

Lecture Notes in Computer Science 6345
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Dimitris Gritzalis Bart Preneel
Marianthi Theoharidou (Eds.)

Computer Security –
ESORICS 2010

15th European Symposium on Research in Computer Security
Athens, Greece, September 20-22, 2010
Proceedings

13

Volume Editors

Dimitris Gritzalis
Marianthi Theoharidou
Athens University of Economics and Business
Information Security and Critical Infrastructure Protection Research Group
Department of Informatics
76 Patission Ave., Athens, 10434, Greece
E-mail:{dgrit, mtheohar}@aueb.gr

Bart Preneel
Katholieke Universiteit Leuven
Department of Electrical Engineering-ESAT/COSIC
Kasteelpark Arenberg 10, Bus 2446, 3001 Leuven, Belgium
E-mail: bart.preneel@esat.kuleuven.be

Library of Congress Control Number: 2010933238

CR Subject Classification (1998): C.2, K.6.5, D.4.6, E.3, H.4, J.1

LNCS Sublibrary: SL 4 – Security and Cryptology

ISSN 0302-9743
ISBN-10 3-642-15496-4 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-15496-6 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2010
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper 06/3180

Preface

The European Symposium on Research in Computer Security (ESORICS) has a
tradition that goes back two decades. It tries to bring together the international
research community in a top-quality event that covers all the areas of computer
security, ranging from theory to applications.

ESORICS 2010 was the 15th edition of the event. It was held in Athens,
Greece, September 20-22, 2010. The conference received 201 submissions. The
papers went through a careful review process. In a first round, each paper re-
ceived three independent reviews. For the majority of the papers an electronic
discussion was also organized to arrive at the final decision. As a result of the
review process, 42 papers were selected for the final program, resulting in an ac-
ceptance rate of as low as 21%. The authors of accepted papers were requested
to revise their papers, based on the comments received. The program was com-
pleted with an invited talk by Udo Helmbrecht, Executive Director of ENISA
(European Network and Information Security Agency).

ESORICS 2010 was organized under the aegis of three Ministries of the Gov-
ernment of Greece, namely: (a) the Ministry of Infrastructure, Transport, and
Networks, (b) the General Secretariat for Information Systems of the Ministry
of Economy and Finance, and (c) the General Secretariat for e-Governance of
the Ministry of Interior, Decentralization, and e-Government.

First and foremost, we would like to thank the members of the Program
Committee for their extensive efforts both during the review and the discussion
phase. Our task would not have been feasible without their collective knowledge
and wisdom. We would also like to express our thanks to the numerous external
reviewers for their contributions.

We are indebted to Sokratis Katsikas—our General Chair—for his kind en-
couragement, as well as to Nikos Kyrloglou—our Organizing Committee Co-
chair—for his continuous support. Our appreciation goes to Triaena Tours &
Congress S.A., our local organizer and official travel agent, for our fruitful co-
operation.

Last, but not least, we are sincerely grateful to our sponsor, Vodafone S.A.,
as well as to our supporters (in alphabetical order) Adacom S.A., Encode S.A.,
Ernst & Young S.A., Quality & Reliability S.A., and Unisystems S.A. for their
kind and generous support.

Finally, we would like to thank the submitters, authors, presenters, and par-
ticipants who, all together, made ESORICS 2010 a great success.

We hope that the papers in this volume can help you with your research and
professional activities, and serve as a source of inspiration during the difficult
but fascinating route towards an on-line world with adequate security.

September 2010 Dimitris Gritzalis
Bart Preneel

Marianthi Theoharidou

Organization

General Chair

Sokratis Katsikas University of Piraeus (Greece)

Program Committee Chairs

Dimitris Gritzalis Athens University of Economics and Business
(Greece)

Bart Preneel K. U. Leuven (Belgium)

Organizing Committee Chairs

Nikolaos Kyrloglou Athens Chamber of Commerce and Industry
(Greece)

Marianthi Theoharidou Athens University of Economics and Business
(Greece)

Publicity Chair

Sara Foresti Università degli Studi di Milano (Italy)

Program Committee

Vijay Atluri Rutgers University (USA)
Michael Backes Saarland University and MPI-SWS (Germany)
Feng Bao Institute for Infocomm Research (Singapore)
Joachim Biskup University of Dortmund (Germany)
Carlo Blundo Università di Salerno (Italy)
Xavier Boyen Stanford University (USA)
Jan Camenisch IBM Research Zurich (Switzerland)
Srdjan Capkun ETH Zurich (Switzerland)
Richard Clayton Cambridge University (UK)
Véronique Cortie LORIA-CNRS (France)
Frédéric Cuppens TELECOM Bretagne (France)
George Danezis Microsoft Research (UK)
Sabrina de Capitani Università degli Studi di Milano (Italy)

di Vimercati
Claudia Diaz K.U. Leuven (Belgium)
Simon Foley University College Cork (Ireland)
Cédric Fournet Microsoft Research (UK)

VIII Organization

Deborah Frincke Pacific Northwest National Laboratory (USA)
Dieter Gollmann Hamburg University of Technology

(Germany)
Thorsten Holz Vienna University of Technology (Austria)
Bart Jacobs University of Nijmengen (The Netherlands)
Sushil Jajodia George Mason University (USA)
Tom Karygiannis NIST (USA)
Stefan Katzenbeisser T.U. Darmstadt (Germany)
Dogan Kesdogan University of Siegen (Germany)
Aggelos Kiayias University of Athens (Greece)
Michiharu Kudo IBM Tokyo Research Laboratory (Japan)
Klaus Kursawe Philips Research (The Netherlands)
Costas Lambrinoudakis University of Piraeus (Greece)
Wenke Lee Georgia Institute of Technology (USA)
Javier Lopez University of Malaga (Spain)
Ioannis Mavridis University of Macedonia (Greece)
Chris Mitchell University of London (UK)
John Mitchell Stanford University (USA)
Radia Perlman Intel Corporation (USA)
Andreas Pfitzmann T.U. Dresden (Germany)
Benny Pinkas University of Haifa (Israel)
Michael Reiter University of North Carolina (USA)
Peter Ryan University of Luxembourg (Luxembourg)
Rei Safavi-Naini University of Calgary (Canada)
Pierangela Samarati Universitá degli studi Milano (Italy)
Einar Snekkenes Gjovik University College (Norway)
George Spanoudakis City University London (UK)
Ioannis Stamatiou University of Ioannina (Greece)
Paul Syverson Naval Research Laboratory (USA)
Bill Tsoumas Athens University of Economics and Business

(Greece)
Michael Waidner IBM T.J. Watson Research Center (USA)
Dirk Westhoff HAW Hamburg (Germany)

Additional Reviewers

Agudo, Isaac
Ahmadi, Hadi
Alcaraz, Cristina
Anderson, Jonathan
Autrel, Fabien
Barati, Masoud
Batina, Lejla
Ben Ghorbel, Meriam
Bonneau, Joseph

Brinkman, Richard
Buttyan, Levente
Chada, Rohit
Chadha, Rohit
Chan, Haowen
Chase, Melissa
Chen, Liqun
Chenette, Nathan
Clarkson, Michael

Clauß, Sebastian
Cuppens-Boulahia, Nora
D’ Arco, Paolo
De Caro, Angelo
Deursen, van, Ton
Dobias, Jaromir
Doets, Peter Jan
Dritsas, Stelios
Drogkaris, Prokopis

Organization IX

Fan, Junfeng
Fernandez-Gago,

Carmen
Fitzgerald, William
Gagne, Marin
Galindo, David
Garcia, Flavio
Garcia-Alfaro, Joaquin
Geneiatakis, Dimitris
Gierlichs, Benedikt
Gouglidis, Antonios
Gregoire, Benjamin
Hartog, den, Jerry
Hermans, Jens
Hoepman, Jaap-Henk
Hoffman, Johannes
Iovino, Vincenzo
Jarrous, Ayman
Jonker, Hugo
Köpsell, Stefan
Kellermann, Benjamin
Kirchner, Matthias
Konstantinou, Elisavet
Kontogiannis, Spyros

Laud, Peeter
Leh, Hoi
Li, Jiangtao
Li, Peng
Lochner, Jan Hendrik
Maes, Roel
Maffei, Matteo
Meier, Michael
Moran, Tal
Mostowski, Wojciech
Murdoch, Steven
Najera, Pablo
Narayan,

Shivaramakrishnan
Nastou, Panayiotis
Nieto, Ana
Onieva, Jose A.
Oostendorp, Thom
Papagiannakopoulos,

Panagiotis
Paskin-Cherniavsky,

Anat
Poll, Erik
Reinman, Tzachy

Rekleitis, Evangelos
Rial, Alfredo
Rizomiliotis, Panagiotis
Roman, Rodrigo
Safa, Nashad Ahmad
Scafuro, Alessandra
Schiffner, Stefan
Shahandashti, Siamak
Song, Boyeon
Steel, Graham
Traore, Jacques
Troncoso, Carmela
Tuhin, Ashraful
Valeontis, Eytyhios
Vavitsas, Giorgos
Vercauteren, Frederik
Vergnaud, Damien
Visconti, Ivan
Vivas, Jose L.
Vrakas, Nikos
Wang, Pengwei
Yoshihama, Sachiko

Table of Contents

RFID and Privacy

A New Framework for RFID Privacy . 1
Robert H. Deng, Yingjiu Li, Moti Yung, and Yunlei Zhao

Readers Behaving Badly: Reader Revocation in PKI-Based RFID
Systems . 19

Rishab Nithyanand, Gene Tsudik, and Ersin Uzun

Privacy-Preserving, Taxable Bank Accounts . 37
Elli Androulaki, Binh Vo, and Steven Bellovin

Formal Analysis of Privacy for Vehicular Mix-Zones 55
Morten Dahl, Stéphanie Delaune, and Graham Steel

Software Security

IntPatch: Automatically Fix Integer-Overflow-to-Buffer-Overflow
Vulnerability at Compile-Time . 71

Chao Zhang, Tielei Wang, Tao Wei, Yu Chen, and Wei Zou

A Theory of Runtime Enforcement, with Results . 87
Jay Ligatti and Srikar Reddy

Enforcing Secure Object Initialization in Java . 101
Laurent Hubert, Thomas Jensen, Vincent Monfort, and
David Pichardie

Flexible Scheduler-Independent Security . 116
Heiko Mantel and Henning Sudbrock

Cryptographic Protocols

Secure Multiparty Linear Programming Using Fixed-Point
Arithmetic . 134

Octavian Catrina and Sebastiaan de Hoogh

A Certifying Compiler for Zero-Knowledge Proofs of Knowledge Based
on Σ-Protocols . 151

José Bacelar Almeida, Endre Bangerter, Manuel Barbosa,
Stephan Krenn, Ahmad-Reza Sadeghi, and Thomas Schneider

XII Table of Contents

Short Generic Transformation to Strongly Unforgeable Signature in the
Standard Model . 168

Joseph K. Liu, Man Ho Au, Willy Susilo, and Jianying Zhou

DR@FT: Efficient Remote Attestation Framework for Dynamic
Systems . 182

Wenjuan Xu, Gail-Joon Ahn, Hongxin Hu, Xinwen Zhang, and
Jean-Pierre Seifert

Traffic Analysis

Website Fingerprinting and Identification Using Ordered Feature
Sequences . 199

Liming Lu, Ee-Chien Chang, and Mun Choon Chan

Web Browser History Detection as a Real-World Privacy Threat 215
Artur Janc and Lukasz Olejnik

On the Secrecy of Spread-Spectrum Flow Watermarks 232
Xiapu Luo, Junjie Zhang, Roberto Perdisci, and Wenke Lee

Traffic Analysis against Low-Latency Anonymity Networks Using
Available Bandwidth Estimation . 249

Sambuddho Chakravarty, Angelos Stavrou, and Angelos D. Keromytis

End-User Security

A Hierarchical Adaptive Probabilistic Approach for Zero Hour Phish
Detection . 268

Guang Xiang, Bryan A. Pendleton, Jason Hong, and
Carolyn P. Rose

Kamouflage: Loss-Resistant Password Management 286
Hristo Bojinov, Elie Bursztein, Xavier Boyen, and Dan Boneh

Formal Analysis

Sequential Protocol Composition in Maude-NPA . 303
Santiago Escobar, Catherine Meadows, José Meseguer, and
Sonia Santiago

Verifying Security Property of Peer-to-Peer Systems Using CSP 319
Tien Tuan Anh Dinh and Mark Ryan

Modeling and Analyzing Security in the Presence of Compromising
Adversaries . 340

David Basin and Cas Cremers

Table of Contents XIII

On Bounding Problems of Quantitative Information Flow 357
Hirotoshi Yasuoka and Tachio Terauchi

E-voting and Broadcast

On E-Vote Integrity in the Case of Malicious Voter Computers 373
Sven Heiberg, Helger Lipmaa, and Filip van Laenen

Election Verifiability in Electronic Voting Protocols 389
Steve Kremer, Mark Ryan, and Ben Smyth

Pretty Good Democracy for More Expressive Voting Schemes 405
James Heather, Peter Y.A. Ryan, and Vanessa Teague

Efficient Multi-dimensional Key Management in Broadcast Services 424
Marina Blanton and Keith B. Frikken

Authentication, Access Control, Authorization and
Attestation

Caught in the Maze of Security Standards . 441
Jan Meier and Dieter Gollmann

User-Role Reachability Analysis of Evolving Administrative Role Based
Access Control . 455

Mikhail I. Gofman, Ruiqi Luo, and Ping Yang

An Authorization Framework Resilient to Policy Evaluation Failures . . . 472
Jason Crampton and Michael Huth

Optimistic Fair Exchange with Multiple Arbiters . 488
Alptekin Küpçü and Anna Lysyanskaya

Anonymity and Unlinkability

Speaker Recognition in Encrypted Voice Streams . 508
Michael Backes, Goran Doychev, Markus Dürmuth, and Boris Köpf

Evaluating Adversarial Partitions . 524
Andreas Pashalidis and Stefan Schiffner

Providing Mobile Users’ Anonymity in Hybrid Networks 540
Claudio A. Ardagna, Sushil Jajodia, Pierangela Samarati, and
Angelos Stavrou

Complexity of Anonymity for Security Protocols . 558
Ferucio Laurenţiu Ţiplea, Loredana Vamanu, and Cosmin Vârlan

XIV Table of Contents

Network Security and Economics

k -Zero Day Safety: Measuring the Security Risk of Networks against
Unknown Attacks . 573

Lingyu Wang, Sushil Jajodia, Anoop Singhal, and Steven Noel

Are Security Experts Useful? Bayesian Nash Equilibria for Network
Security Games with Limited Information . 588

Benjamin Johnson, Jens Grossklags, Nicolas Christin, and
John Chuang

RatFish: A File Sharing Protocol Provably Secure against Rational
Users . 607

Michael Backes, Oana Ciobotaru, and Anton Krohmer

A Service Dependency Model for Cost-Sensitive Intrusion Response 626
Nizar Kheir, Nora Cuppens-Boulahia, Frédéric Cuppens, and
Hervé Debar

Secure Update, DOS and Intrustion Detection

Secure Code Update for Embedded Devices via Proofs of Secure
Erasure . 643

Daniele Perito and Gene Tsudik

D(e|i)aling with VoIP: Robust Prevention of DIAL Attacks 663
Alexandros Kapravelos, Iasonas Polakis, Elias Athanasopoulos,
Sotiris Ioannidis, and Evangelos P. Markatos

Low-Cost Client Puzzles Based on Modular Exponentiation 679
Ghassan O. Karame and Srdjan Čapkun

Expressive, Efficient and Obfuscation Resilient Behavior Based IDS 698
Arnur G. Tokhtabayev, Victor A. Skormin, and Andrey M. Dolgikh

Author Index . 717

A New Framework for RFID Privacy�

Robert H. Deng1, Yingjiu Li1, Moti Yung2, and Yunlei Zhao3,��

1 Singapore Management University
2 Google Inc. and Columbia University
3 Software School, Fudan University

ylzhao@fudan.edu.cn

Abstract. Formal RFID security and privacy frameworks are fundamental to the
design and analysis of robust RFID systems. In this paper, we develop a new
definitional framework for RFID privacy in a rigorous and precise manner. Our
framework is based on a zero-knowledge (ZK) formulation [8,6] and incorpo-
rates the notions of adaptive completeness and mutual authentication. We provide
meticulous justification of the new framework and contrast it with existing ones in
the literature. In particular, we prove that our framework is strictly stronger than
the ind-privacy model of [18], which answers an open question posed in [18] for
developing stronger RFID privacy models. We also clarify certain confusions and
rectify several defects in the existing frameworks. Finally, based on the protocol
of [20], we propose an efficient RFID mutual authentication protocol and analyze
its security and privacy. The methodology used in our analysis can also be applied
to analyze other RFID protocols within the new framework.

1 Introduction

Radio Frequency IDentification (RFID) tags are low-cost electronic devices, from which
the stored information can be collected by an RFID reader efficiently (from tens to hun-
dreds of tags per second) at a distance (from several centimeters to several meters)
without the line of sight [25]. RFID technology has been widely used in numerous ap-
plications, ranging from manufacturing, logistics, transportation, warehouse inventory
control, supermarket checkout counters, to many emerging applications [1]. As a key
component of future ubiquitous computing environment, however, RFID technology
has triggered significant concerns on its security and privacy as a tag’s information can
be read or traced by malicious readers from a distance without its owner’s awareness
[18,13,15,19,5,14].

It is critical to investigate formal RFID security and privacy frameworks that are fun-
damental to the design and analysis of robust RFID systems [18,3,26,23,10,21,20,22].

� The first author and the second author’s work is partly supported by A*Star SERC Grant No.
082 101 0022 in Singapore. The first author’s work is also partly supported by the Office of
Research at Singapore Management University. The fourth author’s work is partly supported
by a grant from the Major State Basic Research Development (973) Program of China (No.
2007CB807901) and a grant from the National Natural Science Foundation of China NSFC
(No. 60703091) and the QiMingXing Program of Shanghai.

�� Contact author.

D. Gritzalis, B. Preneel, and M. Theoharidou (Eds.): ESORICS 2010, LNCS 6345, pp. 1–18, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

2 R.H. Deng et al.

However, due to high system complexity, it turns out to be full of subtleties in develop-
ing rigorous and precise RFID system models. By examining the existing RFID system
models, in this paper we develop a new definitional framework for RFID security and
privacy in a rigorous and precise manner. Our framework is based on a zero-knowledge
formulation [8,6], and incorporates the notions of adaptive completeness and mutual au-
thentication. Compared to existing frameworks, our framework is more practical than
those of [10,20], and is stronger in terms of privacy than those of [18,3]. Along the way,
we also clarify certain confusions and rectify several defects in the existing frameworks.

To show how this new framework can be applied, we design an efficient RFID mutual
authentication protocol based on the RFID protocol of [20] and analyze its security and
privacy. The methodology used in our analysis is of independent interest and can be
applied to analyze other RFID protocols within the new framework.

2 Preliminaries

If A(·, ·, ...) is a randomized algorithm, then y ← A(x1, x2, ...; ρ) means that y is
assigned with the unique output of the algorithm A on inputs x1, x2, ... and coins ρ,
while y←A(x1, x2, ...) is a shorthand for first picking ρ at random and then setting
y ← A(x1, x2, ...; ρ). Let y ← AO1,...,On(x1, x2, ...) denote that y is assigned with the
output of the algorithm A which takes x1, x2, ... as inputs and has oracle accesses to
O1, ..., On. If S is a set, then s ∈R S indicates that s is chosen uniformly at random
from S. If x1, x2, ... are strings, then x1||x2|| · · · denotes the concatenation of them. If
x is a string, then |x| denotes its bit length in binary code. If S is a set, then |S| denotes
its cardinality (i.e. the number of elements of S). Let Pr[E] denote the probability that
an event E occurs,N denote the set of all integers,R denote the set of all real numbers.

A function f : N → R is said to be negligible if for every c > 0 there exits a number
m ∈ N such that f(n) < 1

nc holds for all n > m.
Given a security parameter κ, let m(·) and l(·) be two positive polynomials in κ. We

say that {Fk : {0, 1}m(κ) −→ {0, 1}l(κ)}k∈R{0,1}κ is a pseudorandom function (PRF)
ensemble according to the definition given in [7].

3 Model of RFID Systems

In this section, we first give a formal description of RFID system setting and adversary.
We then define RFID systems to be “complete” in term of adaptive completeness, and
“sound” in terms of mutual authentication.

3.1 RFID System Setting

Consider an RFID system comprising of a single legitimate reader R and a set of � tags
T = {T1, ..., T�}, where � is a polynomial in a security parameter κ. The reader and the
tags are probabilistic polynomial time (PPT) interactive Turing machines. The RFID
system (R, T) is setup by a procedure, denoted Setup(κ, �). Specifically, on (κ, �), this
setup procedure generates the public system parameter σR, the reader secret-key kR

A New Framework for RFID Privacy 3

and initial internal state s1
R (if needed) for R. It may also setup an initial database DB1

for R to store necessary information for identifying and authenticating tags. For each i,
1 ≤ i ≤ �, this procedure generates the public parameter ξTi and the initial secret-key
k1
Ti

for a tag Ti and sets the tag’s initial internal state s1
Ti

(typically, s1
Ti

includes the
public parameters σR, ξTi). It may also associate the tag Ti with its unique ID, as well
as other necessary information such as tag key and/or tag state information, as a record
in the initial database DB1 of R. Note that ξTi or/and s1

Ti
can be empty strings.

We use para = (σR, ξ1, · · · , ξ�) to denote the public system parameters. We assume
that in the RFID system, the reader is secure; in other words, the legitimate reader is a
“black-box” to an adversary.

A tag Ti, 1 ≤ i ≤ �, exchanges messages with the reader R through a protocol
π(R, Ti). Without loss of generality, we assume the protocol run of π is always initiated
by R and π consists of 2γ + 1 rounds for some γ ≥ 1. Each protocol run of π is called
a session. We assume each tag interacts with the reader sequentially, but multiple tags
can interact with the reader “concurrently” (with some anti-collision protocols [27]). To
allow and distinguish concurrent sessions (at the side of the reader R), we associate each
session of protocol π with a unique session identifier sid. In practice, sid is typically
generated by the reader when it is invoked to send the first-round message. We assume
each message from a tag to the reader always bears the corresponding session-identifier.

Each tag Ti, as well as the reader R, uses fresh and independent random coins (gen-
erated on the fly) in each session, in case it is an randomized algorithm. We assume that
the random coins used in each session are erased once the session is completed (whether
successfully finished or aborted). Also, in each session run, the tag may update its inter-
nal state and secret-key, and the reader may update its internal state and database. We
assume that the update process of new internal state and secret-key by an uncorrupted
tag automatically overwrites (i.e., erases) its old internal state and secret-key.

Given a security parameter κ, we assume that each tag Ti takes part in at most s
(sequential) sessions in its life time with R, and thus R involves at most s� sessions,
where s is some polynomial in κ. In practice, the value s can be a fixed constant (e.g.,
s = 228 [1]).

More precisely, for the j-th session (ordered by the session initiation time) where
1 ≤ j ≤ s�, the reader R takes the input from the system parameters para, its secret-key
kR, current internal state sj

R, database DBj , random coins ρj
R, and a partial transcript

T , where T is either an empty string (which indicates the starting of a new session)
or a sequence of messages (sid, c1, α1, c2, α2, · · · , cu, αu), 1 ≤ u ≤ γ (which indi-
cates the on-going of session sid). The reader R outputs the next message cu+1. In the
case of T = (sid, c1, α1, c2, α2, · · · , cγ , αγ), besides sending back the last-round mes-
sage cγ+1, the reader R also updates its internal state to sj+1

R , its database to DBj+1,
and stops the session by additionally outputting a bit, denoted by osid

R . This output bit
indicates either acceptance (osid

R = 1) or rejection (osid
R = 0) of the current session.

Without loss of generality, we assume that the j-th session run by the reader R cor-
responds to the v-th session (of session-identifier sid) run by tag Ti, where 1 ≤ v ≤ s
and 1 ≤ i ≤ �. In this session, Ti takes the input from the system parameters para,
its current secret-key kv

Ti
, current internal state sv

Ti
, random coins ρv

Ti
, and a partial

transcript T = (sid, c1, α1, · · · , αu−1, cu), where 1 ≤ u ≤ γ. The tag Ti outputs the

4 R.H. Deng et al.

next message (sid, αu). In the case of T = (sid, c1, α1, · · · , cγ , αγ , cγ+1) (i.e., Ti has
received the last-round message of the session sid), Ti updates its internal state to sv+1

Ti
,

its secret-key to kv+1
Ti

, and stops the session by additionally outputting a bit, denoted by
osid
Ti

. This output bit indicates either acceptance (osid
Ti

= 1) or rejection (osid
Ti

= 0) of
the current session run by Ti.

Note that in the above description, it is assumed that the reader and tags update
their internal states, database, or keys at the end of each protocol run. In reality, this
can be performed at any point of each protocol run. Also, for RFID protocol π with
unidirectional authentication from tag to reader, the tag may not have a session output.
In this case, the session output osid

Ti
is set to “0” always.

3.2 Adversary

After an RFID system (R, T) is setup by invoking Setup(κ, �), we model a proba-
bilistic polynomial-time concurrent man-in-the-middle (CMIM) adversary A against
(R, T), with adaptive tag corruption. We use m̂ to denote a message sent by adversary
A, and m to denote the actual message sent by reader R or an uncorrupted tag. The
adversary is given access to the following oracles:

InitReader(): A invokes R to start a session of protocol π and generate the first-
round message c1 which is also used as the session identifier sid. Supposing that the
new session is the j-th session run by R, the reader R stores c1 into its internal state sj

R,
and returns c1 to the adversary.

SendT(Ti, m̂): Adversary A sends m̂ to Ti. (Here, for simplicity, we abuse the no-
tation Ti to denote any virtual identity of a tag in T (not the tag’s real identity) labeled
by A when A selects the tag from T .) After receiving m̂, Ti works as follows: (1)
If Ti currently does not run any existing session, Ti initiates a new session with the
session-identifier sid set to m̂, treats m̂ as the first-round message of the new session,
and returns the second-round message (sid, α1). (2) If Ti is currently running an incom-
plete session with session-identifier sid = ĉ, and is waiting for the u-th message from
R, where u ≥ 2, Ti works as follows: If 2 ≤ u ≤ γ, it treats m̂ as the u-th message
from the reader and returns the next round message (sid, αu). If u = γ + 1 (i.e., Ti is
waiting for the last-round message of the session sid), Ti returns its output osid

Ti
to the

adversary, and (internally) updates its internal state to sv+1
Ti

, assuming that the session
sid is the v-th session run by Ti, where 1 ≤ v ≤ s.

SendR(ŝid, α̂): AdversaryA sends (ŝid, α̂) to R. After receiving (ŝid, α̂), R checks
from its internal state whether it is running a session of session identifier sid = ŝid, and
works as follows: (1) If R is currently running an incomplete session with sid = ŝid
and is waiting for the u-th message from a tag, where 1 ≤ u ≤ γ, R acts as follows: If
u < γ, it treats α̂ as the u-th message from the tag, and returns the next round message
cu+1 to A. If u = γ, it returns the last-round message cγ+1 and the output osid

R to A,
and internally updates its internal state to sj+1

R and the database to DBj+1, assuming
that the session sid corresponds to the j-th session run by R. (2) In all other cases, R
returns a special symbol⊥ (indicating invalid query).

A New Framework for RFID Privacy 5

Corrupt(Ti): Adversary A obtains the secret-key and internal state information (as
well as the random coins) currently held by Ti. Once a tag Ti is corrupted, all its actions
are controlled and performed by the adversaryA.

Let O1, O2, O3 and O4 denote the above oracles, respectively. These oracles fully
capture the capability of any PPT CMIM adversary with adaptive tag corruption. (Here,
for simpler definitional complexity, we assume all tags are always within the attack
scope of adversary. In practice, some tags may be in or out from the attack scope of
adversary at different time [26].) For presentation simplicity, we denote by O the set of
the four oracles {O1, O2, O3, O4} specified above. An adversary is a (t, n1, n2, n3, n4)-
adversary, if it works in time t and makes oracle queries to Oμ without exceeding nμ

times, where 1 ≤ μ ≤ 4. We treat each oracle call as a unit operation, and thus for
a t-time adversary it holds that Σ4

μ=1nμ ≤ t. We denote by AO(R, T , para) a PPT
algorithm A that, on input of some system public parameter para, concurrently interacts
with R and the tags in T via the four oracles inO, where (R, T) is setup by Setup(κ, �).

Note that in our formulation, the output bits of protocol participants (which indicate
authentication success or failure) are publicly accessible to the adversary. The reason
is that, in reality, such outputs can be publicly observed from the behaviors of protocol
participants during/after the protocol run or can be learnt by some other side channels.

3.3 Adaptive Completeness and Mutual Authentication

Roughly speaking, adaptive completeness says that, after any attacks (particularly the
desynchronizing attacks) made by the adversary A, the protocol execution between the
reader R and any honest uncorrupted tag is still complete (e.g., being able to recover
from desynchronization). In other words, after undergoing arbitrary attacks, the uncor-
rupted parties of the RFID system still can recover whenever the attacks stop.

Definition 3.1 (adaptive completeness). For an RFID system (R, T) setup by Setup
(κ, �), denote by

(sid, csid
1 , αsid

1 , · · · , αsid
γ , csid

γ+1, o
sid
R , osid

Ti
) ← π(R, Ti)

the running of a session with identifier sid of the protocol π between R and an uncor-
rupted tag Ti ∈ T . Suppose that the session sid corresponds to the v-th session at the
side of Ti and the j-th session at the side of R, where 1 ≤ v ≤ s and 1 ≤ j ≤ s�.
Consider the case that the two sessions are of the same round messages, and that all
the exchanged messages in these two (matching) sessions are honestly generated by R
and Ti respectively. Denote by E the event that osid

R = 0 holds (or osid
Ti

= 0 holds if the
protocol π is for mutual authentication) or R identifies a different tag Ti′ �= Ti in its
j-th session.

A PPT CMIM adversary A (t, ε, n1, n2, n3, n4)-breaks the adaptive completeness
of the RFID system against the uncorrupted Ti, if the probability that event E occurs
is at least ε and A is a (t, n1, n2, n3, n4)-adversary. The probability is taken over the
coins used by Setup(κ, �), the coins of A, the coins used by R (up to finishing the
j-th session), and the coins used by Ti (up to finishing the v-th session). An RFID
system (R, T) satisfies adaptive completeness, if for all sufficiently large κ and for any
uncorrupted tag Ti, there exists no adversary A that can (t, ε, n1, n2, n3, n4)-break the
adaptive completeness against Ti, for any (t, ε), where t is polynomial in κ and ε is
non-negligible in κ.

6 R.H. Deng et al.

Next, we define mutual authentication of RFID protocols. Roughly speaking, for a pro-
tocol π of the RFID system (R, T), authentication from reader to tag (resp., from tag
to reader) means that a CMIM adversary A cannot impersonate the reader R (resp.,
an uncorrupted tag Ti ∈ T) to an uncorrupted tag Ti ∈ T (resp., reader R), unless A
honestly relays messages actually generated and sent by R and the uncorrupted tag Ti.
Before we define mutual authentication for RFID protocols, we first clarify the notion
of matching sessions.

Definition 3.2 (matching sessions). Denote by (sid, csid
1 , αsid

1 , · · · , αsid
γ , csid

γ+1) the
transcript of exchanged round messages (except the session outputs) of a successfully
completed session sid of the protocol π run by a tag Ti, where 1 ≤ i ≤ �. This session
has a matching session at the side of the reader R, if R ever successfully completed a
session of the identical session transcript.

Denote by (sid′, csid′
1 , αsid′

1 , · · · , αsid′
γ , csid′

γ+1) the transcript of exchanged round mes-
sages (except the session outputs) of a successfully completed session sid′ run by R.
This session has a matching session at the side of some tag Ti, where 1 ≤ i ≤ �, if
either of the following conditions holds:

– Ti ever completed, whether successfully finished or aborted, a session of the iden-
tical transcript prefix (sid′, csid′

1 , αsid′
1 , · · · , αsid′

γ);
– Or, Ti is now running a session with partial transcript (sid′, csid′

1 , αsid′
1 , · · · , αsid′

γ)
and is waiting for the last-round message of the session sid′.

The matching-session definition, for a successfully completed session run by the reader
R, takes into account the following “cutting-last-message” attack: a CMIM adversary
A relays the messages being exchanged by R and an uncorrupted tag Ti for a protocol
run of π until receiving the last-round message csid′

γ+1 from R; after this, A sends an

arbitrary message ĉsid′
γ+1(�= csid′

γ+1) to Ti (which typically causes Ti to abort the session),
or, just drops the session at the side of Ti without sending Ti the last-round message.
Such “cutting-last-message” attacks are unpreventable.

Figure 1 shows the authentication experiment Expauth
A [κ, �]. A CMIM adversary A

interacts with R and tags in T via the four oracles in O; At the end of the experiment,
A outputs the transcript, trans, of a session. Denote by E1 the event that trans cor-
responds to the transcript of a successfully completed session run by R in which R
successfully identifies an uncorrupted tag Ti, but this session has no matching session
at the side of the uncorrupted tag Ti. Denote by E2 the event that trans corresponds to
the transcript of a successfully completed session run by some uncorrupted tag Ti ∈ T ,
and this session has no matching session at the side of R.

Experiment Expauth
A [κ, �]

1. run Setup(κ, �) to setup the reader R and a set of tags T ;
denote by para the public system parameters;

2. trans ← AO(R, T , para).

Fig. 1. Authentication Experiment

A New Framework for RFID Privacy 7

Definition 3.3 (authentication). On a security parameter κ, an adversary A (ε, t, n1,
n2, n3, n4)-breaks the authentication of an RFID system (R, T) against the reader R
(resp., an uncorrupted tag Ti ∈ T) if the probability that event E1 (resp., E2) occurs is
at least ε and A is a (t, n1, n2, n3, n4)-adversary.

The RFID system (R, T) satisfies tag-to-reader authentication (resp., reader-to-tag
authentication), if for all sufficiently large κ there exists no adversary A that can
(ε, t, n1, n2, n3, n4)-break the authentication of (R, T) against the reader R (resp.,
any uncorrupted tag Ti ∈ T), for any (t, ε), where t is polynomial in κ and ε is non-
negligible in κ. An RFID system is of mutual authentication, if it satisfies both tag-to-
reader authentication and reader-to-tag authentication.

4 Zero-Knowledge Based RFID Privacy

In this section, we present a zero-knowledge based definitional framework for RFID
privacy. To make our definition formal, we need to clarify the notion of blind access to
tags and the notion of clean tags.

Let AO(R, T̂ , I(Tg), aux) be a PPT algorithm A that, on input aux ∈ {0, 1}∗
(typically, aux includes the system parameters or some historical state information
of A), concurrently interacts with R and a set of tags T̂ via the four oracles O =
{O1, O2, O3, O4}. We say that A has blind access to a challenge tag Tg �∈ T̂ if A in-
teracts with Tg via a special interface I. Specifically, I is a PPT algorithm that runs Tg

internally, and interacts with A externally. To send a message ĉ to Tg , A sends to I a
special O2 oracle query of the form SendT(challenge, ĉ); after receiving this special
O2 query, I invokes Tg with SendT(Tg, ĉ), and returns to A the output by Tg . From
the viewpoint of A, it does not know which tag it is interacting with. It is also required
that A interacts with Tg via O2 queries only.

Next, we define the notion of clean tags. A tag Ti is called clean, if it is not corrupted
(i.e., the adversary has not made any O4 query to Ti), and is not currently running
an incomplete session with the reader (i.e., the last session of the tag has been either
finished or aborted). In other words, a clean tag is an uncorrupted tag that is currently at
the status of waiting for the first-round message from the reader to start a new session.

Now, we are ready to give a formal definition of zero-knowledge based RFID privacy
(zk-privacy, for short). Figure 2 (page 8) illustrates the real world of the zk-privacy
experiment, Expzkp

A [κ,�] (Expzkp
A , for simplicity), in which a PPT CMIM adversary

A is comprised of a pair of algorithms (A1,A2) and runs in two stages. In the first
stage, algorithmA1 is concurrently interacting with R and all the tags in T via the four
oracles in O, and is required to output a set C of clean tags at the end of the first stage,
where C ⊆ T consists of δ clean tags, denoted as {Ti1 , · · · , Tiδ

}. The algorithm A1

also outputs a state information st, which will be transmitted to algorithmA2. Between
the first stage and the second stage, a challenge tag, denoted as Tg , is taken uniformly at
random from C. Note that if δ = 0, then no challenge tag is selected, and A is reduced
to A1 in this experiment. In the second stage, on input st, A2 concurrently interacts
with the reader R and the tags in T̂ = T −C via the four oracles in O, and additionally
has blind access to Tg . Note that A cannot corrupt any tag (particularly Tg) in C, and
A does not have access to tags in C − {Tg} in the second stage. Finally, A2 outputs its

8 R.H. Deng et al.

view, denoted by viewA, at the end of the second stage. Specifically, viewA is defined
to include the system public parameters para, the random coins used by A, ρA, and
the (ordered) list of all oracle answers to the queries made by A in the experiment
Expzkp

A . Note that viewA does not explicitly include the oracle queries made by A and
A’s output at the first stage, as all these values are implicitly determined by the system
public parameter para, A’s coins and all oracle answers to A’s queries. The output of
experiment Expzkp

A is defined to be (g, viewA). Denote by (g, viewA(κ, �)) the random
variable describing the output of experiment Expzkp

A [κ, �].

Experiment Expzkp
A [κ, �]

1. run Setup(κ, �) to setup the reader R and a set of tags
T ; denote by para the public system parameter;

2. {C, st} ← AO
1 (R, T , para), where C = {Ti1 , Ti2 , · · · ,

Tiδ
} ⊆ T is a set of clean tags, 0 ≤ δ ≤ �;

3. g ∈R {1, · · · , δ}, set Tg = Tig and T̂ = T − C;
4. viewA ← AO

2 (R, T̂ , I(Tg), st);
5. output (g, viewA).

Fig. 2. zk-privacy experiment: real world

Experiment Expzkp
S [κ, �]

1. run Setup(κ, �) to setup the reader R and a set of tags
T ; denote by para the public system parameter;

2. {C, st} ← SO
1 (R, T , para), where C = {Ti1 , Ti2 , · · · ,

Tiδ
} ⊆ T is a set of clean tags, 0 ≤ δ ≤ �;

3. g ∈R {1, · · · , δ}, and set T̂ = T − C;
4. sview ← SO

2 (R, T̂ , st), where sview particularly
includes all oracle answers to queries made by S;

5. output (g, sview).

Fig. 3. zk-privacy experiment: simulated world

Figure 3 illustrates the simulated world of zk-privacy experiment, Expzkp
S [κ,�]

(Expzkp
S , for simplicity), in which a PPT simulator S is comprised of a pair of algo-

rithms (S1,S2) and runs in two stages. In the first stage, algorithm S1 concurrently
interacts with R and all the tags in T via the four oracles in O, and outputs a set, de-
noted C, of clean tags, where |C| = δ and 0 ≤ δ ≤ �. It also outputs a state information
st, which will be transmitted to algorithm S2. Between the two stages, a value g is taken
uniformly at random from {1, · · · , |C|} (which is unknown to S). In the second stage of
S, on input st, S2 concurrently interacts with the reader R and the tags in T̂ = T − C,
and outputs a simulated view, denoted sview, at the end of the second stage. We require
that all oracle answers to the queries made by S (in both the first stage and the second

A New Framework for RFID Privacy 9

stage) in the experiment Expzkp
S are included in sview. The output of the experiment

Expzkp
S is defined to be (g, sview). Denote by (g, sview(κ, �)) the random variable

describing the output of the experiment Expzkp
S [κ,�].

Informally, an RFID protocol π satisfies zk-privacy, if what can be derived by inter-
acting with the challenge tag Tg in the second-stage of A can actually be derived by A
itself without interacting with Tg . In this sense, the interaction betweenA2 and Tg leaks
“zero knowledge” to A. For this reason, our RFID privacy notion is named zk-privacy.

Definition 4.1 (zk-privacy). An RFID protocol π satisfies computational (resp., sta-
tistical) zk-privacy, if for any PPT CMIM adversary A there exists a polynomial-time
simulator S such that for all sufficiently large κ and any � which is polynomials in κ
(i.e., � = poly(κ), where poly(·) is some positive polynomial), the following ensembles
are computationally (resp., statistically) indistinguishable:

– {g, viewA(κ, �)}κ∈N,�∈poly(κ)

– {g, sview(κ, �)}κ∈N,�∈poly(κ)

That is, for any polynomial-time (resp., any computational power unlimited) algorithm
D, it holds that |Pr[D(κ, �, g, viewA(κ, �)) = 1]−Pr[D(κ, �, g, sview(κ, �)) = 1]| =
ε, where ε is negligible in k. The probability is taken over the random coins used by
Setup(κ, �), the random coins used by A, S, the reader R and all (uncorrupted) tags,
the choice of g, and the coins used by the distinguisher algorithm D.

We now extend our definition to forward and backward zk-privacy. Denote by (kf
Tg

, sf
Tg

)
(resp., (k1

Tg
, s1

Tg
)) the final (resp., initial) secret-key and internal state of Tg at the end of

(resp., beginning) of the experiment Expzkp
A . An RFID protocol π is of forward (resp.,

backward) zk-privacy, if for any PPT CMIM adversary A there exists a polynomial-
time simulator S such that for all sufficiently large κ and any � = poly(κ), the fol-
lowing distributions are indistinguishable: {kf

Tg
, sf

Tg
(resp., k1

Tg
, s1

Tg
), g, viewA(κ, �)}

and {kf
Tg

, sf
Tg

(resp., k1
Tg

, s1
Tg

), g, sview(κ, �)}. For forward/backward zk-privacy, it is

required that the challenge tag Tg should remain clean at the end of experiment Expzkp
A .

Note that the adversary is allowed to corrupt the challenge tag after the end of Expzkp
A .

4.1 Discussions

Why allow A1 to output an arbitrary set C of tags, and limit A2 to blind access to a
challenge tag chosen randomly from C? The definition of zk-privacy implies that the
adversaryA cannot distinguish any challenge tag Tg from any set C of tags; otherwise,
A can figure out the identity of Tg in C from its view viewA, while this tag’s identity
cannot be derived from any simulator’s view sview (a formal proof of this in case of
|C| = 2 is provided in Section 5.1). If C is removed from the definition of zk-privacy,
it is possible for the adversary to distinguish any two tags under its attack, even if each
of the tags can be perfectly simulated by a simulator. A special case is that each tag has
an upper-bound of sessions in its life time so that an adversary can distinguish any two
tags by setting one tag to be run out of sessions in the learning stage [18]. In addition,
we do not restrict C to two tags so as to take into account the case that any number of
tags may be correlated.

10 R.H. Deng et al.

Why limit A1 to output of clean tags? If A1 is allowed to output “unclean tags”, A2

can trivially violate the zk-privacy. Consider that A1 selects two tags that are waiting
for different round message (e.g., one tag is clean and the other is not), then A2 can
trivially distinguish them by forwarding to Tg different round messages.

Why allow S to have access to oracles in O? Suppose that S simulates a tag from
scratch andA (run by S as a subroutine) requests to corrupt the tag in the middle of the
simulation. Without oracle access, it is difficult or even impossible for S to continue its
simulation and keep it consistent with its previous simulation for the same tag.

Why limit sview to include all oracle answers to queries made by S? This is to
restrict S not to access the oracles in O more than A does. The indistinguishability be-
tween the simulated view sview and the real view viewA of adversaryA in zk-privacy
implies that for any (t, n1, n2, n3, n4)-adversary A, with overwhelming probability, S
cannot query O1, O2, O3, O4 more than n1, n2, n3, n4 times, respectively.

Why require Tg to remain clean at the end of Expzkp
A for forward/backward privacy?

In general, forward/backward privacy cannot be achieved if the adversary is allowed to
corrupt the challenge tag before the end of its sessions in Expzkp

A (i.e., the tag is not
clean at the moment of corruption); otherwise, the adversary is able to derive certain
protocol messages from the tag’s internal state, secret-key, random coins, and the partial
session transcript.

More on backward privacy. In general, backward privacy means that even ifA learns
the internal state and secret-key of a tag for the v-th session, it still cannot distinguish
the run of (v + 1)-th session run by this tag from a simulated session run. Without loss
of generality, we assume that the internal state and secret-key known toA are the initial
ones (i.e., k1

Tg
and s1

Tg
). For most RFID protocols in practice, the internal state and the

secret-key of any tag at any time t can be determined by the tag’s initial state, initial
secret-key, and the session transcript related to the tag up to time t. In such a case, the
indistinguishability between the simulated view sview of S and the real view viewA
of A relies upon the random coins used by Tg in experiment Expzkp

A . These random
coins are not disclosed to A since the random coins used by an uncorrupted tag in any
session are erased once the session is completed, and the challenge tag Tg is required to
be clean at the end of Expzkp

A .
On some special cases in zk-privacy experiments. One special case is that in the

experiment Expzkp
A , A1 outputs C = T . In this case, the simulator S2 does not have

oracle access to any tag. The zk-privacy is analogue to auxiliary-input zero-knowledge
[6], where the view of A1/S1 corresponds to the auxiliary input. Another special case
is that A1 outputs only a single tag in C, and all other tags can be corrupted by A1 and
A2. In this case, the forward/backward zk-privacy implies that both adversary A and
simulator S have access to certain secret information of all tags.

5 Comparison with Existing Frameworks

In this section, we compare our RFID security and privacy framework with typical
existing frameworks. We argue that our framework is more reasonable in practice than
some frameworks, and it is stronger in terms of privacy than at least one of the existing
frameworks. We also clarify some subtleties and confusions in the existing frameworks.

A New Framework for RFID Privacy 11

The detailed comparisons, along with subtlety clarifications, also further justify the zk-
privacy formulation.

5.1 Comparison with Model in [18]

The RFID privacy model proposed in [18] describes the indistinguishability between
any two tags by an adversary. We refer to this privacy notion as “ind-privacy”. It was
mentioned in [18] that an important area for future research is to study stronger RFID
privacy notions. We shall prove that zk-privacy is strictly stronger than a revised version
of ind-privacy after some subtleties are clarified.

Roughly speaking, consider any PPT adversary A = (A1,A2): A1 outputs a pair
of uncorrupted tags (Ti0 , Ti1) after arbitrary attacks, then a bit g is chosen randomly
and independently (which is unknown to A), and then A2 is given blind access to Tig

and finally outputs a guessed bit b′. We say a PPT adversary A (ε, t, n1, n2, n3, n4)-
breaks the ind-privacy of an RFID system if A is a (t, n1, n2, n3, n4)-adversary and
Pr[b′ = g] = 1

2 + ε, where ε is non-negligible and t is polynomial in κ.
On some subtleties in ind-privacy. In the original definition of ind-privacy, it is not
explicitly specified that the two tags output by A1 must be clean tags. In the definition
of forward ind-privacy [18], it is not precisely specified the time point of tag corruption
and the actions of adversary after tag corruption.
zk-privacy vs. ind-privacy for single-tag systems. We note that any RFID protocol, even
if it just reveals the tag’s secret-key, trivially satisfies ind-privacy for special RFID sys-
tems consisting only one tag (e.g., for a unique item of high value). The reason is that in
this special scenario, the view ofA is independent of the random bit g (as the challenge
tag Tig is always the unique tag regardless of the choice of g), and thus Pr[b′ = g] is
just 1

2 for any adversary. In comparison, in this special scenario the zk-privacy is es-
sentially degenerated to the traditional zero-knowledge definition, which still provides
very reasonable privacy guarantee.

Theorem 1. zk-privacy is stronger than ind-privacy.

Proof. First, we show that zk-privacy implies ind-privacy, which holds uncondition-
ally. In other words, if an RFID system (R, T) does not satisfy ind-privacy, then it also
does not satisfy zk-privacy. To prove this, we show that if there exists a PPT adversary
A = (A1,A2) which can (ε, t, n1, n2, n3, n4)-break the ind-privacy of the RFID sys-
tem (R, T), then we can construct another PPT adversaryA′ such that no PPT simulator
exists for A′.

In the experiment Expzkp
A′ , let A′ run A and do whatever A does. In particular, A′

andA are of the same parameters (t, n1, n2, n3, n4). Since A run byA′ always outputs
a pair of clean tags at the end of its first stage, Expzkp

A′ outputs (g, viewA′), where
g ∈ {0, 1} is a random bit, and viewA′ implicitly determines the output of A (i.e.,
the guessed bit b′). That is, the guessed bit b′ can be computed out from viewA′ in
polynomial-time. As we assumeA (ε, t, n1, n2, n3, n4)-breaks ind-privacy, it holds that
Pr[b′ = g] is at least 1

2 +ε for the output of Expzkp
A′ . However, the simulated view sview

in the output of the experiment Expzkp
S is independent of g (recall that the random

value g is unknown to the simulator S). Therefore, for the guessed bit b′ implied by

12 R.H. Deng et al.

sview (which can be computed out from sview in polynomial-time), it always holds
that Pr[b′ = g] = 1

2 . This shows that for the above A′ and for any polynomial-time
simulator, there exists a polynomial-time distinguisher that can distinguish the output
of Expzkp

A and that of Expzkp
S with non-negligible probability at least ε.

Next, we present several protocol examples (based on one-time secure signatures or
CPA-secure public-key encryption) that satisfy ind-privacy but dissatisfy zk-privacy.

Consider a special RFID system that consists of only one tag T1 (and a reader R). The
secret-key of T1 is the signature of T1’s ID, denoted sID, signed by R under the public-
key of R. Consider an RFID protocol π in which T1 just reveals its secret-key sID to R.
As discussed above, any RFID protocol trivially satisfies ind-privacy for RFID systems
consisting of only one tag, and thus the protocol π is of ind-privacy. But, π clearly does
not satisfy zk-privacy. Specifically, considering an adversary A = (A1,A2) where A1

simply outputs C = {T1} and then A2 invokes Tg = T1 to get the signature sID, no
PPT simulator can output sID by the security of the underlying signature scheme. Note
that one-time secure signature is sufficient to show this protocol example not satisfying
zk-privacy, and one-time secure signatures can be based on any one-way function [24].

Given any ind-private two-round RFID protocol π = (c, a) for an RFID system
(R, T), where T consists of polynomially many tags, c is the first-round message from
the reader and a is the response from a tag, we transform π into a new protocol π′

as follows: In the protocol π′, besides their respective secret-keys all tags in T also
share a unique pair of public-key PK and secret-key SK for a CPA-secure public-key
encryption scheme. For a protocol run of π′ between the reader R and a tag Ti, R sends
c′ = EPK(c) in the first-round, and Ti decrypts c′ to get c and then sends back a′ =
c||a. The protocol π′ could appear in the scenario of tag group authentication, where the
ability of sending back c can demonstrate the membership of the group identified by the
public-key PK . Furthermore, in the scenario of anonymizer-enabled RFID systems [9],
the decryption operation can be performed by the anonymizer. As in the new protocol π′

all tags share the same public-key PK , the ind-privacy of π′ is inherited from that of π.
Specifically, the session transcripts of π′ can be computed in polynomial-time from the
session transcripts of π and the public-key PK . However, π′ does not satisfy zk-privacy.
Specifically, consider an adversary A = (A1,A2), where A1 simply outputs the set of
clean tags C = T (in particular, A never corrupts tags) and then A2 blindly interacts
with the challenge tag Tg for only one session. By the CPA-security of the underlying
public-key encryption scheme, no PPT simulator can handle the SendT(challenge, ĉ)
queries made by A2, as such ability implies the ability of ciphertext decryption. Note
that CPA security is sufficient here, as the adversary A involves only one session with
the challenge tag Tg . �
We remark that though the above two protocol examples may not be very realistic, they
do separate the zk-privacy notion and the ind-privacy notion. We leave it an interesting
question to find more protocol examples that are ind-private but not zk-private.

5.2 Comparison with Model in [26,23]

In [26,23], the simulator is not required to handle tag corruption queries by the adver-
sary. In other words, the simulator works only for those adversaries which do not make
tag corruption queries. It is not clear how such a simulator acts upon tag corruption

A New Framework for RFID Privacy 13

queries made by an adversary. Suppose that S simulates a tag from scratch and A (typ-
ically run by S as a subroutine) requests to corrupt the tag in the middle of simulation
(possibly in the middle of a session run). Without access to tag corruption queries, it
is difficult or even impossible for S to continue its simulation for the tag and keep it
consistent with its previous simulation for the same tag.

The adversary considered in our framework essentially corresponds to strong adver-
sary in [26,23], with the difference in that the adversary cannot corrupt any tag in set C
before the end of zk-privacy experiment Expzkp

A . In comparison, the model in [26,23]
poses no restriction on tag corruption (though it is not clear how the simulator handles
such adversaries), which implies that an adversary can corrupt any tag at any time (pos-
sibly in the middle of session). However, in such a case, forward/backward privacy may
not be achievable if the challenge tag is corrupted in the middle of a session; this is the
reason why we require that the challenge tag Tg must remain clean at the moment of
corruption. Indeed, there are some confusions in [26,23].

The matching session concept defined in [26,23] is restricted to identical session
transcript, without clarifying some subtleties such as the “last-round-message attacks”
for defining authentication from tag to reader.

The notion of adaptive completeness is not defined in [26,23]. The completeness
notion in [26,23] is defined for honest protocol execution only, with no adversarial
desynchronizing attacks being taken into account.

The privacy notions proposed in [26,23] and that proposed in [18] are essentially
incomparable, while the privacy notion proposed in this work is strictly stronger than
that of [18].

5.3 Comparison with Models in [10,20]

The RFID privacy notion given in [10,20] is formulated based on the unpredictability
of protocol output. We refer to this privacy notion as “unp-privacy.” The unp-privacy
is formulated with respect to RFID protocols with a 3-round canonical form, denoted
as π = (c, r, f), where c, r, f stand for the first, second, and third round message,
respectively. Note that our framework, as well as models in [18,26,23]), are not confined
to this protocol structure.

The unp-privacy notion formulated in [10,20] essentially says that the second-round
message sent from a tag must be pseudorandom (i.e., indistinguishable from a truly
random string). We observe that this requirement has certain limitations. First, given
any unp-private RFID protocol π = (c, r, f) between a reader and a tag, we can modify
the protocol to π′ = (c, r||1, f), where “||” denotes the string concatenation operation.
That is, the modified protocol π′ is identical to π except that in the second-round the
tag additionally concatenates a bit ‘1’ to r. This modified RFID-protocol π′ is not of
unp-privacy, as the second-round message r||1 is clearly not pseudorandom. However,
intuitively, the tags’ privacy should be preserved since the same bit ‘1’ is appended to all
second-round messages for all tags. Notice that when RFID-protocols are implemented
in practice, the messages being exchanged between reader and tags normally bear some
non-random information such as version number of RFID standard. Another limitation
is that the unp-privacy may exclude the use of public-key encryption in RFID-protocols,
as public-key generated ciphertexts are typically not pseudorandom.

14 R.H. Deng et al.

Another point is that the adversaries considered in the definition of unp-privacy
[10,20] is not allowed to access protocol outputs. Therefore, such adversaries are nar-
row ones as defined in [26,23]. Informally, the unp-privacy experiment works as fol-
lows. Given a first-round message c (which could be generated by the adversary A),
the experiment selects a value r which could be either the actual second-round message
generated by an uncorrupted tag in response to c or just a random value in a certain
domain; then the experiment presents the value r to A. The unp-privacy means that A
cannot determine in which case the value r is. Note that if A has access to protocol
outputs, it can simply distinguish between the two cases of r. What A needs to do is to
forward r to the reader R as the second round message. If r is generated by an uncor-
rupted tag (and the value c was generated by the reader in a matching session), R will
always output “accept.” On the other hand, if r is just a random value, with overwhelm-
ing probability R will reject the message due to authentication soundness from tag to
reader.

In summary, we argue that zk-privacy is more reasonable than unp-privacy in prac-
tice. It allows for more general protocol structure, more powerful adversary, and non-
pseudorandom protocol messages.

6 An RFID Protocol within Our Framework

Let Fk: {0, 1}2κ → {0, 1}2κ be a pre-specified keyed PRF and F 0
k (resp., F 1

k) the κ-
bit prefix (resp., suffix) of the output of Fk, where κ is the system security parameter.
In practice, the PRF can be implemented based on some lightweight stream or block
ciphers [12,2,11]. When a tag Ti with identity ID registers to the reader R, it is assigned
a secret-key k ∈R {0, 1}κ, a counter ctr of length lctr with initial value 1. R pre-
computes an initial index I = F 0

k (1||pad1) for the tag, where pad1 ∈ {0, 1}2κ−lctr is a
fixed padding, and stores the tuple (I, k, ctr, ID) into its database.

At the start of a new protocol session, R sends a challenge string c ∈R {0, 1}κ to
Ti, which also serves as the session identifier. To simplify the presentation, the session
identifier and the corresponding verification of the identifier by protocol players are
implicitly implied and will not be explicitly mentioned in the following.

Upon receiving c from R, Ti computes I = F 0
k (ctr||pad1), (r0, r1) = Fk(c||I)

(where r0 = F 0
k (c||I) and r1 = F 0

k (c||I)), and rT = r0⊕(ctr||pad2). Ti sends (I, rT)
to R and then updates its counter ctr = ctr + 1, where pad2 ∈ {0, 1}κ−lctr is another
predetermined padding string.

After receiving (I, rT), R searches its database to find a tuple indexed by I:

– If R finds such a tuple, say (I, k, ctr′, ID), it computes (r0, r1) = Fk(c||I), and
checks whether ctr′||pad2 = r0⊕ rT : If yes, R accepts Ti by outputting “1”, sends
rR = r1 to the tag, updates the tuple (I, k, ctr′, ID) with ctr′ = ctr′ + 1 and
I = F 0

k (ctr′||pad1); If not, R searches for the next tuple including I (to avoid
potential collision of index I , i.e., two different tuples are of the same index I).

– If no tuple is found to have an index I (which indicates counter desynchroniza-
tion between R and Ti), for each tuple (I ′, k, ctr′, ID) in its database, R com-
putes (r0, r1) = Fk(c||I) and ctr||pad2 = r0 ⊕ rT , and checks whether I =
F 0

k (ctr||pad1): If yes (which indicates ctr is the correct counter value at Ti), R

A New Framework for RFID Privacy 15

accepts Ti, outputs “1”, sends back rR = r1 as the third message, and updates the
tuple (I ′, k, ctr′, ID) with ctr′ = ctr + 1 and I ′ = F 0

k (ctr′||pad1). In the case
that R fails with all the tuples in its database, it rejects the tag and outputs “0”.

Upon receiving rR, Ti checks whether rR = r1: If yes, Ti accepts the reader and outputs
“1”; otherwise it rejects the reader and outputs “0”.

In comparison with the protocol proposed in [20], the above protocol adds mutual
authentication (and is logically more precise), and we can formally prove that it is of
adaptive completeness, mutual authentication, and zk-privacy within the new frame-
work. Analysis of completeness and authentication was not conducted in [20], and as
we shall see, the zk-privacy analysis of the new protocol is much more complicated than
the unp-privacy analysis in [20]. We suggest that the methodology used in our analy-
sis is of independent interest, which can be applied to analyze other RFID protocols
(particularly those based on PRFs) within our new framework.

Theorem 2. Assuming Fk is a pseudorandom function, the protocol specified above
satisfies adaptive completeness, mutual authentication and zk-privacy.

The reader is referred to the full paper [4] for the complete proof of this theorem. Below
we provide a high level analysis of the zk-privacy property.

The core of the simulation by the simulator S = (S1,S2), who runs the underlying
adversary A = (A1,A2) as a subroutine, lies in the actions of S2 in dealing with the
following queries made by A2 to the reader R and the challenge tag Tg . S1 just mimics
A1 by using the PRF Fk.

1. On oracle query InitReader(), S2 makes the same oracle query to R, and gets back
a random string c ∈ {0, 1}κ from R. Then, S2 relays back c to A2.

2. On oracle query SendT(challenge, ĉ), where the challenge tag Tg (simulated by
S2) currently does not run any session, S2 opens a session for Tg with ĉ as the
first-round message (that also serves as the session-identifier of this new session);
Then, S2 randomly selects I, rT ∈R {0, 1}κ, and sends back I||rT to A2 as the
second-round message.

3. On oracle query SendR(ĉ, Î||r̂T), S2 works as follows:
Case-3.1. If Î||r̂T was sent by Tg (simulated byS2) in a session of session-identifier

ĉ, S2 simulates the responses of the reader R as follows:
Case-3.1.1 If R is running an incomplete session of session-identifier ĉ (i.e., ĉ

was sent by R upon an InitReader query and R is waiting for the second-
round message), S2 just returns a random string rR ∈R {0, 1}κ to A2, and
outputs “1” indicating “accept”.

Case-3.1.2. Otherwise, S2 simply returns a special symbol “⊥” indicating in-
valid query.

Case-3.2. In all other cases, S2 makes the same oracle query SendR(ĉ, Î||r̂T) to
the reader R, and relays back the answer from R to A2.

4. On oracle query SendT(challenge, r̂R), where the challenge tag Tg (simulated by
S2) currently runs a session of partial session-transcript (ĉ, I||rT) and is waiting
for the third-round message, S2 works as follows:
Case-4.1. If there exists a matching session of the same session transcript (ĉ, I||rT ,

r̂R) at the side of R (where r̂R may be simulated by S2 as in the above Case-
3.1), S2 outputs “1” indicating “accept”.

16 R.H. Deng et al.

Case-4.2. Otherwise, S2 simply outputs “0” indicating “reject”.
5. Output of S2: Finally, whenever A2 stops, S2 also stops and outputs the simulated

view sview as specified in the zk-privacy definition, which particularly consists
of all oracle answers (including ones provided by the real oracles in O and ones
simulated by S2) to queries made by A.

It is easy to see that S works in polynomial-time. We investigate the differences between
the simulated view sview output by S and the real view viewA of A:
Difference-1: In Case-4.1 (resp., Case-4.2) S2 always outputs “accept” (resp., “re-

ject”), while the actual challenge tag Tg may output “reject” in Case-4.1 (resp.,
“accept” in Case-4.2) in the experiment Expzkp

A .
Difference-2: On oracle query SendT(challenge, ĉ) or in Case-3.1 upon the oracle

query SendR(ĉ, Î||r̂T), S2 always returns truly random strings, while the actual
players (i.e., Tg and R) provide pseudorandom strings in the experiment Expzkp

A by
invoking the PRF Fk where k is the secret-key of Tg .

Intuitively, Difference-1 can occur only with negligible probability, by the properties of
adaptive completeness and mutual authentication. The subsequent analysis argues that
the properties of adaptive completeness and mutual authentication indeed hold under
the simulation of S in Expzkp

S .
Intuitively, Difference-2 should not constitute distinguishable gap between sview

and viewA, due to the pseudorandomness of Fk. However, the technical difficulty and
subtlety here is that: the difference between pseudorandomness and real randomness
only occurs in the second stages of both Expzkp

A and Expzkp
S (i.e., A2 and S2), while

both S1 and A1 are w.r.t. the PRF Fk . In other words, to distinguish the PRF Fk from
a truly random one in the second stage, the distinguisher has already accessed Fk for
polynomially many times in the first stage. In general, the definition of PRF says nothing
on the pseudorandomness in the second stage. To overcome this technical difficulty, we
build a list of hybrid experiments.

In the first hybrid experiment, a polynomial-time algorithm Ŝ runsA as a subroutine
and has oracle access to the PRF Fk or a truly random function H . Ŝ first randomly
guesses the challenge tag Tg (by taking g uniformly at random from {1, · · · , �}), and
then setups the RFID system (R, T) except for the challenge-tag Tg . Note that Ŝ can
perfectly handle all oracle queries made by A to the reader R and all tags in T − {Tg}.
For oracle queries directed to Tg , Ŝ mimics Tg with the aid of its oracle, i.e, the PRF Fk

or a truly random function H . Denote by the view of A under the run of Ŝ with oracle
access to Fk (resp., H) as viewŜFk

A (resp., viewŜH

A). By the pseudorandomness of Fk,

we have that viewŜFk

A and viewŜH

A are indistinguishable. Next, suppose Ŝ successfully

guesses the challenge tag Tg (that occurs with probability 1
�), viewŜFk

A is identical to
viewA. In particular, in this case, the properties of adaptive completeness and mutual
authentication hold in viewŜFk

A and thus also in viewŜH

A (as viewŜFk

A and viewŜH

A are
indistinguishable). Thus, to show the indistinguishability between viewA and sview,
it is reduced to show the indistinguishability between viewŜH

A (in case Ŝ successfully
guesses the challenge tag Tg) and sview.

In the second hybrid experiment, we consider another polynomial-time algorithm S′

that mimics Ŝ, with oracle access to Fk or H , but with the following modifications:

A New Framework for RFID Privacy 17

in the second stage of this hybrid experiment, S′ essentially mimics the original zk-
privacy simulator S. Denote by the view of A under the run of S′ with oracle access to
Fk (resp., H) as viewS′Fk

A (resp., viewS′H
A). By the pseudorandomness of Fk, viewS′Fk

A
and viewS′H

A are indistinguishable. We can show that viewS′H
A and viewŜH

A are also
indistinguishable, and that viewS′Fk

A and sview are also indistinguishable (conditioned
on S′ successfully guesses the challenge tag Tg), which particularly implies that the
properties of adaptive completeness and mutual authentication hold also in sview. This
establishes the indistinguishability between sview and viewA.

7 Future Work

One of our future research directions is to analyze existing RFID protocols and design
new protocols within the new framework presented in this paper.

Since our framework is formulated w.r.t. the basic scenario of an RFID system, an-
other future research direction is to extend our RFID privacy framework to more so-
phisticated and practical scenarios which allow compromising of readers, tag cloning
(or more feasibly, protocols to prevent swapping attacks) [16,17], tag group authentica-
tion, anonymizer-enabled RFID systems, and tag ownership transfer.

Acknowledgment. We are indebted to Andrew C. Yao for many contributions to this
work, though he finally declined the coauthorship. The contact author thanks Shaoying
Cai for helpful discussions on RFID security and privacy. We thank the anonymous
referee for referring us to [16,17].

References

1. Berbain, C., Billet, O., Etrog, J., Gilbert, H.: An Efficient Forward Private RFID Protocol.
In: Conference on Computer and Communications Security – CCS 2009 (2009)

2. de Canniere, C., Preneel, B.: Trivium. In: Robshaw, M.J.B., Billet, O. (eds.) New Stream
Cipher Designs. LNCS, vol. 4986, pp. 244–266. Springer, Heidelberg (2008)

3. Damgård, I., Ostergaard, M.: RFID Security: Tradeoffs between Security and Efficiency.
In: Malkin, T.G. (ed.) CT-RSA 2008. LNCS, vol. 4964, pp. 318–332. Springer, Heidelberg
(2008)

4. Deng, R.H., Li, Y., Yao, A.C., Yung, M., Zhao, Y.: A New Framework for RFID Privacy.
Cryptology ePrint Archive, Report No. 2010/059

5. Garfinkel, S., Juels, A., Pappu, R.: RFID Privacy: An Overview of Problems and Proposed
Solutions. IEEE Security and Privacy 3(3), 34–43 (2005)

6. Goldreich, O.: The Foundations of Cryptography. Basic Tools, vol. I. Cambridge University
Press, Cambridge (2001)

7. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. J. ACM 33(4),
792–807 (1986)

8. Goldwasser, S., Micali, S., Rackoff, C.: The Knowledge Complexity of Interactive Proof-
Systems. In: ACM Symposium on Theory of Computing, pp. 291–304 (1985)

9. Golle, P., Jakobsson, M., Juels, A., Syverson, P.: Universal reencryption for mixnets. In:
Okamoto, T. (ed.) CT-RSA 2004. LNCS, vol. 2964, pp. 163–178. Springer, Heidelberg
(2004)

18 R.H. Deng et al.

10. Ha, J., Moon, S., Zhou, J., Ha, J.: A new formal proof model for RFID location privacy.
In: Jajodia, S., Lopez, J. (eds.) ESORICS 2008. LNCS, vol. 5283, pp. 267–281. Springer,
Heidelberg (2008)

11. Hell, M., Johansson, T., Meier, W.: The Grain Family of Stream Ciphers. In: Robshaw,
M.J.B., Billet, O. (eds.) New Stream Cipher Designs. LNCS, vol. 4986, pp. 179–190.
Springer, Heidelberg (2008)

12. International Standard ISO/IEC 9798 Information technology−Security techniques–Entity
authentication–Part 5: Mechanisms using Zero-Knowledge Techniques

13. Hopper, N.J., Blum, M.: Secure human identification protocols. In: Boyd, C. (ed.) ASI-
ACRYPT 2001. LNCS, vol. 2248, pp. 52–66. Springer, Heidelberg (2001)

14. Juels, A.: RFID Security and Privacy: A Research Survey. IEEE Journal on Selected Areas
in Communications 24(2), 381–394 (2006)

15. Juels, A., Rivest, R.L., Szydlo, M.: The blocker tag: Selective blocking of RFID tags for
consumer privacy. In: ACM CCS 2003, pp. 103–111 (2003)

16. Juels, A., Pappu, R.: Squealing Euros: Privacy Protection in RFID-Enabled Banknotes.
Financial Cryptography, 103–121 (2003)

17. Juels, A., Syverson, P., Bailey, D.: High-Power Proxies for Enhancing RFID Privacy and
Utility. In: Danezis, G., Martin, D. (eds.) PET 2005. LNCS, vol. 3856, pp. 210–226. Springer,
Heidelberg (2006)

18. Juels, A., Weis, S.: Defining Strong Privacy for RFID. In: International Conference on Per-
vasive Computing and Communications – PerCom 2007 (2007)

19. Juels, A., Weis, S.: Authenticating pervasive devices with human protocols. In: Shoup, V.
(ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 293–308. Springer, Heidelberg (2005)

20. Ma, C., Li, Y., Deng, R., Li, T.: RFID Privacy: Relation Between Two Notions, Minimal
Condition, and Efficient Construction. In: ACM CCS (2009)

21. Yu Ng, C., Susilo, W., Mu, Y., Safavi-Naini, R.: RFID privacy models revisited. In: Jajodia,
S., Lopez, J. (eds.) ESORICS 2008. LNCS, vol. 5283, pp. 251–266. Springer, Heidelberg
(2008)

22. Yu Ng, C., Susilo, W., Mu, Y., Safavi-Naini, R.: New Privacy Results on Synchronized RFID
Authentication Protocols against Tag Tracing. In: Backes, M., Ning, P. (eds.) ESORICS 2009.
LNCS, vol. 5789, pp. 321–336. Springer, Heidelberg (2009)

23. Paise, R.L., Vaudenay, S.: Muthal Authentication in RFID: Security and Privacy. In: AsiaCCS
2008, pp. 292–299 (2008)

24. Rompel, J.: One-Way Functions are Necessary and Sufficient for Digital Signatures. In: 22nd
ACM Symposium on Theory of Computing (STOC 1990), pp. 12–19 (1990)

25. Shamir, A.: SQUASH: A New MAC with Provable Security Properties for Highly Con-
strained Devices Such as RFID Tags. In: Nyberg, K. (ed.) FSE 2008. LNCS, vol. 5086, pp.
144–157. Springer, Heidelberg (2008)

26. Vaudenay, S.: On Privacy Models for RFID. In: Kurosawa, K. (ed.) ASIACRYPT 2007.
LNCS, vol. 4833, pp. 68–87. Springer, Heidelberg (2007)

27. 860 MHz - 930 MHz Class 1 RFID Tag Radio Frequency and Logical Communication Inter-
face Specification Candidate Recommendation Version 1.0.1, Auto-ID Center (2002)

Readers Behaving Badly
Reader Revocation in PKI-Based RFID Systems

Rishab Nithyanand, Gene Tsudik, and Ersin Uzun

Computer Science Department

University of California

Irvine, CA 92697

{rishabn,gts,euzun}@ics.uci.edu

Abstract. Recent emergence of RFID tags capable of performing pub-

lic key operations motivates new RFID applications, including electronic

travel documents, identification cards and payment instruments. In this

context, public key certificates form the cornerstone of the overall system

security. In this paper, we argue that one of the prominent challenges is

how to handle revocation and expiration checking of RFID reader certifi-

cates. This is an important issue considering that these high-end RFID

tags are geared for applications such as e-documents and contactless

payment instruments. Furthermore, the problem is unique to public key-

based RFID systems, since a passive RFID tag has no clock and thus

cannot use (time-based) off-line methods.

In this paper, we address the problem of reader certificate expiration

and revocation in PKI-Based RFID systems. We begin by observing an

important distinguishing feature of personal RFID tags used in authen-

tication, access control or payment applications – the involvement of a

human user. We take advantage of the user’s awareness and presence

to construct a simple, efficient, secure and (most importantly) feasible

solution. We evaluate the usability and practical security of our solution

via user studies and discuss its feasibility.

1 Introduction

Radio Frequency Identification (RFID) is a wireless technology mainly used for
identification of various types of objects, e.g, merchandise. An RFID tag is a
passive device, i.e., it has no power source of its own. Information stored on an
RFID tag can be read by special devices called RFID readers, from some distance
away and without requiring line-of-sight alignment. Although RFID technology
was initially envisaged as a replacement for barcodes in supply chain and in-
ventory management, its many advantages have greatly broadened the scope
of possible applications. Current and emerging applications range from visible
and personal (e.g., toll transponders, passports, credit cards, access badges, live-
stock/pet tracking devices) to stealthy tags in merchandise (e.g., clothes, phar-
maceuticals and library books). The cost and capabilities of an RFID tag vary
widely depending on the target application. At the high end of the spectrum are

D. Gritzalis, B. Preneel, and M. Theoharidou (Eds.): ESORICS 2010, LNCS 6345, pp. 19–36, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

20 R. Nithyanand, G. Tsudik, and E. Uzun

the tags used in e-Passports, electronic ID (e-ID) Cards, e-Licenses, and con-
tactless payment instruments. Such applications involve relatively sophisticated
tags each costing a few (usually < 10) dollars. These tags are powerful enough
to perform public key cryptographic operations.

In the “real world”, one of the main security issues in using public key cryp-
tography is certificate revocation. Any certificate-based public key infrastruc-
ture (PKI) needs an effective revocation mechanism. Revocation can be handled
implicitly, via certificate expiration, or explicitly, via revocation status check-
ing. Most PKI-s use a combination of implicit and explicit methods. The latter
can be done off-line, using Certificate Revocation Lists (CRLs) [12] and similar
structures, or on-line, using protocols such as Open Certificate Status Protocol
(OCSP) [27]. However, as discussed below, these approaches are untenable in
public key-enabled RFID systems.

Intuitively, certificate revocation in RFID systems should concern two entities:
RFID tags and RFID readers. The former only becomes relevant if each tag
has a “public key identity”. We claim that revocation of RFID tags is a non-
issue, since, once a tag identifies itself to a reader, the latter (as the entity
performing a revocation check) can use any current revocation method, except
perhaps OCSP which requires full-time Internet connectivity. This is reasonable
because an RFID reader is a full-blown computing device with its own clock as
well as ample power, memory, secondary storage and communication interfaces.
Consequently, it can avail itself of any suitable revocation checking technique.

In contrast, revocation of readers is a problem in any public key-enabled RFID
system. While a tag may or may not have public key identity, a reader must
have one; otherwise, the use of public key cryptography becomes non-sensical.
Therefore, before a tag discloses any information to a reader, it must make sure
that the reader’s public key certificate (PKC) is not expired or revoked.

1.1 Why Bother?

One common and central purpose of all RFID tags and systems is to enable tag
identification (at various levels of granularity) by readers. With that in mind,
many protocols have been proposed to protect the identification process (i.e., the
tag-reader dialog) from a range of attacks. In systems where tags can not perform
cryptographic operations or where they are limited to symmetric cryptography,
reader revocation is not an issue, since it is essentially impossible. Whereas, in
the context of public key-enabled tags, reader revocation is both imperative and
possible, as we show later in this paper. It is imperative, because not doing
it prompts some serious threats. For example, consider the following events: a
reader is lost, stolen, compromised (perhaps without its owner’s knowledge), or
decommissioned.

In all of these cases, if it cannot be revoked effectively, a reader that has fallen
into the wrong hands can be used to identify and track tags. In case of personal
tags – e.g., ePassports, credit-cards or eIDs – other threats are possible, such as
identity theft or credit card fraud.

Readers Behaving Badly 21

Thus far, it might seem that our motivation is based solely on the need to
detect explicitly revoked reader certificates1. However, what if a reader certificate
naturally expires? This indicates implicit revocation and a well-behaved reader
would not be operated further until a new certificate is obtained. However, if a
reader (or rather its owner) is not well-behaved, it might continue operation with
an expired certificate. Without checking certificate expiration, an unsuspecting
tag could be tricked into identifying itself and possibly divulging other sensitive
information.

In the remainder of this paper, we make no distinction between explicit revo-
cation (i.e., revocation before expiration) and implicit revocation (i.e., certificate
expiration) checking. The reason is that both tasks are essential for security and
both require current time.

1.2 Why Is Reader Revocation Hard?

When presented with a PKC of a reader, a tag needs to check three things:
(1) signature of the issuing certification authority (CA), (2) expiration and (3)
revocation status.

The first is easy for any public key-enabled (pk-enabled) tag and has been
already incorporated into some reader authentication schemes [6], [14]. However,
(2) and (3) are problematic. Note that even a high-end tag is a passive device
lacking a clock. Thus, a tag, by itself, has no means of deciding whether a
presented certificate is expired.

Revocation checking is even more challenging. First, similar to expiration, off-
line revocation checking (e.g., CRL-based) requires current time because the tag
needs to check the timeliness of the presented proof of non-revocation. Also, com-
municating a proof of non-revocation entails extra bandwidth from the reader
to the tag. For CRLs, the bandwidth is O(n) and, for more efficient CRTs, the
bandwidth is O(log n) – a non-negligible number for large values of n, where n
is the number of revoked readers2. Whereas, online revocation checking proto-
cols (such as OSCP) offer constant-size proofs of non-revocation. However, such
protocols are unsuitable due to their connectivity and availability requirements
;see Section 3 for further discussion.

1.3 Roadmap

We focus on a class of pk-enabled RFID systems where tags are both personal
and attended. This includes e-Passports, e-Licenses and contactless credit cards.
Personal means that a tag belongs to a human user and attended means that
a tag is supposed to be activated only with that user’s (owner’s) consent. Our
approach is based on several observations:

1 “Explicitly” means before the expiration of the PKC.
2 The problem of the high communication cost of CRL-s in current solutions has been

noted by Blundo, et al. [4].

22 R. Nithyanand, G. Tsudik, and E. Uzun

– User/owner presence and (implicit) consent are already required for the tag
to be activated.

– Low-cost and low-power flexible display technology is a reality, e.g., e-paper
and OLED. In fact, passive RFID tags with small (6-10 digit) displays have
been demonstrated and are currently feasible.

– Since certificate revocation and expiration granularity is usually relatively
coarse-grained (i.e., days or weeks, but not seconds or minutes), users can
distinguish between timely and stale date/time values.

The rest is straight-forward: a display-equipped tag receives, from a reader,
a PKC along with a signed and time-stamped proof of non-revocation. After
verifying the respective signatures on the reader’s PKC and the non-revocation
proof, the tag displays the lesser of: (1) PKC expiration time and (2) non-
revocation proof expiration time. The user, who is assumed to be reasonably
aware of current time, validates the timeliness of the displayed time. If it is
deemed to be stale, the user aborts the interaction with the reader. Otherwise,
user allows the interaction to proceed.

Organization: We summarize related work in Section 2 and overview some triv-
ial solutions in Section 3. We describe our approach in Section 4, followed by
results of the usability study in Section 5. The paper ends with the summary in
Section 6.

2 Related Work

There are many ways of handling certificate revocation. Of these, Certificate Re-
vocation Lists (CRLs) are the most commonly used mechanism. Notably, CRLs
are used by the X.509 Public Key Infrastructure for the Internet [12]. Some
techniques improve the efficiency of revocation checking. Certificate Revocation
Trees (CRTs) [19] use Merkle’s Hash Trees [23] to communicate a relatively short
non-revocation proofs (of size log n). Skip-lists [9] and 2-3 Trees [28] improve on
the CRT update procedure through the use of dynamic data structures, offering
asymptotically shorter proofs. Online Certificate Status Protocol (OCSP) [27]
is an on-line method that reduces storage requirements and provides timely re-
vocation status information. Certificate Revocation System (CRS) [25,24] offers
fully implicit certificate revocation by placing the bulk of revocation burden on
the prover (certificate owner) and yields compact proofs of certificate validity.

In spite of substantial prior work in both certificate revocation and RFID
security, very little has been done with respect to reader revocation and expi-
ration checking. However, the problem has been recognized in previous litera-
ture [26,11,15,10,7,30].

3 Trivial Solutions

We now consider some trivial reader revocation techniques and discuss their
shortcomings.

Readers Behaving Badly 23

3.1 Date Register and Time Stamps

Every PKC has a validity period defined by its effective date (Deff) and expira-
tion date (Dexp). During certificate verification, a tag can use the date stored in
its register (Dcurr) to determine whether a certificate has expired. Verification
steps are as follows:

1. Tag verifies the CA signature of the reader’s certificate.
2. Tag checks that Dexp is greater than Dcurr.
3. If (1) and (2) succeed, the tag accepts the certificate. If Deff is greater than

Dcurr, the tag updates Dcurr to Deff .

With this approach, the estimate of the current date – Dcurr – stored by the tag
is not guaranteed to be accurate and thus can not always protect it from readers
with expired or revoked certificates. This is especially the case for a tag that has
not been used for some time. The value of Dcurr might reflect a date far in the
past, exposing the tag to attacks from readers revoked at any point after Dcurr.

3.2 On-Line Revocation Checking

Online revocation-checking approaches, such as OCSP [27], alleviate client stor-
age requirements by introducing trusted third parties (responders) that provide
on-demand and up-to-date certificate status information. To validate a certifi-
cate, a client sends an OCSP status request to the appropriate responder and
receives a signed status. In its basic form, OCSP requires a clock on the client, as
it uses time-stamps to assure freshness. However, an optional OCSP extension
supports the use of nonces as an alternative.

Although suitable for a large and well-connected infrastructure, such as a
private network or the Internet, OCSP is problematic in RFID systems. Its use
would require a tag to generate random challenges and conduct a 2-round (on-
line) challenge-response protocol with an OCSP responder. Random challenges
must be generated using a Pseudo-Random Number Generator (PRNG), which
requires extra resources on the tag. More importantly, OCSP would necessitate
constant infrastructure connectivity for all readers and availability of OCSP
responders. Furthermore, the turnaround time for tag-reader interaction would
become dependent on external factors, such as congestion of the communication
infrastructure (e.g., the Internet) and current load on OCSP responders. Either
factor might occasionally cause significant delays and prompt the need for back-
up actions.

3.3 Internal Clocks

An internal clock would allow tags to accurately determine whether a certificate
is expired and whether a non-revocation proof is current. However, a typical
RFID tag is a purely passive device powered by radio waves emitted from a
nearby reader. Since a real-time clock needs uninterrupted power, it cannot
be sustained by passive tags. One might consider equipping RFID tags with
batteries, however, this raises a slew of new problems, such as battery cost,
clock synchronization and battery replacement.

24 R. Nithyanand, G. Tsudik, and E. Uzun

4 Proposed Technique

We re-emphasize that our approach is aimed only at pk-based RFID systems. It
has one simple goal: secure and reliable revocation checking on RFID tags. In
the rest of this section, we discuss our assumptions and details of the proposed
solution.

4.1 Assumptions

Our design entails the following assumptions3:

1. Each tag is owned and physically attended by a person who understands tag
operation and who is reasonably aware of the current date.

2. Each tag is equipped with a one-line alpha-numeric (OLED or ePaper) dis-
play capable of showing a 6-8 digit date.

3. Each tag has a mechanism that allows it to become temporarily inaccessible
to the reader (i.e., to be “turned off”).

4. Each tag is aware of the name and the public key of a system-wide trusted
certification authority (CA).

5. The CA is assumed to be infallible: anything signed by the CA is guaranteed
to be genuine and error-free.

6. The CA issues an updated revocation structure (e.g., a CRL) periodically.
It includes serial numbers of all revoked reader certificates.

7. Each tag knows the periodicity of revocation issuance (i.e., it can calculate
the expiration date of revocation status information by knowing its issuance
date.)

8. While powered up by a reader, a tag is capable of maintaining a count-down
timer.

9. A tag can retain (in its non-volatile storage) the last valid date it encoun-
tered.

10. [Optional] A tag may have a single button for user input.

4.2 Basic Idea

Before providing any information to the reader, a tag has to validate the reader
PKC. Recall our assumption that the user is physically near (e.g., holds) his tag
during the entire process. Verification is done as follows:

1. The freshly powered-up tag receives the CRL and the reader PKC. Let
CRLiss, CRLexp, PKCiss and PKCexp denote issuance and expiration
times for purported CRL and PKC, respectively. Let the last valid date
stored in the tag be TagCurr.

3 Although we use ”date” as the revocation/expiration granularity, proposed technique

is equally applicable to both coarser- and finer-granular measures, e.g., month or

hour.

Readers Behaving Badly 25

Fig. 1. A Display and Button Equipped RFID Tag

2. If either CRLexp or PKCexp is smaller than Tagcurr, or CRLiss ≥ PKCexp,
the tag aborts.

3. The tag checks whether the CRL includes the serial number of the reader
certificate. If so, it aborts.

4. The tag checks the CA signatures of the PKC and CRL. If either check fails,
the tag aborts.

5. If CRLiss or PKCiss is more recent than the currently stored date, the tag
updates it to the more recent of the two.

6. The tag displays the lesser of the CRLexp and PKCexp. It then enters a
countdown stage of fixed duration (e.g., 10 seconds).

7. The user views the date on the display.
[OPTION A:]
(a) If the displayed date is not in the past, the user does nothing and in-

teraction between the tag and the reader resumes after the countdown
stage.

(b) Otherwise, the user terminates the protocol by initiating an escape action
while the tag is still in countdown stage.

[OPTION B:] (If Assumption 10 holds)
(a) If the displayed date is in the future, the user presses the button on

the tag before the timer runs out, and communication with the reader
continues normally.

(b) Otherwise, the timer runs out and the tag automatically aborts the pro-
tocol.

4.3 Escape Actions

As evident from the above, an escape action is required whenever the user de-
cides that the displayed date is stale. Although the choice of an escape action is
likely to be application-dependent, we sketch out several simple and viable
examples.

26 R. Nithyanand, G. Tsudik, and E. Uzun

Using a Button: Recent developments in low-power hardware integration on
contactless cards have led to deployment of buttons on RFID tags [20,33]. On
such tags, the user can be asked to press a button (within a fixed interval)
as a signal of acceptance4. If the button is not pressed within that interval,
the protocol is automatically terminated by the tag. Thus, the escape action
in this case involves no explicit action by the user. We recommend this variant
over alternatives discussed below, since it complies with the safe defaults design
principle, i.e., without explicit approval by the user, the tag automatically aborts
its interaction with the reader.

Faraday Cages: A Faraday Cage is a jacket made of highly conductive material
that blocks external electric fields from reaching the device it encloses. Since tags
are powered by the electric field emitted from a reader, it is theoretically possible
to isolate them from all reader access by simply enclosing them in a Faraday cage.
For tags that have an enclosing Faraday cage – such as e-Passports that have
one inside their cover pages – the natural escape action is simply closing the
passport.

Disconnecting Antennas: An RFID tag communicates and receives power
through a coil antenna attached to its chip. Disconnecting the antenna from
the chip immediately halts communication and shuts down the tag. A simple
physical switch placed between a tag and its antenna can be used as an escape
action. Similar mechanical actions aimed to halt communication between a tag
and a reader are described in [17]. One drawback of such techniques is that
physical damage to the tag is possible if the switch is handled roughly.

4.4 Efficient Revocation Checking

Although we hinted at using CRLs earlier in the paper, our approach would
work with CRTs or any other off-line revocation scheme. However, both CRLs
and CRTs become inefficient as the number of revoked readers increases. CRLs
are linear and CRTs – logarithmic, in the number of revoked certificates. Our
goal is to minimize bandwidth consumed by revocation information by making
it constant, i.e, O(1). To achieve this, we take advantage of a previously pro-
posed modified CRL technique originally intended to provide privacy-preserving
revocation checking [29].

In traditional CRLs, the only signature is computed over the hash of the entire
list of revoked PKCs. Consequently, the entire list must be communicated to the
verifier. To make CRLs bandwidth-optimal, [29] requires the CA or a Revocation
Authority to sign each (sorted) entry in a CRL individually and bind it with
the previous entry. In more detail, the modified CRL technique works as follows:
assume that the CRL is sorted in ascending order by the revoked certificate serial

4 For tags that have no buttons but built-in accelerometers, gestures (see [8] for more

details) can also be used to signal user acceptance.

Readers Behaving Badly 27

numbers. For a CRL with n entries, the CA generates a signature for the i-th
entry (1 < i ≤ n) as follows:

Sign(i) = {h(CRLiss||SNi||SNi−1)}SKRA

where, CRLiss is the issuance date of this current CRL, SNi is the i-th certificate
serial number on the ordered CRL, SNi−1 is the immediately preceding revoked
serial number, SKRA is the secret key of the CA and h is a suitable cryptographic
hash function. To mark the beginning and the end of a CRL, the CA uses two
fixed sentinel values: +∞ and −∞.

When authenticating to a tag, a non-revoked reader provides its own PKC as
well as the following constant-size non-revocation proof:

SNj, SNj−1, CRLiss, Sign(j)

where reader certificate serial number SNrdr is such that SNj−1 < SNrdr <
SNj. The reader PKC, along with the above information, allows the tag to easily
check that: (1) the range between adjacent revoked certificate serial numbers
contains the serial number of the reader PKC, and (2) the signature Sign(j)
is valid. If both are true, the tag continues with the protocol by displaying the
lesser of the CRLexp and PKCexp, as in step 6 of Section 4.2.

Compared with traditional CRLs, this scheme reduces both storage and com-
munication overhead from O(n) to O(1) for both, readers and tags. On the other
hand, the CA has to separately sign each CRL entry. Although this translates
into significantly higher computational overhead for the CA, we note that CAs
are powerful entities running on resource-rich systems and CRLs are not usually
re-issued very frequently, i.e., weekly or daily, but not every minute or even every
hour.

4.5 Security Considerations

Assuming that all cryptographic primitives used in the system are secure and
the user executes necessary escape actions in case of expired (or revoked) reader
certificates, the security of the proposed reader revocation checking mechanism
is evident.

We acknowledge that user’s awareness of time and ability to abort the protocol
(when needed) are crucial for the overall security. To this end, we conducted
some usability studies, including both surveys and experiments with a mock
implementation. As discussed in section 5, our studies showed that people are
reasonably aware of date and also able to execute the protocol with low error
rates.

4.6 Cost Assessment

Recent technological advances have enabled mass production of small inexpen-
sive displays (e.g., ePaper) that can be easily powered by high-end RFID tags

28 R. Nithyanand, G. Tsudik, and E. Uzun

aided by nearby readers5. The current (total) cost of an ePaper display-equipped
and public key-enabled RFID tag is about 17 Euros in quantities of 100, 000 and
the cost goes down appreciably in larger quantities [33]. Although this might
seem high, we anticipate that the cost of cutting-edge passive display technolo-
gies (i.e., ePaper and OLED) will sharply decrease in the near future. Moreover,
once a display is available, it can be used for other purposes, thus amortizing the
expense. We briefly describe some potential alternative uses for display-equipped
RFID tags:

Transaction Verification: RFID tags are commonly used as payment and
transaction instruments (e.g., credit, ATM and voting cards). In such settings,
a direct auxiliary channel between the tag and the user is necessary to verify
the details of a transaction. This problem becomes especially apparent with
payment applications. A malicious reader can easily fool the tag into signing
or authorizing a transaction for an amount different from that communicated
to the user. A display on a contactless payment card would solve this problem
by showing the transaction amount requested by the reader on its display and
waiting for explicit user approval before authorizing it.

Device Pairing: A display may be used for secure pairing of tags with other
devices that do not share a CA with the tag. Visual channel-based secure device
pairing methods that are proposed for personal gadgets can be used with display-
equipped RFID tags (See [21] and [18] for a survey of such methods). The ability
to establish a secure ad-hoc connection with arbitrary devices is a new concept
for RFID tags that might open doors for new applications, e.g., the use of NFC-
capable personal devices (e.g., cell-phones) to change and control settings on
personal RFID tags.

User/Owner Authentication: In some scenarios, it might be necessary for a
user to authenticate to a tag (e.g., credit card or passport). Currently this can
be done only via trusted third party devices such as readers, mobile phones [31],
personal computers and wearable beepers [16]. However, in the future, with a
display-equipped RFID tag, the need for additional trusted devices might be
obviated.

5 Usability

Since the proposed technique requires active user involvement, its usability is one
of the key factors influencing its potential acceptance. Also, due to the nature
of the protocol, certain type of user errors (i.e., accepting an incorrect or stale
date) can result in a loss of security. Thus, we conducted two separate usability
studies: online surveys and hands-on usability experiments. The goal of these
studies was to answer the following questions:

1. Do everyday users worry about the reader revocation problem?
5 Power feasibility analysis of integrating a display into a passive RFID tag circuit is

discussed in Appendix A.

Readers Behaving Badly 29

2. How do these users rate the usability of our solution?
3. Are users reasonably aware of the current date? What are the expected error

rates?

5.1 Usability Experiment

In order to assess the usability of our method in the context of real users, 25
subjects were recruited to take part in the usability study. In order to prevent
subjects from being explicitly aware of the date during the tests, care was taken
to avoid setting up prior test appointments. Instead, subjects were recruited by
the test coordinator at various campus venues, e.g., cafés, dorms, classrooms,
offices, labs and other similar settings.

Apparatus and Implementation: Our test mock-up was implemented using
two mobile phones: a Nokia N95 [2] (simulating the tag) and a Nokia E51 [1]
(simulating the reader). These devices were chosen since, at the time of this
study, actual RFID tags with displays and buttons could not be ordered in
modest quantities. We used Bluetooth as the wireless communication medium
between the N95 and E51. All implementation code was written in Java Mobile
Edition. The time period for the automatic reject was set to 10 seconds.

Subjects: Our study participants were mainly students at the University of
California, Irvine. Their age was well distributed among three groups: 36% –
18-24, 32% – 25-29, 32% – 30 +. Gender distribution was controlled for and
almost evenly split between male and female (52% and 48%, respectively). On
the other hand, 80% of the subjects had a bachelors degree, thus yielding a
rather educated sample. We attribute this to the specifics of the study venue (a
university campus).

Procedure: To help subjects in understanding the concept of personal RFID
tags, the ePassport example was used throughout the test and the questionnaire
phases. First, subjects were asked not to consult any source of current date/time
before and during the tests. Then, they were given a brief overview of our method
and the importance of maintaining natural behavior during the experiments.
Next, each subject was presented with a mock-up implementation and was asked
to execute the protocol six times. Finally, subject opinions were solicited via the
post-test questionnaire.

The set of dates used in the study process was: +/-1 day, -3 days, +7 days,
-29 days, and -364 days, from the actual test date (Note that ”+” and ”-”
indicate future and past dates, respectively). All experiments were conducted
during the first week of December 2009, and choices of -29 days and -364 days
were deliberate so as to make the staleness of these dates more deceiving to the
subjects.

Test cases were presented to each subject in random order. The test ad-
ministrator held the phone simulating the reader and sent dates to the device
simulated the tag. After a date was displayed on the “personal tag”, the test
subject was asked to decide whether to: (1) accept the date by pressing the

30 R. Nithyanand, G. Tsudik, and E. Uzun

button within ten seconds, or (2) reject it by doing nothing. The process was
repeated six times for each test-case.

Results
Completion Time and Error Rates: For subjects who accepted displayed dates,
the study yielded average completion time of 3.07 seconds, with standard devi-
ation of 1.58 seconds. This shows that subjects were quick in reacting whenever
they considered the date to be valid. This also confirms that our choice of a
10-second time-out was appropriate.

Among the 25 subjects, the false negative rate (reject for a date that was
not stale) was quite low. No one rejected a date that was one day in future,
and only one subject (4% of the sample) rejected the date that was seven days
in the future. The false positive rate (accept a stale date) was also low in all
cases, except one. When subjects were shown dates that were, respectively: 1,
3 and 29 days earlier, the corresponding observed error rates were 0%, 0% and
4%. However, surprisingly, the error rate spiked up to 40% when subjects were
shown a date that was almost a year (364 days) earlier. We discuss this further
in Section 5.3 below.

User Opinions: Subjects who tried our mock-up implementation rated its usabil-
ity at 77% on the original System Usability Scale (SUS) [5], a score that is about
13% higher than that obtained from the on-line survey, where participants rated
it solely based on its written description. 84% of the subjects who tested our
implementation stated that they would like this system implemented on their
own personal tags, while 12% were neutral to the idea (the average score on a
5-point Likert scale was 4.1 with the standard deviation of 0.75).

5.2 On-Line Survey

We created an online survey [3] that was used to anonymously sample 98 individ-
uals. The purpose was to collect information regarding perceived usability and
general acceptance of our solution, rather than its actual usability. Participants
were given an explanation of the reader revocation problem. Then, they were
presented with the detailed description of our approach that included all user
interaction.

Survey Results: The proposed technique yielded a score of 68/100 on the sys-
tem usability scale (SUS). 66% of the participants stated that they would like
to see it implemented on their E-passports, while 26% were neutral (the average
score on 5-point Likert scale was 3.67 with the standard deviation of 0.87). 84%
of the participants were worried about identity theft and 88% stated that they
are concerned about revealing personal information to unauthorized parties in
general.

In the online survey, we did not ask the subjects for their estimate of the
current date or whether a displayed is stale, as this data would have been severely
biased owing to the availability of the current date on their computer screen.
Instead, participants were asked about their general awareness of the current

Readers Behaving Badly 31

date. 40% indicated that they are usually aware of the exact date, 35% were
confident to know it with at most one-day error margin and 22% claimed to be
within the +/- 3-day range. The remaining 3% indicated that 7 or more days
error would be possible on their estimate of the current date.

5.3 Discussion

Based on our usability results, we now attempt to answer the questions raised
at the beginning of this section:

Are people concerned with the problem we aim to solve? Among the 123 total
participants (98+25, in both studies) 88% are worried about revealing informa-
tion to unauthorized parties. 70% said that they wanted to see the proposed
technique implemented on their personal tags.

How do people rate the usability of our approach? Given the detailed description
of the method and required interaction, 98 participants rated its usability at
68% on SUS scale. The usability rating was even higher (77%) for 25 subjects
who actually experimented with the mock-up implementation. Both scores are
above industry averages [22] and indicate good usability and acceptability char-
acteristics.

Are users aware of current date? As results show, our method very rarely yields
false negatives: users are capable of not mistaking valid (future) dates for being
in the past. As far as false positives, however, results are mixed. Stale days and
months are, for the most part, easily recognized as such. However, with the stale
year, the error rate is quite high, at 40%. This deserves a closer look. While we
do not claim to know the exact reason(s), some conjectures can be made.

When confronted with a date, most of us are conditioned to first check day
and month, e.g., current dates on documents and expiration dates on perishable
products. At the same time, users do not tend to pay as much attention to more
gross or blatant errors (such as wrong year) perhaps because they consider it to
be an unlikely event. Also, we note that among six test-cases for each user, just
one had a date with the wrong year. This may have inadvertently conditioned
the subjects to pay more attention to the month/day fields of the dates.

On the other hand, we anticipate that year mismatches will be quite rare in
practice, since the tags can record the most recent valid date they encounter.
Therefore, dates with stale year values will be mostly automatically detected
and rejected by tags without the need for any user interaction. However, high
user error rates in wrong year values can still pose a threat if a tag is not used
for a year or longer.

Another approach that may yield lower error rates is showing today’s date to
the users instead of an expiration date. This approach can be implemented as
follows:

1. The reader sends the tag its claimed value for “today’s date” (Dcurr) in
addition to its PKC and the most recent CRL.

32 R. Nithyanand, G. Tsudik, and E. Uzun

2. The tag checks that Dcurr < PKCexp and Dcurr < CRLexp. If either check
fails, the tag aborts.

3. The tag displays Dcurr to the user.
4. The user is now required to verify that the displayed date is indeed “today’s

date”.

We believe more comprehensive user-studies are needed to evaluate whether the
above approach or certain changes in date representation and formatting (for
e.g., displaying YYYY/MM/DD instead of MM/DD/YY) might help lower user
errors.

6 Conclusions

In this paper, we presented a simple and effective method for reader revocation
on pk-enabled RFID tags. Our approach requires each tag to be equipped with
a small display and be attended by a human user during certificate validation.
As long as the user (tag owner) plays its part correctly, our solution eliminates
the period of vulnerability with respect to detecting revoked readers.

Recent advances in display technology, such as ePaper and OLED, have al-
ready yielded inexpensive display-equipped RFID tags. The low cost of these
displays combined with the better security properties and potential new ap-
plication domains make displays on RFID tags a near reality. Moreover, our
usability studies suggest that users find this solution usable and they are ca-
pable of performing their roles within reasonable error rates. We believe that
display-equipped RFID tags will soon be in mass production and the method
proposed in this paper will be applicable to a wide variety of public key-enabled
tags.

Acknowledgments. The authors are grateful to Bruno Crispo and Markus
Ullman for their valuable comments on the previous version of this paper. This
work is supported in part by NSF Cybertrust grant #0831526.

References

1. Nokia e51 specifications, http://europe.nokia.com/find-products/devices/

nokia-e51/specifications

2. Nokia n95 specifications, http://www.nokiausa.com/find-products/phones/

nokia-n95-8gb/specifications

3. Display enabled identification and payment instruments (November 2009),

http://sprout.ics.uci.edu/projects/usec/survey.html

4. Blundo, C., Persiano, G., Sadeghi, A.-R., Visconti, I.: Resettable and Non-

Transferable Chip Authentication for ePassports. In: Conference on RFID Security

(2008)

5. Brooke, J.: Sus - a quick and dirty usability scale. Usability Evaluation in Industry

(1996)

6. Bundesamt fur Sicherheit in der Informationstechnik. Advanced Security Mecha-

nisms for Machine Readable Travel Documents : Version 2.0 (2008)

http://europe.nokia.com/find-products/devices/nokia-e51/specifications
http://europe.nokia.com/find-products/devices/nokia-e51/specifications
http://www.nokiausa.com/find-products/phones/nokia-n95-8gb/specifications
http://www.nokiausa.com/find-products/phones/nokia-n95-8gb/specifications
http://sprout.ics.uci.edu/projects/usec/survey.html

Readers Behaving Badly 33

7. Cheon, J.H., Hong, J., Tsudik, G.: Reducing RFID Reader Load with the Meet-

in-the-Middle Strategy. Cryptology ePrint Archive, Report 2009/092 (2009)

8. Czeskis, A., Koscher, K., Smith, J.R., Kohno, T.: Rfids and secret handshakes:

defending against ghost-and-leech attacks and unauthorized reads with context-

aware communications. In: Computer and Communications Security – CCS (2008)

9. Goodrich, M., Tamassia, R.: Efficient authenticated dictionaries with skip lists and

commutative hashing, US Patent App. 10/416,015 (May 7, 2003)

10. Heydt-Benjamin, T., Bailey, D., Fu, K., Juels, A., O’hare, T.: Vulnerabilities

in first-generation RFID-enabled credit cards. Financial Cryptography and Data

Security (2007)

11. Hoepman, J.-H., Hubbers, E., Jacobs, B., Oostdijk, M., Wichers Schreur, R.: Cross-

ing Borders: Security and Privacy Issues of the European e-Passport. In: Yoshiura,

H., Sakurai, K., Rannenberg, K., Murayama, Y., Kawamura, S.-i. (eds.) IWSEC

2006. LNCS, vol. 4266, pp. 152–167. Springer, Heidelberg (2006)

12. Housley, R., Ford, W., Polk, W., Solo, D.: RFC 2459: Internet X.509 public key

infrastructure certificate and CRL profile (January 1999)

13. Infineon Technologies AG, AIM CC. Preliminary Short Product Information: Chip

Card and Security IC’s (2006)

14. International Civil Aviation Organization. Machine Readable Travel Documents:

Specifications for Electronically Enabled Passports with Biometric Identification

Capability (2006)

15. Juels, A., Molnar, D., Wagner, D.: Security and privacy issues in e-passports.

In: Security and Privacy for Emerging Areas in Communications Networks – SE-

CURECOMM (2005)

16. Kaliski, B.: Future directions in user authentication. In: IT-DEFENSE (2005)

17. Karjoth, G., Moskowitz, P.A.: Disabling rfid tags with visible confirmation: clipped

tags are silenced. In: Workshop on Privacy in the Electronic Society – WPES (2005)

18. Kobsa, A., Sonawalla, R., Tsudik, G., Uzun, E., Wang, Y.: Serial hook-ups: a

comparative usability study of secure device pairing methods. In: Symposium on

Usable Privacy and Security – SOUPS (2009)

19. Kocher, P.C.: On certificate revocation and validation. In: Hirschfeld, R. (ed.) FC

1998. LNCS, vol. 1465, pp. 172–177. Springer, Heidelberg (1998)

20. Kugler, D., Ullman, M.: Contactless security tokens - enhanced security by using

new hardware features in cryptographic based security mechanisms. In: Dagstuhl

Seminar Proceedings of Foundations for Forgery - Resilient Cryptographic Hard-

ware (July 2009)

21. Kumar, A., Saxena, N., Tsudik, G., Uzun, E.: Caveat eptor: A comparative study

of secure device pairing methods (2009)

22. Lewis, J., Sauro, J.: The factor structure of the system usability scale. In: Proceed-

ings of the Human Computer Interaction International Conference (HCII 2009),

San Diego CA, USA (2009)

23. Merkle, R.C.: Secrecy, authentication, and public key systems. Technical report,

Stanford University (1979)

24. Micali, S.: Efficient certificate revocation. Technical Memo MIT/LCS/TM-542b,

Massachusetts Institute of Technology (1996)

25. Micali, S.: Certificate revocation system. United States Patent, US Patent 5,666,416

(September 1997)

26. Monnerat, J., Vaudenay, S., Vuagnoux, M.: About Machine-Readable Travel Doc-

uments. In: Conference on RFID Security (2007)

27. Myers, M., Ankney, R., Malpani, A., Galperin, S., Adams, C.: Internet public key

infrastructure online certificate status protocol- ocsp (1999)

34 R. Nithyanand, G. Tsudik, and E. Uzun

28. Naor, M., Nissim, K.: Certificate revocation and certificate update. Technical report

(1999)

29. Narasimha, M., Solis, J., Tsudik, G.: Privacy preserving revocation checking. In-

ternational Journal of Information Security 8(1), 61–75 (2009)

30. Oren, Y., Feldhofer, M.: A Low-Resource Public-Key Identification Scheme for

RFID Tags and Sensor Nodes. In: ACM Conference on Wireless Network Security

– WiSec (2009)

31. Saxena, N., Uddin, M. B., Voris, J.: Treat ’em like other devices: user authentication

of multiple personal rfid tags. In: SOUPS (2009)

32. Scholz, P., Reihold, C., John, W., Hilleringmann, U.: Analysis of energy transmis-

sion for inductive coupled rfid tags. In: International Conference on RFID (2007)

33. Ullman, M.: Personal communication (September 2009)

A Power Feasibility Analysis

The aim of this section is to show that it is completely feasible to integrate low
power display technologies on passive RFID tags without any change on reader
specifications. We analyze the maximum power requirements of the proposed
system and its effect on the (theoretical) maximum working distance with current
readers. In the rest of this section, we use ePassports as an example due to their
clear tag and reader specifications.

We propose the use of display technologies such as ePaper, OLED, and other
such low-power bistable displays. These displays require power of the order of
100mW (for a 2” display unit) during display updates and 0mW of power during
standby.

A.1 Power Analysis

ePassport tags such as those supplied by Infineon Technologies, require up to
55mW of power to operate [13] while the display unit requires a maximum power
of 100mW to operate. We analyze the power requirements of the proposed system
from three aspects:

1. The ePassport tag is operating at maximum power and the display unit is
static or non-existent.

2. The ePassport tag is on standby and the display unit is being updated (i.e.,
refreshed).

3. The ePassport tag is operating at maximum power and the display unit is
being updated (i.e., refreshed).

In the first case, the power required by the ePassport circuit to operate will
be ∼ 55mW (the power required by the display unit at this time is zero). In
the second case, the power required by the ePassport circuit to operate will
be ∼100mW (the power required by the tag during standby is negligible). In
the final case, the power required by the ePassport circuit to operate will be
∼155mW (the sum of the maximum power required by the tag and display).

Readers Behaving Badly 35

The ePassport tag and reader when placed parallel to each other can be repre-
sented as a circuit, with circuit parameters set in the manner described by Scholz
et al. [32].

First, we establish a relationship between the mutual inductance (M) and the
distance (x) between the antenna of the tag and the reader.

M =
μπN1N2(r1r2)2

2
√

(r2
1 + x2)3

(1)

Where μ is the Permeability [H/m]; N1 and N2 are the number of turns in the
antennas of the tag and reader; r1 and r2 are the radii [mm] of each of these
turns. Substituting default values [32] we get the relation

M =
1.57× 10−12

x3
(2)

Now we establish a relationship between the power required by the tag (PTag)
and distance (x). This is done through the series of equations below.

PTag = I2
1RT (3)

Where I1 is the current running in the reader circuit [mA] and RT represents
the tag impedance which is given by (4).

RT =
M2RL

L2
2

(4)

Where L2 is assigned a value of 168nH [32] and RL is the load resistance given
by (5).

RL =
V 2

T

PTag
(5)

VT is the voltage required in the tag circuit (5.5 Volts). The value of RL is 195.1
Ω in the case that the ePassport tag and display unit operate at maximum power
together (case 3). RL is 302.5 Ω in the case that the ePassport tag is on standby
when the display unit is refreshed (case 1). Finally, by combining equations 2
through 5, we can get a relationship between x and PTag.

x6 =
(1.57× 10−12)2 × (I1)2 × (RL)

PTag × (L2)2
(6)

Making the necessary substitutions, we get the following values for x, where x
represents the maximum possible operating distance:

– An ePassport tag without a display unit or with display on stand-by (i.e.,
not refreshing):

PTag = 55 mW, RL = 550 Ω =⇒ x = .097 m (7)

36 R. Nithyanand, G. Tsudik, and E. Uzun

– An ePassport display unit while refreshing output when the tag is in standby
mode:

PTag = 100 mW, RL = 302.5 Ω =⇒ x = .080 m (8)

– An ePassport tag and the display unit operating at maximum power:

PTag = 155 mW, RL = 195.1 Ω =⇒ x = .069 m (9)

From the above results it is clear that even with the current reader and antenna
specification, adding a display reduces the maximum operating distance between
the tag and reader only by 2.8 cm. Therefore, adding a display unit to the
current ePassport circuit is feasible and doesn’t require any changes over the
power specifications in the original proposal [6]. If longer operating distances
(over 6.9 cm) are needed, it can be achieved with small modifications on the
RFID antenna design or by increasing power of a reader.

Privacy-Preserving, Taxable Bank Accounts

Elli Androulaki, Binh Vo, and Steven Bellovin

Columbia University

{elli,binh,smb}@cs.columbia.edu

Abstract. Current banking systems do not aim to protect user privacy.

Purchases made from a single bank account can be linked to each other

by many parties. This could be addressed in a straight-forward way by

generating unlinkable credentials from a single master credential using

Camenisch and Lysyanskaya’s algorithm; however, if bank accounts are

taxable, some report must be made to the tax authority about each ac-

count. Assuming a flat-rate taxation mechanism (which can be extended

to a progressive one) and using unlinkable credentials, digital cash, and

zero knowledge proofs of knowledge, we present a solution that prevents

anyone, even the tax authority, from knowing which accounts belong to

which users, or from being able to link any account to another or to

purchases or deposits.

1 Introduction

One of the hardest realms in which to achieve privacy is finance. Apart from
the obvious — few transactions are made via cash or other anonymous payment
mechanisms — society often requires that other information about bank accounts
be disclosed. In the U.S., for example, banks and other financial institutions
are required to report interest or dividend payments, since they are generally
considered to be taxable income. Some jurisdictions require that a portion of
the interest be paid directly to the government; other jurisdictions impose taxes
on actual balances. These requirements conflict with a desire for privacy and
suggesting a way to combine the two is the topic of this paper.

Pseudonymity as Privacy Mechanism. One particular aspect of the conflict con-
cerns a very common technique for achieving transactionalprivacy: pseudonymity.
In pseudonymous systems, an individual has a multitude of separate, unlinkable
identities that can be used as desired. A separate pseudonym can be used for each
peer, thus preventing linkage between different sorts of activities.

We claim that pseudonymity may be adopted in the banking system to achieve
privacy, as, at least for tax purposes, neither banks nor the government need to
know who owns a particular bank account. In fact, there are both security and
privacy benefits to having multiple pseudonymous accounts. Often, knowledge
of a “routing number” (effectively, the bank’s identity) and an account number
are sufficient to withdraw money from an account as well as deposit money into

D. Gritzalis, B. Preneel, and M. Theoharidou (Eds.): ESORICS 2010, LNCS 6345, pp. 37–54, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

38 E. Androulaki, B. Vo, and S. Bellovin

it. Having multiple pseudonymous accounts — and closing those created for a
special purpose when they are no longer needed — could prevent such incidents.

The Challenge. Although the identity of the account owners is not a functional
requirement of the banking system, pseudonymity may harden authorization
and encourage fairness attacks as it lacks accountability. Banks need to know
that only authorized parties withdraw money from accounts; governments need
ensure that balances and income are properly reported, and taxes paid. An ideal
system would be one where an individual could open a bank account without
disclosing his or her real identity; nevertheless the relevant tax authorities would
receive accurate reports of relevant information.

Our Contribution. We present a solution that accomplishes these goals. Individ-
uals need present strong identification credentials only to obtain a single mem-
bership to the bank, after which he may open an arbitrary number of anonymous
or nominal accounts, without anyone being able to link those accounts to their
owner or one to the other. Periodically, appropriate information on taxable items
is supplied; the tax authority can verify that all accounts are properly reported.
Our protocols consider non-progressive taxes, can easily cover progressive ones,
and are secure under the strong RSA assumption.

Organization. In Section 2, we give a more precise statement of the architecture
and requirements for the system. The protocols are described in Section 3. We
explain why we believe this system to be secure in Section 4. Section 5 discusses
related work; Section 6 has concluding thoughts.

2 System Architecture

Our goal is to build a bank account mechanism, where an honest individual is
able to own and handle multiple anonymous bank accounts not entirely con-
nected to his identity, while being taxed fairly and privately. More specifically,
we consider an architecture consisting of Users, i..e, individuals who open bank
accounts and must pay taxes, Banks, who allow users to open accounts for the
purpose of storing cash and handling financial transactions, while responsible for
reporting interest for income tax purposes, and the Tax Authority (TA), which
is responsible for ensuring that correct income taxes are paid by all users. Tax
Authority corresponds to the U.S.’s Internal Revenue Service (IRS), the Canada
Revenue Agency, the U.K.’s HM Revenue & Customs, etc.

Accountability requires that a single identity should be accounted for repeti-
tive misbehaviors of the same user. To restrict registration entries to one per user,
banks require that users present at Registration strong unforgeable identification
credentials. Users may then open and manage two types of bank accounts: nomi-
nal accounts, which carry the identity their owner and whose activity can be fully
traced, and anonymous accounts, where the identity of the owner is concealed
to the bank. To handle the the data related to these accounts, the bank main-
tains Dreg and Dα databases, respectively. Anonymous accounts may be opened

Privacy-Preserving, Taxable Bank Accounts 39

(AccountOpen operation) after special user-requests. To manage their accounts,
users are required to create pseudonyms strongly (but secretly) connected to
their bank identity. On an annual basis, all accounts are withheld taxes which
are reported in a four stage procedure: the TaxReportIssue, where the account
owner and the bank issue an anonymous account’s report, the TaxReportTran-
form, where the user transforms his report into a different but valid form, the
TaxReportDeposit, where the user deposits the tax report to the tax authority
and TotalTaxCalculation, where all the reports of the user are used to extract
the overall tax withheld. Auxiliary operations of the system are the Bkeygen and
Ukeygen, the key generation algorithms for the bank and the users respectively.
See [avb10] for more details.

Threat Model. We make the following assumptions:

1. Users may try to cheat. A user trying to avoid paying taxes may lie regarding
the tax withheld, attempt any type of forgery in tax reporting. Also, malicious
users may try to collaborate in order to minimize the reported balance, as long
as they do not endanger their funds.
2. Banks are “honest but curious”. Aiming to maintain their clientele, banks are
trusted to perform all their functional operations correctly, i.e., they issue cre-
dentials, open and update accounts as instructed by their customers. However,
they may use the information they possess for other reasons, i.e., to sell credit
card based profiles to advertising companies, while they may collaborate with
tax authority to reveal the identity behind an anonymous account.
3. Tax Authority is considered “honest but curious”. Although we assume that it
is operated by the government who wants to protect honest users, it, however, is
not assumed to protect privacy; indeed, there have been a number of incidents in
the U.S. of privacy violations by tax authorities or by unscrupulous individuals
employed by the tax authorities.

Requirements. Privacy and security are the core requirements of our system.
Privacy refers to the user, while security guarantees the proper operation of
the entire system. Privacy requires that the activity of an honest individual is
untraceable to other users, banks, the tax authority or collaborations between
them, and, thus, translated to:

1. Account-Account-owner Unlinkability. It can be inducted to account-
pseudonym — account-owner unlinkability and account – account tax-report un-
linkability. The first requires that given a pseudonym PU that does not belong to a
corrupted party, the adversary can learn which user owns PU no better than guess-
ing at random among all non-corrupted users that appear consistent with PU. Ac-
count – account tax-report unlinkability requires that given a tax report T that
does not belong to a corrupted party, the adversary can learn which user owns T
no better than guessing at random among all non-corrupted users in Dα. In addi-
tion, given a transformed tax reportTT , that does not belong to a corrupted party,

40 E. Androulaki, B. Vo, and S. Bellovin

the adversary can learn which pseudonym (and thus which account) it corresponds
to no better than guessing at random among all pseudonyms (accounts) of non-
corrupted users in Dα.

2. Account-Account Unlinkability. It can similarly be analyzed to account-
pseudonym – account-pseudonym unlinkability and account-tax report – account
tax-report unlinkabilty. The first requires that given two pseudonyms P1

U, P2
U that

donotbelong to corruptedparties, theadversaryhasnoadvantage in tellingwhether
P1
U, P2

U belong to the same user or not. The second, that given two recently gener-
ated tax reports T 1, T 2 that do not belong to corrupted parties, the adversary has
no advantage in telling whether they belong to the same user or not. There should
be no way for any entity or collaboration of entities, including the bank and tax
authority, to link different accounts of the same user.

Security is defined as the combination of the following properties:

1. Fairness. Suppose that n users U1, . . . , Un collude together. Let the sum of
the tax withheld by all of them together is SumTax =

∑
i=1...n TotalTaxi, where

TotalTaxi is Ui’s tax amount withheld. Fairness requires that the group of users
may report in total at least SumTax. We also require that the following hold

a. Tax Report non-Transferability. No user should be able to use (deposit) the
tax report of another user. Assuming two corrupted users U1 and U2, where U1

has issued T 1. Tax Report non-Transferability requires that there is no valid
transformation TT 1 of T 1 (through TaxReportTransform) for which the following
happens with non negligible probability: if U2 attempts to deposit TT 1 in honest
B through TaxReportDeposit, B accepts.
b. Tax Report Unforgeability. No user or coalition of users should be able to
construct a valid tax report for his accounts, i.e., a tax report for which TaxRe-
portDeposit is accepted by the tax authority or the bank.

2. Accountability. Users who attempt to avoid paying taxes for their accounts
are traced and punished.

3 Taxation Protocol

Accountability poses important a form of “privacy-preserving” centralization of
user activity inside the bank. Thus, each user can be privately authenticated by
demonstrating knowledge of a master secret, msU, which he generates at the reg-
istration procedure. Users are highly motivated not to share their secret, which
they use to open and manage their anonymous accounts. More, specifically the
user utilizes his msU to issue single use, bank (blindly) authorized permissions
permα, which he later deposits anonymously to open accounts. To manage them,
the anonymous user generates account pseudonyms, which are secretly, but prov-
ably, connected to their owner’s msU. Users deposit annually to the tax authority
an number of tax reports equal to the number of accounts they own. Tax report-
ing consists of two phases:

Privacy-Preserving, Taxable Bank Accounts 41

1. Tax Report Generation. It involves three stages:

1. Tax-Report-number Acquisition, where account owners obtain one valid tax-
report-number (TRN) per account. It is important to note that TRNs are
not linked to the accounts they are used for.

2. Actual Report Generation, where the account pseudonym proves that it
is the owner of the account — by demonstrating knowledge of the corre-
sponding msU — and provides a verifiable commitment to both his msU
and TRN. The bank signs it and produces the prime version of the ac-
count’s tax report: (T σ, T M) = (Sigx

B(TaxInfo), TaxInfo), where TaxInfo
= Tax || Commit(TRN, Master-Secret), Tax is the tax withheld from the
user’s account and by Sigx

B(M), we denote a complicated procedure which
involves bank’s (x-multiple) signature on M . The exact number of bank sig-
natures applied on M is not revealed to the user. However, the bank provides
the user with a randomized token SigInfo which contains that information, in
a form only readable by the taxation authority, along with re-randomization
information SITranform for the user to make SigInfo unlinkable to its initial
form.

3. Tax Report Transformation, where the account owner, applies a transfor-
mation function F to both, the bank-signed tax report T σ, and the corre-
sponding unsigned message, ending up to the depositables TT σ = F (T σ),
and TT M = F (T M). The account owner also transforms SigInfo through
SITranform.

2. Tax Report Deposit. Each user deposits all of his tax reports to the bank.
The deposit of tax reports includes three stages:

1. Deposit of all the unused permα. In this way, the bank can accurately com-
pute the number of anonymous accounts of each user.

2. Deposit of the depositable tax report pairs, (TT σ,i, TT M,i) corresponding to
each account of the accounts owned by the user.The user proves that each tax
report pair is valid, i.e., that it corresponds to bank signature(s) (according
to the transformed version of SigInfo), that was constructed using the same
user’s master secret and that it has not been deposited before.

3. Tax Amount Calculation procedure. The bank collaborates with the user to
calculate the overall tax withheld the latter’s accounts..

3.1 Building Blocks — Primitives for the Suggested Solution

Ecash. An E-Cash [chl05] system consists of three types of players: the bank,
users, and merchants. The input and output specifications of the basic operations
are as follows. For convenience, we will assume that the operations take place
between a merchant M, a user U and the Bank B.

• (pkB, skB) ← EC.BKeyGen(1k, params) and (pkU, skU) ← EC.UKeyGen(1k, params),
which are the key generation algorithm for the bank and the users respectively.

• 〈W,�〉 ← EC.Withdraw(pkB, pkU, n) [U(skU), B(skB)]. U withdraws a wallet W of n
coins from B.

42 E. Androulaki, B. Vo, and S. Bellovin

• 〈W ′, (S, π)〉 ← EC.Spend(pkM, pkB, n) [U(W),M(skM)]. U spends a coin with serial

S from his wallet W to M. W is then reduced to W ′, M obtains a coin (S, π), where

π is a proof of a valid spent coin with a serial S.
• 〈�/⊥, L′〉 ← EC.Deposit(pkM, pkB) [M(skM, S, π), B(skB, L)]. M deposits a coin

(S, π) into its account in B. If successful, M’s output will be � and the B’s list

L of the spent coins will be updated to L′.
• (pkU, ΠG) ← EC.Identify(params,S, π1, π2). It outputs the public key of the violator

U, who spent a coin with serial S twice, producing validity proofs π1 and π2, and a

proof of guilt ΠG.
• �/⊥ ← EC.VerifyGuilt(params,S, pkU, ΠG). This algorithm, given ΠG publicly ver-

ifies the violation of pkU.
• {(Si, Πi)}i ← EC.Trace(params,S, pkU, ΠG, D, n). This algorithm provides the list

of serials Si of the coins a violator pkU has issued, with the corresponding ownership

proofs Πi.• �/⊥ ← EC.VerifyOwnership(params,S, Π, pkU, n). Given a ownership proof Π it

verifies that a coin with serial number S belongs to a user with public key pkU.

Security Properties: (a) Correctness. (b) Balance. No collection of users and
merchants can ever spend more coins than they withdrew. (c) Identification of
Violators. Given a violation and the corresponding proofs of guilt, the violator’s
public pkU key is revealed such that EC.VerifyGuilt accepts. (d) Anonymity of
users. The bank, even when cooperating with any collection of malicious users
and merchants, cannot learn anything about a user’s spendings. (e) Exculpabil-
ity. An honest user U cannot be accused for conducting a violation such that
EC.VerifyGuilt accepts. (f) Violators’ Traceability. Given a violator U with a proof
of violation ΠG, this property guarantees that EC.Trace will output the serial
numbers of all coins that belong to U with the corresponding ownership proofs.

Pseudonym Systems. Pseudonym systems have three types of players: users,
organizations, and verifiers. Users are entities that receive credentials. Organiza-
tions are entities that grant and verify the credentials of users. Finally, verifiers
are entities that verify credentials of the users. See [lrsw99][cl01] for more
details. The standard operations supported are the following:
– (pkO, skO) ← PS.OKeyGen(1k). This procedure generates a public/secret key pair

for an organization. We denote a key pair for an organization O by (pkO, skO).

– (pkU, skU) ← PS.UKeyGen(1k). This procedure generates a public/secret key pair

for a user. We denote a key pair for a user U by (pkU, skU). Sometimes we refer

to the secret key of a user as a master secret key for the user.

– 〈(N, NSecrN), (N, NLogN)〉 ← PS.FromNym(pkO)
[
U(pkU, skU), O(skO)

]
. This in-

teractive procedure between a user and an organization generate a pseudonym (or

simply nym). The common input is the public key of the organization O. The

output for the user is a nym N and some secret information NSecrN , and for the

organization the nym N and some secret information NLogN .

– 〈credN , CLogcredN
〉 ← PS.GrantCred(N, pkO) [U(pkU, skU, NSecrN), O(skO, NLogN)].

This interactive procedure between a user and an organization generate a credential

for a nym N . The common input is N and pkO. The output for the user is the creden-

tial credN for the nym N . The output for the organization is some secret information

CLogcredN
for the credential.

– 〈�,�〉/〈⊥,⊥〉 ← PS.VerifyCred(pkO) [U(N, credN), V]. In this interactive proce-

dure between a user and a verifier, the user proves that he has a credential on the

nym N issued by the organization O.

Privacy-Preserving, Taxable Bank Accounts 43

– 〈�,�〉/〈⊥,⊥〉 ← PS.VerifyCredOnNym (N, pkO, pkO1
) [U(N1, credN1), O(NLogN)].

In this interactive procedure between a user and the organization O, the user proves

that N is his valid nym of the organization O and that he has a credential credN1

on the nym N1 issued by the organization O1.

Security Properties. (a) Unique User for Each Pseudonym. Even though the
identity of a user who owns a nym must remain unknown, the owner should be
unique. (b) Unlinkability of Pseudonyms. Nyms of a user are not linkable at any
time better than by random guessing. (c) Unforgeability of Credentials. A cre-
dential may not be issued to a user without the organization’s cooperation. (d)
Non-Transferability. Whenever a user U1 discloses some information that allows
a user U2 to use her credentials or nyms, U1 is effectively disclosing her master
secret key to him.

Commitment Schemes. In a typical commitment scheme, there are provers
(let each be P) who are required to commit to a particular value towards verifiers
(let each be V), who may be able to see the committed value when provers decide
to. The procedures supported are the following:

• (params) ← CS.Setup(1k), which outputs the parameters of a commitment scheme.
• (C/false) ← CS.Commit(params)[P(r,m)]. It outputs either the commitment itself

to a value m or not-completed. P’s input is the message m and randomness r.
• 〈�/⊥, m/⊥〉 ← CS.Open(C)[P(m), V]. In this operation the P shows the committed

value m to V. V accepts it if m is the value matching C.

Security Properties: (a) Binding. It should be computationally impossible for P,
after having committed to m, to generate another message m′ that has the same
commitment value C. (b) Hiding. It should be computationally impossible for a
verifier who knows C to get any information regarding m.

Blind Signatures. In a typical blind signature scheme, there are signers (let
each be S) who produce blind signatures on messages of users (let each be U).
The following procedures are supported:

• (pkS, skS) ← BS.KeyGen(1k). This is a key-generation algorithm that outputs a

public/secret key-pair (pkS, skS).
• 〈�/⊥, σ/⊥〉 ← BS.Sign(pkS)[S(skS), C(m)]. At the end of this interactive procedure,

the output of the S is either completed or not-completed and the output of U is either

the signature (σ) or a failure sign (⊥).
• 〈�/⊥〉 ← BS.Verify(m,σ, pkS) is a verification algorithm.

Security Properties: (a) Unforgeability. No one but the signer should be able to
produce a valid signature σ on a blinded message m. (b) Blindness S does not
learn any information about the message m on which it generates a signature σ.

Zero Knowledge Proof of Knowledge Protocols. In a typical zero knowl-
edge proof of knowledge(ZKPOK) scheme there are two types of players, the
provers who need to prove possession of one or more secret number(s), that
satisfy a particular property to one or more verifiers and the verifiers. In what
follows, we will use the notation introduced by Camenisch and Stadler in [cs97]
for the various proofs of knowledge of discrete logarithms and proofs of the

44 E. Androulaki, B. Vo, and S. Bellovin

validity of statements about discrete logarithms. In particular, PK{(α, β, γ) :
y1 = gα

1 hβ
1 ∧ y2 = gα

2 hγ
2 ∧ (u ≤ α ≤ u)} denotes a “zero-knowledge-proof-of-

knowledge” of integers α, β and γ such that y1 = gα
1 hβ

1 and y2 = gα
2 hβ

2 , where
u ≤ α ≤ u and y1, g1, h1, y2, g2, h2 are all elements of two groups G1 and G2

respectively. We make use of the following ZKPoK schemes:
A proof of knowledge of a representation of an element y ∈ G with respect to
bases z1, . . . , zv ∈ G [cevdg88], i.e.,
PK{(α1, . . . , αv) : y = zα1

1 · . . . · zαv
v }.

A proof of equality of discrete logarithms of y1, y2 ∈ G to the bases g, h ∈ G
respectively, [c91, cp93] i.e., PK{(α) : y1 = gα ∧ y2 = hα}.
A proof of knowledge of a discrete logarithm of y ∈ G with base g ∈ G such that
loggy lies in the interval [a,b], [b00],i.e.,
PK{(α) : y = gα ∧ α ∈ [a, b]}.
Proof of knowledge that the discrete logarithms of two group elements y1 ∈
G1, y2 ∈ G1 to the bases g1 ∈ G1 and g2 ∈ G2 in the different groups G1

and G2 are equal [bcdg88, cm99], i.e.,
PK{(α, β) : y1 =G1 gα

1 ∧ y2 =G2 gα
2 ∧ C =G gαhβ ∧ α ∈ [0, min(q1, q2)]},

where q1, q2 are the order of the groups G1, G2 respectively, G =< g >=< h >
is a group to which the commitment C of α, β is computed.
Security Properties.(a) Correctness. (b) Zero-Knowledge. The verifier learns noth-
ing other than that the prover knows the relevant values. (c) Proof of Knowledge.
The protocol accepts iff the prover knows the secret value he claims to know.

3.2 Detailed Protocol Description

As mentioned before, the bank manages two different registries: one handling
users’ non-anonymous information (reg-setting) and accounts and another one
handling anonymous accounts (α-setting). As each setting is realized as organi-
zations in pseudonymous systems (see [cl01] for more details), the bank runs
PS.OKeyGen twice, once for the reg-setting and once for the α setting. In par-
ticular, the bank:

– generates all the common system parameters (see [cl01]): the length of the
RSA moduli �n, the integer intervals Γ =]− 2�Γ , 2�Γ [, which is basically the
interval master-secrets belong to, Δ =]− 2�Δ, 2�Δ [, Λ =]− 2�Λ, 2�Λ+�Σ [, such
that �Δ = ε(�n+�Λ)+1, where ε is a security parameter, and �Λ > �Σ+�Δ+4.

– chooses two pairs (one for each setting) of random �n/2-bit primes: p′x, q′x,
such that px = 2p′x + 1 and qx = 2q′x + 1 are prime and sets modulus
nx = px · qx, where x = reg, α.

– chooses random elements ax, bx, dx, gx, hx ∈ QRnx , where x = reg, α. In
addition to the standard organization setup procedure of [cl01], the bank
chooses for the α-setting random kα, lα, mα, sα, zα ∈ QRnα .

Thus, the Bank’s public-secret information for the two settings are

– {(nreg, areg, breg, dreg, greg, hreg), (preg, qreg)}, for the reg-setting, and
– {(nα, aα, bα, dα, gα, hα, kα, lα, mα, sα, zα), (pα, qα)}, for the α-setting.

Privacy-Preserving, Taxable Bank Accounts 45

In addition to the aforementioned parameters, the bank generates a blind signa-
ture key pair (pkb

B, skb
B) and an RSA signature key pair, (skB, pkB) = ({d, pα, qα},

{e, nα}), based on the α RSA-parameters and 1 < e < φ(pαqα) and de =
1(mod(φ(pαqα))). e is given to the taxation authority (TA). On the other hand,
TA generates an encryption key pair (pkTA, skTA) of a known randomized (and
re-randomizable) encryption scheme (Paillier etc) and provides the bank with
the encryption key (see Appendix A.3 or [pp99] for more details).

Registration. Assuming collaborations between a user U and a bank B, in the
registration procedure, U contacts B in person to create an entry in B’s Dreg

registry. In particular

1. U → B: strong identification credential, i.e., passport, id card etc.
2. U:runs PS.UKeyGen to obtains a bank-oriented master secret msU and a

public/secret key pair {pkB
U, skB

U} connected to his msU.
3. U: runs PS.FormNym using the reg-parameters to generate a registration

pseudonym Preg, connected to msU in zero knowledge fashion.
4. U ↔ B: execute EC.Withdraw procedure for U (see 3.1 for more details) to

withdraw a wallet WAccB
U of permα (ecoins). WAccB

U will later authorize
U to open anonymous accounts in B. Consequently, the size of the wallet
withdrawn depends on the maximum number of anonymous accounts U is
eligible for.

5. U ↔ B: execute PS.GrantCred procedure so that U obtains a registration
credential credB

U for having registered in Dreg, which is provably connected
to msU.

6. U stores in his database his secret key (skB
U), the information related to his

pseudonym(pubPreg, secPreg) and credentials (pubcredB
U, seccredB

U), while B
stores only the public information.

Account Opening. To open an anonymous account, user U contacts B initially
anonymously. Both, B and U make use of the α-parameter group. The following
interactions take place:

1. U(anonymous) ↔ B: run EC.Spend for U to spend an ecoin (S, π) (permα)
from his WAccB

U wallet. If the ecoin used has been spent before, B runs the
EC.Identify and EC.Trace procedures to recover U’s identity(pkB

U) and activity
(skB

U).
2. U: runs PS.FormNym, to generate a pseudonym Pi for managing his new

account αi. The pseudonym created has the form of P = amsU
α bs

α, where s is
a U-B-generated value known only to U (see [cl01]).

3. U(anonymous) ↔ B: run PS.VerifyCredOnNym, where U demonstrates own-
ership of credB

U and B verifies both, that credB
U and Pi are bound to the

same msU (user) and that their owner has registered to the bank with a
reg-pseudonym which is bound to the same msU as Pi.

4. U stores in his database the public/secret information related to his account-
pseudonym (pubPi, secPi). B stores (pubPi, S, π).

46 E. Androulaki, B. Vo, and S. Bellovin

Tax Report Issue. This is a procedure taking place between the owner U of
an account αi, who participates through his pseudonym Pi and the bank B. It
consists of three stages:

1. Tax Report Number Acquisition. The account pseudonym Pi collaborates
with B in a BS.Sign procedure, for the former to obtain a (blind towards B)
TRN related ticket trticki. U deposits in person to B the trticki to receive a
tax-report-number TRNi. B sends to TA the tuple (U, TRNi) and stores it
in its Dreg. Tax report numbers are chosen from a range RangeT = [�τ , uτ].

2. Tax Report Generation. The following take place:
(a) Pi: using secPi proves that he is the owner of Pi, by engaging in the

ZKPoK: PK{(β, γ) : (Pi)2 = (a2
α)β · (b2

α)γ} (see [cl01]).

(b) Pi → B: C = Com(msU, TRNi, ri) = kmsU
α · lTRNi

α ·mri

α ,
where Com is a tax report related commitment scheme, msU U’s master-
secret, TRNi, the single-use tax-report-number, which U acquired anony-
mously, and ri is a U-generated randomness.

(c) Pi ↔ B: execute the following ZKPoK protocol for Pi to show in zero
knowledge fashion that C was computed correctly, i.e., that the com-
mitted master secret matches the master secret used in the construction
of Pi (msU) and that the exponent of lα (TRNi) is among the specified
range:
PK{(γ, δ, ε, η) : (Pi)2 = (a2

α)γ(b2
α)δ ∧ C2 = (k2

α)γ(l2α)η(m2
α)ε ∧

γ ∈ Γ ∧ δ ∈ Δ ∧ η ∈ RangeT}.
(d) Pi ra B: a random rx; if B has received rx before, the procedure is

repeated.
(e) B: decides x based on rx. It then computes htaxi

α and uses his RSA
signature key to sign T M,i = htaxi

α · C x times into T σ,i. B provides
U with an x-related the secret piece of information SigInfo = EncTA(x),
where x ∈ Rangex. T σ,i is then:

T σ,i = h
dxtaxi
α · kdxmsU

α · ldxTRNi

α ·mdxri

α (modnα).
(f) B→ U: T σ,i, SigInfo and SigInfo re-randomization information SITranform.

3. Tax Report Transformation. In this case, after having obtained his signed
tax reports, U applies the transformation function F , so that — although
provably valid — the modified tax reports are unlinkable to their initial
form. In our scheme F (M) is instantiated by adding an extra factor to M .
In particular, U:
(a) transforms both T σ,i and T M,i using F (M, r) = M · sr1

α · zr2
α , where

M is the message to be transformed and r = r1||r2 is a U-specified
randomness. Thus, we get the following for the signed tax report and
the corresponding message, respectively,

TTσ,i ← F (T σ,i, rσ,i) ← hdxtaxi
α · kdxmsU

α · ldxTRNi

α ·mdxri

α · srσ,i
1

α · zrσ,i
2

α

TTM,i ← F (T M,i, rM,i) ← htaxi
α · kmsU

α · lTRNi

α ·mri

α · srM,i
1

α · zrM,i
2

α .

(b) re-randomizes the encryption of SigInfo according to SITranform

Privacy-Preserving, Taxable Bank Accounts 47

Tax Report Deposit. Each user U(using a real identity) sends to the TA all
the tax reports he has acquired, (TTσ,1, TTM,1), . . . , (TTσ,N , TTM,N), where N
is the number of U’s accounts. U then proves that each one of these pairs were
constructed in a correct way and that they correspond to his accounts. The tax
report validation consists of two steps:

1. Signature Validation, where U shows that (TTσ,i, TTM,i), for all i = 1 . . .N ,
correspond to transformations of bank-signatures:
(a) TA: decrypts SigInfo, reads x and raises all TTσ,is to B’s signature veri-

fication key e, x times using (modnα):

TTM ′,i ← (TTσ,i)ex ← htaxi
α · kmsU

α · lTRNi

α ·mri

α · sexrσ,i
1

α · zexrσ,i
2

α .
(b) U ↔ TA: interact in the following ZKPoK protocol to prove that in each

pair, TTM,i and TTM ′,i correspond to the same TaxInfo, i.e., that in

both cases the exponents of hα, kα, lα, mα are the same, or that TTM,i

TTM ′,i

is a factor of powers of sα and zα:

PK{(θ, η)} : (TTM,i

TTM ′,i)
2 = (s2

α)θ(z2
α)η.

2. Tax Report Ownership and non-Repetition Proof. where U proves to the tax
authority TA that each one of the tax reports he deposits had been created
through his collaboration with B and that he has not deposit the same tax
report twice. The latter is achieved through the one-time-use TRN s. For
each one of TTM,is (or TTM ′,i), U reveals the TRNi to the TA, while he
engages to a ZKPoK protocol for the TA to verify that the exponent of kα

in TTM,i (and thus,TTM ′,i) matches the msU used in PB, i.e.,

PK{(γ, δ, τ, ε, θ, η) : (Preg)2 = (a2
α)γ(b2

α)δ ∧ TTM,i

lTRNi
α

=

= hτ
α · kγ

α ·mε
α · sθ

α · zη
α ∧ γ ∈ Γ ∧ δ ∈ Δ}.

Total Tax Calculation. In this operation, TA confirms that U has deposited
tax reports for all of his accounts and then uses them to extract the overall
tax amount withheld by U’s accounts. In particular, TA and U collaborate in
an EC.Spend procedure for the latter to spend his unused ecoins from WAccB

U
wallet. TA estimates the exact number of U’s accounts, computes the overall tax
withheld, and based on that the overall balance of U in banks (progressive-tax
formulas may then apply):

1. TA: computes the product of all TTM,i (TTM,all), which because of the
homomorphism of the commitment scheme used, equals to

Πi=1,...,NTTM,i = Πi=1,...,N (htaxi
α · kmsU

α · ltrni
α ·mri

α · srM,i
1

α · zrM,i
2

α) =

hTotalTax
α · kNmsU

α · lRt
α ·m

∑
i=1,...,N ri

α · s
∑

i=1,...,N rM,i
1

α · z
∑

i=1,...,N rM,i
2

α .

2. U reveals TotalTax =
∑

i=1...N taxi, which is the overall tax withheld.

48 E. Androulaki, B. Vo, and S. Bellovin

3. U and TA collaborate in a ZKPoK protocol to prove that TTM,all

hTotalT ax
α ·lRt

α

is

correctly created and thus prove that TotalTax is the required amount (note
that TA knows Rt):
PK{(β, γ, δ, ζ, η) : (Preg)2 = (a2

α)γ(b2
α)δ ∧

TTM,all

hT otalT ax
α l

Rt
α

= (kN
α)γ ·mε

α · sζ
α · zη

α ∧ γ ∈ Γ ∧ δ ∈ Δ}.

4 Discussion

The following theorem states the correctness, privacy and security of our general
scheme: if the underlying primitives (anonymous credential system, e-cash sys-
tem, blind signatures, commitments and ZKPoK) are secure, then our scheme
satisfies correctness, account–account unlinkability, account–account-owner un-
linkability, fairness in tax reporting, tax report non transferabiliy and unforge-
ability, and accountability. We use prove this theorem with the following lemmas.
We have omitted the correctness definition and solution for space reasons (see
appendix A, [avb10]).

Lemma 2. If the underlying primitives (anonymous credential system, ecash
system, and ZKPoK) are secure, then our scheme satisfies account-account un-
linkability.

Proof. Account-account unlinkability is maintained in the Account Open proce-
dure through the unlinkability property of the ecash scheme used for permα and
the unlinkability of pseudonyms property of the underlying anonymous creden-
tial system. Account-account unlinkability is also maintained through the tax
reporting: Let α1 and α2 two accounts of U for which he obtains tax reports
T 1, T 2 respectively. Then T 1 and T 2 are unlinkable one to the other because
of the hiding property of the commitment scheme used to generate them and
the zero knowledge property of the ZKPoK scheme used to prove their correct
construction.

Lemma 3. If the underlying primitives (anonymous credential system, ecash
system, blind signatures, commitment and ZKPoK, transformation function F ,
Paillier cryptosystem) are secure, then our scheme satisfies account–account-
owner unlinkability.

Proof. Let αi an anonymous account of user U managed by pseudonym Pi. Let
T and TT be the tax report for αi and its transformed version. Unlinkability
of αi and U at the AccountOpen procedure is achieved through the anonymity
property of the ecash scheme realizing permαs and of and pseudonym system
used for the generation of Pi as well as through the blindness of the blind signa-
ture scheme used for the acquisition of TRNs. T is unlinkable to U through the
hiding property of the commitment scheme, which “hides” the msU committed in
T and the security (zero knowledge) of the ZKPoK protocol used to validate the
construction of T : no information is leaked neither TRN nor for msU contained

Privacy-Preserving, Taxable Bank Accounts 49

in T . TT on the other hand, does not reveal anything regarding T or the ac-
count because of the hiding property of transformation function F (see appendix
for more details) used for its construction, the zero knowledge property of the
ZKPoK protocol used at its validation and the re-randomization property of the
Paillier cryptosystem used for blinding SigInfo.

Lemma 4. If the underlying primitives (anonymous credential system, digital
signatures, commitment) are secure, then our scheme satisfies Tax Report Un-
forgeability.

Proof. Let that user U manages an account αU through a pseudonym P and
generates tax report T σ/M , which is later transformed to TT σ/M , through F ().
We need to prove that the tax report remains unforgeable at all stages. T is
an RSA-signature-based function on a commitment on TRN, taxi and msU. To
avoid B-signature forgeries exploiting RSA homomorphism, apply the signature
scheme on T M x number of times, while the RSA-signature verification key and
x are kept secret to U. x is only revealed to TA only at the TT deposit procedure
through SigInfo. We assume that there are very few x-es w.r.t. the total number
of tax reports so that x-based linkability attacks do not apply. U has no incentive
to alter SigInfo. To avoid such a forgery using the same tax report, we make use
of TRN s, B-chosen numbers of a pre-specified range such that summations of
two numbers in RangeT result in an invalid number. bindness property of the
commitment scheme used in T generation guarantees that as long as the RSA
signature is unforgeable, U cannot dispute the “TaxInfo” he has committed to
in T M .

Lemma 5. If the underlying primitives (anonymous credential system, digital
signatures, commitment and ZKPoK) are secure, then our scheme satisfies Tax
Report non transferability.

Proof. In our system users are highly motivated not to share their msU. Thus,
assuming that they are not doing so, Tax-Report non transferability is achieved
through the need to prove knowledge of the msU at each step of the tax report-
ing. More specifically, account pseudonyms are required to show that their msU
matches the one committed in T , which is then signed and -thus- cannot change
(unforgeability of the signature scheme). The proof of knowledge property of
the ZKPoK scheme used when depositing TT , guarantees that user depositing
TT knows the corresponding msU, which should match the msU used in all tax
reports deposited by the same user, as well as his registration pseudonym.

Lemma 6. If the underlying primitives (anonymous credential system, ecash,
digital signatures, commitment and ZKPoK) are secure, then our scheme satisfies
Fairness.

Proof. Because of Tax Report Unforgeability and non-transferability, users can-
not change the tax reported in each report or use other users’ tax reports. Be-
cause of the Identification of Violators and Violators’ Traceability property of
ecash implementing permαs, users cannot lie to the bank regarding the num-
ber of the accounts they have opened: if they try to prove they opened fewer

50 E. Androulaki, B. Vo, and S. Bellovin

accounts, some of the permαs in WAccB will be doublespent. At the same time,
because of the TRNs, users cannot avoid a tax report, by depositing another one
twice.

Lemma 7. If the underlying primitives (anonymous credential system, ecash,
digital signatures, commitment and ZKPoK) are secure, then our scheme satisfies
Accountability.

Proof. Because of the Identification of Violators and Violators’ Traceability property
of ecash implementing permαs, users who lie regarding the anonymous accounts
they opened are identified. Because of the proof of knowledge property of the
ZKPoK protocols, the non-transferability of credentials property of the underly-
ing pseudonym system and the non-transferability property of tax reports, users
trying to use other users’ tax reports are detected.

5 Related Work

Legal issues related to anonymous payments, including purchase receipts have
been technically addressed in [pwp00, bp89]. [jy96], [lmp96] are cases of pro-
tocols providing conditionally anonymous payments from user issued bank ac-
counts. However, their work is different from ours as there is either a third
trusted party involved for anonymity revocation purposes, or they do not offer
privacy against coalitions of banks. In [ab09], the authors provide privacy in the
management of anonymous accounts, even w.r.t. the bank through the use of
anonymous credit cards. However, we take an additional step in addressing tax
reporting for bank accounts, which is not an issue in credit-only systems.

Taxation has been addressed in the past in the stock market. In [xyz00],
the authors propose a scheme addressing a similar problem to ours: anonymous
and taxable stock market trading accounts. As in our system, users are using a
generated anonymous credential from a public credential to validate anonymous
stock-transaction. However, their system differs from our own in two major ways.
First, they only allow for each user to own one anonymous account, because
of the extra complications to tax reporting the multiple accounts would cause.
Addressing these complications is one of our major contributions. Secondly, they
do not aim to prevent the Tax Authority from learning which accounts the
reports are coming from. Thus if the TA were to collaborate with the Stock
Exchange Center, they could re-link the users with their anonymous accounts.
Preventing this is another contribution of our system.

6 Conclusion

In this paper we presented a privacy preserving bank account system, where
individuals may open arbitarily anonymous and unlinkable accounts w.r.t. the
bank and tax authority collaborations. All accounts are ultimately and in zero
knowledge fashion connected to their owner. We emphasize on the bank account
taxation mechanism, where individual users report the aggregated amount of
tax all of their accounts have been withheld in a fair and accountable way.

Privacy-Preserving, Taxable Bank Accounts 51

References

[ab09] Androulaki, E., Bellovin, S.: An anonymous credit card system. In:

Fischer-Hübner, S., Lambrinoudakis, C., Pernul, G. (eds.) TrustBus 2009:

Proceedings of the 6th International Conference on Trust, Privacy and

Security in Digital Business. LNCS, vol. 5695, pp. 42–51. Springer,

Heidelberg (2009)

[avb10] Androulaki, E., Vo, B., Bellovin, S.M.: Taxable, privacy-preserving bank

accounts. Technical Report CUCS-005-10, Computer Science Dept.,

Columbia University (2010),

http://www.cs.columbia.edu/research/publications

[b00] Boudot, F.: Efficient proofs that a committed number lies in an interval.

In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 431–444.

Springer, Heidelberg (2000)

[bcdg88] Brickell, E.F., Chaum, D., Damg̊ard, I., Graaf, J.v.d.: Gradual and veri-

fiable release of a secret. In: Pomerance, C. (ed.) CRYPTO 1987. LNCS,

vol. 293, pp. 156–166. Springer, Heidelberg (1988)

[bp89] Brk, H., Pfitzmann, A.: Digital payment systems enabling security and

unobservability. Computers & Security 8 (1989)

[c91] Chaum, D.: Zero-knowledge undeniable signatures. In: Damg̊ard, I.B.

(ed.) EUROCRYPT 1990. LNCS, vol. 473, pp. 458–464. Springer,

Heidelberg (1991)

[cevdg88] Chaum, D., Evertse, J.-H., van de Graaf, J.: An improved protocol for

demonstrating possession of discrete logarithms and some generalizations.

In: Price, W.L., Chaum, D. (eds.) EUROCRYPT 1987. LNCS, vol. 304,

pp. 127–141. Springer, Heidelberg (1988)

[chl05] Camenisch, J., Hohenberger, S., Lysyanskaya, A.: Compact e-cash. In:

Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 302–321.

Springer, Heidelberg (2005)

[cl01] Camenisch, J., Lysyanskaya, A.: An efficient system for non-transferable

anonymous credentials with optional anonymity revocation. In: Pfitz-

mann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 93–118.

Springer, Heidelberg (2001)

[cm99] Camenisch, J., Michels, M.: Separability and efficiency for generic group

signature schemes. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666,

pp. 413–430. Springer, Heidelberg (1999)

[cp93] Chaum, D., Pedersen, T.P.: Wallet databases with observers. In: Brickell,

E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 89–105. Springer, Heidel-

berg (1993)

[cs97] Camenisch, J., Stadler, M.: Effcient group signature schemes for large

groups. In: Sommer, G., Daniilidis, K., Pauli, J. (eds.) CAIP 1997. LNCS,

vol. 1296, pp. 410–424. Springer, Heidelberg (1997)

[jy96] Jakobsson, M., Yung, M.: Revokable and versatile electronic money (ex-

tended abstract). In: CCS 1996: Proceedings of the 3rd ACM Conference

on Computer and Communications Security, pp. 76–87. ACM, New York

(1996)

[lmp96] Low, S., Maxemchuk, N.F., Paul, S.: Anonymous credit cards and its

collusion analysis. IEEE Transactions on Networking (December 1996)

http://www.cs.columbia.edu/research/publications

52 E. Androulaki, B. Vo, and S. Bellovin

[lrsw99] Lysyanskaya, A., Rivest, R., Sahai, A., Wolf, S.: Pseudonym systems. In:

Heys, H.M., Adams, C.M. (eds.) SAC 1999. LNCS, vol. 1758, pp. 184–199.

Springer, Heidelberg (2000)

[pp99] Paillier, P., Pointcheval, D.: Efficient public-key cryptosystems provably

secure against active adversaries. In: Lam, K.-Y., Okamoto, E., Xing,

C. (eds.) ASIACRYPT 1999. LNCS, vol. 1716, pp. 165–179. Springer,

Heidelberg (1999)

[pwp00] Pfitzmann, B., Waidner, M., Pfitzmann, A.: Secure and anonymous elec-

tronic commerce: Providing legal certainty in open digital systems with-

out compromising anonymity. Technical Report 93278, IBM Research

RZ3232 (2000)

[xyz00] Xu, S., Yung, M., Zhang, G.: Scalable, tax evasion-free anonymous in-

vesting (2000)

A Complementary Security Proofs - Primitives
Instantiation

A.1 Correctness Analysis

Definition. Correctness requires that if an honest user U, who is eligible for
opening anonymous accounts with an honest bank B, runs AccountOpen with B,
then none will output an error message. Also, if honest U, has opened accounts
α1, . . . , αN with honest B, and runs TaxReportIssue, then no one will output an
error message, while when the user tries to deposit them and thus runs with TA
TaxReportDeposit and TotalTaxCalculation no entity will output error message
and they will output the aggregated tax withheld by honest U’s accounts.

Lemma 1. If the underlying primitives (anonymous credential system, e-cash
system, commitments and ZKPoK) are secure, then our scheme satisfies Cor-
rectness.

Proof. The first condition of correctness is satisfied directly through the cor-
rectness of the underlying schemes of ecash and anonymous credentials and
according to which if U is honest neither EC.Spend procedure of permα nor
PS.VerifyCredOnNym (which take place at the Account Open will output an er-
ror message. The correctness and verifiability of the RSA signature scheme, its
homomorphism and the correctness of the used ZKPoK protocols used to confirm
that U is the owner of all tax reports and guarantee that TaxReportDeposit will
not output an error message.

A.2 Security of Auxiliary Functions

Lemma 8. The transformation function F , defined on DMxZ, where:

– F (M, r) = M · sr1
α · zr2

α (modnα), nα = pα · qα, pα, qα safe primes, sα, zα ∈
QRnα, r = r1||r2 is a random number and M the message to be blinded;

Privacy-Preserving, Taxable Bank Accounts 53

– DM = {x : ∃y, z, w, j : x = hy
α · kz

α · lwα ·mj
α(modnα)}, where hα, kα, lα, mα ∈

QRnα are system parameters;

is computationally non-invertible and provides output indistinguishability w.r.t.
M -inputs. More specifically, we claim that F supports:

– Non Invertibility Given an output f of F () it is computationally impossible
to compute M ∈ DM and r such that F (M,r) = f.

– Input-Output Unlinkability Given two messages M1 and M2 and an output f
of F () which corresponds to one of the messages, it is computationally hard
to decide which message corresponds to f with a better probability than
1/2.

Proof. Both properties derive directly from the discrete log assumption modulo
a safe prime product and strong RSA assumption.

Lemma 9. The function Com used, defined on (ZxZ)xZ, where

Com(x, y; r) = kx
α · lyα ·mr

α(modnα),

nα = pα · qα, pα, qα safe primes, kα, lα, mα ∈ QRnα is a commitment scheme on
x, y with randomness r.

Proof. Function Com satisfies both properties bindness and hiding which derives
from the discrete log assumption modulo a product of safe primes and factoring
assumption.

A.3 Paillier Encryption

The Paillier cryptosystem is s a probabilistic asymmetric algorithm for public
key cryptography and bases its security on the decisional composite residuosity
assumption (see [pp99] for details). Assuming the system is meant for a user U
to be able to receive messages confidentially, the operations supported are as in
every cryptosystem the following:

– (pkU, skU) ← Pail.KeyGen(1k), where U generates his encryption key pair.
In particular, U chooses two safe large prime numbers p and q, such that
gcd(p − 1, q − 1) = 2, computes n = pq and chooses g ∈ Z∗

n2 , such that n
divides the order of g. pkU = (n, g), skU = (p, q).

– 〈 C/⊥ 〉 ← Pail.Encrypt(pkU, m), where anyone may use pkU to generate
ciphertext C on a mesage m: C = gm · rn(modn2), where r is randomly
chosen.

– 〈 m/⊥ 〉 ← Pail.Decrypt(skU, C), where U uses his secret key to receive the
plaintext.

It is apparent that a particular plaintext may have many ciphertexts, depend-
ing on r. We make use of this property in the encryption of x in two ways: (a)
two users will not be able to distinguish whether they have the same x or not,

54 E. Androulaki, B. Vo, and S. Bellovin

and are thus unable to know whether they are able to exploit RSA homomor-
phism; (b) for re-randomization of SigInfo: users who know n can simply compute
C · (r′)n(modn2) and generate another ciphertext of x unlinkable to C. Thus in
this case of encryption algorithm, SITranform is n.

Security Properties: Semantic security against chosen plaintext attacks (IND-
CPA), i.e. given pk, two messages m1, m2 and a ciphertext corresponding c to
one of them, it is impossible to guess which of the messages corresponds to c
with a better probability than 1/2.

Formal Analysis of Privacy for Vehicular
Mix-Zones

Morten Dahl1,2, Stéphanie Delaune2, and Graham Steel2

1 Department of Computer Science, Aalborg University
2 LSV, ENS Cachan & CNRS & INRIA Saclay Île-de-France

Abstract. Safety critical applications for recently proposed vehicle to

vehicle ad-hoc networks (VANETs) rely on a beacon signal, which poses

a threat to privacy since it could allow a vehicle to be tracked. Mix-

zones, where vehicles encrypt their transmissions and then change their

identifiers, have been proposed as a solution to this problem.

In this work, we describe a formal analysis of mix-zones. We model a

mix-zone and propose a formal definition of privacy for such a zone. We

give a set of necessary conditions for any mix-zone protocol to preserve

privacy. We analyse, using the tool ProVerif, a particular proposal for

key distribution in mix-zones, the CMIX protocol. We show that in many

scenarios it does not preserve privacy, and we propose a fix.

Keywords: Privacy, VANETs, Mix-Zones, Security Protocols.

1 Introduction

Road traffic accidents are the most common cause of death in young adults in
industrialized countries [13]. To improve road safety, a vehicle-to-vehicle commu-
nication platform is currently being developed by consortia of car manufactur-
ers and legislators [15,17]. Safety-related applications such as collision warning
systems and high speed toll payment are envisaged. Dubbed vehicular ad-hoc
networks (VANETs), the platform is based on decentralised mobile ad-hoc net-
works in order to retain scalability despite the high average speed of vehicles,
and the large size of the network. As a consequence, the protocols used within
the network are designed to use few steps, short messages, and not rely heavily
on infrastructure for e.g. obtaining trust. To facilitate safety-critical applications
there is a consensus that all vehicles must periodically broadcast a beacon mes-
sage consisting of the vehicle’s location (in the form of a GNSS coordinate),
velocity, and identifier. Broadcasting this data several times per second raises
privacy issues.

Fortunately, many of the envisioned applications, including collision avoid-
ance, do not need a real-world identifier such as the vehicle’s license plate, but
can instead make do with a random identifier known as a pseudonym. However,
long term tracking may still reveal the real-world identity of the driver. One can
change pseudonym from time to time, but for this to have any effect the vehicles
must change pseudonyms under the right circumstances. It seems preferable to

D. Gritzalis, B. Preneel, and M. Theoharidou (Eds.): ESORICS 2010, LNCS 6345, pp. 55–70, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

56 M. Dahl, S. Delaune, and G. Steel

change pseudonyms e.g. at intersections where several vehicles are close together
and their paths unpredictable. This mimics the ubiquitous computing idea of a
mix-zone, where beacon signals are turned off in a mixing area [3]. Vehicles
cannot turn off beacon messages since many accidents happen at intersections,
hence the idea is to have all vehicles encrypt their beacon signals when inside
the zone [11].

Related Work. Several papers discuss the background to the VANET privacy
problem and the merits of the pseudonymous authentication solution [10,12,14].
Previous analysis work aims to evaluate the effectiveness of (a larger network of)
general mix-zones in terms of the probability of the attacker correctly linking
two pseudonyms based on assumed prior known statistics about vehicles move-
ment [6], when the effectiveness of each single mix-zone is already assumed.
Privacy for mobile devices with RFID tags has recently been treated formally
[2,5,18] . It is not clear how the definitions of privacy in these papers relate to
each other, and even less so to our own definition. We, for instance, have to
exclude scenarios where privacy is broken independently of the key establish-
ment protocol and must moreover require synchronised behaviour of vehicles.
These requirements for obtaining privacy are closer to the requirements made
for electronic voting protocols [8].

Our contributions. In this paper, we investigate formally the effectiveness of ve-
hicular mix-zone proposals. We model the network traffic inside a mix-zone, and
examine under which conditions it is reasonable to expect any gain in privacy.
We use the formal notion of indistinguishability to formalise the privacy prop-
erty for a mix-zone. We analyse the CMIX protocol [11] that has been proposed
to distribute keys to vehicles entering the mix-zone. We report some scenarios
in which the use of the CMIX protocol can prevent privacy from being achieved.
These scenarios have been discovered with the aid of the protocol analysis tool
ProVerif [4]. We propose a fix to the protocol. We believe this is the first work
to investigate the privacy property of an encrypted mix-zone, in particular when
the key distribution protocol is also taken into account.

Paper outline. In the next section, we present the concept of a mix-zone and
we give a description of the CMIX protocol. Then, we give our formal model
(see Section 3) and we explain our formal definition of mix-zone privacy, which
corresponds to an indistinguishability property (Section 4). In Section 5, we
give our results obtained on mix-zones, first assuming an ideal key distribution
protocol, and then using the CMIX protocol. Finally, we evaluate the protocol
and our modelling approach, we propose a fix, and we give conclusions.

2 Mix-Zones and CMIX Protocol

This section describes mix-zones, and in particular the CMIX protocol used to
distribute keys to vehicles entering a zone.

Formal Analysis of Privacy for Vehicular Mix-Zones 57

2.1 Mix-Zones

As discussed in the previous section, mix-zones are needed for the change of
pseudonyms to have any effect in preserving privacy. However, changing pseudo-
nyms while close to other vehicles is not sufficient to guarantee ‘unlinkability’,
which we define informally as the property that an attacker cannot know that the
old and new pseudonym belong to the same vehicle. To obtain this, pseudonyms
must also be changed synchronously from the point of view of the attacker.
More precisely, by synchronously, we mean that once one vehicle has started
broadcasting using a new pseudonym then all future broadcasts heard by the
attacker from at least one other vehicle must be using a new pseudonym as well.

If two vehicles in a mix-zone can agree on a precise point in time to change
their pseudonyms (for instance by one of the vehicles broadcasting the time
of when it is going to change its pseudonym) then synchronised change of
pseudonym is sufficient for unlinkability. In practice however, for several rea-
sons, one might want to allow a larger time interval for pseudonym change, e.g.
to have a better chance that another vehicle is nearby to synchronise with, to
ensure a certain level of unpredictability of trajectory, to account for clock dif-
ferences, etc. Using a longer time interval has the undesirable effect of causing
a radio-silence period during which none of the safety beacon messages can be
broadcast. Encrypted mix-zones are suggested to remedy these short-comings:
beacon messages can still be broadcast during the synchronisation time interval
as long as the attacker cannot read them. A recent proposal argues that turing
off radios at intersctions might be a worthwhile trade-off for privacy [7], but in
this paper we concentrate on investigating what privacy can be achieved when
beacon signals are required to be left on.

2.2 The CMIX Protocol

The CMIX protocol [11] distributes keys for encrypting beacon messages while in
the mix-zone with the goal of preventing an attacker from linking the pseudonym
of an in-coming vehicle with the pseudonym it uses when leaving. Every vehicle
is equipped with a tamper-resistant device (TRD) allowing access to its contents
only through its API. An offline Certification Authority (CA) run by a trusted
third party is responsible for issuing certificates cryptographically binding a
pseudonym P together with the public part (pub(K)) of an asymmetric key K.
Every vehicle has a fresh non-empty set of these key-pseudonym pairs stored in
its TRD. One pair is marked as current, to be used when sending messages.

Vehicles entering the mix-zone (part A of Figure 1) are alerted of the presence
of a road-side unit (RSU) by a radio broadcast. This triggers the vehicles to
initiate a key establishment session.

1. V → RSU : signKV
(request, Ts), signKCA

(
PV , pub(KV)

)
2. RSU → V : aencpub(KV)

(
signKRSU

(PV , zk, Ts)
)
, signKCA

(
PRSU , pub(KRSU)

)
3. V → RSU : signKV

(ack, Ts), signKCA

(
PV , pub(KV)

)

58 M. Dahl, S. Delaune, and G. Steel

Fig. 1. Intended usage of encrypted mix-zones

The first message is a signed timestamp Ts together with the constant request
used as a tag. The reply made by the RSU contains the zone encryption key zk
encrypted under the public key pub(KV) associated with the vehicle’s current
pseudonym PV . The corresponding private key is assumed to be only known by
the vehicle’s on board tamper-resistant cryptographic device, which can decrypt
the packet, store the zone key, and make available an encryption and decryption
service using this key. In this way, the zone key remains unknown to everyone,
including an attacker with a vehicle and a tamper-resistant device of his own.
The last message is an acknowledgement sent by the vehicle. Every message is
appended with the principal’s current certificate.

The zone key is then used to encrypt and decrypt beacon messages while
inside the geographical area dictated by the RSU. During their journey through
the mix-zone, the vehicles will come in close enough proximity that the attacker
is assumed unable to distinguish their locations (part B of Figure 1). Before
leaving the mix-zone the vehicles change their pseudonyms leaving the attacker
unable to determine if they leave according to part C1 or part C2 of Figure 1.

In the CMIX proposal [11], it is not specified whether a deterministic or
probabilistic encryption scheme is used to encrypt beacon messages. Probabilistic
encryption might seem the best solution, but due to the tight size constraints
of messages in VANETs, it may be preferable to use a deterministic scheme.
Deterministic schemes might still prevent the easy comparison of ciphertexts
due to the rapidly changing content of beacon messages (such as the coordinate).
Since this would depend on the exact cipher mode, beacon message format, etc,
and this is not yet fixed [17], we consider both types of encryption scheme in our
analysis.

