

IFIP Advances in Information
and Communication Technology 337

Editor-in-Chief

A. Joe Turner, Seneca, SC, USA

Editorial Board

Foundations of Computer Science
Mike Hinchey, Lero, Limerick, Ireland

Software: Theory and Practice
Bertrand Meyer, ETH Zurich, Switzerland

Education
Bernard Cornu, CNED-EIFAD, Poitiers, France

Information Technology Applications
Ronald Waxman, EDA Standards Consulting, Beachwood, OH, USA

Communication Systems
Guy Leduc, Université de Liège, Belgium

System Modeling and Optimization
Jacques Henry, Université de Bordeaux, France

Information Systems
Barbara Pernici, Politecnico di Milano, Italy

Relationship between Computers and Society
Chrisanthi Avgerou, London School of Economics, UK

Computer Systems Technology
Paolo Prinetto, Politecnico di Torino, Italy

Security and Privacy Protection in Information Processing Systems
Kai Rannenberg, Goethe University Frankfurt, Germany

Artificial Intelligence
Max A. Bramer, University of Portsmouth, UK

Human-Computer Interaction
Annelise Mark Pejtersen, Center of Cognitive Systems Engineering, Denmark

Entertainment Computing
Ryohei Nakatsu, National University of Singapore

IFIP – The International Federation for Information Processing

IFIP was founded in 1960 under the auspices of UNESCO, following the First
World Computer Congress held in Paris the previous year. An umbrella organi-
zation for societies working in information processing, IFIP’s aim is two-fold:
to support information processing within its member countries and to encourage
technology transfer to developing nations. As its mission statement clearly states,

IFIP’s mission is to be the leading, truly international, apolitical
organization which encourages and assists in the development, ex-
ploitation and application of information technology for the benefit
of all people.

IFIP is a non-profitmaking organization, run almost solely by 2500 volunteers. It
operates through a number of technical committees, which organize events and
publications. IFIP’s events range from an international congress to local seminars,
but the most important are:

• The IFIP World Computer Congress, held every second year;
• Open conferences;
• Working conferences.

The flagship event is the IFIP World Computer Congress, at which both invited
and contributed papers are presented. Contributed papers are rigorously refereed
and the rejection rate is high.

As with the Congress, participation in the open conferences is open to all and
papers may be invited or submitted. Again, submitted papers are stringently ref-
ereed.

The working conferences are structured differently. They are usually run by a
working group and attendance is small and by invitation only. Their purpose is
to create an atmosphere conducive to innovation and development. Refereeing is
less rigorous and papers are subjected to extensive group discussion.

Publications arising from IFIP events vary. The papers presented at the IFIP
World Computer Congress and at open conferences are published as conference
proceedings, while the results of the working conferences are often published as
collections of selected and edited papers.

Any national society whose primary activity is in information may apply to be-
come a full member of IFIP, although full membership is restricted to one society
per country. Full members are entitled to vote at the annual General Assembly,
National societies preferring a less committed involvement may apply for asso-
ciate or corresponding membership. Associate members enjoy the same benefits
as full members, but without voting rights. Corresponding members are not rep-
resented in IFIP bodies. Affiliated membership is open to non-national societies,
and individual and honorary membership schemes are also offered.

Kam-Pui Chow Sujeet Shenoi (Eds.)

Advances in
Digital Forensics VI

Sixth IFIP WG 11.9 International Conference
on Digital Forensics
Hong Kong, China, January 4-6, 2010
Revised Selected Papers

13

Volume Editors

Kam-Pui Chow
University of Hong Kong, Department of Computer Science
Hong Kong, China
E-mail: chow@cs.hku.hk

Sujeet Shenoi
University of Tulsa, Department of Computer Science
Tulsa, OK 74104, USA
E-mail: sujeet@utulsa.edu

Library of Congress Control Number: 2010934317

CR Subject Classification (1998): H.3, C.2, K.6.5, D.4.6, F.2, E.3

ISSN 1868-4238
ISBN-10 3-642-15505-7 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-15505-5 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© International Federation for Information Processing 2010
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper 219/3180

Contents

Contributing Authors ix

Preface xvii

PART I THEMES AND ISSUES

1

A History of Digital Forensics 3

Mark Pollitt

2

Toward a Science of Digital Forensic Evidence Examination 17

Fred Cohen

3

Using a Local Search Warrant to Acquire Evidence Stored Overseas
via the Internet

37

Kenny Wang

4

An Analysis of the Green Dam Youth Escort Software 49

Frankie Li, Hilton Chan, Kam-Pui Chow and Pierre Lai

PART II FORENSIC TECHNIQUES

5

Forensic Analysis of a PlayStation 3 Console 65

Scott Conrad, Greg Dorn and Philip Craiger

6

A Consistency Study of the Windows Registry 77

Yuandong Zhu, Joshua James and Pavel Gladyshev

vi ADVANCES IN DIGITAL FORENSICS VI

7

Forensic Tracking and Mobility Prediction in Vehicular Networks 91

Saif Al-Kuwari and Stephen Wolthusen

8

A Forensic Readiness Model for Wireless Networks 107

Sipho Ngobeni, Hein Venter and Ivan Burke

PART III INTERNET CRIME INVESTIGATIONS

9

Evaluation of Evidence in Internet Auction Fraud Investigations 121

Michael Kwan, Richard Overill, Kam-Pui Chow, Jantje Silomon,

Hayson Tse, Frank Law and Pierre Lai

10

Detecting Ponzi and Pyramid Business Schemes in Choreographed
Web Services

133

Murat Gunestas, Murad Mehmet and Duminda Wijesekera

11

Identifying First Seeders in Foxy Peer-to-Peer Networks 151

Ricci Ieong, Pierre Lai, Kam-Pui Chow, Michael Kwan and Frank Law

PART IV LIVE FORENSICS

12

Uncertainty in Live Forensics 171

Antonio Savoldi, Paolo Gubian and Isao Echizen

13

Identifying Volatile Data from Multiple Memory Dumps in Live
Forensics

185

Frank Law, Patrick Chan, Siu-Ming Yiu, Benjamin Tang, Pierre Lai,

Kam-Pui Chow, Ricci Ieong, Michael Kwan, Wing-Kai Hon and Lucas

Hui

14

A Compiled Memory Analysis Tool 195

James Okolica and Gilbert Peterson

Contents vii

PART V ADVANCED FORENSIC TECHNIQUES

15

Data Fingerprinting with Similarity Digests 207

Vassil Roussev

16

Refining Evidence Containers for Provenance and Accurate Data
Representation

227

Bradley Schatz and Michael Cohen

17

Virtual Expansion of Rainbow Tables 243

Vrizlynn Thing

18

Digital Watermarking of Virtual Machine Images 257

Kumiko Tadano, Masahiro Kawato, Ryo Furukawa, Fumio Machida and

Yoshiharu Maeno

19

A Visualization System for Analyzing Information Leakage 269

Yuki Nakayama, Seiji Shibaguchi and Kenichi Okada

PART VI FORENSIC TOOLS

20

Forensic Analysis of Popular Chinese Internet Applications 285

Ying Yang, Kam-Pui Chow, Lucas Hui, Chunxiao Wang, Lijuan Chen,

Zhenya Chen and Jenny Chen

21

Data Recovery Function Testing for Digital Forensic Tools 297

Yinghua Guo and Jill Slay

Contributing Authors

Saif Al-Kuwari is a Ph.D. student in Mathematics with the Informa-
tion Security Group at Royal Holloway, University of London, London,
United Kingdom. His research interests are in the area of digital foren-
sics, particularly clandestine localization and tracking in MANET and
VANET environments.

Ivan Burke is an M.Sc. student in Computer Science at the University
of Pretoria, Pretoria, South Africa; and a Researcher with the Coun-
cil for Scientific and Industrial Research, Pretoria, South Africa. His
research interests include wireless networks and agent-based modeling.

Hilton Chan is an Adjunct Assistant Professor of Information Systems,
Business Statistics and Operations Management at the Hong Kong Uni-
versity of Science and Technology, Hong Kong, China. His research
interests include cyber crime investigations, digital forensics, incident
response and crisis management.

Patrick Chan is an M.Phil. student in Computer Science at the Uni-
versity of Hong Kong, Hong Kong, China. His research interests include
web security, applied cryptography and network security.

Jenny Chen is a Research Engineer with the Center for Information
Security and Cryptography at the University of Hong Kong, Hong Kong,
China. Her research interests include digital forensics and peer-to-peer
networks.

Lijuan Chen is an Associate Researcher at the Shandong Computer
Science Center, Jinan, China. Her research interests include information
security, digital forensics and database systems.

x ADVANCES IN DIGITAL FORENSICS VI

Zhenya Chen is an Associate Researcher at the Shandong Computer
Science Center, Jinan, China. Her research interests include digital
forensics and grid computing.

Kam-Pui Chow is an Associate Professor of Computer Science at the
University of Hong Kong, Hong Kong, China. His research interests
include information security, digital forensics, live system forensics and
digital surveillance.

Fred Cohen is the Chief Executive Officer of Fred Cohen and Asso-
ciates; and the President of California Sciences Institute, Livermore,
California. His research interests include digital forensics, information
assurance and critical infrastructure protection.

Michael Cohen is a Data Specialist with the Australian Federal Police
in Brisbane, Australia. His research interests include network forensics,
memory forensic analysis, large-scale forensic frameworks and the AFF4
forensic file format.

Scott Conrad is a Senior Digital Forensics Research Assistant at the
National Center for Forensic Science, University of Central Florida, Or-
lando, Florida. His research interests include personal gaming/enter-
tainment devices and virtualization technologies.

Philip Craiger is an Associate Professor of Engineering Technology
at Daytona State College, Daytona Beach, Florida; and the Assistant
Director for Digital Evidence at the National Center for Forensic Science,
University of Central Florida, Orlando, Florida. His research interests
include the technical and behavioral aspects of information security and
digital forensics.

Greg Dorn is a Senior Digital Forensics Research Assistant at the Na-
tional Center for Forensic Science, University of Central Florida, Or-
lando, Florida. His research interests include virtualization technologies
and personal gaming/entertainment devices.

Isao Echizen is an Associate Professor of Computer Science at the
National Institute of Informatics, Tokyo, Japan. His research interests
include media security, information processing and information hiding.

Contributing Authors xi

Ryo Furukawa is a Researcher at NEC Corporation, Tokyo, Japan.
His research interests include access control, privacy management and
optimization.

Pavel Gladyshev is a Lecturer of Computer Science and Informatics
at University College Dublin, Dublin, Ireland. His research interests
include information security and digital forensics.

Paolo Gubian is an Associate Professor of Electrical Engineering at
the University of Brescia, Brescia, Italy. His research areas include inte-
grated circuit design, digital forensics and embedded systems security.

Murat Gunestas is a Police Major with the General Directorate of
Security in Ankara, Turkey. His research interests include web services
security, computer and network forensics, and software engineering.

Yinghua Guo is a Postdoctoral Research Fellow at the School of Com-
puter and Information Science, University of South Australia, Adelaide,
Australia. His research interests include digital forensics, information
assurance, network security, intrusion detection systems and wireless
networking.

Wing-Kai Hon is an Assistant Professor of Computer Science at Na-
tional Tsing Hua University, Hsinchu, Taiwan. His research interests
include data compression, design and analysis of algorithms, and com-
binatorial optimization.

Lucas Hui is an Associate Professor of Computer Science at the Uni-
versity of Hong Kong, Hong Kong, China. His research interests include
computer security, cryptography and digital forensics.

Ricci Ieong is a Ph.D. student in Computer Science at the University
of Hong Kong, Hong Kong, China. His research interests include digital
forensics, peer-to-peer forensics and time correlation analysis.

Joshua James is a Ph.D. student in Computer Science and Informatics
at University College Dublin, Dublin, Ireland. His research interests in-
clude cyber crime investigation process models and standards, evidence
correlation techniques, human inference and event reconstruction.

xii ADVANCES IN DIGITAL FORENSICS VI

Masahiro Kawato is anAssistantManager atNECCorporation, Tokyo,
Japan. His research interests include distributed computing, enterprise
systems security and privacy management.

Michael Kwan is a Ph.D. student in Computer Science at the Univer-
sity of Hong Kong, Hong Kong, China. His research interests include
digital forensics, digital evidence evaluation and the application of prob-
abilistic models in digital forensics.

Pierre Lai is a Ph.D. student in Computer Science at the University of
Hong Kong, Hong Kong, China. Her research interests include cryptog-
raphy, peer-to-peer networks and digital forensics.

Frank Law is a Ph.D. student in Computer Science at the University
of Hong Kong, Hong Kong, China. His research interests include digital
forensics and time analysis.

Frankie Li is an M.Sc. student in Electronic Commerce and Internet
Computing at the University of Hong Kong, Hong Kong, China. His
research interests include digital forensics and malware analysis.

Fumio Machida is an Assistant Manager at NEC Corporation, Tokyo,
Japan. His research interests include dependable computing, autonomic
computing and systems management.

Yoshiharu Maeno is a Principal Researcher at NEC Corporation,
Tokyo, Japan. His research interests include the analysis and control
of complex distributed systems for communications and computing.

Murad Mehmet is a Ph.D. student in Information Technology at
George Mason University, Fairfax, Virginia. His research interests in-
clude network security, digital forensics and web services security.

Yuki Nakayama is an M.S. student in Computer Science at Keio Uni-
versity, Kanagawa, Japan. His research interests include network secu-
rity and digital forensics.

Contributing Authors xiii

Sipho Ngobeni is an M.Sc. student in Computer Science at the Uni-
versity of Pretoria, Pretoria, South Africa; and a Researcher with the
Council for Scientific and Industrial Research, Pretoria, South Africa.
His research interests include network security, digital forensics and in-
formation security.

Kenichi Okada is a Professor of Information and Computer Science
at Keio University, Kanagawa, Japan. His research interests include
computer-supported cooperative work, groupware, human-computer in-
teraction and ubiquitous computing.

James Okolica is a Ph.D. student in Computer Science at the Air
Force Institute of Technology, Wright-Patterson Air Force Base, Ohio.
His research interests include text mining and memory forensics.

Richard Overill is a Senior Lecturer in Computer Science at King’s
College London, London, United Kingdom. His research interests in-
clude digital forensics, cyber crime analysis, anomaly detection, cyber
warfare and information security management.

Gilbert Peterson is an Associate Professor of Computer Science at
the Air Force Institute of Technology, Wright-Patterson Air Force Base,
Ohio. His research interests include digital forensics, steganography and
machine learning.

Mark Pollitt, Chair, IFIP Working Group 11.9 on Digital Forensics,
is an Associate Professor of Engineering Technology at Daytona State
College, Daytona Beach, Florida; and a principal with the National Cen-
ter for Forensic Science, University of Central Florida, Orlando, Florida.
His research interests include forensic processes, knowledge management,
information security and forensic quality management.

Vassil Roussev is an Assistant Professor of Computer Science at the
University of New Orleans, New Orleans, Louisiana. His research inter-
ests are in the area of large-scale digital forensics, particularly perfor-
mance, scalability, automated sampling and triage, and visual analytics
support.

xiv ADVANCES IN DIGITAL FORENSICS VI

Antonio Savoldi is an Associate Researcher in the Department of In-
formation Engineering at the University of Brescia, Brescia, Italy. His
research interests include digital forensics, embedded systems security
and counter-forensic methodologies.

Bradley Schatz is the Director of Schatz Forensic, a digital forensics
consultancy; and an Adjunct Associate Professor at the Information
Security Institute, Queensland University of Technology, Brisbane, Aus-
tralia. His research interests include volatile memory acquisition, scaling
storage forensics and the development of the new AFF4 forensic evidence
container.

Seiji Shibaguchi is a Software Developer with Nintendo in Kyoto,
Japan. His research interests include network security and digital foren-
sics.

Jantje Silomon is a Research Associate in the Department of Computer
Science, King’s College London, London, United Kingdom. Her research
interests are in the area of digital forensics.

Jill Slay is the Dean of Research and a Professor of Forensic Computing
at the University of South Australia, Adelaide, Australia. Her research
interests include information assurance, digital forensics, critical infras-
tructure protection and complex system modeling.

Kumiko Tadano is a Researcher at NEC Corporation, Tokyo, Japan.
Her research interests include dependable computing, systems manage-
ment and enterprise systems security.

Benjamin Tang is an undergraduate student in Computer Science at
the University of Hong Kong, Hong Kong, China. His research interests
include digital forensics.

Vrizlynn Thing leads the Digital Forensics Research Group at the In-
stitute for Infocomm Research, Singapore. Her research interests include
digital forensics, network security, intrusion detection and mitigation,
networking protocols and optical fiber communications.

Contributing Authors xv

Hayson Tse is a Ph.D. student in Computer Science at the University
of Hong Kong, Hong Kong, China. His research interests are in the area
of digital forensics.

Hein Venter is an Associate Professor of Computer Science at the
University of Pretoria, Pretoria, South Africa. His research interests
include network security, digital forensics and information privacy.

Chunxiao Wang is an Associate Researcher at the Shandong Computer
Science Center, Jinan, China. Her research interests include cryptogra-
phy, digital forensics and software engineering.

Kenny Wang is a Ph.D. candidate in Law at the University of Hong
Kong, Hong Kong, China. His research interests include digital evidence,
cyber crime and legal jurisdiction.

Duminda Wijesekera is an Associate Professor of Information and
Software Engineering at George Mason University, Fairfax, Virginia. His
research interests include information, network, telecommunications and
control systems security.

Stephen Wolthusen is a Professor of Information Security at the
Norwegian Information Security Laboratory, Gjovik University College,
Gjovik, Norway; and a Reader in Mathematics at Royal Holloway, Uni-
versity of London, London, United Kingdom. His research interests
include the modeling and simulation of critical infrastructures, and net-
work and distributed systems security.

Ying Yang is an Associate Professor of Information Security at the
Shandong Computer Science Center, Jinan, China. Her research inter-
ests include computer security, digital forensics and software systems.

Siu-Ming Yiu is an Assistant Professor of Computer Science at the Uni-
versity of Hong Kong, Hong Kong, China. His research interests include
bioinformatics, computer security, cryptography and digital forensics.

Yuandong Zhu is a Ph.D. student in Computer Science and Informatics
at University College Dublin, Dublin, Ireland. His research interests
include user activity analysis and forensic tool development.

Preface

Digital forensics deals with the acquisition, preservation, examination,
analysis and presentation of electronic evidence. Networked computing,
wireless communications and portable electronic devices have expanded
the role of digital forensics beyond traditional computer crime investiga-
tions. Practically every type of crime now involves some aspect of digital
evidence; digital forensics provides the techniques and tools to articu-
late this evidence in legal proceedings. Digital forensics also has myriad
intelligence applications; furthermore, it has a vital role in information
assurance – investigations of security breaches yield valuable information
that can be used to design more secure and resilient systems.

This book, Advances in Digital Forensics VI, is the sixth volume in the
annual series produced by IFIP Working Group 11.9 on Digital Foren-
sics, an international community of scientists, engineers and practition-
ers dedicated to advancing the state of the art of research and practice
in digital forensics. The book presents original research results and in-
novative applications in digital forensics. Also, it highlights some of the
major technical and legal issues related to digital evidence and electronic
crime investigations.

This volume contains twenty-one edited papers from the Sixth IFIP
WG 11.9 International Conference on Digital Forensics, held at the
University of Hong Kong, Hong Kong, January 4–6, 2010. The pa-
pers were refereed by members of IFIP Working Group 11.9 and other
internationally-recognized experts in digital forensics.

The chapters are organized into six sections: themes and issues, foren-
sic techniques, Internet crime investigations, live forensics, advanced
forensic techniques and forensic tools. The coverage of topics highlights
the richness and vitality of the discipline, and offers promising avenues
for future research in digital forensics.

This book is the result of the combined efforts of several individuals.
In particular, we thank Daniel Guernsey, Pierre Lai and Catherine Chan
for their tireless work on behalf of IFIP Working Group 11.9. We also ac-
knowledge the support provided by the University of Hong Kong, Hong

xviii ADVANCES IN DIGITAL FORENSICS VI

Kong Police Force, Hong Kong Forensic Science Foundation, National
Security Agency, Immigration and Customs Enforcement, and U.S. Se-
cret Service.

KAM-PUI CHOW AND SUJEET SHENOI

I

THEMES AND ISSUES

Chapter 1

A HISTORY OF DIGITAL FORENSICS

Mark Pollitt

Abstract The field of digital forensics is relatively new. While its history may be
chronologically short, it is complex. This paper outlines the early his-
tory of digital forensics from the perspective of an early participant. The
history is divided into four epochs: pre-history, infancy, childhood and
adolescence. Each of these epochs is examined from the perspective of
the people involved, the criminal targets, the forensic tools utilized, the
organizational structures that supported digital forensic practitioners
and how the community formed. This history is, by necessity, incom-
plete and biased. There is a need for rigorous historical research in this
area before all traces of the past are forgotten or obliterated.

Keywords: Digital forensics, history

1. Introduction

One of the important rules in public speaking is to never begin with
an apology. I have often broken this rule when delivering speeches and
will do so again in this paper. My audience for this paper will be –
for the most part – scientists, who expect well-documented foundations,
reliable data and rigorous logic. Hence, my apology: there is little, if
any, of these things in this paper.

It would be tempting to frame this exploration as historical research.
And while I have done some research, which is duly referenced, this
is fundamentally a personal history, which I have lived since the early
1980s. I am biased and less than fully informed; I have an unreliable
memory and selective recall. Those of us who worked in this field from
the beginning gave little thought to documenting a history. We were
just trying to do our jobs.

So why should anyone read this paper? There are several reasons.
For those who currently work in digital forensics and the students who

K.-P. Chow, S. Shenoi (Eds.): Advances in Digital ForensicsVI, IFIPAICT 337, pp. 3–15, 2010.
c© IFIP International Federation for Information Processing 2010

4 ADVANCES IN DIGITAL FORENSICS VI

are just entering the field, it is important to understand how we got
here. During my tenure as a criminal investigator, one of my wisest
informants insisted on teaching me the history of Baltimore, its ways
and its people. He said, very correctly, that if I did not understand how
people got where they did, I would not understand what they were doing
now, what they might do in the future and why.

To those of us who have an interest in history, especially related to
cyber crime and digital forensics, this paper is merely a starting point
with many gaps that have to be filled. In some small measure, I hope
this paper will serve as motivation to correct and expand the history as
well as begin a dialog about the field, its past and its future. We must
not delay – digital forensics is almost three decades old and many of the
original players are moving on.

2. Epochs and Lenses

Even the simplest history has to have at least three phases: before,
during and after. It may be called something more prosaic, but there
is an inherent need for logical structure, even in something as illogical
as history. For this story, I have chosen to use the notion of “epochs.”
It is, of course, entirely arbitrary on my part but it has both factual
and logical bases. The epochs are: pre-history, infancy, childhood and
adolescence.

Like traditional history, it is useful to explore a time period using a
particular perspective. These are often called “lenses,” as a metaphorical
attempt to focus both the writer and the reader on specific elements
of the historical data. In reviewing the history of digital forensics, I
realized that there were some critical elements that combined to create
the discipline. In my view these are: people, targets, tools, organizations
and the community as a whole. I make no assertions that they constitute
the totality of the history, but they are key vectors that help capture
the essential elements of the history.

Modern electronic computers evolved during the second half of the
1900s. The History of Computing Project defines 1947 as the beginning
of the Industrial Era of Computing [18] and we are still in the midst
of this era. So much has happened in computing since 1947 that it is
helpful to break it down into manageable chunks. In particular, digital
forensics – or forensic computing as some like to call it – has a shorter
history. As a result, I choose to make some further arbitrary divisions
based on events that were significant to the digital forensic community.

Pollitt 5

3. Pre-History

The first epoch, which I label as pre-history, covers the period prior
to 1985. It is not surprising that this is the least documented epoch
because much of what happened was not focused on digital forensics. In
fact, the term simply did not exist. From the 1960s until the early 1980s,
computers were primarily an industrial appliance, owned and operated
by corporations, universities, research centers and government agencies.
They required a large physical infrastructure, including massive amounts
of power and air conditioning, and highly skilled, dedicated staff. Their
function was largely data processing. It is in this role that computers first
became of interest to the information security, legal and law enforcement
communities.

Donn Parker’s 1976 book, Crime by Computer, is perhaps the first
description of the use of digital information to investigate and prosecute
crimes committed with the assistance of a computer. System adminis-
trators were, for the most part, responsible for the security of their own
systems, most of which were not significantly networked to the outside
world. System audits were designed to ensure the efficiency and accuracy
of data processing, which was very expensive at the time. In effect, these
audits constituted the first systematic approach to computer security. A
byproduct of these efforts was that information collected during audits
could be used to investigate wrongdoing [12]. This was not totally lost
on the law enforcement community.

Organizations such as the Department of Defense, Internal Revenue
Service (IRS) and Federal Bureau of Investigation (FBI) created ad hoc
groups of volunteer law enforcement agents, who were provided with
rudimentary mainframe and mini-computer training. These computer-
trained investigators would assist other case investigators in obtaining
information (primarily) from mainframe computers – stored data and
access logs. Usually, the computer-trained investigators would work in
cooperation with systems administrators.

Cliff Stoll’s 1990 book, The Cuckoo’s Egg [16], captures the practice
and the ethos of early digital forensics. It also highlights the reluctance
of government agencies to engage in this new area. It was difficult for
traditional managers and investigators to grasp the potential of com-
puters to be both tools and victims of crime. Stoll, then a Unix sys-
tems administrator, was attempting to reconcile two system accounting
programs that were reporting a small difference in usage. After much
investigation, he realized that hackers were accessing a large number of
computers, including some sensitive systems. Using system administra-
tion tools and considerable experimentation, he developed, on his own

6 ADVANCES IN DIGITAL FORENSICS VI

initiative, a method for recording the hackers’ malicious activities in real
time.

Ad hoc and individual are the defining characteristics of the first
epoch. There were virtually no dedicated organizations, procedures,
training or tools specifically designed for digital forensics. Operating
system tools and utilities were utilized along with traditional scientific
and investigative problem-solving approaches.

4. Infancy (1985-1995)

The advent of the IBM PC in the early 1980s resulted in an explo-
sion of computer hobbyists. The PCs, while powerful, had relatively few
applications and were not, despite the advertising copy, user-friendly.
Many of these hobbyists had previously worked with Commodore 64s,
Radio Shack TRS-80s and Ataris. These early computers enabled hob-
byists to write program code and access the internals of the operating
systems and hardware. These skills were channeled to the new IBM PCs
and PC-compatible computers.

Among the hobbyists were law enforcement personnel from a wide va-
riety of organizations. Some of the key individuals were Mike Anderson,
Danny Mares and Andy Fried from the IRS; Ron Peters and Jack Lewis
from the U.S. Secret Service; Jim Christy and Karen Matthews from
the Department of Defense; Tom Seipert, Roland Lascola and Sandy
Mapstone from local U.S. law enforcement agencies; and the Canadians,
Gord Hama and Steve Choy. Many of them became charter members
of the first organization (to my knowledge) dedicated to digital foren-
sics – the International Association of Computer Investigative Specialists
(IACIS).

There were many other individuals as well. What they all shared was
an understanding that computers would play a critical role in criminal
investigations and, specifically, that computers are important sources
of evidence. All these individuals believed this to the extent that they
spent much of their own time and money to learn about new computing
technologies. Their agencies were not supportive of their efforts, but we
owe these individuals a debt of gratitude for the personal and financial
investments that they made. Without their inspired and timely efforts,
much of what we do today in the discipline of digital forensics would not
be possible.

The early efforts were by no means limited to North America. Law en-
forcement officials in Europe, Asia and Oceania were struggling with the
same problems and making the same personal commitment to prepare
themselves and their organizations for the future that they knew was

Pollitt 7

coming. In 1993, the FBI hosted the First International Conference on
Computer Evidence at the FBI Academy in Quantico, Virginia, which
was attended by representatives from 26 countries. At this conference, it
was agreed that the community needed to band together at the agency
level to coordinate efforts, share experience and provide assistance to
each other. In 1995, the second conference was held in Baltimore and the
International Organization on Computer Evidence (IOCE) was founded
[21].

The cases investigated by these pioneers were very basic by today’s
standards. Much of the focus was on recovering data from standalone
computers. Data recovery was a major issue because storage was costly
and users routinely deleted data and re-formatted media. The Internet
was not yet popular, but criminals were using dial-up access to compro-
mise computers.

The use of inexpensive computers to hack the telephone system was
a new dimension of fraud. Telephone service was billed by distance
and use. Criminals and adolescents found that by hacking telephone
networks they could obtain “free” telephone service as well as previously
unavailable levels of anonymity [6].

The subjects of computer crime investigations were generally tradi-
tional criminals who used computers to support their activities or young
people who used their technical skills to illegally obtain computer access
and software. While IBM PCs and PC-compatible computers running
DOS and early Windows variants were the most commonly encountered
devices, early Apple products as well as Commodore and Atari comput-
ers were often encountered.

The tools used by the pioneering investigators included home-grown,
command line tools and commercial products adapted to forensic use.
Andy Fried’s IRS Utilities, Steve Mare’s Maresware, Steve Choy’s IACIS
Utilities and Gord Hama’s RCMP Utilities were all command line tools
that were distributed within the law enforcement community. Each of
these tools tended to solve a specific digital forensic problem, such as
imaging or identifying deleted files. Some of the later variants, like
Hama’s REDX, allowed for multiple operations and rudimentary piping.
Norton Utilities and PC Tools, both commercial products designed for
data recovery and file management, proved to be very powerful tools for
digital forensics and virtually all the forensic training during the epoch
utilized one or both of these tools. Another noteworthy product of this
period was SafeBack, which was created by Chuck Guzis in 1991 to
acquire forensic images of evidence. SafeBack may well have been the
first commercial digital forensic product.

8 ADVANCES IN DIGITAL FORENSICS VI

During this epoch, digital forensic practitioners conducted their ex-
aminations wherever they could find space. Often it was at their desks,
in their basements at home or in unused storage space. The notion of
a purpose-built laboratory was years away. Even large law enforcement
agencies had hardly any funds for equipment – examiners had to use
surplus equipment or the very equipment that they seized.

At the time, digital forensics was an arcane area that operated in
direct conflict with the geographically- and statutorily-bound practice
of criminal investigations. Criminals operated across city, state and
national boundaries in almost real time, but investigators had no choice
but to communicate and work directly with their peers, wherever they
were located.

Digital forensic practice also operated in direct conflict with the tra-
ditional, laboratory-based practice of forensic science. However, some
agencies did see the need for digital forensic capability. The IRS created
the Seized Computer Evidence Recovery Specialist (SCERS) Program,
the U.S. Secret Service its Electronic Crimes Special Agent Program
(ECSAP), the FBI its Computer Analysis Response Team (CART), and
the U.S. Air Force Office of Special Investigations its Computer Crime
Investigator (CCI) Program and what eventually became the Defense
Computer Forensic Laboratory (DCFL). Each agency adopted a differ-
ent model of selection, training and operations based on its structure
and culture. But these agencies were the exception; the majority of
digital forensic investigations were performed by individual officers with
minimal training, often using personal equipment, and without any su-
pervision or formal quality control.

But the digital forensic community was growing. In addition to IACIS,
many grassroots efforts were underway to pool knowledge, resources and
talent. In the Midwestern United States, the Forensic Association of
Computer Technologists (FACT) created training opportunities and a
network of geographically-dispersed practitioners. In the Baltimore area,
forensic practitioners from the FBI, U.S. Secret Service, Maryland State
Police and Baltimore County Police started an ad hoc organization called
“Geeks with Guns.” In the United Kingdom, practitioners from many
law enforcement agencies formed the Forensic Computing Group (FCG)
under the auspices of the Association of Chief Police Officers (ACPO).
It was during this epoch that the High Tech Crime Investigation Asso-
ciation was formed.

Forensic training was developed and offered by these organizations as
well as by some of the larger law enforcement agencies. The demand for
quality, affordable training far exceeded the availability, a situation that
continued to plague the field of digital forensics for many years (some

Pollitt 9

would argue that it continues to this day). During this period, the
academic community was almost totally disinterested in the field, with
two notable exceptions: Gene Spafford, from Purdue University and
Dorothy Denning, then at Georgetown University. These two professors
encouraged many law enforcement agents and students to venture into
this important new field.

5. Childhood (1995-2005)

The next decade proved to be one of tremendous growth in size and
maturity. This growth had numerous drivers, but there were three that
had the most significance.

The first driver was the explosion of technology that occurred during
the epoch. Computers became ubiquitous, cell phones became essential
and the Internet became the world’s central nervous system. At the be-
ginning of the epoch, most voice calls were via landline, most computer
network connections were via dial-up and most people had not heard of
the Internet. By the end of the epoch, almost everyone had an email
address, a cell phone, relied on the Internet, and most homes and busi-
nesses had networks. Computer technology was embedded in virtually
every element of daily life and that included criminal activities.

The second driver was the explosion of child pornography cases. This
can be traced back to the George Stanley Burdynski, Jr. case in 1993.
The investigation revealed that computers were used to traffic in illegal
images of minors and led to the establishment of an online undercover
operation called Innocent Images in 1995. Ten years later, there was
a separate child pornography task force in half of all FBI offices; many
other law enforcement agencies also operated their own task forces. This
“new” violation resulted in the seizure of ever-increasing volumes of dig-
ital evidence and was a major driver in the growth of digital forensics
[4, 17].

The highly anticipated Y2K problem proved to be a non event from a
computer perspective, but the events of September 11, 2001 rocked the
digital forensic world, just as it did the world at large. While computers
played little direct role in the hijackings, investigators would find bits
and pieces of evidence on computers around the world. The terrorists
were using computers in the same ubiquitous ways as everyone else.
This was further reinforced on the battlefields of Iraq and Afghanistan.
The intelligence community, law enforcement and the military realized
that the lack of digital forensic capabilities was a blind spot that needed
immediate attention. The amount of time, money, people and resources
devoted to digital forensics increased to massive levels.

10 ADVANCES IN DIGITAL FORENSICS VI

At the beginning of this epoch, digital forensic practitioners were typ-
ically self-declared professionals or “resident experts,” a term used to
describe individuals who were seemingly effective computer users. With
increasing volume, technical sophistication and legal scrutiny, it became
increasingly important to carefully select and train digital forensic prac-
titioners. The field itself began to become even more specialized. Digital
audio, video and embedded devices such as cell phones required specific
knowledge and training, separate from traditional storage media and
network-focused forensics. Even these two fields were beginning to di-
verge at some levels, as the study of network intrusions became ever
more complex. The discipline of digital forensics began to be driven
by government agencies and professional organizations rather than by
individuals.

The formalization of digital forensics made great strides during this
epoch. The IOCE, G-8 High Tech Crime Subcommittee and Scien-
tific Working Group on Digital Evidence (SWGDE) all published digital
forensic principles between 1999 and 2000 [3, 7, 10, 15]. Going beyond
mere principles, the American Society of Crime Laboratory Directors –
Laboratory Accreditation Board (ASCLD-LAB), in cooperation with the
SWGDE, recognized digital evidence as a laboratory discipline. In 2004,
the FBI’s North Texas Regional Computer Forensic Laboratory became
the first ASCLD-LAB accredited digital forensic laboratory [1, 11].

Meanwhile, forensic tools underwent a metamorphosis. The home-
grown, command line tools of the earlier epoch became complex, graph-
ical user interface suites. The first of the new tools was Expert Witness,
a product designed by Andy Rosen for Macintosh forensics that evolved
into EnCase. EnCase, along with Forensic ToolKit (FTK), became com-
mercial successes and are now standard forensic tools.

Several U.S. Government agencies also took on the task of developing
tools. The FBI’s Automated Case Examination System (ACES) and
IRS’s iLook tool had some success. However, the ability of commer-
cial entities to evolve their products in step with advancing technology
doomed the agency-developed tools to obsolescence. Meanwhile, the
open source community stepped up, developing Linux tools such as He-
lix, Sleuth Kit and Autopsy Browser.

The digital forensic community likewise underwent a maturation pro-
cess. Forensic services were being provided by a wide variety of entities,
organized in a wide array of structures. Traditional forensic laboratories
began offering digital examinations. The Department of Defense created
its central Defense Computer Forensic Laboratory (DCFL) to service the
law enforcement, intelligence and operational needs of the U.S. military
[19]. The FBI started building a constellation of joint (federal, state and

Pollitt 11

local law enforcement) laboratories dedicated to digital forensics – the
Regional Computer Forensic Laboratories (RCFLs) [13]. Each labora-
tory would provide service to a geographic area and operate according
to ASCLD-LAB standards. The U.S. Secret Service established a net-
work of Electronic Crimes Task Forces, modeled on the highly-effective
New York entity [20]. These task forces would provide investigative and
forensic services within their area of operations. Many law enforcement
agencies also developed dedicated units to handle digital forensic inves-
tigations.

6. Adolescence (2005-2010)

Since 2005, digital forensics has grown in depth and breadth. It has far
more practitioners, performing many more examinations of a wider vari-
ety, involving ever larger amounts of evidence. In 2006, the United States
Courts adopted new Rules for Civil Procedure that defined digital infor-
mation as a new form of evidence and implemented a mandatory system,
called electronic discovery or “eDiscovery,” for dealing with digital evi-
dence [5]. The workload in traditional law enforcement mushroomed. In
Congressional testimony, the FBI announced that its Computer Analy-
sis and Response Team (CART) examined more than 2.5 petabytes of
evidence in 2007 alone [9].

Information security professionals now recognize digital forensics as a
core skill area. While their objectives and needs often differ from those
of law enforcement, the concepts and tools are often identical.

The digital evidence practitioners of today are far more likely to have
had academic preparation in addition to formal training. They are likely
to hold an array of certifications. Digital forensics is now considered
“career enhancing,” a far cry from just a few years ago.

Academic programs continue to spring up across the globe. While re-
search funding for digital forensics lags other more traditional disciplines
such as information security, colleges and universities have recognized
the popularity and marketability of digital forensic education. Recently,
the Forensic Education Program Accreditation Commission (FEPAC)
took the first steps toward accrediting U.S. academic programs in digi-
tal forensics. The American Society of Testing Materials (ASTM) Tech-
nical Committee E-30 formulated a draft standard for digital forensic
education and training programs [2].

Another measure of the academic health of a field is the number
and quality of conferences. The Digital Forensic Research Workshop
(DFRWS) is in its tenth year. The International Federation for In-
formation Processing (IFIP) Working Group 11.9 on Digital Forensics

12 ADVANCES IN DIGITAL FORENSICS VI

is in its seventh year and the International Conference on Systematic
Approaches to Digital Forensic Engineering just celebrated its fifth an-
niversary.

The materials that are being examined have also matured. Virtually
every device that uses electricity now has some form of digital storage.
Wired or wireless networks connect many of the devices that we use
in our daily lives. This, in turn, has driven the development of many
network- and web-based services, including cloud computing. Some of
these services, such as Facebook and Twitter, are changing the way in
which people interact. This change is starting to drive how digital evi-
dence is collected. Email has already become a major source of probative
information and a forensic and information management challenge [8].

During this epoch, forensic suites, most notably EnCase and FTK,
have moved into the network/enterprise environment. They are being
deployed in a prospective fashion in enterprises for corporate security
and electronic discovery purposes. These same tools are being adapted
to work in the emerging forensic environment of virtualized laboratories
(using products such as VMWare) and storage area networks (SANs).
Meanwhile, high-speed networks are being utilized to support the online
review of evidence by investigators and prosecutors. The market for
electronic discovery is booming, with vendors developing proprietary
tools to automate the extraction and review of digital information.

This is an interesting time for the digital forensic community as a
whole. The law enforcement, military and intelligence communities have
designed organizational structures and processes to support their mission
view. While there are some in these communities that are considering
the impact of future technologies, there is far less emphasis on how
targets will utilize these technologies and how customers will utilize the
forensic products. Defining the forensic products of the future is another
challenge. A strong tactical approach exists, but a long-term strategic
plan is missing.

7. The Future

Predicting the future is a fool’s game. Knowing that I will be wrong
about many of my predictions, I will play the fool.

Digital forensics is a complex and evolving field. The practitioners
of the future will be even better educated and trained; they will be
team players trained to perform specific aspects of the forensic process.
Forensics will no longer be a linear process focused on recovering data,
but an evidence-based knowledge management process that will be in-
tegrated into investigations, intelligence analysis, information security

Pollitt 13

and electronic discovery. There will be career digital forensic educators
and researchers in addition to practitioners and managers. I fear that
this new generation will be unaware of the early history and pioneering
spirit that propelled the early years.

Our adversaries will be better organized, funded and educated. Crimi-
nals have recognized the value of distributed and collective efforts. Their
payoffs will be significantly larger as the value of access and information
grows along with society’s dependence on the information infrastructure.
Everyone (and their information) everywhere will be at risk at all times.
Safety and security will be constantly threatened.

To counter these threats, digital forensic tools will have to improve.
To overcome the sheer volume, the tools will have to be automated. In
addition to performing data recovery, the tools will need to have built-in
analytical capabilities, enabling important items to be identified without
having to view every item. The tools will have to be semiotic, under-
standing human language and communications, and able to interpret
content and context.

The organizations that employ digital forensic practitioners and those
who rely on them will have to evolve as well. They will need to be ac-
credited, with strong quality management and individual certifications.
Much will ride on their reported results. Society needs assurance that
the information collected and the conclusions reached are reliable. Or-
ganizations will have to cooperate and support the interoperability of
people, tools and processes. Given the global scope of the problem,
international legal standards will have to evolve.

8. Conclusions

In less than thirty years, digital forensics has blossomed from the
germ of an idea, nurtured by brave pioneers, developed and expanded
by professionals, to its current state. Many individuals have contributed
their efforts, knowledge and enthusiasm to give the discipline a solid
foundation for the future.

I apologize to the many worthy people who I have failed to mention
in this narrative out of ignorance or forgetfulness. I earnestly hope
that others will correct my errors, fill in the gaps and extend this work.
Recording a complete history of digital forensics will benefit those who
come after us. In the immortal words of George Santayana, “Those who
cannot remember the past are condemned to repeat it” [14].

14 ADVANCES IN DIGITAL FORENSICS VI

References

[1] American Society of Crime Laboratory Directors – Laboratory Ac-
creditation Board, Garner, North Carolina (ascld-lab.org).

[2] ASTM International, ASTM E2678-09 Standard Guide for Edu-
cation and Training in Computer Forensics, West Conshohocken,
Pennsylvania (www.astm.org/Standards/E2678.htm), 2009.

[3] R. Downing, G-8 initiatives in high tech crime, presented at the
Asia-Pacific Conference on Cybercrime and Information Security,
2002.

[4] Federal Bureau of Investigation, Innocent Images National Initia-
tive, Washington, DC (www.fbi.gov/innocent.htm).

[5] Federal Judicial Center, Materials on Electronic Discovery: Civil
Litigation, Federal Judicial Center Foundation, Washington, DC
(www.fjc.gov/public/home.nsf/pages/196).

[6] K. Hafner and J. Markoff, Cyberpunk: Outlaws and Hackers on the
Computer Frontier, Touchstone, New York, 1991.

[7] International Organization on Computer Evidence, G8 Proposed
Principles for the Procedures Relating to Digital Evidence, Ottawa,
Canada (ioce.org/core.php?ID=5), 2000.

[8] E. Iwata, Enron case could be the largest corporate investigation,
USA Today, February 18, 2002.

[9] M. Mason, Congressional Testimony, Statement before the House
Judiciary Committee, Federal Bureau of Investigation, Washington,
DC (www.fbi.gov/congress/congress07/mason101707.htm), 2007.

[10] M. Noblett, Report of the Federal Bureau of Investigation on the de-
velopment of forensic tools and examinations for data recovery from
computer evidence, presented at the Eleventh INTERPOL Forensic
Science Symposium, 1995.

[11] North Texas Regional Computer Forensics Laboratory, Dallas,
Texas (www.ntrcfl.org/index.cfm).

[12] D. Parker, Crime by Computer, Scribner’s, New York, 1976.

[13] RCFL National Program Office, Regional Computer Forensics Lab-
oratory, Quantico, Virginia (rcfl.gov).

[14] G. Santayana, Reason in Common Sense, Life of Reason, Volume
1, Scribner’s, New York, 1905.

[15] Scientific Working Group on Digital Evidence, Digital evidence:
Standards and principles, Forensic Science Communications, vol.
2(2), 2000.

Pollitt 15

[16] C. Stoll, The Cuckoo’s Egg: Tracking a Spy Through the Maze of
Computer Espionage, Pocket Books, New York, 1990.

[17] The Charley Project, George Stanley Burdynski Jr., (www.charley
project.org/cases/b/burdynski george.html).

[18] The History of Computing Project, Timeline: Chronology of the his-
tory of computing, The History of Computing Foundation, Maurik,
The Netherlands (www.thocp.net/timeline/timeline.htm), 2010.

[19] U.S. General Accounting Office, Crime Technology: Department of
Defense Assistance to State and Local Law Enforcement Agencies,
Letter Report GAO/GGD-00-14, Washington, DC (fas.org/irp/gao
/ggd-00-014.htm), 1999.

[20] U.S. Secret Service, Electronic Crimes Task Forces and Working
Groups, Washington, DC (www.secretservice.gov/ectf.shtml).

[21] C. Whitcomb, A historical perspective of digital evidence, Interna-
tional Journal of Digital Evidence, vol. 1(1), 2002.

Chapter 2

TOWARD A SCIENCE OF DIGITAL
FORENSIC EVIDENCE EXAMINATION

Fred Cohen

Abstract Digital forensic evidence examination is not a normal science at this
time. This paper discusses the important issue of moving toward a
science of digital forensic evidence examination. It highlights key areas
in which progress has to be made in order for digital forensic evidence
examination to become a normal science.

Keywords: Digital forensic evidence examination, science

1. Introduction

Like almost every scientific endeavor, the examination of digital foren-
sic evidence (DFE) started out somewhere between an art and a craft.
People with special skills and knowledge leveraged their skill sets and
knowledge to put forth notions about the meaning of DFE in the context
of legal matters. While the court system greatly appreciates science and
its role through expert testimony in providing probative information, the
appreciation is substantially challenged by the lack of a scientific base.
A scientific base includes a well-defined and well-understood body of
knowledge, an underlying scientific methodology, an experimental basis,
adequate peer-reviewed publications associated with professional soci-
eties, and all of the other things that go with normal science. As the
volume and criticality of DFE has increased, there is an increasing recog-
nition of the limitations of DFE, and more importantly, the limitations
of the underlying science.

To clarify the notion of a science of DFE examination, it is instruc-
tive to examine the advancement of science in other disciplines. In most
disciplines, a scientific methodology consists of four basic elements: (i)
studying previous and current theories, methods and their experimen-

K.-P. Chow, S. Shenoi (Eds.): Advances in Digital ForensicsVI, IFIPAICT 337, pp. 17–35, 2010.
c© IFIP International Federation for Information Processing 2010

18 ADVANCES IN DIGITAL FORENSICS VI

tal basis; (ii) identifying inconsistencies between current theories and
repeatable experimental outcomes; (iii) hypothesizing new theories and
performing experiments to test the new theories; and (iv) publishing
the results. However, in an area where there is no pre-existing scientific
infrastructure, a new theory, methodology, experimental basis, and per-
haps even a new physics, have to be built from scratch. In the case of
DFE examination, only one such attempt has been made so far [3], and
this paper is substantially about that attempt.

2. The Call for Science in Forensics

The U.S. Supreme Court has spoken [8] and the National Research
Council has concurred [6]. A rigorous scientific approach is needed for
forensic evidence to warrant its use in courts in the United States. Much
of the world is likely to follow this approach.

To a substantial extent, this call for science stems from some dramatic
failures of forensics. For example, in the Madrid bombing case, the FBI
declared that a fingerprint from the scene demonstrated the presence of
an Oregon attorney. However, the attorney, after having been arrested,
was clearly demonstrated to have been in another part of the world
during the time in question. The side effect is that fingerprints are now
being challenged as valid scientific evidence around the world [5].

A similar situation exists in cases where forensic examiners have done
poor quality work and have testified in a number of cases, typically for
the prosecution. The inability to effectively challenge evidence by these
supposed experts using a scientific methodology and inquiry process is
extremely disconcerting, all the more so because of the limits of human
integrity. In case after case, when the details are examined, forensic
evidence seems to come up short under competent challenges and close
scrutiny. The solution is simple. Build and apply real science, and the
truth will out.

3. Proposing a Science

This first attempt at proposing a science for DFE examination in-
volves the creation and enumeration of elements of an epistemology and
a physics of digital information, a model of the DFE examination process
in the legal environment, and the interpretation of existing information,
theory, and experimental results in the new model. This is the first at-
tempt to create a scientific model for DFE examination, and a suitable
name would be “the standard model.” But of course, it will only be-
come a standard to the extent that it is embraced by the community.
Also, it would have to be adapted over with time as the digital forensic

Cohen 19

community comes to decide and adapt to the realities of the scientific
method.

3.1 Epistemology for Digital Forensics

Epistemology studies the nature of knowledge, its presuppositions,
foundations, extent, and validity. In the case of DFE examination, some
basics may be reasonably assumed for the purposes of creating a science.
The following are some of the epistemological issues that have already
been identified.

Digital evidence consists entirely of sequences of binary values called
bits. The physics of DFE is different from that of matter and energy,
and thus the normal assumptions made with respect to how the world
works do not apply – or do not apply in the same way – to DFE.

Two major differences are that DFE has observation without alter-
ation and duplication without removal. Also, computational complexity
limits what can be done with resources in a given time frame – one could
say that the speed of light is “different” for DFE.

Physical evidence is very often transfer evidence and is sometimes
trace evidence. In contrast, DFE is always trace evidence, but essentially
never transfer evidence. Also, DFE is normally latent in nature in that it
can only be observed through the use of tools. This implies a multitude
of requirements surrounding DFE tools and their use.

In a “scientific” approach, the theories are not casual theories, but
“scientific theories.” That means that:

Constructs are testable.

Refutation can destroy a theory. Finite confirmations do not prove
a theory; they can only confirm it.

Scientific theories change slowly. Once theories are accepted, they
only change – in very rare cases – because of dramatic changes in
the understanding of the underlying physics.

The “theories” of DFE lead to a physics of digital information. Many
of them are based on existing and widely-accepted mathematical knowl-
edge. However, some are still conjectures from computer engineering,
computer science, discrete mathematics, and related areas.

3.2 Information Physics

The physics of digital information is significantly different from that
of the physical world. The differences are described in more detail else-
where [3]. However, to get a sense of the differences, many of the under-

20 ADVANCES IN DIGITAL FORENSICS VI

lying assumptions of the physical world, such as smoothness, continuous
space, the notion of transfer, continuous time, and even the speed of
light, are very different in the digital world. Indeed, the assumptions
simply do not hold and the implications are, in some sense, profound.

Input sequences to digital systems produce outputs and state changes
as a function of the previous state. To the extent that the state and out-
puts produce stored and/or captured bit sequences, these create traces
of the event sequences that caused them. Thus, a trace may be defined
as a set of bit sequences produced by the execution of a finite state
machine.

We generally think of the physical world as a space that diverges with
time, with any given initial conditions in history producing a wide vari-
ety of possible future outcomes. As a result, when looking at a physical
trace, at least theoretically, it is possible to identify a unique histori-
cal event sequence that produced such a trace. But the digital space
converges with time, so instead of the one-to-many relations seen in the
physical world, there are many-to-one relations in the digital world. This
means that a very large number of potentially different input sequences
and initial states may produce identical traces (i.e., from subsequent
states and sequences). Almost any digital trace could be the result of
a large number of different historical event sequences, and the number
of these sequences increases dramatically with the passage of time (i.e.,
execution of finite state machines). Thus, the traces from digital de-
vices are not, in general, unique as to the input sequences that produced
them.

Another less mathematical problem is the relationship between the
unlimited granularity of the physical world in time and space and the
finite granularity of the digital world in time and space. Because of this
difference, a discontinuity exists at the interface between the physical
and digital world. Minor differences are exaggerated near the disconti-
nuity while major differences are ignored away from the discontinuity.
The limited sensor and actuator capacity of devices that convert be-
tween the digital and physical world prevents the exchange of a variety
of information that is potentially probative, and makes it much easier
to create a variety of forgeries at the interface. This implies that in-
put sequences may not directly demonstrate which non-digital events
sequences may have produced them. As a result, additional effort is re-
quired to attribute traces to real-world causes and forgery is much easier
in the digital space than in the physical space.

Viewing DFE as the result of processing by finite state machines in-
herently limits the potential utility of DFE examination for providing
probative information about real-world events. DFE examiners must

Cohen 21

take the limitations into account when performing their examinations
and when testifying about the results of the examinations. These limi-
tations are directly due to the limits of DFE and the methodologies used
to understand and work with it.

3.3 DFE Examination Model

The model of DFE examination is related to an overarching model of
digital forensics [4]. It can be codified in mathematical terms as follows:

Laws: L : {l1, . . . , ln}, R : {r1, . . . , rm}, L×R→ [F |T]
Violations: L×R⇒ V

Claims: E : [{E1, . . . , Eo}]
Events: ∀e, e ∈ E∗ that demonstrate claims
[∀Ex ∈ E, Ex : (ex1 ∈ E∗, . . . , exp ∈ E∗)]

Traces: T : (t1, . . . , tq)

Internal Consistency: C : T × T → [−1, 1]
Demonstration Consistency: D : T × E∗ → [−1, 1]
Forensic Procedures: P : {p1, . . . , pn},
∀p ∈ P, p→ c ⊂ C, p→ d ⊂ D, p→ c �⊂ C, p→ d �⊂ D

Resources: R : (T, $, C,E)

Schedule Sequence: S : (s1, s2, ...),∀s ∈ S, s : (l ⊂ L, r ⊂ R,
h ⊂ H, e ⊂ E, t ⊂ T, c ⊂ C, d ⊂ D, p ⊂ P, r ⊂ R, t, t′)

In essence, the legal claims constitute a set of runs through the ele-
ments of laws that produce violations. This can be conceptualized as
a partially-ordered set (poset). The events and traces are entities that
are evaluated to determine the outcome of the legal matter, and they
form the basis for the claims that are demonstrated using the violation
poset. If the events and traces are consistent with an unbroken path
through the poset, a violation is indicated; if not, inadequate indica-
tions for a violation are present. If T and E are inconsistent with the
poset, then they may act to sever all of the paths forming violations, in
which case adequate basis may be present to definitively demonstrate
that no such violation is justified. To the extent that T and E are inter-
nally or demonstrably inconsistent, C and D may be used to show that
the evidence or the claims are less probative, or potentially even prevent
the admission of elements of T and/or E into the matter.

22 ADVANCES IN DIGITAL FORENSICS VI

The fundamental theorem of DFE examination in this model may be
stated in relatively simple terms:

What is not consistent is not true.

DFE examination then consists largely of testing hypotheses related
to the poset that form V as demonstrated by T and E in order to attempt
to refute them by showing that they produce inconsistencies. This also
implies some things about language and usage.

Consistency and inconsistency are demonstrated by logic and the the-
ories associated with the physics of digital information. So, for example,
given that a claim is based on an event e1 causing a trace t1, events
and/or traces showing that t1 happened before e1 would be inconsistent
with the claim of causality because information physics demands that
cause precedes effect.

There are several consequences of this model related to: (i) the sizes of
the model components; (ii) available computing power and its impact on
thoroughness; (iii) limitations due to resources and schedules; (iv) limi-
tations of available procedures; (v) legal limitations on what can be used
and how; and (vi) probative versus prejudicial value and its relationship
to consistency and related matters. In the example above, refutation is
based on traces and events that may themselves be problematic. Thus,
C and D are defined over the range [-1, 1].

In many cases, because of the limitations of DFE examinations as
described here and elsewhere, more certainty is desired. Two general
classes of methods exist to provide higher surety of DFE examination
results: (i) identifying additional traces or procedures to gain additional
demonstrations of consistency or inconsistency; and (ii) identifying re-
dundant paths to prove hypotheses so that even if some paths are less
certain or are eliminated, the overall hypotheses remain intact. These
issues are covered by the model presented here.

3.4 Use of Defined Terms

No matter how many tests are performed, except for special cases,
DFE examination results cannot prove a broad claim to be true [7].
The best that can be done is to show that the tests undertaken fail to
refute the hypotheses and to show the extent to which the tests were
thorough. This leads to the notion of what can reasonably be asserted
as the most authoritative claim in [opposition] support of a hypothesis
regarding DFE:

“The results of {the tests I did} were [in]consistent with {the
hypotheses}.”

Cohen 23

To the extent that some of these statements are combined by logical
reasoning, an overarching statement may be made with regard to the
claims. This could be of the form:

“Based on {the basis}, the {traces and events} are [in]consis-
tent with {identify the claim(s)}.”

Or in some cases, when this is true:

“In my examinations of {traces and events}, everything I
found was consistent with {claims} and nothing I found was
inconsistent with {claims}.”

On the other hand, a single refutation disproves a hypothesis. The
least that can be reasonably said if such a refutation is identified is:

“The {procedures I performed} demonstrate that {traces and
events} are [inconsistent with/refute] {the hypothesis}.”

Thus, the methodology underlying the science of DFE involves:

Devising testable hypotheses (E)

Testing the hypotheses against the evidence (T and E) using foren-
sic procedures (P) and logic to determine Type C and D consis-
tency by attempting to refute the hypotheses.

Making careful and limited statements about the results of these
tests, typically using wording such as that identified above.

The following are some wordings that may apply in other circum-
stances. Some of the more commonly misused ones are also identified,
along with definitions appropriate for use by DFE examiners.

Suggest: Imply as a possibility (“The evidence suggests ...”) –
calls to mind – propose a hypothesis or possible explanation.

Indicate: A summary of a statement or statements or other con-
tent codified (“His statement indicates that ...”) – a defined set
of “indicators” are present and have, through some predefined
methodology, and identified as such (“The presence of [...] smoke
indicates ...”).

Demonstrate: Exemplify – show – establish the validity of –
provide evidence for (“The reconstruction demonstrates that ...”).

Correlate: A statistical relation between two or more variables
such that systematic changes in the value of one variable are ac-
companied by systematic changes in the other as shown by sta-
tistical studies (“Based on this statistical analysis, the use of the
KKJ account is correlated (p=95%) with ...”).

24 ADVANCES IN DIGITAL FORENSICS VI

Match: An exact duplicate (“These two documents have match-
ing publication dates, page counts, ...”).

Similar: A correspondence or resemblance as defined by specified
and measured quantities or qualities (“The 28 files were similar in
that they all had syntax consistent with HTML, sizes under 1,000
bytes, ...”).

Relate: A defined and specified link (“The file system is related
to FAT32 in that FAT32 was derived from ...”).

Associate: Make a logical or causal connection with basis pro-
vided (“I associate these bit sequences with program crashes be-
cause ...”).

Through the careful use and consistent application of these terms,
the field of DFE examination may move forward more quickly, and peer
reviews could create a body of work that is meaningful across endeavors
and time. However, if, the DFE community is inconsistent or if its peer
review process fails to force compliance with the terminology, then DFE
examination is unlikely to proceed as a normal science.

3.5 Tools of the Trade

As an area of science, DFE examination has a relatively small num-
ber of peer-reviewed and repeatable scientific experiments. Most experi-
ments are of limited applicability and are not focused on building a fun-
damental understanding. They do not meet the standards of scientific
rigor expected in other fields. They are oriented toward confirmation
rather than refutation, which makes them dubious as science.

Furthermore, there is a methodological challenge associated with ex-
periments for several reasons. DFE is latent and, therefore, experiments
require tools. Of course, this means that the experiments are limited
by the tools and, like any other area of science, the examiner must un-
derstand the limits of the tools in order to understand the limits of the
experiments. This, in turn, leads to the need to have a methodology
to evaluate tools. Without such a methodology, regardless of what the
tools may indicate, the interpretation of the results is open to question.

A methodology for understanding tools might start with the develop-
ment of an error model. Classical error models for digital systems [1, 2]
may well be applicable, but their utility will not be known until they are
applied in DFE examinations.

It is also important to understand how to calibrate and test tools,
and to create systematic approaches for doing so. Calibration processes

Cohen 25

typically involve validation with known samples, which is readily done
in most cases. The testing process typically involves verification of some
sort, which, in the case of software, normally involves mathematical
proofs or tests that verify the results against error models. Again, this
is an area where DFE examination is lacking. Redundancy via the inde-
pendent verification of results may provide an alternative in cases where
no well-defined testing methodologies and practices are available.

Regardless of how “good” a tool is, it must be properly used, the
results must be meaningfully interpreted, and the limits of the tool must
be understood. This implies that the examiner must have knowledge,
skills, education, training, and experience suited to the use of the tools
they apply. DFE examination has few advanced students and teachers
and, as a result, produces “niche experts,” who are of limited utility.
It has many niche experts who can potentially speak to very narrow
domains and it has expert claimants who profess expertise beyond their
actual knowledge, skills, education, training, and experience. Indeed,
DFE examination as a field has too few “real experts” at this time.

3.6 Presentation

Another major issue with tools today is how they present results,
both in support of the examination process and when the results of
examinations are presented in reports or before judges and juries.

Presentation is intimately tied to, but not directly part of, examina-
tion. Because DFE is latent, presentation will always be an issue. For
the examiner, the results of the experiments must be presented using
tools. For the jury, presentation is again fundamental to understanding
the evidence and the examination results. For the judge, the same is
true to evaluate admissibility. For the opposition, presentation is just as
critical to evaluating expert reports,. Today, however, there is no stan-
dard for even presenting the most common representations of DFE. Even
something as simple as presenting a text file is fraught with potential
errors.

Different ways of presenting the same information can lead to different
interpretations and outcomes. Consider this simple example:

Plaintiff’s sworn statements are inconsistent with the evidence.

If Plaintiff’s sworn statements are to be believed, then the evidence
refutes Plaintiff’s claims.

If the evidence is to be taken at face value, then it refutes Plaintiff’s
sworn statements.

26 ADVANCES IN DIGITAL FORENSICS VI

The first of these statements encompasses the other two. The sec-
ond statement appears to say that one can assume that the plaintiff is
telling the truth, but the evidence does not support the claim. The third
statement appears to say that the plaintiff is lying.

Technical presentation errors are also problematic. For example, the
digit “O” and the letter “0” are almost indistinguishable, as are the digit
“l” and the letter “1.” Spaces at the ends of lines, and the differences
between a leading tab, a leading space followed by a tab, and leading
spaces cannot be discerned in normal printouts. As an aside, the nature
of the problem becomes very clear if the reader failed to notice that
the numbers “0” and “1” and the letters “O” and “l” are interchanged
above.

When examining the output from widely-used and trusted tools, the
presentation produced by the tools often fails to aid the examiner in
seeing these sorts of differences. In case after case and in tool after tool,
differences that might allow the examiner to detect inconsistencies go
unseen and, thus, the inconsistencies are commonly missed. Even some-
thing as simple as a forensic font would largely alleviate these problems,
but this notion was only first introduced in late 2009.

Clearly, presentation is fundamental to the advancement of a science
of DFE examination. Also, presentation is critical to the effective use of
tools upon which essentially all of digital forensics depends.

4. State of the Science

The principal elements of DFE examination are analysis, interpreta-
tion, attribution and reconstruction. While this categorization of the
discipline may be somewhat arbitrary, it is sensible in that each of these
elements, while not entirely distinct from one another, encompasses dif-
ferent techniques that may require different expertise and tools.

4.1 Analysis

Analysis engages techniques that provide definitive answers to specific
questions. Existing analytical techniques are limited in number and in
the nature of the definitive results they produce. The techniques are
computational in nature with defined complexity and defined input and
output limitations, and their accuracy can be verified (at least theoret-
ically). Methods that do not meet these criteria should not be called
analysis.

Analysis starts with a bag of bits. Redundancy in the bag of bits
confirms or refutes hypotheses about what the bag of bits is. Through
analysis, features and characteristics are detected, symbol sets are iden-

Cohen 27

tified, trace typing is undertaken, content is parsed, normalized and
elucidated, and indicators are analyzed. Any of these may return the
examiner to a bag of bits, especially if it produces inconsistencies that
destroy the chain of analytical results supporting the current hypotheses
about the bag of bits.

During analysis, characteristics and features are analyzed for consis-
tency, traces are ordered and out-of-order entries are detected, sourcing
and travel patterns are identified, consistency is checked across related
records, anchor events are used for external validation, time differen-
tials and jitter are considered, and all of these are compared with hy-
potheses in order to identify consistency or inconsistency. Also, sieves
are constructed and items are counted, derived traces are formed for
analytical convenience, counts are made of various features and char-
acteristics of interest to the examiner, mechanisms are combined and
the resulting errors identified and mitigated, and results are verified by
independent means where feasible. Additionally, intentionally-hidden
items of interest are sought, content placed in hard-to-find locations is
found, steganographic and other transformed content are identified and
inverted, recursive embedded languages are parsed, and indicators are
identified and sought relative to the issues at hand.

In these analytical processes, automated and human cognitive meth-
ods are combined to identify potential Type C and D consistencies and
inconsistencies either automatically or through DFE examiner interac-
tion. All of these processes are limited by the available forensic pro-
cedures (P) and their computational complexity, which impacts and is
impacted by resources.

4.2 Interpretation

Traces, events, claims, and analytical results must be interpreted in
the context of the legal matter in order to be meaningfully examined. In-
terpretation involves selecting among alternative explanations (hypothe-
ses). Different interpretation methods are used for different circum-
stances, with one major difference being the treatment of structured
and unstructured traces.

Over-interpretation by examiners is common. For example, terminol-
ogy is misused, conclusions are drawn in excess of what is supported
by the data, the terms “match” and “correlate” are overused, and the
details of the basis are often left unspecified.

Special care must be taken in making statistical claims. In addition to
simple interpretation errors (e.g., percentages that add up to more than
100%), claims often ignore data that is not present, conceal assumptions

28 ADVANCES IN DIGITAL FORENSICS VI

related to random stochastic processes and other similar things, and
assert precision exceeding accuracy. This is particularly problematic in
digital systems, where 33.333% results from an experiment with only
9 samples. At best, there is a little less than one digit of accuracy, so
this precision is misleading. The examiner must interpret the output
of analyses and present information in clear terms in order to properly
interpret results for presentation – 3 of 9, 1/3 or 33% are all valid, but
33.333% is not.

Tools commonly interpret traces as well, and to the extent that they
do so, these interpretations make assumptions, often without basis. The
interpretations often present false results based on the assumptions and
result in presentations and other depictions that may mislead the exam-
iner as well as the judge and jury. No methodology currently exists for
evaluating interpretation by tools, although a wide range of cognitive
errors are known to cause incorrect or imprecise interpretation.

Interpretation includes the identification and explanation of missing
traces and their implications to the matter at hand. While some experts
may know the traces that are commonly present in some situations,
there is neither a widely available library of what constitutes “normal”
behavior in an operating environment nor a basis for comparison in the
existing literature.

While redundancy may be used to mitigate interpretation errors, in-
terpretation is highly subject to individual variations. Proper interpre-
tation is limited and couched in terms of its accuracy and applicability,
including the things that the examiner does not know. It is important
to enforce careful word usage for technical terms in professional publi-
cations and in legal venues. How can one claim to be an expert when
one does not even use the published and accepted terms of the scientific
and technical community?

There is also a tendency to create casual theories and embrace them
as if they were something more. To be clear, the theories of DFE exam-
ination are the results from information physics, the assumptions of the
model, and the foundational logic and results of computer science and
engineering. Any other theory, unless and until it passes peer review
and is reconciled with the existing theory, is only a hypothesis at best.

Examiners, like all people, make cognitive errors during the inter-
pretation process. The examiner would be well served to examine the
literature in this area and apply it to maintain clarity regarding his/her
own as well as others’ potential for making mistakes. Indeed, it is un-
wise to believe what one thinks is right unless one really knows. What
some reviewers call “put a stake in the ground” should be shunned in
the DFE community in favor of properly identifying the limitations and

Cohen 29

not overstating a case. Peer review of examination results, particularly
interpretations, should be sought in every case and for every report.

As a working assumption, the DFE examiner should assume that each
system and situation is in fact different from others. Experience is a
great teacher, but it can be misleading. Care must be exercised in not
over-interpreting the data. And when the interpretation is unclear, re-
construction is a viable and worthwhile approach for gaining additional
data. All interpretation should also be made within the context of in-
formation physics, and with the working assumption that every inter-
pretation will be tested against information physics and refuted if it is
inconsistent.

