its performance.

3.1 Method Details

An image is divided into p rectangular regions of equal area, which we call partitions
(Figure 2(b)). Then, instead of extracting min-hash sketches from the entire image, min-
hash sketches are extracted for each partition independently. The p min-hash sketches,
one extracted from each partition, are inserted into the hash table.

As will be analyzed in the following section, partitions that fully and tightly capture
a duplicate region between images lead to better precision and recall, compared to cases
in which a duplicate region spans several partitions, or where the partitions are much
larger than the duplicate region. With evenly divided partitions, the duplicate is often
split into two or more partitions. To alleviate this, we design partitions to be overlapping
(Figure 2(c)) and multi-scale. This gives us a better likelihood of having at least one
partition that captures the duplicate region completely. This may remind the reader of
the sliding window technique, widely used for object detection. The spirit is, in fact,
similar: we are hoping for one of the subwindows to hit a region of interest, which, in
our case, is an unknown duplicate region.

We can avoid redundant computation on overlapping partitions by precomputing and
reusing min-hashes. An image is divided into a grid, where the grid elements are the
greatest common regions among partitions that cover that region (Figure 2(c)). Min-
hash sketches are precomputed for each grid element wi. Then the min-hash sketch for
a partition P is computed by looking up elements {wi} that are associated with that
partition P and picking the true min-hash sketch among the precomputed min-hash
sketches on elements:

h(P ) = min
i
{h(wi)|wi ∈ P}

The entire algorithm is summarized in Algorithm 1.

3.2 Theoretical Analysis on Performance

In this section, we will analyze the speed and performance of partition min-hash and
show that it achieves higher precision and recall in less time than standard min-hash.
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For the sake of comparison, we will keep the number of sketches per image equal
for both cases. With the same number of sketches stored in the hash table, the two
methods will use the same amount of memory. For example, if n sketches per image
were computed for standard min-hash, we will compute n/p sketches for each of the p
partitions for partitition min-hash, so that the total number of sketches per image equals
p · n/p = n.

Speed. Processing time can be divided into two components: the time to compute
sketches and the time for other overhead operations, such as reading the image from
disk, extracting visual words, adding sketches to hash tables, etc. The overhead will be
the same for both methods, with a fixed number of images and sketches per image for
both methods, so the difference in time will be in computing sketches.

As mentioned in Section 2, the time to compute a min-hash sketch is linear in the
size of the set. In partition min-hash, each sketch is the result of applying min-hash to
a partition instead of the entire image, so the time it takes to compute each sketch is
reduced by a factor of Mi/M , where Mi is the number of features in partition i and
M is the number of features in image. On average, Mi/M will be roughly equal to the
ratio of the area of the partition and the area of the image, which, in the case of non-
overlapping partitions, is 1/p, where p is the number of partitions. So the overall time to
compute sketches reduces by 1/p. In the case of overlapping partitions, additional time
is required to look up grid elements associated with each partition, compared to the
non-overlapping case, however this is small compared with the time to hash features.
The key to this speedup is that in standard min-hash, each feature participates in all
n sketches, so must be hashed n times. In PmH, each feature only participates in n/p
sketches, so the number of computed hashes is reduced by a factor of p.

Precision and Recall. We now show that the sketches created by partition min-hash
have better discriminative power than the sketches created by standard min-hash, de-
spite the fact that they take less time to compute. We will study precision and recall by
analyzing the collision probability of true matching image pairs and the collision prob-
ability of false matching image pairs. The collision probability of true matching pairs
is equal to recall, defined as the number of retrieved positives divided by the number
of true positives. The collision probability of false matching pairs is related to (but not
equal to) precision, defined as the number of retrieved positives divided by the number
of retrieved images. We have derived in Section 2, Equation (1) that the collision prob-
ability of standard min-hash is equal to P (h(I1) = h(I2)) = 1−

(
1 − sim(I1, I2)k

)n
.

We will show that partition min-hash achieves higher collision probability for true
matching pairs and lower probability for false matching pairs, thus achieving higher
precision and recall.

Let us first analyze the collision probability of true matching image pairs. To simplify
the analysis, we will consider the case of non-overlapping partitions (Figure 2(b)). The
arrangement of partitions with respect to the region with duplicate content can then
be categorized into three cases, illustrated in Figure 3(a),(b),(c). For the purposes of
analysis, we have assumed that features are spread across the image and each partition
within an image contains the same number of features (including matching and non-
matching background features). Once the simplified analysis on non-overlapping cases
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Fig. 3. (a)(b)(c): Illustration of true matching image pairs. Various symbols in red represent
matching features across images. Lightly colored circles in the background represent non-
matching features and are assumed to be spread out uniformly across partitions. (a): The dupli-
cate region is captured in a single partition in each image. (b): The duplicate region is split across
all partitions. (c): Mix of (a) and (b). (d): Illustration of a false matching image pair. Features
are randomly distributed. (e)(f)(g)(h): Collision probabilities plotted against image similarity for
cases (a)(b)(c)(d), respectively. Red solid curve: Collision probability of partition min-hash. Blue
broken curve: Collision probability of standard min-hash. X axis: Similarity. Y axis: Collision
probability.

is done, it will be easy to infer that overlapping partitions are more likely to generate
“preferred” partitions.

Case (a): The duplicate region is contained within a single partition in each image.
Since duplicate features are contained in only 1 of the p partitions, the similarity be-
tween the two images sim(I1, I2) must be less than 1/p. Now, the similarity between
the partitions containing duplicate region is p · sim(I1, I2), where p is the number of
partitions. Since n/p sketches are extracted from those partitions, the overall collision
probability is equal to

P (h(I1) = h(I2)) = 1 −
(
1 − (p · sim(I1, I2))

k
)n/p

,

and is plotted in Figure 3(e). Partition min-hash achieves a higher collision probability
than standard min-hash in this case.

It is possible for duplicate regions to lie in between partitions. In such case, it can
be shown that the collision probability is less than what was derived above, but is still
greater than standard min-hash. Moreover, overlapping partitions increases the chance
of having a partition that covers a duplicate region, thus increasing the collision prob-
ability even further. We obtained the collision probability for overlapping partitions
through simulation and it is reported at the end of this section.

Case (b): The duplicate regions are split up among partitions. The illustration shows
the most extreme case where the duplicate region is split across all p partitions. Since
we are considering an actual duplicate image, each partition from one image will have
a corresponding matching partition in the other image, e.g. partition 1 from image 1
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matches with partition 1 from image 2, partition 2 from image 1 matches with partition
2 image 2, and so on. Now for each pair of matching partitions, the similarity between
the pair will be the same as the original similarity sim(I1, I2). For each partition, n/p
sketches are extracted, but the image will be considered as colliding if any one of the p
pairs collide. So the overall collision probability is equal to

P (h(I1) = h(I2)) = 1 −
((

1 − (sim(I1, I2))
k
)n/p

)p

= 1 −
(
1 − sim(I1, I2)k

)n
,

which is the same as the collision probability for standard min-hash, and it is plotted
in Figure 3(f). In practice, the splitting of duplicate regions will typically not be as
extreme as a split across all p partitions and the collision probability will be somewhere
in between case (a) and case (b).

Case (c): The duplicate region is contained in one partition in one image and split
up into p partitions in the other image. The partition which contains the entire duplicate
region has non empty intersection with all p partitions from the other image and has
the probability to have the same min-hash value proportional to their similarity, which
is equal to sim(I1, I2), as on average the number of duplicate features and the number
of non-duplicate features are reduced by the same ratio from the entire image. Again in
this case, the collision probability is equal to

P (h(I1) = h(I2)) = 1 −
(
1 − sim(I1, I2)k

)n
,

plotted in Figure 3(g), but in practice most images will lie somewhere between cases
(a) and (c). The simulation at the end of the section confirms the above analytic result.

Case (d): The collision probability of false matching image pairs. We assume that in
a false match, duplicate features among two images are scattered randomly across the
image, as opposed to being localized in some partition. This is illustrated in Figure 3(d).
Partitioning randomly scattered features can be considered as random sampling, and
the expected similarity between one randomly sampled partition and another randomly
sampled partition reduces by a factor of p, i.e., the expected similarity between any
partitions in the two images is equal to sim(I1, I2)/p. As there are p partitions for each
image, there are a total of p2 combinations leading two partitions to collide. Therefore,
the collision probability is equal to

P (h(I1) = h(I2)) = 1 −
((

1 − (sim(I1, I2/p)k
)n/p

)p2

= 1 −
(
1 − (sim(I1, I2)/p)k

)np
,

which is lower than standard min-hash, and is plotted in Figure 3(h). In practice, some
partitions will have higher number of duplicate features and have higher similarity than
sim(I1, I2)/p, which leads to an overall collision probability that is higher than what
is derived above. But the chances of having a partition with significantly high number
of duplicate features will be low, and the true collision probability will be close to what
we derived.
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Fig. 4. Simulated collision probability of partition min-hash with overlapping partitions for four
cases. ‘mh theor’: Theoretical rate of standard min-hash. ‘pmh theor no overlap’: Theoretical rate
of partition min-hash with non-overlapping partitions. ‘pmh simul overlap’: Simulated rate of
partition min-hash with overlapping partitions.

Overlapping partitions and simulation verification. So far, the analysis has been done
for non-overlapping partitions where the duplicate region is also within some partition.
In practice, the duplicate region may stride over partition boundaries, so we use over-
lapping partitions to achieve higher chance of capturing the duplicate region in one par-
tition. The theoretical collision probability for overlapping partitions is complicated due
to dependence among sketches from overlapping partitions. Instead, we use synthetic
examples to simulate the case where the duplicate regions are not aligned with partitions
for the four cases in Fig. 3, and apply partition min-hash with overlapping partitions.
The simulation was done by synthesizing images with visual words distributed as de-
scribed in the four cases and applying partition min-hash to the images. The simulation
is repeated 1000 times and the collision probabilities are reported in Figure 4.

Compared to standard min-hash, we see that the collision probability of partition
min-hash with overlapping partitions is higher in case (a) and similar in case (c). For
case (d), which is false matching, the probability of false collision is much lower than
standard min-hash. Compared to the ideal non-overlapping case, both (c) and (d) have
similar performance, while (a) is not as good as the ideal case. This is expected as we are
using the same number of sketches for both overlapping and non-overlapping cases. As
a result, the number of sketches per partition for overlapping case is lower. This affects
case (b) the most where its collision probability is lower than the standard min-hash.
In practice, most duplicates will occupy a portion of the image and will be in between
case (a) and case (b). Moreover, since we pre-computed min-hash for each grid, we can
get more sketches for each overlapping partition almost for free.

4 Evaluation of Partition Min-Hash

In this section, we present quantitative evaluations of our method using two datasets,
our own dataset collected from the web and the Oxford buildings dataset [6].

4.1 Experimental Setup

In our own dataset, we have collected 778 images from the web and manually categorized
them into 19 categories, where the images within each category are partial duplicates.
There are no exact duplicates among this set of 778 images. The set contains 17595 true
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matching image pairs (belonging to the same category) out of 778 × 777/2 = 302253
total pairs. Such a large set of image pairs is adequate for evaluating hashing schemes.
The average Jaccard similarity for true pairs is 0.019. The number of features per image
ranges from 200 to 1000, and we have quantized them using a visual word vocabulary
with one million visual words. It takes about 100ms per image to extract visual words.
Min-hash functions are implemented as lookup tables of random floating point values
assigned per each visual word, followed by a min operation.

The Oxford buildings dataset [6] consists of 5062 images collected from Flickr by
searching for particular Oxford landmarks. The annotation provides whether an image
in the database is a partial duplicate of a query image for 55 queries. As the time that
was taken to extract visual words were not reported in the Oxford buildings set, we
assumed it took 100ms per image in our reported graphs.

We tested the quality of collision pairs that are retrieved by counting the number of
true pairs and false pairs that were retrieved using our proposed method. Recall was
computed as the number of retrieved true pairs divided by the total number of true
pairs. Precision was computed as the percentage of true pairs among all retrieved pairs.
This measure differs from the number of images retrieved from a set of partial duplicate
images. F-measure was computed as the harmonic mean of precision and recall.

In order to get the final clustered set of dupilcate images, post-operations, such
as connected components and query expansion, should be performed, since min-hash
based methods only retrieve a subset of pairs of images in a group of duplicate images
probabilistically and does not complete the clustering. We did not include the post-
operations in our evaluation and evaluated only the pairs that it retrieved, as it allows
a more direct comparison of the various min-hash methods themselves, which is the
focus of our study.

Experiments were run on a single 32-bit machine with a 3.2 GHz processor and 4GB
memory.

4.2 Results on Our Dataset

We have empirically tested the effect the number of partitions per image and the area
of overlap of neighboring partitions, by varying them from 16 to 144 and 0% to 80%,
respectively. An overlap area of 50% gave the best recall. Recall tends to increase as
the number of partitions increase. The time taken was the least between 64 and 121
partitions. We have chosen 100 partitions per image and 50% overlap for the following
experiments. We have used two hashes per sketch in our experiments.

We have tested and compared four methods: standard min-hash (mH), partition min-
hash (PmH), geometric min-hash (GmH) [4], and the combination of min-hash and
geometric min-hash (PmH+GmH). They were compared under two scenarios: constant
number of sketches per image (Figure 5) and constant runtime (Figure 6). The first
scenario allows us to evaluate how discriminative the sketches are for each method, and
how long it takes to compute a single sketch. The second scenario allows us to evaluate
how our proposed method compares given the same computational resource.

In the first scenario (Figure 5), all hashing schemes have high precision, with PmH
being slightly better than mH. In the mean time, PmH improves the recall by more than
20% when compared to mH. The speed of the hashing process of PmH is 16 times
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Fig. 5. Performance on our dataset with fixed number of sketches per image. F-measure is the
harmonic mean of precision and recall. Time scale starts around the time it took for extracting
visual words from images, denoted by “VW extraction.”
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Fig. 6. Performance on our dataset with fixed time budget

faster than mH. When our partition scheme is applied to GmH, speed improves by 9
times. When the time for extracting visual words is added, PmH is 2.5 times faster
than mH, and PmH+GmH is 2 times faster than GmH, at 1000 sketches/image. At 1000
sketches/image and 2 min-hash/sketch and assuming 1000 features per image, min-hash
requires about two million table look up operations, which is a significant amount of
computation. Partition min-hash reduces this number of look up operations by a factor
proportional to the number of partitions. Furthermore, the overall improvement in speed
becomes more significant when more sketches per image (n) and more min-hashes per
sketch (k) are used and min-hash operation contributes more to the overall execution
time. It is beneficial to use a greater number of sketches and min-hashes, because it
approximates the ideal step function better, which was discussed in Section 2, and leads
to better performance. The constraint that limits the number of sketches and min-hashes
is the computation time, and partition min-hash alleviates this constraint.

In the second scenario (Figure 6), PmH and PmH+GmH have much higher recall than
mH and GmH. When allowed to run for 5 seconds, our PmH has 9.1 times higher recall
than mH, and PmH+GmH has 9.2 times higher recall than mH, while GmH has 1.7 times
higher recall than mH (mH: 3.0%, PmH: 27.2%, GmH: 5.0%, PmH+GmH: 27.6%). All
of the hashing schemes have high precision (mH: 100%, PmH: 98.9%, GmH: 99.7%,
PmH+GmH: 99.2%). As we can see, given a fixed time budget in real applications, the
speed up of our partition min-hash leads to significant improvement in recall.

Figure 9 shows a sample set of images having min-hash sketch collisions using
PmH+ GmH with 500 sketches and 100 partitions per image with 50% overlap. In a
typical application these collisions are used as seeds to complete the image clusters
using query expansion [4].
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Fig. 7. Performance on Oxford buildings dataset with fixed number of sketches per image. Time
scale starts around the time it took for extracting visual words from images, denoted by “VW
extraction.” (100ms per image was assumed)
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Fig. 8. Performance on Oxford buildings dataset with fixed time budget

4.3 Results on Oxford Buildings Dataset

We have performed the same experiments on the Oxford building dataset. Figure 7
shows results with fixed number of sketches per image. On this dataset, the perfor-
mance of min-hash is low, with a particularly low precision of about 20%. With such
low precision, the improvement made by Partition min-hash is more pronounced—the
precision improvement over mH is 200%. The speed improvement is also significant,
consistent with our own dataset. For hashing, PmH runs 17 times faster than mH, and
PmH+GmH runs 11 times faster than mH. Our approach also speeds up GmH by 7
times for hashing, without losing precision or recall. When time for extracting visual
words is added, PmH is 3.3 times faster than mH, and PmH+GmH is 2.4 times faster
than GmH, at 1000 sketches/image.

Figure 8 shows results with fixed runtime. With the same amount of computational
resource, PmH and PmH+GmH achieves significant improvement in recall (mH:0.6%,
PmH: 7.4%, GmH: 2.3%, PmH+GmH: 8.5%, Time: 100sec).

4.4 Scalability On Six Million Images

To demonstrate the scalability of our method, we applied PmH+GmH to search for all
partial-duplicate matches in a dataset of six million images collected from the web. The
method took 131 minutes to run on a single 3.2GHz machine with 4GB memory, with
the following parameters: 16 partitions per image with 50% overlap and 16 sketches per
image. Our method was able to retrieve many partial duplicate images, however, since
we have no ground-truth available for this image corpus, we do not present quantitative
results other than timing information.
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Fig. 9. Example images with sketch collisions. Left: Our dataset. Right: Oxford buildings dataset

5 Geometry Sensitive Hash

A typical application of minHash is to use the collisions as cluster seeds that will be
expanded (by image retrieval) into complete clusters of partial-duplicate images [4]. In
doing so, it is important to reduce false positives in these seeds before they are verified
by full geometric verification [4], especially for large scale data set where the number
of false positives tends to increase.

The local geometric structure of features in duplicate regions is usually preserved
across images. For example, in Figure 1, the top of the Eiffel tower is always above the
base, and the word “Starbucks” is always above the word “coffee”. Instead of verifying
these local geometric relationships after sketch collisions are retrieved, we encode such
local geometric structure into the sketches, so that they can be checked at an earlier
stage. This reduces the number of false positive collisions, and therefore reduces the
number of full geometric verifications that need to be performed after expansion by
image retrieval, saving computational expense.

We encode geometric structure into the sketches by hashing the geometric relation-
ship between features. This is achieved by creating an integer ID which encodes the
relative geometric configuration1 among visual words in a sketch, and concatenating it
to the min-hash sketch. We call this Geometry Sensitive Hashing. There are many ways
to hash the local geometric structure using the relative location and scale of features.
We use a simple hash function to quantize the geometric structure into 32 IDs, 16 for
the relative position of two features (2 along the radial direction (near, far), and 8 along
the tangential direction), and 2 for relative scale (Fig. 10(a)). When there are more than
two features in a sketch, hashes for all combination of pairs are concatenated.

1 The scale and dominant orientation output by feature detectors can be used to normalize the
coordinate system at each point to derive the relative configuration.
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Fig. 10. (a) Geometry sensitive hashing (sketch size = 2): a grid is defined centered at the first
visual word in the sketch. The second visual word * has a grid id of 9, which is used as part of
the hash key. (b) Evaluation of GSH. TP/FP: number of retrieved true/false positive pairs.

Evaluation of Geometry-Sensitive Hashing. Figure 10(b) shows the number of
true/false positives when applying Geometry-Sensitive Hashing(GSH), given 500
sketches per image. It shows that GSH decreases the number of false positives for all 4
hashing schemes with a negligible computational overhead. We have also observed that
GSH is more effective for PmH than for GmH in reducing the number of false positives.

6 Conclusion

We have proposed two novel improvements to min-hash for discovering partial dupli-
cate images in a large set of images: partition min-hash and geometry-sensitive hash.
They are improved hashing functions which make use of the geometric configuration
information available in images, and take advantage of the fact that duplicate regions
are localized in an image and that geometric configurations are preserved across dupli-
cate regions. The methods are easy to implement, with few tuning parameters. We have
shown that the proposed hashing method achieves higher precision and recall and runs
orders of magnitude faster than the current state-of-the-art. We have also shown that
the speed-up allows us to afford a larger number of sketches, which in turn improves
the hashing performance, given the same amount of computational resource. Although
we have shown the effectiveness of partition min-hash in the domain of images, this
method may be applicable to other domains where min-hash is used, such as duplicate
document detection, if similar locality properties exist in those domains.
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Abstract. It is common to use domain specific terminology – attributes
– to describe the visual appearance of objects. In order to scale the use of
these describable visual attributes to a large number of categories, espe-
cially those not well studied by psychologists or linguists, it will be neces-
sary to find alternative techniques for identifying attribute vocabularies
and for learning to recognize attributes without hand labeled training
data. We demonstrate that it is possible to accomplish both these tasks
automatically by mining text and image data sampled from the Internet.
The proposed approach also characterizes attributes according to their
visual representation: global or local, and type: color, texture, or shape.
This work focuses on discovering attributes and their visual appearance,
and is as agnostic as possible about the textual description.

1 Introduction

Recognizing attributes of objects in images can improve object recognition and
classification as well as provide useful information for organizing collections of
images. As an example, recent work on face recognition has shown that the
output of classifiers trained to recognize attributes of faces – gender, race, etc.
– can improve face verification and search [1, 2]. Other work has demonstrated
recognition of unseen categories of objects from their description in terms of
attributes, even with no training images of the new categories [3, 4] – although
labeled training data is used to learn the attribute appearances. In all of this
previous work, the sets of attributes used are either constructed ad hoc or taken
from an application appropriate ontology. In order to scale the use of attributes to
a large number of categories, especially those not well studied by psychologists
or linguists, it will be necessary to find alternative techniques for identifying
attribute vocabularies and for learning to recognize these attributes without
hand labeled data.

This paper explores automatic discovery of attribute vocabularies and learn-
ing visual representations from unlabeled image and text data on the web. For

K. Daniilidis, P. Maragos, N. Paragios (Eds.): ECCV 2010, Part I, LNCS 6311, pp. 663–676, 2010.
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Fig. 1. Original input image (left), Predicted attribute classification (center), and Prob-
ability map for localization of “high,heel” (right – white indicates high probability)

example, our system makes it possible to start with a large number of images
of shoes and their text descriptions from shopping websites and automatically
learn that “stiletto” is a visual attribute of shoes that refers to the shape of
a specific region of the shoe (see Fig 6). This particular example illustrates a
potential difficulty of using a purely language based approach to this problem.
The word “stiletto” is a noun that refers to a knife, except, of course, in the
context of women’s shoes. There are many other examples, “hobo” can be a
homeless person or a type of handbag (purse), “wedding” can be a visually dis-
tinctive (color!) feature of shoes, “clutch” is a verb, but also refers to a type
of handbag. Such domain specific terminology is common and poses difficulties
for identifying attribute vocabularies using a generic language based approach.
We demonstrate that it is possible to make significant progress by analyzing the
connection between text and images using almost no language specific analysis,
with the understanding that a system exploiting language analysis in addition
to our visual analysis would be a desireable future goal.

Our approach begins with a collection of images with associated text and
ranks substrings of text by how well their occurence can be predicted from
visual features. This is different in several respects from the large body of work
on the related problem of automatically building models for object category
recognition [5, 6]. There, training images are labeled with the presence of an
object, with the precise localization of the object or its parts left unknown. Two
important differences are that, in that line of work, images are labeled with the
name of an object category by hand. For our experiments on data from shopping
websites, images are not hand curated for computer vision. For example, we do
know the images of handbags in fact contain handbags with no background
clutter, but the text to image relationship is significantly less controlled than
the label to image relationship in other work – e.g., it is quite likely that an
image showing a black shoe will not contain the word “black” in its description.
Furthermore, there are a range of different terms that refer to the same visual
attribute (e.g., “ankle strap” and “strappy”). Finally, much of the text associated
with the images does not in fact describe any visual aspect of the object (see
Fig. 2). We must identify the wheat from amidst a great deal of chaff.
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More related to our work are a series of papers modeling the connection
between words and pictures [7–10]. These address learning the relationships be-
tween text and images at a range of levels – including learning text labels asso-
ciated with specific regions of images. Our focus is somewhat different, learning
vocabularies of attributes for particular object categories, as well as models for
the visual depiction of these attributes. This is done starting with more free-
form text data than that in corel [7] or art catalogues [8]. We use discriminative
instead of generative machine learning techniques. Also this work introduces the
goal of ranking attributes by visualness as well as exploring ideas of attribute
characterization.

The process by which we identify which text terms are visually recognizable
tells us what type of appearance features were used to recognize the attribute
– shape, color, or texture. Furthermore, in order to determine if attributes are
localized on objects, we train classifiers based on local sets of features. As a
result, we can not only rank attributes by how visually recognizable they are,
but also determine whether they are based on shape, color, or texture features,
and whether they are localized – referring to a specific part of an object, or
global – referring to the entire object.
Our contributions are:

1. Automatic discovery and ranking of visual attributes for specific types of
objects.

2. Automatic learning of appearance models for attributes without any hand
labeled data.

3. Automatic characterization of attributes on two axes: a) the relevant ap-
pearance features – shape, color, or texture, b) localizability – localizable or
global.

Approach:
Our approach starts with collecting images and associated text descriptions from
the web (Sec 4.1). A set of strings from the text are considered as possible at-
tributes and ranked by visualness (Sec 2). Highly ranked attributes are then
characterized by feature type and localizability (Sec 3.1). Performance is evalu-
ated qualitatively, quantitatively, and using human evaluations (Sec 4).

1.1 Related Work

Our key contribution is automatic discovery of visual attributes and the text
strings that identify them. There has been related work on using hand labeled
training data to learn models for a predetermined list (either formed by hand
or produced from an available application specific ontology) of attributes [1–4].
Recent work moves toward automating part of the attribute learning process,
but is focused on the constrained setting of butterfly field guides and uses hand
coded visual features specific to that setting, language templates, and predefined
attribute lists (lists of color terms etc) [11] to obtain visual representations from
text alone. Our goal is instead to automatically identify an attribute vocabulary
and their visual representations without the use of any prior knowledge.
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Fig. 2. Example input data (images and associated textual descriptions). Notice that
the textual descriptions are general web text, unconstrained and quite noisy, but often
provide nice visual descriptions of the associated product.

Our discovery process identifies text phrases that can be consistently pre-
dicted from some aspect of visual appearance. Work from Barnard et al, e.g. [9],
has looked at estimating the visualness of text terms by examining the results of
web image search using those terms. Ferrari and Zisserman learn visual models
of given attributes (striped, red, etc) using web image search for those terms as
training data [12]. Other work has automatically associated tags for photographs
(in Corel) with segments of images [7]. Our work focuses on identifying an at-
tribute vocabulary used to describe specific object categories (instead of more
general images driven by text based web search for a given set of terms) and
characterizes attributes by relevant feature types and localizability.

As mentioned before, approaches for learning models of attributes can be
similar to approaches for learning models of objects. These include the very
well known work on the constellation model [5, 6], where images were labeled
with the presence of an object, but the precise localization of the object and
its parts were unknown. Variations of this type of weakly supervised training
data range from small amounts of uncertainty in precise part locations when
learning pedestrian detectors from bounding boxes around whole a figure [13]
to large amounts of uncertainty for the location of an object in an image[5,
6, 14, 15]. At an extreme, some work looks at automatically identifying object
categories from large numbers of images showing those categories with no per
image labels [16, 17], but even here, the set of images is chosen for the task.
Our experiments are also close work on automatic dataset construction [18–
22], that exploits the connection between text and images to collect datasets,
cleaning up the noisy “labeling” of images by their associated text. We start
with data for particular categories, rank attributes by visualness, and then go
into a more detailed learning process to identify the appropriate feature type
and localizability of attributes using the multiple instance learning and boosting
(MILboost) framework introduced by Viola [23].
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Fig. 3. Example input images for 2 potential attribute phrases (“hoops”, and “navy”).
On the left of each pair (a,c) we show randomly sampled images that have the attribute
word in their description. On the right of each pair (b,d) we show randomly sampled
images that do not have the attribute word in their description. Note that these la-
bels are very noisy – images that show “hoops” may not contain the phrase in their
description, images described as “navy” may not depict navy ties.

2 Predicting Visualness

We start by considering a large number of strings as potential attributes (further
described in Sec. 4) – for instance any string that occurs frequently in the data
set can be considered. A visual classifier is trained to recognize images whose
associated text contains the potential attribute. The potential attributes are
then ranked by their average precision on held out data.

For training a classifier for potential attribute with text representation X , we
use as positive examples those images where X appears in its description, and
randomly sample negative examples from those images where X does not appear
in the description. There is a fair amount of noise in this labeling (described in
Section 4, see fig 3 for examples), but overall for good visual attribute strings
there is a reasonable signal for learning. Because of the presence of noise in
the labels and the possibility of overfitting, we evaluate accuracy on a held out
validation set – again, all of the “labels” come directly from the associated, noisy,
web text with no hand intervention.

We then rank the potential attributes by visualness using the learned clas-
sifiers by measuring average labeling precision on the validation data. Because
boosting has been shown to produce accurate classifiers with good generalization,
and because a modification of this method will be useful later for our localizabil-
ity measure, we use AnyBoost on decision stumps as our classification scheme.
Whole image based features are used as input to boosting (Sec 4.2 describes the
low level visual feature representations).

2.1 Finding Visual Synsets

The web data for an object category is created on and collected from a variety of
internet sources (websites with different authors). Therefore, there may be several
attribute phrases that describe a single visual attribute. For example, “Peep-Toe”
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and “Open-Toe” might be used by different sources to describe the same visual
appearance characteristic of a shoe. Each of these attribute phrases may (cor-
rectly) be identified as a good visual attribute, but their resulting attribute
classifiers might have very similar behavior when applied to images. Therefore,
using both as attributes would be redundant.

Ideally, we would like to find a comprehensive, but also compact collection
of visual attributes for describing and classifying an object class. To do so we
use estimates of Mutual Information to measure the information provided by a
collection of attributes to determine whether a new attribute provides signifi-
cantly different information than the current collection, or is redundant and can
therefore might be considered a synonym for one of the attributes already in the
collection. We refer to a set of redundant attributes providing the same visual
information as a visual synset of cognitive visual synonyms. To build a collection
of attributes, we iteratively consider adding attributes to the collection in order
by visualness. They are added provided that they provide significantly more mu-
tual information for their text labels than any of the attributes already in the
set. Otherwise we assign the attribute to the synset of the attribute currently in
the collection that provided the most mutual information. This process results
in a collection of attribute synsets that cover the data well, but tend not to be
visually repetitive.

Example Shoe Synsets
{“sandal style round”, “sandal style round open”, “dress sandal”, “metallic”}

{“stiletto”, “stiletto heel”, “sexy”, “traction”, “fabulous”, “styling”}
{“running shoes”, “synthetic mesh”, “mesh”, “stability”, “nubuck”, “molded”...}

{“wedding”, “matching”, “satin”, “cute” }
Example Handbag Synsets

{“hobo”, “handbags”, “top,zip,closure”, “shoulder,bag”, “hobo,bag” }
{“tote”, “handles”, “straps”, “lined”, “open”...}

{“mesh”, “interior”, “metal”}
{“silver”, “metallic” }

Alternatively, one could try to merge attribute strings based on text analysis
– for example merging attributes with high co-occurence or matching substrings.
However, co-occurence would be insufficient to merge all ways of describing a
visual attribute, e.g., “peep-toe” and “open-toe” are two alternative descriptions
for the same visual attribute, but would rarely be observed in the same textual
description. Matching substrings can lead to incorrect merges, e.g., “peep-toe”
and “closed-toe” share a substring, but have opposing meanings. Our method for
visual attribute merging based on mutual information overcomes these issues.

3 Attribute Characterization

For those attributes predicted to be visual, we would like to make some fur-
ther characterizations. To this end, we present methods to determine whether
an attribute is localizable (Section 3.1) – ie does the attribute refer to a global
appearance characteristic of the object or a more localized appearance charac-
teristic? We also provide a way to identify attribute type (Section 3.2) – ie is
the attribute indicated by a characteristic shape, color, or texture?
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Fig. 4. Automatically discovered handbag attributes, sorted by visualness

3.1 Predicting Localizability

In order to determine whether an attribute is localizable – whether it usually
corresponds to a particular part on an object, we use a technique based on
MILBoost [14, 23] on local image regions of input images. If regions with high
probability under the learned model are tightly clustered, we consider the at-
tribute localizable. Figure 1 shows an example of the predicted probability map
for the “high heel” attribute and our automatic attribute labeling.

MILBoost is a multiple instance learning technique using AnyBoost, first in-
troduced in Viola et al [23] for face detectors, and later used for other object
categories [14]. MILBoost builds a classifier by incrementally selecting a set of
weak classifiers to maximize classification performance, re-weighting the train-
ing samples for each round of training. Because the text descriptions do not
specify what portion of image is described by the attribute, we have a multiple
instance learning problem where each image (data item) is treated as a bag of
regions (samples) and a label is associated with each image rather than each
region.

For image i and segment j, the boosted classifier predicts the score of a sam-
ple as a linear combination of weak classifiers: yij =

∑
t λtc

t(xij). Then the
probability that segment j in image i is a positive example is:

pij =
1

1 + exp(−yij)
(1)
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Fig. 5. Automatically discovered shoe attributes, sorted by visualness

The probability of an image being positive is then (under the noisy OR model),
one minus the probability of all segments being negative.

pi = 1 −
∏
j∈i

(1 − pij) (2)

Following the AnyBoost technique, the weight, wij , assigned to each segment is
the derivative of the cost function with respect to a change in the score of the
segment (where ti is the label of image i ∈ 0, 1):

wij =
ti − pi

pi
pij (3)

Each round of boosting selects the weak classifier that maximizes:
∑

ij c(xij)wij ,
where c(xij) ∈ {−1, +1} is the score assigned to the segment by the weak classi-
fier. The weak classifier weight parameter, λt is determined using line search to
maximize the log-likelihood of the new combined classifier at each iteration t.

Localizability of each attribute is then computed by evaluating the trained
MILBoost classifier on a collection of images associated with the attribute. If the
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Fig. 6. Attributes sorted by localizability. Green boxes show most probable region for
an attribute.

classifier tends to give high probability to a few specific regions on the object (i.e.,
only a small number of regions have large Pij), then the attribute is localizable.
If the probability predicted by the model tends to be spread across the whole
object then the attribute is a global characteristic of the object. To measure
the attribute spread, we accumulate the predicted attribute probabilities over
many images of the object and measure the localizability as the portion of image
needed to capture the bulk of this accumulated probability (the portion of all
Pij ’s containing at least 95% of the predicted probability). If this is a small
percentage of the image then we predict the attribute as localizable. For our
current system, we have focused on product images which tend to be depicted
from a relatively small set of possible viewpoints (shoe pointed left, two shoes
etc). This means that we can reliably measure localization on a rough fixed grid
across the images. For more general depictions, an initial step of alignment or
pose clustering [24] could be used before computing the localizability measure.