A short informal analysis of the CMIX protocol is provided by Freudiger
et al. [11]. The threat scenario they consider is unclear: they first state that
their adversary is a passive outsider [11, §2.2] but then describe the resistance
of the protocol to attacks where the adversary sends messages to try to im-
personate an RSU [11, §3.2]. In general, VANET protocols are assumed to be
required to withstand attack by active adversaries, as described e.g. by Raya
and Hubaux (a subset of the authors of the CMIX paper) [14]. In this paper,
therefore, we consider both the passive attacker and an active attacker that can
forge and broadcast messages, but not prevent messages from being received.

Formal Analysis of Privacy for Vehicular Mix-Zones 59

We will explain during our analysis under what assumptions particular attacks
would be effective. Note that our adversary is assumed to have no visual contact
as he would otherwise be able to track a vehicle using e.g. the license plate.

3 Formal Modelling

The process calculus of Blanchet et al. [4] used by the ProVerif tool is a variant of
the applied pi calculus [1], a process calculus for formally modelling concurrent
systems and their interactions. We recall the basic ideas and concepts of this
calculus that are needed for our analysis.

3.1 Messages

To describe messages, we start with a set of names (which are used to name
communication channels and other atomic data), a set of variables, x, y, . . . and
a signature Σ formed by a finite set of function symbols each with an associated
arity. Function symbols are distinguished by two categories: constructors and de-
structors. We use standard notation for function application, i.e. f(M1, . . . , Mn).
Constructors are used for building messages. Destructors represent primitives for
taking messages apart and can visibly succeed or fail (while constructors always
succeed). Messages M, N, . . . are obtained by repeated application of construc-
tors on names and variables whereas a term evaluation D can also use destruc-
tors. The semantics of a destructor g of arity n is given by a set of rewrite rules
of the form g(M1, . . . , Mn) → M0 where M0, . . . , Mn are messages that only con-
tains constructors and variables. Given a term evaluation D, we write D ⇓ M
when D can be reduced to M by applying some destructor rules.

In the following, we consider constructors to model signatures and different
kinds of encryptions (symmetric/asymmetric and deterministic/probabilistic).
The symbol pub is a constructor representing the public key associated to the
private key given in argument. The semantics of our destructors are given below:

checksign(sign(x, y), pub(y)) → x
getmsg(sign(x, y)) → x

sdec(senc(x, y), y) → x
rsdec(rsenc(x, y, z), y) → x

adec(aenc(x, pub(y)), y) → x

We model probabilistic encryption by rsenc(m, k, r) where the r component is
fresh for every encryption, thus preventing comparison. We model a signature
scheme by two rewrite rules: the first one is used to verify a signature and the
second one models the fact that the signature scheme is not message concealing.

3.2 Processes

Processes are built from the grammar described below, where N is a message,
D is a term evaluation, a is a name, c is a channel name, and x a variable.

60 M. Dahl, S. Delaune, and G. Steel

P, Q, R ::= processes
0 null process
P | Q parallel composition
!P replication
new a; P name restriction
let N = D in P else Q term evaluation
in(c, N); P message input
out(c, N); P message output

The process “let N = D in P else Q” tries to evaluate D; if this succeeds and
if the resulting message matches the term N then the variables in N are bound
and P is executed; if not then Q is executed. The rest of the syntax is quite
standard. To ease the presentation, we will use tuples of messages, denoted by
parentheses, while keeping the reduction rules for these tuples implicit. We will
omit “else Q” when the process Q is 0.

An evaluation context is a context, that is a process with a hole, built from
[], C | P , P | C and new a; C. We obtain C[P] as the result of filling C[]’s hole
with P . A process P is closed if all its variables are bound through an input or
a let construction.

The RSU process. To illustrate the calculus used throughout this paper, we
give below a description of the RSU part of the CMIX protocol. We follow
the description given in the previous section. The RSU sends and receives all
messages using some public channel c and holds a freshly generated zone key zk.
We also model its pseudonym prsu and its private key krsu by fresh names. We
assume that the RSU already knows its certificate sign((prsu, pub(krsu)), kca).
Below, we only model the reception of the first message with its decomposition.
After some checks, the reply to the vehicle containing zk is constructed and sent.
We do not model the reception of the acknowledgement.

RSUCMIX
def= in(c, (xs, xc));

let (xpv, xpkv) = checksign(xc, pub(kca)) in
let (request, xT) = checksign(xs, xpkv) in
let ys = sign((xpv, zk, xT), krsu) in
let yc = sign((prsu, pub(krsu)), kca) in
out (c, (aenc(ys, xpkv), yc)); . . .

The operational semantics of processes in the calculus of ProVerif , are essentially
defined by two relations, namely structural equivalence ≡ and reduction −→. We
write −→∗ for the reflexive and transitive closure of −→. Structural equivalence is
the smallest equivalence relation on processes that is closed under application
of evaluation contexts and some other standard rules such as associativity and
commutativity of the parallel operator. Reduction is the smallest relation closed
under structural equivalence and application of evaluation contexts such that:

Formal Analysis of Privacy for Vehicular Mix-Zones 61

RED I/O out(c, M).Q | in(c, N).P −→ Q | Pσ
RED FUN 1 let N = D in P else Q −→ Pσ if D ⇓ M
RED FUN 2 let N = D in P else Q −→ Q if there is no M such that D ⇓ M
REPL !P −→ P |!P

where σ is the substitution defined on the variables that occur in N and such
that M = Nσ. In case such a substitution does not exist, the resulting process
will be Q | in(c, N).P for RED I/O rule and Q for the RED FUN 1 rule.

3.3 Observational Equivalence

The notion of observational equivalence was introduced in [1]. We write P↓c

when P emits a message on the channel c, that is, when P ≡ C[out(c, M); Q]
for some evaluation context C that does not bind c and some process Q.

Definition 1. Observational equivalence ∼ is the largest symmetric relation R
on closed processes such that P R Q implies:

1. if P↓c then Q↓c;
2. if P → P ′ then there exists Q′ such that Q →∗ Q′ and P ′ R Q′;
3. C[P] R C[Q] for all evaluation contexts C.

Intuitively, a context may represent an attacker, and two processes are observa-
tionally equivalent if they cannot be distinguished by any attacker. Note that
such an attacker is too powerful for our purpose since the nature of broadcast
communication does not allow him to block all messages. When performing the
analysis we will exclude attacks that are not possible for our attacker; as we will
see, the attacks we find do not rely on the attacker blocking messages.

ProVerif is not able to check observational equivalence directly but actually
checks a stronger notion that implies observational equivalence [4]. However, this
notion is too strong in many situations. This problem has recently been studied
in and a method has been proposed to extend the class of equivalences which
ProVerif is able to verify [9]. We will use this method to overcome the limitations
of ProVerif and to automatically verify the equivalences allowing us to model
our privacy property.

4 Privacy for Vehicular Mix-Zones

In this section we show how the privacy property informally described in Sec-
tion 2 can be formalised in our setting. We build on the classical approach of
formalising privacy properties as some kind of observational equivalence in a
process algebra or calculus [8,16], and extend this to take into consideration
mix-zones and vehicle mobility.

4.1 Mix-Zones

In the previous sections we have informally used the term mix-zone to describe
a place suitable for vehicles to change their pseudonym by being able to mix

62 M. Dahl, S. Delaune, and G. Steel

or hide among each other. We formally define a mix-zone as consisting of five
locations entryL, entryR, proximity , exitL, and exitR. We use public channels to
model these locations. If two messages are emitted on different channels, then
our attacker will be able to see a difference. This corresponds to the fact that he
is able to tell that they were transmitted from geographically different locations.
Note that messages sent on a public channel can be received on another public
channel with the help of our active attacker. Vehicles enter the mix-zone by
one of the entry locations and exit by one of the exit locations. The proximity
location models a stretch within the mix-zone where vehicles are so close to each
other that our attacker cannot tell them apart geographically.

Beacon messages are defined as consisting only of a pseudonym pv mod-
elled by a fresh name. This pseudonym is signed using the vehicle’s current
key kv and appended with the CA signed certificate binding the pseudonym
together with the public part of kv. Formally a beacon message is defined as(
sign(pv, kv), sign((pv, pub(kv)), kca)

)
where kca is the private key of the CA.

Note that all the location data in beacon messages are modelled by the channel
on which they are sent.

4.2 Privacy

The formal privacy property aims to capture the fact that an attacker cannot
track a vehicle. We assume that the attacker can listen on the entire network
and hence on all public channels. Thus, in order to achieve privacy, we need to
suppose the presence of at least two vehicles.

We consider a single mix-zone with two vehicles VA and VB, as in Figure 1.
VA will always start in entryL and VB always in entryR. Going through the mix-
zone, each vehicle emits a series of beacon messages. They can do this in two
different ways:

1. The vehicle VA moves from entryL to proximity to exitL while VB moves
from entryR to proximity to exitR (as in part C1 of Figure 1).

2. The vehicle VA moves from entryL to proximity to exitR while VB moves
from entryR to proximity to exitL (as in part C2 of Figure 1).

Intuitively, we achieve privacy if an attacker cannot tell the two cases apart. For-
mally, let V(entry , exit) stand for the vehicle that moves from entry to proximity
to exit . Privacy holds if the following equivalence holds:

C
[
V(entryL, exitL) | V(entryR, exitR)

]
∼ C

[
V(entryL, exitR) | V(entryR, exitL)

]
.

The next section presents the analysis we have performed, including the defini-
tion of the vehicles processes, and also the C contexts with which the analysis
has been performed.

5 Privacy Analysis

The analysis is performed in two models: an ideal model where the vehicles
are assumed to know the mix-zone encryption key and a CMIX model where

Formal Analysis of Privacy for Vehicular Mix-Zones 63

this key is distributed using the CMIX protocol. From our ideal model analysis,
we extract a set of scenarios where it is possible for a ‘perfect’ key distribution
protocol to guarantee privacy. We then evaluate the CMIX protocol with respect
to these scenarios.

5.1 Privacy in the Ideal Model

In the ideal model the vehicles magically know the mix-zone encryption key,
the attacker does not know it, and the only communications are the beacon
messages. As discussed in previous sections, we consider both deterministic and
probabilistic encryption of beacon messages.

Experimental Analysis. We model each vehicle using a fixed sequence of
beacon message emissions p1

v ; {p1
v }zk ; {p2

v }zk ; p2
v where:

– pi
v

def= sign(pi
v, ki

v), sign((pi
v, pub(ki

v)), kca), and
– {pi

v}zk
def= senc(pi

v , zk) or rsenc(pi
v , zk , r) depending on whether we are

considering respectively deterministic or probabilistic encryption. In this last
case, each occurrence of r represents a fresh nonce.

From this fixed sequence we generate a set of relevant scenarios by adding two
changes of location, from entry to proximity and from proximity to exit, and we
perform a geographical synchronisation either coming into or going out of the
proximity location. We allow each vehicle to emit each beacon three times, so
it is possible to change locations at any position in the sequence. The first p1

v

is always emitted at an entry location and the last p2
v is always emitted at an

exit location. We then investigate whether we can prove privacy if two vehicles
in the mix-zone conform to this pattern.

We write each scenario as a process. For instance, the scenario where all p1
v

beacon messages are emitted at the entry location, the {p1
v }zk spread out over

entry and proximity , the {p2
v }zk over proximity and exit , and the p2

v at exit
with deterministic encryption and synchronisation before leaving the proximity
location, is represented by:

Vehicle(entry , exit) def= new p1
v; new k1

v; new p2
v; new k2

v; out(entry, p1
v);

(* key establishment *)
out(entry , {p1

v}zk);
out(proximity , {p1

v}zk); out(proximity , {p2
v}zk);

(* geographical synchronisation *)
out(exit , {p2

v}zk); out(exit , p2
v)

where for sake of clarity we have removed duplicate instructions. The (* key
establishment *) marker is left empty since we consider an ideal model where
the vehicles magically know the mix-zone encryption key. The (* geographical
synchronisation *) marker indicates that the two vehicles will have to synchronise

64 M. Dahl, S. Delaune, and G. Steel

at this point. In other words, a vehicle can execute the instructions after this
point only once all the instructions before this point have been executed by both
vehicles.

Having turned the scenario into a process, we instantiate this process twice
using different values for entry and exit to obtain the two Vehicle processes
needed for the equivalence checking. We consider the context

Cideal = new kca; out(c, pub(kca)); new zk; .

and ask ProVerif to try to prove observational equivalence. To overcome the
limitations due to the ProVerif tool, we perform data swapping as described
in [9].

From previous discussions it is clear that geographical synchronisation is a
necessary condition for privacy, i.e. that two vehicles either enter or exit the
mix-zone at the same time. More precisely, the necessary condition is that no
message is sent from an entry location after a message has been sent from an exit
location. If this is not satisfied then the attacker can trivially link p1

v with p2
v, so

we did not include any such scenarios in our experiments.

Results. All the scenarios we consider are listed in Figure 2 along with the
obtained results. Each row is a scenario with the first columns showing where
the beacon messages in the sequence are emitted. The columns to the right of the
sequence show the results in the different encryption models: the first two give
the results for when deterministic encryption is used and the last two for when
probabilistic encryption is used. In each encryption model, the left column shows
the result if the vehicles synchronise before going into the proximity location and
the right column if they synchronise before leaving. A minus symbol (−) indicates
that ProVerif could not prove equivalence (and found an attack trace) and a plus
symbol (+) means that it could.

Analysis. Our results show a second necessary condition for privacy: that vehi-
cles do not change pseudonym too early or too late. This is shown by Scenario 1
and 2 where the vehicles are still sending unencrypted beacon messages using
the first pseudonym at the exit location. Similarly, Scenario 31 and 32 show that
privacy is lost if they move too late; in this case the second pseudonym is used
in an unencrypted beacon message at the entry location.

In the deterministic encryption model, we only have privacy in scenarios where
geographical synchronisation coincides with a change of message. This condition
is illustrated by Scenarios 10-14. In this group, ProVerif can prove privacy if the
synchronisation is before the proximity location since the link between p1

v and
{p1

v}zk is broken. However, in Scenarios 15-20 we see from ProVerif’s counterex-
amples that when synchronisation is before the proximity location, the attacker
can link p1

v and {p1
v}zk since they are both emitted at the same entry location.

Formal Analysis of Privacy for Vehicular Mix-Zones 65

F
ig

.
2
.
R

e
su

lt
o
f
a
n
a
ly

si
s

in
th

e
C

M
IX

m
o
d
e
l

66 M. Dahl, S. Delaune, and G. Steel

After the synchronisation one vehicle can move to an exit location and emit p2
v

while the other is still at proximity and emitting {p1
v}zk. By comparing cipher-

texts the attacker will know which vehicle has “fallen behind” and which vehicle
is at the exit location, in turn allowing him to link p1

v and p2
v.

The situation changes when probabilistic encryption is used. In this case we
have that ProVerif can prove equivalence for all the cases where deterministic
encryption allows privacy, and in addition, scenarios where the geographical
synchronisation is between two encrypted messages, e.g. Scenarios 4, 6, 15, 16.
This is an important result, since it means that two vehicle only need to get
into a mix zone and encrypt at the same time as another vehicle, then change
the pseudonym before leaving. It seems clear that an encryption scheme that
renders encrypted beacons incomparable must be used.

As a final remark we note that the results show that in our model, use of
encryption is not necessary to obtain privacy: if the vehicles agree on when to
change their pseudonym then no encryption is needed. This is best illustrated in
Scenario 21. Although encryption is used, it has no effect since beacon messages
can be trivially linked with their encryption by the location where they are
emitted. Furthermore, no messages are emitted at the proximity location.

5.2 Privacy in the CMIX Model

Based on the conclusions of the previous section, we consider only probabilistic
encryption when analysing the CMIX key distribution protocol. We consider all
scenarios where privacy is provable in the ideal model. First, we add one session
of the CMIX protocol to both vehicle processes, to be executed before entering
the proximity zone. We found that in all cases where privacy was possible in the
ideal model, it was also possible here1.

We recall that according to the CMIX paper [11], a key request message is
triggered in the vehicle when it either receives a message that it cannot decrypt,
or when it receives an alert message from the RSU. The former situation could be
used by an active attacker to trigger a second CMIX session (after the first was
finished). The nearby presence of other mix-zones or simply a corrupted broad-
cast might also trigger a second session in the presence of a passive attacker.
Hence we consider all variations of the scenarios obtained by interleaving two
sequential sessions of the key establishment protocol. One session is always at the
entry location using the first pseudonym and before emitting any encrypted bea-
con messages, but the location of the second session is varied between proximity
and exit , and further by which of the pseudonyms it uses.

To illustrate the modelling of subscenarios we consider the variation of the sce-
nario from the previous subsection obtained by placing the second key establish-
ment session at the exit location after changing pseudonym. The process for this
subscenario is similar to the vehicle process given in Section 5.1 expect that
VehicleCMIX(entry, p1

v, k
1
v) defined in Figure 3 replaces the marker (* key estab-

lishment *) and VehicleCMIX(exit , p2
v, k

2
v) is inserted just after the (* geographical

1 Full results can be found online at http://www.cs.aau.dk/~dahl/mixzoneprivacy/

http://www.cs.aau.dk/~dahl/mixzoneprivacy/

Formal Analysis of Privacy for Vehicular Mix-Zones 67

VehicleCMIX(c, pv, kv)
def
= new ts;

let xs = sign((request, ts), kv) in

let xc = sign((pv, pub(kv)), kca) in

out(c, (xs, xc));

in(c, (ye, yc));

let (xprsu, xpkrsu) = checksign(yc, pub(kca)) in

let ys = adec(ye, kv) in

let (pv, xzk, ts) = checksign(ys, xpkrsu) in

let zs = sign((ack, ts), kv) in

let zc = sign((pv, pub(kv)), kca) in

out (c, (zs, zc))

Fig. 3. Vehicle’s part of CMIX key establishment protocol

synchronisation *) marker. Note that to make the analysis practical the opera-
tions of the TRD are inlined.

For the analysis, we place the two instantiated vehicle processes in the context
given by:

CCMIX
def= new kca; out(c, pub(kca));

new krsu; new prsu; out(c, (prsu, pub(krsu))); new zk;
(
!RSUCMIX |).

which, contrary to the context used in the ideal model, includes the RSU.

Results. The experiments show that the CMIX key establishment protocol as
described in the paper can break privacy in scenarios where it is assured in
the ideal model. The reason is that the pseudonym is sent in clear in the re-
quest message. More precisely, the experiments show that if a key establishment
session is triggered at the exit location then there is an attack when the vehi-
cle has not yet changed its pseudonym: the key establishment session reveals
the first pseudonym which can be link to the second pseudonym by the loca-
tion. Perhaps less obviously, if a key establishment session is triggered at the
proximity location then there is also an attack when the geographical synchro-
nisation does not separate it from the unencrypted beacon messages sent using
the other pseudonym. This attack is an instance of the general “fallen behind”
attack that arises when both pseudonyms are revealed in locations not separated
by a geographical synchronisation.

Contrary to the analysis in the ideal model, where the running time of ProVerif
on a 2.5 GHz Intel Xero processor was less than a few minutes for each variation,
the running time in the CMIX model ranged between a few seconds and 3 hours
for each scenario.

5.3 Fixing the Key Establishment Protocol

A simple fix to the CMIX key establishment protocol that does not increase the
number of rounds is to encrypt the request and the acknowledgement message

68 M. Dahl, S. Delaune, and G. Steel

under the RSU’s public key. This assumes vehicles know the certificate of the
RSU before performing a key request, which could be ensured by, for instance,
including the certificate in the messages broadcast from the RSU to inform
vehicles about the mix-zone.

We modelled this revised protocol in ProVerif and retried all the scenarios. For
most of them ProVerif was able to prove privacy in the CMIX model when there
was privacy in the ideal model, but in a fraction of the scenarios (1/13) a false
attack was reported. The false attack seems to be due to the stronger equivalence
that ProVerif tried to prove, and arises when two key establishment sessions
using the same pseudonyms are separated by a geographical synchronisation.
By recording the RSU’s response in the first session with the vehicle using key
kv and replaying this message to a vehicle during the second session, the vehicle
not using kv will fail at decryption whereas the vehicle using kv will correctly
decrypt but fail at a different step in the process, namely when comparing time
stamps. The observations are the same, but the processes execute differently, so
ProVerif is unable to prove equivalence.

6 Conclusion

In this paper, we have proposed a formal notion of privacy for mix-zones based
on classical ideas of equivalence: if the equivalence is satisfied then no attacker
can link the pseudonyms used by two vehicles entering a mix-zone with the
pseudonyms they use when exiting. We have seen that for an idealised vehicular
mix-zone to achieve privacy requires geographical and pseudonym change syn-
chronisation. Our experiments on a variety of scenarios suggest that probabilistic
encryption gives a significantly better chance of achieving privacy than deter-
ministic encryption. We have analysed the CMIX proposal for key distribution
in mix-zones, and shown that the use of the protocol can inadvertently prevent
privacy from being achieved in many scenarios. We have shown that the CMIX
protocol can be modified to preserve privacy.

As future work it seems natural to examine to what extent our experiments
on a fixed series of beacon signals identical for both vehicles captures the space
of possible scenarios satisfactorily. Although some cases of vehicles performing
different scenarios are captured by our experiments, the case where one vehicle
changes pseudonym at the entry location while the other changes at the exit
location is for instance not captured. Another limitation of our modelling is that
the messages of a key establishment session cannot be emitted across several
locations. If the attacker can identify to which session messages belong then a
session spanning across a geograpical synchronisation might break privacy, even
against a passive attacker. Capturing this type of attack is also left for future
work.

We plan to examine the API of the on board tamper-resistant cryptographic
device to see how it might prevent insider attacks, i.e. attacks by an adversary
who owns a legitimate vehicle. We also plan to investigate more fully the prop-
erties of our modelling approach, by e.g. comparing our notion of privacy to
existing notions of anonymity, untraceability and unlinkability in the literature.

Formal Analysis of Privacy for Vehicular Mix-Zones 69

References

1. Abadi, M., Fournet, C.: Mobile values, new names, and secure communication.

In: Proc. 28th ACM Symposium on Principles of Programming Languages (POPL

2001), pp. 104–115. ACM Press, New York (2001)

2. Arapinis, M., Chothia, T., Ritter, E., Ryan, M.: Analysing unlinkability and

anonymity using the applied pi calculus. In: Proc. 23rd IEEE Computer Security

Foundations Symposium, CSF 2010 (to appear, 2010)

3. Beresford, A.R., Stajano, F.: Location privacy in pervasive computing. IEEE Per-

vasive Computing 2(1), 46–55 (2003)

4. Blanchet, B., Abadi, M., Fournet, C.: Automated verification of selected equiva-

lences for security protocols. Journal of Logic and Algebraic Programming 75(1),

3–51 (2008)

5. Brusó, M., Chatzikokolakis, K., den Hartog, J.: Formal verification of privacy for

RFID systems. In: Proc. 23rd IEEE Computer Security Foundations Symposium,

CSF 2010 (to appear, 2010)

6. Buttyán, L., Holczer, T., Vajda, I.: On the effectiveness of changing pseudonyms

to provide location privacy in VANETs. In: Stajano, F., Meadows, C., Capkun, S.,

Moore, T. (eds.) ESAS 2007. LNCS, vol. 4572, pp. 129–141. Springer, Heidelberg

(2007)

7. Buttyán, L., Holczer, T., Weimerskirch, A., Whyte, W.: SLOW: A practical

pseudonym changing scheme for location privacy in VANETs. In: IEEE Vehicular

Networking Conference (VNC), Tokyo, Japan, October 2009, pp. 1–8 (2009)

8. Delaune, S., Kremer, S., Ryan, M.D.: Verifying privacy-type properties of electronic

voting protocols. Journal of Computer Security 17(4), 435–487 (2009)

9. Delaune, S., Ryan, M.D., Smyth, B.: Automatic verification of privacy properties in

the applied pi-calculus. In: Karabulut, Y., Mitchell, J., Herrmann, P., Jensen, C.D.

(eds.) Proc. 2nd Joint iTrust and PST Conferences on Privacy, Trust Management

and Security (IFIPTM 2008), Trondheim, Norway, June 2008. IFIP Conference

Proceedings, vol. 263, pp. 263–278. Springer, Heidelberg (2008)

10. Doetzer, F.: Privacy issues in vehicular ad hoc networks. In: Danezis, G., Martin,

D. (eds.) PET 2005. LNCS, vol. 3856, pp. 197–209. Springer, Heidelberg (2006)

11. Freudiger, J., Raya, M., Félegyházi, M., Papadimitratos, P., Hubaux, J.-P.: Mix-

zones for location privacy in vehicular networks. In: Proc. of ACM Workshop on

Wireless Networking for Intelligent Transportation Systems, WiN-ITS 2007 (2007)

12. Parno, B., Perrig, A.: Challenges in securing vehicular networks. In: Proc. 4th

Workshop on Hot Topics in Networks (November 2005)

13. Sleet, D., Peden, M., Scurfield, R.: World report on traffic injury prevention. World

Health Organization Report (2004)

14. Raya, M., Hubaux, J.-P.: The Security of Vehicular Ad Hoc Networks. In: Proc.

3rd ACM Workshop on Security of Ad Hoc and Sensor Networks (SASN 2005),

pp. 11–21 (2005)

15. Safespot project (2006-2010), http://www.safespot-eu.org/

16. Schneider, S., Sidiropoulos, A.: CSP and anonymity. In: Martella, G., Kurth, H.,

Montolivo, E., Bertino, E. (eds.) ESORICS 1996. LNCS, vol. 1146, pp. 198–218.

Springer, Heidelberg (1996)

http://www.safespot-eu.org/

70 M. Dahl, S. Delaune, and G. Steel

17. IEEE standard. IEEE Trial-Use Standard for Wireless Access in Vehicular Environ-

ments – Security Services for Applications and Management Messages (approved

June 8, 2006)

18. van Deursen, T., Mauw, S., Radomirovic, S.: Untraceability of RFID protocols.

In: Onieva, J.A., Sauveron, D., Chaumette, S., Gollmann, D., Markantonakis, K.

(eds.) WISTP 2008. LNCS, vol. 5019, pp. 1–15. Springer, Heidelberg (2008)

IntPatch: Automatically Fix
Integer-Overflow-to-Buffer-Overflow

Vulnerability at Compile-Time

Chao Zhang, Tielei Wang, Tao Wei, Yu Chen, and Wei Zou

Institute of Computer Science and Technology, Peking University

Key Laboratory of Network and Software Security Assurance (Peking University),

Ministry of Education

{zhangchao,wangtielei,weitao,chenyu,zouwei}@icst.pku.edu.cn

Abstract. The Integer-Overflow-to-Buffer-Overflow (IO2BO) vulnera-

bility is an underestimated threat. Automatically identifying and fixing

this kind of vulnerability are critical for software security. In this pa-

per, we present the design and implementation of IntPatch, a compiler

extension for automatically fixing IO2BO vulnerabilities in C/C++ pro-

grams at compile time. IntPatch utilizes classic type theory and dataflow

analysis framework to identify potential IO2BO vulnerabilities, and then

instruments programs with runtime checks. Moreover, IntPatch provides

an interface for programmers to facilitate checking integer overflows. We

evaluate IntPatch on a number of real-world applications. It has caught

all 46 previously known IO2BO vulnerabilities in our test suite and found

21 new bugs. Applications patched by IntPatch have a negligible runtime

performance loss which is averaging about 1%.

1 Introduction

The Integer Overflow to Buffer Overflow vulnerability (IO2BO for short), defined
in Common Weakness Enumeration (CWE-680 [7]), is a kind of vulnerability
caused by integer overflows, i.e. an integer overflow occurs when a program
performs a calculation to determine how much memory to allocate, which causes
less memory to be allocated than expected, leading to a buffer overflow.

For instance, figure 1(a) shows a typical IO2BO vulnerability which existed
in the old version of Faad2 [11]. In this code snippet, the argument mp4ff_t *f
represents a mp4-file stream. Routine mp4ff_read_int32(f) at line 467 reads an
integer value from external file f without any checks. The unchecked integer value
(e.g. 0x80000001) is then used in a memory allocation function at line 469. If an
overflow occurs there, a smaller than expected memory (e.g. 0x80000001∗4 = 4)
will be allocated. At line 483, some values read from external file without any
checks will be written to the allocated memory chunk. Because the allocated
memory is smaller than expected, these writes will corrupt the heap and may
lead to arbitrary code execution [40].

D. Gritzalis, B. Preneel, and M. Theoharidou (Eds.): ESORICS 2010, LNCS 6345, pp. 71–86, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

72 C. Zhang et al.

72 125

Fig. 1. (a)A real-world IO2BO vulnerability in Faad2. (b)Number of vulnerabilities

reported by NVD from April 1, 2009 to April 1, 2010. There are 129 (=72+57) integer

overflows and 182 (=57+125) heap overflows. More than 44% (=57/129) of integer

overflows are IO2BO vulnerabilities.

IO2BO is an underestimated threat. In recent years, we have witnessed that
IO2BO is being widely used by attackers, such as bypassing the SSH authenti-
cation in [30] and the heap corruption attack in [40]. Moreover, according to the
statistical data (from April 2009 to April 2010) in the National Vulnerability
Database (NVD [17]), nearly a half of integer overflow vulnerabilities and one
third of heap overflow vulnerabilities are IO2BO, as shown in Fig. 1(b).

The main reason that IO2BO is so popular is that many programmers have
not yet realized the danger brought by integer overflows. Even for those who are
aware of integer overflows, fixing these bugs is tedious and error-prone. For ex-
ample, CUPS [4], a well-known open source printing system, has an IO2BO vul-
nerability in the function _cupsImageReadPNG [6]. CUPS first released a patch,
but the initial patch failed to fix the vulnerability properly [5]. The developers
had to release another patch to completely fix this vulnerability. Moreover, the
C99 standard [12] specifies that signed overflow is considered as an undefined
behavior, thus some patches that work properly in some compiler environments
may fail in others.

Some compilers or compiler extensions such as RICH [25] have the ability
to insert extra code to capture integer overflows at runtime. For example, with
-ftrapv option, GCC can insert additional code to catch each overflow at run-
time. However, there exists benign integer overflows deliberately used in ran-
dom numbers generating, message encoding/decoding or modulo arithmetic [25],
and thus such full instrumentation inevitably generates false positives. Further-
more, the instrumented programs usually suffer from a non-trivial performance
overhead.

There are a number of integer overflow detection studies, such as [41] [38]
[29] [28]. For the static-analysis-based tools, false positives are non-negligible.

IntPatch: Automatically Fix IO2BO Vulnerability at Compile-Time 73

Manually analyzing and patching the potential integer overflows is still error-
prone. For the dynamic-analysis-based tools, the main disadvantage is their false
negatives. Although many dynamic analysis systems (such as KLEE [26], EXE
[27], CUTE [39], DART [35]) use symbolic execution techniques to improve code
coverage and can be extended for detecting integer overflows, the analysis results
are not sound.

In this paper, we present IntPatch, a tool capable of identifying potential
IO2BO vulnerabilities and fixing them automatically. First, we use a type anal-
ysis to detect potential IO2BO vulnerabilities. Then, for each candidate vulner-
ability, another analysis pass is made to locate the points to fix at.

In the type analysis process, we consider each variable’s taintedness and
whether it overflows. If a tainted (thus untrusted) and maybe overflowed variable
is used in a memory allocation function, there is a potential IO2BO vulnerabil-
ity. In the locating and patching process, we use backward slicing [42] technique
to identify those related vulnerable arithmetic operations and then insert check
statements after them to catch vulnerability at runtime.

We implement IntPatch based on LLVM (Low Level Virtual Machine [36,37])
and evaluate its performance on a number of real-world open-source applications.
Experiments show that IntPatch has caught all 46 previously known IO2BO vul-
nerabilities and it helps us find 21 zero-day bugs. These zero-day bugs are in the
process of being submitted. Compared to their original versions, the patched ap-
plications have a negligible runtime performance loss which is averaging about
1%. Thus, IntPatch is a powerful and lightweight tool which can efficiently cap-
ture and fix IO2BO vulnerabilities. It could help programmers accelerate soft-
ware development and greatly promote programs’ security.

Contributions. This paper presents an automatic tool for efficiently protecting
against IO2BO vulnerabilities. Specially, we:

– Survey 46 IO2BO vulnerabilities and compare some of them with their
patched versions. We figure out that fixing IO2BO is tedious and error-prone.

– Construct a type system to model IO2BO vulnerabilities and present a
framework for automatically identifying and fixing them at compile time.

– Provide an API for programmers who want to fix IO2BO vulnerabilities
manually.

– Implement a tool called IntPatch. It inserts dynamic check code to protect
against IO2BO. The patched version’s performance overhead is low, on av-
erage about 1%. Experiments also show that IntPatch is able to capture all
previously known IO2BO vulnerabilities.

– Identify 21 zero-day bugs in open-source applications with IntPatch.

Outline. We first describe what an IO2BO-type vulnerability is and how com-
plicated it is when we try to fix it in Sect. 2. Our system overview and the type
system we used to model IO2BO vulnerability are shown in Sect. 3. In Sect. 4,

74 C. Zhang et al.

we discuss our system’s implementation, including the interface provided for
programmers. Section 5 evaluates our work, and shows the performance and
false positives. Related work and conclusion are discussed in Sect. 6 and Sect. 7.

2 Background

Although integer overflows may cause many other vulnerability types [23,25],
the most typical case is IO2BO. In this section, we will discuss in detail what an
IO2BO vulnerability is and what difficulties programmers may meet when they
try to fix it.

2.1 What Is an IO2BO Vulnerability?

An IO2BO vulnerability, as defined in CWE [7], is a kind of vulnerability caused
by integer overflow. Specifically, when an overflowed value (smaller than ex-
pected) is used as the size of a memory allocation, subsequent reads or writes
on this allocated heap chunk will trigger a heap overflow vulnerability. A typical
instance has been shown in the previous section.

Characteristics of IO2BO Vulnerabilities. We have surveyed 46 IO2BO
vulnerabilities consisting of 17 bugs found by IntScope [41] and 29 bugs reported
in CVE [2], Secunia [21], VUPEN [22], CERT [1] and oCERT [18].

According to the survey, we find that an exploitable IO2BO vulnerability has
many significant features, similar to those presented in [41]. First, the program
reads some user-supplied thus untrusted input. Then, the input value is used in
an arithmetic operation to trigger an integer overflow. Finally, the overflowed
value is propagated to the memory allocation function, and thus a smaller than
expected memory is allocated.

Overflow in the Context of IO2BO Cannot be Benign. As mentioned in
the introduction, it is difficult to distinguish integer overflow vulnerabilities from
benign overflows. However, we argue that, in a context of IO2BO, the involved
integer overflow cannot be benign.

More precisely, if an untrusted value triggers an integer overflow and then the
overflowed result is used in memory allocation, the involved integer overflow is
a real vulnerability. Usually, the overflowed result is smaller than its expected
value. Besides, allocating a small memory chunk rather than a huge one doesn’t
cause any warnings or failures. Thus, programmers have no idea that the allo-
cated memory is smaller than expected. It is note worthy that, further actions
such as read/write will still be taken on the expected memory chunk, and then
trigger buffer overflows. So, the involved integer overflow is a real vulnerability.

With this argument, we can conclude that, if an integer overflow in the context
of IO2BO is caught at runtime, this overflow should be a real vulnerability. Thus,
it is possible to construct a fixing mechanism with a low false positive rate for
protecting against IO2BO.

IntPatch: Automatically Fix IO2BO Vulnerability at Compile-Time 75

2.2 How to Fix IO2BO Vulnerabilities?

Among the 46 IO2BO vulnerabilities, we investigate 18 patches of them. We
find that manually fixing integer overflows is tedious. Even worse, some patches
cannot fix integer overflows correctly.

Input Validation. Fixing integer overflows is essentially an input validation
problem. Incomplete input validation is the origin of IO2BO vulnerability.

The widely used method for checking integer overflow in practice looks like:

if (b �= 0 && (a ∗ b)/b �= a) MSG(”overflow occurs”);

However, this method has some problems when programs are compiled with
GCC. We will discuss later.

On assembly language level, to check an integer overflow is also an annoy-
ing work. For example, on x86 architecture, methods for checking overflows in
signed/unsigned multiplications/additions are different. Instructions jo, jc, and
js should be used in combination to check those overflows [13].

Fallibility and Complexity. Fixing integer overflow manually is error-prone.
Figure 2 illustrates an erroneous patch in CUPS. Field img->ysize is propa-
gated from the argument height which is read from external. If this field is
given a big enough value, operation img->ysize*3 may overflow first, then it
will make the check in this patch useless. For example, let img->xsize=2 and
img->ysize=0x60000000, then img->ysize*3will be equal to 0x20000000 (over-
flowed). Then the product of img->xsize, img->ysize and 3 overflows but this
overflow cannot be caught by the check in this patch.

Fig. 2. Incorrect Patch in CUPS-1.3 for vulnerability whose ID is CVE-2008-1722 [6]

76 C. Zhang et al.

The correct method for checking overflow in this expression will take two
steps. First, check whether expression img->ysize*3 overflows. Then, check
whether expression product*img->xsize overflows, where product is the prod-
uct of img->ysize and 3.

Suppose we want to check an overflow in a long expression such as a*b*c*d*e*f,
it follows that five sub-expressions should be checked separately. Since methods
for checking each sub-expression are similar, it is too tedious for a programmer
to manually fix integer overflows.

Compiler Problem. In this section, we will explain why the widely used
method for checking integer overflow listed above will be useless when programs
are compiled with GCC.

The C99 standard [10] specifies that signed overflow is considered as undefined
behavior, thus implementation specific. And the GCC developers think that
programmers should detect an overflow before an overflow is going to happen
rather than using the overflowed result to check the existence of overflow. The
detailed discussion between programmers and GCC developers can be found
in [9].

As a result, the condition statement if(a*b/b!=a) in the widely used method
may be removed totally when the program is compiled with GCC, especially
when it is compiled with optimization options. The Python interpreter is a victim
of this problem. Python developers use a check like if(x>0 && x+x<0) to test
whether x+x (where x is a signed int variable) could overflow. However, the check
may be optimized and discarded by GCC compiler [20], so that the code is still
vulnerable. See [20] for more information.

So, freeing programmers from fixing integer overflows is necessary. Compilers
should be responsible for fixing integer overflows.

3 System Overview

In this section, we describe the overview of our system which is aimed at fix-
ing IO2BO vulnerabilities automatically. To fix IO2BO vulnerabilities, we must
identify them first. According to the features of IO2BO vulnerabilities, we use
a type analysis to detect them. Then another analysis is made upon those can-
didate vulnerabilities to decide which points to fix at. Finally, runtime check
statements are inserted at those points.

3.1 Identify Potential IO2BO Vulnerabilities

As mentioned above, an IO2BO vulnerability has some significant features. Thus,
properties of variables, such as whether they are trusted and whether they may
be overflowed, are considered. Then a type system is constructed and a type
analysis to identify potential IO2BO vulnerabilities is made.

IntPatch: Automatically Fix IO2BO Vulnerability at Compile-Time 77

Type System. Figure 3(a) shows our type system. Our type system forms
a lattice. The bottom of the lattice is type T00. Variables with this type are
trusted, i.e. their values are not from program input, and non-overflowed. The
top of this lattice is type T11, which represents for untrusted and may-overflow.
Variables with this type origins from program input, and origins from some
variables possibly overflowed. Our type system also has another two types T10

and T01 which respectively represents for untrusted and may-overflow.

11

10 01

00

1 2 1

2

1 1 2 2 1 2

1 2 01

1 1

1 2 1

2

: : (assignment)
:

: : : (arith-ops)
: ()

: * : (store operation)
* :

V : *
: (
v V

v v v
v

v v v v v
v T

v v v
v tp v tp v

v v v
v tp 1

 (load operation)
)

 (b)

v tp v

Fig. 3. (a)Our type system, (b)type inference rules in our system

If a variable with type T11 is assigned to a variable which expects type T00,
there is a type conflict, which means there is a potential IO2BO. Due to the
characteristics of IO2BO vulnerabilities, other type casting are allowed.

Type Initialization. Our type system is different from embeded type system
of the C/C++ programming language. So, when applying our type system on
programs, we must assign each variable with a type. It is impossible to assign
each variable with a type manually. We just assign variables at key points with
specific types. For example, if a variable is read from program input (called
sources), then type T10 will be assigned to it. If a variable is used in memory
allocation (called sinks), it will be assigned with type T00. Then, following type
inference rules are used to decide the remainder variables’ types.

Type Inference. Figure 3(b) shows our type inference rules.
Assignment Statement. The right-hand side variable’s type will be directly as-
signed to the left-hand side variable.
Arithmetic Operation. Overflow could only occurs in addition, subtraction, mul-
tiplication or left shift operation. So, the listed rule for arithmetic operation
covers only these four kinds of operations. The result’s type is joined by the

78 C. Zhang et al.

two operands’ types and T01. It means that, the result may overflow, and is
untrusted if any one of its operand is untrusted.
Store Operation. Type inference rule for memory store operation is a little com-
plex. In order to make a conservative analysis, for each pointer variable v, we
record an additional type information tp v, which represents the possible Type
of those memory chunks Pointed by v. If variable v1 with type τ is stored into a
memory pointed by v, the target memory will be assigned with type τ , and the
memory’s type information will be joined into tp v.
Load Operation. If variable v2 is loaded from memory pointed by v1, it may have
a type same as any memory pointed by v1. Besides, if pointer v1 alias to pointers
in set V (denoted as v1 ∼ V), then variable v2’s type may also be same as any
memory pointed by any pointer v in V. Thus, variable v2’s type is the upper
bounds of tp v1 and tp v for each pointer v in V.
Misc. Remaining operations’ type inference rules are straightforward. Thus they
are not listed here.

Type Analysis Process. For each application to be analyzed, a configuration
file which defines sources (i.e. functions which read input) and sinks (i.e. memory
allocation functions) is manually provided. This configuration file is read in and
used to initialize our type system. Then, a dataflow analysis applying our type
inference rules is made. As explained above, type T00 is expected at sinks. If the
type inferred from the dataflow analysis is T11, there is a type conflict, i.e. there
is a potential IO2BO vulnerability.

3.2 Locate Vulnerable Arithmetic Operations and Patch

After the type analysis, some candidate IO2BO vulnerabilities are generated.
The type analysis is conservative, and thus it is sound (i.e. there is no false neg-
atives). However, this type analysis is path-insensitive, thus there may be many
infeasible paths which are reported as IO2BO vulnerabilities. Besides, the alias
analysis in LLVM we used is conservative, it may also introduce additional false
positives. Leaving all these candidate vulnerabilities for programmers to validate
is terrible. In this section, we introduce an automatic fixing mechanism which
can reduce false positives and protect programs against IO2BO vulnerabilities.

First, our approach identifies those related vulnerable arithmetic operations
(i.e. overflow occurs here will further triggers the IO2BO vulnerability). Then,
for each vulnerable arithmetic operation, statements for checking overflow at
runtime are automatically inserted after it.

To locate vulnerable arithmetic operations, a backward analysis is made for
each candidate IO2BO vulnerability. Variables at each vulnerable sink are fo-
cused. Techniques like backward slicing [42] are then used to find other variables
which may affect the focused variable. If a variable found by slicing is with type
T11 and the corresponding statement is an arithmetic operation, this statement
is thought as a vulnerable arithmetic operation. Finally, statements for checking
overflow at runtime are inserted after those vulnerable arithmetic operations.

IntPatch: Automatically Fix IO2BO Vulnerability at Compile-Time 79

As argued in Sect. 2.1, integer overflows in the context of IO2BO are usually
vulnerable. Thus, integer overflows caught by this fixing mechanism at runtime
are real vulnerabilities, i.e. this fixing mechanism can reduce false positives.

4 Implementation

In this section, we present the implementation of our system. We implement
our system as a tool IntPatch based on LLVM. Figure 4 shows the structure of
IntPatch.

Fig. 4. Structure of IntPatch

IntPatch first makes an classic dataflow analysis to analyze each variable’s
type and identify potential IO2BO vulnerabilities. Then, for each potential vul-
nerability, it makes a slicing to find the vulnerable arithmetic operations. Finally,
check statements are inserted after those vulnerable operations to catch runtime
bugs.

4.1 LLVM

LLVM [36,37] is a compiler infrastructure which supports effective optimization
and analysis at compile time, link-time, run-time and offline. IntPatch utilizes
some useful features or interfaces provided by LLVM.

For example, LLVM provides us an easy-to-use CFG which facilitates iterat-
ing over whole program. All memory accesses are explicitly using load and store
instructions in LLVM. Thus, our type inference rule for load and store operation
is easy to be applied. LLVM’s intermediate representation (IR) is in SSA (Static
Single Assignment [32]) form and thus facilitates our dataflow analysis. In addi-
tion, LLVM provides some intrinsic instructions for catching integer overflows.
LLVM also provides some classic alias analysis pass for us to use, which helps
us a lot when we make type analysis.

4.2 Type Analysis

IntPatch uses a type analysis to identify potential IO2BO vulnerability. In
LLVM, all kinds of instructions and operands are instances of class llvm::Value.

80 C. Zhang et al.

A value which represents an instruction could be used as another instruction’s
operand. That is to say, a value representing an instruction also represents the
result of the instruction, thus can be thought as a variable.

We maintain a map from such variables to types. Because LLVM’s IR is in
SSA form, each variable has only one definition point. Thus, the type information
of any variable won’t change.

A predefined file which annotates what are sources and sinks is read in to
initialize the mapping relationship between variables and types. Then we use
classic dataflow analysis method [24] to analyze each variable’s type. Type in-
ference rules are applied on each instruction. At each basic block’s entry, there
may be some phi-nodes [32], which are introduced by SSA. For each of these
phi-nodes, such as v = φ(v1, v2, ..., vn), we join types of variable v1, v2, ..., vn

together and assign it to variable v.
When the dataflow analysis analyzes variables at sinks, we do a type check

here. If variables at sinks are with type T11 according to the analysis’s result,
there is a type conflict, and thus a potential IO2BO vulnerability exists.

This type analysis process is implemented as a pass in LLVM and its result
can be used by other passes. Because our analysis is interprocedural, our analysis
pass is an instance of llvm::ModulePass and needs to be invocated at link-time.

4.3 Locate Vulnerable Arithmetic Operations and Patch

The type analysis can identify potential IO2BO vulnerabilities. Our remainder
task is to fix IO2BO vulnerabilities automatically. Fixing should be complete, i.e.
if a bug is caught at runtime, it should be a real bug. In other word, a mechanism
is needed to reduce false positive rates. Otherwise, users will complain about the
program’s quality.

We implement another analysis pass to identify those vulnerable arithmetic
operations. This analysis uses classic slicing method [42] to find related variables.
If the related variable’s type is T11 and the variable (i.e. instruction) is an
arithmetic operation, a check statement is inserted after that instruction. We
use intrinsic instructions provided by LLVM such as llvm.sadd.with.overflow
to check integer overflow. If an overflow occurs, we redirect the control flow to a
predefined function. By default, this function blocks the program and waits for
user debugging. This function can also be specified by programmers.

Using these two analysis pass, IntPatch is able to automatically identify and
fix IO2BO vulnerabilities over full programs with a reasonable false positive rate.

4.4 Another Compiler Interface

However, in some situations, programmers still want to fix IO2BO vulnerabili-
ties manually. In order to shield programmers from the tedious and error-prone
fixing work, IntPatch also provides an easy-to-use interface. With this interface,
programmers can specify what expressions to be monitored and what actions
will be taken when overflow occurs in these expressions.

IntPatch: Automatically Fix IO2BO Vulnerability at Compile-Time 81

This interface, named IOcheck(int exp, void (*f)()), is implemented as
an API. Programmers pass the expression to be monitored into the first argu-
ment, and pass the overflow handler function into the second argument. The
second argument is default set to NULL, which means we will use a handler
predefined in IntPatch.

In order to support this API, we need to make a few modifications to the
original analysis. In the type analysis process, we just treat the first argument of
function IOcheck() as sinks. And in the slicing process, we just need to change
the inserted overflow handler function to the handler specified by programmers.
Besides, we provide an library for function IOcheck() which does nothing in
fact. This library will be linked by LLVM.

5 Evaluation

We evaluate IntPatch with several real-world open-source applications, including
libtiff [14], ming [15], faad2 [11], dillo [8], gstreamer [12] and so on. The evaluation
was performed on an Intel Core2 2.40GHz machine with 2GB memory and Linux
2.6.27.25 kernel.

5.1 Check Density

We first measure how many checks IntPatch inserts into programs. Table 1 shows,
for each benchmark program, the number of total instructions in the program (in
LLVM IR form), the number of arithmetic operations in the program, and the
number of checks inserted by the IntPatch. Then the checking ratio is calculated,
i.e. (number of checks)/(number of arithmetic operations).

Table 1. Number of checks inserted

application # inst # arith-ops # checks ratio

libtiff-3.8.2 781212 20739 1751 8.44%

faad2-2.7 37993 1189 150 12.6%

ming-0.4.2 35901 1375 241 17.5%

dillo-2.0 641574 8053 345 4.28%

gstreamer-0.8.5 2060335 10683 1067 9.98%

Results show that, there are lots of arithmetic operations (about one tenth)
which may affect memory allocations. In fact, this ratio is a little bit higher than
that in regular applications, because most of the test suites are image-related
applications which needs to allocate a lot of memory. Compared to results in
[28] and [25], the checking ratio is very low.

5.2 Performance Overhead

In this section, we present the performance overhead of IntPatch. Our experi-
ments show that the overhead is quite low, on average about 1%. Table 2 shows

82 C. Zhang et al.

Table 2. Performance of IntPatch

application original (s) patched (s) overhead

ming-0.4.2 236.143 239.549 1.44%

libtiff-3.8.2 127.571 129.123 1.01%

dillo-2.0 3.762 3.805 1.14%

faad2-2.7 361.163 364.478 0.91%

the overhead of applications patched by IntPatch relative to the uninstrumented
versions (both compiled with the same options).

We test ming, a library for generating Macromedia Flash files (.swf), with
benchmark PNGSuite [19]. PngSuite is a test-suite containing 157 different PNG
format images for PNG applications. These PNG files are converted into flash
files using ming and the consumed time is recorded.

For dillo, we test its CSS rendering speed using a CSS benchmark devised
by nontroppo [3]. Libtiff is tested with a pack of TIFF format files distributed
together with it. These tiff files are compressed to JPEG format files using libtiff
and the consumed time is recorded. For faad2, we use it to decode 100 MPEG-4
format videos randomly downloaded from Mp4Point [16].

5.3 False Positives and False Negatives

As mentioned above, our type analysis is conservative, and thus our analysis is
sound (i.e. no false negatives). In other words, any vulnerability that satisfies
IO2BO’s features will be caught by the type analysis.

In order to evaluate the false positive rate of IntPatch, we test these ap-
plications instrumented by IntPatch with normal and malicious inputs. Each
application is fed with normal inputs described in Sect. 5.2 and with 2 ∼ 3
malicious inputs (e.g. crafted image files). Results show that all normal inputs
don’t trigger the runtime check and while malicious inputs both trigger the
check. That is to say, no false positives exist. However, the test is not sufficient
and the the code coverage rate is low, and thus IntPatch may still has false
positives.

In fact, our type analysis and slicing analysis are path-insensitive, infeasible
paths may bring false positives to IntPatch. The conservative alias analysis in
LLVM we used also brings some false positives.

In addition, integer overflow checks (called sanitization routine) inserted by
programmers will also lead to false positives. That is because the sanitization
routine will untaint the variable, but our type analysis process hasn’t considered
this semantic effection on the type propagation. On the other hand, sanitization
routines are at semantic level and hard to be detected. One possible solution is
that programmers give up customized sanitization routines and use the interface
IOcheck() provided by IntPatch only.

IntPatch: Automatically Fix IO2BO Vulnerability at Compile-Time 83

5.4 Zero-Day Bugs

The type analysis pass in IntPatch has generated many candidate IO2BO vul-
nerabilities. Of course, there are many false positives. With manual validation,
we can identify real vulnerabilities. During our unfinished time-consuming val-
idation process, we discover 21 new IO2BO vulnerabilities in 6 applications, as
shown in Table 3.

Table 3. Zero-Day Bugs detected by IntPatch

application swftools Inkscape gnash ming faad2 libtiff

version 0.9.0 0.46 0.8.5 0.4.2 2.7 3.8.2

bugs 2 4 5 3 3 4

For example, we found a vulnerability in function readPNG in ming-0.4.2.
Value png.height is read from an input PNG file. This value then multiplies a
constant without any checks. The result of the multiplication is further used in
function malloc. Finally, data from the input PNG file is read into the allocated
memory. It is a typical IO2BO vulnerability.

We have submitted some of these zero-day vulnerabilities to security service
provider such as Secunia [21] and oCert [18]. Some of the submissions, such as
the vulnerability in libtiff (CVE-2009-2347), have been confirmed. Corresponding
patches from vendors has been released or are in progress. Considering that other
vulnerabilities are still in the process of being submitted or fixed, we do not want
to provide further detailed information here.

5.5 Limitation

Our work is based on LLVM, which is still in development stage. So certain
applications might have troubles being compiled with LLVM. Furthermore our
analysis pass is time-consuming. These drawbacks limit the domain of IntPatch’s
applications.

In our implementation, IntPatch depends heavily on alias analysis. However,
alias analysis is a well-known problem in static analysis. Its accuracy and per-
formance will affect IntPatch’s results.

Programmers’ sanitization routines are not encouraged as mentioned above.
This limitation is not friendly to programmers.

6 Related Work

Many efforts have been made on integer overflow vulnerabilities. Followings are
some representative works.

84 C. Zhang et al.

Shuo Chen et al. presented a FSM-based method [29] and uses finite state
machines (FSM) to identify integer overflows. Experts summarize a finite state
machine representing the integer overflow vulnerability first. Then a tool is used
to check whether there are integer overflow vulnerabilities. It needs a lot of
expert’s effort and the FSM for distinct applications may be different. Thus, it
is not a general solution.

Ramkumar Chinchani et al. [31] describe each arithmetic operation formally
and then utilize architecture characteristics to check each arithmetic operation
and catch integer overflow at runtime [31]. This method doesn’t pay much at-
tention on distinguishing benign and unexpected overflows, thus there are lots
of false positives.

The sub-typing method presented by Brumley et al. [25] formalizes the se-
mantics for safe integer operations in C. Overflow checks are inserted after each
arithmetic operations to capture runtime overflows. It protects against many
kinds of integer errors, including signedness error, interger overflow/underflow
or truncation error. They implement a prototype called RICH and found several
zero-day bugs too. However, benign and unexpected overflows are not distin-
guished either.

The method presented by Ceesay [28] utilizes type qualifiers theory [33] and
a tool CQUAL [34] to detect type conflicts. Their work is implemented in the
preprocessing step. They extend traditional type system with new type quali-
fier trusted similar to embeded type qualifier const. Then a type analysis is
made and find all type conflicts. Each type conflict is reported as a potential
vulnerability.

Both of these methods treat all kinds of integer overflow vulnerabilities, and
suffer from the indistinguishability between benign overflows and unexpected
overflows. Thus, their false positive rates are high.

Our paper focus on the most typical integer overflow vulnerability and tries
to present a sound solution. Our type system is more complex and effective than
Ceesay’s. The final result shows that our method is effective.

7 Conclusion

This paper surveys many IO2BO vulnerabilities, and presents a framework to
model and automatically fix this kind of vulnerability. A prototype tool IntPatch
is implemented based on LLVM. Experiments show that IntPatch is powerful and
lightweight and can effectively defend against IO2BO vulnerabilities. Twenty-one
zero-day vulnerabilities are found as a byproduct.

References

1. Carnegie Mellon University’s Computer Emergency Response Team,

http://www.cert.org/advisories/

2. Common vulnerabilities and exposures, http://cve.mitre.org

http://www.cert.org/advisories/
http://cve.mitre.org

IntPatch: Automatically Fix IO2BO Vulnerability at Compile-Time 85

3. Cssbench: a css benchmark devised by nontroppo,

http://www.howtocreate.co.uk/csstest.html

4. CUPS: a standards-based, open source printing system developed by Apple Inc.,

http://www.cups.org/

5. Cups’ erroneous patch, http://www.cups.org/str.php?L2974

6. CUPS Vulnerability,

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-1722

7. Cwe-680: Io2bo vulnerabilities,

http://cwe.mitre.org/data/definitions/680.html

8. Dillo: a lightweight browser, http://www.dillo.org

9. Discussion between programmers and gcc developers,

http://gcc.gnu.org/bugzilla/show_bug.cgi?id=30475#c2

10. Draft of the c99 standard with corrigenda tc1, tc2, and tc3 included,

http://www.open-std.org/jtc1/sc22/WG14/www/docs/n1256.pdf

11. FAAD2: A MPEG-4 and MPEG-2 AAC Decoder,

http://www.audiocoding.com/faad2.html

12. GStreamer: a framework for streaming media applications,

http://gstreamer.freedesktop.org/

13. Intel 64 and ia-32 architectures software developer’s manuals,

http://www.intel.com/products/processor/manuals/

14. libtiff: TIFF Library and Utilities, http://www.libtiff.org/

15. Ming: a library for generating Macromedia Flash files, http://www.libming.org/

16. Mp4point: a source for free mp4 / mpeg-4 video movie clips,

http://www.mp4point.com/

17. National vulnerability database, http://nvd.nist.gov/

18. oCERT: Open Source Computer Emergency Response Team,

http://www.ocert.org/

19. Pngsuite: The ”official” test-suite for png applications like viewers, converters and

editors, http://www.schaik.com/pngsuite/

20. Python interpreter suffers from gcc’s behavior,

http://bugs.python.org/issue1608

21. Secunia: a Danish computer security service provider,

http://secunia.com/

22. Vupen: a company providing security intelligence,

http://www.vupen.com/english/

23. Ahmad, D.: The rising threat of vulnerabilities due to integer errors. IEEE Security

and Privacy 1(4), 77–82 (2003)

24. Aho, A.V., Lam, M.S., Sethi, R., Ullman, J.D.: Compilers: Princiles, Techniques,

and Tools, 2nd edn. Addison-Wesley, Reading (2006)

25. Brumley, D., Chiueh, T.c, Johnson, R., Lin, H., Song, D.: Rich: Automatically

protecting against integer-based vulnerabilities. In: Proceedings of the 14th Annual

Network and Distributed System Security Symposium (NDSS 2007) (2007)

26. Cadar, C., Dunbar, D., Engler, D.: Klee: Unassisted and automatic generation

of high-coverage tests for complex systems programs. In: USENIX Symposium on

Operating Systems Design and Implementation (OSDI 2008), San Diego, CA, USA

(2008)

27. Cadar, C., Ganesh, V., Pawlowski, P.M., Dill, D.L., Engler, D.R.: Exe: automati-

cally generating inputs of death. In: Proceedings of the 13th ACM Conference on

Computer and Communications Security, CCS 2006 (2006)

http://www.howtocreate.co.uk/csstest.html
http://www.cups.org/
http://www.cups.org/str.php?L2974
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-1722
http://cwe.mitre.org/data/definitions/680.html
http://www.dillo.org
http://gcc.gnu.org/bugzilla/show_bug.cgi?id=30475#c2
http://www.open-std.org/jtc1/sc22/WG14/www/docs/n1256.pdf
http://www.audiocoding.com/faad2.html
http://gstreamer.freedesktop.org/
http://www.intel.com/products/processor/manuals/
http://www.libtiff.org/
http://www.libming.org/
http://www.mp4point.com/
http://nvd.nist.gov/
http://www.ocert.org/
http://www.schaik.com/pngsuite/
http://bugs.python.org/issue1608
http://secunia.com/
http://www.vupen.com/english/

86 C. Zhang et al.

28. Ceesay, E., Zhou, J., Gertz, M., Levitt, K., Bishop, M.: Using type qualifiers to

analyze untrusted integers and detecting security flaws in c programs. Detection

of Intrusions and Malware & Vulnerability Assessment (2006)

29. Chen, S., Kalbarczyk, Z., Xu, J., Iyer, R.K.: A data-driven finite state machine

model for analyzing security vulnerabilities. In: IEEE International Conference on

Dependable Systems and Networks, pp. 605–614 (2003)

30. Chen, S., Xu, J., Sezer, E.C., Gauriar, P., Iyer, R.K.: Non-control-data attacks

are realistic threats. In: Proceedings of the 14th Conference on USENIX Security

Symposium, p. 12 (2005)

31. Chinchani, R., Iyer, A., Jayaraman, B., Upadhyaya, S.: Archerr: Runtime environ-

ment driven program safety. In: 9th European Symposium on Research in Com-

puter Security, Sophia Antipolis (2004)

32. Cytron, R., Ferrante, J., Rosen, B.K., Wegman, M.N., Zadeck, F.K.: Efficiently

computing static single assignment form and the control dependence graph (1991)

33. Foster, J.S., Fähndrich, M., Aiken, A.: A theory of type qualifiers. In: PLDI 1999:

Proceedings of the ACM SIGPLAN 1999 Conference on Programming Language

Design and Implementation, pp. 192–203. ACM, New York (1999)

34. Foster, J.S., Terauchi, T., Aiken, A.: Flow-sensitive type qualifiers. In: PLDI 2002:

Proceedings of the ACM SIGPLAN 2002 Conference on Programming Language

Design and Implementation, Berlin, Germany, pp. 1–12 (2002)

35. Godefroid, P., Klarlund, N., Sen, K.: Dart: directed automated random testing. In:

PLDI 2005: Proceedings of the 2005 ACM SIGPLAN Conference on Programming

Language Design and Implementation, pp. 213–223 (2005)

36. Lattner, C.: LLVM: An Infrastructure for Multi-Stage Optimization. Master’s the-

sis, Computer Science Dept., University of Illinois at Urbana-Champaign, Urbana,

IL (December 2002), http://llvm.cs.uiuc.edu

37. Lattner, C., Adve, V.: LLVM: A Compilation Framework for Lifelong Program

Analysis & Transformation. In: Proceedings of the 2004 International Symposium

on Code Generation and Optimization (CGO 2004), Palo Alto, California (March

2004)

38. Molnar, D., Li, X.C., Wagner, D.A.: Dynamic test generation to find integer bugs

in x86 binary linux programs. In: Proceedings of the 18th USENIX Security Sym-

posium (2009)

39. Sen, K., Marinov, D., Agha, G.: Cute: a concolic unit testing engine for c. In:

ESEC/FSE-13: Proceedings of the 10th European Software Engineering Conference

Held Jointly with 13th ACM SIGSOFT International Symposium on Foundations

of Software Engineering, pp. 263–272 (2005)

40. Sotirov, A.: Heap feng shui in javascript. In: Proceedings of Blackhat Europe (2007)

41. Wang, T., Wei, T., Lin, Z., Zou, W.: IntScope: Automatically Detecting Integer

Overflow Vulnerability in X86 Binary Using Symbolic Execution. In: Proceedings

of the 16th Annual Network and Distributed System Security Symposium, San

Diego, CA (February 2009)

42. Weiser, M.: Program slicing. In: Proceedings of the 5th International Conference

on Software Engineering (1981)

http://llvm.cs.uiuc.edu

A Theory of Runtime Enforcement, with Results

Jay Ligatti and Srikar Reddy

University of South Florida

Department of Computer Science and Engineering

{ligatti,sreddy4}@cse.usf.edu

Abstract. This paper presents a theory of runtime enforcement based

on mechanism models called MRAs (Mandatory Results Automata).

MRAs can monitor and transform security-relevant actions and their

results. Because previous work could not model monitors transforming

results, MRAs capture realistic behaviors outside the scope of previous

models. MRAs also have a simple but realistic operational semantics that

makes it straightforward to define concrete MRAs. Moreover, the defi-

nitions of policies and enforcement with MRAs are significantly simpler

and more expressive than those of previous models. Putting all these

features together, we argue that MRAs make good general models of

runtime mechanisms, upon which a theory of runtime enforcement can

be based. We develop some enforceability theory by characterizing the

policies MRAs can and cannot enforce.

Keywords: Security models, enforceability theory.

1 Introduction

Runtime enforcement mechanisms work by monitoring untrusted applications,
to ensure that those applications obey desired policies. Runtime mechanisms,
which are often called runtime/security/program monitors, are quite popular
and can be seen in operating systems, web browsers, spam filters, intrusion-
detection systems, firewalls, access-control systems, stack inspection, etc. Despite
their popularity and some initial efforts at modeling monitors formally, we lack
satisfactory models of monitors in general, which prevents us from developing
an accurate and effective theory of runtime enforcement.

1.1 Related Work

It has been difficult to model runtime mechanisms generally. Most models
(e.g., [16,18,11,9,8,1,5]) are based on truncation automata [16,12], which can
only respond to policy violations by immediately halting the application being
monitored (i.e., the target application). This constraint simplifies analyses but
sacrifices generality. For example, real runtime mechanisms often enforce policies
that require the mechanisms to perform “remedial” actions, like popping up a
window to confirm dangerous events with the user before they occur (to con-
firm a web-browser connection with a third-party site, to warn the user before

D. Gritzalis, B. Preneel, and M. Theoharidou (Eds.): ESORICS 2010, LNCS 6345, pp. 87–100, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

88 J. Ligatti and S. Reddy

downloading executable email attachments, etc). Although real mechanisms can
perform these remedial actions, models based on truncation automata cannot—
at the point where the target attempts to perform a dangerous action, truncation
automata must immediately halt the target.

To address the limitations of truncation automata, in earlier work we pro-
posed edit automata, models of monitors that can respond to dangerous actions
by quietly suppressing them or by inserting other actions [12]. By inserting
and suppressing actions, edit automata capture the practical ability of runtime
mechanisms to transform invalid executions into valid executions, rather than
the ability of truncation automata to only recognize and halt invalid executions.
Edit automata have served as the basis for additional studies of runtime enforce-
ment (e.g., [19,17,4]).

Unfortunately, while truncation automata are too limited to serve as gen-
eral models of runtime mechanisms, edit automata are too powerful. The edit-
automata model assumes monitors can predetermine the results of all actions
without executing them, which enables edit automata to safely suppress any
action. However, this assumption that monitors can predetermine the result
of any action is impractical because the results of many actions are uncom-
putable, nondeterministic, and/or cannot tractably be predicted by a monitor
(e.g., actions that return data in a network buffer, the cloud cover as read by a
weather sensor, or spontaneous user input). Put another way, the edit-automata
model assumes monitors can buffer—without executing—an unbounded number
of target-application actions, but such buffering is impractical because appli-
cations typically require results for actions before producing new actions. For
example, the echo program x=input(); output(x) cannot produce its second
action until receiving a result, which is unpredictable, for the first. Because the
echo program invokes an action that edit automata cannot suppress (due to its
result being unpredictable), this simple program, and any others whose actions
may not return predictable results, are outside the edit-automata model.

1.2 Contributions

This paper presents a theory of runtime enforcement based on mechanism mod-
els called MRAs (Mandatory Results Automata). Their name alludes to the
requirement that, unlike edit automata, MRAs are obligated to return a result
to the target application before seeing the next action it wishes to execute. In
the MRA model, results of actions may or may not be predeterminable.

Conceptually, we wish to secure a system organized as in Figure 1a, with
an application producing actions, and for every action produced, the underlying
executing system (e.g., an operating system, virtual machine, or CPU) returning
a result to the target application. Results may be exceptions or void or unit
values, so all actions can be considered to produce results. For simplicity, this
paper assumes all actions are synchronous; after the application produces an
action a, it cannot produce another action until receiving a result for a. In
contrast, the edit-automata model can be viewed as one in which all actions

A Theory of Runtime Enforcement, with Results 89

actions(a) (b)

results

Untrusted
Application

valid results

p

sults

Executing
System

Security
Monitor

actions valid actions

results

Untrusted
Application

Executing
System

Fig. 1. In (a), an untrusted application executes actions on a system and receives

results for those actions. In (b), a security monitor interposes on, and enforces the

validity of, the actions executed and the results returned.

are fully asynchronous (because edit automata can buffer, without executing, an
unbounded number of actions).

Figure 1b shows how we think of a monitor securing the system of Figure 1a.
In Figure 1b, the monitor interposes on and transforms actions and results to
ensure that the actions actually executed, and the results actually returned to
the application, are valid (i.e., satisfy the desired policy). The monitor may or
may not be inlined into the target application.

The ability of MRAs to transform results of actions is novel among general
runtime-enforcement models, as far as we are aware. Yet this ability is cru-
cial for enforcing many security policies, such as privacy, access-control, and
information-flow policies, which may require (trusted) mechanisms to sanitize
the results of actions before (untrusted) applications access those results. For
example, policies may require that system files get hidden when user-level appli-
cations retrieve directory listings, that email messages flagged by spam filters do
not get returned to clients, or that applications cannot infer secret data based
on the results they receive. Because existing frameworks do not model monitors
transforming results of actions, one cannot use existing models to specify or
reason about enforcing such result-sanitization policies.

The semantics of MRAs enables simple and flexible definitions of policies
and enforcement—significantly simpler and more flexible than those of previous
work. In particular, the definition of executions presented here allows policies
to make arbitrary requirements on how monitors must transform actions and
results. Consequently, this paper’s definition of enforcement does not need an
explicit notion of transparency, which previous work has considered essential
for enforcement [7,9,12]. Transparency constrains mechanisms, forcing them to
permit already-valid actions to be executed. The MRA model enables policies
to specify strictly more and finer-grained constraints than transparency, thus
freeing the definition of enforcement from having to hardcode a transparency
requirement.

After defining MRAs and the precise circumstances under which they can be
said to enforce policies, this paper briefly characterizes the sets of policies MRAs
can enforce soundly, completely, and precisely.

90 J. Ligatti and S. Reddy

Summary of Contributions. This paper develops a theory of runtime enforce-
ment, in which monitors may transform both actions and results. It contributes:

– A simple but general model of runtime mechanisms called MRAs. MRAs ap-
pear to be the first general model of runtime mechanisms that can transform
results and enforce result-sanitization policies.

– Definitions of policies and enforcement that, because they can reason about
how monitors transform actions and results, are significantly simpler and
more expressive than existing definitions.

– A brief analysis of the policies MRAs can enforce soundly, completely, and
precisely.

2 Background Definitions and Notation

This section briefly lays out some basic definitions of, and notation for specifying,
systems and traces. The definitions and notation presented here are extended
versions of definitions and notation in previous work (extended to include results
of actions) [2,16,12].

We define a system abstractly, in terms of (1) the actions it can execute
to perform computation and (2) the possible results of those actions. The sys-
tem’s interface determines its action set; for example, if the executing system
is an operating system then actions would be system calls; if the executing
system is a virtual machine then actions would be virtual-machine-code instruc-
tions (e.g., bytecode, including calls to API libraries integrated with the virtual
machine); and if the executing system is machine hardware then the actions
would be machine-code instructions. We use the metavariable A to represent
the (nonempty, possibly countably infinite) set of actions on a system and R
(disjoint from A) to represent the (nonempty, possibly countably infinite) set of
results. An event is either an action or a result, and we use E to denote the set
of events on a system; E = A ∪R.

An execution or trace is a possibly infinite sequence of events; it is the sequence
of events that occur during a run of a monitored application and executing
system. Adopting a monitor-centric view of Figure 1b, executions include events
related to the monitor (1) inputting an action from the target, (2) outputting
an action to the executing system, (3) inputting a result from the executing
system, and (4) outputting a result to the target. To be explicit about exactly
how a monitor is behaving, we subscript every event in an execution with i or o
to indicate whether the monitor has input or output that event. When writing
executions, we separate events by semicolons. For example, an execution could
be:

shutdowni ; popupConfirmo ; OKi ; shutdowno

This execution represents the sequence of events in which an application at-
tempts to execute a shutdown action (so that action gets input to the monitor),
to which the monitor responds by outputting a window-popup action that, when
executed (e.g., by an operating system), confirms the shutdown with the user.

A Theory of Runtime Enforcement, with Results 91

The user OKs the shutdown, so an OK result gets input to the monitor, allowing
the monitor to then output the shutdown action after all. This example illus-
trates the alternating input-output nature of monitors that arises from their role
as event transformers [12].

The set of all well-formed, finite-length executions on a system with event
set E is E∗; the set of all well-formed, infinite-length executions is Eω; and
E∞ = E∗ ∪Eω. The special symbol · refers to the empty execution, that is, an
execution in which no events occur. In general, we use · to refer to an absence
of events; at times we use · to denote the absence of a single action or result.
The metavariable e ranges over events, a over actions, r over results, x over
executions, and X over sets of executions (i.e., subsets of E∞). Sometimes it will
also be convenient to use α to refer to a “potential action”, that is, either · or an
action. Similarly, ρ ranges over {·}∪R. The notation x; x′ denotes concatenation
of two executions x and x′, the result of which must be a well-formed execution
(in E∞). Finally, when x is a finite prefix of x′ we write x � x′.

3 Mandatory Results Automata

We model monitors that behave as in Figure 1b as MRAs.

3.1 Definition of MRAs

An MRA M is a tuple (E, Q, q0, δ), where E is the event set over which M
operates, Q is the finite or countably infinite set of possible states of M , q0

is M ’s initial state, and δ is a (deterministic) transition function of the form
δ : Q×E → Q×E, which takes M ’s current state and an event being input to
M (either an action the target is attempting to execute or a result the underlying
system has produced) and returns a new state for M and an event to be output
from M (either an action to be executed on the underlying system or a result to
be returned to the target). In contrast to earlier work [12], we do not require δ
to be decidable; δ may not halt on some inputs. This ability of MRAs to diverge
accurately models the abilities of real runtime mechanisms.

We call
αi

ρo

∣∣∣q∣∣∣αo

ρi

a configuration of MRA M , where q is M ’s current state, αi

is either · or the action being input to M (by the target program), αo is either ·
or the action being output by M (to the executing system), ρi is either · or the
result being input to M (by the executing system), and ρo is either · or the result
being output by M (to the target program). Because MRAs process events one
at a time, at most one of αi, αo, ρi, and ρo will ever be nonempty. Our notation
for writing configurations mimics the graphic representation of monitors’ inputs
and outputs in Figure 1b.

We do not bother writing dots in configurations, so
a∣∣∣q∣∣∣ is the same as

a

·

∣∣∣q∣∣∣·
·
.

The starting configuration of an MRA is
∣∣∣q0

∣∣∣ because the monitor begins exe-
cuting in its initial state with no events yet input or output.

92 J. Ligatti and S. Reddy

nextT = a

ρ

∣∣∣q∣∣∣ ai−→
a∣∣∣q∣∣∣ (Input-Action)

nextS = r∣∣∣q∣∣∣a ri−→
∣∣∣q∣∣∣

r

(Input-Result)

δ(q, a) = (q′, a′)

a∣∣∣q∣∣∣ a′
o−→
∣∣∣q′∣∣∣a′

(Output-Act-for-Act)
δ(q, r) = (q′, a)∣∣∣q∣∣∣

r

ao−→
∣∣∣q′∣∣∣a (Output-Act-for-Res)

δ(q, a) = (q′, r)
a∣∣∣q∣∣∣ ro−→

r

∣∣∣q′∣∣∣ (Output-Res-for-Act)
δ(q, r) = (q′, r′)∣∣∣q∣∣∣

r

r′
o−→

r′

∣∣∣q′∣∣∣ (Output-Res-for-Res)

Fig. 2. Single-step semantics of mandatory results automata

We define the operational semantics of MRAs with a labeled single-step judg-
ment whose form is C

e−→M C′. This judgment indicates that MRA M takes
a single step from configuration C to configuration C′ while extending the cur-
rent trace by event e (which will be tagged as either an input or output event).
Because M will always be clear from context, we henceforth omit it from the
judgment.

The definition of MRAs’ single-step semantics appears in Figure 2. Six infer-
ence rules define all possible MRA transitions:

1. Input-Action enables the MRA to receive a new input action from the target
(nextT is the next action generated by the target). Because ρ ranges over
{·} ∪ R, the MRA can receive a new input action when in its initial config-
uration

∣∣∣q0

∣∣∣ or when in a configuration of the form
r

∣∣∣q∣∣∣ (in which case the
MRA has most recently returned a result r to the target, so it is ready for
another input action).

2. Output-Act-for-Act enables the MRA, immediately after inputting action a,
to output a possibly different action a′.

3. Output-Res-for-Act enables the MRA, immediately after inputting action a,
to return a result r for a to the target.

4. Input-Result enables the MRA to receive a new input result r for its most
recent output action a (nextS is the next result generated by the system).

5. Output-Act-for-Res enables the MRA, immediately after inputting result r,
to output another action a.

6. Output-Res-for-Res enables the MRA, immediately after inputting result r,
to return a possibly different result r′ to the target for the action it most
recently tried to execute.

Although many alternatives exist for defining MRAs’ semantics (e.g., process
calculi and other deductive systems, some of which can be compressed into
four inference rules), we carefully selected the rules in Figure 2 based on their

A Theory of Runtime Enforcement, with Results 93

simplicity—not just in the rules themselves but also in the transition functions
of MRAs that step according to those rules.

Several observations about the operational semantics:

– MRAs can “accept” an input action a by outputting it (with Output-Act-
for-Act), receiving a result r for a (with Input-Result), and then returning r
to the application (with Output-Res-for-Res).

– MRAs can “halt” an application by outputting an action like exit, if the
underlying system can execute such an action, or by entering an infinite loop
in its transition function to block additional inputs and outputs from being
made.

– MRAs are indeed obligated to return results to applications before inputting
new actions. No transitions allow an MRA to input another action until it
has discharged the last by returning a result for it.

– MRAs can avoid or postpone executing dangerous actions while allowing
the target to continue executing (with Output-Res-for-Act). For example,
an MRA could avoid executing a dangerous port-open input action by out-
putting an error-code or exception result in response. Alternatively, the MRA
could quietly postpone executing the port-open action by immediately out-
putting a void result and then observing how the target uses the port; if
the target uses the port securely then the MRA could output the original
port-open action followed by the secure port-use action(s) (with Output-Act-
for-Act and Output-Act-for-Res). By postponing (i.e., buffering) dangerous
actions until they are known to be secure, MRAs can operate as edit au-
tomata; however, such buffering is only possible when the valid results of
buffered actions are predictable (such as void results of some port-open
actions).

– We make no assumptions about whether and how the executing system gen-
erates results for actions; the executing system may produce results nonde-
terministically or through uncomputable means (e.g., by reading a weather
sensor or spontaneous keyboard input). This design captures the reality that
monitors can only determine the results of many actions (e.g., readFile, or
getUserInput) by having the system actually execute those actions. Hence,
the Input-Result transition, and the single-step relation for MRAs in general,
may be nondeterministic. Similarly, MRAs have no knowledge of whether
and how the target generates actions, so the Input-Action transition may be
nondeterministic as well.

These observations, and the semantics of MRAs in general, match our under-
standing of how real program monitors behave. For example, in the Polymer
enforcement system [3], policies can make insertion suggestions to output arbi-
trary actions in response to an input action, can make exception or replacement
suggestions to output an arbitrary result for the most recent input action, can
monitor results of actions, and must return a result for the most recent input
action before inputting another. PSLang and LoPSiL policies, and aspects in
many languages (e.g., AspectJ), behave similarly [7,14,10].

94 J. Ligatti and S. Reddy

Limitations. Nonetheless, because MRAs are models, some gaps do exist between
the possible behaviors of MRAs and what real monitors can do in practice. MRAs
share two standard limitations with other general runtime-enforcement mod-
els: (1) MRAs can interpose on and make decisions about all security-relevant
actions and results, but in practice some events may be imperceptible to the
monitor (e.g., monitoring every “clock-tick” action is possible in our model but
impractical); this is a problem of complete mediation [15], and (2) by executing
transition functions, MRAs may delay the processing of time-sensitive events,
which prevents MRAs from enforcing some time-sensitive policies (this issue
is inherent in runtime monitoring). Besides these standard limitations, MRAs
have another: for simplicity in this paper, MRAs treat all actions as synchronous
(i.e., they finish processing, and return a result for, one input action before in-
putting another). This limitation prevents MRAs from effectively monitoring ap-
plications whose correctness depends on some security-relevant action(s) being
asynchronous. However, as mentioned in Section 1.2, the edit-automata model
already provides a semantics for monitoring asynchronous actions.

3.2 Example MRAs

We next consider a couple example MRAs exhibiting simple, everyday sorts of
behaviors found in practical monitors. The behaviors are so simple that they may
seem trivial; nonetheless, the behaviors are outside existing runtime-enforcement
models because they involve monitors acting on unpredictable results of actions
(something neither truncation nor edit automata can do).

Example 1: Spam-Filtering MRA. This MRA M sanitizes the results of
getMessages actions to filter out spam emails. M ’s state consists of a boolean
flag indicating whether M is in the process of obtaining email messages; M
begins in state 0. M ’s transition function δ is:

δ(q, e) =

⎧⎨⎩ (0, e) if q = 0 and e �=getMessages
(1, e) if q = 0 and e =getMessages

(0, f ilter(e)) if q = 1

That is, M outputs its inputs verbatim and does not change its state as long
as it does not input a getMessages action. When M does input getMessages,
it sets its boolean flag and allows getMessages to execute. If M then inputs a
result r for getMessages, it outputs the spam-filtered version of r and returns
to its initial state. With similar techniques, M could sanitize results in other
ways (e.g., to remove system files from directory listings).

Example 2: Dangerous-Action-Confirming MRA. Our second example
MRA pops up a window to confirm a dangerous action d with the user before
allowing d to execute. We assume d has a default return value r, which must be
returned when the user decides not to allow d to execute (r would typically be a

A Theory of Runtime Enforcement, with Results 95

null pointer or a value indicating an exception). We also assume a popupConfirm
action that works like a JOptionPane.showConfirmDialog method in Java, re-
turning either an OK or cancel result. M uses a boolean flag, again initially set
to 0, for its state, and the following transition function.

δ(q, e) =

⎧⎪⎪⎨⎪⎪⎩
(0, e) if q = 0 and e �= d

(1, popupConfirm) if q = 0 and e = d
(0, r) if q = 1 and e =cancel
(0, d) if q = 1 and e =OK

This function works as expected: M outputs non-d input events verbatim. Once
M inputs a d action, it outputs a popupConfirm action and waits for a result.
If the user cancels the execution of d, M outputs result r; otherwise it outputs
action d.

Summary: Because of the simplicity in MRAs’ operational semantics, and in
concrete MRA transition functions, plus the fact that MRA behaviors match
our understanding of the essential behaviors of real runtime monitors, we believe
MRAs serve as a good basis for developing a theory of runtime enforcement.

3.3 Generalizing the Operational Semantics

Before we can formally define what it means for an MRA to enforce a policy, we
need to generalize the single-step semantics to account for multiple steps. First,
we define the (finite) multi-step relation, with judgment form C

x−→* C′, in the
standard way as the reflexive, transitive closure of the single-step relation. The
trace above the arrow in the multi-step judgment gets built by concatenating, in
order, every event labeled in the single-step judgments. Hence, C

x−→* C′ means
that the MRA builds execution x while transitioning, using any finite number
of single steps, from configuration C to configuration C′.

We also define a judgment M⇓x to mean that MRA M , when its input events
match the sequence of input events in x, in total produces the possibly infinite-
length trace x. To define M⇓x formally, there are two cases to consider: First,
when x ∈ Eω, M⇓x iff for all prefixes x′ of x, there exists an M -configuration

C such that C0
x′
−→* C (where C0 is M ’s initial configuration). Second, when

x ∈ E∗, M⇓x iff there exists an M -configuration C such that (1) C0
x−→* C and

(2) if x ends with an input event then M never transitions from C (otherwise,
x would not be the entire trace produced on x’s input events).

4 MRA-Based Enforcement

This section defines what it means for an MRA to enforce a policy.

4.1 Policies and Properties

A policy is a predicate on sets of executions [16]; a set of executions X ⊆
E∞ satisfies policy P iff P (X). Some policies are also properties. Policy P

96 J. Ligatti and S. Reddy

is a property iff there exists a predicate P̂ over E∞ such that ∀X ⊆ E∞ :(
P (X) ⇐⇒ ∀x ∈ X : P̂ (x)

)
. There is a one-to-one correspondence between a

property P and its predicate P̂ , so the rest of the paper uses P̂ unambiguously
to refer to both.

Intuitively, policies can determine whether a set of target executions is valid
based on the executions’ relationships with one another, but properties cannot
take such inter-execution relationships into account. It is sometimes possible
for runtime mechanisms to enforce nonproperty policies: a monitor could refer
to earlier traces (e.g., saved in files) when deciding how to transform the cur-
rent execution, or it could monitor multiple executions of a program concurrently
[6]. For simplicity, though, this paper analyzes only the properties MRAs can en-
force; we assume monitors make decisions about a single execution at a
time.

There are two important differences between this paper’s definition of poli-
cies and the definitions in previous models. The differences arise from the way
executions are modeled here: instead of modeling executions as just the actions
a monitor outputs, the MRA model also includes (1) output results, and (2)
all input events, in executions. Because policies here may take output results
into account, they can specify constraints on which results may be returned
to targets; policies here may require results to be sanitized. For example, the
spam-filtering MRA from Section 3.2 enforces a policy requiring all results of
getMessages actions to be filtered (this policy is a property because it is sat-
isfied iff every execution in a set X has exactly zero spam-containing results of
getMessages actions).

Moreover, because policies in the MRA model can take input events
into account, policies here can require arbitrary relationships to hold
between input and output events. For example, a property P̂ could be
dissatisfied by execution shutdowni (i.e., ¬P̂ (shutdowni)) but be satisfied by
shutdowni ; popupConfirmo. To enforce this P̂ , an MRA may have no choice but
to output popupConfirm upon inputting a shutdown action. Policies in previous
models (e.g., truncation and edit automata) could not specify such relationships
between input and output events because the policies were predicates over output
executions only. The only relationship allowed between input and output events
in previous models was transparency, which was hardcoded into the definition
of enforcement [9,12] and required monitors to output valid inputs unchanged.
Transparency can be encoded in policies in the MRA model (by defining policies
to be satisfied only by executions in which valid inputs get output unchanged),
but policies here are strictly more expressive than transparency be-
cause they can specify arbitrary input-output relationships. For example, the
popup-confirmation policy above specifies a relationship that is outside the scope
of transparency (because there is no requirement for shutdown to be output
unchanged).

A Theory of Runtime Enforcement, with Results 97

4.2 Enforcement

We define enforcement in terms of standard principles of soundness and com-
pleteness. MRA M is sound with respect to property P̂ when M only produces
traces satisfying P̂ ; M is complete with respect to P̂ when it produces all traces
satisfying P̂ ; and M is precise with respect to P̂ when it is sound and complete
with respect to P̂ .

Definition 1. On a system with event set E, MRA M :

– soundly enforces P̂ iff ∀x ∈ E∞ : ((M⇓x) =⇒ P̂ (x)),
– completely enforces P̂ iff ∀x ∈ E∞ : (P̂ (x) =⇒ (M⇓x)), and
– precisely enforces P̂ iff ∀x ∈ E∞ : ((M⇓x) ⇐⇒ P̂ (x)).

Definition 1 is significantly simpler and more flexible than definitions of enforce-
ment in related work, because it (1) does not hardcode transparency require-
ments, and (2) defines complete and precise, in addition to sound, enforcement.

For an example of MRA enforcement, we reconsider the dangerous-action-
confirming MRA M of Section 3.2 (recall that M pops up a window to get
user confirmation before executing action d; if the user cancels execution of d,
a result r gets returned to the target in place of executing d). Let us use ei; eo

as shorthand for any two-event sequence in which a non-d event is input and
then immediately output. Then M precisely enforces a property P̂ satisfied by
exactly those well-formed executions matching the pattern:

(ei; eo | di; popupConfirmo(canceli; ro | OKi; do))∞ (di; popupConfirmo)?

This pattern exactly characterizes the executions M builds. M outputs its input
events verbatim until no additional inputs arrive or a d action is input. Once M
inputs a d action, it immediately outputs the popupConfirm action. Execution
stops at this point if the user never selects whether d should be allowed; the pat-
tern above therefore allows executions to optionally end with di; popupConfirmo.
However, if M inputs a cancel or OK result for the popupConfirm action, it must
output the appropriate event in response (either r or d) and continue executing.
Note that this policy disallows executions from just ending with, for example,
an OK result being input to confirm a d action; the policy requires execution
to continue after the OK input by allowing d to execute. The policy therefore
specifies a non-transparency relationship between input and output events (un-
related to outputting inputs unchanged), which cannot be expressed in previous
enforcement models.

4.3 Wanted: Auxiliary Predicates, Dead and Alive

Given a property P̂ and a finite execution x, we often find it useful to know
whether x can be extended into a valid execution. We introduce two predicates
for this purpose: when x can be made valid by extending it with some sequence
of events, we say x is alive; otherwise, x is dead. Formally, aliveP̂ (x) ⇐⇒ (∃x′ ∈
E∞ : P̂ (x; x′)) and deadP̂ (x) ⇐⇒ ¬aliveP̂ (x).

98 J. Ligatti and S. Reddy

Because P̂ will always be clear from context, we omit it as a subscript in future
alive(x) and dead(x) judgments. Also, because properties in practice generally
have predicates P̂ and alive that are decidable over finite-length inputs, and
because only considering such properties simplifies the theorems in Section 5,
this paper limits its scope to properties with predicates P̂ (x) and alive(x) that
are decidable over finite x.

5 Analysis of MRA-Enforceable Policies

Theorems 1–3 characterize the properties MRAs can soundly, completely, and
precisely enforce. Although space limitations prevent us from getting into any
details, interested readers may consult our technical report [13] for discussions
and proofs of the theorems.

Notation. The theorems use the notation ∃(x′; ei) � x : F to mean that there
exists a prefix of x having the form x′; ei such that F holds. Similarly, the nota-
tion ∀(x; ei) ∈ E∗ : F means that F is true for all well-formed finite executions
x; ei. We also use uniqueness quantification of the form ∃1e ∈ E : F to mean
that there exists exactly one event e in E such that F is true. Finally, we assume
conjunction (∧) binds more tightly than disjunction (∨).

Theorem 1. Property P̂ on a system with event set E can be soundly enforced
by some MRA M iff there exists recursively enumerable predicate R over E∗ such
that all the following are true.

1. R(·)

2. ∀(x; ei) ∈ E∗ :
(
¬R(x) ∨ P̂ (x; ei) ∨ ∃e′ ∈ E :

(
R(x; ei; e′o)

∧ P̂ (x; ei; e′o)

))
3. ∀x ∈ Eω :

(
¬P̂ (x) =⇒ ∃(x′; ei) � x : ¬R(x′)

)
Theorem 2. Property P̂ on a system with event set E can be completely
enforced by some MRA M iff:

∀(x; ei) ∈ E∗ :
(

∀e′ ∈ E : dead(x; ei; e′o)
∨ ¬P̂ (x; ei) ∧ ∃1e

′ ∈ E : alive(x; ei; e′o)

)

To learn which policies MRAs precisely enforce, we can intersect the policies
soundly enforceable with the policies completely enforceable, and then simplify
the result. Doing so produces Theorem 3.

Theorem 3. Property P̂ on a system with event set E can be precisely enforced
by some MRA M iff all the following are true.

A Theory of Runtime Enforcement, with Results 99

1. P̂ (·)

2. ∀(x; ei) ∈ E∗ :

⎛⎜⎜⎝
¬P̂ (x)

∨ P̂ (x; ei) ∧ ∀e′ ∈ E : dead(x; ei; e′o)
∨ ¬P̂ (x; ei) ∧ ∃1e

′ ∈ E : P̂ (x; ei; e′o)
∧ ∃1e

′ ∈ E : alive(x; ei; e′o)

⎞⎟⎟⎠
3. ∀x ∈ Eω :

(
¬P̂ (x) =⇒ ∃(x′; ei) � x : ¬P̂ (x′)

)
6 Conclusions

We have presented MRAs as general models of runtime enforcement mechanisms.
MRAs do not suffer from the primary problems of previous models because they
(1) allow monitors to transform actions and results and (2) do not assume that
monitors can predetermine results of actions. MRAs are the first general models
of runtime enforcement we know of in which result-sanitization policies can be
reasoned about, and we have seen some examples of how MRAs with simple
transition functions can enforce result-sanitization, and other result-dependent,
policies. Also, the definitions of policies and enforcement with MRAs are sig-
nificantly simpler and more expressive than existing definitions because they
allow policies to require arbitrary (including non-transparency) relationships be-
tween input and output events. Finally, after defining MRAs and enforcement,
we have characterized the policies they soundly, completely, and precisely en-
force, so for example, security engineers should never waste effort attempting to
use MRA-style mechanisms to precisely enforce policies outside the set defined
by Theorem 3.

These contributions, and theories of runtime enforcement in general, are im-
portant because they:

– shape how we think about the roles and meanings of policies, mechanisms,
and enforcement,

– influence our decisions about how to specify policies and mechanisms (in-
cluding designs of policy-specification languages),

– enable us to reason about whether specific mechanisms enforce desired poli-
cies, and

– improve our understanding of which policies can and cannot be enforced at
runtime.

We hope that with continued research, enforceability theory will benefit the
security community in similar ways that computability theory has benefited the
broader computer-science community.

Acknowledgments

We are grateful for feedback from Lujo Bauer, Egor Dolzhenko, Frank Piessens,
and the anonymous reviewers. This research was supported by National Science
Foundation grants CNS-0716343 and CNS-0742736.

100 J. Ligatti and S. Reddy

References

1. Aktug, I., Dam, M., Gurov, D.: Provably correct runtime monitoring. In: Proceed-

ings of the 15th International Symposium on Formal Methods (May 2008)

2. Alpern, B., Schneider, F.B.: Defining liveness. Information Processing Let-

ters 21(4), 181–185 (1985)

3. Bauer, L., Ligatti, J., Walker, D.: Composing expressive runtime security policies.

ACM Transactions on Software Engineering and Methodology 18(3), 1–43 (2009)

4. Beauquier, D., Cohen, J., Lanotte, R.: Security policies enforcement using finite

edit automata. Electron. Notes Theor. Comput. Sci. 229(3), 19–35 (2009)

5. Dam, M., Jacobs, B., Lundblad, A., Piessens, F.: Security monitor inlining for mul-

tithreaded java. In: Proceedings of the European Conference on Object-Oriented

Programming (ECOOP) (July 2009)

6. Devriese, D., Piessens, F.: Non-interference through secure multi-execution. In:

Proceedings of the IEEE Symposium on Security and Privacy, pp. 109–124 (May

2010)

7. Erlingsson, Ú.: The Inlined Reference Monitor Approach to Security Policy En-

forcement. PhD thesis, Cornell University (January 2004)

8. Fong, P.W.L.: Access control by tracking shallow execution history. In: Proceedings

of the IEEE Symposium on Security and Privacy (May 2004)

9. Hamlen, K., Morrisett, G., Schneider, F.B.: Computability classes for enforcement

mechanisms. ACM Transactions on Progamming Languages and Systems 28(1),

175–205 (2006)

10. Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold, W.: An

overview of AspectJ. In: Knudsen, J.L. (ed.) ECOOP 2001. LNCS, vol. 2072,

p. 327. Springer, Heidelberg (2001)

11. Kim, M., Kannan, S., Lee, I., Sokolsky, O., Viswantathan, M.: Computational

analysis of run-time monitoring—fundamentals of Java-MaC. Run-time Verifica-

tion (June 2002)

12. Ligatti, J., Bauer, L., Walker, D.: Run-time enforcement of nonsafety policies. ACM

Transactions on Information and System Security 12(3), 1–41 (2009)

13. Ligatti, J., Reddy, S.: A theory of runtime enforcement, with results. Tech-

nical Report USF-CSE-SS-102809, University of South Florida (June 2010),

http://www.cse.usf.edu/~ligatti/papers/mra-tr.pdf

14. Ligatti, J., Rickey, B., Saigal, N.: LoPSiL: A location-based policy-specification

language. In: International ICST Conference on Security and Privacy in Mobile

Information and Communication Systems (MobiSec) (June 2009)

15. Saltzer, J., Schroeder, M.: The protection of information in computer systems.

Proceedings of the IEEE 63(9), 1278–1308 (1975)

16. Schneider, F.B.: Enforceable security policies. ACM Transactions on Information

and Systems Security 3(1), 30–50 (2000)

17. Talhi, C., Tawbi, N., Debbabi, M.: Execution monitoring enforcement under

memory-limitation constraints. Information and Computation 206(2-4), 158–184

(2008)

18. Viswanathan, M.: Foundations for the Run-time Analysis of Software Systems.

PhD thesis, University of Pennsylvania (2000)

19. Yu, D., Chander, A., Islam, N., Serikov, I.: Javascript instrumentation for browser

security. In: Proceedings of the Symposium on Principles of Programming Lan-

guages, pp. 237–249 (2007)

http://www.cse.usf.edu/~ligatti/papers/mra-tr.pdf

Enforcing Secure Object Initialization in Java

Laurent Hubert1, Thomas Jensen2, Vincent Monfort2, and David Pichardie2

1 CNRS/IRISA, France
2 INRIA Rennes - Bretagne Atlantique/IRISA, France

Abstract. Sun and the CERT recommend for secure Java development

to not allow partially initialized objects to be accessed. The CERT consid-

ers the severity of the risks taken by not following this recommendation

as high. The solution currently used to enforce object initialization is

to implement a coding pattern proposed by Sun, which is not formally

checked. We propose a modular type system to formally specify the ini-

tialization policy of libraries or programs and a type checker to statically

check at load time that all loaded classes respect the policy. This allows

to prove the absence of bugs which have allowed some famous privilege

escalations in Java. Our experimental results show that our safe default

policy allows to prove 91% of classes of java.lang, java.security
and javax.security safe without any annotation and by adding 57

simple annotations we proved all classes but four safe. The type system

and its soundness theorem have been formalized and machine checked

using Coq.

1 Introduction

The initialization of an information system is usually a critical phase where
essential defense mechanisms are being installed and a coherent state is being
set up. In object-oriented software, granting access to partially initialized objects
is consequently a delicate operation that should be avoided or at least closely
monitored. Indeed, the CERT recommendation for secure Java development [2]
clearly requires to not allow partially initialized objects to be accessed (guideline
OBJ04-J). The CERT has assessed the risk if this recommendation is not followed
and has considered the severity as high and the likelihood as probable. They
consider this recommendation as a first priority on a scale of three levels.

The Java language and the Java Byte Code Verifier (BCV) enforce some
properties on object initialization, e.g. about the order in which constructors of
an object may be executed, but they do not directly enforce the CERT recom-
mendation. Instead, Sun provides a guideline that enforces the recommendation.
Conversely, failing to apply this guidelines may silently lead to security breaches.
In fact, a famous attack [4] used a partially initialized class loader for privilege
elevation.

We propose a twofold solution: (i) a modular type system which allows to
express the initialization policy of a library or program, i.e. which methods may
access partially initialized objects and which may not; and (ii) a type checker,

D. Gritzalis, B. Preneel, and M. Theoharidou (Eds.): ESORICS 2010, LNCS 6345, pp. 101–115, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

102 L. Hubert et al.

which can be integrated into the BCV, to statically check the program at load
time. To validate our approach, we have formalized our type system, machine
checked its soundness proof using the Coq proof assistant, and experimentally
validated our solution on a large number of classes from Sun’s Java Runtime
Environment (JRE).

Section 3 overviews object initialization in Java and its impacts on secu-
rity. Section 4 then informally presents our type system, which is then formally
described in Section 5. Section 6 finally presents the experimental results we
obtained on Sun’s JRE.

2 Related Work

Object initialization has been studied from different points of view. Freund and
Mitchell [7] have proposed a type system that formalizes and enforces the initial-
ization properties ensured by the BCV, which are not sufficient to ensure that no
partially initialized object is accessed. Unlike local variables, instance fields have
a default value (null, false or 0) which may be then replaced by the program.
The challenge is then to check that the default value has been replaced before
the first access to the field (e.g. to ensure that all field reads return a non-null
value). This is has been studied in its general form by Fähndrich and Xia [6],
and Qi and Myers [9]. Those works are focused on enforcing invariants on fields
and finely tracks the different fields of an object. They also try to follow the
objects after their construction to have more information on initialized fields.
This is an overkill in our context. Unkel and Lam studied another property of
object initialization: stationary fields [12]. A field may be stationary if all its
reads return the same value. There analysis also track fields of objects and not
the different initialization of an object. In contrast to our analysis, they stop to
track any object stored into the heap.

Other work have targeted the order in which methods are called. It has been
studied in the context of rare events (e.g. to detect anomaly, including intru-
sions). We refer the interested reader to the survey of Chandola et al. [3]. They
are mainly interested in the order in which methods are called but not about
the initialization status of arguments. While we guarantee that a method taking
a fully initialized receiver is called after its constructor, this policy cannot be
locally expressed with an order on method calls as the methods (constructors)
which needs to be called on a object to initialize it depends on the dynamic type
of the object.

3 Context Overview

Fig. 1 is an extract of class ClassLoader of SUN’s JRE as it was before 1997.
The security policy which needs to be ensured is that resolveClass, a security
sensitive method, may be called only if the security check l. 5 has succeeded.
To ensure this security property, this code relies on the properties enforced on
object initialization by the BCV.

Enforcing Secure Object Initialization in Java 103

1 public abstract class ClassLoader {
2 private ClassLoader parent;
3 protected ClassLoader() {
4 SecurityManager sm = System.getSecurityManager();
5 if (sm != null) {sm.checkCreateClassLoader();}
6 this.parent = ClassLoader.getSystemClassLoader();
7 }
8 protected final native void resolveClass(Class c);
9 }

Fig. 1. Extract of the ClassLoader of Sun’s JRE

Standard Java Object Construction. In Java, objects are initialized by
calling a class-specific constructor which is supposed to establish an invariant on
the newly created object. The BCV enforces two properties related to these con-
structors. These two properties are necessary but, as we shall see, not completely
sufficient to avoid security problems due to object initialization.

Property 1. Before accessing an object, (i) a constructor of its dynamic type has
been called and (ii) each constructor either calls another constructor of the same
class or a constructor of the super-class on the object under construction, except
for java.lang.Object which has no super-class.

This implies that at least one constructor of C and of each super-class of C is
called: it is not possible to bypass a level of constructor. To deal with exceptional
behaviour during object construction, the BCV enforces another property — con-
cisely described in The Java Language Specification [8], Section 12.5, or implied
by the type system described in the JSR202 [1]).

Property 2. If one constructor finishes abruptly, then the whole construction of
the object finishes abruptly.

Thus, if the construction of an object finishes normally, then all constructors
called on this object have finished normally. Failure to implement this verification
properly led to a famous attack [4] in which it was exploited that if code such as
try {super();} catch(Throwable e){} in a constructor is not rejected by
the BCV, then malicious classes can create security-critical classes such as class
loaders.

Attack on the Class Loader and the Patch from Sun. However, even with
these two properties enforced, it is not guaranteed that uninitialized objects can-
not be used. In Fig. 1, if the check fails, the method checkCreateClassLoader

throws an exception and therefore terminates the construction of the object,
but the garbage collector then call a finalize() method, which is an instance
method and has the object to be collected as receiver (cf. Section 12.6 of [8]).

An attacker could code another class that extends ClassLoader and has a
finalize() method. If run in a right-restricted context, e.g. an applet, the con-
structor of ClassLoader fails and the garbage collector then call the attacker’s

104 L. Hubert et al.

1 public abstract class ClassLoader {
2 private volatile boolean initialized;
3 private ClassLoader parent;
4 protected ClassLoader() {
5 SecurityManager sm = System.getSecurityManager();
6 if (sm != null) {sm.checkCreateClassLoader();}
7 this.parent = ClassLoader.getSystemClassLoader();
8 this.initialized = true;}
9 private void check() {

10 if (!initialized) {
11 throw new SecurityException(
12 "ClassLoader object not initialized");}}
13 protected final void resolveClass(Class c){
14 this.check();
15 this.resolveClass0(c);}
16 private native void resolveClass0(Class c);
17 }

Fig. 2. Extract of the ClassLoader of Sun’s JRE

finalize method. The attacker can therefore call the resolveClass method
on it, bypassing the security check in the constructor and breaking the security
of Java.

The initialization policy enforced the BCV is in fact too weak: when a method
is called on an object, there is no guarantee that the construction of an object
has been successfully run. An ad-hoc solution to this problem is proposed by
SUN [11] in its Guideline 4-3 Defend against partially initialized instances of
non-final classes : adding a special Boolean field to each class for which the
developer wants to ensure it has been sufficiently initialized. This field, set to
false by default, should be private and should be set to true at the end of
the constructor. Then, every method that relies on the invariant established by
the constructor must test whether this field is set to true and fail otherwise. If
initialized is true, the construction of the object up to the initialization of
initialized has succeeded. Checking if initialized is true allows to ensure
that sensitive code is only executed on classes that have been initialized up to
the constructor of the current class. Fig. 2 shows the same extract as in Fig. 1
but with the needed instrumentation (this is the current implementation as of
JRE 1.6.0 16).

Although there are some exceptions and some methods are designed to access
partially initialized objects (for example to initialize the object), most methods
should not access partially initialized objects. Following the remediation solution
proposed in the CERT’s recommendation or Sun’s guideline 4-3, a field should
be added to almost every class and most methods should start by checking
this field. This is resource consuming and error prone because it relies on the
programmer to keep track of what is the semantic invariant, without providing
the adequate automated software development tools. It may therefore lead not to

Enforcing Secure Object Initialization in Java 105

functional bugs but to security breaches, which are harder to detect. In spite of
being known since 1997, this pattern is not always correctly applied to all places
where it should be. This has lead to security breaches, see e.g., the Secunia
Advisory SA10056 [10].

4 The Right Way: A Type System

We propose a twofold solution: first, a way to specify the security policy which
is simple and modular, yet more expressive than a single Boolean field; second,
a modular type checker, which could be integrated into the BCV, to check that
the whole program respects the policy.

4.1 Specifying an Initialization Policy with Annotations

We rely on Java annotations and on one instruction to specify our initialization
policy. We herein give the grammar of the annotations we use.

V ANNOT ::= @Init | @Raw | @Raw(CLASS)
R ANNOT ::= @Pre(V ANNOT) | @Post(V ANNOT)

We introduce two main annotations: @Init, which specifies that a reference can
only point to a fully initialized object or the null constant, and @Raw, which
specifies that a reference may point to a partially initialized object. A third
annotation, @Raw(CLASS), allows to precise that the object may be partially ini-
tialized but that all constructors up to and including the constructor of CLASS
must have been fully executed. E.g., when one checks that initialized contains
true in ClassLoader.resolveClass, one checks that the receiver has the type
@Raw(ClassLoader). The annotations produced by the V_ANNOT rule are used
for fields, method arguments and return values. In the Java language, instance
methods implicitly take another argument: a receiver — reachable through vari-
able this. We introduce a @Pre annotation to specify the type of the receiver at
the beginning of the method. Some methods, usually called from constructors,
are meant to initialize their receiver. We have therefore added the possibility to
express this by adding a @Post annotation for the type of the receiver at the
end of the method. These annotations take as argument an initialization level
produced by the rule V_ANNOT.

Fig. 3 shows an example of @Raw annotations. Class Ex1A has an instance
field f, a constructor and a getter getF. This getter requires the object to be
initialized at least up to Ex1A as it accesses a field initialized in its constructor.
The constructor of Ex1B uses this getter, but the object is not yet completely
initialized: it has the type Raw(Ex1A) as it has finished the constructor of Ex1A
but not yet the constructor Ex1B. If the getter had been annotated with @Init

it would not have been possible to use it in the constructor of Ex1B.
Another part of the security policy is the SetInit instruction, which mimics

the instruction this.initialized = true in Sun’s guideline. It is implicitly
put at the end of every constructor but it can be explicitly placed before. It

106 L. Hubert et al.

1 class Ex1A {
2 private Object f;
3 Ex1A(Object o){
4 securityManagerCheck()
5 this.f = o;}
6 @Pre(@Raw(Ex1A))
7 getF(){return this.f;}
8 }

9 class Ex1B extends Ex1A{
10 Ex1B(){
11 super();
12 ... = this.getF();
13 }
14 }

Fig. 3. Motivations for Raw(CLASS) annotations

1 public C() {
2 ...
3 securityManagerCheck(); // perform dynamic security checks
4 SetInit; // declare the object initialized up C
5 Global.register(this); // the object is used with a method
6 } // that only accept Raw(C) parameters

Fig. 4. An Example with SetInit

declares that the current object has completed its initialization up to the current
class. Note that the object is not yet considered fully initialized as it might be
called as a parent constructor in a subclass. The instruction can be used, as in
Fig.4, in a constructor after checking some properties and before calling some
other method.

Fig. 5 shows class ClassLoader with its policy specification. The policy en-
sured by the current implementation of Sun is slightly weaker: it does not ensure
that the receiver is fully initialized when invoking resolveClass but simply
checks that the constructor of ClassLoader has been fully run. On this exam-
ple, we can see that the constructor has the annotations @Pre(@Raw), mean-
ing that the receiver may be completely uninitialized at the beginning, and
@Post(@Raw(ClassLoader)), meaning that, on normal return of the method,
at least one constructor for each parent class of ClassLoader and a constructor
of ClassLoader have been fully executed.

We define as default values the most precise type that may be use in each
context. This gives a safe by default policy and lowers the burden of annotating
a program.

– Fields, method parameters and return values are fully initialized objects
(written @Init).

– Constructors take a receivers uninitialized at the beginning (@Pre(@Raw))
and initialized up-to the current class at the end (written @Post(@Raw(C))

if in the class C).
– Other methods take a receiver fully initialized (@Pre(@Init)).
– Except for constructors, method receivers have the same type at the end

as at beginning of the method (written @Post(A) if the method has the
annotation @Pre(A)).

Enforcing Secure Object Initialization in Java 107

1 public abstract class ClassLoader {
2 @Init private ClassLoader parent;
3 @Pre(@Raw) @Post(@Raw(ClassLoader))
4 protected ClassLoader() {
5 SecurityManager sm = System.getSecurityManager();
6 if (sm != null) {sm.checkCreateClassLoader();}
7 this.parent = ClassLoader.getSystemClassLoader();
8 }
9 @Pre(@Init) @Post(@Init)

10 protected final native void resolveClass(@Init Class c);
11 }

Fig. 5. Extract of the ClassLoader of Sun’s JRE

If we remove from Fig. 5 the default annotations, we obtain the original code
in Fig. 1. It shows that despite choosing the strictest (and safest) initialization
policy as default, the annotation burden can be kept low.

4.2 Checking the Initialization Policy

We have chosen static type checking for at least two reasons. Static type checking
allows for more performances (except for some rare cases), as the complexity of
static type checking is linear in the code size, whereas the complexity of dynamic
type checking is linear in the execution time. Static type checking also improves
reliability of the code: if a code passes the type checking, then the code is correct
with respect to its policy, whereas the dynamic type checking only ensures the
correction of a particular execution.

Reflection in Java allows to retrieve code from the network or to dynamically
generates code. Thus, the whole code may not be available before actually exe-
cuting the program. Instead, code is made available class by class, and checked
by the BCV at linking time, before the first execution of each method. As the
whole program is not available, the type checking must be modular: there must
be enough information in a method to decide if this method is correct and, if an
incorrect method is found, there must exist a safe procedure to end the program
(usually throwing an exception), i.e. it must not be too late.

To a have a modular type checker while keeping our security policy simple,
method parameters, respectively return values, need to be contra-variant, re-
spectively co-variant, i.e. the policy of the overriding methods needs to be at
least as general as the policy of the overridden method. Note that this is not
surprising: the same applies in the Java language (although Java imposes the
invariance of method parameters instead of the more general contra-variance),
and when a method call is found in a method, it allows to rely on the policy of
the resolved method (as all the method which may actually be called cannot be
known before the whole program is loaded).

108 L. Hubert et al.

x, y, r ∈ Var f ∈ Field e ∈ Exc i ∈ L = N

p ∈ Prog ::= { classes ∈ P(Class), main ∈ Class ,
fields ∈ Field → Type, lookup ∈ Class → Meth ⇀ Meth}

c ∈ Class ::= {super ∈ Class⊥, methods ∈ P(Meth), init ∈ Meth}
m ∈ Meth ::= { instrs ∈ Instr array , handler ∈ L → Exc → L⊥,

pre ∈ Type, post ∈ Type , argtype ∈ Type, rettype ∈ Type}
τ ∈ Type ::= Init | Raw(c) | Raw⊥

e ∈ Expr ::= null | x | e.f
ins ∈ Instr ::= x ← e | x.f ← y | x ← new c(y) | if (�) jmp |

super (y) | x ← r.m(y) | return x | SetInit

Fig. 6. Language Syntax

5 Formal Study of the Type System

The purpose of this work is to provide a type system that enforces at load time
an important security property. The semantic soundness of such mechanism is
hence crucial for the global security of the Java platform. In this section, we
formally define the type system and prove its soundness with respect to an
operational semantics. All the results of this section have been machine-checked
with the Coq proof assistant1.

Syntax. Our language is a simple language in-between Java source and Java
bytecode. Our goal was to have a language close enough to the bytecode in
order to easily obtain, from the specification, a naive implementation at the
bytecode level while keeping a language easy to reason with. It is based on
the decompiled language from Demange et al. [5] that provides a stack-less
representation of Java bytecode programs. Fig. 6 shows the syntax of the
language. A program is a record that handles a set of classes, a main class,
a type annotation for each field and a lookup operator. This operator is used
do determine during a virtual call the method (p.lookup c m) (if any) that
is the first overriding version of a method m in the ancestor classes of the
class c. A class is composed of a super class (if any), a set of method and a
special constructor method init. A method handles an array of instructions,
a handler function such that (m.handler i e) is the program point (if any) in
the method m where the control flows after an exception e has been thrown
at point i. Each method handles also four initialization types for the initial
value of the variable this (m.pre), its final value (m.post), the type of its
formal parameter2 (m.argtype) and the type of its return value (m.rettype).
The only expressions are the null constant, local variables and field reads. For
this analysis, arithmetic needs not to be taken into account. We only manip-
ulate objects. The instructions are the assignment to a local variable or to a field,

1 The development can be downloaded at

http://www.irisa.fr/celtique/ext/rawtypes/
2 For the sake of simplicity, each method has a unique formal parameter arg .

http://www.irisa.fr/celtique/ext/rawtypes/

Enforcing Secure Object Initialization in Java 109

Exc 	 e ::= e | ⊥ (exception flag)

L 	 l (location)

V 	 v ::= l | null (value)

M = Var → V 	 ρ (local variables)

O = Class × Class⊥ × (Field → V) 	 o ::= [c, cinit , o] (object)

H = L → O⊥ 	 σ (heap)

CS 	 cs ::= (m, i, l, ρ, r) :: cs | ε (call stack)

S = Meth × L× M × H × CS × Exc 	 st ::= 〈m, i, ρ, σ, cs〉e (state)

Fig. 7. Semantic Domains

object creation (new)3, (non-deterministic) conditional jump, super constructor
call, virtual method call, return, and a special instruction that we introduce for
explicit object initialization: SetInit .

Semantic Domains. Fig. 7 shows the concrete domain used to model the pro-
gram states. The state is composed of the current method m, the current pro-
gram point i in m (the index of the next instruction to be executed in m.instrs), a
function for local variables, a heap, a call stack and an exception flag. The heap
is a partial function which associates to a location an object [c, cinit , o] with
c its type, cinit its current initialization level and o a map from field to value
(in the sequel o is sometimes confused with the object itself). An initialization
cinit ∈ Class means that each constructors of cinit and its super-classes have
been called on the object and have returned without abrupt termination. The
exception flag is used to handle exceptions: a state 〈· · ·〉e with e ∈ Exc is reached
after an exception e has been thrown. The execution then looks for a handler
in the current method and if necessary in the methods of the current call stack.
When equal to ⊥, the flag is omitted (normal state). The call stack records the
program points of the pending calls together with their local environments and
the variable that will be assigned with the result of the call.

Initialization Types. We can distinguish three different kinds of initialization
types. Given a heap σ we define a value type judgment h � v : τ between values
and types with the following rules.

σ
 null : τ σ
 l : Raw⊥

σ(l) = [cdyn , cinit , o]
∀c′, cdyn � c′ ∧ c � c′ ⇒ cinit � c′

σ
 l : Raw(c)

σ(l) = [c, c, o]

σ
 l : Init

The relation� here denotes the reflexive transitive closure of the relation induced
by the super element of each class. Raw⊥ denotes a reference to an object which

3 Here, the same instruction allocates the object and calls the constructor. At bytecode

level this gives raise to two separated instructions in the program (allocation and

later constructor invocation) but the intermediate representation generator [5] on

which we rely is able to recover such construct.

110 L. Hubert et al.

m.instrs[i] = x ← new c(y) x �= this Alloc(σ, c, l, σ′) σ′
 ρ(y) : c.init.argtype

〈m, i, ρ, σ, cs〉 ⇒ 〈c.init, 0, [· �→ null][this �→ l][arg �→ ρ(y)], σ′, (m, i, ρ, x) :: cs〉
m.instrs[i] = SetInit m = c.init ρ(this) = l SetInit(σ, c, l, σ′)

〈m, i, ρ, σ, cs〉 ⇒ 〈m, i+1, ρ, σ′, cs〉
m.instrs[i] = return x ρ(this) = l ((∀c, m �= c.init) ⇒ σ = σ′)

(∀c, m = c.init ⇒ SetInit(σ, c, l, σ′) ∧ x = this)

〈m, i, ρ, σ, (m′, i′, ρ′, r) :: cs〉 ⇒ 〈m′, i′+1, ρ′[r �→ ρ(x)], σ′, cs〉

Fig. 8. Operational Semantics (excerpt)

may be completely uninitialized (at the very beginning of each constructor). Init
denotes a reference to an object which has been completely initialized. Between
those two “extreme” types, a value may be typed as Raw(c) if at least one
constructor of c and of each parent of c has been executed on all objects that
may be reference from this value. We can derive from this definition the sub-
typing relation Init � Raw(c) � Raw(c′) � Raw⊥ if c � c′. It satisfies the
important monotony property

∀σ ∈ H, ∀v ∈ V, ∀τ1, τ2 ∈ Type, τ1 � τ2 ∧ σ � v : τ1 ⇒ σ � v : τ2

Note that the sub-typing judgment is disconnected from the static type of object.
In a first approach, we could expect to manipulate a pair (c, τ) with c the static
type of an object and τ its initialization type and consider equivalent both types
(c,Raw(c)) and (c, Init). Such a choice would however impact deeply on the
standard dynamic mechanism of a JVM: each dynamic cast from A to B (or a
virtual call on a receiver) would requires to check that an object has not only
an initialization level set up to A but also set up to B.

Operational Semantics. We define the operational semantics of our language
as a small-step transition relation over program states. A fixed program p is

Expression typing

L � e.f : (p.fields f) L � x : L(x) L � null : Init

Instruction typing
L � e : τ x �= this

m � x ← e : L → L[x �→ τ]

L(y) � (p.fields f)

m � x.f ← y : L → L Γ, m � if � jmp : L → L

L(this) � m.post L(x) � m.rettype (∀c, m = c.init ⇒ L(this) � Raw(c.super))

m � return x : L → L

L(y) � c.init.argtype

m � x ← new c(y) : L → L[x �→ Init]

c′ = c.super L(y) � c′.init.argtype

c.init � super(y) : L → L[this �→ Raw(c′)]
L(r) � m.pre L(y) � m.argtype

m � x ← r.m′(y) : L → L[r �→ m.post][x �→ m.rettype]

L(this) � Raw(c.super)

c.init � SetInit : L → L

Fig. 9. Flow sensitive type system

Enforcing Secure Object Initialization in Java 111

implicit in the rest of this section. Fig. 8 presents some selected rules for this re-
lation. The rule for the new instruction includes both the allocation and the call
to the constructor. We use the auxiliary predicate Alloc(σ, c, l, σ′) which allocate
a fresh location l in heap σ with type c, initialization type equals to ⊥ and all
fields set equal to null . The constraint σ′ � ρ(y) : c.init.argtype explicitly asks
the caller of the constructor to give a correct argument with respect to the pol-
icy of the constructor. Each call rules of the semantics have similar constraints.
The execution is hence stuck when an attempt is made to call a method with
badly typed parameters. The SetInit instruction updates the initialization level
of the object in this . It relies on the predicate SetInit(σ, c, l, σ′) which specifies
that σ′ is a copy of σ where the object at location l has now the initialization
tag set to c if the previous initialization was c.super . It forces the current object
(this) to be considered as initialized up to the current class (i.e. as if the con-
structor of the current class had returned, but not necessarily the constructors
of the subsequent classes). This may be used in the constructor, once all fields
that need to be initialized have been initialized and if some method requiring
a non-raw object needs to be called. Note that this instruction is really sensi-
tive: using this instruction too early in a constructor may break the security of
the application. The return instruction uses the same predicate when invoked
in a constructor. For convenience we requires each constructor to end with a
return this instruction.

Typing Judgment. Each instruction ins of a method m is attached a typing
rule (given in Fig. 5) m � ins : L → L′ that constraint the type of variable
before (L) and after (L′) the execution of ins .

Definition 1 (Well-typed Method). A method m is well-typed if there exists
flow sensitive variable types L ∈ L → Var → Type such that

– m.pre � L(0, this) and m.argtype � L(0, arg),
– for all instruction ins at point i in m and every successor j of i, there exists

a map of variable types L′ ∈ Var → Type such that L′ � L(j) and the typing
judgment m � ins : L(i) → L′ holds. If i is in the handler j of an exception
e (i.e (m.handler i e = j)) then L(i) � L(j).

The typability of a method can be decided by turning the set of typing rules into
a standard dataflow problem. The approach is standard [7] and not formalized
here.

Definition 2 (Well-typed Program). A program p is well-typed if all its
methods are well-typed and the following constraints holds:

1. for every method m that is overridden by a method m′ (i.e there exists c,
such that (p.lookup c m = m′)),

m.pre � m′.pre ∧ m.argtype � m′.argtype ∧
m.post � m′.post ∧ m.rettype � m′.rettype

2. in each method, every first point, jump target and handler point contain an
instruction and every instruction (except return) has a next instruction,

112 L. Hubert et al.

3. the default constructor c.init of each class c is unique.

In this definition only point 1 is really specific to the current type system. The
other points are necessary to established the progress theorem of the next section.

Type Soundness. We rely on an auxiliary notion of well-formed states
that capture the semantics constraints enforce by the type system. A state
〈m, i, ρ, σ, cs〉 is well-formed (wf) if there exists a type annotation Lp ∈ (Meth×
L) → (Var → Type) such that

∀l ∈ L, ∀o ∈ O, σ(l) = o ⇒ σ � o(f) : (p.fields f) (wf. heap)
∀x ∈ Var , σ � ρ(x) : Lp[m, i](x) (wf. local variables)
∀(m′, i′, ρ′, r) ∈ cs, ∀x, σ � ρ′(x) : Lp[m′, i′](x) (wf. call stack)

Given a well-typed program p we then establish two key theorems. First, any
valid transition from a well-formed state leads to another well-formed state
(preservation) and then, from every well-formed state there exists at least a
transition (progress). As a consequence we can establish that starting from an
initial state (which is always well-formed) the execution is never stuck, except
on final configuration. This ensures that all initialization constraints given in the
operational semantics are satisfied without requiring any dynamic verification.

Limitations. The proposed language has some limitations compared to the
Java (bytecode) language. Static fields and arithmetic have not been introduced
but are handled by our implementation and do not add particular difficulties.
Arrays have not been introduced in the language neither. Our implementation
conservatively handles arrays by allowing only writes of Init references in arrays.
Although this approach seems correct it has not been proved and it is not flex-
ible enough (cf. Section 6). Multi-threading as also been left out of the current
formalization but we conjecture the soundness result still holds with respect to
the Java Memory Model because of the flow insensitive abstraction made on the
heap. As for the BCV, native methods may brake the type system. It is their
responsibility to respect the policy expressed in the program.

6 A Case Study: Sun’s JRE

In order to show that our type system allows to verify legacy code with only a
few annotations, we implemented a standalone prototype, handling the full Java
bytecode, and we tested all classes of packages java.lang, java.security and
javax.security of the JRE1.6.0 20.

348 classes out of 381 were proven safe w.r.t. the default policy without any
modification. By either specifying the actual policy when the default policy was
too strict, or by adding cast instructions (see below) when the type system was
not precise enough, we were able to verify 377 classes, that is to say 99% of
classes. We discuss below the 4 remaining classes that are not yet proven correct

Enforcing Secure Object Initialization in Java 113

Fig. 10. Distribution of the 47 annotations and 6 instructions added to successfully

type the three packages of the JRE

by our analysis. The modifications represent only 55 source lines of code out
of 131,486 for the three packages studied. Moreover most code modifications
are to express the actual initialization policy, which means existing code can be
proven safe. Only 45 methods out of 3,859 (1.1%) and 2 fields out of 1,524 were
annotated. Last but not least, the execution of the type checker takes less than
20 seconds for the packages studied.

Adapting the security policy. Fig. 10 details the annotations and the SetInit

added to specify the security policy. In the runtime library, a usual pattern
consists in calling methods that initialize fields during construction of the object.
In that case, a simple annotation @Pre(@Raw(super(C))) on methods of class
C is necessary. These cases represent the majority of the 37 annotations on
method receivers. 6 annotations on method arguments are used, notably for some
methods of java.lang.SecurityManager which check permissions on an object
during its initialization. The instruction SetInit is used when a constructor
initializes all the fields of the receiver and then call methods on the receiver that
are not part of the initialization. In that case the method called need at least
a Raw(C) level of initialization and the SetInit instruction allows to express
that the constructor finished the minimum initialization of the receiver. Only 6
SetInit intructions are necessary.

Cast instructions. Such a static and modular type checking introduces some
necessary loss of precision — which cannot be completely avoided because of
computability issues. To be able to use our type system on legacy code with-
out deep modifications, we introduce two dynamic cast operators: (Init) and
(Raw). The instruction y = (Init)x; allows to dynamically check that x points
to a fully initialized object: if the object is fully initialized, then this is a simple
assignation to y, otherwise it throws an exception. As explained in Section 3,
the invariant needed is often weaker and the correctness of a method may only
need a Raw(c) reference. y = (Raw(C))x dynamically checks that x points to
an object which is initialized up to the constructor of class C.

Only 4 cast instructions are necessary. There are needed in two particular
cases. First, when a field must be annotated, but annotation on fields were only
necessary on two fields — they imply the use of 3 (Init) cast instructions. The
second case is on a receiver in a finalize() method that checks that some

114 L. Hubert et al.

fields are initialized, thereby checking that the object was Raw(C) but the type
system could not infer this information. The later case implies to use the unique
(Raw(C)) instruction added.

Remaining classes. Finally, only 4 classes are not well-typed after the previous
modifications. Indeed the compiler generates some code to compile inner classes
and part of this code needs annotations in 3 classes. These cases could be handled
by doing significant changes on the code, by adding new annotations dedicated
to inner classes or by annotating directly the bytecode. The one class remaining
is not typable because of the limited precision of our analysis on arrays: one can
only store @Init values in arrays. To check this later class, our type system
needs to be extended to handle arrays more precisely but this is left for future
work.

Special case of finalize methods. As previously exposed, finalize() methods
may be invoked on a completely uninitialized receiver. Therefore, we study the
case of finalize() methods in the packages java.* and javax.*. In the classes
of those packages there are 28 finalize() methods and only 12 succeed to be
well-typed with our default annotation values. These are either empty or do not
use their receiver at all. For the last 16 classes, the necessary modifications
are either the use of cast instructions when the code’s logic guarantees the suc-
cess of cast, or the addition of @Pre(@Raw) annotations on methods called on
the receiver. In that case, it is important to verify that the code of any called
method is defensive enough. Therefore, the type system forced us to pay atten-
tion to the cases that could lead to security breaches or crashes at run time for
finalize() methods. After a meticulous checking of the code we added the
necessary annotations and cast instructions that allowed to verify the 28 classes.

7 Conclusion and Future Work

We have proposed herein a solution to enforce a secure initialization of objects in
Java. The solution is composed of a modular type system which allows to manage
uninitialized objects safely when necessary, and of a modular type checker which
can be integrated into the BCV to statically check a program at load time.
The type system has been formalized and proved sound, and the type-checker
prototype has been experimentally validated on more than 300 classes of the
Java runtime library.

The experimental results point out that our default annotations minimize the
user intervention needed to type a program and allows to focus on the few classes
where the security policy needs to be stated explicitly. The possible adaptation
of the security policy on critical cases allows to easily prevent security breaches
and can, in addition, ensure some finer initialization properties whose violation
could lead the program to crash. On one hand, results show that such a static
and modular type checking allows to prove in an efficient way the absence of
bugs. On the other hand, rare cases necessitate the introduction of dynamic

Enforcing Secure Object Initialization in Java 115

features and analysis to be extended to analyze more precisely arrays. With
such an extension, the checker would be able to prove more classes correct, but
this is left for future work.

On the formalization side, an obvious extension is to establish the soundness
of the approach in presence of multi-threading. We conjecture the soundness
result still holds with respect to the Java Memory Model because of the flow
insensitive abstraction made on the heap.

The prototype and the Coq formalization and proofs can be downloaded from
http://www.irisa.fr/celtique/ext/rawtypes/.

Acknowledgment. This work was partly supported by the Région Bre-
tagne and by the ANSSI (JavaSec project, see http://www.ssi.gouv.fr/
site article226.html).

References

[1] Buckley, A.: JSR 202: JavaTM class file specification update (December 2006),

http://jcp.org/en/jsr/detail?id=202
[2] The CERT Sun Microsystems secure coding standard for Java (February 2010),

https://www.securecoding.cert.org/confluence/display/java/
[3] Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: A survey. ACM Com-

puting Survey 41(3) (2009)

[4] Dean, D., Felten, E.W., Wallach, D.S.: Java security: From HotJava to Netscape

and beyond. IEEE Symposium on Security and Privacy, 190–200 (1996)

[5] Demange, D., Jensen, T., Pichardie, D.: A provably correct stackless intermedi-

ate representation for java bytecode. Research Report RR-7021, INRIA (2009),

http://hal.inria.fr/inria-00414099/en/
[6] Fähndrich, M., Xia, S.: Establishing object invariants with delayed types. In: Proc.

of OOPSLA 2007, pp. 337–350. ACM, New York (2007)

[7] Freund, S.N., Mitchell, J.C.: A type system for the Java bytecode language and

verifier. J. Autom. Reasoning 30(3-4), 271–321 (2003)

[8] Gosling, J., Joy, B., Steele, G., Bracha, G.: The JavaTM Language Specification,

3rd edn. Addison Wesley, Reading (2005)

[9] Qi, X., Myers, A.C.: Masked types for sound object initialization. In: POPL, pp.

53–65. ACM, New York (2009)

[10] Secunia advisory sa10056: Sun jre and sdk untrusted applet privilege escalation

vulnerability. Web (October 2003),

http://secunia.com/advisories/10056/
[11] Sun. Secure coding guidelines for the Java programming language, version 3.0.

Technical report, Oracle (2010),

http://java.sun.com/security/seccodeguide.html
[12] Unkel, C., Lam, M.S.: Automatic inference of stationary fields: a generalization of

Java’s final fields. In: Proc. of POPL, pp. 183–195. ACM, New York (2008)

http://www.irisa.fr/celtique/ext/rawtypes/
http://www.ssi.gouv.fr/site_article226.html
http://www.ssi.gouv.fr/site_article226.html
http://jcp.org/en/jsr/detail?id=202
https://www.securecoding.cert.org/confluence/display/java/
http://hal.inria.fr/inria-00414099/en/
http://secunia.com/advisories/10056/
http://java.sun.com/security/seccodeguide.html

Flexible Scheduler-Independent Security

Heiko Mantel and Henning Sudbrock

Computer Science, TU Darmstadt, Germany

{mantel,sudbrock}@cs.tu-darmstadt.de

Abstract. We propose an approach to certify the information flow se-

curity of multi-threaded programs independently from the scheduling

algorithm. A scheduler-independent verification is desirable because the

scheduler is part of the runtime environment and, hence, usually not

known when a program is analyzed. Unlike for other system properties,

it is not straightforward to achieve scheduler independence when ver-

ifying information flow security, and the existing independence results

are very restrictive. In this article, we show how some of these restric-

tions can be overcome. The key insight in our development of a novel

scheduler-independent information flow property was the identification

of a suitable class of schedulers that covers the most relevant sched-

ulers. The contributions of this article include a novel security property,

a scheduler independence result, and a provably sound program analysis.

1 Introduction

Whether a program can be entrusted secrets depends on the flow of information
caused by running this program. Noninterference is a security property that
characterizes secure information flow by the requirement that a program’s output
to untrusted sinks does not depend on secrets [1]. This requirement ensures that
an attacker cannot conclude any information about secrets from the output that
he can possibly observe, even if he has access to the full code of the program.

In order to obtain reliable analysis results, a noninterference analysis needs
to properly respect the semantics of the given language. This raises the ques-
tion of how to deal with aspects that influence a program’s behavior, but that
are outside the definition of the programming language’s semantics. Examples
are elements of the language whose behavior is not specified in the language’s
definition (e.g. native methods in Java) or elements of the runtime environment.

In this article, we focus on how to deal with a particular element of the
runtime environment, namely the scheduler. Unlike for other properties, it is
not sufficient to assume a possibilistic scheduler in a noninterference analysis,
i.e. the scheduler that admits all possible scheduling choices. Secure information
flow under a possibilistic scheduler need not imply that a program is secure for
other schedulers because refining some part of a secure system’s specification
(such as the scheduler) may result in a system that violates security [2].

Many information flow analyses are scheduler dependent in the sense that they
assume a particular scheduler, such that the analysis results are only valid if the

D. Gritzalis, B. Preneel, and M. Theoharidou (Eds.): ESORICS 2010, LNCS 6345, pp. 116–133, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Flexible Scheduler-Independent Security 117

program is executed under this scheduler. For instance, a uniform scheduler is
assumed in [3], a Round-Robin scheduler in [4], and a possibilistic scheduler in [5].

There are also a few approaches that support a scheduler-independent analy-
sis. So far, there are two main approaches to defining information flow properties
that are scheduler independent, firstly, requiring that a program’s public out-
put is deterministically determined by the program’s public input and, secondly,
requiring that a program’s possible behaviors for any two inputs, which com-
prise identical public inputs, are stepwise indistinguishable to an observer of the
program’s public outputs. The first approach was introduced by Zdancewic and
Myers, adapting the idea of defining secure information flow based on obser-
vational determinism to language-based security [6]. The second approach was
used by Sabelfeld and Sands to define the so-called strong security property [7].
While both approaches provide a semantic basis for program analyses that are
sound independently of the scheduling algorithm, they are far from satisfactory.
The resulting security properties are very restrictive because they are violated
by many intuitively secure programs. The main deficiency of security properties
based on observational determinism is that they forbid nondeterminism in the
publicly observable behavior of a program, albeit intuitively secure programs
can have nondeterministic public output. Strong security suffers from a different
problem. It requires a restrictive lock-step indistinguishability, which implies, for
instance, that a program’s execution time must not depend on secrets, even if
such differences in the timing do not cause differences in the public output.

In this article, we propose a scheduler-independent security property that
permits nondeterminism in a program’s publicly observable behavior without
requiring a restrictive lock-step indistinguishability. Our solution does not re-
quire non-standard modifications to the interface of schedulers (as in other
approaches, e.g., [8,9]). In fact our approach is the first that is suitable for
programs with nondeterministic publicly observable behavior whose runtime de-
pends on secrets, while providing scheduler independence for common schedulers
like Round-Robin and uniform schedulers (see Section 6 for a more detailed com-
parison). The existence of a scheduler-independent security property with these
features is somewhat surprising given that Sabelfeld proved in [10] that strong
security is the weakest property that implies information flow security for a nat-
ural class of schedulers. The key step in our development was the identification
of a different class of schedulers, the robust schedulers, that also contains the
most relevant schedulers.

In summary, our contributions include (1) the definition of a novel security
property for multi-threaded programs, (2) the novel notion of robust schedulers,
(3) a theorem showing that our security property is scheduler independent for
robust schedulers, and (4) a provably sound, scheduler-independent program
analysis for enforcing our security property. We illustrate the progress made
by the security analysis of a small, but realistic example program. The proofs
of all theorems in this article are made available on the authors’ website. We
expect that our improvements constitute a significant step towards more widely
applicable information flow analyses for concurrent programs.

118 H. Mantel and H. Sudbrock

2 Preliminaries

In this article, we consider multi-threaded programs that communicate via shared
memory. In this section, we leave the set Com of commands unspecified. It will be
instantiated by a multi-threaded imperative programming language in Section 5.

2.1 Execution Model

A multi-threaded program executes threads from a pool, that we represent by
a finite list of threads. The thread pool’s size has no upper bound and varies
during program execution as threads are removed upon termination and new
threads may be spawned. Active threads are implicitly numbered consecutively
by their position in the thread pool. The program memory is shared between all
threads, and thereby provides a means for inter-thread communication.

A thread configuration is a pair 〈com ,mem〉 ∈ (Com ∪{stop})× (Var → Val)
that models a snapshot during the execution of a single thread. If com = stop

then the thread has terminated, while if com ∈ Com then this is the command
that remains to be executed by the thread. The second element of a thread con-
figuration, mem , models the current state of the program memory by assigning
a value to each program variable, where Var is the set of variables and Val is a
not further specified set of values. We denote the set (Var → Val) with Mem .

A program configuration is a pair 〈thr ,mem〉, consisting of a thread pool thr :
N0 → (Com∪{stop}) and a shared memory mem ∈ Mem , that models a snapshot
during the execution of a multi-threaded program. If thr(k) = stop then there
is no thread at position k, while if thr(k) ∈ Com then this is the command
that remains to be executed by the kth thread. We define the size of a thread
pool thr by �(thr) = |{k ∈ N0 | thr(k) �= stop}|. We furthermore require that
thr(k) �= stop implies thr(l) �= stop for all l < k, i.e. the thread pool has no gaps.
We denote the set of all thread pools satisfying these requirements with Progs .
Note that �(thr) = min{k ∈ N0 | thr(k) = stop} holds for all thr ∈ Progs .

To make scheduling explicit, we introduce system configurations. Formally, a
system configuration is a triple 〈thr ,mem , sst〉 such that 〈thr ,mem〉 is a program
configuration and sst ∈ sSt is a scheduler state. Scheduler states and other aspects
of scheduling will be introduced in Section 3.1. We use Conf to denote the set of
all system configurations and introduce selector functions getT , getM , and getS
to retrieve the elements from a system configuration, i.e., getT (〈thr ,mem, sst〉) =
thr , getM (〈thr ,mem, sst〉) = mem, and getS (〈thr ,mem , sst〉) = sst .

To model execution steps, we introduce the judgment

conf ⇒k,p conf ′

where conf , conf ′ ∈ Conf , k ∈ N0, and 0 < p ≤ 1. Intuitively, this judgment
models that a transition from the system configuration conf to the system con-
figuration conf ′ is possible. The index k identifies the thread performing a com-
putation step by its position in the thread pool getT (conf). The probability of
the transition is specified by the index p. Note that purely deterministic behavior
can be modeled by restricting p to the singleton set {1}.

Flexible Scheduler-Independent Security 119

Derivability of the judgment for system configurations is defined based on two
further judgments. The judgment (sst , sin) k�p sst ′ models that the scheduler
selects the kth thread with probability p. This decision may be based on sst , the
state of the scheduler, and further input sin. The resulting scheduler state is sst ′.
The judgment 〈com,mem〉 α−� 〈com ′,mem ′〉 models that executing the com-
mand com in the memory mem results in the thread configuration 〈com ′,mem ′〉.
The label α∈Lab is an event from the set Lab = {new(coms) | coms ∈ Com∗}
that captures information about the creation of threads in the computation step.
An event new(coms) models that new threads are spawned to execute the com-
mands in the list coms . We omit the label if no new threads were spawned.

Based on the above two judgments we can now model the stepwise execution
of a multi-threaded program under a given scheduler by the following rule:

(sst , sin) k�p sst ′ 〈thr(k),mem〉 α−� 〈com ′,mem ′〉
sin = obs(thr ,mem) thr ′ = updatek(thr , com ′, α)

〈 thr ,mem , sst 〉 ⇒k,p

〈
thr ′,mem ′, sst ′

〉 (1)

The third premise of the rule indicates that inputs to schedulers result from an
observation of the program configuration (Section 3.1 will refine scheduler in-
puts). The function updatek in the fourth premise updates the thread pool thr . In
this article, we assume that spawned threads are inserted in the list of threads af-
ter the thread that executed the spawn operation. Moreover, if a thread termi-
nates then it is removed from the list. For α =new(coms) and k < �(thr), the
thread pool updatek(thr , com , α) is defined by replacek(thr , coms) if com = stop

and by replacek(thr , [com]::coms) otherwise (where ::denotes list concatenation).1

2.2 Traces

A trace models a possible run of a program under some scheduler by a pair
(str , dtr). The system trace str : N0 → Conf models the run of the pro-
gram, where str(0) is a snapshot of the system before starting its execution,
and str(k) is a snapshot of the system after k execution steps. The decision trace
dtr : N0 → N0 models the scheduler’s decisions during the run, where dtr(k) is
the position of the thread selected for execution in the kth execution step.

Definition 1. A trace is a pair tr = (str , dtr) consisting of a system trace
str : N0 → Conf and a decision trace dtr : N0 → N0.

We model the termination of a run by designated final configurations, namely
those configurations in which the thread pool is empty.

Definition 2. We call a trace tr = (str , dtr) terminating if it reaches a final
configuration, i.e. if ∃j ∈ N0 : �(getT (str(j))) = 0 holds. The length of a termi-
nating trace is �(tr) = min{j ∈ N0 | �(getT (str(j))) = 0}.
1 For k ∈ N0, the partial function replacek : (Progs × Com∗) ⇀ Progs is defined by

replacek(thr ,
[
com0, . . . , comn−1

]
)(j) = com for k < �(thr) where com = thr(j) if

j < k, com = comj−k if k ≤ j < k + n, and com = thr(j − n) if k + n ≤ j.

120 H. Mantel and H. Sudbrock

Given a set of traces Tr, we define the subset of terminating traces by
Tr⇓= {(str , dtr) ∈ Tr | ∃j ∈ N0 : �(getT (str(j))) = 0}.

The subset of traces terminating with memory mem is defined by
Tr⇓mem= {tr ∈Tr⇓| getM (str(�(tr)))= mem}.

3 Scheduling and Scheduler-Specific Security

We capture scheduler-dependent information flow security by a noninterference-
like information flow property that is parametric in the choice of the scheduler.

3.1 An Explicit Scheduler Model

During the execution of a multi-threaded program, the scheduler repeatedly
decides which thread shall next proceed with the computation. Scheduling algo-
rithms differ not only in how they make this decision, but also in the information
on which they base their decision. For instance, a uniform scheduler needs to
know the current number of threads in order to randomly choose among the
available threads with equal probability. A Round-Robin scheduler iterates over
the list of available threads in a cyclic fashion. Beyond knowing the number of
threads, this requires that the scheduler remembers its scheduling choice from
the previous step. A scheduler might even need to know part of the program’s
memory, for instance, in priority-based scheduling if priorities are first-class val-
ues that may be read and modified by the program itself. To cover these and
various other possibilities, we assume that schedulers base their decision on their
current internal state and their observation of the program configuration.

We leave the set of scheduler states sSt and the set of scheduler inputs sIn
unspecified. We only assume that it is at least possible to retrieve the current
number of threads from any given input sin ∈ sIn and denote this number
by �(sin). The scheduler’s output is modeled by a natural number, indicating the
position of the next thread to be run. The behaviour of a scheduler is modeled by
a labeled transition relation, where a label (sin , k, p) ∈ sIn×N0×]0, 1] indicates
that sin is the input to the scheduler, k is the position of the chosen thread, and
p is the probability of this choice. We use probabilistic transitions in order to
account for schedulers that are not deterministic like, e.g., uniform schedulers.

Definition 3. A scheduler is a labeled transition system (sSt , sst0, sLab,→)
with initial state sst0 ∈ sSt, label set sLab = sIn × N0 ×]0, 1], and transition
relation → ⊆ sSt × sLab × sSt that satisfies the following properties:
1. if (sst , (sin , k, p), sst ′) ∈ →, then k < �(sin);
2. for each triple (sst , sin, k) there is at most one probability p ∈]0, 1] and one

scheduler state sst ′ ∈ sSt such that (sst , (sin , k, p), sst ′) ∈ →; and
3. the equality

∑
{|p | ∃k, sst ′ : (sst , (sin, k, p), sst ′) ∈ →|} = 1 holds for each

pair (sst , sin) (where {| . . . |} denotes a multiset).

The first property in Definition 3 ensures that a scheduler selects among the
available threads, the second property ensures that a scheduler cannot choose

Flexible Scheduler-Independent Security 121

a single thread position with multiple probabilities or modify its internal state
nondeterministically, and the third property ensures that in each state the prob-
abilities of the transitions for a given input form a probability distribution.

Definition 4. The judgment (sst , sin) k�p sst ′ (from Section 2.1) is derivable
for a scheduler (sSt , sst0, sLab,→) if and only if (sst , (sin , k, p), sst ′) ∈ →.

Our model for schedulers is sufficiently expressive for common scheduling algo-
rithms such as uniform, Round-Robin, and priority-based scheduling.

Example 1. A uniform scheduler can be modeled by the labeled transition system
UNI = ({s}, s, sLab,→UNI), where →UNI is defined by (sst , (sin, k, p), sst ′) ∈
→UNI if and only if k < �(sin), p = 1/�(sin), and sst ′ = sst = s.

Example 2. A Round-Robin scheduler can be modeled by the labeled transition
system RR = (sStRR, sstRR,0, sLab,→RR), with sStRR : {choice , size} → N0,
sstRR,0(choice) = 0, and sstRR,0(size) = 1. The scheduler variables choice and
size store from the previous step which thread position was selected and what size
the thread pool had. The transition relation is defined by (sst , (sin , k, p), sst ′) ∈
→RR if and only if p = 1, k = (sst(choice)+1+(�(sin)−sst(size))) mod �(sin),
sst ′(choice) = k, and sst ′(size) = �(sin).2

We specify the traces modeling possible program runs under a given scheduler.

Definition 5. For a scheduler S = (sSt , sst0, sLab,→), the set of possible traces
starting in a system configuration conf is defined by (str , dtr) ∈ TrS(conf) if
and only if

str(0) = conf ∧ ∀j ∈ N0 :

⎛⎜⎝ (∃p ∈]0, 1] : str(j) ⇒dtr(j),p str(j + 1))

∨
(

�(getT (str(j))) = 0
∧ str(j + 1) = str(j) ∧ dtr(j) = 0

)⎞⎟⎠
Note that if a final configuration is reached, the program performs no further
computation steps. We model this by requiring that from that point on the
system trace infinitely often repeats the final configuration and the decision trace
infinitely often repeats the value 0. We say that a system configuration conf is
terminating under a scheduler S if TrS(conf) = TrS(conf)⇓. A thread pool thr
is terminating if for all mem ∈ Mem the system configuration 〈thr ,mem, sst0〉
is terminating under all schedulers S with initial scheduler state sst0.

We use the probabilities of single execution steps to compute the probability
that a terminating program run with a given sequence of scheduler decisions oc-
curs when executing a program in a given configuration under a given scheduler:

Definition 6. For a trace tr =(str , dtr)∈TrS(conf)⇓ we define the probability
of tr under the scheduler S by ρS(tr) = p0 ∗ . . . ∗ p�(tr)−1, where the pj are the
unique probabilities with str(j) ⇒dtr(j),pj

str(j + 1) for 0 ≤ j < �(tr).
2 Note that our condition on k ensures, firstly, that no thread is skipped if the current

thread terminates (in this case �(sin)−sst(size) equals −1) and, secondly, that newly

created threads obtain their term only after all other threads have been scheduled

(in this case �(sin) − sst(size) equals the number of newly created threads).

122 H. Mantel and H. Sudbrock

3.2 Scheduler-Specific Security Property

We consider a security lattice with two security domains, low and high , where the
requirement is that no information flows from high to low . This is the simplest
policy capturing information flow security. A domain assignment is a function
dom : Var → {low , high} that associates a security domain with each program
variable. The resulting security requirement is that no information may flow
from variables with domain high to variables with domain low .

We assume that attackers cannot directly access the values of high variables
(i.e., access control works correctly). The following indistinguishability relation
captures this upper bound on the observational capabilities of attackers.

Definition 7. Two memories mem,mem ′ ∈ Mem are low-equal, denoted by
mem =L mem ′, if and only if mem(var) = mem ′(var) for all var ∈ Var with
dom(var) = low. We use [mem]=L to denote the equivalence class {mem ′ ∈
Mem | mem =L mem ′}.

Definition 8. A thread pool thr is S-secure for S = (sSt , sst0, sLab,→) if∑
mem′∈[mem]=L

ρS(〈thr ,mem1, sst0〉 ,mem ′) =
∑

mem′∈[mem]=L

ρS(〈thr ,mem2, sst0〉 ,mem ′)

holds for all mem1, mem2, mem ∈ Mem with mem1 =L mem2, where the
value ρS(conf ,mem) is the probability that a program run under the scheduler S
that starts in the system configuration conf terminates with memory mem. It is
defined by ρS(conf ,mem) =

∑
tr∈TrS(conf)⇓mem

ρS(tr).
A command com is S-secure if the thread pool thrcom containing the single

thread com is S-secure (i.e. thrcom(0) = com and thrcom(j) = stop for all j > 0).

Our notion of S-security guarantees that the probability that an S-secure pro-
gram terminates with given values of low variables is independent from the initial
values of secrets. This means, S-security implies that an attacker who can ob-
serve the initial and final values of low variables cannot conclude anything about
high inputs. This implication still holds if the attacker knows the code of the
program and the scheduling algorithm. Moreover, it also holds if the attacker can
observe multiple runs of the program. Note that the number of execution steps
of an S-secure program may depend on the values of low variables (in contrast
to, e.g., the bisimulation-based scheduler-specific security condition in [7]).

Remark 1. While we prefer to define S-security using the probabilities of traces,
an equivalent property could be defined using Markov chains, as, e.g., in [11].

4 Scheduler-Independent Information Flow Security

In this section, we present the novel information flow property that is the main
contribution of this article. Our security property is scheduler independent in the
sense that it implies S-security for a large class of schedulers. We characterize this

Flexible Scheduler-Independent Security 123

class by the novel notion of robust schedulers and show that this class covers the
most common scheduling algorithms. As we will illustrate, our security property
is suitable for programs with nondeterministic behavior and whose runtime may
depend on secrets. That is, it overcomes restrictions of the existing scheduler-
independent security properties.

4.1 A Novel Security Property

We partition the set Com into high commands that definitely do not modify low
variables and into low commands that potentially modify values of low variables.

Definition 9. The set of high commands HCom ⊂ Com is the largest set of
commands such that if com ∈ HCom then the following holds:

∀com ′ ∈ Com ∪ {stop} : ∀mem,mem ′ ∈ Mem : ∀com0, . . . , comn−1 ∈ Com :

〈com,mem〉
new([com0,...,comn−1])

−−−−−−−−−−−−−� 〈com ′,mem ′〉 =⇒(
mem =L mem ′ ∧ com ′ ∈ HCom ∪ {stop} ∧ ∀j ∈ {0, . . . , n− 1}. comj ∈ HCom

)
The set of low commands LCom ⊂ Com is defined as Com \HCom.

We refer to threads executing high commands as high threads and to threads
executing low commands as low threads. Note that a low thread becomes high
after an execution step if the command that remains to be executed is high.
High threads, by definition, cannot become low during a program’s execution.

Low matches link the positions of corresponding low threads in thread pools.

Definition 10. A low match of two thread pools thr1 and thr2 with the same
number of low threads (i.e. |{k1 ∈ N0 | thr1(k1) ∈ LCom}| = |{k2 ∈ N0 |
thr2(k2) ∈ LCom}|) is an order-preserving bijection with the domain {k1 ∈ N0 |
thr1(k1) ∈ LCom} and the range {k2 ∈ N0 | thr2(k2) ∈ LCom}.

That is, a low match maps the position of the nth low thread in one thread pool
to the position of the nth low thread in the other thread pool:

Theorem 1. The low match of thr1 and thr2 is unique and given by the function
l-matchthr1,thr2(k1) =

min
{
k2 ∈ N0 |

∣∣{l1 ≤ k1 | thr1(l1) ∈ LCom}
∣∣= ∣∣{l2 ≤ k2 | thr2(l2) ∈ LCom}

∣∣}.

Due to space restrictions, the proof of the above theorem as well as the proofs
of all other theorems in this article are provided on the authors’ website.

We use the PER-approach [12] to define the novel security property, i.e., we
define an indistinguishability relation on thread pools that is not reflexive, as it
only relates thread pools to themselves that have secure information flow.

Definition 11. A symmetric relation R on thread pools with an equal number of
low threads is a low bisimulation modulo low matching, if whenever thr1 R thr2,
mem1 =L mem2, and 〈thr1(k1),mem1〉

α1−� 〈com1,mem ′
1〉, then

124 H. Mantel and H. Sudbrock

1. if thr1(k1) ∈ LCom, then there exist com2, mem ′
2, and α2 with

(a) 〈thr2(k2),mem2〉
α2−� 〈com2,mem ′

2〉,
(b) mem ′

1 =L mem ′
2, and

(c) updatek1(thr 1, com1, α1) R updatek2
(thr2, com2, α2)

where k2 = l -matchthr1,thr2(k1); and

2. if thr1(k1) ∈ HCom, then updatek1(thr1, com1, α1) R thr2.
The relation ∼ is the union of all low bisimulations modulo low matching.

Definition 12. A thread pool thr is FSI-secure if thr ∼ thr. A command com
is FSI-secure if the thread pool thrcom (see Definition 8) is FSI-secure.

We will show in Section 4.3 that all terminating FSI-secure programs are also S-
secure for any robust scheduler S. This scheduler independence result motivates
the expansion of the acronym FSI-security, which is flexible scheduler-indepen-
dent security.

The following theorem shows that FSI-security is compositional.

Theorem 2. Let thr1 and thr2 be FSI-secure thread pools. Then their parallel
composition par(thr 1, thr2) is also FSI-secure, where

par (thr1, thr2)(k) =

{
thr1(k) , if k < �(thr 1)
thr2(k − �(thr1)) , otherwise.

The compositionality result is not only crucial for a modular analysis, but also
illustrates that FSI-security is suitable for multi-threaded programs containing
races: As it suffices that each individual thread of a program is FSI-secure, FSI-
security imposes no restrictions on the relationships between variables occurring
in concurrent threads. This constitutes a significant improvement over security
properties based on observational determinism.

Moreover, FSI-security is suitable for programs whose runtime depends on
confidential information. While FSI-security requires stepwise indistinguishabil-
ity for low threads (Item 1 in Definition 11), no such requirement is imposed
on a thread once it is high (Item 2 in Definition 11). This constitutes a ma-
jor improvement over the strong security condition. In particular, unlike strong
security, FSI-security is satisfied by every high command.

Theorem 3. Let com ∈ HCom. Then com is FSI-secure.

In summary, FSI-security overcomes serious deficiencies of the two main ap-
proaches to defining scheduler-independent security mentioned in Section 1.

4.2 The Class of Robust Schedulers

The essential idea of robust schedulers is that the scheduling order of low threads
does not depend on the high threads in a thread pool. We formalize the class of
robust schedulers in Definition 15 based on the auxiliary notions of thread purge
functions (Definition 13) and of S-simulations (Definition 14).

Flexible Scheduler-Independent Security 125

Definition 13. The thread pool th-purge(thr) is defined by

th-purge(thr)(k1)= thr
(
min

{
k2 ∈N0 | k1 =

∣∣{l < k2 | thr(l) ∈ LCom∪{stop}}
∣∣})

for all k1 ∈ N0. We denote with th-purge(conf) the system configuration obtained
from conf by replacing getT (conf) with th-purge(getT (conf)).

Intuitively, th-purge(thr) is obtained from thr by removing all high threads and
leaving the order of low threads unchanged:

Theorem 4. For a thread pool thr, th-purge(thr) contains no high threads and
as many low threads as thr. Moreover, if k ∈ N0 with thr(k) ∈ LCom then

thr(k) = th-purge(thr)(l -matchthr ,th-purge(thr)(k)).

Definition 14. Let S = (sSt , sst0, sLab,→) be a scheduler. An S-simulation is
a relation < that relates arbitrary configurations with configurations that do not
contain high threads, such that conf 1 < conf 2 and conf 1 ⇒k1,p1 conf ′1 imply

1. if getT (conf 1)(k1) ∈ LCom, then there exists conf ′2 with
(a) conf 2 ⇒k2,p2 conf ′2, where k2 = l -matchgetT(conf 1),getT(conf 2)

(k1) and
p2 = p1/l -probS(conf 1), and l-probS(conf) denotes the probability that a
low thread is selected by the scheduler S in the system configuration conf
that is defined by l-probS(〈thr ,mem, sst〉) =

∑
{|p | ∃k, sst ′ : thr(k) ∈

LCom ∧ (sst , obs(thr ,mem)) k�p sst ′|}, as well as
(b) conf ′1 < th-purge(conf ′

2); and

2. if getT (conf 1)(k1) ∈ HCom, then conf ′1 < conf 2.

The relation <S is the union of all S-simulations.

Definition 15. The scheduler S = (sSt , sst0, sLab,→) is robust if
〈thr ,mem, sst0〉 <S th-purge(〈thr ,mem, sst0〉)

holds for each FSI-secure thread pool thr and each memory mem.

Intuitively, a scheduler is robust if the scheduling of low threads during a run
of an FSI-secure thread pool remains unchanged when one removes all high
threads from the thread pool. That is, the probability that the scheduler se-
lects a low thread among all low threads in a configuration equals the proba-
bility to select the matching low thread if all high threads were removed (i.e.,
p2 = p1/l -probS(conf 1)). This is, in particular, the case for uniform and Round-
Robin schedulers:

Theorem 5. The uniform scheduler (see Example 1) is robust.

Theorem 6. The Round-Robin scheduler (see Example 2) is robust.

Robust schedulers will only be employed in combination with observation func-
tions that properly confine the interface between programs and schedulers:

Definition 16. We call the observation function obs (introduced in Section 2.1)
confined, if it satisfies the following property for all thread pools thr1, thr2 and
for all memories mem1,mem2:
(�(thr 1)= �(thr 2) ∧ mem1 =L mem2) =⇒ obs(thr1,mem1) = obs(thr 2,mem2)

126 H. Mantel and H. Sudbrock

Confined observation functions only provide information about the current num-
ber of threads and the values of public variables. This is sufficient for common
schedulers like Round-Robin or priority-based schedulers.

Note that Definition 15 quantifies over all FSI-secure thread pools. This is
essential. Quantifying over all thread pools (i.e., including ones that are not
FSI-secure) would result in a significantly smaller class of robust schedulers,
that, for instance, does not include Round-Robin and uniform schedulers.

4.3 Scheduler Independence Result

We are now ready to present the scheduler independence result:

Theorem 7. Let thr be a terminating thread pool that is FSI-secure and let S
be a robust scheduler under a confined observation function. Then the thread pool
thr is S-secure.

Theorems 5 and 6 show that we obtain scheduler-independent information flow
security for a practically relevant class of schedulers. As FSI-security overcomes
restrictions of the two main approaches to scheduler-independent security (see
Section 4.1), we expect that our results will contribute to more widely applicable
information flow analyses for concurrent programs.

5 Security Analysis for a Multi-threaded Language
We use a simple multi-threaded imperative programming language supporting
the dynamic creation of new threads for illustrating how to analyze concrete
programs with respect to FSI-security. We define the set Com by the following
grammar (using a set Exp of expressions that we do not specify further):

com ::= skip | var :=exp | com ; com | if (exp) then com else com fi

| while (exp) do com od | spawn(com , . . . , com),

where var ∈ Var and exp ∈ Exp. The operational semantics for commands is
formalized by a calculus for the judgment 〈com ,mem〉 α−� 〈com ′,mem ′〉 intro-
duced in Section 2.1. The derivation rules are as usual, we refrain from stating
their definition due to space restrictions.

5.1 Security Type System

We present a security type system for our example language. This type system
provides the basis for an automated scheduler-independent security analysis.

We type commands with types of the form (ass , stp), where ass , stp ∈ {low ,
high}. The intuition of the typing judgment � com : (ass , stp) is as follows: If
ass = high , then neither the thread executing com nor the threads that are
created due to spawn-commands within com assign to low variables, i.e., com is
a high command. If stp = low , then the number of execution steps made by a
thread executing com cannot depend on the values of high variables. However,
the execution time of threads spawned by this thread may depend on high values.

The typing rules are displayed in Figure 1. We denote with dom(exp) the
security domain of an expression, where dom(exp)= low if all variables occurring

Flexible Scheduler-Independent Security 127

[SKIP] � skip : (high, low)
[ASS]

dom(exp) � dom(var)

� var :=exp : (dom(var), low)

[IF]
� com1 : (ass , stp) � com2 : (ass , stp) dom(exp) � ass

� if (exp) then com1 else com2 fi : (ass , stp � dom(exp))

[WHILE]
� com : (ass , stp) stp � dom(exp) � ass

� while (exp) do com od : (ass , stp � dom(exp))

[SPAWN]
∀i∈{0, . . . , k−1}. � com i : (ass , stpi)

� spawn(com0, . . . , comk−1) : (ass , low)

[SEQ]
� com1 : (ass1, stp1) � com2 : (ass2, stp2) stp1 � ass2

� com1; com2 : (ass1
 ass2, stp1 � stp2)

[SUB]
� com : (ass ′, stp′) ass � ass ′ stp ′ � stp

� com : (ass , stp)

Fig. 1. Security type system

in exp have domain low , and dom(exp)= high otherwise. As usual for a two-level
policy, we assume low � high and denote the greatest lower bound respectively
least upper bound operator on security domains with and !, respectively. Note
that subtyping is covariant in the first component of a type and contravariant
in its second component (compare rule [SUB] in Figure 1).

Rule [ASS] forbids assignments from high to low variables, and rules [IF]
and [WHILE] forbid assignments to low variables under high guards of condition-
als and loops (compare, e.g., [13]). Furthermore, rules [IF] and [WHILE] ensure
that commands containing high guards (and whose runtime might hence depend
on the values of high variables) can only be typed if stp = high . Rule [SPAWN]
allows to type programs that dynamically spawn threads: A spawn-command is
typable with stp = low , as it is executed in a single execution step. Moreover, the
command spawn(com0, . . . , comk−1) is only typable with ass = high if each com i

is typable with ass = high . Rules [SEQ] and [WHILE] ensure that if a typable com-
mand assigns to low variables, then its runtime before such an assignment only
depends on the values of low variables. This is essential for the soundness of the
type system, as it ensures that lock-step execution is possible for low threads
that correspond to each other under the low matching.3

Theorem 8. If the judgment � com : (ass , stp) is derivable in the type system
for some com ∈ Com and ass , stp ∈ {low , high} then com is FSI-secure.

3 Note that our security type system does not contain a rule for typing conditionals

with high guards whose branches may contain assignments to low variables if the

branches are related by an indistinguishability relation. Such a rule is, e.g., provided

in [14], and could be soundly integrated into our type system. We refrain from such a

rule here to ensure that there are no choice points when generating a type derivation.

128 H. Mantel and H. Sudbrock

Initial thread :

networkOutl:=”getStockPrices”;

stockPricesl:=networkInl;

spawn(writeStockPricesToDatabase);

networkOutl:=”getFundsPrices”;

fundsPricesl:=networkInl;

spawn(writeFundsPricesToDatabase);

spawn(computeAccountOverview)

writeStockPricesToDatabase:

il:=0;

while (il < getSize(stockPricesl)) do
databasel := databasel

+ getTitleAt(stockPricesl, il)
+ getPriceAt(stockPricesl, il);

il := il+1 od

writeFundsPricesToDatabase:

jl:=0;

while (jl < getSize(fundsPricesl)) do
databasel := databasel

+ getTitleAt(fundsPricesl, jl)
+ getPriceAt(fundsPricesl, jl);

jl := jl+1 od

computeAccountOverview:

kh := 0; overviewh := ””;

while (kh < getSize(userPortfolioh)) do
titleh := getTitleAt(userPortfolioh, kh);

if (isStock(titleh)) then
priceh := getPriceFor(stockPricesl, titleh)

∗ getQuantityAt(userPortfolioh, kh)

else
priceh := getPriceFor(fundsPricesl, titleh)

∗ getQuantityAt(userPortfolioh, kh)

fi;

oldPriceh :=getLastPrice(databasel, titleh);

if (oldPriceh ≤ priceh)

then tendencyh := ”up”
else tendencyh := ”down”

fi;

overviewh := overviewh + titleh

+ priceh + tendencyh;

kh := kh+1
od

Fig. 2. Exemplary security analysis: implementation

Thus, due to the compositionality of FSI-security (Theorem 2), a thread pool thr
is FSI-secure if thr(k) is typable for each k < �(thr).

Note that the type systems proposed in [15,8,11,16] are similar to our type sys-
tem as they restrict the assignments a program may perform after executing a
conditional or a loop with a high guard. However, note that [15,11,16] only guar-
antee soundness for one scheduler-specific security property. Note also that [8]
targets a language that allows dynamic thread creation (a typical feature of
multi-threaded programming languages) only in a very limited form (no threads
may be created inside loops), and the article assumes that threads idle after their
termination instead of being removed from the thread pool. Our type system and
its soundness result do not share these limitations. The scheduler independence
result from [8] will be further compared to the result in this article in Section 6.

5.2 Exemplary Security Analysis

Consider the code fragment in Figure 2, which is part of an application managing
personal finances. The program contacts two network-based services that pro-
vide up-to-date pricing information for stocks respectively funds (by writing to
respectively reading from the variables networkOutl and networkInl). The program
appends the retrieved information to the information in the variable databasel

that contains historical pricing information for future reference. Moreover, us-
ing the novel data and historical data already present in databasel, the program

Flexible Scheduler-Independent Security 129

generates an overview of the user’s custody account. Those three activities are
spawned in new threads (writeStockPricesToDatabase, writeFundsPricesToData-
base, and computeAccountOverview) to improve the interactivity of the overall
program and not block computations following this code fragment. In our ex-
ample, we model the network requests, the data retrieved from the network, the
data stored in the database, and the generated overview with string values. The
data encoded in those string values is accessed by the program using selector
expressions like, for instance, getLastPrice.

The subscripts of variables indicate whether a variable is classified as low (l)
or as high (h). Information in the database and information retrieved from the
network services is public and classified as low, while the user’s portfolio and the
report created based on the portfolio are confidential and classified as high.

Applying the type system to the program proves that the program is FSI-
secure: The initial thread as well as the threads writeStockPricesToDatabase
and writeFundsPricesToDatabase are typable with the type (low , low), while
the thread computeAccountOverview is typable with the type (high , high).

Note that the program is rejected by existing analyses that guarantee security
for common schedulers. Observational determinism [6] is violated, as the order
in which entries are written to the database depends on the order in which
the threads writeStockPricesToDatabase and writeFundsPricesToDatabase are
scheduled. Strong security [7] is violated as the runtime of the loop in the thread
computeAccountOverview depends on confidential information. The soundness
of the type system together with the scheduler independence result guarantee
that the order of the database entries never depends on confidential information
when using a robust scheduler.