Events are also subject to interpretation because words are interpreted
by examiners. Cognitive errors in interpretation are common and, since
examiners assume the context of their knowledge and words mean dif-
ferent things to different people, the careful interpretation and close
scrutiny undertaken by an examiner may be viewed as being “picky” by
others; but this is the nature of interpretation in the legal environment.
Furthermore, events are often difficult to interpret and leave many pos-
sible interpretations, particularly in light of the lack of specific technical
knowledge by the individuals who offer the information related to the
events.

Events should presumably be viewed through the lens of information
physics. Claims are often inconsistent with and are, thus, refuted by
the careful use of physics. As an example, causality is tricky because
of the requirement for time ordering and the fact that complexity limits
actions in the digital space; this results in a poset of causal relationships.
Reviewing information physics for events may be helpful, but being thor-
ough in this regard is problematic because of resource limitations and
the lack of apparent progress when the examiner is thinking about the
issues in light of other considerations. At this time, it is not possible to
automate much of this examination and most DFE examiners lack the
time or knowledge to do a thorough (or even thoughtful review) against
the full set of theories.

Resources limit interpretation and tight schedules may prohibit con-
templation of the issues in many cases. Computational resources and
costs may be prohibitive for certain procedures, especially when a large
volume of traces are involved. Available traces may change with time
and legal actions as well.

Statements made and documents created by examiners are often un-
necessarily interpretive. Careful wording is highly desirable in written
and verbal communications. There are few “standard wordings” for
DFE examination, and examiners often make statements that end up

30 ADVANCES IN DIGITAL FORENSICS VI

being wrong, but that could have been accurate had they been stated
differently. For example:

“I found X B’s in File Q”

is true even if there are more than X B’s present, because, presumably,
the examiner did not find the other ones. On the other hand, the inter-
pretation:

“There were X B’s in File Q”

is potentially problematic given the same circumstance. It is a good
idea to minimize interpretation and favor statements of fact wherever
possible.

Similarity is almost always interpretive, in large part because DFE ex-
amination lacks adequate similarity metrics or criteria, an experimental
basis for many similarity claims, and techniques for detecting similarity
in many cases. Still, examiners have the tendency to use the term “simi-
lar” when it cannot be backed up with facts. Similar problems are often
indicated and commonly associated with the suggestion of matches relat-
ing associated correlations. Clearly these uses are unclear and imprecise,
and the lack of clarity and precision during use, while perhaps suggestive
to the untrained reader, should be readily identified as indicative of a
lack of knowledge, education, and training in DFE examination.

Assumptions underlying interpretations are critical, but they are of-
ten not detailed in statements and reports. Thus, the statements and
reports lack the basis for the interpretations. It may be hard to identify
all the assumptions, but confirming/refuting assumptions and hypothe-
ses is the process that should be relied upon in interpretation; therefore,
identifying and presenting them is important to obtaining the right an-
swer.

Presentation is also an interpretive function that drives every aspect
of DFE examination. It acts within the process of examination to skew
the approaches and procedures used by the examiner. The presentation
provided by a tool is the only thing the examiner has to rely on to un-
derstand the latent traces. Examiners must understand that they are
interpreting the output of tools and that the outputs and interpretations
are fraught with the potential (often realized) for producing cognitive
faults, leading to failures that may significantly impact examination re-
sults and process.

4.3 Attribution

Correlation is not causality; before is not because. On the other hand,
a lack of correlation certainly throws considerable doubt on the notion
of causality, and the cause had better be before the effect.

Cohen 31

Attribution of actions to actors is centered on the notion of causality,
to the point where they are, in essence, inseparable. The fundamental
assumption of causation in the digital world is:

Traces come about by the execution of finite state automata
that follow the physics of the digital world.

The physics of the digital world is useful in assessing attribution
claims. For example, A caused B implies that A came before B. How
long before is determined by the digital version of the speed of light.
Computational complexity, the performance levels of devices, the phys-
ical speeds associated with the devices and their components, and the
mechanisms available for storage, transport and processing, all place
limits on the interval of time between the cause and the effect.

Statistics do not apply in most cases relating to attribution because
the past is what it is; there is no “might have been” or likelihood that
some particular thing happened. Either it happened or it did not hap-
pen.

Establishing a causal chain is non-trivial as well. It often involves re-
dundant records and almost never eliminates all other possibilities. But
it may provide a seemingly overwhelming body of information that is
consistent with the hypothesis of attribution, and no information avail-
able may lead to inconsistencies with a hypothesis. This becomes a
compelling argument for a judge or jury, even if the examiner never
claims it to be definitive.

Finite state machines are highly predictable because driving state and
input to output leads to the same answer every time in almost all cases.
However, finite state machines converge with time (while the real world
diverges), so where simulation may produce identical outputs, reversing
time does not give a unique answer. Therefore, in the digital world, con-
vergence implies that many paths lead to the same traces. In addition,
because sensors that change physical inputs to digital outputs are highly
nonlinear, small differences are expanded near a nonlinearity while large
differences are reduced far from a nonlinearity. Thus, the interface tends
to break the digital perfection of even forward-driven causal chains.

Attributing actions to human actors is even more problematic. Au-
thentication methods are of limited value. Most biometrics are not good
for identification, but rather only for selecting a known individual out of
a group of a few thousand known individuals when deception is not in
use. Something the user has can be taken or exploited; something the
user knows can be known by others; something the user can do can be
done by others.

32 ADVANCES IN DIGITAL FORENSICS VI

DFE can almost never put a person at a keyboard at a time, although
other events may be able to help. And even if the user is at the keyboard,
it does not necessarily mean that he/she was in control of the computer.
Behavioral attribution may use words and word sequences, commands
that are executed and usage patterns, keyboard use and timing patterns,
etc., but all of these fail under deception. Also, they are limited to
picking known individuals out of small known groups and they have
significant error rates even under non-stringent test conditions.

Device authentication and attribution may be accomplished using var-
ious indicators (e.g., operating environment identification data, device
identifiers, and known behaviors of programs and mechanisms). While
most of these are readily subverted by deception, some have properties
that make them difficult to forge. Redundant traces may be applied to
reduce the impact of deception.

Attribution of damage to parties is also important, e.g., to establish
threshold requirements for criminal charges. Actual damages are typi-
cally divided into: (i) physical damage; (ii) conversion to use by another
party; (iii) deprivation of utility to the owner, which is often the key
DFE issue; and (iv) lost value or lost rights (e.g., disclosure of trade
secrets or release of pre-patent data). If attribution can be done of the
cause to effect, computation methods are available to identify the extent
of the deprivation. This may include things such as the cost per usage of
electricity, cost in reduced lifetime of equipment, cost in demonstrable
lost business, and cost in reduced life of equipment.

4.4 Reconstruction

Driving time backwards is one approach to reconstruction, but infor-
mation physics shows that this is problematic. The lack of adequate
traces over time leads to very large envelopes of possible histories, which
make it almost impossible to tell what was “original.” In addition,
theft may not be identifiable, travel time and jitter produce ordering
uncertainties, and reversing time in a unique manner through homing
sequences is impossible. Error accumulation also leads to large expan-
sions when reversing time. The list goes on and on, which leads to the
alternative of experimental demonstration of operation in the forward
direction.

Experimental demonstration of operation in the forward direction is
a form of reconstruction that can be used to test hypotheses. As such, it
can confirm, refute, or be unrevealing. The basic methodology deals with
constructed traces (C-traces) and original traces (O-traces). Similarity
measures are used to define, in advance, the criteria for identifying sets of

Cohen 33

C-traces mapped to O-traces, and the implications of outcome class sets.
The examiner creates reconstruction(s) based on hypotheses, generates
C-traces, and compares the C-traces to the O-traces to confirm or refute
hypotheses.

5. Toward a Normal Science

Based on the discussion above, the following statements can be made
today based on the science of DFE examination:

“I did X and observed Y.”

“I [did not find/found] X in Y.”

“X is [in]consistent with the claim Y because...”

“X [suggests/indicates/demonstrates/correlates with/match-
es/is similar to/relates to/associates with] Y because...”

If examinations are properly undertaken, each of these can have a
sound basis with the proper scientific underpinnings. Unfortunately, the
current set of methodologies, processes and procedures are limited in
terms of their validity, testability, reliability, calibration, and basis. Ad-
ditionally, there is a lack of strong agreement within the DFE community
about many aspects of the science as a whole. While most of the results
are peer reviewed and accepted within individual communities, several
problems exist:

The overall collection of results (as a body of science) is not rec-
ognized as such.

The unifying methodology expressed with regard to the application
of information physics to determine consistency is gaining accep-
tance very slowly.

Models that are currently in use are used for various limited pur-
poses, and are not widely adopted.

Procedures and their results are limited and are not formalized or
standardized.

Tools and processes are only explored to a limited extent, with
notions of completeness and thoroughness just beginning to be
defined.

Error models have not been adequately applied from other ma-
ture fields. The sources and magnitudes of uncertainty are poorly
defined, and confidence intervals simply do not exist.

34 ADVANCES IN DIGITAL FORENSICS VI

In most cases, the honest and knowledgeable examiner is largely lim-
ited to the most basic:

“I did X and observed Y,”

with the observation being typically limited to:

“I [did not find/found] X in Y.”

While these are powerful statements that are appropriately used in place
of other less sound statements, they are a long way from the level of
science that DFE examination has the potential to achieve.

6. Conclusions

DFE examination is not operating as “normal science” today. While
there is a scientific basis for many activities involved in DFE exami-
nations, a widespread consensus and common methodologies are still
lacking. The foundation for scientific theories exists, but little attention
is paid to testing the theories and developing the science. To successfully
make the transition to a normal science, the DFE community will have
to ask and answer several questions:

What well-defined and consistent terms should be used?

What well-understood epistemology should be used?

What theories and methodologies should be chosen?

What strong experimental foundations should be built?

What agreed-upon physics should be used and how should it be
formulated?

How could community consensus be built?

Should the path outlined here be embraced?

If not, what is the best path?

The view of this paper is that there exists at least one description of
a reasonably comprehensive scientific foundation underlying DFE exam-
ination. Regardless of the problems and limits of the foundation, it is
a place to start building a normal science and advancing the field. As
the field matures, normal science is almost inevitable, but the normal-
ization process is only just beginning. A community consensus is highly
desired, and this paper supports and anticipates such consensus in the
near future.

Cohen 35

References

[1] A. Avizienis, J. Laprie, B. Randell and C. Landwehr, Basic concepts
and taxonomy of dependable and secure computing, IEEE Trans-
actions on Dependable and Secure Computing, vol. 1(1), pp. 11–33,
2004.

[2] M. Breuer and A. Friedman, Diagnosis and Reliable Design of Dig-
ital Systems, Computer Science Press, Rockville, Maryland, 1981.

[3] F. Cohen, Digital Forensic Evidence Examination, ASP Press, Liv-
ermore, California, 2009.

[4] F. Cohen, Two models of digital forensics examination, Proceedings
of the Fourth International Workshop on Systematic Approaches to
Digital Forensic Engineering, pp. 42–53, 2009.

[5] G. Fine, Statement of Glenn A. Fine, Inspector General, U.S. De-
partment of Justice before the House Committee on the Judiciary,
Subcommittee on Crime, Terrorism and Homeland Security con-
cerning Section 1001 of the USA Patriot Act, U.S. Department
of Justice, Washington, DC (www.justice.gov/oig/testimony/0505b
.htm), May 10, 2005.

[6] National Research Council of the National Academies, Strengthen-
ing Forensic Science in the United States: A Path Forward, National
Academies Press, Washington, DC, 2009.

[7] K. Popper, The Logic of Scientific Discovery, Hutchins, London,
United Kingdom, 1959.

[8] U.S. Supreme Court, Daubert v. Merrell Dow Pharmaceuticals, Inc.,
United States Reports, vol. 509, pp. 579–601, 1983.

Chapter 3

USING A LOCAL SEARCH WARRANT
TO ACQUIRE EVIDENCE STORED
OVERSEAS VIA THE INTERNET

Kenny Wang

Abstract This paper argues that a search warrant issued by a local court does not
have the power to search and seize digital evidence stored overseas but
accessible via the Internet. Based on the fact that digital evidence can
be altered or erased in a very short time, two scenarios are presented
to illustrate the lack of power of a local search warrant to acquire dig-
ital evidence overseas. Two solutions are presented to overcome the
shortcomings of a local search warrant. These solutions can assist law
enforcement agencies around the world in searching and seizing digital
evidence stored overseas with speed and accuracy, and in addressing
court challenges regarding the admissibility and potential illegality of
this evidence.

Keywords: Search warrant, remote cross-border search, webmail

1. Introduction

Computer-related crimes are not a new type of crime in Hong Kong.
Hong Kong has had computer crime laws since 1993 [10], but the popu-
larity of information and communications technology in recent years has
contributed to an increase in the number of computer-related crimes.

For most individuals, a very important function of computers is to
store data. Data used by a computer can be stored in various media such
as flash drives, hard disks, compact disks and magnetic tapes. Data can
also be stored remotely on a server, which may be situated on the same
floor as one’s office, or on another floor, another building or even another
country. Dealing with data that is stored in another country and acces-
sible only via the Internet (web storage) is more complicated in terms of
technology and legal jurisdiction, but it is a growing trend. According to

K.-P. Chow, S. Shenoi (Eds.): Advances in Digital ForensicsVI, IFIPAICT 337, pp. 37–48, 2010.
c© IFIP International Federation for Information Processing 2010

38 ADVANCES IN DIGITAL FORENSICS VI

Hirst [13], “[t]he Internet has an international geographically-borderless
nature ... you can find things in it without knowing where they are. The
Internet is ambient – nowhere in particular and everywhere at once.”

Many law enforcement agencies around the world, including in Hong
Kong, have stood up special units to deal with computer-related crimes.
Although law enforcement agencies aggressively investigate computer
crimes, criminals often avoid detection by utilizing computer technolo-
gies. To win these battles, law enforcement needs traditional as well as
advanced procedures and tools.

The search warrant is a powerful traditional tool. It empowers law
enforcement agents to gain entry into a suspect’s premises and to search
and seize any items in the premises that may constitute evidence of a
crime, including computers. It is increasingly common for criminals to
store their information overseas and to access it over the Internet. Is
it possible for a law enforcement agent to use a local search warrant to
search and seize digital information stored overseas but accessible via
the Internet?

This paper analyzes the possibility of using a local search warrant,
i.e., a search warrant issued in Hong Kong, to search and seize evidence
stored on an overseas computer but accessible via the Internet. More
specifically, it focuses on the notion of a “remote cross-border search,”
which is defined as using a computer within the territory of a country
to access and examine data physically stored outside of its boundary [1].
The paper also examines the connection between remote cross-border
search and extraterritorial jurisdiction. The goal is to help prevent dig-
ital evidence from being excluded by a judge because it was obtained
illegally. This not only wastes resources but may also expose law en-
forcement agents to civil or criminal proceedings.

The paper presents two scenarios and analyzes them in the context
of various statutes, case law and legal research to determine whether or
not a local search warrant can successfully acquire digital evidence that
is stored overseas without raising challenges from defense counsel.

2. Crime Scene

Suppose that a law enforcement agent in Hong Kong is in possession of
a search warrant issued by a magistrate. The search warrant empowers
him and his colleagues to gain entry into a premises and to search and
seize items relevant to the investigation. The target is suspected to have
committed fraud. The suspect is a computer expert so it is very likely
that his computer contains considerable information related to the case.

Wang 39

The D-Day arrives. The law enforcement agent knocks on the door
of the suspect’s home. The suspect answers the door. The agent arrests
the suspect, cautions the suspect, presents the search warrant, explains
it to him and starts the search. The agent sees a notebook computer in
the living room. Upon examining the computer, he discovers records of
bank accounts and transactions that may be related to the investigation.
The agent has found some valuable evidence, but there is more. What
is this other evidence?

We consider two scenarios. In the first scenario, the law enforcement
agent sees a webmail login page on the computer screen. The suspect
has already entered his username and password. All that remains to be
done is to hit “Enter” on the keyboard.

In the second scenario, the agent finds a piece of paper on the suspect’s
desk. The paper contains the name of a webmail service provider (WSP),
a username and a password. The agent believes that the username
and password belong to the suspect’s webmail account, but the suspect
remains silent when questioned.

We assume that the WSP is in the United States and some e-mail
messages in the webmail account may be vital to the successful prosecu-
tion of the suspect. How does the law enforcement agent legally obtain
the e-mail evidence so that it is admissible in a Hong Kong court?

3. Scenario 1

This scenario involves jurisdictional issues between Hong Kong and
the United States. The suspect has a webmail account with a U.S.-based
WSP. The WSP maintains numerous mail servers that store millions,
possibly billions, of e-mail messages belonging to users from around the
world. All the mail servers are physically located in the United States;
thus, the servers and their contents are under U.S. legal jurisdiction.
The Hong Kong law enforcement agent wants all relevant information
pertaining to the webmail account such as registration details and e-mail
contents, but the information is in the United States. How can the law
enforcement agent legally acquire the information from overseas?

3.1 Traditional Method

The traditional method for handling the case is to rely on mutual
legal assistance (MLA). Two governments sign an MLA whereby each
guarantees to provide support to the other on criminal matters. Hong
Kong and the United States have an MLA agreement [11]. The agree-
ment includes “executing requests for search and seizure.” This makes
it possible for the U.S. authority that handles the MLA (U.S. Depart-

40 ADVANCES IN DIGITAL FORENSICS VI

ment of Justice (USDoJ)) to search the WSP in the United States and
seize the relevant information (including the e-mails) on behalf of the
Hong Kong Department of Justice (HKDoJ). Under MLA, the USDoJ
obtains the registration details and e-mail messages belonging to the
suspect and sends the information to the HKDoJ, who then passes it to
the requesting law enforcement agency.

The MLA arrangement is feasible but slow – standard MLA proce-
dures may take weeks, if not months, to complete. During this time, it
is very likely that the digital evidence and possibly the suspect himself
have vanished. The suspect, who normally can only be detained up to
48 hours after his arrest, would have been released long ago and could
use any Internet-ready computer to delete all the evidence in his web-
mail account. Even if the suspect was charged and remanded in prison,
he could arrange for someone else to access his account and delete his
e-mails. The suspect would be confident that, by the time the MLA
procedures are completed, his deleted e-mails would have been gone for
weeks or even months and would not be recoverable. The point is that
no matter how efficient MLA procedures are, law enforcement agents
can never be sure that they will be able to seize digital evidence stored
outside their jurisdiction [1].

Is there any way that the e-mail contents stored overseas can be ac-
quired accurately and with speed so that the evidence is not lost?

3.2 Direct Method

The direct method is to access the suspect’s webmail account in the
United States simply by clicking the “Enter” key on the keyboard. Hav-
ing accessed the webmail account, all of the suspect’s e-mail messages
can be downloaded to his computer in Hong Kong so that they come un-
der Hong Kong jurisdiction. Does the local search warrant empower the
law enforcement agent in Hong Kong to access digital evidence stored
overseas via the Internet?

The answer is in the negative. Before the “Enter” key is depressed and
the e-mail messages are downloaded, the messages are still in the United
States. The messages would not have been delivered to the suspect’s
computer in Hong Kong had the download request not been made. As a
result, the digital evidence obtained by the law enforcement agent can be
regarded as illegally obtained and subject to challenge in court. Could
hitting “Enter” on the keyboard and clicking the mouse a few times have
such an impact?

The answer is in the affirmative. It is similar to a situation where
law enforcement agents execute a search warrant on a subsidiary office

Wang 41

in a different location from the main office. During their search, the
agents discover that the subsidiary has a computer network that links
to the main office. If a piece of digital evidence stored on the server of
the main office is accessible via the computer network at the subsidiary,
what should the agents do? Of course, they should apply for another
search warrant to search the main office. The first search warrant does
not empower them to obtain digital evidence stored in the main office.
As a result, it is unlikely that a local search warrant in Hong Kong would
permit an agent to search and seize e-mail messages stored overseas.

Johnson and Post [14] argue that the emergence of the Internet has
destroyed not only the power of a government to regulate online behavior
but also the legitimacy of a sovereign to “regulate global phenomena.”
The USDoJ [18] admits that although digital evidence seized remotely
from one district to another district may be admitted by U.S. courts,
it is a different matter altogether when the evidence is located outside
the United States; moreover, remotely searching data stored outside
the country is a complicated matter. Clearly, the USDoJ has some
reservations regarding the validity of remote cross-border searches.

Graham [12] comments that for certain cyber crimes, such as child
pornography and hate speech, an international enforcement jurisdiction
is justified. Dauterman [7] argues that a state can assert “reasonable
jurisdiction” over a person who commits an offense outside the state as
long as it causes harmful effects in the state and if there is a substan-
tial connection between the person and the state, the latter should be
reasonable to claim extraterritorial jurisdiction. The Arkansas v. Kir-
wan case [16] demonstrates that U.S. courts could claim jurisdiction as
long as a suspect’s conduct or the result of his conduct occurred within
the state. Nevertheless, it is doubtful that the e-mail content in our
scenario fulfills any of the requirements for extraterritorial jurisdiction.
This is because the offense involved is not a universal crime. Also, even
if the suspect has a substantial connection with Hong Kong, it would
be hard to prove that storing e-mail overseas causes harmful effects in
Hong Kong. Hiding criminal evidence may have a harmful effect on the
case, but not to the Hong Kong public.

Some U.S. legal scholars favor remote cross-border searches. There is
a view that countries like the U.S. long for the unilateral power of remote
cross-border searches without assistance from or even the acknowledge-
ment of the country where the data is stored [1]. The United States
v. Gorshkov [3] and United States v. Ivanov [19] cases show that, when
the need arises, U.S. courts are willing to try overseas cyber criminals
even though they were not in a U.S. jurisdiction when they commit-
ted their crimes, and the courts may admit the digital evidence even if

42 ADVANCES IN DIGITAL FORENSICS VI

it is obtained by a unilateral remote cross-border search [4]. Although
these two cases were successfully prosecuted, there is a comment that the
Gorshkov case cannot give the “conceptual basis” for the legal issue of
cross-border search and seizure because it implies that any country that
suffers a crime originating from another country can invade the coun-
try’s sovereignty by remotely searching and seizing property physically
located in that country [4]. Also, there is the possibility that the coun-
try that suffered the remote cross-border search could retaliate. In fact,
Russia’s Federal Security Service brought criminal proceedings against
the FBI agent in the Gorshkov case who was responsible for accessing
the computers in Russia [5].

Based on the cases cited, it appears that the U.S. judiciary has never
denied the possibility of extraterritorial jurisdiction; thus, the validity
of remote cross-border search may not face many legal challenges in the
United States. Goldsmith [9] even argues that cross-border search is a
necessary tool against cyber crime, that there are precedents, and that
it is inevitable in order to accommodate new technology. On the other
hand, Brenner and Schwerha [4] maintain that it is not clear if U.S. law
enforcement agents can “lawfully” use computers in the United States
to seize digital evidence stored overseas. They also state that the only
certainty is that an agent who has conducted such a seizure can claim
that, because the digital evidence could be destroyed or moved, he had
to obtain the evidence quickly, possibly even without a search warrant
[4]. Of course, it is up to the court to accept this claim.

The 2001 Cybercrime Act of Australia grants power to law enforce-
ment agents to “operate electronic equipment at the warrant premises to
access data (including data not held at the premises)” if the data might
be relevant to the case and the equipment can be operated without dam-
aging it. This act appears to “legalize” remote cross-border searches in
other countries, but it does not say whether the Australian authority
allows other countries to do the same to computers on Australian soil.

It is important to note that legislation and arguments that favor re-
mote cross-border searches can lead to a situation where a law enforce-
ment agency in any country that has Internet connectivity would have
jurisdiction to lawfully access any data stored on the Internet. Such
a situation would likely result in chaos because every country could
claim legal jurisdiction to Internet servers around the world. This would
severely restrict the freedom of speech because no matter where a per-
son voices his views on the Internet he may have committed an offense
(usually political) in some part of the world. The irony is that many in
the United States claim that the Internet is an ideal place for freedom of
speech, but now it appears that any government in the world can control

Wang 43

any content on the Internet. In fact, if this were to be the case, the U.S.
would suffer because any law enforcement agency in the world – from
Canada, France, China, Peru, even Iran – could claim jurisdiction over
all U.S.-based servers with Internet connections.

In the international arena, law enforcement agents from one country
cannot exercise their power in the territory of a second country except
with the consent of the government of the second country [1]. Berman
[2] comments that a target state of a remote cross-border search may
feel that the extraterritorial investigations by other states threaten its
citizens and may, therefore, impose measures such as privacy protec-
tion to limit the scope of investigations or even bar the investigations.
In general, a unilateral remote cross-border search violates customary
international law [1].

Recognizing the problems associated with MLA, the Council of Eu-
rope has suggested various measures for the smooth transfer of digital
evidence between states. In 2001, the Council of Europe’s Convention on
Cybercrime [6] recommended that a speedy MLA such as fax or e-mail
should be used to facilitate the rapid preservation of digital evidence. Ar-
ticle 32 of the Convention on Cybercrime legalizes remote cross-border
searches of publicly-available data and other data with the consent of
the local authority. Nevertheless, the data in our scenario is not publicly
available and seeking WSP content may be fruitless. The WSP does not
have any legal obligation to comply with a request from overseas and the
WSP is not the owner of the data, so it may not even have the authority
to give consent to an overseas authority. Thus, it appears that Article
32 does not provide much assistance in our scenario.

Based on our analysis, the problems related to traditional MLA re-
main. The Hong Kong law enforcement agent may not unilaterally con-
duct a remote cross-border search on the suspect’s webmail account to
avoid the embarrassment that the evidence obtained is inadmissible be-
cause an offense was committed by the law enforcement agent during its
extraction [21].

Is there a better approach? We analyze the second scenario before
presenting two solutions.

4. Scenario 2

This scenario differs from the first scenario in that the law enforcement
agent has the username and password of the suspect’s webmail account.
But the problem is that the search warrant is not valid unless it has an
extraterritorial effect. Moreover, it is not feasible for the agent to apply
for another search warrant because there is nothing local to search.

44 ADVANCES IN DIGITAL FORENSICS VI

Conducting a remote cross-border search and seizure using the sus-
pect’s username and password is similar to using a key found in the
suspect’s premises to open the suspect’s safe deposit box in a bank. The
matter is more complicated if the safe deposit box is located overseas.
It is inconceivable that the law enforcement agent would travel to the
country where the deposit box is located, open the deposit box and bring
its contents back to Hong Kong. The agent does not have the power to
search and seize items in another country. Although it can be argued in
this scenario that the law enforcement agent has not left his jurisdiction
and is, therefore, not acting without authority, it is doubtful that the
evidence acquired via the Internet would be admissible in court.

5. Two Solutions

Based on the preceding analysis, we should recognize that, although
it is technically feasible to conduct a remote cross-border search and
seizure, it is an exception rather than a rule for the court to accept the
digital evidence. We present two solutions. Note that these solutions are
not related to the illegality of the contents (e.g., pornography or hate
speech) as in our hypothetical scenarios. Indeed, there is nothing wrong
with the e-mail content per se. It is just that the suspect has stored his
criminal evidence abroad hoping to take advantage of the jurisdictional
restrictions imposed on Hong Kong law enforcement.

5.1 Solution 1

The first solution involves duress, but it has been implemented. The
Bank of Nova Scotia case [17] demonstrates that, if necessary, U.S. courts
are willing to compel foreign banks with U.S. branches to produce bank
records held outside the United States that are subject to foreign ju-
risdiction. Similarly, a magistrate or judge in Hong Kong could issue a
local search warrant to search the Hong Kong subsidiary of the WSP (if
one exists), and compel it to produce information about the suspect’s
webmail account and the contents of all e-mail messages. The rationale
is that the webmail account, no matter where it is physically located, is
treated as a local webmail account. As long as the owner of the web-
mail account can access it in Hong Kong, courts would ignore where the
webmail account and its contents reside and compel the local subsidiary
of the WSP to disclose everything about the account.

Because the evidence is given by the Hong Kong subsidiary, it is
treated as evidence obtained locally, so the jurisdictional issue does not
arise. While this solution appears to eliminate the jurisdictional prob-
lem, the irony is that it turns a blind eye to the issue of extraterritorial

Wang 45

jurisdiction. As a result, multinational companies such as Yahoo or
Microsoft would suffer.

Another important point regarding this solution is that the country
that uses it must have strong economic bargaining power that would
force multinationals to comply; otherwise the companies could pull out
and move to a “friendlier” country. Nevertheless, this solution sets aside
the problem of extraterritorial jurisdiction and enables a local search
warrant to acquire digital evidence stored outside the jurisdiction.

5.2 Solution 2

The second solution attempts to strike a balance between speed and
jurisdictional issues; also, it emphasizes the integrity of evidence. In
this solution, the Hong Kong law enforcement agent may search and
seize the digital evidence immediately using the suspect’s computer or
using the information on the piece of paper that contains the suspect’s
webmail username and password. Having seized the evidence, the law
enforcement agent should contact the WSP in the United States by fax or
e-mail to request the immediate preservation of evidence in the suspect’s
webmail account pending MLA approval. Meanwhile, the agent should
issue a formal MLA request [20]. This solution is different from the one
described in Article 32 of the Convention on Cybercrime because it does
not require “lawful and voluntary consent” by the WSP. Note that the
WSP will only preserve the digital evidence; it will not surrender the
evidence to the Hong Kong agent until and unless ordered to do so by a
U.S. court under the MLA request.

This solution preserves digital evidence before it can be deleted. Of
course, if the evidence from the WSP is the same as that seized in
Hong Kong, the evidence from the WSP can be presented to the court
directly. However, in the unlikely event that the evidence from the WSP
is different from the evidence seized in Hong Kong, more weight should
be given to the evidence from the WSP.

This solution is attractive because it conforms with MLA practices.
Also, the evidence is preserved speedily and its integrity cannot be ques-
tioned because the preservation is done by the WSP, not by the Hong
Kong law enforcement agent.

6. Conclusions

The two solutions presented to overcome the shortcomings of a local
search warrant are far from perfect. As long as there are cross-border
searches on the Internet, there will be debates on how to maintain law
and order in cyberspace without infringing the jurisdiction of another

46 ADVANCES IN DIGITAL FORENSICS VI

country and the privacy of its citizens. While it is useful to consider
streamlining current legal procedures for acquiring digital evidence over-
seas, in the long term it is important to deal with this issue in the context
of MLA agreements. This means that countries may have to negotiate
and agree on joint cross-border searches over the Internet. Joint oper-
ations require good intelligence and coordination or they could lead to
disastrous consequence as in Operation Ore, where thousands of British
men were suspected of accessing child porn websites based on credit
card payments, when, in fact, some of them were victims of credit card
fraud [15]. The European Union provides a good example of transna-
tional cooperation. The European Union has established a border-free
travel zone based on its confidence in the border control procedures of its
member states [8]; similar confidence could be placed on its member law
enforcement agencies in conducting remote cross-border searches over
the Internet.

The emergence of cloud computing poses significant problems for law
enforcement agencies. If the WSP engages a cloud computing service
provider, its customer data could be stored in data servers around the
world. As a result, the law enforcement agent cannot recover any digi-
tal evidence from the suspect’s computer and from the WSP’s servers.
Even worse, the WSP would not know the exact physical location of the
suspect’s data.

Interestingly, our two solutions may work even better in a cloud com-
puting environment. In the first solution, since the exact physical lo-
cation of the suspect’s data is almost impossible to determine, the law
enforcement agent has a stronger justification to request the local sub-
sidiary of the WSP to produce the suspect’s data regardless of where
it is actually stored. In the second solution, the WSP has an urgent
need to preserve the suspect’s data pending MLA. Because the storage
of the suspect’s data is outside its control, the WSP has to take steps to
preserve the suspect’s data immediately or there would be no guarantee
that it could produce the suspect’s data when the court order arrives.

Countries must address the issue of remote cross-border searches be-
fore they encounter increasing numbers of unilateral remote cross-border
searches from other countries. If countries with advanced technology do
not take the initiative immediately, they may be forced to accept solu-
tions imposed by other countries.

References

[1] P. Bellia, Chasing bits across borders, University of Chicago Legal
Forum, vol. 2001, pp. 35–101, 2001.

Wang 47

[2] P. Berman, The globalization of jurisdiction, University of Penn-
sylvania Law Review, vol. 151, pp. 311–529, 2002.

[3] S. Brenner and B. Koops, Approaches to cybercrime jurisdiction,
Journal of High Technology Law, vol. 4(1), 2004.

[4] S. Brenner and J. Schwerha, Transnational evidence gathering and
local prosecution of international cybercrime, John Marshall Jour-
nal of Computer and International Law, vol. 20(3), pp. 347–395,
2002.

[5] M. Brunker, FBI agent charged with hacking, msnbc.com, New York
(www.msnbc.msn.com/id/3078784), August 15, 2002.

[6] Council of Europe, Convention on Cybercrime, ETS No. 185, Stras-
bourg, France (conventions.coe.int/Treaty/EN/Treaties/Html/185
.htm), 2001.

[7] W. Dauterman, Internet regulation: Foreign actors and local harms
– At the crossroads of pornography, hate speech and freedom of
expression, North Carolina Journal of International Law and Com-
mercial Regulation, vol. 28(1), pp. 177–203, 2002.

[8] Financial Times, Schengen at 24, London, UnitedKingdom (www
.ft.com/cms/s/bce06dec-af2f-11dc-880f-0000779fd2ac.html), Dece-
mber 20, 2007.

[9] J. Goldsmith, The Internet and the legitimacy of remote cross-
border searches, University of Chicago Legal Forum, vol. 2001, pp.
103–118, 2001.

[10] Government of the Hong Kong Special Administrative Region,
Computer Crimes Ordinance, Hong Kong (www.infosec.gov.hk
/english/ordinances/corresponding.html), 1993.

[11] Government of the Hong Kong Special Administrative Region, Mu-
tual Legal Assistance in Criminal Matters (United States of Ameri-
ca)Order, Chapter 525F, HongKong (www.legislation.gov.hk/blis
pdf.nsf/6799165D2FEE3FA94825755E0033E532/E002F63F30772E
D5482575EF0013F89F?OpenDocument&bt=0), 2000.

[12] W. Graham, Uncovering and eliminating child pornography rings on
the Internet: Issues regarding and avenues facilitating law enforce-
ment’s access to “Wonderland,” Detroit College of Law at Michigan
State University Law Review, vol. 2, pp. 457–484, 2000.

[13] M. Hirst, Jurisdiction and the Ambit of the Criminal Law, Oxford
University Press, Oxford, United Kingdom, 2003.

[14] D. Johnson and D. Post, Law and borders: The rise of law in cy-
berspace, Stanford Law Review, vol. 48(5), pp. 1367–1402, 1996.

48 ADVANCES IN DIGITAL FORENSICS VI

[15] S. Laville, Legal challenge to web child abuse inquiry, guardian
.co.uk, London, United Kingdom (www.guardian.co.uk/uk/2009
/jul/02/web-child-abuse-inquiry-challenge), July 2, 2009.

[16] Supreme Court of Arkansas, Kirwan v. State of Arkansas, South
Western Reporter (Third Series), vol. 96, pp. 724–731, 2003.

[17] U.S. Court of Appeals (Eleventh Circuit), United States v. Bank of
Nova Scotia, Federal Reporter (Second Series), vol. 740, pp. 817–
832, 1984.

[18] U.S. Department of Justice, Searching and Seizing Computers and
Obtaining Electronic Evidence in Criminal Investigations, Office
of Legal Education, Executive Office for United States Attorneys,
Washington, DC (www.justice.gov/criminal/cybercrime/ssmanual
/ssmanual2009.pdf), 2009.

[19] U.S. District Court (District of Connecticut), United States v.
Ivanov, Federal Supplement (Second Series), vol. 175, pp. 367–375,
2001.

[20] U.S. Government, Title 18, Section 2703, United States Code An-
notated, Cumulative Annual Pocket Part, pp. 87–93, 2009.

[21] E. Wilding, Computer Evidence: A Forensic Investigation Hand-
book, Sweet and Maxwell, London, United Kingdom, 1997.

Chapter 4

AN ANALYSIS OF THE GREEN DAM
YOUTH ESCORT SOFTWARE

Frankie Li, Hilton Chan, Kam-Pui Chow and Pierre Lai

Abstract According to official Chinese media sources, the Green Dam Youth Es-
cort (GDYE) software is intended to protect young citizens from view-
ing unhealthy information on the Internet. However, critics maintain
that GDYE has serious security vulnerabilities that allow hackers to
take control of computers installed with GDYE. Critics also claim that
the software is designed to collect user data and keystrokes for trans-
mission to remote servers for unknown purposes. GDYE was originally
mandated to be pre-installed on every computer sold in the People’s Re-
public of China. However, the plan was suddenly shelved in the face of
intense international media attention. This paper evaluates the GDYE
software’s advertised functions and additional non-advertised capabili-
ties. As the software may have spyware and malware functionality, the
evaluation monitored the software behavior in a specialized controlled
environment. The analysis was performed from a forensics perspective
to collect digital evidence and traces in order to prove or disprove that
GDYE captures and disseminates private information.

Keywords: Green Dam Youth Escort, analysis, forensic perspective

1. Introduction

Green Dam Youth Escort (GDYE) is an Internet filtering software
developed in the People’s Republic of China. According to a June 20,
2009 article in CaiJing Magazine, GDYE is designed to filter unhealthy
information, control surfing time and restrict Internet gaming by Chinese
children and youth. With the help of GDYE, parents may view web
access logs and screen snapshots.

Under a directive from the Chinese Ministry of Industry and Infor-
mation Technology (MIIT), GDYE had to be pre-installed on the hard
disk and be stored in the recovery partition and on the recovery CD

K.-P. Chow, S. Shenoi (Eds.): Advances in Digital ForensicsVI, IFIPAICT 337, pp. 49–62, 2010.
c© IFIP International Federation for Information Processing 2010

50 ADVANCES IN DIGITAL FORENSICS VI

of every personal computer sold in Mainland China on or after July 1,
2009. However, on June 30, 2009, just one day before the deadline, MIIT
announced that the mandatory installation of GDYE was postponed to
an undetermined date for unspecified reasons.

Starting on July 1, 2009, GDYE was available for download free-of-
charge, and was installed on computers in schools, Internet cafes and
public locations [8]. According to the China Daily News [4], an MIIT
official indicated that the government would definitely carry out its “di-
rective” regarding GDYE, and it was just a matter of time. On August
13, 2009, the Head of MIIT disclosed to the media that GDYE was un-
dergoing a bug fixing process and the plan would be implemented after
considering comments from the public. He also disclosed that the option
of using a better software system had not been rejected outright.

Since its initial introduction to the public, GDYE has received mixed
reactions, both positive and negative, from various entities. One of
GDYE’s principal goals was to control the access of unhealthy infor-
mation by Chinese children. However, many individuals are concerned
that the government-backed software was created with a hidden agenda
to control the flow of information and to restrict the Chinese people from
accessing “inappropriate” information on the Internet.

In the light of GDYE’s development history and strong government
support, it is likely that the software or another similar system will be
forced on the public in the near future. However, the questions concern-
ing the leakage of personal information, governmental surveillance and
hidden filtering have not been answered. This paper attempts to verify
if the software provides special censorship and spying functions that may
be used to monitor an individual’s online activities.

2. Background

Under an MIIT directive, Zhengzhou Jinhui Computer System Engi-
neering Company (Jinhui) and Beijing Dazheng Human Language Tech-
nology Academy (Dazheng) were selected to develop Internet filtering
software for MIIT. Project managers from these two companies were
subsequently tasked with developing GDYE.

The official websites of Jinhui [7] and Dazheng [5] indicate that the
two companies are linked to the Chinese Academy of Sciences, the largest
government-funded science and technology research center in China. Jin-
hui identifies itself as an expert in the area of identifying and filtering
pornographic images from the Internet and states that it developed a
system that can filter unhealthy images or collect “evidence” from cel-

Li, Chan, Chow & Lai 51

lular networks. As such, Jinhui was responsible for providing technical
expertise related to the image filtering function of GDYE.

Dazheng is a spin-off of the Institute of Acoustics of the Chinese
Academy of Sciences. The company website discloses that it invented
the notion of a “hierarchical network of concepts” that supports the
translation and filtering of Chinese-language messages from computer
networks and the Internet. Dazheng is believed to have been respon-
sible for designing and implementing the text filtering function of the
GDYE software.

3. Related Work

An analysis of GDYE was released on June 11, 2009 by researchers
from the University of Michigan, and an update was published seven
days later. The report [10] included the following key findings:

GDYE contains serious security vulnerabilities due to program-
ming errors that potentially enable websites visited by the user
to exploit these problems and seize control of the computer, steal
private data, send spam or incorporate the computer in a botnet.

The GDYE blacklist update process potentially allows the develop-
ers, or any third-party impersonating them, to execute malicious
code during the filter update.

The blacklists are taken from CyberSitter and GDYE contains code
libraries from OpenCV, an open source image recognition system.

On June 13, 2009, a GDYE update (Version 3.17) was released that
supposedly addressed the original web filtering security vulnerability,
disabled the blacklists that were copied from CyberSitter, and brought
the software into compliance with the OpenCV license. However, a new
filtering vulnerability was found. On June 18, 2009, researchers with
the Professional Information Security Association (PISA) of Hong Kong
demonstrated the re-engineered results of certain binaries of GDYE [11].
Their key findings were:

The existence of false positive and false negative errors for the URL
filtering and pornographic image filtering functions of GDYE.

GDYE forces certain running processes to close, including Inter-
net Explorer and Microsoft Word and Notepad, when politically-
sensitive text (e.g., “June 4 Massacre”) is entered.

Screen snapshots are saved every three minutes by default and the
saved information may disclose sensitive information (e.g., details

52 ADVANCES IN DIGITAL FORENSICS VI

of online banking sessions, decrypted messages and private com-
munications) to the GDYE administrator.

Faris, Roberts and Wang of the OpenNet Initiative [6] performed a de-
tailed evaluation of the filtering functions by analyzing surfing activities
involving Internet Explorer under different versions of GDYE. The goal
of the evaluation was “to investigate, expose and analyze Internet filter-
ing and surveillance practices in a credible and non-partisan fashion.”
Their key findings were:

GDYE places intrusive controls and actively monitors individual
computer behavior by installing components deep in the kernel.

GDYE provides more functionality than is necessary to protect
children online and it subjects users to security risks. GDYE could
be used to monitor personal communications and Internet brows-
ing behavior by logging it on the local machine.

The GDYE implementation for individual computers represents
a shift in the filtering strategy to distribute control mechanisms
in client-side software in order to offload the burden of sorting
through content to individual machines on a network.

The possibility of personal information leaks could be high (how-
ever, the OpenNet Initiative evaluation did not confirm that per-
sonal information was being gathered in a central location).

A report by unknown Mainland Chinese researchers [2] indicates that
twelve folders and 110 files are created or added to the file system dur-
ing GDYE installation. After the system is rebooted, four processes and
one driver are started and loaded. The process XNet2.exe attempts to
contact two IP addresses, 211.161.1.134 and 203.171.236.231, for
unknown reasons. Furthermore, the file XNet2 lang.ini contains the
words “AOption0 1117 = (Upon discovery of harmful information, re-
port automatically to Jinhui Corporation).” This implies that GDYE
is capable of sending private information for unknown purposes. GDYE
monitors a number of instant messaging applications (e.g., wow.exe,
yahoomessenger.exe, wangwang.exe and qq.exe) by creating handles
using inject.dll for Internet Explorer with the clear purpose of col-
lecting private user information. The report further reveals that GDYE
monitors TCP and UDP ports to prevent proxy connections if the Free-
Gate proxy is used.

Another report [1] discovered that all installation paths of GDYE
are contained in the setup file xstrings.s2g. After the system is re-
booted, it loads mgtaki.sys (driver) and starts the execution of services

Li, Chan, Chow & Lai 53

such as MPSvcC.exe, Xnet2.exe and XDaemon.exe. The XNet2.exe

and gn.exe processes are protected to prevent the live deletion of the
files. The kwpwf.dll file contains the MD5 hash of the admin password,
and the magic password 7895123 was found to allow administrative lo-
gin. The report also noted that the files cximage.dll, CImage.dll,
xcore.dll, Xcv.dll and XFImage.xml are from OpenCV; and the files
HncEng.exe, HncEngPS.dll, SentenceObj.dll and FalunWord.llb are
from Dazheng. Some applications were found to be monitored upon
checking the strings information in injlib.exe. Finally, when a user
surfs the Internet, all content is filtered by WinSock 2 SPI.

Several critics have argued that by applying the blacklist and text
filtering functions, GDYE can: (i) filter unwanted political information,
including text and images; (ii) act as a tool for the “cyberpolice” to
obtain digital evidence of crimes for possible prosecution; and (iii) collect
private information from the users, including (but not limited to) web
surfing activities and keystrokes, and secretly send the information to
certain IP addresses for unknown reasons.

The reviews and reports described above describe the functionality
and technical aspects of GDYE. Some of the unconfirmed findings are
important, especially the suggestion that GDYE can hide itself in the
kernel to open a secret channel that sends private information to certain
IP addresses. In view of these and other hidden functions, we treated
GDYE as spyware or malware and analyzed it in a controlled environ-
ment.

Our work focused on the technical aspects of GDYE and on validating
its functionality and behavior while ignoring the political and social
rhetoric. In particular, we used digital forensic and reverse engineering
tools to scientifically test the hypotheses that (i) using GDYE can result
in the loss of private information; and (ii) GDYE is designed to collect
private information from users and provide the collected information to
centralized servers for unknown purposes.

4. GDYE Analysis

Our objective was to study GDYE’s censorship and spying functions.
After June 9, 2009, several updates of the GDYE Version 3.17 software
were released within a short period of time, supposedly to address the
problems pointed out by critics. Due to the presence of multiple GDYE
Version 3.17 packages, it is possible that the results presented here may
not be reproducible in other packages.

This section describes our analysis of the installation and behavior of
GDYE. Installation analysis involved the identification of all the changes

54 ADVANCES IN DIGITAL FORENSICS VI

Table 1. MD5 and SHA-1 values for the two GDYE versions.

Version Function Hash Value

3.17 000 MD5 d31aa54dcc339ecdee300c35107f2555

3.17 000 SHA-1 4aaa6cec69b4dfd952eda3512a0b45c1f34a0f7c

3.17 001 MD5 548c2d2cf32d50a47c69faa8a7640258

3.17 001 SHA-1 ee93d0ead4982b53d489b4766d6f96e7618fcd6e

made to the system during the installation of an official copy of GDYE
in the testing environment. Behavioral analysis involved the study of the
dynamic behavior of GDYE with emphasis on its supposed censorship
and spying functions.

4.1 Installation Analysis

This section describes our GDYE installation procedures and the re-
sults of the installation analysis.

GDYE Software Versions GDYE Version 3.17 was the first one
analyzed by the public. As mentioned above, a number of problems were
reported [10]. Version 3.17 was then removed from the official website
and was no longer available for public download. For our evaluation,
we obtained the original GDYE Version 3.17 (v. 3.17 000) from a PISA
member in Hong Kong. We also evaluated an updated version of GDYE
(v. 3.17 001), which we downloaded from the official web site on June
19, 2009.

Upon checking the MAC times and file sizes under file properties, we
discovered that v. 3.17 000 with a size of 10,355,637 bytes was modified
and accessed on Tuesday, June 9, 2009 at 11:55:10 am. On the other
hand, v. 3.17 001 with a size of 10,200,230 bytes was modified and ac-
cessed on Saturday, June 13, 2009 at 8:02:38 am. Following standard
digital forensic procedures, we calculated the MD5 and SHA-1 hash val-
ues for the two GDYE versions (Table 1) and saved them for future
reference.

Analysis Environment We set up a specialized, controlled malware
analysis environment to test the installation and monitor the behavior
of GDYE. The laboratory environment, shown in Figure 1, used the ma-
licious Windows executable (MWC2008) [3]. The Linux version Ubuntu
2.6.28-11-server was used in the Safegate.

The iptables configuration was set to allow DNS to pass through to
the Safegate. For Bind9, the query logging functionality was added

Li, Chan, Chow & Lai 55

Bind9: 10.0.0.1:53
Squid: 10.0.0.1:80
IRCD:10.0.0.1:6667

10.0.0.210.0.0.1

Figure 1. GDYE analysis environment.

to the named.conf configuration file. Windows XP SP2 was installed
on the GDYE machine without additional patches. Several monitoring
and analytical tools, including Autoruns, RegShot and Wireshark, were
installed.

Changes During Installation Upon using the RegShot and Au-
toruns tools, we discovered that the installation process added and mod-
ified some Windows registry entries and added files to the %WinDir%
folder for XP at C:\Windows and to the %WinSysDir% folder for XP
at C:\Windows\system32. By removing some of the prefdata files (i.e.,
temporary performance-related files created by the Windows system dur-
ing installation), temporary files and some other unimportant files (e.g.,
screen files and temporary logs), we found that v. 3.17 000 added 119
files to the system while v. 3.17 001 added 84 files.

An analysis of the Windows registry revealed that both GDYE ver-
sions added and modified the same registry keys and values, which
allow the automatic loading of the driver (mgtaki.sys) and services
(MPSvcC.exe and Hnceng.exe). GDYE also modified the registry key
with a filter called dbfilter.dll (HKLM\System\CCS\Services\Win
Sock2\Parameters\Protocol Catalog9\Catalog Entries). This registry
key is frequently used by spyware and malware of WinSock hijackers,
which is referred to as the Layered Service Provider (LSP) [9]. It is well
known that if LSP is not registered properly or if the LSP is buggy, the
WinSock catalog in the registry could be corrupted and the computer
would no longer be able to access a network. This could be the reason
why some GDYE users claim that they lose their Internet connections
after unloading the software.

Upon checking the setup file xstrings.s2g in the C:\Windows folder
with a text editor, we found all the installation paths used by GDYE,
which was consistent with the findings in [1]. When we analyzed the bi-

56 ADVANCES IN DIGITAL FORENSICS VI

Table 2. Modified files.

Name Version Modified Time Created Time Size

adwapp.dat 3.17 000 4/27/09 6:26:08 am 4/27/09 6:26:08 am 223,572
adwapp.dat 3.17 001 6/10/09 1:33:26 am 6/10/09 1:33:26 am 223,674
dbfilter.dll 3.17 000 5/22/09 12:47:38 am 5/22/09 12:47:38 am 57,344
dbfilter.dll 3.17 001 6/9/09 8:57:06 pm 6/9/09 8:57:06 pm 57,344
FalunWord.lib 3.17 000 5/12/09 3:36:14 am 5/12/09 3:36:14 am 5,564,613
FalunWord.lib 3.17 001 6/12/09 7:18:36 am 6/12/09 7:18:36 am 5,564,271
HncStdRun.ini 3.17 000 7/19/09 10:43:05 am 7/19/09 10:43:05 am 22
HncStdRun.ini 3.17 001 8/2/09 7:18:36 am 8/2/09 7:18:36 am 22
Surfgd.dll 3.17 000 4/24/09 2:59:36 am 4/24/09 2:59:36 am 126,976
Surfgd.dll 3.17 001 6/13/09 6:26:32 am 6/13/09 6:26:32 am 131,072
XNet2.exe 3.17 000 5/22/09 5:01:48 am 5/22/09 5:01:48 am 667,648
XNet2.exe 3.17 001 6/13/09 7:02:28 am 6/13/09 7:02:28 am 667,648
xnet2 lang.ini 3.17 000 7/19/09 11:00:17 am 7/19/09 11:00:17 am 7,748
xnet2 lang.ini 3.17 001 8/2/09 7:18:34 am 8/2/09 7:18:34 am 6,842

naries using IDA Pro, we discovered that XDaemon.exe and gn.exe were
not started by the operating system, but by the main process Xnet2.exe.

GDYE Version Comparison As mentioned above, a new version
of GDYE (v. 3.17 001) was released soon after the first version (v.
3.17 000). The main problems addressed in the new release include
the web filtering security vulnerability, the blacklists copied from the
CyberSitter program, and the OpenCV license violation. The HashMy-
Files tool was used to identify the files that were updated and removed
between the two versions. Our analysis revealed that seven files were
modified (Table 2) and 35 data files were removed.

Upon checking the modification times of the files, we discovered that
the majority of the changes were made between June 9, 2009 and June
13, 2009. The timing of these changes is a strong indicator that the
software was modified in response to the public criticism after GDYE’s
initial release.

To verify the assumption that the removed files were copied from
CyberSitter, we conducted an analysis of the data files after applying
decoding scripts. We discovered that all the data files that were elim-
inated in the new version – except for xwordh.dat, xwordl.dat and
xwordm.dat – were associated with CyberSitter [10].

4.2 Behavioral Analysis

This section describes our GDYE behavioral analysis procedures and
the results of the analysis.

Li, Chan, Chow & Lai 57

Figure 2. Configuration page.

Filtering GDYE provides three types of filtering functionality: (i)
website filtering based on URLs; (ii) image filtering; and (iii) text filter-
ing. It filters most of the popular pornographic and obscene websites
(e.g., www.playboy.com, www.sex.com and www.angelteen.com). How-
ever, the software administrator can access the configuration page (Fig-
ure 2) and add URLs to the whitelist and override the blacklisted URLs.
In most cases, the web browser does not display HTML status codes and
messages to indicate that a blacklisted URL has been blocked.

GDYE is designed to filter pornographic images. We observed false
positive and false negative errors, but no meaningful statistics were ob-
tained with respect to filtering performance. Nevertheless, we discovered
that GDYE tends to filter pornographic images that contain light flesh
tones rather than dark flesh tones. The software administrator may turn
off the image filter function in the configuration page.

GDYE also filtered politically-sensitive phrases such as “June 4 Mas-
sacre,” “Falun Gong,” “Master Li Hongzhi” and “Evil Jiang.” When
these phrases or others are typed into Microsoft Word or Notepad,
GDYE kills the process, which forces the application to crash, caus-
ing unsaved work to be lost. We discovered that the time taken for the
applications to crash is relatively unpredictable. In some cases, the appli-
cation does not close immediately after the politically-sensitive phrases
are typed, but may close at some point in the future. Note also that the

58 ADVANCES IN DIGITAL FORENSICS VI

software administrator is unable to access, modify or delete the black-
listed terms.

GDYE also force-closed Internet games such as Warcraft at various
stages of game initialization. The software administrator may use the
configuration page to restrict Internet connections during specific time
periods.

Version Update The software administrator may use the configura-
tion page to manually start the GDYE update process. The DNS query
logs indicate that the official GDYE website was accessed during the
update process. Wireshark logs showed that the files kwdata.dat and
winet.dll were downloaded.

After performing the download, the update process starts automati-
cally and asks for permission to reboot the system. We discovered that
the system did not modify or create new keys/values in the Windows
registry. Also, several files were modified or removed when updating
GDYE v. 3.17 000 to GDYE v. 3.17 001.

Uninstallation An uninstallation option is not provided under the
Windows control panel. However, the software administrator may use
the configuration page to “unload” the software. Most of the files
and folders are removed during uninstallation, except for the driver file
mgtaki.sys and two folders at C:\Windows\snap and C:\Windows\log.
The Internet can be accessed in a normal manner after uninstallation,
which indicates that the WinSock SPI registry was handled properly by
the uninstallation process.

Spyware and Malware Behavior Additional testing of the malware
and logging functionality was performed usingWireshark, FileMon, Reg-
mon and TCPView. The following results were obtained:

Snapshots: GDYE creates screen snapshots in JPEG format ev-
ery three minutes by default. The snapshot files are saved in the
folder C:\Windows\snap. Interestingly, no files are displayed when
viewing this folder using Windows Explorer, but issuing a dir

command under the command prompt will display all the JPEG
files. However, if the files are copied to another folder under the
command prompt, Windows Explorer can display them without
difficulty. All the JPEG files are removed when GDYE is unin-
stalled.

Logging: Log files are stored in plain text format in the folder
C:\Windows\log. As with the snapshots folder, no information is

Li, Chan, Chow & Lai 59

Figure 3. Standard image displayed when something is filtered.

displayed by Windows Explorer, but the command prompt can be
used to copy and display the log files. Also, the files can be viewed
using Windows Explorer when they are copied to another folder.
However, the log files are removed when GDYE is uninstalled.

Pop-Ups: GDYE does not generate unwanted pop-ups. In some
cases, however, GDYE displays the standard image shown in Fig-
ure 3 when text is filtered.

URL and Text Filtering: GDYE performs its filtering functions
through a WinSock SPI using the dbfilter.dll file. It does not
display filtered information, but instead displays a normal HTTP
message code (402) or performs a TCP reset to the accessing server
without sending a message to the browser client. Thus, the user is
not notified when an accessed URL has been filtered by GDYE.

Connections to External IP Addresses: Wireshark was used
to monitor TCP packets for four 24-hour periods. No Internet ac-
tivities were seen, except for time synchronization UDP packets
sent to the NIST time servers. Also, no obvious Internet transmis-
sions were discovered during the test periods. However, two sus-
picious IP addresses, 211.161.1.134 and 203.171.236.231, were
found when decoding XNet2.exewith IDA Pro. Program messages
reading “Preparing to registerK” were found a few bytes after the

60 ADVANCES IN DIGITAL FORENSICS VI

IP address 211.161.1.134, and the message “Report successful”
was found two jump blocks after the IP address 203.171.236.231.
Additional tests were performed to check if any actions triggered
these two sections of codes, but no network activity related to these
IP addresses was discerned in the Wireshark captures.

Keystroke Logging: Upon monitoring the FileMon logs and
comparing the changes at different time periods using RegShot,
no key logging files were discovered and no files appeared to have
been created.

Software Uninstallation: An uninstall option is not provided
in the control panel or under the program menu. However, GDYE
can be uninstalled from the configuration page by the software
administrator. As mentioned above, some folders and files remain
in the file system after uninstallation. In addition, one driver was
left in the file system.

Killing Processes: Similar to normal malware, the key processes
XNet2.exe, XDaemon.exe and gn.exe are protected by handles
pointed to each other. When one process is killed, one of the other
processes starts up and spawns the killed process as a sub-process.

File Modification: No files were modified in a stealthy manner
during our tests.

Vulnerabilities and Exploits Internet Explorer crashed when the
system running GDYE was tested against two web filtering vulnera-
bilities. Two exploit scripts, “Green Dam 3.17 (URL) Remote Buffer
Overflow Exploit (XP/SP2)” and “Green Dam Remote Change System
Time Exploit,” were also tested. The first exploit caused Internet Ex-
plorer on the system running GDYE v. 3.17 000 to crash and calc.exe

to be executed. The second exploit changed the time on the system.

5. Conclusions

Our analysis of GDYE has confirmed most of the concerns about
its filtering functions. Our reverse engineering studies indicate that the
text filtering function, which is monitored by injlib32.dll, force-closes
certain applications when blacklisted text is entered; as a result, data
loss is unavoidable.

GDYE maintains snapshots and web surfing logs. Any user with the
appropriate system permissions can access the information contained in
the snapshots and web surfing logs via the command prompt. The web
surfing logs are retained in the system folder even after uninstallation.

Li, Chan, Chow & Lai 61

Also, an individual who knows the magic password can access these logs
“legitimately” via the configuration page. While a digital forensic exam-
iner would be delighted to access these logs during an investigation, this
aspect of GDYE raises significant privacy concerns. A system running
GDYE appears to be vulnerable to custom scripts that inject shell code
or exploits, which could incorporate the system in a botnet. Thus, the
first hypothesis is proven to be true – GDYE will lead to loss of private
information.

However, our tests did not find any evidence of keystroke logging or
instances of GDYE transmitting information surreptitiously over the In-
ternet. Although two IP addresses were found in the binary XNNet2.exe,
no obvious TCP or UDP connections were established to these addresses
during our tests. The mere presence of IP addresses in a binary does
not necessarily imply that a malicious act was intended. Therefore, our
tests do not confirm the critics’ concerns that GDYE is designed to col-
lect private information from users and pass it on to centralized servers
for unknown purposes. Thus, the second hypothesis must be rejected.
Nevertheless, we cannot rule out the possibility that the software will
not be modified in the future to implement the collection and forwarding
of private information.

References

[1] Anonymous, A technical analysis of the Green Dam Youth Es-
cort software (docs.google.com/View?id=afk7vnz54wt 12f8jzj9gw),
2009.

[2] Anonymous, Green Dam Youth Escort Testing Report (www.mei
rendaddy.com/blog/?p=404), 2009.

[3] E. Bastuz, Malware Challenge 2008: Behavioral analysis of a ma-
licious Windows executable (www.emre.de/wiki/index.php/MWC
2008), 2008.

[4] J. Cui, X. Wang and X. Cui, Plug not pulled on Green Dam,
China Daily, Beijing, China (www.chinadaily.com.cn/china/2009-
07/02/content 8344967.htm), July 2, 2009.

[5] Dazheng, About Dazheng, Beijing, China (hncit.com/about us
.html).

[6] R. Faris, H. Roberts and S. Wang, China’s Green Dam: The im-
plications of government control encroaching on the home PC,
Bulletin, OpenNet Initiative, Oxford, United Kingdom (open-
net.net/sites/opennet.net/files/GreenDam bulletin.pdf), 2009.

62 ADVANCES IN DIGITAL FORENSICS VI

[7] Jin Hui, About Jin Hui, Zhengzhou, China (www.zzjinhui.com
/qyjj.html).

[8] Ministry of Industry and Technology, MITT announcement, Bei-
jing, China (www.miit.gov.cn/n11293472/n11293832/n11293907
/n11368223/12433840.html), June 30, 2009.

[9] H. Wei, J. Ohlund and B. Butterklee, Unraveling the mysteries of
writing a WinSock 2 Layered Service Provider, Microsoft Systems
Journal (www.microsoft.com/msj/0599/LayeredService/LayeredSe
rvice.aspx), 2009.

[10] S. Wolchok, R. Yao and J. Halderman, Analysis of the Green
Dam censorware system, Revision 2.41, Computer Science and En-
gineering Division, University of Michigan, Ann Arbor, Michigan
(www.cse.umich.edu/∼halderm/pub/gd), 2009.

[11] S. Young, A. Lai, I. Mao, C. Mok, T. Tsang and F. Li, Dissec-
tion of Green Dam, presented to the Professional Internet Security
Association, Hong Kong, 2009.

II

FORENSIC TECHNIQUES

Chapter 5

FORENSIC ANALYSIS OF A
PLAYSTATION 3 CONSOLE

Scott Conrad, Greg Dorn and Philip Craiger

Abstract The Sony PlayStation 3 (PS3) is a powerful gaming console that sup-
ports Internet-related activities, local file storage and the playing of
Blu-ray movies. The PS3 also allows users to partition and install a
secondary operating system on the hard drive. This “desktop-like” func-
tionality along with the encryption of the primary hard drive containing
the gaming software raises significant issues related to the forensic anal-
ysis of PS3 systems. This paper discusses the PS3 architecture and
behavior, and provides recommendations for conducting forensic inves-
tigations of PS3 systems.

Keywords: Sony PlayStation 3, gaming console, forensic analysis

1. Introduction

The Sony PlayStation 3 (PS3) hit the Japanese and North American
retail markets in November 2006 (March 2007 in Europe) [13]. It is
estimated that 75 million consoles will be sold by 2010 [14]. The PS3
marked Sony’s entry into the seventh generation of game consoles, which
also includes the Nintendo Wii and Microsoft Xbox 360. These gaming
consoles possess many of the traits of an Internet-ready home computer;
all are designed with internal storage, on-board memory and multimedia
capabilities. Furthermore, many of the game consoles can run non-native
operating systems (typically Linux-based operating systems), providing
them with capabilities beyond those conceived by their manufacturers
[8, 10].

Because game consoles provide the same functionality as desktop com-
puters, it should come as no surprise that they have been used in the
commission of crimes. An example is the 2009 case of Anthony Scott
Oshea of Somerset, Kentucky, who was arrested and charged with pos-

K.-P. Chow, S. Shenoi (Eds.): Advances in Digital ForensicsVI, IFIPAICT 337, pp. 65–76, 2010.
c© IFIP International Federation for Information Processing 2010

66 ADVANCES IN DIGITAL FORENSICS VI

sessing child pornography [6]. Investigators discovered that Mr. Oshea’s
PS3 contained nude pictures of an 11-year-old girl from Houston, Texas;
he was eventually convicted of the child pornography charge.

This case and others underscore the need for forensically-sound proce-
dures for the imaging and forensic analysis of (seemingly benign) game
consoles with advanced capabilities. Other researchers have focused on
the forensic analysis of seventh generation game consoles, including the
Xbox [1, 17], Nintendo Wii [16] and PlayStation Portable [3]. The Xbox
console has similar functionality as the PS3. However, it lacks the ad-
vanced structure and security features of the PS3. Thus, the forensic
procedures developed for the Xbox have little, if any, applicability to
the PS3.

Another complication is that, unlike desktop computers, game con-
soles tend to vary greatly in their hardware and software components.
This makes it extremely difficult for most forensic examiners to analyze
game consoles. Indeed, as of late 2009, no published research exists
related to the forensic analysis of the PS3. This paper describes our re-
search on the PS3 system with a focus on developing forensically-sound
imaging and analysis procedures.

2. PlayStation 3 Architecture

The PS3 is the most technically advanced system in the seventh gen-
eration of gaming consoles [7]. From its initial release in 2006 to 2009,
there have been nine different PlayStation models. Each model differs in
the configuration of its USB ports, flash card readers, Super-Audio CD
support and hard drive size [11]. Each of these differences has poten-
tial implications for forensic analysis. The PS3 also incorporates several
advanced components, including a Blu-ray disc drive for movies and
games, an extremely powerful cell processor (CPU), and an Nvidia RSA
graphics processing unit (GPU) [11].

Interestingly, Sony engineers designed the PS3 to allow users to par-
tition the internal hard drive and install a secondary operating system
(OS) – typically a distribution of Linux [10] – as long as the OS is capa-
ble of supporting the PowerPC architecture. This feature is part of the
original design and does not require any modification of the device by
the user. In contrast, the Xbox and Wii have to be modified (hacked)
in order to install a different OS [5, 15]. Sony’s design rationale was
that users would desire this feature and providing it would discourage
users from modifying the PS3 console in a manner that would release
proprietary information or software.

Conrad, Dorn & Craiger 67

In general, a PS3 console may contain two operating systems: Sony’s
“Game OS” (native OS) and a second “Other OS” (non-native OS)
installed by the user. Note, however, that the PS3 design restricts the
size of the Other OS partition to either 10 GB or the difference between
the hard drive size and 10 GB [10]; access to certain components is also
limited. The ability to install a secondary operating system has been
eliminated in the latest (CECH-2000) version of the PS3 [9].

3. Impediments to Forensic Analysis

There are two main impediments to developing forensic procedures for
the PS3. First, the PS3 Game OS and file system are proprietary, and it
is unlikely that their technical details will be released. Second, security-
related measures, such as the mandatory encryption of the Game OS
partition, increase the difficulty of recovering evidence.

Some users have modified (hacked) gaming consoles such as the Xbox
and Wii [5, 15]; however, these consoles do not use encryption like the
PS3. The combination of hard drive encryption and proprietary OS and
file system make the task of decrypting a PS3 hard drive problematic,
if not impossible. As of late 2009, we know of no case involving the
modification of a PS3 system. However, the PS3 does not encrypt the
Other OS partition. This means that files located on the non-native OS
partition may be identified and recovered.

4. Test Methodology

The forensic tests were performed on an 80 GB CECHK PS3 model
purchased from a retail outlet. Several console models were investigated
to compare and contrast the results. No modifications of any kind were
made to the consoles. The other items used in the tests were a SATA
extension cable, an additional 2.5 inch 120 GB hard drive, a USB mouse
and a USB keyboard.

The PS3 was connected as stipulated in the instruction manual to an
LCD HDTV using an HDMI cable. Internet access was provided via a
Category 5 Ethernet cable connected to the Gigabit Ethernet port on
the PS3 and attached to the laboratory network. The Other OS was a
Ubuntu Linux Desktop v. 8.10. A Knoppix bootable CD was used to
zero out the hard drives prior to each test as an experimental control. A
Digital Intelligence UltraBlock write blocker was used during imaging.

4.1 Control Boot Test

The first test was conducted to determine if merely turning on (i.e.,
booting) the PS3 would write to the hard drive. A zeroed hard drive was

68 ADVANCES IN DIGITAL FORENSICS VI

set up using the PS3; the drive was then removed and imaged. Next,
the hard drive was placed back in the PS3 and the console powered
up. After approximately three minutes, the console was powered down
and the hard drive was removed and imaged. A hex editor was used to
compare the two hard drive images.