3.2 Predicting Attribute Type

Our second attribute characterization classifies each visual attribute as one of
3 types: color, texture and shape. Previous work has concentrated mostly on
building models to recognize color (e.g., “blue”) and texture (e.g., “spotty”)
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based attributes. We also consider shape based attributes. These shape based
attributes can either be indicators of global object shape (e.g., “shoulder bag”)
or indicators of local object shape (e.g., “ankle strap”) depending on whether
they refer to an entire object or part of an object. For each potential attribute
we train a MILBoost classifier on three different feature types (color, texture,
or shape – visual representation described in Section 4.2). The best performing
feature measured by average precision is selected as the type.

4 Experimental Evaluation

We have performed experiments evaluating all aspects of our method: predicting
visualness (Section 4.3), predicting the localizability (Section 4.4), and predicting
type (Section 4.4). First we begin with a description of the data (Section 4.1),
and the visual and textual representations (Section 4.2).

4.1 Data

We have collected a large data set of product images from the internet1 depict-
ing four broad types of objects: shoes, handbags, earrings, and ties. In total we
have 37795 images: 9145 images of handbags, 14765 images of shoes, 9235 im-
ages of earrings, and 4650 images of ties. Though these images were collected
from a single website aggregator, they originate from a variety of over 150 web
sources (e.g., shoemall, zappos, shopbop), giving us a broad sampling of various
categories for each object type both visually and textually (e.g., the shoe images
depict categories from flats, to heels, to clogs, to boots). These images tend to
be relatively clean, allowing us to focus on the attribute discovery goal at hand
without confounding visual challenges like clutter, occlusion etc.

On the text side however the situation is extremely noisy. Because this general
web data, we have no guarantees that there will be a clear relationship between
the images and associated textual description. First there will be a great number
of associated words that are not related to visual properties (see fig 2). Secondly,
images associated with an attribute phrase might not depict the attribute at
all, also, and quite commonly, images of objects exhibiting an attribute might
not contain the attribute phrase in their description (see fig 3). As the images
originate from a variety of sources, the words used to describe the same visual
attribute may vary. All these effects together produce a great deal of noise in
the labeling that can confound the training of a visual classifier.

4.2 Representations

Visual Representation: We use three visual feature types: color, texture, and
shape. For predicting the visualness of a proposed attribute we take a global
descriptor approach and compute whole image descriptors for input to the Any-
Boost framework. For predicting localizability and attribute type, we take a local
1 Specifically from like.com, a shopping website that aggregates product data from a

wide range of e-commerce sources.
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Fig. 7. Quantitative Evaluation: Precision/Recall curves for some highly visual at-
tributes, and other less visual attributes for shoes (left) and handbags (right). Each
colored plot line shows precision/recall for a particular attribute. Some attributes (e.g.,
stiletto) are more visual than others (e.g., appeal).

descriptor approach, computing descriptors over local subwindows in the image
with overlapping blocks sampled over the image (with block size 70x70 pixels,
sampled every 25 pixels).

Each of our three feature types is encoded as a histogram (integrated over
the whole image for global descriptors, or over individual regions for local de-
scriptors), making selection and computation of decision stumps for our boosted
classifiers easy and efficient. For the shape descriptor we utilize a SIFT visual
word histogram. This is computed by first clustering a large set of SIFT descrip-
tors using k-means (with k = 100) to get a set of visual words. For each image,
the SIFT descriptors are computed on a fixed grid across the image, then the
resulting visual word histograms are computed. For our color descriptor we use
a histogram computed in HSV with 5 bins for each dimension. Finally, for the
texture descriptor we first convolve the image with a set of 16 oriented bar and
spot filters [25], then accumulate absolute response to each of the filters in a
texture histogram.

Textual Representation: On the text side we keep our representation very
simple. After converting to lower case, removing stop words, and punctuation,
we consider all remaining strings of up to 4 consecutive words that occur more
than 200 times as potential attributes.

4.3 Evaluating Visualness Ranking

Some attribute synsets are shown for shoes in figure 5 and for handbags in fig-
ure 4, where each row shows some highly ranked images for an attribute synset.
For shoes, the top 5 rows show highly ranked visual attributes from our collec-
tion: “front platform”, “sandal style round”, “running shoe”, “clogs”, and “high
heel”. The bottom 3 rows show less highly ranked visual attributes: “great”,
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Fig. 8. Attributes from the top and bottom of our visualness ranking for earrings as
compared to a human user based attribute classification. The user based attribute
classification produces similar results to our automatic method (80% agreement for
earrings, 70% for shoes, 80% for handbags, and 90% for ties).

“feminine”, and “appeal”. Note that the predicted visualness seems reasonable.
This is evaluated quantitatively below. For handbags, attributes estimated to be
highly visual include terms like “clutch”, “hobo”, “beaded”, “mesh” etc. Terms
estimated by our system to be less visual include terms like “look”, “easy”,
“adjustable” etc.

The visualness ranking is based on a quantitative evaluation of the classi-
fiers for each putative attribute. Precision recall curves on our evaluation set for
some attributes are shown in figure 7 (shoe attributes left, handbag attributes
right). Precision and recall are measured according to how well we can predict
the presence or absence of each attribute term in the images textual descrip-
tions. This measure probes both the underlying visual coherence of an attribute
term, and whether people tend to use the term to describe objects displaying
the visual attribute. For many reasonable visual attributes our boosted classifier
performs quite well, getting average precision values of 95% for “front platform”,
91% for stiletto, 88% for “sandal style round”, 86% for “running shoe” etc. For
attributes that are probably less visual the average precision drops to 46% for
“supple”, 41% for “pretty”, and 40% for “appeal”. This measure allows us to
reasonably predict the visualness of potential attributes.

Lastly we obtain a human evaluation of visualness and compare the results
to those produced by our automatic approach. For each broad category types,
we evaluate the top 10 ranked visual attributes (classified as visual by our al-
gorithm), and the bottom 10 ranked visual attributes (classified as non-visual
by our algorithm). For each of these proposed attributes we show 10 labelers
(using Amazon’s Mechanical Turk) a training set of randomly sampled images
with that attribute term and without the term. They are then asked to label
novel query images, and we rank the attributes according to how well their labels
predict the presence or absence of the query term in the corresponding descrip-
tions. The top half of this ranking is considered visual, and the bottom half as
non-visual (see e.g., fig 8). Classification agreement between the human method
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and our method is: 70% for shoes, 80% for earrings, 80% for bags, and 90%
for ties, demonstrating that our method agrees well with human judgments of
attribute visualness.

4.4 Evaluating Characterization

Localizability: Some examples of highly localizable attributes are shown in the
top 4 rows of figure 6. These include attributes like “tote”, where MILBoost has
selected the handle region of each bag as the visual representation, and “stiletto”
which selects regions on the heel of the shoe. For “sandal style round” the open
toe of the sandal is selected as the best attribute indicator. And, for “asics” the
localization focuses on the logo region of the shoe which is present in most shoes
of the asics brand. Some examples of more global attributes are shown in the
bottom 2 rows of figure 6. As one might expect, some less localizable attributes
are based on color (e.g., “blue”, “red”) and texture (e.g., “paisley”, “striped”).

Type: Attribute type categorization works quite well for color attributes,
predicting “gold”, “white”, “black”, “silver” etc as colors reliably in each of our
4 broad object types. One surprising and interesting find is that “wedding” is
labeled as a color attribute. The reason this occurs is that many wedding shoes
use a similar color scheme that is learned as a good predictor by the classifier.
Our method for predicting type also works quite well for shape based attributes,
predicting “ankle strap”, “high heel”, “chandelier”, “heart”, etc to be shape at-
tributes. Texture characterization produces more mixed results, characterizing
attributes like “striped”, and “plaid” as texture attributes, but other attributes
like “suede” or “snake” as SIFT attributes ( perhaps an understandable confu-
sion since both feature types are based on distributions of oriented edges).

5 Conclusions and Future Work

We have presented a method to automatically discover visual attributes from
noisy web data. The method is able to reliably find and rank potential attribute
phrases according to their visualness – a score related to how strongly a string
is correlated with some aspect of an object’s visual appearance. We are further
able to characterize attributes as localizable (referring to the appearance of some
consistent subregion on the object) or global (referring to a global appearance
aspect of the object). We also categorize attributes by type (color, texture, or
shape). Future work includes improving the natural language side of the system
to complement the vision-centric ideas presented here.
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Abstract. In this paper we investigate the problem of exploiting multiple
sources of information for object recognition tasks when additional modal-
ities that are not present in the labeled training set are available for infer-
ence. This scenario is common to many robotics sensing applications and
is in contrast with the assumption made by existing approaches that re-
quire at least some labeled examples for each modality. To leverage the
previously unseen features, we make use of the unlabeled data to learn a
mapping from the existing modalities to the new ones. This allows us to
predict the missing data for the labeled examples and exploit all modali-
ties using multiple kernel learning. We demonstrate the effectiveness of our
approach on several multi-modal tasks including object recognition from
multi-resolution imagery, grayscale and color images, as well as images and
text. Our approach outperforms multiple kernel learning on the original
modalities, as well as nearest-neighbor and bootstrapping schemes.

1 Introduction

Recent advances in object recognition have shown that exploiting multiple sources
of information could significantly improve recognition performance. This is the
case when relying either on different image features [1–3], or on multiple modal-
ities such as images and text [4–6]. Typically, the different inputs are combined
either via kernels (i.e., multiple kernel learning) [1–3, 7] or by voting schemes
[8, 9]. While these techniques have proven successful, they assume that all the
modalities (features) are present during both training and inference.

However, this assumption is often violated in more dynamic scenarios where
new modalities are added during inference. This is common in robotics appli-
cations, where a robot can be equipped with new sensors (e.g., high resolution
cameras, laser range finders). Even though existing techniques can handle a cer-
tain degree of missing data, they all require some labeled examples for each
modality. As a consequence, the only way for them to exploit these new modal-
ities is to manually label some examples and re-train the classifier.

In this paper, we tackle the problem of exploiting novel modalities that are
present only at test time for which no labeled samples are provided (see Fig. 1).
This scenario is particularly challenging since the number of unlabeled examples
might be small. To be able to leverage the previously unseen features, we assume
that the conditional distribution of the new modalities given the existing ones is

K. Daniilidis, P. Maragos, N. Paragios (Eds.): ECCV 2010, Part I, LNCS 6311, pp. 677–691, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Fig. 1. Exploiting unseen modalities: In this paper we propose a new object recog-
nition approach that can leverage additional modalities that are fully unlabeled. The
example above illustrates how additional unlabeled high-resolution images let us sig-
nificantly boost the classification performance over the low-resolution feature channel.
Similar behavior is shown in our experiments when adding unlabeled color images to
grayscale ones, and when using text in conjunction with images.

stationary. This is similar in spirit to the assumption typically made by semi-
supervised learning techniques that the labeled and unlabeled examples are
drawn from the same distribution. This lets us exploit the unlabeled data to
learn a non-linear mapping from the existing modalities to the novel ones. From
the resulting mapping, we “hallucinate” the missing data on the labeled training
examples. This allows us to exploit the full potential of multiple kernel learning
by using both old and new modalities.

As a result, our classifier improves over the original one by effectively making
use of all the available modalities while avoiding the burden of manually label-
ing new examples. This is of crucial importance to make recognition systems
practical in applications such as personal robotics, where we expect the users to
update their robot, but cannot expect them to label a set of examples each time
a new sensor is added.

We demonstrate the effectiveness our approach on a variety of real-world
tasks: we exploit unlabeled high-resolution images to improve webcam object
recognition, we utilize unlabeled color images for grayscale object recognition,
we use unlabeled text to improve visual classification, and we exploit unlabeled
images for sense disambiguation in the text domain. In all these scenarios we
show that our method significantly outperforms multiple kernel learning on the
labeled modalities, as well as nearest-neighbor and bootstrapping schemes.

2 Related Work

Many techniques have been proposed that exploit multiple feature cues or in-
formation sources for performing object recognition. A popular approach is to
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use multiple kernel learning (MKL) either in an SVM framework [1, 3] or in a
Gaussian processes probabilistic framework [2]. Voting schemes have also been
proposed for multi-feature object recognition [8, 9]. In [9] the implicit shape
model (ISM) was extended to include multiple features, while in [8] a naive-Bayes
nearest-neighbor classifier within a voting-based scheme was utilized. These mul-
tiple feature recognition approaches have been shown to be highly beneficial and
lead to state-of-the-art performance on several challenging problems [7]. How-
ever, these approaches have focused on supervised or semi-supervised scenarios
where at least some labels are provided for each modality, and cannot exploit
additional unsupervised modalities available only at test time.

Semi-supervised multi-view learning approaches have been used to exploit
both labeled and unlabeled data. In [10] co-training was used to learn an ob-
ject detector. Bayesian co-training was explored in [11] for instance-level object
recognition. Similarly, multi-view bootstrapping schemes where used in [12] to
transcribed speech and video features for video concept detection, and in [13] to
learn audio-visual speech and gesture classifiers. Still, most of these approaches
make the assumption that at least some labels are provided for each modality.
The exception being cross-modal bootstrapping [13] that can leverage a classi-
fier from a single view to learn a multi-view classifier. However, as demonstrated
in our experiments this approach does not take full advantage of the unlabeled
modalities.

Methods for learning a joint latent space from multiple modalities have also
been proposed. In [4, 5] latent Dirichlet allocation (LDA) was used to perform vi-
sual sense disambiguation using unsupervised text and images. In [14] a transfer
learning approach was proposed to learn a discriminatively trained latent space
over images and their captions. Such methods can be seen as complementary
to our approach in that we also exploit a form of information transfer between
modalities to infer the missing ones. Yet, to our knowledge, no previous approach
has considered the problem of having modalities for which no labeled examples
are provided, and this is the first attempt to do so.

The most related work to ours is probably [6] where they employ a nearest-
neighbor approach to infer text histograms from images using a large external
collection of images and text captured from the web. This is different from our
approach in that their method is specifically designed to infer text and assumes
that a very large dataset (i.e., hundreds of thousands of examples) is available. As
evidenced by our experiments, our approach significantly improves over nearest-
neighbor inference across a wide range of problems.

3 Exploiting Unseen Modalities

In this section, we present our approach to exploiting new modalities at test
time even though there is no labeled data for them. Towards this end, we show
how to hallucinate the missing modalities for the labeled examples by learning
a mapping from the old modalities to the new ones from the unlabeled data.
Given these hallucinated modalities, we propose a framework that combines the
different sources of information using probabilistic multiple kernel learning. We
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then introduce a representation of the novel modalities that lets us exploit the full
potential of non-linear kernels recently developed for object recognition, while
still making regression possible. Finally, we present a bootstrapping algorithm
that further improves the performance of our classifier.

3.1 “Hallucinating” the Missing Modalities

To leverage the availability of fully unsupervised modalities for classification, we
propose to infer these missing modalities for the labeled examples and use them
in conjunction with the old modalities in a probabilistic multiple kernel learning
framework. In this section we show how to hallucinate the missing modalities.

More formally, let X = [X(1), · · ·X(D)] be the set of training inputs for the
D modalities present in both the labeled and unlabeled datasets, with X(i) =
[x(i)

1 , · · ·x(i)
Ntrain

]T the Ntrain training points for the i-th modality, and let X̄ =

[X̄(1), · · · X̄(D)] be the test examples, with X̄(i) = [x̄(i)
1 , · · · x̄(i)

Ntest
]T . Let Z̄ =

[Z̄(1), · · · Z̄(M)] be the M new modalities present only in the unlabeled test set,
such that Z̄(i) = [z̄(i)

1 , · · · z̄(i)
Ntest

]T .
In order to exploit the new modalities that are only present at test time and

for which we do not have any labeled examples, we assume that the conditional
distribution of the new modalities given the labeled ones is stationary, i.e., the
same at training and inference. This is similar in spirit to the standard assump-
tions of semi-supervised learning techniques, and lets us rely on the concept of
mean imputation typically used when dealing with missing data. However, here
we assume that only a small amount of unlabeled data is available to learn the
mapping from the known modalities x to the new modalities z. This makes the
problem more challenging, since simple methods such as nearest-neighbors (NN)
require large collections of examples for accurate prediction.

To overcome this issue, we rely on Gaussian processes (GPs) which have
proven effective when trained from a small number of examples [15]. This is
due to the fact that they marginalize among all possible non-linear mappings
defined by the kernel function. In particular, we utilize a GP to learn the map-
ping from the known modalities to the missing ones. Note that unlike for the
classification task, when hallucinating the new modalities the unlabeled exam-
ples are used as training data, since for those both Z̄ and X̄ are known. Under
this model, the likelihood can be expressed as

p(Z̄|X̄) =
M∏

m=1

Sm∏
i=1

p(Z̄(m)
:,i |X̄) =

M∏
m=1

Sm∏
i=1

N (Z̄(m)
:,i ; 0,Kx) , (1)

where Sm is the dimensionality of the m-th new modality. The elements of
the kernel associated with the labeled modalities Kx are computed by kernel
combination as

Kx
i,j =

D∑
m=1

αmkx(x̄(m)
i , x̄(m)

j ) , (2)
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where αm are hyper-parameters of the model. In order to capture the correlations
between the different output dimensions and modalities, we share kernel hyper-
parameters across the different predictors.

Given the known modalities xi for a labeled example, the predictive distribu-
tion under the Gaussian process is also Gaussian and can be computed in closed
form, i.e., p(zi|xi, X̄, Z̄) = N (μ(xi), σ(xi)), with mean and variance

μ(xi) = kx
i (Kx)−1Z̄ (3)

σ(xi) = kx(xi,xi) − kx
i (Kx)−1kx

i
T , (4)

where kx
i is the vector obtained by evaluating the kernel function of Eq. (2) be-

tween X̄ and xi. For each labeled example, we hallucinate the missing modalities
by taking them as the mean prediction of the learned GP. The resulting halluci-
nated modalities predicted by the GP can then be used in conjunction with the
labeled ones in the probabilistic multiple kernel learning framework described
in the following section. Note that here we have made the assumption that the
mapping between the old and new modalities is unimodal, i.e., can be modeled
with a GP. As suggested by our results, this assumption is reasonable for a wide
range of problems. In more challenging scenarios, it can easily be relaxed by
using a mixture of local predictors [16].

3.2 Probabilistic Multiple Kernel Learning

To exploit all available sources of information for classification, we combine the
hallucinated modalities and the old ones within a probabilistic multiple kernel
learning framework. In particular, we employ GPs to learn the mapping from
(x, z) to the labels y. This has been shown to perform similarly to SVM-based
MKL approaches while being computationally more efficient [2]. This yields the
likelihood p(y|X,Z) = N (y; 0,K), where y = [y1, · · · , yN ]T are the labels for
the training examples and the elements of K are computed as

Ki,j = Kx
i,j +

M∑
m=1

βmkz(z(m)
i , z(m)

j ) , (5)

with kz(·, ·) the kernel function for the unsupervised modalities.
Given new input observations (x̄, z̄), we use the mean prediction of the GP to

assign a class label to the example. For multi-class problems we used a one-vs-all
strategy that selects the class having the largest positive mean prediction. Note
that we use a Gaussian noise model which has been shown to perform similarly
to more complex noise models (e.g., probit, logit) [17].

3.3 A General Representation of the Novel Modalities

While for some representations of z (e.g., histograms) the above framework could
be effective, we would like our MKL algorithm to be able to exploit complex non-
linear kernels (e.g., Pyramid Match Kernel (PMK) [18], Spatial Pyramid [19])
that have proven successful for object recognition tasks. Note that, with these
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Fig. 2. Robotics dataset: We consider the scenario where only low-resolution webcam
images are labeled and an additional unlabeled high-resolution modality is available at
test time using the dataset of [21]. (left) Comparison of our approach against several
baselines as a function of the number of labeled examples, Approach BS is our approach
with bootstrapping. (right) Accuracy as a function of K-PCA dimensionality for Q =
10. Note in both cases our approach outperforms the baselines. Error bars indicate ±
1 std.

kernels, z would correspond to the high-dimensional feature map which cannot
be computed in practice.

We overcome this difficulty by learning a representation of the unlabeled
modalities that is able to exploit complex non-linear kernels. To this end, we
rely on Kernel PCA [20], which computes a low-dimensional representation of
the possibly infinite dimensional input space by performing the eigendecompo-
sition of the (centered) kernel matrix evaluated on the unlabeled data. This
representation is interesting since it is low-dimensional and allows us to use any
Mercer kernel to represent the new modalities. Our approach then proceeds as
follows: First, we compute K-PCA on the new modalities and retain the first
d dimensions. We then regress from the old modalities to the K-PCA represen-
tation of the new ones to hallucinate the missing data. Given the hallucinated
data, we perform probabilistic multiple kernel learning with all the modalities,
using a kernel computed in the K-PCA embedding for the new modalities.

3.4 Bootstrapping

To make further use of the unlabeled examples, we propose to use a bootstrap-
ping strategy. At first, our multiple kernel classifier is trained on all the modali-
ties using the hallucinated data. We then evaluate it on the unlabeled data and
add the B most confident predictions per class to the set of labeled examples.
For the confidence measure, we rely on the distance from the mean prediction to
the predicted class label. This is similar to the concept of margin in SVMs. Note
that other criteria used for active learning could be employed, e.g., uncertainty
[2]. Given the old and new labeled examples, we train a new classifier and repeat
the process T times.



Learning to Recognize Objects from Unseen Modalities 683

4 Experimental Evaluation

We evaluated our approach on a broad range of object recognition domains where
modalities that are available at test time may not be present in the labeled train-
ing set. In particular, we first show how we can classify high-resolution images
when only low-resolution webcam images are labeled. We then show how ex-
ploiting unlabeled color images in conjunction with intensity-only labeled data
improves classification performance. Finally, we address the problem of classifi-
cation of text and image datasets, where only either text or images are labeled.
Across all of these real-world problem domains, our approach achieves a signifi-
cant performance boost by exploiting the additional test modalities without re-
quiring any new labeled samples. The paper code and databases are available on-
line at http://www.eecs.berkeley.edu/Research/Projects/CS/vision/
shape/msorec/.

Baselines: On each dataset we compare against two baselines. The first one em-
ploys k nearest-neighbor (k-NN) to infer the missing modalities by averaging across
the k neighbors. This approach is akin to [6] where they rely on k-NN to infer text
features from a large collection of web images. On each dataset we chose the k
that gave the best performance. Note that the baseline makes use of the test data
to select the best parameter k, while our approach does not. The second baseline
(Bootstrap) exploits the additional test modalities by cross-modal bootstrapping
analogous to [13]; an initial seed set is formed by labeling Binit examples per class
using the single-view classifier, and the same bootstrapping strategy used by our
approach is then applied. We also show single-view and oracle performance for
each dataset, where the oracle makes use of the ground-truth features on the miss-
ing modalities for the labeled training set.

Experimental setup: For the bootstrapping baseline and our approach, we
used B = 2, and T = 10 across all datasets, and Binit = 10 for the baseline. We
used RBF kernels whose bandwidths were set to the mean squared distance over
the dataset to compute K-PCA and for GP regression. Additionally, we set the
Gaussian noise variance to 0.01. For all but the Mouse dataset, we used d = 200.
For this dataset we used d = 20, since the number of examples is much smaller
than in the other datasets. In the case of multiple kernel classifiers, we set αm

and βm to be 1/V where V is the total number of views. We did not optimize
αm and βm, since it has been shown that averaging the kernels yields similar
performance [2, 22]. We ran each experiment on 5 random splits of the data into
training and test sets where for each split we used Q labeled examples per class.
The performance of each approach was evaluated using the Correct Classification
Rate (CCR) defined as the total number of correctly classified examples divided
by the total number of examples.

4.1 Multi-sensor Object Recognition

We first consider a multiple sensor robotics scenario and show that our approach
lets us leverage the better quality of high resolution images even though only low
resolution images were labeled. We used a subset of the images from the dataset
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Fig. 3. Most confident images in the robotics application: For each class, the
top row shows the most confident images returned by the low-resolution only classifier,
and the bottom row depicts similar images for our classifier trained with additional
unlabeled high-resolution images. Our approach significantly improves the results for
some of the classes and has less impact on others. Nonetheless, even for these classes
it reduces the ambiguity, e.g., to only two different labels.

of [21] yielding 783 low resolution and 486 high resolution images of 30 office
object categories captured using a webcam and a DSLR camera. We split the
dataset into webcam-only images and webcam+DSLR image pairs that depict
an object from similar viewpoints. This resulted in a total of 368 webcam images
used as labeled examples and 415 webcam+DSLR image pairs that we treated
as our unlabeled set. For each sensor type, we used PHOG features [23] with 4
pyramid levels and 8 histogram bins per cell over 360 degrees. We then applied
PCA to those vectors and retained 95% of the variance to form the final feature
vector.

This dataset is fairly challenging as it consists of a wide variety of object
categories and appearances taken from a sparse set of varying viewpoints. Fig. 2
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Fig. 4. Using unlabeled color images for grayscale object recognition: For
each dataset, we show (left,middle) the performance of our approach using only a single
intensity feature, and (right) using both of the available intensity features. Note that
our approach achieves a significant performance boost over intensity-only performance
and outperforms the other baselines. Performance is shown across different training
sizes with d = 200. The error bars indicate ± 1 std.

(left) depicts performance as a function of the training set size. For this dataset,
at most Q labeled examples were retained per class as some classes had fewer
than Q webcam images across the different training set sizes. Since the number
of unlabeled examples is fairly small in this dataset, the performance of the k-
NN baseline is poor. For similar reasons, the cross-modality bootstrap baseline
is unable to improve over the weak performance of the webcam-only classifier.
In contrast, our approach that infers the missing DSLR modality on the labeled
training set results in a stronger multi-view classifier. Fig. 2 (right) depicts per-
formance with varying K-PCA dimensionality for Q = 10 training samples per
class. Our approach proves to be fairly insensitive to the choice of d and out-
performs the baselines across a wide range of dimensionalities of the embedding.
In Fig. 3, we compare the most confident images returned by the webcam-only
classifier and by our approach. As can be observed from the images, our classifier
is able to avoid some of the mistakes of the webcam-only baseline.
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Fig. 5. Using unlabeled color images for grayscale object recognition: Classi-
fication error as a function of the K-PCA dimensionality for Q = 10. The plots show the
performance using a single labeled intensity feature (left,middle) and using both avail-
able intensity features (right) to classify the color images. Our approach is insensitive
to the choice of dimensionality and improves over the baselines.

4.2 Using Unlabeled Color Images for Grayscale Object Recognition

We now illustrate how our approach is capable of exploiting the additional in-
formation contained in unlabeled color images to improve the performance of a
grayscale object classifier, when only grayscale examples are labeled. This is a
plausible scenario in robotics applications where robots are equipped with high-
performance (e.g., hyperspectral) cameras. For this task we used three datasets
of natural object categories, where color features are relevant for classification.
The first dataset is the Oxford Flowers dataset [3] that is comprised of 80 images
of 17 flower categories. For this dataset, the authors have provided χ2 distance
matrices over three visual feature channels: Color, Shape and Texture. The other
two datasets are comprised of butterfly and bird image categories respectively
[24, 25]. The Birds dataset contains 6 classes with 100 images per class and the
Butterflies dataset has 619 images of 7 classes. For these datasets we extracted
dense SIFT [26], PHOG [23] and HSV color features [3]. Images were compared
using χ2 distances for SIFT and HSV features and L2 distance for PHOG.
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Fig. 6. Using unlabeled text to improve visual classification: We focus on a
recognition task that exploits an additional text modality that is only present at test
time (no labeled data is available) to improve the performance of a visual classifier. We
used the dataset of [5] that consists of a set of noisily labeled images obtained from an
online keyword search. Using unlabeled text features our approach is able to signifi-
cantly improve performance over the weakly supervised image classifier. Performance is
shown across different training set sizes with d = 200 (left) and across different K-PCA
dimensions with Q = 10 (right). Error bars indicate ±1 std.

Fig. 4 displays performance on the three datasets as a function of the training
set size. Note that unlike k-NN, our approach is able to obtain a good estimate of
the missing color modality from few training samples, and significantly improves
over grayscale-only performance. The conventional bootstrapping baseline is also
unable to achieve a significant improvement and often underperforms grayscale-
only performance. In contrast, an even greater improvement is achieved with
our approach when used in combination with bootstrap (Approach BS) that
often matches or even improves upon the supervised oracle. Fig. 5 depicts per-
formance for the three datasets as a function of the dimensionality of the K-PCA
embedding for Q = 10. Note that the performance of our approach is relatively
insensitive to the choice of dimensionality.

For completeness of our evaluation, we compared our approach and the base-
lines over all the possible feature combinations, even though these combinations
do not necessarily represent real-world scenarios, e.g., having HSV and PHOG
at test time but only labeled SIFT. Similar performance as to that of the above
cases was observed. These plots are available at the project webpage listed above.

4.3 Using Unlabeled Text to Improve Visual Classification

Next, we focused on the task of leveraging unlabeled text features to improve
over image-only object categorization. Our labeled set consists of a set of images
collected using keyword search from an image search engine. Such a dataset can
be considered as weakly supervised in that many images returned for a given
object keyword can be only very loosely related to the target category. In the
test set each image is accompanied with text (e.g., extracted from the webpage).
We used the Office dataset of [5] that consists of text and images for 10 object
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Fig. 7. Using unlabeled images for sense disambiguation in text classifica-
tion: We tackle the problem of sense disambiguation from a labeled set of text ex-
amples and a set of unlabeled images that are available only at test time. We used the
dataset of [4] to disambiguate the two meanings of the word mouse that pertain to the
animal and the computer device classes. Our approach is able to significantly improve
over a text-only classifier, k-NN and bootstrap baselines using only unlabeled images.
Performance is shown across different training set sizes with d = 20 (right) and across
different dimensions with Q = 10 (left). Error bars indicate ±1 std.

categories. As this dataset is fairly large, we considered a subset of the data and
randomly chose 200 examples per class to form our evaluation set. We used the
same features as [5], which consists of histograms of SIFT features and word
histograms. The histograms were compared using χ2 distances.

Fig. 6 depicts performance as a function of the training set size for d = 200,
and as a function of the dimensionality of the K-PCA embedding for Q = 10.
As expected, due to the large amount of noise, performance using images alone
is fairly weak. In contrast, our approach is able to leverage the additional unla-
beled text modality and significantly improves recognition performance over the
weakly supervised image classifier. When combined with bootstrapping, it nearly
matches oracle performance. Both the k-NN and the cross-modality bootstrap
baselines are also able to improve over image-only performance, although they
do not perform as well as our method. Similarly as before, we can see that our
approach is rather insensitive to the choice of d.

4.4 Using Unlabeled Images for Sense Disambiguation in Text

We now consider the problem of exploiting unlabeled images to disambiguate the
sense of classes described by labeled text features only. Sense disambiguation is
important when each object category can pertain to multiple visual senses [4, 5].
For example, the keyword MOUSE can pertain to the animal or the computer
device. Our goal is to use unsupervised images to improve the performance of
a text-only classifier to discriminate polysemous object categories. We used a
subset of the dataset of [4] that consists of about 100 examples per class, selected
to contain images only of the target senses. Each image is represented using a
histogram of dense SIFT features and each text document is summarized into a
word histogram. Histograms are compared using the χ2 distance.
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Fig. 8. Most confident images in sense disambiguation: As in Fig. 3, the top
row of each class shows the most confident images returned by the classifier built from
labeled text features, and the bottom row depicts the result of our classifier when using
images as an additional unsupervised modality. Note that, for the animal meaning, both
approaches perform similarly whereas our classifier outperforms the text-only one on
the computer sense.

Fig. 7 depicts performance as a function of the training set size for d = 200 and
of the dimensionality of the embedding for Q = 10. Although performance with
text-only features is fairly good, the addition of the unlabeled visual modality
significantly improves performance. Once again our approach outperforms the
k-NN and cross-modality bootstrap baselines. Fig. 8 depicts some of the most
confident images obtained for each class by either the text-only classifier, or by
our approach. Note that our approach is able to avoid some of the mistakes made
by the text-only classifier.

5 Conclusion

In this paper we have investigated the problem of exploiting multiple sources
of information when some of the modalities do not have any labeled examples,
i.e., are only present at test time. Assuming that the conditional distribution of
novel modalities given old ones is stationary, we have shown how to make use
of the unlabeled data to learn a non-linear mapping that hallucinates the new
modalities for the labeled examples. Furthermore, we have shown how to learn
low-dimensional representations that allow us to exploit complex non-linear ker-
nels developed for object recognition. Finally, our approach is able to employ
multiple kernel learning with all the modalities as well as a bootstrapping strat-
egy that further improved performance. We have demonstrated the effectiveness
of our approach on several tasks including object recognition from intensity and
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color cues, text and images, and multi-resolution imagery. In the future we plan
to investigate complementary techniques for inferring the missing views that
include learning a shared latent space and the use of local GPs to cope with
multi-modal output spaces.
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Abstract. This paper presents a simple, yet effective method of build-
ing a codebook for pairs of spatially close SIFT descriptors. Integrating
such codebook into the popular bag-of-words model encodes local spatial
information which otherwise cannot be represented with just individual
SIFT descriptors. Many previous pairing techniques first quantize the
descriptors to learn a set of visual words before they are actually paired.
Our approach contrasts with theirs in that each pair of spatially close
descriptors is represented as a data point in a joint feature space first
and then clustering is applied to build a codebook called Local Pairwise
Codebook (LPC). It is advantageous over the previous approaches in
that feature selection over quadratic number of possible pairs of visual
words is not required and feature aggregation is implicitly performed to
achieve a compact codebook. This is all done in an unsupervised man-
ner. Experimental results on challenging datasets, namely 15 Scenes, 67
Indoors, Caltech-101, Caltech-256 and MSRCv2 demonstrate that LPC
outperforms the baselines and performs competitively against the state-
of-the-art techniques in scene and object categorization tasks where a
large number of categories need to be recognized.

Keywords: bag-of-words, spatial pyramid matching, higher-order spa-
tial features, local pairwise codebook.