6 Related Work

An overview on information flow security in a multi-threaded setting is provided
in [17]. Here, we focus on approaches that cover the problem of scheduling.

Most approaches assume a particular scheduling algorithm. In consequence,
their results do not necessarily generalize to other schedulers. Several approaches
consider a scheduler that selects threads purely nondeterministically (for in-
stance, [5,18,19,20,21]). Uniform schedulers are assumed in [3,11], and a Round-
Robin scheduler is assumed in [4,22].

There are only a few approaches to scheduler-independent information flow
security. In the following, we discuss those approaches in more detail.

The idea of observational determinism goes back to McLean [23] and Roscoe
et al. [24,25], who proposed security properties not at the level of a program-
ming language, but more abstractly for specifications. The idea was adapted
to a language-based setting in [6,26]. Observational determinism requires that
public observations of program executions are deterministic regardless of the
interleaving of threads and the values of secret variables. If this requirement
is satisfied, restricting the possible interleavings by assuming a concrete sched-
uler cannot result in a dependency of public observations on secrets. Observa-
tional determinism has the drawback that it forbids useful nondeterminism which

130 H. Mantel and H. Sudbrock

occurs, for instance, when multiple threads append data to the same public vari-
able (as in the example program from Section 5.2).

Sabelfeld and Sands [7] introduce strong security, which is scheduler-indepen-
dent for a natural class of schedulers. Strong security is quite restrictive, as it
requires that the runtime of a program must not depend on secret data. This
drawback appeared unavoidable because [10] proved that the strong security con-
dition is the weakest compositional property that implies information flow secu-
rity for the natural class of schedulers. Hence, the strong security condition was
used, despite its restrictiveness, as the foundation of many later developments
(e.g., [27,28,29]) and has been generalized in various ways, e.g., for distributed
systems [27] or to control declassification [30]. While [7] proposes a type sys-
tem that can transform some insecure programs into strongly secure programs,
only a subset of the intuitively secure programs is amenable to this approach
(for instance, the type system does not transform the example program from
Section 5.2 into a strongly secure program).

The combining calculus [20] is a first step towards combining approaches based
on observational determinism and strong security as it allows the combination
of different analysis techniques in a security analysis. However, a scheduler-
independence result has not yet been established for the combining calculus.

Boudol and Castellani [8] propose a security type system for controlled thread
systems that consist of a thread pool and a scheduler. If a controlled thread sys-
tem is typable, then the thread pool is secure under the scheduler. In contrast to
this article, the approach requires the size of a thread pool to remain fixed during
a program run: dynamic thread creation is not supported, and threads remain in
the thread pool upon termination (and may still be selected by the scheduler).
Boudol and Castellani argue that if the termination of certain threads would be
signaled to the scheduler, then controlled thread systems writing public variables
cannot be typed. This is a non-standard restriction, as schedulers typically use
the number of live threads when choosing the next thread.

As a different approach to relax the security property while remaining schedu-
ler-independent, [9,31,32] propose to use non-standard schedulers that provide a
customized interface to the scheduled threads. Via two special commands, pro-
grams can hide (and at a later point unhide) a thread; the scheduler guarantees
that during the execution of hidden threads no other thread is scheduled. The ap-
proach allows to securely execute programs containing threads that assign to low
variables after performing computations whose runtime depends on high data
(hiding the thread during those computations), but at the cost that a scheduler
with a non-standard interface must be used. Such threads are rejected by our
security property, as they may cause information leakage when being executed
under currently available schedulers.

Another approach that prevents scheduling during computations whose run-
time depends on secrets is followed by [22]. It provides a program transformation
that introduces yield-statements into a program instructing the scheduler to se-
lect another thread, such that no yield-statements occur during computations
depending on secrets, and rescheduling only occurs after a yield-statement. The

Flexible Scheduler-Independent Security 131

approach is implemented for a Round-Robin scheduler, but the article argues
that it is applicable for a wide class of schedulers. The transformation entails
that computations on secrets block all remaining threads. This is particularly
critical when these computations are time-consuming. In contrast, our approach
allows any computations to be interleaved with the executions of other threads.

In the following we discuss two approaches that investigate scheduler-indepen-
dence on the level of system specifications. Van der Meyden and Zhang [33] adapt
security conditions for asynchronous systems to scheduled synchronous systems.
They consider schedulers whose decisions do not depend on secret actions and
show that the security properties are scheduler-implementation independent in
the sense that a system satisfies a property under one implementation of a sched-
uler if and only if it satisfies the property under all of the scheduler’s possible
implementations. Note that this differs from requiring that security holds un-
der different schedulers. Moreover, [33] prove that if the security definitions are
satisfied for all deterministic schedulers, then they are also satisfied for all non-
deterministic schedulers. Probabilistic schedulers are not considered.

Also when considering protocols the scheduling might impact security. In par-
ticular, the hidden random choice of a secret value in a security protocol could
be revealed if the protocol’s schedule depends on the choice’s outcome. As a
solution, [34] proposes to make random choices invisible to the scheduler by an-
notating protocol actions with labels and requiring that (a) the possible actions
after a secret random choice obtain the same label and (b) the only input to the
scheduler are the labels of the schedulable actions. The development is based
on the probabilistic process algebra CCSp. It differs from our approach as it
requires program annotations that guide the possible choices of the scheduler.

7 Conclusion

Scheduler-independent information flow security is an important problem for
concurrent programs, but previously existing solutions are far from being sat-
isfactory: They are either very restrictive in the sense that they reject many
intuitively secure programs, or in the sense that they require non-standard mod-
ifications of schedulers and their interfaces. Both restrictions limit the applica-
bility of information flow security analyses for concurrent programs.

Aiming at more widely applicable information flow analyses, we developed the
novel security condition FSI-security. FSI-security overcomes deficiencies of the
existing approaches to scheduler-independent security while still achieving sched-
uler independence for common schedulers. Our scheduler independence result is
rather surprising in the light of the impossibility result from [10], which states
that for a natural class of schedulers a compositional scheduler-independent secu-
rity condition must be at least as restrictive as the strong security condition. The
key insight for obtaining a security property that is less restrictive yet compo-
sitional and scheduler-independent for relevant schedulers was the identification
of a different class of schedulers, the robust schedulers, which is also natural but
smaller than the class in [10].

132 H. Mantel and H. Sudbrock

Acknowledgments. The authors thank Dave Sands for helpful comments in
the early phase of this research project and the anonymous reviewers for their
suggestions. This work was funded by the DFG (German Research Foundation)
in the Computer Science Action Program. This article reflects only the authors’
views, and the DFG and the authors are not liable for any use that may be made
of the information contained therein.

References

1. Goguen, J.A., Meseguer, J.: Security Policies and Security Models. In: 3rd IEEE

Symposium on Security and Privacy, pp. 11–20. IEEE, Los Alamitos (1982)

2. Jacob, J.: On the Derivation of Secure Components. In: 10th IEEE Symposium on

Security and Privacy, pp. 242–247. IEEE, Los Alamitos (1989)

3. Volpano, D., Smith, G.: Probabilistic Noninterference in a Concurrent Language.

Journal of Computer Security 7(2,3), 231–253 (1999)

4. Russo, A., Hughes, J., Naumann, D.A., Sabelfeld, A.: Closing Internal Timing

Channels by Transformation. In: Okada, M., Satoh, I. (eds.) ASIAN 2006. LNCS,

vol. 4435, pp. 120–135. Springer, Heidelberg (2008)

5. Smith, G., Volpano, D.: Secure Information Flow in a Multi-threaded Imperative

Language. In: 25th ACM Symposium on Principles of Programming Languages,

pp. 355–364. ACM, New York (1998)

6. Zdancewic, S., Myers, A.C.: Observational Determinism for Concurrent Program

Security. In: 16th IEEE Computer Security Foundations Workshop, pp. 29–43.

IEEE, Los Alamitos (2003)

7. Sabelfeld, A., Sands, D.: Probabilistic Noninterference for Multi-threaded Pro-

grams. In: 13th IEEE Computer Security Foundations Workshop, pp. 200–214.

IEEE, Los Alamitos (2000)

8. Boudol, G., Castellani, I.: Noninterference for Concurrent Programs and Thread

Systems. Theoretical Computer Science 281(1-2), 109–130 (2002)

9. Russo, A., Sabelfeld, A.: Securing Interaction between Threads and the Scheduler.

In: 19th IEEE Computer Security Foundations Workshop, pp. 177–189. IEEE, Los

Alamitos (2006)

10. Sabelfeld, A.: Confidentiality for Multithreaded Programs via Bisimulation. In:

Broy, M., Zamulin, A.V. (eds.) PSI 2003. LNCS, vol. 2890, pp. 260–274. Springer,

Heidelberg (2004)

11. Smith, G.: Probabilistic Noninterference through Weak Probabilistic Bisimulation.

In: 16th IEEE Computer Security Foundations Workshop, pp. 3–13. IEEE, Los

Alamitos (2003)

12. Sabelfeld, A., Sands, D.: A Per Model of Secure Information Flow in Sequen-

tial Programs. In: Swierstra, S.D. (ed.) ESOP 1999. LNCS, vol. 1576, pp. 50–59.

Springer, Heidelberg (1999)

13. Volpano, D., Smith, G., Irvine, C.: A Sound Type System for Secure Flow Analysis.

Journal of Computer Security 4(2,3), 167–188 (1996)

14. Mantel, H., Sands, D.: Controlled Declassification Based on Intransitive Nonin-

terference. In: Chin, W.-N. (ed.) APLAS 2004. LNCS, vol. 3302, pp. 129–145.

Springer, Heidelberg (2004)

15. Smith, G.: A New Type System for Secure Information Flow. In: 14th IEEE Com-

puter Security Foundations Workshop, pp. 115–125. IEEE, Los Alamitos (2001)

16. Matos, A.A., Boudol, G., Castellani, I.: Typing Noninterference for Reactive Pro-

grams. Journal of Logic and Algebraic Programming 72(2), 124–156 (2007)

Flexible Scheduler-Independent Security 133

17. Sabelfeld, A., Myers, A.C.: Language-based Information-Flow Security. IEEE Jour-

nal on Selected Areas in Communication 21(1), 5–19 (2003)

18. Sabelfeld, A.: The Impact of Synchronisation on Secure Information Flow in

Concurrent Programs. In: Bjørner, D., Broy, M., Zamulin, A.V. (eds.) PSI 2001.

LNCS, vol. 2244, pp. 225–239. Springer, Heidelberg (2001)

19. Barthe, G., D’Argenio, P.R., Rezk, T.: Secure Information Flow by Self-

Composition. In: 17th IEEE Computer Security Foundations Workshop, pp. 100–

114. IEEE, Los Alamitos (2004)

20. Mantel, H., Sudbrock, H., Kraußer, T.: Combining Different Proof Techniques for

Verifying Information Flow Security. In: Puebla, G. (ed.) LOPSTR 2006. LNCS,

vol. 4407, pp. 94–110. Springer, Heidelberg (2007)

21. Mantel, H., Reinhard, A.: Controlling the What and Where of Declassification in

Language-Based Security. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421,

pp. 141–156. Springer, Heidelberg (2007)

22. Russo, A., Sabelfeld, A.: Security for Multithreaded Programs under Cooperative

Scheduling. In: Virbitskaite, I., Voronkov, A. (eds.) PSI 2006. LNCS, vol. 4378, pp.

474–480. Springer, Heidelberg (2007)

23. McLean, J.D.: Proving Noninterference and Functional Correctness using Traces.

Journal of Computer Security 1(1), 37–57 (1992)

24. Roscoe, A.W., Woodcock, J.C.P., Wulf, L.: Non-interference through Determin-

ism. In: Gollmann, D. (ed.) ESORICS 1994. LNCS, vol. 875, pp. 33–53. Springer,

Heidelberg (1994)

25. Roscoe, A.W.: CSP and Determinism in Security Modelling. In: 16th IEEE Sym-

posium on Security and Privacy, pp. 114–127. IEEE, Los Alamitos (1995)

26. Huisman, M., Worah, P., Sunesen, K.: A Temporal Logic Characterisation of Obser-

vational Determinism. In: 19th IEEE Computer Security Foundations Workshop,

pp. 3–15. IEEE, Los Alamitos (2006)

27. Mantel, H., Sabelfeld, A.: A Unifying Approach to the Security of Distributed and

Multi-threaded Programs. Journal of Computer Security 11(4), 615–676 (2003)

28. Focardi, R., Rossi, S., Sabelfeld, A.: Bridging Language-Based and Process Calculi

Security. In: Sassone, V. (ed.) FOSSACS 2005. LNCS, vol. 3441, pp. 299–315.

Springer, Heidelberg (2005)

29. Köpf, B., Mantel, H.: Transformational Typing and Unification for Automatically

Correcting Insecure Programs. International Journal of Information Security 6(2-

3), 107–131 (2007)

30. Lux, A., Mantel, H.: Declassification with Explicit Reference Points. In: Backes, M.,

Ning, P. (eds.) ESORICS 2009. LNCS, vol. 5789, pp. 69–85. Springer, Heidelberg

(2009)

31. Barthe, G., Rezk, T., Russo, A., Sabelfeld, A.: Security of Multithreaded Programs

by Compilation. In: Biskup, J., Lopez, J. (eds.) ESORICS 2007. LNCS, vol. 4734,

pp. 2–18. Springer, Heidelberg (2007)

32. Russo, A., Sabelfeld, A.: Securing Interaction between Threads and the Sched-

uler in the Presence of Synchronization. Journal of Logic and Algebraic Program-

ming 78(7), 593–618 (2009)

33. van der Meyden, R., Zhang, C.: Information Flow in Systems with Schedulers. In:

21st IEEE Computer Security Foundations Symposium, pp. 301–312. IEEE, Los

Alamitos (2008)

34. Chatzikokolakis, K., Palamidessi, C.: Making Random Choices Invisible to the

Scheduler. In: Caires, L., Vasconcelos, V.T. (eds.) CONCUR 2007. LNCS, vol. 4703,

pp. 42–58. Springer, Heidelberg (2007)

Secure Multiparty Linear Programming
Using Fixed-Point Arithmetic

Octavian Catrina1 and Sebastiaan de Hoogh2

1 Dept. of Computer Science, University of Mannheim, Germany
2 Dept. of Mathematics and Computer Science, TU Eindhoven, The Netherlands

Abstract. Collaborative optimization problems can often be modeled

as a linear program whose objective function and constraints combine

data from several parties. However, important applications of this model

(e.g., supply chain planning) involve private data that the parties cannot

reveal to each other. Traditional linear programming methods cannot be

used in this case. The problem can be solved using cryptographic pro-

tocols that compute with private data and preserve data privacy. We

present a practical solution using multiparty computation based on secret

sharing. The linear programming protocols use a variant of the simplex

algorithm and secure computation with fixed-point rational numbers,

optimized for this type of application. We present the main protocols as

well as performance measurements for an implementation of our solution.

Keywords: Secure multiparty computation, linear programming, secure

fixed-point arithmetic, secret sharing.

1 Introduction

The optimization of processes involving multiple parties can often be formulated
as a collaborative linear programming problem: minimize (or maximize) a lin-
ear objective function subject to a set of linear constraints, where the function
and the constraints are defined by combining data from all parties. This linear
program may include confidential data that the parties cannot reveal to each
other. For example, a linear program for supply chain planning uses business
data whose disclosure has negative effects on the participant’s negotiation posi-
tion and competition with other suppliers (e.g., production costs and available
capacity) [11]. The supply chain partners cannot use traditional methods to solve
the linear program, since this would reveal their confidential data.

Secure computation preserves input privacy using cryptographic protocols.
Roughly speaking, the protocols ensure that the output is correct and the com-
putation is carried out without revealing anything else besides the agreed upon
output. However, the high communication and computation overhead of crypto-
graphic protocols makes secure computation slower than usual computation with
public data. Moreover, finding efficient protocols for complex applications like
linear programming is a particularly challenging task. The solutions proposed so
far rely on variants of the simplex algorithm that use integer arithmetic [13,19].

D. Gritzalis, B. Preneel, and M. Theoharidou (Eds.): ESORICS 2010, LNCS 6345, pp. 134–150, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Secure Multiparty Linear Programming Using Fixed-Point Arithmetic 135

For non-trivial linear programs, these algorithms require computation with very
large integers (thousands of bits) and the protocols become impractical. Our
goal is to obtain more efficient protocols, suitable for practical applications.

Our contributions. We take a different approach to secure multiparty simplex, by
using computation with rational numbers in fixed-point representation, and we
provide a complete solution (all building blocks) as well as performance measure-
ments with a prototype implementation. The protocols are structured into three
main layers. The core layer consists of protocols for secure arithmetic in a field
and generation of secret random values. This layer could be instantiated using
different secure computation methods (e.g., secret sharing or homomorphic en-
cryption). We use multiparty computation based on secret sharing (semi-honest
model), which offers the most efficient protocols. The arithmetic layer offers
protocols for computation with boolean, integer, and rational (fixed-point) data
types. Finally, the protocols in the application layer carry out an oblivious com-
putation of the simplex algorithm with secret-shared input and output (a linear
program and its solution). The simplex protocol leaks only the number of itera-
tions and the termination condition (optimal solution or unbounded problem).

The complexity of a secure simplex iteration is dominated by several steps
that consist of many secure comparisons or multiplications executed in parallel.
Our approach to improving the performance of the protocol focuses on reducing
the communication complexity of these steps. The protocol is based on a simplex
variant that uses fixed-point arithmetic and needs a minimum number of com-
parisons and fixed-point multiplications. The design of the lower layer protocols,
the data encoding, the use of secure fixed-point arithmetic, and the design of
the simplex protocol contribute to achieving this goal.

Related Work. Secure linear programming protocols were proposed by Li and
Atallah [13] for the two-party case and by Toft [19] for the multiparty case.
Heuristics that apply simplex to “disguised” linear programs have both correct-
ness flaws and security problems [1], so we do not discuss them in the following.
We review the relevant features of the solutions in [13,19].

Both protocols use secure integer computation and the simplex algorithm.
Let � denote the bit-length of the integers in the initial tableau of the linear
program. The first protocol [13] is based on a simplified variant of simplex,
without divisions. An iteration of this algorithm can double the bit-length of the
values in the tableau (k = 2θ� bits after θ iterations, worst case). Therefore, the
protocol can solve only small linear programs that terminate in few iterations.

Toft’s protocol [19] uses a simplex variant [15] with the property that the
divisions computed in every iteration yield integer results. This algorithm has
important advantages: the computation can be carried out using secure integer
arithmetic; the values in the tableau are exact (no rounding errors) and do
not grow as fast as in the previous variant; secure division can be efficiently
computed in this particular case. However, the values still grow during the initial
iterations (up to k = θ� bits after θ iterations, worst case) and the growth levels
off at large bit-lengths, reaching thousands of bits for practical problems. This

136 O. Catrina and S. de Hoogh

severely degrades the performance and limits the practical applications, since
the protocol has to use a data encoding that avoids overflow and hides the bit-
length variation throughout the computation. In particular, secure comparison
becomes impractical for inputs of thousands of bits.

We avoid this drawback by using a simplex variant with small tableau and
fixed-point arithmetic. The goal is to reduce the bit-length of the secret shares
by a factor of 10 and the input bit-length of all comparisons to 100 bits. Due
to the structure of the simplex algorithm the gains exceed by far the effects of
more complex fixed-point arithmetic. We use our general framework for secure
fixed-point computation introduced in [4], extending and adapting the protocols
for this type of application. In particular we use a different division protocol that
allows to efficiently compute many division operations with common divisor, so
that a simplex iteration computes a single reciprocal. Rounding errors for an
iteration are close to the resolution of the fixed-point representation.

Oblivious computation of simplex iterations is achieved in [13,19] using two
different methods. Li and Atallah use secret permutations of the rows and
columns of the tableau in each iteration. Toft introduces a secret indexing
method that allows to read or write entries in the tableau without revealing
the index. Our protocol uses secret indexing, which is simpler and more versa-
tile. We give more efficient solutions for secret reading and pivot selection.

We use standard techniques for multiparty computation based on secret shar-
ing, similar to [6,7,14,18]. However, the protocols in [7,18] aim at providing
integer computation with perfect privacy and constant round complexity, while
our goal is fixed-point computation and lower communication complexity, for
more efficient parallel computation. We obtain important performance gains us-
ing a combination of techniques that includes additive hiding with statistical
privacy (instead of perfect privacy), protocols with logarithmic round complex-
ity (instead of constant round complexity), optimized data encoding (especially
for binary values), and non-interactive generation of shared random values [5].

2 Preliminaries

2.1 Linear Programming and the Simplex Algorithm

The simplex algorithm is the most popular method for solving linear programs
[2]. Its simple structure and the possibility to parallelize a large part of the
computation also makes it the best choice for secure linear programming.

We consider the task of solving the linear program shown in Eq. 1, for
b1, . . . , bm ≥ 0. We start by adding the slack variables xn+1, . . . , xn+m, to trans-
form Eq. 1 to the standard form with equality constraints shown in Eq. 2. A
feasible solution is a vector x1, . . . , xn+m ≥ 0 that satisfies the constraints. The
goal is to find an optimal solution that also maximizes the objective function.
A basis is a set of m indexes corresponding to variables whose coefficients in
the constraints are linearly independent vectors. A solution with null values for
non-basis variables is called basic solution. Observe that xj = 0 for j = 1, . . . , n
and xn+i = bi for i = 1, . . . , m is a basic feasible solution of Eq. 2.

Secure Multiparty Linear Programming Using Fixed-Point Arithmetic 137

max
∑n

j=1 fjxj

subject to
∑n

j=1 aijxj ≤ bi i = 1, . . . , m

xj ≥ 0 j = 1, . . . , n

(1)

max
∑n

j=1 fjxj

subject to
∑n

j=1 aijxj + xn+i = bi i = 1, . . . , m

xj ≥ 0 j = 1, . . . , n + m

(2)

Simplex starts from an initial basic feasible solution and improves it by perform-
ing a sequence of iterations until it finds the optimal solution or detects that
the linear program is unbounded. In each iteration, a basis variable is replaced
by another variable and the linear program is re-written accordingly, using a
procedure called pivoting. Simplex uses a tableau representation of the linear
program. Two variants of tableau are shown in Fig. 1. The vectors S and U
contain the indexes of the current basis and non-basis variables, respectively.

x1 . . . xn xn+1 . . . xn+m

xS(1) a11 . . . a1n 1 . . . 0 b1

.

.

.
.
.
.

.

.

.
.
.
.

. . .
.
.
.

.

.

.

xS(m) am1 . . . amn 0 . . . 1 bm

F −f1 . . . −fn 0 . . . 0 0

xU(1) . . . xU(n)

xS(1) a11 . . . a1n b1

.

.

.
.
.
.

.

.

.
.
.
.

xS(m) am1 . . . amn bm

F −f1 . . . −fn 0

Fig. 1. Initial simplex tableau (left) and condensed tableau variant (right)

The computation can be carried out in many different ways. For secure sim-
plex, the choice of the algorithm depends on the complexity of the building
blocks and has a strong impact on performance. We considered different vari-
ants of plain and revised simplex. Variants for integer arithmetic work with very
large numbers, making secure comparison impractical and increasing the com-
munication overhead. The protocol presented in this paper uses an algorithm for
fixed point arithmetic and the condensed tableau in Fig. 1. This variant needs
a minimum number of secure comparisons and fixed-point multiplications. The
algorithm is described below. We denote V (i) the element of vector V at index
i and M(i, j) the element of matrix M at row index i and column index j.

1. Initialization: For i ∈ [1..m], j ∈ [1..n], set A(i, j) ← aij , F (j) ← fj ,

B(i) ← bi, U(j) ← j, S(i) ← n + i. Set T ←
(

A B
−F 0

)
.

2. Iterations:
a) Get Pivot Column: Select c ∈ [1..n] such that T (m + 1, c) < 0. If no such c,

report “Optimal Solution” and exit. If more options, choose at random or
using Bland’s rule (minimum U(c)).

b) Get Pivot Row: Select r ∈ [1..m], such that T (r, c) > 0 and T (n+1, r)/T (r, c)
is minimal. If no such r, report “Unbounded Problem” and exit. If more
options, choose at random or using Bland’s rule (minimum S(r)).

138 O. Catrina and S. de Hoogh

c) Update the tableau (pivoting):
T (i, j) ← T (i, j)− T (i, c)T (r, j)/T (r, c) i ∈ [1..m + 1]\{r}, j∈ [1..n + 1]\{c}
T (i, c) ← −T (i, c)/T (r, c) i ∈ [1..m + 1]\{r}
T (r, j) ← T (r, j)/T (r, c) j ∈ [1..n + 1]\{c}
T (r, c) ← 1/T (r, c)
U(c) ↔ S(r) (swap)

3. Final solution: For i ∈ [1..m] set xS(i) ← T (i, n+1). All other variables take
the value 0. The objective function takes the value T (m + 1, n + 1).

2.2 Core Protocols

Basic framework. Assume a group of n > 2 parties, P1, . . . , Pn, that communi-
cate on secure channels. Party Pi has private input xi and output yi, function
of all inputs. Multiparty computation using secret sharing proceeds as follows.
The parties use a linear secret sharing scheme to deliver shares of their private
inputs to the group. Thus, they create a distributed state of the computation
where each party has a share of each secret variable. Certain subsets of parties
can reconstruct a secret by pooling together their shares, while any other subset
cannot learn anything about it. The secret sharing scheme allows to compute
with shared variables. The protocols used for this purpose take on input shared
data and return shared data, and thus enable secure protocol composition.

The protocols offer perfect or statistical privacy, in the sense that the views
of protocol execution (all values learned by an adversary) can be simulated such
that the distributions of real and simulated views are perfectly or statistically
indistinguishable, respectively. Let X and Y be distributions with finite sample
spaces V and W and Δ(X, Y) = 1

2

∑
v∈V

⋃
W |Pr(X = v) − Pr(Y = v)| the

statistical distance between them. We say that the distributions are perfectly
indistinguishable if Δ(X, Y) = 0 and statistically indistinguishable if Δ(X, Y)
is negligible in some security parameter.

The basic framework uses Shamir secret sharing over a finite field F and allows
secure arithmetic in F with perfect privacy against a passive threshold adversary
able to corrupt t out of n parties. Essentially, in this model, the parties do not
deviate from the specified protocol and any t+1 parties can reconstruct a secret,
while t or less parties cannot distinguish it from random uniform values in F.
We assume |F| > n, to enable Shamir sharing, and n > 2t, for multiplication
of secret-shared values. We denote [x] a Shamir sharing of x and [x]F a sharing
in a particular field F. We refer the reader to [6] for a more formal and general
presentation of this approach to secure computation.

Complexity metrics. The running time of the protocols is (usually) dominated by
the communication between parties. We evaluate the complexity of the protocols
using two metrics that reflect different aspects of the interaction. Communication
complexity measures the amount of data sent by each party. For our protocols,
a suitable abstract metric is the number of invocations of a primitive during
which every party sends a share (field element) to the others. Round complexity

Secure Multiparty Linear Programming Using Fixed-Point Arithmetic 139

Table 1. Secure arithmetic in a finite field F

Operation Purpose Rounds Invocations

[c]F ← [a]F + [b]F Add secrets 0 0

[c]F ← [a]F + b Add secret and public 0 0

[c]F ← [a]Fb Multiply secret and public 0 0

[c]F ← [a]F[b]F Multiply secrets 1 1

a ← Output([a]F) Reveal a secret 1 1

[z] ← Inner([X]F, [Y]F) [
∑m

i=1 X(i)Y (i)]F 1 1

measures the number of sequential invocations and is relevant for the inher-
ent network delay, independent of the amount of data. Invocations that can be
executed in parallel count as a single round.

Shared random values. Secure computation often combines secret sharing with
additive or multiplicative hiding. For example, given a shared variable [x] the
parties jointly generate a shared random value [r], compute [y] = [x] + [r], and
reveal y = x + r. This is similar to one-time pad encryption of x with key r.

For a secret x ∈ Zq and random uniform r ∈ Zq we obtain Δ(x+r mod q, r) =
0, hence perfect privacy. Alternatively, for x ∈ [0..2k − 1], random uniform r ∈
[0..2k+κ−1], and q > 2k+κ+1 we obtain Δ(x+r mod q, r) < 2−κ, hence statistical
privacy with security parameter κ. This property holds for other distributions of
r that can be generated more efficiently. The variant with statistical privacy can
substantially simplify the protocols by avoiding wraparound modulo q, although
it requires larger q (hence larger shares) for a given data range.

We use Pseudo-random Replicated Secret Sharing (PRSS) [5] to generate
without interaction shared random values in F with uniform distribution and
random sharings of 0. Also, we use the integer variant RISS [8] to generate shared
random integers in a given interval and the ideas in [9] for share conversions.
To enable these techniques, we assume that numbers are encoded in Zq and q >
2k+κ+ν+1, where k is the required integer bit-length, κ is the security parameter,
ν = "log(

(
n
t

)
)#, n is the number of parties, and t is the corruption threshold.

Efficient inner product. Consider the following common task: given two shared
vectors [X] = ([X(1)], . . . , [X(m)]) and [Y] = ([Y (1)], . . . , [Y (m)]), X, Y ∈ Fm,
compute their inner product [z] = [

∑m
i=1 X(i)Y (i)]. A naive solution is to use the

multiplication protocol and compute [z] =
∑m

i=1[X(i)][Y (i)], with complexity 1
round and m invocations. We present an efficient protocol with perfect privacy
and complexity reduced to 1 invocation. Assume Shamir sharing for n parties
with threshold t < n/2. Denote [X(i)]j , [Y (i)]j , i ∈ [1..m], the input shares and
[z]j the output share of party Pj . The protocol, called Inner, proceeds as follows:

1. Party Pj , j ∈ [1..n], computes dj =
∑m

i=1([X(i)]j [Y (i)]j) and then shares dj

sending [dj]k to party Pk, k ∈ [1..n].
2. Party Pk, k ∈ [1..n], computes the share [z]k =

∑
j∈J λj [dj]k, where J ⊆

[1..n], |J | = 2t + 1, and {λj}j∈J is the reconstruction vector for J .

140 O. Catrina and S. de Hoogh

Protocol Inner is a generalization of the classical protocol for secure multiplica-
tion in a field [12]. The proofs of correctness and security are similar.

Secret indexing. The purpose of secret indexing is to read/write a value from/to
an array without revealing the value and its index. Efficient secret indexing
can be achieved by encoding an index x ∈ [1..m] as a secret bitmask [V] =
([V (1)], . . . , [V (m)]) such that V (i) = 1 for i = x and V (i) = 0 for i �= x [19].
We use this technique to obtain oblivious computation of simplex iterations.

Protocols 2.1 and 2.2 allow secret reading and writing from/to a vector. The
secure multiplications re-randomize the shares, providing perfect privacy. Exten-
sion to a matrix is obvious. We call the protocols that read/write a column/row
SecReadCol, SecReadRow, SecWriteCol, and SecWriteRow. Protocol Inner reduces
the complexity of secret reading to 1 invocation (instead of m) for a vector of
length m, and to m (or n) invocations (instead of mn) for an m×n matrix. This
has a significant impact on the complexity of the simplex protocol.

Protocol 2.1: [s] ← SecRead([A], [V])

[s] ← Inner([A], [V]) ; // 1 rnd, 1 inv1

return [s];2

Protocol 2.2: [A] ← SecWrite([A], [V], [s])

foreach i ∈ [1..m] do parallel1

[A(i)] ← [A(i)] + [V (i)] ([s]− [A(i)]); // 1 rnd, m inv2

return [A];3

3 Arithmetic Protocols

Fixed-point representation. Fixed-point numbers are rational numbers repre-
sented as a sequence of digits split into integer and fractional parts by a vir-
tual radix point: x̃ = s · (de−2 . . . d0.d−1 . . . d−f). For binary digits the value
is x̃ = s ·

∑e−2
i=−f di2i, where s ∈ {−1, 1}, e is the length of the integer part

(including the sign bit), and f is the length of the fractional part. Denote
x̄ = s ·

∑e+f−2
i=0 di2i and observe that x̃ = x̄ · 2−f , hence x̃ is encoded as an

integer x̄ scaled by the factor 2−f .
We define a fixed-point data type as follows. Let k, e, and f be integers such

that k > 0, f ≥ 0, and e = k − f ≥ 0. Denote Z〈k〉 = {x ∈ Z | − 2k−1 + 1 ≤
x ≤ 2k−1 − 1}. The fixed-point data type with resolution 2−f and range 2e is
the set Q〈k,f〉 = {x̃ ∈ Q | x̃ = x̄ · 2−f , x̄ ∈ Z〈k〉}. Intuitively, Q〈k,f〉 is obtained
by sampling the range of real values [−2e−1 + 2−f , 2e−1− 2−f] at 2−f intervals.

Data encoding in a field. Any secret value in a secure computation has a data
type which is public information. Data types are encoded in a field F as follows.

Logical values false, true and bit values 0, 1 are encoded as 0F and 1F , re-
spectively. F can be a small binary field F2m or prime field Zq. This encoding

Secure Multiparty Linear Programming Using Fixed-Point Arithmetic 141

Table 2. Secure fixed-point arithmetic: addition and multiplication

Fixed-point Op. Integer Op./ Secure Op. Abs. Error

Add c̃ = ã + b̃ ∈ Q〈k,f〉 c̄ = ā + b̄ δ = 0

(Subtract) ã, b̃ ∈ Q〈k,f〉 [c] ← [a] + [b]

Multiply c̃ = ãb̃ ∈ Q〈k+f,2f〉 c̄ = āb̄ δ = 0

w/o scaling ã, b̃ ∈ Q〈k,f〉 [c] ← [a][b]

Multiply c̃ = ãb̃ ∈ Q〈k,f〉 c̄ = trunc(āb̄, f) δ = δt2
−f

w/ scaling ã, b̃ ∈ Q〈k,f〉 [c] ← TruncPr([a][b], k + f, f) |δt| < 1

Inner product c̃ =
∑m

i=1 ãib̃i c̄ = trunc(
∑m

i=1 āib̄i, f) δ = δt2
−f

A = (a1, . . . , am) ãi, b̃i, c̃ ∈ Q〈k,f〉 [x] ← Inner([A], [B]) |δt| < 1

B = (b1, . . . , bm) [c] ← TruncPr([x], k + f, f)

Multiply d̃ = ãb̃c̃ ∈ Q〈k,f〉 d̄ = trunc(āb̄c̄, 2f) δ = δt2
−f

double optim. ã, b̃, c̃, d̃ ∈ Q〈k,f〉 [c] ← TruncPr([a][b][c], k + 2f, 2f) |δt| < 1

allows secure evaluation of boolean functions using secure arithmetic in F. Effi-
cient encoding of binary values is essential for reducing the complexity of shared
random bit generation, comparison, and other secure simplex building blocks.

Signed integers are encoded in Zq using fld : Z〈k〉 $→ Zq, fld(x̄) = x̄ mod q,
q > 2k. For any ā, b̄ ∈ Z〈k〉 and% ∈ {+,−, ·} we have ā%b̄ = fld−1(fld(ā)%fld(b̄)).
Moreover, if b̄|ā then ā/b̄ = fld−1(fld(ā) ·fld(b̄)−1). Secure arithmetic with signed
integers can thus be computed using secure arithmetic in Zq.

A fixed-point number x̃ ∈ Q〈k,f〉 is represented as a secret integer x̄ = x̃2f

encoded in Zq and public parameters that specify the resolution and the range,
f and e (or k = e + f). We define the map intf : Q〈k,f〉 $→ Z〈k〉, intf (x̃) = x̃2f .

We distinguish different representations of a number using the following sim-
plified notation: we denote x̃ a rational number of some fixed-point type Q〈k,f〉
and x̄ = x̃2f ∈ Z〈k〉 the integer value of its fixed-point representation; for se-
cure computation using secret-sharing we denote x = x̄ mod q ∈ Zq the field
element that encodes x̄ (and hence x̃) and [x] a sharing of x. The notation
x = (condition)? a : b means that the variable x is assigned the value a when
condition=true and b otherwise.

Fixed-point arithmetic. Tables 2 and 3 contain a summary of the main arithmetic
protocols used in simplex. Secure addition, subtraction, and comparison of fixed-
point numbers are immediate extensions of the integer operations. We need
additional protocols for multiplication and division.

Multiplication. Table 2 shows several cases of secure fixed-point multiplication
used in simplex. Let ã, b̃ ∈ Q〈k,f〉 and c̃ = ãb̃. We obtain the representation of c̃

with resolution 2−2f by integer multiplication, c̄ = āb̄ = ãb̃22f , and we can scale
down c̃ to resolution 2−f by truncation (when necessary). The truncation pro-
tocol TruncPr computes c̄/2f and rounds to the nearest integer with probability
1−α, where α is the distance to that integer [4]. The absolute error is with high

142 O. Catrina and S. de Hoogh

Table 3. Complexity of arithmetic protocols (log(q1) ≈ κ)

Operation Protocol Rounds Invocations Field

�ā/2f� + u [d] ← TruncPr([a], k, f) 1 1 Zq

ā ∈ Z〈k〉, u ∈R {0, 1} 2 2f Zq1

TruncPr after precomp. 1 1 Zq

[d] ← TruncPrN([a], k, f) 1 1 Zq

(ā < 0)?1 : 0, ā ∈ Z〈k〉 [s] ← LTZ([a], k) 1 1 Zq

(ā > 0)?1 : 0, ā ∈ Z〈k〉 GTZ([a], k) = LTZ(−[a], k) 2 2k Zq1

log(k) + 1 2k − 3 F28

LTZ after precomp. 1 1 Zq

log(k) + 1 2k − 3 F28

x̃ ≈ 1/c̃ ∈ Q〈p+1,p〉 [x] ← RecItNR([c], p) 3θ 3θ Zq

c̃ ∈ Q〈p+1,p〉
⋂

(0.5, 1) (using TruncPr) 2 2pθ Zq1

RecItNR after precomp. 3θ 3θ Zq

Normalization: c̄ = v̄x̄, ([c], [v]) ← Norm([x], k, f, p) 3 3 Zq

x̃ ∈ Q〈k+1,f〉, (using TruncPr) 2† 6k − 2p Zq1

c̃ ∈ Q〈p+1,p〉
⋂

(0.5, 1) 2 log(k) + 1 k + 1.5k log(k) F28

Norm after precomp. 3 3 Zq

2 log(k) + 1 k + 1.5k log(k) F28

probability |δt| ≤ 0.5, and always |δt| < 1. TruncPr provides statistical privacy,
while TruncPrN performs the same operation more efficiently but with weaker
protection of the discarded part (additive hiding with non-uniform random).
TruncPrN is sufficient for multiplications in simplex, since values less than 2−f

are negligible and the computation is carried out with extended precision (large
f). Note that the optimizations for inner product and double multiplication
shown in Table 2 are also important for improving the accuracy.

Reciprocal and division. Simplex needs an accurate and efficient protocol for
multiple division operations with the same positive divisor, ã1/b̃, . . . , ãm/b̃. This
can be achieved by computing ỹ = 1/b̃ followed by m parallel multiplications
z̃i = ãiỹ. Protocols 3.1, RecItNR, and 3.2, DivNR, follow this approach (the
division protocol in [4] is not suitable for this type of application).

Let c̃ ∈ Q〈p+1,p〉
⋂

(0.5, 1). RecItNR computes x̃ ≈ 1/c̃, x̃ ∈ Q〈p+1,p〉, for
secret-shared input and output. The protocol uses the Newton-Raphson method
and starts by computing the initial approximation x̃0 ≈ 1/c̃, x̃0 = 2.9142− 2c̃,
with relative error ε0 < 0.08578 (at least log2(ε0) = 3.5 exact bits) [10]. Each
iteration computes an improved approximation x̃i+1 = x̃i(2 − x̃ic̃). For exact
arithmetic (without truncation) the relative error after iteration i is εi = ε2i−1 =
ε2

i

0 . Intuitively, the number of exact bits doubles at each iteration, so p + 1
bits (δ < 2−p) are obtained after θ = "log p+1

3.5 # iterations. The error due to
computation of an iteration with limited precision is |δT | < 2−p. Since the error
introduced by an iteration decreases quadratically during next iterations, we
conclude that the output error of RecItNR is approximately bounded by 2−p.

Secure Multiparty Linear Programming Using Fixed-Point Arithmetic 143

Let ã, b̃ ∈ Q〈k+1,f〉 and b̃ > 0. Protocol DivNR computes the quotient z̃ ≈ ã/b̃,
z̃ ∈ Q〈k+1,f〉, with secret-shared inputs and output. The protocol consists of
the following main steps: compute the normalized divisor c̃ ∈ Q〈p+1,p〉

⋂
(0.5, 1)

using the protocol Norm; compute the reciprocal x̃ ≈ 1/c̃ using the protocol
RecItNR; then compute the quotient z̃ ≈ ã/b̃ and scale it to obtain z̃ ∈ Q〈k+1,f〉.
A variant for multiple divisors repeats steps 4 and 5 for each divisor (parallel
computation).

Protocol 3.1: [x] ← RecItNR([c], p)

(θ, α, β) ← ("log p+1
3.5 #, fld(intp(2.9142)), fld(int2p(2.0)));1

[x] ← α− 2[c];2

foreach i ∈ [1..θ] do3

[x] ← [x](β − [x][c]);4

[x] ← TruncPr([y], 3p, 2p);5

return [x];6

Protocol 3.2: [z] ← DivNR([a], [b], k, f)

([c], [v]) ← Norm([b], k);1

[x] ← RecItNR([c], k);2

[y] ← [v][x];3

[z] ← [a][y];4

[z] ← TruncPr([z], 3k − f, 2k − f);5

return [z];6

Protocol Norm computes c̄ and v̄ such that 2k−1 ≤ c̄ < 2k and c̄ = b̄v̄, with
secret-shared input and outputs [4,17]. Let c̃ = c̄2−k and let 0 < m ≤ k such that
2m−1 ≤ b̄ < 2m. Observe that v̄ = 2k−m, c̃ ∈ Q〈k+1,k〉

⋂
(0.5, 1), and c̃ = b̃2f−m;

c̃ is the normalized input for RecItNR and v̄ the normalization factor. Steps 3-4
of DivNR compute z̃ = ãx̃2f−m ≈ ã/b̃ without loss of accuracy and then step 4
scales this value to obtain z̃ ∈ Q〈k+1,f〉. Observe that ãx̃2f−m2f = āx̄v̄2−(2k−f),
so the output z̄ = trunc(āx̄v̄, 2k − f) is the representation of z̃ with resolution
2−f . The output error of DivNR is upper bounded by 2−f .

RecItNR and DivNR do not open any secret-shared value and their building
blocks provide perfect or statistical privacy. The number of iterations depends
only on public configuration parameters, hence it can be revealed. We conclude
that the two protocols offer statistical privacy.

4 Secure Simplex Protocol

Protocol 4.1, Simplex, solves linear programs using the algorithm and the build-
ing blocks presented in the previous sections. The inputs are the secret-shared
values of the linear program: the matrix [A] and the vectors [B] and [F]. The
output consists of a public value indicating the termination state, optimal or un-
bounded, a secret-shared array [X] containing the solution, and the optimum [z]
of the objective function. The protocol reveals only the number of iterations and

144 O. Catrina and S. de Hoogh

the termination condition. The tableau, pivot indexes, and related variables are
protected throughout the computation using the techniques discussed in Section
2.2. For a passive adversary that corrupts t < n/2 parties, the building blocks
provide perfect or statical privacy. By the composition theorem in Chapter 4 of
[3] we conclude that the simplex protocol provides statistical privacy.

Complexity is shown in the protocol specifications by annotating the rele-
vant steps; for better clarity, we assume a generic comparison protocol with
complexity ρ rounds and μ invocations. For a vector V and matrix M we de-
note: V (i..j) = (V (i), . . . , V (j)); M(i, ·) the row i; M(·, j) the column j. Angle
brackets are used to specify the number of elements, e.g., V 〈m〉, M〈m, n〉.

Protocol 4.1 initializes the tableau [T] and the basis and non-basis index
vectors [S] and [U], performs the simplex iterations, and then extracts from
the final tableau the optimal solution (if it exists). The iterations are computed
by Protocol 4.2. The computation is structured into several sub-protocols that
select the pivot’s column and row (GetPivCol and GetPivRow) and then update
the tableau [T] (UpdTab) and the vectors [S] and [U] (UpdVar).

Protocol 4.1: (result, [X], [z])← Simplex([A], [B], [F])
Input: [A〈m, n〉], [B〈m〉], [F 〈m〉].
Output: result ∈ {Opt, Unb}; [X〈n〉] and [z] if result = Opt.

[T] ←
(

[A] [B]
−[F] [0]

)
;

1

([S], [U]) ← InitVar(m, n);2

([T], [S], result) ← Iteration([T], [S], [U]);3

if result = Unb then return Unb;4

[X] ← GetSolution([T (·, n + 1)], [S]);5

return (Opt, [X], [T (m + 1, n + 1)]);6

Protocol 4.2: ([T], [S], result)← Iteration([T], [S], [U])
Input: [T 〈m + 1, n + 1〉], [S〈m〉], [U〈n〉];
Output: [T 〈m + 1, n + 1〉], [S〈m〉]; result ∈ {Opt, Unb};
repeat forever1

([V], s) ← GetPivCol([T (m + 1, 1..n)]); // protocol 4.52

if s = 0 then return ([T], [S], Opt);3

[C] ← SecReadCol([T], [V]); // 1 rnd, m + 1 inv4

([W], s) ← GetPivRow([T (1..m, n + 1)], [C]); // protocol 4.65

if s = 0 then return ([T], [S], Unb);6

[R] ← SecReadRow([T], [W]); // 1 rnd, n + 1 inv7

[p] ← SecRead([R], [V]); // 1 rnd, 1 inv8

[T] ← UpdTab([T], [C], [R], [V], [W], [p]); // protocol 4.89

([S], [U]) ← UpdVar([S], [U], [V], [W]); // 2 rnd, m + n + 2 inv10

end11

The iterations terminate when the algorithm finds the optimal solution or
determines that the linear program is unbounded. Termination is detected by the
pivot selection protocols, which report that no pivot exists (s = 0). Protocol 4.3,

Secure Multiparty Linear Programming Using Fixed-Point Arithmetic 145

GetSolution, extracts the solution from the tableau by assigning X(S(i)) ← B(i)
for i ∈ [1..m] and 0 to the other elements; it uses secret indexing and the protocol
Int2BitMask [17] that converts secret integers to secret bitmasks.

Protocol 4.3: [X] ← GetSolution([B], [S])
Input: [B〈m〉], [S〈m〉];
Output: [X〈n + m〉];
foreach i ∈ [1..n + m] do [X(i)] ← 0;1

foreach i ∈ [1..m] do parallel2

[V] ← Int2BitMask([S(i)], m + n); // 3 rnd, 3(m + n) − 4 inv3

SecWrite([X], [V], [B(i)]); // 1 rnd, m + n inv4

return [X]; // decision variables: [X(1)], . . . , [X(n)]5

The vectors [S] and [U] are initialized by InitVar with the indexes of the initial
basis and non-basis variables. At each iteration, the basis variable with index
[S([W])] is replaced by the non-basis variable with index [U([V])]. Protocol 4.4
updates [S] and [U] by swapping the corresponding entries.

Protocol 4.4: ([S], [U]) ← UpdVar([S], [U], [V], [W])
Input: [S〈m〉], [U〈n〉], [V 〈n〉], [W 〈m〉]
Output: [S〈m〉], [U〈n〉] (updated)
[s] ← SecRead([S], [W]); // 1 rnd, 1 inv1

[u] ← SecRead([U], [V]); // + 1 inv2

[S] ← SecWrite([S], [W], [u]); // 1 rnd, m inv3

[U] ← SecWrite([U], [V], [s]); // + n inv4

return ([S], [U]);5

Pivot selection. Protocol 4.5, GetPivCol, finds the index of the pivot’s column by
selecting a negative entry in the cost vector F ; it returns a public bit s indicating
if the pivot column was found or not and a secret bitmask [V] that encodes the
column’s index. If none of the F values is negative then s = 0; simplex has found
the optimal solution and terminates. Otherwise, s = 1 and [V] encodes the index
of the first negative entry1.

Protocol 4.5: ([V], s) ← GetPivCol([F])
Input: [F 〈n〉];
Output: [V 〈n〉], s ∈ {0, 1};
foreach i ∈ [1..n] do parallel1

[D(i)] ← LTZ([F (i)], k); // ρ rnd, nμ inv2

s ← 1− EQZPub(
∑n

i=0[D(i)]); // 1 rnd, 1 inv3

if s = 0 then return ([D], s);4

[V] ← SelectFirst([D]); // log(n) rnd, n log(n)/2 inv5

return ([V], s);6

1 An implementation of the pivot selection protocols has to take into account the

roundoff errors, e.g., by evaluating LTZ([a] + δ, k) instead of LTZ([a], k) where δ > 0

is an estimate of the maximum error.

146 O. Catrina and S. de Hoogh

c0 c1 c0b
′
1 c1b

′
0 Output Constraints Selection

≤ 0 ≤ 0 ≤ 0 ≤ 0 1 None applicable b0/c0

0 None applicable b1/c1

> 0 ≤ 0 > 0 ≤ 0 1 b1/c1 not applicable b0/c0

≤ 0 > 0 ≤ 0 > 0 0 b0/c0 not applicable b1/c1

> 0 > 0 ≥ 0 ≥ 0 1 b0/c0 < b1/c1 b0/c0

0 b1/c1 ≤ b0/c0 b1/c1

Fig. 2. Constraint comparison using CompCons

EQZPub([v]) is a simple equality test with public output [16] and returns
(v = 0)? 1 : 0. SelectFirst([D]) computes the secret bitmask of the minimum
index i such that D(i) = 1 [17].

The index of the pivot’s row is determined by Protocol 4.6, GetPivRow. The
protocol computes argmini{

B(i)
C(i) | C(i) > 0}. If none of the C values is strictly

positive, it returns s = 0; the simplex protocol terminates and reports that the
linear program is unbounded. Otherwise, s = 1 and [W] is a secret bitmask that
encodes the index of the pivot’s row.

Protocol 4.6: [W], s ← GetPivRow([B], [C])
Input: [B〈m〉], [C〈m〉].
Output: [W 〈m〉], s ∈ {0, 1}.
foreach i ∈ [1..m] do parallel1

[D(i)] ← GTZ([C(i)]); // ρ rnd, mμ inv2

s ← 1− EQZPub(
∑m

i=0[D(i)]); // 1 rnd, 1 inv3

if s = 0 then return ([D], s);4

foreach i ∈ [1..m] do parallel5

[B′(i)] ← [B(i)] + (1− [D(i)])2f ;6

[W] ← MinCons([B′], [C], m); // �log(m)�(ρ + 3) rnd, (m − 1)(μ + 5) inv7

return ([W], s);8

Protocol 4.7: [s] ← CompCons([b′0], [c0], [b′1], [c1])

[x] ← [b′0][c1]− [b′1][c0]; // 1 rnd, 2 inv1

[s] ← LTZ([x], k + f); // ρ rounds, μ inv2

return [s];3

GetPivRow uses the following method. Steps 1-4 select the relevant constraints
by computing the secret bitmask [D], D(i) = (C(i) > 0)? 1 : 0, i ∈ [1..m]. If
D is null the protocol terminates and reports that no pivot row was found.
Steps 5-7 compute the secret bitmask [W] that encodes argmini{

B′(i)
C(i) }, where

B′(i) = B(i) if C(i) > 0 and B′(i) > 0 if C(i) ≤ 0. Replacing B(i) with B′(i)
avoids the combination C(i) ≤ 0 (non-applicable constraint) and B(i) = 0 when
the constraints are compared by Protocol 4.7, CompCons. The selection done by
CompCons is shown in Figure 2. The complexity of CompCons can be reduced
by modifying LTZ to scale down the input to resolution 2−f before comparison,

Secure Multiparty Linear Programming Using Fixed-Point Arithmetic 147

without interaction [16]. The constraint comparison in [19] uses a similar method
to avoid division, but for C(i) ≤ 0 sets B′(i) = ∞, i.e., greater than any value,
and C′(i) = 1. The method used in Protocol 4.6 is more efficient (it eliminates
1 round and m + n invocations) and reduces the risk of overflow.

The protocol MinCons computes argmini{
B′(i)
C(i) } by combining CompCons and

a generic protocol that finds the index of the minimum value in a vector of length
m in "log(m)# steps using m− 1 comparisons [19].

Update of the tableau. Protocol 4.8 updates the secret-shared tableau without
revealing the position of the pivot. The computation can be carried out for dif-
ferent trade-offs between accuracy and efficiency. The solution shown as Protocol
4.8 achieves low complexity with minimum effects on accuracy (i.e., close to the
best accuracy for a given fixed-point representation, δ < 2−f). Division is com-
puted by multiplication with the reciprocal of the pivot as in Protocol 3.2, and
with a single final scaling, in order to minimize rounding errors.

The complexity of the protocol is reduced by adapting the algorithm in
Section 2.1 as follows. Let r and c be the indexes of the pivot’s row and col-
umn, respectively, and p = T (r, c). The tableau is updated by computing:

R′(c) ← p + 1; R′(j) ← T (r, j), j ∈ [1..n + 1]\{c};
C′(r) ← (p− 1)/p; C′(i) ← T (i, c)/p, i ∈ [1..m + 1]\{r};
T (i, j) ← T (i, j)− C′(i)R′(j), i ∈ [1..m + 1], j ∈ [1..n + 1].

Protocol 4.8: [T] ← UpdTab([T], [C], [R], [V], [W], [p])
Input: [T 〈m + 1, n + 1〉], [C〈m + 1〉], [R〈n + 1〉], [V 〈n〉], [W 〈m〉]; [p].
Output: [T 〈m + 1, n + 1〉] (updated).
[y] ← Rec([p], k); // protocol 4.91

[R′] ← SecWrite([R], [V], [p] + 2f); // 1 rnd, n inv2

[C′] ← SecWrite([C], [W], [p]− 2f); // + m inv3

foreach i ∈ [1..m + 1] do parallel4

[C′(i)] ← [C′(i)][y]; // 1 rnd, m + 1 inv5

foreach i ∈ [1..m + 1], j ∈ [1..n + 1] do parallel6

[T ′(i, j)] ← [C′(i)][R′(j)]; // 1 rnd, (m + 1)(n + 1) inv7

[T ′(i, j)] ← TruncPrN([T ′(i, j)], 3k, 2k); // 1 rnd (m + 1)(n + 1) inv8

[T (i, j)] ← [T (i, j)]− [T ′(i, j)];9

return [T];10

Protocol 4.9: [y] ← Rec([p], k)

([c], [v]) ← Norm([p], k); // see Table 31

[x] ← RecItNR([c], k); // see Table 32

[y] ← [v][x]; // 1 rnd, 1 inv3

return [y];4

The protocol computes R′ and C′ in 2 rounds and 2m + n + 1 invocations
(steps 2-5), then T ′(i, j) ← C′(i)R′(j) in 2 rounds and 2(m+1)(n+1) invocations
(steps 7-8, multiplication and scaling) and, finally, T (i, j) ← T (i, j)− T ′(i, j).

148 O. Catrina and S. de Hoogh

The cost of achieving best accuracy per iteration is a larger modulus, log(q) >
3k. The modulus can be reduced to log(q) > 2k by scaling down C′ before step
7 and/or by computing 1/p with precision k′ < k.

5 Performance Evaluation and Conclusions

We implemented and tested the simplex protocol using our Java libraries for
secure computation. We measured the running time of the protocol for five pro-
cesses (parties) running on different PCs (Intel Core Duo, 1.8 GHz) with full
mesh interconnection topology. The experiments were carried out in an isolated
network for two settings: Ethernet LAN with 100 Mbps links and WAN with 10
Mbps links. The average round-trip time of the WAN was 40 ms. The LAN ex-
periments show the protocol performance for low network delay, while the WAN
experiments show the effects of higher network delay and lower bandwidth.

Figure 3 shows the running time of an iteration for log(q) = 288 bits, k =
2f = 80 bits, and linear programs of several sizes: m = n = 25, m = n = 50,
m = n = 100. To reduce the number of rounds, all the shared random bits
needed by an iteration (for comparisons and reciprocal) are generated in parallel
by an initial precomputation phase. Moreover, the running time can be reduced
by executing the precomputation in parallel with the previous iteration.

2.08

3.85

8.15

1.03

1.85

4.21

0

1

2

3

4

5

6

7

8

9

25 x 25 50 x 50 100 x 100

Total

After Precomp.

Simplex STRP, 5 parties, LAN 100 Mbps

7.43

15.46

36.90

4.24

9.39

24.83

0

5

10

15

20

25

30

35

40

25 x 25 50 x 50 100 x 100

Total

After Precomp.

Simplex STRP, 5 parties, WAN 10 Mbps

LAN WAN

25 × 25 50 × 50 100 × 100 25 × 25 50 × 50 100 × 100

Precomputation 1.05 2.00 3.93 3.19 6.08 12.08

Select pivot column 0.22 0.37 0.65 0.67 1.44 2.52

Select pivot row 0.52 0.83 1.40 1.82 3.06 5.41

Update the tableau 0.29 0.65 2.17 1.75 4.88 16.90

Fig. 3. Running time (seconds) for secure simplex iterations

Secure Multiparty Linear Programming Using Fixed-Point Arithmetic 149

The simplex algorithm in Section 2.1 can be modified to carry out the com-
putation using integer pivoting [15,19]. Correctness and accuracy of our protocol
were verified using an implementation (for public data) of the algorithm with in-
teger pivoting, which performs the same pivot operations with exact arithmetic.

A simplex protocol for this variant of the algorithm can easily be obtained
by adapting the protocols in Section 4. The main difference is the update of the
tableau using secure integer arithmetic instead of fixed-point arithmetic. This
protocol is more efficient than the variant in [19] (e.g., 2m + n comparisons
instead of 3m+n and 2mn multiplications for the update of the tableau instead
of 3m(n + m)). However, they are both affected by the growth of the values in
the tableau, that can reach thousands of bits for linear programs with tens of
variables and constraints [19]. The experiments showed a large increase of the
running time for pivot selection and precomputation (comparisons) and for the
update of the tableau (large shares) even for log(q) = 1024 bits.

The tests show that our approach offers an important performance gain and
suitable accuracy for secure linear programming. The main performance bottle-
neck is the secure comparison. Our comparison protocol [16] provides statistical
privacy and performs most of the computation in a small field, hence with low
overhead (Table 3). By encoding binary values in small fields and using efficient
share conversions, the amount of data exchanged is reduced from O(k2) bits
(when integer and binary values are encoded in the same field) to O(k). The
simplex algorithm used by the protocol needs only 2m+n comparisons (instead
of 3m+n when using the large tableau to select the pivot) and fixed-point arith-
metic can reduce their input bit-length by a factor of 10 with respect to integer
pivoting. Nevertheless, most of the precomputation time and pivot selection time
shown in Fig. 3 is due to comparisons. Further performance improvement would
require secure comparison with sublinear complexity; currently, in the multiparty
setting, this can be achieved only by trading off privacy for efficiency.

The solutions presented in this paper can be applied to other simplex variants
(e.g., revised simplex) and to protocols for general linear programs (finding an
initial basic feasible solution). The building blocks can be used in other appli-
cations with similar requirements (accurate secure computation with rational
numbers or computation with many parallel operations). These are topics of on-
going research, in parallel with the improvement of secure fixed-point arithmetic.

Acknowledgements. Part of this work was funded by the European Commission
through the grant FP7-213531 to the SecureSCM project. We thank Claudiu
Dragulin for his contribution to the implementation of the protocols.

References

1. Bednarz, A., Bean, N., Roughan, M.: Hiccups on the road to privacy-preserving

linear programming. In: WPES 2009: Proc. of the 8th ACM Workshop on Privacy

in the electronic society, pp. 117–120. ACM, New York (2009)

2. Bertsimas, D., Tsitsiklis, J.: Introduction to Linear Optimization. Athena Scien-

tific, Belmont (1997)

150 O. Catrina and S. de Hoogh

3. Canetti, R.: Security and composition of multiparty cryptographic protocols. Jour-

nal of Cryptology 13(1), 143–202 (2000)

4. Catrina, O., Saxena, A.: Secure computation with fixed-point numbers. In:

Financial Cryptography and Data Security. LNCS, Springer, Heidelberg (2010)

5. Cramer, R., Damg̊ard, I., Ishai, Y.: Share conversion, pseudorandom secret-sharing

and applications to secure computation. In: Kilian, J. (ed.) TCC 2005. LNCS,

vol. 3378, pp. 342–362. Springer, Heidelberg (2005)

6. Cramer, R., Damg̊ard, I., Maurer, U.: General Secure Multi-Party Computation

from any Linear Secret-Sharing Scheme. In: Preneel, B. (ed.) EUROCRYPT 2000.

LNCS, vol. 1807, pp. 316–334. Springer, Heidelberg (2000)

7. Damg̊ard, I., Fitzi, M., Kiltz, E., Nielsen, J., Toft, T.: Unconditionally secure

constant-rounds multi-party computation for equality, comparison, bits and ex-

ponentiation. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp.

285–304. Springer, Heidelberg (2006)

8. Damg̊ard, I., Thorbek, R.: Non-interactive Proofs for Integer Multiplication. In:

Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 412–429. Springer,

Heidelberg (2007)

9. Damgard, I., Thorbek, R.: Efficient conversion of secret-shared values between

different fields. Cryptology ePrint Archive, Report 2008/221 (2008)

10. Ercegovac, M.D., Lang, T.: Digital Arithmetic. Morgan Kaufmann, San Francisco

(2003)

11. Frati, F., Damiani, E., Ceravolo, P., Cimato, S., Fugazza, C., Gianini, G., Marrara,

S., Scotti, O.: Hazards in full-disclosure supply chains. In: Proc. 8th Conference on

Advanced Information Technologies for Management, AITM 2008 (2008)

12. Gennaro, R., Rabin, M., Rabin, T.: Simplified VSS and fast-track multi-party

computations with applications to threshold cryptography. In: Proc. of ACM Sym-

posium on Principles of Distributed Computing, PODC 1998 (1998)

13. Li, J., Atallah, M.: Secure and Private Collaborative Linear Programming. In:

Proc. 2nd Int. Conference on Collaborative Computing: Networking, Applications

and Worksharing (ColaborateCom 2006), Atlanta, USA, pp. 19–26 (2006)

14. Nishide, T., Ohta, K.: Multiparty Computation for Interval, Equality, and Com-

parison Without Bit-Decomposition Protocol. In: Okamoto, T., Wang, X. (eds.)

PKC 2007. LNCS, vol. 4450, pp. 343–360. Springer, Heidelberg (2007)

15. Rosenberg, G.: Enumeration of All Extreme Equilibria of Bimatrix Games with

Integer Pivoting and Improved Degeneracy Check. Research Report LSE-CDAM-

2005-18, London School of Economics and Political Science (2005)

16. SecureSCM. Security Analysis. Deliverable D9.2, EU FP7 Project Secure Supply

Chain Management, SecureSCM (2009)

17. SecureSCM. Protocol Description V2. Deliverable D3.2, EU FP7 Project Secure

Supply Chain Management, SecureSCM (2010)

18. Toft, T.: Primitives and Applications for Multi-party Computation. PhD disserta-

tion, Univ. of Aarhus, Denmark, BRICS, Dep. of Computer Science (2007)

19. Toft, T.: Solving Linear Programs Using Multiparty Computation. In: Dingledine,

R., Golle, P. (eds.) FC 2009. LNCS, vol. 5628, pp. 90–107. Springer, Heidelberg

(2009)

A Certifying Compiler for Zero-Knowledge
Proofs of Knowledge Based on Σ-Protocols�

José Bacelar Almeida1, Endre Bangerter2, Manuel Barbosa1,
Stephan Krenn3, Ahmad-Reza Sadeghi4, and Thomas Schneider4

1 Universidade do Minho, Portugal

{jba,mbb}@di.uminho.pt
2 Bern University of Applied Sciences, Biel-Bienne, Switzerland

endre.bangerter@jdiv.org
3 Bern University of Applied Sciences, Biel-Bienne, Switzerland, and

University of Fribourg, Switzerland

stephan.krenn@bfh.ch
4 Horst Görtz Institute for IT-Security, Ruhr-University Bochum, Germany

{ahmad.sadeghi,thomas.schneider}@trust.rub.de

Abstract. Zero-knowledge proofs of knowledge (ZK-PoK) are impor-

tant building blocks for numerous cryptographic applications. Although

ZK-PoK have a high potential impact, their real world deployment is

typically hindered by their significant complexity compared to other

(non-interactive) crypto primitives. Moreover, their design and imple-

mentation are time-consuming and error-prone.

We contribute to overcoming these challenges as follows: We present

a comprehensive specification language and a compiler for ZK-PoK pro-

tocols based on Σ-protocols. The compiler allows the fully automatic

translation of an abstract description of a proof goal into an executable

implementation. Moreover, the compiler overcomes various restrictions

of previous approaches, e.g., it supports the important class of exponenti-

ation homomorphisms with hidden-order co-domain, needed for privacy-

preserving applications such as DAA. Finally, our compiler is certifying,

in the sense that it automatically produces a formal proof of the sound-

ness of the compiled protocol for a large class of protocols using the

Isabelle/HOL theorem prover.

Keywords: Zero-Knowledge, Protocol Compiler, Formal Verification.

1 Introduction

A zero-knowledge proof of knowledge (ZK-PoK) is a two-party protocol between
a prover and a verifier, which allows the prover to convince the verifier that
he knows a secret value that satisfies a given relation (proof of knowledge or

� This work was in part funded by the European Community’s Seventh Framework

Programme (FP7) under grant agreement no. 216499. The compiler can be found at

http://zkc.cace-project.eu, and a full version of this paper is given in [1].

D. Gritzalis, B. Preneel, and M. Theoharidou (Eds.): ESORICS 2010, LNCS 6345, pp. 151–167, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

http://zkc.cace-project.eu

152 J.B. Almeida et al.

soundness), without the verifier being able to learn anything about the secret
(zero-knowledge). For a formal definition we refer to [2].

Almost all practically efficient ZK-PoK are based on so-called Σ-protocols,
and allow one to prove knowledge of a preimage under a homomorphism (e.g.,
a secret discrete logarithm). These preimage proofs can then be combined to
considerably more complex protocols. In fact, many systems in applied crypto-
graphy use such proofs as building blocks. Examples include voting schemes [3],
biometric authentication [4], group signatures [5], interactive verifiable compu-
tation [6], e-cash [7], and secure multiparty computation [8].

While many of these applications only exist at the specification level, directed
applied research efforts have already brought innovative systems using ZK-PoKs
to the real world. The probably most prominent example is Direct Anonymous
Attestation (DAA) [9], a privacy enhancing mechanism for remote authentication
of computing platforms. Another example is the idemix anonymous credential
system [10] for user-centric identity management.

Up to now, design, implementation and verification of the formal security
properties (i.e., zero-knowledge and soundness) as well as code security proper-
ties (e.g., security against side channel vulnerabilities, etc.) is done “by hand”.
Past experiences, for example in realizing DAA and idemix, have shown that
these are time consuming and error prone tasks. This is certainly due to the
fact that ZK-PoK are considerably more complex than other non-interactive
cryptographic primitives such as encryption schemes.

In particular, the soundness property needs to be proved for each ZK-PoK
protocol from scratch. The proofs often are not inherently complex, but still
require an intricate knowledge of the techniques being used. This is a major
hurdle for the real world adoption of ZK-PoK, since even experts in the field are
not immune to protocol design errors. In fact, minor flaws in protocol designs
can lead to serious security flaws, see for example [11] reporting a flaw in [12].

In this paper we describe a compiler and integrated tools that support and par-
tially automate the design, implementation and formal verification of ZK-PoK
based on Σ-protocols. Our goal is to overcome the aforementioned difficulties
concerning ZK-PoK, and thus to bring ZK-PoK to practice by making them
accessible to a broader group of crypto and security engineers.

Our Contributions. In a nutshell, we present a toolbox that takes an abstract
description of the proof goal1 of a ZK-PoK as input, and produces a C im-
plementation of a provably sound protocol. More precisely, we extend previous
directions with multiple functionalities of practical and theoretical relevance:

– We present a compiler for ZK-PoK based on Σ-protocols. The compiler (and
its input language) support all relevant basic Σ-protocols and composition
techniques found in the literature. The user can specify preimage proofs for
arbitrary group homomorphisms, and combine them by logical AND and OR
operators. Also, algebraic relations among the secrets can be proved.

1 By proof goal, we refer to what a prover wants to demonstrate in zero-knowledge.
For instance, the proof goal can be to prove knowledge of a discrete logarithm.

A Certifying Compiler for ZK-PoK Based on Σ-Protocols 153

Examples of protocols that can be automatically generated by our com-
piler include [3,4,5,6,7,8,9,10,13,14,15,16].

– The compiler absorbs certain design-level decisions, for example by auto-
matically choosing security parameters and intervals used in the protocols
to assert the statistical ZK property for proofs in hidden order groups. It thus
eliminates the potential of security vulnerabilities resulting from inconsistent
parameter choices. Further, the compiler has capabilities to automatically
rewrite the proof goal to reduce the complexity of the generated protocol.

– Last but not least, our compiler partially alleviates the implementor from the
responsibility to establish a theoretical security guarantee for the protocol,
by producing a formal proof of its soundness2. Technically, the compiler
produces a certificate that the protocol generated by the compiler fulfills its
specification. The validity of the certificate is then formally verified by the
Isabelle/HOL formal theorem prover [17]. Our tool can therefore be seen as
a certifying compiler. The formal verification component currently supports
a subset of the protocols for which our compiler can generate code, but it
already covers a considerable class of applications, including [7,13,14].

Related Work. Compiler based (semi-)automatic generation of cryptographic
protocols has attracted considerable research interest recently, for instance in
the field of multi-party computations [18,19,20].

A first prototype ZK-PoK compiler was developed in [21,22] and extended
within the CACE project [23,24]. Yet, this compiler offers no optimization or
verification functionalities and can only handle a subset of the proof goals sup-
ported by our compiler whose architecture was presented in [25].

Very recently, Meiklejohn et al. [26] presented another ZK-PoK compiler for
specific applications such as e-cash. To maximize efficiency, their tool generates
protocols which exploit precomputations, a feature which is not yet supported
by our compiler. However, our compiler provides a substantially broader class
of proofs goals such as Or-compositions, and homomorphisms such as RSA [27].
Further, formal verification is left as an “interesting area of study” in [26].

Symbolic models that are suitable for expressing and formally analyzing pro-
tocols that rely on ZK protocols as building blocks were presented in [28,29].
In [28] the first mechanized analysis framework for such protocols was proposed
by extending the automatic tool ProVerif [30]. The work in [31] proposed an
alternative solution to the same problem based on a type-based mechanism. Our
work does not overlap with these contributions, and can be seen as complemen-
tary. The previous frameworks assume that the underlying ZK-PoK components
are secure under adequate security models in order to prove the security of higher
level protocols. We work at a lower level and focus on proving that specific ZK-
PoK protocols generated by our compiler satisfy the standard computational

2 The soundness property is arguably the most relevant security property for many

practical applications of ZK-PoK, as it essentially establishes that it is infeasible to

prove an invalid knowledge claim. However, our tool is currently being expanded to

cover other relevant security properties, namely the zero-knowledge property.

154 J.B. Almeida et al.

security model for this primitive. Recent results in establishing the computa-
tional soundness of ZK-PoK-aware symbolic analysis can be found in [32]. Cur-
rently, we do not establish a connection between the security properties offered
by the ZK-PoK protocols produced by our compiler and the level of security
required to enable the application of computational soundness results.

We follow a recent alternative approach to obtaining computational security
guarantees through formal methods: directly transposing provable security argu-
ments to mechanized proof tools. This allows to deal directly with the intricacies
of security proofs, but the potential for mechanization is yet to match that of
symbolic analysis. In this aspect, our work shares some of its objectives with par-
allel work by Barthe et al. [33] describing the formalization of the theory of ZK-
PoK in the Coq-based CertiCrypt tool [34]. This formalization includes proofs
for the general theorems that establish the completeness, soundness and special
honest-verifier ZK properties for Σ-protocols based on homomorphisms. Proving
that a concrete protocol satisfies this set of properties can then be achieved by
instantiating these general proofs with concrete homomorphisms. Although not
completely automatic, this requires relatively small interaction with the user. In
this work we provide further evidence that the construction of computational
security proofs over mechanized proof tools can be fully automatic. The catch
is that our verification component is highly specialized for (a specific class of)
ZK-PoK and relies on in-depth knowledge on how the protocol was constructed.

Our work is also related to the formal security analysis of cryptographic pro-
tocol implementations. A tool for the analysis of cryptographic code written in
C is proposed in [35]. In [36,37], approaches for extracting models from protocol
implementations written in F#, and automatically verifying these models by
compilation to symbolic models (resp. computational models) in ProVerif [38]
(resp. CryptoVerif [39]), can be found. As above, the latter works target higher
level protocols such as TLS that use cryptographic primitives as underlying com-
ponents. Furthermore, the static cryptographic library that implements these
primitives must be trusted by assumption. Our work can be seen as a first step
towards a tool to automatically extend such a trusted computing base when ZK-
PoK protocols for different goals are required.

Structure of this document. In §2 we recap the theoretical framework used
by our compiler, which we then present in §3. Finally, the formal verification
infrastructure is explained in §4.

2 Preliminaries

Before recapitulating the basics of Σ-protocols we introduce some notation. By
s ∈R S we denote the uniform random choice of s from set S. The order of
a group G is denoted by ord(G), and the smallest prime dividing a ∈ Z by
minDiv(a). We use the notation from [40] for specifying ZK-PoK. A term like

ZPK

[
(χ1, χ2) : y1 = φ1(χ1) ∧ y2 = φ2(χ2) ∧ χ1 = aχ2

]

A Certifying Compiler for ZK-PoK Based on Σ-Protocols 155

means “zero-knowledge proof of knowledge of values χ1, χ2 such that y1 = φ1(χ1),
y2 = φ2(χ2), and χ1 = aχ2” with homomorphisms φ1, φ2. Variables of which
knowledge is proved are denoted by Greek letters, whereas publicly known quan-
tities are denoted by Latin letters. Note that this notation only specifies a proof
goal : it describes what has to be proved, but there may be various, differently
efficient protocols to do so. We call a term like y = φ(χ) in the proof goal an
atom. A predicate is the composition of atoms and predicates using arbitrary
many (potentially none) boolean operators And (∧) and Or (∨).

2.1 Σ-Protocols as ZK-PoK Protocols

Most practical ZK-PoK are based on Σ-protocols. Given efficient algorithms
P1, P2, V, these have the following form: to prove knowledge of a secret χ satis-
fying a relation with some public y, the prover first sends a commitment t :=
P1(χ, y) to the verifier, who then draws a random challenge c from a predefined
challenge set C. Receiving c, the prover computes a response s := P2(χ, y, c).
Now, if V(t, c, s, y) = true, the verifier accepts the proof, otherwise it rejects.
Whenever the verifier accepts, we call (t, c, s) an accepting transcript.

Formally, for the protocol to be a proof of knowledge with knowledge error κ,
the verifier must always accept for an honest prover. Furthermore, there must
be an algorithm E′ satisfying the following: whenever a (potentially malicious)
prover can make the verifier accept with probability ε > κ, E′ can extract χ from
the prover in a number of steps proportional to (ε − κ)−1 [2]. For Σ-protocols,
this boils down to the existence of an efficient knowledge extractor E, which takes
as inputs two accepting protocol transcripts (t, c′, s′), (t, c′′, s′′) with c′ �= c′′, and
y, and outputs a value χ′ satisfying the relation [41,42].

A Σ-protocol satisfies the ZK property, if there is an efficient simulator S,
taking c, y as inputs, and outputting tuples that are indistinguishable from real
accepting protocol transcripts with challenge c [41,42].

2.2 Proving Atoms

We next summarize the basic techniques for proving atoms.

The Σφ-Protocol. The Σφ-protocol allows to efficiently prove knowledge of
preimages under homomorphisms with a finite domain [13,43]. For instance,
it can be used to prove knowledge of the content of ciphertexts under the
Cramer/Shoup [44] or the RSA [27] encryption schemes. Also, it can be used
for all homomorphisms mapping into a group over elliptic curves.

The protocol flow, as well as inputs and outputs of both parties, are shown
in Fig. 1. Depending on the homomorphism φ, the knowledge error κ of the
Σφ-protocol varies significantly. We thus recall a definition by Cramer [41].

A homomorphisms φ : G → H is called special, if there is a v ∈ Z \ {0}, such
that for every y ∈ H a preimage u of yv can efficiently be computed. The pair
(u, v) is then called a pseudo-preimage of y. For instance, all homomorphisms
with known-order codomain are special: if ord(H) = q, a pseudo-preimage of
y ∈ H is given by (0, q), as we always have φ(0) = 1 = yq.

156 J.B. Almeida et al.

P[y, x] V[y]

P1 r ∈R G
t := φ(r) t � c ∈R C

P2 s := r + c · x c�

s � φ(s)
?
= t · yc → true/false V

Fig. 1. The Σφ-protocol for performing ZPK[(χ) : y = φ(χ)]

We now state the knowledge error that can be achieved by the Σφ-protocol:

Theorem 1 ([41]). Let φ be a homomorphism with finite domain. Then the
Σφ-protocol using C = {0, . . . , cmax − 1} is a ZK-PoK with κ = 1/cmax, if either
cmax = 2, or φ is special with special exponent v and cmax ≤ minDiv(v).

The ΣGSP- and the Σexp-Protocols. The practically important class of expo-
nentiation homomorphisms with hidden-order codomain (including, for example,
φ : Z → Z∗

n : a $→ ga, where n is an RSA modulus, and g generates the quadratic
residues modulo n) cannot be treated with the Σφ-protocol.

Two Σ-protocols for such homomorphisms can be found in the literature.
The ΣGSP-protocol generalizes the Σφ-protocol to the case of infinite domains
(i.e., G = Z), and can be used very efficiently if assumptions on the homo-
morphism φ are made [45,46]. On the other hand, the so-called Σexp-protocol
presented in [23,47] takes away these assumptions, by adding an auxiliary con-
struction based on a common reference string and some computational overhead.

2.3 Operations on Σ-Protocols

Next, we briefly summarize some techniques, which allow one to use Σ-protocols
in a more general way than for proving atoms only.

Reducing the knowledge error. The knowledge error of a Σ-protocol can be
reduced from κ to κr by repeating the protocol r times in parallel. In this way,
arbitrarily small knowledge errors can be achieved [2].

Composition techniques. In practice, it is often necessary to prove knowledge
of multiple, or one out of a set of, secret values in one step. This can be achieved
by performing so-called And- or Or-compositions, respectively. While the former
requires the prover to know the secrets for all combined predicates to convince
the verifier, he only needs to know at least one of them for the latter [48].

For a Boolean And, the only difference to running the proofs for the combined
predicates independently in parallel is that the verifier only sends one challenge
c, which is then used in all combined predicates.

Combining n predicates by a Boolean Or is slightly more involved. The prover
is allowed to simulate all-but-one accepting protocol transcripts (for the pred-
icates it does not know the secrets for) by allowing it to choose the according

A Certifying Compiler for ZK-PoK Based on Σ-Protocols 157

ci. The remaining challenge is then fixed such that
∑n

i=1 ci ≡ c mod cmax. To
ensure this, the response is now given by ((s1, c1), . . . , (sn, cn)), where si is the
response of the i-th predicate. In addition to running all verification algorithms,
the verifier also checks that the ci add up to the challenge c.

In principle, any Boolean formula can be proved by combining these two
techniques. Yet, when proving knowledge of k out of n secrets this becomes very
inefficient if n is large. A much more efficient way for performing such n-out-of-
k threshold compositions is to apply the technique from [49], instantiated with
Shamir’s secret sharing scheme [50].

Non-interactivity. By computing the challenge as hash of the commitment t
with a random oracle, a Σ-protocol can be made non-interactive [51]. Besides
reducing the round- and communication complexity of the proofs, this technique
allows conversion into signature proofs of knowledge as well.

Algebraic relations among preimages. By re-adjusting the atoms of a proof
goal, virtually any algebraic relations among the preimages can be proven. For
examples we refer to [16,45,46,48,52,53].

3 Compiler

In this section we present a compiler, which is easy to use and that can generate
code and documentation for the ZK-PoK protocols used in most systems found
in the literature. Its modular design allows one to easily extend its functionality
with minor effort only. Finally, an integrated tool is capable of formally verifying
the soundness of the generated protocols for special homomorphisms.

3.1 Architecture

Our compiler is built from multiple components as shown in Fig. 2. These com-
ponents are again designed modularly themselves. Thus, enhancing the compiler
on a high level (e.g., adding backends) and on a low level (e.g., changing libraries
used in the backends) can be done without affecting unrelated components.

Protocol Specification. We call the input language of our compiler Protocol
Specification Language (or PSL). It is based on the standard notation for ZK-
PoK introduced in [40], but takes away any ambiguity by also containing group
specifications, etc. On a high level, PSL allows one to specify the protocol inputs,
the algebraic setting, the types of Σ-protocols to be used, and how they should
be composed (cf. §2.2 and §2.3). For a more detailed discussion of PSL see §3.2.

Protocol Compiler. The Protocol Compiler translates a PSL file into a proto-
col implementation formulated in our Protocol Implementation Language (PIL).
This language can be thought of as a kind of pseudo-code describing the se-
quence of operations computed by both parties (including group operations,
random choices, checks, etc.) and the messages exchanged.

158 J.B. Almeida et al.

BackendsLATEXC

Protocol
Specification

Language (PSL)

Protocol
Compiler

Plugins

Σ2NIZK

Costs

Protocol
Verification
Toolbox

Protocol
Implementation
Language (PIL)

Code Documentation

Proof of
Soundness

Fig. 2. Architecture of our ZK-PoK compiler suite

Backends. Backends allow to transform the protocol implementation into vari-
ous output languages. The C Backend generates source code in the C program-
ming language for prover and verifier which can be compiled and linked together
with the GNU multi-precision arithmetic library [54] into executable code. The
LATEX Backend generates a human-readable documentation of the protocol.

Protocol Verification Toolbox. This component takes as inputs a PSL file
together with the corresponding PIL file obtained from a compilation run. It first
extracts the necessary information for constructing a formal proof of the sound-
ness property of the generated protocol. The theorem prover Isabelle/HOL [55,56]
is then used to automatically check the generated formal proof. We give more
details on this toolbox in §4.

Plugins. Currently, two plugins are available in our compiler. The Σ2NIZK-
plugin transforms the generated protocol in a non-interactive version thereof
by applying the technique from [51], cf. §2.3. Its functionality could easily be
extended to signature proofs of knowledge. The Costs plugin determines the ab-
stract costs of the protocol by computing the communication complexity and the
number of group operations needed in any of the involved groups. This enables
a comparison of the efficiency of different protocols already on an abstract level.

3.2 Protocol Specification Language and Optimizations

Next, we illustrate usage of our compiler (and, in particular, PSL) using the
following informal statement from a group-oriented application as example:

“One of two legitimate users has committed to message m without re-
vealing m or the identity of the user who committed.”

For the example we assume that Pedersen commitments [14] were used to commit
to m. Such commitments are of the form c = gmhr for randomly chosen r. Here,
〈g〉 = 〈h〉 = H where H is a subgroup of prime order q of Z∗

p for some prime p.
Further logg h must not be known to the committing party.

A Certifying Compiler for ZK-PoK Based on Σ-Protocols 159

Declarations { Prime(1024) p;
Prime(160) q;
G=Zmod+(q) m, r, sk_1, sk_2;
H=Zmod*(p) g@{order=q}, h@{order=q}, c@{order=q},

pk_1@{order=q}, pk_2@{order=q}; }
Inputs { Public := p,q,g,h,c,pk_1,pk_2;

ProverPrivate := m,r,sk_1,sk_2; }
Properties { KnowledgeError := 80;

ProtocolComposition := P_0 And (P_1 Or P_2); }
GlobalHomomorphisms { Homomorphism (phi : G -> H : (a) |-> (g^a)); }
// Predicates
SigmaPhi P_0 { Homomorphism (psi : G^2 -> H : (a,b) |-> (g^a * h^b));

ChallengeLength := 80; Relation ((c) = psi(m,r)); }
SigmaPhi P_1 { ChallengeLength := 80; Relation ((pk_1) = phi(sk_1)); }
SigmaPhi P_2 { ChallengeLength := 80; Relation ((pk_2) = phi(sk_2)); }

Fig. 3. PSL Example

To authenticate users we use Diffie-Hellman keys: each user randomly picks a
sufficiently large secret key ski, computes the public key pki = gski and publishes
pki. For simplicity, we use the same group H for commitments and keys of users,
but the compiler could use different groups as well.

Now, given c, pk1, pk2, the informal statement translates into this proof goal:

ZPK

[
(μ, ρ, σ1, σ2) : c = gμhρ ∧

(
pk1 = gσ1 ∨ pk2 = gσ2

)]
.

With homomorphisms ψ : (a, b) $→ gahb and φ : (a) $→ ga we rewrite this as

ZPK

[
(μ, ρ, σ1, σ2) : c = ψ(μ, ρ)︸ ︷︷ ︸

P0

∧
(
pk1 = φ(σ1)︸ ︷︷ ︸

P1

∨pk2 = φ(σ2)︸ ︷︷ ︸
P2

)]
,

where the atoms are P0, P1, and P2. This proof goal together with the underlying
algebraic setting can be expressed in PSL as shown in Fig. 3 and described next.
Each PSL file consists of the following blocks:

Declarations. All variables used in the protocol must first be declared here.
PSL supports several data types with a given bit-length such as integers (Int)
or primes (Prime). Also intervals ([a,b]) and predefined multiplicative and ad-
ditive groups are supported, e.g., Zmod*(p) (Z∗

p, ∗) and Zmod+(q) (Zq, +). Iden-
tifiers can be assigned to groups and constants can be predefined in this section.
The compiler also supports abstract groups, which can later be instantiated with
arbitrary groups (e.g., those over elliptic curves). The order of elements can be
annotated for verification purposes, e.g., as g@{order=q}.

Inputs. Here, the inputs of both parties have to be specified. Only inputs that
have been declared beforehand can be assigned.

Properties. This section specifies the properties of the protocol to be generated.
For instance, KnowledgeError := 80 specifies an intended knowledge error of
κ = 2−80. The proof goal can be specified by arbitrarily nesting atoms using
Boolean And and Or operators. Furthermore, the compiler supports k-out-of-n-
threshold compositions [49] based on Shamir secret sharing [50] (cf. §2.3).

160 J.B. Almeida et al.

Validate PSL/PIL
Extract Proof Goal
and Verifier Code

Identity Proof
Template

Instantiate Proof
Template

Generate Isabelle
Input File

Run Isabelle

PSL File PIL File

Accept/Fail

1 2 3

456

Fig. 4. Internal operation of the Protocol Verification Toolbox (PVT)

GlobalHomomorphisms. Homomorphisms that appear in multiple atoms can
be defined globally in this optional section. Describing homomorphisms in PSL
is a natural translation from their mathematical notation consisting of name,
domain, co-domain, and the mapping function.

Predicates. Finally, the atoms used in ProtocolComposition are specified.
Each predicate is proved with a Σ-protocol: one of SigmaPhi, SigmaGSP or
SigmaExp. For each Σ-protocol, the relation between public and private values
must be defined using local or global homomorphisms. ChallengeLength speci-
fies the maximum challenge length that can be used to prove this atom with the
given Σ-protocol (cf. §2.2 for details). Note that, in general, this value cannot be
automatically determined by the compiler. It may depend, for example, on the
size of the special exponent of the homomorphism, whose factorization might
not be available. The compiler then automatically infers the required number of
repetitions of each atom from this specification.

Optimizations. The compiler automatically transforms the proof goal in order
to reduce its complexity. For instance, P_1 Or P_2 Or (P_1 And P_2) is sim-
plified to P_1 Or P_2, which halves the complexity of the resulting protocol. By
introspecting the predicates, further optimizations could be implemented easily.

4 Verification

The Protocol Verification Toolbox (PVT) of our compiler suite (cf. Fig. 2) au-
tomatically produces a formal proof for the soundness property of the compiled
protocol. That is, it formally validates the guarantee obtained by a verifier exe-
cuting the protocol: “The prover indeed knows a witness for the proof goal.”

Overview. The internal operation of the PVT is sketched in Fig. 4; the phases
(1) to (6) are explained in the following. As inputs, two files are given: the pro-
tocol specification (a PSL file) that was fed as input to the compiler, and the
protocol implementation description that was produced by the compiler (a PIL
file). The PVT first checks (1) the syntactic correctness of the files and their
semantic consistency (e.g., it verifies that the PSL and PIL files operate on the

A Certifying Compiler for ZK-PoK Based on Σ-Protocols 161

same groups, and other similar validations). Then, the information required for
the construction of the soundness proof is extracted (2). This information essen-
tially consists of the proof goal description from the PSL file and the code for the
verifier in the implementation file. In particular, the former includes the defini-
tion of the concrete homomorphisms being used in the protocol, and information
about the algebraic properties of group elements and homomorphisms3.

The reason for the verification toolbox only considering the verifier code is
that by definition [2] the soundness of the protocol essentially concerns providing
guarantees for the verifier, regardless of whether the prover is honestly executing
the protocol or not. Looking at the description of Σ-protocols in §2, one can see
that the verifier code typically is very simple. The exception is the final algebraic
verification that is performed on the last response from the prover, which deter-
mines whether the proof should be accepted. The theoretical soundness proof
that we construct essentially establishes that this algebraic check is correct with
respect to the proof goal, i.e., that it assures the verifier that the prover must
know a valid witness. The soundness proof is then generated in three steps:

a) An adequate proof template is selected from those built into the tool (3). If
no adequate template exists, the user is notified and the process terminates.

b) The proof template is instantiated with the concrete parameters correspond-
ing to the input protocol (4) and translated into an output file (5) compatible
with the Isabelle/HOL proof assistant: a theory file.

c) The proof assistant is executed on the theory file (6). If the proof assistant
successfully finishes, then we have a formal proof of the theoretical sound-
ness of the protocol. Isabelle/HOL also permits generating a human-readable
version of the proof that can be used for product documentation.

The process is fully automatic and achieving this was a major challenge to our
design. As can be seen in Fig. 4, our tool uses Isabelle/HOL [56] as a back-end (6).
In order to achieve automatic validation of the generated proofs, it was necessary
to construct a library of general lemmata and theorems in HOL that capture,
not only the properties of the algebraic constructions that are used in ZK-PoK
protocols, but also the generic provable security stepping stones required to es-
tablish the theoretical soundness property. We therefore employed and extended
the Isabelle/HOL Algebra Library [57], which contains a wide range of formal-
izations of mathematical constructs. By relying on a set of existing libraries such
as this, development time was greatly shortened, and we were able to create a
proof environment in which we can express proof goals in a notation that is very
close to the standard mathematical notation adopted in cryptography papers.
More information about Isabelle/HOL can be found in [55,56].

Remark. No verification is carried out of the executable code generated from the
PIL file. This is a program correctness problem rather than a theoretical security
problem, and must be addressed using different techniques not covered here.

We next detail the most important aspects of our approach.

3 This justifies the verification-specific annotations in the PSL file, as described in §3.

162 J.B. Almeida et al.

Proof strategy. Proving the soundness property of the ZK-PoK protocols pro-
duced by the compiler essentially means proving that the success probability of
a malicious prover in cheating the verifier is bounded by the intended knowledge
error. As described in §2.1, this involves proving the existence of (or simply to
construct) an efficient knowledge extractor.

Our verification component is currently capable of dealing with the Σφ-
protocol, which means handling proof goals involving special homomorphisms
(cf. §2.2) for which it is possible to efficiently find pseudo-preimages. As all spe-
cial homomorphisms used in cryptography fall into one of two easily recognizable
classes, the verification toolbox is able to automatically find a pseudo-preimage
for any concrete homomorphism that it encounters without human interaction.

A central stepping stone in formally proving the existence of an efficient knowl-
edge extractor is the following lemma (which actually proves Theorem 1) that
we have formalized in HOL.

Lemma 2 (Shamir’s Trick [47]). Let (u1, v1) and (u2, v2) be pseudo-preimages
of y under homomorphism φ. If v1 and v2 are co-prime, then there exists a poly-
nomial time algorithm that computes a preimage x of y under φ. This algorithm
consists of using the Extended Euclidean Algorithm to obtain a, b ∈ Z such that
av1 + bv2 = 1, and then calculating x = au1 + bu2.

Given a special homomorphism and two accepting protocol transcripts for a ZK-
PoK of an atom, we prove the existence of a knowledge extractor by ensuring
that we are able instantiate Lemma 2.

The PVT also supports Boolean And and Or composition. If multiple predi-
cates are combined by And, the verification tool defines as proof goal the exis-
tence of a knowledge extractor for each and all of them separately: one needs to
show that the witness for each predicate can be extracted independently from
the other predicates. In case of Or proofs (i.e., knowledge of one out of a set of
preimages), the proof strategy looks as follows. First, for each atom, an Isabelle
theorem proves the existence of a knowledge extractor. In a second step, it is
then shown that the assumptions of at least one of these theorems are satisfied
(i.e., that at least for one predicate we actually have different challenges).

Isabelle/HOL formalization. The HOL theory file produced by the Protocol
Verification Toolbox is typical, in the sense that it contains a set of auxiliary
lemmata that are subsequently used as simplification rules, and a final lemma
with the goal to be proved. The purpose of the auxiliary lemmata is to decompose
the final goal into simpler and easy to prove subgoals. They allow a systematic
proof strategy that, because it is modularized, can handle proof goals of arbitrary
complexity. Concretely, the proof goal for a simple preimage ZK-PoK such as
those associated with Diffie-Hellman keys (pk = gsk) used in the example in §3
looks like the following theorem formulation:

Theorem (Proof Goal). Let G and H be commutative groups, where G rep-
resents the group of integers. Take as hypothesis the algebraic definition of the
exponentiation homomorphism φ : G → H, quantified for all values of G: fix
g ∈ H with order q and assume ∀a ∈ G. φ(a) = ga. Furthermore, take a prime

A Certifying Compiler for ZK-PoK Based on Σ-Protocols 163

q > 2 and cmax ∈ Z such that 0 < cmax < q, take t, pk ∈ H such that the order
of pk is q, take s′, s′′ ∈ G and c′, c′′ ∈ Z such that 0 < c′, c′′ < cmax and c′ �= c′′,
and assume φ(s′) = t · pkc′ ∧ φ(s′′) = t · pkc′′ . Then there exist a, b ∈ Z such
that φ(au + bΔs) = pk ∧ av + bΔc = 1, where Δs := s′ − s′′ and Δc := c′ − c′′,
and (u, v) = (0, q) ∈ G× Z is a pseudo-preimage of pk under φ.

Instrumental in constructing the proof goal and auxiliary lemmata for the formal
proof are the verifier’s verification equations extracted from the PIL file. Indeed,
the part of the proof goal that describes the two transcripts of the protocol
(t, c′, s′) and (t, c′′, s′′) is constructed by translating this verification equation
into Isabelle/HOL. For example, the following PIL-statement:

Verify((_t*(pk^_c)) == (g^_s));

will be translated into the Isabelle/HOL formalization

t⊗H (pk(∧H)c′) = g(∧H)s′; t⊗H (pk(∧H)c′′) = g(∧H)s′′; c′ �= c′′;

where ⊗H and (∧H) represent the multiplicative and exponentiation operations
in H , respectively. A typical proof is then structured as follows.

A first lemma with these equations as hypothesis allows the system to make
a simple algebraic manipulation, (formally) proving that

(t⊗H (pk(∧H)c′))⊗H invH(t⊗H (pk(∧H)c′′)) = g(∧H)s′ ⊗H invH(g(∧H)s′′)

where invH represents the inversion operation for H . The subsequent lemmata
continue simplifying this equation, until we obtain:

pk(∧H)(c′ − c′′) = g(∧H)(s′ − s′′).

By introducing the homomorphism φ : G → H we are able to show

pk(∧H)(Δc) = φ(Δs)

where Δc = c′ − c′′ and Δs = s′ − s′′. We thus obtained (Δs, Δc) as a first
pseudo-preimage. The second one needed in Lemma 2 is found by analyzing the
proof goal in the PSL file, which in our case was Relation((pk) = phi(sk)).

As we have embedded in our tool the domain specific knowledge to generate
pseudo-preimages for the class of protocols that we formally verify, we can intro-
duce another explicit pseudo-preimage as an hypothesis in our proof, e.g. (0, q),
and prove that it satisfies the pseudo-preimage definition. At this point we can
instantiate the formalization of Lemma 2, and complete the proof for the above
theorem, which implies the existence of a knowledge extractor.

Proof goals for more complex Σ-protocols involving And and Or compositions
are formalized as described in the previous subsection and in line with the theo-
retic background introduced in §2. For And combinations, the proof goal simply
contains the conjunction of the independent proof goals for each of the simple

164 J.B. Almeida et al.

preimage proofs provided as atoms. For Or combinations, the proof goal assumes
the existence of two transcripts for the composed protocol

((t1, . . . , tn), c′, ((s1
1, c

1
1), . . . , (s

n
1 , cn

1)) with
n∑

i=1

ci
1 ≡ c′ mod cmax

and analogously for c′′, such that c′ �= c′′. It then states that for some i ∈
{1, . . . , n} we can construct a proof of existence of a knowledge extractor such as
that described above. The assumptions regarding the consistency of the previous
summations are, again, a direct consequence of the verifier code as stated in §2.3.

Acknowledgments. We gratefully acknowledge Wilko Henecka and Andreas
Grünert for their support on the implementation of the compiler. Also, we would
like to thank Stefania Barzan for implementing a preliminary version of the PVT.

References

1. Almeida, J., Bangerter, E., Barbosa, M., Krenn, S., Sadeghi, A.R., Schneider, T.: A

certifying compiler for zero-knowledge proofs of knowledge based on Σ-protocols.

Cryptology ePrint Archive, Report 2010/339 (2010)

2. Bellare, M., Goldreich, O.: On defining proofs of knowledge. In: Brickell, E.F. (ed.)

CRYPTO 1992. LNCS, vol. 740, pp. 390–420. Springer, Heidelberg (1993)

3. Han, W., Chen, K., Zheng, D.: Receipt-freeness for Groth e-voting schemes. Journal

of Information Science and Engineering 25, 517–530 (2009)

4. Kikuchi, H., Nagai, K., Ogata, W., Nishigaki, M.: Privacy-preserving similarity

evaluation and application to remote biometrics authentication. Soft Comput-

ing 14, 529–536 (2010)

5. Camenisch, J.: Group Signature Schemes and Payment Systems Based on the Dis-

crete Logarithm Problem. PhD thesis, ETH Zurich, Konstanz (1998)

6. Camenisch, J., Michels, M.: Proving in zero-knowledge that a number is the product

of two safe primes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp.

107–122. Springer, Heidelberg (1999)

7. Brands, S.: Untraceable off-line cash in wallet with observers. In: Stinson, D.R.

(ed.) CRYPTO 1993. LNCS, vol. 773, pp. 302–318. Springer, Heidelberg (1994)

8. Lindell, Y., Pinkas, B., Smart, N.P.: Implementing two-party computation effi-

ciently with security against malicious adversaries. In: Ostrovsky, R., De Prisco,

R., Visconti, I. (eds.) SCN 2008. LNCS, vol. 5229, pp. 2–20. Springer, Heidelberg

(2008)

9. Brickell, E., Camenisch, J., Chen, L.: Direct anonymous attestation. In: ACM CCS

2004, pp. 132–145. ACM Press, New York (2004)

10. Camenisch, J., Herreweghen, E.V.: Design and implementation of the idemix

anonymous credential system. In: ACM CCS 2002, pp. 21–30. ACM Press, New

York (2002)

11. Kunz-Jacques, S., Martinet, G., Poupard, G., Stern, J.: Cryptanalysis of an efficient

proof of knowledge of discrete logarithm. In: Yung, M., Dodis, Y., Kiayias, A.,

Malkin, T.G. (eds.) PKC 2006. LNCS, vol. 3958, pp. 27–43. Springer, Heidelberg

(2006)

12. Bangerter, E., Camenisch, J., Maurer, U.: Efficient proofs of knowledge of discrete

logarithms and representations in groups with hidden order. In: Vaudenay, S. (ed.)

PKC 2005. LNCS, vol. 3386, pp. 154–171. Springer, Heidelberg (2005)

A Certifying Compiler for ZK-PoK Based on Σ-Protocols 165

13. Schnorr, C.: Efficient signature generation by smart cards. Journal of Cryptology 4,

161–174 (1991)

14. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret

sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140.

Springer, Heidelberg (1992)

15. Camenisch, J., Lysyanskaya, A.: An efficient system for non-transferable anony-

mous credentials with optional anonymity revocation. In: Pfitzmann, B. (ed.) EU-

ROCRYPT 2001. LNCS, vol. 2045, pp. 93–118. Springer, Heidelberg (2001)

16. Lipmaa, H.: On diophantine complexity and statistical zeroknowledge arguments.

In: Laih, C.-S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 398–415. Springer,

Heidelberg (2003)

17. Paulson, L.: Isabelle: a Generic Theorem Prover. Volume 828 of LNCS. Springer

(1994)

18. MacKenzie, P., Oprea, A., Reiter, M.K.: Automatic generation of two-party com-

putations. In: ACM CCS 2003, pp. 210–219. ACM, New York (2003)

19. Malkhi, D., Nisan, N., Pinkas, B., Sella, Y.: Fairplay — a secure two-party com-

putation system. In: USENIX Security 2004 (2004)

20. Damg̊ard, I., Geisler, M., Krøigaard, M., Nielsen, J.B.: Asynchronous multiparty

computation: Theory and implementation. In: Jarecki, S., Tsudik, G. (eds.) Public

Key Cryptography – PKC 2009. LNCS, vol. 5443, pp. 160–179. Springer, Heidel-

berg (2009)

21. Briner, T.: Compiler for zero-knowledge proof-of-knowledge protocols. Master’s

thesis, ETH Zurich (2004)

22. Camenisch, J., Rohe, M., Sadeghi, A.R.: Sokrates - a compiler framework for zero-

knowledge protocols. In: WEWoRC 2005 (2005)

23. Bangerter, E., Camenisch, J., Krenn, S., Sadeghi, A.R., Schneider, T.: Automatic

generation of sound zero-knowledge protocols. Cryptology ePrint Archive, Report

2008/471, Poster Session of EUROCRYPT 2009 (2008)

24. Bangerter, E., Briner, T., Heneka, W., Krenn, S., Sadeghi, A.R., Schneider, T.:

Automatic generation of Σ-protocols. In: EuroPKI 2009 (to appear, 2009)

25. Bangerter, E., Krenn, S., Sadeghi, A.R., Schneider, T., Tsay, J.K.: On the design

and implementation of efficient zero-knowledge proofs of knowledge. In: Software

Performance Enhancements for Encryption and Decryption and Cryptographic

Compilers – SPEED-CC 2009, October 12-13 (2009)

26. Meiklejohn, S., Erway, C., Küpçü, A., Hinkle, T., Lysyanskaya, A.: ZKPDL: A

language-based system for efficient zero-knowledge proofs and electronic cash. In:

USENIX 10 (to appear, 2010)

27. Rivest, R., Shamir, A., Adleman, L.: A method for obtaining digital signatures and

public-key cryptosystems. Communications of the ACM 21, 120–126 (1978)

28. Backes, M., Maffei, M., Unruh, D.: Zero-knowledge in the applied pi-calculus and

automated verification of the direct anonymous attestation protocol. In: IEEE

Symposium on Security and Privacy – SP 2008, pp. 202–215. IEEE, Los Alamitos

(2008)

29. Baskar, A., Ramanujam, R., Suresh, S.P.: A dolev-yao model for zero knowledge. In:

Datta, A. (ed.) ASIAN 2009. LNCS, vol. 5913, pp. 137–146. Springer, Heidelberg

(2009)

30. Blanchet, B.: ProVerif: Cryptographic protocol verifier in the formal model (2010)

31. Backes, M., Hritcu, C., Maffei, M.: Type-checking zero-knowledge. In: ACM CCS

2008, pp. 357–370. ACM, New York (2008)

166 J.B. Almeida et al.

32. Backes, M., Unruh, D.: Computational soundness of symbolic zero-knowledge

proofs against active attackers. In: IEEE Computer Security Foundations

Symposium - CSF 2008, 255–269 Preprint on IACR ePrint 2008/152 (2008)

33. Barthe, G., Hedin, D., Zanella Béguelin, S., Grégoire, B., Heraud, S.: A machine-

checked formalization of Σ-protocols. In: 23rd IEEE Computer Security Foundations

Symposium, CSF 2010, IEEE, Los Alamitos (2010)

34. Barthe, G., Grégoire, B., Béguelin, S.: Formal certification of code-based crypto-

graphic proofs. In: ACM SIGPLAN-SIGACT POPL 2009, pp. 90–101 (2009)

35. Goubault-Larrecq, J., Parrennes, F.: Cryptographic protocol analysis on real

C code. In: Cousot, R. (ed.) VMCAI 2005. LNCS, vol. 3385, pp. 363–379. Springer,

Heidelberg (2005)

36. Bhargavan, K., Fournet, C., Gordon, A., Tse, S.: Verified interoperable implemen-

tations of security protocols. ACM Trans. Program. Lang. Syst. 31(1), 1–61 (2008)

37. Bhargavan, K., Fournet, C., Corin, R., Zalinescu, E.: Cryptographically verified

implementations for TLS. In: ACM CCS 2008, pp. 459–468. ACM, New York (2008)

38. Blanchet, B.: An efficient cryptographic protocol verifier based on prolog rules.

In: Workshop on Computer Security Foundations – CSFW 2001, p. 82. IEEE, Los

Alamitos (2001)

39. Blanchet, B.: A computationally sound mechanized prover for security protocols.

In: IEEE Symposium on Security and Privacy – SP 2006, pp. 140–154. IEEE, Los

Alamitos (2006)

40. Camenisch, J., Stadler, M.: Efficient group signature schemes for large groups (ex-

tended abstract). In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp.

410–424. Springer, Heidelberg (1997)

41. Cramer, R.: Modular Design of Secure yet Practical Cryptographic Protocols. PhD

thesis, CWI and University of Amsterdam (1997)

42. Damg̊ard, I.: On Σ-protocols, Lecture on Cryptologic Protocol Theory, Faculty of

Science, University of Aarhus (2004)

43. Guillou, L., Quisquater, J.J.: A “paradoxical” identity-based signature scheme

resulting from zero-knowledge. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS,

vol. 403, pp. 216–231. Springer, Heidelberg (1990)

44. Cramer, R., Shoup, V.: A practical public key cryptosystem provably secure against

adaptive chosen ciphertext attack. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS,

vol. 1462, pp. 13–25. Springer, Heidelberg (1998)

45. Fujisaki, E., Okamoto, T.: Statistical zero knowledge protocols to prove modular

polynomial relations. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294,

pp. 16–30. Springer, Heidelberg (1997)

46. Damg̊ard, I., Fujisaki, E.: A statistically-hiding integer commitment scheme based

on groups with hidden order. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS,

vol. 2501, pp. 77–85. Springer, Heidelberg (2002)

47. Bangerter, E.: Efficient Zero-Knowledge Proofs of Knowledge for Homomorphisms.

PhD thesis, Ruhr-University Bochum (2005)

48. Smart, N.P. (ed.): Final Report on Unified Theoretical Framework of Efficient

Zero-Knowledge Proofs of Knowledge. CACE project deliverable (2009)

49. Cramer, R., Damg̊ard, I., Schoenmakers, B.: Proofs of partial knowledge and sim-

plified design of witness hiding protocols. In: Desmedt, Y.G. (ed.) CRYPTO 1994.

LNCS, vol. 839, pp. 174–187. Springer, Heidelberg (1994)

50. Shamir, A.: How to share a secret. Communications of the ACM 22, 612–613 (1979)

51. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification

and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263,

pp. 186–194. Springer, Heidelberg (1987)

A Certifying Compiler for ZK-PoK Based on Σ-Protocols 167

52. Brands, S.: Rapid demonstration of linear relations connected by boolean oper-

ators. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 318–333.

Springer, Heidelberg (1997)

53. Bresson, E., Stern, J.: Proofs of knowledge for non-monotone discrete-log formulae

and applications. In: Chan, A.H., Gligor, V.D. (eds.) ISC 2002. LNCS, vol. 2433,

pp. 272–288. Springer, Heidelberg (2002)

54. Granlund, T.: The GNU MP Bignum Library (2010), http://gmplib.org/

55. Nipkow, T., Paulson, L.: Isabelle (2010), http://isabelle.in.tun.de

56. Nipkow, T., Paulson, L., Wenzel, M.: Isabelle/HOL: a proof assistant for higher-

order logic. LNCS, vol. 2283. Springer, Heidelberg (2002)

57. Ballarin, C., Kammüller, F., Paulson, L.: The Isabelle/HOL Algebra Library

(2008), http://isabelle.in.tum.de/library/HOL/HOL-Algebra/document.pdf

http://gmplib.org/
http://isabelle.in.tun.de
http://isabelle.in.tum.de/library/HOL/HOL-Algebra/document.pdf

Short Generic Transformation to Strongly
Unforgeable Signature in the Standard Model�

Joseph K. Liu1, Man Ho Au2, Willy Susilo2, and Jianying Zhou1

1 Cryptography and Security Department

Institute for Infocomm Research, Singapore

{ksliu,jyzhou}@i2r.a-star.edu.sg
2 Centre for Computer and Information Security (CCISR)

School of Computer Science and Software Engineering

University of Wollongong, Australia

{aau,wsusilo}@uow.edu.au

Abstract. Standard signature schemes are usually devised to merely

achieve existential unforgeability, i.e., to prevent forgeries on new mes-

sages not previously signed. Unfortunately, existential unforgeability is

not suitable for several applications, since a new signature on a previously

signed message may be produced. Therefore, there is a need to construct

signature schemes with strong unforgeability, that is, it is hard to pro-

duce a new signature on any message, even if it has been signed before

by legitimate signer. Recently, there have been several generic transfor-

mations proposed to convert weak unforgeability into strong unforge-

ability. For instance, various generic transforms of signatures that are

existential unforgeable under adaptive chosen message attack (uf-cma)

to strongly unforgeable under adaptive chosen message attack (suf-cma)

have been proposed. Moreover, methods of converting signatures that are

existentially unforgeable under generic chosen message attack (uf-gma)

to uf-cma secure digital signatures have also been studied. Combination

of these methods yields generic transform of digital signatures offering

uf-gma security to suf-cma security. In this paper, we present a short

universal transform that directly converts any uf-gma secure signatures

into suf-cma secure. Our transform is the shortest generic transforma-
tion, in terms of signature size expansion, which results in suf-cma secure

signature in the standard model. While our generic transformation can

convert any uf-gma secure signature to suf-cma secure signature directly,

the efficiency of ours is comparable to those which only transform signa-

tures from uf-gma secure to uf-cma secure in the standard model.

1 Introduction

Digital signatures are amongst the most fundamental primitive of modern cryp-
tography. The definition on the security of digital signatures was first formally

� The first and forth author of this work are funded by the A*STAR project SEDS-

0721330047.

D. Gritzalis, B. Preneel, and M. Theoharidou (Eds.): ESORICS 2010, LNCS 6345, pp. 168–181, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Short Generic Transformation to Strongly Unforgeable Signature 169

introduced by Goldwasser, Micali and Rivest [14]. Security of digital signatures
can be classified according to the goals, as well as resources available to the ad-
versary. As defined in [14], the goals of the adversary can be classified into four
categories, listed below in descending order of difficulty.

– Total Break : The adversary is able to output the secret key of the
signer.

– Universal Forgery: The adversary is able produce forgery on any
message.

– Selective Forgery: The adversary is able to forge a signature on a message
chosen before he learns the public key of the signer.

– Existential Forgery: The adversary is able to forge a signature on a new
message1 of its choice.

Security notions of digital signatures are also classified according to the resources
available to the adversary. Two kinds of attacks are defined in [14]. In a Key-Only
Attack, the adversary is only given the public key of the signer. Message Attack
allows the enemy to examine some signatures corresponding to either known
or chosen-messages prior to his attempt to break the scheme. Message Attack
are further sub-divided into four categories, listed below in ascending order of
adversary’s capabilities.

– Known Message: The adversary is given access to signatures for a set of
messages. These messages are known to the adversary but are not chosen by
him.

– Generic Chosen Message: Also known as Weak Chosen Message Attack in [6]
- the adversary is given access to signatures for a set of messages chosen by
him. However, the adversary must choose the set of messages before knowing
the public key of the signer.

– Directed Chosen Message: Similar to Generic Chosen Message, the adversary
is provided with access to signatures for a set of messages chosen by him
except he can now select the set after knowing the public key of the signer.

– Adaptive Chosen Message: This is the most general “natural” attack that
any adversary can mount: the adversary is allowed to use the signer as an
“oracle” in which he can request signatures from the signer of message on
its choice2.

Nowadays, standard signature schemes are usually designed to achieve existential
unforgeability under adaptive chosen message attack (uf-cma). That is, forgery
of signatures on new messages not previously signed are impossible even if the
adversary is given signatures on any other messages of its choice. However, most
signature schemes are randomized and allow many possible signatures for a single
message. In this case, the notion uf-cma security of signature does not rule out
1 By “new”, we mean the corresponding signature of this message has not been pro-

vided to the adversary.
2 The choice may depend on the signer’s public key as well as previously obtained

signatures.

170 J.K. Liu et al.

the possibility of producing a new signature on a previously signed message. In
other words, the adversary, given a message/signature pair (m, σ), maybe able to
forge a new valid signature σ′ �= σ on the same message m. In some applications,
a stronger security notion, called strong unforgeability [1], is desirable.

Strong unforgeability ensures the adversary cannot even produce a new sig-
nature for a previously signed message. Consequently, any signature that passes
the verification algorithm must be coming from the legitimate signer.

Strongly unforgeable signatures are useful in many different kinds of appli-
cations, such as building chosen-ciphertext secure encryption schemes [12,11],
group signatures [2,7], signcryption [1] and authenticated key exchange [16]. Un-
fortunately, many signature schemes in the literature are not strongly
unforgeable.

Sometimes existential unforgeability is also referred to as weak unforgeability
(as in [21]) to emphasize its difference with strong unforgeability.

1.1 Generic Security-Amplifying Methods for Ordinary Digital
Signatures

Several existing works [8,22,21,15,5,18] studied the problem of converting a signa-
ture scheme satisfying a weaker security notion into a stronger one with the help
of some seemingly simpler cryptographic primitive, such as one-time signature or
chameleon hash function. For instance, various generic transforms of signatures
that are existential unforgeable under adaptive chosen message attack (uf-cma)
to strongly unforgeable under adaptive chosen message attack (suf-cma) have
been proposed [8,22,21,15,5]. Moreover, methods of converting signatures that
are existentially unforgeable under generic chosen message attack (uf-gma) to
uf-cma secure digital signatures have been studied in [13,17,20,6,23,18]. Com-
bination of these methods yields generic transform of digital signatures offering
uf-gma security to suf-cma security.

1.2 Our Result

We propose an efficient generic transformation for any signature scheme secure
against existential forgery under generic chosen message attack (uf-gma) to a
strongly unforgeable one under adaptive chosen message attack (suf-cma) in the
standard model. Our transform is universal in the sense we treat the underlying
signature as a blackbox and do not exploit any of its internal structure. More-
over, our transform only requires one chameleon hash function with a special
property called Given-Target One-Wayness (GTOW). We observe that several
existing chameleon hash functions exhibit this property. Therefore, we are not
required to construct a specially designed chameleon hash function. Employing
one of the most efficient chameleon hash functions, our transformation only in-
creases the resulting signature by one group element. Hence, we refer to our
transform as a short universal transform. Our transformation outperforms pre-
vious transformations in the following ways:

Short Generic Transformation to Strongly Unforgeable Signature 171

1. It is the shortest generic transformation, in terms of signature size expansion,
which results in suf-cma secure signature in the standard model. Previous
transformation either requires the random oracle model [22], or increases the
signature size by at least 2 group elements [15], or only works for signature
scheme with specific structure (e.g., partitioned signatures [8]).

2. While our generic transformation can convert any uf-gma secure signature
to suf-cma secure signature directly, the efficiency of ours is comparable to
those which only transform signatures from uf-gma secure to uf-cma secure
in the standard model [13,17,20].

The features of existing transformations are summarized in Fig. 1. We compare
the existing transformability (in the sense of uf-gma, uf-cma and suf-cma), sig-
nature size (if the transformation relies on another primitive such as chameleon
hash function or one-time signature, we consider the most efficient one) and the
security model.

It is easily observable that our transform is very efficient and only produces
one group element in terms of signature size expansion.

1.3 Related Works

(uf-cma to suf-cma): Recently, some techniques have been proposed to con-
vert uf-cma secure signature schemes to suf-cma secure signatures. Boneh et
al. [8] proposed the first conversion of such kind. However, their conversion is
not universal. It can be only applied to some specific type of signatures, called
partitioned signatures. Although many schemes fall in this class, some do not,
such as DSA signature [19]. Teranishi et al. [22] proposed two universal conver-
sions. Different from [8], they can be used to convert any kind of signatures.
The first one requires the random oracle model and the second one works in the
standard model. Both schemes rely on the hardness of the discrete-logarithm
problem. The signature size increases by 1 element for the scheme secure in the
random oracle model and by 2 elements for the scheme secure in the standard
model. Steinfeld et al. [21] proposed another transformation3 in the standard
model which requires two chameleon hash functions. Similar to [22], the signa-
ture size also increases by two elements. All of the above transforms are based
on chameleon hash functions or similar mechanisms. Huang et al. [15] proposed
a generic transformation that makes use of strong one-time signature. The sig-
nature size increases by more than 2 to 3 elements, due to the public key of
the one-time signature which is included in the final signature. Bellare et al.
[5] employed a similar approach, by using a two-tier signature to produce the
transformation. The resulting signature size also increases by at least 2 elements.

(uf-gma to uf-cma): A signature which is uf-gma secure can be converted to
uf-cma secure in the random oracle model, by using a hash function of the
messages for signatures without changing any other algorithms. The random

3 Their transformation is also applicable to uf-gma secure signature, as noted in the

remark of [21].

172 J.K. Liu et al.

Fig. 1. Comparison of different transformations

oracle allows the challenger to back patch the messages into different values that
are fixed at the beginning [6,23].

Another approach is to use a chameleon hash function. A chameleon hash
function is a kind of hash function with a trapdoor. By knowing the trapdoor
information, one can find a pair of collision easily. Without this trapdoor, it is
just similar to a normal hash function. The signer can first sign any value with the
weak signature scheme. Then it can sign the real message from the signature on
any value, by using the property of chameleon hash function with the knowledge
of the trapdoor information. Both the public key and the signature size will be
increased by at least one element. This technique has been used in [13,17,20].

Recently Li et al. [18] proposed another method to convert a uf-gma secure
signature to a uf-cma secure one, by signing the message twice using the same
weakly secure signature scheme. The signature size is increased by two elements.

1.4 Organization

The rest of the paper is organized as follows. We review some mathematical and
security definition in Section 2. We introduce the new property Given-Target
One-Wayness of chameleon hash function in Section 3 and give two examples to
show that some existing classic chameleon hash functions possess this property.
In Section 4 we present our generic transformation. Finally, we conclude the
paper in Section 5.

2 Definition

2.1 Mathematical Assumption

Definition 1 (Discrete Log (DL) Assumption). Let g be a generator in
group G. Given an element y ∈ G chosen at random, find an integer x such that
y = gx. An adversary A has at least an ε advantage if

Pr[A(y, g, G) = x | y = gx] ≥ ε

Short Generic Transformation to Strongly Unforgeable Signature 173

We say that the (ε, τ)-DL assumption holds if no algorithm running in time at
most τ can solve that DL problem with advantage at least ε.

Definition 2 (One-More Discrete Log (OMDL) Assumption). [4,3] Let
g be a generator in group G. The adversary is given access to a discrete log solver
oracle access ODL in which when the adversary inputs an elements y′ ∈ G the
oracle returns an element x′ such that y′ = gx′

, and a challenge oracle, which,
returns a challenge point y ∈ G each time it is invoked. Let y1, . . . , yn ∈ G be
the challenges returned by the challenge oracle. The adversary is asked to output
xi such that yi = gxi , for i = 1, . . . , n with the restriction that it can query ODL

for at most n− 1 times. An adversary A has at least an ε advantage if

Pr[AODL(y1, . . . , yn, g, G) = (x1, . . . , xn) | y1 = gx1 , . . . , yn = gxn] ≥ ε

We say that the (n, ε, τ)-OMDL assumption holds if no algorithm running in
time at most τ can solve that OMDL problem with advantage at least ε.

2.2 Security Definition

Definition of Signature: We first review the definition of a digital signature
scheme from [14] below.

Definition 3. A signature scheme SIG is defined by three algorithms:

– KeyGen is a probabilistic polynomial-time (PPT) algorithm that takes a
security parameter k as input. It returns a public key pk and a secret key
sk.

– Sign is a PPT algorithm taking as input (sk, m) where m is a message from
a message space S. It outputs a signature σ.

– Verify is a deterministic polynomial-time algorithm taking (pk, m, σ) as in-
put. It returns either valid or invalid.

For correctness, we require that valid ← Verify(pk, m, σ) where σ ← Sign(sk, m)
and (pk, sk) ← KeyGen(1k).

Security of Signature: We review three levels of security for a signature,
namely, existential unforgeability against generic chosen message attack (uf-gma)
[14], existential unforgeability against adaptive chosen message attack (uf-cma)
[14] and the strong unforgeability against adaptive chosen message attack [1]. We
start with the most common one, uf-cma.

– uf-cma: Existential unforgeability against adaptive chosen message attack
can be defined using the following game called Game-UFCMA:
Setup: A public/secret key pair (pk, sk) ← KeyGen(1k) is generated and

adversary A is given the public key pk.

174 J.K. Liu et al.

Query: A runs for time t and issues q signing queries to a signing oracle
in an adaptive manner. For each i, 1 ≤ i ≤ q, A chooses a message
mi based on the message-signature pairs that A has already seen, and
obtains in return a signature σi on mi from the signing oracle. That is,
σi ← Sign(sk, mi).

Forge: A outputs a forgery (m∗, σ∗) and halts. A wins if
1. σ∗ is a valid signature on message m∗ under the public key pk. That

is, valid ← Verify(pk, m∗, σ∗); and
2. m∗ has never been queried. That is, m∗ /∈ {m1, . . . , mq}.

Definition 4 (uf-cma) . A signature scheme SIG=(KeyGen, Sign, Verify)
is (t, q, ε)-existentially unforgeable against adaptive chosen message attacks,
if any adversary with running time t wins the Game-UFCMA with prob-
ability at most ε after issuing at most q signing queries.

– uf-gma: In a uf-gma game, the adversary has to submit all signature queries
before seeing the public key. We refer to this game as Game-UFGMA
which is defined as follows:

Query: The adversary A submits a list of q messages m1, . . . , mq.
Setup: A is given a public key pk together with a list of message-signature

pairs (mi, σi) for 1 ≤ i ≤ q.
Forge: Same as in Game-UFCMA.

Definition 5 (uf-gma). A signature scheme SIG=(KeyGen, Sign,Verify) is
(t, q, ε)-existentially unforgeable against generic chosen message attacks, if
any adversary with running time t wins the Game-UFGMA with probabil-
ity at most ε after issuing at most q signing queries.

– suf-cma: One of the restrictions for adversary A in Game-UFCMA (resp.
Game-UFGMA) is that the forging message m∗ must be new. We can relax
this restriction to obtain the notion of strong existential unforgeable against
adaptive chosen message attacks, such that A forges a new valid signature
on a message that could have been signed previously. We refer to this new
game as Game-SUFCMA which is defined as follows:

Setup: Same as in Game-UFCMA.
Query: Same as in Game-UFCMA.
Forge: A outputs a forgery (m∗, σ∗) and halts. A wins if

1. σ∗ is a valid signature on message m∗ under the public key pk. That
is, valid ← Verify(pk, m∗, σ∗); and

2. (m∗, σ∗) /∈ {(m1, σ1) . . . , (mq, σq)}.

Definition 6 (suf-cma) . A signature scheme SIG=(KeyGen, Sign,Verify)
is (t, q, ε)-strongly existentially unforgeable against adaptive chosen message
attacks, if any adversary with running time t wins the Game-SUFCMA
with probability at most ε after issuing at most q signing queries.

Short Generic Transformation to Strongly Unforgeable Signature 175

Chameleon Hash Function: In our generic transformation, we also require
another primitive called the chameleon hash function [17,20]. We first describe
the basic property of a chameleon hash function here, and introduce a new
property in the next section. A chameleon hash function is a special type of hash
function, whose collision resistance depends on the user’s state of knowledge.
Every chameleon hash function is associated with a pair of public key and private
key, referred to as the hash key HK and the trapdoor key TK, respectively:

Definition 7 (Chameleon Hash Family). A chameleon hash family consists
of the following algorithms:

– HKey-Gen is a PPT key generation algorithm that on input a security pa-
rameter k, outputs a pair (HK, TK).

– HashHK is a deterministic polynomial-time algorithm that on input a hash
key HK and a pair (M, R) ∈ M×R where M is the message space and R
is the space of the random element, output a hashed value C.

– Collision-Finding is a deterministic polynomial-time algorithm that on in-
put a trapdoor and hash key pair (TK, HK), a pair (M, R) ∈ M × R,
and an additional message M ′ ∈ M, outputs a value R′ ∈ R such that
HashHK(M, R) = HashHK(M ′, R′).

3 Given-Target One-Way Chameleon Hash

We introduce a new property called given-target one-wayness to chameleon
hash functions. Informally speaking, it means that given a hash value, an at-
tacker cannot find a pre-image without the trapdoor even if it is given another
pre-image.

We examine some existing chameleon hash functions and show that at least
two of the existing constructions satisfy this newly proposed property.

3.1 Definition

We define the property with the following game.

Definition 8 (Given-Target One-Wayness). A chameleon hash family is
possessing (t, q, ε) given-target one-wayness if no PPT adversary A with running
time t, making at most q query can win in the following game with probability ε:

Setup: A hash key and trapdoor key pair (HK, TK) ← HKey-Gen(1k) is gen-
erated and adversary A is given the hash key HK.

Given-Target One-Way Query: For the i-th query, A is given a hash value
hi. A submits a value Mi and is given Ri such that HashHK(Mi, Ri) = hi.
Queries can be adaptive and interleaving.

Output: A outputs (M∗, R∗) and wins if HashHK(M∗, R∗) = hi for some i
and that (M∗, R∗) �= (Mi, Ri).

We say a chameleon hash function is given-target one-way (GTOW) if it possesses
given-target one-wayness.

176 J.K. Liu et al.

3.2 Scheme under DL Assumption

We review the double trapdoor chameleon hash from [10] and show that it is
GTOW under the discrete logarithm assumption.

The Scheme SchemeDL: HKey-Gen. Let G = 〈g〉 be a cyclic group of prime
order p. Randomly generate x, y ∈R Zp and compute u = gx, v = gy. The
message space M is Zp. The trapdoor key TK is (x, y) and the hash key HK is
(G, p, g, u, v,M).
HashHK . For a message M ∈ M, choose a random R̃ ∈R Zp, R ∈R Zp and
compute

C = uMvR̃gR

Collision-Finding. For a given pair (M, R̃, R) and a message M ′ ∈M, in order to

find (R̃′, R′) such that HashHK(M, R̃, R) = HashHK(M ′, R̃′, R′), first randomly
generates R̃′ ∈R Zp, then use the trapdoor key TK to compute

R′ = (M −M ′)x + (R̃ − R̃′)y + R mod p

Lemma 1 (SchemeDL is GTOW under DL assumption). Assume there is
an adversary A who can break the (τ, q, ε) given-target one-wayness of SchemeDL,
we can construct a simulator S to solve the (ε′, τ ′)-DL problem, where

ε′ ≥ 1
2
ε τ = τ ′

Proof. Suppose there exists an adversary A in the sense of Definition 8. We con-
struct a simulator S, having black-box access to A, that solves the DL problem.

Setup. S is given G = 〈w〉 such that |w| = p for some prime p and a value
Y , and its goal is to output y ∈ Zp such that Y = wy . S randomly generates
x ∈R Zp and flips a fair coin b ∈R {0, 1}. If b = 0, computes u = wx and sets
v = Y and g = w. Otherwise, computes u = wx and sets v = w and g = Y . S
gives (G, p, g, u, v,M := Zp) to A as HK of the trapdoor hash.

Query. For the i-th query, S randomly generates m′
i, r̃

′
i, r

′
i ∈R Zp, computes

hi = um′
ivr̃′

igr′
i and returns hi to A. Upon receiving the corresponding mi from

A, S computes ri = (m′
i − mi)x + r′i and sets r̃i = r̃′i if b = 0. Otherwise, S

computes r̃i = (m′
i −mi)x + r̃′i and sets ri = r′i. Then, S returns (r̃i, ri) to A.

Output. Finally, A outputs m∗, r̃∗, r∗ such that um∗
vr̃∗

gr∗
= umivr̃igri for some

i. If b = 0, S aborts if r̃∗ = r̃i. Otherwise S computes

y =
(mi −m∗)x + ri − r∗

r̃∗ − r̃i

If b = 1, S aborts if r∗ = ri. Otherwise, S computes

y =
(mi −m∗)x + r̃i − r̃∗

r∗ − ri

S returns y as the solution of the discrete logarithm problem.

Short Generic Transformation to Strongly Unforgeable Signature 177

Successful Simulation. Since (m∗, r̃∗, r∗) �= (mi, r̃i, ri), at least one of the state-
ments r̃∗ �= r̃i or r∗ �= ri is true. For each case, with probability 1/2, S does not
abort. The running time of S is just the same as A. !

3.3 Scheme under One-More-DL Assumption

Next, we review the classic DL-based chameleon hash function [9,17] and show
that it is GTOW under the one-more discrete logarithm assumption.

The Scheme SchemeOMDL: HKey-Gen. Let G = 〈g〉 be a cyclic group of prime
order p. Randomly generate x ∈R Zp and compute u = gx. The message space
M is Zp. The trapdoor key TK is (x) and the hash key HK is (G, p, g, u,M).
HashHK . For a message M ∈M, choose a random R ∈R Zp and compute

C = uMgR

Collision-Finding. For a given pair (M, R) and a message M ′ ∈ M, in order to
find (R′) such that HashHK(M, R) = HashHK(M ′, R′), use the trapdoor key TK
to compute

R′ = (M −M ′)x + R mod p

Lemma 2 (SchemeOMDL is GTOW under OMDL assumption). Assume
there is an adversary A who can break the (τ, q, ε) given-target one-wayness of
SchemeOMDL, we can construct a simulator S to solve the (q − 1, ε′, τ ′)-OMDL
problem, where

ε′ = ε τ = τ ′

Proof. Suppose there exists an adversary A in the sense of Definition 8. We
construct a simulator S, having black-box access to A, that solves the one-more
discrete logarithm problem.

Setup. S is given G = 〈g〉 such that |g| = p for some prime p access to two oracles,
namely, OQ and ODL. When invoked for the i-th time, OQ returns an element
Yi ∈ G while ODL(Xi) returns xi ∈ Zp such that Xi = gxi . The goal of S is to
solves all the discrete logarithm of Yi to base g while using less number of query
to ODL. S invokes OQ, obtains Y0 and sets u = Y0. S gives (G, p, g, u,M := Zp)
to A as HK of the trapdoor hash.

Query. For the i-th query, S invokes OQ to receive Yi. S then sets hi = Yi

and returns hi to A. Upon receiving the corresponding mi from A, S invokes
ODL(hi

umi
) and obtains ri such that hi = umigri . S returns ri to A.

Output. Finally, A outputs m∗, r∗ such that um∗
gr∗

= umigri for some i. S
computes y0 = (ri−r∗)

m∗−mi
. Next, S computes yi = miy0 + ri. S returns y0 as the

discrete logarithm of Y0 and yi’s as the discrete logarithms of Yi.

178 J.K. Liu et al.

Successful Simulation. Clearly the successful probability and running time of S
are the same as A. !

4 Generic Transformation to SUF-CMA Secure Signature

4.1 Our Transformation

We build a generic and universal transformation which converts any uf-gma
secure signature scheme SIG′ = (KeyGen′, Sign′, Verify′) (with message space
S′) to a suf-cma secure signature scheme SIG=(KeyGen, Sign, Verify). This
transformation requires a give-target one-way chameleon hash function HashHK :
M × R → S′ (we use the notation described in Section 2.2) and a regular
collision-resistant hash function H : {0, 1}∗ → M. The transformation is as
follows:

– KeyGen: Generate a public / secret key pair (pk′, sk′) ← KeyGen′(1k). Gener-
ate a hash key and trapdoor key (HK, TK) ← HKey-Gen(1k). Set the public
key as pk = (pk′, HK, HashHK , H) and secret key as sk = (sk′, TK).

– Sign: On input a secret key sk and a message m, the following steps are
carried out and a signature σ is generated:
1. Randomly generate m′ ∈R M and r′ ∈R R.
2. Compute h′ ← HashHK(m′; r′).
3. Compute s′ ← Sign′(sk′, h′).
4. Compute h ← H(m||s′).
5. Using the trapdoor key TK to find r such that HashHK(h; r) =

HashHK(m′; r′).
6. Output the signature σ ← (s′, r).

– Verify: On input public key pk, message m and signature σ, output

Verify′
(

pk′, HashHK

(
H(m||s′); r

)
, s′
)

4.2 Security Analysis

Theorem 1 (Strong Unforgeability). Assume there is an adversary A who
can break the (τ, q, ε) suf-cma security of the signature scheme, we can construct
a simulator S to either break the (τ, q, ε/2) uf-gma security of the underlying
signature scheme, or the (τ, q, ε/2) given-target one-wayness of the chameleon
hash function HashHK .

Proof. Suppose there exists an adversary A, making q signing queries, wins
Game-SUFCMA with non-negligible probability with SIG=(KeyGen, Sign, Ver-
ify), we show that either SIG′ = (KeyGen′, Sign′, Verify′) is not uf-gma secure or
HashHK is not given-target one-way.

The proof is by reduction. Firstly, we classify the adversary A into two types.
Suppose the q message-signature pairs A obtained in the Query phase are

(
mi,

Short Generic Transformation to Strongly Unforgeable Signature 179

(s′i, ri)
)

for i = 1 to q and the final forged message-signature pair is
(
m∗, (s′∗, r∗)

)
.

We sayA is of type I ifHashHK

(
H(m∗||s′∗); r∗

)
= HashHK

(
H(mi||s′i); ri

)
for some

i = 1 to q. Otherwise,A is of type II.
Next, we construct a simulator S which simulates GAME-SUFCMA for type I

and II adversary differently, in such a way that the adversary cannot distinguish
which kind of simulation it is in.

1. Type I Adversary (Breaking Given-Target One-wayness Property of HashHK)
(Setup.) S is given a chameleon hash function HashHK : M × R → S′

without the trapdoor and its goal is to break given-target one-wayness
as defined in Definition 8. It invokes KeyGen′ and obtains (pk′, sk′). Let
H be a collision-resistant hash function. S givesA (pk′, HK, HashHK , H)
as the public key of the signature scheme SIG.

(Query.) For a signature query m, S issues a Given-Target One-Way Query
and obtains hi. It sets h′ = hi and computes s′ = SIG′(sk′, h′) using
the corresponding secret key sk′. It computes h = H(m||s′) and sets
mi = h. It sends mi to the Given-Target One-Way Oracle and receives
ri such that hi = HashHK(mi, ri). It sets r = ri and returns (s′, r) as
the corresponding signature.

(Forgery.) Finally, A outputs a message m∗ and a corresponding signature
(s′∗, r∗) such that Verify′(pk′, HashHK(H(m∗||s′∗; r))), s′∗) returns valid.

(Reduction.) Since A is of type I, there exists a query message mi with
resulting signature (s′i, ri) such that

HashHK

(
H(m∗||s′∗); r∗

)
= HashHK

(
H(mi||s′i); ri

)
.

S returns (H(m∗||s′∗), r∗) as the output that breaks the given-target
one-wayness of HashHK .

2. Type II Adversary (Breaking uf-gma Security of SIG′)
(Setup.) S invokes HKey-Gen(1k) and obtains (HK, TK) for the chameleon

hash function HashHK . S randomly generates m′
i, r

′
i and computes h′

i =
HashHK(m′

i; r
′
i) for i = 1 to q where q is the total number of signature

query. S submits h′
1, · · · , h′

q to the challenger as the chosen messages
and obtains a signature scheme SIG′ with public key pk′ and signatures
of s′i for i = 1 to q as the signature of h′

i under public key pk′. S gives
A (pk′, HK, HashHK , H) as the public key of the signature scheme SIG.

(Query.) For the i-th query, S is given a message mi. It computes hi =
H(mi||s′i) and find ri such that HashHK(hi; ri) = h′

i using the trapdoor
TK. Return (s′i, ri) to A as the corresponding signature.

(Forgery.) Finally, A outputs a message m∗ and a corresponding signature
(s′∗, r∗) such that Verify′(pk′, HashHK(H(m∗||s′∗; r))), s′∗) returns valid.

(Reduction.) S computes M∗ = HashHK(H(m∗||s′∗; r))) and returns
(M∗, s′

∗) as the forged message-signature pair to the underlying sig-
nature scheme SIG′.

180 J.K. Liu et al.

For the probability analysis, it is easy to see that for each type it can be perfectly
simulated, so that each type occurs with the same probability as in the real
attack. Hence either the attacker of type I or type II succeeds with probability
ε/2, as claimed. The running time should be the same. !

5 Conclusion

We presented an efficient universal transform that directly converts any uf-gma
secure signatures into suf-cma secure. Our transform is the shortest generic
transformation, in terms of signature size expansion. While our generic trans-
formation can convert any uf-gma secure signature to suf-cma secure signature
directly, the efficiency of ours is comparable to those which only transform signa-
tures from uf-gma secure to uf-cma secure in the standard model. We make use
of a new property in chameleon hash functions called given-target one-wayness.
We demonstrated that this property exists in at least two of the existing con-
structions of chameleon hash functions in the literature, and henceforth, we do
not need to create a specially designed chameleon hash function to be incorpo-
rated in our transform.

References

1. An, J., Dodis, Y., Rabin, T.: On the security of joint signatures and encryption. In:

Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 83–107. Springer,

Heidelberg (2002)

2. Ateniese, G., Camenisch, J., Joye, M., Tsudik, G.: A practical and provably secure

coalition-resistant group signature scheme. In: Bellare, M. (ed.) CRYPTO 2000.

LNCS, vol. 1880, pp. 255–270. Springer, Heidelberg (2000)

3. Bellare, M., Namprempre, C., Pointcheval, D., Semanko, M.: The one-more-rsa-

inversion problems and the security of chaum’s blind signature scheme. J. Cryp-

tology 16(3), 185–215 (2003)

4. Bellare, M., Palacio, A.: Gq and schnorr identification schemes: Proofs of security

against impersonation under active and concurrent attacks. In: Yung, M. (ed.)

CRYPTO 2002. LNCS, vol. 2442, pp. 162–177. Springer, Heidelberg (2002)

5. Bellare, M., Shoup, S.: Two-tier signatures, strongly unforgeable signatures, and

Fiat-Shamir without random oracles. In: Okamoto, T., Wang, X. (eds.) PKC 2007.

LNCS, vol. 4450, pp. 201–216. Springer, Heidelberg (2007)

6. Boneh, D., Boyen, X.: Short Signatures Without Random Oracles. In: Cachin, C.,

Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 56–73. Springer,

Heidelberg (2004)

7. Boneh, D., Boyen, X., Shacham, H.: Short group signatures using strong Diffie-

Hellman. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 41–55.

Springer, Heidelberg (2004)

8. Boneh, D., Shen, E., Waters, B.: Strongly unforgeable signatures based on compu-

tational Diffie-Hellman. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T.G. (eds.)

PKC 2006. LNCS, vol. 3958, pp. 229–240. Springer, Heidelberg (2006)

9. Boyar, J., Kurtz, S.A., Krentel, M.W.: A discrete logarithm implementation of

perfect zero-knowledge blobs. J. Cryptology 2(2), 63–76 (1990)

Short Generic Transformation to Strongly Unforgeable Signature 181

10. Bresson, E., Catalano, D., Gennaro, R.: Improved on-line/off-line threshold signa-

tures. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 217–232.

Springer, Heidelberg (2007)

11. Canetti, R., Halevi, S., Katz, J.: Chosen-ciphertext security from identity-based

encryption. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS,

vol. 3027, pp. 207–222. Springer, Heidelberg (2004)

12. Dolev, D., Dwork, C., Naor, M.: Non-malleable cryptography. SIAM J. Comput-

ing 30(2), 391–437 (2000)

13. Even, S., Goldreich, O., Micali, S.: On-line/off-line digital signatures. J. Cryptol-

ogy 9(1), 35–67 (1996)

14. Goldwasser, S., Micali, S., Rivest, R.: A digital signature scheme secure against

adaptive chosen-message attacks. SIAM J. Computing 17(2), 281–308 (1998)

15. Huang, Q., Wong, D.S., Zhao, Y.: Generic transformation to strongly unforgeable

signatures. In: Katz, J., Yung, M. (eds.) ACNS 2007. LNCS, vol. 4521, pp. 1–17.

Springer, Heidelberg (2007)

16. Katz, J., Yung, M.: Scalable protocols for authenticated group key exchange. In:

Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 110–125. Springer, Heidelberg

(2003)

17. Krawczyk, H., Rabin, T.: Chameleon signatures. In: NDSS, The Internet Society

(2000)

18. Li, J., Kim, K., Zhang, F., Wong, D.S.: Generic security-amplifying methods of

ordinary digital signatures. In: Bellovin, S.M., Gennaro, R., Keromytis, A.D., Yung,

M. (eds.) ACNS 2008. LNCS, vol. 5037, pp. 224–241. Springer, Heidelberg (2008)

19. National Institute of Standards and Technology (NIST). Digital Signature Stan-

dard (DSS). Federal Information Processing Standards Publication 186-2 (January

2000)

20. Shamir, A., Tauman, Y.: Improved online/offline signature schemes. In: Kilian, J.

(ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 355–367. Springer, Heidelberg (2001)

21. Steinfeld, R., Pieprzyk, J., Wang, H.: How to strengthen any weakly unforgeable

signature into a strong unforgeable signature. In: Abe, M. (ed.) CT-RSA 2007.

LNCS, vol. 4377, pp. 357–371. Springer, Heidelberg (2006)

22. Teranishi, I., Oyama, T., Ogata, W.: General conversion for obtaining strongly

existentially unforgeable signatures. In: Barua, R., Lange, T. (eds.) INDOCRYPT

2006. LNCS, vol. 4329, pp. 191–205. Springer, Heidelberg (2006)

23. Zhang, F., Safavi-Naini, R., Susilo, W.: An efficient signature scheme from bilinear

pairings and its applications. In: Bao, F., Deng, R., Zhou, J. (eds.) PKC 2004.

LNCS, vol. 2947, pp. 277–290. Springer, Heidelberg (2004)

DR@FT: Efficient Remote Attestation Framework
for Dynamic Systems�

Wenjuan Xu1, Gail-Joon Ahn2, Hongxin Hu2,
Xinwen Zhang3, and Jean-Pierre Seifert4

1 Frostburg State University
wxu@frostburg.edu

2 Arizona State University
gahn@asu.edu ,hxhu@asu.edu

3 Samsung Information Systems America
xinwen.z@samsung.com

4 Deutsche Telekom Lab and Technical University of Berlin
jean−pierre.seifert@telekom.de

Abstract. Remote attestation is an important mechanism to provide the trust-
worthiness proof of a computing system by verifying its integrity. In this paper,
we propose an innovative remote attestation framework called DR@FT for effi-
ciently measuring a target system based on an information flow-based integrity
model. With this model, the high integrity processes of a system are first veri-
fied through measurements and these processes are then protected from accesses
initiated by low integrity processes. Also, our framework verifies the latest state
changes in a dynamic system instead of considering the entire system informa-
tion. In addition, we adopt a graph-based method to represent integrity violations
with a ranked violation graph, which supports intuitive reasoning of attestation
results. Our experiments and performance evaluation demonstrate the feasibility
and practicality of DR@FT.

1 Introduction

In distributed computing environments, it is crucial to measure whether remote parties
run buggy, malicious application codes or are improperly configured by rogue software.
Remote attestation techniques have been proposed for this purpose through analyzing
the integrity of remote systems to determine their trustworthiness. Typical attestation
mechanisms are designed based on the following steps. First, an attestation requester
(attester) sends a challenge to a target system (attestee), which responds with the evi-
dence of integrity of its hardware and software components. Second, the attester derives
runtime properties of the attestee and determines the trustworthiness of the attestee. Fi-
nally and optionally, the attester returns the attestation result, such as integrity measure-
ment status, to the attestee. Remote attestation can help reduce potential risks that are
caused by a tampered system.

� The work of Gail-J.Ahn and Hongxin Hu was partially supported by National Science Foun-
dation (NSF-IIS-0900970 and NSF-CNS-0831360).

D. Gritzalis, B. Preneel, and M. Theoharidou (Eds.): ESORICS 2010, LNCS 6345, pp. 182–198, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

DR@FT: Efficient Remote Attestation Framework for Dynamic Systems 183

Various attestation approaches and techniques have been proposed. Trusted Comput-
ing Group (TCG) [2] specifies trusted platform module (TPM) which can securely store
and provide integrity measurements of systems to a remote party. Integrity measurement
mechanisms have been proposed to facilitate the capabilities of TPM at application
level. For instance, Integrity Measurement Architecture (IMA) [12] is an implementa-
tion of TCG approach to provide verifiable evidence with respect to the current run-time
state of a measured system. Several attestation methods have been proposed to accom-
modate privacy properties [7], system behaviors [8], and information flow model [9].
However, these existing approaches still need to cope with the efficiency when attesting
a platform where its system state frequently changes due to system-centric events such
as security policy updates and software package installations. Last but not least, existing
attestation mechanisms do not have an effective and intuitive way for presenting attes-
tation results and reflecting such results while resolving identified security violations.

Towards a systematic attestation solution, we propose an efficient remote attestation
framework, called Dynamic Remote Attestation Framework and Tactics (DR@FT) to
address aforementioned issues. Our framework is based on system integrity property
with a domain-based isolation model. With this property, the high integrity processes
of a system are first verified through measurements and these processes are then pro-
tected from accesses initiated by low integrity processes. In other words, the high in-
tegrity process protection is verified by analyzing the system’s security policy, which
specifies system configurations with system behaviors including application behaviors.
Having this principle in place, DR@FT enables us verify whether certain applications
in the attestee satisfy integrity requirements as part of attestation. Towards attesting a
dynamic nature of the systems, DR@FT verifies the latest changes in a system state, in-
stead of considering the entire system information for each attestation inquiry. Through
these two tactics, our framework attempts to efficiently attest the target system. Also,
DR@FT adopts a graph-based analysis methodology for analyzing security policy vi-
olations, which helps cognitively identify suspicious information flows in the attestee.
To further improve the efficiency of security violation resolution, we propose a ranking
scheme for prioritizing the policy violations, which provides a method for describing
the trustworthiness of different system states with risk levels.

This paper is organized as follows. Section 2 overviews existing attestation work
and system integrity models. Section 3 describes a domain-based isolation model which
gives the theoretical foundation of DR@FT. Section 4 presents the design requirements
and attestation procedures of DR@FT, followed by policy analysis methods and their
usages in Section 5. We elaborate the implementation details and evaluation results in
Section 6. Section 7 concludes this paper and examines some limitations of our work.

2 Background

2.1 Attestation

The TCG specification [2] defines mechanisms for a TPM-enabled platform to report
its current hardware and software configuration status to a remote challenger. A TCG
attestation process is composed of two steps: (i) an attestee platform measures hard-
ware and software components starting from BIOS block and generates a hash value.

184 W. Xu et al.

The hash value is then stored into a TPM Platform Configuration Register (PCR). Re-
cursively, it measures BIOS loader and operating system (OS) in the same way and
stores them into TPM PCRs; (ii) an attester obtains the attestee’s digital certificate with
an attestation identity key (AIK), AIK-signed PCR values, and a measurement log file
from the attestee which is used to reconstruct the attestee platform configuration, and
verifies whether this configuration is acceptable. From these steps we notice that TCG
measurement process is composed of a set of sequential steps up to the bootstrap loader.
Thus, TCG does not provide effective mechanisms for measuring a system’s integrity
beyond the system boot, especially considering the randomness of executable contents
loaded by an running OS.

IBM IMA [12] extends TCG’s measurement scope to application level. A measure-
ment list M is stored in OS kernel and composed of m0 ... mi corresponding to loaded
executable application codes. For each loaded mi, an aggregated hash Hi is generated
and loaded into TPM PCR, where H0=H(m0), and Hi=H(Hi−1 ||H(mi)). Upon receiv-
ing the measurements and TPM-signed hash value, the attester proves the authentication
of measurements by verifying the hash value, which helps determine the integrity level
of the platform. However, IMA requires to verify the entire components of the attestee
platform while the attestee may only demand the verification of certain applications.
Also, the integrity status of a system is validated by testing each measurement entry
independently, focusing on the high integrity processes. However, it is impractical to
disregard newly installed untrusted applications or data from the untrusted network.

PRIMA [9] is an attestation work based on IMA and CW-Lite integrity model [14].
PRIMA attempts to improve the efficiency of attestation by only verifying codes, data,
and information flows related to trusted subjects. On one hand, PRIMA needs to be
extended to capture the dynamic nature of system states such as software and policy
updates, which could be an obstacle for maintaining its efficiency. On the other hand,
PRIMA represents an attestation result with binary decision (trust or distrust) and does
not give semantic information about how much the attestee platform can be trusted.

Property-based attestation [7] is an effort to protect the privacy of a platform by col-
lectively mapping related system configurations to attestation properties. For example,
“SELinux-enabled” is a property which can be mapped to a system configuration in-
dicating that the system is protected with an SELinux policy. That is, this approach
prevents the configurations of a platform from being disclosed to a challenger. How-
ever, due to the immense configurations of the hardware and software of the platform,
mapping all system configurations to properties is infeasible and impractical.

2.2 Integrity Models

To describe the integrity status for a system, there exist various information flow-based
integrity models such as Biba [5], LOMAC [16], Clark-Wilson [13], and CW-Lite [14].
Biba integrity property is fulfilled if a high integrity process cannot read/execute a lower
integrity object, nor obtain lower integrity data in any other manner. LOMAC allows
high integrity processes to read lower integrity data, while downgrading the process’s
integrity level to the lowest integrity level that has ever been activated. Clark-Wilson
provides a different view of dependencies, which states information can flow from low
integrity objects to high integrity objects through a specific program called transaction

DR@FT: Efficient Remote Attestation Framework for Dynamic Systems 185

procedures (TP). Later, the concept of TP is evolved as a filter in the CW-Lite model.
The filter can be a firewall, an authentication process, or a program interface for down-
grading or upgrading the privileges of a process.

With existing integrity models, there is a gap between concrete the measurements
of a system’s components and the verification of its integrity status. We believe an
application-oriented and domain-centric approach accommodates the requirements of
attestation evaluation better than advocating an abstract model. For example, in a Linux
system, a subject in one of traditional integrity models can correspond to a set of
processes, belonging to a single application domain. For instance, an Apache domain
may include various process types such as httpd t, http sysadm devpts t, and
httpd prewikka script t. All of these types can have information flows among
them, which should be regarded as a single integrity level. Also, sensitive objects in a
domain should share the same integrity protection of its subjects. To comprehensively
describe the system integrity requirements, in this paper, we propose a domain-based
isolation approach as discussed in the subsequent section.

3 Domain-Based Isolation

According to TCG and IMA, the trustworthiness of a system is described with the
measured integrity values (hash values) of loaded software components. However, the
measurement efficiency and attestation effectiveness are major problems of these ap-
proaches since (i) too many components have to be measured and tracked, and (ii) too
many known-good hash values are required from different software vendors or author-
ities. Fundamentally, this requires that in order to trust a single application of a system,
every software component in the system has to be trusted; otherwise the attestation re-
sult should be negative. In our work, we believe that the trustworthiness of a system
is tightly related to the integrity status, which is, in turn, described by a set of integrity
rules that are enforced by the system. If any of the rules is violated, it should be detected.
Hence, in order to trust a single application domain, we just need to ensure the system
TCB–including reference monitor and integrity rules protecting the target application
domain–are not altered.

Based on this anatomy, we introduce domain-based isolation principles for integrity
protection, which are the criteria to describe the integrity status of a system and thus
its trustworthiness. We first propose general methodologies to identify high integrity
processes, which include system TCB and domain TCB, and then we specify security
rules for protecting these high integrity processes. System TCB (TCBs) is similar to the
concept of traditional TCB [3], which can be identified along with the subjects function-
ing as the reference monitor of a system [4]. Applying this concept to SELinux [15],
for example, subjects functioning as reference monitor such as checkpolicy and
loading policy belong to system TCB. Also, subjects used to support reference
monitor such as kernel and initial should also be included into system TCB.
With this approach, an initial TCBs can be identified, and other subjects such as lvm
and restorecon can be added into TCBs based on their relationships with the initial
TCBs. Other optional methods for identifying TCBs are proposed in [10]. Consider-
ing the similarity of operating systems and configurations, we expect that the results

186 W. Xu et al.

would be similar. Furthermore, for attestation purpose, TCBs also includes integrity
measurement and reporting components, such as kernel level integrity measurement
agent [1] and attestation request handling agent.

In practice, other than TCBs, an application or user-space service also can affect
the integrity thus the behavior of a system. An existing argument [3] clearly states
the situation: “A network server process under a UNIX-like operating system might
fall victim to a security breach and compromise an important part of the system’s se-
curity, yet is not part of the operating system’s TCB.” Accordingly, a comprehensive
mechanism of policy analysis for TCB identification and integrity violation detection is
desired. Hence, we introduce a concept called information domain TCB (or simply do-
main TCB, TCBd). Let d be an information domain functioning as a certain application
or service through a set of related subjects and objects, domain d’s TCB or TCBd is
composed of a set of subjects and objects in information domain d which have the same
level of security sensitivity. By the same level of security sensitivity, we mean that, if
information can flow to some subjects or objects of the domain, it can flow to all others
in the domain. That is, they need the same level of integrity protection. Prior to the
identification of TCBd, we first identify the information domain d based on its main
functions and relevant information flow associated with these functions. For example, a
running web server domain consists of many subjects–such as httpd process, plugins,
tools, and other objects–such as data files, configuration files, and logs.

The integrity of an object is determined by the integrity of subjects that have oper-
ations on this object. All objects dependent on TCBd subjects are classified as TCB
protected objects or resources. Thus we need to identify all TCBd subjects from an
information domain and verify the assurance of their integrity. To ease this task, a mini-
mum TCBd is first discovered. In the situation that the minimum TCBd subjects have
dependency relationships with other subjects, these subjects should be added to domain
TCB, or the dependencies should be removed. Based on these principles, we first iden-
tify initial TCBd subjects which are predominant subjects for the information domain
d. We further discover other TCBd subjects considering subject dependency relation-
ships with the initial TCBd through information flow transitions, which means that the
subjects that can only flow to and from the initial TCBd subjects should be included
into TCBd. For instance, for a web server domain, httpd is the subject that initiates
other web server related processes. Hence, httpd is the predominant subject and be-
longs to TCBd. Then, based on all possible information flows to httpd, we identify
other subjects such as httpd-suexec in TCBd.

To protect the identified TCBs and TCBd, we develop principles similar to those in
Clark-Wilson [13]. Clark-Wilson leverages transaction procedures (TP) to allow infor-
mation flow from low integrity to high integrity processes. Hence, we also develop the
concept of filters. Filters can be processes or interfaces [11] that normally are distinct
input information channels and are created by a particular operation such as open(),
accept(), or other calls that enable data input. For example, su process allows a low
integrity process (e.g., staff) being changed to be a high integrity process (e.g., root) by
executing passwd process, thus passwd can be regarded as a filter for processes run
by root privilege. Also, high integrity process (e.g., httpd administration) can accept
low integrity information (e.g, network data) through the secure channel such as sshd.

DR@FT: Efficient Remote Attestation Framework for Dynamic Systems 187

Consequently,sshd can be treated as another example of filter for higher privilege pro-
cesses. With the identifications of TCBs, TCBd and filters, for information domain d,
all the other subjects in a system are categorized as NON-TCB.

Definition 1. Domain-based isolation is satisfied for an information domain d if infor-
mation flows are from TCBd; or information flows are from TCBs to either TCBd or
TCBd protected resources; or information flows are from NON-TCB to either TCBd

or TCBd protected resources via filter(s).

4 Design of DR@FT

DR@FT consists of three main parties: an attestee (the target platform), an attester
(attestation challenger), and a trusted authority, as shown in Figure 1. The attestee is
required to provide its system state information to the attester to be verified. Here,
we assume that an attestee initially is in a trusted system state. After certain system
behaviors, the system state is changed to a new state.

TPM

Policy Analysis

Attester

Policy Updates

Attestee Measurements

Rule 1'

Rule 2'

1

6

Known
Fingerprints

Attestee

3

4

5
Initial Trusted
System State

Codes and Data
Verification

2

IMA

Initial Trusted System
State

New System State

System State
Changes

Reporting Process
Authentication

AIKpub /
AIkpvt

Trusted Authority

PKs /
Sks

Subject 1

Subject 2

Subject 3

TSL Code and Data

m(tsl)

Code 1

Code 2

Code 3

m(cd)

Rule 1

Rule 2

Rule 3

m(policy)

Filter 1

Filter 2

Filter 3

m(filter)

Rprocess 1

Rprocess 2

Rprocess 3

m(rprocess)

Policy Filter Rprocess
Reporting Daemon

Fig. 1. Overview of DR@FT

An attestation reporting daemon on the attestee gets the measured new state infor-
mation (step 1) with IMA, and generates the policy updates (step 2). This daemon then
gets AIK-signed PCR value(s) and sends to the attester. After the attester receives and
authenticates the information, with the attestee’s AIK public key certificate from the
trusted authority, it verifies the attestee integrity through codes and data verification
(step 3), reporting process authentication (step 4) and policy analysis (step 5).

4.1 System State and Trust Requirement

For the attestation purpose, the system state is a snapshot of an attestee system at a
particular moment, where the factors characterizing the state can influence the system
integrity in any future moment of the system. Based on the domain-based isolation, the
attestee system integrity can be represented via information flows, which are character-
ized by the trusted subject list, filters, policies, and the trustworthiness of TCBs. Based
on these, we define the system state of the attestee as follows.

188 W. Xu et al.

Definition 2. A system state at the time period i is a tuple Ti={ TSLi, CDi, Policyi,
Filteri, RProcessi }, where

– TSLi={s0, s1....sn} represents a set of high integrity processes which corresponds
to the set of subjects s0, s1....sn in TCBs and TCBd.

– CDi={cd (s0), cd (s1)....cd (sn)} is a set of codes and data for loading a subject
sj ∈ TSLi.

– Policyi is the security policy currently configured on the attestee.
– Filteri is a set of processes defined to allow information flow from low integrity

processes to high integrity processes.
– RProcessi represents a list of processes that measure, monitor, and report the cur-

rent TSLi, CDi, Filteri and Policyi information. IMA agent and the attestation
reporting daemon are the examples of the RProcessi.

According to this definition, a system state does not include a particular application’s
running state such as its memory page and CPU context (stacks and registers). It only
represents the security configuration or policy of an attestee system. A system state tran-
sition indicates one or more changes in TSLi, CDi, Policyi , Filteri, or RProcessi.
A system state Ti is trusted if TSLi belongs to TCBs and TCBd; CDi does not contain
untrusted codes and data; Policyi satisfies domain-based isolation; Filteri belongs to
the defined filter in domain-based isolation; and RProcessi codes and data do not con-
tain malicious codes and data and these RProcessi processes are integrity protected
from the untrusted processes via Policyi.

As mentioned, we assume there exists an initial trusted system state T0 which sat-
isfies. Through changing the variables in T0, the system transits to states T1, T2 ... Ti.
The attestation purpose is to verify if any of these states is trusted.

4.2 Attestation Procedures

Attestee Measurements. The measurement at the attestee side has two different forms,
depending on how much the attestee system changes. In case any subject in TCBs

is updated, the attestee must be fully remeasured from the system reboot and the at-
tester needs to attest it completely, as this subject may affect the integrity of subjects in
RProcess of the system such as the measurement agent and reporting daemon. After
the reboot and all TCBs subjects are remeasured, a trusted initial system state T0 is
built. To perform this re-measurement, the attestee measures a state Ti and generates
the measurement list Mi which is added by Trusted subject list (TSLi) measurement,
Codes and data (CDi) measurement,Policy (Policyi) measurement, Filter (Filteri)
measurement and Attestation Process (RProcessi) measurement. Also, H(Mi) is ex-
tended to a particular PCR of the TPM, where H is a hash function such as SHA1.

In another case, where there is no TCBs subject updated and the TSLi or Filteri

subjects belonging to TCBd are updated, the attestee only needs to measure the updated
codes and data loading the changed TSL or filter subject, and generates a measurement
list Mi. The generation of this measurement list is realized through the run-time mea-
surement supported by the underlying measurement agent.

To support both types of measurements, we develop an attestation reporting dae-
mon which monitors the run-time measurements of the attestee. In case the run-time

DR@FT: Efficient Remote Attestation Framework for Dynamic Systems 189

measurements for the TCBs are changed, the attestee is required to be rebooted and
fully measured with IMA. The measurements values are then sent to the attester by the
daemon. On the other side, the changed measurement value is measured by IMA and
captured with the reporting daemon only if the measurement for TCBd is changed.
Obviously, this daemon should be trusted and is included as part of TCBs. That is,
its codes and data are required to be protected with integrity policy and corresponding
hash values are required to be stored at the attester side.

Policy Updates. To analyze if the current state of the attestee satisfies domain-based
integrity property, the attester requires information about the current security policy
loaded at the attestee side. Due to the large volume of policy rules in a security policy,
sending all policy rules in each attestation and verifying all of them by the attester
may cause the performance overhead. Hence, in DR@FT, the attestee only generates
policy updates from the latest attested trusted state and sends them to the attester for the
attestation of such updates.

To support this mechanism, we have the attestation reporting daemon monitor any
policy update on attestee system and generate a list of updated policy rules. Note that
the policy update comparison is performed between the current updated policy and the
stored trusted security policy Policy0 or previously attested and trusted Policyi−1. The
complexity of this policy update algorithm is O(nr), where nr represents the number of
the policy rules in the new policy file Policyi.

Codes and Data Verification. With received measurement list Mi and AIK-signed
PCRs, the attester first verifies the measurement integrity by re-constructing the hash
values and compares with PCR values. After this is passed, the attester performs the
analyses. Specifically, it obtains the hash values of CDi and checks if they corresponds
to known-good fingerprints. Also, the attester needs to assure that the TSLi belongs
to TCBs and TCBd. In addition, the attester also gets the hash value of Filteri and
ensures that they belong to the filter list defined on the attester side. In case this step
successes, the attester has the assurance that target processes on attestee side are proved
without containing any untrusted code or data, and the attester can proceed to next steps.
Otherwise, the attester sends a proper attestation result denoting this situation.

Authenticating Reporting Process. To prove that the received measurements and up-
dated policy rules are from the attestee, the attester authenticates them by verifying that
all the measurements, updates and integrity measurement agent processes in the attestee
are integrity protected. That is, the RProcessi does not contain any untrusted codes or
data and its measurements correspond to PCRs in the attester. Also, there is no integrity
violated information flow to these processes from subjects of TSLi, according to the
domain isolation rules. Note that these components can also be updated, but after any
update of these components, the system should be fully re-measured and attested from
boot time as aforementioned, i.e., to re-build a trusted initial system state T0.

Policy Analysis by Attester. DR@FT analyzes policy using a graph-based analysis
method. In this method, a policy file is first visualized into a graph, then this policy
graph is analyzed against pre-defined security model such as our domain-based isola-
tion, and a policy violation graph is generated. The main goal of this approach is to give

190 W. Xu et al.

semantic information of attestation result to the attestee, such that its system or security
administrator can quickly and intuitively obtain any violated integrity configuration.

Note that verifying all the security policy rules in each attestation request decrease
the efficiency, as loading policy graph and checking all the policy rules one by one
cost a lot of time. Thus, we need to develop an efficient way for analyzing the attestee
policy. In our method, the attester stores the policy of initial trusted system state T0 or
the latest trusted system state Ti, and its corresponding policy graph is loaded which
does not have any policy violation. Upon receiving the updated information from the
attestee, the attester just needs to analyze these updates to see if there is new information
flow violating integrity.

Through this algorithm, rather than analyzing all the policy rules and all information
flows for each attestation, we verify the new policy through only checking the updated
policy rules and the newly identified information flow. The complexity of this policy
analysis algorithm is O(nn +nl +nt), where nn represents the number of changed sub-
jects and objects, nl is the number of changed subjects and objects relationship in the
policy update file; and nt represents the number of changed TCB in the TSL file.

Attestation Result Sending to Attester. In case the attestation is successful, a new
trusted system state is developed and the corresponding information is stored at the at-
tester side for subsequent attestations. On the other hand, if the attestation fails, there are
several possible attestation results including CDi Integrity Fail, CDi Integrity Success,
RProcessi Unauthenticated, and Policyi Fail/Success, and CDi Integrity Success,
RProcessi Authenticated, and Policyi Fail /Success. To assist the attestee reconfigura-
tion, the attester also sends a representation of the policy violation graph to the attestee.
Moreover, with this policy violation graph, the attester specifies the violation ranking
and the trustworthiness of the attestee, which is explained in next section.

5 Integrity Violation Analysis

As we discussed in Section 1, existing attestation solutions such as TCG and IMA lack
the expressiveness of the attestation result. In addition to their boolean-based response
for attestation result, DR@FT adopts a graph-based policy analysis mechanism, where
a policy violation graph can be constructed for identifying all policy violations on the

Fig. 2. Example policy violation graph and rank. The SubjectRank and PathRank indicate the
severity of violating paths.

DR@FT: Efficient Remote Attestation Framework for Dynamic Systems 191

attestee side. We further introduce a risk model built on a ranking scheme, which gives
the implication of how severe the discovered policy violations are, and how to efficiently
resolve them.

5.1 Policy Violation Graph

Based on domain-based isolation model, we can find out two kinds of violation paths,
direct violation paths and indirect violation paths. A direct violation path is a one-hop
path through which an information flow can go from a low integrity subject to a high
integrity subject. We observe that information flows are transitive in general. Therefore,
there may exist information flows from a low integrity subject to a high integrity subject
via several other subjects. This multi-hop path is called indirect violation path. All direct
and indirect violation paths belonging to a domain can construct a policy violation graph
for this domain.

Definition 3. A policy violation graph for a domain d is a directed graph Gv=(V v, Ev):

– V v ⊆ V v
NTCB ∪ V v

TCBd ∪ V v
TCB where V v

NTCB , V v
TCBd and V v

TCB are subject
vertices containing in direct or indirect violation paths of domain d and belong to
NON-TCB, TCBd, and TCBs, respectively.