We found numerous differences between the two images. The differ-
ences appeared to occur randomly in block-sized chunks throughout the
image. However, they were more numerous towards the beginning of the
hard drive and much sparser farther down the drive. Thus, the console
writes to the hard drive every time it is powered up. From a forensic
standpoint, it is, therefore, important that the hard drive always be re-
moved and imaged using a write blocker. Of course, this is standard
operating procedure for traditional laptops and desktop computers.

4.2 Write Blocker Test

This test was conducted to determine if the PS3 software could be
executed when a write blocker is placed on the hard drive. The hard
drive was removed from the console and placed behind a write blocker.
The write blocker was then connected to the console and the system
powered up.

We discovered that the PS3 would power up, but not boot up. We
turned off the console and removed the write blocker, replacing it with a
bridge, the UltraDock Drive Dock (version 4), which would allow writing.
The PS3 was then able to power up, boot up and run normally.

The test results suggest that the console must be able to write to
the hard drive in order to boot properly (possibly a security measure
introduced by Sony). The results also show that the hard drive does not
have to be connected directly to the console in order for the PS3 to run.

4.3 Other OS Installation Test

This test was conducted to track the changes that occur to the hard
drive when Linux is installed in the Other OS (non-native) partition.
A zeroed hard drive was set up using the PS3, and then removed and
imaged. Next, the hard drive was inserted back into the PS3 and a
10 GB Other OS partition was created; Linux was immediately installed
on this new partition. The hard drive was then removed and imaged,
and the two images were compared using a hex editor.

We discovered that the start of the Linux partition is marked by a
standard partition table (searching for 0x00000055aa finds the partition
table). Also, as one would expect, the Other OS partition is located at
the end of the hard drive. The results suggest that the Linux (or other)

Conrad, Dorn & Craiger 69

OS is easily located because the Other OS partition and its partition
table are not encrypted.

4.4 Imaging over a Network Test

This test was conducted to determine if an unencrypted hard drive
image could be obtained. The PS3 was booted into Linux, and netcat (a
networking service for reading from and writing to network connections)
and dd (a program for low-level copying and conversion of raw data)
were used to create and copy a bit-for-bit image of the hard drive over
the network. Next, a second computer (Dell Optiplex 755) was booted
using a Knoppix Live CD. The fdisk command was used to identify
hard disk and partition information.

We discovered that the Linux OS is installed and runs in a partition
named ps3da. Furthermore, there are only three available partitions (all
Linux) with ps3da as the boot partition.

Next, netcat and dd were used to image the hard drive with the PS3
running under Linux. The bits were streamed over the network to the
Dell computer. The command used on the PS3 was:

dd if=/dev/ps3da | nc [ip address of lab computer] [port number]

The command used on the Dell computer was:

nc -l -p [port number] | [image name]

The PS3 was powered down after the imaging was completed, and
the hard drive was removed and imaged. Comparison of the two images
showed that the image obtained over the network is only of the Linux
partition and not of the entire drive. The test results suggest that the
Game OS partition is inaccessible from an OS running on the Other OS
partition.

4.5 Game OS Reinstallation Test

This test was conducted to identify the differences between two PS3
models, CECHK (2008) and CECHE (2007). Changes in the architec-
ture, functionality and behavior of a game console can have significant
implications with regard to forensic imaging and analysis. It is, there-
fore, very important to understand the differences across models.

For this test, the same user account was created on the two PS3s.
The hard drives in the two consoles were removed and zeroed, and then
replaced in their respective consoles. Upon powering up the systems, we
discovered that the newer CECHK model requires the hard drive to be
reformatted, the Game OS to be reinstalled and the user account to be
recreated (Figure 1). On the other hand, the older CECHE model only
requires the hard drive to be reformatted.

70 ADVANCES IN DIGITAL FORENSICS VI

Figure 1. Error message to reformat drive.

The results suggest that significant differences in PS3 architecture
and behavior may exist between models. Also, the OS and user data
are stored in different locations in different models. The newer CECHK
model stores data on the hard drive while the older CECHE model stores
data in memory on the motherboard.

4.6 Backup Utility Test

This test was conducted to determine what happens when the PS3
backup utility is used to backup the hard drive to a secondary location.
The built-in PS3 web browser was used to download several images and
bookmark several websites. A second external hard drive was zeroed
and formatted with the FAT32 file system. The external hard drive was
then connected to the PS3 via a USB port and the PS3 backup utility
was used to save the data from the PS3 to the FAT32 hard drive.

Our analysis revealed that the backup has a folder/file structure whose
size depends on the amount of data saved on the current hard drive.
The name of the folder in the backup is based on the date/time of the
backup (e.g., 200910201325). The files contained in the backup are titled
“archive” and numbered to differentiate between them; all the files have
the .dat extension corresponding to data files [4].

The external hard drive was subsequently imaged and examined us-
ing AccessData’s FTK suite (version 1.80). However, FTK was unable

Conrad, Dorn & Craiger 71

to identify or recover any images from the backup files. Next, a hex
editor was used to search for website URLs in the image, but none were
located. These results suggest that data cannot be manually recovered
from a PS3 backup file (at least for the model tested). It is possible
that this is because the backup files are encrypted like the hard drive.
Alternatively, the backup files may use a propriety format that only the
PS3 can decipher.

4.7 Hard Drive Swap Test 1

This test was performed to determine if the hard drives of two different
PS3 consoles (CECHK and CECHE models) can be swapped. A zeroed
hard drive was installed in the CECHK console, the system was powered
up and the hard drive was formatted using the PS3. The PS3 was then
shut down, and the newly formatted hard drive was removed from the
CECHK console and installed in the CECHE console. Although the
CECHE console did power up, it required the hard drive to be formatted
before use.

The test was then reversed. The CECHE console was used to format
a zeroed hard drive, which was installed in the CECHK console. Once
again, the hard drive had to be formatted before it could be used. The
results suggest that a PS3 checks that the hard drive belongs to the
specific console before it will boot.

4.8 Hard Drive Swap Test 2

This test was conducted to determine if the hard drives of two different
PS3 consoles (CECHK and CECHE models) can be swapped and booted
under Linux. A hard drive was zeroed and installed in the CECHK
console, the system was powered up and the hard drive was formatted
using the PS3. Linux was installed in the Other OS partition of the
drive.

The system was restarted to boot under Linux instead of the Game
OS. The CECHK console was then powered down and the hard drive
removed. Next, the hard drive was installed in the CECHE console and
the system was powered up. As in the case of the Hard Drive Swap Test
1, the hard drive had to be formatted before use.

The test was then reversed. The CECHE console was used to format a
zeroed hard drive, which was installed and tested in the CECHK console.
Once again, the hard drive required formatting before use.

The results suggest that although a PS3 can be set to boot directly
into the Linux partition without having to boot into the Game OS par-
tition and that the Linux partition (unlike the Game OS partition) is

72 ADVANCES IN DIGITAL FORENSICS VI

Figure 2. Accessing the browser history.

not encrypted, the hard drive is nevertheless checked to ensure that it
belongs to the specific console before the PS3 will boot.

4.9 Browser Test

This test was performed to determine the number of website URLs
that are maintained in the browser history. The browser was used to
visit random websites and the browser history was checked to identify
the changes after each website was visited (Figure 2).

The results indicate that the browser maintains the last 100 unique
websites in its history with the most recently visited URLs at the top of
the list (Figure 3). Only one entry is maintained for a site that is vis-
ited multiple times; however, the entry moves up the list each time it is
accessed. At interesting quirk is that 101 URLs can sometimes be main-
tained in the browser history. This occurs because each newly-visited
URL is added to the history list at the time the website is accessed, but
the least recent URL is not deleted until the website has loaded com-
pletely. Thus, the browser history can contain 101 URLs if the browser
is forced to close before the 101st website is loaded.

Conrad, Dorn & Craiger 73

Figure 3. Browser history list.

4.10 Hard Drive Decryption Test

This test was performed to determine if an encrypted PS3 hard drive
can be decrypted or read by attaching it externally to the same PS3 that
originally encrypted it. Essentially, the goal of the test was to see if a
PS3 could read its own hard drive.

The test used two hard drives, one formatted with only the Game OS
and the other formatted with a 10 GB Other OS partition containing
Linux. The Linux hard drive was inserted into the PS3 and the console
was booted into Linux. The second hard drive was then attached to the
UltraDock and connected to the PS3 via a USB port. The PS3 running
Linux attempted to mount the newly attached drive, but failed every
time. The hard drive contents could not be read and, thus, the drive
was very likely not automatically decrypted.

5. Evidence Recovery Procedure

The test results suggest that Sony has locked down the PS3 to the
point where standard forensic methods do not work. The hard drive is
encrypted; the Other OS can be carved out, but the file system cannot

74 ADVANCES IN DIGITAL FORENSICS VI

be read. The Game OS is completely inaccessible from the Other OS
and hard drives can only be read by their respective consoles.

None of the techniques employed were able circumvent the security
measures. This does not mean that the PS3 is impenetrable; it is just
that the information available at this time is insufficient to defeat the
security measures.

Based on the test results, the only means to view encrypted data on
a PS3 is to view it natively using the same device. This is the basis
of a procedure for obtaining digital evidence from a PS3, which is a
reasonable substitute for a traditional forensic method. The evidence
recovery procedure, which requires the original PS3 and the hard drive
specific to the PS3, involves the following steps:

Connect a write blocker to the original hard drive. Compute a
hash of the hard drive and make a bit-for-bit copy of the drive to
a zeroed hard drive of the same size.

Secure the original hard drive in an evidence locker because it will
not be used again. Compute a hash of the copied hard drive in
order to check that it is a perfect copy.

Install the copied hard drive in the PS3.

Use the PS3 natively to record all settings and to search through
the Game OS for files (including in the web browser). Document
each step carefully using a video capturing device or application.

This procedure allows for the evidence (original hard drive) to be
preserved while allowing its contents to be viewed. The investigation is
repeatable because there is no limit to the number of copies that can be
made. Capturing the entire procedure on video provides documentation
and accountability. This is important because it is inevitable that the
copied hard drive will be changed in some manner as demonstrated by
the Control Boot Test (Section 4.1), and this cannot be prevented as
demonstrated by the Write Blocker Test (Section 4.2).

6. Conclusions

The procedure for obtaining digital evidence from a PS3 serves as a
reasonable substitute for a traditional forensic method. Because com-
mercially-available forensic software is unable to read the Game OS and
Other OS file systems, additional research is needed to develop a more
comprehensive procedure. Traditional methods, such manually carving
the data, can only go so far in recovering data from the PS3.

Conrad, Dorn & Craiger 75

Currently, the PS3 is primarily used for gaming. However, Sony is
constantly updating the PS3 firmware to provide new features ranging
from enhanced game playing to file sharing and online access [12]. It is
certain that attempts will be made to create PS3 viruses and develop
attacks that exploit PS3 vulnerabilities. To our knowledge, no viruses
exist that target the Game OS and Other OS; however, companies such
as Trend Micro have released software to protect PS3s from harmful and
inappropriate content [2].

The constant upgrades to the Sony PS3 functionality will only increase
the likelihood that these devices will be used in the commission of crimes.
Forensic investigators need sophisticated techniques and tools to analyze
PS3s and other game consoles. We hope that our research stimulates
will renewed efforts in this direction.

References

[1] P. Burke and P. Craiger, Xbox forensics, Journal of Digital Forensic
Practice, vol. 1(4), pp. 275–282, 2006.

[2] A. Chalk, PlayStation 3 anti-virus software released, The Escapist,
November 16, 2007.

[3] S. Conrad, C. Rodriguez, C. Marberry and P. Craiger, Forensic
analysis of the Sony PlayStation Portable, in Advances in Digital
Forensics V, G. Peterson and S. Shenoi (Eds.), Springer, Heidelberg,
Germany, pp. 119–129, 2009.

[4] FileInfo.com, .dat file extension (www.fileinfo.com/extension/dat).

[5] A. Huang, Hacking the Xbox (hackingthexbox.com), 2003.

[6] N. Potter, PlayStation sex crime: Criminal used video game to get
girl’s naked pictures, ABCNews.com, New York (abcnews.go.com
/Technology/Story?id=7009977&page=1), March 13, 2009.

[7] Seeking Alpha, Seventh generation gaming consoles: Thinking out-
side the Box (seekingalpha.com/article/22075-seventh-generation-
gaming-consoles-thinking-outside-the-box), December 11, 2006.

[8] Sony Computer Entertainment, Install other OS, Foster City,
California (manuals.playstation.net/document/en/ps3/current/set
tings/osinstall.html).

[9] Sony Computer Entertainment, New slimmer and lighter PlaySta-
tion 3 to hit worldwide market this September, Foster City, Cali-
fornia (www.us.playstation.com/News/PressReleases/525), 2009.

[10] Sony Computer Entertainment, Open platform for PlayStation
3, Foster City, California (www.playstation.com/ps3-openplatform
/index.html).

76 ADVANCES IN DIGITAL FORENSICS VI

[11] Sony Computer Entertainment, PlayStation 3 80 GB system, Fos-
ter City, California (www.us.playstation.com/PS3/Systems/Tech
Specs/default.html).

[12] Sony Computer Entertainment, PlayStation 3 system software up-
date, Foster City, California (www.us.playstation.com/Support/Sys
temUpdates/PS3).

[13] Sony Computer Entertainment, Support: Knowledge Center, Fos-
ter City, California (playstation.custhelp.com/app/answers/detail
/a id/232).

[14] T. Surette, Research firm: 75 million PS3s sold by 2010, GameSpot,
CBS Interactive, San Francisco, California (www.gamespot.com
/news/6163625.html), January 2, 2007.

[15] TechTips, Five things to know before you modify your Wii, Associ-
ated Content, New York (www.associatedcontent.com/article/776
395/five things to know before you modify.html?cat=15), May 28,
2008.

[16] B. Turnbull, Forensic investigation of the Nintendo Wii: A first
glance, Small Scale Digital Forensics Journal, vol. 2(1), pp. 1–7,
2008.

[17] C. Vaughan, Xbox security issues and forensic recovery methodol-
ogy (utilizing Linux), Digital Investigation, vol. 1(3), pp. 165–172,
2004.

Chapter 6

A CONSISTENCY STUDY OF
THE WINDOWS REGISTRY

Yuandong Zhu, Joshua James and Pavel Gladyshev

Abstract This paper proposes a novel method for checking the consistency of
forensic registry artifacts by gathering event information from the arti-
facts and analyzing the event sequences based on the associated times-
tamps. The method helps detect the use of counter-forensic techniques
without focusing on one particular counter-forensic tool at a time. Sev-
eral consistency checking models are presented to verify events derived
from registry artifacts. Examples of these models are used to demon-
strate how evidence of alteration may be detected.

Keywords: Windows forensics, registry analysis, counter-counter-forensics

1. Introduction

Electronic devices often contain large amounts of data of evidentiary
value. However, since it is possible for a suspect to alter the devices
through software or hardware, it is extremely important in digital inves-
tigations to determine whether or not the evidence collected from seized
devices has been modified [5].

This paper advocates the use of information obtained from the Win-
dows registry to verify the consistency of the collected evidence. The
Windows registry is a database that stores information about the hard-
ware, software and user profiles of a Windows machine [6]. As such, it an
important resource for identifying events that occurred during the use
of the machine [1]. During the normal execution of an operating system,
certain events always occur in the same order. Therefore, if informa-
tion about some events is obtained from the registry, then correlating
known sequences of these events in temporal order of their timestamps
gives a clue as to whether or not the evidence is internally consistent.
For example, the event involving the installation of a particular soft-

K.-P. Chow, S. Shenoi (Eds.): Advances in Digital ForensicsVI, IFIPAICT 337, pp. 77–90, 2010.
c© IFIP International Federation for Information Processing 2010

78 ADVANCES IN DIGITAL FORENSICS VI

ware system for the first time must occur before the event involving the
running of the software for the first time. If the timestamp associated
with installing the software is later than the timestamp associated with
running the software, either the timestamp itself or other information
about the event was tampered with.

This paper proposes a method to verify the consistency of registry
artifacts by obtaining event information from the artifacts and exam-
ining their associated timestamps in event sequences. This provides a
generic way to detect the use of counter-forensic techniques without fo-
cusing on one particular counter-forensic tool at a time. The method
also helps detect when timestamps were altered, which gives a digital
forensic investigator additional information about the user’s activities.

2. Related Research

Previous research on detecting counter-forensic techniques has pro-
ceeded along two lines. One approach (see, e.g., [2]) tends to solve the
problem from very specific perspective. Experiments are performed to
understand the behavior of a particular counter-forensic tool; forensic
investigators are then provided with information about where traces of
the tool may be found. Although the approach is effective, it suffers from
the limitation that the results may not apply to other tools. Indeed, it
is almost impossible to develop an individual method against each tool
because there are so many counter-forensic tools available [5].

The second, generic approach engages methods that check the con-
sistency of system properties. For example, Gladyshev and Enbacka [3]
developed an algorithm to check the consistency of log files. Willassen
[7] proposed a technique for discovering evidence of “antedating” by
studying the sequence number allocation properties of storage systems.
Motivated by these techniques, this paper proposes a general method for
verifying the consistency of collected evidence. Although this method
may not always be as effective as searching for traces of a counter-forensic
tool, it can be used against a wide range of counter-forensic techniques
because inconsistencies are detected regardless of the specific technique
used to tamper with evidence.

3. Consistency Checking Method

The consistency checking method proposed in this paper involves two
steps: (i) obtain events and their timestamp information from the Win-
dows registry; and (ii) verify the consistency of the identified events
using the appropriate consistency checking model.

Zhu, James & Gladyshev 79

Extracted Event 1: File MRU key was updated at 06/12/2009 21:48:33 UTC

Extracted Event 2: Value “[F00000000][T01CA76BDDB158E80]*c:\1.doc”
was updated into the File MRU key before 06/12/2009 21:48:33 UTC

Figure 1. Event extraction.

3.1 Events and Timestamps

All events obtained from the registry are categorized as extracted
events or inferred events. Extracted events are associated with infor-
mation that was updated at specific registry locations at specific times;
these events can be directly extracted from the registry. Inferred events
are deduced from the registry contents based on known relationships
between registry information and user and system actions.

Extracted Events

An extracted event is either an update of a registry key or a data value
corresponding to a key. The time of the update is determined by the
LastWrite timestamp of the associated registry key, which specifies the
most recent modification time of the key. Figure 1 illustrates the extrac-
tion of events from HKCU\Software\Microsoft\Office\12.0\Word\File
MRU. If the extracted event (Ext Event) corresponds to the updating
behavior of the key, then the timestamp can be written as:

TExt Event(Key) = TLastWrite (1)

Since each data value causes the LastWrite time of the associated key
to be updated, the timestamp of the event is estimated by:

TExt Event(V alue Data) ≤ TLastWrite (2)

Upon combining Equations 1 and 2, the timestamp estimation equation
that applies to all possible extracted events is given by:

TExt Event ≤ TLastWrite (3)

A better way to estimate the timestamp for an extracted event associ-
ated with a particular record is to use the registry snapshot comparison
method [9]. This method helps bind an extracted event to a specific time

80 ADVANCES IN DIGITAL FORENSICS VI

interval. The comparison method is based on the fact that many Mi-
crosoft Windows versions automatically back up system registry hives,
creating “system restore points” approximately every 24 hours. By con-
sidering each registry snapshot as a previous state of the system registry
and comparing a given state of the registry with previous registry snap-
shots, changes made to the registry between the creation times of two
consecutive restore points can be identified. When previous registry
snapshots are available, comparing each registry snapshot with its pre-
ceding snapshot can identify extracted events that are known to have
occurred before the LastWrite timestamp of the key and also after the
creation time of the preceding registry snapshot:

TPrec Snapshot ≤ T Identified Ext Event ≤ TLastWrite (4)

Inferred Events

Carvey [1] has described the inference of user and system events from
the registry. In general, the time interval between an inferred event
and the action that triggered the corresponding update in the registry
(i.e., the corresponding extracted event) influences the selection of the
consistency checking model that is applied. Thus, inferred events are
divided into three groups:

Inferred events that occurred before the corresponding extracted
event.

Inferred events that occurred “at the same time” as the corre-
sponding extracted event.

Inferred events that occurred after the corresponding extracted
event.

Note that an inferred event and its associated extracted event do not
occur simultaneously. However, if the time interval is short enough, the
extracted event can be assumed to have occurred “at the same time” as
the action that precipitated it.

In the following, we present four examples of inferred events to demon-
strate how events may be inferred from registry information.

The first example involves ShellBag information associated with the
“Test” folder on a local computer (Figure 2). As described in [8], the
registry value associated with this folder includes the timestamp when
the ShellBag information was first updated in the registry. Therefore,
three events can be inferred:

Folder “Test” located on the Desktop was created at 08/12/2008
20:53:52.

Zhu, James & Gladyshev 81

Desktop

My Documents

My Computer

File System

Test

Modification Time

Last Access Time Creation Time

Figure 2. ShellBag information associated with the “Test” folder.

Folder “Test” located on the Desktop was accessed at 08/12/2008
20:53:52.

Folder “Test” located on the Desktop was modified at 08/12/2008
20:53:52.

In this example, more than one event is inferred from a single registry
record. Since the consistency checking method is based on the events
and timestamps that are found, it is important to infer as many events
as possible from the registry. Note that all three events are known to
have occurred before the corresponding extracted event.

 Last Access Time Document Path

Figure 3. FileMRU key.

The second example involves the FileMRU key, which is located at
HKCU\Software\Office\12.0\Microsoft\Word\FileMRU (Figure 3). It
stores the paths of Word documents that have recently been opened by
Microsoft Office. The information in Figure 3 implies the (inferred) event
that a Word document C:\1.doc was accessed at 13:58:55 16/07/2009

corresponding to the Windows 64-bit timestamp 01CA061D8EC3DF20.

82 ADVANCES IN DIGITAL FORENSICS VI

Figure 4. USBSTOR subkey.

The third example involves the USBSTOR subkey located at HKLM\
System\ControlSet01\Enum\USBSTOR (Figure 4). The inferred event
is that a USB device Disk&Ven Netac&Pro OnlyDisk&Rev 1.11 was
connected to the system at 23/09/2008 18:23:51. The timestamp is
estimated using the extracted event: Registry key HKLM\System\Cont
rolSet-01\Enum\USBSTOR\Disk&Ven Netac&Pro OnlyDisk&Rev 1.11
\5&4d408f08&0 was updated at 23/09/2008 18:23:51. The timestamp
of the extracted event can be used for this inferred event because the in-
ferred event belongs to the second type of inferred event (defined above),
where the extracted event is assumed to have occurred at the same time
as the inferred event.

The fourth example corresponds to the third type of inferred event
that occurred after the corresponding extracted event. The value Lease
TerminatesTime under the registry key HKLM\SYSTEM\ControlSet001
\Services\Tcpip\Parameters\Interfaces\AdapterID gives the time that
the IP address of the adapter expired. This definitely occurred after the
adaptor was connected.

3.2 Consistency Checking Models

After obtaining event information from the registry, it is necessary
to verify the events and their associated timestamp information. This
section describes several consistency models that may be used for this
purpose. Because each event can be placed in a different position in
a time sequence when grouped with other events, it is difficult, if not
impossible, to define a consistency checking model for an event without
considering the details of other events. We address this issue in a generic
manner using a context-based model. Each model is defined with respect
to a specific context; the model is applied when the events meet the
associated conditions.

Zhu, James & Gladyshev 83

Basic Model

The basic event-time bounding model is used to estimate the time
frame during which a particular event without time information oc-
curred. This is done by considering its relation in time to other events
that are known to have occurred either before or after the event [4]. The
same concept can also be applied to user data. Since this model also
represents the relationships between a sequence of multiple events and
their timestamps, it is the basis of other consistency checking models.
The event-time bounding model utilizes two rules:

Rule 1: If Event A occurred before Event B, and Event B oc-
curred before Event C, then the time that Event B occurred is
bounded by the times that Events A and C occurred:

TA < TB < TC (5)

Rule 2: If several Events A1, A2, . . ., Am occurred before Event
B, and Event B occurred before several Events C1, C2, . . ., Cn,
then the time that Event B occurred is bounded by:

Max(TA1 , TA2 , . . . , TAm) < TB < Min(TC1 , TC2 , . . . , TCn) (6)

Checking Inferred Events and Extracted Events

The basic model was developed to verify the consistency of inferred
events and extracted events. As mentioned earlier, there are three types
of inferred events. Therefore, based on their relationship with the cor-
responding extracted event, three equations can be derived using Equa-
tions 3 and 5.

For an inferred event (Inf Event) that occurred before the extracted
event, we have:

T Inf Event < TExt Event ≤ TLastWrite

For an inferred event that occurred at the same time as the ex-
tracted event, we have:

T Inf Event = TExt Event ≤ TLastWrite

For an inferred event that occurred after the extracted event, we
have:

T Inf Event > TExt Event

84 ADVANCES IN DIGITAL FORENSICS VI

or, if the time difference ∆ between the action and a future action
is known, we have:

T Inf Event = TExt Event +∆

In the example in Figure 2, if the LastWrite timestamp of the key is
07/12/2008 11:00:00, then based on the model for inferred events that
occurred before the corresponding extracted event, the information con-
flicts with the inferred event: Folder “Test” was created at 08/12/2008
20:53:52.

Additionally, if multiple inferred events are identified as being asso-
ciated with the same extracted event, the timestamp of the extracted
event will be affected by all the associated inferred events. Therefore, the
consistency checking models must be extended according to Equations
3 and 6.

For inferred events that occurred before the extracted event, we
have:

Max(T Inf Events) < TExt Event ≤ TLastWrite

For inferred events that occurred at the same time as the extracted
event, we have:

Max(T Inf Events) = TExt Event ≤ TLastWrite

For inferred events that occurred after the extracted event, we
have:

Min(T Inf Events) > TExt Event

The application of the model is illustrated using the UserAssist key at
HKCU\Software\Windows\CurrentVersion\Explorer\UserAssist. This
key stores a list of values that record information about the execution
of software on the computer. Each time a particular software executes,
the corresponding value is updated under the UserAssist key. This falls
under the model for inferred events that occurred at the same time as
the corresponding extracted event. Assume that three values are found
under the UserAssist key as shown in Table 1. Upon applying the model,
Max(T Inf Events) is equal to 15:35:12 14/05/2009. If the LastWrite
timestamp is 20:04:31 25/04/2009, then the model proves that the
event information is inconsistent.

Zhu, James & Gladyshev 85

Table 1. Interpreted information for the UserAssist key.

Software Path Timestamp

C:\Program Files\Internet Explorer\iexplorer.exe 10:03:01 05/03/2009

C:\WINDOWS\system32\notepad.exe 15:35:12 14/05/2009

C:\Program Files\Windows Media Player\wmplayer.exe 19:11:52 22/01/2009

Checking Inferred Events

When examining the registry, it is possible to infer events from dif-
ferent locations in the registry that point to the same user or system
action. This is because information is sometimes saved at multiple loca-
tions in the registry. The consistency of inferred events can be verified
using these related pieces of data.

Zhu, et al. [8] have proposed several rules that use ShellBag informa-
tion to determine if a folder was accessed. Specifically, the information
under the BagMRU registry key (located at HKCU\Software\Microsoft\
Windows\ShellNoRoam\BagMRU) and the Bags key (located at HKCU\
Software\Microsoft\Windows\ShellNoRoam\Bags) can be used to deter-
mine if the folder was accessed during a particular period. If one event,
i.e., the folder was accessed at 10/07/2009 7:30:00 is inferred from in-
formation in the Bags key, and another event, i.e., the same folder was
not accessed between 09/07/2009 9:12:00 and 11/07/2009 18:20:30

is inferred from the BagMRU key, then it follows that the two inferred
events are not consistent.

Checking Extracted Events

The consistency between extracted events is due to the fact that some
registry keys are always updated after other keys. When events pertain-
ing to registry operation are extracted, their timestamps should appear
in the same order. By applying the basic model to this relationship it is
possible to say that: if Key B is always updated after Key A, then the
most recent extracted event of Key B is definitely after the most recent
extracted event of Key A:

Max(TExt Events(Key A)) < Max(TExt Events(Key B))

Because the most recent extracted event of a registry key is equal to the
LastWrite timestamp of the key, the consistency check can be expressed
as:

TLastWrite(KeyA) < TLastWrite(KeyB)

86 ADVANCES IN DIGITAL FORENSICS VI

Step 2: Update information in the
“*” subkey

Step 1: Update information in
the “txt” subkey

Figure 5. OpenSaveMRU update example.

Similarly, if Key B is always updated after other Keys A1, A2, . . ., An,
then the timestamp of Key B is constrained by the most recent extracted
events:

Max(Max(TExt Events(Key A1)), . . . ,Max(TExt Events(Key An)))

< Max(TExt Events(Key B))

Upon replacing the most recent extracted event with the LastWrite
timestamp of the key, the consistency check can be written as:

Max(TLastWrite(Key A1), . . . , TLastWrite(Key An)) < TLastWrite(Key B)

This model can be used to check the consistency of event information
stored in the OpenSaveMRU key at HKCU\Software\Microsoft\Window
s\CurrentVersion\Explorer\ComDlg32\OpenSaveMRU. The key is kno-
wn to record the most recently used history of the open and save dialog
of the Windows system. For example, downloading a file and using the
open and save window to save the file in a local directory updates this
key with information about the selected directory.

Figure 5 presents the structure of the OpenSaveMRU key. Subkeys
in OpenSaveMRU correspond to files with extensions (e.g., “jpg” corre-
sponding to a .jpg file and “rar” corresponding to a compressed .rar

file). The OpenSaveMRU key itself saves information about files without
extensions. The only exception is that the subkey “*” records directories
for every file.

The algorithm used to update the OpenSaveMRU key and its subkeys
checks if the open and save window is used. If it is, the path of the
file is stored in the “*” subkey after updating the other file extension

Zhu, James & Gladyshev 87

Table 2. Interpreted information of OpenSaveMRU.

Registry Key Path Timestamp

OpenSaveMRU\bmp 07:42:16 13/07/2009

OpenSaveMRU\jpg 22:12:28 21/07/2009

OpenSaveMRU\txt 21:15:42 09/07/2009

OpenSaveMRU* 19:27:09 14/07/2009

type keys. In the example in Figure 5, the file C:\TestFolder\test.txt
was first stored in the “txt” subkey, and then saved in the “*” subkey.
That is to say, the “*” key is always updated after other OpenSaveMRU
keys or subkeys. Thus, the “*” key satisfies the conditions described
above. Table 2 presents the timestamps of all the keys; the information
is inconsistent because the timestamp of the OpenSaveMRU\txt key is
later than the timestamp of the OpenSaveMRU* key.

Checking Registry Events and Other Events

Apart from the registry database, there are other sources that provide
information about events that have occurred. Two important sources of
events that should be checked for consistency are file timestamps and
registry snapshots.

File Timestamps: In most versions of Microsoft Windows, three
timestamps are associated with a file, corresponding to when the
file was last accessed, last modified and created. Each extracted
event obtained from the registry indicates an update of the reg-
istry file, so the extracted event should cause the modification
timestamp of the registry file to be updated if the file handle is
properly closed after the update. The consistency check for this
situation is:

Max(TExt Event 1, . . . , TExt Event n) ≤ TReg Mod T ime

A better method to implement this check is to compare the Last-
Write time of each extracted event with the last modification time
of each file because Max(TExtEvents) is equal to TLastWriteKey. The
consistency check for this situation is:

Max(TLastWrite 1, . . . , TLastWrite n) ≤ TReg Mod T ime

Note that this inequality does not apply when the registry file
handle is not closed properly due to abnormal termination.

88 ADVANCES IN DIGITAL FORENSICS VI

Registry Snapshots: Each registry snapshot is created by up-
dating the contents of the preceding registry snapshot. Therefore,
any events that have occurred between two snapshots will appear
after the creation time of the preceding snapshot:

TPrec Snapshot < Min(TExt Event 1, . . . , TExt Event n)

TPrec Snapshot < Min(T Inf Event 1, . . . , T Inf Event n)

Whether an extracted event has occurred or not is determined
by comparing the timestamps of a registry key in the snapshot
and in the next snapshot. If the timestamp is updated in the
newest snapshot, then it implies that the corresponding extracted
event did occur. According to Equation 3, the timestamp of the
extracted event cannot be after the updated LastWrite timestamp.
Therefore, the consistency check for this situation is:

TPrec Snapshot ≤Min(TUpdated LastWrite 1, . . . , TUpdated LastWrite n)

3.3 Other Consistency Checking Considerations

After identifying inconsistent information, there may be a need to
understand how the inconsistency was created. As mentioned above, if
the system runs without any intentional changes, it will be consistent
all the time. Some of the reasons for inconsistent information are:

System Clock Adjustment: Many timestamps are based on the
current system clock, especially the LastWrite timestamp associ-
ated with each key. If the system clock is temporarily adjusted,
it may leave detectible inconsistencies in the timestamps recorded
during the altered time period. A consistency check may identify
these inconsistencies if they are not overwritten by new informa-
tion.

Registry Information Modification: It is often the case that
the registry API is used to modify registry information. While any
part of the registry can be modified, the LastWrite timestamp of
the key is also updated because the system considers the invocation
of the API as a normal registry operation. Therefore, it is possible
to identify this trace by examining the consistency of extracted
events. An inconsistent timestamp may imply that tampering has
occurred. For example, in Table 2, if RegEdit was used to mod-
ify the contents of the jpg subkey at 22:12:28 21/07/2009, the
inconsistency shown in Table 2 would be produced.

Zhu, James & Gladyshev 89

Registry Hive Modification: A file editor tool can be used
to modify the registry hive directly. This is hard to implement
in practice because it requires the user to understand the unique
structure of the particular registry hive. Also, it is difficult to
detect if the registry has been modified in this manner because
the registry is not automatically updated when the modification is
made unless the timestamp is also edited at the same time.

4. Conclusions

The method for checking the consistency of registry information in-
volves extracting and inferring events and their corresponding time-
stamps from the registry database. Appropriate consistency checking
models are then used to verify the information that is collected and help
detect counter-forensic activity. Our future research will examine the
potential of using other registry information as well as data from other
sources in sophisticated consistency models.

Acknowledgements

This research was funded by the Science Foundation of Ireland under
the Research Frontiers Program 2007 Grant No. CMSF575.

References

[1] H. Carvey, Windows Forensic Analysis, Syngress, Burlington, Mas-
sachusetts, 2007.

[2] M. Geiger and F. Cranor, Counter-Forensic Privacy Tools: A Foren-
sic Evaluation, Technical Report CMU-ISRI-05-119, Institute for
Software Research International, Carnegie-Mellon University, Pitts-
burgh, Pennsylvania (reports-archive.adm.cs.cmu.edu/anon/isri20
05/CMU-ISRI-05-119.pdf), 2005.

[3] P. Gladyshev and A. Enbacka, Rigorous development of automated
inconsistency checks for digital evidence using the B method, In-
ternational Journal of Digital Evidence, vol. 6(2), pp. 1–21, 2007.

[4] P. Gladyshev and A. Patel, Formalizing event time bounding in
digital investigations, International Journal of Digital Evidence, vol.
4(2), pp. 1–14, 2005.

[5] S. Hilley, Anti-forensics with a small army of exploits, Digital In-
vestigation, vol. 4(1), pp. 13–15, 2007.

[6] Microsoft Corporation, Windows registry information for advanced
users, Redmond, Washington (support.microsoft.com/kb/256986),
2008.

90 ADVANCES IN DIGITAL FORENSICS VI

[7] S. Willassen, Hypothesis-based investigation of digital timestamps,
in Advances in Digital Forensics IV, I. Ray and S. Shenoi (Eds.),
Springer, Boston, Massachusetts, pp. 75–86, 2008.

[8] Y. Zhu, P. Gladyshev and J. James, Using ShellBag information
to reconstruct user activities, Digital Investigation, vol. 6(S1), pp.
S69–S77, 2009.

[9] Y. Zhu, J. James and P. Gladyshev, A comparative methodology for
the reconstruction of digital events using Windows restore points,
Digital Investigation, vol. 6(1-2), pp. 8–15, 2009.

Chapter 7

FORENSIC TRACKING AND
MOBILITY PREDICTION IN
VEHICULAR NETWORKS

Saif Al-Kuwari and Stephen Wolthusen

Abstract Vehicular networks have attracted significant attention in the context
of traffic control and management applications. However, vehicular net-
works also have important applications in crime prevention and criminal
investigations. This paper presents a system for passively tracking a tar-
get vehicle whose driver is assumed to be a “person of interest.” The
tracking system relies on the dynamic recruitment of neighboring vehi-
cles of the target as agents. A mobility prediction algorithm is used to
probabilistically predict the target’s future movement and to adjust the
tracking process. Combining agent-based tracking and mobility predic-
tion enables a target vehicle to be passively localized and tracked in an
efficient manner.

Keywords: Vehicular networks, passive tracking, mobility prediction

1. Introduction

Due to the heightened interest in driver safety and infotainment appli-
cations, vehicular networks along with other mature wireless technologies
will be widely deployed in future automobiles. This has motivated the
research community to investigate various aspects of vehicular networks.

The main motive behind the emergence of vehicular networks is driver
safety. However, these networks have important applications in crime
prevention and criminal investigations in which law enforcement agencies
must track the movements of “persons of interest.”

Vehicular network algorithms differ from those encountered in con-
ventional mobile networks. Vehicular network nodes move more rapidly
than the nodes in other mobile networks. However, vehicular nodes are
characterized by somewhat limited freedom of motion since their move-

K.-P. Chow, S. Shenoi (Eds.): Advances in Digital ForensicsVI, IFIPAICT 337, pp. 91–105, 2010.
c© IFIP International Federation for Information Processing 2010

92 ADVANCES IN DIGITAL FORENSICS VI

ments are constrained by roadways and traffic regulations. This intro-
duces additional challenges for vehicular tracking algorithms because
they must efficiently adapt to the peculiarities of vehicular movements;
but this also improves their mobility predictions because nodes move
along predefined paths.

This paper presents a passive vehicular tracking system that relies on
the dynamic recruitment of neighboring vehicles as agents. A mobil-
ity prediction algorithm is used to probabilistically predict the target’s
future movement and to adjust the tracking process. Combining agent-
based tracking and mobility prediction enables a target vehicle to be
localized and tracked both efficiently and clandestinely.

2. Related Work

Boukerche, et al. [3] discuss localization techniques that can be used
in vehicular networks along with their practical implications. The au-
thors demonstrate that most localization techniques suffer from inherent
inaccuracies that may not be acceptable for vehicular-based applications
that require precise location information. In such situations, the best
solution is to use data fusion where the results of multiple localization
techniques are combined to increase accuracy.

While localization techniques for vehicular networks are usually GPS-
based, not all vehicles are equipped with GPS devices. Also, GPS-based
techniques are useless when GPS signals are not available (e.g., inside
tunnels). Benslimane [2] addresses this problem in an extension to the
ODAM messaging dissemination protocol, enabling vehicles that are not
GPS-capable to be localized.

A popular tracking technique that is well suited to vehicular scenar-
ios involves map-matching tracking, which attempts to match a node’s
actual location (raw) data to maps. Barakatsoulas, et al. [4] present
several such algorithms that exploit vehicular trajectory information.
However, this approach is not suitable for applications that require real-
time tracking. Other tracking techniques such as installing tracking tags
on a target vehicle [9] also exist, but these solutions are not ad hoc and
require additional preparation and overhead.

3. Vehicular Networks

Generally, vehicular networks are based on ad hoc infrastructures and
are, therefore, referred to as vehicular ad hoc networks (VANET), a sub-
class of mobile ad hoc networks (MANETs). The U.S. Federal Commu-
nications Commission (FCC) has allocated a 75 MHz spectrum in the
5.9 GHz band (5.850 GHz to 5.925 GHz) for vehicular communications,

Al-Kuwari & Wolthusen 93

which can either be vehicle to vehicle (V2V) or vehicle to infrastructure
(V2I) communications. V2V depends on an ad hoc infrastructure where
vehicles directly exchange information like accident and congestion warn-
ings. V2I, on the other hand, assumes the presence of pre-installed road
components that vehicles communicate with in order to retrieve infor-
mation. However, the cost of installing these components often limits
V2I applications.

Communication in vehicular networks is based on the conventional
IEEE 802.11 wireless standard (WiFi) or 3G via CDMA (code division
multiple access) technology. WiFi is simpler and less expensive to de-
ploy, but has lower reliability because it was not designed to operate in
environments with rapid movements. In contrast, 3G is more relevant to
vehicular communications, but is more expensive and difficult to deploy
because of its centralized architecture [8]. In this paper, we assume that
vehicles communicate using WiFi, which is a more widely deployed solu-
tion. Note that WiFi has some efficiency limitations, especially because
it operates in the half-duplex mode (i.e., two nodes cannot communicate
with each other simultaneously).

4. Mobility in Vehicular Networks

Mobility models represent the motion behavior of vehicles. Mobility
models designed to simulate the movement of nodes in MANETs can be
used to simulate vehicular movements in VANETs and most vehicular
simulation approaches employ these models. However, MANET models
have proved unreliable and unrealistic, which has motivated the design
and development of mobility models targeted for vehicular networks.

Vehicular mobility models are categorized as microscopic, mesoscopic
and macroscopic models. Microscopic models describe the dynamics of
the individual movement of each vehicle and its interaction with other
vehicles (this may require excessive computational resources for large-
scale simulations). Macroscopic models simulate the characteristics of
the roadways (motion constraints) and the flow of vehicles, but do not
consider individual vehicle movement, which impacts their degree of re-
alism. Interested readers are referred to [1] for a discussion of macrosopic
models versus microscopic models. Mesoscopic models belong to a new
“hybrid” class of vehicular mobility models that combine features of
microscopic and macroscopic models. In this paper, we adopt the mi-
croscopic intelligent driver motion (IDM) model [10] along with two
extensions, IDM-IM (IDM with intersection management) and IDM-LC
(IDM with lane changes).

94 ADVANCES IN DIGITAL FORENSICS VI

5. Vehicle Localization

Conventional localization techniques used in cellular and sensor net-
works can also be applied to vehicular networks, albeit with slightly
degraded accuracy. These techniques involve measuring the received
signal strength (RSS), time of arrival (TOA) or time difference of ar-
rival (TDOA). Since we adopt a passive tracking approach, only RSS
is relevant because, unlike TOA and TDOA, it does not require a fully
synchronized network and active communication with the target.

The RSS technique involves measuring the strength of the signals
emitted from the target vehicle in order to estimate the distance to the
target. RSS measurements are nonlinear due to radio propagation ef-
fects; nevertheless, our algorithm adopts a free space radio propagation
model, which assumes a direct line of sight path between vehicles. This
assumption does not severely degrade the accuracy of the localization
process because it is most likely that the only obstacles would be the
moving vehicles and their effects can be eliminated by averaging the
measurements. Note that vehicular acceleration also affects RSS mea-
surements, but we assume that this effect can be mitigated by adding
noise in the computations.

The localization of a target vehicle Cs involves three of its neighboring
vehicles. However, only two of these neighbors (tracking agents) track
the target; the other (localizing agent) is retired immediately after the
localization is completed. We denote the tracking agents as Ca (main)
and Cb (backup) and the localizing agent as Cl. We assume that the
three agents can localize themselves using GPS, which is fairly common
in current vehicles.

The localization algorithm has four steps:

Step 1 (Recruitment): The tracking agents are recruited by
randomly requesting RSS readings from nodes around the target.
The nodes with the highest readings are recruited. Details about
the initial and subsequent recruitment process are provided in Sec-
tion 7.

Step 2 (Distance Measurement): The distances between the
recruited agents and the target are estimated using the Friis equa-
tion [6]:

d =
√

PtAr/4πPr

where Pr and Pt are the received and transmitted power, respec-
tively; and Ar is the effective area of the receiving antenna.

Step 3 (Trilateration): The location of the target is estimated
using a geometric transformation to find the intersection point of

Al-Kuwari & Wolthusen 95

the three circles centered at the agents that have radii equal to the
respective distances of the agents from the target as measured in
Step 2.

Step 4 (Retirement): The localizing agent Cl is retired.

The localization algorithm can also be used in conjunction with the
prediction algorithm (Section 6) to determine when the next recruitment
is required. This assumes that the agent can measure its own speed,
which is possible because it is equipped with a GPS device. The average
speed is estimated by dividing a particular distance by its corresponding
traversal time.

6. Mobility Prediction

Mobility prediction is an important aspect to consider when tracking
vehicles. Generally, mobility prediction in vehicular networks is slightly
simpler in VANETs than MANETs because vehicular mobility is re-
stricted to roadways and the pace of movement is usually limited to the
maximum allowable speed of the roadway. The motion of mobile nodes
in MANETs, on the other hand, is often unconstrained, although it may
be restricted by terrain characteristics and physical limitations. Note
also that vehicular movements have higher accelerations.

This section presents a vehicular mobility prediction algorithm that
probabilistically predicts the near-future movement of the target vehicle
based on its current location and estimated speed, assuming that the
target has already been localized. The algorithm incorporates: (i) time
prediction, which estimates the time elapsed before the target reaches
the next intersection; and (ii) direction prediction, which identifies the
direction that the target will most likely take after passing the intersec-
tion.

6.1 Time Prediction

Predicting the time taken for a vehicle to reach the next intersection
requires an estimate of the speed of the vehicle. The estimation proce-
dure is illustrated in Figure 1. Vehicle Ca estimates the speed of Cs by
making two RSS measurements at times t1 and t2. For reasons of sim-
plicity, it is assumed that the distance between the horizontally-aligned
vehicles in a roadway is I, which is easily obtained. However, it is very
unlikely that vehicles Ca and Cs will be aligned perfectly. Consequently,
when the first RSS measurement (RSS1) is taken, the vertical distance
ahead or behind Ca is calculated to be perfectly adjacent to Cs. The

96 ADVANCES IN DIGITAL FORENSICS VI

Cs

d 2
(t 2

)

d2+N(t2)
I

N

M

ICa+N Cs

(a) Ca and Cs at time t1
(b) Ca adjusted to

Ca+N at time t1

I

Ca

Cs

d1(
t 1)

N

(c) Ca and Cs at time t2

F

E

Figure 1. Estimating the speed of vehicle Cs.

position of Ca is then adjusted so that it is aligned with Cs using:

N =
√

(d1(t1))2 − I2

as shown in Figure 1(a). Thus, the position Ca becomes Ca+N as shown
in Figure 1(b).

After the position of Ca is adjusted, the second RSS measurement
(RSS2) is taken at time t2. However, the distance obtained from RSS2

must be adjusted by recalculating it as if it was measured by Ca+N ,
which accounts for the extra distance N .

Figure 1(c) illustrates this process. First, the distance M is calculated
as:

M =
√

(d2(t2))2 − I2 −N

and thus,

d2+N (t2) =
√

M2 + I2.

Next, the speed of Cs is computed as:

vs =
F + E

t2 − t1
(1)

where F =
√

(d2+N t2))2 − I2 and E = va(t2 − t1) assuming that the
speed vs of Ca is known (vs is estimated easily).

After the speed is estimated, the time taken for Cs to reach the next
intersection is calculated using the traditional distance equation:

tz = n− dx + ε/vs

Al-Kuwari & Wolthusen 97

where dx is the distance the vehicle has covered on a roadway of length
n and can be calculated relative to the location of Ca; ε is a uniformly
distributed random variable introduced to compensate for the accelera-
tion/deceleration error margin; and vs is the estimated speed of vehicle
Cs according to Equation 1.

It is very unlikely that vehicles Ca and Cs have perfect horizontal
alignment; thus, we assume that one vehicle is leading or lagging the
other. In Figure 1, vehicle Cs is leading Ca and is moving faster than
Ca, so it will continue to lead vehicle Ca. Note that the algorithm
accommodates other scenarios where Ca is the leading vehicle. This is
because the absolute velocity of Cs is measured without considering its
relation to the location and speed of Ca.

Since localization is performed before the prediction algorithm is exe-
cuted, the lane that the target occupies is known. The discussion above
assumes that Ca and Cs are not in the same lane, but the probability of
them being in the same lane is equally likely. If this is the case and if Ca

makes the first RSS measurement (RSS1) and later makes the second
RSS measurement (RSS2), then the distance Cs has moved during the
period between these two measurements is simply the difference between
RSS2 and RSS1. Moreover, if the vehicles are not in the same lane, it
does not matter which vehicle is in which lane. In Figure 1, it happens
that Ca is in the left lane and Cs is in the right lane, but the algorithm
still works if the lane positions are reversed. However, to simplify the
design of the algorithm, we assume that the leading entity will continue
to lead during the period between the RSS1 and RSS2 measurements.
This is a reasonable assumption because the time period is usually short
enough to preserve the leading status.

6.2 Direction Prediction

Predicting the direction that a target vehicle will take through the
next intersection is more complex and bears a probabilistic distribution.
Also, it presupposes that the target vehicle has been accurately localized
in order to identify the lane it occupies. We assume that all drivers
adhere to the following basic traffic rules as illustrated in Figure 2:

Rule 1: For a vehicle to turn right at an intersection, it must be
in the right lane of the roadway leading to the intersection.

Rule 2: For a vehicle to turn left at an intersection, it must be in
the left lane of the roadway leading to the intersection.

98 ADVANCES IN DIGITAL FORENSICS VI

Figure 2. Traffic rules at an intersection.

Rule 3: For a vehicle to go straight ahead at an intersection, it
can be in the right lane or in the left lane of the roadway leading
to the intersection.

Rule 4: A vehicle must position itself in the appropriate lane
based on its intended direction and Rules 1–3 around 300 meters
before the next intersection or halfway through the roadway lead-
ing to the next intersection, whichever comes later. A lane change
beyond this point for the purpose of accelerating the pace (e.g., to
overtake a vehicle) is not permitted.

It is reasonable to assume that the target vehicle will obey these traffic
rules because the target (who is either a suspect or criminal) will most
likely not want to attract attention. Obeying Rules 1–4 forces a vehicle
to start the lane changing process when reaching approximately n/4 of a
roadway of length n or 400 meters away from the intersection, whichever
is later. This should allow sufficient time for the vehicle to complete
the lane changing process without violating Rule 4. We call the region
between n/4 and n/2 (or similarly, the 100 meters between 400 meters
to 300 meters away from the intersection) a “critical area” and apply
the following predictions:

Al-Kuwari & Wolthusen 99

IF CL
i

CriticalArea−−−−−−−−→ CR
i THEN Pr(Ci → R) = 80%

IF CR
i

CriticalArea−−−−−−−−→ CL
i THEN Pr(Ci → L) = 70%

Based on these predictions, if a particular vehicle Ci occupied the
left lane (CL

i) and shifted to the right lane as it passed through the
critical area, the algorithm infers that the shift was imposed by traffic
regulations. This means that the vehicle is very likely going to turn
right (R) at the next intersection because: (i) the probability of turning
left (L) from a right lane (where the vehicle has shifted) is 0; and (ii) if
the vehicle intended to go straight ahead (A), it would most likely have
stayed in its original lane without taking the overhead of a lane change
as it is permitted to go straight ahead from either lane.

A similar argument applies to a vehicle that shifted from the right
lane to the left lane as it passed through the critical area. The difference
is that it is possible that the vehicle shifted from the right lane to the
left lane to increase its pace of the movement while actually intending
to go straight ahead. This decreases the probability of turning left for
this particular course of action.

On the other hand, if the vehicle did not change its lane as it went
through the critical area, it has a probability of 50% of taking either of
the two permitted directions depending on its current lane. Also, it has
a 0% probability of taking the banned direction (i.e., left for the right
lane and right for the left lane).

An interesting extension to this direction prediction technique (which
is not currently implemented in the algorithm) is to integrate points of
interest [5] corresponding to frequently-visited locations such as grocery
stores, banks, restaurants and offices. Such locations can significantly
influence the probability distribution of vehicular mobility. For example,
we know that the probability of a vehicle in the right lane turning right
is (currently) the same as the probability of the vehicle going straight
ahead if it had not shifted to the right lane as it passed through the
critical area. However, that fact that a point of interest is located on the
right could increase the probability of the vehicle turning right instead of
going straight ahead. Note that the specific time of day can significantly
influence the effect of a point of interest on the prediction probabilities
(e.g., an office building will most likely be a popular point of interest
only during the daytime).

100 ADVANCES IN DIGITAL FORENSICS VI

7. Tracking

In forensic and law enforcement applications, vehicle tracking is usu-
ally required to be passive so that the driver of the target vehicle is not
aware of the tracking process. This passivity requirement potentially
eliminates more active tracking systems such as those involving vehicle
telematics.

In our tracking scenario, a group of trackers Ct(i) (i = 1, 2, ..., n)
consisting of n privately-connected vehicles (e.g., police patrols) recruit
a main tracking agent Ca and a backup tracking agent Cb from the
public to track a target vehicle Cs. We assume that the recruiting Ct(i)

is initially located in range of Cs, which enables it to recruit suitable
Ca and Cb possibly by visual estimation. During this initial stage, the
Ct(i) also recruits an additional localization agent Cl which, along with
the tracking agents, localize the target as discussed in Section 5. The
recruiting Ct(i) supplies an address list of the other valid Ct(i) to all the
recruited agents.

The localizing agent is retired after the target is localized, leaving Ca

to be responsible for the rest of the tracking. Ca is backed up by Cb,
whose responsibility is to take over the tracking process if Ca suddenly
fails. Ca is also responsible for sending location updates of Cs to a
Ct(i) whenever localization is triggered. Ca must ensure that its backup
agent Cb is within range of Ca and the target at all times by regularly
monitoring its RSS and probing it for the target’s RSS; otherwise it has
to recruit another Cb.

When tracking is initiated, the Ct(i) creates a tracking table TrackTB,
which stores records of the target’s movements as received from Ca. This
table is synchronized with all other Ct(i) as soon as an update is received
by a Ct(i). When a localization update is available, Ca searches its range
for a Ct(i) to update it; if multiple Ct(i) are found, Ca randomly chooses
one of them; this potentially minimizes a traffic analysis attack by a third
observer who observes the traffic between the agents and the trackers.
If no Ct(i) is available, Ca creates a temporary tracking table TempTB
and accumulates information while regularly probing for a valid Ct(i).
When a Ct(i) is found, Ca transfers its TempTB to the Cti which, in
turn, merges it with its copy of TrackTB and synchronizes it with the
other Ct(i).

After running the prediction algorithm, Ca estimates how long it will
be able to track the target (called the “alive period”) and schedules the
next localization for near the expiration of this period. During the alive
period, Ca keeps observing the RSS measurements from Cs. If a specific
lower threshold of RSS is reached or the predicted alive time is near expi-

Al-Kuwari & Wolthusen 101

Algorithm 1 Vehicular Tracking Algorithm

1: Ct(i) ⇐ Trackers {identify n trackers}
2: Cs ⇐ Target {identify the target}
3: Recruit(Ca, Cb) {recruit tracking agents}
4: Recruit(Cl) {recruit localization agent}
5: repeat
6: Localize(Cs) {Ca, Cb, Cl Localize Cs}
7: Retire(Cl)
8: Alive ← Predict(Cs) {find alive period based on the prediction

algorithm}
9: while currentT ime ≤ Alive− ω do

10: if Ca.RSS(Cs) ≤ threshold then
11: break {if RSS from Cs ≤ threshold, break}
12: end if
13: end while
14: Ca.Probe {search for agents}
15: if Ca.RSS(Cs) ≤ threshold then
16: if Cb.RSS(Cs) ≤ threshold then
17: Recruit(Ca, Cb,) {recruit new Ca and Cb}
18: end if
19: Recruit(Ca) {recruit new Ca}
20: else
21: Recruit(Cl) {recruit Cl}
22: end if
23: until Tracking Expires

ration, Ca initiates a “probe process,” which involves sending requests to
the neighboring vehicles, supplying the Cs address and asking for their
RSS measurements if they can receive transmissions from Cs. Note that
the vehicle with the strongest RSS is recruited as the localization agent
Cl. Furthermore, a Ct(i) may at any time request Ca to localize Cs, in
which case Ca executes the probe process to recruit Cl and works with
Cb to localize Cs.

If Ca had to maintain a TempTB, but attempted to recruit another
Ca (due to the expiry of the alive period or weak RSS observations from
Cs) and there is still no Ct(i) in range, the old Ca recruits a new Ca

and hands off the tracking process to it along with the TempTB. The
TempTB is maintained by the new Ca until a valid Ct(i) is found upon
which time the old Ca retires itself. Details of the tracking process are
presented in Algorithm 1.

102 ADVANCES IN DIGITAL FORENSICS VI

 30

 40

 50

 60

 70

 80

 90

 100

 110

 120

 0 1 2 3 4 5 6 7 8 9

5 seconds prediction
10 seconds prediction
15 seconds prediction
20 seconds prediction

Actual time

Figure 3. Simulation results (10 node scenario).

8. Simulation Results

A realistic vehicular environment was created using the VanetMo-
biSim simulator [7]; vehicular mobility traces were generated based on
IDM-LC model. The ns-2 simulator was used to run the tracking sce-
narios.

The prediction algorithm was evaluated by executing it over a number
of different scenarios and estimating the time taken for vehicles to reach
the next intersection. These times were compared with the actual times
taken to reach the intersection as reported by the network simulator.
The simulation scenarios adopted a set of interconnected roadways with
different lengths and speed limits. Additionally, mobility traces with
different node densities were generated in order to analyze the effect of
node density on the accuracy of the prediction algorithm.

Figures 3 and 4 present the results of the prediction algorithm for
node densities of 10 and 100 nodes with the simulations running for
1,000 seconds. Clearly, there is a variation in performance. The main
factors influencing the precision of the prediction algorithm are:

Node Density: As seen in Figures 3 and 4, the accuracy of the
algorithm is moderately affected by increased node density. This is
expected in a real-world environment – the more vehicles present

Al-Kuwari & Wolthusen 103

 0

 20

 40

 60

 80

 100

 120

 140

 0 1 2 3 4 5 6 7 8 9

5 seconds prediction
10 seconds prediction
15 seconds prediction
20 seconds prediction

Actual time

Figure 4. Simulation results (100 node scenario).

on a roadway, the harder it is to accurately predict their movement
due to their irregular acceleration/deceleration behaviors.

Roadway Length: The length of the roadway affects the pre-
diction algorithm because longer roadways allow for more fluctu-
ations in acceleration, which can be difficult to model. Highways
have very different characteristics than city roadways in terms of
traffic flow.

Speed Limit: Roadways with higher speed limits also allow for
increased acceleration fluctuations, which affect the accuracy of
the algorithm.

Duration of the Prediction: Other than the macroscopic fac-
tors above, the duration that the prediction process is applied to
the target is an important factor. The prediction algorithm mea-
sures the time taken by the target to pass a specific distance and
then adds noise to the measurement to compensate for future accel-
eration/deceleration before calculating the predicted time. How-
ever, the accuracy of the algorithm is improved when the target is
observed for a longer interval. This is illustrated in Figures 3 and 4,
where a longer prediction interval of 20 seconds (i.e., the target’s
movement is observed for 20 seconds) yields a better prediction
than a shorter interval. Another way to improve prediction accu-

104 ADVANCES IN DIGITAL FORENSICS VI

racy is to take multiple observations at different times and compute
the average.

Location of the Prediction: Despite the fact that the predic-
tion process can take place at any point on the roadway, the point
where the prediction process takes place can be important, espe-
cially for highways that typically have higher speed limits than city
roadways. For example, it is not advisable to execute the predic-
tion process at the beginning of a highway. Since vehicles just start
accelerating at this point, their accelerations are not representative
of the rest of the journey.

Based on the above factors, it is clear that the tracking environment
has an unavoidable influence on the tracking process. Carefully modeling
the macroscopic features of the environment is, therefore, critical to
improving tracking accuracy. Information about the general structure
and layout of roadways can be obtained from online databases such as
TIGER [11]. Other important road characteristics (e.g., density) can be
modeled and estimated based on empirical observations.

9. Conclusions

Vehicular tracking has important applications in crime prevention and
criminal investigations. The algorithms presented in this paper imple-
ment the passive localization, tracking and prediction of the movement
of a target vehicle. While there has been limited research related to pas-
sive vehicular tracking, we argue that the passivity requirement is very
important for forensic and law enforcement purposes. Note, however,
that the agent-based approach may face barriers in some jurisdictions
where randomly recruiting tracking agents may be restricted by law.

Finally, we note that the RF measurements used in the algorithms
include an unavoidable error margin. However, estimating the mea-
surement parameters can provide an acceptable error margin. This is
because in vehicular tracking it is only important to detect the presence
of the target and partially track it to estimate its most likely trace in
the corresponding roadway. Inferences can then be made if the target
halted en route (e.g., to commit a crime) by observing the estimated
time delay along each roadway.

References

[1] R. Baumann, S. Heimlicher and M. May, Towards realistic mobility
models for vehicular ad hoc networks, Proceedings of the Twenty-
Sixth IEEE Conference on Computer Communications, 2007.

Al-Kuwari & Wolthusen 105

[2] A. Benslimane, Localization in vehicular ad hoc networks, Proceed-
ings of the Systems Communications Conference, pp. 19–25, 2005.

[3] A. Boukerche, H. Oliveira, E. Nakamura and A. Loureiro, Vehicular
ad hoc networks: A new challenge for localization-based systems,
Computer Communications, vol. 31(12), pp. 2838–2849, 2008.

[4] S. Brakatsoulas, D. Pfoser, R. Salas and C. Wenk, On map-matching
vehicle tracking data, Proceedings of the Thirty-First International
Conference on Very Large Data Bases, pp. 853–864, 2005.

[5] D. Engelhart, A. Sivasubramaniam, C. Barrett, M. Marathe, J.
Smith and M. Morin, A spatial analysis of mobility models: Ap-
plication to wireless ad hoc network simulation, Proceedings of the
Thirty-Seventh Annual Symposium on Simulation, p. 34, 2004.

[6] H. Friis, A note on a simple transmission formula, Proceedings of
the IRE, vol. 34(5), pp. 254–256, 2006.

[7] J. Harri, F. Filali, C. Binnet and M. Fiore, VanetMobiSim: Gen-
erating realistic mobility patterns for VANETs, Proceedings of the
Third International Workshop on Vehicular Ad Hoc Networks, pp.
96–97, 2006.

[8] J. Luo and J. Hubaux, A Survey of Inter-Vehicle Communication,
Technical Report IC/2004/24, School of Computer and Communi-
cation Sciences, Ecole Polytechnique Federale de Lausanne, Lau-
sanne, Switzerland, 2004.

[9] J. Mansell and W. Riley, Vehicle Tracking and Security System,
United States Patent 5,233,844, 1993.

[10] M. Treiber, A. Hennecke and D. Helbing, Congested traffic states
in empirical observations and microscopic simulations, Physical Re-
view E, vol. 62(2), pp. 1805–1824, 2000.

[11] U.S. Census Bureau, Topologically Integrated Geographic Encod-
ing and Referencing, Washington, DC (www.census.gov/geo/www
/tiger).

Chapter 8

A FORENSIC READINESS MODEL
FOR WIRELESS NETWORKS

Sipho Ngobeni, Hein Venter and Ivan Burke

Abstract Over the past decade, wireless mobile communications technology based
on IEEE 802.11 wireless local area networks (WLANs) has been adopted
worldwide on a massive scale. However, as the number of wireless users
has soared, so has the possibility of cyber crime, where criminals delib-
erately and actively break into WLANs with the intent to cause harm
or access sensitive information. WLAN digital forensics is seen not only
as a response to cyber crime in wireless environments, but also as a
means to stem the increase of cyber crime in WLANs. The challenge
in WLAN digital forensics is to intercept and preserve all the commu-
nications generated by the mobile devices and conduct a proper digital
forensic investigation. This paper attempts to address this issue by
proposing a wireless forensic readiness model designed to help monitor,
log and preserve wireless network traffic for digital forensic investiga-
tions. A prototype implementation of the wireless forensic readiness
model is presented as a proof of concept.

Keywords: Wireless local area networks, digital forensic readiness

1. Introduction

Wireless technologies have become very popular around the world.
Wireless local area networks (WLANs) or “hotspots” blanket public
places such as convention centers, airports, schools, hospitals, railway
stations, coffee shops and other locations to provide seamless public ac-
cess to the Internet [15]. These hotspots provide several advantages over
hard-wired networks, including user mobility and flexible Internet access.
However, due to their open nature, WLANs have become a major target
for cyber criminals.

WLAN digital forensics involves the application of methodologies and
tools to intercept and analyze wireless network events for presentation

K.-P. Chow, S. Shenoi (Eds.): Advances in Digital ForensicsVI, IFIPAICT 337, pp. 107–118, 2010.
c© IFIP International Federation for Information Processing 2010

108 ADVANCES IN DIGITAL FORENSICS VI

as digital evidence in a court of law [9]. As such, WLAN digital forensics
is complementary to intrusion prevention – when intrusion prevention
fails, WLAN digital forensics is useful for obtaining information about
the intrusion. However, the primary challenge in WLAN digital foren-
sics is to acquire all the digital evidence related to a crime [6]. This
challenge arises from the fact that the devices participating in a WLAN
environment are mobile. Furthermore, since the devices are not always
connected to the network, it is difficult to attribute criminal activity to
a particular device.

This paper proposes a wireless forensic readiness model for monitor-
ing, logging and preserving wireless network traffic for digital forensic
investigations. The wireless forensic readiness model builds on the work
of Rowlingson [7] related to traditional forensic investigations. A pro-
totype implementation of the readiness model is presented as a proof of
concept.

2. Wireless Local Area Networks

WLANs represent a ubiquitous technology that provides seamless
high-speed Internet connectivity at public locations. Unlike traditional
LANs, WLANs connect computers to the network without physical
(wired) connections. WLANs offer tremendous user mobility, enabling
users to access files, network resources and the Internet [8].

2.1 Criminal Misuse of WLANs

The lack of a physical connection between a WLAN and its partici-
pating mobile devices causes crimes to remain discreet, especially since
the mobile devices are potentially far removed. This fact needs to be
considered when digital evidence is identified and collected in an inves-
tigation involving wireless traffic. Potential criminal misuse of WLANs
include [12, 14]:

WLAN Detection and Connection: This type of misuse in-
volves an intruder using the wireless medium as a tool to commit
other criminal activities (e.g., unauthorized use of the WLAN or
use of the WLAN as a launch pad for other criminal activities).

Concealment of Digital Evidence: This type of misuse in-
volves hidden wireless devices or hidden wireless networks (e.g.,
fake access points).

WLAN as an Attack Vector: This type of misuse involves at-
tacks against the networked (mobile) devices originating from the
wireless network, and attacks against the WLAN medium itself.

Ngobeni, Venter & Burke 109

2.2 Sources of Digital Evidence

WLANs typically incorporate 802.11-based wireless devices. The lo-
cations where digital evidence is stored on devices and the extraction
of evidence are dependent on the specific wireless device. However, the
fundamental problem with 802.11-based wireless devices is their lack of
a physical footprint, which is the most crucial issue in the identification
of these devices [14].

It is imperative to locate all the relevant wireless devices in a digital
forensic investigation. Various open source and commercial tools (e.g.,
Wireshark, Kismet and AirCapture) may be used by a digital foren-
sic investigator to identify wireless networks within range, the devices
connected to the wireless networks and, possibly, the locations of the
wireless devices [13]. The principal drawback of these tools is the high
packet drop rate [1]. The large volume of network traffic makes it diffi-
cult for the tools to accept and store all the packets; some packets may
be dropped, resulting in the loss of evidence.

2.3 WLAN Digital Forensics

Digital forensics deals with the investigation of computers and other
digital devices believed to be involved in criminal activities [5]. WLAN
digital forensics involves the application of methodologies and tools to
capture and analyze wireless network traffic that can be presented as
evidence in a court of law [9]. A WLAN digital forensic methodology is
a digital forensic process; the tools are software systems that intercept
and analyze network traffic. A digital forensic process is a procedure
that is followed to investigate a particular criminal activity involving
digital evidence [2]. Every digital forensic investigation must go through
the following phases of the digital forensic process:

Define the scope and goals of the investigation.

Determine the work and materials.

Acquire the images of the devices to be examined.

Perform the digital forensic analysis.

Prepare the report.

Currently, EnCase and FTK are the most popular tools used in digital
forensic investigations. The phases of the digital forensic process for
EnCase are preview, imaging or acquisition, verification, recovery and
analysis, restoration and archiving; the phases for FTK are detection,

110 ADVANCES IN DIGITAL FORENSICS VI

Table 1. Digital forensic phases for EnCase, FTK and WFRM.