1 Introduction

For scene and object categorization tasks, the bag-of-words model has received
much attention due to its simplicity and robustness. However, because of its or-
derless representation of local features, there have been numerous works
[7,8,10,11,15,17,18,25] that consider spatial arrangement of the features to dis-
cover higher-order structures inherent in scenes and objects for improved perfor-
mance. Amongst the many, one simple method is to consider pairs of spatially
close visual words [8,10,11]. This is commonly done by first obtaining a codebook
where each feature descriptor is mapped to a visual word and then representing
occurrences of local pairs of visual words with the bag-of-words model.

K. Daniilidis, P. Maragos, N. Paragios (Eds.): ECCV 2010, Part I, LNCS 6311, pp. 692–705, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Fig. 1. (a) Traditional pairwise approach: The distribution of SIFT descriptors is
viewed as one dimensional data and intervals shown in red indicate the derived clusters.
The clusters are then used to determine the partition of the local pairwise distribution
which is depicted in the dotted red line. (b) Our pairwise approach: The underlying
local pairwise distribution is partitioned directly by joint feature space clustering to
achieve a compact local pairwise codebook.

However, we speculate several issues with building the codebook prior to the
pairing process. First, the number of possible pairs of visual words grows in
quadratic with respect to the codebook size. This is depicted in Fig. 1 (a) where
high dimensional descriptors like SIFT [12] are seen as one dimensional data
and plotted along the x and y axes. Such quadratic growth results in a high
dimensional histogram representation where in the case of a few training samples
available, a classifier may over-fit and fail to generalize over testing data. Second,
while feature selection [8,11] can be applied on these pairs of visual words to avoid
the over-fitting problem, it often requires additional information like class labels
and does not always lead to performance improvement [8]. Third, as illustrated in
Fig. 1 (a), the traditional pairing approaches ignore the underlying distribution
of pairs of nearby local feature descriptors, as they have already determined the
partition of such distribution from the single feature codebook. We suspect that
this way of over-partitioning the distribution may lead to poor generalization -
degrading the recognition as previously seen in [8].

Given the above-mentioned issues, this paper describes a different approach,
rather a reversed approach, in discovering a compact set of local pairwise feature
clusters called Local Pairwise Codebook (LPC). We first concatenate each pair
of spatially close descriptors and treat it as a data point in a joint feature space.
Then, clustering is applied on the data to build a codebook as depicted in Fig.
1 (b). Our approach considers the underlying distribution explicitly, thus the
partitioning is data-driven. In contrast to the traditional approaches where the
number of pairwise feature clusters is determined by the single feature codebook,
the size of LPC is controlled directly by a clustering algorithm and can be set
to a moderate size. Thus, feature selection is not required to achieve a compact
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codebook which is significantly smaller than quadratic number of possible pairs of
visual words formed from a moderate-sized single feature codebook. With LPC,
we directly encode local structure information into the bag-of-words model to
boost the recognition in categorization tasks.

In summary, there are three main contributions in this paper. Firstly, we per-
form joint feature space clustering to build a compact local pairwise codebook
based on SIFT descriptors to overcome issues discussed above. Secondly, when
assigning the nearest cluster to each pair of nearby descriptors in an image,
its time complexity grows in the number of pairs formed. Thus, to significantly
reduce the complexity, we propose an efficient pairwise cluster assignment tech-
nique. Thirdly, we combine LPC with spatial pyramid matching kernel [9] to
demonstrate that local and global spatial information complement each other
to achieve competitive results on two scenes and three object categorization
datasets, namely 15 Scenes [9], 67 Indoors [16], Caltech-101 [3], Caltech-256 [6]
and MSRCv2 [22] datasets.

This paper is organized as follows. In Sect. 2, we cover some of the related
work. Then Sect. 3 presents how to learn and use LPC in detail. This is followed
by the experimental results in Sect. 4 to demonstrate the effectiveness of LPC.
Finally, Sect. 5 concludes our paper with possible future work.

2 Related Work

The idea of simply pairing up local features within their spatial local neighbor-
hood is not new. While Lazebnik et. al. [8] have attempted to categorize objects
by pairing visual words of SIFT descriptors in their maximum entropy frame-
work, their results have shown that the pairwise features with frequency-based
feature selection do not necessarily improve the performance over just using the
visual words. Similar results are obtained by Lan et. al. [7]. Interestingly, both
[7] and [8] have commented that higher-order spatial features might be more
useful in locating and segmenting out objects of interest.

In contrast, Liu et. al. [11] have proposed an efficient feature selection method
based on boosting which progressively mines higher-order spatial features. This
has resulted in performance improvement up to 2nd order features, i.e. pairs of
visual words. Savarese et. al. [17] have presented correlaton which captures the
distribution of the distances between pairs of visual words based on clustering a
set of correlogram elements. When this is combined with the appearance based
bag-of-words model, it achieves promising results on some challenging object
class recognition datasets. Instead of using actual spatial distance between local
features, Proximity Distribution Kernel [10] and its variant [21] have reduced
such information into ranks to achieve scale-invariance in their representation.
Quak et. al. [15] have used frequent itemset mining to discover a set of distinctive
spatial configurations of visual words to learn different object categories. In
addition, such higher-order spatial features have shown to be also effective in
unsupervised object discovery [18] and image retrieval [2,19].

All the above-mentioned techniques thus far assume that a set of visual words
is already learned before considering pairs of features to represent higher-order



Building Compact Local Pairwise Codebook 695

spatial information - indicating the issues discussed in the previous section. Our
work is different from the above techniques in that we apply quantization in
the joint feature space of local pairs of descriptors. A compact codebook of
such pairs can be built by discovering clusters that encode correlation between
spatially close descriptors. We believe that this captures better generalization
of local pairwise feature distribution. Furthermore, it is possible to combine
our work with the above techniques such as modeling the distribution of the
distances between descriptors. From one perspective, our work can be seen
as an extension of spatial pyramid matching kernel proposed by Lazebnik et.
al. [9], as both approaches are based on densely sampled feature descriptors,
but we consider local pairs of such descriptors to learn a more discriminative
codebook.

3 Local Pairwise Codebook

Fig. 2. An overview of our approach. (a) Features are densely sampled and described by
SIFT. (b) Features are paired locally and descriptors are concatenated. (c) A codeword
is assigned to each local pair of features. (d) A histogram of pairwise codewords are
established per image. (e) Non-linear SVM is used for image classification.

3.1 Baseline: Pairing Visual Words

Before describing our approach, we first outline how pairs of visual words are
usually formed in the previous approaches. Note that we only model occurrences
of pairs of visual words within predefined neighborhood denoted as γ. In other
words, other spatial information such as direction and distance between the
pairs is not explicitly modeled. Each key-point fi in an image is encoded as
(xi, yi, θi, σi,di) representing x and y coordinates, dominant orientation, scale
and SIFT descriptor respectively. Similar to [9], features are densely sampled
from single scale and are rotationally variant, thus θ and σ are ignored. From a
randomly sampled set of the descriptors, a codebook of size K, {ck}K is learned
using K-means clustering. Then, every feature descriptor di is mapped to the
closest cluster ck in the feature space measured by Euclidean distance. To form
a local pair of visual words, two visual words must be within γ pixels away from
each other spatially and such pair is represented as:

f(i,j) =
(

(xi + xj)
2

,
(yi + yj)

2
, (ci, cj)

)
(1)
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The ordering of i and j is determined by ci ≤ cj which is just a comparison
between cluster indices. Given a set of visual word pairs formed for an image I, we
establish a histogram HI where each bin stores the occurrence of a particular pair
of visual words (ci, cj). Once histograms are generated for all training images, a
kernel is computed. This is further discussed in Sect. 3.4.

Given K number of clusters, there are K × (K + 1)/2 number of pairwise
feature clusters which can potentially be large even if the size of K is moderate.
In the case of [8], they set K to be 1000, so the number of possible pairs is around
500K. While feature selection [8,11] can be used to reduce the number of such
clusters, it is often done in a supervised manner. This precisely motivates our
work on Local Pairwise Codebook (LPC) as we learn a compact set of pairwise
feature clusters in an unsupervised manner and its codebook size is not governed
by the number of single feature clusters. Although supervised feature selection
may of course be applied to LPC to further increase discrimination if possible,
we will not discuss this in the paper. We introduce LPC in the next section.

3.2 Pairing Spatially Close Feature Descriptors

As described previously, each key-point fi in an image is represented as a tuple
of (xi, yi,di). In LPC, we first pair up features which are within γ pixels away
from each other. Each of such pairs, also referred to as local pairwise feature, is
encoded as follows:

f(i,j) =
(

(xi + xj)
2

,
(yi + yj)

2
, [didj ]

)
(2)

The ordering of i and j can be achieved by any total order to ensure order
invariance when descriptors are paired. In the case of our work, we determine
such ordering by comparing the values of the first non-equal dimension of two
descriptors di and dj encountered. For this ordering to be robust against noise,
we have applied discretization on each descriptor by 	di/δ
 where δ is a small
constant. Once the descriptors are concatenated as dij , it can be viewed as a
data point in the joint feature space. We use [didj ] and dij interchangeably.
After the descriptor pairing process, K-means is applied on a random collection
of local pairwise feature descriptors to learn a codebook C = {ck}K where
K denotes the codebook size. Then, for every image, a histogram where each
bin represents occurrences of one local pairwise codeword ck is established. An
illustrated example of how our approach works is given in Fig. 2.

The construction of LPC is done independently from the single feature code-
book. Thus, the size of LPC is directly controlled by K-means and feature selec-
tion is not required if K is set to a moderate size. Since the distribution of the
local pairwise features is considered explicitly during clustering, the clusters are
likely to capture local structure information, specifically correlation between spa-
tially close descriptors. Therefore, compared to quadratic growth in the number
of pairwise feature clusters, LPC is a relatively compact and general codebook
that can be learned unsupervised.
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3.3 Efficient Pairwise Cluster Assignment

With LPC, cluster assignment is done on a paired descriptor dij instead of di and
dj individually. Given N descriptors of D dimension in an image, if P number of
pairs are formed per descriptor on average, then the time complexity of finding
the nearest clusters for N × P paired descriptors by näıvely computing their
Euclidean distances to K clusters would be O(PDNK). When compared to using
the single feature codebook, it grows linear in P . While hierarchical K-means [13]
or K-means with approximate nearest neighbor search [14] might be an attractive
solution to efficiently look for the nearest cluster, they are designed to reduce
O(K) to O(log(K)) with different approximations and are more suitable in image
retrieval tasks where a large codebook is required to increase discrimination.
Here, we outline an exact and efficient nearest neighbor search algorithm specific
to LPC. It is based on the observation that data redundancy is present in the
pairs of descriptors formed within an image. The resulting algorithm decouples
P and D and its time complexity becomes O((P + D)NK). Thus, with high
dimensional descriptors like SIFT and a moderate number of pairs formed (e.g.
50), the efficiency of LPC is greatly improved.

In order to search for the nearest cluster of a paired descriptor dij , we need
to compute its squared Euclidean distance to each cluster ck and find the one
with the minimum distance. Since each pairwise feature cluster is an exemplar
of local pairwise features, its vector ck can be seen as a concatenation of two
single feature descriptor exemplars [ck1ck2]. Thus, the squared distance between
ck and dij can be rewritten as a sum of two squared distances given in (4).
Since both di and dj are likely to be paired again with some other descriptors
within their local neighborhood, we can cache ‖ck1 − di‖2 and ‖ck2 − dj‖2 into
matrices Q1 and Q2 respectively so to avoid recomputing these partial distances
as stated in (5). Both matrices have the size of K×N and are indexed by cluster
and descriptor indices. Thus, if we have the two matrices calculated prior to the
pairwise feature cluster assignment, then the distance calculation for each pair
becomes just a sum of two values in the matrices.

‖ck − dij‖2 = ‖[ck1ck2] − [didj ]‖2 (3)

= ‖ck1 − di‖2 + ‖ck2 − dj‖2 (4)

= Q1
k1,i + Q2

k2,j (5)

Computation of the matrices Q1 and Q2 takes O(DNK) time as distances be-
tween N descriptors and 2K single feature descriptor exemplars are calculated.
Then, we have N × P descriptor pairs to look up the distances to K clus-
ters to find the closest one and this takes O(PNK) time. By combining the
two operations, we get the time complexity of O((P + D)NK). In the case
of our experiments, we have used P = 48 (γ = 24) and D = 32 by de-
fault and the efficiency of LPC has increased by 20 folds using this proposed
technique.
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3.4 Computing Kernel

Once a codebook is learned, a histogram or its variant is established for each
image to compute either histogram intersection kernel (HIK) or spatial pyra-
mid matching kernel (SPMK) [9] for classification. For a pair of 
1 normalized
histograms HX and HY representing images X and Y respectively, HIK is com-
puted as given in (6) where i denotes a histogram bin index.

KHIK(HX , HY ) =
K∑

i=1

min(HX(i), HY (i)) (6)

For SPMK, each image is partitioned into M ×M equal-sized regions over mul-
tiple levels of resolution. At each level l, by defining the resolution M to be 2l,
M ×M histograms are established and concatenated to produce H l. Construct-
ing such histograms essentially captures global spatial information at different
granularity. Finally, (7) computes the similarity between two histograms HX and
HY where we set the maximum level L to be 2.

KL
SPM (HX , HY ) =

1
2L

KHIK(H0
X , H0

Y ) +
L∑

l=1

1
2L−l+1 KHIK(H l

X , H l
Y ) (7)

4 Experimental Results

This section presents the experimental results of LPC on five challenging datasets.
For all datasets, SIFT descriptors (32 dimension, 2×2 grids, 8 orientation bins) are
densely sampled at every 8 pixel step and are described from 16×16 patches. In
[20], their experimental results have shown that SIFT descriptors with 2×2 grids
perform competitively against the one with 4×4 grids. We have also conducted our
own experiments on the datasets and verified that the 2×2 performs competitively
against the 4×4. By default, the neighborhood threshold γ is set to 24 pixels which
forms 48 pairs per descriptor on average.We use the following baselines to compare
against our LPC:

1. QPC: Quadratic Pairwise Codebook as described in Sect. 3.1. We have
evaluated with K = {80, 200} resulting in {3240, 20100} number of pairwise
feature clusters.

2. QPC+Sel: Quadratic Pairwise Codebook with frequency-based feature se-
lection outlined in [8]. 1000 most frequently appearing pairwise feature clus-
ters are chosen from each category.

3. Sgl: A single feature codebook approach. This baseline is our reimplemen-
tation of Lazebnik et. al. [9].

In fact, we have also tried other methods to compare against LPC, such as ap-
plying supervised feature aggregation [4] to compress QPC. However, due to a
large number of categories to be learned and a relatively few training examples
available, it has resulted in a performance similar to QPC+Sel. Thus, we report
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the results of the above three baselines only. To construct the single feature
codebook and LPC for each dataset, 100K and 250K descriptor samples are used
respectively. For all experiments, we have repeated eight times with different sets
of training and testing images randomly sampled.

4.1 Scene Categorization

For scene categorization, we have used the 15 Scenes [9] and 67 Indoors [16]
datasets. 15 Scenes contains images of 15 categories ranging from indoor scenes
(e.g. living room and kitchen) to outdoor scenes (e.g. mountain and street). 100
images per category are used for training and the rest is used for testing. It is clear
from the results shown in Table 1 that LPC outperforms Sgl and QPC(+Sel) in
both HIK and SPMK. Although QPC has performed better than Sgl in the case
of HIK, it has failed to do so in SPMK. QPC+Sel has selected 2562 and 4400
feature clusters from K = 80 (3240) and K = 200 (20100) respectively, but with
no improvement observed. While the performance of Sgl reaches its peak when
K is 1600 and 400 for HIK and SPMK respectively, LPC continues to improve as
we increase K in both settings. For 67 Indoors dataset, the same experimental
setup in [16] is used. In general, as similar to the results of 15 Scenes, LPC
performs better in both HIK and SPMK settings.

Table 1. Recognition accuracy (%) on 15 Scenes and 67 Indoors. HIK refers to his-
togram intersection kernel and SPMK refers to spatial matching kernel.

15 Scenes 67 Indoors
Methods K HIK SPMK HIK SPMK
QPC 80 76.61±0.44 81.41±0.56 27.28±1.44 34.83±0.97

200 78.25±0.45 80.93±0.36 30.75±1.38 36.15±0.95

QPC+Sel 80 76.03±0.46 81.11±0.55 26.96±1.76 34.27±0.93
200 74.69±0.60 78.71±0.60 27.29±0.60 32.91±0.60

Sgl 400 74.75±0.66 81.76±0.47 23.89±0.92 33.82±1.10
800 75.62±0.58 81.50±0.48 26.11±0.98 34.82±0.83
1600 76.67±0.61 81.40±0.42 27.67±1.03 35.13±1.07
3200 76.13±0.51 80.34±0.37 28.77±1.85 34.71±1.13

LPC 800 76.78±0.53 82.50±0.63 27.30±1.44 35.80±0.86
1600 78.42±0.23 83.07±0.50 29.71±0.70 37.16±1.20
3200 79.76±0.38 83.40±0.58 32.35±0.68 38.36±0.63

4.2 Caltech-101/256 Datasets

The Caltech-101 dataset [3] comprises of 101 different object classes. In our ex-
periments, we have used 30 images per category for training and the rest for
testing, excluding Background class. For an efficiency reason, we have down-
sized images preserving their aspect ratios if their longer sides are greater than
1000 pixels. The results are given in Table 2. Compared with the results of
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Table 2. Recognition accuracy (%) on Caltech-101 and Caltech-256

Caltech-101 Caltech-256
Methods K HIK SPMK HIK SPMK
QPC 80 51.91±1.20 67.27±1.00 23.12±0.42 31.50±0.52

200 54.68±0.63 66.04±0.76 25.57±0.43 32.13±0.37

QPC+Sel 80 51.87±1.20 67.16±0.93 23.17±0.30 31.10±0.35
200 51.04±0.89 63.34±0.96 26.18±0.62 30.48±0.66

Sgl 400 45.40±0.80 65.38±1.16 18.67±0.42 29.06±0.26
800 47.38±0.67 64.45±0.44 19.10±0.49 29.14±0.38
1600 47.74±0.40 62.88±0.83 19.63±0.47 28.44±0.35
3200 47.95±0.97 60.25±1.09 20.00±0.46 27.75±0.41

LPC 800 53.06±0.99 69.90±0.48 24.69±0.34 33.93±0.54
1600 55.50±0.82 70.48±0.73 26.33±0.37 35.08±0.47
3200 57.08±0.88 71.00±0.48 28.11±0.38 35.74±0.41

15 Scenes, the performance boost for LPC over Sgl is much more obvious -
improving the results by around 9% and 6% for HIK and SPMK respectively.
We suspect that objects tend to have more local structures present than scenes
and LPC has exploited these to obtain boost in the recognition. Overall, LPC
has outperformed both Sgl and QPC(+Sel) showing similar trends seen in the
previous experiment.

The Caltech-256 dataset [6] succeeds the Caltech-101 dataset with several
improvements including increased intra-class variability and variability in object
pose and location. We have used 30 training and 25 testing images per category,
excluding Clutter class. We have down-sized images if their longer sides are
greater than 300 pixels. The results are presented in Table 2. The performance
increase of LPC over Sgl is akin to the previous results. Interestingly, the best
result obtained with LPC HIK (K = 3200) is close to Sgl SPMK (K = 800).
Since the number of bins required for LPC HIK is 3200 and Sgl SPMK is 16800
which is 5 times more, this implies the effectiveness of exploiting local structures
over global structure when variability of object pose and location is high. Of
course, LPC SPMK, the combination of both local and global information, has
shown to perform the best on this dataset as well.

4.3 MSRCv2 Dataset

The MSRCv2 dataset is a relatively small object class database compared to
Caltech-101/256, but is considered be much more difficult dataset due to its
high intra-class variability [22]. We have simply followed the experimental setup
used in [25], except we have used dense sampling instead of an interest point
dectector to extract feature descriptors. Nine out of fifteen classes are chosen
(i.e. cow, airplanes, faces, cars, bikes, books, signs, sheep and chairs) where
each class contains 30 images. For each experiment, we have randomly sampled
15 training and 15 testing images class and no background is removed from
the images. We have used HIK in this experiment. LPC has performed better
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against the baselines with an accuracy of 83.9 ± 2.9% with K being 3200. The
highest accuracy obtained by each baseline is as follows: QPC (81.8 ± 3.4%),
QPC+Sel (80.8 ± 3.4%) and Sgl (81.7 ± 2.8%). Our results are higher than the
results reported in [25] where 2nd (pairwise) and 10th order spatial features have
obtained accuracies of 78.3 ± 2.6% and 80.4 ± 2.5% respectively.

4.4 Comparison with Large Patch SIFT Descriptors

We have experimented the baseline Sgl with three different configurations of
SIFT descriptor to be sampled at every 8 pixels, i.e. 24×24 patch with 3×3
grids (D = 72), 32×32 patch with 4×4 grids (D = 128), 40×40 patch with 5×5
grids (D = 200). These try to mimic the effect of LPC with different neighbor-
hood thresholds, i.e. γ = {8, 16, 24}. For an example, with 40×40 patch SIFT
descriptors, they potentially cover all possible pairings of 16×16 SIFT descrip-
tors with γ = 24. The results are presented in Table 3. For all datasets, these
large patch SIFT descriptors improve over the Sgl baseline evaluated earlier.
However, LPC performs better across all datasets using just 16×16 patch SIFT
descriptors, especially, the performance gap is significant for Caltech-256 which
is considered to be a hard dataset. Not only this implies the robustness of LPC, it
is also relatively more efficient compared to these baselines if time required to do
feature extraction, codebook construction and cluster assignment is considered.
In fact, it is possible to apply LPC on larger patches as well. For an instance,
LPC with 24×24 patch with 2×2 grids (D = 32) has achieved 72.15 ± 0.68%
accuracy on Caltech-101.

Table 3. Recognition accuracy (%) of Sgl with large patch SIFT descriptors. Although
the performance of Sgl has increased, LPC that uses 16×16 patches still consistently
performs better than these baselines.

Methods K 15 Scenes 67 Indoors Caltech-101 Caltech-256
Sgl (24x,72D) 800 81.96±0.44 36.56±0.78 67.34±1.11 31.32±0.34

1600 82.25±0.65 37.42±1.23 66.87±0.96 31.50±0.41
3200 81.77±0.43 37.57±0.85 66.07±0.42 31.14±0.49

Sgl (32x,128D) 800 81.25±0.59 36.04±0.75 69.18±0.86 31.57±0.48
1600 81.74±0.80 36.08±0.87 68.82±0.73 32.26±0.21
3200 81.17±0.74 36.86±0.92 68.38±0.66 32.22±0.43

Sgl (40x,200D) 800 80.40±0.68 34.23±1.66 68.95±1.26 31.08±0.46
1600 80.75±0.48 35.38±1.08 69.47±0.69 31.52±0.43
3200 80.61±0.48 35.08±0.85 69.40±1.00 31.87±0.25

LPC 3200 83.40±0.58 38.36±0.63 71.00±0.48 35.74±0.41

4.5 Comparison with Different Neighborhood Thresholds γ

In this section, we have also experimented LPC with different neighborhood
thresholds γ = {8, 16, 24, 32} using SPMK. Table 4 shows the results on the first
four datasets. Overall, with any γ and codebook size tried, it has improved over
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Table 4. The performance comparison with different γ. Each γ shows the average
number of pairs formed per descriptor in brackets.

γ (#pairs)
Dataset K 8 (8) 16 (24) 24 (48) 32 (80)
15 Scenes 1600 82.83±0.62 82.92±0.44 83.07±0.50 82.84±0.52

3200 82.68±0.47 83.18±0.63 83.40±0.58 83.28±0.49
67 Indoors 1600 37.29±0.96 37.76±1.43 37.16±1.20 36.81±1.38

3200 37.46±1.43 38.64±1.32 38.36±0.63 37.75±0.67
Caltech-101 1600 68.49±0.91 69.92±0.64 70.48±0.80 70.89±0.84

3200 67.95±0.76 70.08±0.56 71.00±0.48 71.05±0.85

Caltech-256 1600 32.69±0.40 34.28±0.39 35.08±0.47 34.68±0.43
3200 32.75±0.52 34.80±0.71 35.74±0.41 35.57±0.52

Table 5. The performance comparison with different step sizes

step size
Dataset K 4 6 8
15 Scenes 1600 81.31±0.38 81.39±0.47 83.07±0.50

3200 81.97±0.45 82.00±0.43 83.40±0.58

67 Indoors 1600 37.58±1.04 37.98±1.21 37.16±1.20
3200 38.93±0.48 39.63±0.69 38.36±0.63

Caltech-101 1600 72.40±0.79 71.65±0.52 70.48±0.73
3200 72.94±0.54 72.01±0.49 71.00±0.48

Caltech-256 1600 36.85±0.56 36.06±0.54 35.08±0.47
3200 37.71±0.47 37.10±0.46 35.74±0.41

Sgl (c.f. Tables 1 and 2). This shows the benefit of capturing local interaction
between feature descriptors. For 15 Scenes, any γ larger than 8 pixels achieve
similar performance. On the contrary, with Caltech-101 and Caltech-256, the
performance tends to improve as γ is increased for any codebook size tried.

4.6 Comparison with Different Step Sizes

In this section, LPC is evaluated on different step sizes used by dense sampling.
The neighborhood threshold γ is set to 24 pixels. We report the results on SPMK
in Table 5. For both Caltech-101 and Caltech-256, the performance increases as
the step size gets smaller.

4.7 Comparison with Previously Published Results

This section compares LPC with the previously published results which were or
are known to be the state-of-the-art for the datasets. For each dataset, we report
the highest recognition accuracy of LPC obtained from the previous sections.
For the comparison to be fair, we have only included results that are obtained
from using a single descriptor or cue. As shown in Table 6, LPC has performed
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Table 6. Performance comparison with the state-of-the-art methods based on a single
descriptor. Results for a single image scale is reported wherever possible.

Methods 15 Scenes 67 Indoors Caltech-101 Caltech-256
KC [5] 76.67±0.39 - 64.14±1.18 27.17±0.46
SPM [9] 81.40±0.50 - 64.60±0.80 -
KSPM [6] - - 67.40 34.10
NBNN [1] - - 70.40 -
HC [23] 82.30±0.49 - - -
HG [26] 85.20 - 73.10 -
ScSPM [24] 80.28±0.93 - 73.20±0.54 34.02±0.35
ROI+Gist[16] - >30.00 - -
LPC 83.40±0.58 39.63±0.69 72.94±0.54 37.71±0.47
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Fig. 3. Distributions of cluster sizes estimated on (a) 15 Scenes and (b) Caltech-101

competitively against other methods across all datasets. For Caltech-256, it has
outperformed the state-of-the-art methods.

4.8 On the Distribution of Local Pairwise Features

In this section, we have estimated the distributions of the cluster sizes for the
traditional approaches (QPC) and our approach (LPC) using the 15 Scenes and
Caltech-101 datasets. To be unbiased, we have used roughly the same number
of clusters for both approaches, i.e. K = 80 (3240 pairwise clusters) for QPC
and K = 3200 for LPC. We have extracted pairs of features from all images and
used them to plot the distributions. In total, approximately 90 million and 190
million such features are extracted for 15 Scenes and Caltech-101 respectively.

As depicted in Fig. 3, the distributions of QPC plotted in green has an earlier
peak than LPC plotted in red. This means that QPC has placed a lot of its
clusters in regions where there are not many data points. Also, the distributions
are heavy-tailed due to many points assigned to only a few number of clusters. In
contrast, the estimated distributions obtained by LPC seem to be tighter than
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the former distributions. Based on this observation, we can infer that LPC has
explicitly considered the underlying distribution of the local pairwise features
and balanced its cluster sizes as much as possible. Therefore, we believe that
this observation supports our intuition presented earlier with Fig. 1.

5 Conclusion

In this paper, we have presented a simple, yet effective method of building a
compact codebook that encodes local spatial information with joint feature space
clustering called Local Pairwise Codebook. For it being a simple method, LPC
has outperformed the methods with which we have compared, and performed
competitively against the previously published results. Our future work involves
building LPC based on interest point detectors instead of the dense sampling
strategy used in our experiments as well as incorporating additional spatial in-
formation like direction and distance.
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Abstract. Image-To-Class (I2C) distance is first used in Naive-Bayes
Nearest-Neighbor (NBNN) classifier for image classification and has suc-
cessfully handled datasets with large intra-class variances. However, the
performance of this distance relies heavily on the large number of local
features in the training set and test image, which need heavy computa-
tion cost for nearest-neighbor (NN) search in the testing phase. If using
small number of local features for accelerating the NN search, the per-
formance will be poor.

In this paper, we propose a large margin framework to improve the
discrimination of I2C distance especially for small number of local fea-
tures by learning Per-Class Mahalanobis metrics. Our I2C distance is
adaptive to different class by combining with the learned metric for each
class. These multiple Per-Class metrics are learned simultaneously by
forming a convex optimization problem with the constraints that the
I2C distance from each training image to its belonging class should be
less than the distance to other classes by a large margin. A gradient de-
scent method is applied to efficiently solve this optimization problem. For
efficiency and performance improved, we also adopt the idea of spatial
pyramid restriction and learning I2C distance function to improve this
I2C distance. We show in experiments that the proposed method can
significantly outperform the original NBNN in several prevalent image
datasets, and our best results can achieve state-of-the-art performance
on most datasets.

1 Introduction

Image classification is a highly useful yet still challenging task in computer vision
community due to the large intra-class variances and ambiguities of images.
Many efforts have been done for dealing with this problem and they can roughly
be divided into learning-based and non-parametric methods according to [1].
Compared to learning-based methods, non-parametric methods directly classify
on the test set and do not require any training phase. So in most cases, learning-
based methods can achieve better recognition performance than non-parametric
methods as they have learned the model from the training set, which is useful
for classifying test images. But recently a new non-parametric method named as
NBNN et al. [1] was proposed, which reported comparable performance to those

K. Daniilidis, P. Maragos, N. Paragios (Eds.): ECCV 2010, Part I, LNCS 6311, pp. 706–719, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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top learning-based methods. They contribute such achievement to the avoidance
of descriptor quantization and the use of Image-To-Class (I2C) distance instead
of Image-To-Image (I2I) distance, since they proved descriptor quantization and
I2I distance lead to significant degradation for classification.

However, the performance of this I2C distance relies heavily on the large
number of local features in the training set and test image. For example, the
state-of-the-art performance they reported in Caltech 101 dataset is achieved
by densely sampling large redundant local features for both training and test
images, which results in about 15000 to 20000 features per image. Such large
number of features makes the nearest-neighbor (NN) search in I2C distance
calculation computationally expensive when classifying a test image, which limits
its scalability in real-world application. If only small number of local features is
used, the performance of this I2C distance will be poor as shown in the later
experiment section, although it needs less testing time.

In this paper, we aim to enhance the performance of I2C distance especially
for small number of local features, so as to speed up the testing phase while
maintaining excellent result. To achieve this, we propose a training phase to ex-
ploit the training information and suggest a distance metric learning method for
the I2C distance. Our method avoids the shortcoming of both non-parametric
methods and most learning-based methods involving I2I distance and descriptor
quantization. This leads to a better recognition performance than NBNN and
those learning-based methods. For each class, we learn the class specific Maha-
lanobis metric to combine with the corresponding I2C distance. When classifying
a test image, we select the shortest I2C distance among its Mahalanobis I2C dis-
tances to all classes as its predicted class label. Since only the metric of the
belonging class can well characterize the local features of the test image, such
Per-Class metrics can better preserve the discriminate information between dif-
ferent classes compared to a single global metric.

We adopt the idea of large margin from SVM in our optimization problem for
learning these Per-Class metrics, which is also used for distance metric learning
by Weinberger et al. [18] recently. For each training image, we separate the I2C
distance to its belonging class from those to any other class by a large margin,
and form a large margin convex optimization problem as an instance of semi-
definite programming (SDP). Then we apply an efficient gradient descent method
to solve this optimization problem. We also show the incremental learning ability
of our Per-Class metric learning, which enables our method to be used for on-
line learning and it can be easily scaled-up for handling large number of classes.
Figure 1 gives the illustration of our classification structure. Notations used in
the figure will be explained in Section 2.1. Compared to NBNN classifier, the
main difference is that we use Mahalanobis distance with our learned Per-Class
metrics instead of Euclidean distance in NBNN, while the way to classify a test
image is similar.

Moreover, we adopt the idea of spatial pyramid match [9] and learning I2C
distance function [16] to generate a more discriminative distance for improving
classification accuracy. Since the main computation burden is the NN search in
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Fig. 1. The classification structure of our method. The rectangular and triangles denote
an image and its local feature points respectively. The ellipse denotes a class with images
(rectangular) inside it. The I2C distance from image Xi to a class c is formed by the
sum of Mahalanobis distance between each local feature fij and its NN fc

ij in class c
with the matrix Mc learned for that class. The predicted label of image Xi is chosen
by selecting the shortest I2C distance. Section 2.1 gives a full explanation of these
notations.

I2C distance calculation rather than metric learning, we also propose an accel-
eration method using spatial restriction for speeding up the NN search, which
can preserve or even improve the classification accuracy in most datasets. Our
objectives for improving the I2C distance are twofold: minimizing the testing
time and improving the classification performance.

We describe our large margin optimization problem as well as an efficient
solver in Section 2, where we also discuss our improvements in addition to the
learned metrics. We evaluate our method and compare it with other methods in
Section 3. Finally, we conclude this paper in Section 4.

2 Distance Metric Learning for I2C Distance

In this section, we formulate a large margin convex optimization problem for
learning the Per-Class metrics and introduce an efficient gradient descent method
to solve this problem. We also adopt two strategies to further enhance the dis-
crimination of our learned I2C distance.