– Ev ⊆ Ev
Nd ∪Ev

dT ∪Ev
NT ∪Ev

NTCB ∪Ev
TCBd ∪Ev

TCB where Ev
Nd ⊆ (V v

NTCB ×
V v

TCBd), Ev
dT ⊆ (V v

TCBd × V v
TCB), Ev

NT ⊆ (V v
NTCB × V v

TCB), Ev
NTCB ⊆

(V v
NTCB×V v

NTCB), Ev
TCBd ⊆ (V v

TCBd×V v
TCBd), and Ev

TCB ⊆ (V v
TCB×V v

TCB),
and all edges in Ev are contained in direct or indirect violation paths of domain d.

Figure 2 (a) shows an example of policy violation graph which examines information
flows between NON-TCB and TCBd

1. Five direct violation paths are identified in this
graph: ¡S′

1, S1¿, ¡S′
2, S2¿, ¡S′

3, S2¿, ¡S′
4, S4¿, and ¡S′

5, S4¿, crossing all the boundaries
between NON-TCB and TCBd. Also, eight indirect violation paths exist. For example,
¡S′

2, S5¿ is a four-hop violation path passing through other three TCBd subjects S2,
S3, and S4.

5.2 Ranking Policy Violation Graph

In order to explore more features of policy violation graphs and facilitate efficient policy
violation detection and resolution, we introduce a scheme for ranking policy violation
graphs. There are two steps to rank a policy violation graph. First, TCBd subjects in
the policy violation graph are ranked based on dependency relationships among them.
The rank of a TCBd subject shows reachable probability of low integrity information
flows from NON-TCB subjects to the TCBd subject. In addition, direct violation paths
in the policy violation graph are evaluated based on the ranks of TCBd subjects to
indicate severity of these paths which allow low integrity information to reach TCBd

subjects. The ranked policy violation graphs are valuable for a system administrator

1 Similarly, the information flows between NON-TCB and TCBs, and between TCBd and
TCBs can be examined accordingly.

192 W. Xu et al.

as they need to estimate the risk level of a system and provide a guide for choosing
appropriate strategies for resolving policy violations efficiently.

Ranking Subjects in TCBd. Our notation of SubjectRank (SR) in policy violation
graphs is a criterion that indicates the likelihood of low integrity information flows
coming to a TCBd subject from NON-TCB subjects through direct or indirect violation
paths. The ranking scheme we introduce in this section adopts a similar process of
rank analysis applied in hyper-text link analysis system, such as Google’s PageRank [6]
that utilizes a link structure provided by hyperlinks between web pages to gauge their
importance. Comparing with PageRank which focuses on analyzing a web graph where
the entries are any web pages contained in the web graph, the entries of low integrity
information flows to TCBd subjects in a policy violation graph are only identified
NON-TCB subjects.

Consider a policy violation graph with N NON-TCB subjects, and si is a TCBd sub-
ject. Let N(si) be the number of NON-TCB subjects from which low integrity informa-
tion flows could come to si, N

′
(si) the number of NON-TCB subjects from which low

integrity information flows could directly reach to si, In(si) a set of TCBd subjects
pointing to si, and Out(sj) a set of TCBd subjects pointed from sj . The probability of
low integrity information flows reaching a subject si is given by:

SR(si) =
N(si)

N
(
N

′
(si)

N(si)
+ (1 −

N
′
(si)

N(si)
)

∑
sj∈In(si)

SR(sj)

|Out(sj)|
) (1)

SubjectRank can be interpreted as a Markov Process, where the states are TCBd sub-
jects, and the transitions are the links between TCBd subjects which are all evenly
probable. While a low integrity information flow attempts to reach a high integrity sub-
ject, it should select an entrance (a NON-TCB subject) which has the path(s) to this
subject. Thus, the possibility of selecting correct entries to a target subject is N(si)

N .
After selecting correct entries, there still exist two ways, through direct violation paths
or indirect violation paths, to reach a target subject. Therefore, the probability of flow

transition from a subject is divided into two parts: N
′
(si)

N(si)
for direct violation paths and

1 − N
′
(si)

N(si)
for indirect violation paths. The 1 − N

′
(si)

N(si)
mass is divided equally among

the subject’s successors sj , and SR(sj)
|Out(sj)| is the rank value derived from sj .

Figure 2 (b) displays a result of applying Equation (1) to the policy violation graph
showing in Figure 2 (a). Note that even though subject s4 has two direct paths from
NON-TCB subjects like subject s2, the rank value of s4 is higher than the rank value of
s2, because there is another indirect flow path to s4 (via s3).

Ranking Direct Violation Path. We further define PathRank (PR) as the rank of a
direct violation path2, which is a criterion reflecting the severity of the violation path
through which low integrity information flows may come to TCBd subjects. Direct vio-
lation paths are regarded as the entries of low integrity data to TCBd in policy violation

2 It is possible that a system administrator may also want to evaluate indirect violation paths
for violation resolution. In that case, our ranking scheme could be adopted to rank indirect
violation paths as well.

DR@FT: Efficient Remote Attestation Framework for Dynamic Systems 193

graph. Therefore, the ranks of direct violation paths give a guide for system administra-
tor to adopt suitable defense countermeasures for solving identified violations.

To calculate PathRank accurately, three conditions are needed to be taken into ac-
count: (1) the number of TCBd that low integrity flows can reach through this direct
violation path; (2) SubjectRank of reached TCBd subjects; and (3) the number of hops
to reach a TCBd subject via this direct violation path.

Suppose < s
′
i, sj > is a direct violation path from a NON-TCB subject s

′
i to a TCBd

subject sj in a policy violation graph. Let Reach(< s
′
i, sj >) be a function returning

a set of TCBd subjects to which low integrity information flows may go through a
direct violation path < s

′
i, sj >, SR(sl) the rank of a TCBd subject sl, and Hs(s

′
i, sl)

a function returning the hops of the shortest path from a NON-TCB subject s
′
i to a

TCBd subject sl. The following equation is utilized to compute a rank value of the
direct violation path < s

′
i, sj >.

PR(< s
′
i, sj >) =

∑
sl∈Reach(<s

′
i
,sj>)

SR(sl)

Hs(s
′
i, sl)

(2)

Figure 2 (c) shows the result using the above-defined equation to calculate the PathRank
of the example policy violation graph. For example, < s

′
2, s2 > has a higher rank than

< s
′
1, s1 >, because < s

′
2, s2 > may result in low integrity information flows to reach

more or important TCBd subjects than < s
′
1, s1 >.

5.3 Evaluating Trustworthiness

Let Pd be a set of all direct violation paths in a policy violation graph. The entire rank,
which can be considered as a risk level of the system, can be computed as follows:

RiskLevel =
∑

<s
′
i
,sj>∈Pd

PR(< s
′
i, sj >) (3)

The calculated risk level could reflect the trustworthiness of an attestee. Generally, the
lower risk level indicates the higher trustworthiness of a system. When an attestation is
successful and there is no violation path being identified, the risk level of the attested
system is zero, which means an attestee has the highest trustworthiness. On the other
hand, when an attestation is failed, corresponding risk level of a target system is com-
puted. A selective service could be achieved based on this fine-grained attestation result.
That is, the number of services provided by a service provider to the target system may
be decided with respect to the trust level of the target system. On the other hand, a sys-
tem administrator could refer to this attestation result as the evaluation of her system as
well as guidelines since this quantitive response would give her a proper justification to
adopt countermeasures for improving the system’s trustworthiness.

6 Implementation and Evaluation

We have implemented DR@FT to evaluate its effectiveness and performance. Our at-
testee platform is a Lenovo ThinkPad X61 with Intel Core 2Duo Processor L7500

194 W. Xu et al.

1.6GHz, 2 GB RAM, and Atmel TPM. We enable SELinux with the default policy
based on the current distribution of SELinux [15]. To measure the attestee system with
TPM, we update the Linux kernel to 2.6.26.rc8 with the latest IMA implementation [1],
where SELinux hooks and IMA functions are enabled. Having IMA enabled, we con-
figure the measurement of the attestee information. After the attestee system kernel is
booted, we mount the sysfs file system and inspect the measurement list values in
ascii runtime measurements and ascii bios measurements.

6.1 Attestation Implementation

We start from a legitimate attestee and make measurements of the attestee system for the
later verification. To invoke a new attestation request from the attester, the attestation
reporting daemon runs in the attestee and monitors the attestee system. This daemon
is composed of two main threads: One monitors and gets the new system state mea-
surements, and the other monitors and obtains the policy updates of the attestee. The
daemon is also measured and the result can be obtained through the legitimate attestee.
Thus the integrity of the daemon can be verified later by the attester. In case the attestee
system state is updated due to new software installation, changing policy, and so on, an
appropriate thread of the daemon automatically obtains the new measurement values
as discussed in 4. The daemon then securely transfers the attestation information to the
attester based on the security mechanisms supported by the trusted authority.

After receiving the updated system information from the attestee, the measurement
module of the attester checks the received measurements against the stored PCR to
prove its integrity. To analyze the possible revised attestee policy, the policy analysis
module is developed as a daemon, which is ported from a policy analysis engine. We
extend the engine to identify violated information flows from the updated policy rules
based on domain-based isolation rules. We also accommodate the algorithm presented
in Section 4.2, as well as our rank scheme to evaluate the trustworthiness of the attestee.

6.2 Evaluation

To assess the proposed attestation framework, we attest our testbed platform with Apache
web server installed. To configure the trusted subject list of the Apache domain, we first
identify the TCBs based on the reference monitor-based TCB identification, including
the integrity measurement, monitoring agents, and daemon. For TCBd of the Apache,
we identify the Apache information domain, Apache TCBd, including httpd t and
httpd suexec t, and the initial filters sshd t, passwd t, su t, through the
domain-based isolation principles. Both TCBs and TCBd are identified with a graph-
ical policy analysis tool [17]. We then install the unverified codes and data to evaluate
the effectiveness of our attestation framework.

Installing Malicious Code. We first install a Linux rootkit, which gains administrative
control without being detected. Here, we assign the rootkit with the domain
unconfined t that enables information flows to domaininitrc t labelinginitrc
process, which belongs to TCBs of the attestee. Following the framework proposed in
Section 4, the attestee system is measured from the bootstrap with configured IMA. After

DR@FT: Efficient Remote Attestation Framework for Dynamic Systems 195

getting the new measurement values, the reporting daemon sends these measurements to
the attester. Note that there is no policy update in this experiment. Different from IMA,
we only measure the TCBs and TCBd subjects. After getting the measurements from
the attestee, attester verifies them by trying to match the measured hash values. Partial
of our measurement shows the initial measurements of the initrc (in a trusted initial
system state) and the changed value because of the installed rootkit. The difference be-
tween these two measurements indicates the originalinitrc is altered, and the attester
confirms that the attestee is not in a trusted state.

Installing Vulnerable Software. In this experimentation, we install a vulnerable
software called Mplayer on the attestee side. Mplayer is a media player and encoder
software which is susceptible to several integer overflows in the real video stream du-
muxing code. These flaws allow an attacker to cause a denial of service or potentially
execution of the arbitrary code by supplying a deliberately crafted video file. After a
Mplayer is installed, a Mplayer policy module is also loaded into the attestee policy. In
this policy module, there are several different subjects such as staff mplayer t,
sysadm mplayer t. Also, some objects are defined in security policies such as
user mplayer home t and staff mplayer home t.

staff_mencoder_t

user_mencoder_t

sysadm_mencoder_t
sysadm_mplayer_t

user_mplayer_t

staff_mplayer_t

httpd_t

httpd_suexec_t

httpd_prewikka_script_thttpd_awstats_script_t

httpd_rotatelogs_t

ncsd_var_run_t

sysadm_devpts_t

cifs_t 0.1713
0.1713 0.12963

0.12963
0.5269

0.3889

0.3426

0.26345
0.26345

0.3426

0.3889

0.3333

0.0556

0.1713

0.12963

Fig. 3. Information flow verification of Mplayer. The links show the information flow from
Mplayer (filled circle nodes) to Apache (unfilled nodes). The rank values on the paths indicate
the severity of the corresponding violation paths.

After the Mplayer is installed, the attestation daemon finds that the new measure-
ment of Mplayer is generated and the security policy of the system is changed. As the
Mplayer does not belong to TCBs and Apache TCBd, the attestation daemon does not
need to send the measurements to the attester. Consequently, the daemon only computes
the security policy updates and sends the information to the attester.

Upon receiving the updated policies, we analyze these updates and obtain a policy vi-
olation graph as shown in Figure 3. Through objects such as cifs t, sysadm dev
tps t, ncsd var run t, information flows from Mplayer can reach Apache do-
main. In addition, rank values are calculated and shown in the policy violation graph,
which guides effective violation resolutions. For example, there are three higher ranked

196 W. Xu et al.

paths including path from sysadm devpts t to httpd t, from ncsd var run t
to httpd rotatelogs t, and from cifs t to httpd prewikka script t.
Meanwhile, a risk level value (1.2584) reflecting the trustworthiness of the attestee sys-
tem is computed based on the ranked policy violation graph.

Once receiving the attestation result shown in Figure 3, the attestee administrator
solves the violation that has the higher rank than others. Thus, the administrator can first
resolve the violation related to httpd t through introducinghttpd sysadm devpt
s t.

allow httpd t httpd sysadm devtps t:chr file {ioctl read write
getattr lock append};

After the policy violation resolution, the risk level of the attestee system is lowered to
0.7315. Continuously, after the attestee resolves all the identified policy violations and
the risk level is decreased to be zero, the attestation daemon gets a new policy update
file and sends it to the attester. Upon receiving this file, the attester verifies whether
these information flows violate domain-based isolation integrity rules since these flows
are within the NON-TCB–even though there are new information flow compared to the
stored Policy0. Thus, an attestation result is generated which specifies the risk level (in
this case, zero) of the current attestee system. Consequently, a new trusted system state
is built for the attestee. In addition, the information of this new trusted system state is
stored in the attester side for the later attestation.

6.3 Performance

To examine the scalability and efficiency of DR@FT, we investigate how well the at-
testee measurement agent, attestation daemon, and the attester policy analysis module
scale along with the increased complexity, and how efficiently DR@FT performs by
comparing it with the traditional approaches.

In DR@FT, the important situations influencing the attestation performance include
system updates and policy changes. Hence, we evaluate the performance of DR@FT
by changing codes and data to be measured and modifying the security policies. Based
on our study, we observe that normal policy increased or decreased no more than 40KB
when installing or uninstalling software. Also, a system administrator does not make
the enormous changes over the policy. Therefore the performance is measured with the
range from zero to around 40KB in terms of policy size.

Performance on the attestee side. Based on DR@FT, the attestee has three main fac-
tors influencing the attestation performance. (1) Time spent for the measurement: Based
on our experimentation, the measurement time increases roughly linearly with the size
of the target files. For example, measuring policy files with 17.2MB and 20.3MB re-
quires 14.63 seconds and 18.26 seconds, respectively. Measuring codes around 27MB
requires 25.3sec. (2) Time spent for identifying policy updates TPupdate: Based on
the specification in Section 4, policy updates are required to be identified and sent to
the attester. As shown in Table 1, for a system policy which is the size of 17.2MB at
its precedent state, the increase of the policy size requires more time for updating the

DR@FT: Efficient Remote Attestation Framework for Dynamic Systems 197

Table 1. Attestation Performance Analysis (in seconds)

Policy Change Dynamic Static
Size TPupdate Tsend TPanalysis Overhead TP send TPanalysis Overhead
0 0.23 0 0 0.23 14.76 90.13 104.89
-0.002MB (Reduction) 0.12 0.002 0.02 0.14 14.76 90.11 104.87
-0.019MB (Reduction) 0.08 0.01 0.03 0.12 14.74 89.97 104.34
-0.024MB (Reduction) 0.04 0.02 0.03 0.09 14.74 89.89 104.23
0.012MB (Reduction) 0.37 0.01 0.03 0.41 14.77 90.19 104.96
0.026MB (Addition) 0.58 0.02 0.03 0.63 14.78 90.33 105.11
0.038MB (Addition) 0.67 0.03 0.04 0.74 14.79 90.46 105.25

policy and vice versa. (3) Time spent for sending policy updates TPsend: Basically, the
more policy updates, the higher overhead was observed.

Performance on the attester side. In DR@FT, the measurement verification is rela-
tively straightforward. At the attester side the time spent for policy analysis TPanalysis

mainly influences its performance. As shown in Table 1, the analysis time roughly in-
creases when the policy change rate increases.

Comparison of dynamic and static attestation. To further specify the efficiency of
DR@FT, we compare the overhead of DR@FT with a static attestation. In the static
approach, the attestee sends all system state information to an attester, and the attester
verifies the entire information step by step. As shown in Table 1, the time spent for
static attestation is composed of TPsend and TPanalysis, which represent the time for
sending policy module and analyzing them, respectively. Obviously, the dynamic ap-
proach can dramatically reduce the overhead compared to the static approach. It shows
that DR@FT is an efficient way when policies on an attestee are updated frequently.

7 Conclusion

We have presented a dynamic remote attestation framework called DR@FT for effi-
ciently verifying if a system satisfies integrity protection property and indicates integrity
violations which determine its trustworthiness level. The integrity property of our work
is based on an information flow-based domain isolation model, which is utilized to
describe the integrity requirements and identify integrity violations of a system. To
achieve the efficiency and effectiveness of remote attestation, DR@FT focuses on sys-
tem changes on the attestee side. We have extended a powerful policy analysis engine
to represent integrity violations with the rank scheme. In addition, our results showed
that our dynamic approach can dramatically reduce the overhead compared to static
approach. We believe such an intuitive evaluation method would help system adminis-
trators reconfigure the system with more efficient and strategic manner.

There are several limitations of our attestation framework. First, DR@FT can attest
dynamic system configurations, but it does not attest the trustworthiness of dynamic
contents such as application state and CPU context. Second, our risk evaluation does
not explain under what kind of condition, what range of the risk value is acceptable
for the attestee or attester. In addition, in our work, all verification work is done at the

198 W. Xu et al.

attester side. There is a possibility that the attester can delegates some attestation tasks
to trusted components at the attestee side. In the future, we would further investigate
these issues.

References

1. LIM Patch, http://lkml.org/lkml/2008/6/27
2. Trusted computing group, https://www.trustedcomputinggroup.org/home
3. Trusted Computer System Evaluation Criteria. United States Government Department of De-

fense (DOD), Profile Books (1985)
4. Anderson, A.P.: Computer security technology planning study. ESD-TR-73-51 II (1972)
5. Biba, K.J.: Integrity consideration for secure compuer system. Technical report, Mitre Corp.

Report TR-3153, Bedford, Mass. (1977)
6. Brin, S., Page, L.: The anatomy of a large-scale hypertextual Web search engine. Computer

networks and ISDN systems 30(1-7), 107–117 (1998)
7. Chen, L., Landfermann, R., Löhr, H., Rohe, M., Sadeghi, A.-R., Stüble, C.: A protocol for

property-based attestation. In: ACM STC (2006)
8. Haldar, V., Chandra, D., Franz, M.: Semantic remote attestation: a virtual machine directed

approach to trusted computing. In: USENIX Conference on Virtual Machine Research And
Technology Symposium (2004)

9. Jaeger, T., Sailer, R., Shankar, U.: Prima: policy-reduced integrity measurement architecture.
In: ACM SACMAT (2006)

10. Jaeger, T., Sailer, R., Zhang, X.: Analyzing integrity protection in the selinux example policy.
In: USENIX Security (2003)

11. Provos, N., Friedl, M., Honeyman, P.: Preventing privilege escalation. In: 12th USENIX
Security Symposium, p. 11 (August 2003)

12. Sailer, R., Zhang, X., Jaeger, T., van Doorn, L.: Design and implementation of a tcg-based
integrity measurement architecture. In: USENIX Security (2004)

13. Sandhu, R.S.: Lattice-based access control models. IEEE Computer 26(11), 9–19 (1993)
14. Shankar, U., Jaeger, T., Sailer, R.: Toward automated information-flow integrity verification

for security-critical applications. In: NDSS (2006)
15. Smalley, S.: Configuring the selinux policy (2003),

http://www.nsa.gov/SELinux/docs.html
16. Fraser, T.: Lomac: Low water-mark integrity protection for cots environment. In: Proceedings

of the IEEE Symposium on Security and Privacy (May 2000)
17. Xu, W., Zhang, X., Ahn, G.-J.: Towards system integrity protection with graph-based pol-

icy analysis. In: Gudes, E., Vaidya, J. (eds.) Data and Applications Security XXIII. LNCS,
vol. 5645, pp. 65–80. Springer, Heidelberg (2009)

http://lkml.org/lkml/2008/6/27
https://www.trustedcomputinggroup.org/home
http://www.nsa.gov/SELinux/docs.html

Website Fingerprinting and Identification Using
Ordered Feature Sequences

Liming Lu, Ee-Chien Chang, and Mun Choon Chan�

Department of Computer Science, School of Computing

National University of Singapore

{luliming,changec,chanmc}@comp.nus.edu.sg

Abstract. We consider website fingerprinting over encrypted and prox-

ied channel. It has been shown that information on packet sizes is

sufficient to achieve good identification accuracy. Recently, traffic mor-

phing [1] was proposed to thwart website fingerprinting by changing the

packet size distribution so as to mimic some other website, while min-

imizing bandwidth overhead. In this paper, we point out that packet

ordering information, though noisy, can be utilized to enhance website

fingerprinting. In addition, traces of the ordering information remain

even under traffic morphing and they can be extracted for identification.

When web access is performed over OpenSSH and 2000 profiled websites,

the identification accuracy of our scheme reaches 81%, which is 11% bet-

ter than Liberatore and Levine’s scheme presented in CCS’06 [2]. We are

able to identify 78% of the morphed traffic among 2000 websites while

Liberatore and Levine’s scheme identifies only 52%. Our analysis sug-

gests that an effective countermeasure to website fingerprinting should

not only hide the packet size distribution, but also aggressively remove

the ordering information.

Keywords: Traffic analysis, side channel attack, edit distance, privacy,

anonymity.

1 Introduction

Website fingerprinting aims to identify the website accessed in some low latency,
encrypted tunnel. The “fingerprint” of a website is typically profiled on side
channel features observed from the stream of packets sent and received to access
the website. Let us call such stream the HTTP stream. From the perspective
of web clients, website fingerprinting raises the privacy concern and indicates
the need for further anonymization. On the other hand, such technique aids
legitimate wardens track web accesses over encrypted channel.

Since neither the IP address nor domain name of the website is available due
to encryption and proxies, it is natural to fingerprint websites using packet size
related features [2] [3] [4]. Simple defenses to website fingerprinting have been
proposed in previous works, including variations of packet padding. However,
� This work is partially supported by Grant R-252-000-413-232/422/592 from TDSI.

D. Gritzalis, B. Preneel, and M. Theoharidou (Eds.): ESORICS 2010, LNCS 6345, pp. 199–214, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

200 L. Lu, E.-C. Chang, and M.C. Chan

the large bandwidth overhead they cost leads to insufficient incentives for de-
ployment. “Traffic morphing” [1] is designed as a scheme to evade detection by
warden, and at the same time, incurs small bandwidth overhead. Traffic morph-
ing alters the packet size distribution of an HTTP stream, to make it appear as
if it is from another website. A morphing matrix is pre-computed to transform
a source distribution to the target, minimizing the total increase in packet sizes.

In this paper, we propose a website fingerprinting scheme that exploits infor-
mation on packet ordering as well as on packet sizes. Our scheme is motivated by
an observation on the regularity of browsers’ behavior in retrieving a webpage
through HTTP, which leads to a robust ordering of certain packets transmitted.
Experimental results show that sufficient ordering information is retained for
accurate website fingerprinting under reasonable amount of noise.

Our scheme is evaluated on a classification problem that identifies an HTTP
stream among a list of profiled websites, as well as a detection problem in which
it is uncertain whether the test website belongs to the profiled set. We tested our
scheme on datasets containing up to 2000 websites, with traces collected over
two months. For the classification problem, we test our scheme with full-length
OpenVPN test streams, i.e., 30-second long encrypted HTTP streams tunneled
through a VPN server, and the fingerprint identification accuracy is 97% among
1000 websites. We also test with partial SSH traces that capture only the first few
seconds of encrypted communication, the accuracy is 81% among 2000 websites,
still over 10% better than the previous scheme. For the detection problem, our
scheme presents an equal error rate at 7%, which is significantly better than the
previous scheme at 20%. Hence, for both types of evaluations, our scheme yields
superior identification accuracy compared to previous schemes.

Furthermore, our scheme is resilient to the traffic morphing technique by
Wright et al. [1]. When traffic is morphed according to unigram (i.e. single packet
size) distribution, our scheme distinguishes the morphed traffic from its target
with a success rate of 99% versus 25% for the previous scheme. When traffic
is morphed according to bigram (i.e. two adjacent packet sizes) distribution,
our scheme distinguishes 98.7% versus 22.5% for the previous scheme. When bi-
gram morphed traffic are mixed with traces of 2000 other websites, our scheme
correctly identifies 78% of the morphed traffic, while the previous scheme iden-
tifies 52%. Of course, our scheme may not improve the fingerprinting accuracy
if packets are padded or randomly morphed without concern of the bandwidth
overhead. For example, padding all packets to the path maximum transmission
unit will remove the ordering information, thus no improvement will be made.

In addition, we analyze the consistency of our website fingerprints, with re-
spect to static and dynamic websites, and different HTTP pipelining configura-
tions. We find that only 6% of the websites need reprofiling after a month. The
results verify that our feature selection generates consistent fingerprints.

Our analysis suggests that both size and ordering features should be removed
in countermeasures to website fingerprinting. We propose some countermeasures
that engender randomization in packets or HTTP requests. The countermeasures
are low in bandwidth overhead, though they may trade off the response time.

Website Fingerprinting and Identification Using Ordered Feature Sequences 201

Here we summarize the main contributions of our paper. (i) We provide a
concrete and efficient scheme that utilizes packet ordering information for website
fingerprinting. It improves the identification accuracy over previous schemes.
(ii) The website fingerprinting scheme we propose is able to withstand traffic
morphing that considers little packet ordering information.

The rest of this paper is organized as follows. The related work is reviewed in
Sect. 2. Our website fingerprinting model is presented in Sect. 3. Our method to
handle traffic morphing is described in Sect. 4. Experiments and analysis on the
effectiveness and robustness of our scheme are presented in Sect. 5. We suggest
some countermeasures in Sect. 6 and conclude this paper in Sect. 7.

2 Related Work

Side channel information has been utilized in a wide range of traffic analysis
applications. For example, keystroke intervals are used for password guessing
over SSH [5]; the sequence of bit rates is used to identify the streaming video
encoded with variable bit rate schemes [6]; packet sizes and rates are used to
reveal the presence of Skype traffic [7]; packet size, timing and direction are used
to infer the application layer protocol [8].

Several recent works [2] [3] [4] [9] have looked at the issue of using traffic
analysis to identify websites accessed. Yet some of their assumptions have been
invalidated with changes in HTTP and web browser behaviors. For example,
browsers were assumed not to reuse a TCP connection to download multiple
embedded objects [3] and object requests were assumed non-pipelined [4]. Hence
their approaches to determine an object size by accumulating the data received
either through a TCP connection [3] or between adjacent HTTP requests [4]
no longer work. Liberatore et al. [2] used the set composed of (direction, packet
size) pairs as fingerprint, and used Jaccard’s coefficient as the similarity measure
(|X∩Y |
|X∪Y | , where X and Y are the sets representing a website profile and a test

fingerprint, and |A| denotes the size of set A). These schemes only exploit side
channel features related to sizes but not ordering.

Defences against website fingerprinting have been proposed, such as variants
of packet padding. Padding every packet to the size of path Maximum Trans-
mission Unit (MTU) can thwart size related traffic analysis, but the amount of
overhead it causes is nearly 150% of the actual data [2]. “Mice-elephant” packet
padding incurs relatively less overhead, at nearly 50% growth in the data trans-
mitted. It pads packets to two sizes, either a small size for control packets, or
to the path MTU for data packets. Wright et al. [1] proposed traffic morphing
as a bandwidth efficient alternative to packet padding. It transforms the source
packet size distribution to mimic a target website, by splitting or padding the
packets. With limited consideration on packet ordering, the morphing technique
targets at fingerprinting schemes that only exploit information on packet sizes.

Edit distance [10] is employed in our scheme to measure the similarity of
fingerprints. It computes the minimum total cost of insertion, deletion and sub-
stitution to make two sequences identical. Edit distance has been applied in a

202 L. Lu, E.-C. Chang, and M.C. Chan

Communication flow

Traffic analysis

…
…

VPN / SSH Web

SSL / SSH
tunnelVPN / SSH VPN / SSH

server
Web

servers
VPN / SSH
client

Fig. 1. An illustration of traffic analysis setup

wide range of applications, such as spell checker in Google [11] and in Microsoft
Word [12], identifying plagiarism, comparing DNA sequences [13] [14], conduct-
ing fuzzy search in EXCEL [15] and evaluating dialect distances [16]. Our work
is the first in applying it to match the features of network traffic.

3 Our Website Fingerprinting Scheme

Web contents are retrieved from the server using HTTP and presented by the
client browser. SSH, SSL or its successor TLS provides a layer of protection
to data secrecy by encrypting the HTTP traffic before transmitting them over
TCP/IP. An SSH or SSL/TLS server acts as a proxy, providing a tunnel such that
the web server address is encapsulated into the packet payload and encrypted.
Website fingerprinting is performed over the encrypted and tunneled HTTP
stream.

3.1 Model

We use passive traffic analysis to fingerprint websites. Two important observa-
tions enable us to adopt this model: (i) webpage download by HTTP is highly
structured; and (ii) encryption and proxy do not severely alter the packet sizes,
nor the packet ordering. The advantage of passive traffic analysis is that the
presence of a warden is completely transparent.

The HTTP streams for analysis are captured over the protected tunnel be-
tween client and the VPN or SSH server, as shown in Fig. 1. Website fingerprints
are extracted from the HTTP streams. Several fingerprint instances form the pro-
file of a website. A testing stream is compared to each profile for identification.

Traffic model. Our fingerprinting model supports most browser configurations
and accommodates the following connection patterns (i) multiple TCP connec-
tions can be opened to download in parallel different embedded objects, (ii) each
TCP connection can be reused to download multiple objects, (iii) HTTP re-
quests can be pipelined in each connection, and (iv) all sessions are multiplexed
onto a single port.

Website Fingerprinting and Identification Using Ordered Feature Sequences 203

The connection patterns speed up the webpage download, but they increase
the difficulty to fingerprint websites. HTTP pipelining means a client is allowed
to make multiple requests without waiting for each response. Because of multiple
TCP connections and HTTP pipelining, data packets of different embedded
objects can interleave, thus object sizes cannot be determined by accumulating
the amount of data received between consecutive HTTP requests. Multiplexing
communication sessions hides the number of TCP connections opened and the
number of objects in a webpage.

As in previous works [2] [3] [4] [9], we assume browser caching is disabled. If it
is enabled, we can determine if a user has accessed some sensitive website using
the attack in [17].1

Problem scenarios. We tackle two problem scenarios, classification and detec-
tion. In both scenarios, a set D of, say 1000, websites are profiled.

– Classification. Given a test stream which is known to be a visit to a website
in D, identify the website. This is the same problem addressed in previous
work.

– Detection. Given a test stream, determine whether it is a visit to a website
in D, and identify the website if it is. We examine the false positive rate
(FPR) and false negative rate (FNR) in identification. This problem has not
been addressed in previous work.

The classification scenario requires the fingerprints of a website be sufficiently
similar. While the detection scenario further requires fingerprints of different
websites be sufficiently dissimilar.

Noise model. There are a few sources of noise that degrades the consistency
of HTTP streams, even if the website contents have not changed. Connection
multiplexing and HTTP pipelining are the main sources affecting the ordering
of objects. In addition, the order of object requests may be browser specific, and
the dynamics in network condition causes some random noise.

3.2 Fingerprint Feature Selection

A straightforward approach to represent fingerprint of an HTTP stream is by
using the sequence of all packet sizes and directions, i.e. fingerprint F = 〈(s1,
d1), (s2, d2), ...〉 where si is i-th packet size, and di is its direction. Clearly,
the approach makes fingerprint comparison inefficient, since each sequence eas-
ily contains over a thousand elements. Yet more importantly, the identification
accuracy will be affected, because the ordering of some packets often changes
due to various noises. Hence, we apply domain knowledge to select features.

Firstly, packets with sizes smaller than a threshold are considered control
packets and discarded from fingerprints. Secondly, we keep only the non-MTU
1 User is issued requests on some of the website’s objects. From the response time, we

determine if the objects are cached and hence if the user has visited the website.

204 L. Lu, E.-C. Chang, and M.C. Chan

(Maximum Transmission Unit) downloading packets as features of HTTP re-
sponses. The reasons why we exclude the MTU downloading packets are ex-
plained below.

Ideally, we would like to monitor object sizes rather than packet sizes, as
objects are less variable and more characteristic to a website. However, data of
different objects interleave in transmission due to multiple TCP connections and
HTTP pipelining. It is difficult to associate the data blocks to their respective
objects. Fortunately, HTTP transmission is not random. Majority of web servers
transfer data in chunks. In each data chunk, all packets are sized as path MTU,
except the last packet transferring the remaining data. Therefore, although we
cannot estimate object sizes, we can leverage the last packet size of a data
chunk, as it is specific to an object component. As for packet ordering, packets
that change their order tend to be the intermediate packets of different objects.
By filtering the intermediate packets, we reduce the probability of fingerprint
inconsistency.

Thirdly, we design the fingerprint of an HTTP stream to be two sequences,
representing the request and response features respectively. Although a request
must precede its corresponding response, the order of other requests to this
response is not deterministic, but sensitive to the pipelining configuration. Hence
the request and response features are not merged into a single sequence.

Therefore, to fingerprint a website over encrypted tunnels, the side channel
features we select are (i) sequence of HTTP request sizes and (ii) sequence
of HTTP response sizes (except MTU packets). Note that the number of ob-
jects and the number of components in object responses are two implicit features
represented by the lengths of these two sequences.

The features we select closely adhere to the webpage content and layout.
The request sequence reveals the relative locations of embedded objects in a
webpage and their URL lengths. The response sequence indicates the download
completion order of object components and the sizes of their last packets.

3.3 Fingerprint Similarity Measurement

Edit distance measures the number of edit operations to make two strings identi-
cal. Levenshtein distance is a form of edit distance that allows insertion, deletion
or substitution of a single character. It is commonly computed using Wagner-
Fischer’s algorithm [18]. We use Levenshtein distance to measure the similarity
between two website fingerprints.

We normalize the edit distance by max(|x|, |y|), where |x| denotes the length
of sequence x. We define similarity = 1−distance, to convert the distance mea-
surement into similarity. Given two fingerprints, two similarity values measured
on the object request sequences and on the non-MTU response sequences are
combined as follows:

α · simHTTPget + (1 − α) · simnonMTUpkts,

where α is a tunable parameter, indicating the degree of reliability of the similar-
ity values. We set α = 0.6 in our experiments, as the sequence of object requests

Website Fingerprinting and Identification Using Ordered Feature Sequences 205

is more stable. The probability of a test stream coming from a particular website
is determined as the maximum similarity between the fingerprint of this stream
and the various fingerprints in the website profile.

Edit distance is chosen as our similarity measure because (i) fingerprint in-
stances vary as a result of network dynamics and webpage updates, whose effects
are shown as insertion, deletion or substitution in the sequences, (ii) it considers
the order information, which differs from Jaccard’s coefficient that treats the
feature values as a set, and (iii) the length information of fingerprint sequences
are encapsulated for evaluation.

Example. Given two fingerprints FA = (Areq, Ares) and FB = (Breq, Bres),
where Areq = 〈436, 516, 500, 532〉, Ares = 〈548, 628, 1348, 1188, 596, 372, 980〉,
Breq = 〈436, 516, 500, 253, 500〉 and Bres = 〈548, 628, 1348, 1188, 436, 412,
1268〉. The normalized edit distance between the request sequences Areq and
Breq is 2/5. The distance between the responses Ares and Bres is 3/7. Hence the
similarity between FA and FB is 0.59 when α = 0.6.

4 Website Fingerprinting under Traffic Morphing

Traffic morphing [1] aims to provide a bandwidth efficient countermeasure to
website fingerprinting. Unigram morphing changes the distribution of single
packet size, while bigram morphing changes the distribution of two consecu-
tive packet sizes, to make the traffic appear as if from some other website. The
problem of finding the morphing matrix to transform packet size distributions
is formulated as an optimization problem, in which the goal is to minimize the
bandwidth overhead, and the constraints are the source and target packet size
distributions.

An important objective of traffic morphing is bandwidth efficiency. However,
if traffic morphing is extended to n-gram (n ≥ 2) to consider more packet or-
dering information, it becomes increasingly bandwidth inefficient. The reason is
that higher-gram morphing has to concurrently satisfy all the lower-gram dis-
tributions, so there are very limited choices for the size of the n-th packet once
the previous n− 1 packet sizes are fixed. Source packet sizes have to map to the
target distribution even though the size differences are large. For some value of
n, its bandwidth efficiency drops below packet padding schemes.

4.1 Fingerprint Differentiation

Our scheme can differentiate website fingerprints under traffic morphing [1]. For
the ease of discussion, let us call the source website WS , and its morphed traffic
S′. Website WS mimics a target website WT . The traffic of WT is T . From S′,
we want to identify WS .

We differentiate WS and WT fingerprints by packet ordering. Assume that we
know website WS morphs its traffic, while website WT does not. A large edit
distance between T and test stream S′ indicates that S′ is not from WT , because

206 L. Lu, E.-C. Chang, and M.C. Chan

the fingerprints of WT should be fairly consistent without morphing. Hence, test
stream S′ is from website WS .

If there are k websites imitating the same target WT , source WS is likely
uniquely identifiable. The reason roots at the morphing constraint to minimize
bandwidth overhead. A morphing matrix maps each source packet to some min-
imally different sizes in the target distribution. Because of the correlation in
packet sizes before and after morphing, and the consistency in the ordering of
unmorphed packets, morphed traffic also have reasonably consistent order. It
leaves us a loophole to differentiate among the k websites.

In evaluations, we examine the identifiability of k morphed websites amid
other websites not related by morphing. We preprocess to narrow down the
candidate websites by packet size distributions, e.g. using L1 distance measure-
ment.2 On one hand, the preprocessing safeguards that the morphing websites
are not filtered prematurely. Morphed streams tend to have larger variations
in packet ordering, because a source packet can map to a few target sizes and
the choice is probabilistic for each morphing instance. On the other hand, pre-
processing eliminates noise websites that the test stream may incidentally share
similar size sequence with, but are dissimilar in size distributions.

Since we evaluate the similarity of fingerprints based on the whole sequence
of feature values, our scheme can identify a morphed traffic, as long as mor-
phing does not handle the distribution of n-gram for n close to the sequence
length.

5 Evaluation

We present the performance analysis of our scheme in this section. Experiment
settings and data collection are described in Sect. 5.1. We evaluate the finger-
printing scheme in three aspects: identification accuracies (Sect. 5.2), robustness
to traffic morphing (Sect. 5.3) and consistency of fingerprints (Sect. 5.4).

5.1 Experiment Setup and Data Collection

We prepared three datasets on OpenVPN for evaluation, namely, static50, dy-
namic150, and OpenVPN1000. The dataset static50 contains trace data of 50
websites that are rarely updated (less than once in a few months); the dataset
dynamic150 contains traces of 150 websites that are frequently update (daily);
and the dataset OpenVPN1000 contains traces of 1000 popular websites.

To demonstrate that our scheme also works on SSH, we use the publicly
available dataset OpenSSH2000 [2], which contains traces of 2000 most visited
websites accessed through OpenSSH, captured once every 6 hours for 2 months.
The trace captures only packet headers in the first 6 seconds of a webpage
download.

2 L1 distance between two website fingerprints is computed as the sum of absolute

differences in their packet size distributions.

Website Fingerprinting and Identification Using Ordered Feature Sequences 207

Table 1. Fingerprint identification accuracy for various datasets

Dataset Static50 Dynamic150 OpenVPN1000

Accuracy 99% 97% 97%

We prepare the OpenVPN datasets by visiting the websites3 and capturing the
packet traces daily for 3 months. The traces are captured using TCPDump [19]
between the client and the VPN server. We use Firefox as the browser, HTTP
pipelining is enabled and its default value is 4 (at most 4 HTTP requests can be
served concurrently). Cache is cleared after each access. Flash player is installed.
Each web access is monitored for 30 seconds, to allow operations of object re-
quests and responses to fully complete.

The topology, size and content of high level cache is not within our control for
evaluation. In our experiments, the profiled websites are accessed regularly, so
we expect most objects are consistently cached close to the VPN or SSH server.

We use Liberatore and Levine’s scheme [2] for performance comparison, and
refer to it as the reference scheme. Our scheme that performs preprocessing
is referred to as the improved scheme, otherwise it is called the basic scheme
or simply our scheme. For each website, 15 traces are used to generate the
fingerprint profile and 10 other traces are used for testing. Analyzing from the
trace data and protocol specifications, we use 300 and 1450 as thresholds on
packet sizes to upper bound control packets and to lower bound MTU packets
respectively. Thus the fingerprint sequence of object requests contains packet
sizes that are larger than 300 bytes in the uploading direction, and the fingerprint
sequence of non-MTU responses consists of packet sizes between 300 to 1450
bytes in the downloading direction. These settings are used in our experiments,
unless otherwise specified.

5.2 Fingerprint Identification Accuracy

Accuracy of classification scenario. The fingerprint identification accuracies
on the OpenVPN datasets static50, dynamic150 and OpenVPN1000 are shown
in Table 1. Note that for all three datasets, the accuracy is close to 100%.

To demonstrate that our scheme works well for identifying websites accessed
in other tunnel, we tested it on the dataset OpenSSH2000, with parameters fully
complying with the settings in [2]. The accuracy of our scheme is 81%, out-
performing the reference scheme by 11%. The improvement is attained as our
scheme differentiates websites that have similar sets of packet sizes but different
packet ordering.

Accuracy of detection scenario. It is unknown in this scenario whether a test
stream is from any profiled websites. Thus a test stream not from the profiled
websites may be identified wrongly as from one of the websites in the profile
3 We are fingerprinting a website by its homepage. If the internal pages of a website

are also profiled, we can use the fingerprints of individual pages and their linkage

information to identify more accurately and confidently the website being surfed.

208 L. Lu, E.-C. Chang, and M.C. Chan

 0

 20

 40

 60

 80

 100

 0 0.2 0.4 0.6 0.8 1

C
D

F
(%

)

Similarity Threshold

FPR
FNR

(a) Our scheme

 0

 20

 40

 60

 80

 100

 0 0.2 0.4 0.6 0.8 1

C
D

F
(%

)

Similarity Threshold

FPR
FNR

(b) Reference scheme

Fig. 2. False positive and false negative rates with respect to similarity thresholds

(false positive); and a test from the profiled websites may be identified wrongly
as not from the profiled websites (false negative). We evaluate the fingerprint
identification accuracy in terms of false positive rate (FPR) and false negative
rate (FNR) for the detection scenario.

From the dataset OpenVPN1000, we randomly pick 200 websites to profile.
Traces from both these 200 websites and the remaining 800 are used to test the
fingerprint identification. The accuracy of our scheme with respect to different
similarity thresholds is shown in Fig. 2a, and the performance of the reference
scheme is shown in Fig. 2b. The equal error rate (EER) of our scheme occurs
when the similarity threshold is 0.21, at which both FPR and FNR are 7%; while
for the reference scheme, at the similarity threshold of 0.36, EER occurs to be
20%, almost three times of ours. If we minimize the total error rate, i.e. sum of
FPR and FNR, the optimal similarity threshold for our method is 0.22, with only
6% FPR and 8% FNR; whereas for the reference scheme, the optimal similarity
threshold is 0.37, at which its FPR and FNR are 9% and 27% respectively. The
results show that our scheme is much stronger at differentiating websites.

5.3 Accuracy with Traffic Morphing

In this subsection, we empirically show that our scheme can differentiate finger-
prints of websites morphed by packet sizes, and we verify that there is significant
bandwidth overhead for n-gram (n ≥ 2) morphing.

5.3.1 Fingerprint Differentiation under Traffic Morphing
Differentiating morphed traffic. We take 2000 websites as the mimicked tar-
gets, and generate the morphed traffic such that the packet size distributions are
within L1 distance of 0.3 between a morphed traffic and its target. The same
L1 distance threshold is used in the traffic morphing scheme [1]. For each tar-
get website, we generate 4 variants of the morphed distributions, and draw 5
instances from each variant. The distance in our scheme is measured using edit
distance; while that in the reference scheme [2] is 1 − S, where S is Jaccard’s

Website Fingerprinting and Identification Using Ordered Feature Sequences 209

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 0.2 0.4 0.6 0.8 1

P
D

F
(%

)

Distance

Reference scheme
Our scheme

Threshold = 0.3

(a) Unigram morphing

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 0.2 0.4 0.6 0.8 1

P
D

F
(%

)

Distance

Reference scheme
Our scheme

Threshold = 0.3

(b) Bigram morphing

Fig. 3. Distance distribution of the morphed traffic and the mimicked target

coefficient. The distribution of distances between morphed traffic and their tar-
gets is shown in Fig. 3.

For unigram morphing as shown in Fig. 3a, compared to the reference scheme,
our scheme shifts rightwards the range of distances from 95% in the interval [0.1,
0.4] to 95% in [0.4, 0.8]. The larger distance indicates that our scheme differen-
tiates more clearly the morphed traffic and the target. The vertical bar at 0.3
indicates the distance threshold, and a test returning a value below the threshold
means that the distance evaluation cannot separate the morphed instance and
the mimicked target. For the reference scheme, 75% of the tests fail; while for
our method, there is only 1.0% error cases, i.e., our scheme differentiates 99% of
the morphing traffic. As shown in Fig. 3b, the experiment on bigram morphing
yields similar results. For the reference scheme, 78% of the tests fail; while for
our scheme, there is only 1.3% error cases. The experiment result shows that
although traffic morphing is effective against the reference scheme, our scheme
is highly resistant to it.

Identifying multiple websites morphed to the same target. We extend
the evaluation to multiple websites morphing to the same target, and compare
the distinguishability using our scheme, the reference scheme and random guess.
We take 20 disjoint sets of k websites, where the first k − 1 websites bigram
morph towards the k-th website. Each morphing website generates 6 instances,
3 as learning samples and the rest 3 as test cases. We vary k from 2 to 6, and
measure the identification accuracy of morphed traces in each set. The average
identification accuracy of all sets at each k is presented in Fig. 4.

When our scheme differentiates between k = 2 websites, i.e. the source and
target of morphing, it yields a high identification accuracy of 85%. As k in-
creases, more websites share the same morphing target, the accuracy gradually
decreases. When k = 6 candidates, which means five source websites morph to
one target, our scheme has an accuracy of 50%. In contrast, accuracy of the
reference scheme is 29% when k = 6, while random guess gives a probability
of 17%. The reference scheme performs not much better than random guess. It

210 L. Lu, E.-C. Chang, and M.C. Chan

 0

 20

 40

 60

 80

 100

 2 3 4 5 6

A
cc

ur
ac

y
(%

)

k

Our scheme
Reference scheme

Random guess

Fig. 4. Identification accuracy of k web-

sites that morph to the same target

 0

 20

 40

 60

 80

 100

 2 3 4 5 6

A
cc

ur
ac

y
(%

)

k

Our improved scheme
Our scheme

Reference scheme

Fig. 5. Identification accuracy of k mor-

phed websites among 2000 other websites

shows that the reference scheme cannot reliably distinguish websites that share
similar packet size distributions. Our scheme is much stronger at differentiating
among multiple morphing websites and their mimicked target.

Identifying morphed traffic mixed with other website profiles. Previous
experiments examine the distinguishability within morphing sources and their
target. Next we evaluate the identifiability of 20 sets of k morphing websites when
they are mixed with 2000 other websites. Morphing websites are profiled based
on their morphed traces. We set the L1 distance threshold to be 0.4 in screening
websites by packet size distributions. The threshold is slightly larger than in
morphing matrix computation to accommodate some incompliance between the
computed and generated packet size distributions. The incompliance is caused
by packet splitting which generates new packets that are not accounted for in
the computation of morphing matrix. The identification accuracies are shown in
Fig. 5.

Comparing Fig. 5 and Fig. 4, our improved scheme performs equally well
when it identifies k morphing websites among a large set of unrelated websites
and when it differentiates within the morphing websites. When k varies from 2
to 6, our improved scheme has an identification accuracy ranges from 78% to
50%, while the reference scheme has a corresponding range of 52% to 26%. The
performance of our basic scheme in Fig. 5 degrades compared to in Fig. 4, be-
cause some morphed traces incidentally map to websites unrelated by morphing.
However, it still outperforms the reference scheme. Our basic scheme correctly
identifies 61% fingerprints of the morphing websites at k = 3, while the reference
scheme identifies 39%.

We run our improved scheme on 2000 non-morphing websites. It gives the
same identification accuracy of 81% as the basic scheme in this case. It is com-
patible to website fingerprinting at the absence of morphing, since non-morphing
websites have HTTP streams that are consistent in both packet size distribution
and ordering.

Website Fingerprinting and Identification Using Ordered Feature Sequences 211

 0

 20

 40

 60

 80

 100

 0 150 300 450 600

W
eb

si
te

 (%
)

Overhead per packet (Bytes)

Bigram Morphing
Mice-Ele.Padding

(a) Extra bytes per packet

 0

 20

 40

 60

 80

 100

 0 100 200 300 400

W
eb

si
te

 (%
)

Overhead (added packets %)

Bigram Morphing

(b) Added packets

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250

W
eb

si
te

 (%
)

Bandwidth overhead (%)

Bigram Morphing
Mice-Ele.Padding

(c) Bandwidth overhead

Fig. 6. Bandwidth overhead of bigram morphing and mice-elephant packet padding

5.3.2 Bandwidth Overhead of n-Gram (n ≥ 2) Morphing
N -gram (n = 1, 2, 3) morphing has been evaluated on several applications in [1].
Yet for website fingerprinting, its bandwidth overhead was presented only for
unigram morphing (n = 1). The bandwidth overhead was compared to padding
packets to the path MTU. In this paper, we evaluate the bandwidth overhead
of bigram (n = 2) morphing. The overhead is compared to mice-elephant packet
padding, which is another simple and effective padding scheme against website
fingerprinting, but less constraining on the network bandwidth. We use traces
of 100 websites from the SSH2000 dataset. The i-th website is morphed to the
(i + 1)-th website, where each HTTP stream is morphed 5 times. The average
overhead is presented in Fig. 6.

Fig. 6a shows the average added bytes per packet by morphing and mice-
elephant. Using mice-elephant, 80% websites have 150 to 300 bytes of overhead
per packet; but using traffic morphing, about 90% websites need to send 300
to 500 extra bytes for each packet, which is much higher than mice-elephant.
Fig. 6b shows the percentage of added packets caused by packet splitting during
morphing. Transmission of extra packets incurs overhead in bandwidth and de-
lay. For some website, more than 4 times of packets are added. Fig. 6c shows the
overall bandwidth overhead. Using bigram morphing, 20% websites have an over-
head that exceeds 100% and can be 300% of the total source packet sizes. While
using mice-elephant packet padding, 75% websites have the bandwidth over-
head less than 50% of the total source packet sizes, and only 5% websites have
bandwidth overhead more than the total source packet sizes. As n increases, the
bandwidth overhead of n-gram morphing also increases. In summary, our experi-
ment shows that n-gram morphing is less bandwidth efficient than mice-elephant
packet padding even when n = 2.

5.4 Consistency of Fingerprints

Fingerprint consistency can be influenced by browser pipeline configurations,
web content updates and network dynamics which cause packet loss, reordering
and retransmission. Note that our fingerprints are not affected by the random-
ness in the amount of control packets, as we have excluded control packets from
website fingerprints. In practice, packet loss, reordering and retransmission are

212 L. Lu, E.-C. Chang, and M.C. Chan

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

W
eb

si
te

 %

Similarity

No pipeline
Pipeline = 4
Pipeline = 8

(a) Sequence of HTTP requests

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

W
eb

si
te

 %

Similarity

No pipeline
Pipeline = 4
Pipeline = 8

(b) Sequence of non-MTU responses

Fig. 7. Effect of pipelining on the fingerprint sequences

not severe. In this subsection, we empirically show that the effect of pipelining
is not serious on our fingerprints, and our fingerprints need not be updated fre-
quently for most websites.

Effect of HTTP pipelining. To illustrate the effect of HTTP pipelining on
the fingerprint sequences, we vary the pipeline degree from 1 (non-pipelined)
to 8 (the maximum supported by Firefox). We capture OpenVPN traces of 100
websites. For each website, fingerprints from 15 traces with varying pipeline
degrees are kept as profile, and 15 test streams of pipeline degrees 1, 4 and 8 are
compared with their own website profile.

Fig. 7 shows the fingerprint sequences of a website have high similarities. 70%
websites have similarity in the object request sequences higher than 0.5, and
50% of the non-MTU response sequences have similarities larger than 0.5. The
figure also shows that the distributions of a website’s fingerprint similarities at
different pipeline degrees are similar. HTTP pipelining does not drastically af-
fect our fingerprint sequences.

Effect of website update. To evaluate how well the profiles represent web-
sites over time, we measure the fingerprint identification accuracy weeks after
constructing the profiles. The evaluation helps to decide the update frequency of
website profiles. We perform an experiment on the datasets OpenVPN1000 and
dynamic150 to study the impact of (frequent) content updates on the fingerprint
identification. For each website, we randomly pick 5 traces captured within week
0 to generate the website profile, then the traces of 4 randomly chosen days in
each of week 1, 2, 3, 4 and 8, are tested against the website profiles.

The results are shown in Fig. 8. For dataset OpenVPN1000, the identification
accuracy gradually decreases over time, which remains high at 94% a month
later and becomes 88% after two months. Profiles of most websites need not be
regenerated after 2 months. Only 6% most frequently updated websites need to
update their fingerprint profiles in the first month, and another 6% in the sec-
ond month. For the dataset dynamic150, the decrease in identification accuracy

Website Fingerprinting and Identification Using Ordered Feature Sequences 213

 60

 65

 70

 75

 80

 85

 90

 95

 100

 1 2 3 4 5 6 7 8

A
cc

ur
ac

y
(%

)

Week

Dynamic150
OpenVPN1000

Fig. 8. Effect of time on accuracy

from week 4 to week 8 is obvious, because their website contents are frequently
updated, and the changes accumulate over time. Nevertheless, its fingerprint
identification accuracy is 96% one month later, and 81% two months later.

6 Countermeasures

We propose some countermeasures that randomizes the size and timing channels.
These countermeasures incurs almost zero bandwidth overhead. (i) Randomizing
the object order. We can use a browser plug-in to muddle the object request order.
With the plug-in, browser buffers x HTTP requests, and sends them in a random
order, where x can be a random number dynamically generated at each web
access. (ii) Randomizing the packet sizes. To make the size and order of packets
untraceable, browser and server can generate a sequence of random numbers
for each access, and buffers the data to send in packets of the random sizes.
Random delay can be added to conceal which packet sizes have been touched up
in the HTTP stream. Although data buffering causes delay, the countermeasures
significantly increase the difficulty of website fingerprinting.

7 Conclusion

In this paper, we developed a robust website fingerprinting scheme over low
latency encrypted tunnels. We make use of the seemingly noisy packet order-
ing information rather than just the distribution of packet sizes as in previous
work. The ordering of a selection of packets is consistent due to the behaviorial
characteristics of protocols and browsers, and such information is preserved and
exposed regardless of proxy and encryption. Our scheme identifies websites with
high accuracy on both SSH and SSL tunnels, even for websites with dynamic
contents. Furthermore, our scheme is designed to withstand traffic morphing [1].
Traffic morphing cannot handle packet ordering while satisfying low bandwidth
overhead. Its bandwidth efficiency is worse than mice-elephant packet padding,
even in bigram morphing. Our scheme is able to identify websites from morphed
traffic with significantly higher accuracy than the previous scheme. In future
work, we would analyze performances of the countermeasures in both their ef-
fectiveness and overheads.

214 L. Lu, E.-C. Chang, and M.C. Chan

References

1. Wright, C.V., Coull, S.E., Monrose, F.: Traffic morphing: An Efficient Defense

against Statistical Traffic Analysis. In: 16th NDSS (2009)

2. Liberatore, M., Levine, B.N.: Inferring the Source of Encrypted HTTP connections.

In: 13th ACM CCS, pp. 255–263 (2006)

3. Hintz, A.: Fingerprinting Websites using Traffic Analysis. In: Dingledine, R., Syver-

son, P.F. (eds.) PET 2002. LNCS, vol. 2482, pp. 229–233. Springer, Heidelberg

(2003)

4. Sun, Q., Simon, D.R., Wang, Y.M., Russell, W., Padmanabhan, V.N., Qiu, L.:

Statistical Identification of Encrypted Web Browsing Traffic. In: IEEE S&P 2002,

pp. 19–30 (2002)

5. Song, D.X., Wagner, D., Tian, X.: Timing Analysis of Keystrokes and Timing

Attacks on SSH. In: 10th USENIX Security Symposium (2001)

6. Saponas, T.S., Lester, J., Hartung, C., Agarwal, S.: Devices that Tell on You:

Privacy Trends in Consumer Ubiquitous Computing. In: 16th USENIX Security

Symposium, pp. 55–70 (2007)

7. Bonfiglio, D., Mellia, M., Meo, M., Rossi, D., Tofanelli, P.: Revealing Skype Traffic:

When Randomness Plays with You. ACM SIGCOMM Computer Communication

Review 37(4), 37–48 (2007)

8. Wright, C.V., Monrose, F., Masson, G.M.: On Inferring Application Protocol Be-

haviors in Encrypted Network Traffic. Journal of Machine Learning Research 7,

2745–2769 (2006)

9. Bissias, G.D., Liberatore, M., Jensen, D., Levine, B.N.: Privacy Vulnerabilities in

Encrypted HTTP Streams. In: Danezis, G., Martin, D. (eds.) PET 2005. LNCS,

vol. 3856, pp. 1–11. Springer, Heidelberg (2006)

10. Levenshtein, V.I.: Binary Codes Capable of Correcting Deletions, Insertions, and

Reversals. Journal of Soviet Physics Doklady 10(8), 707–710 (1966)

11. Norvig, P.: How to Write a Spelling Corrector, http://www.norvig.com

12. Wilson, C.: Who checks the spell-checkers,

http://www.slate.com/id/2206973/pagenum/all/

13. Gusfield, D.: Algorithms on Strings, Trees, and Sequences: Computer Science and

Computational Biology. Cambridge University Press, Cambridge (1997)

14. Needleman, S.B., Wunsch, C.D.: A General Method Applicable to the Search for

Similarities in the Amino Acid Sequence of Two Proteins. Journal of Molecular

Biology 48, 443–453 (1970)

15. Navarro, G.: A Guided Tour to Approximate String Matching. Journal of ACM

Computing Surveys 33(1), 31–88 (2001)

16. Gooskens, C., Heeringa, W.: Perceptive Evaluation of Levenshtein Dialect Distance

Measurements using Norwegian Dialect Data. Journal of Language Variation and

Change 16(3), 189–207 (2004)

17. Felten, E.W., Schneider, M.A.: Timing Attacks on Web Privacy. In: 7th ACM CCS

(2000)

18. Wagner, R.A., Fischer, M.J.: The String-to-String Correction Problem. J.

ACM 21(1), 168–173 (1974)

19. TCPDump, http://www.tcpdump.org

http://www.norvig.com
http://www.slate.com/id/2206973/pagenum/all/
http://www.tcpdump.org

Web Browser History Detection as a Real-World
Privacy Threat

Artur Janc1 and Lukasz Olejnik2

artur@lingro.com,

lukasz.olejnik@man.poznan.pl

Abstract. Web browser history detection using CSS visited styles has

long been dismissed as an issue of marginal impact. However, due to

recent changes in Web usage patterns, coupled with browser perfor-

mance improvements, the long-standing issue has now become a sig-

nificant threat to the privacy of Internet users.

In this paper we analyze the impact of CSS-based history detection

and demonstrate the feasibility of conducting practical attacks with min-

imal resources. We analyze Web browser behavior and detectability of

content loaded via standard protocols and with various HTTP response

codes. We develop an algorithm for efficient examination of large link

sets and evaluate its performance in modern browsers. Compared to ex-

isting methods our approach is up to 6 times faster, and is able to detect

up to 30,000 visited links per second.

We present a novel Web application capable of effectively detecting

clients’ browsing histories and discuss real-world results obtained from

271,576 Internet users. Our results indicate that at least 76% of Internet

users are vulnerable to history detection, including over 94% of Google

Chrome users; for a test of most popular Internet websites we were able to

detect, on average, 62.6 (median 22) visited locations per client. We also

demonstrate the potential to profile users based on social news stories

they visited, and to detect private data such as zipcodes or search queries

typed into online forms.

1 Introduction

Web browsers function as generic platforms for application delivery and provide
various usability enhancements with implications for user privacy. One of the
earliest such usability improvements was the ability to style links to Web pages
visited by the user differently from unvisited links, introduced by the original
version of the Cascading Style Sheets standard [1] and quickly adopted by all
major Web browsers. This mechanism was soon demonstrated to allow malicious
Web authors to detect links a client has visited and report them to the attacker
[2].

Since then, a body of academic work has been published on this topic, describ-
ing history detection methods [3] and discussing the potential to detect visited
websites to aid in phishing [4]. Several countermeasures against such attacks

D. Gritzalis, B. Preneel, and M. Theoharidou (Eds.): ESORICS 2010, LNCS 6345, pp. 215–231, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

216 A. Janc and L. Olejnik

were proposed, including client-side approaches through browser extensions [5]
and server-side solutions on a per-application basis [6], but such methods have
not been adopted by browser vendors or Web application developers. Simultane-
ously, several demonstration sites have been created to show the ability to detect
known popular websites, including Web 2.0 applications [7].

More recently, CSS-based history detection started to become applied as a
powerful component of privacy research, including work to determine the amount
of user-specific information obtainable by ad networks [8] and as part of a scheme
for deanonymizing social network users [9]. However, there has been a notable
lack of work examining several crucial aspects of history detection, including the
types of browser-supported protocols and resource types which can be detected,
performance considerations, and the number of users affected by such attacks.

In this paper, we provide a detailed examination of CSS-based history detec-
tion techniques and their impact on the privacy of Internet users. We provide an
overview of existing work, and discuss basic cross-browser implementations of
history detection using JavaScript as well as a CSS-only technique. We evaluate
the detectability of resources based on the browser-supported protocols used to
retrieve them, analyze the effect of loading content in frames and iframes, as
well as review the impact of HTTP redirects and other codes.

We demonstrate an optimized algorithm for detecting visited links and its
JavaScript implementation. We provide detailed performance measurements of
our technique and compare it to existing approaches. Our approach is up to 6
times faster than known methods, and allows for the examination of up to 30,000
links per second on modern hardware. We also provide the first performance
analysis of the CSS-only history detection technique, demonstrating its value as
an efficient, though often neglected, alternative to the scripting approach.

Based on our work on a real-world testing system [10], we provide an overview
of the design of an efficient history detection application capable of providing
categorized test of various website classes, and realizable with minimal resources.
We discuss approaches for the selection of links to be detected, and outline our
implemented solution based on primary links (as site entry points), secondary
resources, and enumeration elements.

Finally, we analyze history detection results obtained from 271,576 users. We
demonstrate that a large majority (76.1%) of Internet users are vulnerable to
history detection attacks, including over 82% of Safari users and 94% of Google
Chrome users. We analyze the average number of primary and secondary links
found in a test of popular Internet locations; for vulnerable users our test found
an average of 62.6 visited links (22 median). We also provide an overview of
detected outgoing links from social news sites and discuss the potential of our
system to gather especially privacy-sensitive data.

Our results indicate that properly prepared history detection attacks have
significant malicious potential and can be directed against the vast majority of
Internet users.

Web Browser History Detection as a Real-World Privacy Threat 217

2 Background

The CSS visited pseudoclass has been applied to links visited by client browsers
since the introduction of the CSS1 standard in 1996 [1]. The feature of applying
different styles to “known” links quickly became accepted by users and was
recommended by usability experts [11].

The ability to use the visited pseudoclass for detecting Web users’ browsing
history was first reported to browser vendors as early as the year 2000 [2,12].
Since then, the technique has been independently rediscovered and disclosed
several times [4], and has become widely known among Web browser developers
and the security and Web standards communities. In fact, Section 5.11.2 of
the CSS 2.1 standard [13], a W3C recommendation since 1998, discusses the
potential for history detection using the visited pseudoclass, and explicitly allows
conforming User Agents to omit this functionality for privacy reasons, without
jeopardizing their compliance with the standard.

While initial discussions of CSS-based history detection were mostly con-
ducted in on-line forums, the issue was also disclosed to the academic community
and discussed in the work of Felten et al. in conjuction with cache-based history
sniffing [3].

As a response, Jakobsson and Stamm discussed potential methods for im-
plementing server-side per-application protection measures [14]; such techniques
would have to be implemented by every Web-based application and are thus an
extremely unlikely solution to the problem. A viable client-side solution was a
proposed modification to the algorithm for deciding which links are to be con-
sidered visited as described in [5] and implemented in the SafeHistory extension
[15] for Mozilla Firefox. Unfortunately, no such protection measures were imple-
mented for other Web browsers1, and the SafeHistory plugin is not available for
more recent Firefox versions.

Other academic work in the area included a scheme for introducing volun-
tary privacy-oriented restrictions to the application of history detection[17]. Two
more recent directions were applications of history detection techniques to de-
termine the amount of user-specific information obtainable by ad networks [8]
and as part of a scheme for deanonymizing social network users [9].

CSS-based history detection was also discussed as a potential threat to Web
users’ privacy in several analyses of Web browser security [18,19].

Outside of the academic community, several demonstration sites were created
to demonstrate specific aspects of browser history detection. Existing applica-
tions include a script to guess a visitor’s gender by combining the list of detected
domains with demographic information from [20], a visual collage of visited Web
2.0 websites [7], and an entertaining detector of adult websites [21]. However, all
known proof of concept sites focus on a single application, and do not explore
the full potential of history detection as a tool to determine user-specific private
information.

1 Since writing the original draft of this work, we have become aware of ongoing efforts

to mitigate history detection attacks in the Gecko and WebKit rendering engines [16].

218 A. Janc and L. Olejnik

3 Analysis

In order to fully evaluate the implications of CSS-based history detection, it
is necessary to understand how and when Web browsers apply visited styles to
links. In this section we analyze various browser behaviors related to visited links,
describe an efficient algorithm for link detection and evaluate its performance in
several major browsers2.

3.1 Basic Implementation

CSS-based history detection works by allowing an attacker to determine if a
particular URL has been visited by a client’s browser through applying CSS
styles distinguishing between visited and unvisited links. The entire state of the
client’s history cannot be directly retrieved; to glean history information, an
attacker must supply the client with a list of URLs to check and infer which
links exist in the client’s history by examining the computed CSS values on the
client-side. As noted in [12], there are two basic techniques for performing such
detection.

The CSS-only method shown in Figure 1 allows an attacker’s server to learn
which URLs victim’s browser considers to be visited by issuing HTTP requests
for background images on elements linking to visited URLs. A similar, but less
known technique is to use the link CSS pseudoclass, which only applies if the
link specified as the element’s href attribute has not been visited; the techniques
are complementary.

<style >

#foo:visited {background: url(/?yes -foo);}

#bar:link {background: url(/?no -bar);}

</style >

Fig. 1. Basic CSS Implementation

A similar technique can be performed on the client side with JavaScript, by
dynamically querying the style of a link (<a>) element to detect if a particular
CSS style has been applied, shown in Figure 2. Any valid CSS property can be
used to differentiate between visited and unvisited links. The scripting approach
allows for more flexibility on part of the attacker, as it enables fine-grained
control over the execution of the hijacking code (e.g. allows resource-intensive

2 Browser behavior and performance results were gathered with Internet Explorer 8.0,

Mozilla Firefox 3.6, Safari 4, Chrome 4, and Opera 10.5 on Windows 7 using an Intel

Core 2 Quad Q8200 CPU with 6GB of RAM.

Web Browser History Detection as a Real-World Privacy Threat 219

tests to be run after a period of user inactivity) and can be easily obfuscated to
avoid detection by inspecting the HTML source. It can also be modified to utilize
less network resources than the CSS-only method, as discussed in Section 3.3.
Both techniques can be executed transparently to the user and do not require
any interaction other than navigating to a Web page.

<s c r i p t >
var r1 = ’ a { c o l o r : green ;} ’ ;

var r2 = ’ a : v i s i t e d { c o l o r : red ;} ’ ;

document . s t y l e Sh e e t s [0] . i n s e r tRu l e (r1 , 0) ;

document . s t y l e Sh e e t s [0] . i n s e r tRu l e (r2 , 1) ;

var a e l = document . createElement (’ a ’) ;

a e l . h r e f = ”http :// foo . org ” ;

var a s t y l e = document . de faultView . getComputedStyle (a e l , ””) ;

i f (a s t y l e . getPropertyValue (” c o l o r ”) == ’ red ’)

// l i n k was v i s i t e d
</s c r i p t >

Fig. 2. Basic JavaScript Implementation

3.2 Resource Detectability

The CSS history detection technique has historically been applied almost exclu-
sively to detect domain-level resources (such as http://example.org), retrieved
using the HTTP protocol. However, Web browsers apply the visited style to
other kinds of links, including sub-domain resources such as images, stylesheets,
scripts and URLs with local anchors, if they were visited directly by the user.
In general, and with few exceptions, there exists a close correspondence between
the URLs which appeared in the browser’s address bar and those the browser
considers to be visited. Thus, visited URLs within protocols other than HTTP,
including https, ftp, and file can also be queried in all tested browsers, with
the exception of Chrome which does not apply visited styles to file:// links.

Because of the address bar rule outlined above, parameters in forms submitted
with the HTTP POST request method cannot be detected, whereas parameters
from forms submitted using HTTP GET are susceptible to detection. The URLs
for resources downloaded indirectly, such as images embedded within an HTML
document, are usually not marked as visited. However, one exception is the
handling of frames and iframes in some browsers. A URL opened in a frame or
iframe does not appear in the address bar, but the Firefox and Chrome browsers
still consider it to be visited.

http://example.org
https
ftp
file
file://

220 A. Janc and L. Olejnik

While all major browsers apply visited styles to valid resources (ones return-
ing HTTP 200 status codes), variations exist for other response types. When
encountering an HTTP redirect code (status 301 or 302) Firefox, Chrome and
Opera mark both the redirecting URL and the new URL specified in the Loca-
tion HTTP header as visited, whereas Safari saves only the original URL, and
Internet Explorer exhibits seemingly random behavior. When performing a meta
redirect, all browser except Internet Explorer consider both URLs to be visited;
newer versions of Internet Explorer do not allow such redirects in the default
configuration. When retrieving an invalid URL with a client or server error sta-
tus (codes 4xx and 5xx), all browsers except Internet Explorer mark the link
as visited. The handling of various types of HTTP responses is summarized in
Table 1.

The ability to detect links visited by any user depends on the existence of those
links in the browser’s history store and is affected by history expiration policies.
This default value for history preservation varies between browsers, with Firefox
storing history for 90 days, Safari - 20 days, and IE - 20 days. Opera stores 1000
most recently visited URLs, whereas Chrome does not expire browsing history.

It is important to note that a potential adversary whose website is periodically
visited by the user (or whose script is linked from such a site) can query the
history state repeatedly on each visit, maintaining a server-side list of the user’s
detected links; such an approach would allow the attacker to aggregate browsing
information, bypassing history expiration policies.

Table 1. Detectability for HTTP status codes and redirects

IE Firefox Safari Chrome Opera

200 yes yes yes yes yes

301 random both original both both

302 random both original both both

meta redirect n/a both both both both

404 no yes yes yes yes

500 no yes yes yes yes

3.3 Performance

CSS-based history detection is a viable technique for various privacy-related
attacks because of its simplicity and the ability to quickly check for a large
number of visited resources. In order to fully understand the implications of CSS-
based history detection attacks, it is thus crucial to learn about its performance
characteristics using optimized scripts for each browsing environment.

Optimizing JavaScript Detection. To date, little effort has been put into
the analysis of efficient implementations of JavaScript-based history detection.
Several existing implementations use DOM a elements in a static HTML docu-
ment to hold URLs which are later inspected to determine if the CSS visited rule

Web Browser History Detection as a Real-World Privacy Threat 221

applied to the corresponding URL, an approach significantly slower than a fully-
dynamic technique. Additionally, due to browser inconsistencies in their internal
representations of computed CSS values (e.g. the color red can be internally rep-
resented as “red”, “#ff0000”, “#f00”, or “rgb(255, 0, 0)“) most detection scripts
try to achieve interoperability by checking for a match among multiple of the
listed values, even if the client’s browser consistently uses one representation.
Another difference affecting only certain browsers is that an a element must be
appended to an existing descendant of the document node in order for the style
to be recomputed, increasing script execution time.

For our detection code, we took the approach of creating an optimized tech-
nique for each major browser and falling back to a slower general detection
method for all other browsers. We then compared the execution time of the op-
timized test with the general method for each major browser. The differences in
execution times are shown in Figure 3.

For each browser the implementation varies slightly, depending on the way
CSS properties are represented internally and the available DOM mechanisms
to detect element styles. The general detection algorithm for lists of links is as
follows:

1. Initialize CSS styles and store URLs to check in a JavaScript array.
2. Detect browser version and choose appropriate detection function.
3. Invoke chosen detection function on URL array.

– Create <a> element and other required elements.
– For each URL in array:

• Set <a> element href attribute to URL.
• (for some browsers) Append element to DOM or recompute styles.
• If computed style matches visited style, add URL to ”visited” array.

4. Send contents of visited array to server or store on the client-side.

Our approach has the advantage of avoiding a function call for each check,
reusing DOM elements where possible, and is more amenable to optimization
by JavaScript engines due to a tight inner loop. Compared to a naive detection
approach using static <a> elements in the HTML source and less-optimized
style matching, our technique is between 1.8 and 6 times faster depending on
the browser.

CSS Performance. The CSS-only detection technique is a valuable alternative
to the scripting approach, as it allows to test clients with JavaScript disabled or
ones with security-enhancing plug-ins such as NoScript. Our results, provided in
Figure 4, show that CSS-based detection can perform on par with the scripting
approach, allowing an attacker to test for over 25,000 visited links per second
for small data sets of 50,000 links and fewer. An important drawback, however,
is that CSS-based detection requires <a> elements with appropriate href at-
tributes to be included in the static HTML source, increasing the page size and
required bandwidth. Additionally, for larger link sets (HTML pages with over

222 A. Janc and L. Olejnik

 0

 5000

 10000

 15000

 20000

 25000

 30000

IE FF Safari Chrome Opera

S
ca

nn
ed

 li
nk

s/
se

co
nd

JavaScript Performance

Optimized
General

Fig. 3. JavaScript detection performance for different browsers. The general approach

can be clearly seen as much slower.

50,000 elements), detection performance (and overall browser performance) de-
creases quickly with the increasing number of DOM elements included in the
page3.

Network Considerations. While client-side detection efficiency is of the most
importance, we observe that the overall goal of detecting visited URLs in the
client’s browsing history can require significant network resources. Since many
browsers on modern hardware are able to check tens of thousands of links per
second, the bandwidth necessary to sustain constant checking speed becomes
non-trivial.

In our test data set, the median URL lengths are 24 bytes for primary links
(hostnames), and 60 bytes for secondary links (resources within each site). The
overhead of including a URL in a JavaScript script in our implementation was
3 bytes (for quoting and separating array elements). For CSS, the average size
overhead was 80 bytes due to the necessity of adding HTML markup and static
CSS styles. In our tests, transmitting 30,000 thousand URLs required approx-
imately 1650 kB (170 kB with gzip compression) for JavaScript, and 3552 kB
(337kB with gzip compression) for CSS tests.

For an average broadband user, available bandwidth could potentially be a
limiting factor, especially for owners of modern systems which can execute the
detection code faster. To decrease the required bandwidth, transmitted links can
omit common patterns (e.g. http:// or http://www.); enumerating resources
within a single domain can also significantly reduce the required network band-
width by only transmitting the variable URL component.

3 Test pages with more than 50 thousand elements caused errors and did not load in

Internet Explorer.

Web Browser History Detection as a Real-World Privacy Threat 223

 0

 10000

 20000

 30000

 40000

 50000

IE FF Safari Chrome Opera

S
ca

nn
ed

 li
nk

s/
se

co
nd

CSS Performance

50k elements
75k elements

100k elements

Fig. 4. CSS detection performance. Due to the limitations of Internet Explorer, only

data for 50 thousand links is shown.

4 Methodology

A core goal of our work was to build a functional system to demonstrate the
possible privacy risks associated with browser history detection, including the
development of categorized tests detecting various classes of online resources.
Our testing system was designed to maximize the number of URLs retrieved
from each visitor’s history and to present visitors with a visual representation
of what can be inferred about their browsing habits.

4.1 System Overview

Our testing application was divided into multiple test categories, each of which
contained several history detection tests. Test categories included:

– General tests of popular websites selected from Web rankings [22],
– On-line news and social news sites along with posted story links,
– A final category of miscellaneous tests (including a zipcode detection test

and a check of performed search engine queries).

The default test which executed when a user visited the site homepage was the
”top5k” test, checking for 6,417 most popular Internet locations. Selected tests
are listed in Table 2.

When a user visited a test page, she was presented with a short test descrip-
tion, along with a list of primary links to check. When the page loaded, the
browser automatically performed checks of all links in the list, continuously up-
dating a progress bar to inform the user about the test status. When all links
were checked, the browser submitted the results to the server using an AJAX
request, and received in response the thumbnail images and descriptions for all

224 A. Janc and L. Olejnik

websites for which primary links were found, as well as a list of secondary links
for each such website. The browser then checked all links in the secondary list
and submitted the results to the server. The server’s final reply contained an
overview of the data found in the user’s history, along with a detailed list of all
primary and secondary links found.

For some tests, the set of secondary links was accompanied by a list of enumera-
tion elements such as usernames on a visited social news site (Digg,Reddit or Slash-
dot), popular search engine queries for the search query test, or US zipcodes for the
zip code detector test. Enumeration elements were appended to one or more base
URLs supplied by the server (of the form http://reddit.com/user/username,
with username as an enumeration element) and were checked similarly to primary
and secondary links. This mechanism added a semantic component to the test by
informing the server about the type of the link found in the user’s history (e.g. user-
name or search term), as contrasted with a “generic” link. It also helped the sys-
tem conserve network bandwidth, by omitting common URL prefixes for similar
resources.

If a user visited any test page with JavaScript disabled, the server automati-
cally recognized that fact and redirected the client to a separate test page which
utilized the CSS-only method described in Section 3.1. The CSS-only test re-
quired more network resources, but tested for the same primary and secondary
links as the regular test and presented results in the same manner. An overview
of differences between results gathered from clients with and without JavaScript
is provided in Table 3.

4.2 Link Selection

The selection of URLs to check for in each client’s history is of paramount im-
portance in any project utilizing CSS-based history detection, as it determines
how much browsing data can be gathered. However, if too much data is trans-
ferred to the user, both the page load and test run times might increase to the
point that the user will leave the page without completing the test. Large data
sets also limit the number of concurrent client a testing server can support due
to server-side network and computational limitations. In our system we tackled
this problem by both splitting tests into domain-specific categories, and dividing
our tests into two phases for checking primary and secondary links.

Primary Links. For each test we gathered primary links representing domains
of websites which contained resources of interest for the particular test. For the
general test category we used popular Web analytics services including Alexa
[22], Quantcast [20] and Bloglines [23] to identify the most popular Internet
locations.

We retrieved the HTML source for each primary link and if any HTTP redi-
rects occured, we kept track of the new URLs and added them as alternate
links for each URL (for example if http://example.org redirected to http://
example.org/home.asp both URLs would be stored). We also performed basic

http://reddit.com/user/username
http://example.org
http://example.org/home.asp
http://example.org/home.asp

Web Browser History Detection as a Real-World Privacy Threat 225

unifications if two primary links pointed to slightly different domains but ap-
peared to be the same entity (such as http://example.org and http://www.
example.org).

A total of 72,134 primary links were added to our system as shown in Table
2. To each primary link we added metadata, including the website title and a
human-readable comment describing the nature of the site, if available. Primary
links served as a starting point for resource detection in each test—if a primary
link (or one of its alternate forms) was detected in the client’s history, secondary
links associated with that primary link were sent to the client and checked.

Table 2. Number of links to be scanned per test is shown

Primary links Secondary links

top5k 6417 1416709

top20k 23797 4054165

All 72134 8598055

Secondary Links. Browser history detection has the potential for detecting a
variety of Web-based resources in addition to just the hostname or domain name
of a service. In our tests, for each primary link we gathered a large number of
secondary links for resources (subpages, forms, directly accessible images, etc.)
within the domain represented by the primary link. The resources were gathered
using several techniques to maximize the coverage of the most popular resources
within each site:

1. Search engine results. We utilized the Yahoo! BOSS [24] search engine API
and queried for resources within the domain of the primary link, taking
advantage of the fact that search engine results are sorted by relevance so
that the top results returned correspond to the most often visited pages.
For most primary links, we requested 100 results, but for the most popular
Internet locations (sites in the Alexa 500 list) we retrieved 500 results.

2. HTML inspection. We retrieved the HTML source for each primary link
and made a list of absolute links to resources within the domain of the
primary link. The number of secondary links gathered using this method
varied depending on the structure of each site.

3. Automatic generation. For some websites with known URL schemes we gen-
erated secondary links from list pages containing article or website section
names; this behavior allowed us to quickly generate links for websites such
as Craigslist and Wikileaks.

We then aggregated the secondary links retrieved with each method, removing
duplicates or dubious URLs (including ones with unique identifiers which would
be unlikely to be found in any user’s history) and added metadata such as link
descriptions where available.

http://example.org
http://www.example.org
http://www.example.org

226 A. Janc and L. Olejnik

For news site tests we also gathered links from the RSS feeds of 80 most pop-
ular news sites, updated every two hours4. Each RSS feed was tied to a primary
link (e.g. the http://rss.cnn.com/rss/cnn_topstories.rss was associated
with the http://cnn.com primary link). Due to the high volume of links in
some RSS feeds, several news sites had tens of thousands of secondary links.

Resource Enumeration. In addition to secondary links, some primary links
were also associated with enumeration elements, corresponding to site-specific
resources which might exist in the browser’s cache, such as usernames on social
news sites, popular search engine queries, or zipcodes typed into online forms.
To demonstrate the possibility of deanonymizing users of social news sites we
gathered lists of active users on those sites by screen scraping for usernames of
link submitters and comment authors. Enumeration elements were also useful
for tests where similar resources might be visited by the user on several sites –
in our search engine query test, the URLs corresponding to searches for pop-
ular phrases were checked on several major search engines without needing to
transmit individual links multiple times.

4.3 Processing Results

For each visiting client, our testing system recorded information about the links
found in the client’s history, as well as metadata including test type, time of
execution, the User Agent header, and whether the client had JavaScript enabled.
Detected primary links were logged immediately after the client submitted first
stage results and queried the server for secondary links. After all secondary links
were checked, the second stage of detection data was submitted to the test server.
All detected information was immediately displayed to the user.

For large-scale history detection systems, the amount of gathered data might
be affected by server-side resource limits such as bandwidth and processing
power. Our application was deployed on a single virtual server in a shared VM
environment [25] using a basic $20/month plan, which affected the amount of
information we could gather and process. Organizations with more resources
would be able to perform more extensive history detection tests, posing a more
serious threat to user privacy.

5 Results

The testing application based on this work was put into operation in early
September 2009 and is currently available at [10]. Results analyzed here span
the period of September 2009 to February 2010 and encompass data gathered
from 271,576 users who executed a total of 703,895 tests. The default top5k
4 Due to high interest in our testing application and associated resource constraints,

we were forced to disable automatic updating of RSS feeds for parts of the duration

of our experiment.

http://rss.cnn.com/rss/cnn_topstories.rss
http://cnn.com

Web Browser History Detection as a Real-World Privacy Threat 227

test, checking for 6,417 most popular Internet locations and 1,416,709 secondary
URLs within those properties was executed by 243,068 users5.

5.1 General Results

To assess the overall impact of CSS-based history detection, it is important to
determine the number of users whose browser configuration makes them vulner-
able to the attack. Table 3 summarizes the number of users for whom the top5k
test found at least one link, and who are therefore vulnerable. We found that
we could inspect browsing history in the vast majority of cases (76.1% connect-
ing clients), indicating that millions of Internet users are at risk. A somewhat
smaller number of users with found results for the All test might be attributed
to the fact that users who recently cleared their browsing history or used private
browsing modes executed the most extensive test to determine if they are at any
risk.

Table 3. Aggregate results for popular tests for JavaScript and CSS-only techniques

Test Tests Ran Found Primary Primary/user (avg) Secondary/user (avg)

JS CSS JS CSS JS CSS JS CSS

top5k 206437 8165 76.1% 76.9% 12.7 9.8 49.9 34.6

top20k 31151 1263 75.4% 87.3% 13.6 15.1 48.1 51.0

All 32158 1325 69.7% 80.6% 15.3 20.0 49.1 61.2

An analysis of relative differences in susceptibility to history detection based
on the user agent is shown in Table 4. For all browsers, the number of clients
who were found vulnerable was above 70%. Browsers such as Safari and Chrome
reported higher rates of susceptible clients (82% and 94% average), indicating
that history detection can affect a significant number of Internet power users.

For users with at least one detected link tested with the JavaScript technique
we detected an average of 12.7 websites (8 median) in the top5k list, as well as
49.9 (17 median) secondary resources. Users who executed the more-extensive
JavaScript top20k test, were detected to have visited an average of 13.6 (7)
pages with 48.2 (15) secondary resources. Similar results were returned for clients
who executed the most elaborate all test, with 15.3 (7) primary links and 49.1
(14) secondary links. The distribution of top5k results for JavaScript-enabled
browsers is shown in Figure 5. An important observation is that for a significant
number of users (9.5%) our tests found more than 30 visited primary links;
such clients are more vulnerable to deanonymization attacks and enumeration
of user-specific preferences.

5 Our testing system was featured on several social news sites and high-readership

blogs, which increased the number of users who visited our website and helped in

the overall data acquisition.

228 A. Janc and L. Olejnik

Table 4. Percentage of clients with detected links by User Agent

Test IE Firefox Safari Chrome Opera

JS CSS JS CSS JS CSS JS CSS JS CSS

top5k 73 92 75 77 83 79 93 100 70 82

top20k 81 95 69 86 89 97 90 100 88 95

All 78 97 62 79 85 89 87 98 85 83

Due to the fact that our testing site transparently reverted to CSS-only tests
for clients with scripting disabled, we are also able to measure the relative dif-
ferences in data gathered from clients with JavaScript disabled or unavailable. A
total of 8,165 such clients executed the top5k test; results were found for 76.9%
of clients, with a median of 5 visited primary URLs and 9 secondary URLs.
Results for the top20k test executed in CSS yielded results similar to JavaScript
clients, with 15.1 (8) websites and 51.0 (13) secondary links.

Interestingly, it seems that for certain tests, users without JavaScript appear
more vulnerable due to a higher number of clients with at least one found link,
and more detected links per client. This result should be an important consider-
ation for organizations which decide to disable scripting for their employees for
security reasons, as it demonstrates that such an approach does not make them
any more secure against history detection attacks and associated privacy loss.

Fig. 5. Cumulative distribution of top5k primary and secondary links

Web Browser History Detection as a Real-World Privacy Threat 229

5.2 Social News Site Links

An important overall part of our test system were tests of visited links from
social news sites. We investigated three popular social news sites: Digg, Reddit
and Slashdot. For each site, in addition to secondary links representing pop-
ular pages within that website, we also gathered all links to external destina-
tions from the site’s main RSS feed. We also checked for visits to the profile
pages of active users within each site using the enumeration strategy outlined in
Section 4.2.

We found that for users whose browsing history contained the link of the tested
social news site, we could, in a significant majority of cases, detect resources
linked from that site. History detection techniques could be used to measure user
engagement on social news sites by comparing the average number of visited news
stories; such analysis can be done both for individual users, and on aggregate, as
a tool to compare social news site popularity. Additionally, for 2.4% of Reddit
users we found that they visited the profile of at least one user of their social news
site. Such data demonstrates that it is possible to perform large-scale information
gathering about the existence of relationships between social news site users, and
potentially deanonymize users who visit their own profile pages.

Table 5. Average and median numbers of found secondary links from social news sites

Average secondary Median secondary

Digg 51.8 7

Reddit 163.3 26

Slashdot 15.2 3

It is important to note that the specified architecture can potentially be used
to determine user-specific preferences. Inspecting detected secondary links can
allow a determined attacker to not only evaluate the relationship of a user with a
particular news site, but also make guesses about the type of content of interest
to the particular user.

5.3 Uncovering Private Information

For most history tests our approach was to show users the breadth of information
about websites they visit which can be gleaned for their browsing history. How-
ever, we also created several tests which used the resource enumeration approach
to detect common user inputs to popular web forms.

The zipcode test detected if the user typed in a valid US zipcode into a form on
sites requiring zipcode information (there are several sites which ask the user to
provide a zipcode to get information about local weather or movie showtimes).
Our analysis shows that using this technique we could detect the US zipcode
for as many as 9.2% users executing this test. As our test only covered several
hand-picked websites, it is conceivable that with a larger selection of websites

230 A. Janc and L. Olejnik

requiring zip codes, the attack could be easily improved to yield a higher success
rate.

In a similar test of queries typed into the Web forms of two popular search
engines (Google and Bing) we found that it is feasible to detect some user inputs.
While the number of users for whom search terms were detected was small (about
0.2% of users), the set of terms our test queried for was small (less than 10,000
phrases); we believe that in certain targeted attack scenarios it is possible to
perform more comprehensive search term detection.

While limited in scope due to resource limitations, our results indicate that
history detection can be practically used to uncover private, user-supplied infor-
mation from certain Web forms for a considerable number of Internet users and
can lead to targeted attacks against the users of particular websites.

6 Conclusions

This paper describes novel work on analyzing CSS-based history detection tech-
niques and their impact on Internet users. History detection is a consequence of
an established and ubiquitous W3C standard and has become a common tool
employed in privacy research; as such, it has important implications for the pri-
vacy of Internet users. Full understanding of the implementation, performance,
and browser handling of history detection methods is thus of high importance
to the security community.

We described a basic cross-browser implementation of history detection in
both CSS and JavaScript and analyzed Web browser behavior for content re-
turned with various HTTP response codes and as frames or iframes. We pro-
vided an algorithm for efficient examination of large link sets and evaluated its
performance in modern browsers. Compared to existing methods our approach is
up to 6 times faster, and is able to detect up to 30,000 links per second in recent
browsers on modern consumer-grade hardware. We also provided and analyzed
results from our existing testing system, gathered from total number 271,576 of
users. Our results indicate that at least 76% of Internet users are vulnerable to
history detection; for a simple test of the most popular websites, we found, on
average 62.6 visited URLs.

Our final contribution is the pioneering the data acquisition of history-based
user preferences. Our analysis not only shows that it is feasible to recover such
data, but, provided that it’s large-scale enough, enables enumeration of privacy-
relevant resources from users’ browsing history. To our knowledge, this was the
first such attempt. Our results prove that CSS-based history detection does work
in practice on a large scale, can be realized with minimal resources, and is of
great practical significance.

Acknowledgements. L.O. gratefully acknowledges financial support for this
work from the European Organization for Nuclear Research (CERN) and, in
particular, N. Neufeld for the help, support and fruitful discussions.

Web Browser History Detection as a Real-World Privacy Threat 231

References

1. W3C: Cascading style sheets, level 1, http://www.w3.org/TR/REC-CSS1/

2. Bugzilla: Bug 57351 - css on a: visited can load an image and/or reveal if visitor

been to a site (2000), https://bugzilla.mozilla.org/show_bug.cgi?id=57531

3. Felten, E.W., Schneider, M.A.: Timing attacks on web privacy. In: CCS 2000: Pro-

ceedings of the 7th ACM Conference on Computer and Communications Security,

pp. 25–32. ACM, New York (2000)

4. Jagatic, T.N., Johnson, N.A., Jakobsson, M., Menczer, F.: Social phishing. ACM

Commun. 50(10), 94–100 (2007)

5. Jackson, C., Bortz, A., Boneh, D., Mitchell, J.C.: Protecting browser state from web

privacy attacks. In: WWW 2006: Proceedings of the 15th International Conference

on World Wide Web, pp. 737–744. ACM, New York (2006)

6. Jakobsson, M., Stamm, S.: Web camouage: Protecting your clients from browser-

sning attacks. IEEE Security and Privacy 5, 16–24 (2007)

7. Webcollage: Web 2.0 collage, http://www.webcollage.com/

8. Wills, C.E., Zeljkovic, M.: A personalized approach to web privacy–awareness,

attitudes and actions. Technical Report WPI-CS-TR-10-07, Computer Science De-

partment, Worcester Polytechnic Institute (2010),

http://www.cs.wpi.edu/~cew/papers/whattheyknow.pdf

9. Wondracek, G., Holz, T., Kirda, E., Kruegel, C.: A practical attack to de-anonymize

social network users, IEEE security and privacy. In: IEEE Security and Privacy,

Oakland, CA, USA (2010)

10. Janc, A., Olejnik, L.: What the internet knows about you,

http://www.wtikay.com/

11. Nielsen, J.: Change the color of visited links,

http://www.useit.com/alertbox/20040503.html

12. Bugzilla: Bug 147777 - :visited support allows queries into global history (2002),

https://bugzilla.mozilla.org/show_bug.cgi?id=147777

13. W3C: Cascading style sheets level 2 revision 1 (css 2.1) speci cation, selectors,

http://www.w3.org/TR/CSS2/selector.html#link-pseudo-classes

14. Jakobsson, M., Stamm, S.: Invasive browser sniffing and countermeasures. In:

WWW 2006: Proceedings of the 15th International Conference on World Wide

Web, pp. 523–532. ACM, New York (2006)

15. Jackson, C., Andrew Bortz, D.B.J.M.: Stanford safehistory, http://safehistory.

com/

16. Baron, L.D.: Preventing attacks on a user’s history through css : visited selectors

(2010), http://dbaron.org/mozilla/visited-privacy

17. Jakobsson, M., Juels, A., Ratkiewicz, J.: Privacy-preserving history mining for web

browsers. In: Web 2.0 Security and Privacy (2008)

18. Zalewski, M.: Browser security handbook, part 2 (2009),

http://code.google.com/p/browsersec/wiki/Part2

19. König, F.: The art of wwwar: Web browsers as universal platforms for attacks on

privacy, network security and rbitrary targets. Technical report (2008)

20. Quantcast: Quantcast, http://www.quantcast.com/

21. Anonymous: Did you watch porn, http://didyouwatchporn.com

22. Alexa: Alexa 500, http://alexa.com

23. Bloglines: Bloglines top feeds, http://www.bloglines.com/topblogs

24. Yahoo!: Yahoo! boss, http://developer.yahoo.com/search/boss/

25. Linode: Linode vps hosting, http://linode.com

http://www.w3.org/TR/REC-CSS1/
https://bugzilla.mozilla.org/show_bug.cgi?id=57531
http://www.webcollage.com/
http://www.cs.wpi.edu/~cew/papers/whattheyknow.pdf
http://www.wtikay.com/
http://www.useit.com/alertbox/20040503.html
https://bugzilla.mozilla.org/show_bug.cgi?id=147777
http://www.w3.org/TR/CSS2/selector.html#link-pseudo-classes
http://safehistory.com/
http://safehistory.com/
http://dbaron.org/mozilla/visited-privacy
http://code.google.com/p/browsersec/wiki/Part2
http://www.quantcast.com/
http://didyouwatchporn.com
http://alexa.com
http://www.bloglines.com/topblogs
http://developer.yahoo.com/search/boss/
http://linode.com

On the Secrecy of Spread-Spectrum Flow
Watermarks

Xiapu Luo, Junjie Zhang, Roberto Perdisci, and Wenke Lee

College of Computing, Georgia Institute of Technology

{csxpluo,jjzhang,wenke}@cc.gatech.edu, perdisci@gtisc.gatech.edu

Abstract. Spread-spectrumflowwatermarks offer an invisible and ready-

to-use flow watermarking scheme that can be employed to stealthily cor-

relate the two ends of a network communication. Such technique has wide

applications in network security and privacy. Although several methods

have been proposed to detect various flow watermarks, few can effectively

detect spread-spectrum flow watermarks. Moreover, there is currently no

solution that allows end users to eliminate spread-spectrum flow water-

marks from their flows without the support of a separate network element.

In this paper, we propose a novel approach to detect spread-spectrum flow

watermarks by leveraging their intrinsic features. Contrary to the common

belief that Pseudo-Noise (PN) codes can render flow watermarks invisi-

ble, we prove that PN codes actually facilitate their detection. Further-

more, we propose a novel method based on TCP’s flow-control mechanism

that provides end users with the ability to autonomously remove spread-

spectrum flow watermarks. We conducted extensive experiments on traf-

fic flowing both through one-hop proxies in the PlanetLab network, and

through Tor. The experimental results show that the proposed detection

system can achieve up to 100% detection rate with zero false positives,

and confirm that our elimination system can effectively remove spread-

spectrum flow watermarks.

1 Introduction

Flow watermarks can be employed to trace end-to-end communications, even
when they flow through stepping stones or anonymity networks [27]. By secretly
embedding a (sequence of) watermark(s) into network flows at a location close
to one end, it is possible to identify the other end of the communication by
detecting the presence of the watermark in the traffic without being noticed
by either end (see Figure 1). For example, flow watermarks may be used by
law enforcement agencies to detect stepping stones used by attackers [20], to
determine whether a certain user is accessing a specific (e.g., terrorism-related)
web site [27,28], to trace communications among bot -compromised machines [21],
to correlate anonymous Peer-to-Peer VoIP calls [26], etc.

If an adversary detects that her flows have been watermarked, she may be
able to remove the watermarks, or deliberately cause false alarms by embedding
the detected watermarks into legitimate flows [19,16]. Therefore, it is important

D. Gritzalis, B. Preneel, and M. Theoharidou (Eds.): ESORICS 2010, LNCS 6345, pp. 232–248, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

On the Secrecy of Spread-Spectrum Flow Watermarks 233

to evaluate the secrecy of a flow watermarking scheme before deploying it in
a real network. In this paper, we investigate the secrecy of spread-spectrum
flow watermarks (SSFW) [28] from the following two aspects: (1) can SSFW be
accurately detected? (2) can SSFW be effectively removed from network flows?

Recently, a few methods have been proposed that aim to detect SSFW [16,15].
Kiyavash et al. proposed a multi-flow attack, base on the assumption that SSFW
is used to simultaneously embed the same watermark sequence into multiple
flows. The detection approach leverages the length of low-throughput period as
a metric to detect SSFW. The authors assume that that normal traffic follows
the Markov-Modulated Poisson Process model, while watermarked flows would
not fit this model [16]. However, it has been shown that the multi-flow attack
can be evaded, if the encoder uses different Pseudo-Noise (PN) codes or if the
watermark sequence changes for different flows [14]. The detection approach
proposed by Jia et al. [15] leverages the fact that SSFW employs a single m-
sequence, a specific PN code with good autocorrelation features, to spread the
bits of a watermark sequence along a flow. Using only one m-sequence leads
to obvious self-similarity in watermarked traffic. However, Jia et al. indicated
that this detection approach may be evaded by using different m-sequences or
orthogonal PN codes to spread individual bits of a watermark sequence [15].

To the best of our knowledge, there currently exists no solution that allows
end users to remove SSFW from their flows without the support of a middlebox
(e.g. a router, proxy, or a relay host within an anonymity network). In addi-
tion, although a middlebox may remove SSFW by altering the throughput of
each individual network flow crossing it, few middleboxes actually deploy such
watermark elimination strategy because of the consequent heavy overhead.

In this paper, we propose a novel detection system that is able to identify the
existence of SSFW within a given network flow. In addition, we propose a novel
elimination system that enables end users to autonomously remove SSFW from
their flows. Our detection system leverages SSFW’s intrinsic features. Unlike
existing detection approaches (e.g., [16,28]), our approach does not assume that
the same watermarks are simultaneously embedded in multiple flows, and does
not assume an ideal traffic model. Moreover, we do not assume that SSFW uses
only a single PN code. Instead, we assume that any other kind of valid PN codes
(e.g. orthogonal PN codes) [12] could be employed.

Our detection approach is based on the following key observations: (1) sim-
ilar to amplitude modulation in signal processing, SSFW causes alternate low-
throughput and high-throughput periods in a watermarked flow; (2) PN codes
make the detection of spread-spectrum flow watermarks easier, because they in-
crease the number of low-throughput periods; (3) unlike spread-spectrum radio
communications, which spread a radio signal over a wide frequency range, SSFW
embeds watermarks separately in each one flow, instead of spreading them over
a wide set of flows. Therefore, the detection system simply needs to examine
individual flows (see Section 3).

Our elimination system leverages TCP’s basic flow control mechanism to reg-
ulate the throughput of incoming traffic. More precisely, our system modifies the

234 X. Luo et al.

Fig. 1. Watermarks are embedded into the traffic by the Encoder, and identified by

the Decoder

advertising window in TCP packets sent by either an end user or a middlebox to
its upstream node to modulate the throughput. It is worth noting that our ap-
proach is independent from application-layer flow control and congestion control
mechanisms. In fact, our approach works even in those cases when application
layer flow control and congestion control mechanisms cannot remove SSFW.

In summary, this paper makes the following main contributions:

1. We propose a novel watermark detection system that is able to identify
whether a flow has been watermarked using SSFW. Our approach removes
many of the assumptions required by existing SSFW detection methods.

2. We propose a novel receiver-based system to remove SSFW. Our system
can be deployed at either the end-user or middlebox level. To the best of
our knowledge, ours is the first practical system that allows end-users to
autonomously remove SSFW from their flows.

3. We performed extensive experiments to evaluate the proposed detection and
elimination systems. The experimental results show that our system is able
to successfully detect SSFW and remove the watermarks from TCP flows.

The rest of the paper is organized as follows. We describe the threat model
and introduce related work in the next section. Section 3 and section 4 present
the detection scheme and the elimination scheme respectively. We describe the
experiment results in Section 5 and conclude the paper in Section 6.

2 Background

2.1 Threat Model

Figure 1 shows the threat model used in this paper. Assume an entity (e.g., law
enforcement) intends to find out whether there exists an end-to-end network
communication between a sender S and a receiver R. To this end, a watermark
encoder E is placed between S and its neighbor network nodes, and a watermark
decoder D is placed at the other end of the communication, between R and its
neighbor nodes. E manipulates the throughput of all flows originating from S
to embed a sequence of watermarks. On the other hand, all flows received by R
are investigated by D to determine whether they carry watermarks previously
embedded by E. If that is the case, this means that a communication between S
and R is in place. Along the path between S and R there are n (n ≥ 1) middle-
boxes. Each middlebox behaves as a proxy or relay host, therefore separating the

On the Secrecy of Spread-Spectrum Flow Watermarks 235

logical connection between S and R into multiple loosely coupled TCP connec-
tions. This scenario is typical of stepping stones [29,8], anonymity networks (e.g.
Anonymizer (www.anonymizer.com) or Tor [6]), and HTTP/SOCKS proxies.

Our detection system (see Section 3) can be located at a middlebox, between
the encoder and the decoder, to determine whether or not the flows going through
the middlebox have been watermarked. If so, the middlebox can use a traffic
shaper to remove the watermarks from the outgoing traffic sent to the next hop.

We also consider the case of non-cooperative middleboxes, and we assume
the end user (the receiver) wants to make sure that her flows cannot be traced
back. In this case, R can apply our elimination system (see Section 4) to blindly
remove the watermarks from all her incoming flows before they can be identified
by the decoder.

2.2 Spread-Spectrum Flow Watermarks

A target flow’s throughput is the carrier of the spread-spectrum flow watermark.
A watermark comprises of a sequence of bits denoted as W = {w1, . . . , wM},
where M is the length of a watermark. Instead of using wi (i = 1, . . . , M) to
directly modulate a flow’s throughput, the encoder first maps wi to a PN code

according to: wi →
{

Z if wi = 1,
Z if wi = −1,

where Z = {z1, . . . , zV } is a V -bit PN

code and Z is the complement of Z. After obtaining the new sequence of MV
bits indicated as WDSSS = {Z1, . . . , ZM}, the encoder uses each bit in WDSSS

to modulate a flow’s throughput. More precisely, if a bit is −1, the encoder will
cause a low-throughput period of Tc (called chip duration) by causing many
packet losses in the target flow. Otherwise, the encoder will maintain a high-
throughput period of Tc by doing nothing or causing less packet loss in the
target flow [7].

A PN code is a special binary sequence. Before introducing general features
of a PN code, we give the definition of run in a binary sequence.

Definition 1. Given a binary sequence B = {b1, . . . , bL}, a run is defined as a
sequence of {bj, . . . , bk} where bj = bj+1 = . . . = bk and bj−1 �= bj and bk+1 �= bk.
Its length is equal to k−j+1. Note that if j = 1, b1 is the start of a run. Similarly,
if k = L, bL is the end of a run.

Golomb indicated that a PN code may have one or many following properties
[12]: (1) the number of 1 is approximately equal to the number of −1. (2) runs of
1 or−1 occur with probability that is inversely proportional to the length of runs.
(3) its autocorrelation has the maximal value in the middle and declines quickly
at the ends. Yu et. al. employed m-sequence, which has all above properties [12],
to implement the spread-spectrum flow watermarks [28].

2.3 Countermeasures

Kiyavash et al. proposed the multi-flow attack to detect SSFW [16]. They as-
sume that the same watermark is embedded into multiple flows simultaneously

236 X. Luo et al.

and normal traffic follows the Markov modulated Poisson process [16]. Our de-
tection system does not need such assumptions. The multi-flow attack exploits
the observation that SSFW may cause a long low-throughput period on sev-
eral flows comparing with a trained model. However, they also showed that the
multi-flow attack can be evaded when the encoder applies different PN codes
or flow watermarks to different flows [14]. Moreover, changing the position of a
watermark in a flow may disable the multi-flow attack because the number of
flow combinations that need investigation increases exponentially [16,14]. When
facing multiple flows, our detection system only needs to investigate them one
by one because we exploit the fundamental difference between network flows and
radio signals, which is detailed in section 3.1.

The watermarked flow may show self-similarity because Yu et. al. used one
m-sequence code to spread every bit in a watermark [28] and all m-sequence
codes have excellent autocorrelation feature [7]. Exploiting this observation, Jia
et al. proposed a detection approach that employs mean-square autocorrelation
to measure the similarity between a modulated traffic segment and the same
segment shifted by certain period [15]. However, it is easy to evade this method
by using different m-sequence codes or orthogonal PN codes to spread individual
bits of a watermark [15]. Our detection system can handle both cases.

3 Detection System

We first explain the traffic anomalies caused by SSFW in Section 3.1 and 3.2,
and then elaborate on our detection scheme in section 3.3 and 3.4.

3.1 Basic Idea

Our detection scheme leverages the anomalies steming from SSFW’s intrinsic
features and takes advantage of fundamental differences between network flows
and radio signals. We can first notice that when applied to a network flow SSFW
causes an abnormal sequence of low-throughput periods in the flow. This happens
because the encoder needs to throttle the flow’s throughput to a low value for

1900 2000 2100 2200 2300 2400 2500
0

2

4

6

8

10

x 10
4

Time (second)

T
h

ro
u

g
h

p
u

t
(b

yt
e/

se
c)

Normal
period

Watermark
period

Fig. 2. Throughput of a watermarked flow that went through Tor network

On the Secrecy of Spread-Spectrum Flow Watermarks 237

a given period Tc when the bit to be embedded is −1 (notice that SSFW uses
a binary encoding with values equal to either -1 or +1). The low-throughput
periods caused by -1 bits are noticeably different from throughput degradations
caused by network congestion in terms of the throughput level, duration and
frequency. The reason is that network congestion is out of the control of the
encoder and throughput degradations caused by network congestion may mislead
the decoder. Therefore, to correctly decode a watermark bit and distinguish it
from noise due to network congestion, Yu et al. have specified in [28] (Equation
12 and Figure 10) that the encoder needs to implement the following strategies:

– Increase the difference between the high-throughput and low-throughput
levels. Since the maximum high-throughput is determined by the network,
this strategy can only be achieved by decreasing the value of low-throughput.

– Increase the duration of low-throughput periods (i.e. Tc).
– Increase the length of the PN code, thus causing a higher number of low-

throughput periods.

Based on this observations, the goal of our detection system is to detect SSFW
by identifying the presence of anomalous sequences of low-throughput periods
in a network flow. Figure 2, which is based on the data from [28], illustrates the
throughput of a watermarked flow crossing the Tor network. Its throughput is
computed in every chip duration (i.e. 2 seconds) [28]. We highlight two periods:
the watermark period in which a watermark was embedded into the flow, and the
normal period when the encoder is idle. It is easy to notice the higher number
of low-throughput points during the watermark period, compared to the normal
period. Since each low-throughput point in Figure 2 indicates the aggregated
throughput during a chip duration, it represents a low-throughput period when
the throughput is aggregated within a small time unit. We describe the selection
of the basic time unit in section 3.3.

Second, we prove in section 3.2 that using PN codes to spread watermarks
increases the number of low-throughput periods significantly. This feature allows
our detection system to quickly identify SSFW.

Third, spread spectrum was originally designed to spread radio signal from a
small frequency range to a wider frequency range [7]. A fundamental difference
between radio signals and network flows is that although the spread-spectrum
technique can spread the radio signal’s energy to a wide range of frequencies and
recover the original signal from those frequencies, applying SSFW to a network
flow only affects that one flow and not a set of flows. Therefore, just like a decoder
that only needs to inspect one flow to identify the embedded watermarks, our
detection system only needs to investigate individual flows.

Based on the above observations, our detection scheme consists of two steps:

1. Locate low-throughput periods in a flow (section 3.3).
2. Detect abnormal sequences of low-throughput periods (section 3.4).

238 X. Luo et al.

3.2 Low-Throughput Periods Resulted from PN Codes

We use R1 and R−1 to denote the number of runs (see Section 2.2) of 1 and
the number of runs of −1 in a binary sequence. R−1 is equal to the number of
low-throughput periods. Without loss of generality, we assume that the flow’s
throughput is high before and after the watermark period. Since runs of 1 and
runs of −1 alternate, the relationship between R1 and R−1 falls into one of the
following scenarios: (1) R−1 = R1; (2) If R−1 �= R1 and b1 = −1, R−1 = R1 +1;
(3) If R−1 �= R1 and b1 = 1, R−1 = R1 − 1 [11].

Lemma 1 shows that the expected number of runs has the maximal value 1+ L
2

when the number of 1 is equal to the number of −1. For the ease of explanation,
we assume that L is an even number. According to the relationship between
R−1 and R1 listed above, we know that the expected number of R−1 reaches its
maximal value. Since PN codes have similar number of 1 and −1, they possess
a large R−1.

Lemma 1. In a L-bit binary sequence, the expected number of runs reaches the
maximal value 1 + L

2 when the number of 1 is equal to that of −1.

Proof. The expected number of runs (i.e. R−1 + R1) in a L-bit binary sequence
is equal to 1+ 2L−1(1−L−1)

L where L−1 is the number of −1 [11]. Since 2L−1(L−
L−1) ≤ L2

2 and the inequality becomes equality when L−1 = L
2 , we get the

maximal value 1 + L
2 when the number of 1 is equal to that of −1.

Since SSFW turns an M -bit watermark into an MV -bit binary sequence using
a V -bit PN code, R−1 is increased significantly. Without loss of generality, we
assume that both the original watermark and the spread watermark are random
sequences. In this case, we use the Corollary 2.1 in [11] to compute the proba-
bility of R−1. Figure 3 illustrates R−1’s PDF in 16-bit watermarks and that in
the corresponding watermarks spread by 7-bit PN codes. Obviously, the spread
watermarks have much larger R−1 than the original watermark. The average
R−1 has been increased by around 7.

0 10 20 30 40 50 60
0

0.1

0.2

0.3

0.4

R
−1

P
ro

b
ab

ili
ty

Original watermark
Spread watermark

Fig. 3. The PDF of number of runs

of −1 (i.e. R−1) in 16-bit watermarks

and that in the corresponding water-

marks spread by 7-bit PN codes

0 5 10 15 20 25 30 35
0

0.2

0.4

0.6

0.8

1

R
−1

C
D

F

Original watermark
Spread watermark

Fig. 4. The CDF of the number of runs

of −1 (i.e. R−1) in 16-bit original wa-

termarks and that in the correspond-

ing watermarks spread by a m-sequence

PN code {1,−1,−1, 1, 1, 1,−1}

On the Secrecy of Spread-Spectrum Flow Watermarks 239

Lemma 2 calculates the exact number of R−1 in a m-sequence that is used as
the PN code in [28]. Lemma 2 indicates that when using a L-bit m-sequence to
spread one bit, the number of low-throughput periods will increase by around
L+1

4 . Figure 4 illustrates the CDF of R−1 in all possible 16-bit watermarks
and that in the corresponding watermarks spread by a m-sequence PN code
{1,−1,−1, 1, 1, 1,−1}. Obviously, the spread watermarks have much larger R−1

than the original watermarks.

Lemma 2. In a L-bit m-sequence, R−1 = L+1
4 .

Proof. The number of k-bit runs of −1 is equal to 2J−2−k (k = 1, . . . , J − 2),
where J = log2(L + 1) [7]. Since the maximal length of runs of −1 is J − 1 and
there is only one (J − 1)-bit run of −1 [7], R−1 =

∑J−2
k=1 2J−2−k + 1 = L+1

4 .

3.3 Locating Low-Throughput Periods

Our detection system computes a target flow’s throughput in each basic time
unit. We call these values as throughput samples. The system is independent of
the transport layer protocol. For TCP flows, we let the basic time unit be the
round-trip time (RTT), denoted as Trtt, between the host where our detection
system is located and its upstream host. The rational is that TCP packets are
usually sent in burst within each RTT duration because of TCP’s ACK-based
self-clocking. Using a smaller period to compute throughput samples may lead to
many useless zero values because the time for sending a burst of TCP packets is
a small portion of RTT. Using a period larger than the chip duration to calculate
throughput samples may blur low-throughput periods caused by the watermark.
For UDP flows, the basic time unit could be set to the average inter-packet delay.
Since the original SSFW targets on TCP flows [28] and many public proxies and
anonymity networks (e.g. Tor) only support TCP connections, we evaluate our
detection system using only TCP flows.

Given a sequence of throughput samples Π = {π1, π2, . . .}, we construct a
new binary sequence (Π̂ = {π̂1, π̂2, . . .}) according to Equation (1):

π̂i =
{

1 if πi − (1 − ρ)μΠ > 0,
−1 if πi − (1 − ρ)μΠ ≤ 0, (1)

where μΠ is the average value of Π and ρ (0 < ρ < 1) is a parameter. We define
a low-throughput period as a sequence of throughput samples whose values are
not larger than (1− ρ)μΠ and the duration of such sequence is longer than Tr.

We found that it is proper to let ρ = σΠ

μΠ
, where μΠ and σΠ are the average

value and the standard deviation of Π respectively. According to the one-side
Chebyshev inequality [24], we have Pr(πi ≤ μΠ −KσΠ) ≤ 1

1+K2 . When K = 1,
Pr(πi ≤ μΠ − σΠ) = Pr(π̂i = −1) ≤ 1

2 . Since PN code Z = {z1, . . . , zV }
has similar number of −1 and 1, Pr(zi = −1) ≈ 1

2 . For a V -bit m-sequence,
Pr(zi = −1) ≡ V +1

2V . Since SSFW degrades a flow’s throughput when the bit
to be embedded is -1, the probability of observing a low-throughput sample

240 X. Luo et al.

approximates 1
2 . Therefore, by letting ρ = σΠ

μΠ
, we have high probability to

observe all low throughput values.
Throughput degradations caused by network congestion are noise to both

SSFW’s decoder and our detection algorithm. We exploit TCP’s congestion con-
trol mechanism to filter out low-throughput periods caused by network conges-
tions that occur on the path where the detection system is located. Detailed
information can be found in [17].

3.4 Detection Algorithm

After locating a sequence of low-throughput periods, we employ the sequen-
tial probability ratio testing (SPRT) to carry out the detection. More precisely,
as many recent Internet measurement studies have shown that the packet loss
events in the Internet could be modeled as a Poisson process [2,18], we use SPRT
to detect the abnormal increment in the rate of such events [9, 13].

Let x(t) be a poisson process modeling low-throughput periods. Its probability
function is Pr(x, λ) = exp(−λt) (λt)x

x! , where λ is the rate of low-throughput
periods. We define two hypotheses H0 and H1 as follows:

– H0, the rate of low-throughput periods is within normal range.
– H1, the rate of low-throughput periods is abnormal.

The log-likelihood ratio is defined as: Θ(t) = ln Pr(x(t)|H1)
Pr(x(t)|H0)

= x(t) ln(γ) + λ0(1−
γ)t, γ = λ1

λ0
, where λ0 and λ1 indicate the normal rate of low-throughput periods

and the abnormal one individually.
We choose H0 if Θ(n) ≤ B or select H1 if Θ(n) ≥ A. Otherwise, the detection

system continues monitoring. A and B are determined according to two user-
defined parameters: α is the probability of false positive (i.e. select H1 but H0 is
correct.) β is the probability of false negative (i.e. select H0 but H1 is correct.).
Dvoretzky et. al. proved that B = ln β

1−α and A ≤ ln 1−β
α ≤ A + ln(γ) [9]. Since

computing the exact value of A is time-consuming, Haggstrom suggested that
A ≈ ln(1−β

α)− ln(γ)
3 [13].

Note that waiting periods, denoted as y, between consecutive events in a
Poisson process follow the exponential distribution, whose probability function
is λe−yλ. Haggstrom constructed an alternative SPRT of H0 versus H1 based
on the waiting times after N observations. He proved that these two SPRTs will
lead to the same decision and showed that the expected number of events when
the SPRT stops is E(N |λ1) = E[x(t)|λ1] + L(λ1), where L(λ1) is the operating
characteristic function of the test H1 [13]. As Haggstrom has detailed every step
of computing E(N |λ1), interested readers please refer to that report [13].

4 Elimination System

An effective approach to remove SSFW is to shape a flow’s throughput. Although
it is easy to regulate the outgoing traffic using mechanisms like Linux traffic

On the Secrecy of Spread-Spectrum Flow Watermarks 241

control or Tor’s bandwidth limit on relayed traffic, they can not regulate the
incoming traffic. Therefore, if an upstream middlebox does not shape outgoing
traffic, a downstream host will receive watermarked traffic.

Public proxies and one-hop anonymity network like Anonymizer usually do
not apply traffic shaping to avoid performance degradation. Although Tor uses
a windowing scheme for each circuit to prevent congestion [6, 22], it could not
eliminate SSFW because it only limits the high throughput instead of removing
the low-through periods. Though long delays introduced by the Tor network may
affect SSFW’s decoding rate, new mechanisms for increasing the performance of
Tor network [23] will mitigate the noise to SSFW’s encoding/decoding procedure.
Therefore, end users need solutions to remove SSFW by themselves.

Being a complement to existing traffic control mechanism, our elimination
system allows a middlebox or an end user to shape the throughput of incoming
traffic. More precisely, our system modifies the advertising window in outgoing
packets and adds additional delays if necessary. We employ the leaky bucket
algorithm to determine the throughput of incoming traffic [25].

Let Spkt and Npkt denote the packet size and the number of packets received in
a Trtt. Npkt is controlled by the available data in the TCP sender, its congestion
window (i.e. cwnd) and the advertising window (i.e. rwnd) announced by the
receiver. The instantaneous throughput is equal to Spkt×Npkt

Trtt
. To scrub SSFW,

we manipulate Npkt and introduce additional delay, named Tdly. The throughput

becomes Spkt×Ñpkt

Trtt+Tdly
, where Ñpkt is the number of packets received during the

period of Trtt + Tdly. More precisely, whenever a packet is going to be sent, the
elimination system delays it for Tdly and checks whether there is enough quota,
denoted as BukCap, to receive a packet of Spkt bytes from the upstream host. If
so, our system changes the advertising window in that packet to Spkt. Otherwise,
the packet’s advertising window will be set to 0 (or 1 for unpatched windows
Vista/2003/2008 that do not handle zero window correctly [5]). If a packet of
size Spkt is received, BukCap is decreased by Spkt. The quota will be recovered
to a pre-defined value every second. Since sometimes the TCP receiver does not
has outgoing packets, our system will generate an ACK packet every 200 ms to
trigger packets from the TCP sender. These ACK packets’ advertised windows
are set according to the above leaky bucket algorithm.

5 Evaluation

We implemented SSFW’s encoder, decoder and our detection and elimination
system on Linux with the help of iptables 1.4.0, the libnetfilter queue 0.0.16
library and Linux raw socket. We realized the advanced encoding approach sug-
gested in [28, 15]. Given a dropping probability, this approach discards packets
probabilistically during a Tc period if the bit to be embedded is -1. Detailed
information can be found in [17] due to limited space.

We evaluated our detection system using both the traces in [28] and the
traces collected by ourselves. The traces in [28] include watermarked flows going
through the Tor network. Our traces include watermarked flows going through

242 X. Luo et al.

12 PlanetLab nodes that are located in different countries [17]. It represents the
scenario of using public proxies or one-hop anonymity network like Anonymizer.
Since Anonymizer does not provide free trail service now, we run a light-weight
HTTP proxy, Tiny HTTP Proxy [1], on those PlanetLab nodes. In this case, the
sender becomes a web server and the receiver downloads files from it.

Recall that there are six parameters used in our detection system: α and β
are user-defined false positive rate and false negative rate; Tr determines the
minimal duration of a low-throughput period; ρ is related to the deepness of a
low-throughput period; λ0 and λ1 are the expected normal rate and abnormal
rate of low-throughput periods. In our evaluation, we fix two parameters’ value
(i.e. α and β), formulate the computation of another two parameters (i.e. λ0

and λ1) and examine the effect of the remaining two (i.e. Tr and ρ). The major
reason is that only Tr and ρ affect the number of low-throughput periods, whose
abnormal behavior is the basis of our detection system. We set α = 0.001 and
β = 0.01. Let Λ be the set of rates of low-throughput periods calculated from
the training data. In all of our experiments, we let λ0 be the mean value of Λ
and λ1 be the maximal value in Λ.

5.1 Evaluation of the Detection System Using Planetlab Traces

In the PlanetLab experiments, we used the same watermark (i.e. {1,−1, 1, 1,−1,
1,−1}) in [28] and three chip durations Tc (i.e. 1s, 2s and 3s). We evaluated the
detection system using three different PN codes:

1. PN code 1 : the PN code mentioned in [28] (i.e. {1,−1, 1, 1,−1, 1,−1}).
2. PN code 2 : a m-sequence {1,−1,−1, 1, 1, 1,−1} generated by [4].
3. PN code 3 : a pair of Walsh-Hadamard code generated by [4] that spreads 1

and −1 using {1,−1, 1,−1, 1,−1, 1} and {1, 1,−1,−1, 1, 1,−1} respectively.
They are orthogonal codes [10].

We downloaded a large file from the web server through each proxy 100 times.
Half of the traces were used to compute the RTT between the client and the
proxy, λ0 and λ1 used in the SPRT. The remaining traces were used to evaluate

2 4 6 8 10
0.5

0.6

0.7

0.8

0.9

1

T
r

D
et

ec
ti

o
n

 r
at

e

PN code 1
PN code 2
PN code 3

(a) The detection rate when different PN

codes were used

3 4 5 6 7 8 9 10
0

5

10

15

20

T
r

A
ve

ra
ge

 v
al

ue
 o

f
N

PN code 1
PN code 2
PN code 3

(b) The average value of N when a spread-

spectrum flow watermark was detected

Fig. 5. The detection rate and the average value of N v.s. Tr

On the Secrecy of Spread-Spectrum Flow Watermarks 243

our system’s false positive. Then we downloaded the same file 150 times through
each proxy and the encoder started embedding the watermark to the flows.

We first examined the effect of different PN codes and that of Tr on the
detection rate and false positive. In these experiments, we let ρ = σΠ

μΠ
. Figure 5(a)

illustrates the impact of Tr on the detection rate. It is worth noting that when
Tr changes the number of low-throughput periods in all flows may also vary.
Consequently, Λ and λ1 may also change. We found that when Tr increases from
a small value 3 to a large value 10 the false positive remains zero while the
detection rate first raises and then decreases.

The low false positive rate may result from the fact that we let λ1 = max(Λ).
The reason for the trend of detection rate is two-fold. On the one hand, using
a small Tr may include many short low-throughput periods in both normal
flows and watermarked flows. While the difference between a normal flow and
a watermarked flow is that the latter has more long low-throughput periods, a
large number of short low-throughput periods may obscure this feature and cause
more false alarms. On the other hand, when Tr is too large (e.g. much larger
than Tc) the low-throughput periods caused by SSFW with small chip duration
may be ignored and therefore the detection rate decreases. It is rational to let
Tr be 4 or 5 because from a decoder’s point of view Tc should be larger than
several RTTs to mitigate the noise from ordinary network congestion, where a
TCP sender needs a few RTTs to recover its throughput from a mild network
congestion. Such recovery process may lead to low-throughput periods similar
to the effect of embedding flow watermark. Therefore if Tc is shorter than such
recovery process, ordinary network congestion may give rise to decoding errors.

Figure 5(b) illustrates the average number of low-throughput periods needed
by our system to raise an alarm. As Tr increases, less number of low-throughput
periods is needed because the number of low-throughput periods in both normal
flows and watermarked flows decreases. Since each flow carried only one water-
mark in our experiments, the decoder needs to observe the whole flow before
recovering the watermark. Therefore, if a watermarked flow is detected before
the end of the flow, the watermark must be identified before the decoder has
the chance to recover the watermark. All detected flows in our experiments were
identified before the end of each flow. A conservative approach is to let the mid-
dlebox shape the outgoing traffic when it uses our detection system to determine
the existence of SSFW in incoming traffic.

When examining the effect of different PN codes, we observed from Figure 5(a)
that the result of the PN code 1 and that of the PN code 3 are similar. It may
be due to the similarity in their run properties. To encode the watermark (i.e.
{1,−1, 1, 1,−1, 1,−1}) , PN code 1 has 18 runs of −1 including twelve 1-bit runs
and six 2-bit runs. PN code 3 also has 18 runs of −1 including fifteen 1-bit runs
and three 2-bit runs. All these runs of −1 will cause low-throughput periods. In
comparison with them, PN code 2 has only 11 runs of −1 including one 1-bit
run, seven 2-bit runs and three 3-bit runs. However, Figure 5(b) illustrates that
to detect these watermarks the number of required low-throughput period for
different PN codes is similar.

244 X. Luo et al.

Table 1. Average detection rate (Rd) and false positive rate v.s. K (ρ = K σΠ
μΠ

)

PN Code 1 PN Code 2 PN Code 3
K Rd N Rd N Rd N False Positive
1 0.996 7.71 0.983 7.26 0.987 7.59 0
2 0.939 5.53 0.908 5.53 0.935 5.76 0
3 0.94 4.08 0.91 4.26 0.934 4.3 0.003
4 0.781 4.1 0.751 4.36 0.795 4.28 0.006
5 0.74 3.82 0.655 3.99 0.711 4.01 0.006

To evaluate the effect of ρ, we let Tr = 5 and ρ = K σΠ

μΠ
and then increase

K from 1 to 5. The experiment result is listed in Table 1, which includes the
detection rate (Rd) and the average number of N for different PN codes and
the false positive rate. We can see that the best detection rate is achieved when
K = 1. This observation is in accordance with the analysis in section 3.3. When
K increases, the detection rate decreases. The reason is that a large ρ may filter
out many low-throughput periods caused by the flow watermarks, for example,
those generated by small dropping probability (e.g. 0.1). However, when K is not
larger than 3, the detection rate is still larger than 90%. Moreover, a very large
ρ may also increase the false positive rate because it may lead to a very small λ0

(i.e. most normal flows do not have such kind of low-throughput periods) and
flows with a few throughput outliers might cause false positive.

5.2 Evaluation of the Detection System Using Tor Traces from [28]

In [28]’s Tor experiments, the encoder used 98 seconds to embed a watermark
because the chip duration is 2 seconds and both the m-sequence and the wa-
termark have 7 bits (i.e. 2*7*7=98). After that, their encoder will wait for 98
seconds before embeding another watermark to the same flow [28].

2 4 6 8 10
0.5

0.6

0.7

0.8

0.9

1

T
r

D
et

ec
ti

o
n

 r
at

e

Trace 1
Trace 2
Trace 3

(a) The detection rate in different traces

2 4 6 8 10
0

2

4

6

8

10

1212

T
r

A
ve

ra
g

e
va

lu
e

o
f

N

Trace 1
Trace 2
Trace 3

(b) The average value of N when a spread-

spectrum flow watermark was detected

Fig. 6. The detection rate and the average value of N v.s. Tr

The author of [28] provided us three traces that contain throughput aggre-
gated in 0.1s. We let the basic unit time be 0.1s because we could not know the
exact RTT from the traces. For each trace, we first identified normal periods and

On the Secrecy of Spread-Spectrum Flow Watermarks 245

watermark periods and then divided the normal periods into two groups. Based
on the data in the first group of normal periods, we computed λ0, λ1, σΠ and
μΠ . Then, we applied the detection algorithms to the data in the second group
of normal periods to calculate the false positive rate and applied the detection
algorithms to data in watermark periods to compute the detection rate.

Figure 6(a) shows the detection rate in different traces when Tr varies. In
most cases our detection scheme can identify all watermarks. We observed that
when Tr increases from a small value 3 to a large value 10 the false positive re-
mains zero. Figure 6(b) illustrates the average number of low-throughput periods
needed by our detection system to raise an alarm. Compared to the PlanetLab
experiment results shown in Figure 5(b), the number of steps needed to detect
watermarked flows going through Tor is relatively stable. It is because λ0 and
λ1 computed from normal periods in those Tor traces are less sensitive to Tr. In
these experiments, we let ρ = σΠ

μΠ
. When fixing Tr to 5, we still get zero false

positive when ρ = 2σΠ

μΠ
.

5.3 Evaluation of the Elimination System

In [28], a flow is deemed as being watermarked if and only if the decoder can
recover the 7-bit watermark. The experiment results showed that our elimination
system can successfully remove SSFW from flows going through both one-hop
proxies and Tor network. To explain the result clearly, we define the bit decoding
rate as the ratio of the number of bits decoded correctly to the length of a
watermark. A watermark is removed if the bit decoding rate is less than 1.

Table 2. Bit decoding rate and throughput ratio after a watermarked flow is processed

by our elimination system

Dropping probability 0.1 0.2 0.4 0.6
Average bit decoding rate 0.651 0.51 0.5 0.571

Throughput ratio 0.771 0.672 0.536 0.424

Since a SSFW encoder degrades the throughput of the target TCP flow, the
major goal of our elimination system is to remove SSFW and at the same time
minimize the negative effect on its throughput. Table 2 lists the average bit de-
coding rate and throughput ratio obtained from the flows between a PlanetLab
node in UK (194.36.10.154) and the client when the encoder adopted different
dropping probability. The throughput ratio indicates the ratio of the average
throughput of watermarked flows that were scrubbed by our elimination sys-
tem to the average throughput of watermarked flows. In these experiments, we
set the regulated throughput to the median of the throughput of watermarked
flows. The experiment results showed that all watermarks were removed. When
the dropping probability is small, the throughput degradation is around 23%.
When the dropping probability increases, the throughput degradation becomes
severe. The reason is that under high dropping probability the modulated TCP’s
throughput is already very low and consequently its median value (i.e. the reg-
ulated throughput) is very small.

246 X. Luo et al.

We also applied our elimination system to flows going through the Tor net-
work. Since Tor changed the paths during the experiments, we set the regulated
throughput to fix values. Figure 7 shows a box plot of the bit decoding rates af-
ter our elimination system regulated the incoming traffic from Tor’s entry node.
The dot within each box indicates the median value of bit decoding rate. We
can see that all watermarks were removed.

15KB/s 30KB/s 45KB/s 60KB/s
0

0.2

0.4

0.6

0.8

1

Regulated Throughput

B
it

 d
ec

o
d

in
g

 r
at

e

Fig. 7. Bit decoding rate v.s. regulated throughput

6 Conclusion

In this paper we proposed a novel method to detect spread-spectrum flow wa-
termarks (SSFW). Our method leverages the intrinsic features of SSFW, and
is mainly based on detecting anomalous sequences of low-throughput periods in
network flows. Furthermore, we introduced a novel receiver-based approach to
remove SSFW by leveraging TCP’s flow control mechanism. This approach is
complementary to router-based traffic shaping methods, and allows end users to
autonomously remove SSFW even in case of non-cooperative middleboxes. We
conducted an extensive evaluation of our watermark detection and elimination
systems. The experimental results confirm that our detection approach is able to
identify SSFW quickly and with high accuracy, and that our elimination system
can effectively remove SSFW from network flows. In the further work, we will
investigate how to mitigate the throughput degradation caused by the elimina-
tion system. Another possible direction is to select more suitable carriers and
watermarks for the design of flow watermarks [3].

Acknowledgments

We thank Xinwen Fu and Ling Zhen for giving us Tor traces and suggestions
on Tor’s experiments. This material is based upon work supported in part by
the National Science Foundation under grants no. 0716570 and 0831300, the De-
partment of Homeland Security under contract no. FA8750-08-2-0141, the Office
of Naval Research under grant no. N000140911042. Any opinions, findings, and
conclusions or recommendations expressed in this material are those of the au-
thors and do not necessarily reflect the views of the National Science Foundation,
the Department of Homeland Security, or the Office of Naval Research.

On the Secrecy of Spread-Spectrum Flow Watermarks 247

References

[1] hisao, S. (2009), http://www.okisoft.co.jp/esc/python/proxy

[2] Altman, E., Avrachenkov, K., Barakat, C.: A stochastic model for tcp with sta-

tionary random losses. In: ACM SIGCOMM (2000)

[3] Cayre, F., Fontaine, C., Furon, T.: Watermarking security: Theory and practice.

IEEE Transactions on Signal Processing 53(10), 3976–3987 (2005)

[4] Choi, B.: PN code generator (2000),

http://www-mobile.ecs.soton.ac.uk/bjc97r/pnseq-1.1/pnseq-1.1.tar.gz

[5] Microsoft Corporation. Microsoft security bulletin ms09-048 (2009),

http://www.microsoft.com/technet/security/Bulletin/ms09-048.mspx

[6] Dingledine, R., Mathewson, N., Syverson, P.: Tor: The second-generation onion

router. In: USENIX SEC (2004)

[7] Dixon, R.: Spread Spectrum Systems, 2nd edn. John Wiley & Sons, Chichester

(1984)

[8] Donoho, D., Flesia, A., Shankar, U., Paxson, V., Coit, J., Staniford, S.: Multiscale

stepping-stone detection: detecting pairs of jittered interactive streams by exploit-

ing maximum tolerable delay. In: Wespi, A., Vigna, G., Deri, L. (eds.) RAID 2002.

LNCS, vol. 2516, p. 17. Springer, Heidelberg (2002)

[9] Dvoretzky, A., Kiefer, J., Wolfowitz, J.: Sequential decision problems for pro-

cesses with continuous time parameter testing hypotheses. Annals of Mathemat-

ical Statistics 24 (1953)

[10] Fazel, K., Kaiser, S.: Multi-Carrier and Spread Spectrum Systems. Wiley, Chich-

ester (2003)

[11] Gibbons, J., Chakraborti, S.: Nonparametric Statistical Inference, 4th edn. CRC,

Boca Raton (2003)

[12] Golomb, S.: Shift Register Sequences (revised edition). Aegean Park Press, Laguna

Hills (1982)

[13] Haggstrom, G.: Sequential tests for exponential populations and poisson processes.

Technical report, RAND Corporation (1979)

[14] Houmansadr, A., Kiyavash, N., Borisov, N.: Multi-flow attack resistant water-

marks for network flows. In: IEEE ICASSP (2009)

[15] Jia, W., Tso, F., Ling, Z., Fu, X., Xuan, D., Yu, W.: Blind detection of spread

spectrum flow watermarks. In: IEEE INFOCOM (2009)

[16] Kiyavash, N., HoumanSadr, A., Borisov, N.: Multi-flow attacks against network

flow watermarking schemes. In: USENIX Security (2008)

[17] Luo, X., Zhang, J., Perdisci, R., Lee, W.: On the secrecy of spread-spectrum flow

watermarks (2010),

http://roberto.perdisci.com/publications/publication-files/

DSSSWM Extended TechReport.pdf

[18] Markopoulou, A., Tobagi, F., Karam, M.: Loss and delay measurements of internet

backbones. Computer communications (June 2006)

[19] Peng, P., Ning, P., Reeves, D.: On the secrecy of timing-based active watermarking

trace-back techniques. In: IEEE Symp. on Security and Privacy (2006)

[20] Pyun, Y., Park, Y., Wang, X., Reeves, D., Ning, P.: Tracing traffic through inter-

mediate hosts that repacketize flows. In: IEEE INFOCOM (2007)

[21] Ramsbrock, D., Wang, X., Jiang, X.: A first step towards live botmaster traceback.

In: Lippmann, R., Kirda, E., Trachtenberg, A. (eds.) RAID 2008. LNCS, vol. 5230,

pp. 59–77. Springer, Heidelberg (2008)

http://www.okisoft.co.jp/esc/python/proxy
http://www-mobile.ecs.soton.ac.uk/bjc97r/pnseq-1.1/pnseq-1.1.tar.gz
http://www.microsoft.com/technet/security/Bulletin/ms09-048.mspx
http://roberto.perdisci.com/publications/publication-files/DSSSWM_Extended_TechReport.pdf
http://roberto.perdisci.com/publications/publication-files/DSSSWM_Extended_TechReport.pdf

248 X. Luo et al.

[22] Reardon, J., Goldberg, I.: Improving tor using a TCP-over-DTLS tunnel. In:

USENIX Security (2009)

[23] Tang, C., Goldberg, I.: An improved algorithm for Tor circuit scheduling. Tech-

nical report, University of Waterloo (2010)

[24] Therrien, C., Tummala, M.: Probability for Electrical and Computer Engineers.

CRC, Boca Raton (2004)

[25] Turner, J.: New directions in communications (or which way to the information

age?). In: IEEE Commun. Magazine (1986)

[26] Wang, X., Chen, S., Jajodia, S.: Tracking anonymous peer-to-peer voip calls on

the internet. In: ACM CCS (2005)

[27] Wang, X., Chen, S., Jajodia, S.: Network flow watermarking attack on low-latency

anonymous communication systems. In: IEEE Symp. on Security and Privacy

(2007)

[28] Yu, W., Fu, X., Graham, S., Xuan, D., Zhao, W.: DSSS-based flow marking tech-

nique for invisible traceback. In: IEEE Symp. on Security and Privacy (2007)

[29] Zhang, Y., Paxson, V.: Detecting stepping stones. In: USENIX Security (2000)

Traffic Analysis against Low-Latency Anonymity
Networks Using Available Bandwidth

Estimation�

Sambuddho Chakravarty1, Angelos Stavrou2, and Angelos D. Keromytis1

1 Columbia University, NY, USA

{sc2516,angelos}@cs.columbia.edu
2 George Mason University, VA, USA

astavrou@gmu.edu

Abstract. We introduce a novel remotely-mounted attack that can ex-

pose the network identity of an anonymous client, hidden service, and

anonymizing proxies. To achieve this, we employ single-end controlled
available bandwidth estimation tools and a colluding network entity that

can modulate the traffic destined for the victim. To expose the circuit

including the source, we inject a number of short or one large burst of

traffic. Although timing attacks have been successful against anonymity

networks, they require either a Global Adversary or the compromise of

substantial number of anonymity nodes. Our technique does not require

compromise of, or collaboration with, any such entity.

To validate our attack, we performed a series of experiments using

different network conditions and locations for the adversaries on both

controlled and real-world Tor circuits. Our results demonstrate that our

attack is successful in controlled environments. In real-world scenarios,

even an under-provisioned adversary with only a few network vantage

points can, under certain conditions, successfully identify the IP address

of both Tor users and Hidden Servers. However, Tor’s inherent circuit

scheduling results in limited quality of service for its users. This at times

leads to increased false negatives and it can degrade the performance of

our circuit detection. We believe that as high speed anonymity networks

become readily available, a well-provisioned adversary, with a partial or

inferred network “map”, will be able to partially or fully expose anony-

mous users.

1 Introduction

Low-latency anonymity systems strive to protect the network identity of users
that are in need of services and applications that are latency sensitive or interac-
tive in nature. Tor [27], JAP [22] and I2P [4] are examples of popular low-latency
� This work was partly supported by the Office for Naval Research through Grant

N0014-09-1-0757 and the National Science Foundation through Grant CNS-07-14277.

Opinions, findings, conclusions and recommendations expressed in this material are

those of the authors and do not necessarily reflect the views of the ONR or the NSF.

D. Gritzalis, B. Preneel, and M. Theoharidou (Eds.): ESORICS 2010, LNCS 6345, pp. 249–266, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

250 S. Chakravarty, A. Stavrou, and A.D. Keromytis

anonymity systems. The Achilles’ heel of these systems lies in the fact that they
do not modify the inter-packet delay to achieve low end-to-end latency. However,
this makes them vulnerable to traffic pattern observation attacks [26]. Indeed,
the adversary can correlate flow patterns in traffic flowing through one section of
the network to that in another1. Timing attacks are feasible only by an adversary
who can observe traffic in all the network links called a Global Adversary (GA).
A key design assumption behind low-latency anonymizing systems it requires
a tremendous amount of resources and effort to become a GA. Therefore, the
goal is to provide adequate protection against all but a determined, and possibly
targeted, attack by a GA.

Recently, however, a number of practical attacks against such anonymity sys-
tems have been proposed. These attacks typically leverage a small number of
compromised network entities to partially or fully expose information about
a user of these systems [7,10,20,25,32,16]. Nonetheless, it is generally assumed
that consistent tracking of the users of such anonymity systems is impractical
for the large majority of users and organizations, because of the lack of many
omnipresent adversaries. We evaluate this assumption for present and future
high-speed anonymity networks.

Furthermore, popular low-latency anonymizing systems including Tor can-
not guarantee consistent quality of service. This is due to a combination of the
cryptographic computation, queuing delays, and traffic scheduling and condition-
ing [28]. Interestingly, this also degrades the adversaries ability to successfully
track the anonymous users. Having low volume of traffic causes traffic analysis
techniques to be less accurate [16]. In this paper, we study the validity of this
belief in a next-generation network and host infrastructure where the speed or
throughput of the anonymizing network is not limited by the computational or
communication capacity of the participating entities.

To that end, we present a novel and effective method for performing source
“trace-back” . Our approach can be employed to perform targeted traffic anal-
ysis against most low-latency anonymizing systems2. Contrary to the work by
Murdoch et al. on traffic analysis for Tor relays [25], our technique can track
not only the anonymizing relays, but also the victim’s network location without
the need of malicious Tor clients. We assume that the adversary controls, or can
create a traffic fluctuation, in one end of the communication channel. The ad-
versary modulates the traffic destined for the victim using a colluding end-point.
Thereby, he or she attempts to detect the artificially induced traffic variations as
they propagate over the candidate anonymizing proxies and routers, eventually
leading to the anonymous client.

To observe the induced traffic fluctuation, the attacker requires novel tools
that can quickly and accurately characterize the available bandwidth of individ-
ual links and entire network paths. We previously introduced LinkWidth [14],

1 High latency anonymity systems such as Mixminion [17] modify the inter-packet

latencies to curtail traffic analysis.
2 In our experiments, we used Tor but our approach is applicable to all proxy-based

anonymity systems.

Traffic Analysis against Low-Latency Anonymity Networks 251

a single-end controlled available-bandwidth estimation tool that is based on the
algorithm behind TCP Westwood [18]. LinkWidth does not require a TCP lis-
tening server. Furthermore, it offers bandwidth estimation of relays and routers
connecting the victim clients (and Hidden Servers) to the anonymizing network.
We focus on using such available bandwidth estimation for sensing deliberately
induced TCP traffic fluctuations and confirming the probable identity of anony-
mous end points.

To verify the validity of our approach, we performed a series of experiments.
We evaluated the predictive accuracy of our technique on controlled environ-
ments using different network topologies. We also tested our technique on Tor
circuits created using Tor nodes that are part of the public Tor network. In our
experiments, we achieved varying success in exposing the identity of the victims.
On an average, we detected 49.3% of the Tor relays participating in our circuits.
In addition, we were also successful several times in identifying the intermedi-
ate network routers connecting Tor clients and Hidden Services to their Entry
Nodes.

We posit that a real adversary equipped with many appropriately located
high-bandwidth hosts and a partial map of the network, could effectively attack
timing-preserving anonymizing systems. Some prior efforts in generating such
maps are the Internet Mapping Project [6], AS Peering Analysis [1], iplane [23],
and similar efforts by CAIDA [2]. Searching a map depicting the ingress and
egress routers of an Autonomous System (AS) involves little complexity. An
adversary equipped with such information would probe for the induced available
bandwidth variation, only on the inter-domain routers in search for the AS that
hosts the victim anonymous client3.

The objective of this paper is not to demonstrate this search process but
to answer the following question: Can a well-provisioned (Semi-)Global Adver-
sary equipped with probing nodes scattered close to most inter-AS routers, and
“sender-only” controlled probing tools like LinkWidth, measure bandwidth fluctu-
ation on network routers and anonymizing relays associated to a communication
session?

Having a large number of distributed measurement nodes (“vantage points”)
allows for better coverage of the network links. However, there is no requirement
for network affinity of the vantage points to the victim or the Tor relays used in
the circuit. Moreover, we do not assume that the attacker has access to routers,
network infrastructure nodes (e.g., DNS or DHCP servers), or anonymizing re-
lays; nor do we exploit software vulnerabilities that inadvertently expose the
true network identity of the user. The novelty of our technique lies in aiding
an adversary with bandwidth resources to perform traffic analysis for determin-
ing anonymizing network’s entry-points, anonymous clients and location hidden
services in a communication session.

3 Further, resolving down to the end hosts might require ISP router maps through

services such as as Rocketfuel [5].

252 S. Chakravarty, A. Stavrou, and A.D. Keromytis

2 Related Work

The majority of the attacks against low-latency anonymization systems, employ
some form of traffic analysis. Many of the successful methods apply active tech-
niques, employing practical predecessor attack [34] derivatives like [30,9,35,16],
which involve inside network elements. Other suggest passive attacks that sim-
ply count the number of packets at ingress and egress links of the anonymizing
network [8].

There are yet some other attacks which try to track changes in non-anonymous
system parameters (e.g. CPU and memory usage) in network nodes due to
change in anonymous traffic flowing through them. Such attacks are called side
channel attacks. Some examples of side channel attacks are presented in refer-
ences [36,24]. Here the adversary observes changes in CPU usage by observing
skews in TCP timestamps, that are brought about by changes in CPU tem-
perature. Other such attacks use network latency as a side-channel to reveal
identity of anonymous network system parameters [20,25]. The authors of those
papers demonstrate the use of inter-packet latency and round-trip times (RTT)
to reveal identity of anonymous peers and anonymizing network elements.

Although significant, this class of attacks can be ineffective when the bottle-
necks of the network paths connecting the anonymously communicating peers
and the adversary to the candidate networking elements, do not coincide. In
such situations, the adversary’s measurement capabilities, constrained by the
bottleneck link speed, might not accurately detect network link contentions due
to the anonymous traffic. Such contentions are essential to perceive changes in
the measured RTT. The poor end-to-end QoS of popular systems such as Tor,
further degrades the attacker’s ability to launch such attacks. Low volume traffic
leads to low network congestion; thereby causing little variations in measured
RTT between the adversary and the victim. Results by Evans et al. indicate that
this intuition is likely correct [16].

Our approach stems out of RTT based traffic analysis [25,20], and partially
from traffic pattern injection techniques [31,21]. Unlike predecessor attack deriva-
tives, our attack assumes nominal control of networking elements. The adver-
sary induces end-to-end network traffic fluctuation by colluding with a malicious
server with which anonymous clients communicate. Using Linkwidth, the adver-
sary tries to observe the induced bandwidth fluctuations on candidate anonymiz-
ing network elements and routers leading to the anonymous client.

Our approach seems similar to targeted denial of service based technique, pre-
sented by Burch and Cheswick to “trace-back” to the source of a DoS source
that used IP spoofing [11]. Their aim was to cause interference in the remote
routers and notice fluctuations in the attack-DoS traffic. Using a network map
they would iteratively trace-back to eventually identify the source of a DoS, or
at least its approximate location (e.g., hosting ISP). Our technique is similar
to theirs. We, however, aim to “trace” available bandwidth fluctuations on net-
work routers and anonymizing proxies that carry traffic between the anonymous
parties.

Traffic Analysis against Low-Latency Anonymity Networks 253

3 Attack Methodology

Before delving into the attack details, we discuss the threat model for which we
claim that our attacks are effective.

Threat Model

Our primary focus is an adversary who can induce “traffic fluctuations” into
a targeted anonymity preserving channel and observe it “trickle” towards the
victim. The adversary may have hosts under his control on many ASes or could
be at a network vantage point with respect to routers in various subnets. Each
of these hosts may be running a copy of bandwidth estimation tools such as
LinkWidth. They would also be at a network vantage point with respect to all
candidate victim relays and network routers. This is feasible in toady’s’ Internet:
the inter-router media connecting the routers of major tier-3 ISPs can support
over 10 Gbps (let alone the tier-1 and tier-2 ISPs). Most have 30–40% under-
utilized spare capacity. Therefore, while we are not in a position of having a
large set of vantage points, this does not prevent others from being able to do
so. Often, adversaries like us, might be sensing “under-utilized high-bandwidth”
links. Popular anonymity preserving systems, like Tor relays, often dedicate a
considerable fraction of the traffic to forwarding client traffic. However, such
small fluctuations in high capacity links, are less than what most state-of-the-
art available link bandwidth estimation techniques can detect accurately. Never-
theless, we demonstrate that for some common network topology configurations
and parameters, an adversary can harness bandwidth estimation to trace the
“unknown” path a client uses to connect to a server.

Traffic Analysis Methodology

We used available bandwidth estimation tools to detect induced traffic fluctua-
tions on candidate anonymizing relays. We identify probable candidate network
routers that could reach this relay through a single network hop. Since most
anonymity preserving relays are at the network edges, the network routers that
could directly reach the candidate relays would be their default gateways. This
intuition was re-applied on default gateways to determine which network inter-
face, and hence the network routers within one network hop, exhibited similar
fluctuations. We repeated the tracking process recursively until the fluctuations
were tracked down to the source network (and possibly the source itself).

To quantify our detection capabilities, we performed extensive experiments
initially in a controlled emulation environments, viz. DETER [3]. Some of the
experiments were further validated in controlled lab-environment. We also un-
covered real-world Tor clients, and hidden servers which communicated using
public Tor relays, with some success. Our approach requires a “map” presenting
with information of inter-domain routers for the Tor Entry Node and the victim.
In our experiments, we did not use elaborate maps. We only considered result
obtained from running traceroute between the targeted victim and its Tor Entry

254 S. Chakravarty, A. Stavrou, and A.D. Keromytis

Fig. 1. DETER testbed network topology

Node. Moderate success rate is primarily due to a combination of our inadequate
network vantage points and low end-to-end throughput offered by the Tor relays
as compared to the available link capacities of routers and relays. Lastly, our
accuracy was also affected by the presence of background cross traffic on regular
network routers, resulting in higher false negatives when compared to the in-lab
or DETERLAB experiments’ results.

4 Experimental Evaluation

Our attack technique can be applied to low-latency anonymity systems that are
based on Onion Routing [19]. Tor is a good example and chief among onion
routing anonymizing based systems. In such systems, there seems to be a trade-
off between anonymity guarantees and performance [28]. We show that in both
controlled and real-world experiments, a well-provisioned adversary can expose
the anonymity of Tor relays and end-points. This is performed by determining
the available bandwidth fluctuations on a large number of relays and network
routers.

4.1 Experiments Using the DETER Testbed

To determine the effectiveness of our attack, we used DETER [3] to emulate var-
ious network topologies. DETER is a network emulation system that offers com-
modity machines and switches connected with user specified topologies. Users
can specify the operating systems, network connections, link speeds, routing
protocols and other parameters.

Traffic Analysis against Low-Latency Anonymity Networks 255

Fig. 2. The detected available bandwidth on the

router connected to the victim router3 drops

uniformly as client traffic increases

Figure 1 depicts one of the
topologies we used to validate our
approach. In these experiments,
we used Iperf [29] and LinkWidth
to detect the fluctuation of the
available link bandwidth on net-
work routers along the path con-
necting the server to the actual
client5.

The host, marked as server
in the topology figure (Figure 1),
was the colluding web server. In
addition, there were two client
hosts, client1 and client2.
client1 was the victim down-
loaded a large file from server,
using HTTP; client2 was idle.

 0

 2e+08

 4e+08

 6e+08

 8e+08

 1e+09

 1.2e+09

 0 20 40 60 80 100 120A
va

ila
bl

e
B

an
dw

id
th

 E
st

im
at

e
(b

ps
)

Measurements

Available Bandwidth Variation on router5

"router5-link-measure"

Fig. 3. We correctly measured the absence of

consistent available bandwidth fluctuation on

router5 (not in the victim’s path)

With two clients on two sepa-
rate branches, the available traf-
fic fluctuation induced by server
was observable only by one of
the branches (the one leading to
client1). The probing hosts on
each of the subnets probe the
intermediate links. To forward
packets through proxy1, we used
squid [33]. client1 connected to
server via proxy1. The server
modulated the transmission rate
to induce the necessary band-
width fluctuation. The adversary
probed for the bandwidth varia-
tion on the network elements in
both branches using its probing
hosts.

The reason we avoided installing an anonymizing system in this particular
experiment is due to the poor QoS resulting from computational and network
transport costs in systems like Tor. The motivation behind choosing squid was
to demonstrate the effectiveness of our hypothesis; we assume that the relay-
ing architecture of Onion Routing based systems would soon provide higher
throughput rate like unencrypted squid proxy.

5 Due to the way DETER emulates the requested link capacities and the use of traf-

fic shaping, Iperf was more accurate than LinkWidth in estimating the bandwidth

variations

256 S. Chakravarty, A. Stavrou, and A.D. Keromytis

Fig. 4. In-Lab testbed network topology

Therefore, the goal of the experiment was to demonstrate that an adversary
can observe these induced traffic fluctuations, provided the anonymizing service
does not degrade client–server traffic throughput.

While the download was in progress, the server increased the transmission
speed gradually by 50 Mbps, 100 Mbps, 200 Mbps, 300 Mbps and 500 Mbps, for
every iteration of the experiment. The probing nodes (probers) measured the
available bandwidth variation on both branches. The available link bandwidth
fell steadily on all routers along the path carrying client1’s traffic. The probing
of router5 and client2, along the idle network branch, resulted in very high
true negatives. For brevity, we only present the results obtained by probing
router3 and router5. The graphs representing these are presented in Figures 2
and 3. The graphs that show the fluctuations in available bandwidth for the rest
of the hosts are presented in Appendix A.

The available bandwidth drops as the server increases its rate to the victim,
and thus occupies greater share of the available bandwidth along the path via
router3. Probing router5 along the path connecting client2 to server shows
no significant fluctuation in available bandwidth. Overall, our experiments indi-
cate that we can indeed detect small fluctuations by utilizing about 5–10% of the
link bandwidth. Although this is a large value (approximately 50–100 Mbps), it
is only a small fraction of the link bandwidth. This encouraged us to believe,
that our technique will work well even in situations where only a small portion
of the network link is being utilized by anonymous traffic.

We used a large file for our experiments. But we could have achieved the
same fluctuation through multiple downloads of many small files. Through co-
ordinated probing of the candidate links, momentary burst (due to small files
being downloaded) can be easily detected. This is clearly evident from our results
presented in Appendix A. The sudden fall in available link bandwidth from

Traffic Analysis against Low-Latency Anonymity Networks 257

approximately 100% (900 Mbps) to 90% (800 Mbps) within a short interval (few
seconds) and and sudden rise later to 100%, in tandem to the induced traffic
fluctuations, proves this. Further evidence of LinkWidth’s effectiveness to detect
small bandwidth fluctuations is presented in in our technical report [14].

4.2 In-Lab Experiments

To further support the DETER results, we performed the same experiments
in an in-lab environment using commodity machines connected via a Gigabit
switched network. Figure 4 depicts the in-lab network testbed topology used
to demonstrate our technique. Again, the client client1 is the victim and is
connected to the server via a squid proxy installed on the host relaysdirs.

Fig. 5. Available bandwidth on hop3 drops

uniformly when we increase the traffic to-

wards the victim

As before, the client downloaded
a large file and the server varied
the TCP throughput. The probing
hosts measured the available band-
width on the routers along both
branches of the network - one lead-
ing to client1, which downloads
the file, and the other leading to
client2, which is not involved in the
transfer.

Fig. 6. There is no persistent available

bandwidth fluctuation on hop5 (unlike

hop3, that is along path of the download

traffic)

Available bandwidth on all the
routers along the path connecting
client1 to server fluctuated, as
server varied the available TCP traf-
fic to port 80, that it saw originat-
ing from the host relaysdirs. For
brevity, we present graphically the re-
sults from probing hop3 (Figure 5),
along the path leading to the victim
and hop5 (Figure 6), leading to the
idle node.

We observed reduction in avail-
able bandwidth as client-server traffic
eventually occupies more bandwidth
along the path via hop3. The available
link bandwidth of hop5 does not show
any drastic change, as it was not along
the actual download path. Probing
router hop3 and client1 also showed
similar bandwidth fluctuations while
hop6 and client2 showed no definite
fall in the available the link bandwidth; thus concurring with our idea of track-
ing link bandwidth fluctuation along the path leading up to the actual source of
traffic. These results are presented in Appendix B.

258 S. Chakravarty, A. Stavrou, and A.D. Keromytis

4.3 Probing Tor Relays, Clients and Hidden Services

The validation of our technique in previous subsections, albeit on a controlled
environment, encouraged us to believe that our technique might potentially be
used to track induced available bandwidth on network routers connecting a Tor
client to a Tor Entry Node. Therefore, we attempted to identify the Tor Onion
Routers (ORs) participating in a real-world circuit. The server colluded with the
adversary to induce fluctuations in the circuit throughput. This resulted in avail-
able bandwidth fluctuation on ORs and network routers connecting these ORs to
Onion Proxies (OPs)6. This experiment is elaborated in our previous paper [13].
We concisely describe the experiment and results here. Figure 7 illustrates how
the adversary probed the Tor relays involved in a circuit.

Fig. 7. Adversary probing the fluctuations in available bandwidth of ORs participating

in a Tor circuit

The colluding web server transmitted a file which the client downloaded the
file through a Tor circuit. During the download, the adversary used our traf-
fic analysis technique to identify the victim relays participating in the circuit.
While the server shaped the circuit’s throughput to various values, the adversary
measured the available bandwidth using LinkWidth. This process was repeated
several times. In every iteration, the adversary changed the client’s bandwidth
share, increasing it each time by approximately 100 Kbps. The adversary de-
tected decrease in measured available bandwidth that was reflected through
increase in congestion and packet losses.

In our experiments, we successfully identified all the relay nodes in 11 out of
the 50 circuits that we probed. For 14 circuits, we were able to identify only two of
the three participating Tor relays. There were 12 circuits in which only one of the
relays was detected. There were also 13 circuits that we are unable to detect any
of the participating ORs. Finally, among all the 150 ORs probed there were 22
which filtered all probe traffic. A similar experiment was performed for obtaining

6 Onion Proxy is the term used for Tor clients [15].

Traffic Analysis against Low-Latency Anonymity Networks 259

an estimate of the false positives. Initial observations yielded approximately
10% false positives. However, on repeated iterations of the same experiment, we
detected no false positives. These very likely result from noises and errors in our
measurement techniques resulting from lack of adequate network vantage hosts,
background network cross-traffic and asymmetric network links.

Probe Set-up and Technique for Identifying Tor Clients: To determine
the network identities of Tor clients involved in Tor circuits, we used the same
setup as in Figure 7. However, in this experiment, the adversary probed routers
on the network path connecting the Tor Entry Nodes to the Tor Clients. The
client fetched a relatively large file from a colluding server, which shaped the
bandwidth of the connection.

Table 1. Available-Bandwidth Fluctuation Detection in Links Connecting a Tor Client

and its Entry Node

Circuit Hops from Client Correctly Detected Unresponsive Routers Not Success

Number –Entry Node Client–Entry Routers Reporting Rate

Node Node Hops Enough

Fluctuations

1 10 6 4 0 60.00%

2 15 4 0 0 26.67%

3 18 4 7 7 22.23%

4 18 5 8 5 27.78%

5 14 6 2 6 42.86%

6 14 9 1 4 64.30%

7 15 7 2 6 46.67%

8 14 7 2 5 50.00%

9 14 4 2 8 28.57%

10 15 6 4 5 40.00%

Lacking a “network map” that has link-level connectivity information of the
Internet, we relied on traceroute information to discover the hops between the
client and its Entry Node. However, in practice, an adversary equipped with AS-
to-AS and link-level network connectivity maps, needs to probe only a relatively
small set of links to determine which of them might be carrying the victim’s
traffic. Entry and exit, to and from an AS, is through a small number of inter-
domain routers. The adversary can look up the AS location of the Tor relays
from the inter-domain routing information. This will enable him to track the
induced available bandwidth variation only on inter-domains routers and search
for the AS that hosts the victim anonymous client. Nodes in all the probable
ASes, with link speeds comparable to that of the inter-domain routers’, could be
used for this task. To obtain higher fine-grained network position, the attacker
might have to track down to the end hosts. This step will require ISP router
maps through services such as as Rocketfuel [5]. Though seemingly an exponential

260 S. Chakravarty, A. Stavrou, and A.D. Keromytis

search problem, this would be reasonably tractable provided the fluctuations could
be detected with high confidence. Moreover, optimizing the adversary’s search of
links to probe is a different problem and we do not consider that aspect of the
attack in this paper.

The results from probing the available link bandwidth variations on network
routers connecting the clients to their respective Entry Nodes, is presented
in Table 1. The accurate detection of bandwidth fluctuation was performed
through the detection of packet loss changes. This loss is indication of decrease
in available bandwidth, whenever the routers and Tor relays were probed using
LinkWidth. Our technique used an un-cooperative method of available band-
width or throughput estimation. Sometimes the probe traffic, being aggressive,
prevented a Tor client, using TCP (which is “elastic” and non-aggressive), to
utilize all of the allowed bandwidth. This lead to an “on-off” pattern in the
the client’s download. This is particularly true when the probes and the probed
traffic traverse the same victim router.

Fig. 8. The adversary measures the available bandwidth and thus detects any fluctu-

ations in each link of the path leading to the victim

As a caveat,modifying the available throughput of the TCP connection through
a certain repeating pattern (e.g., 50 Kbps, 100 Kbps, 500 Kbps, 50 Kbps, 100
Kbps, 500 Kbps), would be akin to inducing a distinct “signal” or “watermark”
in the client-server traffic. If very high true positives are assured, then this “sig-
nal” could be detected always and only on relays and routers through which the
victim’s traffic travels7. This can optimize the search for links to probe while de-
termining the source of the anonymous traffic8.

7 Thereby also eliminating false positives and false negatives.
8 Without such an optimization, the adversary might end up performing a depth-first

search of large segments of the Internet rooted at the Tor entry node.

Traffic Analysis against Low-Latency Anonymity Networks 261

Probe Set-up and Technique for Identifying Tor Hidden Servers: To
identify a Hidden Service, we used the setup depicted in Figure 8. Here the ad-
versary probed the routers connecting Hidden Service to its Entry Node. Con-
trary to the previous cases, the available bandwidth fluctuation was induced
by the client which is assumed to collude with the adversary. We relied solely
on traceroute for determining which routers connect a Hidden Server to its
corresponding Entry Node. Table 2 summarizes the results of this experiment:

Table 2. Available-Bandwidth Fluctuation Detection in Links Connecting a Hidden

Server to Its Entry Nodes

Circuit Hops from Hidden Correctly Detected Unresponsive Routers Not Success

Number Server–Entry Hidden Server–Entry Routers Reporting Rate

Node Node Hops Enough

Fluctuations

1 13 4 2 7 30.70%

2 12 9 0 3 75.00%

3 11 7 1 3 63.64%

4 14 5 4 5 35.71%

5 12 9 0 3 75.00%

6 13 3 3 7 23.08%

7 16 5 4 7 31.25%

8 13 3 2 8 23.08%

9 17 4 1 12 23.53%

10 13 5 1 7 38.46%

In almost every circuit, there were some routers which filtered our probe
packets. The rest of the routers were either detected correctly or not detected
at all (i.e., no false positives). This can be attributed to the lack of sufficient
vantage points or to insufficient throughput achieved by the client in some cases
(approximately 5–10 KBytes/sec). Despite of these practical problems, we were
still able to trace the bandwidth fluctuations along the path (and hence the
identity) of the Tor client and Hidden Server with high accuracy; over 60% and
75% in some of the circuits. The observed degradation in the client’s performance
whenever the adversary probed the candidate routers, are accepted as “available
bandwidth fluctuations”. Placing a large number of probing hosts at network
vantage points would provide the adversary with better detection resolution and
accuracy.

5 Issues, Discussion and Possible Counter-Measures

We initially tested our trace-back technique under various controlled environ-
ments. Our results indicate high true positives and almost zero false negatives.
Small bandwidth variations, due to the introduction of a 50–100 Mbps TCP
stream, were clearly discernible on a 1 Gbps link. This led us to believe that

262 S. Chakravarty, A. Stavrou, and A.D. Keromytis

small bandwidth fluctuations on high-capacity links can be detected provided
there is low background cross traffic that may introduce false positives or false
negatives in the measurements.

LinkWidth provides very accurate available link bandwidth estimation. As
presented in our technical report [14], LinkWidth can accurately detect 1 Kbps
fluctuation in available link bandwidth. Of course, this accuracy decreases when
the variations decrease as a percentage of the overall link capacity. Small distor-
tions, for instance 50 Kbps, on a 500 Kbps are easier to detect, than when they
are on a 1 Gbps link.

Simple fluctuations on network links of the in-lab testbed could be detected
within 15-20 seconds. The probing speeds were adjustable run-time parame-
ters. Faster probing caused greater contention to the client-server traffic, thereby
slightly decreasing the detection accuracy and granularity.

Having obtained high true positives under controlled environments, it seemed
intuitive that an adversary could potentially detect available bandwidth fluctu-
ation on an anonymizing proxy and its propagation to corresponding clients or
servers via network routers. It is important that adversarial nodes are located
at network vantage points where they can filter out traffic that causes unwanted
distortion to the probes. It is also essential that a Tor client achieves high end-
to-end throughput through Tor relays which is comparable to the installed link
capacity of the network routers.