EnCase FTK WFRM

1. Preview 1. Detection 1. Monitoring
2. Imaging 2. Identification 2. Logging
3. Verification 3. Analysis 3. Preservation
4. Recovery and Analysis 4. Preservation 4. Analysis
5. Restoration 5. Reporting 5. Reporting
6. Archiving

identification, analysis, preservation and reporting. Table 1 lists the
phases for EnCase and FTK along with those for the wireless forensic
readiness model (WFRM), which is described in the next section.

According to Table 1, only the analysis phase is common to EnCase,
FTK and WFRM. The preservation and analysis phases are common to
FTK and WFRM. However, it is worth noting that the digital forensic
processes for FTK and EnCase are essentially the same as far as the
general digital forensic process is concerned. This suggests that the
phases correlate although they are named differently. The inconsistent
naming of phases is due to the fact that the digital forensic processes for
forensic tools are not standardized. In this paper, we adopt the general
digital forensic process described by Casey [2].

Researchers have studied various issues related to wireless network
forensics. Yim, et al. [16] proposed a WLAN forensic profiling system
for collecting digital evidence after denial-of-service attacks on WLANs.
Turnbull and Slay [14] consider the potential sources of digital evidence
in 802.11-based wireless networking environments. Then [11] discusses
methods for examining wireless access points to determine if the devices
of interest are connected or were connected to a wireless network. While
these efforts and others are useful, a digital forensic readiness approach
for WLANs has yet to be articulated.

2.4 Digital Forensic Readiness

The purpose of digital forensic readiness is to reduce the effort involved
in performing an investigation while maintaining the level of credibility
of the digital evidence being collected [4]. The decrease in effort includes
reductions in the time and the cost of incident response. An organiza-
tion that is “forensically ready” can respond to an attack rapidly and
efficiently. In general, reducing the time involved in incident response
reduces the cost of the investigation.

Ngobeni, Venter & Burke 111

Tan [10] discusses an incident in which an intruder took approximately
two hours to launch an attack, but digital forensic experts required 40
billable hours to respond to the incident. The response took such a
long time because the organization was not forensically prepared for
the incident. Organizations deploying WLANs that are at a high risk
of cyber attack should be ready to collect digital evidence before an
incident occurs. The model presented in the next section addresses the
concept of digital forensic readiness in WLANs.

3. Wireless Forensic Readiness Model

The most salient characteristic of the wireless forensic readiness model
(WFRM) is that it monitors wireless network traffic at access points.
The monitored traffic is stored in a log file and the integrity of the
stored information is preserved. Thus, the information needed by digi-
tal forensic investigators is readily available should the need arise. The
availability of the information reduces the cost of conducting the digital
forensic investigation because a major portion of the digital forensic pro-
cess (monitoring, logging and preservation) has already been conducted
based on the WFRM.

Figure 1 shows the five phases of the digital forensic process corre-
sponding to the WFRM. As listed in Table 1, the phases are monitoring,
logging, preservation, analysis and reporting.

Phase 1 (monitoring) shows several mobile devices (MDs) connected
to a WLAN through different access points (APs). The mobile devices
use the access points to connect to the Internet. In addition to providing
Internet connectivity, the access points are modified (for the purposes of
this model) to monitor all the traffic generated by the mobile devices.
For security reasons, the monitoring component uses a firewall to filter
inbound and outbound wireless traffic. Filtering is the process of con-
trolling access to the WLAN by screening packets based on the content
of their headers [15].

Phase 2 (logging) records all the traffic monitored by the access points.
Each access point has its own capture unit (CU) that logs the traffic
passing through it. The log file is divided into separate storage areas,
each consisting of (for example) 1 MB of data. When the buffer of
a capture unit is full, a fixed-size block of data is moved to permanent
storage. For example, B1 in Phase 2 represents a block of data consisting
of 4 MB.

In Phase 3 (preservation), the capture unit sends the accumulated
blocks of data to the evidence store (ES). The capture unit computes
a hash value for each block of data, which is saved in the hash store

112 ADVANCES IN DIGITAL FORENSICS VI

Internet

1MB
1MB
1MB
1MB
1MB
1MB

1MB
1MB
1MB
1MB
1MB
1MB

B2

B1 B1

B2

.

.

.

.

.

.

File File

B1A1, B1An
B2A1, B2An
B3A1, B3An

.

.

.

H(B1A1)
H(B2A2)

H(B1An)
H(B2An).

.

.

.

.

.

Analysis

CU CU

Firewall

AP1 APn

Switch

MD

MD

MD

MD

HS of AP1 HS of APnES

1

2

3

4

5

MD – Mobile Device
AP1 – Access Point 1
APn – Access Point n
CU – Capture Unit
ES – Evidence Store
B1 – Block 1
B2 – Block 2 Reporting

P
er

fo
rm

 H
as

hi
ng

P
er

fo
rm

 H
as

hi
ng

1MB
1MB

1MB
1MB

Figure 1. Wireless forensic readiness model (WFRM).

(HS) for integrity checking purposes. Phase 4 involves the analysis of
the stored data and Phase 5 involves the creation of a report.

4. WFRM Simulation

The WFRM prototype was simulated using AnyLogic Professional
(version 6.0) [3], a Java-based, multi-paradigm, hybrid simulation tool
capable of modeling systems as a combination of discrete events, sys-
tem dynamics and agents. The simulation is designed to validate the
use of the WFRM for implementing digital forensic readiness in WLAN
environments.

Figure 2 shows a graphical representation of the WFRM before the
simulation starts. TheMobileDevice component generates random simu-

Ngobeni, Venter & Burke 113

Figure 2. WFRM before the simulation.

lated messages containing source and destination IP addresses, message
transmission date and time, and message content.

Figure 3. WFRM during the simulation.

Figure 3 shows the simulated messages flowing through the network
during the simulation. The simulated messages correspond to the pack-
ets that pass through the network from various devices in the WLAN.

CaptureUnit contains the variables currentCache, cacheSize and cur-
rentCacheUsage. The currentCache variable represents the log file in
our model, which works like a buffer; currentCache can store up to eight
packets (based on the cacheSize in Figure 3). The eight captured pack-
ets are put together to form a single message; this represents a created
block of data in our model. CaptureUnit computes the hash value of the
formed message and stores the value in the HashStore; also, it passes the

114 ADVANCES IN DIGITAL FORENSICS VI

Figure 4. Evidence store.

formed message to the EvidenceStore for storage. The variable current-
CacheUsage keeps track of the number of times that currentCache was
filled with the eight packets that are combined to form a single message.

Figure 4 presents sample data in EvidenceStore. The message in Row
2 shows that an anonymous user with IP address 132.143.133.122 is
attempting to log into a remote host via FTP. The fact that this machine
is anonymous could be of interest to a digital forensic investigator. The
message in Row 5 contains data such as “Please send your message,”
“hacker1@badSMTP.com” and “zombieNET@hostPC.org.” This data
seems suspicious and constitutes potential digital evidence.

The message in Row 9 shows that a machine is using HTTP to access
Google; this does not appear to indicate any malicious activity. The
message in Row 13 shows that the machine with IP address X is asking
the machine with IP address Y if it knows the machine with IP address
Z; this does not appear to be malicious. However, if Machine Y responds
to Machine X that it is not aware of Machine Z, then it is possible that
Machine Z is not part of the network and could be an intruder who
intends to sniff network traffic between Machines X and Y. The message
in Row 15 shows that a machine with IP address 132.143.133.169 is
accessing a suspicious website named “www.illegalSite.com;” an error
message “Do not go here” pops up when this website is accessed. The
message in Row 19 shows that a machine is providing its login details
to a website and downloading a suspicious file named secrets.bat.

Figure 5 presents the HashStore corresponding to the captured simu-
lated messages. Every time a message is captured, a copy of the original

Ngobeni, Venter & Burke 115

Figure 5. Hash store.

captured message is hashed and transferred to the HashStore. The main
reason for hashing the captured information and keeping a separate copy
of the original information is to verify the integrity of the captured in-
formation and to determine whether or not it was tampered with. The
integrity of any message can be verified by extracting and computing
the hash value (y) of the message stored in the EvidenceStore. The hash
value (y) for the particular message block is then retrieved from the
HashStore. If the hash values x and y match, the content of the original
captured message was not tampered with and the integrity of the cap-
tured message in the EvidenceStore is verified. The integrity checking
mechanism was built into the prototype because the integrity of evidence
is a crucial requirement in any digital forensic investigation [2].

5. Discussion

In the simulation described in the preceding section, the simulated
packets were logged (by CaptureUnit) and preserved (by EvidenceStore
and HashStore). However, note that traffic monitoring was not imple-
mented in the prototype because it is performed by the access point
mainly for security reasons. After the traffic generated by the mobile
devices that have connected to the WLAN has been captured and pre-
served, the data is ready for analysis in a digital forensic investigation.
Because this data is forensically ready and forensically sound, the time
and cost involved in conducting the digital forensic investigation are re-
duced considerably. In fact, the data needed for the investigation is
readily available and the bulk of the digital forensic process (i.e., moni-
toring, logging and preservation) has been completed.

One disadvantage of the WFRM simulation is that the traffic is pre-
served in the EvidenceStore and HashStore, which potentially requires
a large amount of storage space. This is not a serious problem be-

116 ADVANCES IN DIGITAL FORENSICS VI

cause storage is becoming ever cheaper. Nevertheless, we are working
on compression techniques that will facilitate the preservation of the
entire stream of wireless network traffic. Since this might not be an
optimal long-term solution to the problem, further research is needed to
address the storage issue.

Finally, we note that the digital forensic processes for EnCase, FTK
and WFRM (Table 1) are essentially equivalent. However, since our
emphasis in this paper is the design of a readiness model, the practical
implementation of the digital forensic process employed for WFRM is
different from the conventional digital forensic process models for En-
Case and FTK.

6. Conclusions

The wireless forensic readiness model helps address the twin chal-
lenges of intercepting and preserving all the communications generated
by mobile devices in WLANs. In general, WLANs are not forensically
prepared to gather digital evidence for use in ensuing investigations. The
forensic readiness model focuses on the monitoring, logging and preser-
vation of wireless network traffic. This covers the bulk of the general
digital forensic investigation process, reducing both the time and the
cost of forensic investigations.

Our future research will focus on several issues. One issue, as men-
tioned above, is the efficient storage of data in the hash store and
evidence store. Another key issue is the analysis of potentially large
amounts of data gathered as a result of the application of the wireless
forensic readiness model. Other issues involve evidence management and
the consideration of infrastructure requirements, admissibility require-
ments and retention requirements.

References

[1] J. Broadway, B. Turnbull and J. Slay, Improving the analysis of law-
fully intercepted network packet data captured for forensic analysis,
Proceedings of the Third International Conference on Availability,
Reliability and Security, pp. 1361–1368, 2008.

[2] E. Casey (Ed.), Handbook of Computer Crime Investigation: Foren-
sic Tools and Technology, Academic Press, San Diego, California,
2002.

[3] Coensys, AnyLogic 6: Multi-Paradigm Simulation Software, Cherry
Hill, New Jersey (www.coensys.com/anylogic.htm).

Ngobeni, Venter & Burke 117

[4] B. Endicott-Popovsky, D. Frincke and C. Taylor, A theoretical
framework for organizational network forensic readiness, Journal
of Computers, vol. 2(3), pp. 1–11, 2007.

[5] G. Francia and K. Clinton, Computer forensics laboratory and tools,
Journal of Computing Sciences in Colleges, vol. 20(6), pp. 143–150,
2005.

[6] R. Newman, Computer Forensics: Evidence Collection and Man-
agement, Auerbach Publications, Boca Raton, Florida, 2007.

[7] R. Rowlingson, A ten step process for forensic readiness, Interna-
tional Journal of Digital Evidence, vol. 2(3), 2004.

[8] K. Scarfone, D. Dicoi, M. Sexton and C. Tibbs, Guide to Securing
Legacy IEEE 802.11 Wireless Networks, NIST Special Publication
800-48, Revision 1, National Institute of Standards and Technology,
Gaithersburg, Maryland, 2008.

[9] R. Siles, Wireless forensics: Tapping the air – Part one, Symantec
Corporation, Mountain View, California (www.securityfocus.com
/infocus/1884), 2007.

[10] J. Tan, Forensic readiness: Strategic thinking on incident response,
presented at the Second Annual CanSecWest Conference, 2001.

[11] C. Then, Examining wireless access points and associated devices,
Forensic Focus (www.forensicfocus.com/downloads/examining-wire
less-access-points.pdf), 2006.

[12] B. Turnbull and J. Slay, The 802.11 technology gap – Case studies
in crime, Proceedings of the IEEE Region 10 Conference, 2005.

[13] B. Turnbull and J. Slay, Wireless forensic analysis tools for use in
the electronic evidence collection process, Proceedings of the Forti-
eth Annual Hawaii International Conference on Systems Sciences,
2007.

[14] B. Turnbull and J. Slay, Wi-Fi network signals as a source of dig-
ital evidence: Wireless network forensics, Proceedings of the Third
International Conference on Availability, Reliability and Security,
pp. 1355–1360, 2008.

[15] E. Velasco, W. Chen, P. Ji and R. Hsieh, Wireless forensics: A new
radio frequency based location system, Proceedings of the Pacific-
Asia Workshop on Cybercrime and Computer Forensics, pp. 272–
277, 2008.

[16] D. Yim, J. Lim, S. Yun, S. Lim, O. Yi and J. Lim, The evidence
collection of DoS attack in WLAN by usingWLAN forensic profiling
system, Proceedings of the International Conference on Information
Science and Security, pp. 197–204, 2008.

III

INTERNET CRIME INVESTIGATIONS

Chapter 9

EVALUATION OF EVIDENCE
IN INTERNET AUCTION
FRAUD INVESTIGATIONS

Michael Kwan, Richard Overill, Kam-Pui Chow, Jantje Silomon, Hayson
Tse, Frank Law and Pierre Lai

Abstract Internet auction fraud has become prevalent. Methodologies for detect-
ing fraudulent transactions use historical information about Internet
auction participants to decide whether or not a user is a potential fraud-
ster. The information includes reputation scores, values of items, time
frames of various activities and transaction records. This paper presents
a distinctive set of fraudster characteristics based on an analysis of 278
allegations about the sale of counterfeit goods at Internet auction sites.
Also, it applies a Bayesian approach to analyze the relevance of evidence
in Internet auction fraud cases.

Keywords: Internet auction fraud, Bayesian network, relevance of evidence

1. Introduction

According to the Data Center of the China Internet [5], Chinese users
spent 2.56 trillion Renminbi ($698 billion) on the Internet during the
first half of 2008, a 58.2% increase over the same period in 2007. Of the
total amount, 35% was spent on purchases made via the Internet; the
remaining 65% was spent on on-line games and network communities.
China already has more Internet users than any other country in the
world, and the number of users is expected to nearly double from 253
million in 2008 to 480 million in 2010 [2]. By 2010, the volume of online
transactions in China will exceed those in Japan and South Korea [2].

Internet auctions offer buyers unparalleled selections of products and
the opportunity to make great deals. They also provide sellers with a
means to reach millions of potential buyers. Meanwhile, criminals are
attracted by the low entry costs and tremendous profits of Internet auc-

K.-P. Chow, S. Shenoi (Eds.): Advances in Digital ForensicsVI, IFIPAICT 337, pp. 121–132, 2010.
c© IFIP International Federation for Information Processing 2010

122 ADVANCES IN DIGITAL FORENSICS VI

tions. Unscrupulous sellers take advantage of buyers by misrepresenting
the quality or condition of their goods. Some have no intention of de-
livering the goods that are offered for sale. As a result, Internet auction
fraud is the most common type of fraud reported in the electronic com-
merce domain [16].

This paper examines the characteristics of Internet auction fraud in
Hong Kong related to the sale of counterfeit goods (i.e., goods bear-
ing false trade descriptions or forged trademarks). In addition, it uses
Bayesian network models representing the prosecution and defense view-
points in conjunction with the likelihood ratio as a criterion to determine
the relevance of digital evidence in Internet auction fraud cases.

2. Background and Related Work

This section reviews the nature of Internet auction fraud. Also, it
surveys approaches for detecting fraud in online auctions.

2.1 Internet Auctions

Internet auctions are successful for many reasons. Potential buyers
have sufficient time to search for items of interest and they can bid
for items 24 hours a day, seven days a week. The Internet does not
impose geographical constraints on buyers and sellers and they are not
required to be physically present at an auction. The large numbers of
buyers and sellers tend to reduce selling costs as well as sales prices.
Many users describe their online auction experience as comparable to
gambling. Offering the highest bid provides the same thrill as winning
a game.

Ochaeta [16] lists six basic features of Internet auctions:

Initial Buyer and Seller Registration: This step helps au-
thenticate the trading parties. It involves the exchange of cryp-
tographic keys and the creation of a profile for each trader. The
profile reflects the trader’s interest in products and possibly his/her
authorized spending limits.

Auction Set Up: This step sets up the auction protocol and
rules such as item descriptions, auction type (e.g., open cry, sealed
bid or Dutch), negotiated auction parameters (e.g., price, delivery
dates, terms of payment), auction starting time and duration, and
auction closing conditions.

Scheduling and Advertising: In order to attract potential buy-
ers, items in a given category (e.g., art or jewelry) are generally

Kwan, et al. 123

auctioned together on a regular schedule. Popular items are some-
times mixed with less popular items. Items to be sold in upcoming
auctions and the dates of upcoming auctions are advertised.

Bidding: The bidding step handles the collection of bids from
potential buyers. It implements the bid control rules (e.g., min-
imum bid, bid increment, bid deposit). It also notifies auction
participants when higher bids are received.

Bid Evaluation and Auction Closing: This step implements
the auction closing rules and notifies the winners and losers.

Trade Settlement: This final step handles payments to sellers
and the transfer of goods to buyers. If the seller is not the auc-
tioneer, this final step also includes the payment of fees to the
auctioneer and other agents.

2.2 Internet Auction Fraud

Criminals have discovered the Internet to be a highly profitable venue
for conducting illicit business activities [7]. Organized crime groups are
involved in numerous technology-enabled crimes, including Internet auc-
tion fraud [3].

Sakurai and Yokoo [18] have observed that anonymity is an important
factor in perpetrating Internet fraud and that the existence of indivisible
bids causes difficulty in matching supply and demand. This is because
a buyer or seller can submit a false name bid by pretending to be a
potential buyer or seller, thereby manipulating the balance of supply and
demand. Chae, et al. [1] have confirmed these observations, concluding
that online auction fraud is successful due to information asymmetry
and anonymity.

Chua and Wareham [4] have listed some of the reasons for the pro-
liferation of Internet auction fraud. The high degree of anonymity is at
the top of the list; it is easy for dishonest users to evade prosecution.
Second on the list is the low cost of entry and exit. Interestingly, these
are precisely the reasons for the success of Internet auctions.

According to the 2008 Internet Crime Report [9], the median loss per
Internet fraud complaint in the United States was $931 in 2008; the total
loss was $264.6 million. In all, there were 275,284 Internet crime com-
plaints – auction fraud, non-delivery of purchased goods, credit/debit
card fraud, computer intrusions, spam and child pornography. However,
Internet auction fraud was the most commonly reported offense, com-
prising 25.5% of all complaints and 16.3% of the total reported loss. The
average median loss per auction fraud complaint was $610.

124 ADVANCES IN DIGITAL FORENSICS VI

Table 1. Internet fraud taxonomy.

Seller as Fraudster

Bid Shilling Seller bids on his own items to drive up the
price

Misrepresentation Seller intentionally misrepresents an item
Fee Stacking Seller adds hidden costs such as handling

charges after the auction
Failure to Ship Seller does not send the items to the buyers
Reproductions and Counterfeits Seller advertises counterfeit items as the real

thing
Triangulation Fencing Stolen items are sold
Shell Auction Seller sets up an auction solely to obtain bank

account and credit card information

Buyer as Fraudster

Bid Shielding Two buyers collude – one makes a low bid,
while the other makes an inflated bid; the
higher bidder withdraws before the auction
ends

Failure to Pay Buyer does not pay for the items
Buy and Switch Buyer refuses the items, but keeps the original

items and returns inferior items
Loss or Damage Claims Buyer claims the items are damaged, disposes

of them and requests a refund

Gregg and Scott [8] discovered that Internet auction fraud takes var-
ious forms, such as delivering goods that are different, of low quality,
without ancillary components, defective, damaged or black market items.

Morzy [15] describe other practices, including bid shielding and bid
shilling. Bid shielding is the offering of an artificially high bid for an
item to discourage other bidders from competing for the item. At the
last moment, the “shielder” withdraws the high bid, enabling the second
highest bidder, who is usually an accomplice, to win the auction. Bid
shilling involves the use of a false bidder identity to drive up the price
of an item on behalf of the seller.

Gregg and Scott [8] note that accumulation fraud is on the increase. In
this type of fraud, a seller builds his reputation by selling large quantities
of low-value merchandise over a long period of time. Having earned a
good reputation, the seller offers expensive goods, but does not send the
goods to buyers after receiving payment for them.

Chua and Wareham [4] created the auction fraud taxonomy presented
in Table 1. According to Chua and Wareham, all the types of fraud

Kwan, et al. 125

listed are very damaging to Internet auction houses. They undermine
user trust, which is disastrous for business.

Ku, et al. [12] note that while both buyers and sellers can be victims
of fraud, a buyer is more easily targeted than a seller. They observed
that 89% of seller-buyer pairs conducted just one transaction during the
time period of their study; at most, there were four transactions between
a seller-buyer pair. This means that the repeated transaction rate for
the same seller-buyer pair is lower than 2%. If the transaction rate is
much higher than 2%, then the transactions between the seller-buyer
pair are suspect and could involve bid shilling or bid shielding.

Kobayashi and Ito [11] observed that many fraudsters tend to make
honest deals during the early stages of their auction lives. However, they
commit fraud soon after earning good reputations.

Ochaeta [16] also observed that fraudsters tend to establish good rep-
utations prior to committing fraudulent acts. Therefore, the reputation
building process of fraudsters is different from that of legitimate users.
Specifically, fraudsters attempt to gain as much one-time profit as pos-
sible and as quickly as practicable. Consequently, fraudsters can be
identified based on their reputation-building activities.

Fraudsters attempt to build their reputations by buying or selling nu-
merous cheap items from sellers with good reputations. Additionally,
they may buy or sell moderately priced or expensive items to accom-
plices. These buying and selling activities generally take place over a
short period of time.

In order to build good reputations over a short period of time, most
Internet auction fraudsters tend to sell large amounts of low-priced prod-
ucts. These sales take place at the beginning of their fraudulent auction
lives. Also, fraudsters may attempt to bid for inexpensive items from
sellers with good reputations. This is done to establish a favorable rep-
utation by conducting many legitimate transactions.

3. Internet Auction Fraud in Hong Kong

We conducted a statistical analysis of 278 cases in Hong Kong to
reveal the characteristics of Internet auction fraud related to the sale
of counterfeit goods. The cases were the result of complaints lodged
with the Hong Kong Customs and Excise Department. The following
characteristics were observed in the analyzed cases:

Fake goods are sold at unreasonably low prices, about 10% of the
prices of legitimate goods.

In about two-thirds of the cases (180 out of 278), the goods are
sold within seven days of account creation.

126 ADVANCES IN DIGITAL FORENSICS VI

Fraudsters have multiple auction accounts that do not carry high
trust values or reputation scores (8 out of 10 or higher).

Fraudulent accounts are short lived (less than ten days) and fraud-
sters tend to switch to other auction accounts before the auction
period expires.

Many categories of goods (more than five) are sold (e.g., watches,
mobile phones, footwear and sportswear).

4. Investigative Model

This section describes an investigative model for online auction fraud
involving the sale of counterfeit goods. The model employs a Bayesian
network to support the reasoning about evidentiary hypotheses.

4.1 Hypotheses and Evidentiary Traces

Digital evidence related to twenty prosecuted cases from the 278 com-
plaints of selling counterfeit goods in Internet auctions was used to frame
three sub-hypotheses about the actions taken by fraudsters. Because
detailed judgments were not available for the prosecuted cases, digital
forensic examiners who worked on the cases were interviewed to elicit
the sub-hypotheses. The three sub-hypotheses are:

Auction-related materials (e.g., images and item descriptions) were
downloaded.

The auction item (e.g., price of the item) was manipulated.

The buyer and seller communicated (e.g., via email or instant mes-
saging) about the counterfeit item.

These three sub-hypotheses substantiate the overall prosecution hy-
pothesis that an online auction fraud crime was committed in the twenty
prosecuted cases. The sub-hypotheses are supported by thirteen dis-
tinct evidentiary traces, which were obtained from the responsible dig-
ital forensic examiners. The various hypotheses and evidentiary traces
are expressed using a Bayesian network model shown in Figure 1.

This investigative model does not of itself substantiate the entire pros-
ecution case. The auctioned item has to be procured by the investigator
and then be examined by the trademark owner to ascertain whether or
not the item is counterfeit.

In order to evaluate the relevance of the digital evidential traces, a
second simple Bayesian network model is created to express the defense

Kwan, et al. 127

Hypotheses
: Seized computer was used as a transaction tool for the auction of the counterfeit item
: Uploading of auction material related to the counterfeit item was performed
: Manipulation of the corresponding auction item took place
: Communication between the seller and buyer about the counterfeit item occurred

Evidence

: Information about the counterfeit item (e.g., image, description) was found on the seized computer
: Seller’s account login record was retrieved from the auction site
: File metadata found on the seized computer matched the metadata found on the auction site
: IP address assigned to the seized computer matched the IP address used for data transfer
: Internet history/cache contents on the seized computer indicated the transfer of the counterfeit item
: Seller’s account login record was retrieved from the auction site
: IP address assigned to the seized computer matched the IP address used for data transfer
: Editing of the auction item (e.g., price adjustment) occurred on the auction site
: Information about the auction item (e.g., image, description) was found on the seized computer
: Messages from the auction site related to the auction item were found on the seized computer
: Messages to/from the buyer related to the auction item were found on the seized computer
: Address book containing the covert investigator’s email address was found on the seized computer
: IP address assigned to the seized computer matched the IP address used for email communication

Figure 1. Bayesian network model for prosecution hypotheses and evidentiary traces.

viewpoint. Figure 2 presents the defense hypotheses and their associ-
ated evidentiary traces. Although the root hypotheses of the defense and
prosecution models appear to be the same, they are, in fact, different
because of the different supporting sub-hypotheses that express the de-
fense and prosecution viewpoints. However, the same set of evidentiary
traces is used in both models.

4.2 Evidence Evaluation

We use the likelihood ratio (LR) to evaluate the evidence in Internet
auction fraud cases. LR is a general technique that can be applied to
any scenario with decision uncertainty. In particular, it is very effective
for quantifying the value or relevance of evidence [14]. The closer the LR

128 ADVANCES IN DIGITAL FORENSICS VI

Hypotheses
: Seized computer was used as a transaction tool for the auction of the counterfeit item
: Downloading of auction material related to the counterfeit item was performed
: Manipulation of the non-counterfeit auction item took place
: Communication between the seller and buyer about the non-counterfeit item occurred

Evidence

: Information about the counterfeit item (e.g., image, description) was found on the seized computer
: Seller’s account login record was retrieved from the auction site
: File metadata found on the seized computer matched the metadata found on the auction site
: IP address assigned to the seized computer matched the IP address used for data transfer
: Internet history/cache contents on the seized computer indicated the transfer of the counterfeit item
: Seller’s account login record was retrieved from the auction site
: IP address assigned to the seized computer matched the IP address used for data transfer
: Editing of the auction item (e.g., price adjustment) occurred on the auction site
: Information about the auction item (e.g., image, description) was found on the seized computer
: Messages from the auction site related to the auction item were found on the seized computer
: Messages to/from the buyer related to the auction item were found on the seized computer
: Address book containing the covert investigator’s email address was found on the seized computer
: IP address assigned to the seized computer matched the IP address used for email communication

Figure 2. Bayesian network model for defense hypotheses and evidentiary traces.

value is to one, the less relevant is the evidence. Evett [6] generalized
the LR approach to represent a situation where it is uncertain if the
evidence is the result of the activities of a suspect. The general form
proposed by Evett is:

LR =
Pr(E|Hp)

Pr(E|Hd)

where E is the total digital evidence related to the crime, and Hp andHd

are the overall prosecution hypothesis and the overall defense hypothesis,
respectively.

In our simple Bayesian network model, the existence of each individual
trace of digital evidence does not imply the existence of any other traces.
Since the evidentiary traces are mutually independent, their individual

Kwan, et al. 129

Table 2. Conclusions drawn on LR values.

Likelihood Ratio Evidentiary Support

1 to 10 Limited
10 to 100 Moderate
100 to 1,000 Moderately Strong
1,000 to 10,000 Strong
More than 10,000 Very Strong

probabilities can be multiplied together to determine the probability of
E given a root hypothesis. The prior probability values of the individual
evidentiary traces for the Internet auction fraud models (prosecution and
defense) were obtained by surveying digital forensic examiners with the
Hong Kong Customs and Excise Department, and are generally accepted
values within this community of experts.

Evaluation of the Individual Sub-Hypotheses To evaluate the
evidentiary relevance or LR values of the individual sub-hypotheses, it
is necessary to set the individual sub-hypotheses to “Yes” separately and
then multiply the prior probability values of their associated evidence.
Thus, the LR value of evidence for hypothesis Hp against the evidence
for hypothesis Hd (Pr(E|Hp)/Pr(E|Hd)) is given by:

Pr(Ep1|Hp1)× Pr(Ep2|Hp1)× Pr(Ep3|Hp1)× Pr(Ep4|Hp1)× Pr(Ep5|Hp1)

Pr(Ed1|Hd1)× Pr(Ed2|Hd1)× Pr(Ed3|Hd1)× Pr(Ed4|Hd1)× Pr(Ed5|Hd1)

≈ 0.9× 0.75× 0.6× 0.75 × 0.85

0.9× 0.05× 0.6× 0.01 × 0.01
≈ 0.258

0.0000027
≈ 95, 600

Applying the interpretation adopted by the U.K. Forensic Science
Service [10], an LR value of 95,600 indicates very strong support of the
evidence for the prosecution’s claim over the defense’s claim. Table 2
illustrates the interpretation used by the Forensic Science Service.

Similarly, the LR values for Hp2 against Hd2 and for Hp3 against Hd3

are given by:

Pr(E|Hp2)

Pr(E|Hd2)
≈ 0.247

0.000319
≈ 774

Pr(E|Hp3)

Pr(E|Hd3)
≈ 0.190

0.000938
≈ 203

130 ADVANCES IN DIGITAL FORENSICS VI

The computed LR value indicates very strong evidentiary support for
the prosecution’s sub-hypothesis Hp1. On the other hand, the LR values
indicate that the evidence supports the prosecution’s sub-hypotheses
Hp2 and Hp3 moderately strongly.

A limitation exists in the application of the LR approach to evaluate
the evidentiary relevance of individual sub-hypotheses. In order to com-
pute LR values, the corresponding sub-hypotheses should exist in the
Bayesian network models expressing the prosecution and defense view-
points. This requirement renders the LR approach inapplicable when
the sub-hypotheses in two models do not correspond to each other (e.g.,
the number of sub-hypotheses in the defense Bayesian network model is
larger than the number in the prosecution model).

However, under normal circumstances, the sub-hypotheses in both
models will correspond because most of the sub-hypotheses in the defense
model stem from the sub-hypotheses in the prosecution model. Evalu-
ating the evidentiary relevance of individual sub-hypotheses can identify
the strongest and weakest sub-hypotheses in the models. This enables
digital forensic practitioners to identify the most significant and/or the
most insignificant groups of evidence that are encompassed by the indi-
vidual sub-hypotheses.

Evaluation of the Overall Hypotheses To compute Pr(E|Hp), it
is necessary to set the root hypothesis Hp of the prosecution Bayesian
network to “Yes” and then multiply the resulting probability values of
Ep1 to Ep13. Similarly, to compute Pr(E|Hd), it is necessary to set
the root hypothesis Hd of the defense Bayesian network to “No” and
multiply the resulting probability values of Ed1 to Ed13. Specifically, we
have:

Pr(E|Hp) ≈ 0.000293; Pr(E|Hd) ≈ 0.00000000179

Hence,

LR =
Pr(E|Hp)

Pr(E|Hd)
≈ 0.000293

0.00000000179
≈ 164, 000

The LR value of 164,000 indicates very strong evidentiary support for
the prosecution’s claim over the defense’s claim.

5. Conclusions

The analysis of allegations of counterfeit goods at Internet auction
sites provides interesting insights into fraudster behavior. Bayesian net-
works and likelihood ratio values offer a powerful mechanism for an-
alyzing the relevance of evidence in such cases. If all the evidentiary

Kwan, et al. 131

traces are initially assumed to be present, the LR values computed from
the prosecution and defense models can be used as criteria to determine
whether or not it is worthwhile to proceed with the search for eviden-
tiary traces. Specifically, if the LR value is relatively large (greater than
1,000) the search for the implied digital evidence should proceed. This
would be followed by applying a cost-effective digital forensic investiga-
tion model [17] to identify the evidentiary traces and then applying the
Bayesian network model [13] with the retrieved traces. On the other
hand, if the LR value is found to be relatively small, the evidence does
not strongly support the chosen hypotheses. Therefore, the prosecution
should review its hypotheses and/or the implied evidentiary traces.

Acknowledgements

The authors wish to thank Dr. Jeroen Keppens of the Department of
Computer Science, King’s College London for his technical assistance.

References

[1] M. Chae, S. Shim, H. Cho and B. Lee, Empirical analysis of online
auction fraud: Credit card phantom transactions, Expert Systems
with Applications, vol. 37(4), pp. 2991–2999, 2010.

[2] China Internet Network Information Center, Statistical Survey Re-
port on Internet Development in China (Abridged Edition), Beijing,
China (www.cnnic.net.cn/uploadfiles/pdf/2008/8/15/145744.pdf),
2008.

[3] R. Choo, Organized crime groups in cyberspace: A typology, Trends
in Organized Crime, vol. 11(3), pp. 270–295, 2008.

[4] C. Chua and J. Wareham, Self-regulation for online auctions: An
analysis, Proceedings of the Twenty-Third International Conference
on Information Systems, pp. 115–125, 2002.

[5] Data Center of the China Internet, The First Half of 2008 China
Internet User Measurement Data IUI Index Report, Beijing, China,
2008.

[6] I. Evett, Establishing the evidential value of a small quantity of
material found at a crime scene, Journal of the Forensic Science
Society, vol. 33(2), pp. 83–86, 1993.

[7] S. Gajek and A. Sadeghi, A forensic framework for tracing phishers,
Proceedings of the Third International Conference on the Future of
Identity in the Information Society, pp. 19–33, 2008.

[8] D. Gregg and J. Scott, A typology of complaints about eBay sellers,
Communications of the ACM, vol. 51(4), pp. 69–74, 2008.

132 ADVANCES IN DIGITAL FORENSICS VI

[9] Internet Crime Complaint Center, 2008 Internet Crime Report, Na-
tional White Collar Crime Center, Richmond, Virginia, 2008.

[10] J. Keppens, Towards qualitative approaches to Bayesian evidential
reasoning, Proceedings of the Eleventh International Conference on
Artificial Intelligence and Law, pp. 17–25, 2007.

[11] M. Kobayashi and T. Ito, A transactional relationship visualization
system in Internet auctions, Studies in Computational Intelligence,
vol. 110, pp. 87–99, 2008.

[12] Y. Ku, Y. Chen and C. Chiu, A proposed data mining approach
for Internet auction fraud detection, Proceedings of the Pacific Asia
Workshop on Intelligence and Security Informatics, pp. 238–243,
2007.

[13] M. Kwan, K. Chow, F. Law and P. Lai, Reasoning about evidence
using Bayesian networks, inAdvances in Digital Forensics IV, I. Ray
and S. Shenoi (Eds.), Springer, Boston, Massachusetts, pp. 275–289,
2008.

[14] D. Lucy, Introduction to Statistics for Forensic Scientists, Wiley,
Chichester, United Kingdom, 2005.

[15] M. Morzy, New algorithms for mining the reputation of participants
of online auctions, Algorithmica, vol. 52(1), pp. 95–112, 2008.

[16] K. Ochaeta, Fraud Detection for Internet Auctions: A Data Min-
ing Approach, Ph.D. Thesis, College of Technology Management,
National Tsing-Hua University, Hsinchu, Taiwan, 2008.

[17] R. Overill, M. Kwan, K. Chow, P. Lai and F. Law, A cost-effective
model for digital forensic investigations, in Advances in Digital
Forensics V, G. Peterson and S. Shenoi (Eds.), Springer, Heidel-
berg, Germany, pp. 231–240, 2009.

[18] Y. Sakurai and M. Yokoo, A false-name-proof double auction proto-
col for arbitrary evaluation values, Proceedings of the Second Inter-
national Joint Conference on Autonomous Agents and Multiagent
Systems, pp. 329–336, 2003.

Chapter 10

DETECTING PONZI AND PYRAMID
BUSINESS SCHEMES IN
CHOREOGRAPHED WEB SERVICES

Murat Gunestas, Murad Mehmet and Duminda Wijesekera

Abstract Businesses are increasingly using web service choreographies to imple-
ment dynamic service invocations and content specific operations. These
web service choreographies can be misused at multiple levels – by ex-
ploiting their technical capabilities and using them to design complex
illegal business schemes such as Ponzi, pyramid and money laundering
schemes. One of the main problems with the illegal schemes is that
they are similar to legal multistage business schemes; their illegality is
apparent only to a macroscopic observer. This paper describes some
of these schemes and demonstrates how to obtain evidence pertaining
to the schemes using cryptographically-secure local message reposito-
ries. The evidence gathered is of considerable value to financial fraud
investigators, business arbiters, potential investors and judicial actors.

Keywords: Web services, choreographies, Ponzi schemes, pyramid schemes

1. Introduction

Businesses are increasingly invoking dynamic services and generating
content-specific operations among choreographed web services, thereby
creating service interdependencies between web services. These dynamic
service interdependencies can be exploited to create new misuse activi-
ties. Some exploit the infrastructural dependencies of the services them-
selves while others use the infrastructural dependencies to create illegal
business schemes. This paper focuses on detecting Ponzi and pyramid
investment schemes created to defraud unsuspecting investors.

Illegal business schemes are difficult to detect because they are similar
to legal business schemes at a microscopic level and are apparent only
at the macroscopic level. Thus, they can elude local monitoring of web

K.-P. Chow, S. Shenoi (Eds.): Advances in Digital ForensicsVI, IFIPAICT 337, pp. 133–150, 2010.
c© IFIP International Federation for Information Processing 2010

134 ADVANCES IN DIGITAL FORENSICS VI

Table 1. Pyramid scheme.

Level Payments of $400 (#)

1 ($100 × 3 = $300) 1 × # 1 × # 1 × #
2 ($30 × 9 = $270) 3 × # 3 × # 3 × #
3 ($30 × 27 = $810) 9 × # 9 × # 9 × #
4 ($30 × 81 = $2,430) 27 × # 27 × # 27 × #
...
21 10,460,353,203 × #

transactions. Ponzi and pyramid schemes [13, 14] are difficult to dif-
ferentiate from multilevel marketing schemes that either run their own
businesses or invest in others. The basic dynamic of these two schemes
is to rob Peter to pay Paul [16].

The Ponzi scheme is named after Charles Ponzi [16]. For many years,
he collected money and promised returns within 90 days to investors
who enrolled other investors in the scheme. Ponzi paid out the early
investors using funds invested by late joiners. Other than running this
scheme, Ponzi neither ran a business nor invested in other businesses
and, consequently, neither incurred a profit nor a loss.

Numerous Internet-based Ponzi schemes are currently being investi-
gated [9, 10]. In 2006 alone, 25,000 web sites suspected of running Ponzi
schemes were shut down by the U.S. Securities and Exchange Commis-
sion [7].

A classic pyramid scheme, shown in Table 1, also uses the same prin-
ciple. The orchestrator who originates the scheme promises top-level in-
vestors large returns on their investments, as do the recruited investors
to their potential recruits. The example in Table 1 is organized as a
four-level payment scheme with a span of three, i.e., only up to four
levels of ancestral recruiters profit from investments, and each recruit at
every level recruits three others. A Level 1 investor recruits three others
and receives $100 per recruit. Each recruit is expected to recruit three
others, thereby building a recruit tree. The Level 1 investor is paid $30
(not $100) per recruit at Levels 2, 3 and 4; and does not profit from
investors beyond Level 4.

The orchestrator considers the recruiting activity to be complete when
he receives $400 from an investor. Therefore, the orchestrator pays his
recruiters $100 for the first parent or $30 for the three immediate an-
cestral recruiters, paying at most $190 on an investment of $400. Con-
sequently, an investor makes $3,810 ($2,430 + $810 + $270 + $300) on
his investment of $400 to his promoter if he successfully recruits three
other investors and they successfully recruit three other investors all the

Gunestas, Mehmet & Wijesekera 135

Pairwise Evidence
Generation Service

(FWS-TTP)

Evidence Derivation
Service (EDWS)

Comprehensive
Evidence Generation

Service (CEGWS)
Repo

Application Messages

Evidence Module

WS-Evidence Interface

Endpoint Web Services

Figure 1. Evidence generation framework.

way down to Level 4. The scheme grows quickly, but is unsustainable
in the long term and many promoters lose their investments because of
the difficulty of attracting new recruits [14].

Financial institutions and their business partners are increasingly en-
gaging service-oriented architectures such as dynamic brokering, creating
dynamic service interdependencies that can be exploited to orchestrate
illegal business practices. In order to detect such illegal schemes, it is
necessary to have a comprehensive non-repudiable perspective of com-
plex multi-party transaction models. A multi-party communication can
arise in two possible ways among dynamic web services. In the first,
a static communication pattern is specified and all participants follow
this previously-known pattern. In the second, web services discover and
transact with other services, dynamically creating choreographies that
were unknown a priori. Consequently, in order to discover illegal ac-
tivity, it is necessary to identify illegal business transactions using both
types of choreographies.

2. Evidence Generation Framework

This section briefly reviews the evidence generation framework (EGF)
of Gunestas, et al. [2], which is used to track business-level choreographic
misuse. The EGF has three layers (Figure 1). The pairwise evidence
generation service (Level 1) generates evidence for pairwise interactions
between web services. The evidence derivation service (Layer 2) derives

136 ADVANCES IN DIGITAL FORENSICS VI

facts from available pairwise evidence in order to refute or justify claims
of agreement violations between communicating partner services. The
comprehensive evidence generation service (Layer 3) generates instances
of requested choreographies from Layer 2 and Layer 3 data.

The EGF provides online evidence generation and management capa-
bilities to other web services as a web service itself. In order to use the
EGF, other web services (called member services) should integrate the
EGF with themselves using a centralized service access point. There-
after, the EGF acts as a trusted third party. As a service, the EGF re-
ceives and retains service requests and responds in a cryptographically-
secure manner, retains the correspondence in secure repositories, and
provides the correspondence for dispute resolution and forensic investi-
gations. The EGF provides “evidence adapters” for all requests.

Gunestas, et al. [2] have constructed a prototype implementation of
Layer 1 and several protocols based on one-way and request-response
message exchange patterns. Currently, the EGF provides evidence for
non-repudiation, fairness and timeliness using digital signatures to pro-
vide proofs of receipt and delivery, to link a message to its creator/sender
and to provide message integrity. For accountability, the EGF uses fair
non-repudiation mechanisms that utilize trusted third parties (TTPs).
Some fair exchange protocols (e.g., [6]) do not use TTPs because they
assume that the participants have prior knowledge of the message con-
tents; but they are not used in the EGF because web services may not
always know the expected message content. Timeliness is required be-
cause of the time-sensitive nature of most business transactions. Ev-
idence records are based on the time observed at TTPs. EGF servers
gather pairwise transactional evidence that flows between sender and re-
ceiver web services, employing inline TTPs that use the Simple Evidence
Layer Protocol (SELP) or offline TTPs that use the Optimistic Evidence
Layer Protocol (OELP) [4]. SELP and OELP are used by end-points to
obtain non-repudiable evidence by engaging a specific message format
and digital signatures.

3. Evidence of Observed Interactions

Web services use many kinds of messages (e.g., one-way messages and
request-response messages) in order to choreograph business processes
between themselves that correspond to the four proposed WSDL oper-
ation types (in-only, out-only, in-out and out-in). An external observer
who is ignorant of the business processes can observe only the one-way
and request-response message exchange patterns that are formalized in
Definition 1.

Gunestas, Mehmet & Wijesekera 137

Definition 1 (Message): A web services message consists of three com-
ponents: (i) mandatory fields corresponding to the sender, receiver and
time, where the first two are URLs and the last is chosen from a set T ;
(ii) optional fields corresponding to a finite set of attributes from a set
A; and (iii) message content consisting of strings from an alphanumeric
set C.

In this paper, the symbol | denotes string concatenation and encA(r)
denotes the string obtained by encrypting r using A’s key. Furthermore,
if m is a message, then m.a denotes the value of its attribute a. For
example, m.time is the value of the timestamp of m.

Definition 1 establishes the notation for describing the messages used
to extract knowledge about externally-observable facts pertaining to
choreographies. Because different choreographic specifications may se-
lect different labels for their identifier fields, in order to address naming
convention problems, we use XPATH expressions to specify ID values.
Furthermore, because any fabricator can produce messages, we rely on
cryptographically-secure messages to ascertain reliable evidence. The
messages are collected to derive “evidence objectives” – claims that are
to be substantiated or refuted using the collected evidence, e.g., mes-
sage origin, message properties or the intended recipient. This evidence
is generated from cryptographically-secure messages. However, certain
objectives such as evidence of delivery and evidence of non-availability
may require messages to be signed by a TTP.

Definition 2 (Primitive Evidence Objectives): The three primitive evi-
dence objectives are: (i) Evidence of Origin: message m with origin A
and content r|sigA(r) from A to B is said to provide evidence of origin;
(ii) Evidence of Delivery: message m with content ack|sigTTP (ack|m),
where TTP is a trusted third party or content ack|sigB(ack|m) and B
is m.recipient is said to provide evidence of delivery; and (iii) Message
Evidence: evidence of a message m is a pair (m1, m2), where m1 is the
evidence of origin and m2 is the evidence of delivery of m.

According to Definition 2, cryptographic evidence is required from
a web service of a trusted third party for claims of origin and delivery.
Interested readers are referred to [3, 4] for details about how the evidence
of origin and evidence of delivery can be collected at TTPs using WS-
Evidence messages that are generated via non-repudiation protocols.

The message evidence (ME) is stored in the form of log records in the
EGF as described in [3]. Because log records may contain large volumes
of data, message evidence indices (MEIs) are used to refer to messages.
Table 2 shows a sample index table, where the first column is an index for
stored packets that have the attributes of time, sender, message string

138 ADVANCES IN DIGITAL FORENSICS VI

Table 2. Sample MEI table.

ID Time Sender Receiver Msg Content

63.. 21 A B r <..invID..>
67.. 22 B C m “..”
68.. 23 C B k <..payID..>

and content. The first reference in the table is to a message sent by A
to B with content <invID>.

4. Evidence of Global Misuse

Mining choreographies that are created due to message content from
external observations require linkage parameters, which can be derived
from externally-invisible message content; this renders them not very
helpful to external monitors and auditors. One opportunity to obtain
this information is when a victim makes a complaint. Thus, the following
method can be used to detect a Ponzi-like scheme:

Accept a victim complaint.

Examine the content of specimen records involving promotion or
investment messages provided by the victim.

Determine the parameters in the evidence that can be linked.

Detect choreographies and design them in the dynamics of the
algorithms.

Create the algorithms.

Run the algorithms in the appropriate order, possibly running
more than one algorithm when required.

Collect a comprehensive set of evidence to determine if the scheme
is illegal and its effect on the network.

Broadcast an alert to current and potential victims.

The method described above works for hierarchical schemes. Different
methods would be applied to other schemes. We apply our heuristic
method to specify several algorithms for Ponzi-like schemes.

Gunestas, Mehmet & Wijesekera 139

Orchestrator

Promoter

Victim

Potential

Promote

Invest

Pay

InvComp

A

B

C
Victim

Figure 2. Ponzi-like recruits over web services.

4.1 Ponzi Schemes over Web Services

Typical Ponzi-like schemes have three types of actors: a malicious in-
vestment service acting as the orchestrator and investor services acting
as promoters or victims (depending upon their investments and return
rates). Figure 2 illustrates how these actors collaborate to spread the
financial scheme over a network of web services. The investment com-
pany, InvComp (Orchestrator), promotes A (Promoter) to recruit B into
its scheme by promising a quick return on investment and encourages
B to promote the scheme to other potential investors. This promoting
activity (using promote messages) may not necessarily be observed in
the records because promoters may choose other means to convince in-
vestors. If A invests (using an invest message) in InvComp, then we say
that A has been recruited. A now starts promoting InvComp to other
investors in order to get a quick return on his investment and in the pro-
cess recruits B. We recognize that B has been promoted by A because of
the reference value in the content field of the invest message sent by B to
InvComp. In accordance with the return policy of the scheme, InvComp
makes a payment to A (pay message).

140 ADVANCES IN DIGITAL FORENSICS VI

Table 3. MEI tuples featuring a misuse scheme.

ID Time Sender Receiver Msg Content

. . .
45 B InvComp invest Promoter=A
55 InvComp A pay 150

. . .
67 C InvComp invest Promoter=B
76 InvComp B pay 150
78 InvComp A pay 30

. . .
87 Victim InvComp invest Promoter=C
89 InvComp C pay 150
92 InvComp B pay 30
104 InvComp A pay 30

The choreographies between the investment company, recruiters and
recruits spread in an investor web service network. When a recruit
cannot attract enough investors, he loses his money (Victim). Figure 2
shows the complete and incomplete recruit choreographies.

We do not assume that we know the global scheme when mining.
Instead, we assume that either a promoter web service identity or an
invest message is submitted to a law enforcement agency by a victim.
Following the heuristic method presented above, it is possible to find
invest, pay and promote messages that contain attributes that refer to
each other, demonstrating the collaboration in a pervasive manner.

4.2 Pattern Discovery

This section shows how to discover the patterns that help create com-
prehensive evidence of illegal business schemes. Following the heuristic
method described above, we assume that a victim brings an invest mes-
sage that contains a promoter web service. An algorithm executed on
the evidence repository could show that the promoter web service has
received pay messages from other web services and has sent an invest
message to the same web service of the alleged investment company.
Table 3 shows sample records corresponding to the misuse scheme.

The records in Table 3 show the pattern that keeps the fraudulent
activity alive – invest messages are linked by sender header fields and
promoter content fields. In other words, every promoter web service in
an invest message is paid right after the invest message. The message

Gunestas, Mehmet & Wijesekera 141

Table 4. Ponzi scheme with fanout 1 and depth 1.

I invest;p pay where
invest.sender=A and invest.reciever=B and pay.sender=B and
pay.reciever=C and invest.prometer=pay.reciever

II invest1;p invest2 where
invest1.sender=C and invest1.receiver=B and invest2.sender=A
and invest2.reciever=B and invest2.promoter= invest1.sender

evidence can be correlated to conclude that the promoter, victim and
orchestrator may be involved in a hidden recruit choreography.

In cases where the promoting activity does not involve a web service
message, the message or choreography patterns can be included as part
of the recruiting activity. We call this content-based choreography “re-
cruit.” Pattern I in Table 4 is the signature for the “rob Peter to pay
Paul” activity. Pattern II is used as the link between the recruiter and
recruit, enabling the mining of recruit paths to create recruit trees from
MEI records. For simplicity, we define patterns succinctly; however,
more complex patterns may include pay messages, which increases the
complexity of queries.

Table 3 shows that investors assume a promoter role within a subse-
quent recruit choreography pattern, thus creating a recursive investment
scheme. For example, note that Investor B sends an invest message to
InvComp at Time 45. At Time 67, Investor C makes a reference to B
through his investment message and B receives a payment from InvComp
some time later (pay message at Time 76). The same choreography can
be observed between C and other subsequent investors, revealing that
they recruited other investors shown in later records. Consequently, in
order to detect such a scheme, it is necessary to recognize the recursive
investment and payback schemes. The recursive scheme creates a re-
cruit tree that joins a recruiter to all his recruits. By traversing a path
in a recruit tree from a chosen (victim) node to the root of the tree
(say recruit paths), it is possible to identify the orchestrator. The path
Victim-C-B-A in Figure 2 is such a recruit path.

In this paper, we use the following notation to specify recruit trees
formally. Let k be an integer that denotes the fanout of the recruit tree.
Then, all finite sequences of {0, . . . , k − 1} are used as identifiers for
web service nodes. We use the notation 2k<w to denote the set of finite
subsequences of {0, . . . , k − 1}. For example, all binary sequences can
be used to index trees with fanout 2, where the left child of node xp is
xp0 and the right child is xp1, where p is a finite sequence of integers
{0,1}, i.e. 2<w. The notation p<q denotes that p is a subsequence of

142 ADVANCES IN DIGITAL FORENSICS VI

q where p, q ∈ k<w. The length of p ∈ k<w is denoted by |p|. Now
suppose p ∈ k<w where |p|= m and p =<po, . . . , pm−1>. Then, the
ith ancestors of p for i ≥ 1 are given by ancestor(i)=<po, . . . , pm−i>.
Finally, φ denotes the empty string in k<w.

Definition 3 (Recruit trees of fanout k and depth m): Suppose I is an
investment company web service. Inductively define active(n) for every
integer n as follows:
(i) Active(0)={m} where m is defined as a message where [m.sender=po,
m.receiver=I].
(ii) Suppose active(n) has been defined and p ∈ k<w with |p|= n, then for
each i ∈{0, . . . , k − 1} define [active(pˆi)=msg;pPayBack(pˆi)] where
msg satisfies [msg.sender=Ppˆi, msg.reciever=I and msg.content= in-

vest] and PayBack(pˆi) satisfies PayBack(pˆi)=msg1 ∩p . . .∩p msgm
where every msgi is of the form [msgi.content=pay, msgi.sender=I,
msgi.receiver=ancestor(p,i)] for i = l.
(iii) Let active(n + 1)=active(pˆ0) ∪p . . .∪p active(pˆ(n − 1)).
(iv) Define a recruit tree to be active* = LFP(f, m, E) where function f
is defined in items (i) and (ii); the message m is defined in item (i); and
the set of message equations E is defined in items (i) and (ii).

We denote the class of Ponzi schemes of fanout k and depth l and
attribute equations E as Ponzi(k, l, E), where E is the collection of
equations in Definition 3. Definition 3 provides a generic definition for
Ponzi-like schemes where the number of recruits employed by any re-
cruiter is limited to an integer k and the number of ancestors deriving a
payback from the recruitment is at most an integer l.

The web service nodes are numbered by strings from {0, . . . , k− 1},
resulting in trees where every node has at most n levels. Thus, the
parameter p in Definition 3 denotes a path with |p| elements in such a
tree. Step 0 with the empty string φ represents the recruiter in item
(i) in Definition 3. Item (ii) assumes that the tree is defined up to a
path p of length n and finds its next level. This step is the sequential
composition of two steps. First, Pp sends messages to each of its children
to invest. Next, each of these children invest in I, followed by I paying
the ancestors of these children. The ancestors who are paid back are
limited to at most l generations. Item (iii) in Definition 3 collects all
possible paths that extend the tree to the next level n + 1. Item (iv)
collects all the sub-trees with depth n+ 1.

5. Detecting Global Misuse

This section discusses how to mine global misuse instances of given
patterns from log records of observed web transactions using Stream-

Gunestas, Mehmet & Wijesekera 143

Algorithm 1 Detecting Recruits of Ponzi Schemes
INPUT: MEI tuples
OUTPUT: Ponzi-like recruit MEI pairs
DESCRIPTION: Glides over MEIs using a window size of 3 to detect Pattern I
along with the predicates specified in the WHERE phrase

1 CreateInputStream MEI ($MEI schema) ;
2 CreateOutputStream PonziDetectOut ;
3 CreateStream InvestFilterOut ;
4 CreateStream PayFilterOut ;
5 SELECT * FROM MEI
6 WHERE msg==“invest” INTO InvestFilterOut
7 WHERE msg==“pay” INTO PayFilterOut
8 SELECT “Ponzi-like recruit” AS detected, invest.time AS investTime,

pay.time AS payTime, pay.receiver AS recruiter, invest.sender AS recruit
9 FROM PATTERN (InvestFilterOut AS invest THEN PayFilterOut AS pay)

10 WITHIN 3 (days) ON time
11 WHERE invest.receiver==pay.sender AND regexmatch

(“.*”+“promoter=”+pay.receiver+“.*”, invest.content)
12 INTO PonziDetectOut ;

SQL [12] and a StreamBase platform [11]. StreamSQL is an event pat-
tern language that can be used to define queries over streams of data.
StreamBase is an event processing platform that can run StreamSQL
queries over input source file or database and produce outputs.

StreamSQL has several commands. CREATE INPUT STREAM cre-
ates data streams from a named file that is pre-configured according to a
known schema. CREATE OUTPUT STREAM creates an output stream
that is pre-configured according to a schema. A PATTERN phrase de-
fines the search criteria from multiple input streams. A WITHIN phrase
creates the maximum size of a window that moves along a collection of
aligned streams when searching for a pattern.

Algorithm 1, which is based on StreamSQL, discovers Pattern I de-
fined in Table 4. The algorithm accepts MEI records in ascending order
of timestamps. The algorithm processes the pattern by filtering the
records into two groups, invest and pay, using the predicates defined
in Lines 6 and 7. This enables the pattern to employ the appropriate
template (THEN phrase) in Line 9, i.e., invest messages are expected
before pay messages. The predicates defined in Line 11 stipulate that
the receiver of the invest message should be the sender of the follow-
ing pay message; and the promoter value in the content of the invest
message should be the receiver of the following pay message. The win-
dow size is set to 3 in Line 10. The SELECT phrase gathers the re-

144 ADVANCES IN DIGITAL FORENSICS VI

Algorithm 2 Enhancing Ponzi Detection
INPUT: PonziDetectOut from detectRecruits
OUTPUT: Ponzi alerts
DESCRIPTION: Counts detected Ponzi-like recruits using a window size of 6 as the
minimum support. Emits Ponzi alerts when the minimum support is reached

1 SELECT “Ponzi Alerts,” count() AS minSup
2 FROM PonziDetectOut [SIZE 6 TUPLES]
3 INTO PonziAlerts ;

quired information about the detected pattern and emits the result to
the PonziDetectOut table.

Detecting a few Ponzi-like recruits may not be sufficient to declare
that a Ponzi scheme exists. To increase the confidence, a minimum
support value is defined as a threshold; and an alert is sent only when
the threshold is exceeded. Algorithm 2 can be employed to strengthen
Algorithm 1 by incorporating a predefined minimum support value.

Algorithm 2 sends an alert when at least six Ponzi-like recruits are de-
tected in the output of Algorithm 1. Note that the addition of Algorithm
2 to Algorithm 1 decreases the number of false positives.

6. Generating Comprehensive Evidence

This section discusses how to detect the orchestrator or the earliest
known recruiter of a Ponzi scheme by tracing a potential recruit path to
its root. Next, all possible paths that originate at the detected recruiter
are examined to identify others who have invested in the Ponzi scheme.
We begin by defining a choreography.

Suppose that the complaint includes an invest message msg and that
the investment company I is used by the participants in the scheme. We
define an ancestorChain(n) as:

(i) ancestorChain(0) = msg
(ii) ancestorChain(n + 1) = [msgl;p (msg1;p k1) ∪p . . . ∪p
(msgl−1;p kl−1) ;p ancestor(ancestorChain(n),n)]

satisfying the equations E:
msg1.content=pay and k1.content=invest, . . . ,
msgl−1.content=pay and kl−1.content=invest
(msgl.time < msgl.time < k1.time), . . . ,
(msg1.time < msgl−1.time > kl−1.time) and msgl.reciever=I.

Also, we define Earliest(msg) as LFP(f, msg, E).
As a special case, we show how to compute the ancestor chain cor-

responding to Pattern II in Table 4 using StreamSQL in Algorithm 3.
Given a recruiter, the algorithm traces ancestor recruiters to find the

Gunestas, Mehmet & Wijesekera 145

Algorithm 3 Computing the Orchestrator
INPUT: Promoter $P, MEI tuples
OUTPUT: Ancestor chain of promoters as RecruitPathOut
DESCRIPTION: Given the promoter, traces back the MEI records and finds the
path and the distance to/from the orchestrator using Pattern II

1 CreateInputStream MEI ($MEI schema) ;
2 CreateOutputStream RecruitPathOut(

$MEI schema, newPromoter String) ;
3 CreateStream LocalStream ;
4 DECLARE pointerPromoter String DEFAULT $ PUPDATE FROM
5 SELECT newPromoter AS pointerPromoter FROM RecruitPathOut ;
6 SELECT * FROM MEI
7 WHERE msg==“invest” AND receiver==“O”

AND sender==pointerPromoter
8 INTO LocalStream
9 SELECT time, sender, receiver, msg, content,

GetXPATHValue(content,“../promoter/”) AS newPromoter
10 FROM LocalStream
11 INTO RecruitPathOut ;

orchestrator. It identifies when the scheme began by traversing records
in descending order of timestamps looking for the senders of invest mes-
sages. This is done by declaring the dynamic variable pointerPromoter
in Line 4 to which the suspected promoter is passed by default (see DE-
FAULT) as the orchestrator. Each time the output emits a hop (that
meets the criterion in Line 7: invest message sent to the orchestrator)
by the node to the receiver, the promoter value is extracted from the
content of the invest message using a XPATH function (SELECT phrase
in Line 9). It is then written to the output stream (Line 2) and assigned
to the dynamic variable pointerPromoter in Line 5. The newly-assigned
value is used as the predicate in Line 7 for locating the next message if
it matches the sender value.

After the orchestrator or earliest recruits have been identified, a trace-
forward algorithm is used to generate the evidence. Since the algorithm
above locates one of the oldest message records for the trace-forward al-
gorithm, it helps gather the most comprehensive evidence of the scheme.

Algorithm 4 compiles the evidence using Pattern II in Table 4. The
algorithm accepts MEI tuples. The first SELECT phrase in Line 4 is
a filter with predicates dealing with invest messages that are sent to
the suspected orchestrator “O.” Pattern II is defined after the PAT-
TERN phrase. The PATTERN phrase duplicates the invest MEIs so
that it can apply the appropriate template (THEN phrase) and predi-
cates (WHERE phrase in Line 8) between messages. The algorithm uses

146 ADVANCES IN DIGITAL FORENSICS VI

Algorithm 4 Generate Recruit Tree
INPUT: MEI tuples
OUTPUT: RecruitsOut table leading to recruiter->recruit tree structure
DESCRIPTION: Tracing forward the MEIs, outputs an appropriate table
representing a tree-view of the scheme using Pattern II

1 CreateInputStream MEI ($MEI schema) ;
2 CreateOutputStream RecruitsOut ;
3 CreateStream InvestFilterOut ;
4 SELECT * FROM MEI
5 WHERE msg==“invest” AND receiver==“O” INTO InvestFilterOut ;
6 SELECT recruitee.time AS recruitTime, recruiter.sender

AS recruiter, recruitee.sender AS recruit
7 FROM PATTERN (InvestFilterOut AS recruiter THEN

InvestFilterOut AS recruitee) WITHIN 6 (days) ON time
8 WHERE recruiter.sender==

GetXPATHValue(recruitee.content,“../promoter/”)
9 INTO RecruitsOut ;

a window of size 6, limiting it to finding patterns within the specified
period. Queries with narrower windows may cause the algorithm to miss
more correlations than queries with wider windows.

7. Experimental Validation

The three-layered evidence generation framework provides evidence of
web service misuse. The services in the bottom and middle layers have
been studied by others [1, 5, 8]. Therefore, we validate the top layer of
the framework for which have introduced novel queries.

Table 5. Query-pattern mapping.

Query Name Pattern Pattern Name

DetectRecruits invest;p pay invest-pay
ClimbRecruitPath invest1;p invest2 invest-invest
GenerateRecruitTree invest1;p invest2 invest-invest

Table 5 summarizes the queries and their associated patterns along
with the names we have used throughout this paper. In order to test
their accuracy and performance rates, we generated synthetic data and
used a special simulation platform described below.

Gunestas, Mehmet & Wijesekera 147

MEI-I MEI-X MEI-XX MEI-L

GenerateCHOR-Investing 3 22 46 191

DetectRecruits 3 23 46 225

ClimbRecruitPath 3 19 37 97

GenerateRecruitTree 3 23 42 193

0

50

100

150

200

250

E
la

p
se

d
 T

im
e

(s
ec

)

Figure 3. Capacity values of test data.

7.1 Data Characteristics

To our knowledge, our illegal business scheme is novel and we were
unable to obtain real data featuring the scheme. Consequently, we gen-
erated synthetic data in the MEI format called MEI-I that conforms
with the Ponzi/pyramid schemes described above. MEI-I contains a to-
tal of 193,827 records (one record/second) over a period of three days
(January 19, 2006 to January 21, 2006). The MEI-I file has a comma
separated values (CSV) format. We focused on the capacity rate of data
that embodies the illegal business scheme in its records.

To evaluate the performance, we created three more data sets using
our seed data. The MEI-X data set contains the same Ponzi malicious
activity, but is ten times larger than MEI-I in terms of the number of
records. MEI-XX and MEI-L are two other sets that are 20 and 50 times
larger than MEI-I, respectively (Figure 3).

7.2 Test Environment

As mentioned above, we defined use/misuse patterns using Stream-
SQL and employed the StreamBase platform to detect the patterns. We
used the specially-generated data described above in the MEI structure.
The feed simulation platform of StreamBase was adjusted to accept this
data in the form of CSV files. The platform empowers users to run
StreamSQLs over any user-defined file satisfying the data schema ex-

148 ADVANCES IN DIGITAL FORENSICS VI

Table 6. Test environment

Hardware Software

CPU: Intel Core2 T7400 2.16 GHz, OS: Windows XP SP2
4 MB L2 Cache, 667 MHz FSB JVM : SUN JDK 1.5.0.15
Physical Memory: 2 GB, 995 MHz StreamBase Studio: Version 6.4
Hard Disk: 250 GB, 7200 rpm Max Heap Size: 1024 MB

pected by the algorithm. The platform also provides observable out-
puts of algorithm execution. Using the StreamBase Manager, it is also
possible to observe CPU and memory usage during algorithm execu-
tion. Although StreamBase encourages the use of enterprise servers for
benchmarking and improved performance, we observed that the feed
simulation platform was adequate to test our queries over vast amounts
of data with a reasonable resource allocation rate. Table 6 lists the
hardware and software components of the test environment.

7.3 Test Results

The performance of the algorithms was tested by executing three ma-
jor queries (Table 5) over data sets of different sizes (Figure 4). As
mentioned earlier, we observed that maximum proximity rates give the
best decisions in the tests. Therefore, we built our performance tests
using these rates in the algorithms.

Figure 8 presents the test results. Note that queries for detecting
recruits and generating recruit trees take more time than queries for
locating the orchestrator. The algorithm execution times for detecting
Ponzi-like recruits are greater than the execution times for the other
algorithms over the largest data set MEI-L. The recruit path climbing
algorithm, which traverses records in the backward direction, exhibits
the best performance and there is no need to use a larger window size.

We used the StreamBase Studio Feed Simulation platform in our val-
idation tests. Other higher performance platforms are available, but we
obtained reasonable performance despite using an integrated develop-
ment environment instead of an enterprise environment. We also ob-
served that the queries yield results with reasonable accuracy for the
synthetic data sets. These results were obtained because we determined
a reasonable window size for window-based queries for each data set.
Also, we converged the evidence outcomes by tuning the time, property
and key-based patterns associated with the queries.

Gunestas, Mehmet & Wijesekera 149

MEI-I MEI-X MEI-XX MEI-L

Number of Records 193,827 1,937,676 3,875,286 9,688,116

Size on Disk (KB) 11,827 112,069 224,117 560,260

0

1,000,000

2,000,000

3,000,000

4,000,000

5,000,000

6,000,000

7,000,000

8,000,000

9,000,000

10,000,000

S
iz

e

Figure 4. Performance test results.

8. Conclusions

Web service choreographies can be used as the foundation for detect-
ing illegal business schemes. Our implemented system engages Stream-
SQL to define the associated use/misuse patterns and the StreamBase
platform to detect the patterns in large streams of data. Although our
choreographies only specify Ponzi-like schemes, the method can be used
to specify (and detect) other illegal business activities [15] that can be
mined from financial transaction repositories. Our future work will at-
tempt to develop an online warning system that detects business schemes
that appear legal from a microscopic view, but are illegal from a macro-
scopic perspective.