2.1 Notation

Our work deals with the image represented by a collection of its local fea-
ture descriptors extracted from patches around each keypoint. So let Fi =
{fi1, fi2, . . . , fimi} denote features belonging to image Xi, where mi represents
the number of features in Xi and each feature is denoted as fij ∈ Rd, ∀j ∈
{1, . . . , mi}. To calculate the I2C distance from an image Xi to a candidate
class c, we need to find the NN of each feature fij from class c, which is denoted
as f c

ij . The original I2C distance from image Xi to class c is defined as the sum
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of Euclidean distances between each feature in image Xi and its NN in class c
and can be formulated as:

Dist(Xi, c) =
mi∑
j=1

‖ fij − f c
ij ‖2 (1)

After learning the Per-Class metric Mc ∈ Rd×d for each class c, we replace the
Euclidean distance between each feature in image Xi and its NN in class c by
the Mahalanobis distance and the learned I2C distance becomes:

Dist(Xi, c) =
mi∑
j=1

(fij − f c
ij)

T Mc(fij − f c
ij) (2)

This learned I2C distance can also be represented in a matrix form by introducing
a new term ΔXic, which is a mi × d matrix representing the difference between
all features in the image Xi and their nearest neighbors in the class c formed as:

ΔXic =

⎛
⎜⎜⎝

(fi1 − f c
i1)

T

(fi2 − f c
i2)

T

...
(fimi − f c

imi
)T

⎞
⎟⎟⎠ (3)

So the learned I2C distance from image Xi to class c can be reformulated as:

Dist(Xi, c) = Tr(ΔXicMcΔXT
ic) (4)

This is equivalent to the equation (2). If Mc is an identity matrix, then it’s
also equivalent to the original Euclidean distance form of equation (1). In the
following subsection, we will use this formulation in the optimization function.

2.2 Problem Formulation

The objective function in our optimization problem is composed of two terms:
the regularization term and error term. This is analogous to the optimization
problem in SVM. In the error term, we incorporate the idea of large margin and
formulate the constraint that the I2C distance from image Xi to its belonging
class p (named as positive distance) should be smaller than the distance to any
other class n (named as negative distance) with a margin. The formula is given
as follows:

Tr(ΔXinMnΔXT
in) − Tr(ΔXipMpΔXT

ip) ≥ 1 (5)

In the regularization term, we simply minimize all the positive distances similar
to [20]. So for the whole objective function, on one side we try to minimize all
the positive distances, on the other side for every image we keep those negative
distances away from the positive distance by a large margin. In order to allow
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soft-margin, we introduce a slack variable ξ in the error term, and the whole
convex optimization problem is therefore formed as:

min
M1,M2,...,MC

O(M1, M2, . . . , MC) = (6)

(1 − λ)
∑

i,p→i

Tr(ΔXipMpΔXT
ip) + λ

∑
i,p→i,n→i

ξipn

s.t.∀ i, p, n : Tr(ΔXinMnΔXT
in) − Tr(ΔXipMpΔXT

ip) ≥ 1 − ξipn

∀ i, p, n : ξipn ≥ 0
∀ c : Mc  0

This optimization problem is an instance of SDP, which can be solved using
standard SDP solver. However, as the standard SDP solvers is computation
expensive, we use an efficient gradient descent based method derived from [20,19]
to solve our problem. Details are explained in the next subsection.

2.3 An Efficient Gradient Descent Solver

Due to the expensive computation cost of standard SDP solvers, we propose
an efficient gradient descent solver derived from Weinberger et al. [20,19] to
solve this optimization problem. Since the method proposed by Weinberger et
al. targets on solving only one global metric, we modify it to learn our Per-Class
metrics. This solver updates all matrices iteratively by taking a small step along
the gradient direction to reduce the objective function (6) and projecting onto
feasible set to ensure that each matrix is positive semi-definite in each iteration.
To evaluate the gradient of objective function for each matrix, we denote the
matrix Mc for each class c at tth iteration as M t

c , and the corresponding gradient
as G(M t

c). We define a set of triplet error indices N t such that (i, p, n) ∈ N t

if ξipn > 0 at the tth iteration. Then the gradient G(M t
c) can be calculated by

taking the derivative of objective function (6) to M t
c :

G(M t
c) = (1 − λ)

∑
i,c=p

ΔXT
icΔXic + λ

∑
(i,p,n)∈Nt,c=p

ΔXT
icΔXic − λ

∑
(i,p,n)∈Nt,c=n

ΔXT
icΔXic (7)

Directly calculating the gradient in each iteration using this formula would be
computational expensive. As the changes in the gradient from one iteration to
the next are only determined by the differences between the sets N t and N t+1,
we use G(M t

c) to calculate the gradient G(M t+1
c ) in the next iteration, which

would be more efficient:

G(M t+1
c ) = G(M t

c) + λ(
∑

(i,p,n)∈(Nt+1−Nt),c=p

ΔXT
icΔXic −

∑
(i,p,n)∈(Nt+1−Nt),c=n

ΔXT
icΔXic) (8)

− λ(
∑

(i,p,n)∈(Nt−Nt+1),c=p

ΔXT
icΔXic −

∑
(i,p,n)∈(Nt−Nt+1),c=n

ΔXT
icΔXic)

Since (ΔXT
icΔXic) is unchanged during the iterations, we can accelerate the

updating procedure by pre-calculating this value before the first iteration. The
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matrix is updated by taking a small step along the gradient direction for each
iteration. To enforce the positive semi-definiteness, the updated matrix needs to
be projected onto a feasible set. This projection is done by eigen-decomposition
of the matrix and truncating all the negative eigenvalues to zeros. As the op-
timization problem (6) is convex, this solver is able to converge to the global
optimum. We summarize the whole work flow in Algorithm 1.

Algorithm 1. A Gradient Descent Method for Solving Our Optimization Prob-
lem

Input: step size α, parameter λ and pre-calculated data (ΔXT
icΔXic), i ∈

{1, . . . , N}, c ∈ {1, . . . , C}
for c := 1 to C do

G(M0
c ) := (1 − λ)

∑
i,p→i ΔXT

ipΔXip

M0
c := I

end for{Initialize M and gradient for each class}
Set t := 0
repeat

Compute N t by checking each error term ξipn

for c = 1 to C do
Update G(M t+1

c ) using equation (8)
M t+1

c := M t
c + αG(M t+1

c )
Project M t+1

c for keeping positive semi-definite
end for
Calculate new objective function
t := t + 1

until Objective function converged
Output: each matrix M1, . . . , MC

2.4 Scalability and Incremental Learning

Next we analyze the efficiency of this solver and its scalability. Although the num-
ber of triplets is large for dealing with large-scale dataset, for example 151500
triplets in error term for Caltech 101 dataset using 15 images per class for train-
ing, we find only a small portion of them are non-zero, which are put into the
error index set N t and used for updating matrices. To speed up calculating N t

in each iteration, we also keep an active set of triplets as proposed in [20] for
calculating N t rather than scanning over all the triplets in each iteration. So
this solver runs quickly for updating hundreds of metrics. In our experiment, it
needs about 30 iterations to converge for Scene, Sports and Corel datasets, and
about 60 iterations for Caltech 101 dataset to converge with an appropriate step
size. We can further accelerate the training phase by learning a diagonal matrix
for each class, which would alleviate the computation cost especially when there
are even more classes, e.g. thousands of classes.

Our method also supports the incremental learning. When new training im-
ages of existing class or new class are added, Per-Class metrics do not need to be
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re-trained from the beginning. The current learned matrices can be used as initial
estimates by changing the identity matrix I to current matrix for each class in
Algorithm 1, and new triplets are added to update all matrices. The updating
procedure will converge quickly since pre-learned matrices are relatively close
to the optimal. This incremental learning ability shows that our method can be
scaled-up to handle large number of classes and support for on-line learning.

2.5 More Improvements Based on Mahalanobis I2C Distance

To generate a more discriminative I2C distance for better recognition perfor-
mance, we improve our learned distance by adopting the idea of spatial pyramid
match [9] and learning I2C distance function [16].

Fig. 2. The left parallelogram denotes an image, and the right parallelograms denote
images in a class. We adopt the idea of spatial pyramid by restricting each feature
descriptor in the image to only find its NN in the same subregion from a class at each
level.

Spatial pyramid match (SPM) is proposed by Lazebnik et al. [9] which makes
use of spatial correspondence, and the idea of pyramid match is adapted from
Grauman et al. [8]. This method recursively divides the image into subregions
at increasingly fine resolutions. We adopt this idea in our NN search by limiting
each feature point in the image to find its NN only in the same subregion from a
candidate class at each level. So the feature searching set in the candidate class
is reduced from the whole image (top level, or level 0) to only the corresponding
subregion (finer level), see Figure 2 for details. This spatial restriction enhances
the robustness of NN search by reducing the effect of noise due to wrong matches
from other subregions. Then the learned distances from all levels are merged
together as pyramid combination.

In addition, we find in our experiments that a single level spatial restriction
at a finer resolution makes better recognition accuracy compared to the top
level especially for those images with geometric scene structure, although the
accuracy is slightly lower than the pyramid combination of all levels. Since the
candidate searching set is smaller in a finer level, which requires less computation
cost for the NN search, we can use just a single level spatial restriction of the
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learned I2C distance to speed up the classification for test images. Compared to
the top level, a finer level spatial restriction not only reduces the computation
cost, but also improves the recognition accuracy in most datasets. For some
images without geometric scene structure, this single level can still preserve the
recognition performance due to sufficient features in the candidate class.

We also use the method of learning I2C distance function proposed in [16]
to combine with the learned Mahalanobis I2C distance. The idea of learning
local distance function is originally proposed by Frome et al. and used for image
classification and retrieval in [6,5]. Their method learns a weighted distance
function for measuring I2I distance, which is achieved by also using a large
margin framework to learn the weight associated with each local feature. Wang
et al. [16] have used this idea to learn a weighted I2C distance function from
each image to a candidate class, and we find our distance metric learning method
can be combined with this distance function learning approach. For each class,
its weighted I2C distance is multiplied with our learned Per-Class matrix to
generate a more discriminative weighted Mahalanobis I2C distance. Details of
this local distance function for learning weight can be found in [6,16].

3 Experiment

3.1 Datasets and Setup

We evaluate our proposed method on four popular datasets: Scene-15, Sports,
Corel and Caltech 101 dataset. We describe them briefly as follows:

– Scene-15. Scene dataset consists of 15 scene categories, among which 8 were
originally collected by Oliva et al. [15], 5 added by Li et al. [4] and 2 from
Lazebnik et al. [9]. Each class has about 200 to 400 images, and the average
image size is around 300 × 250 pixels. Following [9], we randomly select
100 images per class for training and test on the rest. The mean per-class
recognition rate is reported as accuracy.

– Sports. Sports event dataset is firstly introduced in [10], consisting of 8
sports event categories. The number of images in each class ranges from 137
to 250, so we follow [10] to select 70 and 60 images per class for training and
test respectively. Since images in this dataset are usually very large, they are
first resized such that the largest x/y dimension is 500.

– Corel. Corel dataset contains 10 scene categories published from Corel Cor-
poration. Each class contains 100 images, and we follow [14] to separate them
randomly into two subsets of equal size to form the training and test set. All
the images are of the size 384 × 256 or 256 × 384.

– Caltech 101. Caltech 101 dataset is a large scale dataset containing 101
categories [3]. The number of images in each class varies from about 30 to
800. This dataset is more challenging due to the large number of classes
and intra-class variances. Following the widely used measurement by the
community we randomly select 15 images per class for training. For test set,
we also select 15 images from each class and report the mean accuracy.
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Fig. 3. Per-category recognition accuracy for comparison of I2CDML with NBNN

Since the training and test set are selected randomly, we repeat the experiment
for 5 times in each dataset and report the average result. For feature extrac-
tion, we use dense sampling strategy and SIFT features [12] as our descriptor,
which are computed on a 16 × 16 patches over a grid with spacing of 8 pixels
for all datasets. This is a simplified method compared to some papers that use
densely sampled and multi-scale patches to extract large number of features,
which helps in the performance results but increases the computational com-
plexity. We name our method as I2CDML, short for Image-To-Class distance
metric learning.

3.2 Results on Scene-15, Sports and Corel Datasets

We first compare our proposed I2CDML method with NBNN [1] on Scene-15,
Sports and Corel datasets to evaluate our learned metrics. Table 1 shows the
recognition accuracy averaged of all classes for the three datasets. We can see
that our method significantly outperforms NBNN in every dataset, especially in
Sports dataset where the improvement is above 10%. Then we investigate the
details by comparing the classification accuracy for each class in Figure 3. For
those easily classified categories, our method is comparable to NBNN. Moreover,
for those challenging categories that NBNN performs poorly (for example the
worst three categories in Scene-15, the worst four in Sports, and the worst two
in Corel, as indicated in Figure 3), our method can improve the accuracy sub-
stantially. Therefore our method improves the average accuracy by emphasizing
the classification on challenging categories and yet maintains the performance
for the easily classified categories.

Table 1. Comparing I2CDML to NBNN for recognition accuracy (%)

Method Scene-15 Sports Corel

I2CDML 77.0 ± 0.60 78.5 ± 1.63 88.8 ± 0.93

NBNN [1] 72.3 ± 0.93 67.6 ± 1.10 85.7 ± 1.20



Image-to-Class Distance Metric Learning for Image Classification 715

Table 2. Comparing I2CDML to its integration for recognition accuracy (%)

Method Scene-15 Sports Corel

I2CDML 77.0 ± 0.60 78.5 ± 1.63 88.8 ± 0.93
I2CDML+SPM 81.2 ± 0.52 79.7 ± 1.83 89.8 ± 1.16

I2CDML+Weight 78.5 ± 0.74 81.3 ± 1.46 90.1 ± 0.94
I2CDML+

SPM+Weight
83.7 ± 0.49 84.3 ± 1.52 91.4 ± 0.88

NS SSL SPM
0.76
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Fig. 4. Comparing the performance of no spatial restriction (NS), spatial single
level restriction (SSL) and spatial pyramid match (SPM) for both I2CDML and
I2CDML+Weight in all the three datasets. With only spatial single level, it achieves
better performance than without spatial restriction, although slightly lower than spa-
tial pyramid combination of multiple levels. But it requires much less computation cost
for feature NN search.

Then we show in Table 2 the improved I2C distance through spatial pyramid
restriction from the idea of spatial pyramid match in [9] and learning weight
associated with each local feature in [16]. Both strategies are able to augment
the classification accuracy for every dataset, and we find that SPM provides
additional improvement than learning weight in Scene-15 dataset but less im-
provement in the other two datasets. This is likely due to the geometric structure
of Scene-15 that matches with the spatial equally divided subregions very well,
while in the other two datasets discriminative local features for generating the
weighted I2C distance have a more important role for classification. Nevertheless,
by using both strategies we get the best results in all the three datasets.

Since a spatial single level at a finer resolution will reduce the computation
cost required for feature NN search, we also compare its performance with spatial
pyramid combining multiple levels as well as the original size without using spa-
tial restriction. As shown in Figure 4, this spatial single level is able to improve
the accuracy compared to no spatial restriction, not only on scene constraint
datasets (Scene-15 and Corel) but also on Sports event dataset that does not
have geometric scene structure. Though the performance is slightly lower than
the pyramid combining all levels, it saves the computation cost for both feature
NN search and distance metric learning. So this spatial single level strategy will
be very useful for improving the efficiency.
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Table 3. Comparing to recently published results for recognition accuracy (%)

Scene-15 Sports Corel
Ours 83.7 Ours 84.3 Ours 91.4

Lazebnik et al. [9] 81.4 Li et al. [10] 73.4 Lu et al. [13] 77.9
Liu et al. [11] 83.3 Wu et al. [21] 78.5 Lu et al. [14] 90.0
Bosch et al. [2] 83.7 Wu et al. [22] 84.2
Yang et al. [24] 80.3
Wu et al. [22] 84.1

We compare our best results with recently published result for every dataset.
All the results are listed in Table 3. In Scene-15 dataset, many researchers re-
ported their recent results and most of them also incorporate SPM to improve
the accuracy. Lazebnik et al. [9] first proposed SPM and combined with the Bag-
of-Word (BoW) strategy, achieving 81.4%. Bosch et al. [2] also incorporated SPM
in pLSA to achieve 83.7%. The best result so far as we know is 84.1% by Wu
et al. [22], who replace Euclidean distance by histogram intersection in BoW
combined with SPM. Although our result is slightly lower than their results, we
notice they have used multi-scale and denser grid to extract feature as well as
combining additional Sobel gradient, while our feature extraction is very simple
but still comparable to theirs. When using the same configuration, their ap-
proach is worse than ours, as either indicated in [22] as well as implemented by
us using their published LibHIK1 code, which is 81.36± 0.54 using CENTRIST
[23] and 78.66±0.44 using SIFT [12] in our implementation. For Sports dataset,
Li et al. [10] who published them reported 73.4%, and Wu et al. improved it
to 78.5% and 84.2% in [21] and [22] respectively, where the later one used the
same configuration as their experiment in Scene-15. Nevertheless, our result is
still comparable to theirs. For Corel dataset, our result is again better than the
previous published results [14,13] even without using color information. All these
results show that our method can achieve state-of-the-art performance on these
datasets using relatively small feature set.

3.3 Results on Caltech 101 Dataset

We also evaluate our method on Caltech 101 to illustrate its scalability on
datasets with more classes. In our experiment we only select 15 images per class
for training, same as most previous studies. In [1], they extracted SIFT features
using multi-scale patches densely sampled from each image, which result in much
redundant features on the training set (about 15000 to 20000 features per image).
So the NN search for I2C distance calculation takes expensive computation cost.
Even using KD-Tree for acceleration, it takes about 1.6 seconds per class for the
NN search of each test image [1] and thus around 160 seconds for 101 classes to
classify only one test image. This is unacceptable during the testing phase and
makes it difficult for real-world application. In our experiment, we only generate
1 http://www.cc.gatech.edu/cpl/projects/libHIK/

http://www.cc.gatech.edu/cpl/projects/libHIK/
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Fig. 5. Comparing the performances of I2CDML, I2CDML+Weight and NBNN from
spatial division of 1× to 7×7 and spatial pyramid combination (SPM) on Caltech 101.

less than 1000 features per image on average using our feature extraction strat-
egy, which are about 1/20 compared to the size of feature set in [1]. We also use
single level spatial restriction to constrain the NN search for acceleration. For
each image, we divide it from 2×2 to 7×7 subregions and test the performance
of I2CDML, NBNN and I2CDML+Weight. Experiment results of without using
spatial restriction (1×1 region) as well as spatial pyramid combining all levels is
also reported.

From Figure 5 , we can see that without using spatial restriction, the perfor-
mance of NBNN is surprisingly bad. The reason that NBNN performs excellently
as reported in [1] using complex features while poorly in our small feature set
implies that the performance of NBNN relies heavily on the large redundant of
training feature set, which needs expensive computation cost for the NN search.
For comparison, our I2CDML augments the performance of I2C distance signif-
icantly, while combining the learned weight further improves the performance.
Compared to the other three datasets, this dataset contains more classes and
less training images per class, which makes it more challenging. So the large im-
provement over NBNN indicates that our learning procedure plays an important
role to maintain an excellent performance using small number of features under
such challenging situation, which also requires much less computation cost in
the testing phase.

From 2×2 to 7×7 subregions of spatial restriction, due to the regular geomet-
ric object layout structure of images in this dataset, the performance is further
improved for all methods compared to without using spatial restriction. Though
the results on spatial division from 3×3 to 7×7 do not change much, the com-
putation cost for NN search continues decreasing with finer spatial division. For
7×7 spatial division, the size of feature set in the candidate class is 1/49 of the
original image without using spatial restriction. The best result on single spatial
restriction is 63.4% by I2CDML+Weight on 5×5 spatial division, which is close
to the result of spatial pyramid combining all levels (64.4%) but is more effi-
cient. NBNN can also benefit from this spatial restriction, but its result is still
unacceptable for classification task using such small feature set.
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Our best result is also comparable to the best reported result of NBNN (65%)
in [1], which uses large number of densely sampled multi-scale local features as
well as pixel location information for their I2C distances to achieve such state-
of-the-art performance. The size of candidate feature set they used is about 20
times more than ours using the whole image and nearly 1000 times compared
our spatial restriction of 7×7 subregions. So our implementation needs much
less computation cost for the NN search during the on-line testing phase with
the additional off-line training phase, whilst the result is comparable to theirs.
Although we cannot reproduce their reported result in our implementation, we
believe our comparison should be fair as we use the same feature set for all
methods and the experiment has shown that our method achieves significant
improvement on such large-scale dataset with much efficient implementation.

4 Conclusion

Image-To-Class distance relies heavily on the large number of local features in
the training set and test images, which need heavy computation cost for the NN
search in the testing phase. However, using small number of features results in
poor performance. In this paper, we tried to improve the performance of this
distance and speed up the testing phase. We added a training phase by proposing
a distance metric learning method to learn the I2C distance. A large margin
framework has been formulated to learn the Per-Class Mahalanobis distance
metrics, with a gradient descent method to efficiently solve this optimization
problem. We also discussed the method of enhancing the discrimination of the
learned I2C distance for performance improvement. These efforts made the I2C
distance perform excellent even using small feature set. For further accelerating
the NN search in the testing phase, we adopted single level spatial restriction,
which can speed up the NN search significantly while preserving the classification
accuracy. The experiment results on four datasets of Scene-15, Sports, Corel and
Caltech 101 verified that our I2CDML method can significantly outperform the
original NBNN especially for those challenging categories, and such I2C distance
achieved state-of-the-art performance on most datasets.
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Abstract. Many computer vision methods rely on annotated image sets
without taking advantage of the increasing number of unlabeled images
available. This paper explores an alternative approach involving unsu-
pervised structure discovery and semi-supervised learning (SSL) in im-
age collections. Focusing on object classes, the first part of the paper
contributes with an extensive evaluation of state-of-the-art image repre-
sentations. Thus, it underlines the decisive influence of the local neigh-
borhood structure and its direct consequences on SSL results and the
importance of developing powerful object representations. In a second
part, we propose and explore promising directions to improve results by
looking at the local topology between images and feature combination
strategies.

Keywords: object recognition, semi-supervised learning.

1 Introduction

Supervised learning is the de facto standard for many computer vision tasks
such as object recognition or scene categorization. Powerful classifiers can ob-
tain impressive results but require a sufficient amount of annotated training data.
However, supervised methods have important limitations: Annotation is expen-
sive, prone to error, often biased, and does not scale. Obtaining the required
training data representing all relevant aspects of a given category is difficult but
key to success for supervised methods. Facing these limitations we argue that
the computer vision community should move beyond supervised methods and
more seriously tap into the vast collections of images available today.

In particular, we look at the local structure of the data (links between im-
ages here) in an unsupervised way. For larger datasets, this local neighborhood
becomes more reliable: Two semantically similar images (belonging to the same
class) have a higher probability to be also similar in image representation space
for increasing database sizes (see Fig. 1). Semi-supervised learning (SSL), the
second direction explored here, uses such local neighborhood relations and few
labeled images to predict the label of new images. The local structure has in
both cases a strong influence on the overall performance of such approaches.
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Fig. 1. (Left) For each image, we look at the most similar image (L1 distance NN) to
see how often these couples belong to the same class. This increases for larger sets.
(Right) Top: ETH, middle: our Cropped PASCAL, bottom: AWA datasets.

This paper is organized in two parts. First, we contribute a study of differ-
ent representations and SSL algorithms on three image collections of increasing
size and difficulty for image categorization (Sec. 3). We show that the results
depend on the neighborhood structure induced by object representations and
on the graph structure parameters rather than on the particular SSL algorithm
employed. We also show that results obtained on the local neighborhood directly
transfer to SSL results.

Motivated by these conclusions, the second part of the paper presents differ-
ent ways of improving the connections between images in the local neighborhood
structure. Among the considered strategies: the topology of the dataset is used
to refine the existing connections (Sec. 4), and different features are combined
(Sec. 5). Results show improvements for both the structure and the SSL predic-
tions on all datasets.

Related Work. The use of large image collections is obviously not a novel
idea. [1] directly discovers image clusters, while other approaches aim to globally
partition the database in image sets sharing more general concepts [2]. Multi
instance learning methods deal with weak or incomplete annotations [3]. Some
methods use the web as an external source of information to get many but noisy
annotations [4]. Active learning methods aim to identify missing annotations [5].
Finally, attempts are made to make the annotation process more appealing [6].
None of this prior work however systematically analyzes the suitability of today’s
image and object representations for unsupervised local structure extraction.

Semi-supervised learning (SSL) has been applied to several computer vision
problems. Partial labeling of pixels is used as an input for segmentation [7].
Image level annotations are used to find object parts [8]. But only a couple of
methods apply SSL to predict labels at the image level from a few annotated im-
ages. Of particular interest are [9] using random forests and [10] using boosting,
both in an SSL framework. Closer to our work, [11] focuses on graph based prop-
agation algorithms and proposes efficient approximations to scale SSL methods
to large datasets. In machine learning, SSL methods have been used with success
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for many tasks (e.g. digit recognition, text classification, or speech recognition,
see [12] for a survey). Among SSL, graph-based methods play an important
role as they concentrate on the local structure of data [13,14]. Most approaches
however focus on SSL algorithms rather than on the underlying structure. In this
work, we analyze the local neighborhood in detail to improve the performance
of SSL graph-based algorithms for image data.

There are very few studies that compare SSL methods on images. [12] con-
tains a single small image set and [15] considers digits and faces only. In both
cases, representations are different from commonly used image descriptors for
recognition. Therefore, this paper focuses on the important problem of how well
standard representations are suited for unsupervised structure discovery as well
as SSL and how the structure can be improved such that also SSL can benefit.

2 Datasets and Image Representations

We consider three datasets with increasing number of object classes, number of
images, and difficulty. Some of the images are shown in Fig. 1.

ETH-80 (ETH) [16] contains 3,280 images divided in 8 object classes and 10
instances per class. Each instance is photographed from 41 viewpoints in front
of a uniform background. This controlled dataset ensures that a strong local
structure exists between images making it a perfect toy dataset for our task.

Cropped PASCAL (C-PASCAL) is based on the PASCAL VOC challenge
2008 training set [17]. Bounding box (BB) annotations are used to extract the
objects. Consequently semantic connections between images and SSL predictions
on this new dataset can be evaluated in our multi-class protocol. To discard
information contained in the aspect ratio of the BB, squared regions (rescaled to
102x102 pixels) are extracted using the larger side of the BB and objects smaller
than 50 pixels are discarded. To avoid that a class dominates the evaluation,
we subsampled the largest class ‘people’ from 40% to 16% (the 2nd largest
class being ‘chair’ with ∼11%). The set contains 6,175 images of aligned objects
from 20 classes but with varying object poses, challenging appearances, and
backgrounds.

Animal with Attributes (AWA) [18] is a large and realistic dataset with 30,475
images and 50 classes, without alignment. Objects are located anywhere in the
image, in difficult conditions and poses, which complicates the task of finding im-
ages containing similar object classes. While being the most challenging dataset
in this evaluation, it is the kind of data we are eventually aiming for.

Representations. This paper uses a large spectrum of representations em-
ployed by state-of-the art recognition methods [17]. For the first two datasets we
consider 7 complementary descriptors: 3 global descriptors (HOG [19], Gist [20],
pyramid bag-of-features (P-BoF) [21]), 3 bag-of-features representations (BoF)
with different detectors and descriptors, and a texture descriptor (TPLBP [22]).
Our HOG implementation uses 9-bins histograms of gradient orientations, lo-
cally normalized over contrast, extracted using a dense grid of non-overlapping
cells (8x8 pixels). For the Gist scene descriptor we use the code of [20]. P-BoF
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features are computed with the implementation of [21]. It extracts patches on 4
different levels and a visual vocabulary of 200 words. Concurrently, we extract
bag-of-features representations. We combine Harris (Har-BoF) or Hessian-Affine
(Hess-BoF) detectors [23], with SIFT [24] and build visual vocabularies of 10,000
words. We also use C-SIFT based on the code of [25] (Color-SIFT descriptors
for Harris points, 2,000 words vocabulary). Finally, the local texture descriptor
called Three Patch Local Binary Pattern (TPLBP) [22] considers 3 neighboring
patches of size 3 × 3 arranged in a circle a single bit value for each pixel. For
AWA, we use 7 descriptors: the 6 publicly available features [18] (color histograms
(C-Hist), Local-Self-Similarity (LSS), Pyramid HOG (P-HOG), bag-of-features
representations involving SIFT, color-SIFT (C-SIFT), and SURF descriptors)
and the Gist descriptor that we computed additionally.

3 Local Structure and SSL Study

As stated before, this paper looks at two related tasks: local structure extraction
and the use of this structure for semi-supervised learning (SSL). We focus on
the question whether today’s object class representations are suitable for local
structure discovery and how well these observations transfer to SSL.

The following first analyzes neighborhood structures and then compares four
different graph-based algorithms for SSL.

Local structure discovery. For all three datasets, we analyze neighborhood
structures of different object representations, for the L1 and L2 distance mea-
sures1. We focus on k-nearest neighbors (k-NN) structures which have better
connectivity and lead to more intuitive structures than e.g., ε-neighborhood
graphs [26]. These properties are also important for SSL algorithms.

Experiments. To evaluate the quality of the k-NN structure for an image, we
calculate the percentage of neighbors belonging to the same class as this image.
Averaging this percentage over all images results in the overall k-NN structure
accuracy. Intuitively, this evaluates how often the k-NN structure connects im-
ages from the same class, and how much semantic information it contains.

The left side of Tab. 1 shows L1 and L2 performances for the nearest (1-NN)
and the 10 nearest neighbors (10-NN), for all three datasets2. First, we see that
L1 constantly outperforms L2 for all representations and all datasets.

Also, we observe that results significantly differ between the different repre-
sentations. Global descriptors like P-BoF or Gist work well for ETH and C-
PASCAL as objects are mostly aligned in those databases. Local descriptors are
better suited for the more challenging AWA dataset.

Finally, the 1-NN and 10-NN exhibit different behaviors. Some features are
more robust for larger numbers of neighbors. For instance for C-PASCAL, Hess-
BoF is the third best descriptor when looking at 1-NN structures, with 31.3%,
1 The χ2 measure was considered but not reported as it gave similar results as L1.
2 In all tables for both NN and SSL, best representation per configuration: gray cell

(max per column); best configuration: bold numbers (max per line); overall best:
red.
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Table 1. Quality of the nearest neighbor and the 10 nearest neighbors on the left part,
transductive propagation results on the right part, for L1, L2 (Sec. 3) and L2-Context
(Sec. 4.1). Only the 3 best descriptors are shown for ETH.

NN quality SSL results
L1 L2 L2-ctxt L1 L2 L2-ctxt

Features k=1 k=10 k=1 k=10 k=1 k=10 acc var acc var acc var
ETH C-SIFT 96.6 89.0 80.5 63.1 92.8 82.7 89.0 0.6 60.9 2.0 83.7 1.4

Gist 93.6 85.4 92.9 83.5 93.6 84.8 83.1 1.4 82.5 1.0 84.5 0.8
HOG 96.9 88.6 95.5 86.2 96.9 88.6 84.5 1.8 83.3 1.7 86.8 1.3

C-PASCAL C-SIFT 32.6 19.6 24.2 13.9 30.1 17.8 24.0 0.4 16.6 2.2 20.5 0.4
Gist 30.8 24.3 29.5 23.5 31.8 24.9 28.4 0.3 27.5 0.4 28.1 0.8
HOG 27.3 21.4 22.0 17.3 34.6 26.8 19.2 2.3 13.9 2.4 28.8 1.6

Har-BoF 28.7 16.2 17.8 10.4 25.1 13.6 20.1 0.5 13.1 2.7 15.7 0.5
Hess-BoF 31.3 17.9 20.1 11.2 26.7 15.2 21.6 0.7 15.3 2.3 16.5 1.1
P-BoF 28.5 22.3 24.1 17.7 24.1 17.7 28.4 0.9 20.2 1.2 20.6 0.9
TPLBP 33.5 26.2 26.9 20.4 26.9 20.4 29.5 0.9 20.4 2.0 20.5 1.9

AWA C-Hist 14.5 9.2 9.8 6.6 12.2 8.3 8.4 0.2 5.7 0.1 8.5 0.2
C-SIFT 14.2 9.2 12.2 8.0 15.4 10.4 8.0 0.2 7.0 0.1 10.3 0.2

Gist 12.1 8.1 12.0 8.1 15.0 10.3 7.2 0.2 7.4 0.2 10.9 0.1
LSS 10.9 7.8 8.3 6.3 11.7 8.1 6.9 0.1 5.5 0.3 8.2 0.3

PHOG 9.7 6.7 7.7 5.6 8.9 7.0 6.3 0.2 5.4 0.1 7.0 0.1
SIFT 11.0 8.1 10.4 7.6 12.4 8.8 7.7 0.2 7.3 0.3 9.2 0.2
SURF 16.4 10.6 11.7 8.0 14.3 10.7 9.0 0.1 6.8 0.3 10.4 0.2

but loses almost half of the performance when considering 10-NN (17.9%). On
the contrary, P-BoF gives poor results for 1-NN but is more robust for 10-
NN (22.3%). When considering SSL results, we will refer mainly to the 10-NN
structures, as graphs are using k-NN structures with large enough values of
k.

Semi-supervised learning. We use the previously studied k-NN structure and
few labels in a graph and analyze several SSL methods for the object recognition
problem. These methods build a graph (X, Y ) where the nodes X = {Xl, Xu}
represent images and Y = {Yl, Yu} are the labels. (Xl, Yl) are labeled images and
(Xu, Yu) are unlabeled images. A graph is represented by an adjacency matrix
W built from the k-NN structure. The degree of each node is dii ←

∑
j wij

and defines the diagonal matrix D. Here, we evaluate non-symmetric (directed)
graphs. We do not evaluate fully connected graphs due to their computational
complexity and memory requirements. We also considered weighted graphs but
found that performance did not improve significantly.

Graph-based methods distribute labels from labeled to unlabeled nodes. In
our experiments, we compare four methods covering a broad range of possible
strategies. These methods are designed for binary problems, and expandable
to multi-class problems with n classes, by splitting them into n one-versus-all
binary problems, that share the same graph structure. All algorithms follow the
same pattern. First, labels are initialized, with Yl taking values in {1,−1} and
elements of Yu set to 0 resulting in Ŷ (0). Then labels are updated iteratively
Ŷ (t+1) ← LŶ (t) for a certain number of iterations3. This part differs for each
method, and is briefly described below.