When applied to detect available link bandwidth variations on real Tor ORs,
we were able to detect with some success, fluctuations on network routers con-
necting the client to its respective ORs. However, we restricted our selection of
Tor relays within the US, to position our US-based probing host at a better
network vantage point, when probing Tor relays. Probing nodes residing across
trans-oceanic links seems infeasible and provided erratic results. Consequently,
we were limited by the number of Exit Nodes within the US. Out of the ap-
proximately 150 exit relays at the time of our experiments less than 100 allow
clients to setup their own circuits. Moreover, less than a fifth of these allow
Hidden Servers to communicate with anonymous clients. This is mostly due to
intermittent quality of service, node availability, and exit policies that restricted
connectivity to a small set of permitted users. Probing Tor relays and network
routers required considerably more measurements than the in-lab measurements
(approximately 2-5 minutes per relay or router). High Internet cross-traffic and
low Tor traffic necessitates longer probing and more measurements to avoid false
positives and false negatives as much as possible.

In real world scenarios, there maybe various ways to entice a Tor client to
connect to such malicious servers. Tempting commercials on a website, luring a
Tor client to click on, could be one such tactic. This could download applications,
like multiple Adobe Flash animations, on the client’s host, resulting in a sud-
den change in his/her available network link bandwidth. An adversary running
multiple co-ordinated probing hosts, probing suspected links, could detect such
a sudden sharp change in available link bandwidths on all links connecting the
anonymous party to its anonymizing service; thereby revealing its identity. The

Traffic Analysis against Low-Latency Anonymity Networks 263

adversary would require to own only a frame of a popular website, say a blog or
an online forum, visited frequently by users who wish to stay anonymous.

Apart from the lack of accuracy in detecting small variations of available link
bandwidth, Reardon and Goldberg have described why current Tor circuits offer
low end-to-end throughput [28]. This is primarily because of multiplexing many
TCP streams through a single Tor circuit connecting a Tor client to a relay or
between the relays themselves, if such circuits already exist. Therefore, TCP
congestion control and flow control mechanics affect the performance of all Tor
circuits that are multiplexed over a single TCP connection. Packet losses and
reordering affecting the cells of one Tor circuit reduced the overall performance
of the TCP connection. Such losses cause the cells from unrelated Tor circuits
to be delayed as well.

These inherent measurement limitations can be potentially leveraged to cre-
ate countermeasures or even narrow the applicability of our attack. For instance,
an anonymous client can utilize parallel connections in a round-robin fashion to
access the same server. This would diffuse the ability of the server to generate
detectable traffic variations: traffic spikes would be distributed across all the par-
allel connections. Likewise, traffic smoothing by anonymizing proxies is another
potential countermeasure. Tor allows relay operators to use such techniques.
Another option is to use shorter circuit lifetime. This would impose some time
limitations on the duration of the communication path, making it harder for
an adversary to completely trace the target through the anonymizing network.
Anonymous connections using longer paths by employing more relays do not ap-
pear to make the attack appreciably more difficult. However, as discussed in [12],
it can significantly affect the client’s perception of the connection throughput.

6 Conclusions

We proposed a new traffic analysis technique that can expose the network iden-
tity of end-points (users) of low-latency network anonymity systems. Our tech-
nique involves an adversary who can probe links from many network vantage
points using single-end controlled bandwidth estimation tools. In addition, the
adversary employs a colluding server or is able to otherwise induce fluctuations
in the victim’s TCP connection. It is not essential to own such colluding servers:
using carefully crafted online ads and pop-ups can be used judiciously to trick
users to click on specific links and result in traffic spikes. Using the vantage
points, the adversary measures the effects of this fluctuation as it “trickles”
through the anonymizing relays and intermediate routers to the victim.

Our approach works well when the end-to-end throughput of the anonymizing
network allows for bandwidth variations that can be detected by the vantage
points. This motivated us to test our attack technique in real-world Tor circuits.
Our experiments show that we were able to expose real-world Tor relays with a
true positive rate of 49.3%. Furthermore, we can successfully traceback to the Tor
clients and Hidden Servers by probing the network routers connecting them to
their Entry Nodes. On average, we could correlate 49.5% of the network routers

264 S. Chakravarty, A. Stavrou, and A.D. Keromytis

to the victim Tor traffic that they carried. Further correlations were not always
feasible due to bandwidth limitations imposed by relay operators and Tor’s poor
performance owing to circuit scheduling and management [28]. We believe that
our work exposes a real weakness in proxy-based anonymity schemes. This threat
will become increasingly more apparent and accurate as future networks and hosts
participate in higher end-to-end throughput circuits.

References

1. AS Peering Analysis, http://www.netconfigs.com/general/anoverview.htm

2. CAIDA Router Measurements,

http://www.caida.org/tools/taxonomy/routing.xml

3. DETER Network Security Testbed, https://www.isi.deterlab.net

4. I2P Anonymous Network, http://www.i2p2.de/

5. Rocketfuel: An ISP Topology Mapping Engine,

http://www.cs.washington.edu/research/networking/rocketfuel/

6. The Internet Mapping Project, http://www.cheswick.com/ches/map/

7. Agrawal, D., Kesdogan, D.: Measuring Anonymity: The Disclosure Attack. IEEE

Security & Privacy 1(6), 27–34 (2003)

8. Back, A., Möller, U., Stiglic, A.: Traffic analysis attacks and trade-offs in anonymity

providing systems. In: Moskowitz, I.S. (ed.) IH 2001. LNCS, vol. 2137, pp. 245–257.

Springer, Heidelberg (2001)

9. Bauer, K., McCoy, D., Grunwald, D., Kohno, T., Sicker, D.: Low-resource routing

attacks against tor. In: Proceedings of the 2007 ACM Workshop on Privacy in

Electronic Society (WPES), pp. 11–20 (2007)

10. Borders, K., Prakash, A.: Web Tap: Detecting Covert Web Traffic. In: Proceedings

of the 11th ACM Conference on Computer and Communications Security (CCS),

October 2004, pp. 110–120 (2004)

11. Burch, H., Cheswick, B.: Tracing Anonymous Packets to Their Approximate

Source. In: Proceedings of the 14th USENIX Conference on System Administration

(LISA), December 2000, pp. 319–328 (2000)

12. Chakravarty, S., Stavrou, A., Keromytis, A.D.: Approximating a Global Passive

Adversary Against Tor. Computer Science Department Technical Report (CUCS

Tech Report) CUCS-038-08, Columbia University (August 2008)

13. Chakravarty, S., Stavrou, A., Keromytis, A.D.: Identifying Proxy Nodes in a Tor

Anonymization Circuit. In: Proceedings of the 2nd Workshop on Security and Pri-

vacy in Telecommunications and Information Systems (SePTIS), December 2008,

pp. 633–639 (2008)

14. Chakravarty, S., Stavrou, A., Keromytis, A.D.: LinkWidth: A Method to Measure

Link Capacity and Available Bandwidth using Single-End Probes. Computer Sci-

ence Department Technical Report (CUCS Tech Report) CUCS-002-08, Columbia

University (January 2008)

15. Dingledine, R., Mathewson, N., Syverson, P.: Tor: The Second-Generation Onion

Router. In: Proceedings of the 13th USENIX Security Symposium (USENIX Se-

curity), August 2004, pp. 303–319 (2004)

16. Evans, N., Dingledine, R., Grothoff, C.: A practical congestion attack on tor using

long paths. In: Proceedings of the 18th USENIX Security Symposium (USENIX

Security), August 2009, pp. 33–50 (2009),

http://freehaven.net/anonbib/papers/congestion-longpaths.pdf

http://www.netconfigs.com/general/anoverview.htm
http://www.caida.org/tools/taxonomy/routing.xml
https://www.isi.deterlab.net
http://www.i2p2.de/
http://www.cs.washington.edu/research/networking/rocketfuel/
http://www.cheswick.com/ches/map/
http://freehaven.net/anonbib/papers/congestion-longpaths.pdf

Traffic Analysis against Low-Latency Anonymity Networks 265

17. Danezis, G., Dingledine, R., Mathewson, N.: Mixminion: A type iii anonymous

remailer, http://mixminion.net/

18. Gerla, M., Sanadidi, M.Y., Wang, R., Zanella, A.: TCP Westwood: Congestion

Window Control Using Bandwidth Estimation. In: Proceedings of IEEE Global

Communications Conference (Globecomm), November 2001, vol. 3, pp. 1698–1702

(2001)

19. Goldschlag, D.M., Reed, M.G., Syverson, P.F.: Hiding Routing Information. In:

Anderson, R. (ed.) IH 1996. LNCS, vol. 1174, pp. 137–150. Springer, Heidelberg

(1996)

20. Hopper, N., Vasserman, E.Y., Chan-Tin, E.: How Much Anonymity does Network

Latency Leak? In: Proceedings of ACM Conference on Computer and Communi-

cations Security (CCS), October 2007, pp. 82–91 (2007)

21. Huang, D., Agarwal, U.: Countering Repacketization Watermarking Attacks on Tor

Network. In: Proceedings of the 8th International Conference on Applied Cryptog-

raphy and Network Security (ACNS 2010), Beijing, China (June 2010)

22. JAP, http://anon.inf.tu-dresden.de/

23. Madhyastha, H.V., Isdal, T., Piatek, M., Dixon, C., Anderson, T.E., Krishna-

murthy, A., Venkataramani, A.: iplane: An information plane for distributed ser-

vices. In: Proceedings of 7th USENIX Symposium on Operating Systems Design

and Implementation (OSDI), November 2006, pp. 367–380 (2006)

24. Murdoch, S.J.: Hot or not: Revealing hidden services by their clock skew. In: Pro-

ceedings of ACM Conference on Computer and Communications Security (CCS),

October 2006, pp. 27–36 (2006)

25. Murdoch, S.J., Danezis, G.: Low-Cost Traffic Analysis of Tor. In: Proceedings of

IEEE Symposium on Security and Privacy (IEEE S and P), May 2005, pp. 183–195

(2005)

26. Raymond, J.-F.: Traffic Analysis: Protocols, Attacks, Design Issues and Open Prob-

lems. In: Proceedings of the International Workshop on Design Issues in Anonymity

and Unobservability, pp. 10–29 (2001)

27. Dingeldine, R., Edman, M., Lewman, A., Mathewson, N., Murdoch, S., Palfrader,

P., Perry, M., Syverson, P.: Tor: anonymity online, https://www.torproject.org/

28. Reardon, J., Goldberg, I.: Improving tor using a tcp-over-dtls tunnel. In: Proceed-

ings of 18th USENIX Security Symposium 2009 USENIX Security (August 2009)

29. Tirumala, A., Qin, F., Dugan, J., Feguson, J., Gibbs, K.: IPERF (1997),

http://dast.nlanr.net/projects/Iperf/

30. Pappas, V., Athanasopoulos, E., Ioannidis, S., Markatos, E.P.: Compromising

Anonymity Using Packet Spinning. In: Wu, T.-C., Lei, C.-L., Rijmen, V., Lee,

D.-T. (eds.) ISC 2008. LNCS, vol. 5222, pp. 161–174. Springer, Heidelberg (2008)

31. Wang, X., Chen, S., Jajodia, S.: Network flow watermarking attack on low-latency

anonymous communication systems. In: Proceedings of IEEE Symposium on Se-

curity and Privacy (IEEE S and P), pp. 116–130 (2007)

32. Wang, X., Reeves, D.S.: Robust Correlation of Encrypted Attack Traffic Through

Stepping Stones by Manipulation of Interpacket Delays. In: Proceedings of the

10th ACM Conference on Computer and Communications Security (CCS), October

2003, pp. 20–29 (2003)

33. Wessels, D., Rousskov, A., Nordstrom, H., Chadd, A., Jeffries, A.: Squid,

http://www.squid-cache.org/

34. Wright, M.K., Adler, M., Levine, B.N., Shields, C.: An analysis of the degradation

of anonymous protocols. In: Proceedings of the Network and Distributed Security

Symposium, NDSS (2002)

http://mixminion.net/
http://anon.inf.tu-dresden.de/
https://www.torproject.org/
http://dast.nlanr.net/projects/Iperf/
http://www.squid-cache.org/

266 S. Chakravarty, A. Stavrou, and A.D. Keromytis

35. Fu, X., Ling, Z.: One cell is enough to break tor’s anonymity. In: Proceedings of

Black Hat Technical Security Conference, February 2009, pp. 578–589 (2009)

36. Zander, S., Murdoch, S.: An Improved Clock-skew Measurement Technique for

Revealing Hidden Services. In: Proceedings of 17th USENIX Security Symposium

(USENIX Security), San Jose, USA, July 2008, pp. 211–225 (2008)

Appendix

A Results from Probing Host/Routers on DETER
Testbed

This section presents the results omitted in subsection 4.1. The graph in Figure A
exhibits the results from probing the network interface of client1. As expected,
we observe a very similar visible available bandwidth fluctuation pattern as we
saw in Figure 5 for router3. Also evident from results in Figure A, we don’t
observe any obvious induced available bandwidth variations when the client2
is probed from prober5.

 0

 2e+08

 4e+08

 6e+08

 8e+08

 1e+09

 1.2e+09

 0 20 40 60 80 100 120A
va

ila
bl

e
B

an
dw

id
th

 E
st

im
at

e
(b

ps
)

Measurements

Available Bandwidth Variation on client1

"client1-link-measure"

(a) Available bandwidth on client1

varies much like router1 and

router3, as the download rate

changes

 0

 2e+08

 4e+08

 6e+08

 8e+08

 1e+09

 1.2e+09

 0 20 40 60 80 100 120A
va

ila
bl

e
B

an
dw

id
th

 E
st

im
at

e
(b

ps
)

Measurements

Available Bandwidth Variation on client2

"client2-link-measure"

(b) Available bandwidth on client2

doesn’t vary like that on network

entities along the actual download

path

Fig. 9. Available Bandwidth Variation on client1 and client2 of DETERLAB

testbed

B Results from Probing Host/Routers on Lab Test-Bed

All of the results obtained from probing for available bandwidth variation of the
network entities were not presented in subsection 4.2. For the sake of complete-
ness, we present the remainder of the results here in Figures 10 and 11

The results in Figures B and B are along the path which carries the download
traffic. The plots in Figures B and B are for hosts that do not carry the download
traffic (hence no observed variations in available link bandwidth).

Traffic Analysis against Low-Latency Anonymity Networks 267

 0

 2e+08

 4e+08

 6e+08

 8e+08

 1e+09

 1.2e+09

 0 20 40 60 80 100 120A
va

ila
bl

e
B

an
dw

id
th

 E
st

im
at

e
(b

ps
)

Measurements

Available Bandwidth Variation on hop4

"measure-link"

(a) Available bandwidth variation

on hop4 similar to that of hop3, along

the actual download path

 0

 2e+08

 4e+08

 6e+08

 8e+08

 1e+09

 1.2e+09

 0 20 40 60 80 100 120A
va

ila
bl

e
B

an
dw

id
th

 E
st

im
at

e
(b

ps
)

Measurements

Available Bandwidth Variation on client1

"measure-link"

(b) Available bandwidth on client1

varies much like hop3 and hop4,as

the download rate changes

Fig. 10. Available Bandwidth on Routers and End Hosts of the In-Lab Network Along

the Download Path

 0

 2e+08

 4e+08

 6e+08

 8e+08

 1e+09

 1.2e+09

 0 20 40 60 80 100 120A
va

ila
bl

e
B

an
dw

id
th

 E
st

im
at

e
(b

ps
)

Measurements

Available Bandwidth Variation on hop6

"falsepath-measure-link"

(a) No uniform available bandwidth

variation seen in hop6, similar to

what we see in hop3

 0

 2e+08

 4e+08

 6e+08

 8e+08

 1e+09

 1.2e+09

 0 20 40 60 80 100 120A
va

ila
bl

e
B

an
dw

id
th

 E
st

im
at

e
(b

ps
)

Measurements

Available Bandwidth Variation on client2

"falsepath-measure-link"

(b) Absense of the uniform available

bandwidth variation that is observed

on the actual source (client1)

Fig. 11. Available Bandwidth on Routers and End Hosts of the In-Lab Network Not

Along the Download Path

A Hierarchical Adaptive Probabilistic Approach
for Zero Hour Phish Detection

Guang Xiang, Bryan A. Pendleton, Jason Hong, and Carolyn P. Rose

School of Computer Science

Carnegie Mellon University

Pittsburgh, PA, USA

Abstract. Phishing attacks are a significant threat to users of the Inter-

net, causing tremendous economic loss every year. In combating phish,

industry relies heavily on manual verification to achieve a low false pos-

itive rate, which, however, tends to be slow in responding to the huge

volume of unique phishing URLs created by toolkits. Our goal here is

to combine the best aspects of human verified blacklists and heuristic-

based methods, i.e., the low false positive rate of the former and the

broad and fast coverage of the latter. To this end, we present the de-

sign and evaluation of a hierarchical blacklist-enhanced phish detection

framework. The key insight behind our detection algorithm is to leverage

existing human-verified blacklists and apply the shingling technique, a

popular near-duplicate detection algorithm used by search engines, to de-

tect phish in a probabilistic fashion with very high accuracy. To achieve

an extremely low false positive rate, we use a filtering module in our lay-

ered system, harnessing the power of search engines via information re-

trieval techniques to correct false positives. Comprehensive experiments

over a diverse spectrum of data sources show that our method achieves

0% false positive rate (FP) with a true positive rate (TP) of 67.15%
using search-oriented filtering, and 0.03% FP and 73.53% TP without

the filtering module. With incremental model building capability via a

sliding window mechanism, our approach is able to adapt quickly to new

phishing variants, and is thus more responsive to the evolving attacks.

1 Introduction

Phishing is a social engineering attack, in which criminals build replicas of target
websites and lure unsuspecting victims to disclose their sensitive information
like passwords, personal identification numbers (PINs), etc. Exact numbers of
direct damages done by phishing are hard to assess, in large part due to lack
of data from organizations hit by phishing attacks. Estimates have ranged from
a low of $61 million [15] to a high of $3.2 billion [1]. A significant proportion
of those losses were caused by one particularly infamous group, known as the
“rock phish gang”, which uses phish toolkits to create a large number of unique
phishing URLs, putting additional pressure on the timeliness and accuracy of
blacklist-based anti-phishing techniques.

D. Gritzalis, B. Preneel, and M. Theoharidou (Eds.): ESORICS 2010, LNCS 6345, pp. 268–285, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

A Hierarchical Adaptive Probabilistic Approach 269

Generally, phish detection methods fall into two categories, i.e., those that
perform URL matching via human verified blacklists and those that make use
of heuristics via machine learning (ML) techniques. While the former has a very
low false positive rate, human-verified blacklists do not generalize well to future
unseen cases. For example, Sheng et al [21] showed that zero hour protection
offered by major blacklist-based toolbars only has a true positive rate (TP)
between 15% and 40%. Furthermore, human-verified blacklists can be slow to
respond to new phishing attacks, and updating blacklists usually involves enor-
mous human effort. For example, Phishtank [2] statistics in March 2009 show
that it took on average 10 hours to verify that a URL was a phish. Finally,
human-verified blacklists can be easily overwhelmed by automatically generated
URLs. On the other hand, heuristic-based approaches enjoy the flexibility of
being able to recognize new phish, but often lead to a relatively higher false pos-
itive rate. Concerns over liability for false positives have been a major barrier
to deploying these technologies [20]. To underscore this point, Sheng et al [21]
evaluated eight popular toolbars including Microsoft Internet Explorer, Firefox,
Google Chrome, Norton 360, etc., all of which employ some level of human ver-
ification to achieve an extremely low FP in spite of the amount of human labor
required, again primarily due to concerns over liability for false positives.

The goal of our work is to combine the best aspects of human verified black-
lists and heuristics-based methods, and develop a reliable and robust method
that is able to adaptively generalize to new attacks with reasonable TP while
maintaining a close to zero FP. Our approach exploits the fact that a large num-
ber of current phishing attacks are created with toolkits, which tend to have a
high similarity in terms of content. Our detection engine analyzes the content
of phishing webpages on manually-verified URL blacklists via n-grams, and em-
ploys the shingling technique to identify near-duplicate phish in a probabilistic
fashion. We also use a filtering module, which uses information retrieval (IR)
techniques querying search engines to further scrutinize the legitimacy of a po-
tential phish in an effort to control false positives. Our whole system is constantly
updated by a sliding window upon the arrival of new phishing data, and is thus
capable of adapting quickly to new phishing variants, while still maintaining a
reasonable level of runtime performance. Under the optimal experimental setup,
our method achieves a TP of 67.15% with 0% FP using search oriented filtering,
and a TP of 73.53% and a FP of 0.03% without the filtering module, much better
than blacklist-based methods in TP while comparable in FP. For applications
like anti-phishing where FP is of paramount importance, a slightly lower TP is
acceptable. Furthermore, we do not expect our approach to be used alone, but
rather reside in the first part of a pipeline augmenting the existing system such
as the commercial blacklists, thus fabricating a superior integrated solution.

We do not claim that our approach will solve the phishing problem. Rather,
our specific claim is that we can augment existing blacklists in a very conservative
manner using probabilistic techniques, with a very low FP, if not zero, and a
reasonably good TP. Capable of identifying a fair amount of phishing attacks
with no sacrifice on FP and considerably reducing the human effort involved

270 G. Xiang et al.

in manual verification, our approach significantly complements the prevalent
blacklist-based methods, leveraging the manual labor that is already being used
in verifying phishing sites. The major contributions of this paper are three fold.

1. We present the design of a novel hierarchical, content-based approach that
leverages existing human-verified blacklists, by making use of shingling and
information retrieval techniques to detect phish.

2. We demonstrate that with incremental model building via a sliding window
mechanism, our approach is able to adapt quickly to the constantly evolving
zero-hour phish attacks. Also, we only need the most recent 30 days’ worth
of data to achieve the same TP as using two months’ worth of data, thus
balancing accuracy with runtime efficiency.

3. By harnessing URL blacklists in a probabilistic fashion, we are able to lever-
age our approach to improve the coverage and timeliness of human-verified
blacklists using considerably less human effort than existing techniques, with-
out having to sacrifice the false positive rate. With only two weeks’ worth
of phish, our method achieves a TP of 65.02% with 0% FP using search
oriented-filtering, and a TP of 71.23% and a FP of 0.03% without filtering.

2 Related Work

2.1 Methods for Automatic Phish Detection

A variety of techniques have been proposed for automatically detecting phishing
web pages, and we will introduce some representative work in this section.

One camp exploits URL signatures to detect phish. Garera et al [13] identified
a set of fine-grained heuristics from URLs, and combined them with other fea-
tures to detect phish. Applying a logistic regression model on 18 features yielded
an average TP of 95.8% and FP of 1.2% over a repository of 2508 URLs. Though
interesting, this method has high variance in that URLs could be manipulated
with little cost, causing the heuristics to fail.

Researchers have also devised a number of phish heuristics examining the
content of web pages. Abu-Nimeh et al [8] adopted the bag-of-words strategy
and used a list of words frequently found on phishing sites as features to detect
phish, which is not expressive and easy to defeat by attackers. In [16], Ludl et
al came up with a total of 18 properties solely based on the HTML and URL.
The J48 decision tree algorithm was applied on these features and achieved a
TP of 83.09% and a FP of 0.43% over a corpus with 4149 good pages and 680
phishing pages. However, heuristics purely based on DOM and URL are rather
limited and may fail in capturing artfully designed phishing patterns. Zhang et
al [23] proposed CANTINA, a content-based method using a linear classifier on
top of eight features, achieving 89% TP and 1% FP on 100 phishing URLs and
100 legitimate URLs.

Another line of research focuses on discovering the intended phish brand to
catch phish. Pan et al [18] proposed a method to extract the webpage identity
from key parts of the HTML via the χ2 test, and compiled a list of features based

A Hierarchical Adaptive Probabilistic Approach 271

upon the extracted identity. Trained with support vector machines (SVM), their
features had an average FP of about 12%. However, its assumption that the dis-
tribution of the identity words usually deviates from that of the ordinary words
is questionable, which is indicated by their high false positive rate. Even in DOM
objects, the most frequent term often does not coincide with the web identity.
More recently, Xiang et al [22] proposed a hybrid detection model that recognizes
phish by discovering the inconsistency between a webpage’s true identity and its
claimed identity via search engine and information extraction techniques. Their
full integrated system achieved a TP of 90.06% and a FP of 1.95%.

Though the work in [23][22] also involve search engines, in this paper, we
only resort to search engines in a postprocessing step to filter potential false
positives in this paper while our core technique is the detection algorithm that
exploits semantic similarity among the phishing attacks via the shingling tech-
nique. The only possible false positives generated in the detection phase are
those well-known websites targeted by phishers, which guarantees the efficacy of
our searching-based FP filtering method.

In addition to the past work above, anti-phishing toolbars are also available,
many of which exploit human-verified blacklists to assure close-to-zero FP, such
as NetCraft, Firefox 3, McAfee SiteAdvisor, etc.

Our goal in this paper is subtly different from the research above, in that we
want to see how high our TP can be while maintaining close to 0% FP. As we
noted in the introduction, industry has not adopted many of those heuristics
above due to concerns about poor user experience for false positives as well
as reasons of liability. Thus, our work here deliberately takes a conservative
approach, though as we will show, we still get a reasonably good TP.

2.2 Toolkits for Creating Phishing Sites

In recent years, an increasingly large number of phishing webpages were auto-
matically created by toolkits, which substantially increases the scale of attacks
that criminals can attempt, while also countering current human-verified black-
lists. For example, Cova et al [11] identified 584 phishing kits during a period of
two months starting in April 2008, all of which were written in PHP. An analysis
of rock-phishing sites by Moore et al [17] from February to April in 2007 reveals
that 52.6% of all Phishtank reports were rock phish. One key observation of
the rock phish is that their content is highly similar due to the way they are
created, which is the property that our framework is based on. It is possible that
criminals may modify their toolkits to include randomization to circumvent our
detection mechanisms, and we discuss this issue towards the end of this paper.

3 A Multi-layered Phish Detection Algorithm

3.1 System Architecture

The overall architecture of our framework is shown in Fig.1. The first stage
of processing involves filtering using domain whitelists, directly passing known

272 G. Xiang et al.

benign webpages. The detection engine employs a technique based on shingling
to classify the remaining webpages, forwarding potential phish to the FP filter
for further examination, which interacts with search engines to correct false
positives. New phish from blacklists are added into our training set via a sliding
window to update the detection model with the latest phishing patterns.

Fig. 1. System architecture. An incoming webpage is first checked against a small

domain whitelist (1). If the page is not on the whitelist, our detection engine (2)

compares the content of the webpage against the content of existing phish using the

shingling algorithm. If a page is flagged as a potential phish, we check for false positives,

resorting to search engines (3) if needed for additional verification. We use a sliding

window (4) in the back-end to incrementally building the machine learning model as

new phishing signatures arrive.

3.2 Shingling-Based Probabilistic Matching

The essence of our detection algorithm is to do “soft” matching of a given web
page against known phishing pages. The intuition here is that many phishing web
pages are created by toolkits, and thus have many semantic similarities in terms
of page content. Our detection method manipulates this semantic uniformity
via soft matching, which allows more flexibility than the rigid URL matching
adopted by major blacklist-based methods. Our early evaluations using exact
matching with hash codes of page content turned out to be reasonably effective,
but also brittle and easy to defeat. As such, we want to make our system robust
to simple changes, thus raising the bar for criminals.

Shingling [10], a technique for identifying duplicate documents, examines the
webpage content on a finer-grained level via the notion of n-gram, and measures
the inter-page similarity based on these basic units. N-grams are subsequences of

A Hierarchical Adaptive Probabilistic Approach 273

n contiguous tokens. For example, suppose we have sample text connect with
the eBay community. This text has 3-grams {connect with the, with the
eBay, the eBay community}. Shingling employs a metric named resemblance
to calculate the percent of common n-grams between two webpages. More for-
mally, let q and d represent a webpage being examined and a phishing page
in the blacklist respectively. Let D represent the set of all training phish, and
S(p) denote the set of unique n-grams in p. The similarity metric resemblance
r(q, d) is then defined as r(q, d) = |S(q)∩S(d)|/|S(q)∪S(d)|. Our soft matching
approach first generates the set of n-grams for each d ∈ D. We then compute
r(q, d) ∀d ∈ D for a query page q, and fire an alarm whenever r(q, d) exceeds a
threshold t. We choose the optimal t via cross validation.

3.3 Search Engine Enhanced Filtering

As we will show later on in the evaluation, shingling is effective in comparing
a given web page against known phish. However, a potential problem is with
false positives. More specifically, phishing web pages usually imitate legitimate
web pages, which means that if there are no safeguards in place, shingling by
itself is likely to label those target legitimate cases as phish as well. To solve this
problem, we propose a filtering algorithm leveraging the power of search engines
via information retrieval techniques. This module, based on one heuristic in
CANTINA [23], compensates for the incompleteness of domain whitelists, and
is able to minimize FP even for less popular phishing target sites.

Our filtering module is triggered when the detection engine recognizes a can-
didate phish, and works by executing in Google queries composed of K top
keywords chosen from the page content plus the webpage domain keyword 1 and
examining the presence of the page domain in the top N search results. The
final prediction is restored to “legitimate” if the top N entries subsume the page
domain, and thus we no longer incorrectly label such sites as phish. The validity
of this filtering algorithm is partially attributed to the fact that legitimate web-
sites are very likely to be indexed by major search engines, while phishing sites
are not, due to their short-lived nature and few in-coming links.

We currently use K = 5, N = 30 according to the tuning result in [23][22].
Candidate query terms on the page are ranked by the TF-IDF scoring function
widely used in IR, which selects the terms that are most representative of the
webpage content. The rationale is that search engines use TF-IDF when they
match queries to documents in such a way that terms with high TF-IDF scores
are the ones that have more influence over retrieval and ranking of documents.

3.4 Incremental Model Building via Sliding Window

To take the latest phishing signatures into our database and to improve the
runtime performance of our whole system, we utilize a sliding window of the
1 The domain keyword is the segment in the domain representing the brand name,

which is usually the non-country code second-level domain or the third-level domain.

274 G. Xiang et al.

most recent phish from phish blacklists and incrementally build the detection
model with those phishing web sites. In our evaluation, we show that discarding
older data as the sliding window moves actually has little impact on accuracy.

Furthermore, a positive side effect of using a sliding window is that the time
complexity of shingling is reduced from O(|D|) to O(|Dwin|), where Dwin rep-
resents all phishing data covered by the current sliding window win. Asymp-
totically, |Dwin| can be deemed as a large constant, and in light of this shrunk
magnitude, we refrain from trading accuracy in exchange of speed via approx-
imated algorithms as used in many applications [14]. For example, this sliding
window could reduce a year’s worth of phish to just a month’s worth, achieving
×12 runtime speedup without significantly sacrificing detection performance.

4 Experiment

4.1 Domain Whitelists

An enormous percentage of phishing frauds target well-known financial entities
like eBay, Paypal, etc., by imitating their sites, and it is of practical value to
pass those legitimate websites without feeding them to our detection engine. To
reduce false positives and improve runtime performance, we quickly eliminate
these known good sites through a whitelist. specifically, we collected known good
domains from two sources. Google safe browsing provides a publicly-available
database [3] with legitimate domains, and we obtained a total of 2758 unique
domains from this whitelist after duplicate removal. Millersmiles [4] maintains
an archive of the most common spam targets such as ebay, and we extracted 428
unique domains out of 732 entries after mapping organization names to domains
and removing duplicates. In total, we had 3069 unique domains in our whitelist.

4.2 Webpage Corpus

Phishing sites are usually ephemeral, and most pages do not last more than a few
days typically because they are taken down by the attackers themselves to avoid
tracking, or taken down by legitimate authorities [21]. To study our approach
over a larger corpus, we downloaded phishing pages when they were still alive and
ran experiment offline. Our downloader employed Internet Explorer to render the
webpages and execute Javascript, so that the DOM of the downloaded copy truly
corresponds to the page content and thus gets around phishing obfuscations.

Our collection consists of phishing cases from PhishTank, and good webpages
from seven sources. To eliminate the influence of language heterogeneity on our
content-based methods, we only downloaded English webpages.

For phishing instances, we used the verified phishing URLs from the phish
feed of Phishtank [5], a large community-based anti-phishing service with 38, 324
active accounts and 527, 930 verified phish [2] by the end of March 2010. We
started downloading the feed in late February of 2009 and collected a total
of 1175 phishing webpages from February 27, 2009 to April 2, 2009. All seven

A Hierarchical Adaptive Probabilistic Approach 275

legitimate corpus were downloaded after April 2, the details of which are given in
Table 1. Note that the open directory project is the most comprehensive human-
edited directory of the Web maintained by a vast community of volunteers, and
by using this corpus, we want to verify that our algorithm achieves a very low
FP on the low-profile and less popular sites.

Table 1. Legitimate collection with a total of 3336 web pages

Source Size Crawling Method

Top 100 English sites from Alexa.com 958 Crawling homepages to a limited depth

Misc login pages 831 Using Google’s “inurl” operator and

searching for keywords like “signin”

3Sharp [19] 87 Downloading good webpages that still

existed at the time of downloading

Generic bank category [6] 878 Crawling the bank homepages for a varying

on Yahoo directory number of steps within the same domains

Other categories of Yahoo directory 330 Same as the generic bank category

The most common phishing targets 69 Saving login pages of those sites

The open directory project [7] 183 Downloading “least popular” pages with

zero pagerank

4.3 Test Methodology

For notational convenience, we define in Table 2 the free variables in our context.
Our experiment here focused on tuning these variables to optimize our results.
To simulate a more realistic scenario, we processed data in chronological order
in all of our experiments. In assessing TP, we move the sliding window of length
L step by step along the time line and apply our detection algorithm to the web-
pages at each time point Ti using a shingling model built on the phishing data
with time labels falling in window [Ti−L, Ti−1]. The FP is tested in a slightly
different manner. In [12], Fetterly et al discovered through large-scale web crawl-
ing that webpage content was fairly stable over time, and based on that finding,
we did not download the same set of legitimate pages at each time point but
rather downloaded only once the whole set at a time later than all the phishing
timestamps. Sliding windows of different sizes L are used similarly. Under all
cases, four whitelist combinations are exercised with our detection algorithm,
i.e., millersmiles, Google, none, and both whitelists.

Table 2. Definition of symbols

Variable Explanation Variable Explanation

G granularity of time L sliding window length

W whitelist n n-gram

r resemblance t resemblance threshold

276 G. Xiang et al.

4.4 Experimental Results

Shingling Parameter Tuning. Figure 2 shows the validation performance un-
der different values for n and t. For all n-grams in the evaluation, the TP mono-
tonically decreased as we raised the resemblance bar higher. With a resemblance
of 65%, shingling achieved over 66% TP under all shingle lengths, manifesting
the considerable similarity in content among phish due to rock phish. Although
FP worsens as t and n decrease, we still stick to n = 3, t = 0.65 in the remaining
evaluation of our experiment, hoping for the best TP performance and counting
on the TF-IDF filtering algorithm to control false positives. The tuning results
under all other configurations of G, L and W exhibit the same pattern, and we
do not report them here.

0.65 0.70 0.75 0.80 0.85 0.90 0.95
Threshold

52

54

56

58

60

62

64

66

68

70

T
ru
e
p
o
s
it
iv
e
ra
te

(%
)

3-gram

5-gram

6-gram

8-gram

(a) TP under various r thresholds

0.65 0.70 0.75 0.80 0.85 0.90 0.95
Threshold

0.00

0.02

0.04

0.06

0.08

0.10

0.12

F
a
ls
e
p
o
s
it
iv
e
ra
te

(%
)

3-gram

5-gram

6-gram

8-gram

(b) FP under various r thresholds

Fig. 2. Shingling parameter tuning (L = 60, G = day, W = millersmiles, no TF-IDF

FP filtering). A tradeoff between TF and FP is an important factor in choosing t in

the final model. As t is increased, the rate of detection drops and FP picks up. TP tops

at 69.53% and FP reaches a culmination of 0.1199% under n = 3, t = 0.65. The other

three FP curves n = 5, 6, 8 perfectly coincide.

Evaluation of True Positive Rate. Figure 3 suggests that even with only
one day’s worth of training phish, our algorithm is able to detect around 45%
phishing attacks, demonstrating the efficacy of our method and also proving the
conjecture that mainstream phishing attacks are created by toolkits.

Another finding is that when using search engines to filter false positives (the
right plot in Fig.3 and Fig.4), TP dropped as a side effect. An explanation is that
some phishing URLs (2%/1% with a 1-day/1-hour sliding window) are actually
returned among the top 30 entries when querying TF-IDF ranked terms plus the
domain keyword on Google and are thus mistakenly filtered as legitimate.

Real-time application of our algorithm does not suffer from this false filtering
problem as much as observed in our offline experiment. A semi-formal explana-
tion for this finding has two main points. First, when a new phish just comes
out of attackers’ workshop, few, if any, links point to that phishing site. As such,
search engines are unlikely to return its domain as a top result; second, search

A Hierarchical Adaptive Probabilistic Approach 277

0 10 20 30 40 50 60
Window size (day)

40

45

50

55

60

65

70
T
ru
e
p
o
s
it
iv
e
ra
te

(%
)

Millersmiles

Google

None

Both

(a) TP without TF-IDF filter

0 10 20 30 40 50 60
Window size (day)

40

45

50

55

60

65

70

T
ru
e
p
o
s
it
iv
e
ra
te

(%
)

Millersmiles (TF-IDF)

Google (TF-IDF)

None (TF-IDF)

Both (TF-IDF)

(b) TP with TF-IDF filter

Fig. 3. TP under various L (G = day) and W . Our approach achieves about 45% (no

FP filtering) and 43% (with FP filtering) TP in all cases with only 1 day’s worth of

training phish, and around 69% (no FP filtering) and 64% TP (with FP filtering) with

a 60-day window. FP filtering hurts TP, and a whitelist with only popular phishing

targets beats a more comprehensive whitelist.

engines might index the phish as time progresses when more links out in the web
begin referring to it, however, the phish may have already become unavailable
due to the short-lived nature of phishing activity and no harm will be done to
the users even if it is incorrectly passed as a good page. The usefulness of this
FP filtering module will become more evident when we embark on the analysis
of FP in the following section.

Figures 3 and 4 suggest that the TPs under millersmiles whitelist are uni-
versally better than those under Google whitelist. Examining both whitelists
reveals that millersmiles only contains a core group of the most spammed do-
mains while the Google whitelist has many more less popular domains. None of
the phishing domains in our corpus appear in the millersmiles whitelist, however,
some do show up in the Google whitelist, among which is “free.fr”, occurring 6
times in our phishing set. Those phish were thus erroneously filtered, lowering
the TP inadvertently. This observation delivers a message about the use of do-
main whitelists, i.e., the quality of whitelists does impact TP and the optimal
usage is to adopt a small core whitelist covering a group of popular spam target
sites. Our detection method performed convincingly better with respect to TP
when the model is iteratively built on a hourly basis.

Evaluation of False Positive Rate. Figure 5 shows the FPs under different
sliding window sizes and whitelists with no TF-IDF filtering. All four curves
in both plots start with zero FPs, when L is minimum, and gradually escalate
as more training phish are added to the model. Domain whitelists prove to be
effective in suppressing false positives, with FPs of 0.1199%, 0.06%, 0.5396%,
0.03% for millersmiles, Google, none and both whitelists under both a 60-day
window (left) and a 1440-hour window (right). With TF-IDF filtering, FPs are
all zero under all circumstances, and we do not explicitly show the plots here.

278 G. Xiang et al.

0 200 400 600 800 1000 1200 1400
Window size (hour)

10

20

30

40

50

60

70

80
T
ru
e
p
o
s
it
iv
e
ra
te

(%
)

Millersmiles

Google

None

Both

(a) TP without TF-IDF filter

0 200 400 600 800 1000 1200 1400
Window size (hour)

10

20

30

40

50

60

70

80

T
ru
e
p
o
s
it
iv
e
ra
te

(%
)

Millersmiles (TF-IDF)

Google (TF-IDF)

None (TF-IDF)

Both (TF-IDF)

(b) TP with TF-IDF filter

Fig. 4. TP under various L (G = hour) and W . Under all whitelists, TP bottoms

around 16% in all cases with a 1-hour window and peaks around 74% with a 1440-hour

window without FP filtering; with FP filtering, TP bottoms around 15% with a 1-hour

window and peaks around 67% with a 1440-hour window.

Granularity of Time Unit for Window Size. A comparison of TPs with day
and hour based L (Table 4 in the appendix) shows that under sliding windows
of identical time length, hour-level incremental model building outperformed
day-level building, indicating the superior responsiveness of hourly updating.
The largest gaps occurred at a window length of 1 day (24 hours), amounting
to TPs of 9.95%, 9.78%, 9.95%, 9.78% with no FP filtering and 8.68%, 8.51%,
8.68%, 8.51% with FP filtering under four whitelist configurations. This disparity
gradually diminished as L increased, which is reasonable in that as more and
more phish are absorbed into the training set by the growing window, the tiny
amount of shift in time relative to the window size no longer has as large of an
impact as before. Surprisingly, simply with a 24-hour window, our algorithm was
able to achieve over 50% TP under all whitelists and filtering setups.

As expected, the FPs under two time units in Table 5 in the appendix are
identical except for one cell, since all legitimate pages in our web collection were
downloaded after the phishing ones and regardless of time measurement (day or
hour), the sliding window with the same length in terms of time actually covered
roughly the same set of training phish. Interestingly, the FP filtering module suc-
cessfully removed all the false positives, leading to zero FP under all experiment
settings, at the cost of slight degradation on TP. Note that the evaluation of
FP in our experiment is sound and thorough partially in that our legitimate
corpus contains a diverse variety of data including those categories that are the
worst case scenarios for phish detection. As a result, the experimental result of-
fers conservative statistics that are more meaningful to the actual adoption and
deployment of our system. As suggested by the statistics in Table 4 and Table 5,
another feature of our system is that it offers an adjustable range of performance
depending on a user or provider’s willingness to accept false positives.

A Hierarchical Adaptive Probabilistic Approach 279

0 10 20 30 40 50 60
Window size (day)

0.0

0.1

0.2

0.3

0.4

0.5

F
a
ls
e
p
o
s
it
iv
e
ra
te

(%
)

Millersmiles

Google

None

Both

(a) FP vs window size (in number of days)

0 200 400 600 800 1000 1200 1400
Window size (hour)

0.0

0.1

0.2

0.3

0.4

0.5

F
a
ls
e
p
o
s
it
iv
e
ra
te

(%
)

Millersmiles

Google

None

Both

(b) FP vs window size (in number of

hours)

Fig. 5. FP under various L and W with no TF-IDF filtering. Under all whitelists, FP

escalates with the growth of the sliding window size. FPs are zero when using TF-IDF

to filter false positives under all settings and are not plotted here.

Evaluation Against Toolbars. In [23], Zhang et al proposed CANTINA, a
content-based method, which performed competitively against two state-of-the-
art toolbars, SpoofGuard and Netcraft. We implemented an offline version of
CANTINA, and evaluated our algorithms with CANTINA on the same corpus.

Table 3 shows that our algorithm outperformed CANTINA significantly on
FP, though its TP was inferior to CANTINA. Since the goal of our work is to
achieve a high TP on the basis of maintaining a close-to-zero FP, we can accept
this slight degradation on TP in exchange of a dramatic improvement on FP.
All real-world anti-phishing applications call for an extremely low FP, and thus
our solution is more effective and practical.

Table 3. Experiment reveals that our approach beats CANTINA significantly on FP

with some degradation on TP, indicating that our method is more practical and effective

in real-world scenarios. A combination of millersmiles and Google whitelists was used

here.

No FP filter With FP filter CANTINA

TP(%) 73.53 67.15 76.25

FP(%) 0.03 0.0 1.14

5 Discussion

In this section, we briefly discuss the merits and limitations of our current ap-
proach, and offer some ideas on how to address these problems.

280 G. Xiang et al.

5.1 Domain Whitelist and URL Blacklist

Domain whitelists have been shown in our experiment to be able to reduce
FP, and yet using them has risks too. For example, phishing sites hosted on
certain legal domains on our whitelists will be wrongly filtered as legitimate
cases. However, we can always reduce this impact by only using a core list of
most targeted legal domains such as bankofamerica.com, whose defence systems
are usually superb, and therefore, it will be extremely difficult for attackers to
evade being detected by planting phishing sites into such legitimate domains.

Though our approach makes use of whitelists in the first step of the pipeline,
it does not rely solely on them to achieve an acceptable FP. As suggested in
Sect. 4.4, by only utilizing a small whitelist and mostly relying on the search
engine-based filtering to slash false positives, our approach does not suffer from
the incompleteness of whitelists and thus is scalable and realistic.

Currently, URL blacklists cannot detect new attacks unless the phishing URLs
remain the same, which is unlikely due to the phishing nature of constantly avoid-
ing tracking. Our work in this paper demonstrates a way to augment existing
blacklists with conservative probabilistic strategies, and therefore we did not
conduct an experiment specifically using traditional blacklists only.

5.2 Blacklist-Based Soft Matching

Obtaining new phishing patterns in a timely fashion is critical to signature-based
anti-phishing methods, and our approach addresses this problem by means of
a sliding window that incrementally and constantly adds verified phish from
blacklists into our database. Though the first few cases of new attacks are initially
able to evade our detection, we only need to identify a few new phishing instances
to update our model, subsequently being able to block the rest of the large
volume of phishing attacks built by toolkits while maintaining a nearly zero FP.

This design philosophy emphasizes the adaptiveness and responsiveness of a
usable phish detection system, and is a significant improvement over the tra-
ditional blacklist-based methods that are generally unable to cope with a high
volume of unique phish URLs. To enlarge the range of phishing variants covered,
our approach can be easily generalized to other phish feed like the APWG feed
with the assistance of the whole anti-phishing community.

We could further exploit the dynamic aspects of phishing blacklists to improve
our approach. For instance, we could prioritize our phish database by putting
the phishing attacks with the most matches in a recent period of time in the
top position for future comparison. In addition, although we currently focus on
English websites, the general idea of our approach and the pattern of toolkit-
based phishing attacks carry over to non-English sites, and our approach could
be modified slightly to accommodate that change.

5.3 Effectiveness of TF-IDF Filtering

Our TF-IDF filter module has been shown to be effective by its extremely low
number of FPs (see Sect. 4.4). Considering the fact that phishing activity always

A Hierarchical Adaptive Probabilistic Approach 281

targets well-known brands due to its lucrative nature, false positives tend to be
raised almost entirely on those popular target sites, which are very likely, if not
almost certainly, to be indexed by major search engines. Accordingly, querying
TF-IDF ranked terms plus the domain keyword will return the page domain as a
top result with a high probability, thus successfully removing the false positive.

On the other hand, true phishing attacks are not as likely to be filtered by this
module, thanks to the very nature that phishing sites rarely last long enough
to be included in a web index. This will be difficult for phishers to change,
because creating indexable, long-lived sites implies either access to stable hosting
infrastructure, or that hacked sites will be able to go undiscovered for significant
lengths of time. We believe the former is going to be too risky or expensive
for phishers to engage widely in, and the latter is already being addressed by
existing take-down approaches.

5.4 Legitimate Corpus

Our legitimate webpage collection mainly focuses on popular sites, commonly
spammed sites, webpages with characteristics similar to phish (such as login
forms), etc., and by appraising our idea on these hard cases, we actually pro-
vide worst case performance statistics, which is more beneficial for the real-life
application and deployment that follow.

Our data set is by no means representative of what users experience during
their everyday browsing. In [9], Bennouas et al proposed a random web crawl
model and found through large-scale experiments that the in-degree, out-degree
and pagerank of webpages follow power laws. Given the profit-driven nature of
phishing activity, it is unlikely that the gigantic number of low-profile and less
popular sites resemble the phishing pages with respect to the content, and not
using those data in our experiment has no impact on the experiment result.

5.5 Runtime Performance

On a machine with 1.73 GHz CPU and 2.00G RAM running Windows XP,
our detection algorithm took about 229.11 milliseconds on average to check
each web page with a standard deviation of 220.99 milliseconds. Filtering via
whitelists took roughly 0.18 milliseconds per URL. The phish detection phase
via the shingling algorithm in our pipeline is essentially an parallel problem, and
it should scale well because our phish database can be easily distributed into
multiple computers and the process of matching page content probabilistically
via database scanning can be easily parallelized.

We have two points of discussion here. First, we have not done many optimiza-
tions to our system for performance. Second, our approach is an embarrassingly
parallel problem, one that scales well without a lot of effort, simply by adding
more computers. As such, existing blacklist services, ISPs, and takedown ser-
vices could easily use our approach to improve their ability and timeliness in
detecting phishing sites. The main limiting factor in terms of runtime perfor-
mace is bandwidth. The TF-IDF filter in our system queries Google to verify

282 G. Xiang et al.

the legitimacy of a webpage, which involves a round-trip traffic overhead on the
web. However, this filter is only triggered when a page is sufficiently similar to
an existing phishing signature, and considering the fact that the vast majority
of the pages will not in any way resemble phishing attacks, the query frequency
should be low enough. Moreover, caching search results on the client side is of
paramount importance to speed up the performance, and may to a certain extent
alleviate the network traffic problem.

5.6 How Phishers May Respond

We do not claim that our approach will solve the phishing problem. Rather, our
specific claim is that we can augment existing blacklists in a very conservative
manner using probabilistic techniques, with good results in terms of TPs and
FPs. Taking a wider perspective, criminals will inevitably come up with coun-
termeasures to the specifics of any deployed technique. What we offer here is a
new way of thinking about how to effectively combine human-verification with
ML and IR techniques, to increase the effectiveness of existing blacklists.

Phishers could try to penetrate our method by HTML obfuscation tricks such
as injecting garbage text to the DOM with tiny or invisible fonts, background
color, 100% transparency, multiple i-frames. These are, however, more of an
implementation issue than a design one, and we can easily peel off those spe-
cial effects and extract intentionally separated text by manipulating the DOM in
the preprocessing step. Our system also cannot detect Flash-based phishing, and
would require other techniques to detect these. The use of other types of pop-
ular obfuscation techniques such as doorway pages, chains of redirections, URL
cloaking and so on is also futile in front of our algorithm. The reason is that
no matter how many irrelevant intermediate steps attackers try to involve, web
users will land in the actual phishing webpage eventually, and our content-based
detection idea still applies. As a matter of fact, such tricks in hope of obfuscating
online customers and anti-phishing algorithms turn out to be beneficial to our
method in that search engines are even less likely to crawl those phishing sites
given such gimmicks, and our search-oriented filtering module is thus more un-
likely to incorrectly filter the corresponding phishing attacks as legitimate cases.
These kinds of tricks could also be new features for machine learning algorithms
as well, again since few legitimate sites would use such techniques.

Another likely countermeasure that criminals would attempt is to have toolk-
its include some element of randomization, making it harder to do soft matching.
This, however, is not hard to cope with. If the randomization is in the invisible
part of the DOM, our argument in the beginning of the previous paragraph still
applies, and we can easily extract the real content. Should the random elements
be added to the web page content, we could tune the resemblance threshold t ac-
cordingly and still achieve a reasonable detection rate. On the other hand, there
is a limit on how much random noise attackers could add before web users start
feeling suspicious about the legitimacy of the web pages. Furthermore, restrict-
ing people’s awareness while hindering probabilistic matching simultaneously by
adding noise is not an easy task, which would make the process of designing

A Hierarchical Adaptive Probabilistic Approach 283

phish toolkits very difficult and thus significantly limits the vast production of
phishing attacks, rendering the cost-benefit undesirable for the criminals.

It is very hard for attackers to elevate the FP of our approach, since the design
of legitimate webpages and the crawling process of search engines are beyond
their control. It is even harder to trick search engines to give their phishing
sites higher rankings, due to the scrutiny of search engines, short-lived nature of
phishing behavior and negligible popularity scores of the phishing sites.

6 Conclusion

In this paper, we presented a system that combined human-verified blacklists
with information retrieval and machine learning techniques, yielding a proba-
bilistic phish detection framework that can quickly adapt to new attacks with
reasonably good true positive rates and close to zero false positive rates.

Our system exploits the high similarity among phishing web pages, a result of
the wide use of toolkits by criminals. We applied shingling, a well-known tech-
nique used by search engines for web page duplication detection, to label a given
web page as being similar (or dissimilar) from known phish taken from black-
lists. To minimize false positives, we used two whitelists of legitimate domains,
as well as a filtering module which uses the well-known TF-IDF algorithm and
search engine queries, to further examine the legitimacy of potential phish.

We conducted extensive experiments using phish from Phishtank and legit-
imate web pages from seven different sources. These experiments showed that
our proposed method had a TP of 73.53% and a FP of 0.03% without TF-IDF
filtering, and a TP of 67.15% and zero FP with TF-IDF filtering under the
optimal setting. Moreover, our approach is able to adapt quickly to zero-hour
attacks by incrementally building the model via a sliding window with a few
new phishing instances out of a huge magnitude of phishing attacks created by
toolkits, thus providing a feasible framework for industry to vastly improve the
existing limited blacklists without increasing their false positives. This sliding
window mechanism also leads to good balance between accuracy and runtime
efficiency: with only two weeks’ worth of training phish, our method had a TP
of 65.02% with 0% FP using search oriented-filtering, and a TP of 71.23% and
a FP of 0.03% without FP filtering.

Acknowledgements. This work has been supported by NSF grants CCF-
0524189 and DGE-0903659. Additional support has been provided ARO re-
search grant DAAD19-02-1-0389 to Carnegie Mellon University’s CyLab, and
the CMU/Portugal Information and Communication Technologies Institute.

References

1. http://www.gartner.com/it/page.jsp?id=565125

2. http://www.phishtank.com/stats.php

3. http://sb.google.com/safebrowsing/

update?version=goog-white-domain:1:1

http://www.gartner.com/it/page.jsp?id=565125
http://www.phishtank.com/stats.php
http://sb.google.com/safebrowsing/update?version=goog-white-domain:1:1
http://sb.google.com/safebrowsing/update?version=goog-white-domain:1:1

284 G. Xiang et al.

4. http://www.millersmiles.co.uk/scams.php
5. http://data.phishtank.com/data/online-valid/
6. http://dir.yahoo.com/Business_and_Economy/Shopping_and_Services/

Financial_Services/Banking/Banks/
7. http://rdf.dmoz.org/
8. Abu-Nimeh, S., Nappa, D., Wang, X., Nair, S.: A comparison of machine learning

techniques for phishing detection. In: Proceedings of the Anti-Phishing Working

Groups (APWG) 2nd Annual eCrime Researchers Summit, pp. 60–69 (2007)

9. Bennouas, T., de Montgolfier, F.: Random web crawls. In: Proceedings of the 16th

International Conference on World Wide Web (WWW 2007), pp. 451–460 (2007)

10. Broder, A.Z., Glassman, S.C., Manasse, M.S., Zweig, G.: Syntactic clustering of

the web. In: Proceedings of the Sixth International Conference on World Wide

Web, pp. 1157–1166 (1997)

11. Cova, M., Kruegel, C., Vigna, G.: There is no free phish: An analysis of ’free’

and live phishing kits. In: Proceedings of the 2nd USENIX Workshop on Offensive

Technologies, WOOT 2008 (2008)

12. Fetterly, D., Manasse, M., Najork, M.: On the evolution of clusters of near- dupli-

cate web pages. In: Proceedings of the First Conference on Latin American Web

Congress, pp. 37–45 (2003)

13. Garera, S., Provos, N., Chew, M., Rubin, A.D.: A framework for detection and

measurement of phishing attacks. In: Proceedings of the 2007 ACM Workshop on

Recurring Malcode, pp. 1–8 (2007)

14. Henzinger, M.: Combinatorial algorithms for web search engines: three success sto-

ries. In: Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete

Algorithms, pp. 1022–1026 (2007)

15. Herley, C., Florencio, D.: A profitless endeavor: phishing as tragedy of the commons.

In: Proceedings of the 2008 Workshop on New Security Paradigms, pp. 59–70 (2009)

16. Ludl, C., McAllister, S., Kirda, E., Kruegel, C.: On the effectiveness of techniques

to detect phishing sites. In: Hämmerli, B.M., Sommer, R. (eds.) DIMVA 2007.

LNCS, vol. 4579, pp. 20–39. Springer, Heidelberg (2007)

17. Moore, T., Clayton, R.: Examining the impact of website take-down on phishing.

In: Proceedings of the Anti-phishing Working Groups (APWG) 2nd Annual eCrime

Researchers Summit, pp. 1–13 (2007)

18. Pan, Y., Ding, X.: Anomaly based web phishing page detection. In: Jesshope, C.,

Egan, C. (eds.) ACSAC 2006. LNCS, vol. 4186, pp. 381–392. Springer, Heidelberg

(2006)

19. 3sharp report: Gone phishing: Evaluating anti-phishing tools for windows.

Tech. rep. (September 2006), http://www.3sharp.com/projects/antiphishing/

gone-phishing.pdf
20. Sheng, S., Kumaraguru, P., Acquisti, A., Cranor, L., Hong, J.: Improving phish-

ing countermeasures: An analysis of expert interviews. In: Proceedings of the 4th

APWG eCrime Researchers Summit (2009)

21. Sheng, S., Wardman, B., Warner, G., Cranor, L., Hong, J., Zhang, C.: An empirical

analysis of phishing blacklists. In: Proceedings of the 6th Conference on Email and

Anti-Spam (2009)

22. Xiang, G., Hong, J.: A hybrid phish detection approach by identity discovery and

keywords retrieval. In: Proceedings of the 18th International Conference on World

Wide Web (WWW 2009), pp. 571–580 (2009)

23. Zhang, Y., Hong, J., Cranor, L.: Cantina: a content-based approach to detecting

phishing web sites. In: Proceedings of the 16th International Conference on World

Wide Web (WWW 2007), pp. 639–648 (2007)

http://www.millersmiles.co.uk/scams.php
http://data.phishtank.com/data/online-valid/
http://dir.yahoo.com/Business_and_Economy/Shopping_and_Services/Financial_Services/Banking/Banks/
http://dir.yahoo.com/Business_and_Economy/Shopping_and_Services/Financial_Services/Banking/Banks/
http://rdf.dmoz.org/
http://www.3sharp.com/projects/antiphishing/gone-phishing.pdf
http://www.3sharp.com/projects/antiphishing/gone-phishing.pdf

A Hierarchical Adaptive Probabilistic Approach 285

Appendix: Detailed Results under Various Settings

Table 4. TP (%) under day/hour-measured sliding window. Under all settings, shin-

gling with hour-level incremental model building is more responsive to phishing attacks,

attaining higher TPs under all L values. Our approach achieved almost optimal TP

with only 1 month’s worth of training phish.

No TF-IDF filtering
Window size (day) Window size (hour)

Whitelist 1 2 7 14 30 60 24 48 168 336 720 1440
Millersmiles 45.28 53.19 63.91 67.4 69.53 69.53 55.23 61.62 69.11 71.83 74.13 74.13
Google 44.94 52.68 63.32 66.81 68.94 68.94 54.72 61.11 68.51 71.23 73.53 73.53
None 45.28 53.19 63.91 67.4 69.53 69.53 55.23 61.62 69.11 71.83 74.13 74.13
Both 44.94 52.68 63.32 66.81 68.94 68.94 54.72 61.11 68.51 71.23 73.53 73.53

With TF-IDF filtering
Window size (day) Window size (hour)

Whitelist 1 2 7 14 30 60 24 48 168 336 720 1440
Millersmiles 43.66 50.55 59.66 62.13 64.17 64.17 52.34 57.79 63.83 65.62 67.74 67.74
Google 43.32 50.04 59.06 61.53 63.57 63.57 51.83 57.28 63.23 65.02 67.15 67.15
None 43.66 50.55 59.66 62.13 64.17 64.17 52.34 57.79 63.83 65.62 67.74 67.74
Both 43.32 50.04 59.06 61.53 63.57 63.57 51.83 57.28 63.23 65.02 67.15 67.15

Table 5. FP (%) under day/hour-measured sliding window. Whitelists lessen the FPs,

reaching 0.1199%, 0.06%, 0.5396%, 0.03% respectively with the millersmiles, Google,

none and both whitelists at L = 60 days or L = 1440 hours. The search engine oriented

filtering step significantly significantly improves the FPs , downsizing FP values in all

settings to zero.

No TF-IDF filtering
Window size (day) Window size (hour)

Whitelist 1 2 7 14 30 60 24 48 168 336 720 1440
Millersmiles 0.00 0.00 0.03 0.1199 0.1199 0.1199 0.00 0.00 0.03 0.1199 0.1199 0.1199
Google 0.00 0.00 0.03 0.06 0.06 0.06 0.00 0.00 0.03 0.06 0.06 0.06
None 0.00 0.00 0.2098 0.4496 0.5096 0.5396 0.00 0.00 0.2098 0.3597 0.5096 0.5396
Both 0.00 0.00 0.03 0.03 0.03 0.03 0.00 0.00 0.03 0.03 0.03 0.03

With TF-IDF filtering
Window size (day) Window size (hour)

Whitelist 1 2 7 14 30 60 24 48 168 336 720 1440
Millersmiles 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Google 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
None 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Both 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Kamouflage: Loss-Resistant Password
Management

Hristo Bojinov1, Elie Bursztein1, Xavier Boyen2, and Dan Boneh1

1 Stanford University
2 Université de Liège, Belgium

Abstract. We introduce Kamouflage: a new architecture for building

theft-resistant password managers. An attacker who steals a laptop or

cell phone with a Kamouflage-based password manager is forced to carry

out a considerable amount of online work before obtaining any user cre-

dentials. We implemented our proposal as a replacement for the built-in

Firefox password manager, and provide performance measurements and

the results from experiments with large real-world password sets to eval-

uate the feasibility and effectiveness of our approach. Kamouflage is well

suited to become a standard architecture for password managers on mo-

bile devices.

1 Introduction

All modern web browsers ship with a built-in password manager to help users
manage the multitude of passwords needed for logging into online accounts. Most
existing password managers store passwords encrypted using a master password.
Firefox users, for example, can provide an optional master password to encrypt
the password database. iPhone users can configure a PIN to unlock the iPhone
before web passwords are available.

By stealing the user mobile device the attacker is able to obtain the password
database encrypted under the master password. He or she can then run an offline
dictionary attack using standard tools [17,14] to recover the master password
and then decrypt the password database. We examined a long list of available
password managers, both for laptops and smartphones, and found that all of
them are vulnerable to offline attack. To address this threat, several potential
defenses quickly come to mind:

The first one is to use salts and slow hash functions to slow down a dictionary
attack on the master password. Unfortunately, these methods do not prevent
dictionary attacks [5]; they merely slow them down. Moreover on mobile devices,
we found that password managers tend to offer the use of a numerical PIN code
to protect the database. While PIN codes are more easy to use on a smartphone,
they also offer a smaller key space which makes the aforementioned attacks easier.

Another potential defense is to use a password generator [18] rather than
a password manager. A password generator generates site-specific passwords
from a master password. Users, however, want the ability to choose memorizable

D. Gritzalis, B. Preneel, and M. Theoharidou (Eds.): ESORICS 2010, LNCS 6345, pp. 286–302, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Kamouflage: Loss-Resistant Password Management 287

passwords so that they can easily move from one machine to another; this can
be quite difficult with the strings typically created by a password generator. As
a result, if a password generator is not ubiquitous, and currently none are, then
the majority of users will never use one.

Finally, another defense is to store passwords in the cloud [21,7] and use a
master password to authenticate to the cloud. This solution only shifts the prob-
lem to the cloud; any employee at the cloud service can run an offline dictionary
attack to expose account passwords for multiple users. Other potential defenses
and their drawbacks are discussed in Section 6.

Our contribution. We propose a new architecture for building theft-resistant
password managers called Kamouflage. Our goal is to force the attacker to mount
an online attack before he can learn any user passwords. Since online attacks
are easier to block (e.g. by detecting multiple failed login attempts on the user’s
account) we make it harder for an attacker to exploit a stolen password manager.
Major websites already implement internal security mechanisms that throttle
after several failures and therefore forcing an attacker to perform online work is
an effective defense.

Kamouflage works as follows. While standard password managers store a sin-
gle set S of user passwords, Kamouflage stores the set S0 = S along with N − 1
decoy sets S1, . . . , SN−1. A typical value for N is N = 10, 000, but larger or
smaller values are acceptable. Based on our personal experience M = |S|, the
size of the real stored password set, is on the order of 100 (a pessimistic estimate:
in reality users on average have fewer than ten passwords [6]). The key challenge
for Kamouflage is to generate decoy sets that are statistically indistinguishable
from the real set. This is difficult because as shown by our user survey, users tend
to pick memorizable passwords that are closely related. If Kamouflage simply
picked random decoy sets, an attacker would be able to easily distinguish the
real password set from the decoys.

With Kamouflage, an attacker who steals the device will be forced to perform,
on average, N/2 online login attempts (or N/2M at each of the M websites)
before recovering the user’s credential. Web sites can detect these failed login
attempts and react accordingly. With web site participation, Kamouflage can be
further strengthened by having the user’s device registering a few decoy pass-
words (say 10) at web sites where the user has an account. If a web site ever sees
a login attempt with a decoy password, the site can immediately block the user’s
account and notify the user. This is similar in spirit to the warning displayed by
GMail when an account is accessed from two different countries in a brief period
of time.

Using decoy password sets is a practical approach because if we assume that
each user has about 100 passwords and each password takes about 10 bytes,
then the decoy sets will take about 10MB of storage, which is roughly the size of
three MP3 files, which a negligible storage requirement for modern laptops and
smartphones.

288 H. Bojinov et al.

Here are the main difficulties we had to overcome to make Kamouflage work:

– Human-memorable passwords: Since decoys must look like human mem-
orizable passwords, we need a model for generating such passwords. To build
such a model we performed a study of human passwords, as discussed in
Section 2. We also took advantage of previous work on this topic [24,13,23,22].
While most previous work studied this problem for the purpose of speeding
up dictionary attacks, here we give the first “positive” application for these
password models, namely hiding a real password in a set of decoys.

– Related passwords: Since humans tend to pick related passwords, Kam-
ouflage must pick decoy sets that are both chosen according to a password
model and related to each other as real users tend to do. We develop a model
for password sets that mimics human behavior.

– Relation to master password: In some cases it makes sense to encrypt the
password database using a master password. Unfortunately, our experiments
found that users tend to pick master passwords that are themselves related
to the passwords being protected. Hence, we had to develop an encryption
scheme that cannot be used to rule out decoy sets. We present our approach
in Section 5.1.

– Site restrictions: Finally, different sites have different password require-
ments. When generating decoy sets we have to make sure that all passwords
in the decoy set are consistent with the corresponding site policy.

We built a Kamouflage prototype as a drop-in replacement for the Firefox pass-
word manager. We give performance numbers in Section 4.2 where we show
that Kamouflage has little impact on user experience. Our design is comple-
mentary to mechanisms that aim at preventing password theft in-transit, such
as key-logging malware. Ideally both off-line and on-line protections should be
deployed in order to ensure password safety.

2 How Users Choose Passwords

In this section we present the results of our experiments on user password behav-
ior that we use to support our assumptions that users are uncomfortable with
random independent passwords, and as a result tend to select predictable and
related passwords across multiple sites. In order to test this and related hypothe-
ses, we conducted two experiments: qualitative user interviews and quantitative
analysis of large, real-world password databases (one of them containing over 30
million entries). The results complement existing work in the area, such as [6].

Empirical motivation from user interviews. Our first experiment was a
survey conducted with undergraduate and post-doctoral students on our campus.
The goal of the survey was not to learn people’s passwords, but to elicit their
approach to dealing with passwords. The interviews were performed via an in-
person questionnaire, and completed by 87 individuals: 30 CS undergraduate
students, and 57 post-doctoral researchers from various fields including biology,

Kamouflage: Loss-Resistant Password Management 289

Table 1. General properties of password databases. phpbb data is skewed towards

shorter lengths (selection bias) because we had to crack it before analyzing it. We

confirm the observations about password shape made in [24].

Name Entries Size: 1-4 Size: 5-8 Size: 9-12 Size: 12+

RockYou 32.6M 0.2% 69.3% 27.0% 3.5%

phpbb 343K 4.2% 82.3% 13.4% 0.1%

chemistry and psychology. 33% of the respondents were female, and over 61%
were between 26 and 35 years old. It can be said that our subjects represented the
worst case scenario for an attacker in the sense that they were highly educated
(more than 60% having a PhD) and sophisticated in their use of the Internet.

In the survey we asked direct questions about users’ password habits. We
briefly summarize the results due to space constraints: 81% of our subjects ad-
mitted to reusing the same password on many websites, thereby supporting our
hypothesis on password reuse. This hypothesis is also supported by the number
of passwords used by our subjects: 65% of the sample reported using at most 5
passwords, and 31% reported using between 6 and 10 passwords. In a separate
question, 68% of the sample admitted selecting related but not necessarily iden-
tical passwords across sites. We also found that 83% of our subjects reported
that they did not password-protect their smartphone, despite the presence of
private data on the phone.

Password database analysis. In our second experiment we analyzed two real-
world password databases that were recently leaked to the public. One was from
the RockYou service: it contained 32 million entries [20], and we had access
to all the entries in plaintext. As a consequence, the results from its analysis
can be considered a highly reliable predictor of user behavior. The other pass-
word database was from the developer web site phpbb.com. We include it here for
comparison purposes, because phpbb.com does not enforce any password require-
ments, so users were free to use whatever they want. The phpbb.com database
contained 343 000 passwords. In this database, passwords were not listed in the
clear, but as hashes created by one of two schemes: a simple MD5 and 2048-fold
MD5 with salt. Using a cluster of computers over several months, we where able
to recover 241 584 passwords, or 71% of the full database. Since we did not have
direct access to the passwords as plaintext, our recovery process induces a se-
lection bias towards easier passwords, hence the phpbb.com numbers should be
used only as a secondary reference point.

Table 1 shows some basic properties of the analyzed databases. In our work,
the primary concern was the structure of passwords: understanding this structure
is the key to being able to generate high-quality plausible decoys. Accordingly
we tested the hypothesis that people use known words in their passwords by
comparing the databases to the dictionaries created by openwall to work in
conjunction with the famous cracker “John the ripper” [17]. When combined
these dictionaries contain around 4 millions words (note that not all of these

290 H. Bojinov et al.

Table 2. The effectiveness of simple word-based rules in parsing passwords. Percent

matched increases with each rule. The high coverage makes it possible to use this

approach for password set analysis (Section 4).

Rule Name Format RockYou RockYou % phpbb.com phpbb.com %

Strict W 6.6M 20.2% 80.0K 33.2%

Post Wd+ 6.9M 41.4% 37.7K 48.8%

Concat WW 6.1M 60.1% 50.0K 69.6%

Digit d+ 5.2M 76.1% 32.4K 83.0%

Concat-Post WWd+ 2.4M 83.4% 9.3K 86.9%

Table 3. Examples of passwords that did not match our rules. A large portion of the

remaining passwords can be classified based on additional rules like “hax0r” letter-digit

substitution and “iluv***” three word and letter concatenation.

Password Reason for not matching

lordburnz Letter substituted (’s’ → ’z’)

php4u Word-digit, word-letter, three tokens

ilove$$$ Non-alphanumeric, three tokens

are words from natural languages, but can rather be viewed broadly as “known
password tokens”).

Our analysis tool tried to match each password in the databases to one or two
dictionary words according to several rules: direct match; direct match with a
numerical suffix; match two words concatenated; etc. Just by using five rules we
were able to match more than 80% of the passwords in both databases (Table 2).
This result implies that for most users we can automatically produce the rules
that were used in coming up with the passwords. Our password manager can
then use the derived rules to generate new, plausible password sets that meet the
same constraints. The remaining users appear to use more advanced password
generation rules (Table 3), which can be emulated by building a simple N-gram
model based on the extensive available data.

3 Threat Model

The basic threat model. We consider an attacker who obtains a device, such
as a laptop or smartphone, that contains user data stored in a password manager.
The password manager stores user passwords for online sites (banking, shopping,
corporate VPN) and possibly personal data such as social security and credit
card numbers. The attacker’s goal is to extract the user’s data from the password
manager.

We assume that the password manager encrypts the data using a master pass-
word. On Windows, for example, password managers often call the Windows
DPAPI function CryptProtectData to encrypt data using a key derived from
the user’s login credentials. In this case we treat the user’s login password as the

Kamouflage: Loss-Resistant Password Management 291

master password. Other passwords managers, such as the one in Firefox, let the
user specify a master password separate from the login password.

An attacker can defeat existing password managers by an offline dictionary
attack on the master password. Hence, simply encrypting with a master password
cannot result in a secure password manager (unless the master password is quite
strong). We capture this intuition in our threat model by saying that the attacker
has “infinite” computing power and can therefore break the encryption used
by the password manager. This is just a convenience to capture the fact that
encryption based on a human password is weak.

In our basic threat model we assume that the attacker has no side information
about the user being attacked such as the user’s hobbies, age, etc. The only
information known to the attacker are the bits that the password manager stores.
We relax this assumption in the extended threat model discussed below. We
measure security of a password manager by the expected number of online login
attempts the attacker must try before he obtains some or all of the data stored
in the password manager. The attacker is allowed to attempts to log on different
and unrelated sites. We count the expected total number attempts across all
sites before some sensitive data is exposed. To deal with web sites that have
no online attack protections, Kamouflage will compartmentalize passwords into
groups to ensure that the most sensitive passwords are protected in all cases,
even if the less important ones are cracked successfully.

Extended model: taking computing time into account. In the basic model
we ignored the attacker’s computing time needed to break the encryption of the
password manager. In the extended model we measure security more accurately.
That is, security is represented as a pair of numbers: (1) expected offline com-
puting time; and (2) expected number of online login attempts until information
stored in the password manager is exposed. This allow us to more accurately
compare schemes. For this extended model we are using encryption to slow down
the attacker. The key challenge here is to design an encryption scheme that does
provide information to the attacker that he can use to reduce the amount of his
online work. Using encryption allows us to relax our basic-model assumptions.
We permit the attacker to have side information beyond the device data, such
as the user’s age, gender, hobbies, etc. As we will see, we can offer some security
even if the attacker has intimate knowledge of the victim.

Non-threats. In this paper we primarily focus on extracting data from long-
term storage. We do not discuss attacks against the device or its operator while
in active use (such as shoulder snooping and key loggers), and similarly omit
hardware-based side-channel attacks, which can come in many guises, based,
e.g., on electromagnetic emanations (“van Eck phreaking”) and capacitive data
retention (“cold-boot attacks”), to name but a few possibilities. Similarly, we
do not address social engineering attacks such as phishing. While phishing is an
effective way to steal user passwords, addressing it is orthogonal to our goal of
providing security in case of device theft or loss.

292 H. Bojinov et al.

4 Architecture

At any point in time, the password management software maintains a large
collection of plausible password sets; exactly one of these sets is the real one, and
the rest are decoys. Figure 1 illustrates the storage format. Apart from passwords,
all other site information is kept in the clear. That is, an attacker looking at the
database knows which sites the user has passwords for: she just has no idea what
the passwords are. When the real user launches his web browser, he is prompted
for the master password (MP) which is then cryptographically transformed to
obtain the index of the real password set in the collection. During a dictionary
attack, any attempt to guess the master password results in a different (plausible
and valid, but incorrect) set of passwords.

Database operations. The following are the core operations that a password
database needs to support, along with a description of our implementation for
them. Note that in Kamouflage these operations are well-defined for any choice
of master password: that is, by guessing a master password and attempting
database operations the attacker does not obtain any new information about
the validity of his guess.

– Add a new password to the database. In our design, this amounts
to adding a new password to each password set in the collection. The real
password set gets the user-supplied value, while decoy sets get auto-generated
entries influenced by the true one.

– Remove. Remove a password from the database. This is the reverse to
adding a password. Only requires removing the web site’s entry from each
password set. No regeneration is needed.

– Update. Update a password entry, presumably when a password is changed.
While the size of the password set collection will not change, the correspond-
ing entry in each decoy password set must also be regenerated. On the one
hand, this step ensures that the reuse patterns in the decoy sets continue
to match those in the real password set (subject to random mutations, of
course). On the other hand, we are also preventing an attacker from look-
ing at the database image before and after an update, and finding the real
password set based on the fact that it is the only one that has changed.
Journaling file systems make this second attack vector very plausible.

– Find. Find the right password given some web page characteristics like URL
and form field names. Given the master password, this is a straightforward
database access in the real password set, ignoring all decoys. (Of course, the
MP is needed to locate the correct set.)

4.1 Password Set Generation

Decoy password sets must be indistinguishable from the real password set. We
extend the context-free grammar approach from [22] to work for the case where
multiple passwords are being generated for the same user. In [22], passwords
candidates are generated by assigning probabilities to password templates (the

Kamouflage: Loss-Resistant Password Management 293

Password set 1Meta data Password set 2 Password set n... ...

URL
Forms

Usrmames
...

password 1
password 2

...
Password M

password 1
password 2

...
Password M

password 1
password 2

...
Password M

password 1
password 2

...
Password M

Password storage

Data in clear Decoy data encrypted Real data encrypted

Fig. 1. Kamouflage database: cleartext metadata and encrypted real and decoy pass-

word sets. Encryption is discussed in Section 5.1.

templates look like “l4d2s1”, meaning “a four-letter word, followed by two digits,
followed by a special character). The important insight there is that the likeli-
hood of a password being used is determined by the likelihood of its template,
in addition to the likelihood of its components. We point out that for the pur-
pose of decoy password set generation, varying the templates is unnecessary, and
even dangerous if done incorrectly: by performing asymmetric transformations
on the template, the password manager might leak information about the correct
password set.

In Kamouflage, decoy set generation proceeds in three steps:

1. Tokenization: The password manager converts the real user passwords into
rules of the form Pi → Ti1 ...Tii . The tokens typically stand for words or num-
bers of a certain size from a fixed dictionary1. In addition, tokens are reused
across passwords, ensuring that portions that are shared by several passwords
are correctly represented as equal by the rules. Tokenization is performed by
attempting to partition each password according to the different rules from
Section 2.

2. Validation: The system confirms that the tokenization is good: any tokens
which are not dictionary words are flagged and reviewed by the user. This is
the user’s opportunity to remove from passwords any words that are specific
to him, such as a last name or a birth date—such words can almost certainly
be used to identify the correct password set among all decoys. In a perfect
scenario, all of the users passwords will be readily tokenizable using standard
dictionary words, possibly combined with apparently random characters. (As
a consequence, decoys will be generated by using words of similar probability,
along with similarly distributed random characters.)

3. Generation: Decoy sets are generated using the derived rules. We note
that if the validation step completed without any tokens being flagged, then
the fixed dictionary is as likely to generate the real password set as any of
the decoys. The ease with which we can argue the statistical properties of
generated decoys is the main reason we converged on this model.

1 The dictionary used can be customizable to be able to accommodate different lan-

guages, or combinations of languages. However allowing arbitrary user customiza-

tions may lead to compromising security.

294 H. Bojinov et al.

Table 4. Example decoy sets generated by the three-step algorithm

Set Description Site #1 Site #2

S0 Real jones34monkey jones34chuck

S1 Decoy #1 apple10laptop apple11quest

S2 Decoy #2 tired93braces frame93braces

S3 Decoy #3 hills28highly hills48canny

A short example will clarify the password generation mechanism outlined above:
let’s assume the real set is of size two (M = 2), and we need to generate three
different decoy sets (N = 4). Suppose the real password set consists of the
passwords “jones34monkey” and “jones34chuck”. The rules that are output by
the tokenization step are: P1 → ABC,P2 → ABD,A → W5, B → D2, C →
W6, D →W5. Depending on the dictionary used, the validation step could com-
plete successfully, or maybe some of the words could be flagged as not present
in the dictionary. For example the system could alert the user that “jones” is
not a word from the dictionary, and as such does not blend in with generated
decoy sets. The validation could also scan the contents of the user’s device (e-
mails, contacts, etc.) and specifically find words that are specific to the user even
though they can be found in the dictionary—”chuck” is not likely a random 5-
letter word if the user has a close relative called “Charles”. After all issues are
resolved at validation, the system generates decoy sets that might look like to
ones in Table 4.

Optionally, the process of generating decoys can be customized by the user to
better mimic the real password distribution. The customization choices should
not be stored on disk as they can help the attacker.

4.2 Implementation

In order to prove the feasibility of our architecture, we built a proof-of-concept
extension for the Firefox web browser, called Kamouflage. The extension imple-
ments the nsILoginManagerStorage interface and acts as an alternative storage
for login credentials.

The main goal in developing the extension was to show that the overhead of
maintaining decoy password sets is acceptable, particularly from a user’s point
of view. We intentionally used no optimizations in the handling of the password
database, because we wanted to get a sense of the worst-case performance implied
by our approach. Completing the extension to a point where it can be deployed
for real-world use is straight forward.

When it is loaded, Kamouflage registers with Firefox as a login manager stor-
age provider (nsILoginManagerStorage). Each of the implemented API meth-
ods (addLogin, findLogin, etc.) calls some internal methods that deal with
reading and writing the password database file from and to persistent storage,
as outlined earlier (see Figure 1). If the password storage file does not exist, it
is assumed that the user’s password set is the empty set.

Kamouflage: Loss-Resistant Password Management 295

Table 5. User-visible performance of the Kamouflage Firefox extension for three typical

use cases. The estimate of 20 passwords per user is realistic, while 100 passwords are

a worst-case scenario unlikely to occur in practice [6].

Collection size (number of decoy sets) 103 104 104

Password set size (number of user passwords) 100 100 20

Database size on disk 2MB 20MB 4MB

Measured performance (access and update time) < 1 sec 5 sec < 1 sec

Performance. We measured how individual API calls are impacted by various
password set collection sizes. We show that performance in Table 5. In our
implementation the password file is read in its entirety every time a password
is accessed, and written out completely for every update. From a user’s point of
view, there is no impact when maintaining approximately 103 decoy password
sets; at 104 decoy sets the performance drop becomes clearly noticeable.

In practice, the performance of our prototype could be further improved in a
number of ways:

– Caching. Our measurements of user-visible latency often include several
invocations of the nsILoginManagerStorage interface, each of which reads
the whole file from scratch. The login manager could cache the database
contents, reading the file only once, at launch time.

– Read size. Password storage does not need to be read in its entirety. Given a
master password (input by the user), only one password set needs to be read
from disk. In the context of a Firefox extension this would require writing
a native implementation for the read function: the JavaScript file I/O API
available does not allow random access inside a file.

– Write size. Password sets do not all have to be rewritten on every addLogin
or updateLogin operation, if we can guarantee that older versions are over-
written and unavailable to an attacker.

5 Extensions

The system described in Section 4 does not encrypt the password database with
a master password. The master password is only used to identify the location of
the real password set. As we will see, encrypting the password database without
exposing the system to an offline dictionary attack is not trivial. In this section
we extend Kamouflage to address this issue and others.

5.1 Why and How to Encrypt

Side information is dangerous. An attacker armed with side information
about the victim can be successful, being able to guess the correct password
set in the collection by searching for victim-related keywords in the password
storage, hoping that those keywords appear as part of a password. Alterna-
tively, if the user elects to use a very weak password at a specific, unimportant
web site, the attacker may be able to recover it in an online attack, and use that

296 H. Bojinov et al.

information later on to crack the master password offline. Both of these attacks
are reason enough to consider using encryption techniques similar to those used
by current systems.

Password managers often encrypt the password database with a master pass-
word, denoted MP. In our settings this is non-trivial, and if done incorrectly,
can cause more harm than good. To see why, suppose the password database is
encrypted using an MP. Our user study from Section 2 shows that people tend
to choose master passwords that are related to the passwords being protected.
An attacker who obtains the encrypted password database can find the MP with
an offline dictionary attack and then quickly identify the real password set by
looking for a set containing passwords related to the MP.

Our approach to encryption. We use the following technique to avoid the
preceding problem. Recall that each password set Si contains a set of related
decoy passwords generated as discussed in Section 4.1. We use the same approach
to generate a master password MPi for the set Si, so that MPi will likewise be
related to the passwords in Si. The master password for the real set is the user-
selected MP. Now, for each set Si do:

– generate a fresh random value IVi to be stored in the clear with the set Si,
and

– use two key derivation functions (KDF) to generate two values Ki and Li

from MPi as follows: Ki ← KDF1(MPi, IVi); Li ← KDF2(MPi)

The key Ki is used to encrypt the set Si. The index Li determines the position
of the set Si in the password database. In other words, the index of the set Si in
the database is determined by the master password for the set Si. Collisions (i.e.,
two sets that have the same index L) are handled by simply discarding any new
set that attempts to claim a busy slot, optionally regenerating it, and allowing
some small fraction of decoy slots to remain unused in order to ensure short
completion time. Once the whole database is generated, all master passwords
MPi are deleted. When the user enters the real master password MP the system
can recompute the index L to locate the encrypted set and its IV and then
recompute K to decrypt the set.

The best strategy for an attack on this system is to run through all dictionary
words (candidate MPs) and for each one to compute the corresponding index
L and candidate key K. Whenever the attacker eventually tries to decrypt a
password set using the actual MP that was used to encrypt it, he can generally
recognize this fact, causing that MP to become exposed along with the corre-
sponding password set. However, in the end, even after decrypting all the sets
in the password database with their respective correct master passwords, the
attacker must still do substantial online work to determine the good set.

Table 6 shows how the master password strength affects the offline computa-
tion effort and the number of online login attempts that an attacker needs to
perform, even if the attacker has perfect knowledge of the real master password
distribution.

Kamouflage: Loss-Resistant Password Management 297

Note that when the user adds or updates a password, the system cannot add
passwords to the decoy sets since it does not have the master passwords for
the decoy sets. Instead, when the real set is updated, all the decoy sets and
their master passwords are regenerated, and all sets are re-encrypted using new
random values IVi. The previous IVs must be securely purged from the database
to thwart attacks that compare the current contents from past snapshots.

Our performance numbers from Table 5 show that the running time to perform
this whole update operation remains acceptable.

By adding encryption to Kamouflage, we have neutralized the threat of at-
tacks based on side information: depending on the MP strength, the attacker
may need to spend considerable offline effort before he is in a position to mount
the online attack.

Table 6. Comparison of attack difficulty in traditional and the new password man-

agement schemes, for different master password strengths (distribution known by the

attacker)

Master Password Strength

Traditional Weak Medium Strong

Offline (# of decryptions) 104 107 1010

Online (# of login attempts) 1 1 1

Kamouflage Weak Medium Strong

Offline (# of decryptions) 104 107 1010

Online (# of login attempts) 104 104 104

5.2 Website Policy Compatibility

Restrictive password policies can be detrimental to the security of passwords
stored using a mechanism like Kamouflage. Imagine that a web site requires that
user passwords consist only of digits, while the decoy set generator randomly uses
letters and digits when generating all passwords. In this scenario, an attacker
looking at all the password sets in the collection can zero in on the real password
set, because most likely it is the only one which contains a numeric password for
that specific web site. We surveyed the top 10 web sites listed by Alexa, along
with a small list of bank web sites, and tabulated their password requirements.
The results are shown in Table 7, and clearly demonstrate that this danger is
real.

It is evident that the major Internet web sites already allow arbitrary pass-
words, subject only to a minimum length requirement. Security-savvy companies
such as Google, Yahoo, and Facebook realize that forcing specific password pat-
terns on users results in a system that is more difficult to use, prone to human
error, and ultimately less secure.

Kamouflage effectively deals with this challenge by mimicking the composition
of a user’s passwords, and ensuring that passwords containing specific classes of
characters (lowercase letters, uppercase letters, digits, special characters) con-
tinue to contain those classes of characters in the generated decoy sets.

298 H. Bojinov et al.

Table 7. Password strength requirements at top sites ranked by Alexa and a small

group of finance-related web sites

Web Site Password Requirement

Google at least 8 characters

Yahoo! at least 6 characters

YouTube at least 8 characters

Facebook at least 6 characters

Windows Live at least 6 characters

MSN at least 6 characters

MySpace 6 to 10 characters, at least 1 digit or punctuation

Fidelity 6 to 12 characters, digits only
Bank of America 8 to 20 characters, ≥ 1 digit and ≥ 1 letter, no $ < > & ^ ! []

Wells Fargo 8 to 10 characters, ≥ 3 of: uppercase, digit, or special characters

It is conceivable that some web sites will implement weak security, or will
not be significant for the user and as a result their passwords will be easy to
guess. In order to prevent this weakness from helping the attacker find out the
master password, and along with it the passwords for more secure and important
to the user web sites, it is also preferable for the password manager to allow
the grouping of web sites according to their importance. This grouping can be
suggested by the user or inferred automatically, and will determine whether site
passwords are kept in the protected database, or in a separate, unprotected area.

5.3 “Honeywords”: Using Decoys as Attacker Traps

Some web sites are averse to blocking a user’s account when they see a large
number of failed login attempts. This is usually due to fear that a user’s account
will effectively suffer a denial-of-service attack. The reasoning behind this is
sound: it is much more likely an attacker is trying to block a user’s account, than
trying to guess her password. It is attacks that are exceptions to this rule that
have the greatest potential to cause damage however: an unauthorized user of an
account could transfer money, attack other related accounts, or steal personal
information to be used later for identity fraud.

We have seen that decoy password sets carry certain risks when deployed
without care. At the same time, they provide an opportunity to cooperate with
web sites in detecting and blocking targeted attacks on user accounts, alleviating
concerns over potential DoS vulnerabilities of the lock-out logic [15].

Supplying web sites with some of their corresponding decoy passwords can
provide them with an effective tool for identifying attacks that are based on
compromised password files, and encourage them to take steps to block the user
account in such scenarios. This presents little risk on the part of the web site,
because the likelihood that a casual DoS attacker hits a decoy password, without
having access to the user’s device, should be very low. In other words, knowing

Kamouflage: Loss-Resistant Password Management 299

that an attack is not a random DoS but a genuine impersonation attempt will
make web sites more willing to take immediate and decisive actions to stop the
attack. This idea has been previously explored in the context of network security
for identifying and rapidly blocking intrusions via honeypots [19,16,3].

5.4 Master Password Fingerprinting

The flip side of using decoy traps as a defense mechanism, is that it becomes
vital to provide the user with positive feedback on the correctness of the mas-
ter password being entered. With the honeyword mechanism, a mistake on the
master password is indeed much more likely to result into a locked-out account
than a mistake on the account’s login password itself.

A simple technique similar to Dynamic Security Skins [4] can solve this prob-
lem. When the user selects his master password, he can be presented with an
icon selected pseudo-randomly from several thousand possible ones, based on
the master password. The user remembers the icon and uses its presence as a
cue that he typed the correct master password when he logs in again later on.
It is very unlikely that the user will mistype his password and at the same time
get the same icon, believing the password he typed was correct. In particular,
error-correction codes can be employed to ensure that single-character errors
always result in different validation icons.

5.5 Kamouflage Summarized

It is instructive to take a step back and compare our extended Kamouflage
architecture to a “traditional” password manager design.

The encryption step we added ensures that our password database is at least
as hard to crack as a traditional one: an attacker that guesses the master pass-
word can test her guess offline, however even upon successful decryption of a
password set, there will be no guarantee that the decrypted set is the real one
and not a decoy. Successfully uncovering all password sets takes time propor-
tional to the size of the master password space, which is just the same as with a
traditional design. In other words, using decoy sets we are requiring the attacker
to perform a significant amount of on-line work even when the whole space of
master passwords has been explored offline.

Kamouflage also provides opportunities for additional security mechanisms
to be deployed by web sites. We mentioned the use of honeywords, whereby a
subset of the decoy password sets could be provided to web sites by the password
manager, enabling them to identify and quickly respond to a targeted attack,
without providing new opportunities for DoS.

Finally, the visual fingerprinting technique ensures that users have feedback
on whether they entered the correct master password, without leaking any infor-
mation to an attacker, and thus without weakening the strength of the master
password.

300 H. Bojinov et al.

6 Additional Related Work

RSA key camouflage. The idea of camouflaging a cryptographic key in a
list of junk keys was previously used by Arcot systems [12] to protect RSA
signing keys used for authentication. Arcot hid an RSA private key among ten
thousand dummy private keys. The user’s password was a 4 digit PIN identifying
the correct private key. The public key was also kept secret. An attacker who
obtained the list of ten thousand private keys could not determine which is the
correct one. Camouflaging an RSA private key is much easier than camouflaging
a password since the distribution of an RSA private key is uniform in the space
of keys.

Remote password storage. Several password management systems store pass-
words on a remote third party server. As examples, we mention Verisign’s PIP [21],
the Ford-Kaliski system [7], and Boyen’s Hidden Credential Retrieval [2], while
noting that many other proposals exist. These systems, unlike ours, require addi-
tional network infrastructure for password management. Moreover, in some sys-
tems, like Verisign’s, there is considerable trust in the third party since it holds
all user passwords. An exception is Boyen’s HCR scheme [2], which is designed
to exploit the limited redundancy of stored passwords to prevent the third-
party storage facility from validating the master password offline. Compared to
[2], Kamouflage can also deal with (sets of) passwords with large amounts of
redundancy.

Trusted Computing Chips. Another approach to protecting password storage
is to rely on disk encryption, such as Windows BitLocker which uses special
hardware (a TPM) to manage the disk encryption key. An attacker who steals
the laptop will be unable to decrypt the disk, unless he or she can extract the key
from the TPM. This solution, however, cannot be used on devices that have no
TPM chip, such as smartphones and some laptops; it also suffers from portability
problems. Clearly, we prefer a solution that does not rely on special hardware.

Intelligent dictionary attacks. Several recent papers propose models for how
humans generate passwords [13,8,22]. These results apply their models to speed-
ing dictionary attacks. Here we apply these models defensively for hiding pass-
words in a long list of dummy passwords.

Slow hash functions and halting functions. Many password management
proposals discuss slow hash functions for slowing down dictionary attacks [1,5,10].
These methods are based on the assumption that the attacker has limited com-
puting power. They can be used to protect the user’s master password against
dictionary attacks. Our approach, which is secure in the face of an attacker with
significant computing power, is complementary and can be used in conjunction
with slow hashing methods for additional security.

Graphical passwords. Graphical passwords [11,9] are an alternative to text
passwords. While they appear to have less entropy than textual passwords, our
methods can, in principle, also be used to protect graphical passwords. One would

Kamouflage: Loss-Resistant Password Management 301

need a model for generating dummy graphical passwords that look identical to
human generated passwords. We did not explore this direction.

7 Conclusions

We presented a system to secure the password database on a mobile device from
attacks that are often ignored by deployed password managers. The system lever-
ages our knowledge of user password selection behavior to substantially increase
the expected online work required to exploit a stolen password database. The
mechanism can be further strengthened with the cooperation of web sites to de-
tect decoy passwords. Using a prototype implementation we demonstrated that
the system can be used as a drop-in replacement to existing systems with mini-
mal impact on the user experience. Our experiments on real password databases
suggest that the proposed decoy generation algorithm produces decoy sets that
are indistinguishable from the real set.

References

1. Boyen, X.: Halting password puzzles: hard-to-break encryption from human-

memorable keys. In: 16th USENIX Security Symposium—SECURITY 2007, pp.

119–134 (2007)

2. Boyen, X.: Hidden credential retrieval from a reusable password. In: ACM Symp. on

Information, Computer & Communication Security—ASIACCS 2009, pp. 228–238

(2009)

3. Das, V.V.: Honeypot scheme for distributed denial-of-service. In: International

Conference on Advanced Computer Control, pp. 497–501 (2009)

4. Dhamija, R., Tygar, J.D.: The battle against phishing: Dynamic security skins. In:

SOUPS 2005: Proceedings of the 2005 Symposium on Usable Privacy and Security,

pp. 77–88 (2005)

5. Feldmeier, D., Karn, P.: UNIX password security – 10 years later. In: Brassard, G.

(ed.) CRYPTO 1989. LNCS, vol. 435, pp. 44–63. Springer, Heidelberg (1990)

6. Florencio, D., Herley, C.: A large-scale study of web password habits. In: WWW

2007: Proceedings of the 16th International Conference on World Wide Web, pp.

657–666. ACM, New York (2007)

7. Ford, W., Kaliski, B.: Server-assisted generation of a strong secret from a password.

In: Proc. 9th IEEE International Workshops on Enabling Technologies, pp. 176–180

(2000)

8. Glodek, W.: Using a specialized grammar to generate probable passwords. Master’s

thesis, Florida state university (2008)

9. Goldberg, J., Hagman, J., Sazawal, V.: Doodling our way to better authentication.

In: Proceedings CHI 2002, pp. 868–869 (2002)

10. Halderman, J.A., Waters, B., Felten, E.W.: A convenient method for securely man-

aging passwords. In: WWW 2005: Proceedings of the 14th International Conference

on World Wide Web, pp. 471–479. ACM Press, New York (2005)

11. Jermyn, I., Mayer, A., Monrose, F., Reiter, M., Rubin, A.: The design and analysis

of graphical passwords. In: Proc. 8th USENIX Security Symposium, pp. 135–150

(1999)

302 H. Bojinov et al.

12. Kausik, B.: Method and apparatus for cryptographically camouflaged crypto-

graphic key. US patent 6170058 (2001)

13. Narayanan, A., Shmatikov, V.: Fast dictionary attacks on passwords using time-

space trade-off. In: Proc. of ACM CCS 2005, pp. 364–372 (2005)

14. Oechslin, P.: Making a faster cryptanalytic time-memory trade-off. In: Boneh, D.

(ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 617–630. Springer, Heidelberg (2003)

15. Account lockout attack (2009),

http://www.owasp.org/index.php/Account_lockout_attack

16. Portokalidis, G., Bos, H.: Sweetbait: Zero-hour worm detection and containment

using honeypots. Technical report, Journal on Computer Networks, Special Is-

sue on Security through Self-Protecting and Self-Healing Systems, TR IR-CS-015.

Technical report, Vrije Universiteit (2005)

17. Project, O.: John the ripper password cracker (2005),

http://www.openwall.com/john

18. Ross, B., Jackson, C., Miyake, N., Boneh, D., Mitchell, J.: Stronger password au-

thentication using browser extensions. In: Proceedings of USENIX security (2005)

19. Sardana, A., Joshi, R.: An auto-responsive honeypot architecture for dynamic re-

source allocation and qos adaptation in ddos attacked networks. Comput. Com-

mun. 32(12), 1384–1399 (2009)

20. TechCrunch. One of the 32 million with a rockyou account? you may want to

change all your passwords. like now (2009),

http://techcrunch.com/2009/12/14/rockyou-hacked/

21. Verisign. Personal identity portal (2008), https://pip.verisignlabs.com/

22. Weir, M., Aggarwal, S., Glodek, B., de Medeiros, B.: Password cracking using

probabilistic context-free grammars. In: Proceedings of IEEE Security and Privacy

(2009)

23. Yampolskiy, R.: Analyzing user passwords selection behavior for reduction of pass-

word space. In: Proc. IEEE Int. Carnahan Conference on Security Technology, pp.

109–115 (2006)

24. Yan, J., Blackwell, A., Anderson, R., Grant, A.: Password memorability and secu-

rity: Empirical results. IEEE Security and Privacy magazine 2(5), 25–31 (2004)

http://www.owasp.org/index.php/Account_lockout_attack
http://www.openwall.com/john
http://techcrunch.com/2009/12/14/rockyou-hacked/
https://pip.verisignlabs.com/

Sequential Protocol Composition in
Maude-NPA�

Santiago Escobar1, Catherine Meadows2, José Meseguer3, and Sonia Santiago1

1 DSIC-ELP, Universidad Politécnica de Valencia, Spain

{sescobar,ssantiago}@dsic.upv.es
2 Naval Research Laboratory, Washington, DC, USA

meadows@itd.nrl.navy.mil
3 University of Illinois at Urbana-Champaign, USA

meseguer@cs.uiuc.edu

Abstract. Protocols do not work alone, but together, one protocol re-

lying on another to provide needed services. Many of the problems in

cryptographic protocols arise when such composition is done incorrectly

or is not well understood. In this paper we discuss an extension to the

Maude-NPA syntax and operational semantics to support dynamic se-

quential composition of protocols, so that protocols can be specified sepa-

rately and composed when desired. This allows one to reason about many

different compositions with minimal changes to the specification. More-

over, we show that, by a simple protocol transformation, we are able to

analyze and verify this dynamic composition in the current Maude-NPA

tool. We prove soundness and completeness of the protocol transforma-

tion with respect to the extended operational semantics, and illustrate

our results on some examples.

1 Introduction

It is well known that many problems in the security of cryptographic protocols
arise when the protocols are composed. Protocols that work correctly in one
environment may fail when they are composed with new protocols in new envi-
ronments, either because the properties they guarantee are not quite appropriate
for the new environment, or because the composition itself is mishandled.

The importance of understanding composition has long been acknowledged,
and there are a number of logical systems that support it. The Protocol Compo-
sition Logic (PCL) begun in [9] is probably the first protocol logic to approach
composition in a systematic way. Logics such as the Protocol Derivation Logic
(PDL) [4], and tools such as the Protocol Derivation Assistant (PDA) [1] and
the Cryptographic Protocol Shape Analyzer (CPSA) [8] also support reason-
ing about composition. All of these are logical systems and tools that support

� S. Escobar and S. Santiago have been partially supported by the EU (FEDER) and

the Spanish MEC/MICINN under grant TIN 2007-68093-C02-02. J. Meseguer has

been supported by NSF Grants CNS 07-16638 and CNS 09-04749.

D. Gritzalis, B. Preneel, and M. Theoharidou (Eds.): ESORICS 2010, LNCS 6345, pp. 303–318, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

304 S. Escobar et al.

reasoning about the properties guaranteed by the protocols. One uses the logic
to determine whether the properties guaranteed by the protocols are adequate.
This is a natural way to approach composition, since one can use these tools
to determine whether the properties guaranteed by one protocol are adequate
for the needs of another protocol that relies upon it. Thus in [6] PCL and in
[15] the authentication tests methodology underlying CPSA are used to ana-
lyze key exchange standards and electronic commerce protocols, respectively,
via composition out of simpler components.

Less attention has been given to handling composition when model checking
protocols. However, model checking can provide considerable insight into the
way composition succeeds or fails. Often the desired properties of a composed
protocol can be clearly stated, while the properties of the components may be
less well understood. Using a model checker to experiment with different com-
positions and their results helps us to get a better idea of what the requirements
on both the subprotocols and the compositions actually are.

The problem is in providing a specification and verification environment that
supports composition. In general, it is tedious to hand-code compositions. This
is especially the case when one protocol is composed with other protocols in sev-
eral different ways. In this paper we propose a syntax and operational semantics
for sequential protocol composition in Maude-NPA [10,11], a protocol specifi-
cation and analysis tool based on unification and narrowing-based backwards
search. Sequential composition, in which one or more child protocols make use
of information obtained from running a parent protocol, is the most common
use of composition in cryptographic protocols. We show that it is possible to
incorporate it via a natural extension of the operational semantics of Maude-
NPA. We have implemented this protocol composition semantics via a simple
program transformation without any change to the tool. We prove the soundness
and completeness of the transformation with respect to the semantics.

The rest of the paper is organized as follows. In Section 2 we introduce two
protocol compositions that we will use as running examples: one example of one-
parent-one-child composition, and another of one-parent-many-children compo-
sition. After some preliminaries in Section 3, in Section 4 we give an overview of
the Maude-NPA tool and its operational semantics. In Section 5 we describe the
new composition syntax and semantics. In Section 6 we describe the operational
semantics of composition and the protocol transformation and give soundness
and completeness results. In Section 7 we conclude the paper and discuss related
and future work.

2 Two Motivating Examples

In both of our examples we build on the well-known Needham-Schroeder-Lowe
(NSL) protocol [19]. The first example of protocol composition, which appeared
in [16], is an example of a one-parent, one-child protocol, which is subject to an
unexpected attack not noticed before. In this protocol, the participants use NSL
to agree on a secret nonce. We reproduce the NSL protocol below.

Sequential Protocol Composition in Maude-NPA 305

1. A→ B : {NA, A}pk(B)

2. B → A : {NA, NB, B}pk(A)

3. A→ B : {NB}pk(B)

where {M}pk(A) means message M encrypted using the public key of principal
with name A, NA and NB are nonces generated by the respective principals, and
we use the comma as message concatenation.

The agreed nonce NA is then used in a distance bounding protocol. This is
a type of protocol, originally proposed by Desmedt [7] for smart cards, which
has received new interest in recent years for its possible application in wireless
environments [3]. The idea behind the protocol is that Bob uses the round trip
time of a challenge-response protocol with Alice to compute an upper bound on
her distance from him in the following protocol.

4. B → A : N ′
B

Bob records the time at which he sent N ′
B

5. A→ B : NA ⊕N ′
B

Bob records the time he receives the response and checks the equiva-
lence NA = NA⊕N ′

B⊕N ′
B. If it is equal, he uses the round-trip time

of his challenge and response to estimate his distance from Alice.
where ⊕ is the exclusive-or operator satisfying associativity (i.e., X⊕ (Y ⊕Z) =
(X ⊕ Y) ⊕ Z) and commutativity (i.e., X ⊕ Y = Y ⊕ X) plus the properties
X ⊕ X = 0 and X ⊕ 0 = X . Note that Bob is the initiator and Alice is the
responder of the distance bounding protocol, in contrast to the NSL protocol.

This protocol must satisfy two requirements. The first is that it must guaran-
tee that NA⊕N ′

B was sent after N ′
B was received, or Alice will be able to pretend

that she is closer than she is. Note that if Alice and Bob do not agree on NA

beforehand, then Alice will be able to mount the following attack: B → A : N ′
B

and then A→ B : N . Of course, N = N ′
B ⊕X for some X . But Bob has no way

of telling if Alice computed N using N ′
B and X , or if she just sent a random N .

Using NSL to agree on a X = NA in advance prevents this type of attack.
Bob also needs to know that the response comes from whom it is supposed

to be from. In particular, an attacker should not be able to impersonate Alice.
Using NSL to agree on NA guarantees that only Alice and Bob can know NA,
so the attacker cannot impersonate Alice. However, it should also be the case
that an attacker cannot pass off Alice’s response as his own. But this is not the
case for the NSL distance bounding protocol, which is subject to the following
attack1:

a) Intruder I runs an instance of NSL with Alice as the initiator and I as the
responder, obtaining a nonce NA.

b) I then runs an instance of NSL with Bob with I as the initiator and Bob as
the responder, using NA as the initiator nonce.

c) B → I : N ′
B where I does not respond, but Alice, seeing this, thinks it is for

her.
1 This is not meant as a denigration of [16], whose main focus is on timing models in

strand spaces, not the design of distance bounding protocols.

306 S. Escobar et al.

d) A→ I : N ′
B ⊕NA where Bob, seeing this thinks this is I’s response.

If Alice is closer to Bob than I is, then I can use this attack to appear closer to
Bob than he is. This attack is a textbook example of a composition failure. NSL
has all the properties of a good key distribution protocol, but fails to provide
all the guarantees that are needed by the distance bounding protocol. However,
in this case we can fix the problem, not by changing NSL, but by changing the
distance bounding protocol so that it provides a stronger guarantee:

4. B → A : {N ′
B}

5. A → B : {h(NA, A) ⊕ N ′
B} where h is a collision-resistant hash

function.
As we show in our analysis (not included in this paper but available online
at http://www.dsic.upv.es/~ssantiago/composition.html), this prevents the at-
tack. I cannot pass off Alice’s nonce as his own because it is now bound to her
name.

The distance bounding example is a case of a one parent, one child protocol
composition. Each instance of the parent NSL protocol can have only one child
distance bounding protocol, since the distance bounding protocol depends upon
the assumption that NA is known only by A and B. But because the distance
bounding protocol reveals NA, it cannot be used with the same NA more than
once.

Our next example is a one parent, many children composition, also using
NSL. This type of composition arises, for example, in key distribution protocols
in which the parent protocol is used to generate a master key, and the child
protocol is used to generate a session key. In this case, one wants to be able to
run an arbitrary number of child protocols.

In the distance bounding example the initiator of the distance bounding pro-
tocol was always the child of the responder of the NSL protocol and vice versa.
In the key distribution example, the initiator of the session key protocol can be
the child of either the initiator or responder of the NSL protocol. So, we have
two possible child executions after NSL:

4. A→ B : {SkA}h(NA,NB)

5. B → A : {SkA;N ′
B}h(NA,NB)

6. A→ B : {N ′
B}h(NA,NB)

4. B → A : {SkB}h(NA,NB)

5. A→ B : {SkB;N ′
A}h(NA,NB)

6. B → A : {N ′
A}h(NA,NB)

where SkA is the session key generated by principal A and h is again a collision-
resistant hash function.

These two examples give a flavor for the variants of sequential composition
that are used in constructing cryptographic protocols. A single parent instance
can have either many children instances, or be constrained to only one. Likewise,
parent roles can determine child roles, or child roles can be unconstrained. In
this paper we will show how all these types of composition are specified and
analyzed in Maude-NPA, using these examples as running illustrations.

http://www.dsic.upv.es/~ssantiago/composition.html

Sequential Protocol Composition in Maude-NPA 307

3 Background on Term Rewriting

We follow the classical notation and terminology from [22] for term rewriting
and from [20,21] for rewriting logic and order-sorted notions. We assume an
order-sorted signature Σ with a finite poset of sorts (S,≤) and a finite number
of function symbols. We assume an S-sorted family X = {Xs}s∈S of disjoint
variable sets with each Xs countably infinite. TΣ(X)s denotes the set of terms
of sort s, and TΣ,s the set of ground terms of sort s. We write TΣ(X) and TΣ

for the corresponding term algebras. We write Var(t) for the set of variables
present in a term t. The set of positions of a term t is written Pos(t), and the
set of non-variable positions PosΣ(t). The subterm of t at position p is t|p, and
t[u]p is the result of replacing t|p by u in t. A substitution σ is a sort-preserving
mapping from a finite subset of X to TΣ(X).

A Σ-equation is an unoriented pair t = t′, where t ∈ TΣ(X)s, t
′ ∈ TΣ(X)s′ ,

and s and s′ are sorts in the same connected component of the poset (S,≤). For
a set E of Σ-equations, an E-unifier for a Σ-equation t = t′ is a substitution σ
s.t. σ(t) =E σ(t′). A complete set of E-unifiers of an equation t = t′ is written
CSUE(t = t′). We say CSUE(t = t′) is finitary if it contains a finite number of E-
unifiers. A rewrite rule is an oriented pair l → r, where l �∈ X and l, r ∈ TΣ(X)s
for some sort s ∈ S. An (unconditional) order-sorted rewrite theory is a triple
R = (Σ,E,R) with Σ an order-sorted signature, E a set of Σ-equations, and
R a set of rewrite rules. The rewriting relation →R,E on TΣ(X) is t

p→R,E t′

(or →R,E) if p ∈ PosΣ(t), l → r ∈ R, t|p =E σ(l), and t′ = t[σ(r)]p for
some σ. Assuming that E has a finitary and complete unification algorithm,
the narrowing relation �R,E on TΣ(X) is t

p�σ,R,E t′ (or �σ,R,E , �R,E) if
p ∈ PosΣ(t), l→ r ∈ R, σ ∈ CSUE(t|p = l), and t′ = σ(t[r]p).

4 Maude-NPA’s Execution Model

Given a protocol P , a state in the protocol execution is a term t of sort State,
t ∈ TΣP/EP (X)State, where ΣP is the signature defining the sorts and func-
tion symbols for the cryptographic functions and for all the state constructor
symbols, and EP is a set of equations specifying the algebraic properties of
the cryptographic functions and the state constructors. A protocol P is spec-
ified with a notation derived from strand spaces [13]. In a strand, a local ex-
ecution of a protocol by a principal is indicated by a sequence of messages
[msg−1 , msg

+
2 , msg

−
3 , . . . , msg

−
k−1, msg

+
k] where each msgi is a term of sort

Msg (i.e., msgi ∈ TΣP/EP (X)Msg). Strand items representing input messages
are assigned a negative sign, and strand items representing output messages are
assigned a positive sign. For each positive message msgi in a sequence of mes-
sages [msg±1 , msg

±
2 , msg

±
3 , . . . , msg

+
i , . . . , msg

±
k−1, msg

±
k] the non-fresh vari-

ables (see below) occurring in an output message msg+
i must appear in previous

messages msg1,msg2,msg3, . . . ,msgi−1. In Maude-NPA [10,11], strands evolve
over time and thus we use the symbol | to divide past and future in a strand,
i.e., [nil,msg±1 , . . . ,msg

±
j−1 | msg±j ,msg±j+1, . . . ,msg

±
k , nil], where msg±1 , . . . ,

308 S. Escobar et al.

msg±j−1 are the past messages, and msg±j ,msg
±
j+1, . . . ,msg

±
k are the future mes-

sages (msg±j is the immediate future message). The nils are present so that the
bar may be placed at the beginning or end of the strand if necessary. A strand
[msg±1 , . . . ,msg

±
k] is a shorthand for [nil | msg±1 , . . . ,msg±k , nil]. We often re-

move the nils for clarity, except when there is nothing else between the vertical
bar and the beginning or end of a strand. We write P for the set of strands in a
protocol, including the strands that describe the intruder’s behavior.

Maude-NPA uses a special sort Msg of messages that allows the protocol speci-
fier to describe other sorts as subsorts of the top sort Msg. The specifier can make
use of a special sort Fresh in the protocol-specific signature Σ for representing
fresh unguessable values, e.g., nonces. The meaning of a variable of sort Fresh is
that it will never be instantiated by an E-unifier generated during the backwards
reachability analysis. This ensures that if two nonces are represented using differ-
ent variables of sort Fresh, they will never be identified and no approximation for
nonces is necessary. We make explicit the Fresh variables r1, . . . , rk(k ≥ 0) gen-
erated by a strand by writing :: r1, . . . , rk :: [msg±1 , . . . ,msg

±
n], where r1, . . . , rk

appear somewhere in msg±1 , . . . ,msg
±
n . Fresh variables generated by a strand

are unique to that strand.
A state is a set of Maude-NPA strands unioned together by an associative

and commutativity union operator & with identity operator ∅, along with an
additional term describing the intruder knowledge at that point. The intruder
knowledge is represented as a set of facts unioned together with an associative
and commutativity union operator _,_ with identity operator ∅. There are two
kinds of intruder facts: positive knowledge facts (the intruder knows message m,
i.e., m∈I), and negative knowledge facts (the intruder does not yet know m but
will know it in a future state, i.e., m/∈I).

In the case in which new strands are not introduced into the state, the rewrite
rules RP obtained from the protocol strands P are as follows2, where L,L1, L2

denote lists of input and output messages (+m,−m), IK, IK ′ denote sets of
intruder facts (m∈I,m/∈I), and SS, SS′ denote sets of strands:

SS & [L | M−, L′
] & (M∈I, IK) → SS & [L, M− | L′

] & (M∈I, IK) (1)

SS & [L | M+, L′
] & IK → SS & [L, M+ | L′

] & IK (2)

SS & [L | M+, L′
] & (M /∈I, IK) → SS & [L, M+ | L′

] & (M∈I, IK) (3)

In a forward execution of the protocol strands, Rule (1) synchronizes an input
message with a message already in the channel (i.e., learned by the intruder),
Rule (2) accepts output messages but the intruder’s knowledge is not increased,
and Rule (3) accepts output messages and the intruder’s knowledge is positively
increased. Note that Rule (3) makes explicit when the intruder learned a message
M , which is recorded in the previous state by the negative fact M /∈I. A fact
M /∈I can be paraphrased as: “the intruder does not yet know M , but will learn
it in the future”.

2 Note that to simplify the exposition, we omit the fresh variables at the beginning of

each strand in a rewrite rule.

Sequential Protocol Composition in Maude-NPA 309

New strands are added to the state by explicit introduction through dedicated
rewrite rules (one for each honest or intruder strand). It is also the case that when
we are performing a backwards search, only the strands that we are searching
for are listed explicitly, and extra strands necessary to reach an initial state
are dynamically added. Thus, when we want to introduce new strands into the
explicit description of the state, we need to describe additional rules for doing
that, as follows:

for each [l1, u+, l2] ∈ P : SS & [l1 | u+, l2] & (u/∈I, IK) → SS &(u∈I, IK) (4)

where u denotes a message, l1, l2 denote lists of input and output messages
(+m,−m), IK denotes a set of intruder facts (m∈I,m/∈I), and SS denotes a
set of strands. For example, intruder concatenation of two learned messages is
described as follows:

SS & [M−
1 , M−

2 | (M1; M2)
+
] & ((M1; M2)/∈I, IK) → SS & ((M1; M2)∈I, IK)

In summary, for a protocol P , the set of rewrite rules obtained from the protocol
strands that are used for backwards narrowing reachability analysis modulo the
equational properties EP is RP = {(1), (2), (3)} ∪ (4).

5 Syntax for Protocol Specification and Composition

We begin by describing the new syntactic features we need to make explicit in
each protocol to later define sequential protocol compositions. Each strand in
a protocol specification in the Maude-NPA is now extended with input param-
eters and output parameters. Input parameters are a sequence of variables of
different sorts placed at the beginning of a strand. Output parameters are a
sequence of terms placed at the end of a strand. Any variable contained in an
output parameter must appear either in the body of the strand, or as an input
parameter. The strand notation we will now use is [{−→I },−→M, {−→O}] where

−→
I is

a list of input parameter variables,
−→
M is a list of positive and negative terms in

the strand notation of the Maude-NPA, and
−→
O is a list of output terms all of

whose variables appear in
−→
M or

−→
I . The input and output parameters describe

the exact assumptions about each principal.
In the following, we first describe our syntax for protocol specification and

then introduce a new syntax for protocol composition. Similarly to the Maude
syntax for modules, we define a protocol modularly as follows:

prot Name is sorts Sorts . subsorts Subsorts .

Operators Variables Equations DYStrands Strands
endp

where Name is a valid Maude module name, Sorts is a valid Maude-NPA declara-
tion of sorts, Subsorts is a valid Maude-NPA declaration of subsorts, Operators
is a valid Maude-NPA declaration of operators, Variables is a valid Maude-
NPA declaration of variables to be used in the equational properties and in the

310 S. Escobar et al.

honest and Dolev-Yao strands, Equations is a valid Maude-NPA declaration of
equational properties, DYStrands is a sequence of valid Maude-NPA Dolev-Yao
strands, each starting with the word DYstrand and ending with a period, and
Strands is a sequence of valid Maude-NPA strands, each starting with the word
strand and ending with a period. The Maude-NPA protocol specifications of all
the examples can be found in http://www.dsic.upv.es/~ssantiago/composition.

html.

Example 1. The following description of the NSL protocol contains more tech-
nical details than the informal description of NSL in Section 2. A nonce gener-
ated by principal A is denoted by n(A, r), where r is a unique variable of sort
Fresh. Concatenation of two messages, e.g., NA and NB, is denoted by the op-
erator ; , e.g., n(A, r) ; n(B, r′). Encryption of a message M with the public
key KA of principal A is denoted by pk(A,M), e.g., {NB}pk(B) is denoted by
pk(B, n(B, r′)). Encryption with a secret key is denoted by sk(A,M). The pub-
lic/private encryption cancellation properties are described using the equations
pk(X, sk(X,Z)) = Z and sk(X, pk(X,Z)) = Z. The two strands P associated
to the three protocol steps shown above are as follows:

strand [NSL.init] :: r :: [{A,B} |

+(pk(B,n(A,r);A)), -(pk(A,n(A,r);N;B)), +(pk(B,N)), {A,B,n(A,r),N}] .

strand [NSL.resp] :: r :: [{A,B} |

-(pk(B,N;A)), +(pk(A,N;n(B,r);B)), -(pk(B,n(B,r))), {A,B,N,n(B,r)}] .

Note that we allow each honest or Dolev-Yao strand to be labeled (e.g. init or
resp), in contrast to the standard Maude-NPA syntax for strands. These strand
labels play an important role in our protocol composition method as explained
below.

Example 2. Similarly to the NSL protocol, there are several technical details
missing in the previous informal description of DB. The exclusive-or operator is
⊕ and its equational properties are described using associativity and commu-

tativity of ⊕ plus the equations3 X ⊕ 0 = X , X ⊕X = 0, and X ⊕X ⊕ Y = Y .
Since Maude-NPA does not yet include timestamps, we do not include all the
actions relevant to calculating time intervals, sending timestamps, and checking
them. The two strands P associated to the three protocol steps shown above are
as follows:

strand [DB.init] :: r :: [{A,B,NA} |

+(n(B,r)), -(n(B,r)*NA), {A,B,NA,n(B,r)}] .

strand [DB.resp] :: nil :: [{A,B,NA} | -(NB), +(NB * NA), {A,B,NA,NB}] .

In this protocol specification, it is made clear that the nonce NA used by the
initiator is a parameter and is never generated by A during the run of DB.
However, the initiator B does generate a new nonce.

3 Note that the redundant equational property X⊕X⊕Y = Y is necessary in Maude-

NPA for coherence purposes; see [11].

http://www.dsic.upv.es/~ssantiago/composition.html
http://www.dsic.upv.es/~ssantiago/composition.html

Sequential Protocol Composition in Maude-NPA 311

Example 3. The previous informal description of the KD protocol also lacks sev-
eral technical details, which we supply here. Encryption of a messageM with key
K is denoted by e(K,M), e.g., {N ′

B}h(NA,NB) is denoted by e(h(n(A, r), n(B, r′)),
n(B, r′′)). Cancellation properties of encryption and decryption are described us-
ing the equations e(X, d(X,Z)) = Z and d(X, e(X,Z)) = Z. Session keys are
written skey(A, r), where A is the principal’s name and r is a Fresh variable. The
two strands P associated to the KD protocol steps shown above are as follows:

strand [KD.init] :: r :: [{A,B,K} | +(e(K,skey(A,r)),

-(e(K,skey(A,r) ; N)), +(e(K, N)), {A,B,K,skey(A,r),N}] .

strand [KD.resp] :: r :: [{A,B,K} | -(e(K,SK)), +(e(K,SK ; n(B,r))),

-(e(K,n(B,r))), {A,B,K,SK,n(B,r)}] .

Sequential composition of two strands describes a situation in which one strand
(the child strand), can only execute after the parent strand has completed ex-
ecution. Each composition of two strands is obtained by matching the output
parameters of the parent strand with the input parameters of the child strand
in a user-defined way. Note that it may be possible for a single parent strand to
have more than one child strand.

The relevant fact in the DB protocol is that both nonces are required to be
unknown to an attacker before they are sent, but the nonce originating from the
responder must be previously agreed upon between the two principals. Therefore,
this protocol is usually composed with another protocol ensuring secrecy and
authentication of nonces. Furthermore, according to [16], there are two extra
issues related to the DB protocol that must be considered: (i) the initiator of
the previous protocol plays the role of the responder in DB and viceversa, and
(ii) nonces generated by the parent protocol cannot be shared by more than
one child so that an initiator of NSL will be connected to one and only one
responder of DB. In our working example, we use the NSL protocol to provide
these capabilities.

Similarly to the syntax for protocols, we define protocol composition as
follows4:

prot Name is Name1 ; Name2

a1{−→O1} ; {−→I1}b1 [1-1] (or [1-*]) . · · · an{−→On} ; {−→In}bn [1-1] (or [1-*]) .

endp

where Name is a valid Maude-NPA module name, Name1 and Name2 are proto-
col names previously defined, a1, . . . , an are labels of strands in protocol Name1,
and b1, . . . , bn are labels of strands in protocol Name2. Furthermore, for each
composition ai{

−→
Oi}; {

−→
Ii }bi, strand definition :: −→rai :: [{−→Iai},−→ai , {

−−→
Oai}] for role

ai, and strand definition :: −→rbi :: [{−→Ibi},
−→
bi , {

−→
Obi}] for role bi, we have that:

1. variables are properly renamed, i.e. Vab = Var(−→Ii)∪Var(
−→
Oi), Va = Var(−→Iai)∪

Var(−−→Oai), Vb = Var(−→Ibi) ∪ Var(
−→
Obi), and Vab ∩ Va ∩ Vb = ∅;

2. the variables of
−→
Ii must appear in

−→
Oi (no extra variables are allowed in a

protocol composition);
4 Operator and sort renaming is indeed necessary, as in the Maude module importation

language, but we do not consider those details in this paper.

312 S. Escobar et al.

3. the formal output parameters
−−→
Oai must match the actual output parameters−→

Oi, i.e., ∃σa s.t.
−−→
Oai =EP σa(

−→
Oi); and

4. the actual input parameters
−→
Ii must match the formal input parameters

−→
Ibi ,

i.e., ∃σb s.t.
−→
Ii =EP σb(

−→
Ibi).

The expressions [1−1] (or [1−∗]) indicate whether a one-to-one (or a one-to-
many) composition is desired for those two strands. Note that for each compo-
sition, if there are substitutions σa and σb as described above, then there is a
substitution σab combining both, i.e., σab(X) = σa(σb(X)) for any variable X ,
and then σa(

−→
Ii) =EP σab(

−→
Ibi). This ensures that any protocol composition is

feasible and avoids the possibility of failing protocol compositions.
Let us consider again our two NSL and DB protocols and their composition.

Note that we do not have to modify either the NSL or the DB specification
above. The composition of both protocols is specified as follows:

prot NSL-DB is NSL ; DB

NSL.init {A,B,NA,NB} ; {A,B,NA} DB.resp [1-1] .

NSL.resp {A,B,NA,NB} ; {A,B,NA} DB.init [1-1] .

endp

Let us now consider the NSL and KD protocols and their composition. The
composition of both protocols, which is an example of a one-to-many composi-
tion, is specified as follows:

prot NSL-KD is NSL ; KB

NSL.init {A,B,NA,NB} ; {A,B,h(NA,NB)} KD.resp [1-*] .

NSL.init {A,B,NA,NB} ; {A,B,h(NA,NB)} KD.init [1-*] .

NSL.resp {A,B,NA,NB} ; {A,B,h(NA,NB)} KD.init [1-*] .

NSL.resp {A,B,NA,NB} ; {A,B,h(NA,NB)} KD.resp [1-*] .

endp

In the remainder of this paper we remove irrelevant parameters (i.e. input
parameters for strands with no parents, and output parameters for strands with
no children) in order to simplify the exposition.

6 Maude-NPA’s Composition Execution Model

In this section we define a concrete execution model for the one-to-one and one-
to-many protocol compositions by extending the Maude-NPA execution model.
However, we show that, by a simple protocol transformation, we are able to
analyze and verify this dynamic composition in the current Maude-NPA tool. We
prove soundness and completeness of the protocol transformation with respect to
the extended operational semantics, and illustrate our results on our two running
examples.

6.1 Composition Execution Model

As explained in Section 4, the operational semantics of protocol execution and
analysis is based on rewrite rules denoting state transitions which are applied

Sequential Protocol Composition in Maude-NPA 313

for each one-to-one composition {a{−→O}; {−→I }b} [1−1] with

strand definition [{−→Ia},−→a , {−→Oa}] for protocol a,

strand definition [{−→Ib},−→b , {−→Ob}] for protocol b,

and substitutions σa, σab s.t.
−→
Oa =EP σa(

−→
O) and σa(

−→
I) =EP σab(

−→
Ib),

we add the following rule :

SS &−→a | {−→Oa}] & [nil | {σab(
−→
Ib)}, σab(

−→
b)]& IK

→ SS &−→a , {−→Oa} | nil] & [{σab(
−→
Ib)} | σab(

−→
b)]& IK (5)

SS &−→a | {−→O}] & [nil | {σab(
−→
Ib)}, σab(

−→
b)]& IK

→ SS & [{σab(
−→
Ib)} | σab(

−→
b)]& IK (6)

Fig. 1. Semantics for one-to-one composition

modulo the algebraic properties EP of the given protocol P . Therefore, in the
one-to-one and one-to-many cases we must add new state transition rules in
order to deal with protocol composition. Maude-NPA performs backwards search
modulo EP by reversing the transition rules expressed in a forward way; see
[10,11]. Again, we define forward rewrite rules which will happen to be executed
in a backwards way.5

In the one-to-one composition, we add the state transition rules of Figure 1.
Rule 5 composes a parent and a child strand already present in the current
state. Rule 6 adds a parent strand to the current state and composes it with
an existing child strand. Note that since a strand specification is a symbolic
specification representing many concrete instances and the same applies to a
composition of two protocol specifications, we need to relate actual and formal
parameters of the protocol composition w.r.t. the two protocol specifications by
using the substitutions σa and σab in Figure 1. For example, given the following
composition of the NSL-DB protocol

NSL.init {A,B,NA,NB} ; {A,B,NA} DB.resp [1-1] .

where NSL.init and DB.resp were defined in Section 5, we add the following
transition rule for Rule (5) where both the parent and the child strands are
present and thus synchronized

:: r :: [+(pk(B,n(A,r);A)), -(pk(A,n(A,r);N;B)), +(pk(B,N))

| {A,B,n(A,r),N}]

:: nil :: [nil | {A,B,n(A,r)}, -(NB), +(NB * n(A,r))] & SS & IK

->

:: r :: [+(pk(B,n(A,r);A)), -(pk(A,n(A,r);N;B)), +(pk(B,N)),

5 Note however that we represent unification explicitly via a substitution σ instead

of implicitly via variable equality as in Section 4. This is because output and input

parameters are not required to match, e.g. in the composition NSL-KD, the output

parameters of the parent strand are {A, B, NA, NB} whereas the input parameters

of the child strand are {A, B, h(NA, NB)}.

314 S. Escobar et al.

for each one-to-many composition {a{−→O }; {−→I }b} [1−∗] with

strand definition [{−→Ia},−→a , {−→Oa}] for protocol a,

strand definition [{−→Ib},−→b , {−→Ob}] for protocol b,

and substitutions σa, σab s.t.
−→
Oa =EP σa(

−→
O) and σa(

−→
I) =EP σab(

−→
Ib),

we add one Rule 5, one Rule 6, and the following rule :

SS & [
−→a | {−→Oa}] & [nil | {σab(

−→
Ib)}, σab(

−→
b)]& IK

→ SS & [−→a | {−→Oa}] & [{σab(
−→
Ib)} | σab(

−→
b)]& IK (7)

Fig. 2. Semantics for one-to-many composition

{A,B,n(A,r),N} | nil]

:: nil :: [{A,B,n(A,r)} | -(NB), +(NB * n(A,r))] & SS & IK

One-to-many composition uses the rules in Figure 1 for the first child plus an
additional rule for subsequent children, described in Figure 2. Rule 7 composes a
parent strand and a child strand but the bar in the parent strand is not moved,
in order to allow further backwards child compositions. For example, given the
following composition of the NSL-KD protocol

NSL.resp {A,B,NA,NB} ; {A,B,h(NA,NB)} KD.init [1-*] .

where NSL.resp and KD.init are as defined in Section 5, we add the following
transition rule for Rule (7) using substitution σab = {A’ $→ A, B’ $→ B, K $→
h(NA,n(B,r))}:

:: r :: [-(pk(B,NA;A)), +(pk(A,NA;n(B,r);B)), -(pk(B,n(B,r)))

| {A,B,NA,n(B,r)}] .

:: r’ :: [nil | {A,B,h(NA,n(B,r))}, +(e(h(NA,n(B,r)),skey(A,r’)),

-(e(h(NA,n(B,r)),skey(A,r’) ; N)), +(e(h(NA,n(B,r)), N))] .

& SS & IK

->

:: r :: [-(pk(B,NA;A)), +(pk(A,NA;n(B,r);B)), -(pk(B,n(B,r))),

{A,B,NA,n(B,r)} | nil] .

:: r’ :: [{A,B,h(NA,n(B,r))} | +(e(h(NA,n(B,r)),skey(A,r’)),

-(e(h(NA,n(B,r)),skey(A,r’) ; N)), +(e(h(NA,n(B,r)), N))] .

& SS & IK

Thus, for a protocol composition P1;P2, the rewrite rules governing protocol
execution are R◦

P1;P2
= {(1), (2), (3)} ∪ (4) ∪ (5) ∪ (6) ∪ (7).

6.2 Protocol Composition by Protocol Transformation

Instead of implementing a new version of the Maude-NPA generating new tran-
sition rules for each protocol composition, we have defined a protocol transfor-
mation that achieves the same effect using the current Maude-NPA tool.

The protocol transformation is given in Figure 3. Its output is a single, com-
posed protocol specification where:

Sequential Protocol Composition in Maude-NPA 315

Φ(P1;P2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

add strand [−→a ,−(roleb(r)), +(rolea(r) . σab(İb))] and

strand [+(roleb(r)),−(rolea(r) . İb),
−→
b]

whenever {a{−→O }; {−→I }b} [1−1] in P1;P2,

strand definition [rolea][{−→Ia},−→a , {−→Oa}] for protocol a,

strand definition [roleb][{−→Ib},−→b , {−→Ob}] for protocol b,

∃σa, σab s.t.
−→
Oa =EP σa(

−→
O) and σa(

−→
I) =EP σab(

−→
Ib)

and r is a fresh variable

add strand [−→a , +(rolea(r) . σab(İb))] and strand [−(rolea(r) . İb),
−→
b]

whenever {a{−→O }; {−→I }b} [1−∗] in P1;P2,

strand definition [rolea][{−→Ia},−→a , {−→Oa}] for protocol a,

strand definition [roleb][{−→Ib},−→b , {−→Ob}] for protocol b,

∃σa, σab s.t.
−→
Oa =EP σa(

−→
O) and σa(

−→
I) =EP σab(

−→
Ib)

and r is a fresh variable

Fig. 3. Protocol Transformation

1. Sorts, symbols, and equational properties of both protocols are put together
into a single specification6. Strands of both protocols are transformed and
added to this single specification as described in Figure 3.

2. For each composition we transform the input parameters {−→Ib} into an input
message exchange of the form −(

−→
Ib), and the output parameters {−→Oa} into

an output message exchange of the form +(σab(
−→
Ib)). The sort Param of

these messages is disjoint from the sort Msg used by the protocol in the
honest and intruder strands. This ensures that they are harmless, since no
intruder strand will be able to use them. In order to avoid type conflicts, we
use a dot for concatenation within protocol composition exchange messages,
e.g. input parameters

−→
I = {A,B,NA} are transformed into the sequence

İ = A . B . NA.
3. Each composition is uniquely identified by using a composition identifier (a

variable of sort Fresh). Strands exchange such composition identifier by using
input/output messages of the form rolej(r), which make the role explicit.
The sort Role of these messages is disjoint from the sorts Param and Msg.
(a) In a one-to-one protocol composition, the child strand uniquely generates

a fresh variable that is added to the area of fresh identifiers at the begin-
ning of its strand specification. This fresh variable must be passed from
the child to the parent before the parent generates its output parameters
and sends it back again to the child.

(b) In a one-to-many protocol composition, the parent strand uniquely gen-
erates a fresh variable that is passed to the child. Since an (a priori)
unbounded number of children will be composed with it, no reply of the
fresh variable is expected by the parent from the children.

6 Note that we allow shared items but require the user to solve any possible conflict.

Operator and sort renaming is an option, as in the Maude module importation

language, but we do not consider those details in this paper.

316 S. Escobar et al.

For example, for the following one-to-one protocol composition in NSL-DB
NSL.init {A,B,NA,NB} ; {A,B,NA} DB.resp [1-1] .

where NSL.init and DB.resp are as defined in Section 5 we have the following
two transformed strands:
[NSL.init] :: r :: [+(pk(B,n(A,r);A)), -(pk(A,n(A,r);N;B)), +(pk(B,N)),

-(db-resp(r#)), +(nsl-init(r#) . A . B . n(A,r))] .

[DB.resp] :: r# :: [+(db-resp(r#)), -(nsl-init(r#) . A . B . NA),

-(NB), +(NB * NA)] .

For the following one-to-many protocol composition in the NSL-KD
NSL.resp {A,B,NA,NB} ; {A,B,h(NA,NB)} KD.init [1-*] .

where NSL.resp and KD.init are as defined in Section 5 we have the following
two transformed strands:
[NSL.resp] :: r,r# :: [-(pk(B,N;A)), +(pk(A,N;n(B,r);B)), -(pk(B,n(B,r))),

+(nsl-init(r#) . A . B . h(N,n(B,r)))] .

[KD.init] :: r :: [-(nsl-init(r#) . A . B . K), +(e(K,skey(A,r)),

-(e(K,skey(A,r) ; N’)), +(e(K,N’))] .

Soundness and completeness for this protocol transformation is provided in the
following result. The proof of this theorem is available in [12]. Note that a state
St is called associated to a rewrite theory R if it is a valid term w.r.t. the order-
sorted signature of R. We call a state initial if there are no backwards narrowing
steps from it.

Theorem 1 (Soundness and Completeness). Let P1 and P2 be two proto-
cols and P1;P2 their composition, as defined in Section 5. Let RΦ(P1;P2) be the
composition rewrite theory defined in Section 6.2, and let R◦

P1;P2
be the original

Maude-NPA rewrite theory, as described in Section 6.1. Then there is a binary
relation ≡Φ between the states associated to the rewrite theory RΦ(P1;P2) and the
states associated to the rewrite theory R◦

P1;P2
such that given St and St′ asso-

ciated to RΦ(P1;P2) and R◦
P1;P2

, respectively, then St ≡Φ St′ implies that there
is an initial state In reachable from St by backwards narrowing in RΦ(P1;P2) iff
there is an initial state In′ such that In ≡Φ In′ and In′ is reachable from St′

by backwards narrowing in R◦
P1;P2

.

We also have experimental results for protocol composition based on this the-
orem: (i) we found the attack for the NSL-DB protocol composition, (ii) we
proved the security of the fixed version of the NSL-DB composition using a hash
function, and (iii) we proved the security of NSL-KD. Due to space limitations,
our experiments are not included here but they are available at http://www.dsic.
upv.es/~ssantiago/composition.html.

7 Related Work and Conclusions

Our work addresses a somewhat different problem than most existing work on
cryptographic protocol composition, which generally does not address model-
checking. Indeed, to the best of our knowledge, most protocol analysis model-
checking tools simply use hand-coded concatenation of protocol specifications

http://www.dsic.upv.es/~ssantiago/composition.html
http://www.dsic.upv.es/~ssantiago/composition.html

Sequential Protocol Composition in Maude-NPA 317

to express sequential composition. However, we believe that the problem we are
addressing is an important one that tackles a widely acknowledged source of
protocol complexity. For example, in the Internet Key Exchange Protocol [18]
there are sixteen different one-to-many parent-child compositions of Phase One
and Phase Two protocols. The ability to synthesize compositions automatically
would greatly simplify the specification and analysis of protocols like these.

Now thatwehave amechanism for synthesizing compositions,we are ready to re-
visit existing research on composing protocols and their properties and determine
how we could bestmake use of it in our framework. There have been two approaches
to this problem. One (called nondestructive composition in [6]) is to concentrate
on properties of protocols and conditions on them that guarantee that properties
satisfied separately are not violated by the composition. This is, for example, the
approach taken by Gong and Syverson [14], Guttman and Thayer [17], Cortier and
Delaune [5] and, in the computational model, Canetti’s Universal Composability
[2]. The conditions in this case are usually ones that can be verified syntactically,
so Maude-NPA, or any other model checker, would not be of much assistance here.

Of more interest to us is the research that addresses the compositionality of the
protocol properties themselves (called additive composition in [6]). This addresses
the development of logical systems and tools such as CPL, PDL, and CPSA cited
earlier in this paper, in which inference rules are provided for deriving complex
properties of a protocol from simpler ones. Since these are pure logical systems,
they necessarily start from very basic statements concerning, for example, what
a principal can derive when it receives a message. But there is no reason why the
properties of the component protocols could not be derived using model checking,
and then composed using the logic. This would give us the benefits of both model
checking (for finding errors and debugging), and logical derivations (for building
complex systems out of simple components), allowing to switch between one and
the other as needed. Indeed, Maude-NPA is well positioned in that respect. For
example, the notion of state in strand spaces that it uses is very similar to that
used by PDL [4], and we have already developed a simple property language that
allows us to translate the “shapes” produced by CPSA into Maude-NPA attack
states. The next step in our research will be to investigate the connection more
closely from the point of view of compositionality.

References

1. Anlauff, M., Pavlovic, D., Waldinger, R., Westfold, S.: Proving authentication prop-

erties in the protocol derivation assistant. In: Proc. of Joint Workshop on Foun-

dations of Computer Security and Automated Reasoning for Security Protocol

Analysis (2006)

2. Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally composable two-party

and multi-party secure computation. In: STOC, pp. 494–503 (2002)

3. Capkun, S., Hubaux, J.P.: Secure positioning in wireless networks. IEEE Journal

on Selected Areas in Communication 24(2) (February 2006)

4. Cervesato, I., Meadows, C., Pavlovic, D.: An encapsulated authentication logic for

reasoning about key establishment protocols. In: IEEE Computer Security Foun-

dations Workshop (2005)

318 S. Escobar et al.

5. Cortier, V., Delaune, S.: Safely composing security protocols. Formal Methods in

System Design 34(1), 1–36 (2009)

6. Datta, A., Derek, A., Mitchell, J.C., Pavlovic, D.: Secure protocol composition.

In: Proc. Mathematical Foundations of Programming Semantics. ENTCS, vol. 83

(2003)

7. Desmedt, Y.: Major security problems with the “unforgeable” (Feige-)Fiat-Shamir

Proofs of identity and how to overcome them. In: Securicom 88, 6th World-

wide Congress on Computer and Communications Security and Protection, Paris,

France, March 1988, pp. 147–159 (1988)

8. Doghim, S., Guttman, J., Thayer, F.J.: Searching for Shapes in Cryptographic

Protocols. In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp.

523–537. Springer, Heidelberg (2007)

9. Durgin, N., Mitchell, J., Pavlovic, D.: A Compositional Logic for Program Correct-

ness. In: Fifteenth Computer Security Foundations Workshop — CSFW-14, Cape

Breton, NS, Canada, June 11-13, IEEE Computer Society Press, Los Alamitos

(2001)

10. Escobar, S., Meadows, C., Meseguer, J.: A rewriting-based inference system for the

NRL Protocol Analyzer and its meta-logical properties. Theor. Comput. Sci. 367(1-

2), 162–202 (2006)

11. Escobar, S., Meadows, C., Meseguer, J.: Maude-NPA: Cryptographic protocol

analysis modulo equational properties. In: FOSAD 2008/2009 Tutorial Lectures,

vol. 5705, pp. 1–50. Springer, Heidelberg (2009)

12. Escobar, S., Meadows, C., Meseguer, J., Santiago, S.: Sequential Protocol Compo-

sition in Maude-NPA. Technical Report DSIC-II/06/10, Universidad Politécnica

de Valencia (June 2010)

13. Thayer Fabrega, F.J., Herzog, J., Guttman, J.: Strand Spaces: What Makes a

Security Protocol Correct? Journal of Computer Security 7, 191–230 (1999)

14. Gong, L., Syverson, P.: Fail-stop protocols: An approach to designing secure pro-

tocols. In: Proc. of the 5th IFIP International Working Conference on Dependable

Computing for Critical Applications, pp. 79–99. IEEE Computer Society Press,

Los Alamitos (1998)

15. Guttman, J.: Security protocol design via authentication tests. In: Proc. Com-

puter Security Foundations Workshop. IEEE Computer Society Press, Los Alami-

tos (2001)

16. Guttman, J.D., Herzog, J.C., Swarup, V., Thayer, F.J.: Strand spaces: From key

exchange to secure location. In: Workshop on Event-Based Semantics (2008)

17. Guttman, J.D., Thayer, F.J.: Protocol independence through disjoint encryption.

In: CSFW, pp. 24–34 (2000)

18. Harkins, D., Carrel, D.: The Internet Key Exchange (IKE), IETF RFC 2409

(November 1998)

19. Lowe, G.: Breaking and fixing the Needham-Schroeder public key protocol using

FDR. In: Margaria, T., Steffen, B. (eds.) TACAS 1996. LNCS, vol. 1055, pp. 147–

166. Springer, Heidelberg (1996)

20. Meseguer, J.: Conditional rewriting logic as a unified model of concurrency. Theor.

Comput. Sci. 96(1), 73–155 (1992)

21. Meseguer, J.: Membership algebra as a logical framework for equational speci-

fication. In: Parisi-Presicce, F. (ed.) WADT 1997. LNCS, vol. 1376, pp. 18–61.

Springer, Heidelberg (1998)

22. TeReSe (ed.): Term Rewriting Systems. Cambridge University Press, Cambridge

(2003)

Verifying Security Property of Peer-to-Peer
Systems Using CSP

Tien Tuan Anh Dinh and Mark Ryan

School of Computer Science,

University of Birmingham, Birmingham

United Kingdom, B15 2TT

{ttd,mdr}@cs.bham.ac.uk

Abstract. Due to their nature, Peer-to-Peer (P2P) systems are subject

to a wide range of security issues. In this paper, we focus on a specific

security property, called the root authenticity (or RA) property of the

so-called structured P2P overlays. We propose a P2P architecture that

uses Trusted Computing as the security mechanism. We formalize that

system using a process algebra (CSP), then verify that it indeed meets

the RA property.

Keywords: Peer-to-Peer, Trusted Computing, formal verification, CSP.

1 Introduction

Peer-to-Peer (P2P)overlaysareheterogeneous systems that consists ofautonomous
peers (or nodes), in which most traffic is among peers. The most well-known P2P
applications, file-sharings [1,2], are built on top of unstructured overlays. In these
overlays, peers form a random topology, i.e. a peer can connect to any other peer.
Searching is donebybroadcasting thequery toneighboringnodes (which is not scal-
able). Unstructured overlays support approximate search, i.e. searching for items
close to the search key k. They are suitable for dynamic environments (where peers
leave and join frequently).

In this paper, we focus on structured P2P overlays, in which peers form rigid
topologies, i.e. a node only connects to a certain set of neighbors. Examples are
Chord [3], Pastry [4], etc. It is necessary to update the topology when nodes join
or leave the network, which is an expensive operation. Exact-match searching is
done deterministically and is very efficient. In many overlays, it takes O�logN�
hops, where N is the number of peers. On the one hand, structured overlays are
restricted to relatively stable environments where joining and leaving are infre-
quent. On the other hand, they are much more scalable than the unstructured
counterpart, and therefore can support applications with very large numbers of
participants. Existing applications of structured overlays range from global stor-
age systems [5], P2P-based communications [6], application-level multicast [7],
P2P-based marketplaces [8] to botnets [9].

Due to the decentralization nature, P2P systems are subject to a wide range
of security attacks. They are normally caused by the lack of an identity man-
agement mechanism or of a central authority. In this work, we investigate an

D. Gritzalis, B. Preneel, and M. Theoharidou (Eds.): ESORICS 2010, LNCS 6345, pp. 319–339, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

320 T.T.A. Dinh and M. Ryan

attack, called the false-destination attack, in which the adversary falsely claims
that it is the destination of a search key k. We say that a P2P system satisfies
the root authenticity (or RA) property if it is secure from this attack. In struc-
tured overlays, where the data key k is uniquely assigned to a root node, there
are various reasons behind this attack. For example, in the P2P storage system,
the adversary wishes to censor a piece of data identified by the key k. It will
(falsely) claim to be the root node of k. As the consequence, all traffic regarding
k (queries or deposit of the data) will be forwarded to the adversary, which now
has total control of the data it wanted to censor.

Despite the early recognition of security problems in P2P systems, not much
progress has been made in addressing them. Most related work propose solutions
that are probabilistic. They normally do not scale well and incur great overhead
when churn (nodes joining and leaving the network) is frequent. More impor-
tantly, there is a serious lack of formal studies of P2P security. For P2P overlays
to be used in applications that demand a certain level of security, such formal
studies are vital.

Contribution. Our main contributions from this paper are as follows:

1. We discuss security issues of P2P systems, categorizing those issues as inher-
ently belonging to different levels of abstraction. This enables us to clarify
how the RA property relates to the various sets of security problems.

2. We propose a P2P architecture aiming to satisfy the RA property. This sys-
tem makes use of Trusted Computing as the underlying security mechanism.

3. We explain our formalization in CSP of the proposed system, and describe
our approach to verifying that the system does indeed satisfy the RA
property.

The detailed CSP model can be found in the Appendix. For the complete proof,
see [10].

Related Work. Sit et al. [11] present a taxonomy of security attacks on struc-
tured P2P overlays. Castro et al [12] propose a secure routing mechanism based
on a number of components: secure ID assignment, secure neighbor maintenance
and secure message forwarding. Their solution is probabilistic and incurs large
overhead.

Regarding the false destination attack, the closest to our work is that by
Wang et al. [13]. Their solution assumes the existence of a certificate authority
(or CA) that when a node joins issues certificates to 2.l � 1 neighbors, where
l is the number of closest neighbor to a peer in one direction (i.e. its leafset).
This approach is probabilistic and its effectiveness increases with l. Ganesh et
al. [14] propose another solution that assumes peers regular publishing their ID
certificates. For verification, it relies on name-space density estimation, which is
probabilistic.

Work on formalizing and verifying P2P systems are limited in numbers.
Borgstrom et al. [15] model Distributed K-ary Search (DKS), a structured over-
lay in Calculus of Communicating Systems (CCS). They verify that the routing

Verifying Security Property of Peer-to-Peer Systems Using CSP 321

protocol in DKS, under the static case (when no node joining or leaving), is
correct. Bakhshi et al. [16] model Chord in π-calculus and verify that the stabi-
lization protocol in Chord is correct.

Paper’s Organization. In the next section, we discuss the range of security
issues in P2P systems, focusing on the RA property. We show that RA is implied
by another property, called the neighbor authenticity (NA) property. In Section 3,
we introduce our P2P architecture built on top of Trusted Computing. We show
details of the routing and churn protocols that make use of the Trusted Platform
Modules (TPMs) running at each peer. In Section 4, we describe the CSP model
of the above architecture and define (in CSP) the NA property. We then explain
our approach for verifying that the current model satisfies the NA property in
Section 5. Finally, we conclude and discuss future work in Section 6.

2 Security Issues in P2P Systems

2.1 Overview

Example of a Structured P2P System. There are a number of structured
P2P systems, each differs from another in its topology, routing or maintenance
protocols. In this paper, we consider Chord, one of the earliest structured P2P
systems. Chord is more popular than the other systems, due to its simplicity
and efficient routing protocol.

Let P and D be the set of peers and data objects. In Chord, members of both
sets are hashed using a non-collision hash function into the same circular ID
space ID. Fig. 1 shows an example in which ID � �0, 210� and there are 6 peers
with IDs of 144, 296, 498, 609, 775 and 1000. The two data objects are hashed
to the value 550 and 744. Each peer in Chord connects to a peer immediate on

550

144

609

1000

296

498

775

744

144

609

1000

296

Target Peer

144 + 1

144 + 2

144 + 4

144 + 8

144 + 16 296

144 + 32 296

144 + 64 296

144 + 128 296

144 + 256

144 + 512

144 + 1024 144

296

296

296

296

498

775

Fig. 1. Example of a Chord overlay. The big circles represent peers, the rectangles

represent data objects, and the small circles represent the IDs that are used to construct

the finger table of peer 144.

322 T.T.A. Dinh and M. Ryan

its left (predecessor) and on its right (successor). In Fig.1, the predecessor and
successor of peer 144 are 1000 and 296 respectively.

Let successor(k) be the peer immediate on the right of the key k in the ID
ring. In Chord, successor�k� is the destination node of k, which is responsible
for storing the data identified by the key k. For instance, successor�300� �
successor�400� � 498 and successor�250� � 296. The data 744 is stored at peer
775. For efficient routing, each node p in Chord also maintains a finger table
of size m, where 2m is the size of ID and finger�i� � successor�p � 2i�1� for
1 � i � m. In the above example, the 4th and 9th finger of peer 144 points to
node 296 and 498 respectively.

To search for successor�k�, the searching peer forwards its query to the neigh-
bor, which is one of its successor, predecessor or finger pointers and is furthest
from it but still on the left of k. The query is then executed at the new node,
until the current node is the closest on the left of k. The search then stops and
the current node’s successor is returned. In Fig. 1, the routing path from node
144 for successor�744� is 144 � 498 � 609. Finally, 775 is returned as the
destination of k.

Auction App−multicast

DHT

Routing

CAST/DOLR

Storage Content distribution Communication

Application Interface layer

Routing layer

Appiication layer

Fig. 2. Different levels of abstraction in P2P systems. Adapted from [17].

P2P Abstraction Layers. A P2P system can be studied at different levels
of abstractions, as illustrated in Fig. 2:

+ Routing layer : implements the route(k) protocol, which, if successful, re-
turns successor�k�. In unstructured P2P systems, this protocol is imple-
mented by broadcasting the query to all neighbors. In structured P2P sys-
tems, this is implemented more efficiently by deterministically forwarding
the query to neighbors closer to k.

+ Application interface layer : implements the store(k,data), which places
the tuple (k,data) at a node. In a Distributed Hash Table (DHT) system, for
example, this tuple is stored at the destination node of k. In other systems,
it is also stored at nodes along the routing path.

+ Application layer : consists of application-specific protocols that utilize the
lower levels. For instance, P2P communication systems make use of the rout-
ing layer, whereas P2P storage systems use the application interface layer to
store data in a scalable way.

Verifying Security Property of Peer-to-Peer Systems Using CSP 323

Security Issues. Given the abstraction in Fig. 2, an adversary can perform
attacks against a P2P system at more than one level. In the following, we discuss
inherent security concerns at each level. The hierarchy in Fig. 2 suggests that
to achieve security at one level, one must at first address the security issues at
levels below it.

1. Routing layer: the adversary can corrupt the routing protocol. For example:
+ No routing: queries are dropped. As the consequence, the network is

partitioned into parts that can not reach each other.
+ Redirection: queries are forwarded to malicious nodes. They could also

be forwarded to innocent nodes, in attempt at a DDoS attack.
+ Impersonate the final node in the routing path

2. Application interface layer: the adversary can corrupt the store(k,data) pro-
tocol in the following ways:
+ Dropping the tuple (k,data) that is destined to stored at its node.
+ Tampering with the data.

3. Application layer: the adversary can compromise application-specific prop-
erties. For example:
+ Corrupting data: malware, etc.
+ Attacking other mechanisms such as replication, access control, etc.

2.2 Root Authenticity Property of a P2P System

As previously described, the adversary may attempt to impersonate the desti-
nation of a search key, called the false-destination attack. For example, in Fig.1,
an adversary controlling peer 498 and 775 could convince peer 144 that node
775 is the destination for the data 550 (the correct destination, given the current
configuration of the network, is node 609). The RA property implies that such
an attack is not possible. In the following, we present a more formal definition
of this property.

Let ID � �0, 2m� for a reasonable large value of m. For any x, y, z 	 ID,
denote inBetween�z, x, y� as the predicate that indicates that going clock-wise
from x one gets to z before y. More precisely:

inBetween�z, x, y� �
�

z � x
 �
y � z
 �
y � x

�

where � and � are addition and subtraction in modulo 2m, and
x � y
 is the
function returning the clock-wise distance between y and x1.

Let P be the set of peers in the network. We can refer to them by their unique
IDs. Let V be an honest peer that searches for the destination of a key k. V can
perform the following operations:

1. V.route�k� : the P2P routing protocol. We will not consider the details of
the function route. In our analysis, we allow it to be any function returning
a value in P .

1 �x� y� � t � 0 � t � 2m � y � t � x.

324 T.T.A. Dinh and M. Ryan

1. L <- V.getPredecessor(D);

2. if (V.neighborVerification(L,D))

if (inBetween(k,L,D))

return true;

3. return false;

Fig. 3. Details of the V.destVerification(k,D) protocol

2. V.getPredecessor�D� : V contacts D and asks for its predecessor. Similar
to route, we allow V.getPredecessor to be any function returning a value in
P .

3. V.neighborV erification�L,R� : for any L,R 	 P , V checks if L is the
predecessor of R in the current network. The details of this protocol is the
main focus of Section 3.

4. V.destV erification�k,D� : for any k 	 ID, V checks ifD is the destination
of k, given the current configuration of the network. The details of this
protocol are shown in Fig.3.

Definition 1 (Root Authenticity (RA) Property). Let Pt be the set of
current nodes in the P2P system, at a given time t. Assume that the system
evolves from t to �t � 1� as a new peer joins or an existing peer leaves the
system. The RA property is defined as:

D, k 	 ID, t . V.destV erification�k,D�
� D 	 Pt �

�

D� 	 Pt � �D� .
D� � k
 �
D � k

�

Definition 2 (Neighbor Authenticity (NA) Property). Let Pt be the set
of current nodes in the P2P system, at a given time t. Assume that the system
evolves from t to �t�1� as a new peer joins or an existing peer leaves the system.
The NA property is defined as:

L,D, t . V.neighborV erification�L,D�

� �L,D� � Pt �
�

D� 	 Pt � �L� .
D� � L
 �
D � L

�

Informally speaking, the RA property requires that for any key k and a peer D
at time t, if destV erification�k,D� returns true then D is the closest peer on
the right of k at time t. The NA property requires that at time t for any peer L
and D in the network, if neighborV erification�L,D� returns true then L is in
fact the immediate left neighbor of D at time t. From these definitions, we have
the following proposition:

Proposition 1. NA � RA

This theorem means that if the neighbor verification protocol is correct, then
the system satisfies the RA property.

Verifying Security Property of Peer-to-Peer Systems Using CSP 325

Why RA Property. In a system not satisfying the RA property, an adversary
A can falsely convince an honest peer that it is the destination of a key k. There
are various reasons behind such attacks. Since the data identified by k is stored
at the destination of k, the attacker may launch this attack to gain control
or censor a particular piece of data. In P2P storage systems, for example, the
attacker having the data can modify or removing them from the system. In other
applications where controlling more data could imply economic gains (such as
P2P-based marketplaces), there are more tangible incentives for A to initiate the
attack. In P2P-based communication systems (such as Voice Over IP (VOIP)
or instant messaging), the data generally contains the connection details of the
communicating hosts. Having control over such data means that A might be
able to eavesdrop the communication, or even prevent it from happening. The
impact cause by these attacks can be worsened by the adversary launching Sybil
attacks, in which the adversary has many identities and therefore controlling
multiple nodes at different locations in the network.

Recently, there are much research on reputation systems for P2P. One funda-
mental element of a reputation system is the feedback mechanism, by which a
peer can rate the behavior of another. In many cases, this requires a peer being
able to verify if another is telling the truth or not. The RA property implies that
a peer can check if the result of route(k) is the correct destination, therefore it
can confidently give good or bad feedback to the nodes involved in the routing
path.

3 A Secure P2P System Using Trusted Computing

3.1 Trusted Computing and Trusted Platform Modules

Trusted Computing is a collection of current and future initiatives to root security
in hardware that have been under development since about 2003. It is set to
transform the computing security landscape over the next decade. Currently, the
most noticeable manifestations are the Trusted Platform Module (TPM), Intel’s
Trusted eXecution Technology (TXT) and Virtualisation Technology (VT-d).

The TPM is a hardware chip currently shipped in high-end laptops, desktops
and servers made by all the major manufacturers and destined to be in all devices
within the next few years. It is specified by an industry consortium [18], and the
specification is now an ISO standard [19]. There are currently 100M TPMs in
existence as of 2008, and this figure is expected to be 250M by 2010 [20,21]. The
TPM provides hardware-secured storage, secure platform integrity measurement
and reporting, and platform authentication. Software that uses this functionality
will be rolled out over the coming years. The TPM is commonly used for:

1. Secure storage. User processes can store content that is encrypted by keys
only available to the TPM.

2. Platform measurement and reporting. A platform can create reports of its
integrity and configuration state that can be relied on by a remote verifier.

3. Platform authentication. A platform can obtain keys by which it can au-
thenticate itself reliably.

326 T.T.A. Dinh and M. Ryan

In the P2P context, we make use of the following set of the TPM features:

1. A TPM can create a public/private key pair �KPriv,KPub�, called an At-
testation Identity Key (AIK). The TPM can identify itself using the AIK,
which can be certified using a certificate authority.

2. Monotonic counters: each TPM maintains a set of monotonic counters. On
a counter with ID cid, one can perform the following operations:
(a) TPM ReadCounter�cid�: returns the current value of the counter cid.
(b) TPM IncrementCounter�cid�: increments and returns the new value of

the counter cid.
3. Transport sessions: the TPM commands can be grouped and executed to-

gether within a transport session. The session can be exclusive, meaning that
no other commands can be executed outside of the session when it is active.
Furthermore, the session’s log can be signed by the TPM.
(a) TPM EstablishTransport�exc�: sets up a transport session. The flag exc

determines if the session is exclusive. A session handle, sHandle is re-
turned.

(b) TPM ExecuteTransport�comm, sHandle�: executes comm, which con-
tains a wrapped TPMs command, inside the session sHandle.

(c) TPM ReleaseTransportSigned�n, sHandle�: closes the transport session
and signs its log containing input, output of all the commands executed
in sHandle. n is used as the non-replay nonce in the signature.

Example. As an example, suppose the TPM of an agent B has a counter cid,
whose value is of interest to an agent A. Protocol 1 and Fig. 4 illustrates how A
finds out the latest value of cid.

A B

cid, n

�read, cid, value, n�KPrivB
� getSignedCounterValues�n, cid�

�read, cid, value, n�KP rivB

Protocol 1: A queries B for the latest value of its counter cid

First, A sends cid and a freshly generated nonce n to B, which
then executes getSignedCounterValues�n, cid� on its local TPM. The
getSignedCounterValues�n, cid� procedure, detailed in Fig.4, first establishes
a transport session with the TPM, then executes TPM ReadCounter�cid� within
that session. Finally, the session is closed and the TPM’s signature on the ses-
sion’s log is returned, in which n is used as the non-replay nonce. Notice that
it is not possible for B to generate such a signature without having its TPM
executing the TPM ReadCounter�cid� command inside a transport session.

Verifying Security Property of Peer-to-Peer Systems Using CSP 327

1. sHandle <- TPM_EstablishTransport(true)

2. wc <- wrap command TPM_ReadCounter(cid)

3. TPM_ExecuteTransport(wc, sHandle)

4. sig <- TPM_ReleaseTransportSigned(sHandle,n)

5. return sig

Fig. 4. getSignedCounterValues(n, cid) is executed by the local TPM at B

3.2 A Secure P2P System Using Trusted Computing

Assumptions. In our proposed P2P system, we assume that all peers have sup-
port for the trusted computing infrastructure. In particular, peers are equipped
with TPMs. For a large-scale P2P system, one may question if this assumption is
reasonable. We wish to stress that firstly, more computers are being shipped with
trusted computing support. Secondly, our proposal could work with any other
infrastructure that supports the features listed in Section 3.1. It could be in the
form of smart-cards or online services. These alternatives could be better choices
than TPMs due to their flexibility and wider range of trusted functionalities.

Regarding the churn model, we assume that peers leave the network gracefully.
This means peers notify their neighbors (or other relevant entities) before exiting.

Certificate Authority. In our system, there exists a certificate authority (CA)
which is trusted to issue neighbor certificates as peers join and leave the network.
The CA does not have to run on trusted hardware. It acts as a single point of
trust, but as discussed later, is unlikely to be a performance bottleneck.

The CA has an asymmetric key pair �KPrivCA,KPubCA�. In the joining pro-
cess, for example, a new peer N contacts CA to be issued a neighbor certificate,
which is of the form:

�cid, v,N, L,R�PrivKCA

where v is the current value of the counter cid. L,R are the immediate left
and right neighbors of N , at the moment the certificate is issued. These nodes
also receive new certificates from the CA. It is important that the CA knows
the correct immediate left and right neighbors of N at any given time in order
to issue such certificates. There are several ways for the CA to acquire this
knowledge. For simplicity, we assume that it maintains a list of peers currently
in the network. When N joins, it checks that N is not already in the list, then
issues the relevant certificates and adds N to the list. It performs the opposite
when N leaves the network.

Joining/Leaving Protocol. Protocol 2 illustrates the protocol between the
CA and other nodes when N joins the network. The CA knows that L, R are the
immediate left and right neighbor of N in the current network. First, it asks N ,
L and R to increment their specific counters (cid). Once received the signatures
on the new counter values, the CA adds N to its list of existing peers, then issues
new certificates for N , L and R containing information of the new neighbors.

328 T.T.A. Dinh and M. Ryan

CA L N R

cid, nn

�inc, cid, cn, nn�KPrivN

cid, nl

�inc, cid, cl, nl�KP rivL

cid, nr

�inc, cid, cr, nr�KPrivR

�cid, cn, N, L, R�KP rivCA

�cid, cl, L, , N�KPrivCA

�cid, cr, R, N, �KPrivCA

Protocol 2: Peer N joins in between L and R in the network

When a peer E leaves the network, the protocol is similar, except that the
CA only issues certificates for E’s current neighbors.

Verifier D R

cid, nd

�read, cid, cd, nd�KPrivD

�cid, cd, D, , R�KP rivCA

cid, nr

�read, cid, cr , nr�KPrivR

�cid, cr , R, D, �KPrivCA

Protocol 3: Peer V verifies if R is the current right neighbor of peer D

Routing Protocol. Consider a peer V searching for the destination node of
a key k. First, the normal P2P routing protocol (Chord or Pastry routing, for
example) is used, which returns a peer D. Before accepting D as the destination
of k, V performs the verification protocol with D, as illustrated in Protocol 3.
The Verifier queries the latest value ofD’s counter cid, namely cd. It then asks D
for the certificate of Cd that contains cd. By doing this, the Verifier is confident
that Cd is the latest certificate issued by the CA to D.

Verifying Security Property of Peer-to-Peer Systems Using CSP 329

Cd contains information of D’s right neighbor, namely R. The Verifier then
asks for R’s latest certificate, Cr in the same way it did for D. The verification
returns true if Cd and Cr match, meaning that in Cd, R is the right neighbor of
D and in Cr, D is the left neighbor of R.

The reason for requiring certificates from both D and R is to avoid the fol-
lowing scenario. D is an adversary, it executed the joining protocol properly and
has already left the network (gracefully). However, the routing protocol returns
D, and since it is still online, D returns its out-of-date certificate, which would
be accepted by the Verifier. In other words, D is accepted as the destination of
k. This violates the RA property, which requires the destination node to be a
node currently in the network.

Discussion. It can be seen from the description of the routing and joining
protocols that the CA is a relatively off-line entity, since its only involvement is
during churn events. The CA is not consulted during the routing process. In a
typical P2P system, the rate of query-routing is considerably more frequent than
the rate of churn. We therefore argue that the CA is unlikely to be a performance
bottleneck.

More specifically, let M be the number of nodes in the network. Churn events
can be modeled by a Poisson distribution. This means that a peer’s session time
(duration during which the peer stays in the network) follows an exponential
distribution. Let c be the churn rate, so that the session times are exponentially
distributed with the expected value of 1

c . It then follows that the expected num-
ber of churn events that the CA has to deal with per time unit is c.M . For a
large (but relatively stable) network, i.e. M is in order of millions and the av-
erage session time is in the order of days, c.M is small enough so that the CA
would not become a bottleneck.