References

[1] M. Bilal, J. Thomas, M. Thomas and S. Abraham, Fair BPEL pro-
cesses transaction using non-repudiation protocols, Proceedings of
the IEEE International Conference on Services Computing, vol. 1,
pp. 337–342, 2005.

[2] M. Gunestas, D. Wijesekera and A. Elkhodary, An evidence gener-
ation model for web services, Proceedings of the IEEE International
Conference on System of Systems Engineering, pp. 1–6, 2009.

150 ADVANCES IN DIGITAL FORENSICS VI

[3] M. Gunestas, D. Wijesekera and A. Singhal, Forensic web services,
in Advances in Digital Forensics IV, I. Ray and S. Shenoi (Eds.),
Springer, Boston, Massachusetts, pp. 163–176, 2008.

[4] A. Herzberg and I. Yoffe, The Delivery and Evidence Layer, Cryp-
tology ePrint Archive Report 2007/139 (eprint.iacr.org/2007/139
.pdf), 2007.

[5] A. Keller and H. Ludwig, The WSLA framework: Specifying and
monitoring service level agreements for web services, Journal of Net-
work and Systems Management, vol. 11(1), pp. 57–81, 2003.

[6] S. Kremer, O. Markowitch and J. Zhou, An intensive survey of non-
repudiation protocols, Computer Communications, vol. 25(17), pp.
1606–1621, 2002.

[7] Los Angeles Times, Internet pyramid scheme alleged, September
28, 2006.

[8] A. Sahai, V. Machiraju, M. Sayal, A. van Moorsel and F. Casati,
Automated SLA monitoring for web services, Proceedings of the
Thirteenth IFIP/IEEE International Workshop on Distributed Sys-
tems: Operations and Management, pp. 28–41, 2002.

[9] SavvySugar, Help! My friend is part of a pyramid scheme, Main-
Street, June 23, 2009.

[10] R. Stewart, South Africa investigates an alleged Ponzi scheme, The
Wall Street Journal, June 17, 2009.

[11] StreamBase Systems, StreamBase Products, Lexington, Massa-
chusetts (www.streambase.com/products-home.htm).

[12] StreamBase Systems, StreamSQL, Lexington, Massachusetts (www
.streambase.com/products-streamsql.htm).

[13] U.S. Security and Exchange Commission, Ponzi schemes, Washing-
ton, DC (www.sec.gov/answers/ponzi.htm).

[14] D. Valentine, Pyramid schemes, presented at the International
Monetary Fund’s Seminar on Current Legal Issues Affecting Cen-
tral Banks (www.ftc.gov/speeches/other/dvimf16.shtm), 1998.

[15] C. Westphal, Data Mining for Intelligence, Fraud and Criminal De-
tection: Advanced Analytics and Information Sharing Technologies,
CRC Press, Boca Raton, Florida, 2009.

[16] M. Zuckoff, Ponzi’s Scheme: The True Story of a Financial Legend,
Random House, New York, 2005.

Chapter 11

IDENTIFYING FIRST SEEDERS IN
FOXY PEER-TO-PEER NETWORKS

Ricci Ieong, Pierre Lai, Kam-Pui Chow, Michael Kwan and Frank Law

Abstract This paper describes a new approach for identifying first seeders in il-
legal file sharing investigations involving Foxy, one of the most popular
Chinese peer-to-peer networks. In identifying first seeders, the approach
focuses on determining the slow-rising period of the cumulative seeder
curve instead of merely measuring the number of seeders. The rela-
tionships between file popularity, number of packets and the maximum
upload limit during the time that the first seeder is connected to the
network are also analyzed. These relationships are used to specify rules
that investigators can use to determine if an identified seeder is, in fact,
the first seeder.

Keywords: Peer-to-peer network forensics, Foxy network, initial seeder

1. Introduction

The Foxy peer-to-peer (P2P) network is very popular in Chinese mar-
kets such as Hong Kong and Taiwan. It has approximately over 500,000
Chinese language users at any given time, including users from Asia,
Australia, Europe and America. Foxy rapidly disseminates images, mu-
sic and television programs throughout the global Chinese community.
However, Foxy has also been used to distribute racy photographs, porno-
graphic movies and sensitive documents. Once a file is shared on the
network, it is practically impossible to completely remove the file, even
if the owner wishes to control or block its distribution.

The identification of the first seeder is always the ultimate goal of a
P2P file sharing investigation. One approach for verifying if an identified
seeder is the first seeder is to determine if the seeder was connected
during the slow-rising period of the cumulative seeder curve. However,
it is difficult to identify the slow-rising period in a precise manner.

K.-P. Chow, S. Shenoi (Eds.): Advances in Digital ForensicsVI, IFIPAICT 337, pp. 151–168, 2010.
c© IFIP International Federation for Information Processing 2010

152 ADVANCES IN DIGITAL FORENSICS VI

This paper describes an alternative approach to identify the slow-
rising period instead of measuring the number of seeders. The approach
is based on the observation that the file download duration fluctuates but
reduces during the slow-rising period and becomes steady throughout the
rapid-rising period; after this time, it increases again when peers leave
the network. The paper also examines and clarifies the relationships be-
tween file popularity, number of packets and the maximum upload limit
during the time that the first seeder was connected. These relationships
are used to derive rules that help determine the first seeder in a P2P
network.

2. Background

In the Foxy network, file contents are distributed from source upload-
ers or seeders. A seeder can either be a leaf node or hub node. Leaf
nodes are ordinary nodes that contribute the majority of files shared
in the Foxy network. Leaf nodes link to hub nodes, which act as “big
brothers” who regulate and distribute relevant queries to the peers.

A node searching for a file sends the query to a hub node, which passes
the query to the connected nodes. When a connected node indicates
that it has the file available for download, the requesting node proceeds
to download the file from the node, which becomes the seeder of the
requested file. If the seeder is the first node in the Foxy network to
upload a particular file, it is known as the first seeder of the file.

The first node that indicates the availability of a file for download
could be the first seeder. The propagation of a file can be restricted by
identifying and dealing with the first (and early) seeders before the file
is widely disseminated. Moreover, the identification of the first seeder
is a key goal in investigations involving the illegal distribution of files in
P2P networks [1, 2, 5, 6]. This is because only the initial seeders of a
file can be prosecuted for their intention to distribute the file under the
Hong Kong legal system.

2.1 Identifying Initial Seeders

The initial seeder or first seeder is the seeder or seeders who initiate
the distribution of a file in a P2P network. Peers download the file from
this seeder. Observations of the download scenario from the beginning
– before the file is distributed on the network – should make it easy to
identify the first seeder. However, aside from the first uploader of the
file, no one can know exactly when the file began to be distributed. The
identification of first seeder is not a trivial task.

Ieong, et al. 153

In some P2P networks (e.g., BitTorrent), it is required to announce
the file name and/or download location; this simplifies the task of iden-
tifying the first seeder. However, announcements are not mandatory in
protocols such as eDonkey, Gnutella and Gnutella 2. The publication of
the availability of a file is performed via a searching mechanism within
the protocols. Consequently, even if the keyword of a shared file is iden-
tified in a forum, no direct link can be drawn between the forum and
the first seeder as in BitTorrent.

The identification of the first seeder is also affected by the time when
the search function is initiated. If a single seeder is found at the begin-
ning of the file distribution process, the seeder is likely to be the first
seeder. However, without a reference time for file publication, an inves-
tigator would not be able to confirm when the file distribution started
and how long the seeder was active.

Recently, two methods for identifying an initial seeder (or one of the
first few seeders) have been published. The first method (Method 1)
[5] repeatedly issues identical query patterns submitted by requesting
addresses within a short period of time in the Foxy network for the query
hits of interest that are returned. The second method (Method 2) [6] is
based on the assumption that the growth of seeders in a P2P network
follows the cumulative amount of seeders (“seeder curve”). Method 2
engages two rules:

Rule 1: If a seeding peer is found to be reachable and connectable
during the slow-rising period, the seeding peer is the first uploader.

Rule 2: If a seeding peer is found after the file distribution level-
off period, it is impossible to confirm that the seeding peer is the
first uploader. If the single seeder is found during the slow-rising
period, then it is very likely that the single seeder is the first seeder.

2.2 Identification Challenges

Several experiments were performed to verify the accuracy of the two
methods. The experiments were performed using a modified Shareaza
client, an open source P2P client that supports the Gnutella 2 protocol
[8]. During the Foxy file sharing process, a SHA-1 hash value generated
by the client is used as the identity of the file being shared. Thus, when
the SHA-1 hash value is found, the associated file has already been
uploaded.

As reported elsewhere [5, 6], our experiments confirmed that the num-
ber of query packets increase shortly before and after the appearance of
the first seeder. Increases in the number of queries with SHA-1 values
generated from multiple IP addresses were also observed. This proves

154 ADVANCES IN DIGITAL FORENSICS VI

that Method 1 could be used to identify the first seeder. However, there
are two practical difficulties in implementing this method:

Numerous hash values are generated in the Foxy network each
day. We collected 100,000 to 650,000 new hash values per day
from our monitored hubs alone. Monitoring all the hash values
in the network would require a massive amount of computational
resources.

The growth rate of duplicate hash values is low. The number of
identical hash values recorded for some files is as low as three or
four hits over a 24-hour period, unless the files are very popular.
Continuously monitoring all the files in the Foxy network would
require significant resources.

It would appear that Method 2 is practical because the investigator
only has to determine if the seeder is found in the slow-rising period.
However, several questions must be answered:

How can one confirm that the network monitoring was performed
before the file of interest was widely distributed?

How likely is the identified seeder one of the first few seeders?

How can one confirm that the seeder was, in fact, identified during
the slow-rising period?

For these reasons, Methods 1 and 2 may not be completely applicable
to the Foxy network.

2.3 Simulation Challenges

Observations of file distribution in the Foxy network for clients using
Gnutella 2 are not easily performed. The Gnutella 2 protocol used in
Foxy is a decentralized P2P protocol. Every Foxy hub behaves as a
searching server, so the returned results may only represent a portion
of the search results from the entire Foxy network. Even if a suspected
seeder is spotted, it is only possible to observe the localized query hit
results. Also, it is not possible to confirm if the suspected first seeder is
truly the first seeder or just one seeder in the swarm of seeders in the
entire Foxy network during the file sharing process.

Peer nodes enter and leave the Foxy network very frequently. How-
ever, when a hub node leaves Foxy, the connected nodes restructure
themselves by connecting to hubs and leaf nodes. This restructuring
affects the search results returned to a leaf node.

Ieong, et al. 155

0

20

40

60

80

100

120

0 10000 20000 30000 40000 50000

N
um

be
r o

f c
om

pl
et

ed
 d

ow
nl

oa
de

rs

Time (sec)

0
2
4
6
8

10
12
14
16
18
20

0 10000 20000 30000 40000 50000

N
um

be
r o

f o
bs

er
ve

d
se

ed
er

s

Time (sec)

(a) (b)

Figure 1. Seeder curves observed for a Shareaza-Foxy client.

A potential problem arises when a file has already been broadcasted
and downloaded in an unmonitored part of the Foxy network. An iden-
tified sole seeder from a Foxy client could be one of the completed down-
loaders in the unmonitored network. If it recently connected to a moni-
tored client as a seeder, it should not be considered as the first seeder.

Figure 1 presents the seeder curves for a Shareaza-Foxy client. Figure
1(a) shows the cumulative number of seeders (seeder curve) for a small
but popular file (top plot). Note that the cumulative number of seeders
increases throughout the period. The bottom plot (dashed line) in Figure
1(a) shows the actual number of seeders for the same file; its “zoomed-
in” version is shown in Figure 1(b). The plot in Figure 1(b) shows
nine instances where the number of observed seeders is one. However,
if the number of seeders really drops to one, the overall download rate
experienced by downloaders should be much less than the observed rate.

No matter how extensive the experiment, the number of hubs that
can be monitored is only a small fraction of the total number of hubs in
the Foxy network. Consequently, we decided to observe the file sharing
behavior in a simulated Foxy network. By controlling the simulation
environment, the behavior during the slow-rising period can be analyzed.

3. Simulation Experiments

This section describes the simulation experiments involving the Foxy
network.

3.1 SimFoxy

Several researchers have conducted simulations of P2P networks [4, 7].
However, most of them use queuing models to simulate P2P network

156 ADVANCES IN DIGITAL FORENSICS VI

performance or focus on the Gnutella and BitTorrent protocols rather
than the Gnutella 2 protocol.

Instead of relying on existing simulation programs, we built our own
program, SimFoxy, to simulate the behavior of Foxy network clients.
SimFoxy focuses on the download process after a file has been identified.
It may be used to simulate a Foxy network that shares a single file from a
single seeder with a predefined number of peers. The numbers of seeders
and peers are recorded throughout a simulation. Various parameters
(e.g., file packet number, packet size, upload and download connection
limits, upload and download rates, etc.) that affect file propagation
behavior are implemented as adjustable parameters in SimFoxy.

3.2 Simulation System

In most P2P downloads, file sharing initiation can be modeled as dis-
crete events with Poisson inter-arrival times [4, 7]. The simplest way to
analyze the initiation stage behavior of file distribution in the Foxy net-
work is to develop a Foxy simulation environment using a discrete event
simulation package. We employ SimFoxy, a Python-based implementa-
tion that uses the SimPy simulation module [9]. SimPy is an object-
oriented, process-based discrete event simulation language developed in
Python 2.x that supports the simulation of multiple processes.

All file sharing and download processes in SimFoxy are simulated at
the packet level. A packet object is the basic unit that is uploaded and
downloaded during the file sharing process. The packet-level simulation
is performed by limiting the resource capacity of packets such as down-
load connections by adding the amount of time expected to be used in
the download process. Download activities are initiated by packets after
receiving requests from peers. After one download activity involving a
packet is completed, the packet pauses until it is invoked by another
downloading peer.

The downloading and uploading of packets by a peer are regulated by
the server object. To simplify the architecture and to reduce resource
usage, instead of simulating the server as a hub in the Foxy network,
the entire peer list, partial peer list, seeder list and peer availability for
downloading are added as accessible resources in the server object. This
reduces the resources required for simulation.

3.3 Simulation Assumptions

Our SimFoxy implementation incorporated several assumptions to en-
sure that it would be possible to analyze the effects of various environ-
mental parameters in the Foxy network. First, we assumed that one

Ieong, et al. 157

original seeder exists in the simulated Foxy network and no new seeder
connects to the Foxy network during the simulation. Second, all the peer
nodes participate in uploading and downloading the target file only; this
reduces the effect on the download bandwidth due to the distribution of
other files. Third, all peers are only able to upload the file as a seeder
after they have completely downloaded all the packets from the seeder;
this captures the behavior of a Foxy 1.9.7 client, for which partial down-
loads of incomplete seeds are not supported.

The purpose of the simulation was to study the initial stage of peer
upload during file distribution. In order to shorten the simulation time,
we concentrated on the simulation of the first 100 to 1,000 peers during
the upload and download periods. Consequently, in the simulations, the
maximum number of preset peers in SimFoxy was limited to 1,000.

The upload connectivity and download connectivity are preset in Foxy
clients. To reduce the complexity of downloads, all the Foxy clients
should be configured to support a maximum of five downloads and ten
uploads. These values were tested in our simulation experiments.

The downloading of file fragments in the network is controlled by
the Foxy client. To simplify the simulation setup, download and upload
fragments were defined to be 500 KB per packet, which is the packet size
observed in the real Foxy download packet request query. Therefore, the
complete download of a 10 MB file requires twenty 500 KB packets to
be downloaded by a node.

The connection speed between an uploader node A and a downloader
node B is assumed to be the minimum of the upload rate of A and the
download rate of B. Usually, this is the upload speed of node A because
the upload speed is normally less than the download speed. When one
additional node is connected to node A, the upload speed is divided
equally among the two nodes.

3.4 Simulation Sets

More than 100 simulation experiments were performed using SimFoxy.
The simulations were performed by varying five parameters: (i) average
inter-arrival time (Tarr); (ii) number of peers interested in the target file
during the simulation period (Np); (ii) simultaneous upload peer limit
(Nu); (iii) simultaneous download peer limit (Nd); (iv) average inter-
departure time (Tdep); and (v) file size expressed as the number of 500
KB packets (Npkt). The upload and download rates of all the peers
and the seeder were set to 1,280 KB/s (1 Mbps) and 2,560 KB/s (2
Mbps), respectively. Fixing the upload and download rates of all the
peers reduces the effect of randomness on the parameter measurements.

158 ADVANCES IN DIGITAL FORENSICS VI

The simulation experiments were divided into four sets defined below.

Set 1 This set of simulations investigated the effects of changes in the
file size (i.e., number of packets (Npkt)). In Sets 1(a), 1(b) and 1(c),
experiments were performed by varying Npkt only. In Set 1(d), Npkt was
fixed, but different upload (Nu) and download (Nd) limits were used.
The inter-arrival (Tarr) and inter-departure (Tdep) times were set to 5
seconds and 10 seconds, respectively.

Set 1(a): Simulations involving different numbers of peers; Npkt

= 20 (∼10 MB); Np = 1 to 1,000; Nu = 5; Nd = 10.

Set 1(b): Simulations involving different numbers of packets; Npkt

= 20 to 400 (∼200 MB); Np = 5; Nu = 10.

Set 1(c): Simulations involving the sharing of large files; Npkt =
800 (∼0.4 GB), 1,600 (∼0.8 GB), 3,200 (∼1.6 GB); Np = 1, 3, 4;
Nu = 5; Nd = 10.

Set 1(d): Simulations involving different upload and download
limits; Npkt = 20; Np = 1, 2, 5, 10, 25, 50; Nu = 5, 10, 20, 40; Nd

= 10, 20, 40, 50.

Set 2 This set of simulations investigated the effects of changes in the
inter-departure time (Tdep) after download completion. In Sets 2(a),
2(b), 2(c), 2(d) and 2(e), experiments were performed by varying Tdep

from 10 to 1,200 seconds with the upload (Nu) and download (Nd) limits
fixed at 5 and 10, respectively; the number of packets (Npkt) limited to
100 pieces; and the number of peers (Np) fixed at 100 nodes.

Set 2(a): Simulation involving different inter-departure times;
Npkt = 100; Np = 100; Nu = 5; Nd = 10; Tdep = 10 seconds.

Set 2(b): Simulation involving different inter-departure times;
Npkt = 100; Np = 100; Nu = 5; Nd = 10; Tdep = 400 seconds.

Set 2(c): Simulation involving different inter-departure times;
Npkt = 100; Np = 100; Nu = 5; Nd = 10; Tdep = 800 seconds.

Set 2(d): Simulation involving different inter-departure times;
Npkt = 100; Np = 100; Nu = 5; Nd = 10; Tdep = 1,000 seconds.

Set 2(e): Simulation involving different inter-departure times;
Npkt = 100; Np = 100; Nu = 5; Nd = 10; Tdep = 1,200 seconds.

Ieong, et al. 159

Set 3 This set of simulations investigated the effects of changes in the
inter-arrival time (Tarr). In Sets 3(a), 3(b), 3(c) and 3(d), experiments
were performed by varying the inter-arrival time patterns (all at once,
periodic, random and uniform random) and sharing 100 packets with 100
peers with an inter-departure time (Tdep) of 1,000 seconds. The upload
(Nu) and download (Nd) limits were fixed at 5 and 10, respectively.

Set 3(a): Simulation involving 100 peers downloading simultane-
ously; Tarr = 0 seconds.

Set 3(b): Simulation involving 100 peers starting their download-
ing at different inter-arrival times; Tarr = 5, 10, 20, 40 seconds.

Set 3(c): Simulation involving 100 peers starting their download-
ing at random times; Tarr = random: 0 to 1,200 seconds.

Set 3(d): Simulation involving 100 peers starting their download-
ing at uniform random times; Tarr = uniform random: 0 to 1,200
seconds.

Set 4 This set of simulations investigated the effects of changes in the
inter-arrival time (Tarr) patterns (periodic, random, uniform random
and Poisson random). In Sets 4(a), 4(b) and 4(c), experiments were
performed by sharing 200 pieces of packets (Npkt) with different inter-
arrival time patterns (all at once, random and uniform random). In
Sets 4(d) and 4(e), experiments were conducted by sharing of 20 pieces
of packets with Tdep = 1 to 10 seconds and Tarr = 100 seconds; and by
sharing 20 and 40 pieces of packets with Poisson random Tarr (λ = 0.25),
respectively. The upload (Nu) and download (Nd) limits were fixed at 5
and 10, respectively.

Set 4(a): Simulation involving a popular file being downloaded
by all the peers simultaneously; Npkt = 200; Np = 100; Tarr = 0
seconds; Tdep = 100 seconds.

Set 4(b): Simulation involving random incoming peers; Npkt =
200; Np = 100; Tarr = random: 0 to 1,200 seconds; Tdep = 100
seconds.

Set 4(c): Simulation involving uniform random incoming peers;
Npkt = 200; Np = 100; Tarr = uniform random: 0 to 3,600 seconds;
Tdep = 0, 120, 2,000, 3,000, 8,000 seconds.

Set 4(d): Simulation involving slow inter-arrival times; Npkt =
20; Np = 1 peer/second, 1 peer/10 seconds; Tarr = periodic: 1
peer/second; Tdep = 100 seconds.

160 ADVANCES IN DIGITAL FORENSICS VI

Set 4(e): Simulation involving Poisson random incoming peers
with different inter-departure times; Npkt = 20, 40; Np = 100;
Tarr = Poisson random (λ = 0.25); Tdep = 100, 1,000 seconds.

These four sets of simulation experiments facilitated the systematic
analysis of the effects of various parameters on the download duration,
slow-rising period and the time required for the appearance of the second
seeder.

3.5 Observations

Several observations can be made based on the simulation experi-
ments.

Comparison of Experimental and Simulation Results Experi-
ments performed in the actual Foxy network cannot reflect the file dis-
tribution over the entire network. Therefore, the behavior in the real
and simulated Foxy networks may not match completely.

To demonstrate how closely SimFoxy simulates the real Foxy net-
work, some simulations were conducted using parameters obtained from
real-world environments. Actual Foxy network download scenarios were
captured by conducting two file downloads at different instants. In both
cases, observations based on our modified Foxy client revealed that the
incident was initiated by one observable seeder. Following this, seeder
growth curves were constructed using SimFoxy with similar criteria.

Figure 2 shows four seeder curves for real and simulated Foxy net-
works. Figure 2(a) shows the observed number of seeders (dashed line)
and the cumulative number of seeders (unbroken line) for a small, pop-
ular file. Figure 2(b) shows the simulation results for a small to medium
sized file with a rapid arrival rate in SimFoxy. Figure 2(c) shows the
behavior during the first 12 hours for a large, popular file in the Foxy
network. Figure 2(d) shows the simulation results for a large file with
slow peer departure and rapid arrival rates in SimFoxy. Note that the
curves in Figures 2(b) and 2(d) match the majority of the actual com-
pleted downloader growth rate curves (dashed lines) in Figures 2(a) and
2(c).

Relationship between File Size and Download Time After clari-
fying the relationship between file size and the download completion time
of the first downloader, we attempted to determine how the number of
competing peers affects the download time based on the results obtained
in Sets 1(c) and 1(d).

Ieong, et al. 161

0

20

40

60

80

100

120

0 10000 20000 30000 40000 50000

N
um

be
r o

f c
om

pl
et

ed
 d

ow
nl

oa
de

rs

Time (sec)

(a) (b)

0

50

100

150

200

250

300

0 10000 20000 30000 40000 50000

N
um

be
r o

f c
om

pl
et

ed
 d

ow
nl

oa
de

rs

Time (sec)

(c)

0

20

40

60

80

100

120

0 200 400 600 800

N
um

be
r o

f c
om

pl
et

ed
 d

ow
nl

oa
de

rs

Time (sec)

(d)

0

20

40

60

80

100

120

0 1000 2000 3000 4000 5000

N
um

be
r o

f c
om

pl
et

ed
 d

ow
nl

oa
de

rs

Time (sec)

Figure 2. Four seeder curves for real and simulated Foxy networks.

Th download time is affected by the number of peers competing for a
single file as well as by the file size (Set 1 simulations). If the file down-
load duration for one downloader is Tx, the increment due to additional
peers, which we call the “download increment ratio” (R) is (Ty−Tx)/Tx,
where Ty is the download duration time when the number of downloaders
is greater than one.

Instead of varying the file size, we plotted the download increment
ratio against increments in file size for three peers and four peers down-
loading simultaneously (Figure 3(a)). The x-axis is R and the y-axis is
the size of the target file (in MB). The curve in Figure 3(a) shows the
effect of the number of peers competing for same file at one time (Pi

means that i peers are competing). Note that R is affected by the file
size but eventually levels off.

Effect of Upload Limit on Download Time Instead of comparing
the number of competing peers, the download increment ratio R for
different upload limits was compared based on the Set 1(d) results. The
download increment ratio R corresponding to the same file source with
the same competing peers was measured for two different upload limits

162 ADVANCES IN DIGITAL FORENSICS VI

(a)

25

30

35

40

45

0 40 80 120 160 200

Do
w

nl
oa

d
in

cr
em

en
t r

at
io

File Size (MB)

U-10

U-5

(b)

1.2

1.7

2.2

2.7

3.2

0 400 800 1200 1600

Do
w

nl
oa

d
in

cr
em

en
t r

at
io

File Size (MB)

P-3

P-4

Figure 3. Download increment ratio versus file size.

(5 peers and 10 peers). Figure 3(b) highlights the effect of the upload
limit on the download increment ratio (Uj means the upload limit is j
peers). Note that the upload limit has almost no effect on the download
increment ratio R.

Effect of Departure Rate on the First Downloader Completion
Time The departure rate of peers affects the overall file distribution
behavior. The Set 2 simulations show that the departure rate of peers
definitely affects the download time of successive peers. With a higher
departure rate, the download speed after the rapid-rising period would
be greatly reduced. However, because the first downloader must com-
plete the download from the first seeder, it is only affected by the be-
havior of the first uploader. Thus, the departure rate of peers was found
to have no effect on the completion time of the first downloader.

Ieong, et al. 163

0

50

100

150

200

250

0 5000 10000 15000 20000 25000

N
o.

 o
f c

om
pl

et
ed

 d
ow

nl
oa

de
rs

Time (sec)

(a) (b)

(c) (d)

0

50

100

150

200

250

0 2000 4000 6000 8000

N
o.

 o
f c

om
pl

et
ed

 d
ow

nl
oa

de
rs

Time (sec)

0

50

100

150

200

250

0 1000 2000 3000 4000 5000 6000

N
o.

 o
f c

om
pl

et
ed

 d
ow

nl
oa

de
rs

Time (sec)

0

50

100

150

200

250

0 200 400 600 800

N
o.

 o
f c

om
pl

et
ed

 d
ow

nl
oa

de
rs

Time (sec)

Figure 4. Cumulative number of downloaded copies over time.

Effect of Arrival Rate on Peer Download Time Using the data
from the Set 3 and Set 4 simulations, the growth rate of seeders was
measured against different peer inter-arrival times from 0 to 100 seconds.
Figure 4 shows the cumulative number of downloaded copies over time
for 200 peers initiated with different inter-arrival times (Figure 4(a):
100 seconds; Figure 4(b): 20 seconds; Figure 4(c): 10 seconds; Figure
4(d): 0 seconds). The download duration is not affected by the peer
inter-arrival time if the inter-arrival time is greater than the download
duration. However, when the inter-arrival time is reduced, the download
duration is affected and the relationship changes from a straight line to
a curve (Figure 4).

Effect of Peer Download Time Variation Instead of simply mea-
suring the growth rate of seeders as in the Set 3 simulations, we mea-
sured the first connected time of peers and calculated their file download
completion duration (download duration). In the Set 4 simulations, all
the peers had the same simulated upload and download speeds and the
download duration was plotted against the first connected time as in
Figures 5 and 6. The two figures show the cumulative number of seeders

164 ADVANCES IN DIGITAL FORENSICS VI

0

50

100

150

200

250

0 500 1000 1500 2000 2500 3000

N
um

be
r o

f c
om

pl
et

ed
 d

ow
nl

oa
de

rs

0

500

1000

1500

0 500 1000 1500

Do
w

nl
oa

d
du

ra
tio

n
(s

ec
)

Time (sec)

Slow-rising Rapid-rising Distribution level-off

Download duration
change

Figure 5. Downloader (upper) and download duration curves (lower) (random).

(seeder curve) and the corresponding download duration curve for two
peer inter-arrival patterns. Figure 5 shows the peer download behavior
when the peers arrive randomly between 0 to 1,200 seconds based on Set
4(b).

0

20

40

60

80

100

120

0 100 200 300 400 500 600 700

N
um

be
r o

f c
om

pl
et

ed
 d

ow
nl

oa
de

rs

0
100
200
300
400
500

0 100 200 300

Do
w

nl
oa

d
du

ra
tio

n
(s

ec
)

Time (sec)

Slow-rising Rapid-rising Distribution level-off

Figure 6. Downloader (upper) and download duration curves (lower) (Poisson).

Figure 6 shows the peer download behavior for a Poisson inter-arrival
time [3] with λ = 0.25 according to Set 4(e). The value of λ was set to

Ieong, et al. 165

0.25 to ensure that the peers connected to the network for download were
spread across the entire download period instead of being concentrated at
the beginning of the download period. Note that the download duration
of peers exhibits a strong relationship with the slow-rising period and
the rapid-rising period.

The download duration (lower) curves in Figures 5 and 6 show that the
download time reduces throughout the slow-rising period. The download
duration is rather short throughout the rapid-rising period, after which it
rises when peers that complete their downloads leave the Foxy network.

4. Simulation Results

This section discusses the main results obtained in the simulation
experiments.

The download duration change is another indicator of the slow-rising
period. Figures 5 and 6 show that the download duration Td is affected
by the time when the download request is initiated. During the slow-
rising period, peers experience long download times and many download
interruptions because a single file resource is shared by multiple peers
P1, . . . , Pn.

When multiple peers provide a resource, a peer Pi may obtain pack-
ets from peers other than the seeder S and the download duration Td

is reduced. At the same time, the number of completed downloaders
increases much faster – this is observed as the rapid-rising period. The
download duration remains approximately the same because the down-
load connectivity is pre-defined in the client.

The equilibrium is disrupted when more peers disconnect after com-
pleting their downloads than the increment in the number of completed
downloaders. As the number of available seeders goes down, Td increases
again until no more peers join or leave the Foxy network.

The popularity of a resource increases the first peer download time.
Analysis of the simulation results reveals that the peer inter-arrival time
and the file size greatly affect the seeder growth rate. When no peers
compete for the same seeder, the peer download time is essentially the
same as the time required to download the resource from a single server.
As more peers download from a source simultaneously, the download
completion time increases.

In the actual Foxy network, peers search for a popular file after it is
published and announced. Peers P1, . . . , Pn could attempt to connect
to the same file source simultaneously. Seeder S uploads a packet PKj

to Peer Pi when the request for PKj by Pi is accepted by S.

166 ADVANCES IN DIGITAL FORENSICS VI

However, the acceptance of a request is limited by the upload limit
of S. When the number of requests from peers Pi, . . . , Pn exceeds the
maximum upload limit, the peers whose requests were accepted earlier
by S are granted packet PKj while the other peers have to wait until
the earlier download requests are completed. As more peers with same
download rate request the same file from S, the probability of obtaining
PKj by Pi drops. Thus, the download duration of the second seeder
from the first seeder is increased. According to our experiments, if all
the peers who request the file have the same configuration, then the num-
ber of peers is directly proportional to the lengthening of the download
duration.

5. Seeder Identification Rules

A single seeder in a Foxy network can be identified, but verifying
that the seeder is one of the initial seeders is not a simple task. In our
previous research [6], we showed that a seeder can be identified as one of
the first few seeders if the sharing of the resource falls within the slow-
rising period of the seeder curve. However, confirming whether or not
the period of interest falls within the slow-rising period is also difficult.

Our simulation results reveal that the download duration reflects the
behavior of seeder curve. Instead of observing the number of seeders
in the Foxy network, investigators could perform multiple downloads of
the same file at different times from different clients. Then, the results
could be analyzed using the following rules.

Rule 1: If two or more observed download durations Td drop
during consecutive downloads, the observed seeders should be col-
lected within the slow-rising period.

Rule 2: If Td remains roughly steady at the stable download du-
ration, the observed seeders should be collected during the rapid-
rising period.

Rule 3: In the case of a popular file, the download duration Td

for the second seeder is lengthened. This duration is directly pro-
portional to the number of peers that simultaneously download
the file. The slow-rising period is lengthened by the number of re-
questing peers. Therefore, the period for identifying initial seeders
is lengthened by the popularity of the file.

Rule 4: If the file download completion time Td is less than the
peer inter-arrival time Tarr, then it is impossible to confirm the
appearance of first seeder.

Ieong, et al. 167

Rules 1 and 2 can help confirm that the seeder is collected during
the slow-rising period. Rules 3 and 4 can help verify that the chance of
mistakenly identifying the seeder as the first seeder is reduced.

6. Conclusions

The identification of the first seeder is a crucial task in investigations
of illegal file sharing in P2P networks. The approach for identifying first
seeders in the popular Foxy network based on the slow-rising period of
the cumulative seeder curve can be very helpful in investigations. Fur-
thermore, rules derived from the relationships between key parameters –
such as file popularity, number of packets and the maximum upload limit
when the first seeder is connected to the network – assist investigators
in determining if an identified seeder is, in fact, the first seeder.

The work presented in this paper is experimental in nature. Our
future research will develop and validate a mathematical model that
expresses the relationships between the number of hubs, number of peers,
seeder growth rate and download duration. Such a model would support
network forensic investigations as well as the design and implementation
of strategies for controlling illegal file sharing in P2P networks.

References

[1] K. Chow, K. Cheng, L. Man, P. Lai, L. Hui, C. Chong, K. Pun, W.
Tsang, H. Chan and S. Yiu, BTM – An automated rule-based BT
monitoring system for piracy detection, Proceedings of the Second
International Conference on Internet Monitoring and Protection, p.
2, 2007.

[2] K. Chow, R. Ieong, M. Kwan, P. Lai, F. Law, H. Tse and K. Tse,
Security Analysis of the Foxy Peer-to-Peer File Sharing Tool, Tech-
nical Report TR-2008-09, Department of Computer Science, Hong
Kong University, Hong Kong, 2008.

[3] P. Consul, Generalized Poisson Distributions: Properties and Ap-
plications, Marcel Dekker, New York, 1989.

[4] B. Fan, D. Chiu and J. Lui, Stochastic differential equation ap-
proach to model BitTorrent-like P2P systems, Proceedings of the
IEEE International Conference on Communications, pp. 915–920,
2006.

[5] R. Ieong, P. Lai, K. Chow, F. Law, M. Kwan and K. Tse, A model
for Foxy peer-to-peer network investigations, in Advances in Digital
Forensics V, G. Peterson and S. Shenoi (Eds.), Springer, Heidelberg,
Germany, pp. 175–186, 2009.

168 ADVANCES IN DIGITAL FORENSICS VI

[6] R. Ieong, P. Lai, K. Chow, M. Kwan, F. Law, H. Tse and K. Tse,
Forensic investigation and analysis of peer-to-peer networks, to ap-
pear in Handbook of Research on Computational Forensics, Digital
Crime and Investigation: Methods and Solutions, C. Li (Ed.), In-
formation Science Reference, Hershey, Pennsylvania, 2010.

[7] D. Qiu and W. Sang, Global stability of peer-to-peer file sharing
systems, Computer Communications, vol. 31(2), pp. 212–219, 2008.

[8] Shareaza, Shareaza 2.5.2.0 (shareaza.sourceforge.net), 2010.

[9] SimPy, SimPy Simulation Package (version 2.0.1) (simpy.sourcefor
ge.net), 2009.

IV

LIVE FORENSICS

Chapter 12

UNCERTAINTY IN LIVE FORENSICS

Antonio Savoldi, Paolo Gubian and Isao Echizen

Abstract The goal of live digital forensics is to collect crucial evidence that cannot
be acquired under the well-known paradigm of post-mortem analysis.
Volatile information in computer memory is ephemeral by definition
and can be altered as a consequence of the live forensic approach. Ev-
ery running tool on an investigated system leaves artifacts and changes
the system state. This paper focuses on the understanding and measure-
ment of the uncertainty related to the important and emerging paradigm
of live forensic investigations. It also presents some practical examples
related to the evaluation of uncertainty.

Keywords: Live forensics, collection tools, measurement of uncertainty

1. Introduction

When performing live forensics, a practitioner is expected to run tools,
toolkits and/or custom live distributions on a powered computer system.
This is especially the case when a timely triage or mission-critical anal-
ysis is required [19]. Indeed, apart from the well-known post-mortem
paradigm, which has been used for many years, live forensics is emerg-
ing as the new standard for dealing with large, mission-critical computer
systems [19].

The goal of live forensics is to collect evidentiary data from computer
memory in order to define the state of the computer system at the time
of an incident. Naturally, the act of collecting data from a live system
causes changes to the volatile memory [10]; consequently, it is important
that the forensic practitioner documents and explains the possible arti-
facts in the resulting digital evidence. For example, running a popular
tool such as dd [5] from a removable media device alters volatile data as
soon as the program is loaded in main memory. Another example is the
Helix tool [4], which may create or modify files and registry entries on

K.-P. Chow, S. Shenoi (Eds.): Advances in Digital ForensicsVI, IFIPAICT 337, pp. 171–184, 2010.
c© IFIP International Federation for Information Processing 2010

172 ADVANCES IN DIGITAL FORENSICS VI

the system being investigated. Similarly, a remote forensic tool neces-
sarily establishes a network connection, executes instructions in memory
and makes other alterations to the system.

From a forensic standpoint, the acquisition process should modify
the original system memory state as little as possible, and all changes
should be documented and assessed in the context of the final analytical
results. However, it is controversial to measure how much of the volatile
memory is modified by a collection tool whose goal is to acquire the full
volatile memory content. Moreover, it is difficult (if not impossible) to
establish the extent of the “perturbation” caused by a running process
on volatile memory. As a consequence, it is necessary to design a sound
and reliable methodology that measures the volatile memory changes
caused by a forensic tool or toolkit running on a live system.

This paper describes a methodology for measuring the uncertainty in
live forensics. The application of the methodology is illustrated using
collection tools targeted for live Windows and Linux systems.

2. Background

Uncertainty is a term that is used in subtly different ways in fields
such as philosophy, physics, statistics, economics, finance, insurance,
psychology, sociology, engineering and information science. It applies to
predictions of future events, to physical measurements already made, or
to the unknown. Although the term is used in a variety of ways in public
discourse, specialists in decision theory, statistics and other quantitative
fields have defined uncertainty and risk more specifically. Hubbard [6, 9]
defines uncertainty and the related concept of risk as follows:

Uncertainty: Uncertainty is the lack of certainty. It is a state of
having limited knowledge where it is impossible to exactly describe
the existing state or future outcome or more than one possible
outcome.

Measurement of Uncertainty: The uncertainty of a set of pos-
sible states or outcomes is measured by assigning probabilities to
each possible state or outcome; this also includes the use of a prob-
ability density function for continuous variables.

Risk: Risk is a state of uncertainty where some possible outcomes
have an undesired effect or significant loss.

Measurement of Risk: Risk is measured in terms of a set of
uncertainties where some possible outcomes are losses and in terms
of the magnitudes of the losses; this also includes the use of loss
functions for continuous variables.

Savoldi, Gubian & Echizen 173

From an engineering perspective, uncertainty is characterized as Type
A or Type B, depending on the method used to evaluate it. A Type A
method evaluates uncertainty using a statistical analysis of a series of ob-
servations. On the other hand, a Type B method evaluates uncertainty
by a means other than the statistical analysis of a series of observations.
These two components of the uncertainty can be quantified by the sta-
tistically estimated standard deviation, ui and uj , for Type A and Type
B methods, respectively [14].

To illustrate Type A uncertainty, consider an input quantity Xi whose
value is estimated from n independent observations Xi,k of Xi obtained
under the same measurement conditions. In this case, the input estimate
xi is usually the sample mean given by:

xi = Xi =
1

n

n∑

k=1

Xi,k

The standard uncertainty u(xi) associated with xi is the estimated stan-
dard deviation of the mean:

uxi =

(
1

n(n− 1)

n∑

k=1

(Xi,k −Xi)
2

)1/2

A Type B evaluation of standard uncertainty is usually based on a
scientific judgment using all the relevant information that is available.
This may include: (i) previous measurement data; (ii) experience with,
or general knowledge of, the behavior and property of relevant materials
and instruments; (iii) manufacturer specifications; (iv) data provided in
calibration and other reports; and (v) uncertainties assigned to reference
data taken from handbooks.

Type B uncertainty is often quite difficult to measure. As a con-
sequence, it is useful to establish an upper-bound measurement of the
uncertainty when performing a live forensic analysis that involves the
execution of one or more tools on a target system that affects the live
memory.

3. Measuring Uncertainty in Digital Forensics

Casey [3] proposed that the uncertainty for network-related evidence
be calculated by estimating probability distributions. Given a series
of real measurements (e.g., clock offsets from a network of computers),
it is possible to estimate the real distribution of data. If a normal or
Gaussian data distribution is observed, an accuracy measurement for
the data set under investigation can be obtained. The precision of the

174 ADVANCES IN DIGITAL FORENSICS VI

measurement can be described using the mean µ and standard deviation
σ. Although, this statistical method is a relatively straightforward way
to estimate the uncertainty, it is not necessarily applicable or accurate
and it strongly depends on the kind of data that is available.

In order to measure how much a running forensic tool affects system
memory, it is necessary to define a methodology that quantifies how
much the volatile memory changes. This is closely related to the concept
of a “footprint,” which measures the amount of volatile memory that a
program uses or references when running. The footprint includes all
active memory regions such as code, static data sections (initialized and
uninitialized), and heap and stack areas. In addition, it includes the
memory required to hold data structures such as symbol tables, constant
tables, debugging structures and open files that the program requires
while executing and that are loaded at least once during its execution
[15]. In the case of Microsoft Windows, it is not possible to determine
the footprint by examining the working memory (heap memory) using
the Windows Task Manager (WTM). For example, WTM is unable to
properly quantify all the kernel space memory that is affected by a tool
like dd. In addition, effects such as the paging of less used memory pages
to disk may occur when running the collection tool.

A promising approach is to sample the volatile memory (RAM con-
tents) before and after a forensic tool runs and to repeat the procedure
several times to account for statistical variations of the measurements.
The collection tools used would depend on the specific operating system
running on the live machine. Tools for Windows systems include dd [5],
mdd [12], FastDump (fd) [7], win32dd [20] and Memoryze [11]. Tools for
Linux platforms include GNU dd [16] and dc3dd [17]. These collection
tools also probe the running live system. Ideally, such probes should not
affect the volatile memory. Unfortunately, the available collection tools
modify the volatile content to a greater or lesser extent.

The binary difference between memory snapshots (samples) collected
by a tool (e.g., dd) at different times is a good estimator of the un-
certainty introduced by the collection tool. Also, by taking a series
of memory snapshots and measuring the statistical variation using the
sample average (µdmp) and standard deviation (σdmp) of the different
memory pages between consecutive memory snapshots, it is possible to
define a more robust measurement of the uncertainty introduced by the
tool. The uncertainty may be quantified as U = µdmp±σdmp, where the
sample average is related to the different memory pages between con-
secutive snapshots, and the sample standard deviation is related to the
statistical error of the measurement. Figure 1 illustrates the timeline of
an experiment required to evaluate the uncertainty of a collection tool.

Savoldi, Gubian & Echizen 175

0 1 2 3 4 5 6

S1 S2 S3 S4 S5 S6

t [sec]

21 32 43 54 65

Figure 1. Timeline for evaluating the uncertainty of a tool.

The sampling procedure may be repeated as many times as possible in
order to account for normal statistical variations.

Our definition of uncertainty requires the measurement of the real
memory variations caused by a tool; in our case, the collection tool that
is used as a probe to evaluate the uncertainty caused by other forensic
tools. In this way, it is possible to show the extent of the “perturbation”
caused by an imaging tool. Moreover, the practical effect of this variation
can impact the integrity of the memory snapshot, which should not be
altered according to digital forensic science principles.

0 1 2 3 4 5 6

S1 FT S2 S3 Idle... S4

t [sec]

21 43

Figure 2. Timeline for evaluating the uncertainty of a live forensic tool.

This approach considers the ordinary uncertainty of the measurement
tool (i.e., collection tool) as if it were the only tool running on the sys-
tem. This assumption implies that the uncertainty of the probing tool
should be determined only by the probing process (e.g., dd, fd, mdd,
win32dd or Memoryze), without considering other processes (e.g., back-
ground processes) on the live system being examined. The resolution of
the probing tool defines an upper bound on the precision of the measure-
ment procedure. In fact, the probing tool itself affects the measurement
procedure, and it is desired to have the best possible precision. On the
other hand, in order to evaluate the uncertainty of a live forensic tool
(e.g., Windows Forensic Toolchest [13]), it would be necessary to follow
the procedure illustrated in Figure 2. The memory variation caused by

176 ADVANCES IN DIGITAL FORENSICS VI

the running toolkit is measured as the binary difference between the two
snapshots S1 and S2, which is denoted as ∆21. This represents an upper
bound limit on the uncertainty. The lower bound is determined by the
binary difference between S3 and S4 (say ∆43), which takes into account
the memory variations while the system is in an idle state (i.e., only
background processes are running) for the period of time it takes to run
the forensic toolkit. As a consequence, the uncertainty corresponding to
the forensic toolkit is in the range ∆43 ≤ Utot ≤ ∆21. This approach
may be used on live systems where it is not possible to acquire the mem-
ory by halting the system (as in virtual machines [1]). In fact, the ideal
procedure would be to halt the system, take the memory snapshot using
an atomic operation, run the forensic tool, and finally collect an addi-
tional memory snapshot after halting the system. At this time, such a
procedure can be conducted only by using virtual technology.

4. Experimental Setup

Our experiments used several collection tools for two major operating
systems, Windows XP SP3 and Linux Suse 11.1 (Kernel 2.6.27.7-9).
The tools used on the Windows system were dd, fd, mdd, win32dd and
Memoryze. The tools used on the Linux system were GNU dd [16] and
dc3dd [17].

dd (version 1.0.0.1035)

– Usage: dd.exe if=\\.\PhysicalMemory of=dump.bin

conv=noerror

fd (version 1.3.0)

– Usage: fd.exe [-nodriver] dump.bin

– If no options are specified, the memory snapshot is collected
by installing the fd driver. The [-nodriver] option causes
the snapshot to be collected using a Windows API.

mdd

– Usage: mdd.exe -o dump.bin

win32dd (version 1.2.2.20090608)

– Usage: win32dd.exe -l 0 -r dump.bin

– The -r option produces a raw binary image of the memory
content. The -l 0 option accesses the \\Device\\Physical
Memory device. The -l 1 option uses Windows Kernel API

MmMapIoSpace().

Savoldi, Gubian & Echizen 177

Memoryze

– Usage: MemoryDD.bat

– The -offset option specifies the offset into physical memory.
The -size option specifies the size of physical memory to
acquire. The -output specifies the directory where the results
are written (default “Audits”).

GNU dd

– Usage: dd if=/dev/mem of=/mnt/sdb1/dump.bin

conv=noerror

dc3dd

– Usage: dc3dd if=/dev/mem of=/mnt/sdb1/dump.bin

conv=noerror

5. Experimental Results

This section describes the results of evaluating the uncertainty of col-
lection tools in Windows XP SP3 and Linux (OpenSuse 11.1) systems.
As described in Section 2 and in our previous work [18], the evaluations
involve the analysis of the real footprints of running tools.

5.1 Windows System

This section presents the results obtained for five collection tools that
were run on a Dell Optiplex 330 platform (1 GB RAM) under Windows
XP SP3. Table 1 presents the uncertainty for the five collection tools;
note that fd was run under two operational modes fd1 and fd2. Ten
memory snapshots (S = 10) of size MP were collected using each tool/
operational mode (MP denotes the number of collected 4 KB mem-
ory pages). Each snapshot was copied to an external USB 2.0 drive.
µdmp denotes the sample mean of the different (4 KB) memory pages
and σdmp denotes the sample standard deviation for consecutive mem-
ory snapshots. The number of 4 KB memory pages, size in MB and
percentage are provided for µdmp and σdmp. Tcoll lists the average col-
lection times and Utot lists the uncertainty measurement, which is ex-
pressed as a percentage of the modified volatile memory. For example,
U = 65.5% ± 0.15% quantifies the uncertainty of the memory snapshot
collected with the dd tool. The result is quite surprising in that more
than 65% of the total memory is affected during the collection process.

Table 1 also shows that while the uncertainty for win32dd (Uwin32dd =
9.6% ± 0.42%) is the lowest among the tested tools, the corresponding

178 ADVANCES IN DIGITAL FORENSICS VI

Table 1. Tool uncertainty for a Windows system.

Tool S MP µdmp σdmp Tcoll Utot

[no] [no] [no] [MB] [%] [no] [MB] [%] [sec] [%]

dd 10 259,417 169,835 663.41 65.5 389 1.52 0.15 55 65.5 ± 0.15
fd1 10 259,287 168,811 659.42 65.1 346 1.35 0.13 55 65.1 ± 0.13
fd2 10 259,287 167,865 655.72 64.7 1181 4.61 0.45 56 64.7 ± 0.45
mdd 10 259,287 167,945 656.03 64.8 360 1.41 0.14 42 64.8 ± 0.14
win32dd 10 259,428 249,51 97.46 9.6 1093 4.27 0.42 447 9.6± 0.42
Memoryze 10 259,417 161,672 631.53 62.3 406 1.59 0.16 60 62.3 ± 0.16

time (Tcoll) is approximately eight times higher. This is not the ideal
case because the memory snapshot should be collected as an atomic
operation, as fast as possible and with minimum integrity leaks. Indeed,
the results show that a trade-off exists between uncertainty and speed.

Table 2. Tool uncertainty for a virtual Windows system.

Tool S MP µdmp σdmp Tcoll Utot

[no] [no] [no] [MB] [%] [no] [MB] [%] [sec] [%]

GNU dd 10 262,143 189,762 741.25 72.4 4,689 18.32 1.79 93 72.4 ± 1.79
fd1 10 262,010 187,930 734.10 71.7 270 1.05 0.10 90 71.7 ± 0.10
fd2 10 262,010 186,482 728.44 71.2 958 3.74 0.36 92 71.2 ± 0.36
mdd 10 262,010 238,482 931.57 90.1 100 0.39 0.038 74 90.1 ± 0.038
win32dd 10 262,144 22,589 88.24 8.6 714 2.79 0.27 2,059 8.6 ± 0.27
Memoryze 10 262,143 199,832 780.64 76.2 146 0.57 0.056 99 76.2 ± 0.056

Table 2 presents the results obtained for a virtual Windows XP SP3
based system (1 GB RAM). Note that the virtual system was customized
in the same manner as the real Windows system (Table 1) in order to
provide an almost identical testing environment. The snapshots were
collected using the same tools and copied to an external USB 2.0 hard
disk. The uncertainty values shown in Table 2 are on the average 10%
higher for the dd, fd1, fd2 and Memoryze tools compared with the re-
sults in Table 1. Also, the uncertainty for the mdd tool is 30% higher and
the collection time has increased by 30%. Interestingly, the uncertainty
for win32dd has remained almost constant, whereas its collection time
has increased about 8.5 times to 2,059 seconds.

Clearly, an ideal probing tool should have the fastest collection time
but should affect the memory snapshot as little as possible. However, the
results show that this may not be appropriate in the case of a virtual
system, where it would be more precise to sample the memory from
outside the system.

Savoldi, Gubian & Echizen 179

Table 3. Tool uncertainty for a virtual Linux system (no direct I/O).

Tool S MP µdmp σdmp Tcoll Utot

[no] [no] [no] [MB] [%] [no] [MB] [%] [sec] [%]

GNU dd 10 131,072 32,032 125.25 24.4 969 3.78 0.74 25 24.4± 0.74
dc3dd 10 131,072 33,134 129.43 25.3 1123 4.38 0.10 28 25.3± 0.10

5.2 Linux System

This section presents the experimental results obtained for two col-
lection tools that were run on a virtual Linux system (Suse Linux 11.1;
Kernel 2.6.27.7-9) equipped with 512 MB RAM and a 10 GB hard disk.
The two tools used were GNU dd and dc3dd. An interesting feature of
the Linux OS is that it bypasses the memory cache system [2]. This
makes it possible to transfer a memory snapshot with direct I/O com-
munication, resulting in better memory coherence of the snapshot (i.e.,
lower uncertainty than when the page cache system is used). This fea-
ture is not available for the Windows OS.

Table 3 summarizes the experimental results for the Linux platform.
All the memory snapshots were copied to an external USB 2.0 hard
drive without direct I/O. The uncertainty values for the GNU dd and
dc3dd tools are UGNUdd = 24.4% ± 0.74% and Udc3dd = 25.3% ± 0.10%,
respectively. Note that the uncertainty values and collection times for
the two tools are very similar.

Table 4. Tool uncertainty for a virtual Linux system (direct I/O).

Tool S MP µdmp σdmp Tcoll Utot

[no] [no] [no] [MB] [%] [no] [MB] [%] [sec] [%]

GNU dd 10 131,072 5,950 23.24 4.53 121 0.47 0.09 35 4.53 ± 0.09
dc3dd 10 131,072 5,035 19.67 3.84 104 0.41 0.08 33 3.84 ± 0.08

Table 4 shows the results obtained for the virtual Linux system with
direct I/O communications (USB transfer with DIRECT IO and user mode
buffer size of 50 KB). This was accomplished via the oflag=direct

parameter using the command:

dd if=/dev/mem of=/media/SIGMA/img1/dump01.dd oflag=direct bs=50K

The parameter bs sets the size of the buffer in user mode, which avoids
the use of the Linux kernel page cache [2]. The snapshots were copied
to the external USB storage device with an average time of 35 seconds
(average transfer speed of 15 MB/s). The estimated footprints of the

180 ADVANCES IN DIGITAL FORENSICS VI

Table 5. GNU dd tool uncertainty for different buffer sizes.

Uncertainty Buffer Collection Transfer Speed
(U) [%] Size [KB] Time [sec] [MB/sec]

6.9± 0.09 5 235 2.3
5.3± 0.11 10 107 5.0
6.2± 0.06 15 93 5.8
4.2± 0.07 30 60 8.9
3.9± 0.09 60 35 15.1
3.7± 0.08 100 33 16.0
4.6± 0.13 500 29 18.0
4.1± 0.14 1,024 28 19.2

GNU dd and dc3dd collection tools are UGNUdd = 4.53% ± 0.09% and
Udc3dd = 3.84%± 0.08%, respectively. Note that the uncertainty for the
two collection tools is reduced by almost five times. Avoiding the page
cache also provides better memory coherence.

It is important to be aware of how much the user mode buffer size
influences the uncertainty. For this purpose, a set of statistically mean-
ingful, albeit small, memory snapshots were collected with direct I/O
communications using different user mode buffer sizes. Table 5 presents
the uncertainty values for the GNU dd tool (based on five snapshots) for
buffer sizes ranging from 5 KB to 1,024 KB. Note that the bs parame-
ter specifies equal input and output buffers for the reading and writing
phases for the GNU dd and dc3dd tools. The lowest uncertainty value is
obtained with the buffer set to 100 KB (UGNUdd = 3.7% ± 0.08%) with
a collection time of 33 seconds and transfer speed of 16.0 MB/s.

In another experiment, the effect of LAN communications on memory
snapshots was determined by transferring the snapshots to a remote
Windows system via a network link. This was accomplished using the
command:

dd if=/dev/mem | nc 192.168.1.12 10000

Table 6. Tool uncertainty with LAN communications.

Tool S MP µdmp σdmp Tcoll Utot

[no] [no] [no] [MB] [%] [no] [MB] [%] [sec] [%]

GNU dd 10 131,072 6,331 24.73 4.83 393 1.53 0.30 40 4.83 ± 0.30
dc3dd 10 131,072 6,034 23.57 4.60 248 0.97 0.19 39 4.60 ± 0.19

Table 6 shows the uncertainty values in the case of LAN communi-
cations: UGNUdd = 4.83% ± 0.30% and Udc3dd = 4.60% ± 0.19%. The

Savoldi, Gubian & Echizen 181

Table 7. Tool uncertainty under heavy RAM load without direct I/O.

Tool S MP µdmp σdmp Tcoll Utot

[no] [no] [no] [MB] [%] [no] [MB] [%] [sec] [%]

GNU dd 10 131,072 121,134 437.18 92.4 133 0.52 0.10 25 92.4 ± 0.10
dc3dd 10 131,072 118,036 461.08 90.0 248 0.97 0.19 26 90.0 ± 0.19

memory snapshots were copied to the host system using netcat with an
average time of 40 seconds. The results in Table 6 demonstrate that the
uncertainty is comparable with that obtained for a virtual system with
direct I/O.

Experiments were also conducted to verify how much the volatile
memory load (i.e., percentage of volatile memory being used by run-
ning processes) impacts collection by the GNU dd tool. This can occur
when malware consumes large amounts of RAM, possibly impacting the
volatile memory collection.

To conduct the experiments, a custom script was created to progres-
sively allocate memory in 1 MB blocks during the collection process.
Initially, all the memory snapshots were copied without direct I/O com-
munications; direct I/O was set in a subsequent series of experiments.
This enabled us to verify the net effect of direct communications on the
memory snapshot uncertainty.

Table 7 shows the results under heavy RAM loads without direct I/O
communications. The uncertainty for the GNU dd tool is UGNUdd =
92.4±0.10% or UGNUdd = 437.18±0.52 MB. Also, the memory snapshots
were copied to the host system via the USB 2.0 link with an average time
of 25 seconds. Similar results were obtained for the dc3dd tool.

Table 8. Tool uncertainty under heavy RAM load with direct I/O.

Tool S MP µdmp σdmp Tcoll Utot

[no] [no] [no] [MB] [%] [no] [MB] [%] [sec] [%]

GNU dd 10 131,072 82,652 322.9 63.06 534 2.09 0.41 31 63.06 ± 0.41
dc3dd 10 131,072 82,302 321.5 62.80 456 1.78 0.34 30 62.80 ± 0.34

Table 8 shows the experimental results under heavy RAM loads with
direct I/O communications. The uncertainty values for the GNU dd tool
is UGNUdd = 63.06±0.41% and UGNUdd = 322.9±2.09 MB. The memory
snapshots were copied to the host system via USB in an average time of
31 seconds. Similar results were obtained for the dc3dd tool.

182 ADVANCES IN DIGITAL FORENSICS VI

Note that the difference between the uncertainty values in the two
cases is 29.4%, which is due to the Linux kernel page cache. This result
is not surprising because we have already determined the net effect of
the page cache. As a consequence, it is necessary to use the direct I/O
communications mode when performing a live memory acquisition on a
Linux system.

5.3 Practical Consequences of Uncertainty

The experimental results show that the ordinary uncertainty for the
collection tools applied to a Windows system is high, especially when
using a USB connection to transfer memory snapshots. The notable
exception is the win32dd tool, which affects the volatile memory less
than the other tools. Also, memory dumps are more coherent (i.e., have
lower uncertainty) when a LAN connection is used to transfer snapshots.

The net effect of a high uncertainty in the memory snapshots is that
some memory pages (even processes) can be swapped out to a dedicated
disk partition or a specific set of files depending on the operating sys-
tem [2]. In some situations, especially when many processes that require
plenty of RAM are running, there could be an “out of memory” event,
which forces the operating system to kill a running process, usually the
last one that was started. Such a critical situation can produce an evi-
dence “leak” or even prevent the collection tool from running.

Increased usage of the page cache in Windows and Linux systems can
also cause process pages to be swapped out. If this occurs during a
digital forensic investigation, it is necessary to copy the volatile memory
(RAM contents) as well as the swap area in order to recover all the
process pages. In the case of Windows [8, 18], it is possible to recover
almost all the pages related to a running process, even if some pages
have been swapped out.

In a Linux system, it is not clear if some processes are deleted or
altered when a collection tool runs with direct I/O. Nevertheless, it is
preferable to use the direct I/O mode in digital forensic investigations
because the volatile memory undergoes less changes.

6. Conclusions

Every digital forensic practitioner should be aware of how much the
volatile memory is affected when a forensic tool is used in a live investi-
gation. In particular, it is important to know and possibly predict the
extent of the memory perturbation or uncertainty. Experimental results
demonstrate that our methodology for evaluating the uncertainty of col-
lection tools is simple and effective, and is applicable to Windows and

Savoldi, Gubian & Echizen 183

Linux systems. The methodology may also be used to evaluate the ex-
tent to which a generic forensic tool or toolkit perturbs volatile memory.
Although the measurements are limited by the uncertainty of the prob-
ing tool, it is still possible to obtain a range of uncertainty for a forensic
procedure that affects the volatile memory more than the probing tool
itself.

References

[1] D. Bem, Computer forensic analysis in a virtual environment, In-
ternational Journal of Digital Evidence, vol. 6(2), 2007.

[2] D. Bovet and M. Cesati, Understanding the Linux Kernel, O’Reilly,
Sebastopol, California, 2006.

[3] E. Casey, Error, uncertainty and loss in digital evidence, Interna-
tional Journal of Digital Evidence, vol. 1(2), 2002.

[4] e-fense, Helix3 Enterprise, Washington, DC (www.e-fense.com/hel
ix), 2009.

[5] G. Garner, Forensic Acquisition Utilities (www.gmgsystemsinc
.com/fau), 2009.

[6] J. Halpern, Reasoning about Uncertainty, MIT Press, Cambridge,
Massachusetts, 2005.

[7] HBGary, FastDump Pro, Sacramento, California (www.hbgary.com
/products-services/fastdump-pro).

[8] J. Kornblum, Using every part of the buffalo in Windows memory
analysis, Digital Investigation, vol. 4(1), pp. 24–29, 2007.

[9] D. Lindley, Understanding Uncertainty, John Wiley, Hoboken, New
Jersey, 2006.

[10] C. Malin, E. Casey and J. Aquilina, Malware Forensics: Investi-
gating and Analyzing Malicious Code, Syngress, Burlington, Mas-
sachusetts, 2008.

[11] Mandiant, Memoryze, Washington, DC (www.mandiant.com/soft
ware/memoryze.htm).

[12] ManTech, Memory DD, Vienna, Virginia (cybersolutions.mantech
.com/products.htm).

[13] M. McDougal, Windows Forensic Toolchest (WFT) (www.foolmoon
.net/security/wft), 2005.

[14] National Institute of Standards and Technology, The NIST Refer-
ence on Constants, Units and Uncertainty, Gaithersburg, Maryland,
2006.

184 ADVANCES IN DIGITAL FORENSICS VI

[15] M. Oliveira, R. Redin, L. Carro, L. da Cunha Lamb and F. Wagner,
Software quality metrics and their impact on embedded software,
Proceedings of the Fifth International Workshop on Model-Based
Methodologies for Pervasive and Embedded Software, pp. 68–77,
2008.

[16] P. Rubin, D. MacKenzie and S. Kemp, GNU dd (www.gnu.org/soft
ware/coreutils).

[17] P. Rubin, D. MacKenzie, S. Kemp, J. Kornblum and A. Medico,
dc3dd (dc3dd.sourceforge.net).

[18] A. Savoldi and P. Gubian, Blurriness in live forensics: An introduc-
tion, Proceedings of the Third International Conference on Infor-
mation Security and Assurance, pp. 119–126, 2009.

[19] A. Savoldi and P. Gubian, Volatile memory collection and anal-
ysis for Windows mission-critical computer systems, International
Journal of Digital Crime and Forensics, vol. 1(3), pp. 42–61, 2009.

[20] M. Suiche, win32dd (win32dd.msuiche.net).

Chapter 13

IDENTIFYING VOLATILE DATA
FROM MULTIPLE MEMORY DUMPS
IN LIVE FORENSICS

Frank Law, Patrick Chan, Siu-Ming Yiu, Benjamin Tang, Pierre Lai,
Kam-Pui Chow, Ricci Ieong, Michael Kwan, Wing-Kai Hon and Lucas
Hui

Abstract One of the core components of live forensics is to collect and analyze
volatile memory data. Since the dynamic analysis of memory is not pos-
sible, most live forensic approaches focus on analyzing a single snapshot
of a memory dump. Analyzing a single memory dump raises questions
about evidence reliability; consequently, a natural extension is to study
data from multiple memory dumps. Also important is the need to dif-
ferentiate static data from dynamic data in the memory dumps; this
enables investigators to link evidence based on memory structures and
to determine if the evidence is found in a consistent area or a dynamic
memory buffer, providing greater confidence in the reliability of the ev-
idence. This paper proposes an indexing data structure for analyzing
pages from multiple memory dumps in order to identify static and dy-
namic pages.

Keywords: Live forensics, volatile data, memory analysis

1. Introduction

In recent years, there has been a growing need for live forensic tech-
niques and tools [10]. Best practices have been specified to ensure that
acquisition methods minimize the impact on volatile system memory and
that relevant evidentiary data can be extracted from a memory dump
[3, 12, 16]. However, most approaches focus only on a single snapshot
of system memory, which has several drawbacks.

One of the most significant drawbacks is that dynamic activities can-
not be detected and analyzed using a single snapshot of memory. Exam-

K.-P. Chow, S. Shenoi (Eds.): Advances in Digital ForensicsVI, IFIPAICT 337, pp. 185–194, 2010.
c© IFIP International Federation for Information Processing 2010

186 ADVANCES IN DIGITAL FORENSICS VI

ples of dynamic activities include P2P file sharing and botnet commu-
nications. Investigators can uncover valuable evidence by analyzing the
memory of processes corresponding to these activities. However, one
of the major challenges in undertaking such an analysis is that mem-
ory allocation to processes is highly dependent on the system. Different
programs often use different memory addressing schemes, causing great
discrepancies in memory data structures. Consequently, data recovered
from different portions of memory may require different interpretations.
By classifying memory into static and dynamic regions, and mapping
these regions to logical processes or files, investigators may be able to
link evidence found in different portions of different dumps.

Using a single memory snapshot can bring into question the reliability
of the extracted evidence and the veracity of the corresponding analysis.
Multiple consecutive snapshots of memory can help address this issue.
If the memory regions can be classified as static and dynamic, then evi-
dence found in the static area would exist in several consecutive dumps
and the integrity of the static evidence can be verified. Conversely, evi-
dence found in a dynamic area can be correlated with other evidence by
linking it to the corresponding logical process or file.

The complete analysis of multiple consecutive memory dumps is a
challenging, multifaceted problem. This paper addresses one compo-
nent of the larger problem: Given multiple consecutive snapshots of
memory from a Windows system, how can static regions be efficiently
differentiated from dynamic regions?

Solving this problem can help understand the memory structure of
processes, but the solution is not as simple as it might appear. The
memory dumps to be analyzed are huge (2 GB or more). Reading a sin-
gle 2 GB dump takes more than 30 minutes; processing multiple dumps
can take days. Additionally, the definition of the term “static” varies
according to the memory processes analyzed and the time interval be-
tween consecutive dumps. Thus, the method should be flexible enough
to answer which pages are identical in X consecutive dumps and which
pages vary in all X consecutive dumps for different values of X. A brute
force approach to scanning all the memory dumps for multiple values X
would take far too much time.

In this paper, we assume that application programs employ a static
memory allocation algorithm for their stack frames. Since memory is di-
vided into pages (4 KB/page on a Windows platform), we adopt a hash-
ing algorithm to assist in the identification of changes between memory
pages. Then, we create an indexing data structure to store hash val-
ues so that by scanning the dumps just once, it is possible to efficiently

Law, et al. 187

answer which pages are static (identical) or dynamic (different) in X
consecutive dumps for different values of X.

2. Related Work

Given the limitations of conventional digital forensic techniques for
dealing with volatile memory, the acquisition and analysis of machine
memory are currently hot topics of research [5, 9]. Substantial research
has focused on tools that can acquire memory images without altering
memory content [7, 10, 11, 15]. However, the dynamic nature of memory
means that obtaining a complete and consistent perspective of memory
is impossible without taking multiple memory snapshots. In addition
to problems posed by memory fragmentation, the analysis of data is
complicated by the fact that memory structures vary considerably for
different systems [16].

Microsoft Windows is the most common operating system encoun-
tered by digital forensic examiners. Much research has been directed at
extracting relevant data from live Windows systems [4]. However, the
closed source nature of Windows makes it difficult to verify the results,
potentially increasing the likelihood of challenges when the evidence is
presented in court.