3 Typically a small number of iterations is used to avoid over-fitting.
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Gaussian Fields Harmonic Functions (GFHF) [14] uses a transition probability
matrix L = D−1W to propagate the labels. Original labels cannot change.
Quadratic Criterion (QC) [27] is a variant of the previous method allowing the
original labels to change, which can help for ambiguous representations. It also
introduces a regularization term for better numerical stability.
Local Global Consistency (LGC) [13] uses a normalized graph Laplacian L =
D− 1

2 WD− 1
2 instead of transition probabilities. The initial labels are also allowed

to change, but in a regularized way. A parameter α (set to 0.5) regularizes the
modifications to limit overwritten labels and weights how much newly predicted
labels are trusted compared to original ones, Ŷ (t+1) ← αLŶ (t) + (1 − α)Ŷ (0).
Discrete Regularization (DR) [28] incorporates local graph properties by looking
at the degree of two neighboring nodes. An additional cost function reduces the
influence of nodes with many connections.

Experiments. We apply these algorithms to all datasets and focus on the follow-
ing aspects: the differences between the 4 SSL algorithms, between the different
representations, and the influence of the local structure on SSL results.

We evaluate transductive results (i.e. prediction for the remaining labels) with
10% labeled data, for all datasets on their different representations for L1 and L2.
All experiments randomly select 5 sets of labeled data, and produce mean and
variance of the overall multi-class accuracy on unlabeled data only (transduc-
tive results). For comparison, we also use the supervised k-NN classifier, based
on the same representations and measures. Some representative results2, which
illustrate our main findings, are summarized in Fig. 2 and in Tab. 1 (right).

i) Graph structure and different algorithms. The first experiment varies the num-
ber of neighbors k in the graph, for the different algorithms. Fig. 2 (left) shows
the obtained performances for TPLBP, which performed best for C-PASCAL in
the case of local structures. As we can see, the number of neighbors k is a crucial
parameter and an optimal value exists. This value appeared to be dataset- and
SSL algorithm dependent. A minimum number is required to perform reason-
ably. Too small k values result in a graph with disconnected components, where
no information is propagated and some images are not classified.

Once the correct parameters for the graphs are chosen, there are surprisingly
small differences between SSL methods. For instance, L1 numbers vary between
29.5% for LGC and 24.6% for QC. This emphasizes our claim that the structure is
more important than the algorithms. LGC is more stable across experiments and
the QC method tends to achieve lower results. This algorithm allows to change
the original labels but has no regularization parameter like LGC, leading to many
changes in the original labels, and accuracy drops for large k values. Finally,
all SSL results outperform the best k-NN result (k=80) of 23.5%, showing the
benefits of the unlabeled data in the classification process.

In the remainder, we use LGC [13], as it exhibited stable results across multiple
settings, and its best settings determined from our parameter study.

ii) Image representations. As before in the NN study, we notice large differences
between image representations (Fig. 2 (right) for C-PASCAL and Tab. 1 for ETH
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Fig. 2. For C-PASCAL. Mean/Variance of overall accuracy on unlabeled data only for
LGC, GFHF, QC, and DR and k-NN (left). Different features with LGC (right).

and AWA). For C-PASCAL4, accuracies vary from 19.2% for HOG to 29.5% for
TPLBP and for AWA from 6.3% for P-HOG to 9% for SURF, with L1. Second,
we observe the existing gap between the representations and the task. Our toy
dataset ETH exhibits good values, meaning that for datasets with an obvious
underlying structure (same objects and views), it is accurately extracted and
used by the propagation algorithm. We were able to obtain satisfying results
even with minimal supervision. For the more challenging C-PASCAL and AWA
datasets, numbers are more disappointing. We can conclude that today’s image
representations are still not rich enough for building good semantic structures.

iii) Transfer from neighborhood structure. Tab. 1 shows that the results2 of
the 10-NN structures (left side) transfers directly to the SSL performances (right
side) for each dataset, including the observed semantic gap. 10-NN performance
is more consistent with the SSL algorithms as the latter need a minimum number
of connections to propagate the labels. Note that 1-NN structure quality is always
higher than SSL results because it gives only an intuition on the probability for
an image to transfer the correct label to its first neighbor. We could reach this
number for about 50% of the images labeled.

Summary. In this section, we studied the local neighborhood structure and its
influence on different SSL algorithms. We observed that the parameters that
determine the local neighborhood structure (image representations, value of k,
etc.) result in larger differences in performance than the particular choice of the
SSL algorithm. ETH presents high quality neighbors and the semantic structure
of the dataset is captured accurately. For more realistic datasets, like C-PASCAL
and AWA, the quality of neighbors is disappointing and underline the existing
gap between considered categories’ appearance and today’s computer vision rep-
resentation. This limitation also transfers to SSL results.

4 Note that the non-balanced C-PASCAL (dominated by the well recognized person
class) shares similar observations with our C-PASCAL, across all experiments, with
higher overall numbers. For instance here, L1 varies from 27.4% for HOG and 47.1%
for TPLBP.
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4 Improving the Local Structure between Images

The previous section showed that local neighborhood structures capture some
semantic information between images, but still a gap exists between the connec-
tions in a structure and the object categories, leaving ample room for improve-
ment. Also, we showed that this structure has a stronger influence on the results
than the SSL method itself. Therefore, this and the following section consider
different directions to improve the quality of the connections between images.
We want to improve the local structure without any learning involved, trying
again to move away from supervised methods. Our goal is to build an improved
unsupervised local neighborhood structure, which consequently can be generic,
and does not depend on the considered SSL problem.

In the following we explore to which extent the neighborhood structure can be
improved without labels, using only topological information of the dataset itself
and look at its influence on (i) the local structure itself, and (ii) the SSL results.
Sec. 4.1 considers context measures as an improvement over standard measures
and Sec. 4.2 shows the benefit of symmetric relations between neighbors.

4.1 Context Measures

We consider the contextual measure, proposed in [29] for the image retrieval
task. This context measure is applied for L25 to our problem.

Principle. When trying to decide if two images are close, the answer is often
given for a given context. We do not only look at the images themselves, but also
at the surrounding images. This is the intuition behind the contextual measure
[29], that computes the distance from a first descriptor p to another descriptor q
in the context of u using: L2ctxt(q, p|u) = argmin0≤ω≤1{||q−(ωp+(1−ω)u)||2}.
The context vector u is obtained by computing the mean vector of the l nearest
neighbors (l=100 in our experiments) of p in the collection.

Experiments. Tab. 1 summarizes the results2 obtained for the L2-context mea-
sure, in comparison with the L1 and L2 measures considered in our previous
study. From this table we can make the following observations. First, context
measure yields a consistent improvement to the L2 measure. For 1-NN, this im-
provement represents about 9% on average for ETH, almost 5% on average for
C-PASCAL and 2.5% for AWA. The same applies for the SSL results: we note
11% improvement for ETH, about 3% for C-PASCAL and for AWA, on average.
Sparse vectors (e.g. Hess-BoF or Har-BoF) benefit the most. Again we observe
(cf. Tab. 1) the consistency between the NN quality and the corresponding SSL
results, already underlined in the previous section’s study.

Interestingly, L2-ctxt brings L2 to the level of L1 and sometimes outperforms
it. Context measures are a promising direction and one could expect further
improvement from the context version of L1. As no closed-form solution exists
for L1, this new measure will be difficult to scale to very large datasets. Therefore,
we consider a different strategy which scales more easily in the following.
5 A closed-form solution is available for L2, making computations faster.
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Table 2. Quality of the nearest and the 10 nearest neighbors, chosen with distance-
or a rank-based strategy, for AWA

1-NN 10-NN
Dist Rank Dist Rank

Features L1 L2 L2-cxt L1 L2 L2-cxt L1 L2 L2-cxt L1 L2 L2-cxt
C-Hist 14.5 9.8 12.1 16.8 12.1 12.9 9.2 6.6 8.3 10.6 7.9 8.5
C-SIFT 14.1 12.1 15.3 19.1 14.8 16.6 9.1 8.0 10.4 11.6 9.4 10.6

AWA Gist 12.1 11.9 15.0 14.8 14.4 15.2 8.0 8.0 10.2 9.7 9.7 10.2
LSS 10.8 8.2 11.7 14.6 10.4 12.3 7.8 6.2 8.0 9.5 7.1 8.1

NN quality PHOG 9.7 7.6 8.8 12.2 9.3 9.8 6.7 5.6 6.9 7.9 6.2 7.0
SIFT 11.0 10.3 12.3 12.5 11.5 12.5 8.0 7.6 8.8 8.9 8.4 8.9
SURF 16.3 11.7 14.3 23.0 14.2 15.8 10.5 8.0 10.7 14.2 8.9 10.8

Table 3. Left: non-symmetric graphs on rank-based structures. Middle: symmetric
graphs on distance-based structures. Right: symmetric graph and rank based struc-
tures. The improvement obtained in comparison to Tab. 1 is shown in the gain column.

ETH - SSL results
Rank, non sym Dist, sym Rank, sym

L1 L2 L2-cxt L1 L2 L2-cxt L1 L2 L2-cxt
Feat. acc gain acc gain acc gain acc gain acc gain acc gain acc gain acc gain acc gain

CSIFT 91.5 +2.5 79.5 +18.6 84.6 +0.9 90.9 +1.8 74.1 +13.2 84.5 +0.8 91.3 +2.3 82.4 +21.5 84.7 +1.0
Gist 84.9 +1.8 83.2 +0.7 84.6 +0.1 83.8 +0.7 83.0 +0.5 84.1 -0.3 84.5 +1.5 83.2 +0.7 84.4 -0.1
HOG 87.4 +2.9 86.8 +3.5 87.6 +0.8 87.4 +2.9 88.1 +4.8 86.1 -0.7 87.3 +2.9 87.8 +4.4 87.1 +0.3

C-PASCAL - SSL results
CSIFT 24.8 +0.8 18.8 +2.3 20.4 0.0 24.1 0.0 19.6 +3.1 20.7 +0.3 24.3 +0.2 20.8 +4.3 20.8 +0.3
Gist 30.8 +2.4 30.3 +2.7 29.1 +1.0 30.4 +2.0 30.0 +2.5 29.0 +1.0 32.0 +3.6 31.4 +3.9 29.5 +1.4
HOG 29.6 +10.4 24.4 +10.4 30.3 +1.5 29.5 +10.3 26.8 +12.9 30.4 +1.6 32.2 +13.0 29.5 +15.6 31.0 +2.1
Har 20.7 +0.6 14.9 +1.8 15.4 -0.3 20.3 +0.2 16.5 +3.5 16.1 +0.4 20.5 +0.4 16.7 +3.7 16.0 +0.3
Hess 23.2 +1.7 16.2 +0.9 16.6 +0.1 22.4 +0.9 17.4 +2.2 17.4 +0.9 23.1 +1.5 17.8 +2.5 17.4 +0.9

P-BoF 29.9 +1.4 23.9 +3.7 23.5 +2.8 29.4 +1.0 23.8 +3.6 22.5 +1.9 29.9 +1.4 25.3 +5.1 23.9 +3.3
TPLBP 32.7 +3.2 29.4 +9.0 28.6 +8.2 32.0 +2.5 28.1 +7.7 26.7 +6.2 33.8 +4.3 30.9 +10.5 29.5 +9.0

AWA - SSL results
C-Hist 11.0 +2.6 7.6 +1.9 8.9 +0.4 10.8 +2.4 8.6 +2.9 9.1 +0.6 11.2 +2.8 8.7 +2.9 8.9 +0.5
CSIFT 11.0 +3.0 8.9 +1.9 10.8 +0.5 12.8 +4.7 11.5 +4.5 12.0 +1.7 13.0 +5.0 11.3 +4.3 11.8 +1.5
Gist 10.1 +2.7 10.1 +2.7 11.2 +0.3 10.8 +3.4 11.0 +3.6 11.5 +0.6 11.1 +3.7 11.1 +3.7 11.2 +0.4
LSS 9.4 +2.6 6.9 +1.4 8.5 +0.3 10.9 +4.0 9.1 +3.6 9.4 +1.2 11.1 +4.3 9.0 +3.5 9.4 +1.2

PHOG 7.5 +1.2 6.1 +0.7 7.2 +0.2 9.4 +3.2 8.0 +2.5 8.1 +1.0 9.4 +3.1 7.9 +2.5 8.1 +1.1
SIFT 9.5 +1.8 8.9 +1.6 9.8 +0.6 10.4 +2.6 9.6 +2.3 9.9 +0.7 10.0 +2.3 9.4 +2.1 9.9 +0.7
SURF 13.7 +4.7 8.0 +1.2 10.6 +0.3 16.3 +7.2 12.8 +6.1 13.4 +3.0 16.7 +7.7 12.9 +6.1 13.4 +3.0

4.2 Ranking and Symmetry

Here we explicitly look at the distribution of neighbors and try to build a more
intuitive and more evenly distributed structure. In particular, we would like
to emphasize the symmetric relations between images when building the local
neighborhood structure. First, we propose a new neighbor selection procedure to
emphasize symmetric relations using the “rank as neighbor”. Second, we consider
symmetry within the SSL-algorithm during graph propagation.

Improving the structure using ranking. In Sec. 3, for a particular distance
measure and representation, we extracted distance-based neighbors, i.e. we look
for the k images with the smallest distances to a given image, and use these
images to build our local neighborhood structure.

We propose a new way of selecting neighbors, so called rank-based neighbors,
that refines the notion of distances by emphasizing symmetric relations between
images. Intuitively, we connect two images which both have the other image as
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one of their nearest neighbors. More formally, we choose rank neighbors of image
i as follows. We compute a first set of (distance-based) neighbors for i, and keep
the one having the smallest score according to sc(di, dj) = τj(di)+ τi(dj), where
di, dj are the descriptors of image i and image candidate j, and τi(dj) encodes
the NN rank of descriptor dj as (distance-based) neighbor of image i. In practice,
we consider only the l nearest neighbors of image i as candidates, and τj(di) is
replaced by τ ′

j(di) = min(τj(i), l). l is used to narrow the search, and only needs
to be large enough (here l=800). Note that even though the function sc(dj , dj)
is symmetric, rank-based neighborhood is not a symmetric relation.
Improving the graph by using symmetric relations. Sec. 3 considered
non-symmetric (directed) graphs. Here we also look at symmetric (undirected)
graphs. They consider incoming as well as outgoing links for propagation. There
is a similar intuition behind symmetric graphs and rank-based NN as they both
enforce more symmetric interaction between images. In the case of rank-based
NN, a new structure is proposed which is potentially more effective, while for
symmetric graphs, the influence of images that are too often selected as a neigh-
bor is reduced within the existing structure.
Experiments. The study is divided in two parts. First, we look at the gain
obtained by the structure between images using ranking, and then we study the
improvement brought by both the ranking and the symmetry for the SSL results.

i) Rank-based local structure. In terms of NN quality, the rank strategy brings
a consistent improvement. Over the different image descriptors, when looking at
the first neighbor (1-NN quality), ETH gains 1.6% in average for L1, 9.5% for L2
and 1.9% for L2-ctxt by using the rank-based strategy. For C-PASCAL, we get
2.4% improvement for L1, 5.5% for L2 and 1.9% for L2-ctxt in average. For AWA
(the results are shown in Tab. 2), the 1-NN quality for SURF is improved from
16.3% to 23% and the 10-NN quality goes from 10.5% to 14.5%. As a remark,
few images were very often chosen as neighbors with the standard distance-based
strategy leading to an unbalanced and unadapted structure. We observed that
with the rank-based structures, this phenomena is highly reduced, which is a
direct consequence of the improvement of the local structure.

Finally, L2-ctxt benefits the least from the rank NN strategy. Our intuition
is that looking at the local neighborhood through the context vector allows to
select more intuitive and symmetric connections.

ii) Rank structure and symmetry for SSL results. Tab. 3 can be directly com-
pared with the right part of Tab. 1 and shows the following results.

First, we see for the non-symmetric case the same kind of improvement with
rank-based structure as in the NN study. Tab. 1 presents results for a structure
built with distance-based neighbors and a non-symmetric strategy. When com-
paring it with the first column of Tab. 3, we see in the gain column, that the rank
brings an improvement of up to 18.6% for ETH (L2 and C-SIFT), up to 10.4%
for C-PASCAL (HOG for both L1 and L2) and 4.7% for AWA (for SURF).

Next, we observe a similar, but often smaller, improvement when comparing
non-symmetric graphs (right part of Tab. 1) with symmetric graphs (middle col-
umn of Tab. 3). Descriptors improving significantly with the new rank structure
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Fig. 3. Left: SSL combination strategies. Right: 1-NN rank-based structure quality for
single features and their combination on AWA

also benefit the most from the symmetric graphs. Finally, when combining the
two new strategies (symmetric graphs using a rank structure, shown on the right
part of Tab. 3), we obtain similar or even better results than both previous strate-
gies. As a more general comment, rank methods (non-symmetric or symmetric)
combined with L1 give nearly always the best performance and bring significant
overall improvement. For C-PASCAL, TPLBP’s accuracy increases from 29.5%
to 33.8%. AWA benefits the most as the SURF descriptor improves from 9.0%
accuracy to 16.7% with a symmetric graph and a rank-based structure.

5 Combination

In the previous section, we have seen that we can significantly improve the local
structure of the image collection for a given image representation and a given
measure. In the following we will combine different features.

Feature combination has become an active area of research in the last years,
and the supervised framework allows to learn the different feature contributions
using the labels. Recent work [30] showed that simply averaging kernels already
gives a good improvement. Consequently, both our related tasks - building the
NN structure and predicting labels with SSL - should benefit from the combina-
tion of several image representations. In this section, we only look at the second
task, i.e. image categorization using SSL algorithms.

Principles. Three graph combinations are considered (illustrated Fig. 3).
Combination #1 assumes that the combination is done on the structure level.

The different features are used to compute a single k-NN local structure. Av-
eraging all single feature distances builds a single list of distance NN. A multi-
feature rank score builds a single list of rank NN. This score is calculated by
sccomb(i, j) =

∑
m∈Features sc(dm

i , dm
j ) where dm

j is the mth representation of
image j, and sc(dm

i , dm
j ) is the single feature rank score (see in Sec. 4.2).

Combination #2 builds a graph for each feature, and forms one combined
graph, the union graph, whose edges are the union of edges of each graph.

Combination #3 builds as many graphs as features and propagates labels in
each graph. All propagation results are combined and yield the final label.
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Table 4. Accuracy on unlabeled data only and gain compared to the best single
feature for C-PASCAL (left) and AWA (right). Results are proposed for the rank based
structures, for both symmetric and non-symmetric graphs.

C-PASCAL - SSL results
rank rank sym

Features Comb av var gain av var gain
Gist+ #1 34.0 0.8 0.0 34.8 0.7 +0.1

P-BoF+ #2 35.6 0.9 +2.9 36.4 0.8 +2.6
TPLBP #3 35.8 1.0 +3.1 36.7 0.9 +2.9

all #1 34.9 0.8 +0.9 35.7 0.3 +0.9
#2 37.2 0.6 +4.5 36.8 0.5 +3.0
#3 38.0 0.7 +5.3 37.9 0.8 +4.1

AWA - SSL results
rank rank sym

Features Comb av var gain av var gain
C-Hist+ #1 15.1 0.1 +1.4 17.7 0.2 +1.0
C-SIFT+ #2 16.7 0.1 +3.0 17.8 0.1 +1.1

SURF #3 17.7 0.2 +4.0 19.1 0.2 +2.4
all #1 17.3 0.3 +3.6 20.1 0.3 +3.3

#2 18.1 0.2 +4.4 19.2 0.1 +2.5
#3 19.9 0.2 +6.2 21.8 0.2 +5.1

Table 5. Successive improvements of the local structure: best single feature with dis-
tance (top) and with rank structure and symmetric graphs (middle), and best feature
combination (bottom) - for the first neighbor quality (left), and the SSL results (right).

1-NN quality SSL-results
strategy ETH C-PASCAL AWA ETH C-PASCAL AWA
single feature 96.9 34.6 16.4 89.0 29.5 9.0
single feature + rank 97.6 38.3 23.0 91.3 33.8 16.7
multiple features + rank 98.5 45.5 27.5 94.0 38.0 21.8

Combinations #2 and #3 use multiple graphs. Each graph can either be built
from distance or rank based local structures.

Experiments. For the C-PASCAL and AWA datasets, we combine all descrip-
tors and the 3 best performing ones. Due to space constraints, Tab. 4 only shows
the SSL results2, for L1 and for the 2 most promising strategies from the previous
section, namely non-symmetric and symmetric graphs, on rank local structures.
Each combination setting is considered for the 3 different combination strategies.
Transductive accuracy is presented together with the gain in comparison to the
best single feature within the combination.

As a first and expected conclusion, the combination of different features im-
proves the SSL results in all settings. For C-PASCAL, the setting with all fea-
tures improves the best single feature result by 5.3% reaching an accuracy of
38%. Also the AWA dataset benefits by 5.1% when combining all 7 descriptors
reaching 21.8%. Second, there are only small differences between the combination
methods, but combination #3 generally gives the best results.

Summary. If we look back at the different improvements of the local neighbor-
hood structure we proposed in this paper, the absolute gain for each dataset is
summarized in Tab. 5. In particular, SSL results are enhanced from 89% to 94%
for ETH, from 29.5% to 38% for C-PASCAL and in the case of AWA we doubled
the performance from 9% up to 21.8% without any label. This underlines the
assumption that the structure matters more than the SSL algorithm and that
the structure can be improved in an unsupervised manner.

We believe that these encouraging results will be more pronounced for larger
datasets. Compared to Fig. 1, Fig. 3 shows that both i) the ranking structure
strategy and ii) the combination of features benefit more for larger datasets.
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6 Conclusions

This paper explored ways of using the large amount of available image data in
order to overcome inherent problems of supervised approaches. In particular,
we consider methods which rely less on supervised classifiers and more on the
structure of the data itself, namely the unsupervised construction of a local
structure between images and the use of this structure in a SSL framework.

An important conclusion of our study is that the local structure – induced
by the employed image representation, the distance measure and the number of
nearest neighbors considered – matters more than the SSL algorithm. Zhu made
this claim [31] together with the remark that there is only little work on the
structure itself. In that sense, our study contributes to a better understanding
of such structures for the tasks of object recognition and image categorization.

It is worth noting that the results obtained for the NN analysis directly trans-
late into the corresponding performances of SSL algorithms. We indeed observed
that the right set of parameters (image representation, distance measure and
strategy to use it) can literally predict the SSL accuracy. On the more nega-
tive side, the overall performance obtained by the SSL algorithms is far from
being satisfactory. This fits our intuition that unsupervised local structure con-
tains some semantic information, but that the current object representations
are not powerful enough for realistic datasets without supervised learning and
discriminant classifiers.

To overcome these limitations we proposed different directions to improve
the local structure of the dataset without any label and consequently improve
the SSL results. In particular, we showed the benefits of contextual measures,
symmetric relations between images, and feature combinations. Overall, a 12.8%
accuracy improvement was obtained for the realistic AWA dataset without using
any supervision for building the local structure.

As a conclusion, using large image collections and unsupervised local structure
construction in combination with SSL algorithms is a promising direction. A
generic structure can be built independently of the task, and then combined
with different sets of labels. This structure can be improved by considering more
suitable and complementary object and image representations, combining them,
and using the information contained on the image collection topology.
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Abstract. Most of the recent work on image-based object recognition
and 3D reconstruction has focused on improving the underlying algo-
rithms. In this paper we present a method to automatically improve
the quality of the reference database, which, as we will show, also af-
fects recognition and reconstruction performances significantly. Starting
out from a reference database of clustered images we expand small clus-
ters. This is done by exploiting cross-media information, which allows for
crawling of additional images. For large clusters redundant information
is removed by scene analysis. We show how these techniques make object
recognition and 3D reconstruction both more efficient and more precise
- we observed up to 14.8% improvement for the recognition task. Fur-
thermore, the methods are completely data-driven and fully automatic.

Keywords: Image retrieval, image mining, 3D reconstruction.

1 Introduction

Recognition, reconstruction and analysis of 3D scenes are topics with broad cov-
erage in the Computer Vision literature. However, in recent years the enormous
amount of photos shared on the Internet has added a few new twists to these
research problems. On the one hand there is the obvious challenge of scale, on
the other hand there is the benefit that photos shared online usually come with
meta-data in form of (geo-) tags, collateral text, user-information, etc. Besides
the interesting research that can be done with this data, they also open doors
for real-world deployments of computer vision algorithms for consumer applica-
tions, as recent examples from 3D scene browsing [1], or face recognition [2] have
shown.

Consequently, a number of works have started to exploit these cross-media
data in several ways [1, 3–13]. Quack et al . [10] have used a combination of GPS
tags, textual and visual features to identify labeled objects and events in data
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from community photo collections such as Flickr1. Crandall et al . [6] have done
similar experiments, but at even larger scale (up to 10s of millions of photos)
and analyzing temporal movement patterns of photographers in addition to GPS,
textual and visual features. Very recently, with works such as [7], the community
has started to exploit these cross-media data collections from the Web in order
to build applications for auto-annotation.

Also in the 3D reconstruction field there has been a long-lasting interest in
reconstruction the whole world in 3D, and not astonishingly, community photo
collections nowadays serve as a data source for this purpose as well [1, 5, 12].
In spite of the different target applications, all these works have one theme in
common: the underlying data structures are clusters of photos depicting the
same object or scene, accompanied by some cross-modal data, such as (geo-
)tags etc. In this work we are particularly interested in clusters of consumer
photos showing “places”. Places include any geographic location, which is of
interest to people, such as landmark buildings, museums, mountain peaks, etc.
Similar to most works cited above, in a first step we also cluster images in order
to identify relevant places. While attention has recently been directed towards
harvesting larger and larger collections of data, in this paper we want to take a
step back and look at the collected image clusters in more detail. The objective
is to investigate if and how basic knowledge about the 3D scene in combination
with analysis of cross-media data is helpful towards improving the quality of the
database of places as well as the performance of applications building on top of
the database. More precisely, we show how

– cross-media retrieval helps identifying missing information for small clusters.
– scene analysis helps removing redundant data in large clusters.
– those measures affect performance of object recognition and 3D reconstruc-

tion applications relying on the database of image clusters.

In other words, if we take the analogy of a web search engine for hypertext doc-
uments, we focus on the crawling and indexing part of the system. While in the
hypertext retrieval community this topic is well documented, in the Computer
Vision field most work has focussed on the retrieval side of things [14–16]. For
instance, Chum et al . [14] could show how to improve retrieval precision using
query expansion, using an algorithm which operates mainly at retrieval time.

With our improvements on the crawling and indexing stages of the pipeline, we
can indirectly achieve significant improvements in an object recognition setting.
We focus on the object recognition task, since there are clearly defined evaluation
metrics available. In addition our contributions are valuable for unsupervised 3D
reconstruction as well, however, the improvement in this application is in general
less easily quantified, but easily visualized. Most importantly, for both scenarios,
every proposed improvement happens offline and all the processes we show in
this paper are fully automated.

The paper is structured as follows: Section 2 describes our basic methods
for image cluster mining and object recognition. The core of our methods for
1 www.flickr.com

www.flickr.com
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Fig. 1. Geographic quadtree used for image crawling. The example shows the area
around Italy. Note how the density of tiles adapts to the number of photos available,
e.g. densely covering populated areas and with large tiles on the ocean.

automated cross-media cluster analysis and optimization follows in Section 3.
Experiments and analysis of the effects of optimization on retrieval tasks follow
in Section 4. Section 5 concludes the paper.

2 Mining and Recognition of Objects

As discussed in the introduction, harvesting photos from online services for land-
mark mining, recognition or 3D reconstruction has been addressed in a number
of recent works. We build on some of those ideas in order to construct our own
image mining pipeline. We also introduce the object recognition methods, which
we apply on top of the mined data.

2.1 Object Mining

Several ways have been proposed to collect data from online photo collections
in order to solve computer vision tasks. They either start out by querying with
certain keywords such as ”Rome”, ”Venice” [1, 12, 17, 18], or with collecting
geo-tagged photos [6, 10]. For bootstrapping our system we chose the latter
strategy.

In order to harvest photos from Flickr based on their geo-tags, we overlay
several geographic quad-trees over the world and retrieve the number of photos
in each tile. Each of the trees is initialized by a country’s geographic bounding
box coordinates. Recursively this initial area is then subdivided as follows. We
retrieve the number of photos in the current area from the Flickr API. When
the number of photos is higher than a threshold (250 in our implementation),
we split the area into 4 tiles of equal size and repeat the process for each tile.
The recursion stops when the threshold for the number of photos is reached. In
addition, the dimension of the tile in meters also serves as a second stopping
criterion: the process returns when the tile’s extent is less than 200m (on the
smaller side). The outcome of this is shown in Fig. 1. Photos are then downloaded
for all child leaves, and the photo clustering is also distributed based on the
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child leaves of the geographic quadtree. For clustering photos, we then proceed
as proposed in [10] in three steps

1. Match photos pair-wise using local image features (we use SURF [19]).
2. Build a set of image similarity matrices. We create one matrix per geographic

leaf tile. The similarity is the number of inlying matches after RANSAC
filtering of feature matches for each similar image pair.

3. Cluster the photos using single-link hierarchical agglomerative clustering.

For each cluster we keep its photos including their meta data (tags, titles, user
information etc.) for further processing. Very similar to [10] we observed that the
image clusters usually represent one common object, but covered with photos
from various viewpoints and under various lighting conditions etc. Thus, we
think of each cluster representing one particular object and consider the images
of a cluster to form an exemplar based object model.

Qualitatively, we think our crawling method ends-up with very similar data
like [10], but is significantly more efficient ([10] scans the world in evenly dis-
tributed tiles of equal size, in effect querying a lot of empty cells unnecessarily.)
We believe our crawling approach is also beneficial over [6], since we can split
the clustering problem into smaller parts, and the tree based approach is directly
“pulled” towards densely populated areas already while collecting the data. In
contrast, [6] is one huge clustering problem. Finally we crawled a significantly
larger dataset than [7] with our quadtree method (17 million images w.r.t. 4
million), to be able to compare our results in terms of object recognition with
theirs as a baseline, for the remainder of this paper we conduct all our analysis
on the same data (the dataset is available from the authors web-site).

2.2 Object Recognition

Given a query image depicting a landmark, the goal is now to identify and label
this object based on the information aggregated in our reference database of
image clusters. This task is very similar to the one recently posed by Gamme-
ter et al . [7]. (In contrast to image/object retrieval [20–22], where the expected
outcome is a ranked list of similar images or images showing the same object as
the query, sorted by similarity).

Much like the work of [7], at the lowest level, our object recognition system
builds on “standard” visual word based image retrieval. Local image features [19]
are clustered into a visual vocabulary of 1 million visual words using approximate
k-Means (AKM) [21]. An initial top-n list of the n most similar images in the
database in terms of set intersection is efficiently computed using an inverted
file structure. We then use RANSAC to estimate a homography between the
query image and every image in the top-n list. Candidate images for which the
RANSAC estimate yields less inliers than a threshold (13 in our implementation)
are discarded. We then simply let the image with the highest number of inliers
to identify the object in the query image. This is in contrast to [7], where the
images in the filtered top-n list are used to vote for “their” object.
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3 Cross-Media Cluster Analysis

The main object of study for the remainder of this paper are the image clus-
ters mined from the Internet as described in the preceding section. Given our
target applications — object recognition or 3D reconstruction — we can now
analyze and improve the image clusters in several aspects. The first and most
obvious aspect is cluster size. Intuitively, objects which are represented by a
smaller cluster should be more difficult to recognize, since they may lack images
taken from an important viewpoint. Fig. 2(a) shows a (histogram) plot of the
cluster size versus recognition rate. It confirms that recognition tends to be more
successful for larger image clusters. (Detailed results for recognition are given
in Section 4 of this paper.) Further, as illustrated in Figure 2(b), it seems that
the cluster size distribution follows a power law: p(ClusterSize) ∝ 1

ClusterSizeα

with a maximum likelihood estimate of αMLE = 1.41. Such distributions are
extremely heavy tailed, and thus imply several characteristics. For instance, one
should note that it is unreasonable to consider an average cluster size, since the
expectation value diverges for α ≤ 2. Further, from the power law distribution
also follows that the majority of clusters is small, but due to the heavy tail
quite a few clusters are disproportionally large. It stands to reason that these
extremely large clusters carry a large amount of redundant information. Thus,
in the following, we investigate the effect of expanding small clusters with addi-
tional (non geo-tagged) images, and propose strategies for reducing redundant
information contained in very large image clusters.

3.1 Expansion of Small Clusters

Even though an increasing number of digital images shared online contain geo-
tags, owning a GPS-equipped camera is still not standard today. Consequently, a
significant fraction of clusters mined using an approach relying on geo-tags, con-
sists only of a handful of images (Fig. 2(b)). In fact, in our dataset 81% of all clus-
ters contain 10 images or less. For some places this is simply because they are not
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3. Verification

2. Image search
via text query

1. Itemset mining

Mined itemsets:
e

(CMR 0.2% | EST 0.0063%)
EST

stonia (CMR 0.5% | EST 0.04%)
town hall
square town hall estonia (CMR 20% | 1%)

Fig. 3. Cross-media expansion of image clusters: 1) starting out from clusters of images
(clustered by their visual similarity with the help of geo-tags for efficiency), we use
itemset mining to generate text queries from frequent tags. 2) in order to retrieve
additional images thus expanding the image cluster with additional information, 3)
and finish with a verifying matching based on visual similarity. We also show the
Cluster Match Rate (CMR) for each itemset query (see Section 3.2.)

popular enough. Note that with keyword based mining we would not have been
able to find such rare objects in the first place — a list of terms that extensive that
it covers such locations is simply not available. But even for much-visited locations
many images can lack GPS tags, if the location is e.g. inside a building. In order
to enrich such small clusters, we propose to use a cross-media crawling method.
First, text queries are generated using the tags associated with an existing image
cluster. To that end, we follow the approach taken by [10], where text queries are
automatically created from the meta-data of the photos in each cluster. They then
use these queries for crawling Wikipedia articles intended to serve as descriptions
for image clusters. In order to generate the text queries automatically, the authors
propose to use itemset mining [23] to form frequent combinations of tags for each
cluster. We follow the same approach, but query the WWW for images instead
for Wikipedia articles. For the remainder of this paper we call these automatically
generated text queries itemset queries. The itemset queries are used to query com-
mon Google for additional photos. The retrieved images are then matched against
the images inside the cluster, again by estimating a Homography using RANSAC
and SURF [19] features. Matching images are added to the cluster. Match vs. no
match is determined based on an inlier threshold of 15 feature correspondences.
This procedure is illustrated in Fig. 3.