In our current design, the CA maintains a list of peers currently in the network,
which could be a concern. A typical computer nowadays can deal with M in the
size of millions. For scalability, however, it will be better to relieve the CA
from maintaining such a list. Instead, during the joining or leaving process,
the CA also asks for the certificates of the joining or leaving peer as well as
of its immediate neighbors. If the certificates match, the CA then issues new
certificates as described early. We conjecture that if all the certificates before a
churn event were issued correctly, then so are the new ones after the event is
completed. We plan to investigate this system in future work.

Finally, the current churn model is quite strict, as we consider peers leaving
gracefully, i.e. they notify the CA before leaving. We could make it more realistic
by taking the fail-stop and Byzantine failure models into account. To deal with
these failures, a time-out mechanism is needed that indicates when a certificate
will expire. More specifically, peers need to contact the CA regularly to have their
certificates renewed, or else they will be considered having left the network. This
would imply more overhead for the CA, as it needs to issues more certificates
and keeps track of which peers have left the network. Detailed investigation of
the time-out mechanism is left for future work.

330 T.T.A. Dinh and M. Ryan

4 Formal Model in CSP

A brief introduction to CSP syntax and its semantic can be found in the Ap-
pendix. CSP has three denotational semantic models: traces, stable failures and
failures/divergences. In this work, we only use the traces model, especially the
refinement relation on traces. In particular, let traces�P � and traces�Q� be set
of traces of the process P and Q, then Q is said to refine P , written as P �T Q
if:

traces�Q� � traces�P �

4.1 The System Model in CSP

The model consists of several agents, as shown in Fig.5

1. Nonce Manager : supplies fresh and unique nonces for other agents. These
values are used during joining, leaving and verification to avoid replaying of
old counter values. They are communicated by the NonceManager process
to others via the send channel.

2. TPM : models the trusted hardware used in the system. Each TPM has a
counter cid for the P2P operations. The counter ID is known to all peers.
In addition, each TPM is identified by an unique ID, which can be used as
the peer ID. Balfe et al. [22] propose a mechanism for enforcing stable IDs
based on the Direct Anonymous Attestation (DAA) protocol. In our context,
however, we could just assign the ID to be the public part of an AIK. During
P2P operations, such ID shall be unique, even though more than one AIKs
can be generated for a TPM. It is because the counter cid is unique in each
TPM. If multiple IDs are used by a TPM, then updating the counter value
of one ID will effectively invalidate the states of the other IDs.

The CSP process representing a TPM receives nonces on the channel
receive. It then sends back a signature on the latest counter value, after a

completeChurn

take

fake

saylearn

Adversary

TPMs

receive

send

receive

receive

send

send

Nonce
Verifier

send

Manager

CA

unlock
unlock

output

Fig. 5. Channels used by the processes

Verifying Security Property of Peer-to-Peer Systems Using CSP 331

read or an increment operation. The signature is of the form of the event
SqR.�n, i, c� (after a read operation) or SqI.�n, i, c� (after an increment op-
eration) where n, i, c are the received nonce, the TPM’s ID and the counter
value.

3. Certificate Authority: issues certificates during churn events, as explained in
the previous section. The CA process uses the send and receive channels for
sending nonces and receiving other messages. Once it has issued all relevant
certificates for a churn event, it outputs on the channel completeChurn to
signal that the churn event has completed. For example, the event
completeChurn.Churn.�join, i� where i is a peer indicates that i has suc-
cessfully joined the network.

4. Verifier : picks a random peer D and asks it to returns its immediate right
neighbor R. The Verifier performs the verification and then outputs whether
it accepts that R is the immediate right neighbor of D. This basically models
the neighborVerification protocol described in section 2. It follows from
Proposition 1 that if the Verifier cannot be fooled then the RA property is
met.

The Verifier process sends nonces and receives other messages on the send
and receive channel respectively. Events on the channel output indicates that
the Verifier accepts that one peer is the immediate right neighbor of another.
For instance, output.L.R means it is convinced that R is the immediate right
neighbor of L in the current network.

5. Adversary: models the attacker trying to break the RA property of the sys-
tem. We give the adversary total control of all the peers in the network, i.e.
it controls all the TPMs, even though it cannot fake signatures generated by
the TPM.

The Adversary process uses the learn and say channel to eavesdrop and
send messages from and to the other agents. We model the Adversary being
able to remember all messages it has seen, i.e. having infinite memory, so that
it could replay old messages. It can be seen from Fig.5 that all the send and
receive channels are renamed to take and fake, which are in turned mapped
to the learn and say channels (by a many-to-one mapping function). This
renaming scheme introduces non-determinism and as an effect increases the
adversary’s power.

The detailed CSP models for these agents can be found in the Appendix.

4.2 Checking the RA Property

As Proposition 1 indicates, the RA property is implied by the correctness of the
neighbor verification protocol neighborVerification, which can be formalized
by the following process:

Spec	ps, pn
 =
�
i�pn

completeChurn.Churn.�join, i�
 Spec	ps � �i�, pn��i�

�
�
i�ps

completeChurn.Churn.�leave , i�
 Spec	ps��i�, pn� �i�

�
�
i�ps

output.i.right(i,ps)
 Spec	ps, pn

332 T.T.A. Dinh and M. Ryan

ps, pn are the sets of peers currently in and not in the network respectively.
These sets change after events in the completeChurn channels occur, i.e. after
a churn event completed. The function succ�i, ps� returns the immediate right
neighbor of i in the set ps, which is defined as follows:

right�p, ps� � r if r 	 ps �
p� 	 ps��r� .
r � p
 �
r � p�

Let System be the CSP model of the entire system (the details can be found in
the Appendix). To prove that the system satisfies the RA property is equivalent
to showing the following:

Spec���,P� �T System (1)

5 Verification

The current CSP model System is very large and complex. Even if one only
considers a network with a small number of peers, this model still contains too
many states and transitions to be checked automatically by a model checker.
Our approach for the verification is to firstly find an abstraction of the original
model, called Abstraction, whose state-space is smaller. In particular, the ab-
straction satisfies: Abstraction �T System. Next, we show that Spec���,P� �T

Abstraction, which then implies that Eq.1 is correct.
Due to the space constraint, we describe our approach only briefly here. More

details can be found at [10]. First, we arrive at Abstraction through the following
steps:

1. Weakening the adversary. The original adversary has infinite memory that
helps it remember and replay old messages. We weaken it by removing the
memory, i.e. allowing the adversary to only relay messages. It turns out that
the new model using this weakened adversary has the same traces as the
original.

2. Reducing the nonce set. The NonceManager process supplies unique and
fresh nonces from a potentially infinite set. We make use of the data inde-
pendence techniques, developed by [23,24], to derive an abstraction of the
original model that uses only 2 nonces (one used by the CA and another by
the Verifier). In System (in all processes except for NonceManager), nonces
are used only for equality check and polymorphic operations (tupling, list-
ing). In other words, these processes are independent of the nonce type.

3. Reducing the counter set. We use the same technique as above to reduce the
counter set (which is potentially infinite) to only one value. In the current
model, the TPM process uses counter values with the ’�’ operators, which
makes it dependent of the counter type. Therefore, before applying the data
independence techniques, we transform the model (without reducing its trace
set) to make it independent of the counter type.

After these reduction steps, we arrive at Abstraction, the model less complex
but refined by System. We have implemented a small instance of Abstraction

Verifying Security Property of Peer-to-Peer Systems Using CSP 333

for a system with 3 peers in FDR [25], the model-checker tool for CSP. The
check for Spec���,P� �T Abstraction returns true after 13,501,797 states and
73,831,002 transitions. Next, we generalize this result to an arbitrary number
of peers by proving that traces�Abstraction� � traces�Spec���,P�� for any P .
The proof is constructed via induction, as follows:

1. (Base case). Let tr be a trace of Abstraction such that
tr��
completeChurn
� � �� where � is the restriction operator (for example,
sq�X removes non-X elements from sq). Then tr 	 traces�Spec���,P��.

2. (Inductive case). For any θ � ��, let tr be a trace of Abstraction such that:

tr��
completeChurn
� � θ � tr 	 traces�Spec���,P��

Let tr� be another trace of Abstraction, then:

e . tr���
completeChurn
� � θ��e� � tr� 	 traces�Spec����,P�

6 Conclusion

In this paper, we have discussed various security problems in structured P2P
systems. We focus on the false-destination attacks, in which an adversary can
falsely claim to be the destination of a search key. Due to the nature of struc-
tured P2P overlays (keys are stored at unique root nodes), there are a number
of reasons for such attacks. A P2P system is secure from these attacks if it sat-
isfies the root authenticity (or RA) property, which is implied by the neighbor
authenticity (NA) property. We propose a P2P architecture aiming to meet this
property, using Trusted Computing as the security mechanism. We then describe
our formalization of the proposed architecture in CSP, then our verification that
the RA property is indeed met.

We identify a few avenues to be explored in the future work. Our current churn
model is relatively strict, since peers are only allowed to leave gracefully. To be
more realistic, it must allow for fail-stop and Byzantine failure. The CA may not
have to keep information of which nodes currently in the network. It means that
before issuing certificate to a peer, the CA would ask for its neighbor certificates
and only continue if they match. A further extension would be to remove the CA
altogether. In this case, the certificate and verification mechanism might become
much more complex and the system might not be able to cope with a complex
churn model. In another direction, because the TPM was not designed with P2P
applications in mind, its operation set may be too restricted for such systems.
Therefore, it would be interesting to find an abstraction of general-purposed
trusted hardware that is more powerful, flexible and suitable for P2P. Finally,
we plan to carry out performance analysis (via simulation) of our proposed P2P
architecture as well as its extensions in order to evaluate the overhead incurred
from having the RA property.

334 T.T.A. Dinh and M. Ryan

References

1. Gnutella Project: Gnutella specification. WorldWide Web (July 2007),

http://rfc-gnutella.sourceforge.net/developer/testing/

2. Emule Project: emule homepage. World Wide Web (May 2002),

http://www.emule-project.net/

3. Stoica, I., Morris, R., Karger, D., Kaashoek, M.F., Balakrishnan, H.: Chord: A

scalable peer-to-peer lookup service for internet applications. In: 2001 ACM SIG-

COMM Conference on Applications, Technologies, Architectures, and Protocols

for Computer Communications, pp. 149–160 (2001)

4. Rowstron, A.I.T., Druschel, P.: Pastry: Scalable, decentralized object location, and

routing for large-scale peer-to-peer systems. In: IFIP/ACM International Confer-

ence on Distributed Systems Platforms Heidelberg, pp. 329–350 (2001)

5. Rowstron, A., Druschel, P.: Storage management and caching in past, a large-scale,

persistent peer-to-peer storage utility. SIGOPS Operating Systems Review 35(5),

188–201 (2001)

6. Bryan, D.A., Lowekamp, B.B., Jennings, C.: Sosimple: A serverless, standards-

based, p2p sip communication system. In: International Workshop on Advanced

Archtectures and Algorithms for Internet Delivery and Applications, pp. 42–49

(2005)

7. Castro, M., Duschel, P., Kermarrec, A.M., Rowstron, A.: Scribe: a large-scale and

decentralized application-level multicast infrastructure. IEEE Journal on Selected

Areas in Communication 20(8) (2002)

8. Dinh, T.T.A., Chothia, T., Ryan, M.: A trusted infrastructure for p2p-based mar-

ketplaces. In: 9th IEEE International Conference on P2P Computing, pp. 151–154

(2009)

9. Holz, T., Steiner, M., Dahl, F., Biersack, E., Freiling, F.: Measurements and miti-

gation of peer-to-peer-based botnets: a case study on storm worm. In: 1st USENIX

Workshop on Large-Scale Exploits and Emergent Threats, pp. 1–9 (2008)

10. Dinh, T.T.A., Ryan, M.: Checking security property of P2P systems in CSP. Tech-

nical Report CSR-10-07, School of Computer Science, University of Birmingham

(2010), http://www.cs.bham.ac.uk/~ttd/files/technicalReport.pdf

11. Sit, E., Morris, R.: Security considerations for peer-to-peer distributed hash ta-

bles. In: Druschel, P., Kaashoek, M.F., Rowstron, A. (eds.) IPTPS 2002. LNCS,

vol. 2429, pp. 261–269. Springer, Heidelberg (2002)

12. Castro, M., Druschel, P., Ganesh, A., Rowstron, A., Wallach, D.S.: Secure routing

for structured peer-to-peer overlay networks. ACM SIGOPS Operating Systems

Review 36(SI), 299–314 (2002)

13. Wang, P., Hopper, N., Osipkov, I., Kim, Y.: Myrmic: Secure and robust DHT

routing. Technical report, University of Minnesota (2006)

14. Ganesh, L., Zhao, B.Y.: Identity theft protection in structured overlays. In: EEE

Workshop on Secure Network Protocols, pp. 49–54 (2005)

15. Borgström, J., Nestmann, U., Alima, L.O., Gurov, D.: Verifying a structured

peerto- peer overlay network: The static case. In: Global Computing, pp. 250–265

(2004)

16. Bakhshi, R., Gurov, D.: Verification of peer-to-peer algorithms: A case study. Elec-

tronic Notes in Theoretical Computer Science 181, 35–47 (2007)

17. Dabek, F., Zhao, B., Druschel, P., Kubiatowicz, J., Stoica, I.: Towards a common

api for structured peer-to-peer overlays. In: Kaashoek, M.F., Stoica, I. (eds.) IPTPS

2003. LNCS, vol. 2735, pp. 33–44. Springer, Heidelberg (2003)

http://rfc-gnutella.sourceforge.net/developer/testing/
http://www.emule-project.net/
http://www.cs.bham.ac.uk/~ttd/files/technicalReport.pdf

Verifying Security Property of Peer-to-Peer Systems Using CSP 335

18. Trusted Computing Group: TPM Specification version 1.2. Parts 1–3 (2007),

http://www.trustedcomputinggroup.org/specs/TPM/
19. ISO/IEC PAS DIS 11889: Information technology – Security techniques – Trusted

platform module

20. Trusted Computing Group: Press release (2008),

http://www.trustedcomputinggroup.org/news/press/member releases/

WAVETCGPROMOTI%ONMW5 31 FINAL .pdf
21. Trusted Computing Group: TCG timeline (2008),

http://www.trustedcomputinggroup.org/about/corporate_documents/
22. Balfe, S., Lakhani, A.D., Paterson, K.G.: Trusted computing: Providing security

for peer-to-peer networks. In: International Conference on Peer-to-Peer Computing,

pp. 117–124. IEEE Computer Society, Los Alamitos (2005)

23. Lazic, R.S.: A Semantic Study of Data-Independence with Applications to the Me-

chanical Verification of Concurrent Systems. PhD thesis, Oxford University (1997)

24. Broadfoot, P.J.: Data Independence in the Model Checking of Security Protocols.

PhD thesis, Oxford University (2001)

25. Formal System Europe Ltd: FDR2 model checker tool. World Wide Web,

http://www.fsel.com/software.html

Appendix

CSP

Events.
a, b event communicated by CSP processes

Σ universal sets of events; a, b � Σ
c.v communication of event v on channel c
�c� set of all events on channel c

Processes.
P, Q CSP process

STOP do nothing

a
 P prefix

c.v
 P communicate value v on channel c, then behave as P
P � Q, P �b� Q external choice and condition (if b then P; else Q)

P �
X

Q P and Q executed concurrently, synchronized on X

P ��� Q interleaving

P �R�, P �X renaming relation and hiding events in X

Trace Models. This is one of the three denotational semantics supported by
CSP. The other two are stable failure and failure-divergence semantics.

traces	STOP
 � ����
traces	a
 P
 � ���� � ��a��s � s � traces	P
�
traces	P �Q
 � traces	P
 � traces	Q

traces	P �R�
 � � tr � �s � traces	P
 � s R� tr �

traces	P ���Q
 �
�
�s ��� t � s � traces	P
, t � traces	Q
�

traces	P �
X

Q
 �
�
�s �

X

t� � s � traces	P
, t � traces	Q

where R�,

 and �
X

are defined as follows:

http://www.trustedcomputinggroup.org/specs/TPM/
http://www.trustedcomputinggroup.org/news/press/member_releases/WAVETCGPROMOTI%ONMW5_31_FINAL_.pdf
http://www.trustedcomputinggroup.org/news/press/member_releases/WAVETCGPROMOTI%ONMW5_31_FINAL_.pdf
http://www.trustedcomputinggroup.org/about/corporate_documents/
http://www.fsel.com/software.html

336 T.T.A. Dinh and M. Ryan

�a1, .., an� R
� �b1, .., bm� � n � m �
i � n � ai R bi

��

 s � �s�
s

 t � t

 s

�a��s

 �b��t � ��a��u � u 	 s

 �b��t�
� ��b��u � u 	 t

 �a��s�

s �
X

t � t � s

�� �
X

�� � ����

�� �
X

�x� � ���� (x 	 X)

�� �
X

�y� � ��y�� (y � X)

�x��s �
X

�y��t � ��y��u
 u 	 �x��s �
X

t�

�x��s �
X

�x��t � ��x��u
 u 	 s �
X

t�

�x��s �
X

�x���t � ���� (x, x� 	 X � x � x�)

�y��s �
X

�y���t � ��y��u
 u 	 s �
X

�y���t�

���y���u
 u 	 t �
X

�y��u�

System Model in CSP

Events. Let P and Nonces � �Nonce.id
 id 	 NonceIDs� be the set of peers
(each having a unique ID) and the set of fresh nonces. Let

ChurnEvents � �Churn.�c, i�
 c 	 �join, leave�, i 	 P�

be the set of churn events. Let Counts be the set of counter values. We define
the set of events representing TPMs’ signature on counter values as:

SigMessages � �SqR.�n, p, c�, SqI.�n, p, c�
n 	 Nonces, p 	 P , c 	 Counts�

For any n, p, c, SqR.�n, p, c� and SqI.�n, p, c� represent signatures on the results
of the TPM ReadCounter and TPM IncrementCounter commands respectively.

LetNonceMessages � �SqN.�n�
n 	 Nonces� be a set of events representing
a nonce value being passed in the network. Finally, the set of events representing
certificates issued by the CA is defined as:

CertMessages � �Cert.�p, l, r, c�
 p, l, r 	 P , c 	 Counts�

Then, the set of all events used in the model is defined as:

Messages � ChurnMessages � SigMessages

� NonceMessages � CertMessages

Verifying Security Property of Peer-to-Peer Systems Using CSP 337

Channels. The following channels are used:
send, receive : Agents.Agents.Messages

where Agents � P � �NM, CA, V F �
take, fake : Agents.Agents.Messages
learn, say : Messages
output : P .P
completeChurn : ChurnMessages
unlock : Agents.P

NonceManager Process
NManager(X) =

�
n�X

j�Agents

send.NM.j.SqN.�n�
 NManager(X��n�)

NonceManager = NManager(Nonces)

TPM Process
TPM(i,c) =�

n�Nonces
j�Agents

receive.j.i.SqN.�n�

�
����

�
d�c

d�Counts

send.i.j.SqR.�n, i, d�
 unlock.V F.i
 TPM(i,d)

�
�
d�c

d�Counts

send.i.j.SqI.�n, i, d�
 unlock.CA.i
 TPM(i,d)

�
ÆÆÆ�

TPMs =
������

i�P
TPM(i,0)

CA Process
CAProcess(ps,pn) = �ps� �� 0 & Join0(ps,pn)

� �ps� �� 1 & Join1(ps,pn)
� �ps� � 1 & JoinAndLeaveN(ps,pn)

JoinAndLeaveN(ps,pn) =
�
i�pn

receive.i.CA.Churn.�join, i�
 JoinN(i,ps,pn)

�
�
i�ps

receive.i.CA.Churn.�leave, i�

if �ps� � 2 then LeaveN(i,ps,pn)
else Leave2(i,ps,pn)

338 T.T.A. Dinh and M. Ryan

JoinN(i,ps,pn) =�
n1,n2,n3�Nonces

receive.NM.CA.SqN.�n1�
 send.CA.i.SqN.�n1�

�
�������������������������������

�
c1,c2,c3�Counts

receive.i.CA.SqI.�n1, i, c1�

let S � ps� �i�
	l, r
 � neighbor	i, S

	l1, r1
 � neighbor	l,S

	l2, r2
 � neighbor	r,S
 within

send.CA.i.Cert.�i, l, r, c1�

 receive.NM.CA.SqN.�n2�

 send.CA.l.SqN.�n2�

 receive.l.CA.SqI.�n2, l, c2�

 send.CA.l.Cert.�l, l1, i, c2�

 receive.NM.CA.SqN.�n3�

 send.CA.r.SqN.�n3�

 receive.r.CA.SqI.�n3, r, c3�

 send.CA.r.Cert.�r, i, r2, c3�

 completeChurn.Churn.�join, i�

 unlock.CA.i
 unlock.CA.l

 unlock.CA.r
 CAProcess(S,pn��i�)

�
ÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆ�

Other sub-processes, namely Join0(ps,pn), Join1(ps,pn), Leave2(ps,pn) and
LeaveN(ps,pn) are be defined similarly. The function neighbor�p, ps� returns
the left and right neighbor of p in ps. More precisely,

neighbor	p, ps
 � 	left	p, ps
, right	p, ps

left	p, ps
 � l if l � ps � �p� � ps��l� . �p� l� � �p� � l�

right	p, ps
 � r if r � ps � �p� � ps��r� . �r � p� � �r � p��

Verifier Process.
VerifierProcess =�

n�Nonces

receive.NM.V F.SqN.�n�

�
������������

�
i,l,r�P

send.V F.i.SqN.�n�

�
��������

�
c�Counts

receive.i.V F.SqR.�n, i, c�

 receive.i.V F.Cert.�i, l, r, c�

 if l � r and l � i then

output.i.i
 unlock.V F.i

 STOP

else VerifierProcessN(l,i)

�
ÆÆÆÆÆÆÆ�

�
ÆÆÆÆÆÆÆÆÆÆÆ�

VerifierProcessN(l,i) =�
n�Nonces

receive.NM.V F.SqN.�n�
 send.V F.l.SqN.�n�

�
�����

�
cl�Counts

receive.l.V F.SqR.�n, l, cl�

�
��
�
ll�P

receive.l.V F.Cert.�l, ll, i, cl�

 output.l.i
 unlock.V F.i

 unlock.V F.l
 STOP

�
Æ�

�
ÆÆÆÆ�

Verifying Security Property of Peer-to-Peer Systems Using CSP 339

Adversary Process
MemoryNonce(n) = learn.SqN.�n�
 ReplayNonce(n)
ReplayNonce(n) = say.SqN.�n�
 ReplayNonce(n)

MemorySigR(n,i,c) = learn.SqR.�n, i, c�
 ReplaySigR(n,i,c)
MemorySigI(n,i,c) = learn.SqI.�n, i, c�
 ReplaySigI(n,i,c)
ReplaySigR(n,i,c) = say.SqR.�n, i, c�
 ReplaySigR(n,i,c)
ReplaySigI(n,i,c) = say.SqI.�n, i, c�
 ReplaySigI(n,i,c)

MemoryCert(i,l,r,c) = learn.Cert.�i, l, r, c�
 ReplayCert(i,l,r,c)
ReplayCert(i,l,r,c) = say.Cert.�i, l, r, c�
 ReplayCert(i,l,r,c)

Memory =
������

n�Nonces

MemoryNonce(n)

���
������

n�Nonces,i�P,c�Counts

	
MemorySigR(n,i,c)

��� MemorySigI(n,i,c)

���
������

i,l,r�P,c�Counts

MemoryCert(i,l,r,c)

ChurnInitiator =
�
i�P

	
say.Churn.�join, i�
 ChurnInitiator

� say.Churn.�leave, i�
 ChurnInitiator

Adversary = Memory ��� ChurnInitiator

Putting It Together

Network =

�
Adversary

���
χi

TPMs

�χi

CAandVFProcess = CAProcess	��,P
 ��� VerifierProcess

OtherAgents =

�
NonceManager

���
��fake.NM�	

CAandVFProcess

Impl =

�
OtherAgents

���
χe

Network Big
 � ��take, fake, unlock��

Table 1. Renaming relations and synchronization sets

Name Details Applied to

RAd1 learn � take.i.j � i, j � Agents, �i, j� � P � � Adversary

RAd2 say � fake.i.j � i, j � Agents, �i, j� � P � � Adversary

RCom1 send � take TPMs, CAProcess and

V erifierProcess

RCom2 receive � fake TPMs, CAProcess and

V erifierProcess

RNonce1 send.NM.i � take.NM.i � i � P NonceManager

RNonce2 send.NM.j � fake.NM.j � j � P NonceManager

χi ��take.i.a, fake.a.i � i � P , a � Agents��

χe ��take.a.i, fake.i.a � i � P , a � Agents��

Modeling and Analyzing Security in the
Presence of Compromising Adversaries

David Basin and Cas Cremers�

Department of Computer Science, ETH Zurich

Abstract. We present a framework for modeling adversaries in secu-

rity protocol analysis, ranging from a Dolev-Yao style adversary to more

powerful adversaries who can reveal different parts of principals’ states

during protocol execution. Our adversary models unify and generalize

many existing security notions from both the computational and sym-

bolic settings. We extend an existing symbolic protocol-verification tool

with our adversary models, resulting in the first tool that systematically

supports notions such as weak perfect forward secrecy, key compromise

impersonation, and adversaries capable of state-reveal queries. In case

studies, we automatically find new attacks and rediscover known attacks

that previously required detailed manual analysis.

1 Introduction

Problem context. Many cryptographic protocols are designed to work in the face
of various forms of corruption. For example, a Diffie-Hellman key agreement pro-
tocol, where signatures are used to authenticate the exchanged half-keys, pro-
vides perfect forward secrecy [17,30]: the resulting key remains secret even when
the signature keys are later compromised by the adversary. Designing protocols
that work even in the presence of different forms of adversary compromise has
considerable practical relevance. It reflects the multifaceted computing reality
with different rings of protection (user-space, kernel space, hardware security
modules) offering different levels of assurance with respect to the computation
of cryptographic functions (e. g., the quality of the pseudo-random numbers gen-
erated) and the storage of keys and intermediate results.

Symbolic and computational approaches have addressed this problem to dif-
ferent degrees. Most symbolic formalisms are based on the Dolev-Yao model.
These offer, with few exceptions, a limited view of honesty and conversely cor-
ruption: either principals are honest from the start and always keep their secrets
to themselves or they are completely malicious and always under adversary con-
trol. Under this limited view, it is impossible to distinguish between the security
provided by early key-exchange protocols such as the Bilateral key-exchange [12]
� This work was supported by ETH Research Grant ETH-30 09-3 and the FP7-ICT-

2007-1 Project no. 216471 (AVANTSSAR).

D. Gritzalis, B. Preneel, and M. Theoharidou (Eds.): ESORICS 2010, LNCS 6345, pp. 340–356, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Analyzing Security in the Presence of Compromising Adversaries 341

and state-of-the art protocols such as (H)MQV [27,23]. It is also impossible to
discern any benefit from storing the long-term keys in a tamper-proof module
or performing part of a computation in a cryptographic coprocessor.

In contrast to the above, researchers in the computational setting, such as
[9,25,32,7,21], have explored stronger adversary models, whereby principals may
be selectively corrupted during protocol execution. For example, their short-
term or long-term secrets, or the results of intermediate computations may be
revealed (at different times) to the adversary. These models are used to establish
stronger properties, such as perfect forward secrecy or resilience against state-
reveal attacks. There are, however, drawbacks to these computational models.
These models have been defined just for key-agreement protocols, whereas one
may expect similar definitions to exist for any security protocol. Moreover, con-
trary to the security models used in symbolic approaches, there is no automated
tool support available for the stronger adversary models.

Contributions. We present a framework for analyzing security protocols in the
presence of adversaries with a wide range of compromise capabilities. We show
how analogs of adversary models studied in the computational setting can be
modeled in our framework. For example, we can model attacks against imple-
mentations of cryptographic protocols involving the mixed use of cryptographic
co-processors for the secure storage of long-term secrets with the computation
of intermediate results in less-secure main memory for efficiency reasons.

Our models bridge another gap between the computational and symbolic ap-
proaches by providing symbolic definitions for adversaries and security properties
that were previously only available in the computational setting. Moreover, by
decomposing security properties into an adversary model and a basic security
property, we unify and generalize many existing security properties.

Our framework directly lends itself to protocol analysis. As an example, we
extend Scyther [14], a symbolic protocol analysis tool. This results in the first
automated tool that systematically supports notions such as weak perfect for-
ward secrecy, key compromise impersonation, and adversaries that can reveal the
local state of agents. We analyze a set of protocols with the tool and rediscover
many attacks previously reported in the cryptographic literature. Furthermore,
our tool finds previously unreported attacks, including a novel attack on HMQV.
This shows that symbolic methods can be effectively extended for analyses that
previously were possible only using a manual computational analysis.

Organization. We present our framework in Section 2 and show several ap-
plications in Section 3. We discuss related work in Section 4 and conclude in
Section 5.

2 Compromising Adversary Model

We define an operational semantics that is modular with respect to the adver-
sary’s capabilities. Our framework is compatible with the majority of existing
semantics for security protocols, including trace and strand-space semantics. We

342 D. Basin and C. Cremers

have kept our execution model minimal to focus on the adversary rules. However,
it would be straightforward to incorporate a more elaborate execution model,
e. g., with control-flow commands.

Notational preliminaries. Let f be a function. We write dom(f) and ran(f) to
denote f ’s domain and range. We write f [b ←� a] to denote f ’s update, i. e., the
function f ′ where f ′(x) = b when x = a and f ′(x) = f(x) otherwise. We write
f : X �→ Y to denote a partial function from X to Y . For any set S, P(S)
denotes the power set of S and S∗ denotes the set of finite sequences of elements
from S. We write 〈s0, . . . , sn〉 to denote the sequence of elements s0 to sn, and
we omit brackets when no confusion can result. For s a sequence of length |s|
and i < |s|, si denotes the i-th element. We write sˆs′ for the concatenation of
the sequences s and s′. Abusing set notation, we write e ∈ s iff ∃i.si = e. We
write union(s) for

⋃
e∈s e. We define last(〈〉) = ∅ and last(sˆ〈e〉) = e.

We write [t0, . . . , tn / x0, . . . , xn] ∈ Sub to denote the substitution of ti for
xi, for 0 ≤ i ≤ n. We extend the functions dom and ran to substitutions. We
write σ ∪ σ′ to denote the union of two substitutions, which is defined when
dom(σ) ∩ dom(σ′) = ∅, and write σ(t) for the application of the substitution σ
to t. Finally, for R a binary relation, R∗ denotes its reflexive transitive closure.

2.1 Terms and Events

We assume given the infinite sets Agent , Role, Fresh, Var , Func, and TID of
agent names, roles, freshly generated terms (nonces, session keys, coin flips, etc.),
variables, function names, and thread identifiers. We assume that TID contains
two distinguished thread identifiers, Test and tidA. These identifiers single out
a distinguished “point of view” thread of an arbitrary agent and an adversary
thread, respectively.

To bind local terms, such as freshly generated terms or local variables, to a
protocol role instance (thread), we write t�tid. This denotes that the term t is
local to the protocol role instance identified by tid.

Definition 1. Terms

Term ::=Agent | Role | Fresh | Var | Fresh�TID | Var�TID
| (Term ,Term) | pk(Term) | sk(Term) | k(Term ,Term)
| {|Term |}a

Term | {|Term |}s
Term | Func(Term∗)

For each X, Y ∈ Agent , sk(X) denotes the long-term private key, pk(X) denotes
the long-term public key, and k(X, Y) denotes the long-term symmetric key
shared between X and Y . Moreover, {| t1 |}a

t2 denotes the asymmetric encryption
(for public keys) or the digital signature (for signing keys) of the term t1 with
the key t2, and {| t1 |}s

t2 denotes symmetric encryption. The set Func is used to
model other cryptographic functions, such as hash functions. Freshly generated
terms and variables are assumed to be local to a thread (an instance of a role).

Depending on the protocol analyzed, we assume that symmetric or asymmet-
ric long-term keys have been distributed prior to protocol execution. We assume

Analyzing Security in the Presence of Compromising Adversaries 343

the existence of an inverse function on terms, where t−1 denotes the inverse key
of t. We have that pk(X)−1 = sk(X) and sk(X)−1 = pk(X) for all X ∈ Agent ,
and t−1 = t for all other terms t.

We define a binary relation
, where M
 t denotes that the term t can be
inferred from the set of terms M . Let t0, . . . , tn ∈ Term and let f ∈ Func. We
define
 as the smallest relation satisfying:

t ∈ M ⇒ M � t M � t1 ∧M � t2 ⇔ M � (t1, t2)

M � {| t1 |}st2 ∧M � t2 ⇒ M � t1 M � t1 ∧M � t2 ⇒ M � {| t1 |}st2
M � {| t1 |}at2 ∧M � (t2)

−1 ⇒ M � t1 M � t1 ∧M � t2 ⇒ M � {| t1 |}at2∧
0≤i≤n

M � ti ⇒ M � f(t0, . . . , tn)

The term t′ is a subterm of t, written t′ � t, when t′ is a syntactic subterm of
t, e. g., t1 � {| t1 |}s

t2 and t2 � {| t1 |}s
t2 . We write FV (t) for the free variables of t,

where FV (t) = {t′ | t′ � t} ∩
(
Var ∪ {v�tid | v ∈ Var ∧ tid ∈ TID}

)
.

Definition 2. Events

AgentEvent ::= create(Role,Agent) | send(Term) | recv(Term)

| generate(P(Fresh)) | state(P(Term)) | sessionkeys(P(Term))

AdversaryEvent ::= LKR(Agent) | SKR(TID) | SR(TID) | RNR(TID)

Event ::= AgentEvent | AdversaryEvent

We explain the interpretation of the agent and adversary events shortly. Here
we simply note that the first three agent events are standard: starting a thread,
sending a message, and receiving a message. The message in the send and receive
events does not include explicit sender or recipient fields although, if desired, they
can be given as subterms of the message. The last three agent events tag state
information, which can possibly be compromised by the adversary. The four
adversary events specify which information the adversary compromises. These
events can occur any time during protocol execution and correspond to different
kinds of adversary queries from computational models. All adversary events are
executed in the single adversary thread tidA.

2.2 Protocols and Threads

A protocol is a partial function from role names to event sequences, i. e., Protocol :
Role �→ AgentEvent∗. We require that no thread identifiers occur as subterms
of events in a protocol definition.

Example 1 (Simple protocol). Let {Init, Resp} ⊆ Role, key ∈ Fresh, and x ∈
Var . We define the simple protocol SP as follows.

344 D. Basin and C. Cremers

SP(Init) = 〈generate({key}), state({key, {|Resp, key |}ask(Init)}),
send(Init,Resp, {| {|Resp, key |}ask(Init) |}apk(Resp)), sessionkeys({key})〉

SP(Resp) = 〈recv(Init,Resp, {| {|Resp, x |}ask(Init) |}apk(Resp)),

state({x, {|Resp, x |}ask(Init)}), sessionkeys({x})〉
Here, the initiator generates a key and sends it (together with the responder
name) signed and encrypted, along with the initiator and responder names. The
recipient expects to receive a message of this form. The additional events mark
session keys and state information. The state information is implementation-
dependent and marks which parts of the state are stored at a protection level
lower than the long-term private keys. The state information in SP corresponds
to, e. g., implementations that use a hardware security module for encryption
and signing and perform all other computations in ordinary memory.

Protocols are executed by agents who execute roles, thereby instantiating role
names with agent names. Agents may execute each role multiple times. Each
instance of a role is called a thread. We distinguish between the fresh terms and
variables of each thread by assigning them unique names, using the function
localize : TID → Sub, defined as localize(tid) =

⋃
cv∈Fresh∪Var [cv�tid / cv]. Using

localize , we define a function thread : (AgentEvent∗×TID×Sub) → AgentEvent∗

that yields the sequence of agent events that may occur in a thread.

Definition 3 (Thread). Let l be a sequence of events, tid ∈ TID, and let σ be
a substitution. Then thread(l, tid, σ) = σ(localize(tid)(l)).

Example 2. Let {A, B} ⊆ Agent . For a thread t1 ∈ TID performing the Init role
from Example 1, we have localize(t1)(key) = key�t1 and

thread(SP(Init), t1, [A, B / Init, Resp]) =
〈generate({key�t1}), state({key�t1, {| B, key�t1 |}a

sk(A)}),

send(A, B, {| {| B, key�t1 |}a
sk(A) |}a

pk(B)), sessionkeys({key�t1})〉 .

Test thread. When verifying security properties, we will focus on a particular
thread. In the computational setting, this is the thread where the adversary
performs a so-called test query. In the same spirit, we call the thread under
consideration the test thread, with the corresponding thread identifier Test . For
the test thread, the substitution of role names by agent names, and all free
variables by terms, is given by σTest and the role is given by RTest . For example,
if the test thread is performed by Alice in the role of the initiator, trying to talk
to Bob, we have that RTest = Init and σTest = [Alice, Bob / Init, Resp].

2.3 Execution Model

We define the set Trace as (TID × Event)∗, representing possible execution
histories. The state of our system is a four-tuple (tr, IK , th, σTest) ∈ Trace ×
P(Term) × (TID �→ Event∗) × Sub, whose components are (1) a trace tr, (2)

Analyzing Security in the Presence of Compromising Adversaries 345

R ∈ dom(P) dom(σ) = Role ran(σ) ⊆ Agent tid
∈ (dom(th) ∪ {tidA,Test})
(tr, IK , th, σTest) −→ (trˆ〈(tid, create(R, σ(R)))〉, IK , th[thread(P (R), tid, σ) ←� tid], σTest)

[create]

a = σTest(RTest) Test
∈ dom(th)

(tr, IK , th, σTest) −→ (trˆ〈(Test , create(RTest , a))〉, IK , th[thread(P (RTest),Test , σTest) ←� Test], σTest)
[createTest]

th(tid) = 〈send(m)〉ˆl
(tr, IK , th, σTest) −→ (trˆ〈(tid, send(m))〉, IK ∪ {m}, th[l ←� tid], σTest)

[send]

th(tid) = 〈recv(pt)〉ˆl IK � σ(pt) dom(σ) = FV (pt)

(tr, IK , th, σTest) −→ (trˆ〈(tid, recv(σ(pt)))〉, IK , th[σ(l) ←� tid], σTest)
[recv]

th(tid) = 〈generate(M)〉ˆl
(tr, IK , th, σTest) −→ (trˆ〈(tid, generate(M))〉, IK , th[l ←� tid], σTest)

[generate]

th(tid) = 〈state(M)〉ˆl
(tr, IK , th, σTest) −→ (trˆ〈(tid, state(M))〉, IK , th[l ←� tid], σTest)

[state]

th(tid) = 〈sessionkeys(M)〉ˆl
(tr, IK , th, σTest) −→ (trˆ〈(tid, sessionkeys(M))〉, IK , th[l ←� tid], σTest)

[sessionkeys]

Fig. 1. Execution-model rules

the adversary’s knowledge IK , (3) a partial function th mapping the thread
identifiers of initiated threads to sequences of events, and (4) the role to agent
and variable assignments of the test thread. We include the trace as part of the
state to facilitate defining the partner function later.

Definition 4 (TestSubP). Given a protocol P , we define the set of test substi-
tutions TestSubP as the set of ground substitutions σTest such that dom(σTest) =
dom(P) ∪ {v�Test | v ∈ Var} and ∀r ∈ dom(P). σTest (r) ∈ Agent.

For P a protocol, the set of initial system states IS (P) is defined as

IS(P) =
⋃

σTest∈TestSubP

{
(〈〉,Agent ∪ {pk(a) | a ∈ Agent}, ∅, σTest)

}
.

In contrast to Dolev-Yao models, the initial adversary knowledge does not in-
clude any long-term secret keys. The adversary may learn these from long-term
key reveal (LKR) events.

The semantics of a protocol P ∈ Protocol is defined by a transition system
that combines the execution-model rules from Figure 1 with a set of adversary
rules from Figure 2. We first present the execution-model rules.

The create rule starts a new instance of a protocol role R (a thread). A fresh
thread identifier tid is assigned to the thread, thereby distinguishing it from
existing threads, the adversary thread, and the test thread. The rule takes the
protocol P as a parameter. The role names of P , which can occur in events
associated with the role, are replaced by agent names by the substitution σ.
Similarly, the createTest rule starts the test thread. However, instead of choosing
an arbitrary role, it takes an additional parameter RTest , which represents the
test role and will be instantiated in the definition of the transition relation in
Def. 7. Additionally, instead of choosing an arbitrary σ, the test substitution
σTest is used.

346 D. Basin and C. Cremers

The send rule sends a message m to the network. In contrast, the receive rule
accepts messages from the network that match the pattern pt, where pt is a term
that may contain free variables. The resulting substitution σ is applied to the
remaining protocol steps l.

The last three rules support our adversary rules, given shortly. The generate

rule marks the fresh terms that have been generated, the state rule marks the
current local state, and the sessionkeys rule marks a set of terms as session keys.
Auxiliary functions. We define the long-term secret keys of an agent a as

LongTermKeys(a) = {sk(a)} ∪
⋃

b∈Agent

{k(a, b), k(b, a)} .

For traces, we define an operator ↓ that projects traces on events belonging to
a particular thread identifier. For all tid, tid′, and tr, we define 〈〉 ↓ tid = 〈〉 and

(〈(tid′, e)〉ˆtr) ↓ tid =

{
〈e〉ˆ(tr ↓ tid) if tid = tid′, and
tr ↓ tid otherwise.

Similarly, for event sequences, the operator � selects the contents of events of a
particular type. For all evtype ∈ {create, send, recv, generate, state, sessionkeys},
we define 〈〉 � evtype = 〈〉 and

(〈e〉ˆl) � evtype =

{
〈m〉ˆ(l � evtype) if e = evtype(m), and
l � evtype otherwise.

During protocol execution, the test thread may intentionally share some of its
short-term secrets with other threads, such as a session key. Hence some adver-
sary rules require distinguishing between the intended partner threads and other
threads. There exist many notions of partnering in the literature. In general,
we use partnering based on matching histories for protocols with two roles, as
defined below.

Definition 5 (Matching histories). For sequences of events l and l′, we de-
fine MH(l, l′) ≡

(
l � recv = l′ � send) ∧ (l � send = l′ � recv

)
.

Our partnering definition is parameterized over the protocol P and the test role
RTest . These parameters are later instantiated in the transition-system definition.

Definition 6 (Partnering). Let R be the non-test role, i. e., R ∈ dom(P)
and R �= RTest . For tr a trace, Partner(tr, σTest) =

{
tid

∣∣ tid �= Test ∧(
∃a.create(R, a) ∈ tr ↓ tid

)
∧ ∃l . MH(σTest (P (RTest)), (tr ↓ tid)ˆl)

}
.

A thread tid is a partner iff (1) tid is not Test , (2) tid performs the role different
from Test ’s role, and (3) tid’s history matches the Test thread (for l = 〈〉) or
the thread may be completed to a matching one (for l �= 〈〉).

2.4 Adversary-Compromise Rules

We define the adversary-compromise rules in Figure 2. They factor the security
definitions from the cryptographic protocol literature along three dimensions

Analyzing Security in the Presence of Compromising Adversaries 347

a
∈ {σTest(R) | R ∈ dom(P)}
(tr, IK , th, σTest) −→ (trˆ〈(tidA, LKR(a))〉, IK ∪ LongTermKeys(a), th, σTest)

[LKRothers]

a = σTest(RTest) a
∈ {σTest(R) | R ∈ dom(P) \ {RTest}}
(tr, IK , th, σTest) −→ (trˆ〈(tidA, LKR(a))〉, IK ∪ LongTermKeys(a), th, σTest)

[LKRactor]

th(Test) = 〈〉
(tr, IK , th, σTest) −→ (trˆ〈(tidA, LKR(a))〉, IK ∪ LongTermKeys(a), th, σTest)

[LKRafter]

th(Test) = 〈〉 tid ∈ Partner(tr, σTest) th(tid) = 〈〉
(tr, IK , th, σTest) −→ (trˆ〈(tidA, LKR(a))〉, IK ∪ LongTermKeys(a), th, σTest)

[LKRaftercorrect]

tid
= Test tid
∈ Partner(tr, σTest)

(tr, IK , th, σTest) −→ (trˆ〈(tidA, SKR(tid))〉, IK ∪ union((tr ↓ tid) � sessionkeys), th, σTest)
[SKR]

tid
= Test tid
∈ Partner(tr, σTest) th(tid)
= 〈〉
(tr, IK , th, σTest) −→ (trˆ〈(tidA, SR(tid))〉, IK ∪ last((tr ↓ tid) � state), th, σTest)

[SR]

(tr, IK , th, σTest) −→ (trˆ〈(tidA,RNR(tid))〉, IK ∪ union((tr ↓ tid) � generate), th, σTest)
[RNR]

Fig. 2. Adversary-compromise rules

of adversarial compromise: which kind of data is compromised, whose data it
is, and when the compromise occurs. Not all combinations of capabilities have
been used for analyzing protocols. Some combinations are not covered because
of impossibility results (e. g. [23]), whereas other combinations appear to have
been previously overlooked.

Compromise of long-term keys. The first four rules model the compromise of an
agent a’s long-term keys, represented by the long-term key reveal event LKR(a).
In traditional Dolev-Yao models, this event occurs implicitly for dishonest agents
before the honest agents start their threads.

The LKRothers rule formalizes the adversary capability used in the symbolic
analysis of security protocols since Lowe’s attack on Needham-Schroeder [28]: the
adversary can learn the long-term keys of any agent a that is not an intended
partner of the test thread. Hence, if the test thread is performed by Alice, com-
municating with Bob, the adversary can learn, e. g., Charlie’s long-term key.

The LKRactor rule allows the adversary to learn the long-term key of the agent
executing the test thread (also called the actor). The intuition is that a protocol
may still function as long as the long-term keys of the other partners are not
revealed. This rule allows the adversary to perform so-called Key Compromise
Impersonation attacks [21]. The rule’s second premise is required because our
model allows agents to communicate with themselves.

The LKRafter and LKRaftercorrect rules restrict when the compromise may oc-
cur. In particular, they allow the compromise of long-term keys only after the
test thread has finished, captured by the premise th(Test) = 〈〉. This is the
sole premise of LKRafter. If a protocol satisfies secrecy properties with respect to
an adversary that can use LKRafter, it is said to satisfy perfect forward secrecy
(PFS) [17,30]. LKRaftercorrect has the additional premise that a finished partner

348 D. Basin and C. Cremers

thread must exist for the test thread. This condition stems from [23] and excludes
the adversary from both inserting fake messages during protocol execution and
learning the key of the involved agents later. If a protocol satisfies secrecy prop-
erties with respect to an adversary that can use LKRaftercorrect, it is said to satisfy
weak perfect forward secrecy (wPFS). This property is motivated by a class of
protocols given in [23] whose members fail to satisfy PFS, although some satisfy
this weaker property.

The left-hand side of Figure 3 depicts the relationships between our long-term
key compromise rules in the relevant dimensions: the rows specify when the com-
promise occurs and the columns specify whose long-term keys are compromised.
With respect to when a compromise occurs, we differentiate between before,
during, and after the test thread. With respect to whose keys are compromised,
we differentiate between agents not involved in the communication (others), the
agent performing the test thread (actor), and the other partner (peer). The ovals
specify the effects of each of the long-term key reveal rules.

Compromise of short-term data. The three remaining adversary rules correspond
to the compromise of short-term data, that is, data local to a specific thread. In
the right-hand side of Figure 3, we show the relevant dimensions: whose data,
specified by the columns, and which kind of data, specified by the rows. Whereas
we assumed a long-term key compromise reveals all long-term keys of an agent,
we differentiate here between the different kinds of local data. Because we assume
that local data does not exist before or after a session, we can ignore the temporal
dimension.

We differentiate between three kinds of local data: randomness, session keys,
and other local data such as the results of intermediate computations. The notion
that the adversary may learn the randomness used in a protocol stems from [25].
Considering adversaries that can reveal session keys, e. g., by cryptanalysis, is
found in many works, such as [4]. An adversary capable of revealing an agent’s
local state was described in [9].

In our adversary-compromise models, the session-key reveal event SKR(tid)
and state reveal event SR(tid) indicate that the adversary gains access to the
session key or, respectively, the local state of the thread tid. These are marked
respectively by the sessionkeys and state events.

The contents of the state change over time and are erased when the thread
ends. This is reflected in the SR rule by the last state marker for the state
contents and the third premise requiring that the thread tid has not ended. The
random number reveal event RNR(tid) indicates that the adversary learns the
random numbers generated in the thread tid.

The rules SKR and SR allow for the compromise of session keys and the
contents of a thread’s local state. Their premise is that the compromised thread
is not a partner thread. In contrast, the premise of the RNR rule allows for
the compromise of all threads, including the partner threads. This rule stems
from [25], where it is shown that it is possible to construct protocols that are
correct in the presence of an adversary capable of RNR.

Analyzing Security in the Presence of Compromising Adversaries 349

before Test
thread

during
Test thread

after Test
thread

key of
actor

keys of
peers

keys of
others

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�
�

�
	

LKRactor

LKRothers

LKRafter,
LKRaftercorrect

randomness

session keys

other local
data

data of
Test and
partners

data of
others

�

�

�

�

�

�

�
�

�
	

�
�

�
	

�

�

RNR

SKR

SR

Fig. 3. Relating long-term and short-term data reveal rules

For protocols that establish a session key, we assume the session key is shared
by all partners and should be secret: revealing it trivially violates the proto-
cols’ security. Hence the rules disallow the compromise of session keys of the
test or partner threads. Similarly, our basic rule set does not contain a rule
for the compromise of other local data of the partners. Including such a rule is
straightforward. However it is unclear whether any protocol would be correct
with respect to such an adversary.

We call each subset of the set of adversary rules from Figure 2 an adversary-
compromise model.

2.5 Transition Relation and Security Properties

Given a protocol and an adversary-compromise model, we define the possible
protocol behaviors as a set of reachable states.

Definition 7 (Transition relation and reachable states). Let P be a pro-
tocol, Adv an adversary-compromise model, and RTest a role. We define a tran-
sition relation →P,Adv ,RTest from the execution-model rules from Figure 1 and
the rules in Adv. The variables P , Adv, and RTest in the adversary rules are in-
stantiated by the corresponding parameters of the transition relation. For states
s and s′, s →P,Adv ,RTest s′ iff there exists a rule in either Adv or the execution-
model rules with the premises Q1(s), . . . , Qn(s) and the conclusion s → s′ such
that all of the premises hold. We define the set of reachable states RS as

RS(P,Adv , RTest) =
{
s
∣∣ ∃s0. s0 ∈ IS(P) ∧ s0 →∗

P,Adv ,RTest
s
}
.

We provide a symbolic definition of session-key secrecy which, when combined
with different adversary models, gives rise to different notions of secrecy found in
the literature. Other security properties, such as secrecy of general terms, sym-
bolic indistinguishability, or different variants of authentication, can be defined
analogously.

350 D. Basin and C. Cremers

Table 1. Decomposing security properties

Decomposition
Security property

Basic property Adversary model

Perfect Forward Secrecy [17,30] Secrecy {LKRafter}
Weak Perfect Forward Secrecy [23] Secrecy {LKRaftercorrect}
Known-Key Security [30] Secrecy (of session key) {SKR}
Key Compromise Impersonation [21] Authentication {LKRactor}

Definition 8 (Session-key secrecy). Let P be a protocol and Adv an adver-
sary model. We say that P satisfies session-key secrecy with respect to Adv if
and only if

∀RTest ∈ dom(P). ∀(tr, IK , th, σTest) ∈ RS(P,Adv , RTest).
th(Test) = 〈〉 ⇒ ∀k ∈ union((tr ↓ Test) � sessionkeys). IK � k .

Many definitions of security properties, such as perfect forward secrecy, also
contain elements of adversary capabilities. In our framework, such properties are
cleanly separated into a basic security property (e. g. secrecy or authentication)
and an adversary model. In Table 1, we decompose different security properties
from the literature this way.

Our way of modeling security properties provides a uniform view and also
allows for direct generalizations of security properties. This leads to new, prac-
tically relevant combinations of adversary models and basic security properties.
For example, for a hardware security module restricted to protecting long-term
keys, relevant properties could be secrecy or agreement, resilient against state-
reveal. Further properties arise by considering the combination of our adversary
models with other basic properties like non-repudiation, plausible deniability,
anonymity, or resistance to denial-of-service attacks.

3 Applications and Case Studies

Modeling adversary notions from the literature. We use our modular semantics to
provide a uniform formalization of different adversary models, including a num-
ber of established adversary models from the computational setting [9,3,5,23,25].
We focus on the adversary capabilities only, abstracting from subtle differences
between the computational models. For example, the model in [9] has an exe-
cution model that restricts the agents’ choice of thread identifiers, leading to a
different notion of partner threads than in other models. Here we define part-
nering uniformly by matching histories. We refer the reader to [10,29,8,11] for
further details on the differences between computational models.

Table 2 provides an overview of different adversary models, interpreted as
instances of our semantics. We write AdvCK to denote the adversary model
extracted from the CK model [9] and similarly for other models. We use a check

Analyzing Security in the Presence of Compromising Adversaries 351

Table 2. Mapping adversary-compromise models from the literature

Long-term data Short-term data

Owner Timing Type

Name others actor after aftercorrect SessionKey State Random Origin of model

AdvEXT external Dolev-Yao

Adv INT � Dolev-Yao [28]

AdvCA � Key Compromise Impersonation [21]

AdvAFC � Weak Perfect Forward Secrecy [23]

AdvAF � � Perfect Forward Secrecy [17,30]

AdvBR � � BR93 [4], BR95 [5]

AdvCKw � � � � � CK2001-wPFS [23]

AdvCK � � � � � CK2001 [9]

AdveCK-1 � � �
AdveCK-2 � � � � eCK [25]

(�) to denote that the rule labeling the column is included in the adversary
model named in the row.

Tool support. We extended the symbolic security-protocol verification tool Scyther
[14,15] with our adversary rules from Figure 2. We used this tool to automatically
analyze a set of protocols, described below. The tool, all protocol models, and test
scripts can be downloaded from [13].

Attack example. The MQV protocol family [24,33,27] is a class of authenti-
cated key-exchange protocols designed to provide strong security guarantees.
The HMQV protocol was proven secure with respect to the adversary model
in [23]. This model is the analog of our AdvCKw model, where the local state
of HMQV is defined as the random values generated for the Diffie-Hellman key-
exchange. Surprisingly, our tool finds that the HMQV protocol is, depending on
the definition of the state, insecure in adversary models that contain SR rules,
such as the CK model [9].

Below we describe a new attack, which shows that MQV and HMQV are
insecure in, e. g., AdvCKw, if the final exponentiation in the computation of the
session key is performed in the local state. It is possible for an adversary to reuse
the inputs to this exponentiation to impersonate an agent in future sessions. The
attack is not covered in [23] because both the proof and the extended analysis
given there assume that the local state contains only the ephemeral keys (the
temporary private keys).

Using notation from [23], we show the attack in Figure 4, whered1 = H̄ (X, Bob),
e1 = H̄ (Z, Alice), and e2 = H̄ (Y, Alice). The attack starts with Bob receiving a
message gz apparently coming from Alice. This message may have been sent by an
agent or have been generated by the adversary. Next, Bob generates x and sends
X = gx, which is intercepted by the adversary. Thread 1 is not a partner of the
test thread because its history does not match the test thread’s. Hence the adver-
sary can compromise thread 1’s state, accessing x + d1b. At any desired time, the
adversary sends X to the responder test thread of Alice. Alice computes and sends
Y = gy and computes the session key based on X and y. The adversary intercepts
Y and computes H ((Y Ae1)x+d1b). This yields the session key of the test thread.

352 D. Basin and C. Cremers

Thread 1

Responder: Bob
(responding to Alice)

Not a partner

Thread Test

Responder: Alice
(responding to Bob)

Z = gz

generate({x})

X = gx

state({ZAe1 , x+ d1b}) generate({y})

StateReveal(1) Y = gy

sessionkeys({H ((ZAe1)x+d1b)}) sessionkeys({H ((XBd1)y+e2a)})

Fig. 4. SR attack on HMQV

We assume that in critical scenarios the protocol is implemented entirely in a
tamper-proof module or cryptographic coprocessor and the local state is there-
fore empty, which prevents this attack. Conversely, if (H)MQV will be imple-
mented entirely in unprotected memory, the state will also include the long-term
keys, which enables an attack where the adversary compromises these keys us-
ing SR. This example shows how analysis with respect to our models can help
sharpen protocol implementation requirements.
Further case studies. In Table 3, we summarize the attacks found using our
tool on protocols with respect to the adversary models from Table 2. A cross
(×) in the table denotes that an attack was found. Attacks marked (A) were
previously unreported. Attacks marked (B) were previously found by manual
computational analysis. The set of protocols includes both formally analyzed
protocols (NS, NSL, BKE, Yahalom) as well as protocols recently proposed in
computational settings (HMQV, DH-ISO, Naxos, KEA+). Our tool rediscovers
the attacks described in the literature, e. g., that DH-ISO is insecure in the eCK
model [25] and that the implicitly authenticated two-message protocols KEA+,
Naxos, and HMQV do not satisfy perfect forward secrecy. Additionally our tool
finds new attacks on KEA+ and HMQV. The time needed for finding the attacks
in the table ranged from less than a second to three minutes for each attack.

4 Related Work

Related work in computational analysis. Most research on adversary compromise
has been performed in the context of key-exchange protocols in the computa-
tional setting, e. g. Canetti and Krawczyk [9,23], Shoup [32], Bellare et al. [5,3,4],
Katz and Yung [22], LaMacchia et al. [25], and Bresson and Manulis [7]. In
general, any two computational models are incomparable due to (often minor)
differences not only in the adversary notions, but also in the definitions of part-
nership, the execution models, and security property specifics. As these models
are generally presented in a monolithic way, where all parts are intertwined, it is

Analyzing Security in the Presence of Compromising Adversaries 353

Table 3. Attacks found: (A) new, and (B) rediscovered automatically

AdvEXT Adv INT AdvCA AdvAFC AdvAF AdvBR AdvCKw AdvCK Adv eCK-1 Adv eCK-2

DH-ISO [18,25] ×(B)

DH-ISO-C [18] × ×
DHKE-1 [18] ×(A) × ×
HMQV-C [24] × ×
HMQV [24] ×(B) ×(A) ×
NAXOS [25,16] ×(B) × ×
KEA+ [26] ×(A) ×(B) × × × ×
NSL [28] ×(A) ×(B) ×(B) × × × ×
BKE [12] ×(A) ×(B) ×(B) × × × ×
Yahalom-Paulson [31] ×(A) ×(B) ×(B) ×(A) × × × ×
NS [28] × ×(A) ×(B) ×(B) × × × × ×

difficult to separate these notions. Details of some of these definitions and their
relationships have been studied by, e. g., Choo et al. [11,10], Bresson et al. [8],
LaMacchia et al. [25], and Menezes and Ustaoglu [29].

The CryptoVerif tool of Blanchet [6] is a mechanized tool for computational
analysis. Its adversary model covers Adv INT, corresponding to static corruption,
i. e., the classical Dolev-Yao adversary.

Related work in symbolic analysis. In the symbolic setting, Guttman [20] has
modeled a form of forward secrecy. With respect to verification, the only work
we are aware of is where researchers have verified (or discovered attacks on) key-
compromise related properties of particular protocols. These cases do not use a
compromising adversary model, but are ad-hoc constructions of key compromise,
made for specific protocols, which can be verified in a Dolev-Yao style adversary
model.

In [1], Abadi, Blanchet, and Fournet analyzed the JFK protocol in the Pi Cal-
culus and showed it achieves perfect forward secrecy, by giving the adversary all
long-term keys at the end of the protocol run. This corresponds to manually in-
strumenting the analog of our LKRafter rule. Paulson used his inductive approach
to reason about the compromise of short-term data [31]. To model compro-
mise, he adds a rule to the protocol, called Oops, that directly gives short-term
data to the adversary. This rule is roughly analogous to our SKR rule. Gupta
and Shmatikov [19,18] link a symbolic adversary model that includes dynamic
corruptions to an adversary model used in the computational analysis of key-
agreement protocols. They describe in [19] a cryptographically-sound logic that
can be used to prove security in the presence of adaptive corruptions, that is,
the adversary can dynamically obtain the long-term keys of agents.

In [2], we have built upon the work presented here and introduce the concept
of a protocol-security hierarchy, which classifies the relative strength of protocols
against different forms of compromise.

5 Conclusions

We have provided the first symbolic framework capable of systematically model-
ing a family of adversaries endowed with different compromise capabilities. Our

354 D. Basin and C. Cremers

adversary capabilities generalize those from the computational setting and com-
bine them with a symbolic model. In doing so, we unify and generalize a wide
range of adversary models from both settings.

Our definitions of adversaries and security properties from the computational
setting allow us to apply symbolic techniques to problems that were previously
tackled only by computational approaches. We developed the first tool capa-
ble of systematically handling notions such as weak perfect forward secrecy,
key compromise impersonation, and session state compromise. In case studies,
our tool not only rediscovered many attacks previously reported in the crypto-
graphic literature, e. g., on DH-ISO, it also found new attacks, e. g., on HMQV
and KEA+. These examples show that our symbolic adversary models are sur-
prisingly effective for automatically establishing results that, until now, required
labor-intensive manual computational analysis.

References

1. Abadi, M., Blanchet, B., Fournet, C.: Just Fast Keying in the Pi calculus. ACM

Transactions on Information and System Security (TISSEC) 10(3), 1–59 (2007)

2. Basin, D., Cremers, C.: Degrees of security: Protocol guarantees in the face of

compromising adversaries. In: 19th EACSL Annual Conferences on Computer Sci-

ence Logic (CSL 2010). Advanced Research in Computing and Software Science,

Springer, Heidelberg (2010) (to appear)

3. Bellare, M., Pointcheval, D., Rogaway, P.: Authenticated key exchange secure

against dictionary attacks. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS,

vol. 1807, pp. 139–155. Springer, Heidelberg (2000)

4. Bellare, M., Rogaway, P.: Entity authentication and key distribution. In: Stinson,

D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 232–249. Springer, Heidelberg

(1994)

5. Bellare, M., Rogaway, P.: Provably secure session key distribution: the three party

case. In: STOC 1995, pp. 57–66. ACM Press, New York (1995)

6. Blanchet, B.: A computationally sound mechanized prover for security protocols.

In: IEEE Symposium on Security and Privacy, pp. 140–154 (May 2006)

7. Bresson, E., Manulis, M.: Securing group key exchange against strong corruptions.

In: ASIACCS, pp. 249–260. ACM, New York (2008)

8. Bresson, E., Manulis, M., Schwenk, J.: On security models and compilers for group

key exchange protocols. In: Miyaji, A., Kikuchi, H., Rannenberg, K. (eds.) IWSEC

2007. LNCS, vol. 4752, pp. 292–307. Springer, Heidelberg (2007)

9. Canetti, R., Krawczyk, H.: Analysis of key-exchange protocols and their use for

building secure channels. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS,

vol. 2045, pp. 453–474. Springer, Heidelberg (2001)

10. Choo, K.-K., Boyd, C., Hitchcock, Y.: Examining indistinguishability-based proof

models for key establishment proofs. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS,

vol. 3788, pp. 624–643. Springer, Heidelberg (2005)

11. Choo, K.-K., Boyd, C., Hitchcock, Y., Maitland, G.: On session identifiers in prov-

ably secure protocols. In: Blundo, C., Cimato, S. (eds.) SCN 2004. LNCS, vol. 3352,

pp. 351–366. Springer, Heidelberg (2005)

12. Clark, J., Jacob, J.: A survey of authentication protocol literature (1997),

http://citeseer.ist.psu.edu/clark97survey.html

http://citeseer.ist.psu.edu/clark97survey.html

Analyzing Security in the Presence of Compromising Adversaries 355

13. Cremers, C.: Scyther tool with compromising adversaries extension. Includes pro-

tocol description files and test scripts,

http://people.inf.ethz.ch/cremersc/scyther/

14. Cremers, C.: The Scyther Tool: Verification, falsification, and analysis of security

protocols. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 414–418.

Springer, Heidelberg (2008)

15. Cremers, C.: Unbounded verification, falsification, and characterization of security

protocols by pattern refinement. In: CCS ’08: Proc. of the 15th ACM Conference

on Computer and Communications Security, pp. 119–128. ACM, New York (2008)

16. Cremers, C.: Session-state reveal is stronger than ephemeral key reveal: Attacking

the NAXOS authenticated key exchange protocol. In: Abdalla, M., et al. (eds.)

ACNS 2009. LNCS, vol. 5536, pp. 20–33. Springer, Heidelberg (2009)

17. Günther, C.: An identity-based key-exchange protocol. In: Quisquater, J.-J., Van-

dewalle, J. (eds.) EUROCRYPT 1989. LNCS, vol. 434, pp. 29–37. Springer, Hei-

delberg (1990)

18. Gupta, P., Shmatikov, V.: Towards computationally sound symbolic analysis of

key exchange protocols. In: Proc. FMSE 2005, pp. 23–32. ACM, New York (2005)

19. Gupta, P., Shmatikov, V.: Key confirmation and adaptive corruptions in the pro-

tocol security logic. In: FCS-ARSPA 2006, pp. 113–142 (2006)

20. Guttman, J.D.: Key compromise, strand spaces, and the authentication tests. In:

17th Annual Conference on Mathematical Foundations of Programming Semantics.

Invited lecture, ENTCS, vol. 45, pp. 1–21 (2001)

21. Just, M., Vaudenay, S.: Authenticated multi-party key agreement. In: Kim, K.-c.,

Matsumoto, T. (eds.) ASIACRYPT 1996. LNCS, vol. 1163, pp. 36–49. Springer,

Heidelberg (1996)

22. Katz, J., Yung, M.: Scalable protocols for authenticated group key exchange. In:

Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 110–125. Springer, Heidelberg

(2003)

23. H. Krawczyk. HMQV: A high-performance secure Diffie-Hellman protocol. Cryptol-

ogy ePrint Archive, Report 2005/176 (2005), http://eprint.iacr.org/ (retrieved

on April 14, 2009)

24. Krawczyk, H.: HMQV: A high-performance secure Diffie-Hellman protocol. In:

Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 546–566. Springer, Hei-

delberg (2005)

25. LaMacchia, B., Lauter, K., Mityagin, A.: Stronger security of authenticated key

exchange. In: Susilo, W., Liu, J.K., Mu, Y. (eds.) ProvSec 2007. LNCS, vol. 4784,

pp. 1–16. Springer, Heidelberg (2007)

26. Lauter, K., Mityagin, A.: Security analysis of KEA authenticated key exchange

protocol. In: Yung, M., et al. (eds.) PKC 2006. LNCS, vol. 3958, pp. 378–394.

Springer, Heidelberg (2006)

27. Law, L., Menezes, A., Qu, M., Solinas, J., Vanstone, S.: An efficient protocol for

authenticated key agreement. Designs, Codes and Cryptography 28, 119–134 (2003)

28. Lowe, G.: Breaking and fixing the Needham-Schroeder public-key protocol using

FDR. In: Margaria, T., Steffen, B. (eds.) TACAS 1996. LNCS, vol. 1055, pp. 147–

166. Springer, Heidelberg (1996)

29. Menezes, A., Ustaoglu, B.: Comparing the pre- and post-specified peer models

for key agreement. In: Mu, Y., Susilo, W., Seberry, J. (eds.) ACISP 2008. LNCS,

vol. 5107, pp. 53–68. Springer, Heidelberg (2008)

http://people.inf.ethz.ch/cremersc/scyther/
http://eprint.iacr.org/

356 D. Basin and C. Cremers

30. Menezes, A., van Oorschot, P., Vanstone, S.: Handbook of Applied Cryptography.

CRC Press, Boca Raton (October 1996)

31. Paulson, L.: Relations between secrets: Two formal analyses of the Yahalom pro-

tocol. Journal of Computer Security 9(3), 197–216 (2001)

32. Shoup, V.: On formal models for secure key exchange (version 4), (November 1999);

revision of IBM Research Report RZ 3120 (April 1999)

33. Ustaoglu, B.: Obtaining a secure and efficient key agreement protocol from

(H)MQV and NAXOS. Des. Codes Cryptography 46(3), 329–342 (2008)

On Bounding Problems of Quantitative
Information Flow�

Hirotoshi Yasuoka and Tachio Terauchi

Tohoku University

yasuoka@kb.ecei.tohoku.ac.jp,

terauchi@ecei.tohoku.ac.jp

Abstract. Researchers have proposed formal definitions of quantita-

tive information flow based on information theoretic notions such as the

Shannon entropy, the min entropy, the guessing entropy, and channel

capacity. This paper investigates the hardness of precisely checking the

quantitative information flow of a program according to such definitions.

More precisely, we study the “bounding problem” of quantitative infor-

mation flow, defined as follows: Given a program M and a positive real

number q, decide if the quantitative information flow of M is less than

or equal to q. We prove that the bounding problem is not a k-safety

property for any k (even when q is fixed, for the Shannon-entropy-based

definition with the uniform distribution), and therefore is not amenable

to the self-composition technique that has been successfully applied to

checking non-interference. We also prove complexity theoretic hardness

results for the case when the program is restricted to loop-free boolean

programs. Specifically, we show that the problem is PP-hard for all the

definitions, showing a gap with non-interference which is coNP-complete

for the same class of programs. The paper also compares the results with

the recently proved results on the comparison problems of quantitative

information flow.

1 Introduction

We consider programs containing high security inputs and low security outputs.
Informally, the quantitative information flow problem concerns the amount of
information that an attacker can learn about the high security input by executing
the program and observing the low security output. The problem is motivated
by applications in information security. We refer to the classic by Denning [11]
for an overview.

In essence, quantitative information flow measures how secure, or insecure,
a program (or a part of a program –e.g., a variable–) is. Thus, unlike non-
interference [9,12], that only tells whether a program is completely secure or not
completely secure, a definition of quantitative information flow must be able to

� This work was supported by MEXT KAKENHI 20700019, 20240001, and 22300005,

and Global COE Program “CERIES”.

D. Gritzalis, B. Preneel, and M. Theoharidou (Eds.): ESORICS 2010, LNCS 6345, pp. 357–372, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

358 H. Yasuoka and T. Terauchi

distinguish two programs that are both interferent but have different degrees of
“secureness.”

For example, consider the programsM1 ≡ if H = g then O := 0 else O := 1
and M2 ≡ O := H . In both programs, H is a high security input and O is
a low security output. Viewing H as a password, M1 is a prototypical login
program that checks if the guess g matches the password.1 By executing M1,
an attacker only learns whether H is equal to g, whereas she would be able to
learn the entire content of H by executing M2. Hence, a reasonable definition of
quantitative information flow should assign a higher quantity to M2 than to M1,
whereas non-interference would merely say that M1 and M2 are both interferent,
assuming that there are more than one possible value of H .

Researchers have attempted to formalize the definition of quantitative infor-
mation flow by appealing to information theory. This has resulted in definitions
based on the Shannon entropy [11,6,15], the min entropy [24], the guessing en-
tropy [14,1], and channel capacity [18,16,22]. All of these definitions map a pro-
gram (or a part of a program) onto a non-negative real number, that is, they
define a function X such that given a program M , X (M) is a non-negative real
number. (Concretely, X is SE [μ] for the Shannon-entropy-based definition with
the distribution μ, ME [μ] for the min-entropy-based definition with the distri-
bution μ, GE [μ] for the guessing-entropy-based definition with the distribution
μ, and CC for the channel-capacity-based definition.) Therefore, a natural ver-
ification problem for quantitative information flow is to decide, given M and a
quantity q ≥ 0, if X (M) ≤ q. The problem is well-studied for the case q = 0 as it
is actually equivalent to checking non-interference (cf. Section 2.1). The problem
is open for q > 0 . We call this the bounding problem of quantitative information
flow.

The problem has a practical relevance as a user is often interested in knowing if
her program leaks information within some allowed bound. That is, the bounding
problem is a form of quantitative information flow checking problem (as opposed
to inference). Much of the previous research has focused on information theoretic
properties of quantitative information flow and approximate (i.e., incomplete
and/or unsound) algorithms for checking and inferring quantitative information
flow. To fill the void, in a recent work [29], we have studied the hardness and
possibilities of deciding the comparison problem of quantitative information flow,
which is the problem of precisely checking if the information flow of one program
is larger than that of the other, that is, the problem of deciding if X (M1) ≤
X (M2) given programs M1 and M2. The study has lead to some remarkable
results, summarized in Section 3 and Section 4 of this paper to contrast with
the new results on the bounding problem. However, the hardness results on the
comparison problem do not imply hardness of the bounding problem.2 Thus,
this paper settles the open question.

1 Here, for simplicity, we assume that g is a program constant. See Section 2 for

modeling attacker/user (i.e., low security) inputs.
2 But, they imply the hardness of the inference problem because we can compare

X (M1) and X (M2) once we have computed them.

On Bounding Problems of Quantitative Information Flow 359

We summarize the main results of the paper below. Here, X is SE [U], ME [U],
GE [U] or CC , where U is the uniform distribution.

– Checking if X (M) ≤ q is not a k-safety property [25,8] for any k.
– Restricted to loop-free boolean programs, checking if X (M) ≤ q is PP-hard.

Roughly, a verification problem being k-safety means that it can be reduced to
a standard safety problem, such as the unreachability problem, via self composi-
tion [3,10]. For instance, non-interference is a 2-safety property (technically, for
the termination-insensitive case3), and this has enabled its precise checking via
a reduction to a safety problem via self composition and applying automated
safety verification techniques [25,21,27]. Also, our recent work [29] has shown
that deciding the comparison problem of quantitative information flow for all
distributions for the entropy-based definitions (i.e., checking if ∀μ.SE [μ](M1) ≤
SE [μ](M2), ∀μ.ME [μ](M1) ≤ ME [μ](M2), and ∀μ.GE [μ](M1) ≤ GE [μ](M2))
are 2-safety problems (and in fact, all equivalent).

We also prove a complexity theoretic gap with these related problems. We
have shown in the previous paper [29] that, for loop-free boolean programs, both
checking non-interference and the above comparison problem for entropy-based
definitions with universally quantified distributions are coNP-complete. (PP is
believed to be strictly harder than coNP. In particular, coNP = PP implies the
collapse of the polynomial hierarchy to level 1.)

Therefore, the results suggest that the bounding problems of quantitative in-
formation flow are harder than the related problems of checking non-interference
and the quantitative information flow comparison problems with universally
quantified distributions, and may require different techniques to solve (i.e., not
self composition).

The rest of the paper is organized as follows. Section 2 reviews the existing
information-theoretic definitions of quantitative information flow and formally
defines the bounding problems. Section 3 proves that the bounding problems
are not k-safety problems. Section 4 proves that the bounding problems are PP-
hard (even) when restricted to loop-free boolean programs. Section 5 discusses
some implications of the hardness results. Section 6 discusses related work, and
Section 7 concludes. All the proofs appear in the extended report [28].

2 Preliminaries

We introduce the information theoretic definitions of quantitative information
flow that have been proposed in literature. First, we review the notion of the
Shannon entropy [23], H[μ](X), which is the average of the information content,
and intuitively, denotes the uncertainty of the random variable X .

Definition 1 (Shannon Entropy). Let X be a random variable with sam-
ple space X and μ be a probability distribution associated with X (we write μ
explicitly for clarity). The Shannon entropy of X is defined as
3 We restrict to terminating programs in this paper. (The termination assumption is

nonrestrictive because we assume safety verification as a blackbox routine.).

360 H. Yasuoka and T. Terauchi

H[μ](X) =
∑
x∈X

μ(X = x) log
1

μ(X = x)

(The logarithm is in base 2.)

Next, we define conditional entropy. Informally, the conditional entropy of X
given Y denotes the uncertainty of X after knowing Y .

Definition 2 (Conditional Entropy). Let X and Y be random variables with
sample spaces X and Y, respectively, and μ be a probability distribution associated
with X and Y . Then, the conditional entropy of X given Y , written H[μ](X |Y)
is defined as

H[μ](X |Y) =
∑
y∈Y

μ(Y = y)H[μ](X |Y = y)

where
H[μ](X |Y = y) =

∑
x∈X

μ(X = x|Y = y) log 1
μ(X=x|Y =y)

μ(X = x|Y = y) = μ(X=x,Y =y)
μ(Y =y)

Next, we define (conditional) mutual information. Intuitively, the conditional
mutual information of X and Y given Z represents the mutual dependence of
X and Y after knowing Z.

Definition 3 (Mutual Information). Let X,Y and Z be random variables
and μ be an associated probability distribution.4 Then, the conditional mutual
information of X and Y given Z is defined as

I[μ](X ;Y |Z) = H[μ](X |Z) − H[μ](X |Y, Z)
= H[μ](Y |Z) − H[μ](Y |X,Z)

Let M be a program that takes a high security input H and a low security
input L, and gives the low security output O. For simplicity, we restrict to
programs with just one variable of each kind, but it is trivial to extend the
formalism to multiple variables (e.g., by letting the variables range over tuples).
Also, for the purpose of the paper, unobservable (i.e., high security) outputs are
irrelevant, and so we assume that the only program output is the low security
output. Let μ be a probability distribution over the values of H and L. Then,
the semantics of M can be defined by the following probability equation. (We
restrict to terminating deterministic programs in this paper.)

μ(O = o) =
∑

h, � ∈ H, L

M(h, �) = o

μ(H = h, L = �)

Note that we write M(h, �) to denote the low security output of the program
M given inputs h and �. Now, we are ready to introduce the Shannon-entropy
based definition of quantitative information flow (QIF) [11,6,15].
4 We abbreviate the sample spaces of random variables when they are clear from the

context.

On Bounding Problems of Quantitative Information Flow 361

Definition 4 (Shannon-Entropy-based QIF). Let M be a program with a
high security input H, a low security input L, and a low security output O. Let
μ be a distribution over H and L. Then, the Shannon-entropy-based quantitative
information flow is defined

SE [μ](M) = I[μ](O;H |L)
= H[μ](H |L) − H[μ](H |O,L)

Intuitively, H[μ](H |L) denotes the initial uncertainty knowing the low security
input and H[μ](H |O,L) denotes the remaining uncertainty after knowing the
low security output.

As an example, consider the programsM1 andM2 from Section 1. For concrete-
ness, assume that g is the value 01 and H ranges over the space {00, 01, 10, 11}.
Let U be the uniform distribution over {00, 01, 10, 11}, that is, U(h) = 1/4 for all
h ∈ {00, 01, 10, 11}. Computing their Shannon-entropy based quantitative infor-
mation flow, we have,

SE [U](M1) = H[U](H) − H[U](H |O) = log 4 − 3
4 log 3 ≈ .81128

SE [U](M2) = H[U](H) − H[U](H |O) = log 4 − log 1 = 2

Hence, if the user was to ask if SE [U](M1) ≤ 1.0, that is, “does M1 leak more
than one bit of information (according to SE [U])?”, then the answer would be
no. But, for the same query, the answer would be yes for M2.

Next, we introduce the min entropy, which Smith [24] recently suggested as
an alternative measure for quantitative information flow.

Definition 5 (Min Entropy). Let X and Y be random variables, and μ be an
associated probability distribution. Then, the min entropy of X is defined

H∞[μ](X) = log
1

V [μ](X)

and the conditional min entropy of X given Y is defined

H∞[μ](X |Y) = log
1

V [μ](X |Y)

where
V [μ](X) = maxx∈X μ(X = x)

V [μ](X |Y = y) = maxx∈X μ(X = x|Y = y)
V [μ](X |Y) =

∑
y∈Y

μ(Y = y)V [μ](X |Y = y)

Intuitively, V [μ](X) represents the highest probability that an attacker guesses
X in a single try. We now define the min-entropy-based definition of quantitative
information flow.

Definition 6 (Min-Entropy-based QIF). Let M be a program with a high
security input H, a low security input L, and a low security output O. Let μ be a
distribution over H and L. Then, the min-entropy-based quantitative information
flow is defined

ME [μ](M) = H∞[μ](H |L) − H∞[μ](H |O,L)

362 H. Yasuoka and T. Terauchi

Whereas Smith [24] focused on programs lacking low security inputs, we extend
the definition to programs with low security inputs in the definition above. It
is easy to see that our definition coincides with Smith’s for programs without
low security inputs. Also, the extension is arguably natural in the sense that we
simply take the conditional entropy with respect to the distribution over the low
security inputs.

Computing the min-entropy based quantitative information flow for our run-
ning example programsM1 andM2 from Section 1 with the uniform distribution,
we obtain,

ME [U](M1) = H∞[U](H) − H∞[U](H |O) = log 4 − log 2 = 1
ME [U](M2) = H∞[U](H) − H∞[U](H |O) = log 4 − log 1 = 2

Hence, if a user is to check whether ME [U] is bounded by q for 1 ≤ q < 2, then
the answer would be yes for M1, but no for M2.

The third definition of quantitative information flow treated in this paper is
the one based on the guessing entropy [17], that is also recently proposed in
literature [14,1].

Definition 7 (Guessing Entropy). Let X and Y be random variables, and
μ be an associated probability distribution. Then, the guessing entropy of X is
defined

G[μ](X) =
∑

1≤i≤m

i× μ(X = xi)

where m = |X| and x1, x2, . . . , xm satisfies ∀i, j.i ≤ j ⇒ μ(X = xi) ≥ μ(X =
xj).

The conditional guessing entropy of X given Y is defined

G[μ](X |Y) =
∑
y∈Y

μ(Y = y)G[μ](X |Y = y)

where

G[μ](X |Y = y) =
∑

1≤i≤m i× μ(X = xi|Y = y)
m = |X| and ∀i, j.i ≤ j ⇒ μ(X = xi|Y = y) ≥ μ(X = xj |Y = y)

Intuitively, G[μ](X) represents the average number of times required for the
attacker to guess the value of X . We now define the guessing-entropy-based
quantitative information flow.

Definition 8 (Guessing-Entropy-based QIF). Let M be a program with a
high security input H, a low security input L, and a low security output O. Let
μ be a distribution over H and L. Then, the guessing-entropy-based quantitative
information flow is defined

GE [μ](M) = G[μ](H |L) − G[μ](H |O,L)

On Bounding Problems of Quantitative Information Flow 363

Like with the min-entropy-based definition, the previous research on guessing-
entropy-based quantitative information flow only considered programs without
low security inputs [14,1]. But, it is easy to see that our definition with low
security inputs coincides with the previous definitions for programs without low
security inputs. Also, as with the extension for the min-entropy-based definition,
it simply takes the conditional entropy over the low security inputs.

We test GE on the running example from Section 1 by calculating the quan-
tities for the programs M1 and M2 with the uniform distribution.

GE [U](M1) = G[U](H) − G[U](H |O) = 5
2 − 7

4 = 0.75
GE [U](M2) = G[U](H) − G[U](H |O) = 5

2 − 1 = 1.5

Hence, if a user is to check whether GE [U] is bounded by q for 0.75 ≤ q < 1.5,
then the answer would be yes for M1, but no for M2.

The fourth and the final existing definition of quantitative information flow
that we introduce in this paper is the one based on channel capacity [18,16,22],
which is simply defined to be the maximum of the Shannon-entropy based quan-
titative information flow over the distribution.

Definition 9 (Channel-Capacity-based QIF). Let M be a program with a
high security input H, a low security input L, and a low security output O. Then,
the channel-capacity-based quantitative information flow is defined

CC (M) = max
μ

I[μ](O;H |L)

Unlike the Shannon-entropy based, the min-entropy based, and the guessing-
entropy based definitions, the channel-capacity based definition of quantitative
information flow is not parameterized by the distribution over the inputs. As
with the other definitions, let us test the definition on the running example from
Section 1 by calculating the quantities for the programs M1 and M2:

CC (M1) = maxμ I[μ](O;H) = 1
CC (M2) = maxμ I[μ](O;H) = 2

Note that CC (M1) (resp. CC (M2)) is equal to ME [U](M1) (resp. ME [U](M2)).
This is not a coincidence. In fact, it is known that CC (M) = ME [U](M) for all
programs M without low security inputs [24].

2.1 Non-interference

We recall the notion of non-interference [9,12].

Definition 10 (Non-intereference). A programM is said to be non-interferent
iff for any h, h′ ∈ H and � ∈ L, M(h, �) = M(h′, �).

It can be shown that for the definitions of quantitative information flow X in-
troduced above, X (M) ≤ 0 iff M is non-interferent.5 That is, the bounding
5 Technically, we need the non-zero-ness condition on the distribution for the entropy-

based definitions. (See below.).

364 H. Yasuoka and T. Terauchi

problem (which we only officially define for positive bounds –see Section 2.2–)
degenerates to checking non-interference when 0 is given as the bound.

Theorem 1. Let μ be a distribution such that ∀h ∈ H, � ∈ L.μ(h, �) > 0. Then,

– M is non-interferent if and only if SE [μ](M) ≤ 0.
– M is non-interferent if and only if ME [μ](M) ≤ 0.
– M is non-interferent if and only if GE [μ](M) ≤ 0.
– M is non-interferent if and only if CC (M) ≤ 0.

The equivalence result on the Shannon-entropy-based definition is proven by
Clark et al. [5]. The proofs for the other three definitions are given in the ex-
tended report [28].

2.2 Bounding Problem

We define the bounding problem of quantitative information flow for each def-
inition of the quantitative information flow introduced above. The bounding
problem for the Shannon-entropy based definition BSE [μ] is defined as follows:
Given a program M and a positive real number q, decide if SE [μ](M) ≤ q. Sim-
ilarly, we define the bounding problems for the other three definitions BME [μ],
BGE [μ], and BCC as follows.

BME [μ] = {(M, q) | ME [μ](M) ≤ q}
BGE [μ] = {(M, q) | GE [μ](M) ≤ q}
BCC = {(M, q) | CC (M) ≤ q}

3 K-Safety Property

We show that none of the bounding problems are k-safety problems for any k.
Informally, a program property is said to be a k-safety property [25,8] if it can be
refuted by observing k number of (finite) execution traces. A k-safety problem
is the problem of checking a k-safety property. Note that the standard safety
property is a 1-safety property. An important property of a k-safety problem is
that it can be reduced to a standard safety (i.e., 1-safety) problem, such as the
unreachability problem, via a simple program transformation called self compo-
sition [3,10]. This allows one to verify k-safety problems by applying powerful
automated safety verification techniques [2,13,20,4] that have made remarkable
progress recently.

As stated earlier, we prove that no bounding problem is a k-safety property
for any k. To put the result in perspective, we compare it to the results of the
related problems, summarized below. Here, X is SE [U], ME [U], GE [U], or CC ,
and Y is SE , ME , or GE . (Recall that U denotes the uniform distribution.)

(1) Checking non-interference is a 2-safety problem, but it is not 1-safety.
(2) Checking X (M1) ≤ X (M2) is not a k-safety problem for any k.
(3) Checking ∀μ.Y[μ](M1) ≤ Y[μ](M2) is a 2-safety problem.

On Bounding Problems of Quantitative Information Flow 365

The result (1) on non-interference is classic (see, e.g., [19,3,10]). The results (2)
and (3) on comparison problems are proven in our recent paper [29]. Therefore,
this section’s results imply that the bounding problems are harder to verify (at
least, via the self-composition approach) than non-interference and the compar-
ison problems for the entropy-based definitions of quantitative information flow
with universally quantified distributions.

Formally, k-safety property is defined as follows.

Definition 11 (k-safety property). We say that a property P ⊆ Prog × R+

is a k-safety property iff (M, q)
∈ P implies that there exists T ⊆ [[M]] such that
|T | ≤ k and ∀M ′.T ⊆ [[M ′]] ⇒ (M ′, q)
∈ P .

Here, Prog denotes the set of all programs, and R+ is the set of positive real
numbers. [[M]] denotes the semantics (i.e., traces) of M , represented by the set of
input/output pairs {((h, �), o) | h ∈ H, � ∈ L, o = M(h, �)}. Note that the origi-
nal definition of k-safety property is only defined over programs [25,8]. However,
because the bounding problems take the additional input q, we extend the notion
to account for the extra parameter.

We now state the main results of this section which show that none of the
bounding problems are k-safety problems for any k. Because we are interested in
hardness, we focus on the case where the distribution is the uniform distribution.
That is, the results we prove for the specific case applies to the general case.

Theorem 2. Neither BSE [U], BME [U], BGE [U], nor BCC is a k-safety property
for any k such that k > 0.

We defer the details of the theorem to Section 3.1 (see also Section 5.2) as it can
actually be obtained as a corollary of its results.

3.1 K-Safety under a Constant Bound

The result above appears to suggest that the bounding problems are equally
difficult for all the definitions of quantitative information flow. However, holding
the parameter q constant (rather than having it as an input) paints a different
picture. We show that the problems become k-safety for different definitions for
different k’s under different conditions in this case.

First, for q fixed, we show that the bounding problem for the channel-capacity
based definition of quantitative information flow is k-safety for k = �2q� + 1.
(Also, this bound is tight.)

Theorem 3. Let q be a constant. Then, BCC is �2q� + 1-safety, but it is not
k-safety for any k ≤ �2q�.

We briefly explain the intuition behind the above result. Recall that a problem
being k-safety means the existence of a counterexample trace set of size at most
k. That is, for (M, q) /∈ BCC , we have T ⊆ [[M]] such that |T | ≤ �2q� + 1 such
that any program that also contains T as its traces also does not belong to
BCC (with q), that is, its channel-capacity-based quantitative information flow

366 H. Yasuoka and T. Terauchi

is greater than q. Then, the above result follows from the fact that the channel-
capacity-based quantitative information flow coincides with the maximum over
the low security inputs of the logarithm of the number of outputs [16], therefore,
any T containing �2q� + 1 traces of the same low security input and disjoint
outputs is a counterexample.

For concreteness, we show how to check BCC via self composition. Suppose
we are given a program M and a positive real q. We construct the self-composed
program M ′ shown below.

M ′(H1, H2, . . . , Hn, L) ≡
O1 := M(H1, L);O2 := M(H2, L); . . . ;On := M(Hn, L);
assert(

∨
i,j∈{1,...,n}(Oi = Oj ∧ i
= j))

where n = �2q� + 1. In general, a self composition involves making k copies the
original program so that the resulting program would generate k traces of the
original (having the desired property). By the result proven by Malacaria and
Chen [16], it follows thatM ′ does not cause an assertion failure iff (M, q) ∈ BCC .

Next, we show that for programs without low security inputs, BME [U] and
BGE [U] are also both k-safety problems (but for different k’s) when q is held
constant.

Theorem 4. Let q be a constant, and suppose BME [U] only takes programs
without low security inputs. Then, BME [U] is �2q� + 1-safety, but it is not k-
safety for any k ≤ �2q�.

Theorem 5. Let q be a constant, and suppose BGE [U] only takes programs
without low security inputs. If q ≥ 1

2 , then, BGE [U] is � (�q�+1)2

�q�+1−q � + 1-safety,

but it is not k-safety for any k ≤ � (�q�+1)2

�q�+1−q �. Otherwise, q < 1
2 and BGE [U] is

2-safety, but it is not 1-safety.

The result for ME [U] follows from the fact that for programs without low security
inputs, the min-entropy based quantitative information flow with the uniform
distribution is actually equivalent to the channel-capacity based quantitative
information flow [24]. The result for GE [U] may appear less intuitive, but, the
key observation is that, like the channel-capacity based definition and the min-
entropy based definition with the uniform distribution (for the case without low
security inputs), for any set of traces T = [[M]], the information flow of a program
containing T would be at least as large as that of M . Therefore, by holding q
constant, we can always find a large enough counterexample T . The reason
BGE [U] is 2-safety for q < 1

2 is because, in the absence of low security inputs,
the minimum non-zero quantity of GE [U](M) is bounded (by 1/2), and so for
such q, the problem GE [U](M) ≤ q is equivalent to checking non-interference.6

But, when low security inputs are allowed, neither BME [U] nor BGE [U] are
k-safety for any k, even when q is held constant.
6 In fact, the minimum non-zero quantity property also exists for ME[U] without low

security inputs and CC. There, the minimum non-zero quantity is 1, which agrees

with the formulas given in the theorems.

On Bounding Problems of Quantitative Information Flow 367

Theorem 6. Let q be a constant. (And let BME [U] take programs with low
security inputs.) Then, BME [U] is not a k-safety property for any k > 0.

Theorem 7. Let q be a constant. (And let BGE [U] take programs with low se-
curity inputs.) Then, BGE [U] is not a k-safety property for any k > 0.

Finally, we show that the Shannon-entropy based definition (with the uniform
distribution) is the hardest of all the definitions and show that its bounding
problem is not a k-safety property for any k, with or without low-security inputs,
even when q is held constant.

Theorem 8. Let q be a constant, and suppose BSE [U] only takes programs with-
out low security inputs. Then, BSE [U] is not a k-safety property for any k > 0.

Intuitively, Theorems 6, 7, and 8 follow from the fact that, for these definitions,
given any potential counterexample T ⊆ [[M]] to show (M, q) /∈ BX , it is possible
to find M ′ containing T whose information flow is arbitrarily close to 0 (and so
(M ′, q) ∈ BX). See Section 5.2 for further discussion.

Because k tends to grow large as q grows for all the definitions and it is
impossible to bound k for all q, this section’s results are unlikely to lead to a
practical verification method. Nevertheless, the results reveal interesting dispar-
ities among the different proposals for the definition of quantitative information
flow.

4 Complexities for Loop-Free Boolean Programs

In this section, we analyze the computational complexity of the bounding prob-
lems when the programs are restricted to loop-free boolean programs. The pur-
pose of the section is to compare the complexity theoretic hardness of the bound-
ing problems with those of the related problems for the same class of programs,
as we have done with the k-safety property of the problems.

That is, we compare against the comparison problems of quantitative infor-
mation flow and the problem of checking non-interference for loop-free boolean
programs. The complexity results for these problems are summarized below.
Here, X is SE [U], ME [U], GE [U], or CC , and Y is SE , ME , or GE .

(1) Checking non-interference is coNP-complete
(2) Checking X (M1) ≤ X (M2) is PP-hard.
(3) Checking ∀μ.Y[μ](M1) ≤ Y[μ](M2) is coNP-complete.

The results (1) and (3) are proven in our recent paper [29]. The result (2) tightens
our (oracle relative) #P-hardness result from the same paper, which states that
for each C such that C is the comparison problem for SE [U], ME [U], GE [U], or
CC , we have #P ⊆ FPC . (Recall that the notation FPA means the complexity
class of function problems solvable in polynomial time with an oracle for the
problem A.) #P is the class of counting problems associated with NP. PP is the
class of decision problems solvable in probabilistic polynomial time. PP is known

368 H. Yasuoka and T. Terauchi

M ::= x := ψ | M0; M1

| if ψ then M0 else M1

φ, ψ ::= true | x | φ ∧ ψ | ¬φ

wp(x := ψ, φ) = φ[ψ/x]

wp(if ψ then M0 else M1, φ)

= (ψ ⇒ wp(M0, φ)) ∧ (¬ψ ⇒ wp(M1, φ))

wp(M0; M1, φ) = wp(M0,wp(M1, φ))

Fig. 1. The syntax and semantics of loop-free boolean programs

to contain both coNP and NP, PH ⊆ PPP = P#P [26], and PP is believed to be
strictly larger than both coNP and NP. (In particular, PP = coNP would imply
the collapse of the polynomial hierarchy (PH) to level 1.)

We show that, restricted to loop-free boolean programs, the bounding prob-
lems for the entropy-based definitions with the uniform distribution (i.e., SE [U],
ME [U], and GE [U]) and the channel-capacity based definition (i.e., CC) are
all PP-hard. The results strengthen the hypothesis that the bounding problems
for these definitions are quite hard. Indeed, they show that they are complex-
ity theoretically harder than non-interference and the comparison problems with
the universally quantified distributions for loop-free boolean programs, assuming
that coNP and PP are separate.

We define the syntax of loop-free boolean programs in Figure 1. We assume
the usual derived formulas φ ⇒ ψ, φ = ψ, φ ∨ ψ, and false. We give the usual
weakest precondition semantics in the figure.

To adapt the information flow framework to boolean programs, we make each
information flow variable H , L, and O range over functions mapping boolean
variables of its kind to boolean values. For example, if x and y are low security
boolean variables and z is a high security boolean variable, then L ranges over
the functions {x, y} → {false, true}, andH and O range over {z} → {false, true}.7

(Every boolean variable is either a low security boolean variable or a high security
boolean variable.) We write M(h, �) = o for an input (h, �) and an output o if
(h, �) |= wp(M,φ) for a boolean formula φ such that o |= φ and o′
|= φ for all
output o′
= o. Here, |= is the usual logical satisfaction relation, using h, �, o,
etc. to look up the values of the boolean variables. (Note that this incurs two
levels of lookup.)

As an example, consider the following program.

M ≡ z := x;w := y; if x ∧ y then z := ¬z else w := ¬w

Let x, y be high security variables and z, w be low security variables. Then,

SE [U](M) = 1.5
ME [U](M) = log 3 ≈ 1.5849625

GE [U](M) = 1.25
CC (M) = log 3 ≈ 1.5849625

7 We do not distinguish input boolean variables from output boolean variables. But,

a boolean variable can be made output-only by assigning a constant to the variable

at the start of the program and made input-only by assigning a constant at the end.

On Bounding Problems of Quantitative Information Flow 369

We now state the main results of the section, which show that the bounding
problems are PP-hard for all the definitions of quantitative information flow
considered in this paper.

Theorem 9. PP ⊆ BSE [U]

Theorem 10. PP ⊆ BME [U]

Theorem 11. PP ⊆ BGE [U]

Theorem 12. PP ⊆ BCC

We remind that the above results hold (even) when the bounding problems
BSE [U], BME [U], BGE [U], and BCC are restricted to loop-free boolean pro-
grams. We also note that the results hold even when the programs are restricted
to those without low security inputs. These results are proven by a reduction
from MAJSAT, which is a PP-complete problem. MAJSAT is the problem of
deciding, given a boolean formula φ over variables −→x , if there are more than
2|

−→x |−1 satisfying assignments to φ (i.e., whether the majority of the assignments
to φ are satisfying).

5 Discussion

5.1 Bounding the Domains

The notion of k-safety property, like the notion of safety property from where
it extends, is defined over all programs regardless of their size. (For example,
non-interference is a 2-safety property for all programs and unreachability is a
safety property for all programs.) But, it is easy to show that the bounding
problems would become “k-safety” properties if we constrained and bounded
the input domains because then the size of the semantics (i.e., the input/output
pairs) of such programs would be bounded by |H|×|L|. In this case, the problems
are at most |H|×|L|-safety.8 (And the complexity theoretic hardness degenerates
to a constant.) But, like the k-safety bounds obtained by fixing q constant (cf.
Section 3.1), these bounds are high for all but very small domains and are unlikely
to lead to a practical verification method. Also, because a bound on the high
security input domain puts a bound on the maximum information flow, the
bounding problems become a tautology for q ≥ c, where c is the maximum
information flow for the respective definition.

5.2 Low Security Inputs

Recall the results from Section 3.1 that, under a constant bound, the bounding
problems for both the min-entropy based definition and the guessing entropy-
based definition with the uniform distribution are k-safety for programs without
8 It is possible to get a tighter bound for the channel-capacity based definition by also

bounding the size of the output domain.

370 H. Yasuoka and T. Terauchi

low security inputs, but not for those with. The reason for the non-k-safety re-
sults is that the definitions of quantitative information flow ME and GE (and in
fact, also SE) use the conditional entropy over the low security input distribu-
tion and are parameterized by the distribution. This means that the quantitative
information flow of a program is averaged over the low security inputs accord-
ing to the distribution. Therefore, by arbitrarily increasing the number of low
security inputs, given any set of traces T , it becomes possible to find a program
containing T whose information flow is arbitrarily close to 0 (at least under the
uniform distribution). This appears to be a property intrinsic to any definition
of quantitative information flow defined via conditional entropy over the low
security inputs and is parameterized by the distribution of low security inputs.
Note that the channel-capacity based definition does not share this property as
it is defined to be the maximum over the distributions. The non-k-safety result
for BSE [U] holds even in the absence of low security inputs because the Shannon
entropy of a program is the average of the surprisal [7] of the individual observa-
tions, and so by increasing the number of high security inputs, given any set of
traces T , it becomes possible to find a program containing T whose information
flow is arbitrarily close to 0.

6 Related Work

This work continues our recent research [29] on investigating the hardness and
possibilities of verifying quantitative information flow according to the formal
definitions proposed in literature [11,6,15,24,14,1,18,16,22]. Much of the previ-
ous research has focused on information theoretic properties of the definitions
and proposed approximate (i.e., incomplete and/or unsound) methods for check-
ing and inferring quantitative information flow according to such definitions. In
contrast, this paper (along with our recent paper [29]) investigates the hardness
and possibilities of precisely checking and inferring quantitative information flow
according to the definitions.

This paper has shown that the bounding problem, that is, the problem of
checking X (M) ≤ q given a program M and a positive real q, is quite hard
(for various quantitative information flow definitions X). This is in contrast
to our previous paper that has investigated the hardness and possibilities of
the comparison problem, that is, the problem of checking X (M1) ≤ X (M2)
given programs M1 and M2. To the best of our knowledge, this paper is the
first to investigate the hardness of the bounding problems. But, the hardness
of quantitative information flow inference, a harder problem, follows from the
results of our previous paper, and Backes et al. [1] have also proposed a precise
inference method that utilizes self composition and counting algorithms.

While the focus of the work is on verification, in the light of the disparities
among the different definitions (cf. Section 3.1 and Section 5), it may be in-
teresting to judge the different proposals based on the hardness of verification.
Researchers have also proposed definitions of quantitative information flow that
are not considered in the paper. These include the definition based on the notion

On Bounding Problems of Quantitative Information Flow 371

of belief [7], and the ones that take the maximum over the low security in-
puts [15,14]. These are subjects of future study.

7 Conclusions and Future Work

In this paper, we have formalized and proved the hardness of the bounding
problem of quantitative information flow, which is a form of (precise) check-
ing problem of quantitative information flow. We have shown that no bounding
problem is a k-safety property for any k, and therefore that it is not possi-
ble to reduce the problem to a safety problem via self composition, at least
when the quantity to check against is unrestricted. The result is in contrast to
non-interference and the comparison problem for the entropy-based quantita-
tive information flow with universally quantified distribution, which are 2-safety
properties. We have also shown a complexity theoretic gap with these prob-
lems, which are coNP-complete, by proving the PP-hardness of the bounding
problems, when restricted to loop-free boolean programs.

We have also shown that the bounding problems for some quantitative informa-
tion flow definitions become k-safety for different k’s under certain conditions when
the quantity to check against is restricted to be a constant, highlighting interesting
disparities among the different definitions of quantitative information flow.

A possible future research direction is to investigate the entropy-based bound-
ing problems with their distributions universally quantified, that is, the problem
of deciding if ∀μ.Y[μ](M) ≤ q where Y is instantiated with SE , ME , or GE . This
is partly motivated by our recent work [29] that has obtained remarkable results
by universally quantifying over the distributions in the entropy-based definitions
in the comparison problems. (That is, checking ∀μ.SE [μ](M1) ≤ SE [μ](M2),
∀μ.ME [μ](M1) ≤ ME [μ](M2), and ∀μ.GE [μ](M1) ≤ GE [μ](M2) are all equiva-
lent and 2-safety, and so that they can all be checked simultaneously via self com-
position, and that they are coNP-complete when restricted to loop-free boolean
programs –cf. Section 1–.) We actually already know the answer for the Shannon-
entropy based definition. That is, ∀μ.SE [μ](M) ≤ q, as this is simply is equiv-
alent to CC (M) ≤ q, the channel-capacity bounding problem. The problem is
open for the other two entropy-based definitions of quantitative information flow.

References

1. Backes, M., Köpf, B., Rybalchenko, A.: Automatic discovery and quantification

of information leaks. In: IEEE Symposium on Security and Privacy, pp. 141–153

(2009)

2. Ball, T., Rajamani, S.K.: The SLAM project: debugging system software via static

analysis. In: POPL, pp. 1–3 (2002)

3. Barthe, G., D’Argenio, P.R., Rezk, T.: Secure information flow by self-composition.

In: CSFW, pp. 100–114 (2004)

4. Beyer, D., Henzinger, T.A., Jhala, R., Majumdar, R.: The software model checker

Blast. STTT 9(5-6), 505–525 (2007)

5. Clark, D., Hunt, S., Malacaria, P.: Quantified interference for a while language.

Electr. Notes Theor. Comput. Sci. 112, 149–166 (2005)

372 H. Yasuoka and T. Terauchi

6. Clark, D., Hunt, S., Malacaria, P.: A static analysis for quantifying information

flow in a simple imperative language. Journal of Computer Security 15(3), 321–371

(2007)

7. Clarkson, M.R., Myers, A.C., Schneider, F.B.: Belief in information flow. In:

CSFW, pp. 31–45 (2005)

8. Clarkson, M.R., Schneider, F.B.: Hyperproperties. In: CSF, pp. 51–65 (2008)

9. Cohen, E.S.: Information transmission in computational systems. In: SOSP, pp.

133–139 (1977)

10. Darvas, Á., Hähnle, R., Sands, D.: A theorem proving approach to analysis of secure

information flow. In: Hutter, D., Ullmann, M. (eds.) SPC 2005. LNCS, vol. 3450,

pp. 193–209. Springer, Heidelberg (2005)

11. Denning, D.E.R.: Cryptography and data security. Addison-Wesley Longman Pub-

lishing Co., Inc., Amsterdam (1982)

12. Goguen, J.A., Meseguer, J.: Security policies and security models. In: IEEE Sym-

posium on Security and Privacy, pp. 11–20 (1982)

13. Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Lazy abstraction. In: POPL,

pp. 58–70 (2002)

14. Köpf, B., Basin, D.: An information-theoretic model for adaptive side-channel at-

tacks. In: CCS, pp. 286–296 (2007)

15. Malacaria, P.: Assessing security threats of looping constructs. In: POPL, pp. 225–

235 (2007)

16. Malacaria, P., Chen, H.: Lagrange multipliers and maximum information leakage

in different observational models. In: PLAS, pp. 135–146 (2008)

17. Massey, J.L.: Guessing and entropy. In: ISIT, p. 204 (1994)

18. McCamant, S., Ernst, M.D.: Quantitative information flow as network flow capac-

ity. In: PLDI, pp. 193–205 (2008)

19. McLean, J.: A general theory of composition for trace sets closed under selective

interleaving functions. In: IEEE Security and Privacy, pp. 79–93 (1994)

20. McMillan, K.L.: Lazy abstraction with interpolants. In: Ball, T., Jones, R.B. (eds.)

CAV 2006. LNCS, vol. 4144, pp. 123–136. Springer, Heidelberg (2006)

21. Naumann, D.A.: From coupling relations to mated invariants for checking informa-

tion flow. In: Gollmann, D., Meier, J., Sabelfeld, A. (eds.) ESORICS 2006. LNCS,

vol. 4189, pp. 279–296. Springer, Heidelberg (2006)

22. Newsome, J., McCamant, S., Song, D.: Measuring channel capacity to distinguish

undue influence. In: PLAS, pp. 73–85 (2009)

23. Shannon, C.: A mathematical theory of communication. Bell System Technical

Journal 27, 379–423, 623–656 (1948)

24. Smith, G.: On the foundations of quantitative information flow. In: de Alfaro, L.

(ed.) FOSSACS 2009. LNCS, vol. 5504, pp. 288–302. Springer, Heidelberg (2009)

25. Terauchi, T., Aiken, A.: Secure information flow as a safety problem. In: Hankin,

C., Siveroni, I. (eds.) SAS 2005. LNCS, vol. 3672, pp. 352–367. Springer, Heidelberg

(2005)

26. Toda, S.: PP is as hard as the polynomial-time hierarchy. SIAM J. Comput. 20(5),

865–877 (1991)

27. Unno, H., Kobayashi, N., Yonezawa, A.: Combining type-based analysis and model

checking for finding counterexamples against non-interference. In: PLAS, pp. 17–26

(2006)

28. Yasuoka, H., Terauchi, T.: On bounding problems of quantitative information flow

(2010), http://www.kb.ecei.tohoku.ac.jp/~yasuoka
29. Yasuoka, H., Terauchi, T.: Quantitative information flow - verification hardness

and possibilities. In: CSF (2010)

http://www.kb.ecei.tohoku.ac.jp/~yasuoka

On E-Vote Integrity in the Case of Malicious Voter
Computers

Sven Heiberg1, Helger Lipmaa1,2, and Filip van Laenen3

1 Cybernetica AS, Estonia
2 Tallinn University, Estonia

3 Computas AS, Norway

Abstract. Norway has started to implement e-voting (over the Internet, and by
using voters’ own computers) within the next few years. The vulnerability of
voter’s computers was identified as a serious threat to e-voting. In this paper, we
study the vote integrity of e-voting when the voter computers cannot be trusted.
First, we make a number of assumptions about the available infrastructure. In par-
ticular, we assume the existence of two out-of-band channels that do not depend
on the voter computers. The first channel is used to transmit integrity check codes
to the voters prior the election, and the second channel is used to transmit a check
code, that corresponds to her vote, back to a voter just after his or her e-vote vast
cast. For this we also introduce a new cryptographic protocol. We present the new
protocol with enough details to facilitate an implementation, and also present the
timings of an actual implementation.

Keywords: Implementation, integrity, malicious voter computers, nationwide e-
voting, proxy oblivious transfer, zero-knowledge proofs.

1 Introduction

The first e-voting pilot (that is, voting over the Internet by using voters’ own computers)
pilot in Norway is currently scheduled for 2011, with plans to have nation-wide e-
voting by 2017. As it should be in all democratic countries, Norway aims the electronic
elections to be both as accessible/usable and as secure as possible. It is not always easy
to reach a sensible compromise. In this paper, we describe our e-voting solution that was
proposed to the Norwegian election officials in Summer of 2009. The proposed e-voting
protocol tries to find a good compromise between various security and usability.

A nationwide implementation of e-voting has to be secure against as many attacks
as possible, and in presence of as many malicious parties as possible without seriously
hurting usability or the ease of verifiably correct implementation. Abundant research
has been done on the security of e-voting in the presence of malicious voting servers.
Thus, this part of e-voting can be considered to be solved to at least certain degree, and
thus in this paper, we will not focus on this aspect of e-voting. (The real e-voting will
implement additional means to guarantee security against malicious voting servers.)

On the other hand, it is even more difficult to guarantee security in the case when
voter computers cannot be trusted. The seeming impossibility of guaranteeing vote pri-
vacy and integrity in the presence of malicious voter computers has been one of the main

D. Gritzalis, B. Preneel, and M. Theoharidou (Eds.): ESORICS 2010, LNCS 6345, pp. 373–388, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

374 S. Heiberg, H. Lipmaa, and F. van Laenen

obstacles that has delayed the real-world implementation of e-voting. Moreover, achiev-
ing vote privacy in the case of malicious voter computers seems to hurt usability [2],
since the value input by a voter to the computer should not reveal voter’s preferred
candidate. In practice, this amounts to inputing a pseudorandom code (or something
similar), unknown to the voter computer but yet securely delivered to the voter himself
or herself. Due to both the impossibility of implementing secure yet guaranteed code
delivery and to the usability concerns, solutions where a voter is required to enter a
random code to the computer are definitely out of the question. In Norway, solutions
where the voter could obtain the used random values, and then use her own program to
verify the correctness of ciphertexts were not even considered.

Our Contributions. We show that it is possible to guarantee e-vote integrity in the
presence of malicious voter computers without drastically changing the user experience,
and without the necessity of 100% delivery of random codes (or say, secure hardware
tokens). More precisely, we construct a cryptographic protocol at the end of which, after
she has entered her vote to the computer, the voter obtains a relatively short integrity
check code. Given this check code (and/or the absence or presence of the message
itself), the voter can verify the integrity of her vote. This easy verification is the only
change in her voting experience as compared to a similar non-secure system: she is
not required to enter long codes, nor has the user interface to be particularly clunky.
Moreover, in our case, the delivery of the check codes and the subsequent verification
is not obligatory: voters who are paranoid enough or just have a reason not to trust
either the idea of e-voting, or the security of their own computers, can take additional
measures to first obtain the codes and then to perform verification.

We first introduce some organizational assumptions that seem to be necessary and
yet practical enough to be implemented. We emphasize that these assumptions (“the
necessary evil”) have been approved by the Norwegian e-voting project officials. First,
Norway has an ongoing parallel process to implement a national public-key infrastruc-
ture. This infrastructure will make it possible for the e-voting project to use eID-cards
for the authentication of the voters, but not yet for signing the ballots digitally by 2011.
This means that for authentication, the same scheme as the one used on the eID-card has
to be used, but otherwise, the pilot project is free to use non-standard public-key cryp-
tosystems. It has to be mentioned though that there are some commercial alternatives
available that offer digital signature functionality, but it is unclear whether the public
will be willing to trust commercial vendors to sign their ballots.

Second, we require the existence of two secure and authenticated channels prechannel
and postchannel. Briefly, before the elections, every voter v gets a list of candidates cnd
together with integrity check codes Codev[cnd], where the voter-dependent codes are
random and independent. The codes are transfered to all voters over a secure and authen-
ticated prechannel that is unlikely to be controlled by the same attacker that controls her
computer. This is not restrictive in Norway, where voter registration cards are mailed
to all voters in advance (and people trust the postal system). Once more, the delivery of
check codes to all voters is not necessary: we just assume that a large majority of voters
have access to the prechannel by default, and other voters (who are still sufficiently in-
terested in e-voting security) must take a special action to obtain the codes. In principle,
there are several alternative ways to build prechannel, but the important requirement is

On E-Vote Integrity in the Case of Malicious Voter Computers 375

that the check codes should not be known by the voter’s computer. Alternatives include
using secure Web pages (available only when accessed by using say a smartphone for
which the real e-voting client is not available), or SMSs from a fixed mobile number.

Moreover, a real-time channel postchannel (say, SMS, or a Web page that can be
checked by using a smartphone) is used to inform the voter about the success of her
actions. More precisely, every time she has voted, an integrity check code is sent to her
by using postchannel. Note that in Norway, virtually every voter has a mobile phone
with the mobile number known to the government—namely, they are extensively used
for tax payment—, and thus there exists an efficient postchannel. Those voters whose
mobiles have not been registered yet, but who are interested in e-voting security, have
to take additional action. However, voters can choose not to do it. Also, a message from
postchannel makes sense even if the voter has not received the original codes from the
prechannel: in this case, she at least knows that her vote has been recorded.

In addition, the Norwegian e-voting procedure will allow the voters to revote either
electronically—such that later e-vote takes precedence over an earlier e-vote—or by
(later) participating in conventional paper voting (p-voting), which will take precedence
over e-votes. This will provide at least some (though not complete) protection against
vote buying and coercion: if either of these has happened, the voter can choose to revote
later by using either an e-vote or a p-vote. (The p-voting period will start several days
after the e-voting period has ended.) Clearly, if the voter can be both physically coerced
(to the extent where she cannot go and participate in p-voting) and she cannot trust
her computer, then she cannot be completely protected against all frauds. However,
the revoting procedure, which is already implemented in Estonian national e-voting
procedure, offers at least some protection against vote buying and coercion. Moreover,
due to the existence of the postchannel, a voter will get a timely notification when
her vote was altered by her computer. In this case, she can use a different computer
to revote, or when necessary, participate in p-voting. Therefore, the combination of a
quick-response postchannel and revoting not only guarantees fraud detection but also
allows the voters to act on it.

On the flip side, every voter can legally use the same PC to vote many times for
(not necessarily) different candidates. This limits the choice of postchannel in our case
significantly. In particular, it is not secure to use the (possibly malicious) PC itself as
the postchannel. Namely, assume that the voter votes for candidate A, then is coerced
to vote for B, and then votes again for A. The PC, already knowing the integrity check
codes of A and B, can submit a vote for B but display the integrity check code for A.

Given those organizational assumptions, we consider the next setting. Voter’s ballot
(vote) is encrypted and signed (possibly by the attacker), and then sent to the vote col-
lector. (Without loss of generality, in this paper we will assume that there is a single vote
collector. In practice, there will be more, but all our protocols will naturally generalize.
We will not mention this important point anymore.) The vote collector computes, given
an encrypted and signed vote, a ciphertext of the integrity check code Codev[cnd] and
sends it to another server (called the messenger). The messenger decrypts the code, and
then sends an SMS alert of the type “You, [name], voted at [time], the check code is
Codev[cnd] ” to the voter over postchannel. The voter verifies the correctness: she com-
plains when she got a wrong message over postchannel (which say contains a wrong

376 S. Heiberg, H. Lipmaa, and F. van Laenen

check code), or did not get it all when she voted (in particular when her computer
tells her that the vote collector is unavailable), or gets a message when she did not vote.
Here, we need that the messenger, who can be behind a firewall, is unaware of the corre-
spondence between the candidates and the corresponding check codes. I.e., a malicious
messenger should not collaborate with a malicious vote collector.

In Sect. 4, we propose a cryptographic protocol by which the messenger obtains
Codev[cnd]. The basic idea of the protocol is as follows. Voter’s computer sends to
the vote collector two ciphertexts that “encrypt” cnd, one with tallier’s public key, and
another one with messenger’s public key. This is accompanied by a non-interactive
zero-knowledge (NIZK) proof of knowledge that the two encrypted values are equal
and belong to the correct range (i.e., correspond to a valid candidate). The correspond-
ing full NIZK proof of knowledge is presented in Sect. 3.2, and its full security proof is
given in an appendix. When the NIZK proof of knowledge is correct, the vote collector
cryptocomputes, based on the second ciphertext, a ciphertext of Codev[cnd] that is en-
crypted by messenger’s public key. This is done by using a “proxy oblivious transfer”
protocol [13] with the additional requirement that the proxy should not get to know the
index used by the chooser even when he knows the whole unordered database. The vote
collector then sends an encryption of cnd (under tallier’s public key) to the tallier, and an
encryption of Codev[cnd] (under messenger’s public key) to the messenger. In Sect. 4,
the new protocol is presented in sufficient details to facilitate an implementation.

We then give an informal security assessment of the full integrity check protocol, and
explain our choice of underlying cryptographic primitives and protocols. In this paper,
we are not going to discuss the operation of tallier since there is a decent amount of
literature on this part of the e-voting process. However, we stress that the full e-voting
solution in Norway must use additional cryptographic protocols to guarantee better
security against malicious voting servers (i.e., vote collectors, talliers, and messengers).

We finish the paper by describing an implementation of the new integrity check pro-
tocol, and by giving the timings in the case where there is both a small and a large
number of voters and candidates. For example, if there are 80 candidates, the vote col-
lector’s throughput is around 2 000 votes per hour on our test machine. The throughput
can be increased dramatically by using several vote collectors, better (faster and mul-
ticore) CPUs, or even hardware acceleration. In particular, our next task consists of
implementing the described protocol in a commercial Hardware Security Module.

Risk Assessment: Avoided Attacks Versus New Attacks. Without the use of the new
protocol (or something similar), the voters will not be informed at all whether their
e-votes reached the voting servers. Thus, a malicious entity (say some foreign govern-
ment, or a terrorist organization) can mount a full-scale attack (by writing malicious
software that covertly takes over many of voter computers) on the e-voting process and
stay undetected. Alternatively, they may reveal themselves after the end of the elections
and prove that they in fact manipulated the elections — even that case would be quite
devastating. If the integrity protocol of this paper is implemented, such attacks will all
be at least detected—given that sufficiently many voters verify the codes—, and the
voters can also react by revoting on paper if necessary.

On E-Vote Integrity in the Case of Malicious Voter Computers 377

The new protocol also creates some genuinely new attacks. For example, an attacker
can take over the prechannel (for example, by distributing fake voter registration cards)
or the postchannel (by massively distributing fake SMSs). Both attacks are arguably
much more difficult to perform without detection than the takeover of voter comput-
ers, since they at least require some physical presence. Attacks on only the postchannel
basically amount to the voters receiving bogus messages with (very high probability)
wrong check codes. In this case the voters will be alerted, and can revote. Even if both
channels are successfully attacked (which is quite difficult by an outsider in the case the
prechannel is implemented by using “snail mail” and the postchannel is implemented
by using SMSs), there is no more harm done than by attacking voter computers: the at-
tacker can then both break correctness (by just reordering codes sent by the prechannel)
and anonymity, but both can done trivially by just a malicious computer.

Finally, there are some genuinely new attacks which more hinge on human psy-
chology than cryptography or computer security in general. As an example, voters can
falsely claim that they received wrong codes, and thus cause alarm and distrust in elec-
tions. Here we emphasize, that the new protocol makes it possible for voters to detect
attacks (so that they can revote) but in most of the cases, not to prove their presence.
(With some exceptions, such as when they receve incorrectly formatted SMSs from the
correct mobile number.) In our own opinion, due to this attack, voter complaints should
thus always taken with a grain of salt: if such a complaint occurs, then clearly either
there was an attack by an outsider or the voter herself. This should be explained to the
voters before the e-voting. Moreover, without such a protocol, any voter can (legiti-
mately) claim that she does not trust e-voting since she may have a virus — and that
the government has done nothing to protect her in such a case. We think that the latter
complaint is much more valid.

Due to the lack of space, many details have been omitted. They can be found in the
full version [9].

2 Cryptographic Preliminaries

Notation. All logarithms are on basis 2. k is the security parameter, we assume that
k = 80. x ← X denotes assignment; if X is a set or a randomized algorithm, then
x ← X denotes a random selection of x from the set or from the possible outputs of
X as specified by the algorithm. In the case of integer operations, we will explicitly
mention the modulus, like in z ← a + b mod q. On the other hand, we will omit
modular reduction in the case of group operations (like h ← gr), since in this case
depending on the group, reduction may or may not make sense.

Hash Functions, Random Oracle Model and Key Derivation Functions. A function
H : A → B is a hash function if |B| < |A|. Within this paper, we usually need to
assume thatH is a random oracle. I.e., the value ofH(x) is completely unpredictable if
one has not seen H(x) before. Random oracles are useful in many cryptographic appli-
cations, by making it possible to design efficient cryptographic protocols. In practice,
one would instantiate H with a strong cryptographic hash function like SHA2 or the
future winner of the SHA3 competition. While there exist schemes which are secure
in the random oracle model but which are insecure given any “real” function [5], all

378 S. Heiberg, H. Lipmaa, and F. van Laenen

known examples are quite contrived. A key derivation function Kdf : A → B takes a
random element from set A and outputs a pseudorandom element in set B. If |B| < |A|
then Kdf is a pseudorandom function, but if |B| ≥ |A| then Kdf can be constructed
without any cryptographic assumptions. See, e.g., [6]. For the sake of simplicity, we
think of Kdf as a random oracle.

Signature Schemes. A signature scheme SC = (Gensc, Sign,Ver) is a triple of efficient
algorithms, where Gensc is a randomized key generation function, Sign is a (possibly
randomized) signing algorithm and Ver is a verification algorithm. A signature scheme
is EUF-CMA (existentially unforgeable against chosen message attacks) secure, if it is
computationally infeasible to generate a new signature (i.e., a signature to a message
that was not queried from the oracle), given an access to an oracle who signs messages
chosen by the adversary. For the purpose of this paper, any of the well-known EUF-
CMA secure signature schemes can be used. However, since e-voting is most probably
going to use the existing PKI infrastructure of the relevant country, the most prudent
approach is to rely on whatever signature scheme has been implemented in the corre-
sponding ID-cards.

Public-Key Cryptosystems. Let PKC = (Genpkc,Enc,Dec) be a public-key cryptosys-
tem, where Genpkc is a randomized key generation algorithm that on input (1k; r), for
some random string r, outputs a new secret/public key pair (sk, pk) ← Genpkc(1k; r),
Enc is a randomized encryption algorithm with c = Encpk(m; r′), and Dec is a de-
cryption algorithm with Decsk(c) = m′. It is required that if (sk, pk) ← Genpkc(1k; r)
then Decsk(Encpk(m; r′)) = m for all valid m, r and r′. We denote Encpk(m; r) (resp.,
Genpkc(1k; r)) for a randomly chosen r also just as Encpk(m) (resp., Genpkc(1k)).

In the case of the Elgamal cryptosystem [7], one fixes a cyclic group G of a prime
order 22k+1 > q > 22k, together with a generator g of G. Then, Genpkc(1k) generates
a random sk ← Zq , and sets pk ← gsk. On input m ∈ G, the encryption algorithm
generates a new random r ← Zq , and sets Encpk(m; r) := (m · pkr, gr). On input
c = (c1, c2) ∈ G2, the decryption algorithm outputs m′ ← c1/c

sk
2 . Elgamal is mul-

tiplicatively homomorphic. I.e., Decsk(Encpk(m1; r1) · Encpk(m2; r2)) = m1 ·m2 for
(sk, pk) ∈ Genpkc(1k). Further discussion is provided in the full version [9].

Non-Interactive Zero-Knowledge Proof of Knowledge. Let L be an arbitrary NP-
language, and let R = {(x, y)} where x ∈ L and y is the corresponding NP-witness.
A Σ-protocol (P1, V1, P2, V2) for a relation R is a three-message protocol between a
prover and a verifier (both stateful), such that (1) the prover and verifier have a com-
mon input x, and the prover has a private input y, (2) the prover sends the first (P1)
and the third (P2) message, and the verifier sends the second message V1, after which
the verifier either rejects or accepts (by using V2), (3) the protocol is public-coin: i.e.,
the verifier chooses her response V1 completely randomly from some predefined set,
(4) the protocol satisfies the security properties of correctness, special honest-verifier
zero-knowledge (SHVZK), and special soundness. We identify a protocol run with the
tuple (x; i, c, r) where (i, c, r) are the three messages of this protocol. A protocol run is
accepting, if an honest verifier accepts this run, i.e., on having input x and seeing the
messages i, c, and r.

On E-Vote Integrity in the Case of Malicious Voter Computers 379

Based on an arbitrary Σ-protocol, one can build a non-interactive zero-knowledge
(NIZK) proof of knowledge in the random oracle model, by using the Fiat-Shamir
heuristic. I.e., given (x, y) ∈ R and a random oracle H [3], the corresponding NIZK
proof of knowledge π consists of (i, c, r), where i ← P1(x, y), c ← H(param, x, i),
and r ← P2(x, y, c), where param is the set of public parameters (like the description
of the underlying group, etc).

We use the next common notation. A NIZK proof of knowledge PK(R(. . .)) is for
relation R, where the prover has to prove the knowledge of variables denoted by Greek
letters. All other variables are known to both the prover and the verifier. For example,
PK(y = Encpk(μ; ρ)∧μ ∈ {0, 1}) denotes a NIZK proof of knowledge that the prover
knows a Boolean μ and some ρ such that y = Encpk(μ; ρ).

NIZK Proof of Equality of Plaintexts. Let PKC = (Genpkc,Enc,Dec) be the Elgamal
cryptosystem. Fix G, g, and two key pairs (sk1, pk1) ∈ Genpkc(1k) and (sk2, pk2) ∈
Genpkc(1k). Let H be a random oracle. The NIZK proof of equality of plaintext is a
NIZK proof of knowledge PK(e1 = Encpk1

(gμ; ρ1) ∧ e2 = Encpk2
(gμ; ρ2)), that e1

and e2 encrypt the same plaintext under a different key.

Range Proof in Exponents. In the following we need a range proof in exponents, i.e.,
a NIZK proof of knowledge PK(e = Encpk(gμ; ρ) ∧ μ ∈ [0,CC]) for some positive
integer CC. In the discrete logarithm setting the most efficient known range proof in
exponents was proposed in [12]. (Another range proof in exponents that is comparably
communication-efficient, was recently proposed in [4]. However, the latter proof uses
pairings and is thus computationally less efficient.) The communication complexity of
the range proof in exponents from [12] is logarithmic in CC. In the general case (when
assuming stronger assumptions), there exist range proofs in exponents with communi-
cation that is essentially independent of CC. However, if the value of CC is relatively
small, the latter proofs actually are less efficient than the proof of [12].

We specify this proof fully in Sect. 3.1, where we present a NIZK proof of knowledge
that uses this range proof in exponents as a subproof.

3 Cryptographic Tools

3.1 Strong Proxy Oblivious Transfer

In a 1-out-of-n proxy oblivious transfer protocol, (n, 1)-POT [13], for �-bit strings,
the chooser has an index x ∈ {0, . . . , n − 1} and a public key pk, the sender has
pk and a database f = (f0, . . . , fn−1) with fi ∈ {0, 1}�, and the proxy has a de-
cryption key. At the end of the protocol, the proxy obtains fx. A two-message (n, 1)-
POT protocol Γ = (Gcpir,Query,Reply,Answer) is a quadruple of polynomial-time
algorithms, with Gcpir and Query being randomized, such that for any r, (sk, pk) ←
Gcpir(1k; r), x, f and r′, Answersk(x,Replypk(f,Querypk(x; r

′))) = fx. As before,
we denote Gcpir(1k) := Gcpir(1k; r) and Querypk(x) := Querypk(x; r′) for randomly
chosen r and r′. Here, the proxy generates the key pair (sk, pk) and sends pk to the
chooser and to the sender. The chooser then sends Querypk(x) to the sender, who sends
Replypk(f,Querypk(x)) to the proxy. The proxy obtains fx by applying Answersk.

380 S. Heiberg, H. Lipmaa, and F. van Laenen

Semisimulatable Privacy for Strong Proxy Oblivious Transfer. Let Γ = (Gcpir,
Query,Reply,Answer) be a 2-message (n, 1)-POT protocol. Within this work we use
the convention of many previous papers on oblivious transfer protocols to only require
(semisimulatable) privacy in the malicious model. I.e., chooser’s privacy is guaranteed
in the sense of indistinguishability (CPA-security), while sender’s privacy is guaran-
teed in the sense of simulatability. We note that POT’s privacy definition is a simple
modification of the standard OT’s semisimulatable privacy definition.

We give an informal definition of semisimulatable privacy. For the CPA-security
(i.e., the privacy) of the chooser, (1) no malicious nonuniform probabilistic polynomial-
time sender should be able to distinguish, with non-negligible probability, between the
distributions (pk,Querypk(x0)) and (pk,Querypk(x1)) that correspond to any two of
chooser’s inputs x0 and x1 that are chosen by the sender, and (2) no malicious nonuni-
form probabilistic polynomial-time proxy should be able to distinguish, with non-
negligible probability, between the distributions ({f}, sk, pk,Replypk(f,Querypk(x0)))
and ({f}, sk, pk,Replypk(f,Querypk(x1))) that correspond to any two of chooser’s in-
puts x0 and x1 that are chosen by the sender. (Here, {f} denotes an unordered version
of f .) For sender-privacy, we require the existence of an unbounded simulator that,
given pk, chooser’s message Q∗

pk and proxy’s legitimate output corresponding to this
message, generates sender’s message that is statistically indistinguishable from honest
sender’s message Replypk in the real protocol; here Q∗

pk does not have to be correctly
computed. As in earlier papers that use semisimulatable privacy, unboundedness is re-
quired mostly so that the simulator could “decrypt” chooser’s first message. A protocol
is private if it is both chooser-private and sender-private.

Instantiation. In the proposed e-voting protocol, the database size n corresponds to the
number of candidates, and therefore it is usually small (say n ≤ 64). This means that it
is sufficient to use a POT protocol with linear-in-n communication. (In the case when n
is larger, one could consider relying on an underlying oblivious transfer protocol with
small polylogarithmic communication like those of [10,8].) On the other hand, it is
important to minimize sender’s computation. Given those considerations, we base the
new POT protocol on the AIR oblivious transfer protocol [1]. The result has (in the
case of a small n) good communication and computation, is based on a well-known
security assumption (Decisional Diffie-Hellman), and allows one to construct efficient
NIZK proofs of knowledge.

Let PKC = (Genpkc,Enc,Dec) be the Elgamal cryptosystem, and let g ∈ G be a
fixed generator of the plaintext group. Chooser’s private input is x ∈ {0, . . . , n − 1},
and sender’s private input is f = (f0, . . . , fn−1) for fi ∈ {0, 1}� with (relatively) small
�. The new (n, 1)-strong POT protocol consists of the next steps:

1. The proxy sets (sk, pk) ← Genpkc(1k), and sends pk to the chooser and the sender.
2. For ρ ← Zq , the chooser sets e ← Encpk(gx; ρ), and sends Querypk(x) ← e to the

sender.
3. The sender does on input pk and Querypk(x) = e:

(a) For every i ∈ {0, . . . , n − 1}: generate new random values ri, r′i ← Zq , set
ei ← (Encpk(gi; 1)/e)ri · Encpk(gfi ; r′i).

(b) Send Reply = Replypk(f, (pk, e)) ← {e0, . . . , en−1} to the proxy, where the
set elements in Reply are given in a random order.

On E-Vote Integrity in the Case of Malicious Voter Computers 381

4. For all elements e′ in the set Reply, the proxy computes y ← Decsk(e′). He finds
an y, such that the discrete logarithm z of y on basis g is small. He outputs z as
Answersk(x,Reply).

Note that the sender can precompute the values Encpk(gi; 1) and Encpk(gfi ; 1), and
therefore her online computation is dominated by 2n exponentiations in G. (Note that
in the actual implementation, this protocol will also be accompanied with a NIZK proof
that x is in the correct range.)

Computing discrete logarithm is efficient when all database elements are small, say
� ≤ 5, and can be just done by table-lookup by comparing all values y with values gi for
small i. (Discrete logarithm step could be avoided by using an additively homomorphic
cryptosystem. However, known additively homomorphic cryptosystems are otherwise
considerably less efficient than Elgamal.) Moreover, with an overwhelming probabil-
ity, there is exactly one element ej such that the discrete logarithm of Decsk(ej) is
small. Thus, the proxy can just decrypt all values e′, and then check them against a
precomputed table lookup of gi for small values of i; the comparison step will take
Θ(n · logn) elementary operations. Since n is very small, this part is considerably
faster than decrypting n different ciphertexts. When using say Lipmaa’s [10] oblivious
transfer-protocol based POT, the messenger will only have to decrypt a single element
and then make Θ(log n) comparisons by using binary search. However, the cost of
computing Answer will be higher. Our choice is supported by implementation timings
(Sect. 7) that show that proxy’s time load is much smaller than that of sender. Finally,
note that the messenger has to decrypt in average 50% of the elements, and thus his
online cost is dominated by ≈ n/2 exponentiations.

This protocol is clearly both correct and private, given that Elgamal is CPA-secure [1].

Weak POT for Large Database Elements. We also need to use proxy oblivious trans-
fer in a situation, where the database elements are significantly longer, such that com-
puting discrete logarithm (as in the proposed strong POT protocol) will not anymore
possible. However, in our application, the proxy is allowed to know an unordered
version {f} of the database f . More precisely, the proxy knows an unordered tuple
F := {gf0 , . . . , gfn−1}, and for efficiency reasons, we assume that this tuple is sorted.
After the end of the POT protocol, he obtains gfx for some unknown x, and he can ver-
ify whether gfx is equal to some element of F by using binary search, in timeΘ(log n).
However, that does not help him in determining x since F does not contain any infor-
mation about indexes. We call this protocol a weak oblivious transfer protocol.

3.2 New NIZK Proof of Knowledge

We need a NIZK proof of knowledge PK(e = Encpkt(gμ; ρ) ∧ e′ = Querypkm(μ; ρ′) ∧
μ ∈ [0,CC]), where we use the Elgamal cryptosystem and the new proxy oblivious
transfer protocol. Since in the new POT protocol, the first message is just Encpkt(gμ),
we need to prove an AND of two statements, that e and e′ “encrypt” the same value gμ

(under different keys), and that e′ encrypts a value gμ where μ ∈ [0,CC]. We already
presented both proofs separately. For the sake of completeness, the full interactive
version of this zero-knowledge proof is given in Prot. 1. We need actually a NIZK
proof of knowledge version of it, which is presented later as Prot. 2.

382 S. Heiberg, H. Lipmaa, and F. van Laenen

System parameters: G, q, g.
Common inputs: CC and λ := �log2 CC�, pkt, pkm, e′.
Prover’s input: μ, ρ′.

1. Prover does:
(a) Compute the values μj ∈ {0, 1} such that μ =

∑λ
j=0 μjCCj with CCj ← �(CC +

2j)/2j+1�.
(b) For j ∈ {0, . . . , λ} do:

i. Generate random ρj , ρ
′
j ← Zq , set ej ← Encpkt(g

μj ; ρj).
ii. If μj = 0 then: Set i0,j ← Encpkt(1; ρ

′
j), c1,j ← Z2k , r1,j ← Zq , i1,j ←

Encpkt(1; r1,j) · (Encpkt(g; 0)/ej)c1,j .
iii. Else if μj = 1 then: Set i1,j ← Encpkt(1; ρ

′
j), c0,j ← Z2k , r0,j ← Zq , i0,j ←

Encpkt(1; r0,j)/e
c0,j
j .

(c) Generate random μand, ρand,1, ρand,2 ← Zq . Set i2,1 ← Encpkt(g
μand ; ρand,1), i2,2 ←

Encpkm(g
μand ; ρand,2).

Send i ← (e0, . . . , eλ, (i0,0, i1,0), . . . , (i0,λ, i1,λ), i2,1, i2,2) to the verifier.
2. Verifier does: Set c ← Z2k , send c to the prover.
3. Prover does for j ∈ {0, . . . , λ}:

(a) If μj = 0 then: Set c0,j ← c− c1,j mod 2k, r0,j ← ρ′j + c0,j · ρj mod q.
(b) Else if μj = 1 then: Set c1,j ← c− c0,j mod 2k, r1,j ← ρ′j + c1,j · ρj mod q.
Let ρ′ ← ∑

ρjCCj mod q (i.e., e ← Encpkt(g
μ; ρ′)). Set r3 ← μand + c · μ

mod q, r4,1 ← ρand,1 + c · ρ mod q, r4,2 ← ρand,2 + c · ρ′ mod q. Send r ←
(c0,0, . . . , c0,λ, (r0,0, r1,0), . . . , (r0,λ, r1,λ), r3, r4,1, r4,2) to the verifier.

4. Verifier does:
(a) Let e ← ∏λ

j=0 e
CCj

j .
(b) For j ∈ {0, . . . , λ}:

i. Set c1,j ← c− c0,j (mod 2k).
ii. If Encpkt(1; r0,j) �= i0,j ·ec0,jj or Encpkt(1; r1,j) �= i1,j ·(ej/Encpkt(g; 0))c1,j then:

reject.
(c) If Encpkt(gr3 ; r4,1) �= i2,1 · ec or Encpkm(gr3 ; r4,2) �= i2,2 · (e′)c then: reject.
Otherwise: accept.

Protocol 1. Interactive version of the required zero-knowledge proof

Complexity. In Prot. 1, prover’s computation is dominated by (at most) 3λ+ 4 public-
key encryptions and λ exponentiations. Since Elgamal is used, if necessary most of the
prover’s computation can be done beforehand. However, this should not be necessary in
our application, where it is perfectly fine that it takes a minute for the voter’s computer
to finish computation. Verifier’s computation is dominated by 2λ+ 3 encryptions, λ of
which can be precomputed, and 2λ + 2 exponentiations. In real-world voting, we can
in most cases assume that λ ≤ 6, thus verifier’s computation is dominated by ≤ 15
encryptions and ≤ 14 exponentiations.

Security. The security of Prot. 1 is a straightforward corollary of known results. How-
ever, for the sake of completeness we provide a complete proof.

Theorem 1. Prot. 1 is a correct, specially sound and SHVZK proof of knowledge for
PK(e = Encpkt(gμ; ρ) ∧ e′ = Encpkm(gμ; ρ′) ∧ μ ∈ [0,CC]).

On E-Vote Integrity in the Case of Malicious Voter Computers 383

1. Prover has inputs (descr(G), g,CC, pkt, pkm, e′). He computes i as in Prot. 1, but then he
sets c ← H(descr(G), g,CC, pkt, pkm, e′, i), and computes r that corresponds to this value
of c. The NIZK proof of knowledge is equal to π ← (e0, . . . , eλ, c, r).

2. Verifier has inputs (descr(G), g,CC, pkt, pkm, e′, π). On input π, she computes the missing
elements of i exactly as in the proof of the SHVZK property of Prot. 1. Verifier accepts if
and only if c = H(descr(G), g,CC, pkt, pkm, e′, i).

Protocol 2. NIZK proof of knowledge version of Prot. 1

.NIZK Proof of Knowledge Version. Since Prot. 1 is correct, specially sound and
SHVZK, we can now use the Fiat-Shamir heuristic to construct a secure NIZK proof
of knowledge. This version is depicted by Prot. 2. Note that when Elgamal in the sub-
groups of Zp is used then descr(G) = (p, q) and thus c ← H(p, q, g, . . .).

4 Cryptographic Protocol for E-Vote Integrity

The voting process consists of a number of voters V , their PCs, one or more messengers
(Messenger), one or more vote collectors (VC) and one or more talliers (Tallier). A voter
enters her preferred candidate number—by using a user-friendly GUI—to her PC, that
then runs a vote registration protocol with the vote collectors. Vote collectors collect
the votes, and send their collection to the talliers after the voting period has finished.
Within this paper, we are not going to specify most of the internal working of the vote
collectors or the vote talliers since there exists already an extensive literature on that.

In this paper, we focus on the case when the voter’s PC is dishonest. Clearly, if voters
would only have access to their PCs, no security could be achieved at all. Therefore, in
addition we need the presence of some independent channels accessible by the voters.
As an example, in many countries, before any elections the voters will anyway receive a
paper voter registration card. We can make use of this channel (prechannel), by adding
extra information on this acknowledgment. In addition, most of the voters have access
to more than one connected device. The second device (postchannel) may be some-
thing simple, like a mobile phone, even if it cannot perform any complex cryptographic
operations, but can still guarantee real-time reception of messages.

Description of Protocol. Assume that we have CC + 1 > 0 candidates, and every can-
didate has been assigned a number cnd ∈ {0, . . . ,CC}. Since CC is small, we are going
to use the AIR-based proxy oblivious transfer protocol (Gcpir,Query,Reply,Answer)
and the Elgamal cryptosystem (Genpkc,Enc,Dec). In particular since Elgamal is mul-
tiplicatively homomorphic, instead of the candidate cnd we encrypt gcnd, where g is a
fixed generator of Elgamal’s plaintext group. (If an additively homomorphic cryptosys-
tem were used, one could instead just encrypt cnd. However, such cryptosystems tend
to be less efficient in practice.) The protocol is depicted by Prot. 3.

Complexity. Vote collector’s computation is dominated by the verification of the NIZK
proof of knowledge (which takes at most 2λ + 3 encryptions and 2λ + 2 exponentia-
tions), and by the execution of the sender’s part in the POT protocol that is dominated

384 S. Heiberg, H. Lipmaa, and F. van Laenen

System parameters: G, g, q,H .
Voter’s inputs: encryption keys of tallier, messenger, her own private signature key, voter collec-
tor’s signature verification key.
Vote collector’s inputs: encryption key of messenger, his own private signature key, voters’ sig-
nature verification keys.
Tallier’s inputs: his own private decryption key, vote collector’s signature verification key.
Common inputs: CC+ 1 candidates c ∈ [0,CC], λ := �log2 CC�.

1. Before elections:
(a) (G, q, g) and H are fixed and published by a trusted server.
(b) Some server (be it vote collector or a separate server) generates for every voter-

candidate pair (v, cnd) a uniformly random string Rv[cnd] ← Zq , and sets
Codev[cnd] ← Kdf(gRv [cnd]) where Kdf is a key derivation function. It sends signed
codes Codev[cnd] to corresponding voters (by using prechannel) and to the messen-
gers (in numerically sorted order), and signed values Rv[cnd] to the vote collectors. //
In practice, only the first few, say 25 bits of Codev[cnd] are sent.

2. When voter v enters a candidate number cnd (by using favorite UI) to voter’s PC:
(a) Voter’s PC does:

i. He generates the first message e′ ← Querypkm(cnd) of the new weak proxy obliv-
ious transfer protocol.

ii. He generates a non-interactive zero-knowledge proof π = PK(e =
Encpkt(g

μ; ρ) ∧ e′ = Querypkm(μ; ρ
′) ∧ μ ∈ [0,CC]) that both e and e′ corre-

spond to the same valid candidate (see Prot. 2).
iii. He signs (e′, π) by using his secret signing key skv , s ← Signskv (e, e

′, π).
iv. He then sends (e′, π, s) to the vote collector. (Note that π contains the list

(e0, . . . , eλ) with ej = Encpkt(g
μj) and μj ∈ {0, 1}.)

(b) After receiving a ballot from the PC, the vote collector does:
i. He verifies both the signature and the zero-knowledge proof (as specified in

Prot. 2). If both verifications are fine, it computes the second message r ←
Replypkm(e

′,Codev) of the POT protocol. Recall here that r consists of a num-
ber of randomly-reordered ciphertexts.

ii. He sends to the voter’s PC a signed message accept or reject.
iii. He signs r and sends it to the messenger.

(c) After receiving a message from the VC, the messenger does:
– She verifies the signature on r. She complains when it does not verify.
– Otherwise, she “decrypts” gRv [cnd] ← Answerskm(cnd,Reply), where skm is mes-

senger’s secret key, and obtains Codev[cnd] ← Kdf(gRv [cnd]). (The procedure for
this is specified in Sect. 3.1.) It also alerts the voter by using postchannel with the
value of Codev[cnd].

(d) When receiving a message from postchannel, the voter checks that Codev[cnd] is cor-
rect, as in Step 5 if the ideal-world vote registration protocol. The voter also checks
that her legitimate voting acts are accompanied by a postchannel message, and that she
receives no spurious messages.

3. After the election period has ended, the vote collector sends all values e =
∏

e
CCj

j , signed
with his own private key, to the tallier. The tallier operates by using a suitable e-voting
procedure to deduce the winner.

Protocol 3. The new protocol between a voter, her computer, vote collector, and messenger

On E-Vote Integrity in the Case of Malicious Voter Computers 385

by 2(CC+1) encryptions (CC+1 of which can be precomputed) and CC+1 exponenti-
ations. On top of that, the vote collector has to verify a signature, and sign her message
to the messenger. Given say CC + 1 = 63 candidates (then λ = 5), her computation is
thus dominated by 2λ+ 3 + 2(CC + 1) = 139 encryptions and 2λ+ 2 + CC + 1 = 75
exponentiations, some of which can be precomputed. Note that the bulk of vote col-
lector’s computation goes to computing her part of the POT protocol. This seems to
be inevitable since most of the known oblivious transfer protocols (the only exception
is [11]) requite linear computation. On the other hand, while the description of the NIZK
proof of knowledge is seemingly more complex, it is considerably more efficient than
the POT protocol.

Discussion. If Rv[cnd] is long (say ≥ 20 bits) then computing Answer requires the
computation of discrete logarithm with time complexity of ≥ 210 steps by using Pol-
lard’s ρ algorithm. Our solution to this is that instead of Rv[cnd], the check code is
Codev[cnd] = Kdf(gRv [cnd]). This means that the values Codev[cnd] will be sent over
prechannel, too. On the other hand, this step is done by client’s computer only once
in a while and thus is not a bottleneck, and it may even be desirable to prevent DDoS
attacks, by forcing client’s computer to perform some work per every cast vote. Also,
note that the tallier obtains a ciphertext of gcnd. Here, computing of discrete logarithm
is again simple since cnd is small (it can be done by using table-lookup).

5 Security of Integrity Protocol

We now state the security of the e-voting process, given the new integrity protocol. We
will give informal security arguments, leaving formal proofs for further work. In all
following paragraphs, we consider the case when one party is dishonest, but all other
parties are honest. This assumption is not necessary when one additionally implements
protocols that guarantee security against malicious servers. For example, one can use
standard mixnets, but as said, this is not the topic of the current paper. Note that all
parties can blindly refuse accept votes, claiming to have troubles with connection, but
this is unavoidable.

Security against Voter Computer. There are no privacy guarantees against malicious
voter’s PC. However, by doing proper checks, a voter can clearly verify that the voter’s
PC has voted for a wrong candidate, or did not vote at all. In the case the verification
fails, voters can participate in later paper voting that overrides the results of the e-voting.

Security against Vote Collector. Vote collector only sees encrypted data, and thus here
privacy is guaranteed. She cannot change votes (since they are signed).

Security against Messenger. Messenger only sees the codes, and which code the voter
is voting for right now, but nothing else. Thus, privacy is covered except in the next
sense: the messenger can test, in the case of a revote, whether this time the voter is
voting for a new or an old candidate. The messenger can also not send a postchannel
message based on such tests. The messenger can also send back a message that corre-
sponds to an earlier vote by the same candidate, but this will be detected by the voter.

386 S. Heiberg, H. Lipmaa, and F. van Laenen

Security against Tallier. Tallier only obtains a list of all encrypted ballots, signed by
the vote collector. The tallier cannot thus breach the privacy. To guarantee some robust-
ness/integrity while tallying, one can use some well-known cryptographic protocols (for
example, mixnets).

6 Discussion

While choosing the underlying primitives and protocols, we considered efficiency to
be the most important factor, closely followed by the simplicity of implementation and
standardness of security assumptions. Next we will try to motivate our choices.

Public-key Cryptosystem. While Elgamal is only multiplicatively homomorphic, it is
several times more efficient than the known additively homomorphic cryptosystems,
especially in decryption. In addition, NIZK proofs of knowledge based on known ad-
ditively homomorphic cryptosystems tend to be less efficient. Slower encryption, de-
cryption and NIZK verifications would make vote collector’s computations much more
costly. On the other hand, by using standard tricks, we were able to minimize the draw-
backs of Elgamal public-key cryptosystem, i.e., the need to compute discrete logarithms.
Moreover, Elgamal encryption (and in particular, Elgamal encryption based on elliptic
curves) is implemented by several commercially available Hardware Security Modules,
which cannot be said about the known additively homomorphic cryptosystems.

Voter Education. For the added two channels and the new protocol to be useful in
practice, the voters must be educated. They must be told that they should never enter
the check codes to their computer, and that they should actively react to the messages
(or their absence) on the postchannel. This will add extra costs, but the costs will be
hopefully amortized over several elections. Moreover, the Internet and computers are
ubiquitous in the developed world already now, with average people performing much
more complex operations in a daily basis. Thus, after some years we can reasonably
expect the voters to know how to guarantee their own vote privacy (and security in
general case).

7 Implementation Data

We implemented a (slightly optimized) sandbox version of the new e-voting protocol.
We tested it thoroughly, and measured its efficiency by using a personal computer that
runs Linux 2.6.18-6-686, has a Pentium 4 CPU that runs at 2.80GHz and has
512 KB of cache, and has 2 GB of main memory. The code was compiled by using
gcc 4.1.2 with the option -O2. For generating the Elgamal parameters, we used
the openssl 0.9.8c library, while other number-theoretic operations were imple-
mented by using Victor Shoup’s NTL 5.5.1 library.

We measured the time that was spent during the election setup, and during the elec-
tion itself. In the tallying, one can use any of the standard mixnet-based solutions,
and thus we did not measure this part. For the time measurement, we used the stan-
dard Unix command time, and took the average over 100 different runs. The re-
sults are summarized in the next two tables, for v = {100, 1000, 10 000} voters, and

On E-Vote Integrity in the Case of Malicious Voter Computers 387

c ∈ {8, 32, 80} candidates. In all cases, |p| = 1024, |q| = 160, and k = 80. We used
SHA2-256 as the hash function. The first table contains the one-time election setup cost
(codecard generation and Elgamal system parameter value generation) which depends
linearly on the product v · c. More precisely, it is dominated by v · c random number
generations and exponentiations modulo p.

v = 100 v = 1 000 v = 10 000
c = 8 c = 32 c = 80 c = 8 c = 32 c = 80 c = 8 c = 32 c = 80

Setup 3.875s 15.40s 38.48s 38.58s 2m 34s 6m 25s 6m 25s 25m 38s 1h 4m 20s

The next table summarizes the online computation time of voter’s PC, vote collector
and messenger, both with and without the zero-knowledge proofs. The costs are given
per one vote, and do not significantly depend on the number of the voters. The total row
is the sum of the time spent by voter’s PC, vote collector and messenger, and gives a
(loose) lower bound on time that must elapse before the voter receives back a message
on the postchannel.

With ZK Without ZK
c = 8 c = 32 c = 80 c = 8 c = 32 c = 80

Voter’s PC 0.21s 0.30s 0.34s 0.02s 0.02s 0.02s
Vote collector 0.40s 1.07s 2.27s 0.20s 0.78s 1.95s
Messenger 0.02s 0.08s 0.22s 0.02s 0.08s 0.20s
Total 0.63s 1.45s 2.83s 0.24s 0.88s 2.17s

We also note that a single exponentiation on this machine took about 0.0048s. More-
over, the timings of the parties include also the precomputation time. In particular, vote
collector’s online computation in the POT protocol requires twice less time than her
total computation in POT.

As seen from these tables, the computation time of the voter’s PC and messenger
is quite insignificant even in the case of 80 candidates. On the other hand, if there
are 80 candidates, then the vote collector spends (on average) 2.27 seconds per vote
and cannot process more than about 1 500 votes per hour even under ideal conditions.
Assuming that the vote collector precomputes in the POT protocol, the throughput in-
creases to 3 000 votes per hour. In the case of real e-voting, the cryptographic protocol
is obviously only a part of what the vote collector is busy with, and thus the maxi-
mum throughput is probably around 2 000 votes per hour. In smaller countries, this is
sufficient under normal conditions, but not during the first or the last few hours of the e-
voting. However, this can be alleviated by using either fast (and multicore) processors,
parallel processing by many vote collectors, or even by using hardware acceleration. (In
particular, we are currently considering a Hardware Security Module implementation
based on elliptic curves.) The use of such (more expensive) alternatives is reasonable,
given the importance of elections in a democratic society. Moreover, in the case of most
elections, the number of candidates is not larger than 10.

Acknowledgments. We would like to thank Kristian Gjøsteen for useful comments.
The second author was supported by Estonian Science Foundation, grant #8058, and
European Union through the European Regional Development Fund.

388 S. Heiberg, H. Lipmaa, and F. van Laenen

References

1. Aiello, W., Ishai, Y., Reingold, O.: Priced Oblivious Transfer: How to Sell Digital Goods. In:
Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 119–135. Springer, Heidel-
berg (2001)

2. Ansper, A., Heiberg, S., Lipmaa, H., Øverland, T.A., van Laenen, F.: Security and Trust for
the Norwegian E-voting Pilot Project E-valg 2011. In: Jøsang, A., Maseng, T., Knapskog,
S.J. (eds.) NordSec 2009. LNCS, vol. 5838, pp. 207–222. Springer, Heidelberg (2009)

3. Bellare, M., Rogaway, P.: Random Oracles are Practical: A Paradigm for Designing Effi-
cient Protocols. In: Ashby, V. (ed.) ACM CCS 1993, November 3-5, pp. 62–73. ACM Press,
Fairfax (1993)

4. Camenisch, J., Chaabouni, R., Shelat, A.: Efficient Protocols for Set Membership and Range
Proofs. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 234–252. Springer,
Heidelberg (2008)

5. Canetti, R., Goldreich, O., Halevi, S.: The Random Oracle Methodology, Revisited. In:
STOC 1998, New York, May 23-26, pp. 209–218 (1998)

6. Chevassut, O., Fouque, P.A., Gaudry, P., Pointcheval, D.: The Twist-AUgmented Technique
for Key Exchange. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T. (eds.) PKC 2006. LNCS,
vol. 3958, pp. 410–426. Springer, Heidelberg (2006)

7. Elgamal, T.: A Public Key Cryptosystem and a Signature Scheme Based on Discrete Loga-
rithms. IEEE Transactions on Information Theory 31(4), 469–472 (1985)

8. Gentry, C., Ramzan, Z.: Single-Database Private Information Retrieval with Constant Com-
munication Rate. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.)
ICALP 2005. LNCS, vol. 3580, pp. 803–815. Springer, Heidelberg (2005)

9. Heiberg, S., Lipmaa, H., Van Laenen, F.: On E-Vote Integrity in the Case of Malicious Voter
Computers. Tech. Rep. 2010/195, International Association for Cryptologic Research, (April
8, 2010), http://eprint.iacr.org/2010/195

10. Lipmaa, H.: An Oblivious Transfer Protocol with Log-Squared Communication. In: Zhou,
J., López, J., Deng, R.H., Bao, F. (eds.) ISC 2005. LNCS, vol. 3650, pp. 314–328. Springer,
Heidelberg (2005)

11. Lipmaa, H.: First CPIR Protocol with Data-Dependent Computation. In: Lee, D., Hong, S.
(eds.) ICISC 2009. LNCS, vol. 5984, pp. 193–210. Springer, Heidelberg (2010)

12. Lipmaa, H., Asokan, N., Niemi, V.: Secure Vickrey Auctions without Threshold Trust. In:
Blaze, M. (ed.) FC 2002. LNCS, vol. 2357, pp. 87–101. Springer, Heidelberg (2003)

13. Naor, M., Pinkas, B., Sumner, R.: Privacy Preserving Auctions and Mechanism Design. In:
ACM EC 1999, Denver, Colorado (November 1999)

http://eprint.iacr.org/2010/195

Election Verifiability in Electronic Voting Protocols�,��

Steve Kremer1, Mark Ryan2, and Ben Smyth2,3

1 LSV, ENS Cachan & CNRS & INRIA, France
2 School of Computer Science, University of Birmingham, UK

3 École Normale Supérieure & CNRS & INRIA, France

Abstract. We present a formal, symbolic definition of election verifiability for
electronic voting protocols in the context of the applied pi calculus. Our def-
inition is given in terms of boolean tests which can be performed on the data
produced by an election. The definition distinguishes three aspects of verifiabil-
ity: individual, universal and eligibility verifiability. It also allows us to determine
precisely which aspects of the system’s hardware and software must be trusted for
the purpose of election verifiability. In contrast with earlier work our definition is
compatible with a large class of electronic voting schemes, including those based
on blind signatures, homomorphic encryption and mixnets. We demonstrate the
applicability of our formalism by analysing three protocols: FOO, Helios 2.0, and
Civitas (the latter two have been deployed).

1 Introduction

Electronic voting systems are being introduced, or trialled, in several countries to pro-
vide more efficient voting procedures. However, the security of electronic elections has
been seriously questioned [9,20,8,25]. A major difference with traditional paper based
elections is the lack of transparency. In paper elections it is often possible to observe the
whole process from ballot casting to tallying, and to rely on robustness characteristics
of the physical world (such as the impossibility of altering the markings on a paper bal-
lot sealed inside a locked ballot box). By comparison, it is not possible to observe the
electronic operations performed on data. Computer systems may alter voting records in
a way that cannot be detected by either voters or election observers. A voting termi-
nal’s software might be infected by malware which could change the entered vote, or
even execute a completely different protocol than the one expected. The situation can
be described as voting on Satan’s computer, analogously with [5].

The concept of election or end-to-end verifiability that has emerged in the academic
literature, e.g., [17,18,10,3,21,2], aims to address this problem. It should allow voters
and election observers to verify, independently of the hardware and software running
the election, that votes have been recorded, tallied and declared correctly. One generally
distinguishes two aspects of verifiability.

� This work has been partly supported by the EPSRC projects UbiVal (EP/D076625/2), Trust-
worthy Voting Systems (EP/G02684X/1) and Verifying Interoperability Requirements in Per-
vasive Systems (EP/F033540/1); the ANR SeSur AVOTÉ project; and the Direction Générale
pour l’Armement (DGA).

�� A long version containing full proofs is available in [19].

D. Gritzalis, B. Preneel, and M. Theoharidou (Eds.): ESORICS 2010, LNCS 6345, pp. 389–404, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

390 S. Kremer, M. Ryan, and B. Smyth

– Individual verifiability: a voter can check that her own ballot is included in the
election’s bulletin board.

– Universal verifiability: anyone can check that the election outcome corresponds to
the ballots published on the bulletin board.

We identify another aspect that is sometimes included in universal verifiability.

– Eligibility verifiability: anyone can check that each vote in the election outcome
was cast by a registered voter and there is at most one vote per voter.

We explicitly distinguish eligibility verifiability as a distinct property.

Our contribution. We present a definition of election verifiability which captures the
three desirable aspects. We model voting protocols in the applied pi calculus and for-
malise verifiability as a triple of boolean tests ΦIV , ΦUV , ΦEV which are required to
satisfy several conditions on all possible executions of the protocol. ΦIV is intended to
be checked by the individual voter who instantiates the test with her private informa-
tion (e.g., her vote and data derived during the execution of the protocol) and the public
information available on the bulletin board. ΦUV and ΦEV can be checked by any ex-
ternal observer and only rely on public information, i.e., the contents of the bulletin
board.

The consideration of eligibility verifiability is particularly interesting as it provides
an assurance that the election outcome corresponds to votes legitimately cast and hence
provides a mechanism to detect ballot stuffing. We note that this property has been
largely neglected in previous work and our earlier work [23] only provided limited
scope for.

A further interesting aspect of our work is the clear identification of which parts of
the voting system need to be trusted to achieve verifiability. As it is not reasonable to
assume voting systems behave correctly we only model the parts of the protocol that
we need to trust for the purpose of verifiability; all the remaining parts of the system
will be controlled by the adversarial environment. Ideally, such a process would only
model the interaction between a voter and the voting terminal; that is, the messages
input by the voter. In particular, the voter should not need to trust the election hardware
or software. However, achieving absolute verifiability in this context is difficult and
protocols often need to trust some parts of the voting software or some administrators.
Such trust assumptions are motivated by the fact that parts of a protocol can be audited,
or can be executed in a distributed manner amongst several different election officials.
For instance, in Helios 2.0 [3], the ballot construction can be audited using a cast-or-
audit mechanism. Whether trust assumptions are reasonable depends on the context of
the given election, but our work makes them explicit.

Tests ΦIV , ΦUV and ΦEV are assumed to be verified in a trusted environment (if a
test is checked by malicious software that always evaluates the test to hold, it is useless).
However, the verification of these tests, unlike the election, can be repeated on different
machines, using different software, provided by different stakeholders of the election.
Another possibility to avoid this issue would be to have tests which are human-verifiable
as discussed in [2, Chapter 5].

Election Verifiability in Electronic Voting Protocols 391

We apply our definition on three case studies: the protocol by Fujioka et al. [15];
the Helios 2.0 protocol [4] which was effectively used in recent university elections in
Belgium; and the protocol by Juels et al. [18], which has been implemented by Clarkson
et al. as Civitas [13,12]. This demonstrates that our definition is suitable for a large
class of protocols; including schemes based on mixnets, homomorphic encryption and
blind signatures. (In contrast, our preliminary work presented in [23] only considers
blind signature schemes.) We also notice that Helios 2.0 does not guarantee eligibility
verifiability and is vulnerable to ballot stuffing by dishonest administrators.

Related work. Juels et al. [17,18] present a definition of universal verifiability in
the provable security model. Their definition assumes voting protocols produce non-
interactive zero-knowledge proofs demonstrating the correctness of tallying. Here we
consider definitions in a symbolic model. Universal verifiability was also studied by
Chevallier-Mames et al. [11]. They show an incompatibility result: protocols cannot
satisfy verifiability and vote privacy in an unconditional way (without relying on com-
putational assumptions). But as witnessed by [17,18], weaker versions of these prop-
erties can hold simultaneously. Our case studies demonstrate that our definition allows
privacy and verifiability to coexist (see [14,6] for a study of privacy properties in the
applied pi calculus). Baskar et al. [7] and subsequently Talbi et al. [24] formalised
individual and universal verifiability for the protocol by Fujioka et al. [15]. Their defi-
nitions are tightly coupled to that particular protocol and cannot easily be generalised.
Moreover, their definitions characterise individual executions as verifiable or not; such
properties should be considered with respect to every execution.

In our earlier work [23] a preliminary definition of election verifiability was pre-
sented with support for automated reasoning. However, that definition is too strong to
hold on protocols such as [18,4]. In particular, our earlier definition was only illustrated
on a simplified version of [18] which did not satisfy coercion-resistance because we
omitted the mixnets. Hence, this is the first general, symbolic definition which can be
used to show verifiability for many important protocols, such as the ones studied in this
paper.

2 Applied pi Calculus

The calculus assumes an infinite set of names a, b, c, k,m, n, s, t, . . ., an infinite set of
variables v, x, y, z, . . . and a finite signature Σ, that is, a finite set of function sym-
bols each with an associated arity. We also assume an infinite set of record variables
r, r1, A function symbol of arity 0 is a constant. We use metavariables u,w to range
over both names and variables. Terms L,M,N, T, U, V are built by applying function
symbols to names, variables and other terms. Tuples u1, . . . , ul andM1, . . . ,Ml are oc-
casionally abbreviated ũ and M̃ . We write {M1/x1, . . . ,Ml/xl} for substitutions that
replace variables x1, . . . , xl with terms M1, . . . ,Ml.

The applied pi calculus [1,22] relies on a simple sort system. Terms can be of sort
Channel for channel names or Base for the payload sent out on these channels. Function
symbols can only be applied to, and return, terms of sort Base. A term is ground when
it does not contain variables.

392 S. Kremer, M. Ryan, and B. Smyth

The grammar for processes is shown in Figure 1 where u is either a name or variable
of channel sort. Plain processes are standard constructs, except for the record message
rec(r,M).P construct discussed below. Extended processes introduce active substitu-
tions which generalise the classical let construct: the process ν x.({M/x} | P) cor-
responds exactly to the process let x = M in P . As usual names and variables have
scopes which are delimited by restrictions and by inputs. All substitutions are assumed
to be cycle-free.

P, Q, R ::= processes
0 null process
P | Q parallel
!P replication
ν n.P name restriction
u(x).P message input
u〈M〉.P message output
rec(r, M).P record message
if M = N then P else Q conditional

A, B, C ::= extended processes
P plain process
A | B parallel composition
ν n.A name restriction
ν x.A variable restriction
{M/x} active substitution

Fig. 1. Applied pi calculus grammar

A frameϕ is an extended process built from 0 and active substitutions {M/x}; which
are composed by parallel composition and restriction. The domain of a frame ϕ is the
set of variables that ϕ exports. Every extended process A can be mapped to a frame
φ(A) by replacing every plain process in A with 0.

The record message construct rec(r,M).P introduces the possibility to enter special
entries in frames. We suppose that the sort system ensures that r is a variable of record
sort, which may only be used as a first argument of the rec construct or in the domain of
the frame. Moreover, we make the global assumption that a record variable has a unique
occurrence in each process. Intuitively, this construct will be used to allow a voter to
privately record some information which she may later use to verify the election.

The sets of free and bound names and variables in process A are denoted by fn(A),
bn(A), fv(A), bv(A). Similarly, we write fn(M), fv(M) for the names and variables in
term M and rv(A) and rv(M) for the set of record variables in a process and a term.
An extended process A is closed if fv(A) = ∅. A context C[] is an extended process
with a hole. An evaluation context is a context whose hole is not under a replication, a
conditional, an input, or an output.

The signature Σ is equipped with an equational theory E, that is, a finite set of
equations of the form M = N . We define =E as the smallest equivalence relation
on terms, that contains E and is closed under application of function symbols, sub-
stitution of terms for variables and bijective renaming of names. In this paper we tac-
itly assume that all signatures and equational theories contain the function symbols
pair(·, ·), fst(·), snd(·) and equations for pairing:

fst(pair(x, y)) = x snd(pair(x, y)) = y

as well as some constant ⊥. As a convenient shortcut we then write (T1, . . . Tn) for
pair(T1, pair(. . . , pair(Tn,⊥))) and πi(T) for fst(sndi−1(T)).