Instead of focusing on data acquisition [4, 6] and memory object re-
construction [3, 12, 14], Arasteh and Debbabi [1] investigated the process
memory stack. By analyzing the stacking mechanism in Windows mem-
ory, they were able to discover the partial execution history of a program
in the memory process stack, which can be of value in forensic investiga-
tions. Chow, et al. [8] pointed out the possibility of differentiating static
data corresponding to a UNIX memory process in order to identify use-
ful data from inconsistent data in a memory dump. Balakrishnan and
Reps [2, 13] analyzed memory accesses by x86 executables and proved
the viability of distinguishing various regions of memory data created by
executables. The heap and global data regions are areas where persis-
tent data can be found. Balakrishnan and Reps also demonstrated the
importance of understanding memory structures and of classifying static
and dynamic data in memory dumps. In the following, we examine this
issue in more detail in the context of forensic investigations.

3. Methodology

The problem studied in this paper can be stated as follows. Given K
consecutive memory dumps, each containing N pages, and a sequence of
m queries related to which pages have identical contents (static pages) in
X consecutive dumps or which pages have different contents (dynamic

188 ADVANCES IN DIGITAL FORENSICS VI

DP1

DP2

DPN

Dynamic
Pointers

SP1

SP2

SPN

Static
Pointers

Figure 1. Data structure for the indexing approach.

pages) in all X consecutive dumps, then identify the page numbers and
their corresponding dumps. Note that the value of X can be different in
different queries in problem specification.

In the following, we assume that a hash value (e.g., MD5 or SHA-1)
is computed and stored for each page. Comparing the hash values for a
given page in different dumps identifies if their contents are identical or
different.

3.1 Brute Force Approach

First, we describe a brute force approach in which the memory dumps
taken at different times are read once for each query. We show how this
approach is used to identify dynamic pages; static pages are identified
in a similar manner.

The first page of each of the K dumps is read, and their hash values
are computed and stored in an array. The array is scanned once: if X
or more consecutive entries in the array are different, then the page is a
dynamic page. This procedure is repeated for the other pages.

The brute force approach involves significant overhead for each query.
In particular, considerable I/O time is expended to read all the memory
dumps repeatedly. This problem is addressed in our indexing approach.

3.2 Indexing Approach

The indexing approach involves reading all the memory dumps only
once and building a data structure so that queries can be answered
efficiently. The data structure is essentially an array of linked lists as
shown in Figure 1. Two linked lists are maintained for each of the N
pages in the memory, the dynamic list and the static list. For Page i, the
dynamic pointerDPi and the static pointer SPi point to the dynamic list
and static list, respectively. The dynamic list pointed to by DPi helps
locate groups of dynamic dumps corresponding to Page i. Similarly, the
static list pointed to by SPi helps locate groups of static dumps for Page

Law, et al. 189

H1

H2

HN

Column
A

B1

B2

BN

Column
B

Figure 2. Working array for building the data structure.

i. Therefore, each node in a list – whether static or dynamic – denotes
a group of dumps. In addition to pointers to the next node and the
previous node, a count and starting position are stored for each node.
The count gives the number of dumps in the group and the starting
position gives the position of the first dump in the group. All the lists
are sorted in descending order based on the count.

We now show how this data structure can handle a query for dynamic
pages; the query for static pages is handled in a similar manner. The
first node pointed to by DPi is scanned once for each i from 1 to N . For
each node with count C and starting position S, if C is greater than or
equal to X, then Page i in Dump S with length C is a dynamic page.
This procedure is repeated for the next node pointed to by DPi until a
node with count less than X is reached. At this stage, the procedure
continues with the next dynamic pointer DPi+1 until the last dynamic
pointer DPN is processed.

A 2-D temporary working array is required to create the data structure
(Figure 2). As Dump 1 is read, the hash value of each Page i in the dump
is stored as Hi. When Dump 2 is read, the hash value of each Page i in
this dump is compared with Hi. If the hash values are identical, then Bi

is set to False, a new node is created with count equal to 2 and starting
position equal to 1, and the static pointer SPi is set to point to the new
node. Otherwise, Bi is set to True, a new node is created with count
equal to 2 and starting position equal to 1, and the dynamic pointer DPi

is set to point to the new node.
For Dump 3 onwards, the following steps are performed. Read Dump

j. For each Page i in Dump j with H
′
i , compare H

′
i with Hi. There are

four cases.

Case 1: If H
′
i equals Hi and Bi is True, then create a new node

with count equal to 2 and starting position equal to j − 1, and
insert the new node at the head of the list pointed to by SPi. Set
Bi to False.

190 ADVANCES IN DIGITAL FORENSICS VI

Case 2: If H
′
i equals Hi and Bi is False, then increase the count

of the head node of the list pointed to by SPi by 1.

Case 3: If H
′
i is not equal to Hi and Bi is False, then create a new

node with count equal to 2 and starting position equal to j − 1,
and insert the new node at the head of the list pointed to by DPi.
Set Hi to Hi

′ and Bi to True.

Case 4: If Hi
′ is not equal to Hi and Bi is True, then increase the

count of the head node of the list pointed to by DPi by 1. Set Hi

to H
′
i .

Finally, sort all the lists in descending order based on the count.

3.3 Time and Space Complexity

This section conducts an analysis of the time and space complexity
of the two approaches. Let K be the number of memory dumps, N be
the number of pages in each dump and m be the number of queries to
be answered.

In the case of the brute force approach, an array of just K entries is
needed; therefore, the space complexity is O(K). For each query, all the
memory dumps have to be scanned once; therefore, the time complexity
for each query is O(N × K). Since m is the number of queries to be
answered, the overall time complexity is O(mNK). Note that all these
operations involve I/O as the memory dump has to be read each time
a query is answered. Consequently, the brute force approach requires
O(mNK/B) I/O operations where B is the I/O block size.

In the case of the indexing approach, for K memory dumps with N
pages per dump, a 2-D working array with 2 columns and N rows is
needed; therefore, the space complexity for the working array is O(N).
The data structure requires two lists per page, a total of 2N lists. In the
worst-case situation, where the dumps are the same for every two pages,
there are about K/2 nodes in each list. Thus, there are N ×K nodes for
the entire data structure and the space complexity is, therefore, equal
to O(N ×K).

Next, we consider the time complexity of the indexing approach.
Building the data structure requires each memory dump to be scanned
once, and this is the only step involving I/O operations. The time com-
plexity for this step is O(NK/B) I/O operations where B is the I/O
block size. Next, all the linked lists have to be sorted; since there are at
most K/2 nodes in each list, the time complexity for this step is N ×2×
(K/2) log(K/2). Thus, the overall time complexity is O(N ×K logK).

Law, et al. 191

To answer a query, it is necessary to scan the first node in all the dy-
namic lists or in all the static lists. If L is the number of nodes that have
to be scanned, then the time complexity is O(L) for each query (these op-
erations are much faster because no I/O operations are involved). The
total time complexity for handling m queries is O(NK logK + mL).
Note that in real-world scenarios, where L is much less than N ×K, the
indexing approach is much faster than the brute force approach. In sum-
mary, the overall time complexity consists of two parts: O(NK/B) I/O
operations to read the memory dumps and O(NK logK + mL) RAM
operations to handle m queries.

4. Experimental Results

This section compares the performance of the two approaches in terms
of running time and running space. The two approaches were imple-
mented in C++ code and executed on a Core2Duo P8400 2.26GHz
computer with 4 GB RAM. The memory dumps used in the experi-
ments were obtained from a video playback program, which was playing
a video when the memory dumps were acquired. Obviously, memory
dumps taken under such conditions are very dynamic.

The experiments involved three rounds. In Round 1, ten memory
dumps were taken of the video playback program; each dump was about
59,660 KB. The two approaches were executed to identify pages with
K consecutive dynamic dumps (K = 5..10). Therefore, a total of six
queries were issued.

Table 1. Running times (Round 1).

K = 5 K = 6 K = 7 K = 8 K = 9 K = 10

Brute Force 6.27 min 3.87 min 3.84 min 3.88 min 5.64 min 3.77 min
Indexing 2.68 min 1.13 min 1.03 min 1.06 min 1.07 min 1.04 min

Table 1 presents the running times obtained for the two approaches for
various values of K. Note that the running times were measured using
the C++ internal time library. The running space, which was obtained
using the process manager, was 496 KB for the brute force approach
compared with 504 KB for the indexing approach.

In Round 2, ten additional dumps were taken. As in Round 1, each
dump was about 59,660 KB. Table 2 presents the running times for six
values of K (K = 15..20). The running space was 584 KB for the brute
force approach compared with 500 KB for the indexing approach.

192 ADVANCES IN DIGITAL FORENSICS VI

Table 2. Running times (Round 2).

K = 15 K = 16 K = 17 K = 18 K = 19 K = 20

Brute Force 10.03 min 12.94 min 13.82 min 15.74 min 17.70 min 19.94 min
Indexing 20.86 min 41.89 sec 40.89 sec 40.77 sec 40.83 sec 40.82 sec

Table 3. Running times (Round 3).

K = 5 K = 6 K = 7 K = 8 K = 9 K = 10

Brute Force 154 min 160 min 166 min 170 min 162 min 180 min
Indexing 260 min 15 min 15 min 15 min 15 min 15 min

Round 3 involved ten larger memory dumps (about 2 GB each) to
simulate the analysis of the entire memory dump of a computer. The
two approaches were then used to identify pages with K consecutive
dynamic dumps (K = 5..10). Table 3 presents the running times. The
running space was 668 KB for the brute force approach compared with
516 KB for the indexing approach.

The experimental results show that the indexing approach requires
significantly less time than the brute force approach except for K = 15
in Round 2 and K = 5 in Round 3. This is because, in order to answer
the first query, the indexing approach has to build the data structure,
which takes some time. However, the indexing approach uses the same
data structure for subsequent queries. Consequently, in the later runs,
the indexing approach is much faster than the brute force approach.
Finally, as far as the running space is concerned, the two approaches
require approximately the same amount of memory.

5. Conclusions

The indexing approach is designed to identify static and dynamic
pages in multiple consecutive memory dumps. It is much faster than
the brute force approach and uses about the same amount of memory

It is important to note that our approach is just the first step in the
analysis of volatile data using multiple memory snapshots. Nevertheless,
the approach could be refined and augmented to help identify static and
dynamic data corresponding to a process in memory, track the address of
the stack area, identify data that is consistently retained within memory,
and link evidence related to the dynamic activities of users. These are
all challenging research problems in their own right and are deserving of
further investigation.

Law, et al. 193

References

[1] A. Arasteh and M. Debbabi, Forensic memory analysis: From stack
and code to execution history, Digital Investigation, vol. 4(S), pp.
S114–S125, 2007.

[2] G. Balakrishnan and T. Reps, Analyzing memory accesses in x86
executables, Proceedings of the Thirteenth International Conference
on Compiler Construction, pp. 5–23, 2004.

[3] Bugcheck, GREPEXEC: Grepping executive objects from pool
memory (www.uninformed.org/?v=4&a=2&t=pdf), 2006.

[4] M. Burdach, An introduction to Windows memory forensics (forens
ic.seccure.net/pdf/introduction to windows memory forensic.pdf),
2005.

[5] M. Burdach, Digital forensics of the physical memory (forensic.sec
cure.net/pdf/mburdach digital forensics of physical memory.pdf),
2005.

[6] M. Burdach, Windows Memory Forensic Toolkit (forensic.seccure
.net), 2007.

[7] B. Carrier and J. Grand, A hardware-based memory acquisition
procedure for digital investigations, Digital Investigation, vol. 1(1),
pp. 50–60, 2004.

[8] K. Chow, F. Law, M. Kwan and P. Lai, Consistency issues in live
systems forensics, Proceedings of the International Workshop on
Forensics for Future Generation Communication Environments, pp.
136–140, 2007.

[9] D. Farmer and W. Venema, Forensic Discovery, Addison-Wesley,
New York, 2005.

[10] G. Garcia, Forensic physical memory analysis: Overview of tools and
techniques, Telecommunications Software and Multimedia Labora-
tory, Helsinki University of Technology, Helsinki, Finland (www.tml
.tkk.fi/Publications/C/25/papers/Limongarcia final.pdf), 2007.

[11] E. Huebner, D. Bem, F. Henskens and M. Wallis, Persistent systems
techniques in forensic acquisition of memory, Digital Investigation,
vol. 4(3-4), pp. 129–137, 2007.

[12] N. Petroni, A. Walters, T. Fraser and W. Arbaugh, FATKit: A
framework for the extraction and analysis of digital forensic data
from volatile system memory, Digital Investigation, vol. 3(4), pp.
197–210, 2006.

194 ADVANCES IN DIGITAL FORENSICS VI

[13] T. Reps and G. Balakrishnan, Improved memory-access analysis
for x86 executables, Proceedings of the Seventeenth International
Conference on Compiler Construction, pp. 16–35, 2008.

[14] A. Schuster, Searching for processes and threads in Microsoft Win-
dows memory dumps, Digital Investigation, vol. 3(S1), pp. S10–S16,
2006.

[15] I. Sutherland, J. Evans, T. Tryfonas and A. Blyth, Acquiring
volatile operating system data: Tools and techniques,ACM SIGOPS
Operating Systems Review, vol. 42(3), pp. 65–73, 2008.

[16] R. van Baar, W. Alink and A. van Ballegooij, Forensic memory
analysis: Files mapped in memory, Digital Investigation, vol. 5(S),
pp. S52–S57, 2008.

Chapter 14

A COMPILED MEMORY ANALYSIS TOOL

James Okolica and Gilbert Peterson

Abstract The analysis of computer memory is becoming increasingly important
in digital forensic investigations. Volatile memory analysis can pro-
vide valuable indicators on what to search for on a hard drive, help
recover passwords to encrypted hard drives and possibly refute defense
claims that criminal activity was the result of a malware infection. His-
torically, digital forensic investigators have performed live response by
executing multiple utilities. However, using a single tool to capture
and analyze computer memory is more efficient and has less impact on
the system state (potential evidence). This paper describes CMAT, a
self-contained tool that extracts forensic information from a memory
dump and presents it in a format that is suitable for further analysis.
A comparison of the results obtained with utilities that are commonly
employed in live response demonstrates that CMAT provides similar
information and identifies malware that is missed by the utilities.

Keywords: Live response, memory analysis, rootkit detection

1. Introduction

When a large enterprise responds to a cyber security incident, it may
not be feasible to perform the recommended disconnection and imaging
process to gather forensic evidence [13], especially in the case of servers
that are critical to business operations. According to CNET [19], Ama-
zon lost $29,000 in revenue per minute during its June 2008 outage.
In addition, there have been several recent cases where defendants were
found innocent or guilty based on the live response information retrieved
at the time of the incident [2]. Clearly, tools that can take quick snap-
shots of affected computers while minimizing the impact on business
operations and preserving evidence are vital to digital forensic inves-
tigations. Since many of the items of interest in a live response are
maintained in computer memory rather than the hard drive, a mini-

K.-P. Chow, S. Shenoi (Eds.): Advances in Digital ForensicsVI, IFIPAICT 337, pp. 195–204, 2010.
c© IFIP International Federation for Information Processing 2010

196 ADVANCES IN DIGITAL FORENSICS VI

mally intrusive live response would involve the analysis of a live memory
capture.

Three steps are involved in developing a minimally intrusive stan-
dalone forensic tool for memory: (i) a front-end memory dump routine
that directly accesses physical memory; (ii) a memory analysis tool that
extracts environmental and activity information from the memory dump;
and (iii) a synthesis tool that correlates the environmental information
to provide a human-understandable narrative of what occurred on the
machine.

This paper focuses on the second step: developing a compiled memory
analysis tool (CMAT) that extracts environmental and activity informa-
tion from a memory dump. CMAT parses a memory dump to find active,
inactive and hidden processes as well as system registry information. It
then compiles live response forensic information from these processes and
registry files and assembles it into a format suitable for data correlation.
CMAT is tested against several utilities that extract forensic information
from a live system. Experimental results indicate that CMAT provides
comparable information as traditional live response utilities, and also
uncovers malware that these tools miss.

2. Background

Performing a live response allows the capture of forensic information
that disappears after the computer is turned off. The benefits of a live
response include: gathering clues to better focus a search of the hard
drive [24]; retrieving decryption/encryption keys for an encrypted hard
drive [24]; and defeating the Trojan horse defense of “I didn’t do it, it
was the malware installed on my machine” [2]. Valuable live response
information that resides in memory includes [4, 5, 10, 24]:

System date and time

Logged in users and their authorization credentials

Network information, connections and status

Process information, memory and process-to-port mappings

Clipboard contents

Command history

Services and driver information

Open files, registry keys and hard disk images

Okolica & Peterson 197

One of the arguments against live response is that the evidence cap-
ture process modifies the machine state. Several techniques have been
proposed to address this issue [1, 3, 9, 22]. These techniques attempt to
capture all the memory instead of specific pieces of forensic information.
This helps answer the immediate forensic questions and also provides
a means to answer additional questions that may come up later in the
investigation. The alternatives include hardware-based memory acquisi-
tion [1, 3], virtual machines, hibernation files [22] and operating system
patches [9].

Hardware-based memory acquisition techniques circumvent the re-
liance on the operating system by using hardware that interacts directly
with memory. These techniques involve the use of custom hardware [3]
or the FireWire interface [1] for direct memory access. But the two
techniques suffer from the “northbridge exploit” [16]. Since all periph-
eral devices use the northbridge to interface with the CPU and main
memory, malware can be loaded onto the northbridge to subvert mem-
ory access by a peripheral while leaving the CPU and operating system
untouched. This enables the malware to remain undetected.

The northbridge exploit can be contained by constraining memory
capture techniques to the CPU and operating system. Virtual machines
provide an easy method for dumping memory. When an incident occurs,
a forensic investigator takes control of the actual machine, suspends the
virtual machine, and then dumps the memory in the virtual machine.
However, one problem with this method is that implementing such a
policy within a large organization incurs high costs in terms of time
and money. Moreover, software virtualization can slow the perceived
responsiveness of a computer because every command has to go through
an additional level of abstraction.

Hibernation files offer an alternative memory capture method that re-
lies on the operating system [22]. The process of analyzing hibernation
files requires placing the system in the hibernation mode, copying the
hibernation files and extracting their contents. However, while the hi-
bernation function is enabled on many laptops, it is disabled by default
on most desktops. Desktops can be reconfigured to enable the hiberna-
tion mode, but this must be done in advance. Other difficulties include
the lack of published descriptions of hibernation file formats and the fact
that not everything in memory may be stored.

Libster and Kornblum [9] have proposed an alternative method for
acquiring a pristine copy of memory. The method involves modifying
the operating system kernel so that a user-defined function key would
cause the operating system to immediately suspend, generate a memory
dump that it sends over a network to a secure machine, and then resume

198 ADVANCES IN DIGITAL FORENSICS VI

execution. The difficulty with this method is to ensure that it is deployed
for all the disparate systems of a large enterprise prior to an incident.

While a pre-installed operating system patch appears to be an ideal
solution in cases where prior access is not possible, the only option avail-
able is to initiate a new process to dump system memory. To minimize
the impact, the application should limit application program interfaces
(APIs) that interface with the operating system and the use of a graphi-
cal user interface (GUI). Unfortunately, while many available tools (e.g.,
[12, 23]) are run from the command line, most use operating system
APIs to dump memory. The only exception appears to be Memoryze
[11].

Memory analysis tools extract different amounts and types of live
response data from a memory dump. The Volatility tool [25] extracts the
date and time, running processes, open ports, process-port mappings,
strings-process mappings, process-file mappings, process dynamic link
libraries (DLLs) and open connections. Additional plug-ins are available
to enhance the functionality of Volatility, including the ability to extract
registry information. However, Volatility suffers from the limitation that
it does not extract port information for all Windows operating system
service pack and patch configurations.

Comprehensive open source memory analysis tools written in com-
piled languages such as C/C++ are not available for Windows XP sys-
tems. Betz [21] has developed a tool that finds processes and threads
in memory and extracts some information, but it is limited to Windows
2000 systems and does not support the analysis of registry files, net-
work activity and process creators. PTfinder [17] also searches through
memory for processes and threads, and handles memory captures from
Windows XP systems. However, like Betz’s tool, it does not support the
analysis of registry files [7], network activity and process creators [8].

3. Compiled Memory Analysis Tool

The compiled memory analysis tool (CMAT) is a C++ command line
utility that runs on Linux and Windows operating systems. It parses a
Windows XP memory dump to obtain information on user accounts, the
Windows registry and running processes. CMAT provides system, pro-
cess, registry, open ports and user information in a standalone tool that
runs without API calls or high-level language interpreters. CMAT op-
erates in two passes. During the first pass, CMAT searches the memory
dump file for processes, threads and registry hives. In the second pass,
CMAT organizes the process, thread and registry entries it has found

Okolica & Peterson 199

and produces output in a format similar to that produced by common
live response tools.

The Windows kernel incorporates data structures needed for the op-
erating system to function. These data structures are useful for ex-
tracting live response information. For example, processes are stored in
memory as EPROCESS structures. Potential process structures can be
found by searching for strings formatted as a DISPATCH HEADER of
a KPROCESS. In the case of Windows XP SP2, this corresponds to a
DISPATCH HEADER of 0x03 and a KPROCESS size of 0x1b. After
a likely process is found, it is double-checked to ensure that the page
directory table base is a valid virtual memory location [15, 18]. If the
page directory table does not point to a valid location, then what has
been found is a process executable or process data, not a process header.
This method finds all processes, including normal active processes, hid-
den active processes (e.g., processes hidden by a rootkit like FUTo [20]),
defunct processes and processes from previous boots that have not been
removed from memory. In addition, because the EPROCESS structure
also contains a doubly-linked list of all active processes, processes that
were missed during the string search can still be found by traversing the
linked list. The scan of the linked list also assists in identifying process
that have been disconnected from the list (which is how FUTo hides
processes).

CMAT then searches through the memory dump for registry hives.
In a manner similar to how it searches for processes, CMAT looks for
CMHIVE structures with a signature in Windows XP of 0xbee0bee0 [7].
Just as a process must have a valid memory address for its page direc-
tory table base, a registry hive must have a valid memory address for its
base block. CMAT also takes advantage of the doubly-linked CMHIVE
structures to ensure that all the registries are found. CMAT then moves
through the default user registry to find relationships between session
IDs and user names. In Windows XP, it finds the ProfileList key under
\USER\MICROSOFT\WindowsNT\CurrentVersion and then makes a
record of the session IDs and their associated ProfileImagePaths, pro-
viding human-understandable names for the users that were logged in.

As a part of its processing, CMAT translates the virtual addresses
stored in Windows kernel data structures into physical memory loca-
tions. Windows XP has two levels of indirection when it is run on a
32-bit machine; this is achieved by splitting a virtual address into a page
directory index, a page table index and an offset. However, if large (4
MB) pages are used, there is one level of indirection; if physical address
extensions are used, there are three levels of indirection. While CMAT
can detect if large pages are being used, it requires user assistance in the

200 ADVANCES IN DIGITAL FORENSICS VI

form of a parameter value to discern if physical address extensions are
in use. One method to avoid this is to try alternative virtual-to-physical
mappings until the correct mapping is found [25]. Another method is to
locate the kernel system variables that store this information [6].

After the process entries and registry hives are found, CMAT either
interactively or in the batch mode provides forensic information of in-
terest. This includes general system information (operating system and
number of processes) and process information, which includes the user
who created the process, full path of the executable, command line used
to initiate the process, full paths of loaded DLLs, and the files and reg-
istry keys accessed by the process.

4. Test Methodology

The CMAT output was compared with the outputs of five Sysinternals
utilities: psinfo, pslist, logonsessions, handles and listdlls [14].
System information that was examined included the operating system
version, number of processors and number of processes. The process
information examined included the process creator, files opened, registry
keys accessed and modules loaded. The only type of volatile information
not examined was network information, including the ports and sockets
opened by processes. Also, a comparison was made of the number of
distinct DLLs used by ManTech’s physical memory dump (mdd) utility
compared with the number of distinct DLLs used by the Sysinternals
utilities.

AWindows XP SP3 system with 2,038 MB RAMwas used in the tests.
Several application programs were launched on the machine including
Internet Explorer, Word, PowerPoint, Visual Studio, Calculator, Kernel
Debugger and two command line shells. One of the command line shells
was hidden by the FUTo rootkit [20]. The memory dump was collected
using ManTech’s mdd utility (version 1.3), which required 67 seconds.

5. Test Results

The test results in Table 1 demonstrate that CMAT provides the
same or equivalent information as the Sysinternals utilities. In addition,
CMAT found the process hidden by FUTo while the Sysinternals utilities
did not. The Sysinternals utilities failed to associate several processes
with the users that started them. Except for the inability of CMAT
to provide network information, CMAT’s performance in the tests was
exemplary.

System Information: CMAT and psinfo provide the operat-
ing system version, major and minor version, service pack number

Okolica & Peterson 201

Table 1. CMAT vs. Sysinternals utilities.

Information Result Correlation

Operating System Version Windows XP SP3 v5.1 Build 2600 100%
Processor Count 2 100%
Process Count 56 of 58 97%
User IDs 50 of 57 88%
Loaded Modules 57 of 57 100%
Files 57 of 57 100%
Registry Keys 57 of 57 100%
DLLs Used 15 (CMAT) vs. 48 (Sysinternals)

and build number. Also, they both provide the number of pro-
cessors. The psinfo utility also provides the processor type and
speed along with the video driver used. However, this information
appears to have limited forensic use; therefore, this feature was
not implemented in CMAT. The one additional piece of informa-
tion provided by psinfo compared with CMAT is if a physical
address extension is used (as described above, this information is
passed to CMAT as a parameter). A future version of CMAT will
address this shortcoming.

Processes: CMAT reported 58 active processes while pslist re-
ported 57 processes; 56 of the processes matched (97% equality).
The program missing from the CMAT results was pslist, which
was not running when the memory was dumped. Similarly, the pro-
gram mdd 1.3 was missing from the pslist result, which makes
sense because the memory was already dumped when pslist was
executed. The other program missing from the pslist result was
cmd.exe, which was hidden by the FUTo rootkit; this demon-
strates that a program intentionally hidden by malware can still
be found by CMAT. While CMAT provides a single process listing
that includes the user who created the process, Sysinternals uses
a separate utility (logonsessions) for this purpose. Compari-
son of the CMAT and logonsessions results showed that nine
processes were not listed by logonsessions, including all the pro-
cesses owned by LocalService and NetworkService, and four pro-
cesses owned by SystemProfile (including the system and idle pro-
cesses). Identifying all the system processes is vital to detecting if
malicious services were executing on the machine.

Loaded Modules: CMAT and the Sysinternals listdll utility
provided identical lists of loaded modules (100% equality).

202 ADVANCES IN DIGITAL FORENSICS VI

Files and Registry Keys: The lists of files and registry keys pro-
vided by CMAT and the Sysinternals handle.exe utility matched,
except for the temporary files that were opened and closed between
the memory dump and the execution of handle.exe. These files
were listed as having [RWD] access. CMAT identified file han-
dles that were actually device handles (e.g., \Device\KsecDD),
but was unable to print the names of the devices. Similarly, while
handle.exe summarized the long code for the current user with a
succinct HKU, CMAT displayed the entire registry key.

Dynamic Link Libraries: As mentioned above, minimizing the
number of loaded modules (DLLs) used when performing a live
response is desirable because less evidence on the hard drive is
modified. This test compared the numbers of DLLs used by Man-
Tech’s mdd memory capture tool and the five Sysinternals utilities.
To collect the data, mdd was executed during the time that each
of the five Sysinternals utilities was running. The DLL lists asso-
ciated with the five Sysinternals utilities were extracted from the
memory dumps using CMAT; duplicate DLLs among the five util-
ities were removed and the results were then tallied. The results
show that performing a memory capture instead of a live response
significantly reduces the impact on the evidence. In particular, the
memory capture used 15 DLLs while the five Sysinternals utilities
in total used 48 different DLLs, corresponding to a 69% reduction
in system impact.

6. Conclusions

The CMAT live response tool provides comparable information from
a memory dump and produces a 69% less impact on system state (poten-
tial evidence) than the popular Sysinternals utilities. However, CMAT is
unable to extract several pieces of useful forensic information, including
the mapping of ports and sockets to processes (provided by the Sysin-
ternals portmon utility). The difficulty arises because this information
is stored in the data section of the TCP/IP module. While the port and
socket data reside in specific locations for different Windows operating
system versions, service packs and patch configurations, their locations
can change when new patches are installed.

A future version of CMAT will target Microsoft Windows XP operat-
ing systems. One difficulty is to correctly map the kernel data structures
for different Windows versions (e.g., Vista and Windows 7). This dif-
ficulty can be addressed by retrieving the operating system data struc-
tures dynamically after the operating system is identified upon parsing

Okolica & Peterson 203

the memory dump. Microsoft has recognized the need for such flexibility
by providing the data structures (symbol tables) for download in real
time to support its kernel debugger. CMAT will attempt to make use of
these symbol tables to facilitate memory analysis for different versions
of the Windows operating system.

References

[1] A. Boileau, Hit by a bus: Physical access attacks with FireWire
(www.storm.net.nz/static/files/ab firewire rux2k6-final.pdf), 2006.

[2] S. Brenner, B. Carrier and J. Henninger, The Trojan Horse Defense
in Cybercrime Cases, CERIAS Tech Report 2005-15, Center for
Education and Research in Information Assurance and Security,
Purdue University, West Lafayette, Indiana, 2005.

[3] B. Carrier, File System Forensic Analysis, Pearson, Upper Saddle
River, New Jersey, 2005.

[4] B. Carrier and J. Grand, A hardware-based memory acquisition
procedure for digital investigations, Digital Investigation, vol. 1(1),
pp. 50–60, 2004.

[5] H. Carvey, Windows Forensic Analysis, Syngress, Burlington, Mas-
sachusetts, 2007.

[6] B. Dolan-Gavitt, Finding kernel global variables in Windows (mo
yix.blogspot.com/2008/04/finding-kernel-global-variables-in.html),
April 16, 2008.

[7] B. Dolan-Gavitt, Forensic analysis of the Windows registry in mem-
ory, Digital Investigation, vol. 5(S), pp. S26–S32, 2008.

[8] B. Dolan-Gavitt, Linking processes to users (moyix.blogspot.com
/2008/08/linking-processes-to-users.html), August 16, 2008.

[9] E. Libster and J. Kornblum, A proposal for an integrated memory
acquisition mechanism, ACM SIGOPS Operating Systems Review,
vol. 42(3), pp. 14–20, 2008.

[10] K. Mandia, C. Prosise and M. Pepe, Incident Response and
Computer Forensics, McGraw-Hill/Osborne, Emeryville, Califor-
nia, 2003.

[11] Mandiant, Memoryze, Washington, DC (www.mandiant.com/soft
ware/memoryze.htm).

[12] ManTech, Memory DD, Vienna, Virginia (cybersolutions.mantech
.com/products.htm).

204 ADVANCES IN DIGITAL FORENSICS VI

[13] National Institite of Justice, Electronic Crime Scene Investigation:
An On-the-Scene Reference for First Responders, U.S. Department
of Justice, Washington, DC, 2009.

[14] M. Russinovich, Sysinternals Suite, Microsoft Corporation, Red-
mond, Washington (technet.microsoft.com/en-us/sysinternals/bb
842062.aspx).

[15] M. Russinovich and D. Solomon, Microsoft Windows Internals, Mi-
crosoft Press, Redmond, Washington, 2005.

[16] J. Rutkowska, Beyond the CPU: Defeating hardware-based RAM
acquisition (Part I: AMD case), presented at the Black Hat DC 2007
Conference (www.first.org/conference/2007/papers/rutkowska-joa
nna-slides.pdf), 2007.

[17] A. Schuster, PTfinder (version 0.2.00), Bonn, Germany (compu
ter.forensikblog.de/en/2006/03/ptfinder 0 2 00.html), 2006.

[18] A. Schuster, Searching for processes and threads in Microsoft Win-
dows memory dumps, Digital Investigation, vol. 3(S), pp. S10–S16,
2006.

[19] S. Shankland, Amazon suffers U.S. outage on Friday, CNET,
San Francisco, California (news.cnet.com/8301-10784 3-9962010-7
.html), June 6, 2008.

[20] P. Silberman, FUTo, Uninformed, vol. 3 (www.uninformed.org/?v=
3&a=7&t=sumry), January 2006.

[21] SourceForge.net, Memparser (sourceforge.net/projects/mempars
er), 2006.

[22] M. Suiche, Sandman Project (sandman.msuiche.net/docs/Sand
Man Project.pdf), 2008.

[23] M. Suiche, win32dd (win32dd.msuiche.net).

[24] I. Sutherland, J. Evans, T. Tryfonas and A. Blyth, Acquiring
volatile operating system data: Tools and techniques,ACM SIGOPS
Operating Systems Review, vol. 42(3), pp. 65–73, 2008.

[25] A. Walters and N. Petroni, Volatools: Integrating volatile memory
forensics into the digital investigation process, presented at Blackhat
Hat DC 2007 Conference (www.blackhat.com/presentations/bh-dc-
07/Walters/Paper/bh-dc-07-Walters-WP.pdf), 2007.

V

ADVANCED FORENSIC TECHNIQUES

Chapter 15

DATA FINGERPRINTING
WITH SIMILARITY DIGESTS

Vassil Roussev

Abstract State-of-the-art techniques for data fingerprinting have been based on
randomized feature selection pioneered by Rabin in 1981. This paper
proposes a new, statistical approach for selecting fingerprinting features.
The approach relies on entropy estimates and a sizeable empirical study
to pick out the features that are most likely to be unique to a data
object and, therefore, least likely to trigger false positives. The paper
also describes the implementation of a tool (sdhash) and the results of
an evaluation study. The results demonstrate that the approach works
consistently across different types of data, and its compact footprint
allows for the digests of targets in excess of 1 TB to be queried in
memory.

Keywords: Data fingerprinting, similarity digests, fuzzy hashing

1. Introduction

One of the most common tasks early in the investigative process is to
identify known content of interest and to exclude known content that is
not of interest. This is accomplished by hashing data objects (typically
files) and comparing them to a database of known hashes such as NSRL
[10]. The limitations of “known file filtering” become apparent when one
attempts to find an embedded object (e.g., JPEG image) inside a docu-
ment or an archive – file-level hashes are useless and block-level hashes
barely make a difference. A similar situation arises when analyzing net-
work traces. Ideally, one would like to quickly identify the presence of
objects of interest without paying the overhead of reconstructing net-
work connections and extracting entire files.

Another situation where current approaches fall short is the identi-
fication of “similar” objects such as different versions of a document,

K.-P. Chow, S. Shenoi (Eds.): Advances in Digital ForensicsVI, IFIPAICT 337, pp. 207–226, 2010.
c© IFIP International Federation for Information Processing 2010

208 ADVANCES IN DIGITAL FORENSICS VI

library or executable. The latter is especially important when dealing
with online updates that are common in modern software packages –
it is impractical to expect reference databases to contain every single
variation of a distribution file.

This paper attempts to address the above scenarios and to develop a
practical solution that investigators can employ in the field. The method
is based on the idea of identifying statistically-improbable features and
using them to generate “similarity digests.” Unlike cryptographic di-
gests, which support only yes/no query results, similarity digests allow
queries to be answered approximately (in the 0 to 100 range), thereby
providing a measure of correlation. The method is specifically designed
to deal with the problem of false positives. In prior work [15], we have
shown that the root cause of false positives is that the underlying data
does not contain enough unique features to be reliably identified. There-
fore, the method detects and flags situations in which the query does not
contain enough characteristic features for a reliable comparison and no-
tifies the investigator. This paper describes a new tool, sdhash, that
implements the method and presents an evaluation study that demon-
strates its effectiveness.

2. Related Work

In the domain of security and authentication, a fingerprint is often
synonymous with the message digest produced by a cryptographic hash
function. Identical digests (or signatures) for two different objects are
considered conclusive proof that the data objects themselves are identi-
cal. Digital forensic investigators make wide use of cryptographic hashes
such as SHA-1 to ensure the integrity of forensic targets and to identify
known content. The Achilles heal of cryptographic hashes is that they
(ideally) depend on every bit of the input, which makes them inherently
fragile and unsuited for similarity detection.

2.1 Rabin Fingerprinting

The idea of generating a more flexible and robust fingerprint for bi-
nary data was proposed by Rabin in 1981 [13]. Since then, considerable
research has focused on developing ever more sophisticated fingerprint-
ing techniques, but Rabin’s basic idea has carried over with relatively
small variations. We limit our discussion to the essential ideas. Inter-
ested readers are referred to [16] for a detailed survey of hashing and
fingerprinting techniques.

Rabin’s scheme is based on random polynomials and its original pur-
pose was “to produce a very simple real-time string matching algorithm

Roussev 209

and a procedure for securing files against unauthorized changes” [13]. A
Rabin fingerprint can be viewed as a checksum with low, quantifiable
collision probabilities that can be used to efficiently detect identical ob-
jects. In the 1990s, there was a renewed interest in Rabin’s work in the
context of finding similar objects, with an emphasis on text. Manber [8]
used it in the sif tool for Unix to quantify similarities among text files;
Brin and colleagues [2] used it in a copy-detection scheme [2]; Broder,
et al. [3] applied it to find syntactic similarities in web pages.

The basic idea, which is referred to as anchoring, chunking or shin-
gling, is to use a sliding Rabin fingerprint over a fixed-size window that
splits data into pieces. A hash value h is computed for every window
of size w. The value is divided by a constant c and the remainder is
compared with another constant m. If the two values are equal (i.e.,
m ≡ h mod c), then the data in the window is declared as the beginning
of a chunk (anchor) and the sliding window is moved one position. This
process is continued until the end of the data is reached. For conve-
nience, the value of c is typically a power of two (c = 2k) and m is a
fixed number between zero and c − 1. Once the baseline anchoring is
determined, it can be used in a number of ways to select characteristic
features. For example, the chunks in between anchors can be chosen as
features. Alternatively, the l bytes starting at the anchor positions may
be chosen as features, or multiple nested features may be employed.

Note that, while shingling schemes pick a randomized sample of fea-
tures, they are deterministic, i.e., given the same inputs, produce the
same features. Also, they are locally sensitive in that the determination
of an anchor point depends only on the previous w bytes of input, where
w could be as small as a few bytes. This property can be used to solve
the fragility problem in traditional file- and block-based hashing.

Consider two versions of the same document. One document can
be viewed as being derived from the other by inserting and deleting
characters. For example, an HTML page can be converted to plain text
by removing all the HTML tags. Clearly, this would modify a number
of features, but the chunks of unformatted text would remain intact
and produce some of the original features, permitting the two versions
of the document to be automatically correlated. For the actual feature
comparison, the hash values of the selected features are stored and used
as a space-efficient representation of a “fingerprint.”

2.2 Fuzzy Hashing

Kornblum [7] was among the first researchers to propose the use of
a generic fuzzy hashing scheme for forensic purposes. His ssdeep tool

210 ADVANCES IN DIGITAL FORENSICS VI

generates string hashes of up to 80 bytes that are the concatenations of
6-bit piecewise hashes. The result is treated as a string and is compared
with other hashes on the basis of edit distance – a measure of how many
different character insert/delete operations are necessary to transform
one string into the other. While ssdeep has gained some popularity,
the fixed-size hash it produces quickly loses granularity and works for
relatively small files of similar sizes.

Roussev, et al. [18] proposed a similarity scheme that uses partial
knowledge of the internal object structure and Bloom filters. Subse-
quently, they developed a Rabin-style multi-resolution scheme [19] that
attempts to balance performance and accuracy by maintaining hash val-
ues at several resolutions. This approach provides similarity comparisons
that are flexible and meaningful, but it requires a basic understanding
of the syntactic structure of the objects, which affects its generality.

Outside the realm of digital forensics, Pucha, et al. [12] proposed an
interesting scheme for identifying similar files in a peer-to-peer network.
Their scheme focuses on large-scale similarity (e.g., the same movie in
different languages) and strives to select the minimum number of features
necessary for identification.

2.3 Evaluation of Fingerprinting Approaches

Rabin’s randomized model of fingerprinting works well on average, but
suffers from problems related to coverage and false positive rates. Both
these problems can be traced to the fact that the underlying data can
have significant variations in information content. As a result, feature
size/distribution can vary widely, which makes the fingerprint coverage
highly skewed. Similarly, low-entropy features produce abnormally high
false positive rates that render the fingerprint an unreliable basis for
comparison.

Research in the area of payload attribution has produced more sophis-
ticated versions of Rabin fingerprinting that seek to increase coverage
(see, e.g., [5, 11, 21, 22]). These techniques manage the feature selection
process so that big gaps or clusters are avoided. However, they do not
consider false positives due to weak (non-identifying) features. It is im-
portant to recognize that coverage and false positives are fundamentally
connected; selecting weak features to improve coverage directly increases
the risk of false positive results.

3. Non-Rabin Fingerprinting

The general idea behind any similarity scheme is to select multiple
characteristic (invariant) features from the data object and compare

Roussev 211

them with features selected from other objects. The collection of fea-
tures can be viewed as a digital fingerprint or signature. A feature can
be defined at multiple levels of abstraction, where the higher levels re-
quire more specialized processing. For the purposes of our work, we
define a feature very simply as a bit sequence. In other words, we view
binary data as a syntactic entity and make no attempt to parse or inter-
pret it. This approach has obvious limitations, but is motivated by the
need to develop generic, high-throughput methods that can rapidly filter
large amounts of data. The expectation is that the approach would be
complemented in the later stages by higher-order analysis of the filtered
subset.

Our work has three main contributions. First, it presents a new fea-
ture selection scheme that selects statistically-improbable features as op-
posed to the randomized approach of Rabin schemes; this provides more
reliable identification of characteristic features and offers even more cov-
erage. Second, it incorporates a new approach that allows for the generic
screening of inherently weak (non-identifying) features based on entropy
measures; as our evaluation shows, this leads to a significant reduction
in false positives. Third, it defines a new, scalable measure of similarity
based on the statistical properties of Bloom filters; the measure supports
the efficient comparison of objects of arbitrary sizes.

3.1 Selecting Statistically-Improbable Features

The statistically-improbable feature selection process is somewhat
similar to Amazon’s use of statistically-improbable phrases to charac-
terize publications. The goal is to pick object features that are least
likely to occur in other data objects by chance. The challenge is that
this approach has to work for binary data (not just text) and, therefore,
it is not possible to parse or interpret the data.

In this work, we consider features of size B = 64 bytes, which we
have found to be a suitable granularity for identifying objects in disk
blocks and network packets. However, there are no conceptual or im-
plementation differences in using a different feature size. Note that a
fundamental trade-off exists: the smaller the features, the higher gran-
ularity, the larger the digests and the more processing that is involved.

In all cases, the feature selection process involves the following steps:

Initialization: The entropy score Hnorm, precedence rank Rprec

and popularity score Rpop are initialized to zero.

Hnorm Calculation: The Shannon entropy is first computed for
every feature (B-byte sequence): H = −∑255

i=0 P (Xi) log P (Xi),
where P (Xi) is the empirical probability of encountering ASCII

212 ADVANCES IN DIGITAL FORENSICS VI

Rprec 882 866 852 834 834 852 866 866 875 882 859 849 872 842 849 877 889 880
Rpop 1
Rprec 882 866 852 834 834 852 866 866 875 882 859 849 872 842 849 877 889 880
Rpop 2
Rprec 882 866 852 834 834 852 866 866 875 882 859 849 872 842 849 877 889 880
Rpop 3
Rprec 882 866 852 834 834 852 866 866 875 882 859 849 872 842 849 877 889 880
Rpop 4
Rprec 882 866 852 834 834 852 866 866 875 882 859 849 872 842 849 877 889 880
Rpop 4 1
Rprec 882 866 852 834 834 852 866 866 875 882 859 849 872 842 849 877 889 880
Rpop 4 1 1
Rprec 882 866 852 834 834 852 866 866 875 882 859 849 872 842 849 877 889 880
Rpop 4 1 1 1
Rprec 882 866 852 834 834 852 866 866 875 882 859 849 872 842 849 877 889 880
Rpop 4 1 1 2
Rprec 882 866 852 834 834 852 866 866 875 882 859 849 872 842 849 877 889 880
Rpop 4 1 1 3
Rprec 882 866 852 834 834 852 866 866 875 882 859 849 872 842 849 877 889 880
Rpop 4 1 1 4
Rprec 882 866 852 834 834 852 866 866 875 882 859 849 872 842 849 877 889 880

Rpop 4 1 1 5

Figure 1. Example Rpop calculation.

code i. Then, the entropy score is computed as Hnorm = �1000 ×
H/ log2 B�.
Rprec Calculation: The precedence rank Rprec value is obtained
by mapping the entropy score Hnorm based on empirical observa-
tions.

Rpop Calculation: For every sliding window of W consecutive
features, the leftmost feature with the lowest precedence rankRprec

is identified. The popularity score Rpop of the identified feature is
incremented by one.

Feature Selection: Features with popularity rank Rpop >= t,
where t is a threshold parameter, are selected.

Figure 1 illustrates the Rpop calculation and feature selection steps.
A snippet of 18 Rprec numbers from an actual computation is used; a
window W = 8 is used for the Rpop calculation. Assuming a threshold
t = 4 and feature size B = 64, two features are selected to represent an
82-byte piece of data.

The principal observation is that the vast majority of the popularity
scores are zero or one; this is a very typical result. For an intuitive

Roussev 213

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0 100 200 300 400 500 600 700 800 900 1000

P
ro

b
a
b

il
it

y

Entropy Score (Hnorm)

(a) doc set.

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0 100 200 300 400 500 600 700 800 900 1000

P
ro
b
a
b
il
it
y

Entropy Score (Hnorm)

(b) gz set.

Figure 2. Example entropy score distributions.

explanation, consider the entropy score histogram of the gz compressed
data set in Figure 2(b). As expected, the overall entropy is close to
the maximum, but the entropy of individual features is, in fact, nor-
mally distributed. This means that, although the entropy measures of
the neighboring features are highly correlated, every once in a while,
an entropy score that is less frequent is encountered (by chance). By
extension, the feature itself is likely to occur less frequently. Based on
our statistics, this manifests itself as a local minimum in the precedence
rank, which ultimately results in a higher popularity score.

The same logic applies to other types of data; a more detailed ac-
count of our empirical observations is presented in [15]. In general, the
feature selection procedure described above works on any type of data
for which a reasonable (not necessarily perfect) approximation of the
feature entropy distribution is available.

3.2 Filtering Weak Features

Much of the impetus to reduce the number of weak fingerprint features
comes from observations of the feature entropy distribution in doc data
(Figure 2(a)). As can be seen, full 8% of the data has zero entropy due
to large blocks of repeated characters (mostly zeroes). Such a feature
yields a raw false positive rate approaching 100%, meaning that the
probability that the feature will not be unique to a specific data object
is almost 100%.

This problem is by no means constrained to doc data or to zero-
entropy features. Text data exhibits similar properties with raw false
positive rates staying above 10% for entropy scores up to 180 [15]. At
the same time, the weak features account for less than 2% of the total
number of features. Eliminating weak features from consideration can

214 ADVANCES IN DIGITAL FORENSICS VI

reduce false positive rates with minimal effect on coverage and likely no
impact on real-world applications.

In developing our sdhash tool, we used a 600 MB sample set of mixed,
randomly-obtained files to derive the entropy score distribution and the
entropy-to-precedence mapping table. During the filtering process, all
features with entropy scores of 100 or below, and those exceeding 990
were unconditionally dropped from consideration. The latter decision is
based on the observation that features with near-maximum entropy tend
to be tables whose content is common across many files. For example,
Huffman and quantization tables in JPEG headers can have very high
entropy but are poor characteristic features.

3.3 Generating Similarity Digests

After the object features have been selected and filtered, the next step
is to build the fingerprint representation. For this purpose, we employ
a sequence of Bloom filters as in our earlier multi-resolution similarity
hashing scheme [19]. A Bloom filter [1, 4] is a bit vector used for space-
efficient set representation. The price paid for the space savings is the
possibility that membership queries may return false positive results.
To insert an element, it is hashed with k different hash functions; the
results are treated as addresses inside the filter and the corresponding
bits are set to one. Membership queries are handled in a similar manner;
however, instead of setting the bits, they are tested to see if they are
set – if all k bits are set to one, then the answer is “yes,” otherwise it is
“no.” It is possible that the combination of bits checked during a query
is set by chance, which results in a false positive. The probability of
false positives can be quantified and controlled by limiting the number
of elements inserted into the filter.

In our implementation, selected features are hashed using SHA-1 and
the result is split into five sub-hashes, which are used as independent
hash functions to insert the feature into the filter. The implementation
uses 256-byte filters with a maximum of 128 elements per filter. After a
filter reaches capacity, a new filter is created and the process is repeated
until the entire object is represented.

One subtle detail is that before a feature is inserted, the filter is
queried for the feature; if the feature is already present, the count for the
number of elements inserted is not increased. This mechanism prevents
the same feature from being counted multiple times, which reduces the
false positive rate by forcing the inclusion of non-duplicate features; the
accuracy of the similarity estimate is also increased.

Roussev 215

3.4 Comparing Digests

The basic building block for digest comparison is the comparison of
two Bloom filters. In general, the overlap between two compatible filters
is a measure of the overlap between the sets they represent – the number
of bits in common grows linearly with the amount of set overlap.

Consider two Bloom filters f1 and f2 of size m bits containing n1 and
n2 elements (n1 ≤ n2), respectively, and n12 elements in common. Let k
be the number of hash functions used and e1, e2 and e12 be the number
of bits set to one in f1, f2 and f1∩f2, respectively. Using classical Bloom
filter analysis [4], the estimate of the number of expected common bits
set to one is:

E12 = m
(
1− pks1 − pks2 + pk(s1+s2−s12)

)
, p = 1− 1/m

Furthermore, the estimates of the maximum and minimum number of
possible overlapping bits due to chance are:

Emax = min(n1, n2); Emin = m
(
1− pks1 − pks2 + pk(s1+s2)

)

Next, we define a cutoff point C below which all bit matches are assumed
to be due to chance:

C = α(Emax − Emin) + Emin

Thus, the similarity filter score SFscore of the two filters is defined as:

SFscore(f1, f2) =

⎧
⎪⎪⎨

⎪⎪⎩

−1 if n1 < Nmin

0 if e12 ≤ C
[
100 e12−C

Emax−C

]
otherwise

where Nmin is the minimum number of elements required to compute a
meaningful score. Our implementation uses an experimentally-derived
value of Nmin = 6.

Given two digests SD1 and SD2 consisting of Bloom filters f1
1 , . . . , f

1
s

and f2
1 , . . . , f

2
t , respectively (s ≤ t), the similarity digest score is formally

defined as:

SDscore(SD1, SD2) =
1

s

s∑

i=1

max
1≤j≤t

SFscore(f
1
i , f

2
j)

216 ADVANCES IN DIGITAL FORENSICS VI

Informally, the first filter from the shorter digest (SD1) is compared
with every filter in the second digest (SD2) and the maximum similarity
score is selected. This procedure is repeated for the remaining filters in
SD1 and the results are averaged to produce a single composite score.

The rationale behind this calculation that a constituent Bloom filter
represents all the features in a continuous chunk of the original data.
Thus, by comparing two filters, chunks of the source data are compared
implicitly. (In fact, it is possible to store (at a modest cost) the exact
range that each of the filters covers in order to facilitate follow-up work.)
Thus, the size of the filters becomes a critical design decision – larger
filters speed up comparisons while smaller filters provide more specificity.

The interpretation of the scores is discussed in Section 5. At this
point, however, we note that the parameters, including α = 0.3, have
been calibrated experimentally so that the comparison of the fingerprints
of unrelated random data consistently yields a score of zero.

4. Implementation

We have implemented the fingerprinting method in the sdhash tool,
which is available at [17]. The usage format is sdhash [options]

{<source file(s)> | <digest files>}. Users may pick one digest
generation/storage option and one digest comparison option as follows:

Option -g: This option treats the files in the list as original
(source) data. For every file name pathname/file.ext, a corre-
sponding pathname/file.ext.sdbf file containing the SD finger-
print is generated. No fingerprint comparisons are performed.

Option -c: This option treats the files in the list as digest data
and comparisons are performed.

Option -f: This option is the combination of options -g and -c.
The digest files are generated and compared.

Option -m: This default option is the same as the -f option except
that no digest files are created as a side effect.

Option -p: This option causes the header(s) of fingerprint file(s)
to be printed. The following example illustrates its use.

> ./sdhash -p 100M.doc.sdbf

100M.doc.sdbf: bf_count: 10858, bf_size: 256,

hash_count: 5, mask: 7ff, max: 128, count: 77

In the example, the fingerprint consists of a sequence of 10,858 256-
byte Bloom filters. Five (32-bit) sub-hashes are generated from the
base SHA-1 hash and based on the bit mask, the 11 least-significant

Roussev 217

bits are used to address bits within each filter. Each filter encodes
128 features, except for the last filter, which has 77 features. The
total number of features is 10,857 × 128 + 77 = 1,389,773 features.
Option -2: This default option specifies that for n source files or
digests, a total of n−1 pairwise comparisons should be performed:
< #1,#2 >,< #1,#3 >, . . . , < #1,#n >.
Option -n: This option specifies that for n source files or digests,
all unique pairs must be compared: < #1,#2 >,< #1,#3 >
, . . . , < #2,#3 >, < #2,#n >, . . . , < #2,#n >, . . . , < #n −
1,#n >.

The sdhash output consists of three columns. The first two columns
list the files that are compared; the third column gives the corresponding
SD scores.

5. Cross-Set Fragment Detection Experiments

This section discusses a “needle in a haystack” fragment detection
scenario. Given a relatively small snippet of data such as a disk block
or network packet (“needle”), the goal is to determine whether or not
parts of it are present in the large set of data (“haystack”).

Based on the scenario, the sdhash parameters were tuned to work
for fragments in the 1024-byte to 4096-byte range. We also studied
the boundary case of a 512-byte fragment to understand the behavior
outside the design zone. As the results show, the method degrades grace-
fully; however, the accuracy of the results inherently drops because it
becomes more difficult to find 64-byte characteristic features. For rea-
sons of space, the scenario involving the detection of similar objects is
not presented in this paper; it will be the subject of a future article.

5.1 Experimental Setup

This section presents the data, parameters and metrics used in the
experimental evaluation.

Data Six sample 100 MB document sets from the NPS Corpus [6]
were used in the experiments: (i) Microsoft Word documents (doc); (ii)
HTML documents (html); (iii) JPEG images (jpg); (iv) Adobe PDF
documents (pdf); (v) Plain text documents (txt); and (vi) Microsoft
Excel spreadsheets (xls). In addition, a seventh 100 MB pseudorandom
data set (rnd) was obtained from /dev/urandom. The rnd set represents
a calibration benchmark because its content is unique and no features
selected from it appear in the other sets. It is infeasible to provide similar
guarantees for the remaining sets. The results obtained for the rnd set

218 ADVANCES IN DIGITAL FORENSICS VI

essentially correspond to a best-case scenario for what can be achieved
in practice. Therefore, it is used as a benchmark to evaluate how close
the other results come to the best case.

Parameters Based on the primary scenario and our preliminary eval-
uation of SD hashes, the following parameters were chosen for the fin-
gerprints:

Feature Selection: The feature size B = 64 bytes, i.e., all pos-
sible sliding 64-byte sequences in an object were considered. The
window size W = 64 bytes, i.e., one representative feature was
selected from every 64 consecutive features based on the entropy
measures defined earlier. The threshold t = 16, i.e., only the repre-
sentative features selected in at least 16 consecutive windows were
considered.

Bloom Filters: Upon selection, each feature was hashed using
SHA-1 and the resulting 160 bits of the hash were split into five
sub-hashes of 32 bits, each of them treated as an independent
hash function. The actual similarity digest is a sequence of 256-
byte Bloom filters with 128 elements (features) per filter. Thus,
the expected false positive rate of the Bloom filter is 0.0014 for an
individual membership query.

Fragment Size: Four different fragment sizes of 512, 1024, 2048
and 4096 bytes were used to evaluate the behavior of the similarity
measure in the range of the fragment sizes of interest.

Evaluation Metrics We considered three basic measurements: de-
tection rates, non-classification rates and misclassification rates. The
first step was to generate sample fragment sets for every combination of
fragment size and data set. These were obtained by picking random file-
offset combinations and extracting a fragment of the appropriate size.
This gave rise to 28 (= 4 × 7) fragment sets, each with 10,000 samples.
SD fingerprints were generated for each reference set and sample, which
were then compared depending on the scenario:

Detection Rate: This metric assesses the likelihood that the SD
hash method correctly attributes a sample set to its source. In
other words, the fragment fingerprints are compared to the source
set fingerprint for every sample set. Note that the classification
results depend on the choice of minimum score threshold value –
the higher the value, the lower the detection rate.

Roussev 219

Non-Classification Rate: This metric assesses the likelihood
that the SD hash method rejects a fragment set as not contain-
ing enough characteristic features for reliable classification. This
is the equivalent an “I don’t know” answer to a similarity query.
Note that this rate is solely a function of the fragment content
and does not depend on the comparison target; thus, the sample
can be identified as being weak before comparisons are performed.
Intuitively, the non-classification rate can be expected to be very
close to zero for high-entropy (random, compressed or encrypted)
data. Furthermore, an elevated non-classification rate is an im-
plicit indicator that the comparison results are less reliable due to
small fragment size and/or low sample entropy.

Misclassification Rate: Recall that an SD hash comparison pro-
duces a score in the 0 to 100 range (-1 for non-classification). Given
a random sample that is present in the reference file, it is not guar-
anteed that the returned result will be 100. In particular, it is quite
likely (depending on alignment) that the features selected from the
sample will spread into more than one Bloom filter in the finger-
print of the source.

In practice, this implies that the selected threshold should balance
the probabilities of false negatives and false positives. To cumu-
latively capture these errors, the false negative and false positive
rates are summed to produce the misclassification rate. Evidently,
the misclassification rate is a function of the threshold value cho-
sen to separate false negatives and false positives. The closer the
threshold is to zero, the higher the probability for false positives;
conversely, the closer the threshold is to 100, the higher the prob-
ability of false negatives.

Ideally, there is a range of SD scores for which the misclassifica-
tion rate is zero, so a safe threshold could be picked in the range.
In some cases, such perfect ranges do, in fact, exist. Most of the
time, however, the goal is to minimize the misclassification rate.
To obtain the misclassification rate estimates, the scores of 10,000
true samples from a source set were compared with those of 10,000
samples taken from each of the other sets. Then, the misclassifi-
cation rate was identified for every possible value of the threshold
(1-99); the best choice showed up as a global minimum in the plot.

5.2 Experimental Results

Space constraints prevent us from presenting the complete set of re-
sults (these will be published separately as a technical report). Fortu-

220 ADVANCES IN DIGITAL FORENSICS VI

Figure 3. Detection rates for the txt reference set.

nately, the observed behavior was consistent for all the data sets. As a
result, we only present the detailed results for the txt set.

Detection Rates Figure 3 presents the the txt detection performance
(y-axis) as a function of the SD score threshold (x-axis) and the frag-
ment size (512, 1024, 2048 and 4096 bytes). The first observation is
that a threshold score of up to 22 yields near-perfect (0.999+) detection
rates for all fragment sizes. Detection rates drop approximately linearly
beyond this value, with rates for larger fragments dropping faster than
those for smaller fragments. The latter result is expected because, as the
fragment size grows, so does the probability that the fragment features
selected will end up in multiple Bloom filters in the digest of the original
file. This is best illustrated by the rightmost points of the curves, which
represent the fraction of true positives that generate a score of 100.

Non-Classification Rates Table 1 shows the non-classification rates
for various test sets and fragment sizes. The decision to refuse clas-
sification is based on the requirement that a fragment must contain a

Roussev 221

Table 1. Non-classification rates for various test sets and fragment sizes.

Test Fragment Size
Set 512 1024 2048 4096

doc 0.2383 0.1291 0.0764 0.0435
html 0.0995 0.0059 0.0025 0.0008
jpg 0.0281 0.0089 0.0045 0.0033
pdf 0.0533 0.0198 0.0163 0.0157
rnd 0.0166 0.0000 0.0000 0.0000
txt 0.0860 0.0192 0.0060 0.0031
xls 0.0706 0.0113 0.0058 0.0024

minimum of six unique selected features for the comparison to proceed.
The cutoff point was obtained empirically based on the observation that
misclassification rates escalate rapidly below this threshold without en-
hancing detection. The non-classification rates for 512-byte fragments
are significantly higher than those for larger fragments. Note that the
non-classification rate is zero for 1024-, 2048- and 4096-byte rnd frag-
ments.

An important result is that the doc set exhibits high non-classification
rates for all four fragment sets. This is not entirely surprising given our
earlier survey of feature entropy distributions for different sets. Specif-
ically, we showed that 8% of all potential features in the doc set have
zero entropy (Figure 2(a)). The actual problem areas expand beyond
this to encompass neighboring areas where entropy is too low.

It is important to emphasize that our design philosophy is to reject
weakly-identifiable data and not classify them. This decision is justified
because reliable estimates of error rates cannot be obtained without
excluding weak data.

Misclassification Rates Figure 4 presents the misclassification re-
sults for all 512- and 1024-byte fragments with respect to the txt ref-
erence set as a function of the chosen SD score threshold values. Since
the y-axis uses a logarithmic scale, the zero values are replaced with
0.0001 to enable visualization. Figure 4(a) is representative of the be-
havior observed across all experiments with 512-byte fragments. On
the other hand, Figure 4(b) is representative of all the experiments in-
volving 1024-, 2048- and 4096-byte fragments (larger fragments produce
marginally better results). This is welcome news because we seek clas-
sification threshold values that work consistently across all sets. The
observed consistency demonstrates that the method is stable and works
well across the spectrum of data.

222 ADVANCES IN DIGITAL FORENSICS VI

(a) 512-byte fragments.

(b) 1024-byte fragments.

Figure 4. Misclassification rates for the txt reference set.

Roussev 223

Table 2. Misclassification rates for various test sets and fragment sizes.

Test Fragment Size
Set 512 1024 2048 4096

min max min max min max min max

rnd 0.0050 0.0100 0.0006 0.0050 .0003 .0040 .0003 0.0040
doc 0.0050 0.0100 0.0002 0.0050 .0003 .0050 .0002 0.0040
html 0.0060 0.0100 0.0003 0.0050 .0005 .0055 .0000 0.0035
jpg 0.0050 0.0120 0.0005 0.0055 .0002 .0050 .0003 0.0040
pdf 0.0060 0.0120 0.0002 0.0050 .0002 .0050 .0002 0.0040
txt 0.0050 0.0100 0.0002 0.0055 .0002 .0050 .0000 0.0035
xls 0.0060 0.0130 0.0002 0.0055 .0002 .0050 .0150 0.0180

Figure 4(a) demonstrates that there is room for varying the optimiza-
tion criterion, and that a case can be made for a number of possible
threshold values in the 37-49 range. Upon inspecting all the graphs,
43 emerges as the best candidate because it consistently achieves near-
optimal results across all the 512-byte fragment experiments. A value of
21 yields the most consistent results for the 1024-, 2048- and 4096-byte
fragments.

Table 2 summarizes the results for all the test sets using the chosen
threshold values. Each cell provides the minimum or maximum misclas-
sification rate observed for a fragment of a particular size. Note that the
top row of the table (rnd) is the reference best-case scenario, and the
other six sets produce very similar results.

Storage and Throughput On the average, storing a similarity digest
along with the chosen parameters requires about 2.6% of the original
source data. However, it is possible to shrink the on-disk representa-
tion down to 2.4% using standard zip compression. This strikes a good
balance between accuracy and compactness of representation – a com-
modity server costing $5,000 can be equipped with 32 to 48 GB RAM,
which would support the in-memory representation of 1.25 to 1.75 TB
of data.

The current implementation is capable of generating SD hashes at the
rate of approximately 30 MB/sec/core on a modern processor. Thus, the
SD fingerprinting method can be applied during the imaging process and
would be able to identify artifacts during target acquisition.

6. Conclusions

Our method for generating data fingerprints based on statistically-
improbable features engages a generic entropy-based scheme to efficiently

224 ADVANCES IN DIGITAL FORENSICS VI

select features from binary data. Prior work relies on randomized feature
selection, which provides uneven coverage and produces relatively high
false positives for low-entropy data. The method enables features with
low information content to be filtered, thereby reducing false positives.

Experimental evaluations of the performance of the sdhash implemen-
tation on small (1 to 4 KB) data fragments from six common file types
demonstrate the robustness of the method. The error rate as represented
by misclassified fragments (including false positives and false negatives)
does not exceed 0.0055, implying a correct classification rate of 0.9945.
The success of the technique is due to the fact that the algorithm flags
fragments that do not contain enough identifying features. The space
requirements for the generated similarity digests do not exceed 2.6% of
the source data, which makes it possible to maintain digests of images
up to 1.5 TB in memory.

Our future research will refine and optimize the tool, and perform
tests on large forensic images using digests generated from the NSRL
set. We also plan to explore the capabilities of the tool by tuning its
parameters for smaller and larger features. Along the same lines, we plan
to add a preprocessing step that will recognize common header features
that tend to produce false positives.

References

[1] B. Bloom, Space/time trade-offs in hash coding with allowable er-
rors, Communications of the ACM, vol. 13(7), pp. 422–426, 1970.

[2] S. Brin, J. Davis and H. Garcia-Molina, Copy detection mechanisms
for digital documents, Proceedings of the ACM SIGMOD Interna-
tional Conference on Management of Data, pp. 398–409, 1995.

[3] A. Broder, S. Glassman, M. Manasse and G. Zweig, Syntactic clus-
tering of the web, Computer Networks and ISDN Systems, vol. 29(8-
13), pp. 1157–1166, 1997.

[4] A. Broder and M. Mitzenmacher, Network applications of Bloom
filters: A survey, Internet Mathematics, vol. 1(4), pp. 485–509, 2005.

[5] C. Cho, S. Lee, C. Tan and Y. Tan, Network forensics on packet
fingerprints, Proceedings of the Twenty-First IFIP Information Se-
curity Conference, pp. 401–412, 2006.

[6] Digital Corpora, NPS Corpus (digitalcorpora.org/corpora/disk-ima
ges).

[7] J. Kornblum, Identifying almost identical files using context trig-
gered piecewise hashing, Digital Investigation, vol. 3(S1), pp. S91–
S97, 2006.

Roussev 225

[8] U. Manber, Finding similar files in a large file system, Proceedings
of the USENIX Winter Technical Conference, pp. 1–10, 1994.

[9] M. Mitzenmacher, Compressed Bloom filters, IEEE/ACM Transac-
tions on Networks, vol. 10(5), pp. 604–612, 2002.

[10] National Institute of Standards and Technology, National Software
Reference Library, Gaithersburg, Maryland (www.nsrl.nist.gov).

[11] M. Ponec, P. Giura, H. Bronnimann and J. Wein, Highly effi-
cient techniques for network forensics, Proceedings of the Fourteenth
ACM Conference on Computer and Communications Security, pp.
150–160, 2007.

[12] H. Pucha, D. Andersen and M. Kaminsky, Exploiting similarity
for multi-source downloads using file handprints, Proceedings of the
Fourth USENIX Symposium on Networked Systems Design and Im-
plementation, pp. 15–28, 2007.

[13] M. Rabin, Fingerprinting by Random Polynomials, Technical Re-
port TR1581, Center for Research in Computing Technology, Har-
vard University, Cambridge, Massachusetts, 1981.

[14] S. Rhea, K. Liang and E. Brewer, Value-based web caching, Pro-
ceedings of the Twelfth International World Wide Web Conference,
pp. 619–628, 2003.

[15] V. Roussev, Building a better similarity trap with statistically im-
probable features, Proceedings of the Forty-Second Hawaii Interna-
tional Conference on System Sciences, pp. 1–10, 2009.

[16] V. Roussev, Hashing and data fingerprinting in digital forensics,
IEEE Security and Privacy, vol. 7(2), pp. 49–55, 2009.

[17] V. Roussev, sdhash, New Orleans, Louisiana (roussev.net/sdhash).

[18] V. Roussev, Y. Chen, T. Bourg and G. Richard, md5bloom: Foren-
sic filesystem hashing revisited, Digital Investigation, vol. 3(S), pp.
S82–S90, 2006.

[19] V. Roussev, G. Richard and L. Marziale, Multi-resolution similarity
hashing, Digital Investigation, vol. 4(S), pp. S105–S113, 2007.