3.2 Efficient Itemset Query Selection

It turns out, that for a surprisingly large amount of clusters additional images
can be retrieved (96% of clusters in our test dataset have been expanded by
at least one image). Furthermore, one should note that as shown in Fig. 2(a)
this procedure is more likely to be successful for larger clusters than for smaller
ones. Obviously, when applying such an automatic query generation approach
for a large amount of data with many clusters, the number of text queries can
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reach a level, where efficiency considerations become crucial. (Each cluster can
generate dozens or even up to hundreds of different itemset queries). Unlike other
resources like bandwidth or storage, the amount of HTTP requests that can be
made to a public service like Google is often limited. Furthermore, results from
search engines are returned aggregated to pages. Each page usually contains
only about 20 images and requires one additional HTTP request to retrieve it.
While the prices of resources like computation power (Moore’s Law), bandwidth
(Nielsen’s Law) and storage (Kryder’s Law) drop exponentially over time, this
most likely does not imply the same exponential increase in the number of queries
that can be made to search engines. (They are already confronted with a rapidly
growing user base.) So, unless one has the resources to crawl the entire Internet
in order to avoid public search engines, it is of great interest to minimize the
number of queries required. However, if an itemset query is not very specific (e.g.
“town hall”, compare Fig. 3), it might lead to the retrieval of a large number of
images, which do not have anything in common with the object in the cluster,
and consequently won’t match to its images. In other words, to be efficient, we
have to find a way to automatically select itemset queries which have a higher
probability of returning relevant images.

As a basic measure for how successful an itemset query is in retrieving ad-
ditional images of the object, we define first the cluster matching rate (CMR).

CMR =
# Matching images
# Retrieved images

(1)

This is a straightforward choice, which records for a given itemset query the
fraction of retrieved images that match to the images in the database cluster.
While CMR is useful to determine the quality of an itemset query once all images
have already been retrieved and matched, an efficient approach should discard
itemset queries with low CMR well before that. This could entail estimating the
CMR, which in turn would require in the order of (1/CMR − 1) images. Thus,
the lower the CMR of an itemset query, the more images we would have to
download before we can reject it. By comparing the improvement in recognition
quality on the test set when considering all queries vs. the improvement when
only accepting queries with a CMR above a given threshold, we find that the
largest improvement comes from queries with a CMR between 0.01 and 0.1.
This is shown in Fig. 7. In other words, we might have to download at least 100
images before we can safely reject any itemset query. We can, however, exploit an
observation made by [10, 24]. The authors used text queries in order to retrieve
Wikipedia articles intended as descriptions for the image clusters. The trick
they came up with, is to verify the retrieval result by matching images from the
articles to the source cluster. They found that itemset queries yielding articles
containing images matching the cluster have a higher probability of yielding
matching images from other sources as well. This could be a crude indicator
to a-priori assess an itemset query’s CMR. In order to test this hypothesis, we
downloaded and indexed a dump of all English Wikipedia articles and their
images. Then, as illustrated in Fig. 4, for any given cluster, we query both
the text index with the itemset queries and the image index with the cluster’s
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Fig. 4. A priori estimation of CMR using a local copy of Wikipedia. An inverted text
index and an image index are queried simultaneously. The result sets are intersected
in order to determine if the text could have yielded any useful images

images. The text index returns ids of Wikipedia articles with words matching
the itemset query, while the image index returns ids of Wikipedia articles with
images matching the cluster images. The two result sets are then intersected.
The ratio of the number in the intersected set and the number of elements in
the set returned by the text index can be taken as a crude estimate of the CMR.
This estimation is shown as EST value in Fig. 3. With this measure at hand, we
are able to discard a significant amount of irrelevant itemset queries early on.

3.3 Reduction of Large Clusters

While small objects that are only modeled by few images in their respective
image clusters are more difficult to recognize, having too much data is not a
blessing either. Unusually large amounts of photos are often collected at popular
tourist destinations such as Notre Dame de Paris, or the Eiffel Tower. Many of
these photos contain redundant information, which in an image retrieval sce-
nario, unnecessarily increase the size of the inverted index. Furthermore, since
our method from Section 3.1 allows for augmenting almost any cluster by an ar-
bitrary amount of images, we desire to find a method that purges the redundant
information, while leaving complementary information untouched. Note that it is
a-priori also unclear what “a good” number of images would be for an arbitrary
cluster, since it strongly depends on the 3D scene structure of the given object.
This is illustrated in Fig. 5. The object on the top left is a free standing struc-
ture which can be photographed from arbitrary viewpoints, so an image cluster
which serves as a model for this object has to contain many images. In contrast,
the example on the bottom left is the extreme case of a painting in a museum,
which can be seen from a small number of viewpoints only, so fewer reference
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Fig. 5. Left column: example of a free-standing 3D object which can be photographed
from many viewpoints (top) vs. one which is visible nearly from only a single viewpoint
(and even only 2-dimensional in this particular case). Right column: example of cluster
reduction. the full single-linked matching graph is shown on the top left. A complete-
linked section which is removed on the top right. Bottom left: images from the removed
complete-link segment. Bottom right: images which stay in the cluster.

images are necessary to “describe” the object. In fact, while 3D scene structure
makes it impossible to generalize to a “good” cluster size, it is at the same time
key to attack the problem of extraordinary cluster size. It turns out, that with
some simple 3D scene analysis we can compact the clusters in both an effec-
tive and scalable manner. Remember, that the image clusters were created using
single-link clustering (Section 2). We now decompose these single-link clusters
into several overlapping complete-link clusters. Note the definition of single-link
and complete-link criteria in hierarchical agglomerative clustering [25]

single-link: dAB = min
i∈A,j∈B

dij complete-link: dAB = max
i∈A,j∈B

dij

where for clusters A and B the indices i, j run over the images in the clusters
and dij is the image distance measure that is proportional to the inverse of the
number of inliers. Complete-link requires that all image pairs in a segment are
fully connected to each other. In our setting this is the case if all image pairs
match to each other, which means that they are all taken from a very similar
viewpoint. This procedure is illustrated in Fig. 5. Then, for every complete-link
cluster with more than 3 nodes, we find the node with the minimum edge-weight-
sum (i.e. the image most similar to all its neighbors) and remove all other nodes.
In essence it is an idea similar to the scene graph in [26], but can here be derived
with standard tools using the already calculated distance matrix.

When we remove these highly similar images from the index we automatically
remove highly redundant information, while guaranteeing that we keep relevant
data. As demonstrated in the experiments in section 4.1 this procedure reduces
the index size for retrieval tasks significantly, without affecting precision.
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4 Experiments and Results

For all our experiments we used the dataset of [7], which can be obtained from
the authors website. The dataset consists of roughly 1 Million images from Flickr
that were clustered into 63′232 objects and a test set of 676 images which are
associated with 170 of the 63′232 objects. The goal is to correctly identify which
object in the database is shown in the images of the test set. The percentage of
images correctly associated with their object serves as an evaluation metric. We
first report evaluation results on overall recognition performance including the
overall effects of cluster expansion and cluster reduction. Finally, we demonstrate
that our additionally mined images can be vital in 3D reconstruction.

4.1 Object Recognition

We compare our object recognition system to the one of [7]. On their benchmark
dataset we achieve similar baseline performance, as shown in Fig. 6. Adhering
to the original evaluation protocol of [7] we consider the percentage of test im-
ages for which the correct object is returned in its top-n candidate list vs. the
toplist size n. This is an upper limit for the recognition rate after geometric
verification. We then applied our cluster expansion and reduction methods to
the image clusters in the benchmark dataset. For each of the 170 clusters in the
testset we generated itemset queries in order to retrieve additional images for
cluster expansion according to the methods described in Section 3.1. We car-
ried out experiments with 3 major image search engines and found that using
Google yielded the best resultsFor every itemset query we retrieve the first 420
images returned by Google to expand our object models. Fig. 6 clearly shows
that expanding clusters substantially improves recognition. However, since we
only expand clusters that are relevant to the test dataset, we created an unfair
situation: the expanded clusters now have a higher probability of randomly oc-
curring in a top-n list. We thus plot the chance level in Fig. 6 (dashed lines) for
each expanded index. The comparison highlights that the observed improvement
is not simply an artifact of an increased chance level.

A summary of the achieved improvements over the baseline is given in Ta-
ble 1. The first two columns show cluster retrieval results with bag of visual
words lookup for finding the correct cluster in the top n ranked results. The
third column shows results for identifying the correct object/cluster on the first
rank, using geometric verification. To that end the top ranked 1000 results after
bag of words lookup were verified by estimating a Homography mapping be-
tween query and retrieved images using RANSAC. For this last task, we achieve
14.8% improvement over [7], when using our cluster expansion method. We also
applied the reduction strategy from Section 3.3 to the baseline index, as well
as to the expanded index. In both cases we find that our strategy for “purg-
ing” unnecessary images does not significantly influence recognition quality as
demonstrated in Fig. 6. However, it reduces the inverted index file size signif-
icantly, as shown in Table 2. One can also observe that the relative reduction
in size is much larger for the expanded index. This is due to the fact, that re-
trieving additional images via itemset queries more often leads to duplicates or
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Table 1. Absolute number of testsets with a correct cluster within the top-100 and
top-1000 list. The last column is the absolute number if test images correctly labeled
after geometric verification of the top-1000 list.

Description top-100 top-1000 top-1
Geo.Ver.

Baseline 63.4% 78.6% 73.52%
Expanded 73.0% 86.1% 78.1%

Table 2. Index size comparison for indices built from the original clusters vs. reduced
clusters

Description Original Reduced
Baseline 1.5GB 1.3GB (−13%)
Expanded 2.1GB 1.5GB (−29%)

near duplicate images compared to images retrieved using GPS queries during
the initial crawling of clusters.

4.2 Efficient Itemset Query Selection

In total 2030 itemset queries were generated for the testset of 170 image clusters.
As mentioned in Section 3.2, on the fly estimation of CMR based on retrieved
images is not beneficial, since at least 100 images have to be retrieved before
an itemset query can be safely discarded. However we can use the estimated
CMR (c.f . Section 3.2) as an indicator if an itemset query is useful or not.
This is demonstrated in Fig. 7. We found that if we do not discard itemset
queries with an estimated CMR above 0.01% we retain about 75% of the original
improvement. For the test dataset only 40% of all queries fulfill this requirement,
however as visible in Fig. 7 these queries alone are responsible for the 75%
improvement in recognition quality.

4.3 3D Reconstruction

So far we focussed on demonstrating the outcome of the proposed cluster ex-
pansion and reduction methods on an object recognition task. As mentioned
earlier, this is due to the easy quantification of the evaluation. However, the
same methods can also be beneficial in a 3D reconstruction scenario. The out-
come of image based 3D reconstruction is highly dependent on the images used
as input. In essence, a large number of high-resolution images taken from a wide
variety of viewpoints is desired.

That a simple keyword search or geographic query yields enough images for a
decent reconstruction of an arbitrary object is far from a given. Such a strategy
in fact only works for a fraction of all landmarks. Even for popular sites, manual
keyword search is not trivial, because it is not feasible to efficiently come up
with so many appropriate keywords. For less famous landmarks, the situation is



Size Does Matter 745

1 10 100 1000

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

Toplist size (k)

%
q
u
e
ri
e
s

w
it
h

a
c
o
rr

e
c
t
c
lu

s
te

r
in

th
e

to
p
-k

-l
is

t

Gammeter et.al. ICCV’09

Expanded

Baseline

Baseline with purging

Chance level

Expanded with purging

Fig. 6. Expanding clusters with additional images from Google significantly improves
top-n score. Reduction of clusters (with “purging” of complete-link segments) does
not affect performance, neither for the baseline nor for previously expanded clusters.
Improvements can not be attributed to chance, as the dashed lines show.

0.1 0.9

65%

67%

69%

71%

73%

discarding queries with CMR < threshold

keeping queries that match validated Wikipedia articles

a
c
c
u

ra
c
y

o
n

to
p

-1
0

0

re
la

ti
v
e

im
p

ro
v
e

m
e

n
t

CMR threshold

25%

50%

75%

100%

0%
0.010.001

Fig. 7. Considering top-100 accuracy, we compare the overall improvement to the base-
line obtained when considering only queries with a CMR above a certain threshold (blue
line). The red line shows what happens if we discard itemset queries if and only if their
CMR is below a certain threshold and their estimated CMR is below 0.01%.

even more dire. Even a keyword search with the precise description of the object
may not yield enough useful images nor would GPS-based retrieval.

In such cases every single image matters, and a couple of additional images
of high quality may dramatically change the outcome of the reconstruction. In
this section, we briefly demonstrate with two examples that our cluster expan-
sion method yields additional images crucial for 3D reconstruction. Using the
publicly available ARC3D [27] reconstruction tool, we compare the 3D recon-
struction of the originally mined image clusters of [7] to the reconstruction based
on our expanded clusters. From a set of uncalibrated images, ARC3D generates
dense, textured depth maps for each image. Input images are uploaded and pro-
cessing is performed remotely on a cluster, so that results can be obtained within
short time. As demonstrated in Fig. 8, additionally mined images clearly help in
reconstructing more complete 3D models.
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reconstruction based on:

original images extended imageset

original images extended imageset

Fig. 8. Unsupervised 3D reconstruction using ARC3D. The first row shows the initial
clusters (red box) and the additional mined images (green box). The second row shows
the 3D reconstruction only using the initial image set. Reconstruction based on the
extended set is shown in the third row. As can be seen, our additionally mined images
clearly make the reconstructed 3D models more complete

5 Conclusion

We have shown a fully automated cross-media method to improve the quality
of reference databases for object recognition. Small image clusters were enriched
with additional information by automatically generating text-queries from image
meta-data. Redundant information was purged from large clusters by a simple
graph based approach. The combination results in better performance and higher
efficiency (in index size) for object recognition tasks on recent benchmark data
for object instance recognition. We have also shown that it is possible to exploit
the wisdom of crowds to a-priori determine if a potential text query may be
useful for retrieving additional images. Finally, while this paper focussed on
object recognition, the cluster expansion method would be also valuable for
unsupervised 3D reconstruction.
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Abstract. We seek to recognize the place depicted in a query image
using a database of “street side” images annotated with geolocation in-
formation. This is a challenging task due to changes in scale, viewpoint
and lighting between the query and the images in the database. One of
the key problems in place recognition is the presence of objects such as
trees or road markings, which frequently occur in the database and hence
cause significant confusion between different places. As the main contri-
bution, we show how to avoid features leading to confusion of particular
places by using geotags attached to database images as a form of supervi-
sion. We develop a method for automatic detection of image-specific and
spatially-localized groups of confusing features, and demonstrate that
suppressing them significantly improves place recognition performance
while reducing the database size. We show the method combines well
with the state of the art bag-of-features model including query expan-
sion, and demonstrate place recognition that generalizes over wide range
of viewpoints and lighting conditions. Results are shown on a geotagged
database of over 17K images of Paris downloaded from Google Street
View.

1 Introduction

Map-based collections of street side imagery, such as Google StreetView [1] or
Microsoft StreetSide [2] open-up the possibility of image-based place recognition.
Given the query image of a particular street or a building facade, the objective is
to find one or more images in the geotagged database depicting the same place.
We define “place” as the 3D structure visible in the query image, rather than
the actual camera location of the query [3]. Images showing (a part of) the same
3D structure may, and often have, very different camera locations, as illustrated
in the middle column of figure 1.

The ability to visually recognize the place depicted in an image has a range of
exciting applications such as: (i) automatic registration of consumer photographs
with maps [4], (ii) transferring place-specific annotations, such as landmark in-
formation, to the query image [5,6], or (iii) finding common structures between
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Fig. 1. Examples of visual place recognition results. Given a query image (top) of an
unknown place, the goal is to find an image from a geotagged database of street side
imagery (bottom), depicting the same place as the query.

images for large scale 3D reconstruction [7]. In addition, it is an important first
step towards estimating the actual query image camera location using structure
from motion techniques [8,9,7].

Place recognition is an extremely challenging task as the query image and im-
ages available in the database might show the same place imaged at a different
scale, from a different viewpoint or under different illumination conditions. An
additional key challenge is the self-similarity of images of different places: the im-
age database may contain objects, such as trees, road markings or window blinds,
which occur at many places and hence are not representative for any particular
place. In turn, such objects significantly confuse the recognition process.

As the main contribution of this work, we develop a method for automatically
detecting such “confusing objects” and demonstrate that removing them from
the database can significantly improve the place recognition performance. To
achieve this, we employ the efficient bag-of-visual-words [10,11] approach with
large vocabularies and fast spatial matching, previously used for object retrieval
in large unstructured image collections [12,13]. However, in contrast to generic
object retrieval, the place recognition database is structured: images depict a
consistent 3D world and are labelled with geolocation information. We take
advantage of this additional information and use the available geotags as a form
of supervision providing us with large amounts of negative training data since
images from far away locations cannot depict the same place. In particular,
we detect, in each database image, spatially localized groups of local invariant
features, which are matched to images far from the geospatial location of the
database image. The result is a segmentation of each image into a “confusing
layer”, represented by groups of spatially localized invariant features occurring
at other places in the database, and a layer discriminating the particular place
from other places in the database. Further, we demonstrate that suppressing such
confusing features significantly improves place recognition performance while
reducing the database size.
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To achieve successful visual place recognition the image database has to be
representative: (i) all places need to be covered and (ii) each place should be
captured under wide range of imaging conditions. For this purpose we combine
two types of visual data: (i) street-side imagery from Google street-view which
has good coverage and provides accurate geo-locations; and (ii) user-generated
imagery from a photo-sharing website Panoramio, which depicts places under
varying imaging conditions (such as different times of the day or different sea-
sons), but is biased towards popular places and its geotags are typically noisy.
We show place recognition results on a challenging database of 17K images of
central Paris automatically downloaded from Google Street View expanded with
8K images from the photo-sharing website Panoramio.

1.1 Related Work

Most previous work on image-based place recognition focused on small scale
settings [14,15,16]. More recently, Cummins and Newman [17] described an
appearance-only simultaneous localization and mapping (SLAM) system, based
on the bag-of-features representation, capturing correlations between different
visual words. They show place recognition results on a dataset of more than
100,000 omni-directional images captured along a 1,000 km route, but do not
attempt to detect or remove confusing features. Schindler et al. [3] proposed an
information theoretic criterion for choosing informative features for each loca-
tion, and build vocabulary trees [18] for location recognition in a database of
30,000 images. However, their approach relies on significant visual overlap be-
tween spatially close-by database images, effectively providing positive “training
data” for each location. In contrast, our method measures only statistics of mis-
matched features and requires only negative training data in the form of highly
ranked mismatched images for a particular location.

Large databases of several millions of geotagged Flickr images were recently
used for coarse-level image localization. Hays and Efros [19] achieve coarse-level
localization on the level of continents and cities using category-level scene match-
ing. Li et al. [6] discover distinct but coarse-level landmarks (such as an entire
city square) as places with high concentration of geotagged Flickr images and
build image-level classifiers to distinguish landmarks from each other. In con-
trast, we address the complementary task of matching particular places in street-
side imagery, use multi-view spatial constraints and require establishing visual
correspondence between the query and the database image.

Community photo-collections (such as Flickr) are now often used in computer
vision tasks with the focus on clustering [20,21,5], 3D modelling [9,7] and summa-
rization [22]. In contrast, we combine images from a community photo-collection
with street-side imagery to improve place recognition performance.

The task of place recognition is similar to object retrieval from large unstruc-
tured image collections [20,23,18,13,24], and we build on this work. However, we
propose to detect and suppress confusing features taking a strong advantage of
the structured nature of the geolocalized street side imagery.
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Finally, the task of confuser detection has some similarities with the task of
feature selection in category-level recognition [25,26,27] and retrieval [28,29,30].
These methods typically learn discriminative features from clean labelled data in
the Caltech-101 like setup. We address the detection and suppression of spatially
localized groups of confusing (rather than discriminative) features in the absence
of positive (matched) training examples, which are not directly available in the
geo-referenced image collection. In addition, we focus on matching particular
places under viewpoint and lighting variations, and in a significant amount of
background clutter.

The reminder of the paper is organized as follows. Section 2 reviews the base-
line place recognition algorithm based on state-of-the-art bag-of-features object
retrieval techniques. In section 3 we describe the proposed method for detection
of spatially localized groups of confusing features and in section 4 we outline
how the detected confusers are avoided in large scale place matching. Finally,
section 5 describes the collected place recognition datasets and experimentally
evaluates the benefits of suppressing confusers.

2 Baseline Place Recognition with Geometric Verification

We have implemented a two-stage place recognition approach based on state-of-
the-art techniques used in large scale image and object retrieval [18,13]. In the
first stage, the goal is to efficiently find a small set of candidate images (50) from
the entire geotagged database, which are likely to depict the correct place. This
is achieved by employing the bag-of-visual-words image representation and fast
matching techniques based on inverted file indexing. In the second verification
stage, the candidate images are re-ranked taking into account the spatial layout
of local quantized image features. In the following we describe our image rep-
resentation and give details of the implementation of the two image matching
stages.

Image representation: We extract SURF [31] features from each image. They
are fast to extract (under one second per image), and we have found them to
perform well for place recognition in comparison with affine invariant features
frequently used for large-scale image retrieval [23,18,13] (experiments not shown
in the paper). The extracted features are then quantized into a vocabulary of
100K visual words. The vocabulary is built from a subset of 2942 images (about
6M features) of the geotagged image database using the approximate k-means
algorithm [32,13]. Note that as opposed to image retrieval, where generic vocab-
ularies trained from a separate training dataset have been recently used [23], in
the context of location recognition a vocabulary can be trained for a particular
set of locations, such as a district in a city.

Initial retrieval of candidate places: Similar to [13], both the query and database
images are represented using tf-idf [33] weighted visual word vectors and the
similarity between the query and each database vector is measured using the
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(a) (b) (c)

Fig. 2. Detection of place-specific confusing regions. (a) Features in each database
image are matched with features of similar images at geospatially far away locations
(illustration of matches to only one image is shown). (b) Confusion score is computed
in a sliding window manner, locally counting the proportion of mismatched features.
Brightness indicates high confusion. (c) An image is segmented into a “confusing layer”
(indicated by red overlay), and a layer (the rest of the image) discriminating the par-
ticular place from other places in the database.

normalized scalar product. The tf-idf weights are estimated from the entire geo-
tagged database. This type of image matching has been shown to perform near
real-time matching in datasets of 1M images [23,18,13]. After this initial retrieval
stage we retain the top 50 images ranked by the similarity score.

Filtering by spatial verification: In the second stage we filter the candidate set
using a test on consistency of spatial layout of local image features. We assume
that the 3D structure visible in the query image and each candidate image can be
approximated by a small number of planes (1-5) and fit multiple homographies
using RANSAC with local optimization [34]. The piecewise planar approximation
has the benefit of increased efficiency and has been shown to perform well for
matching in urban environments [13]. The candidate images are then re-ranked
based on the number of inliers.

Enhancing street-side imagery with additional photographs: In image retrieval
query expansion has been shown to significantly improve retrieval performance
by enhancing the original query using visual words from spatially-verified im-
ages in the database [12]. Here, we perform query expansion using a collection
of images downloaded from a photo-sharing site and details of this data will
be given in section 5. These images are not necessarily geotagged, but might
contain multiple images of the same places captured by different photographers
from different viewpoints or different lighting conditions. The place recognition
algorithm then proceeds in two steps. First the query image is expanded by
matching to the non-geotagged database. Second, the enhanced query image is
used for the place recognition query to the geotagged database. We implement
the “average query expansion” described in [12].

3 Detecting Spatially Localized Groups of Confusing
Features

Locations in city-street image databases contain significant amount of features
on objects like trees or road markings, which are not informative for recognizing
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(a) (b) (c) (d)

Fig. 3. Examples of detected confusing regions which are obtained by finding local
features in original image (a) frequently mismatched to similar images of different
places shown in (b). (c) Detected confusing image regions. (d) Features within the
confusing regions are erased (red) and the rest of features are kept (green). Note that
confusing regions are spatially localized and fairly well correspond to real-world objects,
such as trees, road, bus or a window blind. Note also the different geospatial scale of the
detected “confusing objects”: trees or pavement (top two rows) might appear anywhere
in the world; a particular type of window blinds (3rd row) might be common only in
France; and the shown type of bus (bottom row) might appear only in Paris streets.
Confusing features are also place specific: trees deemed confusing at one place, might
not be detected as confusing at another place, depending on the content of the rest of
the image. Note also that confusion score depends on the number of detected features.
Regions with no features, such as sky, are not detected.

a particular place since they appear frequently throughout the city. This is an
important problem as such features pollute the visual word vectors and can cause
significant confusion between different places. To address this issue we focus in
this section on automatically detecting such regions. To achieve this, we use the
fact that an image of a particular place should not match well to other images
at far away locations. The details of the approach are given next.

Local confusion score: For each database image I, we first find a set {In} of top
n “confusing” images from the geotagged database. This is achieved by retriev-
ing top matching images using fast bag-of-visual-words matching (section 2),
but excluding images at locations closer than dmin meters from the location of
I to ensure that retrieved images do not contain the same scene. A local confusion
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score ρ is then measured over the image I in a sliding window manner on a dense
grid of locations. For a window w at a particular image position we determine
the score as

ρw =
1
n

n∑
k=1

Mk
w

Nw
, (1)

where Mk
w is the number of tentative feature matches between the window w and

the k-th “confusing” image, and Nw is the total number of visual words within
the window w. In other words, the score measures the average number of im-
age matches normalized by the number of detected features in the window. The
score is high if a large proportion of visual words (within the window) matches
to the set of confusing images and is low in areas with relatively small number
of confusing matches. The confusion score can then be used to obtain a segmen-
tation of the image into a layer specific for the particular place (regions with low
confusion score) and a confuser layer (regions with high confusion score). In this
work we opt for a simple threshold based segmentation, however more advanced
segmentation methods respecting image boundaries can be used [35]. The entire
process is illustrated in figure 2. Several examples are shown in figure 3. The
main parameters of the method are the width s of the sliding window and the
threshold t on the confusion score. We set s = 75 pixels, where the windows are
spaced on a 5 pixel grid in the image, and t = 1.5, i.e. a window has to have on
average 1.5 times more matches than detected features to be deemed confusing.
Sensitivity of the place recognition performance to selection of these parameters
is evaluated in section 5.

4 Place Matching with Confuser Suppression

The local confusion score can potentially be used in all stages of the place recog-
nition pipeline, i.e., for vocabulary building, initial retrieval, spatial verification
and query expansion. In the following we investigate suppressing confusers in
the initial retrieval stage.

To understand the effect of confusers on the retrieval similarity score s(q,vi)
between the query q and each database visual word vector vi we can write both
the query and the database vector as x = xp +xc, where xp is place specific and
xc is due to confusers. The retrieval score is measured by the normalized scalar
product (section 2),

s(q,vi) =
q�vi

‖q‖‖vi‖ =
(qp + qc)�(vi

p + vi
c)

‖qp + qc‖‖vi
p + vi

c‖
=

qp
�vi

p + qc
�vi

p + qp
�vi

c + qc
�vi

c

‖qp + qc‖‖vi
p + vi

c‖
.

(2)
If confusers are detected and removed in each database image the terms involving
vi

c vanish. Further, if there are no common features between qc and vi
p, i.e.

confusers in the query image do not intersect with place specific features in the
database, qc

�vi
p = 0. Under these two assumptions, the retrieval score reduces

to
s(q,vi) =

1
‖qp + qc‖

1
‖vi

p‖
(qp

�vi
p) ∝

1
‖vi

p‖
(qp

�vi
p) (3)
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(a) (b) (c)

Fig. 4. Improvement in place recognition based on suppressing confusing features. (a)
The query image. (b) Three top ranked images after initial retrieval and spatial verifi-
cation. (c) The top ranked image after suppressing confusing image regions. Note that
the highly ranked false positive images shown in (b) are suppressed in (c).

For a given query, we are interested only in the ranking of the database images
and not the actual value of the score, hence the query normalization dependent
on qc can be ignored. This is an interesting property as it suggests that if all
confusers are removed from the database, the ranking of database images does
not depend on confusers in the query. In practice, however, the second assump-
tion above, qc

�vi
p = 0, might not be always satisfied, since confusers are specific

to each place, and not necessary global across the whole database. Hence, some
common features between qc and vi

p may remain. Nevertheless, we demonstrate
significant improvements in place recognition (section 5) by suppressing con-
fusers on the database side, i.e. setting vi

c = 0 for all database images and
implicitly exploiting the fact that qc

�vi
p � qp

�vi
p.

Implementation: The local confusion score is pre-computed offline for each image
in the database, and all features with a score greater than a certain threshold
are suppressed. The remaining features are then indexed using visual words.
The initial retrieval, spatial verification and query expansion are performed as
outlined in section 2 but for initial retrieval we remove confusing features from
the geotagged database. The benefits of suppressing confusing features for place
recognition are illustrated in figure 4.

Discussion: Note that the proposed confusion score is different from the tf-idf
weighting [33], typically used in image retrieval [36,18,13,24], which downweights
frequently occurring visual words in the whole database. The tf-idf score is com-
puted independently for each visual word and estimated globally based on the
frequency of occurrence of visual words in the whole database, whereas in our
case the confusion score is estimated for a local window in each image. The local
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(a)

(b)

(c)

Fig. 5. Left: examples of (a) geo-tagged images; (b) test query images; (c) non-
geotagged images. Right: locations of geo-tagged images overlaid on a map of Paris.

confusion score allows removing confusers that are specific to particular images
and avoids excessive pruning of features that are confusing in some but hold
useful information for other images. Moreover, the top-retrieved images from
faraway places, which are used to determine the confusion score, act as place-
specific difficult negative “training” examples. This form of supervision is natu-
rally available for georeferenced imagery, but not in the general image retrieval
setting. This type of negative supervisory signal is also different from the clean
(positive and negative) supervision typically used in feature selection methods
in object category recognition [25,26,27] and retrieval [28,29,30]. In our case,
obtaining verified positive examples would require expensive image matching,
and for many places positive examples are not available due to sparse location
sampling of the image database.

5 Experimental Evaluation

First, we describe image datasets and the performance measure, which will be
used to evaluate the proposed place recognition method. In the following sub-
section, we test the sensitivity to key parameters and present place recognition
results after different stages of the algorithm.

5.1 Image Datasets

Geotagged google street-view images: The geotagged dataset consists of about
17K images automatically downloaded from Google StreetView [1]. We have
downloaded all available images in a district of Paris covering roughly an area
of 1.7 × 0.5 kilometers. The full 360 × 180 panorama available at each distinct
location is represented by 12 perspective images with resolution 936×537 pixels.
Example images are shown in figure 5.1(a) and image locations overlaid on a map
are shown in figure 5.1(right).

Non-geotagged images: Using keyword and location search we have downloaded
about 8K images from the photo-sharing website Panoramio [37]. Images were
downloaded from roughly the same area as covered by the geotagged database.
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The location information on photo-sharing websites is very coarse and noisy and
therefore some images are from other parts of Paris or even different cities. Apart
from choosing which images to download, we do not use the location information
in any stage of our algorithm and treat the images as non-geotagged.

Test set: In addition, a test set of 200 images was randomly sampled from the
non-geotagged image data. These images are set aside as unseen query images
and are not used in any stage of the processing apart from testing. Examples of
query images and non-geotagged images are shown in figure 5.1 (b) and (c).

Performance measures: Given a test query image the goal is to recognize the
place by finding an image from the geotagged database depicting the same place,
i.e., the same 3D structure. We measure the recognition performance by the
number of test images (out of 200 test queries), for which the top-ranked image
from the geotagged database correctly depicts the same place. The ground truth
is obtained manually by inspection of the visual correspondence between the
query and the top retrieved image. The overall performance is then measured by
the percentage of correctly matched test images. As 33 images (out of the 200
randomly sampled queries) do not depict places within the geotagged database,
the perfect score of 100% would be achieved when the remaining 167 images are
correctly matched.

5.2 Performance Evaluation

Parameter settings: We have found that parameter settings of the baseline place
recognition, such as the vocabulary size K (=105), the top m (=50) candidates
for spatial verification or the minimum number of inliers (20) to deem a successful
match work well with confuser suppression and keep them unchanged throughout
the experimental evaluation. For confuser suppression, we set the minimal spatial
distance to obtain confusing images to one fifth of the map (about 370 meters)
and consider the top n = 20 confusing images. In the following, we evaluate
sensitivity of place recognition to the sliding window width, s, and confuser
score threshold, t. We explore two one-dimensional slices of the 2-D parameter
space, by varying s for fixed t = 1.5, figure 6(a)), and varying t for fixed s =
75 pixels, (figure 6(b)). From graph 6(a), we note that a good performance is
obtained for window sizes between 30 and 100 pixels. The window size specially
affects the performance of the initial bag-of-visual-words matching and less so
the results after spatial verification. This may be attributed to a certain level of
spatial consistency implemented by the intermediate-size windows, where groups
of spatially-localized confusing features are removed. However, even removing
individual features (s=1 pixel) enables retrieving many images, initially low-
ranked by the baseline approach, within the top 50 matches so that they are later
correctly re-ranked with spatial verification. Graph 6(b) again shows good place
recognition performance over a wide range of confuser detection thresholds. The
chosen value t = 1.5 represents a good compromise between the database size
and place recognition performance, keeping around 60% of originally detected
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Fig. 6. (a) Place recognition performance for varying confuser sliding window width
s. (b) Place recognition performance (left axis) and percentage of features kept in the
geotagged database (right axis) for varying confuser detection threshold t.

Table 1. Percentage of correctly localized test queries for different place recognition
approaches

Method
% correct % correct

initial retrieval with spatial verification

a. Baseline place recognition 20.96 29.34
b. Query expansion 26.35 41.92
c. Confuser suppression 29.94 37.72
d. Confuser suppression+Query expansion 32.93 47.90

features. However, with a small loss in initial retrieval performance, even a lower
threshold t = 1 can be potentially used.