Election Verifiability in Electronic Voting Protocols 393

Semantics. The operational semantics of the applied pi calculus are defined with respect
to the three relations: structural equivalence (≡), internal reductions (−→) and labelled
reduction (

α−→). These semantics are standard and defined in [19]. We only illustrate
them on an example (Figure 2). We write =⇒ for (→∗ α−→→∗)∗, that is, the reflexive
transitive closure of the labelled reduction.

Let P = νa, b.rec(r, a).c〈(a, b)〉.c(x).if x = a then c〈f(a)〉. Then we have that

P → νa, b.(c〈(a, b)〉.c(x).if x = a then c〈f(a)〉 | {a/r})
≡ νa, b.(νy1.(c〈y〉.c(x).if x = a then c〈f(a)〉 | {(a,b)/y1}) | {a/r})

νx.c〈x〉−−−−−→ νa, b.(c(x).if x = a then c〈f(a)〉 | {(a,b)/y1} | {a/r})
νx.c(π1(y))−−−−−−−→ νa, b.(if a = a then c〈f(a)〉 | {(a,b)/y1} | {a/r})

→ νa, b.(c〈f(a)〉 | {| {(a,b)/y1} | {a/r})
νy2.c〈y2〉−−−−−−→ νa, b.(if a = a then c〈f(a)〉 | {(a,b)/y1} | {f(a)/y2} | {a/r}

Observe that labelled outputs are done by reference and extend the domain of the process’s frame.

Fig. 2. A sequence of reductions in the applied pi semantics

3 Formalising Voting Protocols

As discussed in the introduction we want to explicitly specify the parts of the election
protocol which need to be trusted. Formally the trusted parts of the voting protocol can
be captured using a voting process specification.

Definition 1 (Voting process specification). A voting process specification is a tuple
〈V,A〉 where V is a plain process without replication and A is a closed evaluation
context such that fv(V) = {v} and rv(V) = ∅.

For the purposes of individual verifiability the voter may rely on some data derived dur-
ing the protocol execution. We keep track of all such values using the record construct
(Definition 2).

Definition 2. Let rv be an infinite list of distinct record variables. We define the function
R on a finite process P without replication as R(P) = Rrv(P) and, for all lists rv:

Rrv(0) =̂ 0
Rrv(P | Q) =̂ Rodd(rv)(P) | Reven(rv)(Q)
Rrv(ν n.P) =̂ ν n.rec(head(rv), n).Rtail(rv)(P)
Rrv(u(x).P) =̂ u(x).rec(head(rv), x).Rtail(rv)(P)
Rrv(u〈M〉.P) =̂ u〈M〉.Rrv(P)
Rrv(if M = N then P else Q) =̂ if M = N then Rrv(P) else Rrv(Q)

where the functions head and tail are the usual ones for lists, and odd (resp. even)
returns the list of elements in odd (resp. even) position.

In the above definition odd and even are used as a convenient way to split an infinite list
into two infinite lists.

394 S. Kremer, M. Ryan, and B. Smyth

Given a sequence of record variables r̃, we denote by r̃i the sequence of variables
obtained by indexing each variable in r̃ with i. A voting process can now be constructed
such that the voter V records the values constructed and input during execution.

Definition 3. Given a voting process specification 〈V,A〉, integer n ∈ N, and names
s1, . . . , sn, we build the augmented voting process VP+

n (s1, . . . , sn) = A[V +
1 | · · · |

V +
n] where V +

i = R(V){si/v}{ri/r | r ∈ rv(R(V))}.

The process VP+
n (s1, . . . , sn) models the voting protocol for n voters casting votes

s1, . . . , sn, who privately record the data that may be needed for verification using
record variables r̃i.

4 Election Verifiability

We formalise election verifiability using three tests ΦIV , ΦUV , ΦEV . Formally, a test is
built from conjunctions and disjunctions of atomic tests of the form (M =E N) where
M,N are terms. Tests may contain variables and will need to hold on frames arising
from arbitrary protocol executions. We now recall the purpose of each test and assume
some naming conventions about variables.

Individual verifiability: The test ΦIV allows a voter to identify her ballot in the bulletin
board. The test has:

– a variable v referring to a voter’s vote.
– a variable w referring to a voter’s public credential.
– some variables x, x̄, x̂, . . . expected to refer to global public values pertaining to

the election, e.g., public keys belonging to election administrators.
– a variable y expected to refer to the voter’s ballot on the bulletin board.
– some record variables r1, . . . , rk referring to the voter’s private data.

Universal verifiability: The test ΦUV allows an observer to check that the election out-
come corresponds to the ballots in the bulletin board. The test has:

– a tuple of variables ṽ = (v1, . . . , vn) referring to the declared outcome.
– some variables x, x̄, x̂, . . . as above.
– a tuple ỹ = (y1, . . . , yn) expected to refer to all the voters’ ballots on the bulletin

board.
– some variables z, z̄, ẑ, . . . expected to refer to outputs generated during the protocol

used for the purposes of universal and eligibility verification.

Eligibility verifiability: The test ΦEV allows an observer to check that each ballot in the
bulletin board was cast by a unique registered voter. The test has:

– a tuple w̃ = (w1, . . . , wn) referring to public credentials of eligible voters.
– a tuple ỹ, variables x, x̄, x̂, . . . and variables z, z̄, ẑ, . . . as above.

The remainder of this section will focus on the individual and universal aspects of our
definition; eligibility verifiability will be discussed in Section 5.

Election Verifiability in Electronic Voting Protocols 395

4.1 Individual and Universal Verifiability

The tests suitable for the purposes of election verifiability have to satisfy certain condi-
tions: if the tests succeed, then the data output by the election is indeed valid (sound-
ness); and there is a behaviour of the election authority which produces election data sat-
isfying the tests (effectiveness). Formally these requirements are captured by the defini-
tion below. We write T̃ � T̃ ′ to denote that the tuples T̃ and T̃ ′ are a permutation of each
other modulo the equational theory, that is, we have T̃ = T1, . . . Tn, T̃ ′ = T ′

1, . . . T
′
n

and there exists a permutation χ on {1, . . . , n} such that for all 1 ≤ i ≤ n we have
Ti =E T ′

χ(i).

Definition 4 (Individual and universal verifiability). A voting specification 〈V,A〉
satisfies individual and universal verifiability if for all n ∈ N there exist tests ΦIV , ΦUV

such that fn(ΦIV) = fn(ΦUV) = rv(ΦUV) = ∅, rv(ΦIV) ⊆ rv(R(V)), and for all
names s̃ = (s1, . . . , sn) the conditions below hold. Let r̃ = rv(ΦIV) and ΦIV

i =
ΦIV {si/v, r̃i/r̃}.

Soundness. For all contexts C and processes B such that C[VP+
n (s1, . . . , sn)] =⇒ B

and φ(B) ≡ νñ.σ, we have:

∀i, j. ΦIV
i σ ∧ ΦIV

j σ ⇒ i = j (1)

ΦUV σ ∧ ΦUV {ṽ′
/ṽ}σ ⇒ ṽσ � ṽ′σ (2)

∧
1≤i≤n

ΦIV
i {yi/y}σ ∧ ΦUV σ ⇒ s̃ � ṽσ (3)

Effectiveness. There exists a context C and a processB, such that C[VP+
n (s1, . . . , sn)]

=⇒ B, φ(B) ≡ νñ.σ and ∧
1≤i≤n

ΦIV
i {yi/y}σ ∧ ΦUV σ (4)

An individual voter should verify that the test ΦIV holds when instantiated with her vote
si, the information r̃i recorded during the execution of the protocol and some bulletin
board entry. Indeed, Condition (1) ensures that the test will hold for at most one bulletin
board entry. (Note that ΦIV

i and ΦIV
j are evaluated with the same ballot yσ provided

by C[].) The fact that her ballot is counted will be ensured by ΦUV which should also
be tested by the voter. An observer will instantiate the test ΦUV with the bulletin board
entries ỹ and the declared outcome ṽ. Condition (2) ensures the observer that ΦUV only
holds for a single outcome. Condition (3) ensures that if a bulletin board contains the
ballots of voters who voted s1, . . . , sn then ΦUV only holds if the declared outcome
is (a permutation of) these votes. Finally, Condition (4) ensures that there exists an
execution where the tests hold. In particular this allows us to verify whether the protocol
can satisfy the tests when executed as expected. This also avoids tests which are always
false and would make Conditions (1)-(3) vacuously hold.

396 S. Kremer, M. Ryan, and B. Smyth

4.2 Case Study: FOO

The FOO protocol, by Fujioka, Okamoto & Ohta [15], is an early scheme based on
blind signatures and has been influential for the design of later protocols.

How FOO works. The voter first computes her ballot as a commitment to her votem′ =
commit(rnd, v) and sends the signed blinded ballot sign(skV , blind(rnd′,m′)) to the
registrar. The registrar checks that the signature belongs to an eligible voter and returns
sign(skR, blind(rnd′,m′)), the blind signed ballot. The voter verifies the registrar’s
signature and unblinds the message to recover her ballot signed by the registrar m =
sign(skR,m

′). The voter then posts her signed ballot to the bulletin board. Once all
votes have been cast the tallier verifies all the entries and appends an identifier � to each
valid entry. The voter then checks the bulletin board for her entry, the triple (�,m′,m),
and appends the commitment factor rnd. Using rnd the tallier opens all of the ballots
and announces the declared outcome.

Equational theory. We model blind signatures and commitment as follows.

checksign(pk(x), sign(x, y)) = true getmsg(sign(x, y)) = y
unblind(y, sign(x, blind(y, z))) = sign(x, z) unblind(x, blind(x, y)) = y

open(x, commit(x, y)) = y

Model in applied pi. The parts of the protocol that need to be trusted for achieving ver-
ifiability are surprisingly simple (Definition 5). The name rnd models the randomness
that is supposed to be used to compute the commitment of the vote. All a voter needs to
ensure is that the randomness used for the commitment is fresh. To ensure verifiability,
all other operations such as computing the commitment, blinding and signing can be
performed by the untrusted terminal.

Definition 5. The voting process specification 〈Vfoo, Afoo〉 is defined as

Vfoo =̂ νrnd .c〈v〉.c〈rnd〉 and Afoo[] =̂ .

Individual and universal verifiability. We define the tests

ΦIV =̂ y =E (r, commit(r, v)) ΦUV =̂
∧

1≤i≤n

vi =E open(π1(y), π2(y))

Intuitively, a bulletin board entry y should correspond to the pair formed of the random
generated by voter i and commitment to her vote.

Theorem 1. 〈Vfoo, Afoo〉 satisfies individual and universal verifiability.

4.3 Case Study: Helios 2.0

Helios 2.0 [4] is an open-source web-based election system, based on homomorphic
tallying of encrypted votes. It allows the secret election key to be distributed amongst
several trustees, and supports distributed decryption of the election result. It also allows
independent verification by voters and observers of election results. Helios 2.0 was
successfully used in March 2009 to elect the president of the Catholic University of
Louvain, an election that had 25,000 eligible voters.

Election Verifiability in Electronic Voting Protocols 397

How Helios works. An election is created by naming a set of trustees and running a
protocol that provides each of them with a share of the secret part of a public key pair.
The public part of the key is published. Each of the eligible voters is also provided with
a private pseudo-identity. The steps that participants take during a run of Helios are as
follows.

1. To cast a vote, the user runs a browser script that inputs her vote and creates a ballot
that is encrypted with the public key of the election. The ballot includes a ZKP that
the ballot represents an allowed vote (this is needed because the ballots are never
decrypted individually).

2. The user can audit the ballot to check if it really represents a vote for her chosen
candidate; if she elects to do this, the script provides her with the random data
used in the ballot creation. She can then independently verify that the ballot was
correctly constructed, but the ballot is now invalid and she has to create another
one.

3. When the voter has decided to cast her ballot, the voter’s browser submits it along
with her pseudo-identity to the server. The server checks the ZKPs of the ballots,
and publishes them on a bulletin board.

4. Individual voters can check that their ballots appear on the bulletin board. Any ob-
server can check that the ballots that appear on the bulletin board represent allowed
votes, by checking the ZKPs.

5. The server homomorphically combines the ballots, and publishes the encrypted
tally. Anyone can check that this tally is done correctly.

6. The server submits the encrypted tally to each of the trustees, and obtains their
share of the decryption key for that particular ciphertext, together with a proof that
the key share is well-formed. The server publishes these key shares along with the
proofs. Anyone can check the proofs.

7. The server decrypts the tally and publishes the result. Anyone can check this de-
cryption.

Equational theory. We use a signature in which penc(xpk, xrand, xtext) denotes the en-
cryption with key xpk and random xrand of the plaintext xtext, and xciph∗yciph denotes the
homomorphic combination of ciphertexts xciph and yciph (the corresponding operation
on plaintexts is written + and on randoms ◦). The term ballotPf(xpk, xrand, s, xballot)
represents a proof that the ballot xballot contains some name s and random xrand with
respect to key xpk; decKey(xsk, xciph) is a decryption key for xciph w.r.t. public key
pk(xsk); and decKeyPf(xsk, xciph, xdk) is a proof that xdk is a decryption key for xciph

w.r.t. public key pk(xsk). We use the equational theory that asserts that +, ∗, ◦ are com-
mutative and associative, and includes the equations:

dec(xsk, penc(pk(xsk), xrand, xtext)) = xtext

dec(decKey(xsk, ciph), ciph) = xplain

where ciph = penc(pk(xsk), xrand, xplain)
penc(xpk, yrand, ytext) ∗ penc(xpk, zrand, ztext) = penc(xpk, yrand ◦ zrand, ytext + ztext)
checkBallotPf(xpk, ballot, ballotPf(xpk, xrand, s, ballot)) = true

where ballot = penc(xpk, xrand, s)

398 S. Kremer, M. Ryan, and B. Smyth

checkDecKeyPf(pk(xsk), ciph, dk, decKeyPf(xsk, ciph, dk)) = true
where ciph = penc(pk(xsk), xrand, xplain)and dk = decKey(xsk, ciph)

Note that in the equation for checkBallotPf s is a name and not a variable. As the
equational theory is closed under bijective renaming of names this equation holds for
any name, but fails if one replaces the name by a term, e.g., s+ s. We suppose that all
names are possible votes but give the possibility to check that a voter does not include
a term s+ s which would add a vote to the outcome.

Model in applied pi. The parts of the system that are not verifiable are:

– The script that constructs the ballot. Although the voter cannot verify it, the trust in
this script is motivated by the fact that she is able to audit it.

– The trustees. Although the trustees’ behaviour cannot be verified, voters and ob-
servers may want to trust them because trust is distributed among them.

Hence, we include these two components in the context Ahelios of our voting process
specification.

Definition 6. The voting process specification 〈Vhelios, Ahelios〉 is defined where

Vhelios =̂ d(xpid). d〈v〉. d(xballot). d(xballotpf).c〈(w, xballot, xballotpf)〉
Ahelios[] =̂ νsk, d.

(
c〈pk(sk)〉 | (!νpid. d〈pid〉) | (!B) | T |

)
B =̂ νm. d(xvote).d〈penc(pk(sk),m, xvote)〉.

d〈ballotPf(pk(sk),m, xvote, penc(pk(sk),m, xvote))〉
T =̂ c(xtally). c〈(decKey(sk, xtally), decKeyPf(sk, xtally, decKey(sk, xtally)))〉

We suppose that the inputs of xpid, xballot and xballotpf are stored in record variables rpid,
rballot and rballotpf respectively. The voter Vhelios receives her voter id pid on a private
channel. She sends her vote on the channel to Ahelios, which creates the ballot for her.
She receives the ballot and sends it (paired with pid) to the server. Ahelios represents
the parts of the system that are required to be trusted. It publishes the election key and
issues voter ids. It includes the ballot creation script B, which receives a voter’s vote,
creates a random m and forms the ballot, along with its proof, and returns it to the
voter. Ahelios also contains the trustee T , which accepts a tally ciphertext and returns a
decryption key for it, along with the proof that the decryption key is correct. We assume
the trustee will decrypt any ciphertext (but only one).

The untrusted server is assumed to publish the election data. We expect the frame to
define the election public key as xpk and the individual pid’s and ballots as yi for each
voter i. It also contains the homomorphic tally ztally of the encrypted ballots, and the
decryption key zdecKey and its proof of correctness zdecKeyPf obtained from the trustees.
When the protocol is executed as expected the resulting frame should have substitution
σ such that

yiσ = (pidi, penc(pk(sk),mi, vi), ballotPf(pk(sk),mi, vi, penc(pk(sk),mi, vi)))
xpkσ = pk(sk) ztallyσ = π2(y1) ∗ · · · ∗ π2(yn)σ

zdecKeyσ = decKey(sk, ztally)σ zdecKeyPfσ = decKeyPf(sk, ztally, zdecKey)σ

Election Verifiability in Electronic Voting Protocols 399

Individual and universal verifiability. The tests ΦIV and ΦUV are introduced for veri-
fiability purposes. Accordingly, given n ∈ N we define:

ΦIV =̂ y =E (rpid, rballot, rballotpf)
ΦUV =̂ ztally =E π2(y1) ∗ · · · ∗ π2(yn)

∧
∧n

i=1(checkBallotPf(xpk, π2(yi), π3(yi)) =E true)
∧ checkDecKeyPf(xpk, ztally, zdecKey, zdecKeyPf) =E true
∧ v1 + · · · + vn =E dec(zdecKey, ztally)

Theorem 2. 〈Vhelios, Ahelios〉 satisfies individual and universal verifiability.

5 Eligibility Verifiability

To fully capture election verifiability, the tests ΦIV and ΦUV must be supplemented
by a test ΦEV that checks eligibility of the voters whose votes have been counted. We
suppose that the public credentials of eligible voters appear on the bulletin board. ΦEV

allows an observer to check that only these individuals (that is, those in posession of
credentials) cast votes, and at most one vote each.

Definition 7 (Election verifiability). A voting specification 〈V,A〉 satisfies election
verifiability if for all n ∈ N there exist tests ΦIV , ΦUV , ΦEV such that fn(ΦIV) =
fn(ΦUV) = fn(ΦEV) = rv(ΦUV) = rv(ΦEV) = ∅, rv(ΦIV) ⊆ rv(R(V)), and for all
names s̃ = (s1, . . . , sn) we have:

1. The tests ΦIV and ΦUV satisfy each of the conditions of Definition 4;
2. The additional conditions 5, 6, 7 and 8 below hold.

Let r̃ = rv(ΦIV),ΦIV
i = ΦIV {si/v, r̃i/r̃, yi/y},X= fv(ΦEV)\dom(VP+

n (s1, . . . , sn))

Soundness. For all contexts C and processes B such that C[VP+
n (s1, . . . , sn)] =⇒ B

and φ(B) ≡ νñ.σ, we have:

ΦEV σ ∧ ΦEV {x′
/x | x ∈ X\ỹ}σ ⇒ w̃σ � w̃′σ (5)

∧
1≤i≤n

ΦIV
i σ ∧ ΦEV {w̃′

/w̃}σ ⇒ w̃σ � w̃′σ (6)

ΦEV σ ∧ ΦEV {x′
/x | x ∈ X\w̃}σ ⇒ ỹσ � ỹ′σ (7)

Effectiveness. There exists a context C and a process B such that C[VP+
n (s1, . . . , sn)]

=⇒ B, φ(B) ≡ νñ.σ and ∧
1≤i≤n

ΦIV
i σ ∧ ΦUV σ ∧ ΦEV σ (8)

400 S. Kremer, M. Ryan, and B. Smyth

The test ΦEV is instantiated by an observer with the bulletin board. Condition (5) en-
sures that, given a set of ballots ỹσ, provided by the environment, ΦEV succeeds only
for one list of voter public credentials. Condition (6) ensures that if a bulletin board
contains the ballots of voters with public credentials w̃σ then ΦEV only holds on a per-
mutation of these credentials. Condition (7) ensures that, given a set of credentials w̃,
only one set of bulletin board entries ỹ are accepted by ΦEV (observe that for such a
strong requirement to hold we expect the voting specification’s frame to contain a pub-
lic key, to root trust). Finally, the effectiveness condition is similar to Condition (4) of
the previous section.

5.1 Case Study: JCJ-Civitas

The protocol due to Juels et al. [18] is based on mixnets and was implemented by
Clarkson et al. [13,12] as an open-source voting system called Civitas.

How JCJ-Civitas works. An election is created by naming a set of registrars and talliers.
The protocol is divided into four phases: setup, registration, voting and tallying. We now
detail the steps of the protocol, starting with the setup phase.

1. The registrars (resp. talliers) run a protocol which constructs a public key pair and
distributes a share of the secret part amongst the registrars’ (resp. talliers’). The
public part pk(skT) (resp. pk(skR)) of the key is published. The registrars also
construct a distributed signing key pair sskR, pk(sskR).

The registration phase then proceeds as follows.

2. The registrars generate and distribute voter credentials: a private part d and a public
part penc(pk(skR),m′′, d) (the probabilistic encryption of d under the registrars’
public key pk(skR)). This is done in a distributed manner, so that no individual
registrar learns the value of any private credential d.

3. The registrars publish the signed public voter credentials.
4. The registrars announce the candidate list t̃ = (t1, . . . , tl).

The protocol then enters the voting phase.

5. Each voter selects her vote s ∈ t̃ and computes two ciphertextsM = penc(pk(skT),
,m)s and M ′ = penc(pk(skR),m′, d) where m,m′ are nonces. M contains her
vote and M ′ her credential. In addition, the voter constructs a non-interactive zero-
knowledge proof of knowledge demonstrating the correct construction of her ci-
phertexts and validity of the candidate (s ∈ t̃). (The ZKP provides protection against
coercion resistance, by preventing forced abstention attacks via a write in, and binds
the two ciphertexts for eligibility verifiability.) The voter derives her ballot as the
triple consisting of her ciphertexts and zero-knowledge proof and posts it to the bul-
letin board.

After some predefined deadline the tallying phase commences.

Election Verifiability in Electronic Voting Protocols 401

6. The talliers read the n′ ballots posted to the bulletin board by voters (that is, the
triples consisting of the two ciphertexts and the zero-knowledge proof) and discards
any entries for which the zero-knowledge proof does not hold.

7. The elimination of re-votes is performed on the ballots using pairwise plaintext
equality tests (PET) on the ciphertexts containing private voter credentials. (A
PET [16] is a cryptographic predicate which allows a keyholder to provide a proof
that two ciphertexts contain the same plaintext.) Re-vote elimination is performed
in a verifiable manner with respect to some publicly defined policy, e.g., by the
order of ballots on the bulletin board.

8. The talliers perform a verifiable re-encryption mix on the ballots (ballots consist
of a vote ciphertext and a public credential ciphertext; the link between both is
preserved by the mix.) The mix ensures that a voter cannot trace her vote, allowing
the protocol to achieve coercion-resistance.

9. The talliers perform a verifiable re-encryption mix on the list of public credentials
published by the registrars. This mix anonymises public voter credentials, breaking
any link with the voter for privacy purposes.

10. Ballots based on invalid credentials are weeded using PETs between the mixed
ballots and the mixed public credentials. Both have been posted to the bulletin
board. (Using PETs the correctness of weeding is verifiable.)

11. Finally, the talliers perform a verifiable decryption and publish the result.

Equational theory. The protocol uses a variant of the ElGamal encryption scheme [18].
Accordingly we adopt the signature and associated equational theory from the Helios
case study. We model the ZK proof demonstrating correct construction of the voter’s
ciphertexts, re-encryption and PETs by the equations

checkBallot(ballotPf(xpk, xrand, xtext, x
′
pk, x

′
rand, x

′
text),

penc(xpk, xrand, xtext), penc(x′pk, x
′
rand, x

′
text)) = true

renc(yrand, penc(pk(xsk), xrand, xtext)) = penc(pk(xsk), f(xrand, yrand), xtext)
pet(petPf(xsk, ciph, ciph

′), ciph, ciph′) = true

where ciph =̂ penc(pk(xsk), xrand, xtext) and ciph′ =̂ penc(pk(xsk), x′rand, xtext). In
addition we consider verifiable re-encryption mixnets and introduce for each permuta-
tion χ on {1, . . . , n} the equation:

checkMix(mixPf(xciph,1, . . . , xciph,n, ciph1, . . . , ciphn, zrand,1, . . . , zrand,n),
xciph,1, . . . , xciph,n, ciph1, . . . , ciphn) = true

where ciphi =̂ renc(zrand,i, xciph,χ(i)). We also define re-encryption of pairs of cipher-
texts and introduce for each permutation χ on {1, . . . , n} the equation

checkMixPair(mixPairPf((x1, x
′
1), . . . , (xn, x

′
n), (c1, c′1), . . . , (cn, c′n),

(z1, z′1), . . . , (zn, z
′
n)), (x1, x

′
1), . . . , (xn, x

′
n), (c1, c′1), . . . , (cn, c′n)) = true

where ci =̂ renc(zi, xχ(i)) and c′i =̂ renc(z′i, x
′
χ(i)).

402 S. Kremer, M. Ryan, and B. Smyth

Model in applied pi. We make the following trust assumptions for verifiability

– The voter is able to construct her ballot; that is, she is able to generate nonces
m,m′, construct her ciphertexts and generate a zero-knowledge proof.

– The registrars construct distinct credentials d for each voter and construct the voter’s
public credential correctly. (The latter assumption can be dropped if the registrars
provides a proof that the public credential is correctly formed [18].) The registrars
keep the private part of the signing key secret.

Although neither voters nor observers can verify that the registrars adhere to such ex-
pectations, they trust them because trust is distributed. The trusted components are mod-
elled by the voting process specification 〈Ajcj, Vjcj〉 (Definition 8). The contextAjcj dis-
tributes private keys on a private channel, launches an unbounded number of registrar
processes and publishes the public keys of both the registrars and talliers. The registrar
R constructs a fresh private credential d and sends the private credential along with
the signed public part (that is, sign(sskR, penc(xpkR ,m

′′, d))) to the voter; the reg-
istrar also publishes the signed public credential on the bulletin board. The voter Vjcj

receives the private and public credentials from the registrar and constructs her ballot;
that is, the pair of ciphertexts and a zero-knowledge proof demonstrating their correct
construction.

Definition 8. The voting process specification Ajcj, Vjcj is defined where:

Ajcj =̂ ν a, sskR.(!R | {pk(skR)/xpkR
, pk(sskR)/xspkR

, pk(skT)/xpkT
} |)

Vjcj =̂ ν m,m′.a(xcred).let ciph = penc(xpkT ,m, v) in
let ciph′ = penc(xpkR ,m

′, π1(xcred)) in
let zkp = ballotPf(xpkT ,m, v, xpkR ,m

′, π1(xcred)) in
c〈(ciph, ciph′, zkp)〉

R =̂ ν d,m′′. let sig = sign(sskR, penc(xpkR ,m
′′, d)) in a〈(d, sig)〉.c〈sig〉

Election verifiability. We suppose the recording function uses record variables r̃ =
(rcred, rm, rm′) = rv(R(V)) (corresponding to the variable xcred and names m, m′ in
the process V). Accordingly, given n ∈ N we define:

ΦIV =̂ y =E (penc(xpkT
, rm, v), penc(xpkR

, rm′ , π1(rcred)),
ballotPf(xpkT

, rm, v, xpkR
, rm′ , π1(rcred))) ∧ w = π2(rcred)

ΦUV =̂ checkMixPair(zmixPairPf , (π1(y1), π2(y1)), . . . , (π1(yn), π2(yn)),
zbal,1, . . . , zbal,n) =E true

∧
∧n

i=1 dec(zdecKey,i, π1(zbal,i)) =E vi

∧
∧n

i=1 checkDecKeyPf(xpkT
, π1(zbal,i), zdecKey,i, zdecPf,i) =E true

ΦEV =̂
∧n

i=1 checkBallot(π3(yi), π1(yi), π2(yi))
∧ checkMixPair(zmixPairPf , (π1(y1), π2(y1)), . . . , (π1(yn), π2(yn)),

zbal,1, . . . , zbal,n) =E true
∧

∧n
i=1 pet(zpetPf,i, π2(zbal,i), ẑcred,i) =E true

∧ (zcred,1, . . . , zcred,n) � (ẑcred,1, . . . , ẑcred,n)
∧ checkMix(zmixPf , getmsg(w1), . . . , getmsg(wn), zcred,1, . . . , zcred,n)=Etrue
∧

∧n
i=1 checksign(xspkR , wi)

Theorem 3. 〈Ajcj, Vjcj〉 satisfies election verifiability.

Election Verifiability in Electronic Voting Protocols 403

6 Conclusion

We present a symbolic definition of election verifiability which allows us to precisely
identify which parts of a voting system need to be trusted for verifiability. The suitability
of systems can then be evaluated and compared on the basis of trust assumptions. We
also consider eligibility verifiability, an aspect of verifiability that is often neglected
and satisfied by only a few protocols, but nonetheless an essential mechanism to detect
ballot stuffing. We have applied our definition to three protocols: FOO, which uses blind
signatures; Helios 2.0, which is based on homomorphic encryption, and JCJ-Civitas,
which uses mixnets and anonymous credentials. For each of these protocols we discuss
the trust assumptions that a voter or an observer needs to make for the protocol to be
verifiable. Since Helios 2.0 and JCJ-Civitas have been implemented and deployed, we
believe our formalisation is suitable for analysing real world election systems.

Acknowledgements

We are particularly grateful to Michael Clarkson for careful reading of our preliminary
formal definition of election verifiability. His comments provided useful guidance for
the definition we present here.

References

1. Abadi, M., Fournet, C.: Mobile values, new names, and secure communication. In: POPL
2001: Proc. 28th ACM Symposium on Principles of Programming Languages, pp. 104–115.
ACM, New York (2001)

2. Adida, B.: Advances in Cryptographic Voting Systems. PhD thesis, MIT (2006)
3. Adida, B.: Helios: Web-based open-audit voting. In: Proc. 17th Usenix Security Symposium,

pp. 335–348. USENIX Association (2008)
4. Adida, B., de Marneffe, O., Pereira, O., Quisquater, J.-J.: Electing a university president

using open-audit voting: Analysis of real-world use of Helios. In: Electronic Voting Tech-
nology/Workshop on Trustworthy Elections, EVT/WOTE (2009)

5. Anderson, R., Needham, R.: Programming Satan’s Computer. In: van Leeuwen, J. (ed.) Com-
puter Science Today. LNCS, vol. 1000, pp. 426–440. Springer, Heidelberg (1995)

6. Backes, M., Hritcu, C., Maffei, M.: Automated verification of remote electronic voting pro-
tocols in the applied pi-calculus. In: CSF 2008: Proc. 21st IEEE Computer Security Founda-
tions Symposium, Washington, USA, pp. 195–209. IEEE, Los Alamitos (2008)

7. Baskar, A., Ramanujam, R., Suresh, S.P.: Knowledge-based modelling of voting protocols.
In: TARK 2007: Proc. 11th International Conference on Theoretical Aspects of Rationality
and Knowledge, pp. 62–71. ACM, New York (2007)

8. Bowen, D.: Secretary of State Debra Bowen Moves to Strengthen Voter Confidence in
Election Security Following Top-to-Bottom Review of Voting Systems. California Sec-
retary of State, press release DB07:042 (August 2007), http://www.sos.ca.gov/
elections/voting_systems/ttbr/db07_042_ttbr_system_decisions_
release.pdf

9. Bundesverfassungsgericht (Germany’s Federal Constitutional Court). Use of voting com-
puters in 2005 Bundestag election unconstitutional. Press release 19/2009 (March 2009),
http://www.bundesverfassungsgericht.de/en/press/bvg09-019en.
html

http://www.sos.ca.gov/elections/voting_systems/ttbr/db07_042_ttbr_system_decisions_release.pdf
http://www.sos.ca.gov/elections/voting_systems/ttbr/db07_042_ttbr_system_decisions_release.pdf
http://www.sos.ca.gov/elections/voting_systems/ttbr/db07_042_ttbr_system_decisions_release.pdf
http://www.bundesverfassungsgericht.de/en/press/bvg09-019en.html
http://www.bundesverfassungsgericht.de/en/press/bvg09-019en.html

404 S. Kremer, M. Ryan, and B. Smyth

10. Chaum, D., Ryan, P.Y.A., Schneider, S.: A practical, voter-verifiable election scheme. In: di
Vimercati, S.d.C., Syverson, P.F., Gollmann, D. (eds.) ESORICS 2005. LNCS, vol. 3679, pp.
118–139. Springer, Heidelberg (2005)

11. Chevallier-Mames, B., Fouque, P.-A., Pointcheval, D., Stern, J., Traore, J.: On Some In-
compatible Properties of Voting Schemes. In: WOTE 2006: Proc. Workshop on Trustworthy
Elections (2006)

12. Clarkson, M.R., Chong, S., Myers, A.C.: Civitas: Toward a secure voting system. Technical
Report 2007-2081, Cornell University (May 2007), http://hdl.handle.net/1813/
7875 (revised March 2008)

13. Clarkson, M.R., Chong, S., Myers, A.C.: Civitas: Toward a secure voting system. In: S&P
2008: Proc. Symposium on Security and Privacy, pp. 354–368. IEEE, Los Alamitos (2008)

14. Delaune, S., Kremer, S., Ryan, M.D.: Verifying privacy-type properties of electronic voting
protocols. Journal of Computer Security 17(4), 435–487 (2009)

15. Fujioka, A., Okamoto, T., Ohta, K.: A Practical Secret Voting Scheme for Large Scale Elec-
tions. In: ASIACRYPT 1992: Proc. Workshop on the Theory and Application of Crypto-
graphic Techniques, pp. 244–251. Springer, Heidelberg (1992)

16. Jakobsson, M., Juels, A.: Mix and match: Secure function evaluation via ciphertexts. In:
Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 162–177. Springer, Heidelberg
(2000)

17. Juels, A., Catalano, D., Jakobsson, M.: Coercion-Resistant Electronic Elections. Cryptology
ePrint Archive, Report 2002/165 (2002)

18. Juels, A., Catalano, D., Jakobsson, M.: Coercion-resistant electronic elections. In: WPES
2005: Proc. Workshop on Privacy in the Electronic Society, pp. 61–70. ACM, New York
(2005)

19. Kremer, S., Smyth, B., Ryan, M.D.: Election verifiability in electronic voting protocols.
Technical Report CSR-10-06, University of Birmingham, School of Computer Science
(2010),
http://www.bensmyth.com/publications/10tech/CSR-10-06.pdf

20. Ministerie van Binnenlandse Zaken en Koninkrijksrelaties (Netherland’s Ministry
of the Interior and Kingdom Relations). Stemmen met potlood en papier (Vot-
ing with pencil and paper). Press release (May 2008), http://www.minbzk.
nl/onderwerpen/grondwet-en/verkiezingen/nieuws--en/112441/
stemmen-met-potlood

21. Participants of the Dagstuhl Conference on Frontiers of E-Voting. Dagstuhl accord (2007),
http://www.dagstuhlaccord.org/

22. Ryan, M.D., Smyth, B.: Applied pi calculus. In: Cortier, V., Kremer, S. (eds.) Formal Models
and Techniques for Analyzing Security Protocols, ch. 6. IOS Press, Amsterdam (2010)

23. Smyth, B., Ryan, M.D., Kremer, S., Kourjieh, M.: Towards automatic analysis of election
verifiability properties. In: Joint Workshop on Automated Reasoning for Security Protocol
Analysis and Issues in the Theory of Security (ARSPA-WITS 2010). LNCS. Springer, Hei-
delberg (2010)

24. Talbi, M., Morin, B., Tong, V.V.T., Bouhoula, A., Mejri, M.: Specification of electronic vot-
ing protocol properties using ADM logic: FOO case study. In: Chen, L., Ryan, M.D., Wang,
G. (eds.) ICICS 2008. LNCS, vol. 5308, pp. 403–418. Springer, Heidelberg (2008)

25. UK Electoral Commission. Key issues and conclusions: electoral pilot schemes (May
2007), http://www.electoralcommission.org.uk/elections/pilots/
May2007

http://hdl.handle.net/1813/7875
http://hdl.handle.net/1813/7875
http://www.bensmyth.com/publications/10tech/CSR-10-06.pdf
http://www.minbzk.nl/onderwerpen/grondwet-en/verkiezingen/nieuws--en/112441/stemmen-met-potlood
http://www.minbzk.nl/onderwerpen/grondwet-en/verkiezingen/nieuws--en/112441/stemmen-met-potlood
http://www.minbzk.nl/onderwerpen/grondwet-en/verkiezingen/nieuws--en/112441/stemmen-met-potlood
http://www.dagstuhlaccord.org/
http://www.electoralcommission.org.uk/elections/pilots/May2007
http://www.electoralcommission.org.uk/elections/pilots/May2007

Pretty Good Democracy for More Expressive
Voting Schemes

James Heather1, Peter Y.A. Ryan2, and Vanessa Teague3

1 Department of Computing, University of Surrey, Guildford, Surrey GU2 7XH, UK

j.heather@surrey.ac.uk
2 Dept. Computer Science and Communications, University of Luxembourg

peter.ryan@uni.lu
3 Dept. Computer Science and Software Engineering, University of Melbourne

vteague@csse.unimelb.edu.au

Abstract. In this paper we revisit Pretty Good Democracy, a scheme

for verifiable Internet voting from untrusted client machines. The original

scheme was designed for first-past-the-post elections. Here, we show how

Pretty Good Democracy can be extended to voting schemes in which the

voter lists the candidates in their order of preference. Our scheme applies

to elections using STV, IRV, Borda, or any other tallying scheme in which

a vote is a list of candidates in preference order. We also describe an

extension to cover Approval or Range voting.

1 Introduction

Secure Internet voting wouldn’t be difficult at all, if only the authorities tally-
ing the election were perfectly trustworthy, nobody ever attempted to influence
another person’s vote, and every home PC was perfectly secure. Unfortunately,
we have in general no grounds to make such assumptions. There are various
schemes for Internet voting [JCJ05, Adi08], which use cryptography to weaken
or eliminate (some of) these assumptions. Here we concentrate on Pretty Good
Democracy (PGD) [RT09], which provides a proof of correct tallying and guar-
antees of ballot privacy that do not depend on any assumptions about the device
used to cast the vote.

PGD is a form of code voting, which uses a separate channel (such as the
postal service) to deliver a code sheet to each voter. The voter casts their vote
by selecting the appropriate code(s) from their sheet. They then check that
they receive an acknowledgement code that matches the one on their sheet.
This provides mutual authentication between the voter and the authorities. In
PGD [RT09], we added a proof of correct tallying on a web bulletin board.
Although obviously not secure against a coercer who observes both the code sheet
and the voter’s communications, PGD is receipt-free as long as either the code
sheet or the voter’s messages to the voting authorities remain secret. As far as we
know, it is the only scheme to provide both receipt-freeness and verifiability on an
untrusted voting client. The main disadvantage of PGD relative to other schemes
is that the election’s integrity depends on correct behaviour of a threshold of

D. Gritzalis, B. Preneel, and M. Theoharidou (Eds.): ESORICS 2010, LNCS 6345, pp. 405–423, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

406 J. Heather, P.Y.A. Ryan, and V. Teague

trustees. This is not as onerous a requirement as it may first seem, however:
even in national governmental elections, this can be solved by giving threshold
shares to each political party, along with various neutral organisations such as
the UN, so that one can have confidence that a threshold set will not rig the
election because there is no result that all its members would be content with.
Nevertheless, this arguably makes PGD inappropriate for elections of significant
political importance, though there are many other hard-fought elections in which
privacy and evidence of correctness are important, such as elections in trade
unions and professional societies.

The first version of PGD [RT09] was designed for elections in which the voter
chose a single favourite candidate. However, many countries and many other
organisations use voting schemes requiring the voter to list several (or all) can-
didates in their order of preference. For example, the Single Transferable Vote
scheme (STV) is used in national elections in Australia, Ireland, Malta and Scot-
land. Instant Runoff Voting (IRV), also known as the Alternative Vote (AV),
which is the single-vacancy version of STV, is used in some local elections in
the USA, the UK, Australia, and many other countries, and it is widely ex-
pected that there will soon be a referendum on using it for UK parliamentary
elections. The Borda Count is used in certain political elections in Slovenia, and
also in many other organisations, such as the Eurovision Song Contest. In this
paper, we extend PGD to allow voters to express their vote as a list of candi-
dates in preference order. Any method could then be used to tally the votes,
including existing solutions for the secure tallying of Borda [CM05] or STV/IRV
votes [BMN+09, Hea07, WB09]. We present three different protocols, creatively
named A, B and C. Protocol C also encompasses Approval Voting or Range Vot-
ing, in which the voter gives a score to all candidates.

Like PGD 1.0, all the protocols in this paper are receipt-free but not coercion-
resistant: a voter can sell her code sheet before voting, but cannot prove after
voting what vote she cast. The protocols with a single ack (A and C) are receipt-
free even against a coercer who directly observes the ack return. Protocol B is
receipt-free only if the voter has a chance to generate a fake ack code list before
the coercer observes it.

In all cases, it takes either a leak of the printed code sheet or a collusion of
a threshold number of trustees (which, by assumption, cannot occur) to derive
an appropriate Ack Code without the vote being properly registered on the
bulletin board. The assumptions behind integrity are described in more detail
in Section 1.2.

In Section 1.1 we review PGD 1.0 and explain why the obvious extension
to more complex voting schemes fails, then in 1.2 we give an overview and
comparison of the extensions to more expressive voting schemes. The next three
sections each contain a different extension, with a discussion of pros and cons.
In Section 2, the simplest method (Protocol A) is described, which is secure but
suffers from the disadvantage that each preference requires a separate interaction
with the authorities. Protocol B, in Section 3, has the simplest voting experience,
but somewhat complicated acknowledgement checking. Protocol C, in Section 4,

Pretty Good Democracy for More Expressive Voting Schemes 407

is an approach based on a two-dimensional table, which allows votes that are
ordered lists or approval or range votes.

1.1 Review of PGD 1.0

Like other forms of Code Voting [Cha01], PGD assumes that each voter receives
a Code Sheet, which is a list of candidate names and corresponding Vote Codes.
We assume that the vote codes are kept secret and revealed only to the voter;
mechanisms and procedures to support this assumption are discussed in detail
in [RT09]. An example of a Code Sheet is given in Figure 1.

Candidate Vote Code

Chequered Red 3772

Cross 4909

Fuzzy 9521

Green 7387

Red 2531

Ack Code: 8243

Ballot ID: 3884092844

Fig. 1. Example Vote Codes

Each voter sends the Vote Code for their chosen candidate to the central Vote
Server. They could use any networked device for the transmission, including a
home PC or mobile phone. Even a corrupted device is unable to substitute a
different choice of candidate, because it does not learn the other codes.

After sending the Vote Code, the voter waits to receive an acknowledgement
code. In the original Code Voting scheme [Cha01], the printed code sheet con-
tained a separate Ack Code for each candidate. In PGD [RT09] we argued that
one Ack code per code sheet sufficed. Either way, the purpose of the Ack is to
demonstrate to the voter that they communicated with the correct server and
that it received and registered the correct Vote Code. In PGD there was then
a computer-verifiable proof of correct tallying, which could be publicised on a
bulletin board.

The key innovation of the PGD scheme is that, in order to access the correct
ack code, the voter server must invoke the co-operation of a threshold set of
Trustees. The revealing of the correct ack code is thus a side-effect of the correct
registration on the bulletin board of a valid code.

Cryptographic tools. This protocol relies on two main cryptographic tools:

Verifiable re-encryption shuffles (for example, [FS01, Gro03, Nef01, JJR02])
allow an authority to permute encrypted values (votes) by a secret permu-
tation, while providing a publicly verifiable proof on the bulletin board that
some shuffle has been correctly performed.

408 J. Heather, P.Y.A. Ryan, and V. Teague

Plaintext Equivalence Tests (PETs) ([JJ00, TH08]), allow a threshold set of
authorities who share a public key to compare two values encrypted with that
key, and determine whether the two values are equal or not, without learning
any other information.

Overview of ballot construction. The roles of the authorities in PGD are:

– A Voting Authority VA who generates the requisite number of vote codes
and ack codes encrypted under the Trustees’ public key, PKT .

– A set of Clerks, who generate encrypted Vote Codes for each ballot, one
version for the Bulletin Board and one for the printed code sheets.

– A Registrar who decrypts the ballots provided by the Clerks and prints the
code sheets.

– A Returning Officer who distributes the code sheets to the voters.
– A Voting Server, who receives the votes, then posts the ballot ID and the

encrypted vote code on the Bulletin Board along with a Zero Knowledge
proof of knowledge of the plaintext.

– A set of Trustees, who work with the Voting Server to register the votes
on the Bulletin Board (BB) and reveal the ack codes. They have shares of
the secret key corresponding to the threshold public key, PKT . “Registra-
tion” means recording the vote on the BB. (In the extension protocols in
Sections 2, 3 and 4, the Trustees will be split into several authorities with
slightly different roles.)

– A set of Auditors responsible for performing various types of audit, on the
initial set-up, on the information posted to the Bulletin Board, e.g. the zero
knowledge proofs, and verifying the anonymising shuffles and final decryption
steps. The auditors are not privileged or trusted, and do not receive secret
information—any member of the public can be an auditor.

Full details of PGD 1.0 can be found in [RT09]. Here, for completeness, we
give a brief outline. First, a sufficiently large set of voting and ack codes of the
appropriate form are generated. These are encrypted under the Teller’s threshold
public key and put through a sequence of re-encryption shuffles. These codes are
then assembled into a table of the appropriate dimensions: each row will have n
encrypted vote codes and an encrypted ack code and will correspond to a code
sheet. This table is referred to as the P -table. This construction ensures that
only certain sets of entities acting in collusion could compromise the secrecy of
the codes. The Registrar decrypts the information of the P -table and prints the
vote codes to the code sheets.

All of this is done on the bulletin board, except obviously the Registrar’s
decryption of the ballots and the distribution of the code sheets to voters.

In order to ensure receipt-freeness, the P -table must be transformed to conceal
the correspondence between the position in the row of an (encrypted) code and
the candidate it represents. Each row of the P -table is therefore subjected to
a further sequence of re-encryption permutations to create the Q-table. The
Q-table is used to register the votes.

Pretty Good Democracy for More Expressive Voting Schemes 409

When votes are cast, the encrypted Vote Code supplied by the Vote Server
is matched by a threshold set of Trustees via plaintext equivalence tests against
the encrypted codes in the appropriate row of the Q-table. If a match is found,
the matching term is flagged and the threshold set of trustees decrypt the ack
code. The fact that the terms of the Q-table are permuted ensures that flagging
one does not reveal what candidate this represents. The information defining the
permutation is stored in an encrypted onion in the usual Prêt à Voter fashion
and this is later used during tabulation to interpret the flagged term to identify
the chosen candidate.

The rest of the tallying is similar to Prêt à Voter. In this paper we present
two protocols with single ack codes that can be published on the bulletin board,
and one protocol with an ordered list of ack codes that must be decrypted and
returned to the voter secretly.

An obvious extension to preference voting that fails. The simplest ex-
tension would be for the voter simply to list their vote codes in preference order,
and wait for the (single) return Ack. However, this is insecure because a cheating
client or VS could simply rearrange the codes undetectably.

1.2 New Protocol Comparison

Figure 2 contains a functional comparison of the three new protocols presented
in this paper. “Single-step voting” means that casting a vote requires only one
interaction with the authorities. “Single ack” means that there is only one Ack
code—this is important because it means that the protocol is receipt-free even
against a coercer who observes the ack return directly. “Number of preferences
hidden on BB” means that observers cannot tell from the bulletin board how
many preferences each voter cast. This is sometimes important, because different
jurisdictions have very different rules about how many preferences may or must
be cast. Being able to check via the bulletin board is a useful feature for demon-
strating vote validity, though it may make voters vulnerable to being coerced
into casting fewer (or more) peferences than they wished.

Protocol A B C

Single-step voting × � �
Single Ack � × �
Number of preferences hidden on BB � × ×
Approval or Range Votes × × �

Fig. 2. Comparison of protocol features

Security properties are compared in Figure 3, which also includes PGD 1.0. It
shows under what circumstances a corrupt device or Voting Server can manipu-
late the vote. “No” is good and “yes” is bad. “Knowing” a code means knowing
its meaning, i.e. its candidate or preference.

410 J. Heather, P.Y.A. Ryan, and V. Teague

Cheating client or VS can undetectably: PGD 1.0 A B C

Truncate the vote knowing only the Vote Codes n/a Yes No Yes

Truncate the vote knowing only the Ack Codes n/a Yes Yes Yes

Otherwise manipulate the vote knowing only the Vote Codes Yes Yes No Yes

Otherwise manipulate the vote knowing only the Ack Codes No Yes Yes No

Otherwise manipulate the vote knowing only the order of

candidates on the code sheet n/a n/a Y n/a

Manipulate the vote knowing neither Vote nor Ack Codes No No No No

Fig. 3. Comparison of protocol security properties

2 Protocol A: The Simple Solution

Another possibility is to use distinct Ack codes for each candidate, sent secretly
to the voter in addition to the public one that is posted on the bulletin board
(see Section 9.3 of [RT09]). The voter would have to send in each code in turn,
then wait for the appropriate Ack to be received before sending in the next code,
and so on.

2.1 Discussion

This is a secure and simple solution—it is impossible for a cheating client to
switch vote codes or candidate acks undetectably, and it is easy for the voter
to understand why. Its only shortcoming is that it could take some time for the
authorities to generate and return the acks, during which time the voter has
to wait. Furthermore, the security is undermined if a malicious client machine
successfully persuades the voter to enter all their vote codes in one go without
waiting for the intermediate acks, because the client could then apply the same
rearrangement to both the vote codes and the ack codes.

3 Protocol B: Returning the Acknowledgement Codes in
Ballot Order

The idea is to give each voter a code sheet with two lists of codes:

– a list of candidate codes in a random, secret order, and
– a list of preference codes in preference order.

Voting is a simple matter of sending in the vote codes in order of preference.
The return acknowledgement should be a list of preference codes in the order
the candidates appear on the code sheet, which is computed by the authorities
without requiring any voter interaction. The voting protocol is thus a simple
two-pass process: the voter sends her list of vote codes and then checks the
sequence of preference codes. The main drawbacks with this are that it may be
difficult for voters to understand how to check their preference codes, and that
the integrity guarantee is not as strong as that offered by Protocol A.

Pretty Good Democracy for More Expressive Voting Schemes 411

3.1 Security Properties

The integrity guarantee for this protocol depends on the candidates being listed
in a secret, random order. Our main security claim is:

Claim. A cheating client or VS (who doesn’t know the meaning of the prefer-
ence codes) can swap two preferences undetectably only if it knows which two
positions on the code sheet they correspond to.

Proof. See Section 3.4.

Furthermore, the protocol is receipt-free if the voter keeps secret either their
code sheet or their communications with the Vote Server. This is stated more
precisely in Section 3.4 and proved in Appendix A.

3.2 Voter Interface Details

The idea is that the voter submits their candidate codes in their order of pref-
erence, and receives as acknowledgement a list of preference codes in the order
the candidates appear on their code sheet.

For example, for the code sheet given in Figure 4(a), the voter might wish
to vote “Chequered, Fuzzy, Green, Red, Cross”, so they would enter codes
9521, 7387, 4909, 3772, 2531 in sequence. At this point they have finished casting
their vote, and if they are not interested in verifying their vote, they do not
need to interact with the system any further (though obviously a cheating client
or VS must not know in advance that this voter will not check their returned
preference codes, or they could rearrange the vote).

Candidate Vote Code

Red 3772

Green 4909

Chequered 9521

Fuzzy 7387

Cross 2531

Ack Code: 8243

Ballot ID: 3884092844

(a) Vote Codes

Preference Ack Code

1st K

2nd T

3rd C

4th W

5th M

Ballot ID: 3884092844

(b) Preference Codes

Fig. 4. Example Code sheets

If the voter does take the trouble to verify the registration of her vote, she
should expect as acknowledgement a list of preference codes given in the order
the candidates are printed on the code sheet. For the example preference codes
in Figure 4(b), the first would be code W , (because Red is the first candidate in
the order printed on the ballot paper, and the preference given to it was 4th),
then C,K, T,M . Thus the voter should expect to receive the acknowledgement:
WCKTM .

412 J. Heather, P.Y.A. Ryan, and V. Teague

To assist the voter, we could provide a blank column alongside the candidate
list. The voter writes the appropriate preference code for each candidate along-
side the candidate, as shown in Figure 5. Then the acknowledgement code will
be the sequence of letters read down the column, thus:

Candidate Vote Code Pref code

Red 3772

Green 4909

Chequered 9521

Fuzzy 7387

Cross 2531

Ack Code: 8243

Ballot ID: 3884092844

Fig. 5. Example code sheet with preference codes filled in

Note that it would be possible to provide the voter with three sheets:

– A conventional code sheet showing the voting codes against the candidates
with the candidates in canonical (e.g. lexical) order.

– The sheet showing the preference codes, as before.
– A sheet showing the candidates in the permuted order with the blank column

alongside for the voter to fill in the preference codes.

Indeed, all three sheets could be generated and distributed via different processes
and channels for added security. Whether this would help the voter and add
sufficiently to the security to justify the additional costs would depend on the
individual case.

3.3 Details of Ballot Construction, Acknowledgement and Tallying

Notation. If σ and π are permutations on n items, then σ◦π is the permutation
defined by (σ ◦ π)(i) = σ(π(i)). If L is a list, then Li denotes the i-th element
of L. Denote by π(L) the idea of “applying” a permutation π to a list L, which
means taking each element Li in turn and copying it into position π(i) in the
new list. The result is π(L) = Lπ−1(1), . . . , Lπ−1(n). It follows that the result of
applying π and then σ to L is (σ ◦ π)(L) = Lπ−1(σ−1(1)), . . . , Lπ−1(σ−1(n)).

In what follows, we will use ‘[x]’ to denote the encryption of x. (Almost
everything is encrypted, so the notation is just a reminder.)

Building Blocks. Numerous protocols exist for proving a shuffle of a list of
ciphertexts. In [RT10], efficient protocols are given for proving that the same
shuffle has been applied to several lists, even if they are encrypted under different
public keys. We will call this protocol Shuf-par.

Pretty Good Democracy for More Expressive Voting Schemes 413

Ballot Construction: The Bulletin-Board part. We use a distributed ballot
construction similar to that of PGD. Obviously we need full permutations rather
than cyclic shifts. For each vote ID, we need to produce a printed code sheet
as described above. There are five different authorities, each of which could
be performed by a single (trustworthy) individual, or (preferably) distributed
among several.

1. The ballot-construction authorities produce the codes and a randomly-
arranged encrypted version of each code sheet, on the bulletin board.

2. the code-sheet authority randomly reshuffles and then prints the code sheets.
(The shuffling and decrypting can be distributed using standard techniques,
but the printing is more difficult to distribute.)

3. the PET authorities share the key with which the Vote Codes are encrypted.
They perform distributed PET tests on the bulletin board to register each
vote.

4. the Output shuffle authorities transform the votes into the correct order
for tallying and the preference codes into the correct order for returning to
voters.

5. the decryption authorities share the key for decrypting the candidate names
in each vote.

Each row corresponds to one code sheet, i.e. one vote. To avoid cluttering the
text we drop the indices that indicate the row, and just describe the set up
w.r.t. a typical row. Let ci be the i-th candidate, and V Ci the i-th vote code.
The ballot-construction authorities begin by constructing, for each vote, a table
similar to the P -table described above and displaying on the BB. Alongside each
encrypted vote code we add the encryption of the corresponding candidate. We
thus have a table in which each row comprises:

1. A list VC of encrypted (ci, V Ci) pairs in a canonical order.
Now, for each row, the pairs are subjected to a sequence of re-encryption

shuffles to yield:
2. A re-encrypted version of VC with each row shuffled by a secret random

order ρ.

ρ(VC) = ([cρ−1(1)], [V Cρ−1(1)]), ([cρ−1(2)], [V Cρ−1(2)]), . . . , ([cρ−1(n)], [V Cρ−1(n)])

This table we will again refer to as the Q-table.
Each row of this table has to be decrypted and the information printed

on a code sheet. Note that the candidates will be printed in the in the order
given, i.e. according to the ρ permutation encoded in this sequence.

3. A table PC of encrypted preference codes in order is also posted to the
Bulletin Board. Each row will correspond to a code sheet and will have the
form:

PC = [PC1], . . . , [PCn]

414 J. Heather, P.Y.A. Ryan, and V. Teague

The VC∗-Table. Now we generate the S-table that will serve to register the
votes. We need to introduce further permutations to the rows in order to ensure
that the scheme is receipt free. First, in order to keep track of this permutation,
we add to the ith pair an encryption of i. This each row is a list of triples of the
form:

VC′ = ([1], [cρ−1(1)], [V Cρ−1(1)]), . . . , ([n], [cρ−1(n)], [V Cρ−1(n)])

Another set of authorities called the Code Sheet authorities then perform further
shuffles within each row of the Vote Codes, by another secret, parallel, random
permutation σi, where i indexes the row in question. The protocol of [RT10] is
used here to ensure that the triples are preserved in these shuffles. The output
of this is posted to the Bulletin Board.

The result of this will be a new table, VC∗, in which each row has the form:

VC∗ = ([σ−1(1)], [cρ−1◦σ−1(1)], [V Cρ−1◦σ−1(1)]), . . . , ([σ
−1(n)], [cρ−1◦σ−1(n)], [V Cρ−1◦σ−1(n)])

This table will be posted to the Bulletin Board and used to register the votes.
Notice that the order in which the candidates, and the vote codes, appear is
different to that that appears on the code sheets, in fact differs by the secret σ
permutation. This is crucial to ensure that the scheme is receipt-free.

The authorities are also required to show their workings on the Bulletin Board
to allow for auditing.

Ack computation and return. When a vote V arrives with the Trustees
(from the VS) it’s an encrypted list of vote codes in preference order:

V = ([V Cπ−1(1)], . . . , [V Cπ−1(n)])

For convenience we will assume throughout this section that each vote is a com-
plete list of preferences (that is, it includes every candidate). However, partial
lists could easily be accommodated, though the tallying would reveal how many
preferences had been expressed. This issue is discussed further in Section 4.

The authorities construct the tallyable vote T and the acknowledgement list
A on the BB as follows:

1. The PET authorities perform PET tests comparing the terms of the vote V
with the list VC∗ from the bulletin board, until they have found all possible
matches.12 When [Vj] matches [VC∗]i, this means that π−1(j) = ρ−1◦σ−1(i),
so candidate [cρ−1◦σ−1(i)] gets preference j. The following transformations
can be perfomed (and verified) by anyone:

1 Note that σ ◦ ρ is secret, i.e. not the permutation that’s printed on the code sheets,

so this does not reveal anything about the vote. If a party knows σ ◦ ρ, or knows

σ and has the code sheet, they can learn the vote from this step, which is a good

reason to have ρ and σ generated by a series of shufflers.
2 This could require n2 PETs.

Pretty Good Democracy for More Expressive Voting Schemes 415

(a) Vote Updating: Put [cρ−1◦σ−1(i)] into the vote T at preference j. (For
example, T could just be a list of candidate names in order, in which
case all we do is add [cρ−1◦σ−1(i)] into the list T in the j-th place.) Since
[cρ−1◦σ−1(i)] is still encrypted, nobody knows which candidate actually
received preference j.

(b) Ack code updating: To construct the correct acknowledgement code,
extract [σ−1(i)] from [VC∗

i] and append to A the term

([σ−1(i)], [PCj])

2. Once all the terms in the row have been registered and ranked, we have a
sequence of pairs of the form:

([σ−1(i)], [PCj]), for i = 1, . . . , n

in which π−1(j) = ρ−1 ◦ σ−1(i). Now the preference codes must be arranged
in the correct order, corresponding to the order shown on the code sheet. We
want to do this in a way that does not result in the authorities, or anyone,
learning the σ shuffle. We can accomplish this as follows: the output shuffle
authorities each perform a parallel shuffle on the sequence, preserving the
pairings. Once this is done, a threshold set of the decryption authorities
decrypt all the terms. The preference codes are now arranged into the order
of the first terms. It is clear by construction that this puts the preference
codes into the candidate order of the code sheet.

Tallying. Since the votes are simply lists of encrypted candidate names in pref-
erence order, there are many possible tallying options depending on the voting
scheme and on the degree of privacy required. Any of the secure tallying proto-
cols for STV/IRV or Borda mentioned in the introduction could be implemented
here.

3.4 Proofs of Correctness

Basic proof of correctness. It should already be clear, but is important to
state, that when everyone follows the protocol the votes are cast and counted as
the voter intended.

Lemma 1. When all authorities follow the protocol correctly, the vote registered
is the same as the permutation applied by the voter to the Vote Codes, which is
also the same as the vote implied by the acknowledging preference codes.

Proof. By construction. ��

Proof of security against a cheating client. A malicious client can not
undetectably cast a modified vote. Specifically, it cannot swap two candidates
or preferences unless it knows the position of the corresponding candidates on

416 J. Heather, P.Y.A. Ryan, and V. Teague

the code sheet, or the meanings of the relevant preference codes. Here we restate
the claim and sketch a proof. Of course, if there are only two candidates then
a swap can indeed be performed undetectably. The probability of successfully
guessing the candidates positions is 1 in

(
n
2

)
.

Claim. A cheating client or VS (who doesn’t know the codes) can swap two
preferences undetectably only if it knows which two positions on the code sheet
they correspond to.

Proof. Starting assumptions:

1. Each ballot ID gets only one registered vote and ack code list.
2. The VS can derive no information from the Ack Codes.

In the worst case the client knows exactly what vote the voter wants to cast.
We will assume this worst-case adversary and show that it can rearrange the
preference acks correctly only if it knows the corresponding positions on the
ballot.

Suppose the voter intends to cast vote V , a permutation of the candidate
names. The cheating client swaps preferences i and j, which means swapping
the i-th and j-th items in the list of Vote Codes (or candidate names), and
submits the modified vote instead. It receives from the trustees a (cleartext) list
of preference codes P arranged in the order the candidates appear on the code
sheet. This list differs from what the voter is expecting only in that the codes
for the i-th and j-th preferences must be swapped. Since the cheating VS knows
which candidate names these correspond to, swapping them correctly implies
knowing which (unordered) two locations on the code sheet they occupy. ��

Proof of privacy. We wish to show that the protocol is receipt-free. Obvi-
ously only computational privacy is achieved, because both the vote codes and
the ordered candidate names are shown, encrypted, on the bulletin board (that,
is it does not achieve “everlasting privacy”). Equally obviously, our protocol is
not receipt-free against a coercer who can observe both the (properly authen-
ticated) code sheet and also the voter’s communications with the Vote Server.
We show that the protocol is receipt free if either the code sheet or the voter’s
communications with the VS remain secret.

We prove receipt freeness according to the definition ofMoran and Naor [MN06].
The basic idea is that the voter, when requested to vote in a certain way by the
coercer, should have a “coercion resistance” strategy which allows them to vote in
the way they wished while providing a view to the coercer that is indistinguishable
from obedience.

The protocol presented here goes just up to the point of having a list of
encrypted votes on the bulletin board, and hence is not supposed to reveal
any information, so we can prove directly that the coercion resistance strategy
produces a coercer view indistinguishable from obedience. (Moran and Naor’s
definition must be more complex to deal with the case that the coercer learns
useful information from the public tally itself, which isn’t relevant here.)

Pretty Good Democracy for More Expressive Voting Schemes 417

Whether the subsequent tallying step preserves receipt freeness is a sepa-
rate question, which is outside the scope of this paper. As described in the
Introduction, expressive voting schemes can be vulnerable to pattern-matching
(“Italian”) attacks, and the choice of tallying protocol should protect against
this.

The weakest point for maintaining voter privacy is in the printing and distri-
bution of the code sheets. If we assume that that phase doesn’t leak information,
the distributed ballot construction implies that ρ and σ remain secret if:

1. At least one of the ballot construction authorities keeps their component
permutation secret, and

2. At least one of the code sheet authorities keeps their component permutation
secret, and

3. At least one of the output shuffle authorities keeps their component permu-
tation secret, and

4. Fewer than a threshold number of decryption trustees collude.

We will refer to this list as the Authority secrecy assumptions.
The following theorem shows that an adversary who is ignorant of either the

code sheet or the voter’s communications with the VS learns nothing (more)
about the vote from observing the bulletin board.

Theorem 1. Given the authority secrecy assumptions above, Protocol B is receipt-
free [MN06] against a coercer who either

1. does not observe the code sheet, or
2. does not observe the voter’s communications with the Vote Server.

Proof. The proof is in Appendix A. The main idea is that the voter can lie freely
to the coercer about either ρ (if the coercer does not see the code sheet) or ρ ◦ σ
(if the coercer does not observe communications with the VS) and hence produce
a plausible claim to have cast any vote with the same number of candidates as
the one they truly cast.

4 Protocol C: Two-Dimensional Tables

In this section each voter receives a two-dimensional table. Each row represents
a candidate, each column a number. The numbers could be ranks for STV,
Borda or IRV votes, as shown in Figure 6, or they could be scores for Range
or Approval voting, as shown in Figure 7. Compared with Protocol B, this has
more complicated vote casting but much simpler Ack checking.

For each candidate, the voter selects the code in the appropriate column, which
the client then sends to the vote server. As in PGD 1.0, each voter receives a
single ack, and the security of the scheme is dependent upon the secrecy of the
Vote Codes and Ack code.

418 J. Heather, P.Y.A. Ryan, and V. Teague

Candidate 1st 2nd 3rd 4th 5th

Red 37 90 12 08 72

Green 14 46 88 49 09

Chequered 95 10 21 83 20

Fuzzy 33 99 21 73 87

Cross 39 25 31 11 92

Ack Code: 8243

Ballot ID: 3884092844

Fig. 6. Example of Candidate and Preference Codes

Candidate Approve Disapprove

Red 37 72

Green 49 09

Chequered 95 21

Fuzzy 73 87

Cross 25 31

Ack Code: 8243

Ballot ID: 3884092844

Fig. 7. Example of Candidate and Approval/Disapproval Codes

4.1 Details of Ballot Construction, Ack Return and Tallying

Ballot construction Ballot construction and ack return are much simpler than
the corresponding construction in Protocol C. On the code sheets and on the
Bulletin Board, the candidates can remain in canonical order throughout. For
each ballot, for each candidate, the authorities post to the Bulletin Board

– an encrypted Ack Code, and
– for each canonically ordered candidate, a list of encrypted (Vote Code, num-

ber) pairs in a secret, random order.

There are two slightly different versions depending on the kind of voting.

– For Range or Approval Voting, each vote code list is shuffled independently.
This makes it impossible to tell how many candidates received the same
number.

– for STV, IRV, or Borda, the same shuffle is applied to the code list of every
candidate on the same ballot. This makes it easy to check the validity of
each vote: anything with at most one PET match in each column is valid,
because it has no repeated preferences.3

In either case, the table should be printed on the code sheet in canonical order,
while the order(s) on the bulletin board remain secret.
3 We are assuming here that votes are valid if they skip preferences, but not if they

repeat a preference. If another rule were applied then an appropriate validity checking

step would have to be added later.

Pretty Good Democracy for More Expressive Voting Schemes 419

Tallying. Again, Plaintext Equivalence Tests are used to match each Voter’s
encrypted Vote Codes with those on the Bulletin Board. When the submitted
Vote Code matches (V Cij ,numberj), this implies that candidate i (who is known
from the canonical order) “gets” number number j (which is still encrypted). The
correct interpretation of this depends on the voting scheme.

Approval or Range Voting, or Borda Count. For voting schemes that simply
accumulate a score for each candidate, the tallying is simple. Using an encryption
scheme with homomorphic addition, numberj can simply be added to candidate
i’s total without being decrypted. Of course the scores have to be set up correctly
in advance, with, for example, 1 and 0 for approval and disapproval respectively
in AV, and n− j for the j-th preference in Borda. This is straightforward.

Lists of preferences: STV or IRV. If the straightforward PET matching is done
on the bulletin board, it reveals how many preferences each voter expressed.
This protects against a cheating client or VS who submits only a subset of the
complete preference list, but unfortunately it also violates each voter’s privacy
to some extent. In many instances, this would be a serious problem because it
could allow a coercer to demand that a voter restrict the number of preferences
they expressed. However, in the case where everyone must list the same number
of preferences, all valid votes would be indistinguishable. This is fairly common
in Australia, where often a permuation has to be complete to be valid, and it
also occurs in the United States, where IRV with (typically) three compulsory
preferences is sometimes used.

Tallying for IRV or STV is complex. So far, for each vote, we have produced a
list of candidate names (in canonical order) with their corresponding (encrypted)
rank. There are (at least) two possible options:

– Shuffle all the votes in this form and then decrypt them at the end. This
would give the correct answer but possibly expose the voters to pattern-
matching attacks (a.k.a. “Italian” Attacks) as described by Heather [Hea07]
(and others).

– Apply a privacy-preserving STV or IRV tallying protocol [BMN+09], [Hea07],
[WB09], possibly with a preprocessing step to deal with votes that skip some
preferences.

4.2 Proofs of Correctness for Protocol C

This protocol is considerably simpler than Protocol B, which is reflected in the
relative simplicity of the assumptions and proofs.

Basic proof of correctness. Again, when everyone follows the protocol the
votes are cast and counted as the voter intended.

Lemma 2. When all authorities follow Protocol C correctly, the vote registered
corresponds to the rows and columns chosen on the code sheet.

Proof. By construction. ��

420 J. Heather, P.Y.A. Ryan, and V. Teague

Proof of security against a cheating client. We would like to argue that
a cheating client or VS cannot alter a vote undetectably, but it is important to
clarify “undetectably.” So far in this paper the voter has been able to detect vote
manipulation by the absence of the expected ack code(s). The same will be true
here, unless the cheating client or VS submits a subset of the (V Cij ,numberj

pairs, which is detectable only if the voter checks the bulletin board (presumably
via an independent device). As explained above, this is not a problem in schemes
in which the number of pairs is specified, such as AV with compulsory explicit
approval or disapproval of each candidate, or IRV with exactly three preferences.

Claim. A cheating client or VS (who doesn’t know the codes) cannot add valid
(candidate, number) pairs.

Proof. Achieving a successful PET test requires either knowledge of the relevant
code or collusion of a threshold number of decryption authorities. ��
Claim. A cheating client or VS (who doesn’t know the codes) cannot remove
(candidate, number) pairs without this being observable on the bulletin board.

Proof. The bulletin board reveals how many pairs were registered for each vote.
��

Proof of privacy. As in Section 3.4 we wish to show that the data on the
bulletin board preserve (computational) vote privacy. Again we assume that
that code sheet printing phase doesn’t leak information, that at least one of the
ballot construction authorities keeps their component permutations secret, and
that fewer than a threshold number of decryption trustees collude.

Theorem 2. Protocol C is receipt-free [MN06] against a coercer who either

1. does not observe the code sheet, or
2. does not observe the voter’s communications with the Vote Server.

Proof. Omitted, but very similar to that of Theorem 1.

5 Discussion

These protocols are designed so that even a completely corrupted device is unable
to alter a voter’s choices undetectably, assuming that the voter follows the proto-
col perfectly. Since the voter probably votes infrequently, and trusts the computer
for voting instructions, the assumption of perfect voter behaviour might be easy
to undermine. For example, a virus that presented an appealing window with
instructions like, “please enter the candidate names and vote codes in the or-
der they appear on your code sheet”, (for Protocol C), or “please enter all the
numbers in both tables”, (for Protocol B) would probably succeed with many
voters. Given that information it would then be able to cast whatever vote it
chose and manipulate the returning acknowledgement codes correctly to avoid
detection. Although attacks of this kind also work on other versions of code
voting, our protocols are considerably more complicated and have more subtle
privacy assumptions than the others, and hence are probably more vulnerable.

Pretty Good Democracy for More Expressive Voting Schemes 421

References

[Adi08] Adida, B.: Helios: Web-based Open-Audit Voting (2008)

[BMN+09] Benaloh, J., Moran, T., Naish, L., Ramchen, K., Teague, V.: Shuffle-Sum:

Coercion-Resistant Verifiable Tallying for STV Voting. In: IEEE Trans-

actions on Information Forensics and Security (2009)

[Cha01] Chaum, D.: SureVote: Technical Overview. In: Proceedings of the Work-

shop on Trustworthy Elections. In: WOTE 2001 (2001)

[CM05] Clarkson, M.R., Myers, A.C.: Coercion-Resistant Remote Voting using

Decryption Mixes. In: Workshop on Frontiers in Electronic Elections. In:

FEE 2005 (2005)

[FS01] Furukawa, J., Sako, K.: An Efficient Scheme for Proving a Shuffle. In:

Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 368–387. Springer,

Heidelberg (2001)

[Gro03] Groth, J.: A Verifiable Secret Shuffle of Homomorphic Encryptions. In:

Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 145–160. Springer,

Heidelberg (2002), Later Version at

www.brics.dk/~jg/JournalShuffle2.ps

[Hea07] Heather, J.A.: Implementing STV Securely in Prêt à Voter. In: Pro-

ceedings of the 20th IEEE Computer Security Foundations Symposium,

Venice, Italy, pp. 157–169 (July 2007)

[JCJ05] Juels, A., Catalano, D., Jakobsson, M.: Coercion-resistant Electronic Elec-

tions. In: Proceedings of the 2005 ACM Workshop on Privacy in the Elec-

tronic Society, vol. 11 (2005)

[JJ00] Jakobsson, M., Juels, A.: Mix and Match: Secure Function Evaluation via

Ciphertexts. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976,

p. 162. Springer, Heidelberg (2000)

[JJR02] Jakobsson, M., Juels, A., Rivest, R.: Making Mix Nets Robust for Elec-

tronic Voting by Randomized Partial Checking. In: USENIX Security

Symposium, pp. 339–353 (2002)

[MN06] Moran, T., Naor, M.: Receipt-free universally-verifiable voting with ever-

lasting privacy. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp.

373–392. Springer, Heidelberg (2006)

[Nef01] Andrew Neff, C.: A Verifiable Secret Shuffle and its Application to E-

Voting. In: Proceedings of the 8th ACM Conference on Computer and

Communications Security (CCS 2001), pp. 116–125. ACM Press, New

York (2001)

[RT09] Ryan, P.Y.A., Teague, V.: Pretty Good Democracy. In: Proceedings of

the 17th International Workshop on Security Protocols, Cambridge, UK,

April 2009. LNCS. Springer, Heidelberg (2009)

[RT10] Ramchen, K., Teague, V.: Parallel shuffling and its application to Prêt à

Voter. In: USENIX/ACCURATE Electronic Voting Technology Workshop

(EVT 2010), Washington, DC (August 2010)

[TH08] Ting, P.-Y., Huang, X.-W.: Distributed Paillier plaintext equivalence test.

International Journal of Network Security 6(3), 258–264 (2008)

[WB09] Wen, R., Buckland, R.: Minimum disclosure counting for the alternative

vote. In: Ryan, P.Y.A., Schoenmakers, B. (eds.) VOTE-ID 2009. LNCS,

vol. 5767, pp. 122–140. Springer, Heidelberg (2009)

www.brics.dk/~jg/JournalShuffle2.ps

422 J. Heather, P.Y.A. Ryan, and V. Teague

A Proof of Theorem 1

Theorem 1. Given the authority secrecy assumptions defined in Section 3.4,
the protocol is receipt-free [MN06] against a coercer who either

1. does not observe the order of candidates on the code sheet, or
2. does not observe the voter’s communications with the Vote Server.

Proof. This is really two separate results, one for each of conditions 1 and 2.
The proofs are in the following two lemmas.

Lemma 3. Suppose a voter wishes to cast vote v (a full permutation of the
candidates) but the coercer instead demands π (also a full permutation). Suppose
also that the coercer observes the voter’s communication with the Vote Server,
but no information about the order of candidates on the code sheet. Then there
exists a coercion-resistance strategy CR for the voter such that the coercer’s view
when the voter obeys (i.e. votes π) is indistinguishable from the coercer’s view
when the voter disobeys (i.e. votes v) and runs CR.

Proof. The coercer’s view consists of any communication between herself and
the voter before the vote, the complete list of messages between the voter and
the VS, and the Bulletin Board transcript.

The voter’s coercion resistance strategy is to vote v and tell the coercer that
he voted π. Then the order of the preference acks, assuming vote π, is consistent
with exactly one code sheet permutation ρ′, which the voter can easily compute
and claim to the coercer. Also the pattern of PET matches in the bulletin-board
transcript is consistent with exactly one registration permutation σ′.

Distinguishing the claimed permutations ρ′ and σ′ from the true ρ and σ
reduces to gaining information from the shuffles, which we are assuming to be
impossible without sufficient authorities misbehaving. ��

Lemma 4. Suppose a voter wishes to cast vote v (a full permutation of the
candidates) but the coercer instead demands π (also a full permutation). Suppose
also that the coercer observes the voter’s code sheet, but that the voter has an
untappable channel to the VS. Then there exists a coercion-resistance strategy
CR for the voter such that the coercer’s view when the voter obeys (i.e. votes π)
is indistinguishable from the coercer’s view when the voter disobeys (i.e. votes v)
and runs CR.

Proof. The coercer’s view consists of any communication between herself and
the voter before the vote, all the information on the code sheet, and the Bulletin
Board transcript.

The voter’s coercion resistance strategy CR is to vote v and then tell the
coercer that he voted π and received acks consistent with that.

The new information revealed on the bulletin board is the pattern of which
elements of (σ ◦ρ)(VC) match which elements of the vote V . The coercer, having
seen the code sheet, knows ρ. Given this information, the voter’s claim to have
voted π is consistent with exactly one registration permutation. (Specifically

Pretty Good Democracy for More Expressive Voting Schemes 423

σ′ = σ◦ρ◦v−1◦π◦ρ−1, which the voter does not have to compute). Distinguishing
voter obedience from the CR strategy hence reduces to distinguishing σ from
σ′ based on the shuffles in the construction phase, or distinguishing the true
vote or preference return order from the suffled ones in the tally phase, which is
infeasible without sufficient authorities misbehaving. ��

Efficient Multi-dimensional Key Management in
Broadcast Services�

Marina Blanton1 and Keith B. Frikken2

1 Department of Computer Science and Engineering, University of Notre Dame
mblanton@nd.edu

2 Computer Science and Software Engineering, Miami University
frikkekb@muohio.edu

Abstract. The prevalent nature of Internet makes it a well suitable medium for
many new types of services such as location-based services and streaming con-
tent. Subscribers to such services normally receive encrypted content and can
obtain access to it if they possess the corresponding decryption key. Furthermore,
in location-based services a subscription is normally granted to a geographic area
specified by user-specific coordinates (x1, x2), (y1, y2) and custom time interval
(t1, t2). Similarly, subscriptions to other services also involve multiple dimen-
sions. The problem of key management is then to assign keys to each point on
a D-dimensional grid and to subscribers in such a way as to permit all users to
obtain access only to the resources in their subscriptions and minimize the as-
sociated overhead. In this work, we develop a novel key management scheme
for multi-dimensional subscriptions that both outperforms existing solutions and
supports a richer set of access privileges than existing schemes. Our scheme is
provably secure under the Decision Linear Diffie-Hellman Assumption.

1 Introduction

The ubiquity of digital communication today allows it to be easily used for a variety of
broadcast or streaming services. For instance, location-based services (LBS) have be-
come widely spread and deployed; examples of such services include LOC-AID [2] and
Garmin [1]. In these systems, a user typically can subscribe to a geo-spatial area for a
specified duration of time and is able to query the system for spatial-temporal informa-
tion such as traffic conditions, points of interest near a particular geographic location,
or receive periodic updates such as the weather forecast. There is obviously a need to
ensure that only legitimate subscribers can obtain access to the information within their
subscription rights. Similarly, geographic information systems (GIS) collect and store
large amounts of geo-spatial data such as satellite images, and there is a need to protect
this data from unauthorized access. In particular, the importance of fine-grained access
control mechanisms that would permit precise release of geo-spatial information was
discussed in the NRC’s IT roadmap to geo-spatial future [17] as a major challenge.

In such systems, a user typically subscribes for a fee to an area bounded by coordi-
nates (x1, y1) and (x2, y2) for a specific time interval [t1, t2]. A user is then allowed to

� Portions of this work were sponsored by AFOSR grant AFOSR-FA9550-09-1-0223 and NSF
grant CNS-0915843.

D. Gritzalis, B. Preneel, and M. Theoharidou (Eds.): ESORICS 2010, LNCS 6345, pp. 424–440, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Efficient Multi-dimensional Key Management in Broadcast Services 425

access the resource or broadcast associated with the coordinate (x, y) at time t if and
only if x1 ≤ x ≤ x2, y1 ≤ y ≤ y2, and t1 ≤ t ≤ t2. The space is modeled as a
two-dimensional grid of size T1 ×T2 cells. Time is also partitioned into small slots and
becomes the third dimension of the grid. More generally, a grid of any dimension can
be specified and used.

A typical solution in broadcast services is to encrypt content and broadcast the en-
crypted content. The access control is then enforced by distributing certain secret keys
to subscribers and ensuring that the decryption key for a broadcasted resource is avail-
able only to the parties who are authorized to access the resource. This setup has several
advantages including the ability to outsource the storage and distribution of encrypted
content to a third-party provider, which is important in GIS systems or location-based
services that deal with large volumes of data. Another advantage is that users can also
remain anonymous while accessing an (authorized) resource.

Access control enforcement is therefore implemented via key management, which
is a well studied topic. With this enforcement mechanism, the service provider assigns
keys to the resources (in our context, all resources associated with a single position in a
multi-dimensional space are assigned the same key). When a user subscribes to a set of
resources in the system (i.e., a sub-grid in multi-dimensional space), she obtains secret
information that will allow her to obtain access to the subscribed resources. This secret
information either can directly contain decryption keys for all resources to which the
user is entitled to have access or can permit derivation of all such keys. The challenge in
designing such solutions is in ensuring that the access control policy is enforced while
achieving the best possible performance. Therefore, the overhead of such solutions is
measured in terms of the size of user secret keys, work necessary to derive a key, amount
of additional information the service provider must maintain, etc.

While key management for dynamic groups or hierarchical systems (such as RBAC)
is well-studied (see Section 2), solutions for geo-spatial systems and higher dimensions
appeared only in the recent years [5,20,24]. In general, solutions that can be applied to a
space of an arbitrary dimensionD are desirable as they will allow any service or system
to be used within this framework. As an example of an application that benefits from a
key management scheme that supports any number of dimensions, consider streaming
television. When a user subscribes to television, the access policy could be specified
over a potentially large number of dimensions such as (i) content being accessed (at
the level of station, show, or episode), (ii) quality of channel (e.g, data quality and
commercial content), (iii) time of access (e.g., hour, day, month, and year), (iv) location
of user (e.g., state and zipcode). Unlike subscribing to a rectangular region in location-
based services, this subscription may not consist of a range over the dimensions; that
is, a user could subscribe to multiple stations. Furthermore, more flexible subscriptions
than continuous range in all dimensions can be desirable for location-based services as
well: for example, there might be need to exclude certain geographic regions such as
military installations or critical infrastructures from subscriptions.

Our contributions. We propose a novel key management scheme for multi-dimensional
grids with attractive performance characteristics. In particular, it has the following prop-
erties, which none of the existing schemes can simultaneously achieve:

426 M. Blanton and K.B. Frikken

– Users can subscribe to an arbitrary set of points or intervals in each dimension, i.e.,
the subscription region does not have to be contiguous.

– The amount of user secret storage and the amount of work a user must perform to
derive a key do not exponentially depend on the number of dimensions D; both
storage and work are linear in D. This means that the scheme can be efficiently
realized for applications where the number of dimensions is high without burdening
the user; this substantially improves the performance compared to other schemes.

– Users do not need to access any external (publicly available) data for the purposes
of aiding key derivation; broadcast content is all a user receives.

– The service provider needs to store only a constant amount of information associ-
ated with the scheme.

A more detailed comparison with prior literature is provided in the next section. We
are able to achieve this performance by issuing sub-keys to users for each dimension
separately and using a mechanism for tying the sub-keys of each user together to be able
to maintain security (i.e., to achieve resilience against collusion). Our scheme enjoys
provable security under the standard Decision Linear assumption.

2 Related Work

Related work on key management can be divided into two lines of research that go under
the names of key management for access hierarchies and group key management. We
give a brief overview of each of them next.

In hierarchical access control schemes, all users are divided into a set of access
classes, which are organized in a hierarchy. Resources associated with each access class
are encrypted with the corresponding encryption key. A user with access to a specific
class is allowed to access resources at her own class and all descendant classes in the
hierarchy. In order to lower overhead of such schemes, public information that helps in
the key derivation process is used. Users from different classes use different parts of the
public information data structure to derive necessary keys efficiently. Performance of
such schemes is measured in terms of the number of keys a user stores, the size of pub-
lic information, work needed to derive a key, and overhead associated with user joins
and leaves.

The formal definitions of security in this context were put forward by Atallah et
al. [7,3] (the overall literature is very extensive, see, e.g., [7] for an overview), and, in
particular, that work defined the notion of key recovery and key indistinguishability for
key management schemes. Consequently, the work of Ateniese et al. [8] extended the
definitions to time-based key management for a hierarchy of access classes, where time
is partitioned into small slots and a user obtains access to a certain class in the hierar-
chy (and consequently to all descendant classes) for a certain contiguous interval of time
which may differ for each user.1 The authors also showed that the security notions in the
presence of static and adaptive adversaries are (polynomial time) equivalent for time-
based schemes, which means that showing security against static adversaries is suffi-
cient for such schemes. In this extended framework, key derivation is now performed

1 This problem was studied prior to Ateniese et al. [8] (see, e.g., [21,15,22]), but earlier schemes
lack formal proofs of security and some of them are known to have security flaws.

Efficient Multi-dimensional Key Management in Broadcast Services 427

for the purposes of hierarchical access control and time-based (i.e., one-dimensional)
access control. Other work on time-based key management for user hierarchies includes
[6,12] that improve performance of the initial solutions in [4], lowering the overhead
associated with the schemes. These latter publications give a mechanism for perform-
ing time-based key management that can be combined with any suitable hierarchical
key management scheme, i.e., the mechanisms for achieving two goals are decoupled.
More recently, techniques for higher dimensions were proposed as well. In particu-
lar, [5] gives an efficient solution for geo-spatial (i.e., two-dimensional) access control,
which is further improved and extended to a higher number of dimensions in [24].

Literature on group key management is also concerned with the problem of key as-
signment to users and resources. No relationship between user classes or groups is as-
sumed (i.e., key management is performed for each group independently), and instead
the need to perform key derivation comes only from the dynamic nature of groups,
where a user can join and leave a group at any time. The key difference between this
line of work and work on hierarchical key management is (i) absence of relationship be-
tween the groups, and (ii) inability to use public storage. In particular, the use of public
information greatly aids the performance of hierarchical schemes (including extensions
to multiple dimensions) resulting in low overheads in terms of the number of user keys
and key derivation time. In group key management protocols, it is assumed that some
content is broadcast to the users, and the users can derive the necessary decryption key
(using the broadcast and stored keys) if and only if they are authorized to access the
content.

This problem is well studied with many solutions available (see, e.g., [14,13,23,18]).
Srivatsa et al. [20] were first to extend the framework to multiple dimensions, to en-
able such schemes to be used with location-based services such as spatial-temporal
authorizations and subscription services of any dimensionality in general. This work
provides a solution which is significantly more efficient than the straightforward use of
prior group key management protocols for a single group, and supports access to a con-
tiguous interval in each dimension. Its user overhead (i.e., the number of keys and key
derivation time), however, is exponential in the number of dimensions, which makes
it less suitable for applications where the number of dimensions is large. Our solu-
tion simultaneously removes exponential dependence on the number of dimensions (all
overhead is at most linear in the number of dimensions) and improves expressiveness
of the scheme by permitting user access to any subset of slots in each dimension.

We summarize performance of other solutions and our scheme in Table 1. In the
table,D denotes the number of dimensions,Xi denotes the set of user subscription units
in dimension i, where |Xi| is the size of the set, and Ti denotes the maximum number of
units in dimension i. The expressiveness column indicates whether a scheme supports
only contiguous intervals in each dimension (in which case Xi can be specified as a
range [a, b] for a ≤ b) or any subset of units in each dimension from the available range
[1, Ti]. The communication overhead column indicates the amount of data that must be
made available to permit key derivation for all authorized users when encrypted content
for to a single point in the D-dimensional space is broadcast. That is, the solution of
Yuan-Atallah uses a public data structure of the specified size that allows any user to
efficiently derive decryption keys for any subscribed point in the D-dimensional space,

428 M. Blanton and K.B. Frikken

Table 1. Comparison with prior work

Scheme User’s keys Key derivation Comm. overhead Expressiveness

Yuan- O(1) O(1) O(
∏D

i=1 Ti· contiguous
Atallah [24] (log∗ log∗(

∏D
i=1 Ti))

D) interval
Srivatsa O(1

D
(2D−1· O(1

D
(2D· – contiguous

et al. [20]
∑D

i=1 log |Xi|)) ∑D
i=1 log |Xi|)) interval

Our scheme O(
∑D

i=1 |Xi|) O(D) O(D) any subset

Table 2. Performance of multi-dimensional query over encrypted data schemes

Scheme Public-key size Enc. cost Ciphertext size Dec. key size Dec. cost

Boneh-Waters [11] O(D · T) O(D · T) O(D · T) O(D) O(D)

Shi et al. [19] O(D log T) O(D log T) O(D log T) O(D log T) O((log T)D)

but the solution is not well suited for uni-directional broadcast services since different
users will need to use different parts of the public data structure. In our case, each
encrypted transmission can be easily prepended with D data items which will permit
all authorized users to obtain access to the content.

Another direction of research related to this work is queries over encrypted data. In
particular, we mention the work of Shi et al. [19] on multi-dimensional range queries
and the work of Boneh and Waters [11] that permits multi-dimensional subset and range
queries. Since these schemes do not use key derivation (and therefore have different
characteristics), but could potentially be used in our context, we provide their perfor-
mance separately in Table 2. This table uses T as the number of points in each dimen-
sion, i.e., T = T1 = . . . = TD. It is clear that in our context transmitting ciphertext of
size O(D · T) (as in [11]) or having decryption cost of O((log T)D) operations (as in
[19]) is not acceptable. The higher computational cost in these schemes is dictated by
stronger privacy properties (i.e., the inability to determine attributes associated with a
ciphertext), which is not needed in our context.

Finally, we mention attribute-based encryption (ABE) as a potential realization of the
functionality we seek. With traditional ABE, we will be able to form a ciphertext withD
attributes which corresponds to a cell in the multi-dimensional grid. A client who wishes
to subscribe to items X = X1 × · · · ×XD will then have to store

∏D
i=1 |Xi| keys (i.e,

a key per cell of its subscription). Communication cost is O(D) and decryption cost is
alsoO(D). If we employ a hierarchical ABE, the efficiency can potentially be improved
through derivation, but the costs are still significant. If, for example, we use Boneh et
al. [9] hierarchical identity based encryption (HIBE), which has performance character-
istics among the best known for HIBE schemes in that the ciphertext size is independent
of the number of elements Ti in each dimension, permitting a user to subscribe to only
continuous intervals Xi in each dimension already leads to O(

∏D
i=1(log |Ti| log |Xi|))

private key storage, and supporting arbitrary Xi’s results in O(
∏D

i=1(|Xi| logTi)) key
material.2 In such schemes, the size of each decryption key depends on the height of

2 This can be somewhat decreased with longer ciphertexts (e.g., of size O(
∏D

i=1 log Ti)).

Efficient Multi-dimensional Key Management in Broadcast Services 429

the hierarchy, andO(
∏D

i=1 log |Xi|) (O(
∏D

i=1 |Xi|)) keys are needed to representX in
the case of contiguous intervals (resp., any subsets).

3 Model Description and Definitions

System Model. A service provider has a resource, which is associated with a point in
D-dimensional space. We denote the number of items/intervals in jth dimension, for
j = 1, . . ., D, by Tj . We will assume that the units are numbered 1 through Tj , i.e.,
lie in the interval [1, Tj]. Then access to a resource with coordinates (i1, i2, . . ., iD)
in D-dimensional space will be secured using a cryptographic key ki1,...,iD , such that
knowledge of the key will imply access to the resource.

Now suppose that a user U is authorized to have access to units X = X1 × X2

×· · ·×XD, where eachXj is an arbitrary subset of Tj units in dimension j (i.e., unlike
the prior work, the intervals in each dimension do not have to be contiguous). With such
access rights, U should receive or should be able to compute the keys ki1,...,iD , where
ij ∈ Xj for each j. We denote the private information that U receives by SX . Obviously,
storing

∏D
j=1 |Xj| keys at the user end is not always practical, and significantly more

efficient solutions are possible. A multi-dimensional key assignment (MDKA) scheme
assigns keys to the units in a multi-dimensional space and users, so that proper access
control is enforced in a correct and efficient manner. Such key generation is assumed
to be performed by the resource owner, but once a user is issued the keys, there is no
interaction with other entities. More formally, we define a MDKA scheme as follows:

Definition 1. Let T = T1 × T2 × · · · × TD define a D-dimensional space. A multi-
dimensional key assignment scheme consists of algorithms (Setup,Assign,Derive) s.t.:

Setup is a probabilistic algorithm, which, on input a security parameter 1κ and D-
dimensional grid T , outputs (i) a key ki1,...,iD for any (i1, . . ., iD) ∈ T ; (ii) secret
information sec associated with the system; and (iii) public information pub. Let
(K, sec, pub) denote the output of this algorithm, where K is the set of all keys.

Assign is a probabilistic algorithm, which, given specification of access rights X =
X1 × · · · ×XD ⊆ T and secret information sec, outputs private information SX .

Derive is a deterministic algorithm, which, on input access rightsX = X1×· · ·×XD,
a point (i1, . . ., iD) ∈ T , private information SX , and public information pub,
outputs key ki1,...,iD if (i1, . . ., iD) ∈ X and a special failure symbol ⊥ otherwise.
The correctness requirement is such that, for each set of access rights X ⊆ T ,
each point (i1, . . ., iD) ∈ X , each private information SX , each key ki1,...,iD ∈ K ,
and each public information pub that Setup(1κ, T) and Assign(X, sec) can output,
Pr[Derive(X, (i1, . . ., iD), SX , pub) = ki1,...,iD] = 1.

Note that we provide a general specification of such a scheme that can work under
different assumptions. As mentioned above, in our solution access to the entire public
information is not needed, and instead the key derivation algorithm needs access only
to the public information for one point in the D-dimensional space, the key of which is
being derived. We will denote public information for point (i1, . . ., iD) as pubi1,...,iD

,
and this is what will be needed for Derive. Also, it is possible that in some schemes all

430 M. Blanton and K.B. Frikken

values that the Assign algorithm outputs (i.e., SX for every X ⊆ T) can be produced
at the system initialization time (in which case Assign is deterministic), but it is still
desired to separate it from Setup.

Security Model. In prior literature on key management schemes, two security goals
have been defined [3]: security against key recovery, in which an adversary is unable
to compute a key to which it should not have access, and security with respect to key
indistinguishability, which means that an adversary is unable to learn any information
about a key to which it should not have access and thus cannot distinguish it from a
random string of the same length. The latter is obviously a stronger notion of secu-
rity. Also, the literature on one-dimensional (i.e., time-based) KA schemes (e.g., [8])
distinguishes between security in the presence of static adversaries and security in the
presence of adaptive adversaries. Then a static adversary is given a specific unit (i.e., a
D-dimensional point in our context) to attack and obtains access to all other keys that
do not allow it to access the challenge point. An adaptive adversary, on the other hand,
obtains oracle access to the Assign algorithm, can query user keys of its choice, choose
a challenge unit, and eventually output its response to the challenge.

In [8] it was shown that the security of key assignment schemes against a static
adversary is (polynomial-time) equivalent to the security against an adaptive adversary
for both security goals (key recovery and key indistinguishability), which on the surface
appears to enable us to consider only static adversaries. There is, however, a difference
between prior and our specifications of the key assignment algorithm in that we allow
it to be probabilistic. This, in particular, means that two users with exactly the same
privileges can obtain different secret information that allows them to access the same
resources. From the security point of view, this difference is crucial enough that equiva-
lence between security notions in presence of static and adaptive adversaries no longer
holds. That is, a static adversary obtains secret information corresponding to a minimal
number of users that ensures coverage of keys for all resources except its challenge,
while an adaptive adversary can query any number of keys for possibly the same or
overlapping access rights. Thus, there can be schemes that are secure if adversary ob-
tains only one set of key material, but insecure when an adversary has access to multiple
versions of the secret information for related access rights. Therefore, in the rest of this
work we will concentrate on adaptive adversaries only.

Throughout this work, we use notation a
R← A to mean that a is chosen uniformly

at random from the set A. A function ε(κ) is negligible if for every positive polynomial
p(·) and all sufficiently large κ, ε(κ) < 1

p(κ) .
Let A denote an adaptive adversary attacking the security of a MDKA scheme. A

obtains all public information and is given oracle access to Assign algorithm. In the first
stage of the attack, A can query Assign(sec, ·) and outputs its choice of challenge point
(i1, . . ., iD). In the second stage of the attack, A can further query its oracle and produce
its response. Let the set Q denote all queries that A makes to Assign. A can query
its oracle for any access rights X of its choice with the restriction that the challenge
point cannot be contained in X . This in particular does not prevent the adversary from
constructing queries that contain all of the ij’s from the challenge across several queries
(e.g., queryingX1 and X2 such that (i1, . . ., iD−1, i

′
D) ∈ X1 and (i′1, i2, . . ., iD) ∈ X2

is allowed if i′D
= iD and i′1
= i1), which means that the solution must be collusion

Efficient Multi-dimensional Key Management in Broadcast Services 431

resistant. Because the notion of key indistinguishability is strictly stronger than security
against key recovery, and it is a widely accepted security model, we concentrate on
security with respect to key indistinguishability only. Then after the first stage, A is
given either the real key corresponding to the challenge point or a random value and
must correctly guess which one was used. We require that the success probability of A
is negligible in κ. The key indistinguishability experiment is given below.

Experiment Expkey-ind
MDKA,A(1κ, T)

(K, sec, pub) ← Setup(1κ, T)
((i1, . . ., iD), state) ← AAssign(sec,·)

1 (1κ, T, pub)
b

R← {0, 1}
if b = 0 then α

R← {0, 1}|ki1,...,iD
| else α ← ki1,...,iD

b′ ← AAssign(sec,·)
2 (1κ, T, pub, (i1, . . ., iD), state, α)

if ∀X ∈ Q, (i1, . . ., iD)
∈ X and b = b′ then return 1 else return 0

Definition 2. Let T = T1 × · · · × TD be a D-dimensional grid of distinct units and
MDKA = (Setup,Assign,Derive) be a multi-dimensional key assignment scheme for T
and a security parameter κ. Then MDKA is secure with respect to key indistinguisha-
bility in the presence of an adaptive adversary A = (A1,A2) with oracle access to
Assign(sec, ·) in both stages of the attack if it satisfies the following properties:

– Completeness: A user, who is given private information SX for access rights to
X = X1 × · · · × XD ⊆ T , is able to compute the access key ki1,...,iD for each
(i1, . . ., iD) ∈ X using only her knowledge of SX and public information pub with
probability 1.

– Soundness: If we let the experiment Expkey-ind
MDKA,A be specified as above, the advan-

tage of A is defined as:

Advkey-ind
MDKA,A(1κ, T) =

∣∣∣Pr[Expkey-ind
MDKA,A(1κ, T) = 1] − 1

2

∣∣∣
We say that MDKA is sound with respect to key indistinguishability if for each
(i1, . . ., iD) ∈ T , for all sufficiently large κ, and every positive polynomial p(·),
Advkey-ind

MDKA,A(1κ, T) < 1/p(κ) for each polynomial-time adversary A.

In addition to the security requirements, an efficient MDKA scheme is evaluated by the
following criteria:

– The size of the secret data a user must store;
– The amount of computation for generation of an access key for the target resource;
– The amount of information the service provider must maintain.

Number-Theoretic Preliminaries. The notation G = 〈g〉 denotes that g generates the
group G. Our solution uses groups with pairings, and we review concepts underlying
such groups next.

Definition 3 (Bilinear map). A map e : G×G → GT is a bilinear map if the following
conditions hold:

– (Efficient) G and GT are groups of the same prime order q, and there exists an
efficient algorithm for computing e.

432 M. Blanton and K.B. Frikken

– (Bilinear) For all g ∈ G, and a, b ∈ Zq , e(ga, gb) = e(g, g)ab.
– (Non-degenerate) If g generates G, then e(g, g) generates GT .

Throughout this work, we assume that there is a setup algorithm Set that, on input
a security parameter 1κ, outputs the setup for group G = 〈g〉 of prime order q that
have a bilinear map e, and h = e(g, g) generates GT (which also has order q). That is,
(q,G,GT , e, g, h) ← Set(1κ).

The security of our scheme relies on Decision Linear Diffie-Hellman assumption
(DLIN). It was introduced in [10] and is currently widely used; we review it next.

Definition 4 (DLIN). The Decision Linear problem is, given generator g of G, ga,
gb, gac, gbd, and Z , where a, b, c, d ∈ Zq and Z ∈ G, output 1 if Z = gc+d and 0
otherwise. We say that the Decision Linear assumption holds in G if any probabilistic
polynomial time (in κ) adversary A has at most negligible probability in solving the
Decision Linear problem. More precisely,

AdvDLIN,A(1κ) = |Pr[A(G, q, g, ga, gb, gac, gbd, gc+d) = 1] −
−Pr[A(G, q, g, ga, gb, gac, gbd, gR) = 1]| ≤ ε(κ)

for some negligible function ε(·).

4 Description of the Scheme

Overview of the Scheme. Our solution was inspired by work on multi-dimensional
range queries [19], where a secret was used to tie multiple dimensions to achieve col-
lusion resilience in a different context. That high-level idea led us to develop a new
scheme which is more balanced than all existing key management solutions and im-
proves their performance. Furthermore, our approach supports a richer set of access
rights than prior key management work.

At a high level, in our scheme each point j in the ith dimension (for 1 ≤ i ≤ D and
1 ≤ j ≤ Ti) is assigned a secret si,j . There is also a system-wide secret w. When a
user subscribes to the resources in X = X1 × · · · ×XD, she is issued keys, or private
information SX , that are a function of both si,j’s in her access rights X and w. In
particular, w is first split into D random shares wi such that

∑D
i=1 wi = w. Then for

each point j in the ith dimension of user’s subscription (i.e., j ∈ Xi for 1 ≤ i ≤ D),
the user obtains a key ki,j computed u sing si,j and wi.

When a user receives a broadcast and wants to compute a key associated with a point
(i1, . . ., iD), she will be able to derive the encryption key for that point only if ij ∈ Xj

for each 1 ≤ j ≤ D. To compute the encryption key, the user retrieves the key kj,ij

from SX corresponding to each coordinate ij of the point (i1, . . ., iD) in dimension j.
The point (i1, . . ., iD) will also have publicly available information consisting ofD+1
values (which is included in the broadcast). The user combines elements of that public
data with her keys kj,ij dimension-wise to compute the necessary encryption key.

Detailed Description. We now present a complete description of the scheme. Security
analysis is given in Section 5, and performance analysis in Section 7.

Efficient Multi-dimensional Key Management in Broadcast Services 433

Setup : Run (q,G,GT , e, g, h) ← Set(1κ) to generate a group with pairings. Choose

the master secret w
R← Zq . For each dimension i, for each unit j in dimension i, choose

its secret si,j
R← Zq . For each D-dimensional point with coordinates (i1, i2, . . ., iD) ∈

T , generate public information by choosing r(i1,...,iD)
R← Zq and setting pubi1,...,iD

=
(gr(i1,...,iD) , gr(i1,...,iD)·s1,i1 , . . ., gr(i1,...,iD)·sD,iD). The key for point (i1, i2, . . ., iD) is
e(g, g)r(i1,...,iD)w for the value of r(i1,...,iD) used in producing the public data.

Assign : Suppose user U is entitled to access privileges to a D-dimensional structure
X = X1 × X2 × · · · × XD, where for each dimension i, Xi ⊆ 2Ti (i.e., Xi can be
an arbitrary subset of Ti items). First, randomly choose D random values w1, . . ., wD

from Zq subject to the constraint
∑D

i=1 wi mod q = w. For each i = 1, . . ., D, for each

j ∈ Xi, randomly choose t
R← Zq and add ki,j = (gt, gwi+t·si,j) to the user’s SX .

KeyDer : A user who is entitled to access a D-dimensional point with coordinates
(i1, . . ., iD) first retrieves the key associated with each coordinate ij from her private
information SX . Let kj,ij = (gtj , gwj+tj ·sj,ij) denote such a key. Next, the user
retrieves the public information associated with the point pubi1,...,iD

= (gr(i1,...,iD) ,
gr(i1,...,iD)·s1,i1 , . . ., gr(i1,...,iD)·sD,iD) from the broadcasted content and derives the en-
cryption key as:

D∏
j=1

e(kj,ij [2], pubi1,...,iD
[1])e((kj,ij [1])−1, pubi1,...,iD

[j + 1])

Here u[i] denotes the ith value of tuple u.

It is clear from the above that a system consisting of
∏D

i=1 Ti points in theD-dimensional
space will support

∏D
i=1 2Ti types of access privileges. While there is public informa-

tion associated with each point in T , in Section 6 we show that in practice the service
owner needs to have only O(1) storage to maintain the operation of the system.

5 Security Analysis

In this section we show that our scheme satisfies both the completeness and soundness
requirements. Efficiency of our solution is evaluated in Section 7.

Theorem 1. The multi-dimensional key assignment scheme MKDA = (Setup,Assign,
KeyDir) presented above is complete.

It is not difficult to show that the result of computation performed at key derivation time
for a grid point always equals to the encryption key generated for that point at the setup
time. We omit the details due to space considerations.

Theorem 2. Assuming that the Decision Linear assumption holds, the multi-
dimensional key assignment scheme MDKA = (Setup,Assign,KeyDir) presented above
achieves key indistinguishability in the presence of adaptive adversaries.

Proof. Suppose there is a PPT adversary A such that Advkey−ind
MDKA,A(1κ, T) > 1/p(κ) for

some polynomial p. We will show that there exists a PPT adversary B with black box
access to A that solves the decision linear problem with non-negligible probability.

434 M. Blanton and K.B. Frikken

According to the definition, B is given (q,G,GT , e, g, h), ga, gb, gac, gbd, and Z ,
and need to decide whether Z = gc+d. In our case, B will be given Z of the form gc+d

or gR+d for some R ∈ Zq (where each element of the group can be written as gR+d for
some R) and needs to correctly decide whether it was gc+d.

Our algorithm B first chooses a random point (̂i1, . . . , îD) ∈ T . Essentially, B is
guessing the point which A will use as its challenge. B then interacts with A as follows:

Setup: B performs system setup as follows:

1. It sets the parameters using (q,G,GT , e, g, h).
2. To generate secret information for the cells of the grid, for each dimension j ∈

[1, D] and each element t ∈ [1, Tj] in dimension j, B chooses a random element

qj,t
R← Zq . B stores these q values. To finish the setup of secret information sec,

we implicitly set sj,t = qj,t when îj = t (i.e., it is part of the challenge) and to
sj,t = qj,t + d otherwise. Note that in the latter case B does not know sj,t.

3. To generate the public information for each point (i1, . . . , iD), there are two cases:
– (i1, . . . , iD) = (̂i1, . . . , îD): In this case, we use ga from B’s challenge to set

pubi1,...,iD
= (ga, (ga)q1,i1 , . . . , (ga)qD,iD). This means that r(i1,...,iD) = a.

Notice that pubi1,...,iD
= (gr(i1,...,iD) , gr(i1,...,iD)·s1,i1 , . . ., gr(i1,...,iD)·sD,iD),

which is the same as in the real protocol.

– (i1, . . . , iD)
= (̂i1, . . . , îD): Choose random u(i1,...,iD)
R← Zq and use gb, gbd

from B’s challenge to set pubi1,...,iD
= ((gb)u(i1 ,...,iD) , R1, . . . , RD), where

Rj =
{

(gb)u(i1 ,...,iD)·qj,ij if ij = îj
(gbd)u(i1 ,...,iD)(gb)u(i1,...,iD)·qj,ij otherwise.

This means that B sets r(i1,...,iD) = b · u(i1,...,iD) and Rj = gr(i1,...,iD)·sj,ij ,
where sj,ij = qj,ij if ij = îj and sj,ij = qj,ij +d otherwise (which is consistent
with the way secret information was setup). The above guarantees that these
tuples are distributed identically to when A engages in the real protocol.

Assign queries: When A asks for a query X = X1 ×X2 × · · · ×XD, B responds as:

1. If îj ∈ Xj for each 1 ≤ j ≤ D (i.e., X contains the challenge), B outputs FAIL.
2. Otherwise, B chooses m to be an index such that îm
∈ Xm (there must be at least

one such index). Next, B chooses and stores random values w1, . . . , wm−1, wm+1,
. . . , wD from Zq . Let w′ =

∑
i∈[1,D],i�=m wi. B creates the key material by setting

the key information for dimension j and position t ∈ Xj as follows:

– If j = m, then choose �
R← Zq and use gb, gbd, Z from B’s challenge to com-

pute and return kj,t = ((gb)�g, Z(gbd)�g−w′
(gb)�qj,tgqj,t) =

= (gb�+1, Zgbd�−w′+b�qj,t+qj,t) = (gb�+1, Zgb�(d+qj,t)+qj,t−w′
).

Note that, because in this case sj,t = qj,t + d, when Z = gc+d, this tuple
is (gb�+1, gc−w′+(b�+1)(d+qj,t)) = (gb�+1, gc−w′+(b�+1)sj,t). Otherwise, when
Z = gR+d, it is (gb�+1, gR−w′+(b�+1)sj,t).

– If j
= m and îj
= t, first choose �
R← Zq , then compute and return kj,t =

((gb)�, gwj(gb)�qj,t(gbd)�) = (gb�, gwj+b�(qj,t+d)) = (gb�, gwj+b�sj,t), where
sj,t = qj,t + d as required.

Efficient Multi-dimensional Key Management in Broadcast Services 435

– If j
= m and îj = t, choose �
R← Zq and return kj,t = (g�, gwjg�qj,t) =

(g�, gwj+�sj,t), where now sj,t = qj,t as previously set.

Notice that the keys are consistent with those generated by a real challenger. In partic-
ular, for each dimension j and each element t ∈ Xj , kj,t is of the form (gr, gwi+rsj,t),
where r takes the value of b� + 1, b�, or � depending on the case, and w =

∑D
i=1 wi.

Note that we have implicitly defined w using randomly chosen wi for all but one di-
mension and Z . More specifically, if Z = gc+d, then w = c and if Z = gR+d, then
w = R. In all cases B does not know w. Furthermore, this key assignment implies that
applying the key derivation procedure to the key for (̂i1, . . . , îD) and pubî1,...,̂iD

results
in the encryption key e(g, g)ac when Z = gc+d and e(g, g)aR when Z = gR+d.

Challenge: When A issues a challenge for (̄i1, . . . , īD), if (̄i1, . . . , īD)
= (̂i1, . . . , îD),
B outputs FAIL. Otherwise, B returns e(gac, g) = e(g, g)ac. If Z = gc+d, then this
is the correct key, but if Z = gR+d, then this is a independent key from the real one
specified by the above parameters.

More Assign queries: Same as before.

Output: Eventually, A outputs a bit b′ and B returns b′.

Suppose B does not output FAIL. Then if Z = gc+d, A has been given the correct
key for the challenge point, and if Z = gR+d, A is given a random key. This means
that A’s view is the same as in Expkey-ind

MDKA,A(1κ, T). Furthermore, because B simply
outputs what A’s outputs, if A can distinguish keys with non-negligible probability,
B will also be able to solve the decision linear problem with non-negligible proba-
bility. We next give a more detailed analysis to tie the advantage of A in experiment
Expkey-ind

MDKA,A(1κ, T) with the advantage of B in solving the decision linear problem.
First observe that:

Pr[Expkey-ind
MDKA,A(1κ, T) = 1] = Pr[Expkey-ind

MDKA,A(1κ, T) = 1 ∧ ProperQueries],

where the event ProperQueries means that A did not queryX containing the challenge
point during any of its calls to Assign. This equality is true because the experiment
always outputs 0 when A violates this querying constraint. We also use GoodGuess
to denote the event when A guesses the bit b in the experiment correctly (i.e., when
b = b′). This in particular implies that Pr[Expkey-ind

MDKA,A(1κ, T) = 1] = Pr[GoodGuess∧
ProperQueries]. Next, we have:

AdvDLIN,B(1κ) =
∣∣Pr[B(G, q, g, ga, gb, gac, gbd, gc+d) = 1]− (1)

−Pr[B(G, q, g, ga, gb, gac, gbd, gR) = 1]
∣∣ (2)

=
∣∣Pr[GoodGuess ∧ Fail] − Pr[GoodGuess ∧ Fail]

∣∣ (3)

where Fail denotes the event that B outputs FAIL as a result of interaction with A.
From the description of the interaction, we know that B outputs FAIL when (i) B
does not guess the challenge correctly or (ii) when A attempts to query a key for privi-
leges that contain the point chosen to be the challenge. We formalize this as Pr[Fail] =
Pr[WrongChallenge ∧ ProperQueries]. Substituting this into equation (3), we obtain:

AdvDLIN,B(1κ) =
∣∣Pr[GoodGuess ∧ WrongChallenge ∧ ProperQueries]−

436 M. Blanton and K.B. Frikken

−Pr[GoodGuess ∧ WrongChallenge ∧ ProperQueries]
∣∣

=
∣∣Pr[WrongChallenge | GoodGuess ∧ ProperQueries]×
×Pr[GoodGuess ∧ ProperQueries] −
−Pr[WrongChallenge | GoodGuess ∧ ProperQueries] ×
×Pr[GoodGuess ∧ ProperQueries]

∣∣
Now because B chooses its challenge point uniformly at random regardless of A’s be-
havior, we rewrite the above as:

AdvDLIN,B(1κ) =
∣∣Pr[WrongChallenge]Pr[GoodGuess ∧ ProperQueries]−
−Pr[WrongChallenge]Pr[GoodGuess ∧ ProperQueries]

∣∣
=

∣∣∣∣ 1
T

Pr[Expkey-ind
MDKA,A(1κ, T) = 1]−

− 1
T

(
1 − Pr[Expkey-ind

MDKA,A(1κ, T) = 1] − Pr[ProperQueries]
)∣∣∣∣

since Pr[WrongChallenge] = 1
T and

1 = Pr[ProperQueries] + Pr[ProperQueries] =
= Pr[GoodGuess ∧ ProperQueries] + Pr[GoodGuess ∧ ProperQueries] + Pr[ProperQueries] =

= Pr[Expkey-ind
MDKA,A(1κ, T) = 1] + Pr[GoodGuess ∧ ProperQueries] + Pr[ProperQueries]

Finally, we obtain

AdvDLIN,B(1κ) =
1
T

∣∣∣2Pr[Expkey-ind
MDKA,A(1κ, T) = 1] − 1 + Pr[ProperQueries]

∣∣∣
≥ 1
T

∣∣∣2Pr[Expkey-ind
MDKA,A(1κ, T) = 1] − 1

∣∣∣
=

2
T

∣∣∣∣Pr[Expkey-ind
MDKA,A(1κ, T) = 1] − 1

2

∣∣∣∣ =
2
T

Advkey-ind
MDKA,A(1κ, T)

This means that if A succeeds in breaking the security of the MDKA scheme with
non-negligible probability δ, B succeeds in breaking the decisional linear problem with
non-negligible probability which is at least 2δ/T . �
The above reduction relates the success probabilities of algorithms A and B using a
factor of 2/T . This means that it is desirable to set the security parameter of the scheme
to be κ+log(T)−1, where κ is the security parameter necessary to ensure the difficulty
of solving the decision linear problem. This is likely to increase κ by a few dozen bits
(see, e.g., Section 7 for an example application).

Note that our result is consistent with best practices in the literature (e.g., [8]), where
security against adaptive adversaries is desired (i.e., the simulator is forced to guess the
challenge point). Furthermore, related work on range queries and IBE-based schemes
have security proofs in a weaker, so-called selective ID model, where the adversary
commits to the challenge point prior to system setup. Under those circumstances, we
would achieve a tight reduction with no efficiency loss.

Efficient Multi-dimensional Key Management in Broadcast Services 437

6 Extensions

Reducing Public Storage. In the system the way it was described, the public storage at
the server is O(TD). As T could be large, this amount of storage may be problematic.
Furthermore, the setup algorithm requires this many modular exponentiations, which is
also a bottleneck. We modify the scheme in order to reduce the storage to O(1). The
crux of this idea is that since we send the public information to the user on demand, we
do not need to have all of the information at once. Furthermore, this information can be
derived as it is needed. More specifically, let F1 : [1, D] × Tmax × {0, 1}κ → Zq and
F2 : T × {0, 1}κ → Zq be pseudorandom functions, where Tmax is the maximum of
T1, . . ., TD. We make the following changes to the MDKA scheme:

Setup: In this case the public information is now just (q,G,GT , e, g, h). We still chooses

the master secret w
R← Zq along with two PRF keys k1

R← {0, 1}κ and k2
R← {0, 1}κ.

The secret information is then (w, k1, k2). Implicitly we are setting the secret parame-
ters to be si,j = F1(i, j, k1) and r(i1,...,iD) = F2((i1, . . . , iD), k2).

Assign and KeyDer: When we need to compute a user’s key or public information, we
simply compute its values using F1 and F2.

One-Time Keys. One concern with key management solutions is that users can dis-
tribute access keys to unauthorized parties. This would allow anyone to access the
content for free. There are two types of such revelations possible for our system: (i)
the user can publish its private SX or (ii) she can derive the key for a specific cell
(i1, . . . , iD) and publish it (i.e., publish e(g, g)r(i1,...,iD)·w). Of these two types of dis-
tributions, the latter is worse, because it reveals no information about the offending
party except the ability to access point (i1, . . . , iD), whereas the first type reveals sig-
nificantly more information about that party, i.e, the complete specification of the access
rights. Fortunately, the latter, more damaging attack can be mitigated as follows: The
value r(i1,...,iD) can be changed each time that cell is used. That is, since we are sending
pubi1,...,iD

to the users along with the ciphertext, the protocol can simply choose a new
values of r(i1,...,iD) each time. Thus, the key e(g, g)r(i1,...,iD)·w is useful only for the
current message, and will not be useful for other messages.

7 Performance

The complexity of our MDKA scheme is as follows:

1. Size of pub: This is O(1) as the only values that need to be stored are (q,G,GT , e,
g, h).

2. Size of sec: This has size O(1) as all that is stored is (w, k1, k2).
3. Size of user key: A user with access to X1 × · · · ×XD obtains

∑D
i=1 |Xi| pairs of

values as its private keys and thus maintains O(
∑D

i=1 |Xi|) values.
4. Size of an encryption: To be able to decrypt, the user needs to have the public

information associated with the access point, which has size O(D).
5. Cost to assign key: This requires O(

∑D
i=1 |Xi|) work.

438 M. Blanton and K.B. Frikken

6. Cost to send broadcast to user: The user will need to receive the public information,
which will requireO(D) operations from the sender.

7. Cost to derive key: This requiresO(D) operations.

To demonstrate the applicability of our approach to practical systems, we consider a
content streaming application. We give a small example and discuss the performance of
our scheme. Suppose that a content streaming system has the following dimensions:

(i) the specific content (i.e., show) being accessed inside the range [1, 216],
(ii) quality of programming inside the range [1, 8],
(iii) time of access inside the range [1, 7760] (i.e., once for every hour of a year),
(iv) x-coordinate of location of access ranging in the range [1, 1024], and
(v) y-coordinate of location of access ranging in the range [1, 1024].
The motivation for the locations is that the service provider desires to only let the user
see the content in certain locations for DRM purposes and location-based content (such
as local weather forecast). Consider a user that subscribes to 100 shows, two quality
markers (one poor quality for a mobile device and one high quality for home), for access
from 6-10PM daily, in a 10 by 10 region. Using our solution, this user would need to
store 100 + 2 + 1460 + 10 + 10 = 1582 keys, which is clearly practical. Furthermore,
to derive a specific key, a user would have to perform 10 pairing operations. According
to [16], each of these operations take about 11ms on a 1 GHz Pentium III, and thus key
derivation would require about 110ms, which is also clearly practical.

We now consider the shortcoming of the solution presented in [20] for this particular
problem. First, this scheme provides a weaker notion of security (key recovery instead
of key indistinguishability). The main problem, however, is that this scheme does not
support arbitrary intervals. This means that the content and time blocks must be sepa-
rated and multiple sets of keys must be given to the user. That is, for each of the 100
shows and for each day, the user must have 23(3+10+10+13

4) = 72 keys, and therefore
store 72 ·365 ·100 or about 2.6 million keys. Clearly, as the subscription becomes more
complex, this will result in the user storing too many keys.

8 Conclusions

In this work we treat the problem of key assignment in multi-dimensional space for
subscription-based broadcast and location-based services. In particular, each dimension
corresponds to an attribute (such as latitude, longitude, time, or any other attribute)
which is partitioned into a number of units, comprising a D-dimensional grid. All re-
sources associated with a point in this grid are assigned a cryptographic key and dis-
tributed in encrypted form. A subscriber joining the system obtains access to certain
resources specified as a subset of points in each dimension. She is issued key material
that allows her to derive cryptographic keys for all D-dimensional points in the sub-
scription privileges. We give a new scheme for key assignment and management with
characteristics that favorably compare with existing schemes. In particular, the user
acquires overhead only linear in the number of dimensions, is not required to access
external data in addition to broadcast content, and can be issued more flexible access
privileges than in other schemes. Our solution is provably secure under the standard
Decision Linear assumption.

Efficient Multi-dimensional Key Management in Broadcast Services 439

References

1. Garmin (2009), http://www.garmin.com
2. LOC-AID (2009), http://www.loc-aid.net
3. Atallah, M., Blanton, M., Fazio, N., Frikken, K.: Dynamic and efficient key management for

access hierarchies. ACM Transactions on Information and System Security (TISSEC) 12(3),
1–43 (2009)

4. Atallah, M., Blanton, M., Frikken, K.: Key management for non-tree access hierarchies. In:
ACM Symposium on Access Control Models and Technologies, pp. 11–18 (2006)

5. Atallah, M., Blanton, M., Frikken, K.: Efficient techniques for realizing geo-spatial access
control. In: ACM Symposium on Information, Computer and Communications Security
(ASIACCS 2007), pp. 82–92 (2007)

6. Atallah, M., Blanton, M., Frikken, K.: Incorporating temporal capabilities in existing key
management schemes. In: Biskup, J., López, J. (eds.) ESORICS 2007. LNCS, vol. 4734, pp.
515–530. Springer, Heidelberg (2007)

7. Atallah, M., Frikken, K., Blanton, M.: Dynamic and efficient key management for access
hierarchies. In: ACM CCS, pp. 190–201 (2005)

8. Ateniese, G., De Santis, A., Ferrara, A., Masucci, B.: Provably-secure time-bound hierarchi-
cal key assignment schemes. In: ACM CCS, pp. 288–297 (2006)

9. Boneh, D., Boyen, X., Goh, E.-J.: Hierarchical identity based encryption with constant
size ciphertext. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 440–456.
Springer, Heidelberg (2005)

10. Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M. (ed.) CRYPTO
2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004)

11. Boneh, D., Waters, B.: Conjunctive, subset, and range queries on encrypted data. In: Vadhan,
S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 535–554. Springer, Heidelberg (2007)

12. De Santis, A., Ferrara, A., Masucci, B.: New constructions for provably-secure time-bound
hierarchical key assignment schemes. In: ACM Symposium on Access Control Models and
Technologies (SACMAT 2007), pp. 133–138 (2007)

13. Harney, H., Muckenhirn, C.: Group key management protocol (GKMP) architecture. IETF
RFC 2094 (1997), http://www.rfc-archive.org/getrfc.php?rfc=2094

14. Harney, H., Muckenhirn, C.: Group key management protocol (GKMP) specification. IETF
RFC (2093) (1997), http://www.rfc-archive.org/getrfc.php?rfc=2093

15. Huang, H., Chang, C.: A new cryptographic key assignment scheme with time-constraint
access control in a hierarchy. Computer Standards & Interfaces 26, 159–166 (2004)

16. Lynn, B.: The pairing-based cryptography (pbc) library,
http://crypto.stanford.edu/pbc

17. Patterson, C., Muntz, R., Pancake, C.: Challenges in location-aware computing. IEEE Perva-
sive Computing 2(2), 80–89 (2003)

18. Perrig, A., Song, D., Tygar, J.: ELK: A new protocol for efficient large group key distribution.
In: IEEE Symposium on Security and Privacy, pp. 247–262 (2001)

19. Shi, E., Bethencourt, J., Chan, H., Song, D., Perrig, A.: Multi-dimensional range query over
encrypted data. In: IEEE Security and Privacy Symposium, pp. 350–364 (2007)

20. Srivatsa, M., Iyengar, A., Yin, J., Liu, L.: Access control in location-based broadcast services.
In: IEEE INFOCOM, pp. 256–260 (2008)

21. Tzeng, W.: A time-bound cryptographic key assignment scheme for access control in a hier-
archy. IEEE Transactions on Knowledge and Data Engineering 14(1), 182–188 (2002)

http://www.garmin.com
http://www.loc-aid.net
http://www.rfc-archive.org/getrfc.php?rfc=2094
http://www.rfc-archive.org/getrfc.php?rfc=2093
http://crypto.stanford.edu/pbc

440 M. Blanton and K.B. Frikken

22. Wang, S.-Y., Laih, C.-S.: Merging: An efficient solution for a time-bound hierarchical key
assignment scheme. IEEE Transactions on Dependable and Secure Computing 3(1), 91–100
(2006)

23. Wong, C., Gouda, M., Lam, S.: Secure group communication using key graphs. In: ACM
SIGCOMM, pp. 68–79 (1998)

24. Yuan, H., Atallah, M.: Efficient and secure distribution of massive geo-spatial data. In: ACM
GIS, pp. 440–443 (2009)

Caught in the Maze of Security Standards

Jan Meier and Dieter Gollmann

Security in Distributed Applications

Hamburg University of Technology

Hamburg, Germany

j.meier@tu-harburg.de, diego@tu-harburg.de

Abstract. We analyze the interactions between several national and in-

ternational standards relevant for eCard applications, noting deficiencies

in those standards, or at least deficiencies in the documentation of their

dependencies. We show that smart card protocols are currently specified

in a way that standard compliant protocol implementations may be vul-

nerable to attacks. We further show that attempts to upgrade security

by increasing the length of cryptographic keys may fail when message

formats in protocols are not re-examined at the same time. We argue

that the entities responsible for accrediting smart card based applica-

tions thus require security expertise beyond the knowledge encoded in

security standards and that a purely compliance based certification of

eCard applications is insufficient.

1 Introduction

The German government advocates the use of smart cards in its eCard strategy
in order to increase efficiency in administration (eGovernment), the health sector
(eHealth), and commercial transactions (eBusiness) [1]. Central to this strategy
are authentication, qualified electronic signatures, and the use of smart card
based tokens. For example, a smart card based identity card could be used to
conclude legally binding contracts over the internet. Privacy issues are addressed
in eCard applications but remain a key concern for citizens. This is especially
true for eCard applications in the health sector. Discussions about such applica-
tions, therefore, take place in a politically charged atmosphere and certificational
weaknesses have to be taken very seriously indeed1.

The specifications of the IT infrastructure for eCard applications build on
various standards, which are also relevant when constructing a security case for
the application. A security architecture has to relate the overall security goals of
the application to the specific security services provided by the individual com-
ponents and security protocols deployed. In eCard applications, authentication
is one goal. This goal can be reached in multiple ways. The architecture typically
references standards to specify the exact method. Those standards define proto-
cols and cryptographic parameters. Having multiple standards frequently causes
cross-dependencies, gaps, or conflicts between requirements. These issues could
1 A certificational weakness is a vulnerability where a real exploitation is impractical.

D. Gritzalis, B. Preneel, and M. Theoharidou (Eds.): ESORICS 2010, LNCS 6345, pp. 441–454, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

442 J. Meier and D. Gollmann

be systematized by specifying a hierarchy between standards. However, current
standards do not offer strategies assisting designers to identify and resolve these
issues.

We will deal with intentional underspecification in smart card standards.
Often multiple ways exist to achieve the same behavior. In such situations, stan-
dards should not constrain possible implementations. Implementation details
are therefore left open. We will present cases where protocol analysis at the
level of the standard specification would flag a failure, notwithstanding the fact
that simple defenses are available at the implementation level. Protocol anal-
ysis therefore has to build on more than the given protocol specification and
needs access to information about the implementation. This is the dual of the
familiar issue where an abstract protocol has been verified to be secure, but an
implementation introduces vulnerabilities. Here, the abstract protocol would be
insecure and the implementation plugs the gaps.

1.1 Smart Card Details

The way smart cards work implies some specific characteristics of protocol ex-
ecution. A notable difference compared to devices with a user interface is the
inability of smart cards to initiate an action; they can only react. Hence, a card
reader has to send commands to the smart card and wait for a response. Protocols
can be built from such request/response pairs. Commands can also manipulate
the internal state of a smart card. Based on the internal state, the card may
reject commands sent by the reader. These features play an important role in
our following observations. We will focus on authentication between smart card
and reader and do not consider the IT infrastructure behind the reader.

Six smart card commands specified in ISO/IEC 7816-4 [2] suffice to cover all
smart card related authentication protocols. The Manage Security Environ-
ment (MSE) command informs the smart card about the cryptographic algorithms
and keys to be used in the subsequent command sequence. Keys are selected via
key references. Only keys stored on the card can be selected; key references not
associated with keys on the card will cause a smart card to cancel command
execution. Smart cards store this information given in the Manage Security
Environment command data in their internal memory. Processing of subsequent
commands typically depends on information related to previously sent Manage
Security Environment commands. The Get Challenge (GetChall) command
requests challenges from the smart card. The latest requested challenge is stored
in the smart card’s internal memory. When other commands are processed,
smart cards can make use of this challenge. The Read Binary (ReadB) com-
mand requests the content of a file given in the command data. Identifiers like
the smart card serial number are stored in a file and therefore can be obtained
with this command. In situations where a smart card has to authenticate itself,
the communication partner sends an Internal Authenticate command. The
command data is used to generate an authentication token. When communica-
tion partners are required to authenticate themselves, the smart card expects
an External Authenticate (ExAuth) command containing an authentication

Caught in the Maze of Security Standards 443

token. Finally, the Mutual Authenticate (MutAuth) command combines In-
ternal Authenticate and External Authenticate into one command.

Smart card commands manipulate the smart card’s internal state but also
rely heavily on this internal state when certain commands are processed. The
cryptographic algorithm specified in the Manage Security Environment com-
mand determines the kind of protocol the card is running with a communication
partner. When access to data on the card is requested, the decision algorithm
may refer to this internal state. For example, a cryptographic key may only be
used when the successful completion of an earlier protocol run is recorded in the
internal state.

The paper is organized as follows. Section 2 describes a set of security stan-
dards relevant for eCard applications. Section 3 contains a case study of authen-
tication protocols for use in smart card applications. We use two protocols to
demonstrate how protocols are specified for smart card use. We describe poten-
tial protocol vulnerabilities of smart card implementations in Section 4. Section 5
summarizes our observations on security standards. Section 6 comments on the
certification of eCard applications. Section 7 concludes the paper. Although the
application scenario we use as example has a German context, the standardiza-
tion issues observed are not limited to eCard applications or to Germany.

2 Standards Relevant for eCard Applications

We will paint our observations on authentication in eCard applications with a
broad brush, tracking the path from the high level security requirements of an
application to precisely formulated requirements on an authentication protocol
that could be used in a formal verification step.

Top level specifications of security requirements either take for granted that
the meaning of authentication is well defined, or give familiar explanations like
“verifying a claimed identity”. Closer scrutiny may reveal that it is actually not
required to verify the identity but some attribute of an entity. (This attribute
might be verified on the basis of a secret key shared by all legitimate entities or
on the basis of an attribute certificate.) Hence, there may be a first gap between
the requirements stated and the requirements that should actually be met.

Formal analysis of authentication protocols often makes use of correspon-
dence properties [3]. Such correspondence properties try to capture the meaning
of entity authentication as specified in [4] by insisting that a party successfully
completes a protocol run only if the corresponding party has the same view of
certain aspects of the protocol run. This view may just capture the identity of
the corresponding party, but it might also include session keys, session identi-
fiers, or the other party’s view on whom it had communicated with. An attack is
then a protocol run violating the chosen correspondence properties. The attacks
we discuss later violate such correspondence properties but are not necessarily
attacks against a high level authentication goal. Still, it would be desirable for
a security architecture to explicitly bridge the gap between the different lev-
els of authentication specifications, so as to give guidance on the selection or
certification of protocols suitable for a given application.

444 J. Meier and D. Gollmann

The following five standards or standard related documents are relevant for
eCard projects. It is important to note that each document resides on its own
abstraction layer and addresses different issues.

2.1 Cryptographic Protocols

The ISO/IEC 9798 series describes entity authentication protocols for symmetric
key cryptography [5] and asymmetric key cryptography [6]. This standard series
is application and technology independent. Protocols are described on an ab-
stract level. Detailed descriptions of the actions communication partners have to
perform are given. Message formats, cryptographic algorithms, and key lengths
are left unspecified. Hence, these standards do not define direct blueprints for
implementation. This standard series is referenced in a standard for smart cards
as secure signature creation devices [7] and in the eCard guideline documentation
we discuss next.

For eCard projects, the German Federal Office for Information Security main-
tains recommendations on the strength of cryptographic algorithms and key
lengths [8]. In essence, life-spans for encryption mechanisms are given. For ex-
ample, the use of two key triple DES (2KTDES) is prohibited in eCard projects
after 2009 while three key triple DES (3KTDES) may be used until the end
of 2013. Migration strategies or ways to adapt existing protocol to eCard re-
quirements are not given. This document does not assist application designers
in adapting protocols from ISO/IEC 9798 to smart cards.

2.2 Smart Card Standards

Interactions between smart cards and their environment must be standardized.
This includes electrical interfaces, position of connectors, dimensions and com-
mands. All of this is specified in the ISO/IEC 7816 series. We focus on security
and on commands for smart cards as covered in [2]. This part (ISO/IEC 7816-
4) specifies byte sequences to invoke commands, transmission of command data
(parameters), and the status flags a command could possibly return; command
processing is left unspecified. This standard is specifically tied to smart card
technology but is independent of the applications realized with the help of smart
cards.

Standard CWA14890-1 [7] is maintained by the European Committee for
Standardization. It builds on [2] as it uses smart card commands when spec-
ifying protocols. Although [7] is not intended for a specific application it refers
specifically to secure signature creation devices. Thus, security is a topic of the
standard, which is primarily an interoperability standard. Section 3.1 will discuss
an authentication protocol based on symmetric key cryptography in detail. The
standard neither includes a security argument—formal or informal—nor does it
give a reference to such a security argument.

The protocol specification for mutual authentication defines 2KTDES as the
encryption algorithm. In contrast to [8], no statements on the security or life-
span of these protocols are made. Application designers face the problem that

Caught in the Maze of Security Standards 445

2KTDES is prohibited in [8] but a protocol using 2KTDES is specified in [7]. In
[8], there is no guidance on resolving this inconsistency. Although the CWA14890-
1 standard is security related, it does not discuss in general the properties smart
card commands must have to ensure secure protocol execution.

Lastly, Common Criteria protection profiles are relevant for eCard applica-
tions. They indicate which tests eCard components have to pass in order to get
certified. However, designers cannot extract requirements that, say, smart card
commands have to fulfill from the standards above. Instead application designers
must trust smart card producers that cards are suitable for the intended task.

We now have five documents that designers have to consider when building
eCard applications. Between these documents, there is no clear hierarchy control-
ling document relationships. For example, it is unclear which document manages
the length of challenges used in security protocols. Furthermore, security prop-
erties of smart card commands and their processing is left to the application
designer although this topic is important and requires security expertise. In the
following section, we will discuss the implications of this missing hierarchy.

3 Case Study: Specifications for Smart Card Based
Authentication Protocols

We first detail a protocol specification for mutual authentication given in CWA
14890-1 [7]. The second protocol specification starts from the mutual authentica-
tion protocol specification in order to build a unilateral two pass authentication
protocol for smart cards.

3.1 Authentication with Key Establishment

The following authenticated key establishment protocol has two goals [7]. First,
it provides evidence that smart card and reader know previously shared se-
cret keys and thus are legitimate communication partners. Second, smart card
and reader agree on two session keys to protect subsequent communications. In
smart card applications, one key is used for encryption/decryption operations
while the second key is used to compute message authentication codes (MAC).
CWA 14890-1 specifies 2KTDES in cipher block chaining mode with fixed ini-
tialization vector 0 as encryption method. The length of challenges is specified
as 64 bits. Additionally, the procedure to establish session keys is defined and
the length of the key derivation data is set to 256 bits. Consequently, designers
have all information needed to integrate the protocol into an application.

The communicating parties are assumed to share two long term symmetric
keys used for encryption, decryption and integrity protection. Such symmetric
keys are stored on smart card and reader at production time, or could be estab-
lished in a protocol using asymmetric key cryptography. The communication is
depicted in Figure 1. The reader starts the protocol with a Manage Security
Environment command informing the smart card which keys will be used to

446 J. Meier and D. Gollmann

protect subsequent messages. From the command data, the smart card deter-
mines that the subsequent protocol establishes two session keys and mutually
authenticates reader and smart card. Next, the reader fetches the serial num-
ber of the smart card (SN.c) with a Read Binary command and stores it for
later use. Then, the reader requests a 64 bits (8 bytes) random number from the
smart card with a Get Challenge command. Upon receiving Get Challenge,
the smart card generates a 64 bits random number (Rand.c) used as nonce. The
smart card stores Rand.c in its internal memory and replies with Rand.c to the
reader.

Fig. 1. A Key Establishment Protocol as Described in CWA 14890-1

Once the reader receives Rand.c, it generates its own 64 bits random number
(Rand.r). Further 256 random bits (KDD.r) are selected for use as key derivation
data. The reader stores KDD.r in its internal memory. Next, the reader gener-
ates the command data for a MutAuth command: it concatenates Rand.r, SN.r,
Rand.c, SN.c, and KDD.r, and encrypts the resulting string under the encryp-
tion key selected in the initial Manage Security Environment command. Last,
the reader generates a MAC of the encrypted data using the selected integrity
key. Then, the reader sends the Mutual Authentication command with the
command data just generated to the smart card.

Upon receiving the Mutual Authentication command, the smart card first
checks the integrity of the message. If it can confirm command data integrity, the
command data are decrypted. Next, the smart card checks whether the second
random number (Rand.c) has the same value as the random number stored
in the card’s internal memory, and whether the second serial number (SN.c)
equals its own serial number. If these two tests are successful, the card stores
the key derivation data (KDD.r) in its internal memory. Now, the smart card

Caught in the Maze of Security Standards 447

selects its own 256 bits key derivation data (KDD.c) and stores it in its internal
memory, concatenates Rand.c, SN.c, Rand.r, SN.r, and KDD.r, encrypts the
concatenated data using the previously selected encryption key, and calculates
a MAC over the encrypted data using the integrity key. The smart card then
sends the encrypted data and MAC back to the reader. After verifying the MAC
value, the reader decrypts the response and checks whether the second random
number (Rand.r) equals the one stored in its internal memory and whether the
second serial number (SN.r) matches its own.

Once smart card and reader have stored both their own and received key
derivation data, they can generate the session keys. CWA 14890-1 specifies
2KTDES as the algorithm to be used for encryption, decryption, and integrity
protection. Therefore, four 8 byte keys have to be generated. First, both proto-
col participants XOR the key derivation data (KDD.r ⊕ KDD.c) resulting in a
value KDD.rc. Then, two 32 bit counters are appended to KDD.rc, resulting in
KDD.rc1 and KDD.rc2. The value of the first counter is 1, the value of the sec-
ond is 2. Each protocol participant then calculates hash values of KDD.rc1 and
KDD.rc2. CWA 14890-1 stipulates SHA-1 as hash algorithm. The first 8 bytes
of SHA-1(KDD.rc1) are used as the first encryption key, the second 8 bytes are
used for the second encryption key, while the last four bytes of the hash value
are not used. The value of SHA-1(KDD.rc2) is used similarly. The first 16 bytes
are used for both integrity keys and the last four bytes are not used. These keys
are stored in the internal state of both communication partners. From now on,
these keys can be used to secure further communications.

3.2 Challenge-Response Authentication Protocol

Often, smart cards do not need session keys to perform application oriented
tasks. However, smart cards typically require devices to authenticate themselves,
i.e. communicating devices prove knowledge of certain cryptographic keys. A suc-
cessful authentication is stored in the smart cards internal state as long as the
smart card is connected to the reader or the smart card explicitly removes this
information from its state. Thus, these authentication protocols can be simple
challenge-response protocols. None of the standards detailed in Section 2 give a
smart card implementation of a simple challenge-response authentication proto-
col. Thus, eCard application designers have to create their own implementation.
Naturally, designers may turn to the protocol from the previous section—the
only protocol from eCard relevant standards designed for smart cards.

Removing the Read Binary command pair and replacing the Mutual Au-
thentication with External Authenticate, we get a challenge-response au-
thentication protocol, depicted in Figure 2.

First, the reader informs the smart card which protocol it wants to run,
sending a Manage Security Environment command that states an operation
the smart card has to perform later in the protocol. The Manage Security
Environment command also selects a key required to check the encrypted nonce
later in the protocol. Operation and key are stored in the smart card’s internal
state. Next, the reader sends a Get Challenge command requesting a random

448 J. Meier and D. Gollmann

Fig. 2. Smart Card Adaption of the Simple Challenge-Response Protocol from [5]

value that serves as a nonce. The Get Challenge command includes command
data specifying the length of the challenge in bytes. Upon receiving the com-
mand, the smart card generates a random number (Rand.c) of the requested
length, stores it in its internal state, and responds with Rand.c. The reader
now encrypts Rand.c with the shared secret key it had previously selected with
the Manage Security Environment command. The encrypted challenge is then
used as command data in an External Authentication command sent to the
smart card. On receiving this command, the smart card encrypts the challenge
stored in its internal memory with the secret key specified in the initial Manage
Security Environment command. After encrypting the nonce stored in its in-
ternal memory, the smart card compares the result with the command data of
the External Authenticate command. If the two values match, the smart card
accepts that the reader knows the shared secret key. In the domain of eCard
applications, knowing the shared secret key proves that the reader is legitimate
and the smart card grants access to sensitive information.

The protocol discussed in this section is related to the unilateral two pass au-
thentication protocol specified in ISO/IEC 9798-2 [5]. The standardized technol-
ogy independent version of this protocol, however, includes an optional identifier
to prevent reflection attacks. In scenarios where reflection attacks cannot occur,
the identifier can be omitted. None of the standards introduced in Section 2
discusses in which situations reflection attacks are impossible.

4 Gaps in Smart Card Based Authentication Protocol
Specifications

We will now discuss vulnerabilities of the two protocols described that can be
attributed to incomplete protocol specifications. We also discuss existing gaps
when standards reference other standards.

Caught in the Maze of Security Standards 449

4.1 Authentication Protocol with Key Establishment

The protocol specification in CWA 14890-1 [7] mentions two mandatory checks
explicitly: the check whether the challenge received equals the challenge stored
and the check whether the correspondent’s serial number is included in the mes-
sage received. Since these two checks are mentioned explicitly, application de-
signers may be led to believe that performing these two checks suffices to run the
protocol securely. In the domain of eCard applications, however, readers have to
cope with rogue smart cards. For example, the adversary might respond with the
serial number SN.r of the reader she is communicating with. This would enable
the following reflection attack.

In order to use the command data from the reader’s Mutual Authenticate
command as response to the reader, the adversary has to predict Rand.r before
the reader sends the Mutual Authenticate command. If she responds with the
correct Rand.r to Get Challenge, Rand.c and Rand.r have the same value as
well as SN.c and SN.r. In this situation, the reader will accept its own command
data as a valid response. Although the adversary does not know KDD.r, she
knows the information used to generate all four keys. Key generation now starts
from two identical key derivation data (KDD.c and KDD.r are the same). Thus
independent from the chosen KDD.r, the XOR operation always results in 0.
For unpredictable 8 byte challenges, the adversary would need on average 263

attempts for an attack to succeed. The adversary would learn all four keys needed
for encryption and integrity computations. Thus, with a complexity of 263 the
adversary is able to guess 224 bits (four session 56 bit keys).

This potential reflection attack vulnerability shows that the security of the
mutual authentication protocol as specified in CWA 14890-1 [7] does not com-
pletely depend on the key length of 2KTDES. Arguably, nonce length and key
length address different threat scenarios. Nonces protect against on-line attacks,
i.e. nonce prediction. This type of attack is limited by the speed of the card
reader. The key length of the shared encryption and integrity keys protect against
off-line attacks. Here, the adversary is only limited by the computational power
she has at her disposal.

Increasing key size (using 3KTDES) or changing encryption algorithms (to,
say, AES) only increases security against off-line prediction attacks. Protocol
security against off-line and on-line attacks only increases when challenge and
key size are increased together. None of the standards discussed in Section 2
addresses this relationship between protocol message formats, cryptographic al-
gorithms, and key length.

It is not required that nonce and keys have the same length. However, using
3KTDES keys and 64 bits nonces implies the card reader interface is 2104 times
slower than the adversary’s computational power. In case of such substantial
discrepancies, standards ought to document that this issue has been considered.

4.2 On the Use of Xor

The rationale for using XOR would be mistrust of the communication partner’s
random number generator. However, when the adversary can reflect (unknown)

450 J. Meier and D. Gollmann

random data back to its creator, XORing these values can result in a loss of
security. The XOR operation does not only weaken protocol security it is also
unnecessary. Both key derivation data KDD.r and KDD.c could be fed into
SHA-1 and still both protocol participants would not have to trust their partner’s
random number generator. As long as their own random input is unknown to
the attacker, the SHA-1 result is unpredictable for the attacker.

4.3 Challenge-Response Authentication Protocol

The verifier in the protocol from ISO/IEC 9798 [5] starts the protocol by sending
a random challenge. In contrast, the smart card in the protocol from Section 3.2
reacts to a command sent by the reader. Thus, a smart card has to protect itself
from adversaries that alter command sequences.

An obvious problem resides in the Get Challenge command. The adversary
could set the length of the challenge requested to one byte, limiting the smart
card to choose the challenge from 256 possibilities.

Smart cards could protect themselves from this attack by rejecting requests for
random numbers that are too short. In fact, ISO/IEC 7816-4 [2] allows to reject
Get Challenge commands. However, checking Get Challenge command data
is not part of the design pattern described in CWA 14890-1 [7]. The standard
stipulates 64 bits challenges but does not include error or plausibility checking
nor does it give reason to why 64 bits challenges are chosen. For reasons explained
in Section 4.4, it is unlikely that smart card centric standards would include such
checks.

The simple authentication protocol from Section 3.2 is susceptible to a reflec-
tion attack. First, the adversary sends a Manage Security Environment com-
mand to the smart card setting the shared key for encryption in an Internal
Authenticate command. Then, she requests Rand.c from the smart card using
Get Challenge. Upon receiving Rand.c, she uses Rand.c as command data in
an Internal Authenticate command causing the smart card to reply with the
encrypted challenge. Once she receives the encrypted challenge, the adversary
again sends a Manage Security Environment command to the smart card set-
ting the same symmetric key for use with External Authenticate. Then, the
adversary sends the encrypted challenge with an External Authenticate to
the smart card. The verifier will accept the encrypted challenge and thus believe
that the adversary is a legitimate reader.

It is the reader that deviates from the intended protocol. From the smart card
point view, however, the reader cannot be trusted until successful completion of
the authentication protocol run. Therefore, smart cards must not accept extra
commands from the reader before authentication is assured. The smart card
operating system can prevent this attack without changing the protocol. First,
the operating system could erase random values stored in the card’s internal
state whenever it receives a Manage Security Environment command. Thus,
the second Manage Security Environment command would delete Rand.c from
the card’s internal memory and External Authenticate would fail. Alterna-
tively, the use of symmetric keys could be restricted so that they could either be

Caught in the Maze of Security Standards 451

used for encryption or decryption but not for both. Now, the smart card would
not encrypt Rand.c with the key it uses to verify the encrypted Rand.c. In yet
another solution, a protocol automaton could detect commands arriving out of
sequence in a protocol run.

A slight change to the protocol would stop the reflection attack without mak-
ing assumptions about smart card commands other than External Authenti-
cate. Instead of encrypting only Rand.c, the serial number of the device
performing the encryption could be included. When the serial number is linked
to Rand.c and the smart card checks whether the received serial number is its
own, the reflection attack can be prevented.

The attacks described above are not meant to demonstrate new attack meth-
ods or to show that insecure implementations are possible. Rather, we used this
simple authentication protocol to indicate how easily application designers may
make mistakes when adapting protocols from standards.

4.4 Protocol Performance

In applications where protocols are executed frequently, performance is particu-
larly important. Therefore, it is likely that designers would omit optional message
fields like the identifier in the authentication protocol described in [5]. Using the
identifier (e.g. reader’s serial number) to counter reflection attacks would result
in added computation and communication overheads. Reader and smart card
have to encrypt more data to generate the token. The reader also has to trans-
mit the additional encrypted identifier to the smart card. (In scenarios where the
smart card cannot use the selected key to decrypt messages, the identifier must
be included in the clear. Otherwise the smart card would be unable to generate
and compare the token with the received command data.)

Performance optimizations like the omission of the identifier field result in
additional smart card requirements. Application designers may not be aware
of those extra requirements since no standard relating to eCard applications
describes them. Restricting the use of the encryption key together with Internal
Authenticate is a common restriction to avoid reflection attacks. Discussing
explicitly smart card requirements in at least one of the standards would save
designers from obvious mistakes.

5 The Maze of Standards

Section 2 has introduced standards crucial for protocol security in eCard ap-
plications. Each standard has its own remit and abstraction layer. However,
none of these standards addresses restrictions or requirements they impose on
other standards. As a result, application designers can take all the right turns
and still get lost in the maze of security standards. Given our observed protocol
design vulnerabilities, application designers require security expertise to success-
fully negotiate this maze. The main issue is that adhering to standards will not
automatically result in secure applications.

452 J. Meier and D. Gollmann

For many years the security community has told application writers not to
design their own security procedures but to adhere to standards. However, when
application designers follow this orthodoxy, they are lost in the maze. They must
be aware of possible attacks and of suitable countermeasures in order to incorpo-
rate related standards into their application architecture. More likely, application
designers who do not have the required security expertise will turn to national
standards defining cryptographic parameters [8] and standards describing smart
card specific authentication protocols [7] for guidance.

Standards that do not properly reference the standards they build upon are
another reason why application designers may get lost in the maze. None of the
standards mentioned above manages its own security assumptions or handles the
security requirements of other standards. Dependencies between standards ex-
acerbate this problem. When a standard references another standard, the stan-
dard referenced cannot be aware of the standard referencing. At the point of
the referenced standard, the maze cannot be unravelled. In contrast, standards
using another standard are aware and should reference them and refine their
specifications. For example, the standard defining the smart card based mutual
authentication protocol [7] used in this paper, should refine the standard for
smart card commands [2]. Whenever one standard imposes restrictions it must
specify how conflicts with referenced standards can be resolved. While the na-
tional guideline for eCard applications [8] postulates the use of 3KTDES, the
protocol from [7] uses 2KTDES only. Since the guideline is aware of the pro-
tocol specification, the guideline should advise application designers on how to
upgrade the protocol since changing the key length only may be insufficient to
increase security. Technology independent standards like [5] should not be refer-
enced from technology and application specific standards like [8] without giving
concrete implementation information. This missing hierarchy results in a lack of
clarity about the security requirements for the application. Who is responsible
for the security requirements and where are those documented?

Standards should not limit possible implementations unnecessarily. For ex-
ample, developers of smart card operating systems should be free to implement
commands as they see fit. Since [2] is a general standard describing what kind of
commands smart cards must be able to process, a specification of the interface is
sufficient. However, the mutual authentication protocol standard [7] has a con-
crete security topic since it covers secure signature creation devices. Therefore, it
might specify command properties beyond the interface so that secure protocol
execution is ensured. This need not confine smart card developers since there
may be design choices for fulfilling the security requirement (see Section 4.3).

There are several ways of blocking reflection attacks on the unilateral two pass
protocol. We could use the serial number as an identifier. When the smart card
receives the External Authenticate, it must check whether the serial number
is its own. However, this solution might result in performance loss since more
data has to be encrypted and transmitted. This solution works as long as the
internal state is deleted once the smart card is detached from the reader. In the
setting of smart cards, the smart card’s internal state must be deleted once it

Caught in the Maze of Security Standards 453

is pulled from the reader. Therefore, not the protocol itself maintains a session
but the smart card. This is contradictory to protocol designs in other areas
where protocol engineering tries to remove state information from the entities
and include all state information into protocol messages.

6 Certification Issues

The analysis of security protocols in eCard applications ultimately takes place
in the context of an executive decision whether to go live with the application.
Decision makers want convincing evidence that all relevant security issues have
been considered and that security risks are properly mitigated. In today’s IT
landscape, the security case for an application is frequently made by certifying
compliance with relevant standards. At the level of security protocols, there is a
preference for protocols where formal security proofs exist.

In our investigations, we have shown why this process may not deliver the
desired results with current eCard applications. There is the familiar problem
of mapping high level security requirements, e.g. card reader authentication, to
the kind of security properties formal verification tools are dealing with (cor-
respondence properties). There is the issue that best practice recommendations
on cryptographic parameters do not reach out to protocols and, for example,
do not cover the length of random challenges. There is the major issue that
some protocols as specified would fail protocol verification although their actual
implementations are not vulnerable.

We can move forward in two ways from this situation. On one hand, we could
advise eCard application designers to follow ‘best practice’ in protocol design
an adopt protocols that are verifiable at the abstract level, giving up on some
degrees of freedom in smart card design. Alternatively, we may work on the
certification process making sure that dependencies between security standards
are properly documented and conducting separate formal protocol analyses per
type of card approved for the application.

7 Conclusion

We have analyzed dependencies between a subset of the standards relevant for
eCard applications. We have noted that it would be possible to have standard
compliant protocol implementations that are vulnerable to attacks violating cer-
tain correspondence properties. The attacks we have described follow known
patterns, may in practice be nothing more than certificational weaknesses, and
may be blocked by specific features on a card. There are however, no provisions
in the current set of security standards that point the designer or evaluator to
these additional features.

Acknowledgements. We thank the anonymous reviewers for valuable comments
and suggestions.

454 J. Meier and D. Gollmann

References

1. Bundesministerium für Wirtschaft und Technologie: Chipkarten-Strategie der

Bundesregierung (eCard-Strategie) (May 2005),

http://www.bmwi.de/BMWi/Redaktion/PDF/C-D/

chipkarten-strategie-der-bundesregierung.pdf

2. ISO/IEC 7816-4: Identification cards — Integrated circuit cards — Part 4: Organi-

zation, security and commands for interchange (November 2004)

3. Lowe, G.: A hierarchy of authentication specifications. In: Proceedings of the 10th

IEEE Computer Security Foundations Workshop, pp. 31–43 (1997)

4. ISO/IEC 9798-1: Information technology — Security techniques — Entity authen-

tication — Part 1: General (July 1997)

5. ISO/IEC 9798-2: Information technology — Security techniques — Entity authenti-

cation — Part 2: Mechanisms using symmetric encipherment algorithms (December

2008)

6. ISO/IEC 9798-3: Information technology — Security techniques — Entity authenti-

cation — Part 2: Mechanisms using asymmetric encipherment algorithms (October

1998)

7. CEN Workshop Agreement 14890-1: Application Interface for smart cards used as

Secure Signature creation Devices — Part 1: Basic requirements (March 2004)

8. Bundesamt für Sicherheit in der Informationstechnik: BSI TR-03116 Technische

Richtlinie für eCard-Projekte der Bundesregierung (April 2009),

https://www.bsi.bund.de/cae/servlet/contentblob/477230/

publicationFile/30897/BSI-TR-03116 pdf.pdf

http://www.bmwi.de/BMWi/Redaktion/PDF/C-D/chipkarten-strategie-der-bundesregierung.pdf
http://www.bmwi.de/BMWi/Redaktion/PDF/C-D/chipkarten-strategie-der-bundesregierung.pdf
https://www.bsi.bund.de/cae/servlet/contentblob/477230/publicationFile/30897/BSI-TR-03116_pdf.pdf
https://www.bsi.bund.de/cae/servlet/contentblob/477230/publicationFile/30897/BSI-TR-03116_pdf.pdf

User-Role Reachability Analysis of Evolving
Administrative Role Based Access Control�

Mikhail I. Gofman, Ruiqi Luo, and Ping Yang

Dept. of Computer Science, State University of New York at Binghamton, NY 13902, USA

Abstract. Role Based Access Control (RBAC) has been widely used for restrict-
ing resource access to only authorized users. Administrative Role Based Access
Control (ARBAC) specifies permissions for administrators to change RBAC poli-
cies. Due to complex interactions between changes made by different administra-
tors, it is often difficult to comprehend the full effect of ARBAC policies by
manual inspection alone. Policy analysis helps administrators detect potential
flaws in the policy specification.

Prior work on ARBAC policy analysis considers only static ARBAC policies.
In practice, ARBAC policies tend to change over time in order to fix design flaws
or to cope with the changing requirements of an organization. Changes to AR-
BAC policies may invalidate security properties that were previously satisfied. In
this paper, we present incremental algorithms for user-role reachability analysis
of ARBAC policies, which asks whether a given user can be assigned to given
roles by given administrators. Our incremental algorithms determine if a change
may affect the analysis result, and if so, use the information of the previous anal-
ysis to incrementally update the analysis result. To the best of our knowledge,
these are the first known incremental algorithms in literature for ARBAC anal-
ysis. Detailed evaluations show that our incremental algorithms outperform the
non-incremental algorithm in terms of execution time.

1 Introduction

Role Based Access Control (RBAC) [12] has been widely used for restricting resource
access to only authorized users. In large organizations, RBAC policies are often man-
aged by multiple administrators with varying levels of authority. Administrative Role
Based Access Control’97 (ARBAC97) [15] specifies permissions for administrators to
change RBAC policies.

Correct understanding of ARBAC policies is critical for maintaining the security
of underlying systems. However, ARBAC policies in large organizations are usually
large and complex. Consequently, it is difficult to comprehend the full effect of such
policies by manual inspection alone. Automated policy analysis helps administrators
understand the policy and detect potential flaws. A number of analysis techniques have
been developed for user-role reachability analysis of ARBAC [16,18,8], which asks,
given an RBAC policy and an ARBAC policy, a set of administrators A, a target user
u, and a set of roles (called the “goal”), is it possible for administrators in A to assign
the target user u to roles in the goal? It has been shown that the reachability analysis for
ARBAC (with fixed role hierarchy) is PSPACE-complete [16,8].

� This work was supported in part by NSF Grant CNS-0855204.

D. Gritzalis, B. Preneel, and M. Theoharidou (Eds.): ESORICS 2010, LNCS 6345, pp. 455–471, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

456 M.I. Gofman, R. Luo, and P. Yang

Prior work on ARBAC analysis considers static ARBAC policies. In practice, AR-
BAC policies tend to change over time in order to correct design flaws or to cope with
changing requirements of an organization. Changes to ARBAC policies may invali-
date security properties that were previously satisfied. Hence, the policies need to be
re-analyzed to verify their overall correctness. In this paper, we present algorithms for
user-role reachability analysis of evolving ARBAC. Our algorithms use the information
of the previous analysis to incrementally update the analysis result. In a predominant
majority of cases, the information obtained from the previous analysis can be used to
update the result more quickly than a complete re-analysis. In a small minority of cases,
a complete re-analysis cannot be avoided. To the best of our knowledge, these are the
first known algorithms in literature for analysis of evolving ARBAC policies.

We propose three forward incremental analysis algorithms – IncFwd1, IncFwd2, and
LazyInc. These algorithms are based on the forward algorithm developed in [18], which
constructs a reduced transition graph from an ARBAC policy; the goal is reachable iff
it is a subset of some state in the graph. IncFwd1 determines if a change to the policy
may affect the analysis result, and if so, performs non-incremental analysis; otherwise,
the algorithm simply returns the previous analysis result. IncFwd2 reuses the transi-
tion graph constructed in the previous analysis and incrementally updates the graph.
If a change to the policy may affect the transition graph, IncFwd2 updates the graph
by pruning the states and transitions that are invalidated by the change and adding
new states and transitions that are enabled by the change. Our experimental data show
that updating the transition graph is faster than reconstructing it from scratch. LazyInc
reuses the graph constructed in the previous analysis, but delays the updates to the graph
until a change is made that may affect the analysis result. Subsequently, the algorithm
updates the graph based on the change and other delayed changes.

We have also developed a backward algorithm for incremental analysis based on the
backward algorithm in [18], which consists of two stages. In the first stage, a goal-
directed backward search is performed, which constructs a directed graph Gb. In the
second stage, a forward search is performed on Gb to determine if the goal is reach-
able. Our algorithm reuses Gb as well as the result computed in the second stage. If a
can revoke rule (which specifies authority to remove a user from a role) is added or
deleted, Gb remains the same and the algorithm simply updates the result of the second
stage. If a can assign rule (which specifies the authority to add a user to a role) is added
or deleted, the algorithm determines if the change may affect Gb, and if so, updates Gb

as well as the result of the second stage.
We have implemented the incremental analysis algorithms presented in this paper

and compared the algorithms against the non-incremental algorithms on a set of ran-
domly generated policies and a set of operations that change policies. The experimental
data show that our incremental analysis algorithms outperform the non-incremental al-
gorithms in terms of the execution time.

Organization. The rest of the paper is organized as follows. Section 2 provides a brief
overview of RBAC, ARBAC, and the user-role reachability analysis algorithms in [18].
Sections 3 and 4 present the incremental forward and backward analysis algorithms,
respectively. The experimental results are given in Section 5. The related work is dis-
cussed in Section 6 and our concluding remarks appear in Section 7.

User-Role Reachability Analysis of Evolving Administrative RBAC 457

2 Preliminaries

2.1 Role Based Access Control

In Role Based Access Control (RBAC), the association of permissions with users is de-
composed into two relations: user-role relation and permission-role relation. The user-
role relation (u, r) ∈ UA specifies that user u is a member of role r. The permission-
role relation (r, p) ∈ PA specifies that role r is granted permission p. RBAC also allows
to specify a role hierarchy, which is a partial order on the set of roles. For example, role
hierarchy relation r1 � r2 specifies that role r1 is senior to role r2.

Administrative Role-Based Access Control’97 (ARBAC97) [15] controls changes to
RBAC policies. Authority to assign a user to a role is specified using the can assign
relation. Each can assign relation is represented as can assign(ra, c, rt) where ra is
an administrative role, rt is the target role, and c is the prerequisite condition (or pre-
condition) of the rule. The precondition is a conjunction of literals, where each literal
is either r (positive precondition) or ¬r (negative precondition) for some role r. In this
paper, we represent the precondition c as P ∧ ¬N where P contains all positive pre-
conditions in c and N contains all negative preconditions in c. Authority to revoke a
user from a role is specified using the can revoke relation. Each can revoke relation
is represented as can revoke(ra, rt), which specifies that the administrative role ra has
the permission to remove users from the target role rt.

ARBAC97 requires that administrative roles and regular roles are disjoint, i.e., ad-
ministrative roles do not appear in the preconditions and target roles of can assign rules,
as well as target roles of can revoke rules. This restriction is called the separate admin-
istration restriction in [18].

2.2 User-Role Reachability Analysis

The user-role reachability analysis problem asks, given an RBAC policy UA0, an AR-
BAC policy ψ, a set of administrators A, a target user ut, and a set of roles (called the
“goal”), is it possible for administrators in A to assign the user ut to roles in the goal,
under the restrictions imposed by ψ? Under the separate administration restriction, the
problem can be simplified as follows [16]: (1) Because each user’s role memberships
are controlled independently of other users’ role memberships, UA0 is simplified to be
a set of roles assigned to ut. (2) Because administrative roles and regular roles are dis-
joint, it suffices to consider only ARBAC rules whose administrative roles are in A or
are junior to roles in A. As a result, administrative roles in A can be merged into a single
administrative role and all other administrative roles can be eliminated. With the above
simplification, the can assign rule is simplified as can assign(c, rt), the can revoke
rule is simplified as can revoke(rt), and the user-role reachability analysis problem
instance can be represented as a tuple 〈UA0, ψ, goal〉.

Our incremental algorithms are developed upon two analysis algorithms in [18]. Be-
low, we summarize these two algorithms.

The forward algorithm. In the forward algorithm, roles are classified into negative and
non-negative roles, and positive and non-positive roles. A role is negative if it appears

458 M.I. Gofman, R. Luo, and P. Yang

negatively in some precondition in the policy; other roles are non-negative. A role is
positive if it appears in the goal or appears positively in some precondition in the policy;
other roles are non-positive. A role that is both negative and positive is called mixed.

Given a reachability analysis problem instance I = 〈UA0, ψ, goal〉, the algorithm
first performs a slicing transformation, which computes a set of roles that are relevant
to the goal, and eliminates irrelevant roles and rules. A role r is relevant to the goal iff
(1) there exist r1 ∈ goal and can assign(P ∧ ¬N, r1) ∈ ψ such that r ∈ P ∪ N , or
(2) there exist a role r1 ∈ goal, can assign(P ∧¬N, r1) ∈ ψ, and r2 ∈ P such that r is
relevant to r2. Rel+(I) and Rel−(I) are used to denote the set of positive and negative
roles relevant to the goal, respectively.

Next, the algorithm constructs a reduced transition graph G(I) from I and performs
analysis based on G(I). Each state in G(I) is a set of roles assigned to the target user
and each transition describes an allowed change to the state defined by the ARBAC
policy ψ. A transition either has the form ua(r) which adds role r to the state, or has
the form ur(r) which removes role r from the state. The following reductions are ap-
plied: (1) Irrelevant roles and revocable non-positive roles are removed from UA0; the
resulting set of roles is represented as InitRmI(UA0). (2) Transitions that revoke non-
negative roles or add non-positive roles are prohibited because they do not enable any
other transitions; (3) Transitions that add non-negative roles or revoke non-positive roles
are invisible; other transitions are called visible transitions. The invisible transitions will
not disable any other transitions.

Let closure(UA, I) be the largest state that is reachable from state UA by per-
forming invisible transitions enabled from UA using rules in ψ. The algorithm
constructs G(I) as follows. First, the algorithm computes closure(InitRmI(UA0), I),
which is the initial state of G(I). The algorithm then computes states reach-
able from closure(InitRmI(UA0), I): given a state s, there is a transition

s
ua(r)→ closure(s ∪ {r}) if there exists can assign(c, r) ∈ ψ such that r is a mixed

role, s does not contain r, and s satisfies c. There is a transition s
ur(r)→ closure(s\ {r})

if there exists can revoke(r) ∈ ψ such that r is a mixed role, and s contains r. The
algorithm returns true iff a state containing all roles in the goal is reached.