[20] V. Roussev, G. Richard and L. Marziale, Class-aware similarity
hashing for data classification, in Research Advances in Digital
Forensics IV, I. Ray and S. Shenoi (Eds.), Springer, Boston, Mas-
sachusetts, pp. 101–113, 2008.

[21] S. Schleimer, D. Wilkerson and A. Aiken, Winnowing: Local algo-
rithms for document fingerprinting, Proceedings of the ACM SIG-
MOD International Conference on Management of Data, pp. 76–85,
2003.

226 ADVANCES IN DIGITAL FORENSICS VI

[22] K. Shanmugasundaram, H. Bronnimann and N. Memon, Pay-
load attribution via hierarchical Bloom filters, Proceedings of the
Eleventh ACM Conference on Computer and Communications Se-
curity, pp. 31–41, 2004.

Chapter 16

REFINING EVIDENCE CONTAINERS
FOR PROVENANCE AND ACCURATE
DATA REPRESENTATION

Bradley Schatz and Michael Cohen

Abstract It is well acknowledged that there is a pressing need for a general solu-
tion to the problem of storing digital evidence, both in terms of copied
bitstream images and general information that describes the images and
context surrounding a case. In a prior paper, we introduced the AFF4
evidence container format, focusing on the description of an efficient,
layered bitstream storage architecture, a general approach to represent-
ing arbitrary information, and a compositional approach to managing
and sharing evidence. This paper describes refinements to the represen-
tation schemes embodied in AFF4 that address the accurate represen-
tation of discontiguous data and the description of the provenance of
data and information.

Keywords: Evidence containers, representation, provenance, tool interoperability

1. Introduction

One of the principal challenges in digital forensics is to deal with the
rapidly growing volume and complexity of information that is the subject
of investigations [4]. The acquisition and analysis of digital evidence
are hampered by the lack of interoperability between forensic analysis
tools; important forensic information is often unused by analysis tools
because it is locked within proprietary file formats or free text. Access to
case data is hampered by closed abstraction layers and the inefficiencies
imposed by the need to manually copy data in order to process it with
task-specific tools. Finally, the management of evidence is slowed by
format conversion and storage bandwidth limitations.

Digital forensic practitioners have largely settled on the raw (dd) and
Expert Witness Format (EWF) evidence storage formats for hard drive

K.-P. Chow, S. Shenoi (Eds.): Advances in Digital ForensicsVI, IFIPAICT 337, pp. 227–242, 2010.
c© IFIP International Federation for Information Processing 2010

228 ADVANCES IN DIGITAL FORENSICS VI

images. This has enhanced the ability – in the storage forensics field
at least – to acquire and analyze evidence using a variety of tools of
commercial and open source lineage.

Such formats are, however, poor surrogates for the original evidence.
A raw image fails to distinguish between sectors containing bytes with
the value zero and those where a read error has occurred. A raw image
does not record provenance-related information pertaining to the drive
such as the drive geometry and drive configuration overlays, nor does it
record the activities performed on the drive or image. The EWF format
popularized by the EnCase tool is similarly limited; however, it does
overcome some of the weaknesses of a raw image by recording limited
meta information related to the image within the container itself.

In practice, provenance information describing the evidence and its
outside context rarely becomes grist for the automated forensic mill,
mainly because it is collected and recorded manually by investigators
in a variety of formats, including handwritten free text and ad hoc file
formats. New approaches are required to represent digital evidence, both
in terms of raw bits and bytes on storage media (data) and information
describing related artifacts, entities and analytic results.

In an earlier paper [9], we introduced the AFF4 evidence container
format, which is designed to store arbitrary evidence images, context-
related information and analysis results within a unified container for-
mat. This paper describes refinements to AFF4 that address the accu-
rate representation of discontiguous data and describe the provenance
of data and information.

2. Ideal Evidence Container

The ideal evidence container would present to the investigator a per-
fect surrogate of the original physical evidence, whether it is a hard
drive, mobile phone flash memory or computer RAM. Such a container
would fully describe the characteristics, behavior, content and context
of the original evidence that it represents. These include:

Data Content: Multiple streams (HPA, DCO); hierarchical data
relationships (logical imaging); addressing windows (RAM holes,
bad sectors); addressing schemes (block size, CHS/LBA); SMART
status.

Physical Characteristics: Make; model; serial number; inter-
face (SATA, SCSI, etc.).

Context: Environment in which the hard drive existed; case-
related information.

Schatz & Cohen 229

Behavior: Error codes related to bad sectors.

A perfect fidelity surrogate – even if it were technically feasible – would
not be entirely desirable. Such a “virtual hard disk” would quickly frus-
trate the investigator by reliably imposing characteristics such as read
retries on bad sectors, I/O bandwidth limitations and seek latency. Ac-
cordingly, the ideal container would sacrifice fidelity to satisfy orthogonal
operational concerns such as:

Efficiency: Storage space minimization; random access perfor-
mance; I/O speed.

Authentication: Cryptographic signing; hash storage.

Privacy: Encryption; redaction.

Resilience: Tolerance to underlying storage media failures.

3. Current State of Evidence Containers

From the original raw evidence format, evidence containers evolved
to incorporate seekable compression [9], embedded authentication and
integrity mechanisms such as hashes and CRC, and storage of a small
number of fields for describing images. More recently, the demand for
logical imaging has resulted in the emergence of a proprietary evidence
container format that supports the storage of multiple streams of data
along with file-oriented metadata (EnCase Logical Evidence File).

This current breed of commercial evidence containers does not address
the characteristics of evidence sources. For example, hard drives may
contain multiple address spaces, depending on whether features such as
host protected areas or drive configuration overlay are enabled. Images
of computer RAM require the consideration of holes in which no data
exists. Furthermore, the evidence containers fail to address the storage
of general information that is of relevance.

The research community has proposed a number of container formats.
The Advanced Forensics Format (AFF) [10, 11] introduced the storage
of arbitrary metadata within an evidence container, privacy via encryp-
tion and redaction, and resilience via fault tolerance. Digital evidence
bags [15] store arbitrary textual information along with images in the
same container. Sealed digital evidence bags [14] employ a composition
framework for evidence containers based on a linked information model.

We recently introduced the AFF4 evidence container format [9], which
defines an efficient, seekable, compressed storage format for multiple data
object images, a novel and powerful data model that enables the com-
position of data objects from other data objects, and an information

230 ADVANCES IN DIGITAL FORENSICS VI

Table 1. Comparison of representational capabilities of container formats.

Data Representation
raw EWF sgzip LE1 DEB SDEB AFF1 AFF4

Single Image Sto-
rage

Y Y Y N Y Y Y Y

Multiple Image Sto-
rage

N N N N Y Y N Y

Hierarchical Image
Storage (Logical
Imaging)

N N N Y Y Y N Y

Addressing Windo-
ws (Discontiguous
Images)

N N N N ? N N Y

Data Composition N N N N N N N Y
Seekable Compres-
sion

N Y Y ? N N Y Y

Information Representation
raw EWF sgzip LE1 DEB SDEB AFF1 AFF4

Metadata Storage N Y N Y Y Y Y Y
Arbitrary Metadata
Storage

N N N ? Y Y Y Y

Arbitrary Informa-
tion Storage

N N N N Y Y N Y

Formal Information
Model

N N N N N Y N Y

Composable Infor-
mation Model

N N N N N Y N Y

representation approach based on a linked information model. Table 1
compares the characteristics of AFF4 and those of other evidence con-
tainer formats.

4. AFF4 Data and Information Models

The general design goals of AFF4 are to provide an open and ex-
tensible evidence container that facilitates the storage, composition and
sharing of arbitrary types of digital evidence, information and analysis
results. AFF4 defines two interrelated models, one for representing and
documenting information, and the other for storing, referring to and
transforming bitstream data. The two models are linked by a naming
scheme in which items of relevance are identified using globally-unique
identifiers.

Schatz & Cohen 231

Figure 1. Layered application of forensic tools with the AFF4 container.

The AFF4 data model is specifically designed to facilitate the stor-
ing, sharing and referencing of data without imposing the storage band-
width burden of copying data, while providing efficiency in terms of
storage space, random access latency and I/O bandwidth. Likewise,
the AFF4 information model is designed to facilitate the description of
forensically-relevant information, including evidence, case context and
general analytic results.

The “by reference” approach of the AFF4 architecture facilitates the
successive layered application of discrete task-specific tools on the an-
alytic results and data abstractions of tools operating at lower layers
of abstraction. In the architecture, the analysis results of a tool are
persistent when using the AFF4 information and data models in a new
AFF4 container or in an existing container. This significantly differs
from other approaches that either keep analysis results as intermediary
structures in the working memory of a tool (as in monolithic applications
like EnCase) or dump the results to an ad hoc (and likely non-machine-
readable) document.

Figure 1 presents the flow of information and data between AFF4-
aware forensic applications and AFF4 evidence containers. In this ex-
ample, an examiner employs an AFF4 imaging application to create two
disk images in a single container. Each image has two virtual address
spaces overlaying it: one for the regular portion of the disk and the other
that includes the HPA portion of the disk. The examiner uses the GUI
of the tool to enter case-relevant and context-related information associ-
ated with the images; meanwhile, the imaging tool records provenance-
related information obtained directly from the drives. Finally, the tool
records the MD5 hash of the entire disk and the information related to
media failures.

232 ADVANCES IN DIGITAL FORENSICS VI

Upon returning to the laboratory, the examiner proceeds to preserve
the evidence. A piecewise hash of the disk is created using SHA-256 or
some other hash algorithm (this is performed in the laboratory because
a hash algorithm such as SHA-256 is too slow to use in the field). The
computed hash values are stored in a new container, which refers to the
original container.

The investigator then uses a public key to cryptographically sign the
information associated with the image, including the piecewise hashes.
This signature is stored in the new container.

Automated processing of the image may involve a filesystem inter-
preter to create virtual file instances for each file in the image, instances
for deleted files and instances for unallocated space. These are also
placed in a new evidence container for subsequent consumption by other
tools. The unallocated space is then processed by a file carver, the results
of which are stored as virtual file instances in a new evidence container,
resulting in zero copy file carving [12].

This scenario demonstrates the feasibility of the AFF4 architecture
with respect to forensic imaging, piecewise hashing, signing and using
filesystem interpreter applications.

5. AFF4 Naming Scheme

The fundamental premise of representing both data and information
within AFF4 is that an object instance is created for any virtual or real-
world entity – be it a disk partition or a suspect. The object instance
acts as a surrogate for the real or virtual entity. Surrogates are identified
by associating a globally-unique identifier with each entity. We use both
uniform resource locators (URLs) and uniform resource names (URNs)
as entity identifiers.

We define structured URNs, which we call AFF4 URNs, for identifying
surrogates. An AFF4 URN is made globally unique by including a GUID
in its form:

urn:aff4:195bdf58-1bc9-4ba4-9a9c-f1c312673fbf

We use a variant of the ZIP file format for a default container. Thus,
an investigator who visually examines an AFF4 volume containing a disk
image would readily identify AFF4 URNs in the following locations:

The information segment, which is a file in an AFF4 container,
contains a serialization of all the objects within the volume. The
base attribute of the RDF serialization refers to the volume URN.

Image file segments are present in a folder within the ZIP file,
where the folder name is a filesystem-friendly encoding of the URN

Schatz & Cohen 233

that uniquely identifies the image. For example, a folder named
urn%3Aaff4%3A195bdf58-1bc9-4ba4-9a9c-f1c312673fbf might
refer to the image stream urn:aff4:195bdf58-1bc9-4ba4-9a9c-

f1c312673fbf/. Archive filenames can be shortened relative to
the volume URI. For example, the folder diskimage corresponds
to the fully-qualified URI urn:aff4:volume URI/diskimage.

Information segments (described in the next section) contain URNs
within their text.

URLs, which are typically used to uniquely identify a piece of termi-
nology, may be found as text within information segments and maps.
For example, we use the following URL to represent the concept of an
“Image:”

http://afflib.org/2009/aff4#Image

6. Refining the AFF4 Information Model

The original AFF4 information model was inspired by the Resource
Description Framework (RDF) [17], the data model that underlies the
Rich Site Summary (RSS) feeds used by blogging software. The RDF
data model facilitates object-oriented modeling with the key difference
that objects in the RDF universe have unique names and properties, and
the attributes and relationships of individual objects may be published
in different documents.

While the original information model is intuitive and simple to imple-
ment, it suffers from several shortcomings:

The method of mapping the information model to container seg-
ments (i.e., serialization scheme) results in inefficient storage when
large numbers of information instances are described.

The information model is not expressive enough to describe proven-
ance-related information.

The AFF4 serialization scheme is verbose, which makes it difficult
to read.

The lack of value types leads to ambiguity in interpreting values.
Also, there is no syntactic means for distinguishing between values
and URI references.

For these reasons and for standardization and interoperability, we
abandon the ad hoc RDF variant and instead adopt RDF in its entirety
as the information model. Under the new scheme, information is stored
in information segments whose suffixes represent the RDF encodings.

234 ADVANCES IN DIGITAL FORENSICS VI

For example, the name information.turtle in the AFF4 container,
refers to an RDF serialization using the Turtle encoding scheme [2]. For
conciseness and readability, we use Turtle as the default RDF serializa-
tion syntax. The URN of the serialization component is significant, with
the path component being interpreted as the graph name in which the
encoded RDF exists.

7. Provenance of Information

This section describes a general approach for expressing the prove-
nance of statements in the AFF4 universe. Provenance statements are
required to express information such as which tool generated which im-
age or analysis products, and to sign statements.

The original AFF4 provides for provenance-related statements in the
particular case of signing. However, the identity object, which imple-
ments signatures, presents some difficulties in the case of provenance
statements:

The semantics of the statement file in relation to its enclosing
instance is inconsistent with the information model.

Statements within a statement file are also made elsewhere within
the container.

Verifying the signatures of statements requires that the statements
be in the exact order and syntax in which they exist in the signa-
ture file.

A general solution to provenance requires a method for referring to a
set of RDF statements as a whole. Such statements about statements are
called “reified statements” in the knowledge representation literature. A
simple example is: Dick said “The serial number of the hard drive is
ZX322o91 and its hash value is 13343af423d.”

The subject Dick is making a statement covering two separate state-
ments: “The serial number of the hard drive is zx322o91” and “The
hash value of the hard drive is 13343af423d.”

A widely acknowledged problem of RDF is its limited ability to express
reified statements [7]. Named graphs constitute a solution to the problem
of reification in RDF, with the TriG language emerging as a syntax for
encoding reified information [6]. A named graph is simply a collection of
RDF statements that can be identified by an unambiguous name. Using
the TriG syntax, the reified statement above can be expressed as:

1 @prefix G1: <urn:aff4:19857a87-a190b2f87>

2 @prefix Hdd1: <urn:aff4:652e4027-27fab2941>

Schatz & Cohen 235

3 @prefix aff4: <http://afflib.org/2009/aff4#>

4 @prefix Dick: <urn:aff4:652e4027-27fab2941>

5

6 G1: {

7 Hdd1: aff4:serialNumber "zx322o91"

8 Hdd1: aff4:hash "13343af423d"

9 }

10

11 Dick: aff4:said <G1:>

In the listing above, Lines 1-4 define namespace identifiers that are
substituted when they occur elsewhere in the document. For exam-
ple, in Line 7, aff4:serialNumber is interpreted to mean the URL
http://afflib.org/2009/aff4#serialNumber. This uniquely-identi-
fied vocabulary term is defined to have the meaning of a serial num-
ber. In Lines 6-9, G1: is the unique identifier for the named graph that
contains the two statements referred to in our example. Named graph
identifiers may be referred to in the subject and object parts of RDF
statements. Finally, in Line 11, there is a single statement that refers to
the named graph G1:.

Following this approach, we refine the semantics of the AFF4 infor-
mation model to imply that for any information segment, the statements
implied by interpreting the content of the segment are defined to exist
within a named graph based on the following conventions:

The graph name is the URN of the volume when the information
segment is in the root of the volume.

The graph name is the URN interpretation of the path when the
information segment exists in a sub-path of the volume.

Consider, for example, an AFF4 ZIP container containing a ZIP
file comment urn:aff4:6cd61-52398e-4942ea and the two information
segments in the listing:

1 /information.turtle

2 /urn%3Aaff4%3A19d6cd61-598e-49ff/information.turtle

The RDF statements contained in the first segment would be inter-
preted to exist in a named graph with the URN of the AFF4 volume
urn:aff4:6cd61-52398e-4942ea. The RDF triples contained in the
second segment would be interpreted as being contained in the graph
named urn:aff4:19d6cd61-598e-49ff after decoding the filesystem-
friendly encoding.

Provenance-related statements employ the named graph semantics in
their statements. Consider, for example, the recording of the provenance

236 ADVANCES IN DIGITAL FORENSICS VI

of the information describing an image generated by the command line
tool aff4imager. An abridged set of statements is presented in the
listing:

1 @prefix G1: <urn:aff4:19857a87-a190b2f87>

2 @prefix G2: <urn:aff4:0a1fc78a-927bfacef>

3 @prefix T1: <urn:aff4:652e4027-ffff01199>

4 @prefix I1: <urn:aff4:9003027a-11199ffff>

5 @prefix aff4: <http://afflib.org/2009/aff4/#>

6

7 G2: {

8 T1: aff4:name "aff4imager"

9 T1: aff4:vendor <http://aff.org/>

10 T1: aff4:asserts G1:>

11 T1: aff4:type aff4:AcquisitionTool.

12 T1: aff4:version "0.2"

13 I1: aff4:type aff4:Image

14 I1: aff4:hash "3897450fa18094b13"^^aff4:md5

15 }

In this example, we define an instance T1: that represents the tool and
an instance I1: that represents the image. The aff4:asserts predicate
is used to specify that the tool “asserted” the information contained in
the graph G1:.

By identifying instances of type aff4:Tool and then identifying the
graph in which the statements are located, downstream consumers of
AFF4 containers would be able to identify the tool that generated spe-
cific information and data. While it is not related to provenance, note
that the type ^^aff4:md5 in Line 14 indicates the data type of the text
preceding it within quotes. In this case, it indicates that the value of
the aff4:hash predicate is the hex-encoded MD5 message digest of the
image.

8. Authentication and Non-Repudiation

With a means for referring to sets of statements in place, the approach
to authentication and non-repudiation of evidence can be been refined.
We conceptualize the relationship of signing containers in a manner sim-
ilar to the approach proposed in [6]. An identity remains a person or
entity as in the earlier AFF4 implementation. A warrant graph is a set
of statements that record the intentions or beliefs of an identity about
another set of statements, whether it be asserting, denying or quoting.
The identity vouches for the truth of the warrant graph by signing the
graph with a public key.

The following listing contains a warrant graph that refers to the
aff4imager information presented in the listing above:

Schatz & Cohen 237

1 @base: <aff4://1b056380-a0911-f06721>

2 @prefix G2: <urn:aff4:0a1fc78a-927bfacef>

3 @prefix G3: <aff4://19857a87-a190b-2f87ab>

4 @prefix A1: <aff4://502ffb11-00f10-7fcbaf>

5

6 G3: {

7 G2: aff4:assertedBy G3:

8 G3: aff4:hash "TljN2NiNzExMmEwM2MxNG"

^^aff4:canonical-sha256

9 G3: aff4:authority A1:

10 A1: aff4:certificate A1:/cert.pem

11 G3: aff4:signature "XSAFfbgEL5C8vA1W/W-="

^^aff4:canonical-sha256-rsa

12 }

The following observations can be made with regard to the listing:

Line 7 refers to the graph G2: from the previous listing. This
statement indicates that the warrant graph asserts the truth of
G2:. Any number of named graphs may be asserted (or denied or
other) within a warrant graph.

The graph digest of graph G3: is stated in Line 8. For serialization
independence, a graph digest is a message digest with the canonical
form of a set of triples in a named graph rather than the serialized
syntax. This facilitates the verification of the authenticity of the
target graph. The graph canonicalization method is specified by
the type parameter aff4:canonical-sha256, and is a variant of
the graph canonicalization algorithm in [5] and the digest and sig-
nature methods defined in the XML signature standard [1]. The
type parameter additionally indicates that the graph digest uses
the SHA-256 digest on the canonical graph.

Line 9 states that the identity A1: authorizes the warrant graph.

Line 10 states that the public key certificate of A1: is found at the
URN A1:/cert.pem.

Line 11 states the signature of G3: (warrant graph). The type
^^aff4:canonical-sha256-rsa indicates the method by which
the signature was constructed, which was to take the warrant
graph, canonicalize as above, take the SHA-256 hash, sign it using
the RSA private key of the authority A1:, and then encode it using
Base64.

The verification of a signed AFF4 container involves identifying a
signed warrant graph, removing the aff4:signature statement from

238 ADVANCES IN DIGITAL FORENSICS VI

the graph, canonicalizing the resulting graph, and then re-verifying the
calculated SHA-256 RSA signature. Recalculating the graph digests of
graphs asserted by the warrant graph further authenticates the informa-
tion contained in the graphs.

The use of named graphs, graph digests and graph signatures fa-
cilitates the piecewise generation of authenticable and non-repudiable
information in the AFF4 universe.

9. AFF4 Data Model

AFF4 defines two abstractions for storing and representing bitstream
data: the Stream and the Map. Instances of each of these abstractions
are identified by an AFF4 URI.

The lowest layer of abstraction for data storage in the AFF4 data
model is the Stream, an abstraction of a contiguous, randomly-accessible
byte sequence. AFF4 defines a number of implementations for stor-
ing and accessing Streams ranging from an efficient randomly-accessible
compressed container to a flat raw file.

The Map abstraction similarly represents a contiguous, randomly-
accessible byte array; however, it is composed of byte arrays from multi-
ple stream sources. Defining virtual data objects as comprising portions
of existing concrete data sources enables references to data objects within
images (e.g., files) or data objects composed of multiple images (e.g., re-
constructed RAID volumes). Maps are used as the fundamental building
block for representing the data portions of files, partitions, unallocated
space and reconstructions of virtual RAID volumes from images. Back-
ward compatibility with EWF images is provided by creating a virtual
image that maps to each compressed EWF segment.

10. Refining the AFF4 Data Model

AFF4 applications have revealed two shortcomings of the data model:
(i) referring to subranges of data within a Stream is heavyweight, requir-
ing the definition of a Map; and (ii) the data model does not support
discontinuities that occur in evidence sources such as RAM and faulty
hard drives.

10.1 Referring to Byte Ranges

AFF4 requires a means to refer to arbitrary address ranges (slices)
within AFF4 data objects. This is useful for a number of applications,
including the annotation of content in TCP streams with the time of
transmission, documenting provenance-related features of the derivation

Schatz & Cohen 239

of an analytic product (e.g., file metadata), and describing the piecewise
hash value of a chunk of an image.

An AFF4 slice provides the means to refer to a subrange within a URI.
It is expressed by specifying the range within the fragment component
of the URI:

URI#[offset:length]

The URI is a regular AFF4 Stream URI. The offset is a number that
indicates the byte offset within the stream address range and the length
is the number of bytes from the offset. For example, the slice URI:

urn:aff4:195bdf58-1bc9-4ba4-9a9c-f1c312673fbf#[512,128]

represents the address range from offset 512 to 640 in the URI.

urn:aff4:195bdf58-1bc9-4ba4-9a9c-f1c312673fbf

Note that the slice URI corresponds to an address range. In cases
where the address range is backed by a stream of actual data, it also
serves as a surrogate for the data within the bounds of the range. In
the case where there is no corresponding data, it is a surrogate for the
absence of data (i.e., an address space hole).

An example of a slice URI is demonstrated using a prototype piecewise
hashing tool. Consider the following slice URI:

urn:aff4:f37648c1#[0,2048] aff4:hash "c35f2ba345"^^aff4:sha256

The interpretation of the slice URI (which has been truncated for pre-
sentation) is that the content of the byte range from 0 to 2048 of the
stream urn:aff4:f37648c1 has a SHA-256 value of c35f2ba345.

10.2 Representing Discontiguous Data

With the exception of the original AFF, existing forensic formats do
not provide support for accurately imaging discontiguous data sources.
Examples of discontiguous data sources include disks with read errors
in certain sectors and the physical and virtual memory of computers
with address space holes. For reasons of accuracy and completeness, it
is important that the evidence container identifies areas of the Stream
address space where there is no corresponding data, and potentially, the
reason for the absence of data.

AFF4 provides a general solution to this problem by refining the se-
mantics of the Map abstraction. Whereas the Map abstraction initially
required that the target be a URI that resolves to a Stream or a Map,
the refinement additionally allows the inclusion of a specially-defined
URI as a target. Such a URI may indicate the characteristics of a byte
range.

240 ADVANCES IN DIGITAL FORENSICS VI

Figure 2. Address space mapping of a discontiguous evidence source.

For example, consider the imaging of a hard disk with a bad sector.
We define a Map to represent the address space of the original evidence
device and record the data content in a regular Stream. The Map records
correspondences between the data content in the original device and the
Stream. Figure 2 illustrates the mapping between the address space
of an acquired hard drive with read errors and the underlying storage
Stream. Note that the backing store stores valid data back to back, while
the Map provides a view of the data with missing data represented as
holes.

The address discontinuity that corresponds to the read error is given
the target URI aff4:UnknownData. The following listing shows a Map
segment that describes a discontinuity in this manner:

1 0,0,urn:aff4:da0d1948-846f-491d-8183-34ae691e8293

2 4096,0,http://libaff.org/2009/aff4#UnknownData

3 8192,4096,urn:aff4:da0d1948-846f-491d-8183-34ae691e8293

11. Representing Data Patterns

Storage media commonly comes from the factory with the data con-
tent of every byte set to zero. With hard drives rapidly increasing in
capacity, it is often the case that large runs of data within images contain
zeros (“zero data runs”). The AFF4 format reduces the storage impact
of zero data runs by compressing the runs. However, due to the uniform
chunking method, there is the potential for considerable repetition in
sources containing large numbers of zero data runs.

Known data runs may be expressed in AFF4 using the slice URI and
Map facilities. For zero runs, we define a special purpose URI with se-
mantics similar to the UNIX /dev/zero to represent a Stream containing
an unbounded number of zeros. This URI is http://afflib.org/2009
/aff4#ZeroFilledByteRange.

Of relevance to referencing common data patterns is recent work
related to Teleporter [16], which explores the efficient transmission of
forensic images by sending certain data runs of the image with reference

Schatz & Cohen 241

to a standard corpus of files. Thus, in the case of a common file such
as ntfs.dll, Teleporter would transport a fingerprint of the file rather
than the entire data content. The receiver would then reconstitute the
data content of the file from local sources.

12. Conclusions

The refinements made to the information and data models of the
AFF4 evidence container format address the accurate representation of
discontiguous data, help describe the provenance of stored evidence, and
support authentication and non-repudiation of data and information by
cryptographic signing.

Prototype implementations of AFF4 have been written in C, Python
and Java. Our future research will integrate AFF4 with the PyFlag
network forensic environment, the Volatility volatile memory analysis
framework and the Sleuth Kit filesystem analysis tool. Also, it will
ensure that AFF4 provides backward compatibility with the raw, EWF
and AFF1 evidence container formats.

References

[1] M. Bartel, J. Boyer, B. Fox, B. LaMacchia and E. Simon, XML-
Signature Syntax and Processing, World Wide Web Consortium,
Cambridge, Massachusetts (www.w3.org/TR/xmldsig-core), 2009.

[2] D. Beckett and T. Berners-Lee, Turtle: Terse RDF Tripe Language,
World Wide Web Consortium, Cambridge, Massachusetts (www
.w3.org/TeamSubmission/turtle), 2008.

[3] T. Berners-Lee, R. Fielding and L. Masinter, Uniform Resource
Identifiers (URI): Generic Syntax, RFC 2396 (www.ietf.org/rfc/rfc
2396.txt), 1998.

[4] B. Carrier, Defining digital forensic examination and analysis tools
using abstraction layers, International Journal of Digital Evidence,
vol. 1(4), 2003.

[5] J. Carroll, Signing RDF graphs, Proceedings of the Second Interna-
tional Semantic Web Conference, pp. 369–384, 2003.

[6] J. Carroll, C. Bizer, P. Hayes and P. Stickler, Named graphs, prove-
nance and trust, Proceedings of the Fourteenth International Con-
ference on the World Wide Web, pp. 613–622, 2005.

[7] J. Carroll and P. Stickler, TriX: RDF Triples in XML, Technical
Report HPL-2003-268, HP Labs, Palo Alto, California (www.hpl.hp
.com/techreports/2004/HPL-2004-56.pdf), 2004.

242 ADVANCES IN DIGITAL FORENSICS VI

[8] M. Cohen, PyFlag: An advanced network forensic framework, Dig-
ital Investigation, vol. 5(S1), pp. S112–S120, 2008.

[9] M. Cohen, S. Garfinkel and B. Schatz, Extending the Advanced
Forensic Format to accommodate multiple data sources, logical ev-
idence, arbitrary information and forensic workflow, Digital Evi-
dence, vol. 6(S1), pp. S57–S68, 2009.

[10] S. Garfinkel, Providing cryptographic security and evidentiary
chain-of-custody with the Advanced Forensic Format, library and
tools, International Journal of Digital Crime and Forensics, vol.
1(1), pp. 1–28, 2009.

[11] S. Garfinkel D. Malan, K. Dubec, C. Stevens and C. Pham, Ad-
vanced Forensic Format: An open, extensible format for disk imag-
ing, in Advances in Digital Forensics II, M. Olivier and S. Shenoi
(Eds.), Springer, Boston, Massachusetts, pp. 13–27, 2006.

[12] R. Meijer, The Carve Path Zero Storage Library and Filesystem
(ocfa.sourceforge.net/libcarvpath), 2006.

[13] R. Moats, URN Syntax, RFC 2141 (www.ietf.org/rfc/rfc2141.txt),
1997.

[14] B. Schatz and A. Clark, An information architecture for digital
evidence integration, Proceedings of the AusCERT Asia Pacific In-
formation Technology Security Conference, pp. 15–29, 2006.

[15] P. Turner, Unification of digital evidence from disparate sources
(digital evidence bags), Digital Investigation, vol. 2(3), pp. 223–228,
2005.

[16] K. Watkins, M. McWhorte, J. Long and B. Hill, Teleporter: An an-
alytically and forensically sound duplicate transfer system, Digital
Investigation, vol. 6(S1), pp. S43–S47, 2009.

[17] World Wide Web Consortium, RDF/XML Syntax Specification
(Revised), Cambridge, Massachusetts (www.w3.org/TR/REC-rdf-
syntax), 2004.

Chapter 17

VIRTUAL EXPANSION
OF RAINBOW TABLES

Vrizlynn Thing

Abstract Password recovery tools are often used in digital forensic investigations
to obtain the passwords that are used by suspects to encrypt potential
evidentiary data. This paper presents a new method for deterministi-
cally generating and efficiently storing password recovery tables. The
method, which involves the virtual expansion of rainbow tables, achieves
improvements of 16.92% to 28.15% in the password recovery success rate
compared with the original rainbow table method. Experimental results
indicate that the improvements are achieved with the same computa-
tional complexity and storage requirements as the original rainbow table
method.

Keywords: Password recovery, cryptanalysis, rainbow table, time-memory trade-off

1. Introduction

Password protection of potential digital evidence by suspects makes
investigative work more complex and time consuming. Traditional pass-
word recovery techniques include password guessing, dictionary attacks
and brute force attacks.

A password guessing technique attempts easily-formed and common
passwords such as “qwerty” and “password.” These passwords could
be based on a user’s personal information or a fuzzy index of words on
the user’s storage media. A statistical analysis of 28,000 passwords re-
vealed that 16% of the users relied on their first names as passwords and
14% relied on “easy-to-remember” keyboard combinations [2]. There-
fore, the password guessing method can be effective in cases where users
are willing to compromise security for convenience.

A password dictionary attack attempts to match the hash values of
dictionary words with the stored password hash value. Well-known tools

K.-P. Chow, S. Shenoi (Eds.): Advances in Digital ForensicsVI, IFIPAICT 337, pp. 243–256, 2010.
c© IFIP International Federation for Information Processing 2010

244 ADVANCES IN DIGITAL FORENSICS VI

that employ this technique include Cain and Abel [7], John the Ripper
[12] and LCP [6].

In a brute force cryptanalytic attack, the hash value of each unique
combination of password characters is compared with the password hash
value until a match is found. Although such an attack is extremely time
consuming, the password is recovered eventually. Cain and Abel, John
the Ripper and LCP also support brute force attacks.

Traditional password recovery techniques are losing their effectiveness
as suspects use stronger passwords to protect their data. Hellman [5]
introduced a method that trades off the computational time and storage
space needed to make a hash-to-plaintext recovery. This method can
retrieve Windows login passwords as well as passwords used in other
applications (e.g., Adobe Acrobat) that employ the LM and NTLM hash
algorithms [15]. Also, the method supports encryption key recovery
for Microsoft Word and Excel documents. Passwords encrypted with
hashing algorithms such as MD5 [13], SHA-2 [9] and Ripemd-160 [4] can
also be recovered using this method. In general, Hellman’s method is
applicable to searching for solutions to knapsack and discrete logarithm
problems.

Oechslin [11] proposed a cryptanalytic time-memory trade-off method
that is based on Hellman’s password recovery method. This “rainbow
table” method generates password recovery tables with higher efficiency
because it employs multiple reduction functions to reduce the probability
of collisions in a single table.

Thing and Ying [14] enhanced the rainbow table method via initial
chain generation. In this technique, a plaintext value is chosen and
its hash value is computed by applying the password hash algorithm.
Based on this hash value, other hashes are computed; these form the
branches of the initial plaintext value. Multiple blocks are created from
the different initial plaintext values. The final values of the chains in the
blocks are stored with the single initial plaintext value in each block.

The rainbow table method is widely used for password recovery. Prod-
ucts that use pre-computed rainbow tables include RainbowCrack [16]
and Ophcrack [10]. RainbowCrack is an implementation of Oechslin’s
method that supports hash algorithms such as LM, NTLM, MD5 and
SHA-1 [8]. Ophcrack also implements the rainbow table method, but
it only supports the LM and NTLM hash algorithms. Rainbow tables
are also used in several popular commercial tools such as AccessData’s
Password Recovery Toolkit [1] to perform efficient and effective password
recovery.

This paper proposes the virtual expansion of rainbow tables (VERT)
method, a new time-memory trade-off technique that relies on a pre-

Thing 245

computed table structure. Comparisons with the original rainbow table
method [11] and the enhanced rainbow table method [14] demonstrate
higher password recovery success rates of 16.92% to 28.15% without
corresponding increases in computational complexity and storage space.

2. Related Work

In 1980, Hellman [5] conceived of a general time-memory trade-off
hash-to-plaintext recovery method. We begin by describing Hellman’s
algorithm in the context of password recovery.

Let X be the plaintext password and Y be its corresponding stored
hash value. Given Y , it is necessary to find X that satisfies the equation
h(X) = Y where h is the known hash function. However, finding X =
h−1(Y) is not feasible because the hash values are computed using one-
way functions for which the reversal function h−1 is unknown.

To solve this problem, Hellman suggested applying alternate hashing
and reduction operations to plaintext values in order to generate a pre-
computed table. For example, given a 7-character password (using the
English alphabet), the MD-5 hash algorithm is used to compute the
corresponding 128-bit hash value. Using a reduction function such as
H mod 267, where H is the hash value converted to decimal digits, the
resulting values are distributed in a best-effort uniform manner.

For an initial plaintext password of abcdefg, the binary hash output
could be:

00000000,00000000,00000000,00000000,00000000,00000000,

00000000,00000000,10000000,00000000,00000000,00000000,

00000000,00000000,00000000,00000001.

Therefore, H = 9223372036854775809. The reduction function converts
this value to 3665127553, which corresponds to the plaintext represen-
tation of lwmkgij. This is computed as:

11(266) + 22(265) + 12(264) + 10(253) + 6(262) + 8(261) + 9(260).

In table generation, the hashing and reduction operations are repeat-
edly performed on different initial plaintext values to produce different
rows or chains. The pre-defined multiple rounds of hashing and reduc-
tion operations in each chain increase the length of the chains and the
table contents; this contributes to higher computational overhead during
password recovery. The reason is that the initial and final plaintext val-
ues (i.e., “heads” and “tails”) of the chains are the only elements stored
in the table. The recovery of passwords “residing” in the intermediate
columns requires computations to regenerate the plaintext-hash pairs.

246 ADVANCES IN DIGITAL FORENSICS VI

The password recovery success rate depends on the size of the pre-
computed table. A larger pre-computed table contains more plaintext-
hash pairs, which increases the password recovery success rate. However,
the generation of the intermediate chain columns may result in collisions
of elements in the table. Collisions cause the chains to merge and re-
duce the number of (distinct) plaintext-hash pairs. This decreases the
password recovery success rate.

To increase the success rate, Hellman proposed using multiple tables
where each table has a different reduction function. If P (t) is the success
rate using t tables, then P (t) = 1 − (1 − P (1))t, which is an increasing
function of t. Hence, introducing more tables increases the password
recovery success rate but increases the computational complexity and
storage requirements.

A plaintext password is recovered from its hash value by performing
a reduction operation on the hash value. Next, a search is conducted
for a match of the computed plaintext value with a final value in the
table. If a match is not found, the hashing and reduction operations are
performed on the computed plaintext value to obtain a new plaintext
value for another round of search. The maximum number of rounds of
hashing, reduction and searching operations depend on the pre-defined
chain length.

Rivest [3] suggested using distinguished points as end points when
generating the chains. Distinguished points are values that satisfy a
given criterion (e.g., the first q bits are 0). In this method, chains are
not generated with a fixed length; instead, they terminate upon reaching
a pre-defined distinguished point.

This method decreases the number of memory lookups compared with
Hellman’s method and is capable of loop detection. If a distinguished
point is not reached after a large number of operations, it is assumed
that the chain contains a loop and is discarded. One limitation is that
the chains will merge if there are collisions within the same table. The
variable lengths of the chains also increase the number of false alarms.
Additional computations are needed to rectify these errors.

Oechslin [11] proposed a new table structure that reduces the proba-
bility of chains merging. The method uses a different reduction function
to generate the elements in each chain column. Therefore, chains merge
only when a collision occurs in the same column. For m chains of length
n, the total number of possible chain merges (i.e., when two similar
elements appear in the same column) is:

nm(m− 1)

2
.

Thing 247

The total number of possible pairs not in the same chain column is:

n2m(m− 1)

2
.

Therefore, given a collision in the table, the probability that there is a
chain merge is:

nm(m−1)
2

n2m(m−1)
2

=
1

n
.

Oechslin showed that the measured coverage in a single “rainbow”
is 78.8% compared with 75.8% in a classical rainbow table constructed
using distinguished points. In addition, the search effort is reduced,
which contributes to an improvement in performance.

Thing and Ying [14] proposed an enhancement to the rainbow table
method. The enhancement is achieved through initial chain generation
by systematically manipulating the initial hash values based on an ad-
justable parameter k. A plaintext value is chosen and its hash value is
computed using the password hash algorithm. The resulting hash value
H is used to compute:

(H + 1) mod 2j , (H + 2) mod 2j , . . . , (H + k) mod 2j ,

where j is the number of bits in the hash output. These hash values
form the branches of the initial plaintext value. Alternate hashing and
reduction operations are then applied to these branches. The resulting
extended chains form a block. The final values of the chains in each block
are stored with the single initial plaintext value. The same operations
are performed on all the other initial plaintext values. These sets of
initial and final values form the new pre-computed table.

Instead of storing all the initial and final plaintext values as pairs as
in the rainbow table, an initial plaintext value is stored with multiple
output plaintext values. This results in significant storage space savings
compared with the rainbow table method. In particular, for the same
storage space as the rainbow table method, the enhanced method yields
13.28% to 19.14% improvement in the total number of distinct plaintext-
hash pairs generated. However, some passwords “residing” in the first
column will not be recovered because they are not stored in the table.
This limits the search to n− 1 chain columns instead of n columns.

3. Rainbow Table Method

We use the following notation in our discussion of the rainbow table
method and its extensions: xi denotes the initial value of a chain; yi

248 ADVANCES IN DIGITAL FORENSICS VI

Figure 1. Rainbow table.

denotes the hash value of a password; zi denotes the reduced value of
a hash; ci denotes the final value of a chain; h denotes a hash func-
tion; ri denotes a reduction function; n denotes the number of reduction
functions or chain length; and m denotes the number of chains.

In order to generate a rainbow table, it is necessary to specify re-
duction functions r1, r2, . . . , rn that convert hash values yi to plaintext
values zi. A large set of plaintext values x1, x2, . . . , xm are then chosen
as the initial values of the table. As shown in Figure 1, these plaintext
values are alternately hashed using the password hashing algorithm and
reduced using the reduction functions.

Figure 2. Stored values in a rainbow table.

A rainbow table is created by only storing the final values ci along
with their corresponding initial values xi (Figure 2). A password is
recovered by alternately applying reduction and hashing operations to
the corresponding hash values until a value is obtained that matches one
of the final values in the rainbow table.

Consider the situation where it is necessary to find the password corre-
sponding to the password hash v. One round of the reduction operation
is applied to the password hash v to obtain the plaintext value w. Next,

Thing 249

Figure 3. Password recovery example.

a search is performed and a match of w is found at the final value of the
212th chain in the rainbow table in Figure 3 (i.e., w = c212). The chain
is then computed from its initial value x212 until the password hash v is
reached, which is equal to y212,3000. The password is the plaintext value
z212,3000, which is before the password hash y212,3000.

If no matching value is found, it is assumed that the particular pass-
word does not exist in the rainbow table and cannot be recovered. The
password recovery success rate can be improved by increasing the num-
ber of reduction functions and chains, but this increases the computa-
tional complexity and storage requirements.

4. Virtual Expansion of Rainbow Tables Method

Our proposed virtual expansion of rainbow tables (VERT) method
virtually expands the rainbow table contents while maintaining the stor-
age space requirements of the original rainbow table method. In VERT,
the character set is first remapped to numerical equivalent values using
the VERT mapping table.

An example VERT mapping for the alphanumeric character set is
shown in Table 1. For a 7-character password, the initial plaintext value
in the first chain of the VERT table is selected to be 0000000 and the
initial plaintext value in the last chain is selected to be zzzzzzz. The
initial plaintext values of the remaining chains are chosen from the rest
of the password space based on evenly-distributed gaps. The gap size
depends on the storage contraint. For example, if the storage space is
only sufficient to store four plaintext values, the gap size is:

(367 − 1)/(4 − 1) = 26121388032

after rounding up to the next integer. The four initial plaintext values
are 0000000, c000001 (computed from 26121388032 = 12(366)+1(360)),
n000000 (computed from 2(26121388032) = 52242776064 = 24(366))
and zzzzzzz. These initial plaintext values are not stored in the VERT

250 ADVANCES IN DIGITAL FORENSICS VI

Table 1. VERT mapping table.

Character Numerical
Set Equivalent

0 0

1 1

2 2

... ...

a 10

b 11

... ...

z 35

table. Instead, only their final plaintext values are stored. Therefore,
VERT provides a 100% increase in the number of chains compared with
the original rainbow table [11]. Also, it supports password recovery to
the first column unlike the enhanced rainbow table method [14].

The VERT method also incorporates an efficient storage mechanism
that can support a larger table while using the same amount of storage
as the original rainbow table. As seen in Table 1, each character in the
VERT mapping table can be represented by six bits. Therefore, the
final plaintext values of the chains are converted to their numerical rep-
resentations before storage. Because eight bits of storage are required
for each plaintext character in a rainbow table, the VERT method pro-
vides an additional storage conservation of up to 25% and an additional
33.33% increase in the number of chains without increasing the storage
requirements.

5. Theoretical Analysis

This section presents a theoretical analysis and comparison of the
performance of the VERT, original rainbow table and enhanced rainbow
table methods.

5.1 Success Rate without Collisions

The password recovery success rate depends on the number of distinct
plaintext-hash pairs generated in the chains, which, in turn, depends on
the total number of plaintext-hash pairs generated. First, we perform
the analysis ignoring element collisions. Next, we perform an analysis
based on the number of distinct pairs and evaluate the effect on the
password recovery success rate.

Thing 251

If there are m rainbow chains, each with n reduction functions and
requiring storage for two plaintext values (initial value and final value
of a chain), then a rainbow table has to store a total of 2m plaintext
values. Thus, the number of plaintext-hash pairs is mn.

In the case of the enhanced rainbow table method, optimal perfor-
mance is achieved when a single block is formed. Therefore, using
the same storage space as in the original rainbow table, a total of
n(2m − 1) plaintext-hash pairs can be generated. This is computed
from 2m(n− 1)− (n− 2) ≈ 2mn−n ≈ n(2m− 1) assuming that n� 2.

The VERT method does not store the input plaintext values. There-
fore, a VERT table can generate a total of 2(1.3333m) = 2.67m chains
using the same storage space as the original rainbow table. Therefore,
a VERT table would have 2.67mn plaintext-hash pairs. Compared with
the original and enhanced rainbow table methods, this translates to
167% and 33% increases in the password recovery success rate, respec-
tively. This success rate is based on the additional plaintext-hash pairs
that are generated.

5.2 Success Rate with Distinct Pairs

The password recover success rate computed above ignores collisions.
Because the collision probability increases with the size of a rainbow
table, ignoring collisions is reasonable only for very small rainbow tables.
We compute a more realistic password recovery success rate based on
collisions with the distinct plaintext-hash pairs that are generated.

Our analysis assumes that storage space exists for m plaintext values.
The password recovery success rate is computed based only on the dis-
tinct plaintext-hash pairs. The same number of reduction functions n is
used for the original rainbow table, enhanced rainbow table and VERT
methods.

Let N be the password space that comprises all possible plaintext
passwords and let mi be the number of distinct plaintext-hash pairs in
the ith column of the original rainbow table. Then, mi and mi+1 satisfy
the recurrence relation:

mi+1 = N(1− (1− 1

N
)mi)

where m1 = m. Thus, the probability of successful password recovery
for the original rainbow table method is:

P (M) = 1− (1− m1

N
)(1− m2

N
) . . . (1− mn

N
).

252 ADVANCES IN DIGITAL FORENSICS VI

Table 2. Success rate based on distinct plaintext-hash pairs.

Storage Original Enhanced VERT
Size (m) Rainbow Table Rainbow Table Table

10 × 106 45.07% 65.33% 73.22%
15 × 106 56.94% 76.15% 82.62%
20 × 106 65.33% 82.60% 87.82%
25 × 106 71.50% 86.74% 91.00%
30 × 106 76.15% 89.57% 93.07%

In the case of the enhanced rainbow table method, let si be the number
of distinct plaintext-hash pairs in the ith column. Then, si and si+1

satisfy the following recurrence relation:

si+1 = N(1− (1 − 1

N
)si) ∀i > 1; s1 = 1; s2 = 2m− 1.

Thus, the probability of successful password recovery for the original
rainbow table method is:

P (S) = 1− (1− s1
N

)(1 − s2
N

) . . . (1− sn
N

).

In the case of the VERT method, let vi be the number of distinct
plaintext-hash pairs in the ith column of the VERT table. Then, vi and
vi+1 satisfy the recurrence relation:

vi+1 = N(1− (1− 1

N
)vi)

where v1 = 2.67m. Thus, the probability of successful password recovery
for the VERT method is:

P (V) = 1− (1− v1
N

)(1− v2
N

) . . . (1− vn
N

).

Note that vi > mi for all i ≥ 1. Thus, P (V) > P (M). In addition,
P (V) > P (S) since vi > si for all i ≥ 1.

The password recovery success rates for the original and enhanced
rainbow tables and for the VERT tables for different numbers of stored
plaintext values (i.e., storage space) are computed based on the equations
presented above. The results are presented in Table 2. The common
parameters used in the methods are: (i) number of reduction functions
(n): 5,700; (ii) character set: alphanumeric; (iii) plaintext/password
length: 1-7 characters; and (iv) storage space (m): same for all methods.

Thing 253

Table 2 shows that the VERT method yields password recovery suc-
cess rate improvements ranging from 16.92% for storage size m = 30
× 106 to 28.15% for storage size m = 10 × 106. When compared with
the enhanced rainbow table method, the VERT method provides pass-
word recovery success rate improvements ranging from 3.50% for m =
30 × 106 to 7.89% for m = 10 × 106. The results show that even
when collisions are considered, the VERT method offers substantial im-
provements in performance. Note also that the storage size constraint
impacts the original rainbow table method much more significantly than
the enhanced rainbow table and VERT methods.

6. Experimental Results

This section compares the results obtained with the VERT method
and those obtained using RainbowCrack (source code version 1.2) [16].

6.1 Distinct Passwords and Success Rate

To evaluate the password recovery success rate when considering dis-
tinct pairs, we made a slight modification to RainbowCrack to log all
the plaintext passwords (i.e., the stored initial and final columns as well
as the intermediate chain columns). This logging was also performed for
the VERT method. We also implemented scripts to detect collisions and
count the distinct passwords in the logs.

The experiments were conducted using the following common param-
eters: (i) number of reduction functions (n): 3,000; (ii) character set:
lower case alpha; (iii) plaintext/password length: 1-7 characters; and
(iv) storage space (m): 106. For fixed m = 106, this translates to 106

chains for the RainbowCrack method and 2.67 × 106 chains for the
VERT method.

The theoretical password recovery success rates for RainbowCrack and
VERT when considering distinct pairs are 28.13% and 54.31%, respec-
tively. In the experiments, the total plaintext-hash pairs generated were
3 × 109 by RainbowCrack and 8.01 × 109 by VERT. The total plaintext
space was 8,353,082,582. A total of 2,349,122,955 distinct passwords
were identified among the 3 × 109 plaintext passwords generated by
RainbowCrack, corresponding to an actual password recovery success
rate of 28.12%. On the other hand, VERT generated 4,536,258,880 dis-
tinct passwords, yielding an actual password recovery success rate of
54.31%. Thus, the experimental results match the theoretical results.

Note that the experiments conducted are preliminary in nature due
to the scale of collision detection and distinct password count computa-

254 ADVANCES IN DIGITAL FORENSICS VI

tions. Additional experiments will be performed to study the impact of
collisions for larger numbers of chains and reduction functions.

6.2 Computational Complexity

A password is computed by alternatively applying the reduction and
hashing operations to the password hash value. However, VERT requires
an additional final step of processing (numerical representation conver-
sion) on the last computed plaintext value before it is stored in the
table. This conversion is a simple operation; thus, it incurs insignificant
computational overhead compared with hashing and reduction.

We conducted experiments on an Intel P4 3.06 GHz system to com-
pute the time taken to perform: (i) random value generation for the
initial column for RainbowCrack; (ii) deterministic value generation for
the initial column for VERT, (iii) reduction and MD5 hashing operations
for RainbowCrack and VERT (used for intermediate column processing);
and (iv) single conversion of the final plaintext password to its numerical
representation. A total of 109 rounds were performed for each operation
and the average time for each round was computed. The average com-
putation times were: (i) 1,656 ns; (ii) 7 ns; (iii) 644 ns; and (iv) 211 ns.
Note that the final conversion operation only incurs an additional 211
ns for each chain. The initial value generation speed is greatly enhanced
in VERT. The total time taken to generate the initial values for Rain-
bowCrack is 1,656m ns while the time taken for VERT is (2.67 × 7)m
= 18.69m ns. However, the main computational overhead is due to the
reduction and hashing operations, which require a total of 644mn ns.

7. Conclusions

The novelty of the VERT method lies in the virtual expansion of
the pre-computed tables, which increases the password recovery success
rate while limiting the storage requirements. Compared with the orig-
inal rainbow table method, the VERT method increases the password
recovery success rate by 16.92% to 28.15% for the distinct pairs compar-
ison while considering collision effects. The VERT method also shows
an improvement in the password recovery success rate compared with
the enhanced rainbow table method. In particular, the VERT method
yields up to 33% improvement for the total plaintext-hash pairs compar-
ison and 3.5% to 7.89% improvement for the distinct pairs comparison.
Note also that it is possible to trade-off storage conservation in favor of
high password recovery success rates for longer passwords (i.e., larger
password spaces).

Thing 255

Our future work related to the VERT method will analyze collisions
and password recovery success rates in larger tables. Additionally, we
plan to investigate improvements in the password recovery time achieved
by reducing the number of columns while maintaining the same storage
requirements and password recovery success rates as the original and
enhanced rainbow table methods.

References

[1] AccessData, Decryption tools, Lindon, Utah (www.accessdata.com
/decryptionTool.html).

[2] Agence France-Presse, Favorite passwords: “1234” and “password,”
Paris, France, February 11, 2009.

[3] D. Denning, Cryptography and Data Security, Addison-Wesley,
Reading, Massachusetts, 1982.

[4] H. Dobbertin, A. Bosselaers and B. Preneel, Ripemd-160: A
strengthened version of RIPEMD, Proceedings of the Third Inter-
national Workshop on Fast Software Encryption, pp. 71–82, 1996.

[5] M. Hellman, A cryptanalytic time-memory trade-off, IEEE Trans-
actions on Information Theory, vol. 26(4), pp. 401–406, 1980.

[6] LCPSoft, LCP, Moscow, Russia (www.lcpsoft.com).

[7] M. Montoro, Cain and Abel (www.oxid.it/cain.html).

[8] National Institute of Standards and Technology, Secure Hash Stan-
dard, Federal Information Processing Standards Publication 180-1,
Gaithersburg, Maryland, 1995.

[9] National Institute of Standards and Technology, Secure Hash Stan-
dard, Federal Information Processing Standards Publication 180-2,
Gaithersburg, Maryland, 2002.

[10] Objectif Securite, Ophcrack, Gland, Switzerland (ophcrack.source
forge.net).

[11] P. Oechslin, Making a faster cryptanalytic time-memory trade-off,
Proceedings of the Twenty-Third International Cryptology Confer-
ence, pp. 617–630, 2003.

[12] Openwall Project, John the Ripper password cracker (www.open
wall.com/john).

[13] R. Rivest, The MD5 Message-Digest Algorithm, IETF RFC 1321,
1992.

[14] V. Thing and H. Ying, A novel time-memory trade-off method for
password recovery, Digital Investigation, vol. 6(S1), pp. S114–S120,
2009.

256 ADVANCES IN DIGITAL FORENSICS VI

[15] D. Todorov, Mechanics of User Identification and Authentication:
Fundamentals of Identity Management, Auerbach Publications,
Boca Raton, Florida, 2007.

[16] S. Zhu, RainbowCrack: The time-memory trade-off hash cracker
(project-rainbowcrack.com).

Chapter 18

DIGITAL WATERMARKING OF
VIRTUAL MACHINE IMAGES

Kumiko Tadano, Masahiro Kawato, Ryo Furukawa, Fumio Machida and
Yoshiharu Maeno

Abstract The widespread use of server and desktop virtualization technologies
increases the likelihood of unauthorized and uncontrolled distribution
of virtual machine (VM) images that contain proprietary software. This
paper attempts to address this issue using a platform-independent dig-
ital watermarking scheme applicable to a variety of VM images. The
scheme embeds a watermark in the form of files in a VM image; the
watermarked VM image is identified based on the embedded files. To
reduce the possibility of discovery by an attacker, the names of the em-
bedded files are very similar to the names of pre-existing files in the
VM image. Experiments indicate that the approach is fast and accu-
rate, with average turnaround times of 24.001 seconds and 7.549 seconds
for watermark generation and detection, respectively.

Keywords: Digital watermarking, virtual machine images

1. Introduction

In modern enterprise computing there is a growing trend toward con-
solidating virtual machines (VMs) in the server and client sides to reduce
costs and enhance portability and security. Such environments require
the means to export VM images to test software and to backup VMs.
For example, Amazon’s Elastic Compute Cloud [1] and Simple Storage
Service [2] provide the command ec2-download-bundle to download
VM images from a data center to local computers [3]. Unfortunately,
this technology also facilitates the unauthorized dissemination of VM
images containing proprietary software.

One approach for addressing this issue is to use host-based intru-
sion detection systems such as TripWire, AIDE and XenFIT [8]. These

K.-P. Chow, S. Shenoi (Eds.): Advances in Digital ForensicsVI, IFIPAICT 337, pp. 257–268, 2010.
c© IFIP International Federation for Information Processing 2010

258 ADVANCES IN DIGITAL FORENSICS VI

systems monitor unauthorized file system changes to detect malicious
activity involving VMs. However, it is difficult to identify VM images
after they have been distributed outside of an enterprise network (e.g.,
using peer-to-peer file sharing software).

Another approach is to implement strict access control and copy con-
trol of VM images. However, these controls often hinder the legitimate
use of VMs.

Therefore, it is necessary to address two issues: (i) identify VM im-
ages even after they have been illegally distributed; and (ii) facilitate
legitimate use of VM images. Digital watermarking of VM images can
address both these issues. However, as we discuss below, watermark-
ing techniques used for audio and video files are not applicable to VM
images.

Digital watermarking technologies typically modify redundant or un-
used digital content (e.g., inaudible frequency ranges for audio files) to
embed watermarks. In the case of audio and video files, modifying the
original information for digital watermarking produces imperceptible ef-
fects when playing the files [7]. In contrast, modifying a VM image
can cause boot failures when the watermarked image is executed. Ad-
ditionally, data on the watermarked VM is frequently changed because
of software updates, logging, etc. Unlike an audio or video file whose
content is unchanged, a VM image is essentially variable; consequently,
in order to identify the VM image, the image has to be watermarked
after every change.

Data hiding techniques [5] can be employed for watermarking VM
images. Data can be hidden in various locations:

Areas marked as not in use by the partition table.

Extended file attributes such as alternate data streams.

Unused portions of the last data units of files (slack space).

Reserved i-nodes that are not used by the operating system.

Portions that are excluded during consistency checking of a jour-
naling file system.

Files hidden via steganography using special file system drivers [6].

A major deficiency of existing data hiding techniques is the lack
of platform-independence: the techniques work on specific file systems
(e.g., NTFS), operating systems (e.g., Red Hat Linux) and OS kernel
versions (e.g., Linux 2.2.x). It is difficult, if not impossible, to apply

Tadano, et al. 259

these techniques to VMs in heterogeneous environments where multiple
file systems, operating systems and OS kernel versions are used.

To address this issue, we propose a digital watermarking scheme for
VM images that is independent of file systems, file formats, operating
systems, OS kernel versions and hardware. The scheme embeds a wa-
termark derived from the names of the files present in a VM.

2. Basic Concepts

Our digital watermarking scheme for VM images uses file names as a
watermark, not the contents of the files. A unique identifier is created
for each VM image and a watermark corresponding to the identifier is
embedded in the form of files in the file system of the VM image. These
embedded files are called “watermark fragment files.”

If the names of the watermark fragment files are randomly created,
they would be readily distinguishable from the names of the pre-existing
files on the VM, enabling an attacker to identify and subsequently re-
move the watermark fragment files. Thus, the watermarking scheme
makes the fragment files difficult to detect by creating fragment files
with names that are similar to pre-existing files in the VM and embed-
ding the files in random directories in the VM. A secure database is
used to store the identifier of each VM image and the corresponding
watermark fragment files.

3. Design and Implementation

This section describes the design and implementation of the digital
watermarking scheme.

3.1 System Components

The system has three components: (i) a watermark generator; (ii) a
watermark detector; and (iii) a watermark information database. Figure
1 illustrates the watermark generation and detection processes.

Watermark Generator: The watermark generator employs the
names of the watermark fragment files as the watermark for a
VM image. It creates a watermarked VM image by embedding the
watermark fragment files in the VM image and stores the generated
file names in the watermark information database. The VM image
to be watermarked is created by copying the template VM image
file. Since the template VM images are used as the original data
for watermarking, these images should be securely managed. The
reason is that an attacker who obtains the VM image template

260 ADVANCES IN DIGITAL FORENSICS VI

Identifier

Certainty

Watermark Generation Watermark Detection

Watermark Information
Database

Watermark
Generator

Watermark
Detector

Watermarked
VM Image

VM Image
Template

Watermark Information
Database

Figure 1. Watermark generation and detection.

would be able to compute the watermark fragment files as the
difference between the template VM image and the watermarked
VM image files. Details of the watermark generation algorithm are
presented in Section 3.2.

Watermarked VM Image

ID VM Name Owner Watermark Fragment Files
5ac8183d-e2cb-4ad2-
a185-5c3beb0c17b8

foo-
desktop

foo /etc/yum/aaa.conf,
/var/log/dummy.log

42be8a40-5e6d-4677-
84fb-e387f5638264

bar-
desktop

bar /usr/local/bin/cmd,
/etc/dummy.conf

… … … …

Watermark Information Database Table

Watermark Fragment Files

/etc/yum/aaa.conf
/var/log/dummy.log

ID: 5ac8183d-e2cb-4ad2-
a185-5c3beb0c17b8

Figure 2. Sample records in the watermark information database.

Watermark Information Database: The watermark informa-
tion database (WI-DB) stores the identifier of each VM image
and its attributes. The identifier for a VM image is a universally
unique identifier (UUID). The attributes include the names of the
watermark fragment files, VM owner, etc. (Figure 2).

Only authorized users should be permitted to read and write WI-
DB records. An attacker with read/write access could alter WI-
DB records or identify and delete the watermark fragment files
embedded in a VM image.

Watermark Detector: The watermark detector identifies a VM
using the watermark fragment files embedded in the target VM im-
age based on WI-DB records. When an unauthorized leak of a VM
image is suspected, the administrator may perform the detection
process to identify the VM image and its owner.

Tadano, et al. 261

Target VM Image
/var/
/etc/
/usr/
/home/
/bin/
…

Directory Tree on VM

1. Obtain the names of the Watermark Fragment Files

2. Search the files in the VM Image

ID VM Name Owner Watermark Fragment Files
5ac8183d-e2cb-4ad2-
a185-5c3beb0c17b8

foo-desktop foo /etc/yum/aaa.conf,
/var/log/dummy.log

42be8a40-5e6d-4677-
84fb-e387f5638264

bar-desktop bar /usr/local/bin/cmd,
/etc/dummy.conf

… … … …

Watermark Information Database Table

ID: unknown

Figure 3. Watermark detection.

Figure 3 illustrates the detection process. If the identifier of the
target VM can be guessed, the watermark generator looks up the
corresponding WI-DB record. Otherwise, the watermark detector
compares the watermark fragment file names in WI-DB records
with those in the target VM image. The watermark generator
then outputs a certainty value of the identifier of the target VM
image. The certainty value is computed as the percentage of the
names of the watermark fragment files in the WI-DB record that
match file names in the VM image. Note that some watermark
fragment files may have been deleted or renamed on purpose or by
accident.

3.2 Watermark Generation Algorithm

This section briefly describes the process of generating the watermark
fragment files for the target VM image. The algorithm has five steps.

Step 1: Input the parameters required for watermark generation.

Step 2: Number the directories in the target VM image in dictio-
nary order.

Step 3: Select the directories to embed watermark fragment files.

Step 4: Generate the names of the watermark fragment files to
be created.

Step 5: Generate the contents of the watermark fragment files for
the directories selected in Step 3.

262 ADVANCES IN DIGITAL FORENSICS VI

Table 1. Directory code list.

Number Directory Name

1 /

2 /etc/

3 /etc/init.d/

4 /etc/ldap/

5 /etc/skel/

6 /etc/ssh/

7 /etc/sysconfig/

... ...

Step 1 (Input Parameters for Watermark Generation): The
following input parameters are required for watermark generation:

Number of Watermark Fragment Files: The larger the num-
ber of watermark fragment files, the more tamper-resistant is the
watermark. However, this increases the time required to generate
watermark fragment files.

Excluded Directories: Some directories (e.g., temporary direc-
tories) should be excluded because files in these directories change
frequently.

Excluded Suffixes: These are suffixes that should be excluded
from the names of the watermark fragment files.

Bit Length: The bit length is a parameter used by the Blum-
Blum-Shub (BBS) algorithm [4] to generate cryptographically-sec-
ure pseudo-random numbers. This parameter affects the computa-
tional time and security, and is set to 1024 bits in our experiments.

Step 2 (Number the Directories in the Target VM Image):
The watermark generator searches all the directories in the target VM
image recursively and generates a “directory code list” (Table 1). The
excluded directories identified in Step 1 are not numbered. The directory
code of a template VM image can be reused when new watermarked VM
images are created from the same template VM image because they have
the same directory tree structure. This reduces the processing time.

Step 3 (Select Directories to Embed Watermark Fragment
Files): The watermark generator produces pseudo-random numbers
for the watermark fragment files input in Step 1. The values of the

Tadano, et al. 263

random numbers are limited to the range of directory codes. The wa-
termark generator extracts the names of directories corresponding to
the generated random numbers using the directory code list generated
in Step 2. The BBS pseudo-random number generation algorithm is
used to make the random numbers difficult for an attacker to predict.
Although this algorithm is computationally intensive, the experimental
results presented in Section 4.2 indicate that the overall performance of
the watermarking scheme is acceptable.

Step 4 (Generate the Names of Watermark Fragment Files):
The watermark generator creates the names of the watermark fragment
files that are embedded in the directories selected in Step 3. Portions of
the names of pre-existing files in the directories are modified to create
file names that are similar to those of the pre-existing files. A file name
is generated according to the following steps.

Step 4.1: Get the names of existing files in the target directory.
Only regular files (not subdirectories, hidden files, etc.) whose
suffixes are not to be excluded are retrieved.

Step 4.2: Enumerate all the substrings corresponding to the file
names. Each substring is obtained from the head (i.e., not includ-
ing the suffix) of a file name retrieved in Step 4.1. The result of
this step is the union of substrings for all the file names. For exam-
ple, if the target directory has a file named abc.txt, the possible
substrings are: abc, ab and a.

Step 4.3: Compute “similarity groups” for each extracted sub-
string. A similarity group is a group of files in the target directory
that meets the following conditions: (i) the file name starts with
the substring (prefix) generated in Step 4.2; (ii) all the files have
the common suffix (e.g., .txt); and (iii) a similarity group con-
tains at least two files. For example, if there are five files in a
target directory {s1.txt, s2.txt, s3.dat, s4.dat, s5.conf} and
s is the substring, then two similarity groups can be computed:
{s1.txt, s2.txt} and {s3.dat, s4.dat}.
Step 4.4: Compute the Dsim score for each similarity group:

Dsim = c1 ∗ lp + c2 ∗ nf − c3 ∗ ld
where lp is the length of the prefix of the similarity group; nf is
the number of files in the similarity group; ld is the mean value of
the difference between the length of the file name (excluding the

264 ADVANCES IN DIGITAL FORENSICS VI

suffix) and lp in the similarity group; and c1, c2, c3 are parameters
that are set to one. The similarity group with the highest Dsim

score is called the “prototype file group.”

Step 4.5: Create the name of the new watermark fragment file.
One or more random letters are added to the tail of the prefix
of the selected prototype file group. The length of the added let-
ters (lt) is the length of the file name randomly selected from the
prototype file group (excluding the suffix and prefix). Finally, the
suffix of the files in the prototype file group is added to the file
name. For example, if the prefix is sample and the prototype file
group is {sample.dat, sample-bak.dat} and if sample-bak.dat
is selected, then lt = 4 and a possible name is sampledbha.dat.

Step 5 (Generate the Content of the Watermark Fragment
Files): The watermark generator creates the content and attributes
corresponding to each watermark fragment file. The content of a water-
mark fragment file is a randomly-generated byte sequence. Attributes
of a watermark fragment file are determined according to the following
rules. For timestamps (creation/modification/access) and file size, the
watermark generator assigns the mean values of the files in the prototype
file group to the new watermark fragment file. For other attributes such
as ownership and permission, the values corresponding to a randomly
selected file in the prototype file group are used.

3.3 Implementation

The digital watermarking scheme was implemented in Java 1.5. The
VMware Server virtualization software was employed. The command
vmware-mount.pl was issued to the VMware Server to mount the file
system on the VM image for embedding watermark fragment files. The
VM image of any file system or operating system, including Windows
and Linux, can be watermarked. The WI-DB was implemented using
MySQL 5.0.

4. Experimental Setup and Results

This section describes the experimental setup used to evaluate the wa-
termarking algorithm. Also, it presents the experimental results related
to watermark generation and detection.

4.1 Experimental Setup

A test environment was created to evaluate the performance of the
watermarking scheme. The environment included one physical host (Ta-

Tadano, et al. 265

Table 2. Test environment.