Overall place recognition performance: In the reminder of this section, we eval-
uate the overall place recognition performance after each stage of the proposed
method. Results are summarized in table 1. It is clear that spatial re-ranking
improves initial bag-of-visual-words matching in all stages of the proposed al-
gorithm. This illustrates that the initial bag-of-visual words matching can be
noisy and does not always return the correct match at the top rank, however,
correct matches can be often found within the top 50 best matches. Both the
query expansion and non-informative feature suppression also significantly im-
prove place recognition performance of the baseline approach. When applied
together, the improvement is even bigger correctly recognizing 47.90% of places
in comparison with only 41.92% using query expansion alone and 37.72% using
confuser suppression alone. This could be attributed to the complementarity of
both methods. The place query expansion improves recall by enhancing the query
using relevant features found in the non-geotagged database, whereas confuser
suppression removes confusing features responsible for many highly ranked false
positives. Overall, the performance with respect to the baseline bag-of-visual-
words method (without spatial re-ranking) is more than doubled from 20.96%
to 47.90% correctly recognized place queries – a significant improvement on the
challenging real-world test set. Examples of correct place recognition results are
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Query Top ranked image Query Top ranked image

Fig. 7. Examples of correct place recognition results. Each image pair shows the query
image (left) and the best match from the geotagged database (right). Note that query
places are recognized despite significant changes in viewpoint (bottom left), lighting
conditions (top left), or presence of large amounts of clutter and occlusion (bottom
right).

Fig. 8. Examples of challenging test query images, which were not found in the geo-
tagged database

shown in figure 7. Examples of non-localized test queries are shown in figure 8.
Many of the non-localized images represent very challenging examples for current
matching methods due to large changes in viewpoint, scale and lighting condi-
tions. It should be also noted that the success of query expansion depends on
the availability of additional photos for a particular place. Places with additional
images have a higher chance to be recognized.

6 Conclusions

We have demonstrated that place recognition performance for challenging real-
world query images can be significantly improved by automatic detection and
suppression of spatially localized groups of confusing non-informative features
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in the geotagged database. Confusing features are found by matching places
spatially far on the map – a negative supervisory signal readily available in geo-
tagged databases. We have also experimentally demonstrated that the method
combines well with the state of the art bag-of-features model and query expan-
sion.

Detection of spatially defined confusing image regions opens up the possibility
of their automatic clustering and category-level analysis (when confusers corre-
spond to trees, pavement or buses), determining their geospatial scale (trees
might appear everywhere, whereas a particular type of buses may not), and rea-
soning about their occurrence in conjunction with location-specific objects (a
tree in front of a house may still be a characteristic feature). Next, we plan to
include such category-level place analysis in the current framework to further
improve the place recognition performance.
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laboratory, ANR-07-BLAN-0331-01, FP7-SPACE-241523 PRoViScout and
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Abstract. In an object recognition scenario with tens of thousands of
categories, even a small number of labels per category leads to a very
large number of total labels required. We propose a simple method of
label sharing between semantically similar categories. We leverage the
WordNet hierarchy to define semantic distance between any two cate-
gories and use this semantic distance to share labels. Our approach can
be used with any classifier. Experimental results on a range of datasets,
upto 80 million images and 75,000 categories in size, show that despite
the simplicity of the approach, it leads to significant improvements in
performance.

1 Introduction

Large image collections on the Internet and elsewhere contain a multitude of
scenes and objects. Recent work in computer vision has explored the problems
of visual search and recognition in this challenging environment. However, all
approaches require some amount of hand-labeled training data in order to build
effective models. Working with large numbers of images creates two challenges:
first, labeling a representative set of images and, second, developing efficient
algorithms that scale to very large databases.

Labeling Internet imagery is challenging in two respects: first, the sheer num-
ber of images means that the labels will only ever cover a small fraction of
images. Recent collaborative labeling efforts such as Peekaboom, LabelMe, Im-
ageNet [2,3,4] have gathered millions of labels at the image and object level.
However this is but a tiny fraction of the estimated 10 billion images on Face-
book, let alone the hundreds of petabytes of video on YouTube. Second, the
diversity of the data means that many thousands of classes will be needed to
give an accurate description of the visual content. Current recognition datasets
use 10’s to 100’s of classes which give a hopelessly coarse quantization of images
into discrete categories. The richness of our visual world is reflected by the enor-
mous number of nouns present in our language: English has around 70,000 that

K. Daniilidis, P. Maragos, N. Paragios (Eds.): ECCV 2010, Part I, LNCS 6311, pp. 762–775, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Fig. 1. Two examples of images from the Tiny Images database [1] being re-ranked by
our approach, according to the probability of belonging to the categories “pony” and
“turboprop” respectively. No training labels were available for either class. However
64,185 images from the total of 80 million were labeled, spread over 386 classes, some
of which are semantically close to the two categories. Using these labels in our semantic
label sharing scheme, we can dramatically improve search quality.

correspond to actual objects [5]. This figure loosely agrees with the 30,000 visual
concepts estimated by psychologists [6]. Furthermore, having a huge number of
classes dilutes the available labels, meaning that, on average, there will be rela-
tively few annotated examples per class (and many classes might not have any
annotated data).

To illustrate the challenge of obtaining high quality labels in the scenario of
many categories, consider the CIFAR-10 dataset constructed by Alex Krizhevsky
and Geoff Hinton [7]. This dataset provides human labels for a subset of the
Tiny Images [1] dataset which was obtained by querying Internet search engines
with over 70,000 search terms. To construct the labels, Krizhevsky and Hinton
chose 10 classes “airplane”, “automobile”, “bird”, “cat”, “deer”, “dog”, “frog”,
“horse”, “ship”, “truck”, and for each class they used the WordNet hierarchy to
construct a set of hyponyms. The labelers were asked to examine all the images
which were found with a search term that is a hyponym of the class. As an
example, some of the hyponyms of ship are “cargo ship”, “ocean liner”, and
“frigate”. The labelers were instructed to reject images which did not belong
to their assigned class. Using this procedure, labels on a total of 386 categories
(hyponyms of the 10 classes listed above) were collected at a cost of thousands
of dollars.

Despite the high cost of obtaining these labels, the 386 categories are of course
a tiny subset of the possible labels in the English language. Consider for exam-
ple the words “pony” and “turboprop” (Fig. 1). Neither of these is considered a
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hyponym of the 10 classes mentioned above. Yet there is obvious information in
the labeled data for “horse” and “airplane” that we would like to use to improve
the search engine results of “pony” and “turboprop”.

In this paper, we provide a very simple method for sharing labels between
categories. Our approach is based on a basic assumption – we expect the clas-
sifier output for a single category to degrade gracefully with semantic distance.
In other words, although horses are not exactly ponies, we expect a classifier
for “pony” to give higher values for “horses” than to “airplanes”. Our scheme,
which we call “Semantic Label Sharing” gives the performance shown in Fig. 1.
Even though we have no labels for “pony” and “turboprop” specifically, we can
significantly improve the performance of search engines by using label sharing.

1.1 Related Work

Various recognition approaches have been applied to Internet data, with the aim
of re-ranking, or refining the output of image search engines. These include: Li
et al. [8], Fergus et al. [9], Berg et al. [10], amongst others. Our approach differs
in two respects: (i) these approaches treat each class independently; (ii) they are
not designed to scale to the billions of images on the web.

Sharing information across classes is a widely explored concept in vision and
learning, and takes many different forms. Some of the first approaches applied
to object recognition are based on neural networks in which sharing is achieved
via the hidden layers which are common across all tasks [11,12]. Error correct-
ing output codes[13] also look at a way of combining multi-class classifiers to
obtain better performance. Another set of approaches tries to transfer informa-
tion from one class to another by regularizing the parameters of the classifiers
across classes. Torralba et al. , Opelt et al. [14,15] demonstrated its power in
sharing useful features between classes within a boosting framework. Other ap-
proaches transfer information across object categories by sharing a common set
of parts [16,17], by sharing transformations across different instances [18,19,20],
or by sharing a set of prototypes [21]. Common to all those approaches is that
the experiments are always performed with relatively few classes. Furthermore,
it is not clear how these techniques would scale to very large databases with
thousands of classes.

Our sharing takes a different form to these approaches, in that we impose
sharing on the class labels themselves, rather than in the features or parameters
of the model. As such, our approach has the advantage that it it is independent
of the choice of the classifier.

2 Semantic Label Sharing

Following [22] we define the semantic distance between two classes using a tree
defined by WordNet1. We use a simple metric that measures the intersection be-
tween the ancestors of two words: the semantic distance Sij between classes i and
1 Wordnet is graph-structured and we convert it into a tree by taking the most common

sense of a word.
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j (which are nodes in the tree) is defined as the number of nodes shared by their
two parent branches, divided by the length of the longest of the two branches,
i.e. Sij = intersect(par(i), par(j))/max(length(par(i)), length(par(j))), where
par(i) is the path from the root node to node i. For instance, the semantic sim-
ilarity between a “felis domesticus” and “tabby cat” is 0.93, while the distance
between “felis domesticus” and a “tractor trailer” is 0.21. We construct a sparse
semantic affinity matrix A = exp(−κ(1 − S)), with κ = 10 for all the exper-
iments in this paper. For the class “airbus”, the nearest semantic classes are:
“airliner” (0.49), “monoplane” (0.24), “dive bomber” (0.24), “twinjet” (0.24),
“jumbo jet” (0.24), and “boat” (0.03). A visualization of A and a closeup are
shown in Fig. 3(a) and (b).

Let us assume we have a total of C classes, hence A will be a C ×C symmet-
ric matrix. We are given L labeled examples in total, distributed over these C
classes. The labels for class c are represented by a binary vector yc of length L
which has values 1 for positive hand-labeled examples and 0 otherwise. Hence
positive examples for class c are regarded as negative labels for all other classes.
Y = {y1, . . . , yC} is an N × C matrix holding the label vectors from all
classes.

We share labels between classes by replacing Y with Y A. This simple opera-
tion has a number of effects:

– Positive examples are copied between classes, weighted according to their
semantic affinity. For example, the label vector for “felis domesticus” previ-
ously had zero values for the images of “tabby cat”, but now these elements
are replaced by the value 0.93.

– However, labels from unrelated classes will only deviate slightly from their
original state of 0 (dependent on the value of κ).

– Negative labeled examples from classes outside the set of C are unaffected
by A (since they are 0 across all rows of Y ).

– Even if each class has only a few labeled examples, the multiplication by A
will effectively pool examples across semantically similar classes, dramati-
cally increasing the number that can be used for training, provided seman-
tically similar classes are present amongst the set of C.

The effect of this operation is illustrated in two examples on toy data, shown
in Fig. 2. These examples show good classifiers can be trained by sharing labels
between classes, given knowledge of the inter-class affinities, even when no labels
are given for the target class. In Fig. 2, there are 9 classes but label data is only
given for 7 classes. In addition to the labels, the system also has access to the
affinities among the 9 classes. This information is enough to build classification
functions for the classes with no labels (Fig. 2(d) and (f)).

From another perspective, our sharing mechanism turns the original classifica-
tion problem into a regression problem: the formerly binary labels in Y become
real-values in Y A. As such we can adapt many types of classifiers to minimize
regression error rather than classification error.
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Fig. 2. Toy data illustrating our sharing mechanism between 9 different classes (a) in
discrete clusters. For 7 of the 9 classes, a few examples are labeled (b). No labels exist
for the classes 3 and 5. (c): Labels re-weighted by affinity to class 3. (Red=high affinity,
Blue=low affinity). (d): This plot shows the semi-supervised learning solution fclass=3

using weighted labels from (c). The value of the function fclass=3 on each sample from
(a) is color coded. Dark red corresponds to the samples more likely to belong to class 3.
(e): Labels re-weighted by affinity to class 5. (d): Solution of semi-supervised learning
solution fclass=5 using weighted labels from (e).
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Fig. 3. Wordnet sub-tree for a subset of 386 classes used in our experiments. The
associated semantic affinity matrix A is shown in (a), along with a closeup of 10
randomly chosen rows and columns in (b).

3 Sharing in Semi-supervised Learning

Semi-supervised learning is an attractive option in settings where very few train-
ing examples exist since the density of the data can be used to regularize the
solution. This can help prevent over-fitting the few training examples and yield
superior solutions. A popular class of semi-supervised algorithms are based on
the graph Laplacian and we use an approach of this type.

We briefly describe semi-supervised learning in a graph setting. In addition
to the L labeled examples (Xl, Yl) = {(x1, y1), ..., (xL, yL)} introduced above,
we have an additional U unlabeled images Xu = {xL+1, ..., xN}, for a total



Semantic Label Sharing for Learning with Many Categories 767

of N images. We form a graph where the vertices are the images X and the
edges are represented by an N × N matrix W . The edge weighting is given
by Wij = exp(−‖xi − xj‖2/2ε2), the visual affinity between images i and j.
Defining D = diag(

∑
j Wij), we define the normalized graph Laplacian to be:

L = I = D−1/2WD−1/2. We use L to measure the smoothness of solutions over
the data points, desiring solutions that agree with the labels but are also smooth
with respect to the graph. In the single class case we want to minimize:

J(f) = fT Lf +
l∑

i=1

λ(fi − yi)2 = fT Lf + (f − y)T Λ(f − y) (1)

where Λ is a diagonal matrix whose diagonal elements are Λii = λ if i is a
labeled point and Λii = 0 for unlabeled points. The solution is given by solving
the N × N linear system (L + Λ)f = Λy.

This system is impractical to solve for large N , thus it is common [23,24,25]
to reduce the dimension of the problem by using the smallest k eigenvectors
of L (which will be the smoothest) U as a basis with coefficients α: f = Uα.
Substituting into Eqn. 1, we find the optimal coefficients α to be the solution of
the following k × k system:

(Σ + UT ΛU)α = UT Λy (2)

where Σ is a diagonal matrix of the smallest k eigenvectors of L. While this
system is easy to solve, the difficulty is computing the eigenvectors an O(N2)
operation.

Fergus et al. [26] introduced an efficient scheme for computing approximate
eigenvectors in O(N) time. This approach proceeds by first computing numerical
approximations to the eigenfunctions (the limit of the eigenvectors as N → ∞).
Then approximations to the eigenvectors are computed via a series of 1D interpo-
lations into the numerical eigenfunctions. The resulting approximate eigenvectors
(and associated eigenvalues) can be used in place of U and Σ in Eqn. 2.

Extending the above formulations to the multi-class scenario is straightfor-
ward. In a multi-class problem, the labels will be held in an N ×C binary matrix
Y , replacing y in Eqn. 2. We then solve for the N × C matrix F using the ap-
proach of Fergus et al. Utilizing the semantic sharing from Section 2 is simple,
with Y being replaced with Y A.

4 Experiments

We evaluate our sharing framework on two tasks: (a) improving the performance
of images returned by Internet search engines; (b) object classification. Note
that the first problem consists of a set of 2-class problems (e.g. sort the pony
images from the non-pony images), while the second problem is a multi-class
classification with many classes.

These tasks are performed on three datasets linked to the Tiny Images database
[1], a diverse and highly variable image collection downloaded from the Internet:
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– CIFAR: This consists of 63,000 images from 126 classes selected2 from the
CIFAR-10 dataset [7], which is a hand-labeled sub-set of the Tiny Images.
These keywords and their semantic relationship to one another are shown in
Fig. 3. For each keyword, we randomly choose a fixed test-set of 75 positive
and 150 negative examples, reflecting the typical signal-to-noise ratio found
in images from Internet search engines. From the remaining images for each
class, we randomly draw a validation set of 25/50 +ve/-ve examples. The
training examples consist of +ve/-ve pairs drawn from the remaining pool
of 100 positive/negative images for each keyword.

– Tiny: The whole Tiny Images dataset, consisting of 79,302,017 images dis-
tributed over 74,569 classes (keywords used to download the images from
the Internet). No human-provided labels are available for this dataset, thus
instead we use the noisy labels from the image search engines. For each class
we assume the first 5 images to be true positive examples. Thus over the
dataset, we have a total of 372,845 (noisy) positive training examples, and
the same number of negative examples (drawn at random). For evaluation,
we can use labeled examples from either the CIFAR or High-res datasets.

– High-res: This is a sub-set of 10,957,654 images from the Tiny Images, for
which the high-resolution original image exists. These images span 53,564
different classes, distributed evenly over all classes within the Tiny Images
dataset. As with the Tiny dataset, we use no hand-labeled examples for
training, instead using the first 5 examples for each class as positive exam-
ples (and 5 negative drawn randomly). For evaluation, we use 5,357 human-
labeled images split into 2,569 and 2,788 positive and negative examples of
each class respectively.

Pre-processing: For all datasets, each image is represented by a single Gist
descriptor. In the case of the Tiny and CIFAR datasets, a 384-D descriptor is
used which is then mapped down to 32 and 64 dimensions using PCA, for Tiny
and CIFAR respectively. For the High-res dataset, a 512-D Gist descriptor is
mapped down to 48-D using PCA.

4.1 Re-ranking Experiments

On the re-ranking task we first use the CIFAR dataset to quantify the effects of
semantic sharing. For each class separately we train a classifier on the training
set (possibly using sharing) and use it to re-rank the 250 test images, measuring
the precision at 15% recall. Unless otherwise stated, the classifier used is the
semi-supervised approach of Fergus et al. [26].

In Fig. 4(left) we explore the effects of semantic sharing, averaging perfor-
mance over all 126 classes. The validation set is used to automatically select
the optimal values of κ and λ. The application of the Wordnet semantic affinity
matrix can be seen to help performance. If the semantic matrix is randomly
permuted (but with the diagonal fixed to be 1), then this is somewhat worse
2 The selected classes were those that had at least 200 positive labels and 300 negative

labels, to enable accurate evaluation.
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Fig. 4. Left: Performance for different sharing strategies with the semi-supervised learn-
ing approach of [26] as the number of training examples is increased, using 126 classes
in the CIFAR dataset. Right: As for (left) but with a nearest neighbor classifier. The
black dashed line indicates chance level performance. When the Wordnet matrix is
used for sharing it gives a clear performance improvement (red) to both methods over
no sharing [26] (green). However, if the semantic matrix does not reflect the similarity
between classes, then it hinders performance (e.g. random (blue) and inverse (magenta)
curves).

than not using sharing. But if the sharing is inverted (by replacing A with 1−A
and setting the diagonal to 1), it clearly hinders performance. The same pattern
of results can be see in Fig. 4(right) for a nearest neighbor classifier. Hence the
semantic matrix must reflect the relationship between classes if it is to be ef-
fective. In Fig. 5 we show examples of the re-ranking, using the semi-supervised
learning scheme in conjunction with the Wordnet affinity matrix.

In Fig. 6(left & middle), we perform a more systematic exploration of the
effects of Wordnet sharing. For these experiments we use fixed values of κ = 5
and λ = 1000. Both the number of classes and number of images are varied, and
the performance recorded with and without the semantic affinity matrix. The
sharing gives a significant performance boost, particularly when few training
examples are available.

The sharing behavior can be used to effectively learn classes for which we have
zero training examples. In Fig. 7, we explore what happens when we allocate 0
training images to one particular class (the left-out class) from the set of 126,
while using 100 training pairs for the remaining 125 classes. When the sharing
matrix is not used, the performance of the left-out class drops significantly,
relative to its performance when training data is available (i.e. the point for
each left-out class falls below the diagonal). But when sharing is used, the drop
in performance is relatively small, with points being spread around the diagonal.

Motivated by Fig. 7, we show in Fig. 1 the approach applied to the Tiny
dataset, using the human-provided labels from the CIFAR dataset. However,
no CIFAR labels exist for the two classes selected (Pony, Turboprop). Instead,
we used the Wordnet matrix to share labels from semantically similar classes for



770 R. Fergus et al.

Airbus
Japanese
Spaniel Ostrich Deer Fire truck Appaloosa

Honey
Eater

In
iti

al
 o

rd
er

O
ut

pu
t o

rd
er

Fig. 5. Test images from 7 keywords drawn from the 126 class CIFAR dataset. The
border of each image indicates its label (used for evaluation purposes only) with respect
to the keyword, green = +ve, red = -ve. The top row shows the initial ranking of the
data, while the bottom row shows the re-ranking of our approach trained on 126 classes
with 100 training pairs/classes.
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Fig. 7. An exploration of the performance with 0 training examples for a single class,
if all the other classes have 100 training pairs. Left: By using the sharing matrix A, we
can obtain a good performance by transferring labels from semantically similar classes.
Right: Without it, the performance drops significantly.
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Fig. 8. Our semantic distance performance metric for two examples “Long pants” and
“China rose”. The other images are labeled with their semantic distance to the two
examples. Distances under 0.2 correspond to visual similar objects.

which labels do exist. The qualitatively good results demonstrated in Fig. 1 can
only be obtained relatively close to the 126 keywords for which we have labels.

This performance gain obtained by Wordnet sharing is quantified in a large-
scale setting in Fig. 6(right) using the High-res dataset. Chance level perfor-
mance corresponds to 2569/(2569+2788) = 48%. Without any sharing, the semi-
supervised scheme (blue) gives a modest performance. But when the Wordnet
sharing is added, there is significant performance boost.

Our final re-ranking experiment applies the semantic sharing scheme to the
whole of the Tiny dataset (with no CIFAR labels used). With 74,569 classes,
many will be very similar visually and our sharing scheme can be expected to
greatly assist performance. In Fig. 11 we show qualitative results for 4 classes.
The semi-supervised algorithm takes around 0.1 seconds to perform each re-
ranking (since the eigenfunctions are precomputed), compared to over 1 minute
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Fig. 10. Comparison of approaches for classification on the High-res dataset. Red: 1
vs all linear SVM; Green: Hierarchical SVM approach of Marszalek and Schmid [27];
Magenta: the semi-supervised scheme of [26]; Blue: [26] with our semantic sharing
scheme; Black: Random chance. Left: Bar chart showing mean semantic distance from
true label on test set. Right: The distribution of distances for each method on the test
set. Our approach has more mass at a distance < 0.2, indicating superior performance.

for the nearest-neighbor classifier. These figures show qualitatively that the semi-
supervised learning scheme with semantic sharing clearly improves search per-
formance over the original ranking and that without the sharing matrix the
performance drops significantly.
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Fig. 11. Sample results of our semantic label sharing scheme on the Tiny dataset (79
million images). 0 hand-labeled training examples were used. Instead, the first 5 im-
ages of each of the 74,569 classes were taken as positive examples. Using these labels,
classifiers were trained for 4 different query classes: “pony”, “rabbiteye blueberry”,
“Napoleon” and “pond lily”. Column 1: the raw image ranking from the Internet
search engine. Column 2: re-ranking using the semi-supervised scheme without seman-
tic sharing. Column 3: re-ranking with semi-supervised scheme and semantic sharing.
Column 4: re-ranking with a nearest-neighbor classifier and semantic sharing. Without
semantic sharing, the classifier only has 5 positive training examples, thus performs
poorly. But with semantic sharing it can leverage the semantically close examples from
the pool of 5*74,569=372,845 positive examples.
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4.2 Classification Experiments

Classification with many classes is extremely challenging. For example, picking
the correct class out of 75,000 is something that even humans typically cannot
do. Hence instead of using standard metrics, we measure how far the predicted
class is from the true class, as given by the semantic distance matrix S. Under
this measure the true class has distance 0, while 1 indicates total dissimilarity.
Fig. 8 illustrates this metric with two example images and a set of samples
varying in distance from them.

We compare our semantic sharing approach in the semi-supervised learning
framework of [26] to two other approaches: (i) linear 1-vs-all SVM; (ii) the hier-
archical SVM approach of Marszalek and Schmid [27]. The latter method uses
the semantic relationships between classes to construct a hierarchy of SVMs. In
implementing this approach, we use the same Wordnet tree structure from which
the semantic distance matrix S is derived. At each edge in the tree, we train a
linear SVM in the manner described in [27]. Note that both our semantic sharing
method and that of Marszalek and Schmid are provided with the same semantic
information. Hence, by comparing the two approaches we can see which makes
more efficient use of the semantic information.

These three approaches are evaluated on the CIFAR and High-res datasets in
Figures 9 and 10 respectively. The latter dataset also shows the semi-supervised
scheme without sharing. The two figures show consistent results that clearly
demonstrate: (i) the addition of semantic information helps – both the H-SVM
and SSL with sharing beat the methods without it; (ii) our sharing framework
is superior to that of Marszalek and Schmid [27].

5 Summary and Future Work

We have introduced a very simple mechanism for sharing training labels between
classes. Our experiments on a variety of datasets demonstrate that it gives signif-
icant benefits in situations where there are many classes, a common occurrence
in large image collections. We have shown how semantic sharing can be com-
bined with simple classifiers to operate on large datasets up to 75,000 classes
and 79 million images. Furthermore, our experiments clearly demonstrate that
our sharing approach outperforms other methods that use semantic information
when constructing the classifier. While the semantic sharing matrix from Word-
net has proven effective, a goal of future work would be to learn it directly from
the data.
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Abstract. We introduce a new descriptor for images which allows the
construction of efficient and compact classifiers with good accuracy on
object category recognition. The descriptor is the output of a large num-
ber of weakly trained object category classifiers on the image. The trained
categories are selected from an ontology of visual concepts, but the in-
tention is not to encode an explicit decomposition of the scene. Rather,
we accept that existing object category classifiers often encode not the
category per se but ancillary image characteristics; and that these ancil-
lary characteristics can combine to represent visual classes unrelated to
the constituent categories’ semantic meanings.

The advantage of this descriptor is that it allows object-category
queries to be made against image databases using efficient classifiers (ef-
ficient at test time) such as linear support vector machines, and allows
these queries to be for novel categories. Even when the representation
is reduced to 200 bytes per image, classification accuracy on object cat-
egory recognition is comparable with the state of the art (36% versus
42%), but at orders of magnitude lower computational cost.

1 Introduction

The accuracy of object category recognition is improving rapidly, particularly
if the goal is to retrieve or label images where the category of interest is the
primary subject of the image. However, existing techniques do not scale well to
searching in large image collections. This paper identifies three requirements for
such scaling, and proposes a new descriptor which satisfies them.

We suggest that interesting large-scale applications must recognize novel
categories. This means that a new category can be presented as a set of train-
ing images, and a classifier learned from these new images can be run efficiently
against the large database. Note that kernel-based classifiers, which represent the
current state of the art, do not satisfy this requirement because the (kernelized)
distance between each database image and (a subset of) the novel training im-
ages must be computed. Without the novel-category requirement, the problem is
trivial—the search results can be precomputed by running the known category
detector on each database image at ingestion time, and storing the results as
inverted files.
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Table 1. Highly weighted classemes. Five classemes with the highest LP-β weights
for the retrieval experiment, for a selection of Caltech 256 categories. Some may appear
to make semantic sense, but it should be emphasized that our goal is simply to create
a useful feature vector, not to assign semantic labels. The somewhat peculiar classeme
labels reflect the ontology used as a source of base categories.

New category Highly weighted classemes 

cowboy-hat helmet sports_ track cake_ pan collectible muffin_ pan 

duck bomber_ plane body_ of_ water swimmer walking straight 

elk figure_ skater bull_ male_ herd_ 
animal cattle gravesite dead_ body 

frisbee watercraft_ surface scsi_ cable alarm_ clock hindu serving_ tray 

trilobite-101 convex_ thing mined_ area cdplayer roasting_ pan western_ hemisphere_ 
person 

wheelbarrow taking_ care_ of_ 
something baggage_ porter canopy_ closure_ open rowing_ shell container_ pressure_ 

barrier 

Large-scale recognition benefits from a compact descriptor for each image,
for example allowing databases to be stored in memory rather than on disk. The
descriptor we propose is 2 orders of magnitude more compact than the state of
the art, at the cost of a small drop in accuracy. In particular, performance of the
state of the art with 15 training examples is comparable to our most compact
descriptor with 30 training examples.

The ideal descriptor also provides good results with simple classifiers, such
as linear SVMs, decision trees, or tf-idf, as these can be implemented to run
efficiently on large databases.

Although a number of systems satisfy these desiderata for object instance
or place recognition [18,9] or for whole scene recognition [26], we argue that
no existing system has addressed these requirements in the context of object
category recognition.

The system we propose is a form of classifier combination, the components of
the proposed descriptor are the outputs of a set of predefined category-specific
classifiers applied to the image. The obvious (but only partially correct) intu-
ition is that a novel category, say duck, will be expressed in terms of the outputs
of base classifiers (which we call “classemes”), describing either objects similar
to ducks, or objects seen in conjunction with ducks. Because these base classi-
fier outputs provide a rich coding of the image, simple classifiers such as linear
SVMs can approach state-of-the art accuracy, satisfying the requirements listed
above. However, the reason this descriptor will work is slightly more subtle. It is
not required or expected that these base categories will provide useful semantic
labels, of the form water, sky, grass, beak. On the contrary, we work on the
assumption that modern category recognizers are essentially quite dumb; so a
swimmer recognizer looks mainly for water texture, and the bomber�plane rec-
ognizer contains some tuning for “C” shapes corresponding to the airplane nose,
and perhaps the “V” shapes at the wing and tail. Even if these recognizers are
perhaps overspecialized for recognition of their nominal category, they can still
provide useful building blocks to the learning algorithm that learns to recognize
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the novel class duck. Table 1 lists some highly-weighted classemes used to de-
scribe an arbitrarily selected subset of the Caltech256 categories. Each row of
the table may be viewed as expressing the category as a weighted sum of build-
ing blocks; however the true building blocks are not the classeme labels that
we can see, but their underlying dumb components, which we cannot. To com-
plete the duck example, it is a combination of body�of�water, bomber�plane,
swimmer, as well as walking and straight. To gain an intuition as to what
these categories actually represent, Figure 1 shows the training sets for the lat-
ter two. Examining the training images, we suggest that walking may represent
“inverted V outdoors” and straight might correspond to “clutter and faces”.

2 Background

Before describing the details of the system, and experimental investigations, we
shall briefly summarize related literature, and discuss how existing systems fit
the requirements.

The closest existing approach is probably image representation via attributes
[5,11]. Here object categories are described by a set of boolean attributes, such
as “has beak”, “no tail”, “near water”. Classifiers for these attributes are built
by acquiring labels using Amazon’s Mechanical Turk. In contrast, we do not
design our attributes to have specific semantic meanings, but expect meaning to
emerge from intersections of properties, and we obtain training data directly from
web image search without human cleanup. Furthermore, prior attribute-based
methods have relied on a “zero-shot” learning approach: instead of learning a
classifier for a novel category from training examples, a user designs the classifier
by listing attributes, limiting such systems to categories for which humans can
easily extract attributes, and increasing the workload on the user even for such
categories.

Our approach is also evocative of Malisiewicz and Efros’s “Recognition by
Association” [14], in which object classes are represented by sets of object in-
stances to which they are associated. In contrast, we represent object classes as
a combination of other object classes to which they are related. This change of
viewpoint allows us to use the powerful classifiers produced by recent advances
in object category recognition.

Because we represent images by a (relatively) low-dimensional feature vector,
our approach is related to dimensionality reduction techniques exemplified by
semantic hashing [20,26]. These data-driven techniques find low-dimensional,
typically nonlinear, projections of a large feature vector representing each image,
such that the low-dimensional vectors are an effective proxy for the original.
These techniques can achieve tremendous compressions of the image (for example
to 64 bits [26]), but are of course correspondingly lossy, and have not been shown
to be able to retain category-level information.

It is also useful to make a comparison to systems which, while less related in
form, represent the state of the art in object category recognition. The assess-
ment is thus in terms of how far the existing systems meet the requirements we
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Fig. 1. Classeme training images. A subset of the training images for two of the
2659 classemes: walking, and straight. The top 150 training images are downloaded
from Bing image search with no filtering or reranking. As discussed in the text, we do
not require classeme categories to have a semantic relationship with the novel class;
but to contain some building blocks useful for classification.
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have set out. In the discussion below, let N be the size of the test set (i.e. the
image database, which may in principle be very large). Let n be the number
of images in the training set, typically in the range 5 − 100 per class. Let d be
the dimensionality of the representation stored for each image. For example, if
a histogram of visual words is stored, d is the minimum of the number of words
detected per image and the vocabulary size. For a GIST descriptor [19], d is of
the order of 1000. For multiple-kernel techniques [6], d might be of the order
of 20, 000. For the system in this paper, d can be as low as 1500, while still
leveraging all the descriptors used in the multiple-kernel technique. Note that
although we shall later be specific about the number of bits per element of d,
this is not required for the current discussion.

Boiman et al. [2] shows one of the most intriguing results on the Caltech 256
benchmark: a nearest-neighbour-like classifier on low-level feature descriptors
produces excellent performance, especially with small training sets. Its training
cost is effectively zero: assemble a bag of descriptors from the supplied training
images (although one might consider building a kd-tree or other spatial data
structure to represent large training sets). However, the test-time algorithm re-
quires that each descriptor in the test image be compared to the bag of descrip-
tors representing the class, which has complexity O(nd). It may be possible to
build a kd-tree for the test set, and reverse the nearest-neighbor lookups, but
the metric is quite asymmetric, so it is not at all clear that this will preserve the
properties of the method.

Gehler and Nowozin [6] represents the state of the art in classification accuracy
on the Caltech 256 benchmarks, using a kernel combination classifier. However,
training this classifier is expensive, and more importantly, test-time evaluation
requires that several kernels be evaluated between each test image and several
images of the training set. Note that these kernels cannot be precomputed, be-
cause in our problem the training set is different for every new query. Therefore
the complexity is again O(nd), but with large d, and a relatively large constant
compared to the nearest-neighbor approach.

Another class of related techniques is the use of classifier combination other
than multiple-kernel approaches. Zehnder et al. [27] build a classifier cascade
which encourages feature sharing, but again requires the set of classes to be
predefined, as is true for Griffin and Perona [7] and Torralba et al. [23]. Heitz et
al. [8] propose to learn a general cascade similar to ours (although with a different
goal), but our approach simplifies training by pre-training the first layer, and
simplifies test by successfully working with simple top-layer classifiers.

3 Method Overview

Our approach is now described precisely, but briefly, with more details supplied in
§4. There are two distinct stages: once-only classeme learning; followed by any
number of object-category-related learning tasks. Note that there are distinct
training sets in each of the two stages.
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3.1 Classeme Learning

A set of C category labels is drawn from an appropriate term list. For each
category c ∈ {1..C}, a set of training images is gathered by issuing a query on
the category label to an image search engine.

A one-versus-all classifier φc is trained for each category. The classifier output
is real-valued, and is such that φc(x) > φc(y) implies that x is more similar to
class c than y is. Given an image x, then, the feature vector (descriptor) used
to represent x is the classeme vector f(x) = [φ1(x), . . . , φC(x)].

Given the classeme vectors for all training images, it may be desired to per-
form some feature selection on the descriptors. We shall assume this has been
done in the sequel, and simply write the classeme vector in terms of a reduced
dimensionality d ≤ C, so f(x) = [φ1(x), . . . , φd(x)]. Where d is not specified it
may be assumed that d = C.

Given the parameters of the φc, the training examples used to create the
classemes may be discarded. We denote by Φ the set of functions {φc}d

c=1, which
encapsulates the output of the classeme learning, and properly we shall write
f(x) = f(x; Φ).

3.2 Using the Classemes

Given Φ, the rest of our approach is conventional. A typical situation might be
that a new object category, or set of categories, is defined by a set of training
images (note again that this is a new set of training images, unrelated to those
used to build Φ). The training images are converted to classeme vectors, and
then any classifier can be trained taking the classeme vectors as input. As we
show in experiments, the features are sufficiently powerful that simple and fast
classifiers applied to the classemes can give accuracies commensurate with much
more expensive classifiers applied to the low-level image features. Useful candi-
date classifiers might be those which make a sparse linear combination of input
features, so that test cost is a small fraction of d per image; or predicate-based
classifiers so that test images with nonzero score can be retrieved rapidly using
inverted files [18,24], achieving test complexity sublinear in N , the size of the
test set.

4 Further Details

Several details are now expanded.

4.1 Selecting Category Labels

The set of category labels used to build the classemes should consist primar-
ily of visual concepts. This will include concrete nouns, but may also include
more abstract concepts such as “person working”. Although we know of no gen-
eral rules for category selection, the category labels should probably be chosen
to be representative of the type of applications in which one plans to use the
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descriptors. As we considered general-category image search as a target appli-
cation domain, we selected concepts from the Large Scale Concept Ontology for
Multimedia (LSCOM) [17]. The LSCOM categories were developed specifically
for multimedia annotation and retrieval, and have been used in the TRECVID
video retrieval series. This ontology includes concepts selected to be useful, ob-
servable and feasible for automatic detection, and as such are likely to form a
good basis for image retrieval and object recognition tasks. We took the LSCOM
CYC ontology dated 2006-06-30 [13], which contains 2832 unique categories. We
removed 97 categories denoting abstract groups of other categories (marked in
angle brackets in [13]), and then removed plural categories that also occurred
as singulars, and some people-related categories which were effectively near-
duplicates, and arrived at C = 2659 categories. Some examples have already
been seen in table 1. We were conservative in removing categories because, as
discussed in the introduction, it is not easy to predict a priori what categories
will be useful.

4.2 Gathering Category Training Data

For each category label, a set of training images was gathered by taking the
top 150 images from the bing.com image search engine. For a general appli-
cation these examples would not need to be manually filtered in any way, but
in order to perform fair comparisons against the Caltech image database, near
duplicates of images in that database were removed by a human-supervised pro-
cess. Conversely, we did not remove overlap between the classeme terms and the
Caltech categories (28 categories overlap, see supplementary data on [25]), as a
general-purpose system can expect to see overlap on a small number of queries.
However, we do include one test (CsvmN, figure 2) which shows no significant
drop in performance by removing these terms.

4.3 Learning Classifiers φc

The learning algorithm used for the φ(·) is the LP-β kernel combiner of Gehler
and Nowozin [6]. They used 39 kernels, but we reduced this to 13 for experi-
mentation. We employed kernels defined in terms of χ2 distance between feature
vectors, i.e. k(x, x′) = exp(−χ2(x, x′)/γ), using the following 13 feature types:

– Kernel 1: Color GIST, d1 = 960. The GIST descriptor [19] is applied to color
images. The images were resized to 32× 32 (aspect ratio is not maintained),
and then orientation histograms were computed on a 4×4 grid. Three scales
were used with the number of orientations per scale being 8, 8, 4.

– Kernels 2-5: Pyramid of Histograms of Oriented Gradients, d2..5 = 1700.
The PHOG descriptor [4] is computed using 20 bins at four spatial pyramid
scales.

– Kernels 6-9: PHOG (2π unwrapped), d6..9 = 3400. These features are ob-
tained by using unoriented gradients quantized into 40 bins at four spatial
pyramid scales.

bing.com
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– Kernels 10-12: Pyramid self-similarity, d10..12 = 6300. The Shechtman and
Irani self-similarity descriptor [21] was computed as described by Bosch [3].
This gives a 30-dimensional descriptor at every 5th pixel. We quantized these
descriptors into 300 clusters using k-means, and a pyramid histogram was
recorded with three spatial pyramid levels.

– Kernel 13: Bag of words. d13 = 5000. SIFT descriptors [12] were computed at
interest points detected with the Hessian-Affine detector [16]. These descrip-
tors were then quantized using a vocabulary of size 5000, and accumulated
in a sparse histogram.

A binary LP-β classifier was trained for each classeme, using a setup following
the one described in section 7 of [6] in terms of kernel functions, kernel param-
eters, values of ν and number of cross validations. The only difference is that
the objective of their equation (4) was modified in order to handle the uneven
training set sizes. We used N+ = 150 images as positive examples, and one image
chosen at random from each of the other training sets as negative examples, so
N− = C − 1. The objective was modified by scaling the positive entries in the
cost vector by (νN+) and the negative entries by (νN−). The cross-validation
yields a per-class validation score which is used for feature selection.

4.4 Feature Selection

We perform some simple dimensionality reduction of the classeme vectors f as
follows. The classemes are sorted in increasing order of cross-validation error.
Given a desired feature dimensionality, d, the reduced classeme vector is then
simply the first d components f(x) = [φ1(x), . . . , φd(x)]. Again in situations
where d is not specified it may be assumed that d = C

4.5 Classeme Quantization

For a practical system, the classeme vectors should not be stored in double
precision, but instead an explicit quantization of the values should be used.
This may be achieved by a simple quantization, or by defining binary “decision
stumps” or predicates. Quantization can be performed either at novel-category
learning time (i.e. on the novel training set) or at classeme-learning time. For
1-bit quantization we just thresholded at 0. For higher numbers, we use the
following “histogram-equalized” quantization. Given a training set of classeme
vectors {fi}n

i=1, write fi = [φik]dk=1. Write the rows of the matrix [f1, . . . , fn]
as rk = [φik]ni=1. To quantize to Q levels, quantization centres ziq are chosen
as follows: r′k = sort(rk), defining a row-sorted matrix φ′

ik. Then make the set
Zk = {φ′


nq/(Q+1)�,k}
Q
q=1, and each value φik is replaced by the closest value in

Zk.

5 Experiments

Given the simplicity of the approach, the first question that naturally arises is
how it compares to the state-of-the-art recognition approaches. Here we compare
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to the LP-β kernel combiner as this is the current front-runner. Note that the
key metric here is performance drop with respect to LP-β with 13 kernels, as
this means that the base features are the same between LP-β and classemes.

As our classifiers introduce an extra step in the recognition pipeline, perfor-
mance might be expected to suffer from a “triangle inequality”: the raw kernel
combiner can optimize kernels on the dLP features directly, while the classeme
classifiers are forced to go via the d classemes. We will show that this does hap-
pen, but to a small enough extent that the classemes remain competitive with
the state of the art, and are much better than the closest “efficient” system.

There are two main experiments. In the first, we wish to assess the repre-
sentational power of classemes with respect to existing methods, so we use the
standard Caltech 256 accuracy measure, with multiclass classifiers trained on all
classes. In the second, we want to test classemes in a framework closer to their
intended use, so we train one-vs-all classifiers on each Caltech class, and then
report precision on ranking a set of images including distractors from the other
classes.

5.1 Experiment 1: Multiclass Classification

To use classemes for multiclass classification, several strategies were implemented:
multiclassSVMs [10],neuralnetworks,decision forests [22] andanearest-neighbour
classifier. Comments on each of these follow. The variable T is the number of train-
ing examples per class. Figures 2 and 3 summarize the results.

Multiclass SVMs were trained using the SVMlight software [10], with regu-
larization parameter λ = 3000, and d = 1500. The regularization parameter was
determined by cross-validation for T = 15, and fixed for all subsequent tests.

Decision trees were trained using a standard information gain criterion. Be-
cause the small training set size limits the tree depth (depth 9 was found by
cross-validation at T = 15), decision forests were found to require large forests
(around 50 trees), and were not included in subsequent testing. Similarly, a
nearest-neighbour classifier was tested and found to give low performance, so it
is not included in these results, but complete results can be seen at [25].

A standard 1-hidden-layer network with tanh nonlinearities and a softmax
over 256 outputs was trained. The number of hidden units ranged between 500
and 1000, chosen on a validation set, and training used an L1 weight decay
regularizer fixed at 0.1 and was stopped early at 40–80 iterations.

For each class, the number of training images was varied, and 25 test images
were used. Performance is quoted as the mean of average accuracy per class as
in [6], and plotted in figure 2. It can be seen that the classeme-based neural net-
work (Cnet) and SVM classifiers (Csvm) beat all but LP-β and NBNN. However
the size of the representation is considerably reduced for classemes compared to
LP-β and NBNN: 2.5K for classemes versus 23K and 128K respectively. Fur-
thermore, the training and test times of our approach are considerably lower
than LP-β: training the multiclass classifier Csvm with 5 examples for each Cal-
tech class takes about 9 minutes on a AMD Opteron Processor 280 2.4GHz while
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Fig. 2. Caltech 256. A number of classifiers are compared on the Caltech 256 dataset.
The key claim is this: on 30 training examples, and using the same underlying features,
Cnet1q1 and Csvm have 36% accuracy, and LPbeta13 has 42% accuracy, but the
classeme-based systems are orders of magnitude faster to train and test.
(Top): Classeme neural net compared to results in the literature: LPbeta [6], NBNN:
Naive Bayes Nearest Neighbor [2]; MKL: Multiple Kernel learning, as implemented
in [6]; EMK: Efficient Match Kernel [1]. In addition we add our implementations of:
LPbeta13 (LP-β on our base features §4.3); GIST: One-vs-all SVM on GIST feature
alone; Cnet: Neural network trained on floating point classeme vector; Cq1net: Neural
network on 1 bit-per-channel (1bpc) classeme vector.
(Bottom): Comparison of classeme-based classifiers. (Except LPbeta13, included for
reference). Csvm: SVM, floating point, d = 1500; CsvmN: SVM, floating point,
Caltech terms removed from training (§4.2); Cq4svm: SVM, input quantized to 4 bits
per channel (bpc), d = 1500; Cq1svm: SVM, input quantized to 1 bit, d = 1500.
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Fig. 3. Accuracy versus compactness of representation on Caltech-256. On both axes,
higher is better. (Note logarithmic y-axis). The lines link performance at 15 and 30
training examples.

the method of [6] requires more than 23 hours on the same machine; predicting
the class of a test example takes 0.18ms with our model and 37ms with LP-β.

Furthermore, when moving from floating point classemes (Csvm) to a quan-
tization of 4 bits per channel (Cq4svm) the change in accuracy is negligible.
Accuracy drops by 1–2 percentage points using a 1 bit per channel neural net-
work (Cq1net, 312 bytes per image), and 1–2 more using a 1bpc SVM (Cq1svm,
d = 1500, 187.5 bytes per image). This storage requirement increases the number
of images that can be stored in an index by a factor of 100 over LP-β, which is
especially significant for RAM-based indices.

Also plotted for reference is the accuracy of GIST as a single feature, being
an important contributor to LP-β’s kernel pool. We note that the GIST vector
at 960 bytes is already much longer than the 187.5 bytes of Cq1svm while being
much less accurate.

5.2 Experiment 2: Retrieval

The retrieval experiment attempts to gain insight into the behaviour of classemes
in a retrieval task. The test database is a concatenation of 25 images from each
Caltech category. A query against the database is specified by a set of training
images taken from one category, and the retrieval task is to order the database
by similarity to the query. Success is measured as precision at 25: the proportion
of the top 25 images which are in the same category as the query set. The
maximum score is 1, obtained if all the matching images are ranked above all
the distractors. For this experiment, we compare classemes with bags of visual
words (BOW), which are a popular model for efficient image retrieval. We use
as BOW features the quantized SIFT descriptors of Kernel 13.
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Fig. 4. Retrieval. Percentage of the top 25 in a 6400-document set which match the
query class. Random performance is 0.4%.

We consider two different retrieval methods. The first method is a linear SVM
learned for each of the Caltech classes using the one-vs-all strategy. We compare
these classifiers to the Rocchio algorithm [15], which is a classic information
retrieval technique for implementing relevance feedback. In order to use this
method we represent each image as a document vector d(x). In the case of the
BOW model, d(x) is the traditional tf-idf-weighted histogram of words. In the
case of classemes instead, we define d(x)i = [φi(x) > 0]·idfi, i.e. d(x) is computed
by multiplying the binarized classemes by their inverted document frequencies.
Given, a set of relevant training images Dr, and a set of non-relevant examples
Dnr, Rocchio’s algorithm computes the document query

q = β
1

|Dr|
∑

xr∈Dr

d(xr) − γ
1

|Dnr|
∑

xnr∈Dnr

d(xnr) (1)

where β and γ are scalar values. The algorithm then retrieves the database
documents having highest cosine similarity with this query. In our experiment,
we set Dr to be the training examples of the class to retrieve, and Dnr to
be the remaining training images. We report results for two different settings:
(β, γ) = (0.75, 0.15), and (β, γ) = (1, 0) corresponding to the case where only
positive feedback is used.

Figure 4 shows that methods using classemes consistently outperform the
algorithms based on traditional BOW features. Furthermore, SVM yields much
better precision than Rocchio’s algorithm when using classemes. Note that these
linear classifiers can be evaluated very efficiently even on large data sets; further-
more, they can also be trained efficiently and thus used in applications requiring
fast query-time learning: for example, the average time required to learn a one-
vs-all SVM using classemes is 674 ms when using 5 training examples from each
Caltech class.
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6 Discussion

We have introduced a new descriptor for images which is intended to be useful for
high-level object recognition. By using the noisy training data from web image
search in a novel way: to train “category-like” classifiers, the descriptor is es-
sentially given access to knowledge about what humans consider “similar” when
they search for images on the web (note that most search engines are considered
to use “click-log” data to rank their image search results, so the results do reflect
human preferences). We have shown that this knowledge is effectively encoded
in the classeme vector, and that this vector, even when quantized to below 200
bytes per image, gives competitive object category recognition performance.

An important question is whether the weakly trained classemes actually do
contain any semantic information. We have emphasized throughout the paper
that this is not the main motivation for their use, and we do so again here. It
may be that one might view the classemes as a form of highly nonlinear random
projection, and it is interesting future work to see if something close to random
splits will yield equivalent performance.

We have focused here on object category recognition as characterized by the
Caltech 256 training data, which we consider adequate for clip-art search, but
which will not be useful for, for example, home photo retrieval, or object indexing
of surveillance footage. It should be straightforward to retrain the classemes on
images such as the PASCAL VOC images, but a sliding-window approach would
probably be required in order to achieve good performance.

Several avenues remain open to improve these results. Our feature selection
from among the 2659 raw features is currently very rudimentary, and it may be
helpful to apply a sparse classifier. The various hashing techniques can immedi-
ately be applied to our descriptor, and might result in considerable reductions
in storage and computational cost.

Additional material including the list of classemes, the retrieved training im-
ages, and precomputed classeme vectors for standard datasets, may be obtained
from [25].
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Abstract. As it has been noted several times in literature, the difficult
part of autocalibration efforts resides in the structural non-linearity of
the search for the plane at infinity. In this paper we present a robust and
versatile autocalibration method based on the enumeration of the inher-
ently bounded space of the intrinsic parameters of two cameras in order
to find the collineation of space that upgrades a given projective recon-
struction to Euclidean. Each sample of the search space (which reduces to
a finite subset of R

2 under mild assumptions) defines a consistent plane
at infinity. This in turn produces a tentative, approximate Euclidean
upgrade of the whole reconstruction which is then scored according to
the expected intrinsic parameters of a Euclidean camera. This approach
has been compared with several other algorithms on both synthetic and
concrete cases, obtaining favourable results.

Keywords: Autocalibration, Self-calibration.

1 Introduction

Autocalibration (a.k.a. self-calibration) has generated a lot of theoretical interest
since its introduction in the seminal paper by Maybank and Faugeras [1]. The
attention spawned by the problem however is inherently practical, since it elim-
inates the need for off-line calibration and enables the use of content acquired
in an uncontrolled environment. Modern computer vision has partly sidestepped
the issue using ancillary information, such as EXIF tags embedded in some im-
age formats. Such data unfortunately is not always guaranteed to be present
or consistent with its medium, and does not extinguish the need for reliable
autocalibration procedures.

Lots of published methods rely on equations involving the dual image of the
absolute quadric (DIAQ), introduced by Triggs in [2]. Earliest approaches for
variable focal lengths were based on linear, weighted systems [3,4], solved directly
or iteratively [5]. Their reliability were improved by more recent algorithms, such
as [6], solving super-linear systems while forcing directly the positive definiteness
of the DIAQ. Such enhancements were necessary because of the structural non-
linearity of the task: for this reason the problem has also been approached using
branch and bound schemes, based either on the Kruppa equations [7], dual linear
autocalibration [8] or the modulus constraint [9].

K. Daniilidis, P. Maragos, N. Paragios (Eds.): ECCV 2010, Part I, LNCS 6311, pp. 790–801, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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The algorithm described in [10] shares with the branch and bound approaches
the guarantee of convergence; the non-linear part, corresponding to the localiza-
tion of the plane at infinity, is solved exhaustively after having used the cheiral
inequalities to compute explicit bounds on its location.

The technique we are about to describe is closely related to the latter: first,
we derive the location of the plane at infinity given two perspective projection
matrices and a guess on their intrinsic parameters, and subsequently use this
procedure to iterate through the space of camera intrinsic parameters looking for
the best collineation that makes the reconstruction Euclidean. The search space
is inherently bounded by the finiteness of the acquisition devices; each sample
and the corresponding plane at infinity define a collineation of space whose
likelihood can be computed evaluating skew, aspect ratio, principal point and
related constraints for each transformed camera. The best solution is eventually
refined via non-linear least squares.

Such approach has several advantages: it’s fast, easy to implement and reliable,
since a reasonable solution can always be found in non-degenerate configurations,
even in extreme cases such as when autocalibrating just two cameras.

2 Method

As customary, we assume being given a projective reconstruction {Pi; Xj} i =
i . . . n; j = 1 . . .m. The purpose of autocalibration is therefore to find the colli-
neation of space H such that

{
PiH ; H−1Xj

}
is a Euclidean reconstruction, i.e.,

it differs from the true one by a similarity.
The set of camera matrices can always be transformed to the following canon-

ical form by post-multiplying each Pi by the matrix [P1; 0 0 0 1]−1:

P1 = [I | 0] Pi = [Qi | qi] . (1)

In this situation, the collineation of space H performing the Euclidean upgrade
has the following structure:

H =
[
K1 0
v� λ

]
(2)

where K1 is the calibration matrix of the first camera, v a vector which deter-
mines the location of the plane at infinity and λ a scalar fixating the overall
scale of the reconstruction.

The technique we are about to describe is based on two stages:

1. Given a guess on the intrinsic parameters of two cameras compute a consis-
tent upgrading collineation. This yields an estimate of all cameras but the
first.

2. Score the intrinsic parameters of these n−1 cameras based on the likelihood
of skew, aspect ratio and principal point.

The space of the intrinsic parameters of the two cameras is enumerated and the
best solution is eventually refined via non-linear least squares.
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2.1 Estimation of the Plane at Infinity

In this section we will show how to compute the plane at infinity given two
perspective projection matrices and their intrinsic parameters. This procedure
is, in a sense, the dual of the second step of the stratified autocalibration [11]
in which the intrinsic parameters are recovered given the plane at infinity. This
problem has been dealt with for the first time in [12] where it has been turned
into a linear least squares system. We shall derive here a closed form solution.

Given two projective cameras

P1 = [I | 0] P2 = [Q2 | q2] (3)

and their intrinsic parameters matrices K1 and K2 respectively, the upgraded,
Euclidean versions of the perspective projection matrices are equal to:

P E

1 = [K1 | 0] � P1H (4)

P E

2 = K2 [R2|t2] � P2H =
[
Q2K1 + q2v�|λq2

]
(5)

with the symbol � meaning “equality up to a scale”. The rotation R2 can there-
fore be equated to the following:

R2 � K−1
2

(
Q2K1 + q2v�)

= K−1
2 Q2K1 + t2v� (6)

in which it is expressed as the sum of a 3 by 3 matrix and a rank 1 term.
Using the constraints on orthogonality between rows or columns of a rotation

matrix, one can solve for v finding the value that makes the right hand side of (6)
equal up to a scale to a rotation. The solution can be obtained in closed form by
noting that there always exists a rotation matrix R∗ such as: R∗t2 = [‖t2‖ 0 0]� .
Left multiplying it to (6) yields:

R∗R2 �
W︷ ︸︸ ︷

R∗ K−1
2 Q2K1 + [‖t2‖ 0 0]� v� (7)

Calling the right hand side first term W and its rows w�
i , we arrive at the

following:

R∗ R2 =

⎡
⎣w1

� + ‖t2‖v�

w2
�

w3
�

⎤
⎦ /‖w3‖ (8)

in which the last two rows are independent from the value of v and the correct
scale has been recovered normalizing to unit norm each side of the equation.

Since the rows of the right hand side form a orthonormal basis, we can recover
the first one taking the cross product of the other two. Vector v is therefore equal
to:

v = (w2 × w3/‖w3‖ − w1) /‖t2‖ (9)

The upgrading collineation H can be computed using (2); the term λ can be
arbitrarily chosen, as it will just influence the overall scale of the reconstruction.
Its sign however will affect the cheirality of the reconstruction, so it must be
chosen positive if cheirality was previously adjusted.
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2.2 Estimation of the Intrinsic Parameters

In the preceding section we showed how to compute the location of the plane at
infinity given the calibration parameters of two of the cameras of the projective
reconstruction to upgrade. When these calibration parameters are known only
approximately, we are not guaranteed anymore that the right hand side of (8)
will be a rotation matrix because w2 and w3 will not be mutually orthogonal, nor
have equal, unit norm. However, (9) will still yield the value of v that makes the
right hand side of (8) closest to a rotation in Frobenius norm. Hence, the derived
upgrading collineation H will produce an approximate Euclidean reconstruction.

The autocalibration algorithm we propose consists in enumerating through all
possible matrices of intrinsics of two cameras K1 and K2 checking whether the
entire resulting reconstruction has the desired properties in terms of K2 . . . Kn.
The process is well-defined, since the search space is naturally bounded by the
finiteness of the acquisition devices.

In order to sample the space of calibration parameters we can safely assume,
as customary, null skew and unit aspect ratio: this leaves the focal length and the
principal point location as free parameters. However, as expected, the value of
the plane at infinity is in general far more sensitive to errors in the estimation of
focal length values rather than the image center. Thus, we can iterate just over
focal lengths f1 and f2 assuming the principal point to be centered on the image;
the error introduced with this approximation is normally well-within the radius
of convergence of the subsequent non-linear optimization. The search space is
therefore reduced to a bounded region of R2.

To score each sampled point (f1, f2), we consider the aspect ratio, skew and
principal point location of the resulting transformed camera matrices and aggre-
gate their respective value into a single cost function:

{f1, f2} = arg min
f1,f2

n∑
�=2

C2(K�) (10)

where K� is the intrinsic parameters matrix of the 
-th camera after the Eu-
clidean upgrade determined by (f1, f2), and

C(K) =

skew︷ ︸︸ ︷
wsk|k1,2|+

aspect ratio︷ ︸︸ ︷
war|k1,1 − k2,2|+

principal point︷ ︸︸ ︷
wuo |k1,3| + wvo |k2,3| (11)

where ki,j denotes the entry (i, j) of K and w are suitable weights, computed as
in [4]. The first term of (11) takes into account the skew, which is expected to be
0, the second one penalizes cameras with aspect ratio different from 1 and the
last two weigh down cameras where the principal point is away from the image
centre. If a sufficient (according to the autocalibration “counting argument” [13])
number of cameras is available, the terms related to the principal point can be
dropped, thereby leaving it free to move.

As an example, Fig. 1 shows the aggregated cost for a ten camera synthetic
dataset, obtained with the aforementioned method. More in detail, Fig. 2 depicts
the profiles of each of the term of (11) for two sample cameras. As it can be seen,
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Fig. 1. A ten camera synthetic reconstruction and the resulting aggregated cost func-
tion. An asterisk marks the correct solution.

the cost profiles have very clear valleys and collectively concur to identify the
correct solution, displayed in the graphs as an asterisk.

Even the aggregate cost from just a single camera can still identify a unam-
biguous minima. This situation is equivalent to the task of identifying the focal
lengths of two cameras from their fundamental matrix. This problem, studied
extensively in [12,14,15], was demonstrated to be essentially ill-conditioned. Our
approach is stabler since it structurally requires the solution to be in a valid
region of the parameter space. The solution clearly improves as more and more
cameras are added.

Finally, the solution selected is refined by non-linear minimization; since it is
usually very close to a minima, just a few iterations of a Levemberg-Marquardt
solver are necessary for convergence. The employed cost function is the same
reported in (10).

aspect ratio skew u0 v0 aggregated
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Fig. 2. Cost functions. The two rows refer to cost functions relative to different
cameras of a same dataset. From left to right, are shown the profiles of aspect ratio,
skew, principal point u0 and v0 coordinates and their aggregated value as function of
the focal lengths of the reference cameras. Cooler colors correspond to lower values of
the cost function. A asterisk marks the correct solution.
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Algorithm 1. Autocalibration pseudo-code

input : a set of PPMs P and their viewports V
output: their upgraded, euclidean counterparts

1 foreach P do P ← V −1P/‖P3,1:3‖ /* normalization */

2 foreach K1, K2 do /* iterate over focal pairs */

3 compute Π∞
4 build H from (2)
5 foreach P do /* compute cost profiles */

6 PE ← PH
7 K ← intrinsics of PE

8 compute C(K) from (11)

9 end

10 end

11 aggregate cost and select minimum
12 refine non-linearly

13 foreach P do P ← V PH /* de-normalization, upgrade */

The entire procedure is presented as pseudo-code in Algorithm 1. With the
perspective projection matrices the code presented takes as input also the view-
port matrices of the cameras, defined as:

V =
1
2

⎡
⎣
√

w2 + h2 0 w

0
√

w2 + h2 h
0 0 2

⎤
⎦ (12)

where w and h are respectively the width and height of each image. This piece
of data is used inside the algorithm to normalize camera matrices. While this is
not mandatory, we recommend it to improve the numerical conditioning of the
algorithm.

The algorithm shows remarkable convergence properties; it has been observed
to fail only when the sampling of the focal space was not sufficiently dense (in
practice, less than twenty focals in each direction), and therefore all the tested
infinity planes were not close enough to the correct one. Such problems are easy
to detect, since they usually bring the final, refined solution outside the legal
search space.

3 Experimental Evaluation

We report here several tests on synthetic and concrete datasets. For the experi-
ments, unless otherwise specified, we sampled the focal space using 50 logarith-
mically spaced divisions in the range [0.3 . . . 3]. Please note that, being cameras
normalized, a focal length of 1 unit correspond to the length of the image diag-
onal in pixels.
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3.1 Synthetic Tests

For this series of tests, we generated several synthetic reconstructions with
twenty cameras looking at the unit sphere. Each camera was chosen having dif-
ferent parameters except for skew, which was set equal to zero for all perspective
projection matrices. The other characteristics were selected by a random process
inside the valid parameter space. The virtual viewport size for each camera was
[1024, 768] units, leading to focal lengths and principal points coordinates of com-
parable magnitude. We built projectively equivalent reconstructions multiplying
the Euclidean frame for a random collineation.

Sampling rate. The top two graphs of Fig. 3 shows the relationship between
the number divisions used in the focal search phase and the error of the resulting
autocalibration for focal length and skew respectively, averaged over 100 trials.
The focal length error has the form:

ε =
1
n

n∑
�=1

Δf (13)

where Δf is defined in equation 14. The error function used for skew has a
similar formulation.

For too low rates of sampling, corresponding to the left side of the diagram,
the chance of picking a solution close to the correct one is very low. Most of the
time the subsequent minimization outputs parameters outside the valid range,
generally converging towards the trivial null focal solution. As soon as the focal
lengths are sampled with a sufficient degree of accuracy, the residual of the recov-
ered solution becomes and stay low. When this happens, the proposed solution
is usually very near to the correct one, and the following non-linear minimization
has no problem to converge to the correct, best calibration parameters.

The total elapsed time follows a quadratic law, as expected. At the far right
of the diagram, corresponding to fifty divisions for each focal, the total time
spent (search plus refinement) is roughly 3 seconds, implemented as a MATLAB

script. The omitted graphs for aspect ratio and principal point location show
equivalent behaviour.

Number of cameras. In this section we verify the stability of the algorithm
as the number of cameras varies from two to twenty. For uniformity all reported
results were obtained with the full cost function described in (11), even for exper-
iments which, having a sufficient number of cameras, could use fewer constraints.
Results reported in the middle graphs of Fig. 3 are averaged over 100 runs of
the algorithm. As shown, the algorithm is able to converge to the correct cal-
ibration parameters for all but the two-cameras setup, in which it trades focal
length accuracy for a lower magnitude of skew. The resulting solution is still very
close to the ground truth. From three cameras onwards the method successfully
disambiguates the uncertainty.
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Fig. 3. Synthetic tests. Median autocalibration error ε as a function of: the number
of sampling divisions (top), the number of cameras (middle), the standard deviation
of noise for both focal length (left) and skew (right).

Noise resilience. Our final synthetic test verifies the resilience to noise; several
reconstructions were built from the ground truth perturbing the point projec-
tions with Gaussian noise and recovering each camera by DLT based resection
[16]. The bottom plots of Fig. 3 shows the dependency of the error ε on the
standard deviation of the added noise. Again, the results were averaged over 100
runs of the algorithm. As it can be seen the method is fairly stable, degrading
quite gracefully as the standard deviation of noise increases.

Again, omitted graphs for aspect ratio and principal point location behave
similarly.

3.2 Comparative Tests

We compare our approach to a classical, linear technique based on the DIAQ
constraints and a recent stratified method based on least squares minimization
of the modulus constraint embedded in a branch and bound framework.

The first algorithm is our implementation of the iterative dual linear auto-
calibration algorithm described in [5], modified to use the weights of [4] and to
enforce at every iteration the positive (negative) semi-definitess of the DIAQ. As
explained in [17], the closest semi-definite approximation of a matrix in Frobe-
nius norm can be obtained, assuming a single offending value, zeroing the eigen-
value with sign different from the others. This can be easily done during the
rank 3 approximation step of the original algorithm. Several informal tests, not
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Table 1. Comparison of results obtained on the dataset from [6]

Algorithm Cameras Δf Success rate Time
5 5.4012e-2 57% 0.39

Dual linear 10 2.6522e-3 84 % 0.45
20 1.5433e-3 90 % 0.78
5 2.7420e-2 63 % 0.41

DL + QA upgrade 10 1.8943e-3 83 % 0.43
20 1.1295e-3 92 % 0.68
5 9.9611e-3 100 % 584.12

Chandraker et al [9] 10 4.7925e-3 100 % 560.56
20 1.0461e-3 100 % 602.32
5 2.7546e-3 100 % 0.35

Our method 10 1.3005e-3 100 % 0.72
20 8.2266e-4 100 % 1.62

reported here, demonstrated this algorithm to have better convergence proper-
ties of both its parents [5,4]. We report also the results obtained by this method
when coupled with the preliminary quasi-affine upgrade step detailed in [18].

The second method we compare to is the algorithm described in [9], a strat-
ified autocalibration approach based on a branch and bound framework using
convex relaxations minimizations. We tested the implementation of the authors
(available from http://vision.ucsd.edu/stratum/), coupled with the SeDuMi [19]
library version 1.1R3 which was used in the original article (the latest version
1.21 is not compatible with the code) under MATLAB R2009a.

The synthetic test dataset, the same used in [9], is composed of twenty pro-
jective cameras and points, with known ground truth and Gaussian noise of
standard deviation σ added to image coordinates. We report results obtained
by our and the aforementioned methods over a hundred trials in the case of
σ = 0.1% using the same metric defined in the original article:

Δf =
∣∣∣∣ fx + fy

fGT
x + fGT

y

− 1
∣∣∣∣ (14)

where fx and fy are the focal entries of the calibration matrix and fGT
x and fGT

y

the respective ground truth values. Results are reported in Tab. 1. The linear
algorithm, which we pick as baseline case, achieves good results in terms of Δf
but shows poor convergence properties, especially for lower number of cameras.
Similar numerical results are unsurprisingly obtained coupling the method with
the quasi-affine upgrade of [18], with slightly higher percentages of success. Both
the algorithm described in [9] and our method never failed on this dataset, with
a slight numerical advantage of our proposal.

3.3 Real World Example

We finally tested our algorithm on two real reconstructions, Pozzoveggiani and
Duomo, composed respectively of 52 and 333 cameras (data available from
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Table 2. Comparison of results obtained on real reconstructions

Algorithm Pozzoveggiani Duomo
Δf Succ. rate Δf Succ. rate

Dual linear 3.0815e-2 19 % 9.3255e-2 8 %
DL + QA upgrade 8.9261e-3 22 % 7.6403e-2 13 %
Our method 3.9733e-3 100 % 2.9293e-3 100 %

Fig. 4. Pozzoveggiani (left) and Duomo (right) reconstruction after the upgrade found
by our method

http://profs.sci.univr.it/˜fusiello/demo/samantha/). These reconstructions, re-
fined through bundle adjustment, have relatively low noise levels and were used
as ground truth for the subsequent tests. Again, a total of a hundred trials were
conducted for each set, multiplying the projective reconstructions for a random
collineation while discarding the ones with very low condition number. In our
method we also picked at random the reference views to be used for the estima-
tion of the plane at infinity.

Results are reported in Tab. 2. With respect to the synthetic case, we can
note a substantial decrease of the success rate of both linear algorithms which
was instead expected to increase with the number of cameras. An informal audit
of the code showed the effect to be caused both by noise and by the larger
number of iterations required for convergence, which in turn increase the chance
of encountering a failure case.

Algorithm [9] is missing from Tab. 2 because we were not able to obtain valid
solutions on these data, even by varying the tolerance ε and the maximal number
of iterations for both the affine and metric upgrade steps.

Our approach achieves on both datasets flawless success rate. Instances of the
upgraded reconstructions can be qualitatively evaluated in Fig. 4.
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4 Conclusions

We presented a practical autocalibration algorithm showing results comparable
to the state of the art. Our approach is fast, easy to implement and shows
remarkable convergence properties.

Future research will be aimed at developing sub-linear search strategies in the
space of calibration parameters, which is made possible by the structure of the
cost profiles.
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