Physical Host

CPU Pentium 4 1.73 GHz Processor
Memory 1 GB RAM
Host OS Ubuntu Linux 8.04 Server
VMM VMware Server 2.0

Guest VMs
Guest OS Ubuntu Linux 8.04 CentOS 5.1

(JeOS edition) (default)

VM Image Size 183 MB 2,750 MB
(.vmdk file)
Directories 1,120 7,429

ble 2). Two template VM images of different sizes were used to clarify
the impact of size on the watermarking scheme. The VM images used
were an Ubuntu Linux 8.04 Server JeOS edition (minimum configuration
for virtual appliances) and a default installation of CentOS 5.1.

4.2 Experimental Results

This section presents our experimental results related to watermark
generation and detection.

Watermark Generation The VM image templates of Ubuntu and
CentOS were copied and a total of 10 and 100 watermark fragment files
were embedded in the two VM images. Each experiment was repeated
10 times and the average turnaround times were calculated.

Table 3. Turnaround times for watermark generation.

Av. Generation Time (sec) Av. Copying
10 Files 100 Files Time (sec)

Ubuntu Linux 8.04 13.121 24.001 6.903
CentOS 5.1 168.382 177.270 142.284

Table 3 presents the turnaround times for copying VM images and
generating watermarks. The experiments used previously-created direc-
tory codes of template VM images because the codes are generated only
the first time that the template VM images are used. The results in-
dicate that the time for watermark generation excluding the time for

266 ADVANCES IN DIGITAL FORENSICS VI

Table 4. Generated watermark fragment files.

File Names

/usr/share/zoneinfo/Pacific/kQGidyI

/etc/console-tools/v2uQizvontwL8

/lib/modules/2.6.24-16-virtual/kernel/sound/usb/snd-usb-INc.ko

/usr/lib/klibc/bin/hso.shared

/usr/lib/perl/5.8.8/IO/Socket/vS9jkE.pm

/usr/lib/python2.5/wsgiref/hG272nT.pyc

/usr/share/debconf/jAGX7mQ.sh

/usr/share/zoneinfo/Mexico/irQ7KA

/usr/share/zoneinfo/posix/Chile/5XwjA

copying is essentially independent of the size of the template VM image.
The turnaround times drop when faster storage devices are employed.

Table 4 lists the generated watermark fragment files. The file names
snd-usb-INc.ko and hso.shared are relatively difficult to distinguish
from the pre-existing files in the target directories. In contrast, file
names such as kQGidyI are easily distinguishable. In general, when
there are many files in the target directory whose names have common
extensions and long common substrings, the generated file name(s) tend
to be indistinguishable. For example, the file snd-usb-INc.ko belongs
to /lib/modules/2.6.24-16-virtual/kernel/sound/usb/ whose pre-existing
files are snd-usb-audio.ko and snd-usb-lib.ko. Meanwhile, if only a
few file names have common substrings/extensions in the target direc-
tory, the generated file name(s) tend to be contrived.

Watermark Detection Watermark detection experiments were con-
ducted to identify 10 and 100 watermark fragment files from the water-
marked Ubuntu 8.04 and CentOS 5.1 VM images.

Table 5. Turnaround times for watermark detection.

Av. Detection Time (sec)
10 Files 100 Files

Ubuntu Linux 8.04 7.524 7.549
CentOS 5.1 7.526 7.573

Table 5 presents the average turnaround times for watermark detec-
tion based on ten repetitions. The results indicate that the time taken
to detect the watermark is almost independent of the size of the water-
marked VM image and the number of watermark fragment files.

Tadano, et al. 267

5. Conclusions

The digital watermarking scheme for VM images is independent of file
systems, file formats, operating systems, kernel versions and hardware.
Also, experiments demonstrate that watermark generation and detection
are both fast and effective.

Our future work will focus on enhancing the tamper-resistant charac-
teristics of the watermarking scheme. Several attacks could be devised
to remove or modify VM image watermarks. For example, watermarks
could be detected using a machine learning algorithm such text cluster-
ing [9] to discriminate embedded files from pre-existing files based on
file name string features. Another attack could use information from
elsewhere in the VM such as the i-node numbers of files. Files installed
at a given time are assigned successive i-node numbers; a file with an
i-node number that is out of sequence could correspond to an embedded
file. Other problems to be investigated include having the contents of
embedded files resemble those of pre-existing files, and augmenting the
scheme with other data hiding approaches to enhance tamper resistance.
Finally, our research will investigate the application of the watermarking
scheme to other digital content such as tar and zip archives.

References

[1] Amazon Web Services, Amazon Elastic Compute Cloud, Seattle,
Washington (aws.amazon.com/ec2).

[2] Amazon Web Services, Amazon Simple Storage Service, Seattle,
Washington (s3.amazonaws.com).

[3] Amazon Web Services, ec2-download-bundle, Seattle, Wash-
ington (docs.amazonwebservices.com/AmazonEC2/dg/2006-10-01
/CLTRG-ami-download-bundle.html).

[4] L. Blum, M. Blum and M. Shub, Comparison of two pseudo-
random number generators, in Advances in Cryptology: Proceed-
ings of Crypto 1982, D. Chaum, R. Rivest and A. Sherman (Eds.),
Plenum, New York, pp. 61–78, 1982.

[5] K. Eckstein and M. Jahnke, Data hiding in journaling file systems,
Proceedings of the Fifth Annual Digital Forensic Research Work-
shop, 2005.

[6] A. McDonald and M. Kuhn, StegFS: A steganographic file system
for Linux, Proceedings of the Third International Workshop on In-
formation Hiding, pp. 463–477, 2000.

268 ADVANCES IN DIGITAL FORENSICS VI

[7] F. Perez-Gonzalez and J. Hernandez, A tutorial on digital water-
marking, Proceedings of the Thirty-Third IEEE International Car-
nahan Conference on Security Technology, pp. 286–292, 1999.

[8] N. Quynh and Y. Takefuji, A novel approach for a file-system in-
tegrity monitor tool for a Xen virtual machine, Proceedings of the
Second ACM Symposium on Information, Computer and Commu-
nications Security, pp. 194–202, 2007.

[9] T. Segaran, Programming Collective Intelligence: Building Smart
Web 2.0 Applications, O’Reilly, Sebastopol, California, 2007.

Chapter 19

A VISUALIZATION SYSTEM FOR
ANALYZING INFORMATION LEAKAGE

Yuki Nakayama, Seiji Shibaguchi and Kenichi Okada

Abstract Information leakage is a growing public concern. This paper describes a
visualization system for tracing leaks involving confidential information.
In particular, the system enables administrators to determine which
hosts have confidential documents and the means by which confidential
information is transmitted, received and duplicated. The visualization
system is scalable to large organizations and can track various means of
information propagation in a seamless manner. Also, it helps prevent
information leaks, analyze transmission routes and present forensic ev-
idence.

Keywords: Information leakage, visualization, data tracing

1. Introduction

Information leakage has become a serious problem. A recent survey of
more than 800 CIOs reported that organizations lost an average of $4.6
million due to the leakage of intellectual property [7]. It is imperative
to protect intellectual property and sensitive information by devising
countermeasures against information leakage.

Countermeasures against information leakage can be broadly classi-
fied as before-the-fact or after-the-fact measures. Before-the-fact coun-
termeasures aim to prevent leakage (e.g., prohibiting the use of USB
drives, printing confidential documents or sending confidential data by
email). After-the-fact measures involve incident response and digital
forensic investigations [12]. Digital forensics is the use of scientifically
derived and proven technical methods and tools for the preservation,
collection, validation, identification, analysis, interpretation, documen-
tation and presentation of digital evidence for the purpose of facilitating
or furthering the reconstruction of events [13].

K.-P. Chow, S. Shenoi (Eds.): Advances in Digital ForensicsVI, IFIPAICT 337, pp. 269–282, 2010.
c© IFIP International Federation for Information Processing 2010

270 ADVANCES IN DIGITAL FORENSICS VI

Research conducted in Japan [3, 9] indicates that information leakage
by insiders is about 1% of the total and that human error, such as
employees losing their laptop computers, is the main cause of information
leakage. Similar results have been observed in the United States [2],
where human error contributes to as much as 35.2% of the information
leakage that occurs in the private sector. Consequently, it is important
to focus on preventing leakage due to human error.

Our visualization system contributes to both before-the-fact and after-
the-fact countermeasures. Specifically, it traces the pathways of confi-
dential information and supports the visualization of the routes. It al-
lows administrators to know which users have confidential documents,
enabling them to remove the documents or to prohibit the users from
using laptops outside the enterprise. Therefore, leakage due to human
error, such as the loss of a laptop, can be prevented. Furthermore, the
system contributes to digital forensic investigations by enabling admin-
istrators to rapidly analyze the cause of a leakage and presenting forensic
evidence using an intuitive interface.

2. Related Work

This section discusses some of the existing tools for combating infor-
mation leakage and highlights their deficiencies.

Vontu Data Loss Prevention [11] provides proactive countermeasures
against information leakage. Also, it implements systematic security
controls such as restricting the use of USB drives. However, these con-
trols hinder routine work and lower productivity. Also, they can only
prevent information leakage that occurs in a predictable manner. On
the other hand, humans can analyze problems from various perspectives
and make systematic judgments about the risk of leakage at any given
time. Our visualization system assists humans in understanding rapidly
changing situations that may involve information leakage.

SKYSEA Client View [10] and InfoCage [4, 5, 8] support after-the-
fact countermeasures. These tools monitor the operation of hosts and
write the results into text-based log files. They also analyze the log
files to ascertain the cause of information leakage. However, they do not
attempt to streamline analytic work or simplify evidence for presentation
in court. Consequently, administrators must devote considerable amount
of time and effort to analyzing large amounts of log data. Eliminating
this step is important to simplifying analytic work. Our visualization
system facilitates the presentation of evidence related to information
leakage in a clear, concise and simple manner.

Nakayama, Shibaguchi & Okada 271

Figure 1. Scalable and seamless visualization.

3. Visualization System

Our visualization system monitors the transmission of confidential in-
formation via pathways such as email, removable media and applications.
It enables administrators to identify the locations of confidential docu-
ments. If necessary, they can then implement security measures such as
ordering employees to remove the sensitive documents or prohibiting the
removal of specific computers from the enterprise.

The visualization system also contributes to the rapid analysis and
clear presentation of forensic evidence in the event of an information
leakage. Moreover, damage to the organization is minimized due to the
rapid response.

Two key requirements related to visualizing information transmission
pathways are:

Scalable Visualization: A visualization system must be flexible
with regard to changes in the number of hosts and the number of
confidential documents that appear on the watch list.

Seamless Visualization: Information can be propagated by var-
ious means – file swapping via email or peer-to-peer networks,
transporting data on portable devices such as USB flash drives,
moving or copying files to a computer, and editing or duplicat-
ing files using applications. A visualization system should achieve
broad coverage of these diverse means of data transmission and
integrate the means seamlessly.

Our system addresses these requirements using five different visual-
ization methods (Figure 1). The five methods are group-based (GRP),
network-based (NET), client-based (CLT), directory-based (DIR) and
application-based (APP) methods. GRP and NET observe file swap-

272 ADVANCES IN DIGITAL FORENSICS VI

(1)

(2)

(3)

(4)

(5)

Figure 2. CROWS Up Viewer.

ping through networks. CLT, DIR and APP monitor computer use by
employees. GRP visualizes file swapping between groups comprising a
given number of hosts. NET displays file transfers between hosts that
belong to targeted groups. CLT monitors confidential documents re-
ceived and dispatched by a particular client. DIR shows the transfer of
confidential documents between the directories of a single client. APP
monitors applications when a user has confidential documents open.

4. CROWS Up Viewer

We have implemented a prototype called the “CROWS Up Viewer”
(CROWS: Catch Reveal by Observing and WitneSsing), which meets
the design goals described in Section 3. The system is implemented in
C++ and runs under Windows XP/Vista.

Figure 2 shows the CROWS Up Viewer. The main panel (marked (1))
presents the primary interface for each of the five visualization methods.
The sub-panel (2) shows the sub-methods that assist with analytic work.
The tree view (3) shows the documents possessed by each host. The

Nakayama, Shibaguchi & Okada 273

Figure 3. System architecture.

toolbar (4) provides buttons for user interaction and enables users to
customize the CROWS Up Viewer interface. The status bar (5) shows
details regarding the position of the on-screen cursor.

4.1 System Architecture

Figure 3 shows the visualization system architecture. A monitoring
program is required to be installed on client computers in advance. This
program is linked to a database, which stores a definition file for each
client machine and records data. The monitoring program refers to the
definition file for each client and writes results to log files, which are
transmitted to a management server. Administrators use the visualiza-
tion system to view the collected data.

The monitoring program uses API hooking to reveal the internal op-
erations of the computer. This approach has been used in intrusion
prevention [1], dynamic malware analysis [14] and unknown virus detec-
tion [6].

4.2 Visualization Methods

This section describes each of the five visualization methods used in
our system.

GRP The group-based method (GRP) visualizes file swapping be-
tween groups comprising a given number of hosts. The top-left corner
of Figure 4 shows an example of GRP visualization. The box-shaped
areas represent groups and servers, and the arrows between the areas
indicate file swapping; the other arrows represent file swapping in un-
safe networks. Note that the time axis is set in vertical direction. For
example, Figure 4 shows that Group A has sent two files to Group C at
14:07. Although details such as filenames are not visible in the figure,

274 ADVANCES IN DIGITAL FORENSICS VI

Figure 4. Visualization methods.

they can be made to appear in the toolbar by hovering the cursor or in
a dialog box by clicking the mouse.

GRP provides a simulation monitor (SimMon) and a tracing monitor
(TrcMon) for supporting analytical work (Figures 5 and 6). Each group
is represented as a node in these monitors. The center node indicates the
server group while the peripheral nodes denote client computer groups.
In SimMon, the lines between the nodes represent file swapping and
various colors are used to indicate operations such as file downloads,
uploads and transfers (Figure 5). SimMon changes its display continually
and enables administrators to run simulations that show file swapping
in a dynamic workplace environment.

TrcMon shows the transmission routes of a single confidential doc-
ument. The weights of the lines connecting the nodes represent the
passage of time; thinner lines represent older transmissions and thicker
lines represent newer transmissions. Various colors are used to highlight
the branches of a document pathway. Figure 6 shows a document that
has been transmitted from a server to a Group 1 user and then from
Group 1 to Group 3, from Group 3 to Group 5, and eventually from
Group 5 to two separate groups. It is possible to interact with TrcMon
to change the time when a trace is started or to adjust its depth.

Note that GRP monitors FTP downloads and uploads, the sending of
email and whether or not hosts connect to unsafe networks.

NET The network-based method (NET) displays file transfers be-
tween hosts that belong to a specified group. In Figure 4, the areas on
the left represent clients, servers and other groups. The arrows between

Nakayama, Shibaguchi & Okada 275

Figure 5. SimMon (GRP). Figure 6. TrcMon (GRP).

these areas represent file swapping. Colored diagonal line areas in NET
alert administrators to the status of particular clients. Hosts that are
experiencing security problems (e.g., hosts that are not using antivirus
software or a firewall) are shown in red. Clients that are connected to
unsecured networks are shown in yellow.

Figure 7. SimMon (NET). Figure 8. TrcMon (NET).

NET also provides SimMon and TrcMon (Figures 7 and 8). The node
in the center represents other groups and the circularly arranged nodes
represent servers and enterprise/remote clients. Nodes of various colors
represent online enterprise computers (green), online remote computers
(blue), offline hosts (grey) and hosts having security problems or hosts
connected to unsafe networks (red).

NET monitors the downloading and uploading of files and the sending
of email. Also, it monitors hosts that connect to unsafe networks or
experience security problems.

276 ADVANCES IN DIGITAL FORENSICS VI

CLT The client-based method (CLT) monitors confidential documents
received and dispatched by a targeted client. The bottom-left corner of
Figure 4 shows an example of CLT. The rectangular areas, starting from
the left, represent the file servers in an enterprise, clients, removable
media and email. The figure shows an example where Host A-1 has
copied a confidential document to a USB flash drive at 14:08.

CLT monitors FTP downloads and uploads to enterprise servers, the
sending of email, copying to or from removable media, writing to mag-
netic media, printing of documents and the number of confidential doc-
uments on a host.

DIR The directory-based method (DIR) shows the transfer of confi-
dential documents between the directories of a single client. Figure 4
shows an example of DIR, where a confidential document was copied
from C:\foo\ to C:\ at 14:06.

DIR monitors the copy, move, remove/recover, open/close, save as,
print, upload, send, compress/decompress, convert and split/combine
operations with respect to confidential files.

APP The application-based method (APP) monitors all applications
when a user has confidential documents open. Figure 4 shows an exam-
ple of its operation. Each application is drawn as an area on the display
in which APP displays the confidential documents opened by the appli-
cation. The heavy lines represent active windows. In the example, the
user has copied text data from X-File to hoge.doc at 14:07.

APP also provides DspMon (display monitor) as shown in Figure 9.
DspMon duplicates a computer screen at a given time and provides an
intuitive representation. A framed rectangle denotes an active window
and underlined filenames indicate that the files are confidential.

APP monitors the copying/pasting of text and bitmap data; the posi-
tion/size of application windows; the z-index of windows; keystrokes; the
opening/closing of documents; and save/save as and print commands.

4.3 Analytic Workflow

This section describes an example analytic workflow conducted using
the CROWS Up Viewer. In the example, we assume that an adminis-
trator has learned that a file has been leaked and attempts to analyze
the cause of the leakage.

First, the administrator examines the tree view in the upper left por-
tion of the CROWS Up Viewer and selects the file to be traced. At this
point, the CROWS Up Viewer removes all the other files from view.

Nakayama, Shibaguchi & Okada 277

Figure 9. DspMon.

The administrator then employs the five visualization methods in se-
quence (Figure 10). First, the groups that received the file are analyzed
using GRP, after which, the administrator applies NET to the groups
to identify the hosts that received the leaked file. It is important to
note that the groups that transfer a file via an unsafe network receive
a higher priority. Using NET, the administrator first observes the col-
ored diagonal areas that identify clients with security problems (red)
and clients connected to unsafe networks (yellow). Thus, the adminis-
trator can check if viruses, worms or other malicious software caused the
leakage or if the file was stolen by data sniffing.

Next, the administrator uses CLT, DIR and APP to investigate the
hosts flagged by NET. CLT provides information about incoming and
outgoing transfers of the file; DIR provides information about the use of
the file; APP shows the operations that the user performed using various
applications.

The CROWS Up Viewer enables the administrator to analyze the
situation intuitively even if the events are complex. As a result, the
cause of the file leakage can be determined promptly and appropriate
mitigation actions can be taken.

278 ADVANCES IN DIGITAL FORENSICS VI

Figure 10. Analytic workflow.

5. Experimental Results

We conducted an experiment to verify the usability of the visualiza-
tion system. The subjects of the experiment were twenty university
students who were pursuing degrees in information engineering. The

Nakayama, Shibaguchi & Okada 279

Figure 11. Sample evaluation questions.

subjects performed simple analytic tasks using text logs and visualized
logs, and answered 26 true/false questions about the tasks – thirteen
questions regarding the text logs and thirteen regarding the visualized
logs (Figure 11). We evaluated three characteristics of the visualization
system: (i) accuracy; (ii) speed; and (iii) ease of understanding based on
the percentage of correct answers to the survey questions and the time
required to answer the questions.

The subjects were divided into two groups to address the possibility
that they might become accustomed to the analytic work, which could
affect the comparison between the text log and visualized log results.
Subjects in Group 1 analyzed the text logs first, followed by the visual-
ized logs. Subjects in Group 2 answered questions about the visualized
logs first, followed by questions about the text logs. Each group com-
prised ten subjects.

Table 1 shows the results of the experiment. Ptxt is the percentage
of correct answers for the text logs; Pviz is the percentage of correct
answers for the visualized logs; FS is fractional reduction in the time
required ((Ttxt - Tviz)/Ttxt), where Ttxt is the time required for analyzing
the text logs and Tviz is the time required for analyzing the visualized
logs.

An F-test and a t-test were conducted between: (i) Ptxt of Group
1 and Ptxt of Group 2; (ii) Pviz of Group 1 and Pviz of Group 2; and

280 ADVANCES IN DIGITAL FORENSICS VI

Table 1. Experimental results.

Group 1 Group 2
Ptxt Pviz FS Ptxt Pviz FS

0.92 1.00 +0.43 0.92 1.00 +0.60
0.85 1.00 +0.37 0.77 1.00 +0.25
0.62 1.00 +0.16 0.92 1.00 +0.20
1.00 1.00 +0.45 0.92 0.92 +0.26
0.85 0.92 +0.62 0.92 1.00 +0.34
0.85 1.00 +0.20 1.00 1.00 +0.40
0.85 1.00 +0.17 1.00 1.00 +0.31
0.62 0.92 +0.33 0.85 0.92 +0.39
1.00 1.00 +0.30 1.00 1.00 +0.32
0.92 1.00 +0.19 0.92 1.00 +0.28

(iii) FS of Group 1 and FS of Group 2. No significant differences were
observed for a significance level of 5%. Thus, we can conclude that no
significant difference exists between Group 1 and Group 2, i.e., the tests
can be regarded as having been conducted under the same conditions.

The means and standard deviations (upon combining Groups 1 and
2) are:

Ptxt = 88± 11% Pviz = 98± 3% FS = +34± 13%

The percentage of correct answers related to the visualized logs were
higher than those for the text logs, and no significant difference exists
at a level of 1% (p < .01). The fractional reduction in the time required
indicates that the visualized logs facilitate rapid analysis. Therefore, the
visualization system supports accurate and rapid analysis.

After the experiment, we also polled the test subjects about the ease
of understanding of the visualized logs versus the text logs. All the
subjects felt that the visualized logs were easier to understand than the
text logs.

6. Conclusions

Information leakage is a serious problem and it is imperative that orga-
nizations employ effective countermeasures to protect confidential infor-
mation. Our visualization system efficiently traces the flow of confiden-
tial information and helps identify potential information leaks, enabling
administrators to assess the risk and implement mitigation strategies.
The system also supports forensic investigations of information leaks
and assists with the collection and presentation of evidence. Experi-

Nakayama, Shibaguchi & Okada 281

mental results indicate that the visualization system supports human
understanding and facilitates the rapid and accurate analysis of infor-
mation leaks.

References

[1] R. Battistoni, E. Gabrielli and L. Mancini, A host intrusion pre-
vention system for Windows operating systems, Proceedings of the
Ninth European Symposium on Research on Computer Security, pp.
352–368, 2004.

[2] Identity Theft Resource Center, 2008 data breach totals soar, Press
Release, San Diego, California (www.idtheftcenter.org/artman2/pu
blish/m press/2008 Data Breach Totals Soar.shtml), 2009.

[3] Information-Technology Promotion Agency, Countermeasures Aga-
inst Information Leakage: Seven Rules for People Working in Busi-
ness Enterprises, Tokyo, Japan (www.ipa.go.jp/security/english/vir
us/antivirus/pdf/Leakage measures eng.pdf), 2006.

[4] M. Kawakita, K. Yanoo, M. Hosokawa, H. Terasaki, S. Aoki and T.
Usuba, InfoCage – Information leakage protection software, NEC
Journal of Advanced Technology, vol. 2(1), pp. 40–46, 2005.

[5] K. Kida, H. Sakamoto, H. Shimazu and H. Terumi, InfoCage: A
development and evaluation of confidential file lifetime monitoring
technology by analyzing events from file systems and GUIs, Proceed-
ings of the Second International Workshop on Security, pp. 246–261,
2007.

[6] R. Koike, N. Nakaya and Y. Koui, Development of a USB flash mem-
ory for detecting computer viruses, Information Processing Society
of Japan Journal, vol. 48(4), pp. 1595–1605, 2007.

[7] McAfee, Unsecured Economies: Protecting Vital Information, Santa
Clara, California, 2009.

[8] NEC Corporation, No. 1 market share for domestic quarantine tools
for three consecutive years, Press Release, Tokyo, Japan (www
.nec.co.jp/press/ja/0808/2701.html), 2008.

[9] Security Incident Investigation Working Group, Survey Report of
Information Security Incidents 2007, Version 1.0, NPO Japan Net-
work Security Association, Tokyo, Japan (www.jnsa.org/result/20
07/pol/incident/2007incidentsurvey e v1.0.pdf), 2008.

[10] Sky Corporation, SKYSEA Client View, Osaka, Japan (www.sky
seaclientview.net).

282 ADVANCES IN DIGITAL FORENSICS VI

[11] Symantec Corporation, Data loss prevention: Products and services,
Mountain View, California (www.symantec.com/business/theme.js
p?themeid=vontu).

[12] S. Tsujii and E. Hagiwara (Eds.), Encyclopedia of Digital Forensics,
Nikkagiren Press, Tokyo, Japan, 2008.

[13] S. Willassen and S. Mjolsnes, Digital forensics research, Telektron-
ikk, vol. 2005(1), pp. 92–97, 2005.

[14] C. Willems, T. Holz and F. Freiling, Toward automated dynamic
malware analysis using CWSandbox, IEEE Security and Privacy,
vol. 5(2), pp. 32–39, 2007.

VI

FORENSIC TOOLS

Chapter 20

FORENSIC ANALYSIS OF POPULAR
CHINESE INTERNET APPLICATIONS

Ying Yang, Kam-Pui Chow, Lucas Hui, Chunxiao Wang, Lijuan Chen,
Zhenya Chen and Jenny Chen

Abstract When the Digital Evidence Search Kit (DESK) was first used in Main-
land China, it was found to be inadequate because it did not support
criminal investigations involving popular Internet applications such as
QQ, MSN and Foxmail. This paper discusses the enhancements made
to DESK to conduct forensic analyses of QQ, MSN and Foxmail.

Keywords: Forensic analysis, Internet applications, QQ, MSN, Foxmail

1. Introduction

The Digital Evidence Search Kit (DESK) is a digital forensic tool
developed by the Center for Information Security and Cryptography at
the University of Hong Kong [1]. DESK was introduced to Mainland
China in 2007 and is now being used on a trial basis by several Chinese
public security departments. During the performance review phase, it
was discovered that DESK was inadequate for investigations in China
because it did not support forensic analyses of some Internet applications
that are popular in China, but rarely used elsewhere in the world. These
applications, which include QQ, MSN and Foxmail, have special data
formats and often encrypt important data.

QQ [4] is an instant messaging (IM) application with Chinese charac-
ters developed by Tencent Holdings; MSN is a similar application devel-
oped by Microsoft. According to the 2007-2008 China Internet Survey,
QQ has an overwhelming market share in China. QQ is followed by
MSN, which is the most popular instant messaging tool among office
workers. Other instant messaging tools have a miniscule market share.

K.-P. Chow, S. Shenoi (Eds.): Advances in Digital ForensicsVI, IFIPAICT 337, pp. 285–295, 2010.
c© IFIP International Federation for Information Processing 2010

286 ADVANCES IN DIGITAL FORENSICS VI

QQ’s popularity stems from the fact that it is designed to accom-
modate Chinese Internet communication habits, including the need to
communicate with friends and strangers. QQ is positioned as a compre-
hensive platform for entertainment, Internet chat and communications.
It continuously incorporates peripheral functions that are attractive to
children and young adults, causing the numbers of new QQ accounts
and new QQ users to increase dramatically. According to an iResearch
report, the QQ IM application had 132,740,000 active users in China as
of June 2009. Indeed, almost every netizen in China has a QQ account.

Another popular system is Foxmail [8], a client-side email software
also developed by Tencent Holdings. Foxmail functions are similar to Mi-
crosoft Outlook, but with specialized Chinese character support, which
has contributed to its widespread use in China.

Meanwhile, the use of IM and email by criminal entities is growing
in China. In particular, criminals use QQ, MSN and Foxmail to dis-
seminate obscene images or links to pornographic websites, to divulge
national secrets, and even to discuss, plan and coordinate criminal opera-
tions. This paper discusses the enhancements made to DESK to support
forensic investigations involving QQ, MSN and Foxmail.

2. QQ Forensic Analysis

This section presents key details of the QQ IM application and outlines
a forensic analysis methodology.

2.1 Overview

Every new user must register with the QQ service before using the
IM application. Upon successful registration, the user is assigned a QQ
number (i.e., a QQ account). The user may then log into the QQ service
using the QQ number and start a session. The QQ processing can be
summarized as follows:

When a user logs into the QQ service, the QQ client obtains the
latest friends list from the QQ server and establishes a peer-to-peer
(P2P) connection between the user and each friend on the list.

The user and his/her friends communicate using UDP.

If a P2P connection cannot be established (e.g., due to a net-
work problem), messages between the two friends are transmitted
through the QQ server. The server stores all messages that the
sender has sent but the receiver has not yet received. The stored
messages are passed to the receiver when he/she next logs into the
QQ service.

Yang, et al. 287

Table 1. QQ packet structure.

Bytes Content

0 Start of packet (0x02)
1 to 2 QQ version number (expressed using network byte order)
3 to 4 Command number (expressed using network byte order)
5 to 6 Sending serial number (receiver should check the number)
7 to n QQ data (possibly encrypted)
n+1 End of packet (0x03)

QQ messages are sent using UDP. Each UDP packet has no more than
64K bytes. Table 1 presents the packet structure.

Table 2. QQ files.

QQ File Function

QQApplication.dll Friends panel display program
LoginUinList.dat Login history file
QQZip.dll Compression and decompression utilities
QQMainFrame.dll QQ main panel
Newface Directory containing all portrait files
QQ.exe QQ main executable
QQFileTransfer.dll QQ file transfer utility
QQHook.dll QQ keyboard monitor program
QQPlugin.dll QQ friends searching utility
QQRes.dll QQ resource handling function

2.2 Principal Files

In order to perform QQ forensics, it is important to understand the
file organization. Table 2 lists the files present in a QQ directory after
the successful installation of the application.

User account information is stored in several files in a directory named
after the user’s QQ number (e.g., 12345678). The principal files are:

MsgEx.db: This file is created after the user registers with and logs
into the QQ service. The file stores all chat records using struc-
tured storage [3]. Local history data, which includes chat records
and logs, are encrypted using TEA [7] and stored in MsgEx.db.

ewh.db: This file stores the MD5 hash [5] of the user’s password.
When a user attempts to log into the QQ service, the QQ client
verifies the submitted password with the password stored in the

288 ADVANCES IN DIGITAL FORENSICS VI

Figure 1. User.db data structure.

MsgEx.db file. The QQ server then performs a second validation
before the user can successfully log in. This involves hashing the
user-supplied password and comparing the value with the password
hash saved in ewh.db.

Notes.db: This file stores the QQ memorandum.

User.db: This file stores the friend records. It uses the same
structured storage format and TEA encryption as MsgEx.db.

QQAVFile: This directory stores all QQ image files.

CustomFace: This directory stores all self-defining expressions.

CustomFaceRecv: This directory stores all received self-defining
expressions.

ShareInfo.db: This file stores the configuration information of
the shared directory.

2.3 Key Technologies

Structured Storage Structured storage was developed by Microsoft
for storing hierarchical data in the Windows operating system [3]. It im-
proves disk space efficiency and simplifies software distribution by gath-
ering all the data files into one file. In the structured storage paradigm,
storage can contain other storage, just like a directory can contain sub-
directories. The MsgEx.db and User.db files store data using structured
storage. Figure 1 presents a sample User.db structured storage file.

Yang, et al. 289

Table 3. Registry information.

Registry Field Description

HKEY LOCAL MACHINE\SOFTWARE\Tencent\QQ
Install=c:\Program Files\Tencent\qq QQ installation path
version=1413.192 QQ version number

MD5 Hashing MD5 [5] is a popular cryptographic hash algorithm
that converts a variable-length message into a 128-bit hash. The input
message is broken up into chunks of 512-bit blocks. The output consists
of four sub-groups of 32 bits, which are cascaded to form the 128-bit hash
value. QQ uses MD5 to generate the encryption key from the user’s QQ
number.

TEA Encryption Tiny Encryption Algorithm (TEA) [7] implements
a block cipher that uses a 128-bit key and operates on 64-bit blocks. It
has a Feistel structure with suggested 64 rounds, typically implemented
in pairs called “cycles.” It has a very simple key schedule, mixing all the
key material in exactly the same way for each cycle. Different multiples
of a magic constant are used to prevent simple attacks based on the
symmetry of the rounds. The magic constant 2654435769 (9E3779B916)

is computed as
⌊
232

φ

⌋
where φ is the golden ratio. Although 64 rounds

are suggested for security reasons, QQ uses only sixteen rounds of TEA
to encrypt the MsgEx.db and User.db files.

2.4 Forensic Analysis

Analyzing the Registry Table 3 lists the Windows registry infor-
mation maintained about the QQ application after a successful instal-
lation. The QQ installation information may be extracted by exploring
the Windows registry.

Decrypting Data One of the important tasks in QQ forensics is to
extract the encrypted chat records from the MsgEx.db file. Figure 2
presents the structured storage scheme used by MsgEx.db to store data.
C2CMsg stores chat record messages, SysMsg stores system messages and
GroupMsg stores group messages. The message contents themselves are
stored in Data.msj files. Peer-to-peer messages are stored in Data.msj

files under the QQ number directory within the C2CMsg folder and are
indexed by the Index.msj file. Group messages are stored in Data.msj

290 ADVANCES IN DIGITAL FORENSICS VI

MsgEx.db

QQ号码

info.dat

Matrix.db

10000

Data.msj

Index.msj

Data.msj

Index.msj

C2CMsg

IMInfo

Matrix

SysMsg

DiscMsg

GroupMsg

MobileMsg

TempSessionMsg

Figure 2. MsgEx.db data structure.

files under the directory “SysMsg\10000” and are indexed by Index.msj

in the same directory. The file is encrypted using TEA.
The primary task in QQ forensics is to extract the decrypted data

from C2CMsg, SysMsg and GroupMsg. The following steps are involved
in decryption and extraction:

Obtain the directory and the QQ number and transform the QQ
number to the MD5 key using the MD5 algorithm.

Obtain data from Matrix.db for C2CMsg, SysMsg and GroupMsg.
Note that QQ often applies padding and permutation. Decrypt
the data using sixteen rounds of TEA with the MD5 key.

Translate the decrypted chat records and friends list into Chinese
and display the chat record messages as shown in Figure 3.

3. MSN Forensic Analysis

This section presents key details of the MSN application and outlines
a forensic analysis methodology.

Yang, et al. 291

Figure 3. QQ chat records.

3.1 Overview

After a user installs MSN and executes the software, several digi-
tal traces remain, these include the MSN system configuration, friend’s
messages and communication messages.

The MSN installation directory is recorded in the registry field:
HKEY LOCALMACHINE\SOFTWARE\Microsoft

\MSNMessenger\InstallationDirectory.
Each MSN user account has its own configuration settings, which are

recorded in the registry field:
HKEY CURRENTUSER\Software\Microsoft

\MSNMessenger\PerPassportSettings\�
where “�” denotes PassID, which is generated from the user name.

The default path for storing MSN chat records is:
%SysDisk%\Documents and Settings\(Windows login user)

\My Documents\My Received Files\(emailName+PassID)
\history.

The user may change the default path, which is then stored in the
registry field:

HKEY CURRENTUSER\Software\Microsoft
\MSNMessenger\PerPassportSettings\PassID
\MessageLogPath.

MSN chat records are stored in files using the XML format. The file-
name is of the form user-nick-name+account-number+.xml [6], where

292 ADVANCES IN DIGITAL FORENSICS VI

Log

Message Invitation Invitation Response

TextFrom To File TextFrom File TextFrom

User User User User

Figure 4. XML file tree structure.

user-nick-name is the nickname of conversation counterpart. Each file
stores the chat records of the user and file information (name and path)
that the user has received. The XML file uses a tree structure to store
the chat records (Figure 4).

Figure 5. MSN chat records.

3.2 Forensic Analysis

The chat record files may be processed by a standard XML parser
(e.g., Microsoft’s XML parser) to extract the necessary information.
Figure 5 shows example MSN chat records that are obtained using this
method.

4. Foxmail Forensic Analysis

This section presents key details of the Foxmail application and out-
lines a forensic analysis methodology.

Yang, et al. 293

4.1 Overview

Foxmail emails are stored in the directory:
foxmail-installed-path/mail/FOXMAIL account number.

Four files are found under the Foxmail account number subdirectory:
in, out, send and trash. These four files correspond to the email inbox,
email outbox, email sent items and email deleted items, respectively.

According to the structured storage paradigm, all the emails in a mail
folder are stored in one file. Our analysis revealed that the following byte
sequence is used as the header for email in the mail file:

10 10 10 10 10 10 10 11 11 11 11 11 11 53 0D 0A

4.2 Forensic Analysis

The main task in Foxmail forensic analysis is to search for the email
header and extract the mail content that follows the mail header [2].
Next, the extracted mail is exported to the EML format, which can
then be processed by any email forensics tool.

5. Case Study

This section describes the use of Enhanced DESK in a case involving
the theft of a computer.

A student named Mr. Zhang consigned a logistics company to deliver
a computer to his home. The shipment was signed by his father upon
arrival at his home. However, upon inspecting the contents of the ship-
ment, Mr. Zhang discovered that his original computer was replaced by
a cheaper machine, causing a direct financial loss of 6,500 Yuan.

Mr. Zhang contacted the company about the switch but got no re-
sults. He then lodged a complaint with the police, and the case was
placed on file for investigation and potential prosecution. The Shang-
dong Computer Science Center was assigned to examine the computer
and obtain digital evidence.

Enhanced DESK was used to clone the computer hard disks and cre-
ate a backup. The examination of the forensic image revealed more
than ten QQ accounts. Enhanced DESK was then used to extract QQ-
related information. The recovered chat logs were saved to a .txt file
for analysis. Photographs were taken of the entire process as subsidiary
evidence. Finally, text and photographs from QQ Zone were collected
based on information recovered about the owners of the QQ accounts.

Upon reviewing the digital evidence, the police officer assigned to the
case confirmed that the suspect was an employee of another logistics

294 ADVANCES IN DIGITAL FORENSICS VI

Figure 6. QQ forensic analysis using Enhanced DESK.

company. When confronted with the evidence, the suspect confessed to
taking Mr. Zhang’s computer and replacing it with a cheap substitute.

Figure 6 shows a sample Enhanced DESK screen dump during a foren-
sic investigation involving the QQ application.

6. Conclusions

The enhanced version of DESK supports forensic investigations of
major Chinese Internet communication applications such as QQ, MSN
and Foxmail. Our future research will attempt to develop a lightweight
version of DESK targeted for forensic investigations in the field.

References

[1] K. Chow, C. Chong, P. Lai, L. Hui, K. Pun, W. Tsang and H.
Chan, Digital Evidence Search Kit, Proceedings of the First Inter-
national Workshop on Systematic Approaches to Digital Forensic
Engineering, pp. 187–194, 2005.

[2] J. Feng, The implementation of Foxmail email converter by VC
platform, Computer Programming Skills and Maintenance, vol. 10,
pp. 45–46, 2003.

Yang, et al. 295

[3] Microsoft Corporation, Structured Storage, Redmond, Washington
(msdn.microsoft.com/en-us/library/aa380369(VS.85).aspx).

[4] QQ International, QQ, Shenzhen, China (im.qq.com).

[5] R. Rivest, The MD5 Message-Digest Algorithm, IETF RFC 1321,
1992.

[6] Y. Shi and Y. Zhang, IM system model based on MSNP protocol,
Computer Engineering and Applications, vol. 41(36), pp. 142-144,
2005

[7] R. Spillman, Classical and Contemporary Cryptology, Prentice-Hall,
Upper Saddle River, New Jersey, 2004.

[8] Tencent Holdings, Foxmail, Shenzhen, China (fox.foxmail.com.cn).

Chapter 21

DATA RECOVERY FUNCTION TESTING
FOR DIGITAL FORENSIC TOOLS

Yinghua Guo and Jill Slay

Abstract Many digital forensic tools used by investigators were not originally de-
signed for forensic applications. Even in the case of tools created with
the forensic process in mind, there is the issue of assuring their reliabil-
ity and dependability. Given the nature of investigations and the fact
that the data collected and analyzed by the tools must be presented
as evidence, it is important that digital forensic tools be validated and
verified before they are deployed. This paper engages a systematic de-
scription of the digital forensic discipline that is obtained by mapping
its fundamental functions. The function mapping is used to construct
a detailed function-oriented validation and verification framework for
digital forensic tools. This paper focuses on the data recovery function.
The data recovery requirements are specified and a reference set is pre-
sented to test forensic tools that implement the data recovery function.

Keywords: Digital forensic tools, validation, verification, data recovery

1. Introduction

Digital forensics is the process of identifying, preserving, analyzing
and presenting digital evidence in a manner that is acceptable in court-
room proceedings [5]. As identified in [1, 2], one of challenges in the
discipline is to ensure that the digital evidence acquired and analyzed
by investigative tools is forensically sound.

In our previous work [2], we proposed a function-oriented framework
for digital forensic tool validation and verification. The framework iden-
tified fundamental functions involved in digital forensic investigations
such as search, data recovery and forensic copying. A process called
“function mapping” was used to further identify the details of each func-
tion (e.g., sub-categories and components). The results enable the speci-

K.-P. Chow, S. Shenoi (Eds.): Advances in Digital ForensicsVI, IFIPAICT 337, pp. 297–311, 2010.
c© IFIP International Federation for Information Processing 2010

298 ADVANCES IN DIGITAL FORENSICS VI

fication of the requirements of each function and help develop a reference
set against which digital forensic tools may be tested.

Our previous work addressed the first task in creating a validation
and verification framework, i.e., the “search” function. This paper at-
tempts to address the second task – to complete the function mapping,
requirements specification and reference set development of the “data
recovery” function. The following sections review our function-oriented
validation and verification framework, present the details of the data
recovery function mapping, and describe a pilot reference set for testing
the data recovery function.

2. Validation and Verification Framework

Our validation and verification framework [2] is function-oriented and
incorporates detailed specifications that are absent in other work. The
methodology begins with a systematic description of the digital foren-
sic field using a formal model and function mapping. Digital forensic
components and processes are defined in this model and fundamental
functions in the investigative process such as searching, data preserva-
tion and file identification are specified (i.e., mapped). Having developed
the model and function mapping, the validation and verification of a dig-
ital forensic tool is accomplished by specifying its requirements for each
mapped function. Next, a reference set is developed comprising a test
case (or scenario) corresponding to each function requirement. The ref-
erence set enables the forensic tool and/or its functions to be validated
and verified independently.

This paper engages the CFSAP model [6] to describe the basic proce-
dures involved in a digital forensic investigation: identification, preser-
vation, analysis and presentation. In the context of validation and ver-
ification, identification and presentation are skill-based concepts. On
the other hand, preservation and analysis are predominantly process-,
function- and tool-driven concepts and are, therefore, subject to tool
validation and verification.

Beckett and Slay [1] have dissected the processes of preservation and
analysis into fundamental functions. Figure 1 presents a function cate-
gorization of validation and verification.

In this work, we attempt to complete the mapping of the functional
categories of the digital forensics discipline at a level of abstraction that
would serve the purposes of a specification for a software developer,
technical trainer or educator; or for tool validation or verification. In
particular, we detail the specification of function categories (e.g., search-
ing, data preservation and file rendering) and their sub-categories. Our

Guo & Slay 299

Validation and Verification

Data Analysis

Process Automation
Temporal Data
Processing
File Identification
Decryption
Data Recovery
File Rendering
Searching

Data Preservation

Media Sanitation
Write Protection
Verification
Forensic Copying

Figure 1. Validation and verification top-level mapping.

focus is on the data recovery function: mapping the function, specifying
its requirements and developing the reference set to validate and verify
tools that implement the data recovery function.

If the domain of digital forensic functions and the domain of expected
results (i.e., requirements of each function) are known, in other words,
the range and specification of the results are known, then the process of
validating a tool can be as simple as providing a set of references with
known results. When a tool is tested, a set of metrics can also be derived
to determine the fundamental scientific measurements of accuracy and
precision. In summary, if the discipline is mapped in terms of functions
(and their specifications) and, for each function, the expected results are
identified and mapped as a reference set, then any tool, regardless of its
original design intention, can be validated against known elements. As
claimed in [2], our function-oriented validation and verification regime
has several distinctive features such as detachability, extensibility, tool
version neutrality and transparency.

3. Data Recovery Function Mapping

Data recovery is generally regarded as the process of salvaging data
partially or completely from damaged, failed, corrupted or inaccessible
storage media. Recovery may be required due to physical damage to the
storage device or logical damage to the file system that prevents it from
being mounted by the host operating system.

A variety of failures can cause physical damage to storage media.
CD-ROMs can have their metallic substrate or dye layer scratched off;

300 ADVANCES IN DIGITAL FORENSICS VI

hard disks can suffer any of several mechanical failures; tapes can simply
break. The logical damage to the data may take the form of corrupt or
missing boot-related records (e.g., main boot record, disk partition table
and directories) or the loss of file signatures (e.g., header and footer).
Since our focus is on validating and verifying digital forensic tools in
terms of the data recovery function, the consideration of physical damage
recovery techniques is outside the scope of this paper and is considered to
be complementary to logical damage recovery techniques. Consequently,
in the rest of this paper, data recovery refers to logical damage recovery
unless otherwise stated.

Data recovery in the context of digital forensics has its own peculiar-
ities and differs from traditional data recovery in the computer science
discipline. First, data recovery in the digital forensic context is a pro-
cess by which digital evidence is recovered for use in court. Therefore,
it should be conducted by certified investigators, conform to standard
operating procedures, utilize tools that are validated and verified by the
appropriate authorities, and be supervised and documented. Traditional
data recovery does not have these requirements because its goal is to re-
cover as much data as possible without concern for its forensic soundness.
Second, the techniques used in traditional data recovery and in the dig-
ital forensic context differ because of the forensic soundness issue. For
example, in traditional data recovery, a corrupted main boot record may
be repaired by laying a FAT2 over a FAT1 if the FAT2 is intact. How-
ever, this is not an appropriate forensic data recovery technique because
the original evidence (FAT1) is modified. Instead, it would be necessary
to repair the corrupted main boot record in a duplicate (i.e., image).
Finally, forensic data recovery embraces a broader view of recovering
data than traditional data recovery and, consequently, must consider is-
sues (e.g., hidden data and trace data) that are beyond the purview of
traditional data recovery.

The data recovery function is mapped by detailing its components,
processes and relevant factors. Since the goal of data recovery is to re-
trieve data due to storage media abnormalities and/or intentional human
manipulation, the function mapping is performed from three angles: (i)
storage media; (ii) recovery object; and (iii) recovery reason. Figure 2
presents the top-level ontology of the data recovery function.

3.1 Storage Media

Data is typically stored as files on storage media. The files are man-
aged (i.e., created, modified and deleted) by file systems. In order to
perform data recovery effectively and efficiently, forensic investigators

Guo & Slay 301

Data Recovery

Recovery Reason
Hidden
Inaccessible

Recovery Object

Trace Data
Metadata
User Data
System Data

Storage Media

Remote
......
Internet
LAN/WLAN

Local
Semiconductor
Optical
Magnetic

Figure 2. Top-level data recovery function mapping.

need to understand the physical media as well as the logical structures
of files on the media.

Data recovery may be conducted locally (i.e., the storage media are
seized and are under the custody of the investigator) or remotely (i.e.,
the investigator uses a network to access the storage media).

From the physical (material) point of view, storage media can be
categorized as: magnetic, optical or semiconductor. The magnetic stor-
age media category includes hard drives, RAID arrays, floppy disks, zip
disks and tape drives (Figure 3). Typical hard drive types include ATA,
SATA, SCSI, IDS and USB. The file systems used include FAT (12, 16,
32), NTFS, HFS (HFS+) and EXT (2, 3, 4).

Typical optical storage media are CDs and DVDs (Figure 4). CD stor-
age media are in the form of CD-ROM, CD-R and CD-RW. Common
file systems for CD media are ISO-9660, UDF, Joliet, HFS and HSG.
DVD media include DVD-ROM, DVD-R(+R) and DVD-RW(+RW).
The principal file systems for DVD media are UDF and HFS.

The principal semiconductor-based storage media are RAM and ROM
(Figure 5). Flash memory, a type of EPROM (erasable programmable
read-only memory), is widely used in computers and electronic devices
and includes compact flash (CF) cards, smart media (SM) cards, secure
digital (SD) cards, memory sticks and USB flash drives. File systems
commonly used in flash memory include FFS, JFFS, LogFS and YAFS.

3.2 Reasons for Data Recovery

A data recovery method is used when data is unavailable. In the
context of digital forensics, data is unavailable and must be salvaged
for various reasons, including damage, corruption or hiding. From the

302 ADVANCES IN DIGITAL FORENSICS VI

Magnetic Media

Tape Drive
ZIP Disk
Floppy Disk

Swipe Card

ISO4909
ISO7813
ISO7811
ISO7810

RAID

RAID10
RAID5
RAID1
RAID0

External Hard Disk
Network Storage Device
2.5" Hard Drive
3.5" Hard Drive

Hard Drive

Type

USB
IDE
SCSI
SATA
ATA

File System

EXT (2, 3, 4)
HFS (HFS+)
NTFS
FAT (12, 16, 32)

Figure 3. Magnetic storage media category.

point of view of the user (e.g., investigator), we assume that the data is
unavailable because it is inaccessible or hidden. By inaccessible data, we
mean that the user is aware of the existence of the data, but is unable
to access it in a normal manner. On the other hand, hidden data is
invisible to the user and the user does not know of its existence.

Inaccessible Data “Orphaned” files are inaccessible to users under
normal operations. An orphaned file is one that no longer has a parent
(the parent is the folder in which it was originally located) [4]. The
term orphaned is a broad concept that includes deleted files. In most
cases, orphaned files are deleted files, but a file can be orphaned when
the association with its parent is lost through other means (e.g., by
removing a symbolic link in a Unix environment).

Ambient space (unallocated space) or space that is orphaned from
the operating system or file system has many forms. Data in such space
cannot be accessed by users under normal operations. For example, file
slack space is ambient or unallocated space that exists at the end of a file

Guo & Slay 303

Optical Media

DVD

Writing Technique
Session at Once (SAO)
Track at Once (TAO)
Disk at Once (DAO)

Type
DVD-RW (DVD+RW)
DVD-R (DVD+R)
DVD-ROM

File System
HFS (HFS+)
UDF

CD

Writing Technique
Session at Once (SAO)
Track at Once (TAO)
Disk at Once (DAO)

Type
CD-RW
CD-R
CD-ROM

File System

HSG
Red Book
HFS (HFS+)
Joliet
UDF
ISO-9660

Figure 4. Optical storage media category.

Semiconductor Media
ROM

EPROM

UVEPROM
EEPROM

Flash Memory

File System

......
YAFS
LogFS
JFFS
FFS

Logical Structure
NOR
NAND

Type

......
USB Flash Drive
Memory Stick
Micro SD Card
Mini SD Card
Secure Digital (SD) Card
Smart Media (SM) Card
Compact Flash (CF) Card

PROM
ROM

RAM
DRAM
SRAM

Figure 5. Semiconductor storage media category.

304 ADVANCES IN DIGITAL FORENSICS VI

Inaccessible Data

Encrypted

......
Password Protected
Encrypted Hard Drive
Encrypted File (e.g., Microsoft Office File)

Defective Data
Data Content Defect

Contiguous Data
Fragmented Data

Data Feature (e.g., Header) Defect

Boot/Directory Lost

......
DIR (Directory)
FAT (File Allocation Table)
BPB (BIOS Parameter Block)
OBR (OS Boot Record)
DPT (Disk Partition Table)
MBR (Main Boot Record)

Ambient Space
Disk Slack
Volume Slack
File Slack

Orphaned
......
Lost Association Symbolic Link
Deleted

Figure 6. Inaccessible data category.

in certain operating systems and can contain a variety of data, including
data dumped from RAM (RAM slack) or the remnants of previously-
allocated files that may have been orphaned and partially overwritten.

Data may also be inaccessible because its metadata is corrupted or
missing. The associated metadata includes MBR, DPT, OBR (operat-
ing system boot record), BPB (BIOS parameter block), FAT and DIR
(directory). In such scenarios, the file may not be located, but its data
is intact and, therefore, can be recovered by “file carving” [8].

Alternatively, a file can be located using metadata, but the data itself
cannot be accessed because it is defective. This can occur for two rea-
sons. One possibility is that the data feature (e.g., header or footer) is
damaged. A file header is a “signature” placed at the beginning of a file
to enable the operating system or application to know what to do with
the following contents. The file cannot be recognized when this feature
is damaged. The second possibility is that the data content is corrupted.
In this case, it is necessary to analyze the structural characteristics and
code of the damaged file to recover the data or portions of the data.

Finally, data may be inaccessible due to encryption and steganog-
raphy. Although an encrypted file is visible to users, its contents are
inaccessible without the key. Figure 6 summarizes the inaccessible data
category.

Guo & Slay 305

Hidden Data

Software-Based
Ambient Space

Disk Slack
Volume Slack
File Slack

Defective Space (Sector, Cluster)

Hardware-Based

Spare Area in Flash Memory
Booting Related Area (MBR, OBR, etc.)
Inter-Partition Space
UPA (Unused Partition Area)
DCO (Device Configuration Overlay)
HPA (Host Protected Area)

Figure 7. Hidden data category.

Hidden Data In the digital forensic context, it may be necessary to
recover data that has intentionally been hidden. Data hiding meth-
ods may be categorized as hardware-based or software-based (Figure 7).
Hardware-based methods hide data in specific areas of storage media.
For example, data on a hard disk may be stored in the HPA (host pro-
tected area), DCO (device configuration overlay), UPA (unused partition
area) and inter-partition space.

Software-based methods hide data using file system and/or operating
system utilities [3]. For example, modern hard disk controllers handle
bad sectors without the involvement of the operating system by slipping
(modifying the LBN (logical block number) to physical mapping to skip
the defective sector) or remapping (reallocating the LBN from a defective
area to a spare sector). For older hard disks that do not have this
capability, the operating system and file system have to retain the ability
to detect and mark defective sectors and clusters as damaged. This
feature can be used to exclude undamaged clusters from normal file
system activities and use them to hide data.

Software-based data hiding methods may also use ambient space.
Slack space, which includes file slack space, volume slack space and par-
tition slack space, are areas on the disk that cannot be used by the file
system because of the discrete nature of space allocation. Data can be
hidden in any of these locations.

3.3 Recovered Objects

File system data to be recovered belongs to one of four categories:
system data, user data, metadata and trace data.

System Data System data includes general hardware and software
information. Data recovery techniques include hardware rendering and
software (operating system and file system) rendering (Figure 8).

306 ADVANCES IN DIGITAL FORENSICS VI

System Data

File System Rendering
......
Volume Label Identification
Partition Identification

Operating System Rendering
......
Registry (Windows)
System/User Configuration Identification

Hardware Identification

Figure 8. System data.

Hardware rendering refers to the ability to accurately identify partic-
ular types of devices and media. This is accomplished through physical
interaction with the device or media or by using metadata located on
the device or media.

The goal of operating system or file system rendering is to reveal
the underlying structure. Operating systems and file systems have a
general structure, but each instance is unique. In addition, many of
these systems are proprietary in nature and, as a result, are poorly
documented (e.g., the detailed structure of NTFS has not been publicly
released). Operating system and file system rendering may specify where
certain structures are found and the data unit size that enables file
folders, data and metadata to be accurately retrieved. For example, the
volume label and the associated data are indicators of the method used
to create the allocated components of a device. Different file systems
record this information differently, so a digital forensic tool must be
able to render the volume label(s) from a device or partition.

User Data User data is the principal object of data recovery. User
data are categorized as document, graphic, sound or Internet files. Fig-
ure 9 presents the classification and provides typical instances of each
class. This classification is by no means exhaustive and will have to be
updated constantly to accommodate new applications and file formats.
Note that user data files may be in special forms (e.g., compressed and
encrypted), which should be taken into account by forensic examiners.

Metadata Metadata is data that describes data or files. It includes
data about where the file content is stored, file size, dates and times
of the last read and write, and access control information. Figure 10
presents examples of metadata in various storage and file systems. Meta-
data must be analyzed to determine details about a specific file or to
search for a file that meets certain requirements.

Guo & Slay 307

User Data

Internet

Chat ICQ, QQ, Yahoo, AOL, MSN, Skype, ...

Browser
Cookie
XML
HTML HTM, DHTML, XHTML

Email MIME, DBX, PST, MBX, Base64
Sound WAV, ASF, OGG, VOC, MID, MP3, MP4

Graphic

Image PCX, JPG, TIFF, EMF, PCD, PIC, PSP, ...

Video

MPEG
MOV

Quick Time
QTIF
QTI
QT

ANI
Motion JPG

Document

......
PostScript
LaTeX
Acrobat
WordPerfect

Microsoft

......
PPT
XLS
RTF
DOC (1.0---10.0)

Figure 9. User data.

Metadata

Flash Memory

DVD Descriptor Information
Disc Name
Writing Application Identifier
Timestamp

CD

Identification Information in Mirror Band
Directory Record

Descriptor Information
Writing Application Identifier
Disc Creation Data

Hard Drive

Directory
FAT (File Allocation Table)
BPB (BIOS Parameter Block)
OBR (OS Boot Record)
DPT (Disk Partition Table)
MBR (Main Boot Record)

Figure 10. Metadata.

Trace Data As mentioned above, data recovery in the digital forensic
context is a much broader concept than traditional data recovery. Trace
data is the data that remains on the storage media after operations

308 ADVANCES IN DIGITAL FORENSICS VI

Trace Data
Trace Data of File

Modification
Addition
Deletion

Trace Data of Format
Trace Data of Partition

Figure 11. Trace data.

such as hard drive partitioning, formatting and file deletion (Figure 11).
Trace data may not be substantial, but may constitute important digital
evidence. For example, file operations (e.g., creation, modification and
deletion) leave traces in the form of temporary files. Most temporary
files are deleted by the operating system after the file operations are
completed. However, if a temporary file is deleted, it contents can be
recovered if the clusters allocated to the file are not reallocated. Also,
even if the allocated clusters are reallocated, file metadata (e.g., name
and timestamp) may exist and may prove to be useful in a digital forensic
investigation.

4. Requirements Specification

Requirements specification is the second step of the validation and
verification framework. The data recovery function requirements are
specified in the same way as the search function requirements in [2].

The requirements are specified in an extensible and customized man-
ner. As seen in function mapping, several issues have to be considered
when specifying the requirements. For example, the storage media could
be a hard disk, CD/DVD, flash memory, etc. The file system that man-
ages data files on the storage media could be FAT12, FAT16, FAT32,
EXT2, EXT3, NTFS, HFS(+), FFS, etc. The data could be inaccessible
for any number of reasons; it could be orphaned, corrupted, encrypted,
etc. Each of these sub-categories again has many variations.

The method of specifying requirements is highly abstract and gener-
alized. We use italicized “variables” to reflect these variations. Thus,
when a requirement has to be changed, it is only necessary to adjust
(add, delete or modify) the variables. Moreover, the requirements can
be unwrapped when it is necessary to develop a specific test scenario in
a reference set. For example, the requirement: “The tool shall be able
to accurately recover inaccessible recovery objects” may be unwrapped
and instantiated as “The tool shall be able to accurately recover deleted
JPG files” or “The tool shall be able to accurately recover hidden data
in file slack.”

Guo & Slay 309

A digital forensic tool has the following eight requirements with re-
spect to the data recovery function:

The tool shall operate in at least one operational environment.

The tool shall operate under at least one operating system.

The tool shall operate on at least one type of storage media.

The tool shall be able to accurately render system data.

The tool shall be able to accurately recover inaccessible (recovery)
objects.

The tool shall be able to accurately recover hidden (recovery) ob-
jects.

If there are unresolved errors when reconstructing data, then the
tool shall report the error types and error locations.

The tool shall report the attributes of the recovered data.

5. Reference Set Development and Testing

A reference set consists of test scenarios (cases) against which a digital
forensic tool or its individual function is validated. The development
of test scenarios is based on the specification of function requirements.
Using the requirements specification, it is possible to establish a reference
set for testing the data recovery function of various digital forensic tools.
Since the function requirements are specified in an extensible manner,
the corresponding reference set is also extensible. This would enable
practitioners, tool developers and researchers to identify critical needs
and to target deterministic reference sets.

We have identified eight requirements for the data recovery function.
Since each requirement has several variables, multiple test scenarios have
to be designed for each requirement. Each scenario represents a single
instantiation of each variable. The following are some pilot samples of
the reference set for the data recovery function:

A deleted JPG file in a FAT32 file system on an IDE hard disk.

A deleted JPG file in an NTFS file system on a SCSI hard disk.

A deleted WAV file in a UDF file system on a CD.

A deleted Microsoft Word file in an FFS file system on flash mem-
ory.

310 ADVANCES IN DIGITAL FORENSICS VI

A deleted compressed HTML file in an NTFS file system on an
IDE hard disk.

An encrypted MP3 file in a FAT32 file system on an ATA hard
disk.

Thus far, we have completed the function mapping, requirements spec-
ification and reference set development. We now know what needs to
be tested and what the expectations are. Validating a digital forensic
tool that professes to have a search function is now as simple as testing
the tool against the reference set and applying metrics (accuracy and
precision) to determine the quality of the results.

6. Conclusions

Mapping the fundamental functions of the digital forensic discipline
is a powerful approach for creating a function-oriented validation and
verification paradigm for digital forensic tools. The utility of the ap-
proach is demonstrated in the context of the data recovery function via
the specification of data recovery requirements and a reference set for
testing tools that implement the data recovery function. Validating a
digital forensic tool is reduced to testing the tool against the reference
set. Compared with traditional testing methods, this testing paradigm
is extensible, and neutral and transparent to specific tools and tool ver-
sions.

More work remains to be done to complete the validation paradigm.
Although the methodology holds promise, it needs to be tested exten-
sively to evaluate its utility and identify potential weaknesses and short-
comings. Tests would have to be implemented against popular tools such
as EnCase and FTK. A quantitative model is also required to evaluate
the results of validation and verification. Metrics are needed to mea-
sure the accuracy and precision of testing results, and it is necessary to
specify rules for judging the validity of digital forensic tools. Is a tool
validated only when it passes all the test cases? Or is a tool validated
when it passes the test cases for certain scenarios?

It is important to recognize that numerous variables are involved in
function requirements specification and that the corresponding reference
set can be very large. Indeed, the number of possible combinations for
validating a single function in a digital forensic tool may well be in the
thousands (even discounting the different versions of the tool). Interest-
ingly, this problem is also faced by the Computer Forensics Tool Testing
(CFTT) Program [7] created by the National Institute of Standards and
Technology (NIST) to validate and verify digital forensic tools. This
problem will be examined in our future work.

Guo & Slay 311

References

[1] J. Beckett and J. Slay, Digital forensics: Validation and verification
in a dynamic work environment, Proceedings of the Fortieth Annual
Hawaii International Conference on System Sciences, p. 266, 2007.

[2] Y. Guo, J. Slay and J. Beckett, Validation and verification of com-
puter forensic software tools – Searching function, Digital Investi-
gation, vol. 6(S1), pp. S12–S22, 2009.

[3] E. Huebner, D. Bem and C. Wee, Data hiding in the NTFS file
system, Digital Investigation, vol. 3(4), pp. 211–226, 2006.

[4] D. Hurlbut, Orphans in the NTFS world, AccessData, Lindon, Utah
(www.accessdata.com/media/en US/print/papers/wp.NT Orphan
Files.en us.pdf), 2005.

[5] R. McKemmish, What is forensic computing? Trends and Issues in
Crime and Criminal Justice, no. 118 (www.aic.gov.au/publications
/tandi/ti118.pdf), 2002.

[6] G. Mohay, A. Anderson, B. Collie, O. de Vel and R. McKemmish,
Computer and Intrusion Forensics, Artech House, Norwood, Mas-
sachusetts, 2003.

[7] National Institute of Standards and Technology, Computer Foren-
sics Tool Testing Program, Gaithersburg, Maryland (www.cftt.nist
.gov).

[8] A. Pal and N. Memon, The evolution of file carving, IEEE Signal
Processing, vol. 26(2), pp. 59–71, 2009.

	Title Pages
	Contents
	Contributing Authors
	Preface
	Part I: Themes and Issues
	A History of Digital Forensics
	Introduction
	Epochs and Lenses
	Pre-History
	Infancy (1985-1995)
	Childhood (1995-2005)
	Adolescence (2005-2010)
	The Future
	Conclusions
	References

	Toward a Science of Digital Forensic Evidence Examination
	Introduction
	The Call for Science in Forensics
	Proposing a Science
	State of the Science
	Toward a Normal Science
	Conclusions
	References

	Using a Local Search Warrant to Acquire Evidence Stored Overseas via the Internet
	Introduction
	Crime Scene
	Scenario 1
	Scenario 2
	Two Solutions
	Conclusions
	References

	An Analysis of the Green Dam Youth Escort Software
	Introduction
	Background
	Related Work
	GDYE Analysis
	Conclusions
	References

	Part II: Forensic Techniques
	Forensic Analysis of a Playstation 3 Console
	Introduction
	PlayStation 3 Architecture
	Impediments to Forensic Analysis
	Test Methodology
	Evidence Recovery Procedure
	Conclusions
	References

	A Consistency Study of the Windows Registry
	Introduction
	Related Research
	Consistency Checking Method
	Conclusions
	Acknowledgements
	References

	Forensic Tracking and Mobility Prediction in Vehicular Networks
	Introduction
	Related Work
	Vehicular Networks
	Mobility in Vehicular Networks
	Vehicle Localization
	Mobility Prediction
	Tracking
	Simulation Results
	Conclusions
	References

	A Forensic Readiness Model for Wireless Networks
	Introduction
	Wireless Local Area Networks
	Wireless Forensic Readiness Model
	WFRM Simulation
	Discussion
	Conclusions
	References

	Part III: Internet Crime Investigations
	Evaluation of Evidence in Internet Auction Fraud Investigations
	Introduction
	Background and Related Work
	Internet Auction Fraud in Hong Kong
	Investigative Model
	Conclusions
	Acknowledgements
	References

	Detecting Ponzi and Pyramid Business Schemes in Choreographed Web Services
	Introduction
	Evidence Generation Framework
	Evidence of Observed Interactions
	Evidence of Global Misuse
	Detecting Global Misuse
	Generating Comprehensive Evidence
	Experimental Validation
	Conclusions
	References

	Identifying First Seeders in Foxy Peer-to-Peer Networks
	Introduction
	Background
	Simulation Experiments
	Simulation Results
	Seeder Identification Rules
	Conclusions
	References

	Uncertainty in Live Forensics
	Introduction
	Background
	Measuring Uncertainty in Digital Forensics
	Experimental Setup
	Experimental Results
	Conclusions
	References

	Part IV: Live Forensics
	Identifying Volatile Data from Multiple Memory Dumps in Live Forensics
	Introduction
	Related Work
	Methodology
	Experimental Results
	Conclusions
	References

	A Compiled Memory Analysis Tool
	Introduction
	Background
	Compiled Memory Analysis Tool
	Test Methodology
	Test Results
	Conclusions
	References

	Part V: Advanced Forensic Techniques
	Data Fingerprinting with Similarity Digests
	Introduction
	Related Work
	Fuzzy Hashing
	Implementation
	Cross-Set Fragment Detection Experiments
	Conclusions
	References

	Refining Evidence Containers for Provenance and Accurate Data Representation
	Introduction
	Ideal Evidence Container
	Current State of Evidence Containers
	AFF4 Data and Information Models
	AFF4 Naming Scheme
	Refining the AFF4 Information Model
	Provenance of Information
	Authentication and Non-Repudiation
	AFF4 Data Model
	Refining the AFF4 Data Model
	Representing Data Patterns
	Conclusions
	References

	Virtual Expansion of Rainbow Tables
	Introduction
	Related Work
	Rainbow Table Method
	Virtual Expansion of Rainbow Tables Method
	Theoretical Analysis
	Experimental Results
	Conclusions
	References

	Digital Watermarking of Virtual Machine Images
	Introduction
	Basic Concepts
	Design and Implementation
	Experimental Setup and Results
	Conclusions
	References

	A Visualization System for Analyzing Information Leakage
	Introduction
	Related Work
	Visualization System
	CROWS Up Viewer
	Experimental Results
	Conclusions
	References

	Part VI: Forensic Tools
	Forensic Analysis of Popular Chinese Internet Applications
	Introduction
	QQ Forensic Analysis
	MSN Forensic Analysis
	Foxmail Forensic Analysis
	Case Study
	Conclusions
	References

	Data Recovery Function Testing for Digital Forensic Tools
	Introduction
	Validation and Verification Framework
	Data Recovery Function Mapping
	Requirements Specification
	Reference Set Development and Testing
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