The backward algorithm. The backward algorithm in [18] comprises two stages. The
first stage performs a backward search from the goal and constructs a directed graph

Gb. Each node in Gb is a set of roles. There is an edge V1
〈P∧¬N,T 〉→ V2 in Gb if there

exists a rule can assign(P ∧ ¬N, T) ∈ ψ such that starting from V1, revoking all roles
that appear in N and adding T , results in node V2. The second stage performs a forward
search from the initial nodes in Gb to determine if the goal is reachable. A node V is
an initial node in Gb if V ⊆ UA0. The goal is reachable if there exists a feasible plan
in Gb. A plan corresponds to a path of edges in Gb from the initial node to the node
containing the goal, which is constructed as follows: starting from the initial state, for

each edge V1
〈P∧¬N,T 〉→ V2 in Gb, a plan contains a transition s1

α→ s2 where s1 is a
state corresponding to V1, and α is a sequence of actions that revokes roles in s1 ∩ N
and adds T . A plan is feasible if it does not revoke irrevocable roles.

User-Role Reachability Analysis of Evolving Administrative RBAC 459

To correctly check if Gb contains a feasible plan, each node in Gb is associated with
a set of additional irrevocable roles (airs). airs(V) represents a set of irrevocable roles
that appear in the state corresponding to node V , but not in V itself. Formally, given an

edge V1
〈P∧¬N,T 〉→ V2, airs(V2) is defined as:

{S ∪ ((UA1 \ UA2) ∩ Irrev) | S ∈ airs(UA1), ((UA1 ∩ Irrev) ∪ S) ∩ N = ∅}
Irrev is the set of irrevocable roles in the policy. ((UA1 ∩ Irrev) ∪ S) ∩ N = ∅ is the
condition that needs to be satisfied in order to add T to the state. The goal is reachable
if and only if airs(goal)
= ∅.

3 Incremental Forward Algorithms

This section presents three forward algorithms – IncFwd1, IncFwd2, and LazyInc –
for incremental reachability analysis of ARBAC. We consider the following changes:
(1) add a can assign rule, (2) delete a can assign rule, (3) add a can revoke rule, and
(4) delete a can revoke rule. Because ARBAC with role hierarchy can be transformed
to ARBAC without role hierarchy, this paper considers ARBAC without role hierarchy.

IncFwd1 determines if a change may affect the analysis result, and if so, performs
non-incremental analysis; otherwise, IncFwd1 returns the previous analysis result. In-
cFwd2 reuses the transition graph constructed in the previous analysis and incremen-
tally updates the graph. LazyInc also reuses the graph constructed in the previous analy-
sis, but it does not update the graph until an operation that may affect the analysis result
is performed. IncFwd1 does not require additional disk space. IncFwd2 and LazyInc
require to store the transition graph computed, but are faster than IncFwd1. All three
algorithms have the same worst-case complexity as the non-incremental algorithm.

Let I = 〈UA0, ψ, goal〉 be a user-role reachability analysis problem instance and
G(I) be the transition graph constructed from I using the non-incremental forward al-
gorithm in [18]. Below, we describe the three incremental analysis algorithms in detail.

3.1 Incremental Algorithm: IncFwd1

IncFwd1 is developed based on the following two observations:

– If the analysis result of I is true, then the following changes will not affect the
analysis result: (1) add a can assign rule; (2) add a can revoke rule; (3) delete a
can assign rule whose target role is non-positive or is irrelevant to the goal; and
(4) delete a can revoke rule whose target role is neither a mixed role nor a negative
role in the initial state.

– If the analysis result of I is false, then the following changes will not affect
the result: (1) delete a can assign rule; (2) delete a can revoke rule; (3) add a
can assign rule whose target role is non-positive or is irrelevant to the goal; and
(4) add a can revoke rule whose target role is neither a mixed role nor a negative
role in the initial state.

IncFwd1 uses the slicing transformation result of the previous analysis to determine if
a change may affect the analysis result. If so, IncFwd1 performs re-analysis using the
non-incremental algorithm; otherwise, IncFwd1 incrementally updates the slicing result
and returns the previous analysis result.

460 M.I. Gofman, R. Luo, and P. Yang

1 init′ = closure(InitRmI1(UA0), I1)
2 if goal ⊆ init′ then add init′ to Ginc(I1); return true endif
3 if T ∈ Rel+(I1) ∩ Rel−(I1)
4 W = reached = {init}
5 while W �= ∅ do
6 Remove s from W

7 for s
α→ s1 ∈ G(I) do

8 add s
α→ s1 to Ginc(I1)

9 if goal ⊆ s1 then markUnproc(W ∪ {s}); return true endif
10 if s1 �∈ reached then W = W ∪ {s1}; reached = reached ∪ {s1} endif
11 endfor
12 if T ∈ s then
13 s′ = closure(s \ {T}, I1)
14 if s′ �∈ G(I) then markUnproc({s′}) endif

15 add s
ur(T)→ s′ to Ginc(I1)

16 if goal ⊆ s′ then markUnproc(W); return true endif
17 endif
18 endwhile
19 elseif T ∈ (UA0 ∩ Rel−(I1)) and T �∈ Rel+(I1) then
20 W1 = reached = {〈init, init′〉}
21 while W1 �= ∅ do
22 Remove 〈s, s′〉 from W1

23 for (s α→ s1) ∈ G(I) do
24 s′1 = closure((s1 \ {T}) ∪ (s′ \ s), I1)
25 add s′

α→ s′1 to Ginc(I1)
26 if goal ⊆ s′1 then markUnproc({s′i|〈si, s

′
i〉 ∈ W1} ∪ {s′}); return true endif

27 if 〈s1, s
′
1〉 �∈ reached1 then W1 = W1 ∪ {〈s1, s

′
1〉}; reached1 = reached1 ∪ {〈s1, s

′
1〉} endif

28 endfor
29 if addNewTrans(s, s′) == true then markUnproc({s′i|〈si, s

′
i〉 ∈ W1} ∪ {s′}); return true endif

30 endwhile
31 else return the analysis result of I endif
32 if Ginc(I1) == ∅ then add init′ to Ginc(I1); return false endif
33 process all states marked UnProcessed with non − incremental alg.

Fig. 1. Pseudocode for adding can revoke(T)

3.2 Incremental Algorithm: IncFwd2

IncFwd2 reuses the slicing transformation result and the transition graph computed
in the previous analysis, and incrementally updates the graph. States whose outgoing
transitions are not computed or not computed completely are marked as “UnProcessed”.
If a goal that is reachable in I becomes unreachable after a change is made to the policy,
IncFwd2 performs non-incremental analysis from states that were previously marked as
“UnProcessed”. Let Ginc(I) denote the transition graph computed by IncFwd2 for the
problem instance I . Below, we describe IncFwd2 in detail.

Add a can revoke rule Suppose that can revoke(T) is added to the policy ψ. Let I1 =
〈UA0, ψ ∪ {can revoke(T)}, goal〉. Figure 1 gives the pseudocode for constructing
graph Ginc(I1) from G(I).

Adding a can revoke rule does not change the result of the slicing transformation.
Thus, Rel+(I1) = Rel+(I) and Rel−(I1) = Rel−(I). If T is a mixed role rel-
evant to the goal, the algorithm starts from the initial state init of G(I) and, for
every state containing T , adds a transition ur(T) and marks new target state as

User-Role Reachability Analysis of Evolving Administrative RBAC 461

”UnProcessed” (lines 5 – 18). Otherwise, if T is in UA0 and is both negative and non-
positive, the algorithm replaces init with closure(init \ {T }, I1) and propagates roles
in closure(init \ {T }, I1) \ init to states reachable from init (lines 19–28). Because
different states in Ginc(I1) may be computed from the same state in G(I), the workset
W1 contains pairs of the form 〈s, s′〉 where s ∈ G(I), s′ ∈ Ginc(I1), and s′ is com-
puted from s. The algorithm then calls function addNewTrans to add new transitions
enabled by the rule; this function returns true if a state containing the goal is reached
(line 29). The above process is then repeated on states reachable from init. In other
cases, the transition graph as well as the analysis result remain the same (line 31).

If the goal is reachable, the algorithm calls function markUnproc to mark states in
Ginc(I1), whose outgoing transitions are not computed (i.e., the remaining states in W
or W1) or not computed completely (i.e., the state from which the goal is reached by a
transition), as “UnProcessed” (lines 9, 16, 26, 29). Otherwise, the algorithm processes
all states marked as ”UnProcessed” using the non-incremental algorithm (line 33).

Delete a can revoke rule. Suppose that can revoke(T) is removed from ψ. Let
I2 = 〈UA0, ψ \ {can revoke(T)}, goal〉. Deleting this rule does not change the analy-
sis result if T is not a relevant mixed role and is not a negative role in UA0. Otherwise,
the initial state may change and transitions that revoke T should be deleted. The incre-
mental algorithm is described below.

Deleting a can revoke rule does not change the result of the slicing transformation.
If T is a mixed role relevant to the goal, the algorithm starts from the initial state of
G(I) and deletes transitions that revoke T . If T is in UA0 and is both negative and
non-positive, then after deleting can revoke(T), T should be added back to the initial
state. In this case, the algorithm computes a set RT of roles that may be invalidated by
T . A role r ∈ RT if (1) T is a negative precondition of a can assign rule whose target
role is r or (2) there exists a role r′ ∈ RT such that r′ is a positive precondition of a
can assign rule whose target role is r. If the number of relevant roles in RT , which
are both positive and non-negative, is small, then for every transition s

α→ s1 in G(I)
and state s′ ∈ Ginc(I2) computed from s, the algorithm computes transition s′

α→ s′1
by removing such roles that do not appear in s′ from s1, and computing the closure of
the resulting state. The algorithm also checks if transitions that add mixed roles in RT

are invalidated, and if so, removes the transitions. Otherwise, the algorithm performs
non-incremental analysis as removing a large number of roles from every state may be
more expensive than a complete re-analysis. If the state containing the goal is deleted,
the algorithm performs non-incremental analysis from states marked as ”UnProcessed”.

Add a can assign rule. Suppose that can assign(P ∧¬N, T) is added to the policy ψ.
Let I3 = 〈UA0, ψ ∪ {can assign(P ∧ ¬N, T)}, goal〉. Figure 2 gives the pseudocode
for constructing graph Ginc(I3) from G(I).

If T is non-positive or is irrelevant to the goal, then adding this rule does not change
the transition graph (line 1). Otherwise, the classification of roles may change: (1) An
irrelevant role in I may become relevant in I3; (2) A relevant role that is both positive
and non-negative in I may become a mixed role in I3; and (3) A relevant role that is
both negative and non-positive in I may become a mixed role in I3. In this case, the
algorithm performs incremental slicing to compute Rel+(I3) and Rel−(I3) (function

462 M.I. Gofman, R. Luo, and P. Yang

1 if T �∈ Rel+(I) then return the analysis result of I
2 else
3 〈Rel+(I3), Rel−(I3)〉 = inc slicing()
4 init′ = closure(InitRmI3(UA0), I3)
5 if goal ⊆ init′ then add init′ to Ginc(I3); return true endif
6 RevRoles = ((init′ \ init) ∩ (Rel+(I3) ∩ Rel−(I3)) \ Irrev)
7 PosNonnegToMix = ((Rel+(I) \ Rel−(I)) ∩ (Rel+(I3) ∩ Rel−(I3)))
8 AddRoles = init ∩ PosNonnegToMix
9 if AddRoles ∪ RevRoles �= ∅ then

10 〈answer, lastState〉 = addTransSeq(init, init′,RevRoles,AddRoles)
11 if answer == true then return true else W = reached = {〈init, lastState〉} endif
12 else W = reached = {〈init, init′〉} endif
13 while W �= ∅ do
14 Remove 〈s, s′〉 from W

15 for s
α→ s1 ∈ G(I) do

16 AddRoles = s1 ∩ PosNonnegToMix
17 if AddRoles �= ∅ then
18 〈answer, s′1〉 = addTransSeq(s, s′, ∅, AddRoles)
19 if answer == true then markUnproc({s′j |〈sj , s

′
j〉 ∈ W} ∪ {s′}); return true endif

20 else
21 s′1 = closure(s1 ∪ (s′ \ s), I3)
22 add s′

α→ s′1 to Ginc(I3)
23 if goal ⊆ s′1 then markUnproc({s′j |〈sj , s

′
j〉 ∈ W} ∪ {s′}); return true endif

24 endif
25 if 〈s1, s

′
1〉 �∈ reached then reached = reached ∪ {〈s1, s

′
1〉}; W = W ∪ {〈s1, s

′
1〉} endif

26 endfor
27 if addNewTrans(s′) == true then markUnproc({s′j |〈sj , s

′
j〉 ∈ W} ∪ {s′}); return true endif

28 endwhile
29 if Ginc(I3) == ∅ then add init′ to Ginc(I3); return false endif
30 process all states marked UnProcessed with non − incremental alg.
31 endif

Fig. 2. Pseudocode for adding can assign(P ∧ ¬N, T)

inc slicing in line 3): Rel+(I3) = Rel+(I) ∪ {r|r is a positive role relevant to T }
and Rel−(I3) = Rel−(I) ∪ {r|r is a negative role relevant to T }. The algorithm also
computes a set RelRule of rules, which are sufficient to consider during the incremental
analysis. Let ρ be a can assign rule, target(ρ) be the target role of ρ, and poscond(ρ)
be the set of positive preconditions of ρ. RelRule is defined as follows:

(1) can assign(P ∧ ¬N, T) ∈ RelRule.
(2) a can assign rule ρ ∈ RelRule if

(a) target(ρ) ∈ Rel+(I3) and there exists ρ′ ∈ RelRule such that target(ρ′) ∈
poscond(ρ) or

(b) target(ρ) is a positive role relevant to T .
(3) can revoke(r) ∈ RelRule if r is a mixed role in I3 or is a negative role in UA0.

RelRule consists of (1) the new rule, (2a) relevant can assign rules enabled by the
new rule, (2b) can assign rules that enable the new rule, and (3) can revoke rules
which revoke mixed roles or negative roles in UA0.

Next, the algorithm computes the new initial state init′ =
closure(InitRmI3(UA0), I3) (line 4), which may be different from the initial
state init = closure(InitRmI(UA0), I) of G(I). Theorem 1 gives the relationship
between init′ and init, which enables us to reuse G(I) to construct Ginc(I3).

User-Role Reachability Analysis of Evolving Administrative RBAC 463

Theorem 1. Let init = closure(InitRmI(UA0), I) and init′ =

closure(InitRmI3(UA0), I3). One of the following holds: (1) init = init′;
(2) init′ = closure(init, I3); or (3) init is reachable from init′ through a sequence of transi-

tions: init′
ur(r1)→ s1 . . .

ur(rn)→ sn
ua(rn+1)→ sn+1 . . . sm−1

ua(rm)→ closure(init ∪ sm−1, I3)

where {r1, . . . , rn} are revocable mixed roles in init′ \ init and {rn+1, . . . , rm} are roles in
init \ init′ that are turned from both positive and non-negative to mixed. �

Case (1) states that the initial state does not change after the rule is added. In Case (2),
new roles are added to the initial state, but no roles are turned from both positive and
non-negative to mixed. In these two cases, the algorithm adds roles in init′\init to init
and updates the graph (lines 20–24). In case (3), some roles in init are turned from both
positive and non-negative to mixed (AddRoles in line 8), from irrelevant to relevant, or
from revocable non-positive to mixed (RevRoles in line 6). In this case, the algorithm
calls function addTransSeq (line 10) to add a sequence of transitions from init′ to
closure(init ∪ sm−1, I3), which revokes roles in RevRoles, adds roles in AddRoles,
and marks new states not containing the goal as ”UnProcessed”. This function returns
〈answer, lastState〉 where answer is true if the sequence contains the goal state and
is false otherwise, and lastState is the last state of the sequence.

Finally, the algorithm calls function addNewTrans to add new transitions from init′

(line 27) using rules in RelRule and marks new states as ”UnProcessed”. The above
process is then repeated on states reachable from init.

Delete a can assign rule. Suppose that can assign(P ∧¬N, T) is deleted from policy
ψ. Let I4 = 〈UA0, ψ \ {can assign(P ∧ ¬N, T)}, goal〉. If T is not a positive role
relevant to the goal, then the transition graph remains the same. Otherwise, role T and
roles that are reachable through T may become unreachable. Let AT be a set of roles
that may be reachable through T . A role r is in AT if: (1) T is a positive precondition
of a can assign rule whose target role is r or (2) there exists a role r′ ∈ AT such that
r′ is a positive precondition of a can assign rule whose target role is r.

Deleting can assign(P ∧ ¬N, T) may change the classification of T from mixed
to both positive and non-negative. This occurs when targets of all can assign rules,
which contain T in their negative preconditions, become non-positive after the rule is
deleted. Similarly, roles other than T may change from mixed to both positive and non-
negative (MixtoNonneg), from mixed to both negative and non-positive (MixtoNonpos),
and from relevant to irrelevant (RevtoIrr). Below, we describe the algorithm.

First, the algorithm performs slicing and computes the new initial state init′ =
closure(InitRmI4(UA0), I4). init′ may be different from the initial state init =
closure(InitRmI(UA0), I) of G(I). Theorem 2 gives the relationship between init
and init′, which enables us to reuse G(I) to construct Ginc(I4).
Theorem 2. Let init = closure(InitRmI(UA0), I), init′ =

closure(InitRmI4(UA0), I4), and Invalid = (init \ init′) ∩ (AT ∪ {T}). One of
the following holds: (1) init′ = init; (2) init′ = init \ (RevtoIrr ∪ Invalid ∪ {S ∈
MixtoNonpos |S is revocable}); or (3) G(I) contains the following sequence of transitions:

init
ua(r1)→ s1 . . . sn−1

ua(rn)→ (init′ ∪ (sn−1 ∩ (RevtoIrr ∪ Invalid ∪ MixtoNonpos)))
where {r1, . . . , rn} = (init′ \ init) ∩ MixtoNonneg . �

Case (1) states that the initial state does not change. In Case (2), init does not contain
roles turned from mixed to both positive and non-negative, but may contain roles turned

464 M.I. Gofman, R. Luo, and P. Yang

from relevant to irrelevant, revocable roles turned from mixed to non-positive, or roles
that cannot be rederived after the can assign rule is deleted. In this case, the algorithm
updates the graph from init, removes such roles from init and states reachable from
init, and removes transitions that add or revoke such roles. In case (3), init contains
roles turned from mixed to both positive and non-negative. In this case, the algorithm
identifies the state (init′ ∪ (sn−1 ∩ (RevtoIrr ∪ Invalid ∪ MixtoNonpos))) in G(I).
The algorithm then updates the graph from this state by removing roles in (sn−1 ∩
(RevtoIrr ∪ Invalid ∪ MixtoNonpos)) from this state and all reachable states.

The graph is updated as follows. For every transition s1
α→ s2 in G(I), if α

adds/revokes a role that is turned from mixed to non-positive or if α can no longer
be derived, the algorithm removes the transition. Otherwise, if s2 \ s1 contains T and
T cannot be re-derived, the algorithm removes T and all roles that cannot be derived
without T from s2. If α adds a role that is turned from mixed to both positive and
non-negative, the algorithm removes the transition and updates the graph using a way
similar to (3) of Theorem 2.

3.3 Lazy Incremental Forward Algorithm

This section presents a lazy incremental analysis algorithm that delays updates to the
transition graph until an operation, which may affect the analysis result, is performed.
Due to space constraints, this section presents only the algorithm for the case where
the analysis result of the original policy is true. The case where the analysis result is
false is handled similarly. Let I = 〈UA0, ψ, goal〉 be a reachability analysis problem
instance. The algorithm is described below.

Add a can assign or a can revoke rule. Adding a can assign or a can revoke rule
does not affect the analysis result though it may affect the transition graph. In this
case, we do not update the graph. Instead, we store the rule in a set DelayedRule . This
set will be used to update the transition graph when an operation that may affect the
analysis result is performed.

Delete a can assign or a can revoke rule. Assume that can assign(P ∧ ¬N, T) is
deleted from ψ. If T is not a positive role relevant to the goal, the algorithm returns
true. Otherwise, the algorithm performs the following steps.

Let ψ′ = (ψ\{can assign(P ∧¬N, T)})∪DelayedRule and I ′ = 〈UA0, ψ
′, goal〉.

First, the algorithm computes Rel+(I ′) and Rel−(I ′). The algorithm then updates the
transition graph using the deleted rule and delayed operations that may affect the analy-
sis result after the rule is deleted. Such operations include addition of can assign rules
in DelayedRule whose target roles are in Rel+(I ′), and addition of can revoke rules
in DelayedRule that revoke relevant mixed roles or negative roles in UA0. Finally, the
algorithm updates the graph using one of the following two approaches.

In the first approach, we update every state and transition of the graph by performing
all operations of IncFwd2 described in sections 3.2 with the following difference: when
applying Theorem 1, not all transitions adding roles rn+1, . . . , rm may be enabled in I ′

because some of them may depend on the deleted can assign rule.
In the second approach, the algorithm first considers the operation that deletes

can assign(P ∧ ¬N, T) and applies IncFwd2 for deleting can assign to update the

User-Role Reachability Analysis of Evolving Administrative RBAC 465

graph. If the analysis result changes from true to false, the algorithm updates the graph
using rules in DelayedRule . The graph is updated in a way similar to algorithms in
Figures 1 and 2, but considering multiple added rules.

The second approach is expected to perform better than the first one if the analysis
result does not change after the rule is deleted, and worse otherwise. This is because
in the former case, the graph is processed once, but in the latter case, the graph is
processed twice. Both approaches are expected to perform better than IncFwd2 where
each change is processed individually, because the graph will be processed fewer times
when applying these two approaches. Our implementation adopted the first approach.

Deleting a can revoke rule is handled similarly.

4 Incremental Backward Algorithm

This section presents a backward algorithm for incremental user-role reachability anal-
ysis. Similar to IncFwd2, our backward algorithm uses the graph Gb and the airs com-
puted in the previous analysis to incrementally update the result. Ideas used in IncFwd1
and LazyInc are also applicable to the backward algorithm.

To support efficient incremental analysis, we extend the non-incremental algorithm
as follows: (1) Prior to analysis, we compute a set of roles relevant to the goal, which
enables us to quickly determine if a change to the policy may affect the analysis result.
(2) We store the graph as well as the airs computed in a file. The initial nodes are also
stored, in the order in which they are processed in the second stage. (3) For every node
V , we associate every set of airs(V) with the edge along which the set is computed.
This enables us to quickly identify the set of airs computed from a given edge. (4) If
an edge is processed in the second stage of the algorithm, the edge is marked 1; other-
wise, the edge is marked 0. Let airs′(V) denote the airs of node V computed by the
incremental algorithm. Below, we describe the algorithm.

Add a can revoke rule. Assume that can revoke(T) is added to the policy. Graph Gb

is unaffected and we simply update the airs of nodes from the first initial node V0. Let
rm(T, airs(V)) denote {S − {T }|S ∈ airs(V)}. airs′(V) is computed as follows:

– airs′(V0) = rm(T, airs(V0))

– For every edge V1
〈P∧¬N,r〉→ V2, airs′(V2) is computed as the union of the following sets:

(1) rm(T, airs(V2))

(2) {S ∪ (Irrev ∩ (V2 \ V1))|S ∈ airs′(V1) \ rm(T, airs(V1)),
((Irrev ∩ V1) ∪ S) ∩ N = ∅}

(3) ((T ∈ N)?{(S \ {T}) ∪ (Irrev ∩ (V2 \ V1))|S ∈ airs(V1),
T ∈ S, ((Irrev ∩ V1) ∪ (S \ {T})) ∩ N = ∅} : ∅)

(1) contains airs(V2) with T removed from every set. (2) contains sets of additional
irrevocable roles computed from new sets in airs of V1 along the edge. (3) is computed
from sets in airs(V1) that did not satisfy the negative precondition of the edge because
they contained T ; since T becomes revocable, they are added to airs′(V2).

If the goal is not reachable from V0, we pick up the second initial node and repeat the
above process. If the goal is reachable, the algorithm updates the airs of nodes until it
encounters an edge marked 0. This is because, after a can revoke rule is added, the goal

466 M.I. Gofman, R. Luo, and P. Yang

that was previously unreachable may become reachable and the goal that was previously
reachable may be reached earlier.

Delete a can revoke rule. Suppose that can revoke(T) is deleted from the policy.
Graph Gb remains the same and we simply update the airs of nodes. First, starting
from the first initial node V0, the algorithm searches Gb along edges marked 1, for
nodes whose airs may change. The airs of a node V may change if: (1) T is in the initial
state and V does not contain T ; or (2) there is an edge V ′ α→ V such that T ∈ V ′ and
T
∈ V . If such a node does not exist, the algorithm returns the previous analysis result.
Otherwise, the algorithm updates the airs of the node as well as the airs of all nodes
reachable from this node by edges marked 1 as follows: for every edge e = V1

α→ V2, if
airs′(V1) = airs(V1), then airs′(V2) = airs(V2); otherwise, airs′(V2) is computed
by removing sets in airs(V2) that are computed along e and recomputing airs along
e using the non-incremental algorithm. If an edge marked 0 is encountered, the algo-
rithm computes the set of airs along this edge. If the goal is not reachable from V0, the
algorithm picks up another initial node and repeats the above process.

Add a can assign rule. Suppose that can assign(P ∧¬N, T) is added to the policy. If
T is not a positive role relevant to the goal, the algorithm returns the previous analysis
result; otherwise, the algorithm incrementally updates graph Gb and the airs of nodes.

In the first stage, starting from nodes that contain T , the algorithm computes all
reachable edges enabled by the new rule. For each new edge V

α→ V ′, if V is a node in
Gb and airs(V)
= ∅, V is added to a set affectedNodes. Also, all new initial nodes are
added to a set newInit. The new edges are marked 0, indicating that they have not been
processed in the second stage.

If the previous analysis result is true, the algorithm returns true. Otherwise, the al-
gorithm updates the airs of nodes as follows. For every node V ∈ affectedNodes , it
updates the airs of nodes reachable from V along new edges until a node containing T
is encountered. The algorithm then updates the airs of this node as well as the airs of
all nodes reachable from this node: for every edge V1

α→ V2, the algorithm computes
airs′(V2) by adding sets that are computed from airs′(V1) \ airs(V1) along the edge,
to airs(V2). If airs(goal)
= ∅, the algorithm returns true. Otherwise, the algorithm
computes the airs of nodes reachable from the new initial nodes in newInit .

Delete a can assign rule. Suppose that can assign(P ∧ ¬N, T) is deleted from the
policy. If T is not a positive role relevant to the goal, the algorithm returns the previous
analysis result; otherwise, the algorithm performs the following steps.

First, the algorithm back-chains from the goal and marks the following nodes as valid
nodes: (1) the goal node, and (2) for every edge V1

α→ V2, if α
= 〈P ∧ ¬N, T 〉 and V2

is valid, then V1 is valid. Valid nodes are nodes that remain in the graph after the rule is

deleted. Next, for every edge V1
〈P∧¬N,T 〉→ V2, the algorithm deletes the sets in airs(V2)

that are computed through the edge and adds V2 to a set LT . The algorithm then deletes
all nodes not marked valid, edges containing at least one such node, and edges of the

form V1
〈P∧¬N,T 〉→ V2. Finally, the algorithm updates the airs of nodes reachable from

nodes in LT : for every edge V1
α→ V2, airs′(V2) is computed by removing all sets

from airs(V2) that are computed from airs(V1) \ airs′(V1). If the goal was previously

User-Role Reachability Analysis of Evolving Administrative RBAC 467

reachable but airs′(goal) = ∅, the algorithm computes airs of nodes that have not been
processed using the non-incremental algorithm.

Note that, an alternative (and incorrect) approach to detecting invalidated nodes is
to back-chain from the goal, delete edges computed through the deleted rule, delete
nodes without outgoing edges, and then delete edges that contain deleted nodes. Such
an approach will fail if the graph contains cycles: nodes in a cycle may not be reachable
from the goal node after the rule is deleted, but still contain outgoing edges.

5 Experimental Results

This section presents experimental results of our incremental analysis algorithms. All
reported data were obtained on a 2.5GHz Pentium machine with 4GB RAM.

5.1 Experimental Results: Incremental Forward Analysis Algorithms

We apply the non-incremental and incremental forward algorithms to an ARBAC pol-
icy ψ1 generated using the random policy generation algorithm in [18]. The parameter
values (e.g., the percentage of mixed roles) in ψ1 are similar to those in the university
ARBAC policy developed in [18]. We choose two goals goal1 and goal2 such that goal1
is reachable from the initial state ∅ and goal2 is unreachable, and the size of transition
graphs constructed during analysis is reasonably large. We then randomly generate a
set of operations that add rules to ψ1 or delete rules from ψ1, and use them to compare
the performance of our incremental algorithms against the non-incremental algorithm.

Table 1 compares the execution time of the non-incremental algorithm (NonInc),
IncFwd1, and IncFwd2 for goals goal1 and goal2, when a change is made to policy ψ1.
Each data point reported is an average over 32 randomly generated rules, except for the
case “add can revoke”: because only 10 roles cannot be revoked in ψ1, we generate
only rules that revoke these 10 roles. Columns “States” and “Trans” give the average
number of states and transitions computed using NonInc, respectively.

Results for adding/deleting a can revoke rule. Table 1 shows that, when a
can revoke rule is added, IncFwd2 is 26.39 and 7.52 times faster than NonInc for goal1
and goal2, respectively. When only the 2 rules that revoke mixed roles are considered,
IncFwd2 is 5.88 times faster than NonInc for goal1 and 2.17 times faster than NonInc
for goal2. When considering both goals, IncFwd2 is 10.34 and 1.85 times faster than
IncFwd1 and NonInc, respectively.

When a can revoke rule is deleted, IncFwd2 is 24.51 and 25.76 times faster than
NonInc for goal1 and goal2, respectively. When considering only the 8 rules that revoke

Table 1. Performance results of NonInc, IncFwd1, and IncFwd2 on ψ1 for goals goal1 and goal2

Operation goal1 goal2
States Trans Time(Sec.) States Trans Time(Sec.)

NonInc IncFwd1 IncFwd2 NonInc IncFwd1 IncFwd2
add can assign 30568 233298 103.69 0 13.87 33396 440052 236.19 233.38 160.22

delete can assign 19983 153931 58.07 56.23 13.58 18000 220248 84.38 0 18.2
add can revoke 20866 159290 60.43 0 2.29 19968 247834 97.8 28.23 13.01

delete can revoke 20297 154853 58.59 44.09 2.39 18432 224928 86.81 0 3.37

468 M.I. Gofman, R. Luo, and P. Yang

Table 2. Performance results of NonInc, IncFwd1, IncFwd2, and LazyInc for goal1 and goal2
on ten sequences of operations

Goal States Trans Time(Sec.)
NonInc IncFwd1 IncFwd2 LazyFwd

goal1 30219 240802 110.76 45.75 12.58 6.09
goal2 19176 288142 94.86 34.57 12.41 10.59

mixed roles, IncFwd2 is 6.07 times faster than NonInc for goal1 and 6.41 times faster
than NonInc for goal2. When both goals are considered, IncFwd2 is 25.24 and 7.65
times faster than NonInc and IncFwd1, respectively.

Results for adding/deleting a can assign rule. All can assign rules added/deleted
are relevant to the goal. Observe from Table 1 that, when a can assign rule is added,
IncFwd2 is 7.48 and 1.47 times faster than NonInc for goal1 and goal2, respectively.
This is because, the size of the transition graph increases less significantly for goal1 than
goal2 (160550 vs 440052 transitions). In particular, for one of the 32 rules generated
for goal2, the size of the graph constructed after the rule is added is 10 times the size of
the graph constructed before the rule is added. As a result, IncFwd2 computes a large
number of new states and transitions using the non-incremental algorithm, and hence is
only slightly faster than NonInc for this rule (1868sec vs 1971sec). When considering
both goals, IncFwd2 is 2 and 1.35 times faster than NonInc and IncFwd1, respectively.

When a can assign rule is deleted, IncFwd2 is 4.3 and 4.6 times faster than NonInc
for goals goal1 and goal2, respectively. When both goals are considered, IncFwd2 is
4.48 and 1.77 times faster than NonInc and IncFwd1, respectively.

Results for adding/deleting a sequence of rules. Table 2 compares the performance
of the non-incremental algorithm and three incremental algorithms on 10 sequences of
operations. In every sequence, only the last operation affects the analysis result. The
column “Time” gives the average execution time of the algorithms for each operation.
The results show that, when analyzing policy ψ1 with goal1, for each operation,
LazyInc is 18.18, 7.51, and 2.07 times faster than NonInc, IncFwd1, and IncFwd2,
respectively. When analyzing ψ1 with goal2, for each operation, LazyInc is 8.96, 3.26,
and 1.17 times faster than NonInc, IncFwd1, and IncFwd2, respectively.

Disk space consumption. IncFwd1 does not require additional disk space. The amount
of disk space used in IncFwd2 and LazyInc to store the transition graph is 29.6 MB and
43.8 MB, respectively. This is because: (1) the size of the graph is large; and (2) we
store states for every transition, which results in storing a state multiple times, and the
size of the state is usually large. We expect that, by storing each state only once and
storing the references to states in each transition, we will be able to significantly reduce
the disk space consumption without significantly affecting their performance.

5.2 Experimental Results: Incremental Backward Algorithm

Table 3 compares the execution time of non-incremental and incremental backward
algorithms. The column headings “NonIncBack” and “IncBack” refer to the non-
incremental and incremental algorithm, respectively. We choose a randomly generated

User-Role Reachability Analysis of Evolving Administrative RBAC 469

Table 3. Performance comparison of NonIncBack and IncBack on ψ2 for goal3 and goal4

Operation goal3 goal4
Nodes Edges Time Time Nodes Edges Time Time

(NonIncBack) (IncBack) (NonIncBack) (IncBack)
Stage 1 Stage 2 Stage 1 Stage 2 Stage 1 Stage 2 Stage 1 Stage 2

add can revoke 37053 269878 24.73 23.82 1.06 2.54 12475 66128 3.37 67.28 0.92 17.32
add can assign 37112 285768 25.6 68.47 2.92 0 12481 66355 3.36 44.21 0.97 5.31

delete can revoke 37112 284297 69.89 95.26 0.59 0.32 12481 68199 3.35 91.82 0.15 0.40
delete can assign 37085 283541 25.39 41.83 4.31 0.22 12476 68071 3.56 36.9 1.28 0.16

policy ψ2, two goals goal3 and goal4, and two initial states i3 and i4, so that (1) goal3
is reachable from i3 and goal4 is not reachable from i4; (2) the size of the graph is rea-
sonably large (269889 and 66097 edges for goal3 and goal4, respectively); and (3) both
stages of the algorithm are performed during analysis. The additional amount of disk
space used to store the graph is 15.4 MB and 3.7 MB for goal3 and goal4 respectively.

When a can revoke rule is added or deleted, the graph remains the same. The ex-
ecution time of the first stage of IncBack refers to the time for loading the graph con-
structed in the previous analysis. Table 3 shows that, when a can revoke rule is added,
IncBack is 13.49 and 3.87 times faster than NonIncBack for goal3 and goal4, respec-
tively. When a can revoke rule is deleted, IncBack is 181.48 and 173.04 times faster
than NonIncBack for goal3 and goal4, respectively.

When a can assign rule is added to the policy, IncBack is 32.22 times and 7.57 times
faster than NonIncBack for goal3 and goal4, respectively. When the previous analysis
result is true, IncBack does not perform the second stage and hence the execution time
of the second stage is 0. When a can assign rule is deleted, IncBack is 14.84 and 28.1
times faster than NonIncBack for goal3 and goal4, respectively.

6 Related Work

A number of researchers investigated the problem of analyzing (a subset of) static AR-
BAC policies. In contrast, we consider changes to ARBAC policies. Below, we summa-
rize their work. Li et al. [10] presented algorithms and complexity results for analysis
of two restricted versions of ARBAC97 – AATU and AAR. This work did not consider
negative preconditions in ARBAC policies. Schaad and Moffett [17] used the Alloy
analyzer [7] to check separation of duty properties for ARBAC97. However, they did
not consider preconditions in ARBAC policies. Sasturkar et al. [16] and Jha et al. [8]
presented algorithms and complexity results for analysis of ARBAC policies subject to
a variety of restrictions. Stoller et. al. [18] proposed the first fixed-parameter-tractable
algorithms for analyzing ARBAC policies, which lays the groundwork for incremental
analysis algorithms presented in this paper.

Crampton [2] showed undecidability of reachability analysis for RBAC, whose
changes are controlled by commands consisting of pre-conditions and administrative
operations; some commands are not expressible in the form allowed in ARBAC97 and
some commands use administrative operations that change the ARBAC policy.

Prior works [6,14,9] have also considered changes to access control policies. How-
ever, the changes are not controlled by ARBAC, nor did these work consider changes to

470 M.I. Gofman, R. Luo, and P. Yang

administrative policies. Fisler et al. [3] developed a change-impact analysis algorithm
for RBAC policies based on binary decision diagram (BDD) by computing the seman-
tic difference of two policies and checking properties of the difference. We consider
changes to ARBAC policies, instead of RBAC policies. Furthermore, we also propose
a lazy analysis algorithm.

Incremental computation has been studied in several areas, including deductive
databases, logic programming, and program analysis. However, to the best of our
knowledge, we are the first to develop the incremental algorithms for ARBAC policy
analysis. Gupta [4] incrementally updated materialized views in databases by counting
the number of derivations for each relation. Our approach is more efficient for ana-
lyzing ARBAC policies: we compute each transition only once; counting derivations
would require determining all ways in which a transition can be computed. Gupta et
al. [5] proposed a two-phase delete-rederive algorithm, which first deletes relations that
depend on the deleted relation, and then rederives the deleted relations that have alter-
native derivations. Similar approaches were adapted in [13]. We avoid the rederivation
phase by removing only those roles from the state for which all derivations have been
invalidated. Lu et al. [11] proposed a Straight Delete algorithm (StDel) which elimi-
nates the rederivation phase of delete-rederive algorithm. Direct application of StDel to
ARBAC policy analysis would require storing all derivations for every state and every
transition and, just as with counting, would be less efficient. Conway et. al. [1] de-
veloped algorithms to incrementally update control flow graphs of C programs. Since
ARBAC has no control flow, their algorithms are not directly applicable to our prob-
lem. All aforementioned work, in contrast to our algorithms, computed the exact data
structure. Further, none of them have proposed a lazy algorithm as we do.

7 Conclusion

This paper presents algorithms for incremental user-role reachability analysis of AR-
BAC policies. The incremental algorithms identify changes to the policy that may affect
the analysis result and use the information computed in the previous analysis to update
the result. We have evaluated our incremental algorithms using a set of randomly gener-
ated ARBAC policies and a set of operations that change the policies. Our experimental
data show that our incremental algorithms outperform the non-incremental algorithm in
terms of execution time. We will further optimize the incremental analysis algorithms.
A promising optimization is not to perform operations, which do not affect the analy-
sis result, on the graph. Such operations include operations that remove irrelevant roles
from the graph and operations that change visible transitions to invisible transitions.

Acknowledgement. The authors thank Jian He, Jian Zhang and Arunpriya somasun-
daram for their contributions to the implementation.

References

1. Conway, C., Namjoshi, K., Dams, D., Edwards, S.: Incremental algorithms for inter-
procedural analysis of safety properties. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005.
LNCS, vol. 3576, pp. 449–461. Springer, Heidelberg (2005)

User-Role Reachability Analysis of Evolving Administrative RBAC 471

2. Crampton, J.: Authorizations and antichains, ph.d. thesis, university of london (2002)
3. Fisler, K., Krishnamurthi, S., Meyerovich, L.A., Tschantz, M.C.: Verification and change-

impact analysis of access-control policies. In: International Conference on Software Engi-
neering (ICSE), pp. 196–205 (2005)

4. Gupta, A., Katiyar, D., Mumick, I.S.: Counting solutions to the view maintenance problem.
In: Workshop on Deductive Databases, pp. 185–194 (1992)

5. Gupta, A., Mumick, I.S., Subrahmanian, V.S.: Maintaining views incrementally. In: Interna-
tional Conference on Management of Data, pp. 157–166 (1993)

6. Harrison, M.A., Ruzzo, W.L., Ullman, J.D.: Protection in operating systems. Communica-
tions of the ACM 19(8), 461–471 (1976)

7. Jackson, D., Schechter, I., Shlyakhter, I.: Alcoa: the alloy constraint analyzer, pp. 730–733
(June 2000)

8. Jha, S., Li, N., Tripunitara, M., Wang, Q., Winsborough, W.: Towards formal verification of
role-based access control policies. IEEE Transactions on Dependable and Secure Comput-
ing 5(2) (2008)

9. Jha, S., Reps, T.: Model-checking SPKI-SDSI. Journal of Computer Security 12, 317–353
(2004)

10. Li, N., Tripunitara, M.V.: Security analysis in role-based access control. ACM Transactions
on Information and System Security 9(4), 391–420 (2006)

11. Lu, J., Moerkotte, G., Schu, J., Subrahmanian, V.S.: Efficient maintenance of materialized
mediated views (1995)

12. Sandhu, D.F.F.R., Kuhn, D.R.: The NIST model for role based access control: Towards a
unified standard. In: ACM SACMAT, pp. 47–63 (2000)

13. Saha, D., Ramakrishnan, C.R.: Incremental evaluation of tabled logic programs. In: Interna-
tional Conference on Logic Programming, pp. 392–406 (2003)

14. Sandhu, R.: The typed access matrix model. In: Proc. IEEE Symposium on Security and
Privacy, pp. 122–136 (1992)

15. Sandhu, R., Bhamidipati, V., Munawer, Q.: The ARBAC97 model for role-based administra-
tion of roles. ACM Transactions on Information and Systems Security 2(1), 105–135 (1999)

16. Sasturkar, A., Yang, P., Stoller, S.D., Ramakrishnan, C.: Policy analysis for administrative
role based access control. In: 19th IEEE Computer Security Foundations Workshop (2006)

17. Schaad, A., Moffett, J.D.: A lightweight approach to specification and analysis of role-based
access control extensions. In: Proc.of SACMAT, pp. 13–22 (2002)

18. Stoller, S., Yang, P., Ramakrishnan, C.R., Gofman, M.: Efficient policy analysis for admin-
istrative role based access control. In: ACM CCS, pp. 445–455 (2007)

An Authorization Framework
Resilient to Policy Evaluation Failures

Jason Crampton1 and Michael Huth2

1 Information Security Group, Royal Holloway, University of London
2 Department of Computing, Imperial College London

Abstract. In distributed computer systems, it is possible that the eval-

uation of an authorization policy may suffer unexpected failures, perhaps

because a sub-policy cannot be evaluated or a sub-policy cannot be re-

trieved from some remote repository. Ideally, policy evaluation should

be resilient to such failures and, at the very least, fail “gracefully” if

no decision can be computed. We define syntax and semantics for an

XACML-like policy language. The semantics are incremental and re-

flect different assumptions about the manner in which failures can occur.

Unlike XACML, our language uses simple binary operators to combine

sub-policy decisions. This enables us to characterize those few binary

operators likely to be used in practice, and hence to identify a number

of strategies for optimizing policy evaluation and policy representation.

1 Introduction

Many access control models and systems are policy-based, in the sense that a
request for access to protected resources is evaluated with respect to a policy
that defines which requests are authorized. Many languages have been proposed
for the specification of authorization policies, perhaps the best known being
XACML [4,8,12]. However, it is generally acknowledged that XACML suffers
from having poorly defined and counterintuitive semantics, see e.g. [9,10]. More
formal approaches have provided well-defined semantics and typically use “policy
operators” to construct complex policies from simpler sub-policies [3,5,13].

Each component of an XACML policy has a so-called target, and a policy
is applicable to a request only if said request “matches” that policy’s target.
XACML was designed to operate in heterogeneous, distributed environments,
and XACML “policies” (technically, <PolicySet> elements) may reference sub-
policies (<Policy> or <PolicySet> elements) that may be held in remote repos-
itories. In addition to returning the usual allow and deny decisions, the result of
evaluating an XACML policy may be “not applicable” or “indeterminate”, the
latter since evaluations in open, distributed systems may fail.

There are three practical drawbacks to existing, more formal algebraic ap-
proaches to policy languages: first, it becomes difficult to answer the question
“Is this request authorized?”, which is central to any access-control mechanism;
second, it is difficult to see how practical policies can be written in this way; and
finally, no means of handling policy evaluation failures has been provided.

D. Gritzalis, B. Preneel, and M. Theoharidou (Eds.): ESORICS 2010, LNCS 6345, pp. 472–487, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

An Authorization Framework Resilient to Policy Evaluation Failures 473

Our goal in this paper is to develop a practical authorization language that
is resilient to authorization evaluation failures, supports different assumptions
for when failures may occur, has rigorous semantics, and leads to optimization
of policy evaluation and policy representation. As a side effect, our framework
allows for a simple static analysis that, at times, can fully recover from
evaluation failures. The contributions of our paper include

– the definition of a simple policy language, which introduces the notion of
resolution function for possible decisions;

– a concise characterization of the most commonly used decision-combining
algorithms as binary decision-combining operators;

– the identification of two important classes of decision-combining operators,
and a discussion of their significance for policy specification and evaluation;

– three different and successively more robust semantics for policy evaluation
and a characterization of the failures with which they can cope;

– a description of how our semantics can be implemented and a discussion of
optimizations that can significantly simplify the evaluation of policies.

To reiterate, our framework presented here combines the rigor of the work on
policy algebras (which tends to use binary operators to compose policies and
bottom-up semantics but does not consider evaluation failures or implementa-
tion) with the practicality of the work on XACML and related languages (which
tends to use decision-combining algorithms and top-down policy evaluation but
lacks the rigor of the work on policy algebras). In other words, our contributions
synthesize and extend existing approaches to the specification and evaluation of
authorization languages whilst also dealing with evaluation failures.

In the next section, we define our policy language and discuss how binary
operators can be used to implement decision-combining functions. In Sect. 3, we
define our policy semantics. In Sect. 4, we explain how our formal semantics can
be realized in practice, describe our techniques for optimizing policy evaluation,
and discuss the implications and potential applications of these techniques. We
conclude with a summary of the paper and some discussion of future work in
Sect. 5.

2 A Simple Policy Language

The language we use is rather similar to (core) XACML: policies are built from
other policies, and policies may or may not be applicable to requests. However,
our language is much simpler syntactically, although no less expressive.

We assume that the decisions that may arise from policy evaluation are given
by the set D = {a, d, ⊥}, denoting “allow”,“deny” and “not applicable”, respec-
tively. We assume that two decisions may be combined using any one of the
possible binary operators ⊕ of the form ⊕ : D × D → D. We will write ⊕ using
infix notation: that is, we prefer x ⊕ y to ⊕(x, y).

474 J. Crampton and M. Huth

Policy Syntax. Atomic policies have the form (π, a, φ) or (π, d, φ), where
π is used to determine the applicability of the policy and φ is a possible-
decisions resolution-function of type 2D → 2D. If p1 and p2 are policies, then
(π, p1, p2, ⊕, φ) is a policy, where ⊕ : D × D → D is a sub-decision combining-
operator. Henceforth, we will usually refer to φ as a resolution function and ⊕
as a decision operator. We describe resolution functions and decision operators
in more detail later in this section.

Policy Applicability. Informally, when evaluating a request q with respect to
some policy p, we first determine whether p is applicable to q. The role of π in
our policy language is similar to that of <Target> and <Condition> elements in
XACML rules and policies [12], or of access predicates in [6]. We refer to π as
the applicability predicate.1

Hence, to build an access control mechanism, we need a language for defining
the applicability predicate and a method for evaluating whether a request sat-
isfies the predicate. In XACML, for example, the syntax for defining <Target>
and <Condition> elements forms part of the core language and the evaluation
method forms part of the implementation of the policy decision point (PDP).
While these issues are certainly important, the concern of this paper is how to
evaluate policies under the assumption that such tools are available.

Decision Operators. We assume that any policy either has no “child” poli-
cies (as in policies of the form (π, x, φ), where x ∈ {a, d}), or exactly two child
policies. Equivalently, we assume that all decision operators are binary opera-
tors. There are two main reasons for this choice. First, the three most common
methods used to combine a set of decisions – allow-overrides, deny-overrides and
first-applicable [12] – can all be realized using binary operators. Consider, for
example, the family of allow-overrides functions AOn : Dn → D, n � 2, where

AOn(x1, . . . , xn) =

⎧⎪⎪⎨⎪⎪⎩
a if xi = a for some i,

⊥ if xi = ⊥ for all i,

d otherwise.

Then it is easy to see that for any n � 2, AOn(x1, . . . , xn) = (. . . (x1∨x2)∨. . . xn),
where ∨ is defined below in Fig. 1. Similar results hold for deny-overrides and
first-applicable. Second, it is very simple to characterize binary operators and
this provides many opportunities for optimizing policy evaluation (as we shall
see in Sect. 4). We classify operators using the following definitions.

Definition 1. Let ⊕ : D × D → D be a decision operator.
– If x ⊕ x = x for all x ∈ D, then we say ⊕ is idempotent.
– If x ⊕ ⊥ = x = ⊥ ⊕ x for all x ∈ D, then we say ⊕ is a ∪-operator.
– If x ⊕ ⊥ = ⊥ = ⊥ ⊕ x for all x ∈ D, then we say ⊕ is an ∩-operator.
– We say ⊕ is well-behaved if it is either a ∪- or an ∩-operator.

1 If one were to use XACML syntax in order to define our applicability predicate, then

our atomic policies would be analogous to XACML rules, and policies of the form

(π, p1, p2,⊕, φ) would be analogous to XACML policies and policy sets.

An Authorization Framework Resilient to Policy Evaluation Failures 475

Idempotent operators are a natural choice, as idempotency is expected when
composing access-control decisions. In total, there are 36 = 729 possible idem-
potent, binary operators. However, far fewer operators are of practical interest.
In Sect. 4, we consider how restricting attention to idempotent, well-behaved
operators can considerably simplify policy evaluation.

An idempotent, well-behaved decision operator is uniquely defined by the
choices of x ⊕ ⊥, a ⊕ d and d ⊕ a. If we assume that ⊕ is commutative, then
there are only six possible choices for ⊕ (and only four if we assume that a⊕d ∈
{a, d}). The decision tables for two of the four commutative, idempotent, well-
behaved binary operators such that a ⊕ d ∈ {a, d} are shown Fig. 1 as ∨ and
∧. As we noted above, the operator ∨ has the same effect as the allow-overrides
policy-combining algorithm in XACML, while ∧ has the same effect as the deny-
overrides algorithm.2 If ⊕ is not commutative, then there are 18 possible choices
for ⊕ (and eight choices if a ⊕ d ∈ {a, d} and d ⊕ a ∈ {a, d}).

The other binary operators shown in Fig. 1 are: ∨′ and ∧′, the ∩-operator
analogues of ∨ and ∧; and the non-commutative, “first-applicable”, ∪-operator
�, which returns the first conclusive decision (a or d).

∧ a d ⊥
a a d a

d d d d

⊥ a d ⊥

∨ a d ⊥
a a a a

d a d d

⊥ a d ⊥

∧′ a d ⊥
a a d ⊥
d d d ⊥
⊥ ⊥ ⊥ ⊥

∨′ a d ⊥
a a a ⊥
d a d ⊥
⊥ ⊥ ⊥ ⊥

� a d ⊥
a a a a

d d d d

⊥ a d ⊥

Fig. 1. Decision tables for some binary operators

Resolution Functions. In Sect. 3 we define three different semantics for poli-
cies, which specify how a policy should be evaluated. Two of these evaluation
methods handle exceptional events by considering different possible outcomes,
which leads to the possibility of policy evaluation returning a set of possible
decisions, rather than a single decision, as is more usual in access-control mech-
anisms. The express purpose of the resolution function φ is to modify the set of
possible outcomes.

In many cases, φ will be the identity function ι, where ι(X) = X for all
X ⊆ D. We will simply omit φ if φ = ι (as will be the case in most subsequent
examples). However, we would expect that the top-level policy would define φ
so that for all X ⊆ D, φ(X) = {x} for some x ∈ {a, d, ⊥}. In other words,
evaluation of the top-level policy always results in a single response.

As for decision operators, very few resolution functions will be of practical
relevance. For a policy (π, p1, p2, ⊕, φ), we might expect φ to be “semantically
related” to ⊕: if ⊕ is ∨ (allow-overrides), for example, we might define φ(X) =
{a} if a ∈ X and φ(X) = X otherwise. However, it must be stressed that X
represents a set of possible outcomes and (even when ⊕ equals ∨) it is probably
prudent to be conservative and define
2 Interpreting a as 1 and d as 0, x∧y is analogous to logical AND (when x, y ∈ {a, d})

and ∨ is analogous to logical OR.

476 J. Crampton and M. Huth

φ(X) =

⎧⎪⎪⎨⎪⎪⎩
{d} if d ∈ X,

{⊥} if ⊥ ∈ X,

{a} otherwise.

Policy Trees. A policy tree is a convenient way of visualizing a policy and can
be constructed recursively from a policy. A policy of the form (π, p1, p2, ⊕, φ) has
a tree with root node (π, ⊕, φ) and two child sub-trees p1 and p2. A policy of the
form (π, x, φ), where x ∈ {a, d}, is a leaf node (π, x, φ). Consider, for example,
the policy

(π5, (π3, (π1, a), (π2, d), ∧), (π4, a), ∨),

whose policy tree is shown in Fig. 5(a). Henceforth, we will tend to use this tree
representation of policies.

3 Policy Semantics

Policies are used to evaluate whether an access request is authorized. When a pol-
icy is evaluated, one first checks whether the policy is applicable to the request,
which will be determined by the request and π. Under normal circumstances,
the evaluation of the applicability of a policy returns either true or false.

However, if we wish to account for exceptional circumstances – perhaps it
is not possible to retrieve certain information due to communication, software
or hardware failures, or perhaps the request is malformed – then it may not be
possible to evaluate some component of a policy. As we noted above, it is natural
to then consider the possible outcomes that could have arisen from evaluating
the policy. We use a resolution function φ to combine these possible outcomes.

The evaluation of policy p = (π, p1, p2, ⊕, φ) at request q is determined by

– the applicability of the policy to q (π);
– the evaluation of the sub-policies of p (p1 and p2) at q;
– the method by which evaluation results of the sub-policies are combined (⊕);
– the combination of different possible evaluations of p (using φ).

We wish to account for indeterminacy that might arise in the evaluation of
policy applicability and in the retrieval of policies. To this end, we consider the
following possibilities.

1. Normal evaluation, where all policy components can be retrieved and the
applicability of all sub-policies can be determined.

2. Indeterminate applicability of sub-policies, where all sub-policies can be re-
trieved, but the applicability of a sub-policy may be impossible to determine.

3. Indeterminate applicability or non-retrievability of some sub-policies.

The second and third items account for differing types of exceptional behavior
that might occur during policy evaluation. These differences are reflected in the
evaluation of the parent policy.

An Authorization Framework Resilient to Policy Evaluation Failures 477

In the presence of indeterminacy, we adopt a conservative evaluation strategy
and consider all possible outcomes. If the applicability of a sub-policy cannot be
determined, then we consider two possibilities when evaluating the parent policy:
that the sub-policy was applicable and that the sub-policy was not applicable.
If a sub-policy cannot be retrieved, then we consider three possibilities: that the
sub-policy was applicable and returned a, that the sub-policy was applicable
and returned d, and that the sub-policy was not applicable. We use φ to modify
the set of possible outcomes: φ could, for example, reduce a set of two or more
possible outcomes to a single outcome.

Below, we treat the three assumptions on evaluation failures separately, but
we prove that in each case the semantics are extended in such a way that the
semantics for simpler assumptions are preserved (see Proposition 1, for example).

Our technical development assumes the existence of an evaluation function
e that determines whether policy p is applicable to request q. We define three
methods of evaluation for policies, corresponding to the failure assumptions iden-
tified above. We refer to them as Type 1, 2 and 3 semantics, respectively.

For a policy p, we write [[p]]i(q) to mean the result of evaluating p at point q
using Type i semantics. We write [[p]]i = [[p′]]i if and only if for all requests q,
we have e(p, q) = e(p′, q) and [[p]]i(q) = [[p′]]i(q).

Type 1 Semantics. In this case, we assume that for all policies p and all
requests q, either e(p, q) = true or e(p, q) = false. Henceforth, we write t and f
for true and false, respectively.

Our Type 1 semantics is depicted in Fig. 2. An alternative form of the same
semantics, explained in the next section, is given in Fig. 3(a).

[[(π, p1, p2,⊕), φ]]1(q) =

{
[[p1]]1(q) ⊕ [[p2]]1(q) if e(p, q) = t,

⊥ otherwise;

[[(π, x, φ)]]1(q) =

{
x if e(p, q) = t and x ∈ {a, d},
⊥ otherwise.

Fig. 2. Type 1 semantics

Note that for all policies p and all requests q, we have that [[p]]1(q) ∈ {a, d, ⊥}.
This can be proved by a simple induction on the depth of the policy tree.

Type 2 Semantics. For ease of exposition (and to aid implementation), we
introduce a “dummy” policy that is applicable to every request: if p is a policy,
then p̂ is a policy that is identical to p except that π is replaced with the reserved
word t. Hence:

– if p = (π, x, φ), where x ∈ {a, d}, then p̂
def= (t, x, φ);

– if p = (π, p1, p2, ⊕, φ), then p̂
def= (t, p1, p2, ⊕, φ).

By definition, e(p̂, q) = t for all policies p and all requests q.

478 J. Crampton and M. Huth

Type 2 policy semantics are presented in Fig. 3(b). Note that we can also
define Type 1 semantics for p using p̂ as shown in Fig. 3(a). The uniform pre-
sentation of the semantics in Fig. 3 illustrates how Type 2 semantics are related
to Type 1, and how Type 3 are related to Type 2.

In defining Type 2 semantics, we do not assume that e(p, q) takes a unique
value in {t, f}. Hence, we must provide a method of evaluating p if e(p, q) �= t
and e(p, q) �= f. In this case, we consider two possible evaluations of the policy
tree: one when the policy is applicable and one when the policy is not (when
the response is ⊥). In Fig. 3(b), we see that [[p]]2(q) introduces a third option
to explicitly handle this possibility.

Now, of course, the evaluation of a policy may return a set of possible re-
sponses, rather than a single response. Hence [[p]]2 returns a set of responses, to
which the resolution function φ is applied.

Note that for Type 2 and Type 3 semantics, we have assumed that for all
φ and all x ∈ D, φ({x}) = {x}, the intuition being that if the evaluation of a

[[p]]1(q) =

{
[[p̂]]1(q) if e(p, q) = t,

⊥ otherwise;

[[p̂]]1(q) =

{
[[p1]]1(q) ⊕ [[p2]]1(q) if p = (π, p1, p2,⊕, φ),

x if p = (π, x, φ), x ∈ {a, d}.
(a) Type 1

[[p]]2(q) =

⎧⎪⎪⎨⎪⎪⎩
{[[p̂]]2(q)} if e(p, q) = t,

{⊥} if e(p, q) = f,

φ({⊥} ∪ {[[p̂]]2(q)}) otherwise;

[[p̂]]2(q) =

{
φ({x ⊕ y : x ∈ [[p1]]2(q), y ∈ [[p2]]2(q)}) if p = (π, p1, p2,⊕, φ),

{x} if p = (π, x, φ), x ∈ {a, d}.
(b) Type 2

[[p]]3(q) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
{a, d,⊥} if p cannot be retrieved,

{[[p̂]]3(q)} if e(p, q) = t,

{⊥} if e(p, q) = f,

φ({⊥} ∪ {[[p̂]]3(q)}) otherwise;

[[p̂]]3(q) =

{
φ({x ⊕ y : x ∈ [[p1]]3(q), y ∈ [[p2]]3(q)}) if p = (π, p1, p2,⊕, φ),

{x} if p = (π, x, φ), x ∈ {a, d}.
(c) Type 3

Fig. 3. Three types of policy semantics corresponding to our three failure assumptions

An Authorization Framework Resilient to Policy Evaluation Failures 479

policy returns a single outcome, then φ should return that outcome unmodified.
Then Type 2 semantics are an extension of Type 1 semantics, and preserve Type
1 semantics in the following sense.

Proposition 1. Let p be any policy comprising sub-policies p1, . . . , pk and let
e(p, q) ∈ {t, f} and e(pi, q) ∈ {t, f} for all i. Then [[p]]2(q) = {[[p]]1(q)}.
Proof. By induction on the depth of the policy tree. Consider the base case when
the tree has depth 1, whence p = (π, x, φ) for some x ∈ {a, d}. Then [[p]]1(q) = x
if e(p, q) = t and [[p]]1(q) = ⊥ otherwise. Now, by assumption, e(p, q) is known.
Therefore, [[p]]2(q) = [[p̂]]2(q) = {x} if e(p, q) = t, and [[p]]2(q) = {⊥} if e(p, q) =
f. Hence the result holds if the tree has depth 1.

Now suppose that the result holds for all trees of depth less than or equal
to n and suppose the tree for p = (π, p1, p2, ⊕, φ) has depth n + 1. Then, by
assumption, e(p, q), e(p1, q), e(p2, q) ∈ {t, f}. Moreover,

[[p]]1(q) =

{
[[p1]]1(q) ⊕ [[p2]]1(q) if e(p, q) = t,

⊥ otherwise.

Now let us consider [[p]]2(q). If e(p, q) = t, then [[p]]2(q) equals [[p̂]]2(q) =
φ({x ⊕ y : x ∈ [[p1]]2(q), y ∈ [[p2]]2(q)}). By the inductive hypothesis [[p1]]2(q) =
{[[p1]]1(q)} and [[p2]]2(q) = {[[p2]]1(q)}. Hence,

[[p]]2(q) = φ({x ⊕ y : x ∈ [[p1]]2(q), y ∈ [[p2]]2(q)})
= φ({[[p1]]2(q) ⊕ [[p2]]2(q)})
= {[[p1]]2(q) ⊕ [[p2]]2(q)}
= {[[p]]1(q)}

Alternatively, if e(p, q) = f then [[p]]2(q) = {⊥} = {[[p]]1(q)}. Hence, the result
follows by induction. ��
In other words, if the applicability of all component policies can be determined,
then the evaluation of p with respect to Type 2 semantics returns a unique
response which is that obtained by using Type 1 semantics.

Type 3 Semantics. In this case, we do not assume that we can always retrieve
a sub-policy, so it may be the case that we have no sub-policy to evaluate. We can
still attempt to evaluate the root policy by considering all possible responses that
could be returned by that sub-policy. This is reflected in the Type 3 semantics
illustrated in Fig. 3(c), where the evaluation of a policy p simply returns the set
{a, d, ⊥} if p cannot be retrieved.

It is very easy to see that if all policies can be retrieved, the evaluation of
a policy will be the same whether Type 2 or Type 3 semantics are used. More
formally, we have the following result.

Proposition 2. Let p be any policy comprising sub-policies p1, . . . , pk and sup-
pose that it has been possible to retrieve all p, p1, . . . , pk. Then [[p]]3(q) = [[p]]2(q).

Proof. Since we assume that all policies are retrievable, the result follows directly
from the definitions of Type 2 and Type 3 semantics. ��

480 J. Crampton and M. Huth

4 Policy Evaluation

In this section, we consider several evaluation strategies that realize the seman-
tics defined in the previous section. We first present a simple algorithm that can
be used to implement Type 1 and Type 2 semantics.

Näıve Algorithm. We can implement Type 2 semantics directly using an
algorithm of the form shown in Fig. 4. We assume that a tree representation of
the entire policy can always be constructed. (In other words, Type 2 semantics
are sufficient to derive a decision.) The function evaluateTree(,) takes a pointer
to the root of the policy tree and a request and returns the set of possible
authorization decisions for that request with respect to the policy tree. The
function evaluateApplicability (,) determines whether a policy is applicable to a
request (in other words, it is a realization of the function e used in the previous
section), taking a policy and a request as input and returning t, f or neither.

We assume each node in a policy tree has form (π, lptr , rptr , effect , φ), where
effect may be a decision a or d or it may be a decision operator ⊕. Hence,
we model a policy of the form (π, a, φ), for example, as (π, null, null, a, φ), and
(π, p1, p2, ⊕, φ) as (π, lptr , rptr , ⊕, φ). In an attempt to keep the pseudo-code
easy to read, we refer directly to the components of a node, so we write π in
preference to p.π or p → π, for example.

[Inputs: pointer to policy tree p; request q]
[Outputs: set of decisions]

evaluateTree(p, q)
if (π == t) then

if (lptr == null) and (rptr == null) then
return {effect}

else
X = evaluateTree(lptr , q)
Y = evaluateTree(rptr , q)
result = ∅
for all x ∈ X

for all y ∈ Y
result = result ∪ {x ⊕ y}

return φ(result)
else

if (evaluateApplicability(π, q) == t) then
π = t
evaluateTree(p, q)

else-if (evaluateApplicability(π, q) == f) then
return {⊥}

else
π = t
return φ({⊥} ∪ evaluateTree(p, q))

Fig. 4. A possible implementation of Type 2 semantics

Let us now consider the evaluation of the policy illustrated in Fig. 5(a), where
the operators ∧ and ∨ are as defined in Fig. 1. We will write pi to refer to the

An Authorization Framework Resilient to Policy Evaluation Failures 481

policy (sub-)tree with root (πi, ⊕i). (The indices assigned to the node identifiers
correspond to a post-order traversal [1] of the tree.)

An evaluation tree (for request q) is obtained by labeling each node of the
policy tree with its applicability (with respect to q) and its response.

Let us now consider the effect of evaluating a request for which we cannot
decide whether certain policies are applicable or not. First, if e(p2, q) �= t and
e(p2, q) �= f, with all other policies being applicable, then p2 returns the set of
(possible) responses {d, ⊥}. Then a ∧ ⊥ = a and a ∧ d = d, which means that p3

returns {d, ⊥}. Hence, p5 returns {a}. This example is illustrated in Fig. 5(b).
Finally, suppose that e(p3, q) �= t and e(p3, q) �= f, the applicability of other

policies being shown in Fig. 5(c). Then we evaluate p1 and p2 and combine
the results using ∧ to obtain d. To this we add the response ⊥ to account for
the possibility that p3 may not have been applicable. Hence, the set of possible
responses for p3 is {d, ⊥}. If e(p4, q) = f (as shown in Fig. 5(c)), then p5 returns
{d, ⊥}. If e(p4, q) = t (not illustrated), then p5 returns {a}.

Well-Behaved Operators. A policy p = (π, p1, p2, ⊕, φ) may not return a
conclusive decision (a or d) even if p is applicable, because neither p1 nor p2 may
be applicable. There are two standard interpretations of what might be termed
the “effective applicability” of a policy p = (π, p1, p2, ⊕, φ).
1. One is to regard p as being effectively applicable to every request for which

p is applicable and at least one of p1 or p2 is applicable, as in XACML.
2. The other is to regard p as being applicable to a request only if p, p1 and p2

are all applicable.
In the first case, [[p]](q) is defined if e(p, q) = t and either e(p1, q) = t or e(p2, q) =
t. In the second case, [[p]](q) is defined if e(p, q) = e(p1, q) = e(p2, q) = t.
This interpretation appears in several papers on “policy algebras” (see [5], for
example). In both cases, if the policy p is applicable to request q, then the
decision returned by the policy is [[p1]] ⊕ [[p2]].

In fact, each of these interpretations can be realized provided ⊕ is chosen
appropriately. If we want the first interpretation, then we ensure that for all
x ∈ {⊥, a, d}, x ⊕ ⊥ = ⊥ ⊕ x = x. That is, ⊕ is a ∪-operator. A ∪-operator
effectively ignores all ⊥ values, ensuring that p will return a value whenever at
least one of p1 or p2 is applicable. All the standard policy-combining algorithms

�
(π5,∨)

�
�

�
�

�
�

�
��(π3,∧)

�
�

�
�

�
�
�
�

�(π4, a)

�(π1, a) �(π2, d)

(a) The policy tree

�{a}�t
�

�
�

�

�
�

�
��{a, d}�t

�
�

�
�

�
�
�
�

�{a}�t

�{a}�t �{d,⊥}�?

(b) e(p2, q) = ?

�{d,⊥}�t
�

�
�

�

�
�

�
��{d,⊥}�?

�
�

�
�

�
�
�
�

�{⊥}�f

�{a}�t �{d}�t

(c) e(p3, q) = ?; e(p4, q) = f

Fig. 5. Policy and evaluation trees for policy (π5, (π3, (π1, a), (π2, d),∧), (π4, a),∨)

482 J. Crampton and M. Huth

in XACML [12] have this behavior. If ⊕ is a ∪-operator, then we say any p of
the form (·, ·, ·, ⊕, ·) is a ∪-policy.

If we want the second interpretation, then we ensure that for all x, x ⊕ ⊥ =
⊥ ⊕ x = ⊥. That is, ⊕ is a ∩-operator, which has the effect of returning ⊥
whenever at least one of p1 or p2 is not applicable. If ⊕ has this property, then
we say any p of the form (·, ·, ·, ⊕, ·) is an ∩-policy.

Optimizing Policy Evaluation. We now show how a policy evaluation tree
can be pruned, without changing its meaning, when the decision operators
are known to be well-behaved (and all sub-policies can be retrieved). Sup-
pose that p uses the identity resolution function, and so p = (π, p1, p2, ⊕).
Table 1 illustrates the evaluation of p given the applicability of p, p1 and
p2, and the nature of ⊕. Abusing notation slightly, we write [[p1]] ⊕ [[p2]] for
{x1 ⊕ x2 : x1 ∈ [[p1]], x2 ∈ [[p2]]}. We write “−” to denote that the applicability
of a sub-policy is irrelevant to the evaluation of p.

Table 1. Optimized evaluation of p = (π, p1, p2,⊕) when ⊕ is well-behaved

Applicability [[p]]

p p1 p2 ∪-operator ∩-operator

t t t [[p1]] ⊕ [[p2]] [[p1]] ⊕ [[p2]]

t t f [[p1]] {⊥}
t f t [[p2]] {⊥}
t f f {⊥} {⊥}
t t ? ([[p1]] ⊕ [[p2]]) ∪ [[p1]] {⊥} ∪ ([[p1]] ⊕ [[p2]])

t ? t ([[p1]] ⊕ [[p1]]) ∪ [[p2]] {⊥} ∪ ([[p1]] ⊕ [[p2]])

t ? ? ([[p1]] ⊕ [[p2]]) ∪ [[p1]] ∪ [[p2]] ∪ {⊥} {⊥} ∪ ([[p1]] ⊕ [[p2]])

t f ? {⊥} ∪ [[p2]] {⊥}
t ? f {⊥} ∪ [[p1]] {⊥}
? − − {⊥} ∪ ([[p1]] ⊕ [[p2]]) {⊥} ∪ ([[p1]] ⊕ [[p2]])

f − − {⊥} {⊥}

Given a request, we now assume the applicability of every sub-policy is first
evaluated. We can then apply re-writing rules to the policy-evaluation tree on the
basis of the applicability of each sub-policy and the semantics shown in Table 1.
To illustrate this point, we define and prove the correctness of one such re-write
rule in Proposition 3. Similar results exist for the other re-writing rules, but are
omitted due to space constraints.

Proposition 3. Let p = (π, p1, p2, ⊕), where ⊕ is well-behaved, and let q be a
request such that e(p, q) = e(p1, q) = t and e(p2, q) = f. Then

[[p]]2(q) =

{
{⊥} if ⊕ is an ∩-operator,

{[[p1]]2(q)} if ⊕ is a ∪-operator.

An Authorization Framework Resilient to Policy Evaluation Failures 483

Proof. By definition, [[p]]2(q) = {x ⊕ ⊥ : x ∈ [[p1]]2(q)}. If ⊕ is an ∩-operator,
then x ⊕ ⊥ = ⊥ for all x ∈ {a, d, ⊥}; hence [[p]]2(q) = {⊥}. If ⊕ is a ∪-operator,
then x ⊕ ⊥ = x for all x ∈ {a, d, ⊥}; hence [[p]]2(q) = [[p1]]2(q). ��

Using these re-writing rules we can simplify the evaluation of a policy consid-
erably. Also, these re-writing rules can be implemented easily using a recursive
post-order tree traversal algorithm. To illustrate, consider the policy represented
by the tree in Fig. 6(a), where each node has been assigned an identifier of the
form pi to facilitate explanation. (The indices assigned to the node identifiers
correspond to a post-order traversal of the tree.) The applicability of each sub-
policy for some request q is indicated to the left of each node.

If all decision operators are ∩-operators, then we can simplify this evaluation
tree for q to a single node comprising a non-applicable policy. This is because
p2 is not applicable (since one of its children is not applicable), which in turn
means that p4 and p5 are not applicable.

The simplified policy-evaluation tree, when all operators are ∪-operators, is
shown in Fig. 6(b). The sub-tree rooted at policy p9 reduces to an evaluation
of p7 and the evaluation of p7 reduces to an evaluation of p5. Suppose that the
(relevant) leaf policies are p0 = (π0, a), p5 = (π5, a) and p9 = (π9, d). Let ⊕i

denote the decision operator for the policy at node pi. Now x⊕i ⊥ = ⊥⊕xi = x
for all operators ⊕i in the policy tree (since, by assumption, ⊕i is a ∪-operator)
and assuming that ⊕i is idempotent, we have [[p0]]2(q) = {a}, [[p5]]2(q) = {⊥, a},
[[p9]]2(q) = {⊥, d} and [[p11]]2(q) = {⊥, a, d, a ⊕11 d} from which we obtain

[[p12]]2(q) = {a, a ⊕12 a, a ⊕12 d, a ⊕12 (a ⊕11 d)}
= {a, a ⊕12 d, a ⊕12 (a ⊕11 d)} .

By specifying ⊕11 and ⊕12 we can compute [[p12]]2(q). For example:

[[p12]]2(q) =

{
{a} if ⊕12 = ∨,

{a, d} if ⊕12 = ∧.

Thus one may derive a conclusive decision for p (namely {a} in the case that
⊕12 = ∧) even if the applicability of some sub-policies cannot be determined.

In practice, all decision operators are likely to be well-behaved. Indeed, all the
standard policy-combining algorithms in XACML (the equivalent of our decision
operators) are ∪-operators. Note that we neither require that all operators in
the policy tree are ∪-operators nor that they are all ∩-operators in order to use
our re-write rules, simply that they are all well-behaved.

Under the assumption that all decision operators are well-behaved, it is always
possible to perform tree re-writing, thereby simplifying policy evaluation. A flag
in each policy could indicate if it is a ∪- or an ∩-policy, thereby indicating how
⊕ should treat the ⊥ value. This provides sufficient information to re-write the
evaluation tree and means that we only need to define x ⊕ y for x, y ∈ {a, d}.

Indeed, recalling the discussion in Sect. 2, we can completely specify any idem-
potent, well-behaved operator with three pieces of information: a flag indicating

484 J. Crampton and M. Huth

�p12�t�
�

�
�

�

�
�

�
�

��p4�t
�

�
�

�

�
�
�
�

�p11�t
�

�
�

�

�
�
�
��p2�t

�
�

�
�

�
�
�
�

�p3�f �p9�t
�

�
�

�

�
�
�
�

�p10�?

�p0�t �p1�f �p7�?
�

�
�

�

�
�
�
�

�p8�f

�p5�t �p6�f

(a) Policy tree and applicability

�p12�t�
�

�
�

�

�
�

�
�

��p0�t �p11�t
�

�
�

�

�
�
�
��p5�? �p10�?

(b) Evaluation tree for ∪-operators

Fig. 6. Policy evaluation by tree re-writing

whether it is a ∪- or ∩-operator, the value of a ⊕ d and the value of d ⊕ a. This
information can be included in the policy definition (rather than providing a
pointer to a decision table) and used directly by the evaluateTree(,) function.

Partial Evaluation Trees. Type 3 semantics are only relevant when we are
unable to build a complete policy tree. Such a situation could arise when policies
are not self-contained, in the sense that they may reference sub-policies stored
in remote repositories.

Under these operating assumptions, we build an evaluation tree at request
evaluation time. This evaluation tree may not be isomorphic to the policy tree,
since some policy (that would give rise to sub-trees) may not be retrievable at
evaluation time. In constructing the evaluation tree, we label the nodes with an
applicability value (if possible) or with the decision set {a, d, ⊥} otherwise.

To illustrate, let us evaluate the policy depicted in Fig. 6 for request q under
assumption that we cannot retrieve policy p9. Then we construct the (partial)
evaluation tree shown in Fig. 7(a). If all operators are ∪-operators, we can re-
write this evaluation tree to obtain the tree shown in Fig. 7(b).

Then we have

[[p11]]3(q) = {a ⊕11 d, d ⊕11 d, ⊥ ⊕11 d} = {a ⊕11 d, d} ;
[[p12]]3(q) = {a ⊕12 (a ⊕11 d), a ⊕12 d} .

Assuming that ⊕11 and ⊕12 belong to {∨, ∧}, it can be shown that [[p12]]3(q) is
a conclusive decision, except when ⊕12 = ∧ and ⊕11 = ∨.

Applications. The fact that we can obtain conclusive results from a partial
evaluation of a policy opens up interesting possibilities. We sketch two of them
here briefly.

A first application is an access-control architecture in which there are two
PDPs: one is co-located with the policy-evaluation point (PEP) and is used to

An Authorization Framework Resilient to Policy Evaluation Failures 485

�t�p12
�

�
�

�
�

	
	

	
	

	�t�p4

�
�

�
�

�
�
�
�

�t�p11

�
�

�
�

�
�
�
��t�p2

�
�

�
�

�
�
�
�

�f�p3 �−�{a, d,⊥} �t�p10

�t�p0 �f�p1

(a) Sub-policy p9 could not be retrieved

�t�p12
�

�
�

�
�

	
	

	
	

	�t�p11

�
�

�
�

�
�
�
��−�{a, d,⊥} �t�{d}

�t�a

(b) Re-written evaluation tree

Fig. 7. Partial request-time evaluation tree and its rewrite

make rapid decisions where possible, while the other may be remote.3 The “local”
PDP we envisage is provided with a partial representation of an authorization
policy that returns a (comparatively) quick response to the PEP. If the response
is not conclusive, then the PEP forwards the request to the other PDP which
evaluates the full policy tree and returns a decision.

Consider, for example, the policy tree in Fig. 6(a) and suppose that we expect
that p10 will be applicable to a large percentage of requests. Then we might
choose to provide the local PDP with the tree depicted in Fig. 8 (deliberately
preventing the local PEP from evaluating the whole policy tree by omitting the
relatively complex policies p4 and p9).

��p12
�

�
�

�
�

�

�
�

�
�

�
���p11

�
�

�
�

�

�
�
�
�
��−�{a, d,⊥} ��p10

�−�{a, d,⊥}

Fig. 8. The policy evaluated by the local PDP

Now suppose that p10, p11 and p12 are applicable to q. Then

[[p12]]3(q) =

⎧⎪⎪⎨⎪⎪⎩
{a} if [[p10]]3(q) = {a} and ⊕11 = ⊕12 = ∨,

{d} if [[p10]]3(q) = {d} and ⊕11 = ⊕12 = ∧,

{a, d} otherwise.

3 This architecture is structurally similar to those used for authorization recycling that

cache previous authorization decisions at the PEP to improve response times [7].

486 J. Crampton and M. Huth

Clearly, it would be worth providing the local PDP with the reduced policy in
Fig. 8 if ⊕11 = ⊕12 (and it is known that p10 is applicable to many requests).

A second application of our authorization framework is to define a PDP that
can process multiple requests in a single pass through the evaluation tree. There
are many practical instances where it is necessary to decide several different
access requests in order to determine whether an attempted subject-object in-
teraction is authorized. Two obvious examples are:
– In Unix, a subject is authorized to access an object only if it is authorized

to access every directory (multiple objects) in said object’s path name.
– In the stack-walk algorithm used in Java, where it is necessary to check that

every subject on the call stack (multiple subjects) is authorized.
In this case, the PDP processes all requests at the same time, treating each of
these as possible evaluations of the tree. We introduce the top-level resolution
function φ∀, where φ∀(X) = {a} if X = {a} and φ∀(X) = {d} otherwise. In
contrast, a role-based PDP can evaluate multiple requests, one for each role for
which the requester is authorized, and use the φ∃ resolution function to compute
a final decision, where φ∃(X) = {a} if a ∈ X and φ∃(X) = {d} otherwise.

5 Concluding Remarks

We have presented a framework for tree-like authorization policies that are re-
silient to evaluation failures. This resiliency is achieved by defining three differ-
ent semantics for those policies, representing three different sets of assumptions
about the operational environment in which these failures may occur.

We have provided a succinct characterization of decision operators, which
yields numerous opportunities for optimizing policy evaluation and policy repre-
sentation. Our semantics improve on existing work in enabling policy evaluation
to be completed even if it is not possible to recover one or more sub-policies.
Our approach is conceptually similar to static analysis [11]. In particular, if our
semantics return a conclusive decision, then our over-approximation of decisions
is precise (Propositions 1 and 2). Our work also enables the design of efficient
PDPs and novel access-control architectures, to be explored in future work.

There are many other ways in which our work could and should be extended.
From a technical perspective, it is important to establish whether our language
can accommodate a fourth decision value to represent conflicting decisions from
sub-policies [6]. Equally important is to establish what set of binary operators
would be sufficient to articulate any desired policy. There are clear parallels
here with establishing a minimal set of logical connectives that is functionally
complete [2]. From a practical perspective, it would be interesting to develop an
XML schema for our policy language, perhaps re-using those parts of XACML
that are used to specify <Target> and <Condition> elements, and to develop a
PDP that implements our policy semantics.

Acknowledgements. The authors would like to thank the anonymous referees
for their comments.

An Authorization Framework Resilient to Policy Evaluation Failures 487

References

1. Aho, A., Hopcroft, J., Ullman, J.: The Design and Analysis of Computer Algo-

rithms. Addison-Wesley, Reading (1975)

2. Aireli, O., Avron, A.: The value of the four values. Artificial Intelligence 102, 97–

141 (1998)

3. Backes, M., Dürmuth, M., Steinwandt, R.: An algebra for composing enterprise

privacy policies. In: Proceedings of the 9th European Symposium on Research in

Computer Security, pp. 33–52 (2004)

4. Bertino, E., Castano, S., Ferrari, E.: Author-X : A comprehensive system for se-

curing XML documents. IEEE Internet Computing 5(3), 21–31 (2001)

5. Bonatti, P., Vimercati, S.D.C.D., Samarati, P.: An algebra for composing access

control policies. ACM Transactions on Information and System Security 5(1), 1–35

(2002)

6. Bruns, G., Huth, M.: Access-control policies via Belnap logic: Effective and efficient

composition and analysis. In: Proceedings of the 21st IEEE Computer Security

Foundations Symposium, pp. 163–176 (2008)

7. Crampton, J., Leung, W., Beznosov, K.: The secondary and approximate autho-

rization model and its application to Bell-LaPadula policies. In: Proceedings of

11th ACM Symposium on Access Control Models and Technologies (2006)

8. Damiani, E., De Capitani di Vimercati, S., Paraboschi, S., Samarati, P.: A fine-

grained access control system for XML documents. ACM Transactions on Infor-

mation and System Security 5(2), 169–202 (2002)

9. Li, N., Wang, Q., Qardaji, W., Bertino, E., Rao, P., Lobo, J., Lin, D.: Access

control policy combining: Theory meets practice. In: Proceedings of 14th ACM

Symposium on Access Control Models and Technologies, pp. 135–144 (2009)

10. Ni, Q., Bertino, E., Lobo, J.: D-algebra for composing access control policy deci-

sions. In: Proceedings of 2009 ACM Symposium on Information, Computer and

Communications Security, pp. 298–309 (2009)

11. Nielson, F., Nielson, H., Hankin, C.: Principles of Program Analysis. Springer,

Heidelberg (1999)

12. OASIS: eXtensible Access Control Markup Language (XACML) Version 2.0. In:

Moses, T. (ed.) OASIS Committee Specification (2005)

13. Wijesekera, D., Jajodia, S.: A propositional policy algebra for access control. ACM

Transactions on Information and System Security 6(2), 286–235 (2003)

Optimistic Fair Exchange with Multiple Arbiters

Alptekin Küpçü and Anna Lysyanskaya

Brown University, Providence, RI, USA
{kupcu,anna}@cs.brown.edu

Abstract. Fair exchange is one of the most fundamental problems in secure dis-
tributed computation. Alice has something that Bob wants, and Bob has some-
thing that Alice wants. A fair exchange protocol would guarantee that, even if
one of them maliciously deviates from the protocol, either both of them get the
desired content, or neither of them do. It is known that no two-party protocol
can guarantee fairness in general; therefore the presence of a trusted arbiter is
necessary. In optimistic fair exchange, the arbiter only gets involved in case of
faults, but needs to be trusted. To reduce the trust put in the arbiter, it is natural to
consider employing multiple arbiters.

Expensive techniques like byzantine agreement or secure multi-party compu-
tation with Ω(n2) communication can be applied to distribute arbiters in a non-
autonomous way. Yet we are interested in efficient protocols that can be achieved
by keeping the arbiters autonomous (non-communicating), especially for p2p set-
tings in which the arbiters do not even know each other. Avoine and Vaudenay [6]
employ multiple autonomous arbiters in their optimistic fair exchange protocol
which uses global timeout mechanisms; all arbiters have access to -loosely- syn-
chronized clocks. They left two open questions regarding the use of distributed
autonomous arbiters: (1) Can an optimistic fair exchange protocol without time-
outs provide fairness (since it is hard to achieve synchronization in a p2p setting)
when employing multiple autonomous arbiters? (2) Can any other optimistic fair
exchange protocol with timeouts achieve better bounds on the number of honest
arbiters required? In this paper, we answer both questions negatively. To answer
these questions, we define a general class of optimistic fair exchange protocols
with multiple arbiters, called “distributed arbiter fair exchange” (DAFE) proto-
cols. Informally, in a DAFE protocol, if a participant fails to send a correctly
formed message, the other party must contact some subset of the arbiters and
get correctly formed responses from them. The arbiters do not communicate with
each other, but only to Alice and Bob. We prove that no DAFE protocol can mean-
ingfully exist.

Keywords: Optimistic fair exchange, distributed arbiters, trusted third party.

1 Introduction

Optimistic fair exchange is a very useful primitive in distributed system design with
many applications including contract signing, electronic commerce, or even peer-to-
peer file sharing [2,3,4,5,7,8,15,18,19,20]. In a fair exchange protocol, Alice and Bob
want to exchange some items, and they want to do so fairly. Fairness intuitively refers
to Alice getting Bob’s item and Bob getting Alice’s item at the end of the protocol,
or neither of them getting anything, even if one of them maliciously deviates from the

D. Gritzalis, B. Preneel, and M. Theoharidou (Eds.): ESORICS 2010, LNCS 6345, pp. 488–507, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Optimistic Fair Exchange with Multiple Arbiters 489

protocol. For technical definitions of optimistic fair exchange protocols, we refer the
reader to [18].

It has been shown that no general fair exchange protocol can provide complete fair-
ness without a trusted entity [21], called the arbiter. In an optimistic fair exchange
protocol, the arbiter is not involved unless there is a dispute between the participants.
But having a single trusted entity is one of the biggest problems that make the use of
such protocols hard in practice. Therefore, the use of multiple arbiters is generally mo-
tivated by reducing the trust put on the arbiter [6,18].1 A very natural question is how to
achieve fairness in the absence of a single trusted arbiter; for example, what if we have
n arbiters only a fraction of whom we want to put our trust in? It is clear that this can
be achieved using byzantine agreement or secure multi-party computation techniques
[17,9,10,14] with Ω(n2) communication, but can we do better than that? In particular,
can we do anything in a setting where the arbiters need not communicate with each other
to resolve disputes? This issue is highly relevant especially for peer-to-peer settings in
which the arbiters do not even know each other, and may not have enough resources for
complicated schemes. Furthermore, if the scheme gets more costly, it will be hard to
incentivize multiple arbiters to arbitrate, since they will get overloaded.

Avoine and Vaudenay (AV) [6] address this problem in their paper by using verifiable
secret sharing techniques to employ multiple arbiters in their fair exchange protocol
for a p2p system. In their setting, two peers are performing a fair exchange, and a
number of other peers constitute the arbiters. They provide bounds on the number of
arbiters that should be honest for their protocol to be fair (see Section 6). A crucial point
is that the protocol uses global timeout mechanisms, which assumes all arbiters have
access to -loosely- synchronized clocks, and the arbiters are autonomous (they do not
communicate with each other). They leave two important issues as open questions: (1)
Can an optimistic fair exchange protocol without timeouts provide fairness (since it is
hard to achieve synchronization in a p2p setting) when employing multiple autonomous
arbiters? (2) Can any other optimistic fair exchange protocol with timeouts achieve
better bounds on the number of arbiters that need to be honest?

Unfortunately, in this paper, we answer both of these questions negatively. Inspired
by state-of-the-art optimistic fair exchange protocols with a single arbiter, we define a
general class of optimistic fair exchange protocols with multiple arbiters, called “dis-
tributed arbiter fair exchange” (DAFE) protocols. Informally, in a DAFE protocol, if
one of the participants fails to send a correctly formed message, the other participant
must contact some subset of the arbiters and get correctly formed responses from them
in order to make the exchange fair.2 Two main properties of a DAFE protocol are its
abort/resolve semantics and the autonomy of multiple arbiters used, as discussed in
Section 2. In a DAFE protocol, the arbiters are autonomous; they do not talk to each
other, but talk only to Alice and Bob. A third property is the state machine semantics of
the participants. We show that this class of protocols capture currently known state-of-
the-art optimistic fair exchange protocols extended to use multiple distributed arbiters

1 It is possible to have multiple arbiters deployed for reducing the load, but if only one of them
is employed per exchange, we do not consider that protocol as having distributed arbiters.

2 Of course, if no message is sent yet, there is no need to contact arbiters, which is not an
interesting case to analyze anyway.

490 A. Küpçü and A. Lysyanskaya

in a very intuitive manner, as shown in Section 2.1. Under this framework, in Section 4
we analyze scenarios that can occur during the execution of instances of optimistic fair
exchange protocols, and prove some predicates every such protocol must satisfy to be
able to provide semantic fairness, which is a property that needs to be satisfied by all
optimistic fair exchange protocols.

In Section 5, we prove that no DAFE protocol can provide fairness meaningfully3,
answering the first open question negatively. In Appendix B, we prove impossibility
of DAFE protocols using threshold-based mechanisms (any k arbiters are enough for
resolution) even when the autonomous arbiters assumption is relaxed. For protocols
using general set-based mechanisms (any k arbiters will not be enough for resolution,
specific sets of arbiters need to be contacted), we cannot prove impossibility in this
relaxed setting, but we conjecture that such protocols are not possible. However, our
impossibility results can be overcome in the timeout model (where all arbiters have
access to loosely synchronized clocks) and also in case the arbiters can communicate.
We use our framework to analyze the existing AV protocol [6] in this timeout model in
Section 6, showing how easy it is to apply our framework. We prove that the bounds on
the required number of honest arbiters proven earlier for that protocol are optimal, and
hence answer the second open question also negatively.

These results mean that many optimistic fair exchange protocols that want to effi-
ciently distribute their arbiters may need to employ synchronized clocks. And even in
this case, they cannot hope to require fewer honest arbiters than the Avoine and Vaude-
nay protocol [6]. If they do not want to employ synchronized clocks, then they may need
to employ costly solutions like secure multi-party computation or Byzantine agreement.

2 Definition of a DAFE Protocol

Fig. 1. Semantic view of the state
machines of the participants

In this section, we define a general optimistic fair
exchange model that fits currently known state-of-
the-art optimistic fair exchange schemes that uses an
arbiter, and has semantics for aborting and resolving
that we define below.

All the participants (Alice, Bob and the arbiters)
are interactive Turing Machines (ITMs)4. Those
ITMs have the following 4 semantic states: Working
, Aborted , Resolved , Dispute (see Figure 1). These
semantic states can correspond to multiple states in
the actual ITM definitions of the participants, but
these abstractions will be used to prove our results.

The ITM of each participant starts in the Working state. Semantically, Working state
denotes any state that the actual ITM of a participant is in when the protocol is still
taking place. When a participant does not receive the expected correctly formed mes-
sage from the other participant, he can possibly abort or decide to contact the arbiters

3 We prove that multiple arbiters are no better (or actually worse) than a single arbiter in terms
of trust in the DAFE framework.

4 The ITMs have access to –possibly synchronized– clocks for timeout mechanisms.

Optimistic Fair Exchange with Multiple Arbiters 491

for resolving or aborting with them, in which case the ITM of that participant enters its
Dispute state. If everything goes well in the protocol execution (all messages received
from the other party are correctly formed), then the ITM of a participant transitions to
the Resolved state directly from the Working state. Otherwise, if the arbiters needed to
be contacted, the ITM first visits the Dispute state, and then transitions to either Re-
solved or Aborted state. Arbiters’ Dispute state is dummy, and hence not needed in
our analysis. Furthermore, when in Appendix B we relax one of our assumptions, even
Alice and Bob will not have this Dispute state.

When the protocol ends, Alice and Bob are allowed to end only in Aborted or Re-
solved states. If Alice or Bob ends at its Resolved state, then, by definition, (s)he must
have obtained the exchange item from the other party. When the protocol ends, if the
ITM of a participant is not in its Resolved state, it is considered to be in its Aborted
state.

Using these semantic definitions, even an adversarial ITM can be considered to have
those 4 states (since it either obtains the other party’s item and hence ends at its Re-
solved state, or not therefore ending at its Aborted state). The adversarial ITM does not
necessarily have a Dispute state, but this will not affect any results presented in this
paper. One can think that the moment the honest party’s ITM enters its Dispute state,
the adversarial ITM also enters its Dispute state.

We will talk about only complete DAFE protocols (for a definition of optimistic fair
exchange protocols, see Appendix A): when both participants are honest, they end at
their Resolved states. Since our goal here is to analyze fairness of such protocols, the
only interesting case is when we have one honest party denoted H and one malicious
party denoted M. We will not consider cases where both parties are malicious since
there is no honest party to protect.

Definition 1 (End of the Protocol). We say that the protocol has ended if (1) the hon-
est party ended up being in her either Resolved or Aborted state, and (2) the adversary
produced its final output at its either Resolved or Aborted state after running at most a
polynomial number of steps (polynomial in some security parameter).

Now that we defined our participants carefully, we can state our assumptions on them
and define DAFE protocols.

DISTRIBUTED ARBITER FAIR EXCHANGE (DAFE) PROTOCOLS: DAFE protocols
are optimistic fair exchange protocols that can be characterized with the following:

– Exclusive states assumption
– Connection between arbiters’ state and Alice’s and Bob’s
– Autonomous arbiters assumption

EXCLUSIVE STATES ASSUMPTION: This assumption states that the Resolved and
Aborted states are mutually exclusive. For an arbiter, those states informally mean
whether or not the arbiter helped one of the parties to resolve or abort. We assume
that there is no combination of state transitions that can take an honest arbiter from the
Aborted state to the Resolved state, or vice versa. In most existing protocols, this corre-
sponds to the fact that the arbiter will not abort with a participant first and then decide
to resolve with him or the other participant, or vice versa. An honest arbiter can keep

492 A. Küpçü and A. Lysyanskaya

executing abort (or resolve) protocols with other participants in the exchange while he
is in the Aborted (or Resolved , respectively) state, but can not switch between states
for different participants.

Definition 2 (Aborting and Resolving with an Arbiter). If a participant interacts
with an arbiter and aborts with him, the arbiter goes to his Aborted state, from where
he will never switch to his Resolved state. Similarly, if a participant resolves with an
arbiter, the arbiter goes to his Resolved state, from where he will never switch to his
Aborted state.5

Definition 3 (Aborted and Resolved Protocol Instance). A protocol instance is
called aborted if both Alice and Bob ended at their Aborted states, and called resolved
if both Alice and Bob ended at their Resolved states.

CONNECTION BETWEEN ARBITERS’ STATE AND ALICE’S AND BOB’S: A resolution
makes sense if at least one of the parties has not resolved yet. In such a case, Alice or
Bob can end in their Resolved states (unless they already are in their Resolved states)
only if a set of arbiters end in their Resolved states. This set of arbiters can be different
for Alice or Bob. Actually, there can be more than one set of arbiters that is enough
for this resolution. All these will be clear in later sections when we define those sets of
arbiters that will be sufficient for resolution.

AUTONOMOUS ARBITERS ASSUMPTION: We assume that the honest arbiters’ deci-
sions are made autonomously, without taking into account the decisions of the other
arbiters. Arbiters can arrive at the same decision seeing the same input, but they will
not consider each other’s decision while making their own decisions. In particular, this
means no communication takes place between honest arbiters (malicious arbiters can
do anything they want).

Our goal in this is to distribute the trust efficiently. Without autonomy, byzantine
fault tolerance or secure multiparty computation techniques [17,9,10,14] can be ap-
plied, yielding costly solutions (Ω(n2) communication when n arbiters are employed).
Furthermore, autonomy of the arbiters render the deployment of such a real system
practical, since no coordination of the arbiters is necessary.

Yet, a dependence between the arbiters’ decisions can be generated by Alice or Bob,
by contacting the arbiters with some specific order. Therefore, to model the autonomy,
we require the protocol design to direct the honest participants to contact all the arbiters
without any order. More formally, when the ITM of an honest participant decides to
contact the arbiters for dispute resolution, the participant creates the message to send to
all of the arbiters before receiving any response from any arbiter. One can model this
with the Dispute state in which the message to send to the arbiters are prepared all at
once. We will call this simultaneous (or unordered) resolve/abort. Note that this only
constrains honest Alice or Bob. A malicious party can introduce dependence between
messages to arbiters and responses from other arbiters. Later in Appendix B we will
relax this autonomy assumption and discuss its consequences. We realize that this as-
sumption is not necessary for most of our results, but helps making the presentation
clearer.

5 Due to the exclusive states assumption, these happen only if an arbiter is not already in his
Resolved or Aborted state, respectively.

Optimistic Fair Exchange with Multiple Arbiters 493

All optimistic fair exchange protocols need to satisfy the following semantic fairness
property.

SEMANTIC FAIRNESS: The semantic fairness property states that at the end of the pro-
tocol, Alice and Bob both end at the same state (they both end at their Aborted states,
or they both end at their Resolved states). In other words, we need the protocol instance
to be either resolved or aborted as in Definition 3, for every possible instance of the
protocol.6

Optimistic fair exchange protocols should also satisfy the timely resolution property,
meaning that the honest party need not wait indefinitely for any message from any other
party. He can have a local timeout mechanism with which he can decide to proceed
without waiting. In particular, he can end his side of the protocol any time he wants,
ending at his Resolved or Aborted state, according to the rules we defined above. Note
that in general providing timely resolution guarantees necessitates mutually exclusive
Resolved and Aborted states, and a way for the arbiters to transition to their Aborted
states through interaction with other parties or through the use of timeouts.

Regular DAFE protocols do not have global timeout mechanisms, and the sets of
arbiters that Alice or Bob can resolve with are well-defined by the protocol, and does
not change once the honest party is in its Dispute state. We will show an extended
version called DAFE with timeouts (DAFET) where the protocols are allowed to use
timeouts. At the timeout specified by the protocol, honest arbiters transition into their
Aborted states. This is done using the (loosely synchronized) clocks of the ITMs. We
call this event “an arbiter timeouts”. We allow the possible sets of arbiters to resolve
with to change at this timeout. This timeout model bypasses the impossibility results
for DAFE protocols. These will be clear later.

We will first provide examples of existing optimistic fair exchange protocols with
intuitive extensions to employ multiple autonomous arbiters and show how they fit our
DAFE classification. Then, after defining some notation, we will analyze different pos-
sible protocol instances under different scenarios, and possible protocol types. We then
show that it is impossible for some common types of DAFE protocols to provide se-
mantic fairness, thus warning researches not to pursue that direction. We also analyze
some positive results using global timeout mechanisms, and prove the optimality of
the bounds of the AV protocol, showing the usability of our framework for easy anal-
ysis. We then discuss the role of autonomous arbiters and timeouts in our results and
elaborate on different ideas.

2.1 Sample DAFE Protocols

Many currently known optimistic fair exchange protocols can be considered as special
cases of DAFE protocols in which there is only one arbiter. In this section, we also
discuss a way to extend them to employ multiple autonomous arbiters. Unfortunately,
this means, those extended protocols cannot provide fairness, as we will prove later

6 There will not be any cases where the honest party ends at its Resolved state whereas the
malicious party ends at its Aborted state and this affects our results. Therefore, this semantic
fairness definition is enough for our purposes. Furthermore, it is subjective whether or not to
consider a case where two parties end at different states as fair.

494 A. Küpçü and A. Lysyanskaya

in this paper that no DAFE protocol can provide fairness. Precisely, our impossibility
result states that all arbiters need to be trusted in a DAFE protocol, hence they are not
realistic. For the special single-arbiter case, this points out to the trust assumption on
the arbiter.

To the best of our knowledge, all currently known optimistic fair exchange protocols
adhere with our framework. As a representative of optimistic fair exchange protocols,
we will analyze a protocol due to Asokan, Shoup and Waidner (ASW) [4]. They have
two versions of their protocol: one version that uses timeout-based aborts (can be con-
verted to a DAFET protocol, see Section 6), and one that does not employ timeouts
(we will discuss now). It is considered one of the state-of-the-art signature exchange
protocols, and is the first completely fair optimistic exchange protocol. A state-of-the-
art optimistic fair exchange protocol for exchanging files are given in [18], and all our
discussion here applies to that protocol too. The ASW protocol without timeouts is
described below for reference:

1. Alice sends Bob a non-verifiable escrow of her signature, with a label defining
how Bob’s signature should look like. Bob checks if the definition is the correct
definition.

2. Bob sends Alice a verifiable escrow of his signature, with the label defining how
Alice’s signature should look like and also attaching the escrow he obtained in
step 1. Alice verifies the verifiable escrow. She furthermore checks if the label is
formed correctly. If anything goes wrong at this step or a message timeout occurs,
she aborts the protocols and runs AliceAbort with the Arbiter.

3. Alice sends Bob her signature. Bob verifies this signature, and stops and runs Bo-
bResolve if it does not verify or a message timeout occurs.

4. Bob sends Alice his signature. If the signature does not verify, Alice runs
AliceResolve.

AliceAbort tells the Arbiter to consider that trade as aborted and not to honor any fur-
ther resolution request on that particular trade. BobResolve gets Alice’s signature by
providing Bob’s signature, and similarly, AliceResolve gets Bob’s signature by provid-
ing Alice’s signature.

In terms of the state semantics of the participants, it is clear that the ending states of
the participants can be parsed into Aborted and Resolved states which are mutually ex-
clusive. Furthermore, honest participants are not allowed to transition between Aborted
and Resolved states. In particular, once Alice aborts with the arbiter taking him to his
Aborted state, he will refuse resolving with Bob. Since there is only one arbiter, it is
autonomous. As for the connection between arbiter’s state and Alice’s and Bob’s, it is
clear that in case of a dispute, their state depends on the arbiter’s.

Now, if we want to extend those protocols to use multiple autonomous arbiters, one
easy way is to employ verifiable secret sharing techniques [6,22,16]. The state-of-the-
art optimistic fair exchange protocols employ verifiable escrows [11,13,4,18] under the
(one and only) arbiter’s public key. The intuition behind using verifiable escrows is that
the recipient can verify, without learning the actual content, that the encrypted content is
the content that is promised and the arbiter can decrypt it. Verifiable secret sharing tech-
niques can be employed to split the promised secret per arbiter. Each of these secrets

Optimistic Fair Exchange with Multiple Arbiters 495

will be encrypted under a different arbiter’s public key. The recipient can still verify
those encrypted shares can be decrypted and combined to obtain the promised secret,
thereby effectively achieving the same goal as a verifiable escrow, but for multiple ar-
biters. For a detailed explanation of how to use verifiable secret sharing in distributing
the arbiters, we refer the reader to [6].

When we extend the ASW protocol to use multiple autonomous arbiters, instead of
this verifiable escrow, the participants will use verifiable secret sharing techniques as
explained above and in [6]. Regardless of whether threshold- or set-based secret shar-
ing mechanisms are used, the resolution procedure now requires contacting multiple
arbiters. For example, if the threshold for the secret sharing method used is k, the reso-
lution will involve contacting at least k arbiters.

In terms of the state semantics of the participants, it is clear that the ending states
of the participants can be parsed into Aborted and Resolved states which are mutually
exclusive. Because we assume the arbiters are contacted simultaneously, the autonomy
of the arbiters hold. As for the connection between arbiters’ state and Alice’s and Bob’s,
since resolution needs k shares, and secure secret sharing and encryption methods are
used, a participant can obtain the other participant’s exchange item if and only if (s)he
resolves with at least k arbiters (in case of a dispute). This relationship makes perfect
sense when multiple autonomous arbiters are used, since the main goal in distributing
the arbiter is distributing the trust. Therefore, the goal is to find some number of honest
arbiters each one of which will individually contribute to dispute resolution between
participants by resolving or aborting with them. When arbitrary sets are used instead of
thresholds, it is easy to see all these arguments will still apply.

The same techniques can be applied to another state-of-the-art optimistic fair ex-
change protocol [18] designed to exchange multiple files between participants. This
protocol employs a verifiable escrow for escrowing the payment (endorsement of an
unendorsed e-coin [12]) sent by the participants. All the arguments for the ASW pro-
tocol also apply here. Again, verifiable secret sharing techniques as discussed above
will be used instead of the verifiable escrow. The resolution mechanism will be similar
to the ones we described for the extended ASW protocol. As for the state semantics, a
participant goes to her/his Resolved state if (s)he gets other participant’s file or e-coin,
and goes to his/her Aborted state otherwise.

In Section 4 we will analyze possible scenarios in an optimistic fair exchange pro-
tocol. The first two scenarios will be applicable to this extended protocol types, as we
show in Section 5, where we analyze protocols that have the same structure as ASW
protocol.

3 Notation

Remember that in a fair exchange scenario, Alice and Bob want to exchange some
items fairly. In case of a dispute, they need to contact the arbiters. They are allowed to
take the following two actions with the arbiters: abort or resolve. As noted in Defini-
tion 2, aborting with an honest arbiter takes him to his Aborted state, whereas resolving
with him would take him to his Resolved state.7 Remember, those states are mutually

7 This happens only if an arbiter is not already in its Resolved or Aborted state, respectively.

496 A. Küpçü and A. Lysyanskaya

exclusive, and there is no transition between them, direct or indirect. We assume that the
arbiters are autonomous: They do not take into account other arbiters’ decision while
acting. More formally, the honest participant contacts all arbiters simultaneously (her
messages to arbiters do not depend on any response from any of the arbiters).

Let N denote the set of all arbiters, where there are a total of n of them (|N| = n).
An honest arbiter acts as specified by the protocol. Let F be the set of arbiters who are
friends with a malicious participant. Those arbiters are adversarial.8

Define two sets HR and MR , which are sets of sets. Any set HR ∈ HR is a set of
arbiters that is sufficient for the honest party to resolve (as defined in Section 2 during
the discussion about the connection between arbiters’ state and Alice’s and Bob’s).
Similarly, any set MR ∈MR is a set of arbiters that is sufficient for the malicious party
to resolve. Therefore, by definition, in case of a dispute, the honest party will end at her
Resolved state if and only if she resolves with all the arbiters in any one of the sets in
HR (unless she already is in her Resolved state). Similarly, the malicious party will end
at his Resolved state if and only if he resolves with all the arbiters in any one of the
sets in MR (unless he already is in his Resolved state). For DAFE protocols, these sets
are well-defined by the protocol description, and do not change once the honest party
enters its Dispute state.

A special case of these sets can be represented as thresholds. Let TH be the number
of arbiters the honest party needs to contact for resolution. Similarly, TM denotes the
number of arbiters the malicious party needs to contact for resolution. Thus, the set
HR is composed of all subsets of N with TH or more arbiters. Similarly, the set MR is
composed of all subsets of N with TM or more arbiters.

Define RH as the set of arbiters the honest party H has already resolved with, and RM

as the set of arbiters the malicious party M has already resolved with. Also define RA as
the set of all arbiters that are available for H for resolution. Initially, when the dispute
resolution begins, we assume that RH = ∅, RM = F, and RA = N−F (and all arbiters
are available for resolution to the malicious party). We furthermore have the following
actions and their effects on these sets:

Action 1 (H resolves with an arbiter X) The effect is that RH becomes RH ∪{X}.

Action 2 (M resolves with an arbiter X) The effect is that RM becomes RM ∪{X}.

Action 3 (H aborts with an arbiter X ∈ RA) The effect is that RA becomes RA−{X}.

Action 4 (M aborts with an arbiter X ∈ RA) The effect is that RA becomes RA−{X}.

Note that we do not care what these sets actually are, or whether or not one can find
such sets of sets. For our impossibility result, it is enough that conceptually these sets
of sets exist.

As in previous work on optimistic fair exchange [4,18], we assume that the adversary
can re-order messages, delay the honest party’s messages to the arbiters, insert his own
messages, etc. But he cannot delay honest party’s messages indefinitely: the honest
party eventually reaches the arbiters that he wants to contact initially, and this occurs
before the timeout if the protocol uses timeout mechanisms.

8 For example, they may appear as aborted to the honest party, but they may still resolve with
the malicious party.

Optimistic Fair Exchange with Multiple Arbiters 497

3.1 DAFET Protocols (DAFE Protocols with Timeouts)

In DAFET protocols, we allow for timeouts by giving the arbiters access to loosely syn-
chronized clocks. Instead of actions 3 and 4 above (honest or malicious party aborting),
the following action is allowed:

Action 5 (An arbiter X ∈ RA−RH−RM timeouts) The effect is that RA becomes
RA−{X}.

Another difference between DAFE and DAFET protocols is the sets HR and MR being
static and dynamic, respectively. DAFE protocols define such sets as static: the overall
set of arbiters that needs to be contacted for resolution does not change with time once
the honest party enters its Dispute state (hence the notation HR and MR). In contrast,
we allow DAFET protocols to employ dynamic sets (hence the notation HR (t) and
MR (t)). These sets may depend on the timeout and possibly the parties’ actions in
that particular instance of the protocol. Consider the following two cases as illustrative
examples: Some type of protocols allow, let’s say, Alice to resolve only after a timeout.
Some other type of protocols allow Alice to resolve only with an arbiter that Bob has
already resolved with (or vice versa). In analyzing such types of protocols, we will
consider HR (t) and MR (t) as dynamic, letting them change with those actions. We
discuss the relation between the use of timeouts and dynamic sets in fair exchange
protocols more in Appendix C.

We will consider any action that results in a change in those sets as new time steps,
but there is no need to treat other events as separate time steps since they do not con-
stitute a significant part of the analysis. Therefore, one can think as if any party can
contact any number of arbiters at a given time step t. t = 0 denotes the time when the
dispute resolution begins (the time the honest party enters its Dispute state, not the time
the protocol execution begins).

Lastly, the set of friends of a malicious party can also change with time, if the ad-
versary is allowed to adaptively corrupt arbiters. In that case, we will use the notation
F(t).

4 Framework for Analysis of DAFE Protocols

In this section, we will provide our framework for analyzing DAFE (and DAFET) pro-
tocols. Our framework is composed of different scenarios that can take place during the
execution of an instance of a DAFE protocol. Once we have lemmas related to those
scenarios stating the necessary (not necessarily sufficient) conditions that need to be
satisfied so that the given scenario satisfies the semantic fairness property, then we can
analyze different protocol types in the next section.

Since our results are impossibility or lower bound type of results, it is enough to
analyze necessary (but maybe not sufficient) conditions. In all our scenarios (except the
last one), we assume that neither party is in the Resolved state yet. We consider dynamic
resolution sets for our scenario analysis, since static sets are a special case of dynamic
sets.

498 A. Küpçü and A. Lysyanskaya

4.1 Scenario 1: M Can Abort

In this scenario, we consider a protocol instance where the malicious party has the
ability to abort and resolve. The honest party can abort and resolve too, but the results
still apply even if he is restricted to only resolve action. In this scenario, actions 1, 2,
and 4 in Section 3 are possible. Our results in this section will remain valid regardless
of action 3 being possible.

Lemma 1. Every DAFE protocol instance needs to make sure that there exists a time t
when ∀MR ∈MR (t) ∃HR ∈HR (t) s.t. HR ⊆MR−F(t).

Proof. Assume otherwise: At any time in the protocol instance ∃MR ∈MR (t) s.t. ∀HR ∈
HR (t) HR �⊆MR−F(t). The malicious party can break fairness as follows: He aborts
with the set of arbiters RA−MR, and resolves with the set of arbiters MR. Since no HR is
now a subset of the available arbiters RA = MR−F(t), the honest party cannot resolve,
while the malicious party already resolved. Thus this protocol instance is unfair (does
not satisfy semantic fairness).

Corollary 1. At any given time t during the protocol instance before the protocol is
resolved for H, we need ∀MR ∈MR (t) MR �⊆F(t) since otherwise we need ∃HR ∈HR (t)
s.t. HR = ∅.

Corollary 2. We need a time t to exist satisfying ∃HR ∈HR (t) s.t. HR∩F(t) = ∅ since
otherwise the lemma cannot be satisfied (H can never resolve).

Corollary 3. Using threshold-based mechanisms, we need that there exists a time t that
satisfies TH ≤ TM−|F(t)|.

Corollary 4. Using threshold-based mechanisms, at any given time t during the proto-
col instance before the protocol is resolved for H, we need TM > |F(t)| since otherwise
we need TH ≤ 0.

Corollary 5. Using threshold-based mechanisms, we need a time t to exist satisfying
TH ≤ n−|F(t)| since otherwise H can never resolve.

4.2 Scenario 2: Only H Can Abort

In this scenario, we assume that the malicious party has the ability to resolve only,
whereas the honest party can abort and resolve. In this scenario, actions 1 to 3 in Sec-
tion 3 are possible (action 4 is not possible).

Lemma 2. Every DAFE protocol instance needs to make sure that there exists a time t
when ∀MR ∈MR (t) ∃HR ∈HR (t) s.t. HR ⊆MR−F(t).

Proof. Assume otherwise: At any given time ∃MR ∈MR (t) s.t. ∀HR ∈ HR (t) HR �⊆
MR−F(t). The malicious party can break fairness as follows: When H wants to abort
the protocol, M lets abort messages to all arbiters in RA−MR to reach their destination,
but intercept the messages to MR−F(t) (F(t) really does not matter since his friends
will help him anyways). He then resolves with MR. Even if H notices this, he cannot
go and resolve since there is no set HR ∈ HR (t) that will allow him to. Therefore, this
protocol instance also does not satisfy semantic fairness.

Optimistic Fair Exchange with Multiple Arbiters 499

Note that Lemma 2 is the same as Lemma 1, and therefore all the corollaries apply to
this scenario too.

4.3 Scenario 3: H Can Resolve Only After Timeout

In this scenario, aborts can be caused by timeouts only. The malicious party can resolve
before and after the timeout, but the honest party can resolve only after the timeout.
Therefore, actions 2 and 5 are possible, but not 3 and 4. Action 1 is possible only after
the timeout.

Lemma 3. Every DAFET protocol instance needs to make sure there exists a time t
when ∀MR ∈MR (t) ∃HR ∈HR (t) s.t. HR ⊆MR−F(t).

Proof. Assume otherwise: At any given time ∃MR ∈MR (t) s.t. ∀HR ∈ HR (t) HR �⊆
MR − F(t). The malicious party can break fairness as follows: M resolves with MR

before the timeout. When the timeout occurs, all arbiters in RA−RH−RM to go to their
Aborted states (RH being the empty set), which means now RA = MR −F(t). But H
cannot resolve with the remaining available arbiters and hence this protocol instance is
not semantically fair.

Note that Lemma 3 is the same as Lemma 1, and therefore all the corollaries apply to
this scenario too.

4.4 Scenario 4: M Already Resolved

All of the scenarios above assumed that both H and M start in their Working states
when they are performing the resolutions. Yet, it might be perfectly possible that the
resolution starts at a point in the protocol where one of the parties has already resolved
(and hence is in its Resolved state). If H has already resolved, then there is no point to
further analyze, since we do not care if the protocol is fair to the malicious party. But if
M has already resolved, then we need the following lemma to hold:

Lemma 4. Every DAFE protocol instance needs to make sure that there exists a time t
when ∃HR ∈HR (t) s.t. HR∩F(t) = ∅.

Proof. Assume at all times ∀HR ∈ HR (t) HR∩F(t) �= ∅. The malicious party has al-
ready resolved but since all possible ways to resolve for H has to go through one of the
malicious party’s friends, he has no hope of resolving.

This lemma corresponds to corollary 2 and hence corollary 5 also applies here.

5 Impossibility Results on DAFE Protocols

The previous section analyzed possible scenarios in DAFE and DAFET protocol in-
stances. In this section, we will analyze DAFE protocol types, using the results from
different scenarios that might come up in instances of such protocols. We will conclude
that no DAFE protocol can provide fairness under any realistic assumption. DAFET
protocols using dynamic sets are possible indeed, and we analyze an existing DAFET
protocol in Section 6.

500 A. Küpçü and A. Lysyanskaya

For every protocol type, we will consider the following two cases: The case where
the honest player plays the role of Alice, and the case where he plays the role of Bob.
We denote the set of sets for Alice to resolve as AR (t); similarly BR (t) is for Bob to
resolve. The difference in types of protocols related to these sets being static or dynamic
will play a big role. For ease of analysis (and since it is enough for the impossibility
results in this section) we will assume the friend list F(t) of the malicious party is static
(does not change with time).9 Since this is a weaker adversary, our impossibility results
will also apply when we consider stronger (adaptive) adversaries. We will use FA to
denote friends of a malicious Alice, and FB to denote friends of a malicious Bob.

In the DAFE protocol types below, we will consider the sets AR (t) and BR (t) as
static (therefore using the notation AR ,BR), which eases the use of the lemmas. With
static sets, we do not need to consider different times in the protocol instance. A lemma
saying there must exist a time t can be simplified by just looking at the initial sets.

5.1 Protocol 1: Alice and Bob Can Abort and Resolve

In this type of protocols, Alice is given the ability to abort and resolve, and Bob is also
given the ability to abort and resolve.

Case 1: Honest Alice vs. Malicious Bob: This case falls under Scenario 1, which
means (for the static case) any DAFE protocol needs to have ∀BR ∈ BR ∃AR ∈ AR s.t.
AR ⊆ BR−FB.
Case 2: Malicious Alice vs. Honest Bob: This case also falls under Scenario 1, which
means (again for the static case) any DAFE protocol needs to have ∀AR ∈AR ∃BR ∈BR
s.t. BR ⊆ AR−FA.

These two cases lead to the conclusion that every protocol instance needs two sets
AR ∈AR and BR ∈BR s.t. AR = BR ⊆{trusted arbiters}. These arbiters must be trusted,
and so there is no point in distributing the arbiters. It is even worse: If any of these
arbiters are corrupted, the DAFE protocol fails to be fair. Therefore, no such realistic
DAFE protocol can exist.

When considering threshold-based schemes, this corresponds to the requirement that
TB ≤ TB−FA−FB, which means no party should have any friends for such a protocol to
be fair. If even one arbiter is corrupted, the protocol becomes unfair. Therefore, no such
realistic DAFE protocol can exist. Since set-based mechanisms cover threshold-based
ones, we will not discuss threshold-based schemes separately again unless necessary.
All impossibility results proven for set-based mechanisms directly apply in the context
of threshold-based ones.

5.2 Protocol 2: Only One Party Can Abort

In this type of protocols, Alice is given the ability to abort and resolve, whereas Bob is
given only the ability to resolve. Analysis of protocols that are symmetric to this type
of protocols (where Bob can abort and resolve, and Alice can only resolve) obviously
yields to the same conclusions.

9 This corresponds to the familiar “static corruption model” in many other works.

Optimistic Fair Exchange with Multiple Arbiters 501

Case 1: Honest Alice vs. Malicious Bob: This case falls under Scenario 2, which
requires that DAFE protocols need to make sure ∀BR ∈BR ∃AR ∈AR s.t. AR⊆BR−FB.
Case 2: Malicious Alice vs. Honest Bob: This case falls under Scenario 1, which
means any DAFE protocol needs to have ∀AR ∈ AR ∃BR ∈ BR s.t. BR ⊆ AR−FA.

We can conclude as in the previous section (Section 5.1) that every protocol instance
needs two sets AR ∈ AR and BR ∈ BR s.t. AR = BR ⊆ {trusted arbiters}. Again, this
means there is no point in distributing the arbiters in terms of trust. Remember that
threshold-based versions have the same impossibility.

Unfortunately, the versions of the state-of-the-art optimistic fair exchange protocols
we analyzed in Section 2.1 without any timeouts fall under this protocol category. Note
that, this means, using static resolution sets and autonomous arbiters, those protocols
cannot be extended to use multiple arbiters and remain fair.

6 Applying DAFET Framework to Prove Optimality of an
Existing Protocol

In this section, we analyze an existing DAFET protocol that uses dynamic resolution
sets: The set of arbiters needed by a party for resolution changes during the course of the
execution of the protocol instance. By adjusting resolution sets reactively, this protocol
can provide semantic fairness.

AV Protocol [6]. This protocol is due to Avoine and Vaudenay (AV) [6]. In this proto-
col, timeouts are used for aborting (it is a DAFET protocol). It is a three-step protocol
in which Alice starts by sending verifiable secret shares encrypted under each arbiter’s
public key. Then, Bob responds with his secret, and Alice responds with her secret. To
resolve, Bob contacts k arbiters to get the decrypted shares and reconstruct the secret
of Alice (where k is the threshold for the secret sharing scheme). Before giving the
decrypted share, each honest arbiter asks for the secret of Bob.10 Hence, the set BR (t)
contains all subsets of N with k or more arbiters and AR (t) is initially empty11.

The state semantics obviously coincide with our 3-state definition. The participants
either succeed in obtaining the other party’s exchange item and hence end at their Re-
solved state, or they fail to do so and end at their Aborted state. The honest arbiters will
either help both participants, or abort at the timeout and help neither.

Even though in the AV protocol the honest arbiters directly contact Alice when Bob
resolves with them, we can see it as the arbiters storing Bob’s secret, and Alice contact-
ing them to obtain Bob’s secret later on. Since Alice can only resolve after Bob, and
Bob has to resolve before the timeout, it is safe to think of this protocol as letting Alice
to resolve only after the timeout. Unlike the protocols in Section 5 which were proven
impossible to be fair, this protocol uses dynamic resolution sets that help it achieve fair-
ness (we talk about the relationship between timeouts and dynamic resolution sets in
Appendix C). So, sets HR (t) and MR (t) change according to the following additional
rule regarding the actions (remember the actions in Section 3):

10 The user should refer to [6] for any more details.
11 It does not contain the empty set, it is empty. This means no set of arbiters is sufficient for

Alice to resolve.

502 A. Küpçü and A. Lysyanskaya

Action 6 (Bob resolves with an arbiter X ∈ RA) The effect is that a set {X} is added
to the set of sets AR (t).

This rule is there since in the AV protocol, when Bob contacts an honest arbiter, that
arbiter contacts Alice and sends Bob’s whole secret. It guarantees that the moment a
malicious Bob resolves with any honest arbiter, Alice is guaranteed to be able to resolve.
Let us analyze the two cases and see how this protocol satisfies the lemmas regarding
scenarios.

Case 1: Honest Alice vs. Malicious Bob: This case falls under Scenario 3, which
means any DAFET protocol needs to make sure there exists a time when ∀BR ∈ BR (t)
∃AR ∈ AR (t) s.t. AR ⊆ BR−FB.
Case 2: Malicious Alice vs. Honest Bob: Depending on at which point of the protocol
the resolution begins, malicious Alice might have already resolved, thus this case falls
under Scenario 4, which requires that there exists a time when ∃BR ∈ BR (t) s.t. BR∩
FA = ∅.

Lemma 5. AV protocol cannot provide semantic fairness unless for all times t ∀BR ∈
BR (t) BR �⊆ FB AND for some time t ∃BR ∈ BR (t) s.t. BR∩FA = ∅.

Proof. Follows from the analysis of the cases above using corollary 1 for case 1.

The AV protocol achieves semantic fairness using dynamic sets as follows: The set
AR (t) is initially empty. When Bob contacts an arbiter X , action 6 above takes place,
and hence the set {X} is added to the set of sets AR (t) (the threshold for Alice ef-
fectively becomes 1). Therefore, once Bob contacts an honest arbiter (not one of his
friends), then Alice is guaranteed to be able to resolve. This saves an honest Alice
against a malicious Bob (case 1). In case 2, as long as Bob can find a set of honest
arbiters that he can resolve with, he is saved against malicious Alice.

Actually, the AV protocol [6] uses threshold-based mechanisms instead of set-based
ones, therefore we have the following corollary:

Corollary 6. AV protocol cannot provide semantic fairness unless |FB|< TB AND TB≤
n−|FA|.

It is important to notice that the AV paper [6] proves essentially the same result: They
prove that the same bound is also sufficient for their protocol. Thus, we have proven
that the bounds proven in that paper are tight and hence the protocol is optimal in that
sense. Furthermore, this result is applicable to all protocols of the same type; no DAFET
protocol of the same type can achieve better bounds. In particular, the same technique
of employing multiple autonomous arbiters can be used on [4] and [18] (as described
in Section 2.1) to convert their timeout-based versions to DAFET protocols, and the
same lemma will hold. This shows how our framework can easily be applied to prove
optimality of a protocol and extended to other protocols of the same type.

As the corollary immediately reveals, when using n arbiters, to obtain maximum
tolerance, one should set the threshold for Bob TB = n/2 so that the protocol tolerates
up to n/2−1 friends of each participant. Of course, this greatly reduces the efficiency
of the resolution of the optimistic fair exchange protocol.

Optimistic Fair Exchange with Multiple Arbiters 503

7 Conclusion

In this paper, we presented a framework to analyze DAFE protocols, which are natural
extensions of optimistic fair exchange protocols to make them use multiple autonomous
arbiters (those who do not communicate with each other). Autonomy is useful for real-
istic (efficient) protocols, especially in p2p settings. Using the presented framework, we
answered two open questions since [6]. We have proved that DAFE protocols (optimistic
fair exchange protocols that employ multiple autonomous arbiters and does not have time-
out mechanisms) cannot provide fairness in a realistic setting. Even when we extended
our framework by relaxing the autonomy assumption about the arbiters, we found out
that even broader classes of optimistic fair exchange protocols fall under our impossibil-
ity results. We then switched to the DAFET model to include timeouts and dynamically
changing sets of arbiters to resolve with. We analyzed one existing DAFET protocol [6]
using our framework and proved that the previous bounds on the required number of hon-
est arbiters are optimal. No DAFET protocol of the same type can achieve better bounds,
since our framework can easily be used to come up with generalized results.

Unfortunately, this means many optimistic fair exchange protocols that want to effi-
ciently distribute their arbiters may need to employ synchronized clocks. And even in
this case, they cannot hope to require fewer honest arbiters than the Avoine and Vaude-
nay protocol [6]. If they do not want to employ synchronized clocks, then they may need
to employ costly solutions like secure multi-party computation or Byzantine agreement.

One may want to settle down for weaker security guarantees against weaker adver-
saries to achieve cheaper solutions than Byzantine agreement. Using Byzantine fault
tolerance techniques in [1], the arbiters can keep updating some value that is related to
the resolution semantics of the fair exchange. Unfortunately, when aborts are consid-
ered, it is not clear if the same techniques can be applied here. We leave research in this
direction as an open problem.

Finally, our techniques may be applicable to other functionalities that can be imple-
mented using secure multi-party computation. By designing an appropriate framework,
we may prove more general results about achieving the same functionality using au-
tonomous multiple parties. We leavesuch a generalization as an interesting open problem.

References

1. Abd-El-Malek, M., Ganger, G., Goodson, G., Reiter, M., Wylie, J.: Fault-scalable byzantine
fault-tolerant services. In: SOSP (2005)

2. Asokan, N., Schunter, M., Waidner, M.: Optimistic protocols for fair exchange. In: ACM
CCS (1997)

3. Asokan, N., Shoup, V., Waidner, M.: Optimistic fair exchange of digital signatures. In: Ny-
berg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 591–606. Springer, Heidelberg
(1998)

4. Asokan, N., Shoup, V., Waidner, M.: Optimistic fair exchange of digital signatures. IEEE
Selected Areas in Communications 18, 591–610 (2000)

5. Ateniese, G.: Efficient verifiable encryption (and fair exchange) of digital signatures. In:
ACM CCS (1999)

6. Avoine, G., Vaudenay, S.: Optimistic fair exchange based on publicly verifiable secret shar-
ing. In: Wang, H., Pieprzyk, J., Varadharajan, V. (eds.) ACISP 2004. LNCS, vol. 3108, pp.
74–85. Springer, Heidelberg (2004)

504 A. Küpçü and A. Lysyanskaya

7. Bao, F., Deng, R., Mao, W.: Efficient and practical fair exchange protocols with off-line TTP.
In: IEEE Security and Privacy (1998)

8. Belenkiy, M., Chase, M., Erway, C., Jannotti, J., Küpçü, A., Lysyanskaya, A., Rach-
lin, E.: Making p2p accountable without losing privacy. In: ACM WPES (2007),
http://www.cs.brown.edu/research/brownie/p2p-ecash-wpes07.pdf

9. Ben-Or, M., Canetti, R., Goldreich, O.: Asynchronous secure computation. In: STOC, pp.
52–61 (1993)

10. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-cryptographic
fault-tolerant distributed computation. In: STOC, pp. 1–10 (1988)

11. Camenisch, J., Damgård, I.: Verifiable encryption, group encryption, and their applications
to group signatures and signature sharing schemes. In: Okamoto, T. (ed.) ASIACRYPT 2000.
LNCS, vol. 1976, p. 331. Springer, Heidelberg (2000)

12. Camenisch, J., Lysyanskaya, A., Meyerovich, M.: Endorsed e-cash. In: IEEE Security and
Privacy (2007)

13. Camenisch, J., Shoup, V.: Practical verifiable encryption and decryption of discrete loga-
rithms. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 126–144. Springer, Hei-
delberg (2003)

14. Canetti, R., Rabin, T.: Fast asynchronous byzantine agreement with optimal resilience. In:
STOC, pp. 42–51 (1993)

15. Dodis, Y., Lee, P., Yum, D.: Optimistic fair exchange in a multi-user setting. In: Okamoto,
T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, p. 118. Springer, Heidelberg (2007)

16. Fujisaki, E., Okamoto, T.: A practical and provably secure scheme for publicly verifiable se-
cret sharing and its applications. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403,
pp. 32–46. Springer, Heidelberg (1998)

17. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game. In: STOC, pp. 218–
229 (1987)

18. Küpçü, A., Lysyanskaya, A.: Usable optimistic fair exchange. In: Pieprzyk, J. (ed.) CT-RSA
2010. LNCS, vol. 5985, pp. 252–267. Springer, Heidelberg (2010),
http://eprint.iacr.org/2008/431

19. Micali, S.: Simultaneous electronic transactions with visible trusted parties. US Patent
5,553,145 (1996)

20. Micali, S.: Simple and fast optimistic protocols for fair electronic exchange. In: PODC (2003)
21. Pagnia, H., Gärtner, F.: On the impossibility of fair exchange without a trusted third party.

Darmstadt University of Technology, TUD-BS-1999-02 (1999)
22. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret sharing. In:

Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140. Springer, Heidelberg
(1992)

A Definition of Optimistic Fair Exchange Protocols

We provide an informal definition of optimistic fair exchange protocols taken from [18]
just for completeness.

A fair exchange protocol is composed of three interactive algorithms: Alice running
algorithm A, Bob running algorithm B, and the Arbiter running the trusted algorithm T .
Alice has content fA, and Bob has content fB.

Completeness for an optimistic fair exchange states that the interactive run of A and
B by honest parties results in A getting fB and B getting fA (the Arbiter’s algorithm T
is not involved, assuming an ideal network).

http://www.cs.brown.edu/research/brownie/p2p-ecash-wpes07.pdf
http://eprint.iacr.org/2008/431

Optimistic Fair Exchange with Multiple Arbiters 505

Fairness states that at the end of the protocol, either Alice and Bob both get the con-
tent of each other, or neither Alice nor Bob gets anything useful. For formal definitions,
we refer the reader to [18].

B Relaxing Autonomous Arbiters Assumption

In this section, we extend our framework by relaxing the autonomous arbiters assump-
tion to allow for ordered aborts by the honest party and therefore include a broader
range of protocols in our framework. We still assume that the honest arbiters do not
try to communicate, but now the honest parties can contact the arbiters following some
particular order. We immediately notice that the only places where we need that as-
sumption are Scenario 2 and Protocol 2. Results about all other scenarios and protocols
stay unchanged when we do the relaxation by removing the explicit Dispute state in
the ITM definitions of the honest participants (Alice and Bob), thus allowing them to
contact the arbiters with some specific order. Yet, we still are not considering byzantine
fault tolerance or secure multiparty computation techniques.

B.1 Scenario 2 Revisited

In Section 4.2, we analyzed the scenario in which the malicious party has the ability to
resolve only, whereas the honest party can abort and resolve. We analyzed that scenario
using the autonomous arbiters assumption. Below, we will remove the requirement that
arbiters are contacted simultaneously, and revisit our analysis.

Scenario 2 with Threshold-based Mechanisms. Here, we are limiting our protocol
instances to the case where only threshold-based mechanisms are used.12 This means,
the sets HR (t) and MR (t) are of the specific form we have described before. Remember,
the set HR (t) is composed of all subsets of N with TH or more arbiters. Similarly, the
set MR (t) is composed of all subsets of N with TM or more arbiters. TH and TM are the
corresponding thresholds.

Lemma 6. Every DAFE protocol instance needs to make sure there exists a time t when
TH ≤ TM−|F(t)|.
Proof. Assume otherwise: At all times TH > TM − |F(t)|. Malicious party can break
fairness as follows: When H wants to abort the protocol (as directed by the protocol,
most probably triggered by an incorrect input from the malicious party), M waits until
H aborts with n−TH +1 arbiters. H can no longer resolve after this point since there are
less than TH arbiters left in the set of available arbiters RA. At this point, M intercepts
any more abort messages from H and resolves with TM−|F(t)| honest arbiters (as well
as |F(t)| friends). Therefore, this protocol instance is unfair (does not satisfy semantic
fairness).

Notice that Lemma 6 is the same as Corollary 3. Therefore, Corollaries 4 and 5 also
apply here.

12 Appendix B.1 removes the threshold limitation and allows for any set-based resolution
mechanism.

506 A. Küpçü and A. Lysyanskaya

Scenario 2 General Case. Now, we remove all the restrictions we made on our sce-
nario in the previous sub-scenarios. This means, we allow for any set-based resolution
mechanism, and we even allow the protocol to specify an order of arbiters for aborting,
possibly depending on the execution of the protocol instance. One can think of it as the
honest party aborting with one arbiter at every time step, and reconsidering his decision
to abort each time. Therefore, the arbiters are no longer completely autonomous.

Lemma 7. Every DAFE protocol instance needs to make sure that at all times t ∀MR ∈
MR (t) MR �⊆ F(t) (before H has resolved) AND there exists a time t when ∃HR ∈HR (t)
s.t. HR∩F(t) = ∅.

Proof. Assume there exists a time when ∃MR ∈MR (t) MR �⊆ F(t) (before H has re-
solved). Malicious party can break fairness as follows: When H wants to abort the
protocol, M lets him abort with all the arbiters. Then, he goes and resolves with MR, all
members of which are his friends.

Now assume at all times ∀HR ∈ HR (t) HR ∩F(t) �= ∅. Malicious party can break
fairness by just resolving with any MR ∈MR (t). Since all possible ways to resolve for
H has to go through one of the malicious party’s friends, he has no hope of resolving.

In this general scenario, as in the previous cases, we would like to be able to prove
that any DAFE protocol instance needs to make sure there exists a time t when ∀MR ∈
MR (t) ∃HR ∈HR (t) s.t. HR ⊆MR−F(t). Even though this seems a very plausible and
realistic conclusion, several problems arise with its proof.

The general idea is to use an adversary very similar to the one in Section 4.2. So, the
adversary will let H to abort with any arbiter in RA−MR. Then, if H wants to abort with
an arbiter in MR−F(t), M will intercept and resolve with MR. The problem is that this
works depending on the order of aborts. There might be a possible protocol construction
and order specification that makes sure H can still resolve once he detects this behavior.
We do not know of and could not come up with such a construction, due mostly to the
fact that F(t) is unknown to the honest party, and hence designing a protocol instance
using an order that works without knowing F(t) seems impossible. Even though the
order may work for some protocol instances, having an order that works with high
probability (that works on all but negligible fraction of protocol instances) does not
seem possible. Furthermore, the moment we allow for more powerful adversaries, since
the order of arbiters for the honest participant to abort is public, the adversary might
“bribe” some “key” arbiters to become his friends and make sure the ordering fails to
provide fairness (in the dynamic/adaptive corruption model). We admit that we have no
proof for this general case with less powerful adversaries, but we conjecture that the
same predicate for scenario 4.2 as before will hold.

B.2 Protocol 2 Revisited (More Impossibility Results)

In this type of protocols, Alice is given the ability to abort and resolve, whereas Bob is
given only the ability to resolve. Analysis of protocols that are symmetric to this type
of protocols (where Bob can abort and resolve, and Alice can only resolve) obviously
yields to the same conclusions. The predicate for case 1 changes when we relax our

Optimistic Fair Exchange with Multiple Arbiters 507

autonomous arbiters assumption. Case 2 stays the same. Remember, the resolution sets
we consider here are static.

Case 1: Honest Alice vs. Malicious Bob: This case falls under Scenario 2, which
requires special treatment when arbiters are not contacted simultaneously for aborting.
For threshold-based mechanisms, every DAFE protocol needs to have TA ≤ TB−|FB|.
For the most general case of DAFE protocols, we need ∀BR ∈BR BR �⊆ FB AND ∃AR ∈
AR s.t. AR∩FB = ∅ (see Lemma 7 in Appendix B.1).

Case 2: Malicious Alice vs. Honest Bob: This case falls under Scenario 1, which
means any DAFE protocol needs to have ∀AR ∈ AR ∃BR ∈ BR s.t. BR ⊆ AR − FA.
Remember, Corollary 3 (using threshold-based mechanisms) require TB ≤ TA−|FA|.

Regarding DAFE protocols using threshold-based arbiter resolution mechanisms, we
can conclude (from the two cases above) that no such meaningful protocol can exist
(TA ≤ TB− |FB| and TB ≤ TA− |FA| gives TA ≤ TA− |FA|− |FB|, which means all the
arbiters need to be trusted). Hence, there is no point in distributing the arbiters in terms
of trust. It is even worse since we need to trust every single arbiter, and the protocol
cannot be fair even if only one arbiter is corrupt.

Regarding general set-based DAFE protocols, we cannot conclude an immediate im-
possibility. But following our discussion above, we conjecture that no such useful pro-
tocol can exist.

Unfortunately, as we have shown in Section 2.1, the versions of the state-of-the-art
protocols we analyzed in Section 2.1 without any timeouts fall under this protocol cate-
gory. So the impossibility with threshold-based mechanisms, and our conjecture apply
to very common real cases, even when the arbiters are not contacted simultaneously by
the honest party.

C Discussion: Timeouts and Dynamic Resolution Sets

As we have proved in Section 5, no realistic DAFE protocol can provide fairness,
whereas Section 6 shows an existing DAFET protocol that employs timeouts. There-
fore, we can conclude that timeouts play an important role in optimistic fair exchange
protocols when we would like to employ multiple autonomous arbiters. Even without
completely autonomous arbiters, Section B.2 shows an impossibility of DAFE proto-
cols using threshold-based mechanisms, and even with set-based mechanisms, it is not
clear how such a DAFE protocol can be constructed.

Timeouts are tied to the use of dynamic sets in general (as we did for DAFET pro-
tocols). When only one party can resolve before the timeout, static resolution sets lose
their meaning since the resolution set for the party who cannot resolve before the time-
out is empty until the timeout. That set gets defined only after the timeout, which results
in that set being dynamic in a very basic sense. The dynamism prevents the adversary
from coming up with a strategy that violates fairness. As shown in Section 6, this helps
AV protocol achieve semantic fairness. Of course, a careful protocol design is still nec-
essary since timeouts and dynamically changing sets by themselves do not mean that the
protocol will be trivially fair. One may further argue that dynamically changing resolu-
tion sets is a more important concept that plays a big role in this (im)possibility result,
but it is easy to see that timeouts are natural mechanisms to achieve this dynamism.

Speaker Recognition in Encrypted Voice Streams

Michael Backes1,2, Goran Doychev1, Markus Dürmuth1, and Boris Köpf2

1 Saarland University, Saarbrücken, Germany
2 Max Planck Institute for Software Systems (MPI-SWS)

Abstract. Transmitting voice communication over untrusted networks

puts personal information at risk. Although voice streams are typically

encrypted to prevent unwanted eavesdropping, additional features of

voice communication protocols might still allow eavesdroppers to dis-

cover information on the transmitted content and the speaker.

We develop a novel approach for unveiling the identity of speakers who

participate in encrypted voice communication, solely by eavesdropping

on the encrypted traffic. Our approach exploits the concept of voice activ-

ity detection (VAD), a widely used technique for reducing the bandwidth

consumption of voice traffic. We show that the reduction of traffic caused

by VAD techniques creates patterns in the encrypted traffic, which in

turn reveal the patterns of pauses in the underlying voice stream. We

show that these patterns are speaker-characteristic, and that they are

sufficient to undermine the anonymity of the speaker in encrypted voice

communication. In an empirical setup with 20 speakers our analysis is

able to correctly identify an unknown speaker in about 48% of all cases.

Our work extends and generalizes existing work that exploits variable

bit-rate encoding for identifying the conversation language and content

of encrypted voice streams.

1 Introduction

The past decades have brought dramatic changes in the way we live and work.
The proliferation of networked devices, and the resulting abundance of exchanged
information present significant opportunities, but also difficult conceptual and
technical challenges in the design and analysis of the systems and programs
that fuel these changes. A particularly important trend is the increasing need
for protocols that run on open infrastructures such as wireless communication
channels or the Internet and offer remote communication between different peo-
ple anytime, anywhere. However, transmitting privacy-sensitive information over
such open infrastructures raises serious privacy concerns. For instance, modern
voice communication protocols should satisfy various security properties such as
secrecy (the content of the voice communication should remain secret to eaves-
droppers) or even anonymity (users participating in voice communications should
remain anonymous to eavesdroppers in order to avoid being stigmatized or other
negative repercussions). To achieve these security properties, voice communica-
tion is typically encrypted. For example, telephones based on the GSM [13] and
UMTS [1] standards encrypt their voice data, and most implementations of VoIP

D. Gritzalis, B. Preneel, and M. Theoharidou (Eds.): ESORICS 2010, LNCS 6345, pp. 508–523, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Speaker Recognition in Encrypted Voice Streams 509

Fig. 1. Patterns of pauses in network traffic introduced when encoding an audio signal

(above) with a VAD-enabled codec (below). Each audio packet is depicted as a 0.0145s

long black- or white-colored bar, a black bar corresponding to a voice packet and a

white bar corresponding to a pause packet. (Audio data: John F. Kennedy’s inaugural

address from January 20th, 1961).

telephony offer encryption on the application layer or support IPsec. The un-
derlying rationale is that properly employing encryption hides both the content
of the communication and the identity of the speaker, thereby ensuring both
secrecy and anonymity. However, even properly deploying encryption does not
exclude that additional features of voice communication protocols might still
allow eavesdroppers to discover information about the transmitted content and
the speaker.

1.1 Our Contribution

We develop a novel approach for unveiling the identity of speakers who par-
ticipate in encrypted voice communication, solely by eavesdropping on the en-
crypted traffic. Our approach exploits the concept of voice activity detection
(VAD), which is a common performance-enhancing technique to detect the pres-
ence or absence of human speech. VAD-based techniques are used to reduce the
volume of the transmitted data and are prevalent in standards for transmitting
voice streams. For example, the GSM and UMTS standards use a VAD-technique
called discontinuous transmission (DTX) to stop the transmissions if a speaker
is idle, thereby saving battery power and reducing interference. Moreover, VoIP
clients such as Skype [29], Google Talk [12], and Microsoft Netmeeting [20], as
well as the US Army’s Land Warrior system, employ voice codecs that decrease
the number and/or size of packets when a speaker is idle. This reduces network
utilization, which is a primary concern in packet-switched computer networks.

We show that – even when traffic is encrypted – the reduction of traffic caused
by VAD techniques creates patterns in the traffic, which in turn reveal patterns
of pauses in the underlying voice stream (see Figure 1). We show that these
patterns are speaker-characteristic, and that they are sufficient to undermine
the anonymity of the speaker in encrypted voice communication.

510 M. Backes et al.

Our approach relies on supervised learning and works as follows. In a prepa-
ration phase, we collect encrypted samples of voice stream data from a set of
candidate speakers, the so-called training data. From this training data, we build
a stochastic model of the pause characteristics for each candidate, i.e., the rel-
ative frequencies of durations of pauses and continuous speech. In the attack
phase, we are faced with a sample of encrypted voice stream data of one of
these candidates, the so-called attack data. We use the attack data to create a
corresponding stochastic model of the pause characteristics of this candidate;
after that, we employ standard and application-specific classifiers to perform a
goodness-of-fit test between the stochastic models of each candidate and the one
of the target candidate. The goodness-of-fit test determines the candidate whose
model best matches the model derived from the attack data, yielding our guess
for the target’s identity.

We implemented our approach and conducted a series of experiments to eval-
uate its effectiveness. Our data set was composed of about 200 recorded speeches
of 20 politicians. (We chose this data set because many speeches of all candi-
dates are freely available on the web.) We encoded these speeches using the VAD-
enabled voice codec Speex [36]. Speex is used by popular VoIP applications, such
as Google Talk [12], TeamSpeak [30], Ekiga [9] and Microsoft Netmeeting [20].
We built the speaker models using the lengths of the plain (unencrypted) packets
delivered by Speex. Our experiments showed that omitting encryption in build-
ing up these models does not affect our results, since there are large differences
in length between packets corresponding to pauses and packets corresponding to
speech (around a factor of six). These differences are not obscured by the largely
length-preserving ciphers used for VoIP (which have a typical overhead of less
than 10%). Our results show that – even in the presence of encryption – the
information that VAD reveals is a serious threat to the identity of the speakers:
In about 48% of all cases, we were able to correctly identify the speaker from
the set of candidates.

1.2 Related Work

Most documented side-channel attacks against VoIP [35,34,17] target variable
bit-rate (VBR) encoding. VBR is a bandwidth-saving encoding technique that is
more specialized (and thus less often implemented) than VAD. When encoding
a speech segment using VBR, the codec determines whether a high bit-rate is
required for encoding the segment with sufficient audio quality, or if a lower bit-
rate is already enough. The bit-rate used for encoding is reflected in the size of
the resulting packets and is revealed despite encryption. The resulting patterns
can be observed in the traffic of an encrypted VBR-encoded voice stream, as
shown in Figure 2. For a comparison of VAD and VBR, observe that a VBR
codec utilizes the lowest available bit-rate for encoding pauses; hence our attack
against VAD also applies to VBR-codecs. However, in contrast to attacks against
VBR, our attack also poses a threat in scenarios where pure VAD is used, e.g.,
in mobile communication.

Speaker Recognition in Encrypted Voice Streams 511

Fig. 2. Patterns in network traffic introduced when using a VAD-enabled codec (above)

and a VBR-enabled codec (below). Each audio packet is depicted as a 0.0145s long

colored bar, a lighter bar corresponding to a smaller bit-rate.

Wright et al. [35] exploit the patterns in encrypted VBR-encoded VoIP con-
versations to reveal which language is being spoken. In subsequent work [34] they
even show that a sophisticated analysis of encrypted VBR-encoded VoIP traffic
allows an attacker to (partially) uncover spoken phrases in a conversation. In
contrast, our attack targets anonymity, i.e., it allows one to unveil the identity
of the speaker.

Khan et al. [17] show how to reveal speaker identities from encrypted VoIP
traffic. They exploit patterns introduced by VBR encoding, which is a much
richer data source than the VAD encoding used in our work. Their speaker mod-
els are built using triples of packets and capture time intervals of approximately
60ms, whereas our speaker models are based on triples of voice-/pause segments
and capture time intervals of up to multiple seconds. What is particularly in-
teresting is that the identification rates obtained by Khan et al. (75% for 10
speakers and 51% for 20 speakers) are comparable to ours (65% for 13 speakers
and 48% for 20 speakers), even though their work is based on VBR instead of
VAD.

In independent and concurrent work, Lu [19] considers the anonymity of
speakers in encrypted VoIP communications. In contrast to our approach, she
uses Hidden Markov Models (HMMs) for classification. The observed identifica-
tion rates seem to be comparable to ours, however, her paper does not contain
sufficient detail to allow for an in-depth comparison.

In the field of speaker recognition, there has been significant research on so-
called temporal features, which include pause duration and frequency; phone,
segmental, and word durations [11,23]; and patterns in the interaction between
speakers, e.g., durations of turns in a conversation [23,25]. Besides speaker recog-
nition, temporal features have been considered for other types of speaker clas-
sification. Pause duration and frequency, as well as syllable, consonant, vowel
and sub-phonemic durations have been used for determining a speaker’s age
[26,27,18]. Word durations have been used for determining stress levels of a
speaker [14]. Pauses in speech have also been used to identify deception [4].

For completeness, we briefly mention other known security issues in mobile
and VoIP scenarios. Most importantly, a large number of weaknesses have been
found in the underlying, often proprietary cipher algorithms (A5/1-3) that are

512 M. Backes et al.

intended to ensure the secrecy of transmitted data in the GSM standard [5,3,8,7].
Moreover, there are a variety of known attacks against VoIP systems, e.g., denial
of service attacks [37] and billing attacks [38]. We refer to [10] for a recent survey
on such attacks.

1.3 Outline

The remainder of the paper is structured as follows. Section 2 explains how the
speakers models are built. Section 3 introduces several measures for goodness-
of-fit, i.e., for comparing speaker models. We present the empirical evaluations
of our attack in Section 4 before we conclude in Section 5.

2 Building Speaker Profiles

In this section, we describe how a stochastic model of pause characteristics is
built from the stream of packets that is delivered by a VAD-enabled voice codec.
To this end, we distinguish speech from pauses by the duration of the packet.
Short packets are assumed to be pauses. We then transform the packet sequence
into a simpler abstract voice stream that retains only the lengths of runs of
speech and pauses, where length is measured in terms of packet numbers. From
these abstract voice streams we construct basic speaker profiles by determining
the relative frequency of each pause duration. Lastly, we refine the basic speaker
profiles by incorporating context information and applying clustering techniques.

2.1 Abstract Voice Streams

We assume that a voice stream is given as a sequence v = [p1, . . . , pn] of packets
delivered by a VAD-enabled codec. As a first step, we transform the packet se-
quence v into an abstract voice stream abs(v), which is the sequence of natural
numbers that correspond to the maximal numbers of adjacent packets in v corre-
sponding to pauses, speech phases, pauses, etc. For this, we assume a threshold
packet size t that distinguishes between pause and speech packets; i.e., a packet
p with |p| ≤ t is classified as a pause packet, and as a speech packet otherwise.1

We formalize abs(v) by the following recursive definition, where + denotes list
concatenation.

abs([]) := []
abs([p1, . . . , pm] + w) := [m] + abs(w)

where m is the largest integer with

∀i ∈ {1, . . . , m} : |pi| > t or ∀i ∈ {1, . . . , m} : |pi| ≤ t .

1 For example, using the Speex codec, the length of speech packets exceeds the length

of pause packets by a factor of 6, and it is thus easy to find a suitable threshold t.

Speaker Recognition in Encrypted Voice Streams 513

Fig. 3. Correlation between the audio signal (top), and the size of packets (bottom)

For example, for a sequence of packets v of sizes [40, 45, 41, 2, 2, 3, 2, 50, 43] and a
threshold of t = 3, we obtain the abstract voice stream abs(v) = [3, 4, 2], which
models the lengths of maximal sequences of speech, pause, and speech packets,
respectively, in v. We will assume for simplicity that each abstract voice stream
begins and ends with a speech phase, i.e., a stream has an odd length and the
entries at odd positions correspond to speech phases.

For each entry d of an abstract voice stream we obtain the duration of the
corresponding (speech or pause) phase in real time by dividing d by the packet
frequency f , i.e., the number of packets per second. For the example of the Speex
codec, we have a packet frequency of f = 69 s−1.

2.2 Adapting Abstract Voice Streams to the Codec’s Characteristics

We have established a direct connection between packet numbers and durations
of pause and speech phases using abstract voice streams. However, in order to
capture the codec’s characteristics, we must consider further extensions. Many
codecs use a technique called hangover to avoid end-clipping of speeches and to
bridge short pause segments such as those due to stop consonants [16]. When
silence is detected, codecs delay for a hangover period before switching to pause
mode. This delay can be either fixed or dynamic: dynamic hangover hardly
influences the distribution of pause segments [16], and fixed hangover reduces the
duration of pauses and increases the duration of voice segments. The hangover
can be easily determined by comparing abstract voice streams to corresponding
waveforms. In our experiments, we observed that the Speex codec uses a fixed
hangover period of approx. 300ms (≈ 21 packets) before switching to pause
mode. (This can be seen at 2.5 sec. in Figure 3.) When the voice-signal starts
again, there is (obviously) no delay for switching back to voice mode. (This can
be seen at 3.2 sec. in Figure 3.)

Another artifact of the Speex codec can be observed when a very short noise
signal occurs during a longer pause. In this case the codec immediately switches
to voice, but switches back to pause mode earlier than after a long voice segment.
(This can be seen at 7.1 sec. in Figure 3.)

514 M. Backes et al.

To account for this codec behavior, we modify the abstract voice stream
abs(v) = [d1, . . . , dk] as follows. First, we estimate the hangover period h; for
Speex we obtain h = 21 packets; then

1. For each even i (corresponding to a pause), set di := di + h.
2. Update the previous (speech) entry di−1 as follows. If di−1 > h then di−1 :=

di−1 − h. If di−1 ≤ h then di−2 := di−2 + di−1 + di (ignore this assignment
for i = 2), and delete the entries di and di−1 from the sequence.

Modification (1) compensates for the hangover period h, as explained above.
Modification (2) shortens the preceding speech entry accordingly and at the
same time removes short noise signals from the stream.

Our experiments confirm that the resulting abstract voice stream more accu-
rately captures the duration of pauses in the original voice stream, and we use
it as the basis of our speaker profiles.

2.3 Basic Speaker Profiles

A basic speaker profile captures information about the relative frequencies of
lengths of pauses or voice segments, respectively. As our experiments confirm,
this information alone allows for good recognition results.

For an abstract voice stream [d1, . . . , dk], the relative frequency Spause of pause
durations d is defined as

Spause[d] =
#{j | d2j = d}

(k − 1)/2
.

Analogously, we define the relative frequency Svoice of the durations d of speech
phases:

Svoice[d] :=
#{j | d2j+1 = d}

(k + 1)/2
.

Given an abstract voice stream with packet lengths [5, 10, 4, 7, 5, 7, 3] we obtain

Spause[7] = 2
3 Spause[10] = 1

3

Svoice[3] = 1
4 Svoice[4] = 1

4 Svoice[5] = 1
2

By definition, Spause and Svoice vanish for all packet sizes that do not occur in
the abstract voice stream.

2.4 Advanced Speaker Profiles

The basic speaker profiles Spause and Svoice presented above capture the relative
frequencies of durations of pauses and continuous speech, respectively. As pauses
and speech are considered in isolation, these models are oblivious of the context
in which a pause or a speech phase occurs. To overcome this limitation, we con-
struct a speaker profile based on the relative frequencies of three-tuples of du-
rations of adjacent pause-voice-pause phases. By considering such three-tuples,

Speaker Recognition in Encrypted Voice Streams 515

we incorporate interdependencies between sequences of pauses and speech into
our model, which captures the context in which pauses occur.

We formally define S3 as follows

S3[(x, y, z)] =
#{j | d2j−1 = x, d2j = y, d2j+1 = z}

(k − 1)/2
.

It is straightforward to generalize S3 to arbitrary n-tuples. In our experiments,
however, speaker profiles based on three-tuples have proven sufficient.

2.5 Clustering

The distributions of pause and voice durations are characteristic for a speaker.
However, as with most natural processes, they are subject to small random
disturbances. We therefore group the pause lengths to clusters: Given a sequence
[d1, . . . , dk] we create a clustered version (with cluster-size s) of this sequence as

[�d1/s
, . . . , �dk/s
] .

Unless otherwise specified, in the remainder of this paper we use a cluster-size
of 80 (determined experimentally to yield good results). Applying this technique
has the additional advantage of reducing the support of the distribution function.
This is particularly relevant for the S3 speaker model, as its support grows
cubically in the number of observed durations.

3 Measuring Distance of Speaker Profiles

This section introduces three classifiers that serve as goodness-of-fit tests in
this work; i.e., they compare how well the probability distribution over segment
durations of the unknown speaker matches distributions over durations collected
in the training phase. Thus these classifiers constitute tools to identify the victim
of our attack from a set of candidate speakers.

3.1 The L1-Distance

The simplest distance measure is the metric dL1 induced by the L1-norm. For
probability distributions P, Q with finite support T , the metric dL1 is defined as
the sum of the absolute differences between the values of P and Q, i.e.,

dL1(P, Q) =
∑
x∈T

|P [x]−Q[x]| .

Even though dL1 is a rather simple measure, it performs reasonably well on our
experimental data, as shown in Section 4.

516 M. Backes et al.

3.2 The χ2-Distance

A more sophisticated distance measure is the χ2-distance, which is based on
the χ2-test. For two probability distributions P, Q with support T we define
dχ2(P, Q) as the sum of the squared and normalized absolute differences between
the values of P and Q, i.e.,

dχ2(P, Q) =
∑
x∈T

(P [x]−Q[x])2

Q[x]
.

Note that dχ2 is not a metric in the mathematical sense, because it lacks symme-
try. Besides this fact, the measure dχ2 shows two main differences from the metric
dL1 . First, squaring the numerator for χ2 gives more weight to large differences
in the relative frequency of a given packet size. Second, dividing by the trained
probability Q[x] amplifies differences whenever Q[x] is small, effectively giving
the relative difference rather than the absolute difference. In our experiments,
of the three classifiers, the χ2-distance has shown the most robust performance.

3.3 The K-S-Distance

Finally, we derived a distance measure based on the Kolmogorov-Smirnov test,
which is known to outperform the χ2 on samples that are small or that are
sparsely distributed throughout a large number of discrete categories [21]. We
define the K-S-distance of two probability distributions P, Q with support T =
{t1, . . . , tn} and ti ≤ tj whenever i < j, by

dK-S(P, Q) = max
l≤n

{∣∣ l∑
i=1

(P (ti)−Q(ti))
∣∣} .

The K-S test searches for the maximal difference between the cumulation of two
distributions. In our experiments, the K-S distance performed well, but slightly
worse than the χ2-distance.

3.4 Classifier Evaluation

Using the classifiers described above to compare the unknown speaker’s model
to the N trained models, we obtain a vector of scores 〈s1, s2, . . . , sN 〉, si corre-
sponding to the score of the unknown speaker’s model when compared to the
model of speaker i. From this vector, we compute the rank, representing the po-
sition at which the correct speaker was ranked. In case of a score tie, we take the
lowest ranking position among all speakers with the same score. After t trials,
we obtain the ranks r1, r2, . . . , rt, where ri is the rank in the i-th trial. In the
following we present several techniques for evaluating the performance of the
classifiers using those values.

Speaker Recognition in Encrypted Voice Streams 517

Identification rate. The simplest evaluation metric we consider is identifica-
tion rate (IR). It is computed as the percentage of the trials where the classifier
guessed correctly the unknown speaker, i.e.,

IR :=
#{i|ri = 1}

t
.

The identification rate is an intuitive measure for the accuracy of classifiers.
However, it is a quite conservative measure, as it ignores all results where the
speakers are not ranked first. For our purposes we are not only interested in the
best-scored speaker, but in a subset of the highest-ranked speakers. For example,
if a classifier constantly gives the unknown speaker a rank of 3 out of 15 speakers,
this still leaks information about the speaker’s identity.

Average rank. An evaluation method that takes into consideration all obtained
ranks is the average rank (AR) over all obtained ranks, i.e.,

AR :=
t∑

i=1

ri

t
.

The results of this measure are very intuitive since they depict which position
is output by the classifier on average; results closer to position 1 are preferred.
However, as we are only interested in the few highest ranks, the use of average
ranks may not be appropriate, as it puts equal weight on higher and lower ranks.

Top x results. To overcome the shortcomings of average ranks, we could ob-
serve only the top x obtained ranks. Thus, we obtain the top x-metric which
measures the percentage of trials where the correct speaker was ranked x-th or
better, i.e.,

top x :=
#{i|ri ≤ x}

t
.

The plot with the rank x on the horizontal axis and the top x metric on the
vertical axis is called cumulative match characteristic (CMC) curve in the liter-
ature (e.g., see [22]), and we use it to illustrate the results of our experiments in
Section 4.

Discounted cumulative gain. Alternatively, we could use an adapted ver-
sion of discounted cumulative gain (DCG), a scoring technique used mainly in
information retrieval for rating web search engine algorithms [15].

Let for i ∈ {1, . . . , N}, the relevance reli be defined as number of trials where
the correct speaker was ranked i-th. The DCG-measure is defined as

DCG :=
N∑

i=1

reli
d(i)

,

where d(i) is called discounting function and usually f(i) = log2(i+1) is applied.
Using this measure, top-ranked speakers will have a higher weight than lower-
ranked ones, but lower ranks will still have a relevance to the final score of a
classifier.

518 M. Backes et al.

4 Experimental Evaluation

In this section we report on experimental results where we evaluate the feasi-
bility of breaking anonymity in encrypted voice streams. We first describe our
experimental setup and proceed by discussing the results we obtained using the
speaker profiles and distance measures presented in the previous sections.

4.1 Experimental Setup

We use speeches of 20 different politicians as a data basis for our experiments:
Among those 20 speakers, 18 speakers are male and 7 languages are spoken,
English being the best represented language with 12 speakers, see Table 1. This
set of voice recordings is homogeneous with respect to the setting in which
the speeches were given, as they are official addresses to the nation that were
broadcast on radio or television. The collected speeches are available online, e.g.
on [33], [2], [31] and [32]. The length of the collected audio data per speaker
varied between 47 and 114 minutes; on average we have about ten speeches per
speaker. The speeches for each speaker were recorded in the course of several
months or even years in multiple recording situations.

We simulate a unidirectional voice conversation by encoding the speeches
using Speex (version 1.2rc1). We build our speaker models based on (sequences
of) the sizes of audio packets output by Speex. These packet sizes correspond to
the lengths of the speech packets in encrypted VoIP traffic, except for a constant
offset. To see this, note that the encryption schemes used for VoIP are largely
length-preserving. Moreover, typical protocols for transmitting audio packets on
the application layer add headers of constant size, e.g., the commonly used Real-
time Transport Protocol (RTP) [28]. As a consequence, the speaker models built
from sequences of plain audio packets are equivalent to the models built from
real VoIP traffic.

4.2 Results and Discussion

We performed our experiments on the full set of 20 speakers and on a subset of
13 speakers.2 We divided the voice data of each speaker into two halves, each
consisting of several speeches; we used the first half for training and the second
half for the attack and vice versa, resulting in a total of 26 experiments with 13
speakers and 40 experiments with 20 speakers, respectively. We performed ex-
periments with all speaker models discussed in Section 2, i.e., based on sequences
of pause lengths (Spause), sequences of speech lengths (Svoice), and three-tuples
thereof (S3). Moreover, we considered variants of each model based on cluster-
ing, and we compensated for the hangover technique used by Speex, as discussed
in Section 2. As distance measures, we used the L1 distance, the χ2 classifier,

2 The 13 speakers were our data set for the initial version of this paper [6], which we

extended to 20 speakers for the final version.

Speaker Recognition in Encrypted Voice Streams 519

Table 1. Speech data used in the experiments

Speaker Nationality Language Number

speeches

Duration

(mm:ss)

Angela Merkel Germany German 15 53:53

Barack Obama USA English 15 68:33

Cristina Fernández de Kirchner Argentina Spanish 5 99:04

Dmitry Medvedev Russia Russian 12 66:40

Donald Tusk Poland Polish 10 92:38

Dwight D. Eisenhower USA English 7 67:28

Franklin D. Roosevelt USA English 4 80:38

George W. Bush USA English 15 50:24

Harry S. Truman USA English 5 60:48

Jimmy Carter USA English 6 47:56

John F. Kennedy USA English 8 47:10

Kevin Rudd Australia English 16 68:55

Luiz Inácio Lula da Silva Brazil Portuguese 7 105:27

Lyndon B. Johnson USA English 8 50:25

Nicolas Sarkozy France French 5 102:58

Richard Nixon USA English 6 113:43

Ronald Reagan USA English 12 51:06

Stephan J. Harper Canada English/French 13 100:07

Vladimir Putin Russia Russian 13 113:55

William J. Clinton USA English 20 82:05

and the Kolmogorov-Smirnov (K-S) classifier. Moreover, we evaluated and com-
pared the performance of these classifiers when conducting those experiments,
i.e., we analyzed the classifiers’ identification rate (IR), average rank (AR), and
the discounted cumulative gain (DCG), as discussed in Section 3.4.

For a data set of 13 speakers, we obtained the following results. Using the
speaker model Spause, the identification rate ranged between 26.9% and 38.5%
depending on the used classifier, see Table 2(a). Using the speaker model Svoice,
the identification rate ranged between 30.8% and 50%, see Table 3(a).

For 13 speakers, our best results were obtained using the speaker model S3

and applying a clustering with cluster size 80 to reduce the support of the dis-
tribution function. For S3, the identification rate ranged between 30.8% and
65.4%, as shown in Table 4(a). For comparison, observe that the probability of
randomly guessing the correct speaker is 1

13 ≈ 7.7%, i.e., we achieve an 8.5-fold
improvement over random guessing.

For a data set of 20 speakers, we obtained the following results. Using the
speaker model S3, we obtained identification rates between 22.5% and 40% de-
pending on the classifier, as shown in Table 4(b). As in the setting with 13
speakers, S3 outperforms the speaker model Spause. However, as opposed to the
setting with 13 speakers, we obtained the best identification rates for 20 speakers
using the Svoice model: with this model, the identification rate ranged between
32.5% and 47.5%, see Table 3(b). The probability of randomly guessing the cor-
rect speaker is 1

20 = 5%, i.e., we achieve a 9.5-fold improvement over random

520 M. Backes et al.

guessing. Although the identification rate decreases when considering 20 speak-
ers instead of 13 (which was expected), the improvement over random guessing
is almost constant for both data sets.

Our discussion so far has focused on identification rate as a metric for eval-
uating classifiers. The reason for choosing identification rate is its direct and
intuitive interpretation. The results of evaluating classifiers and speaker models

Table 2. Experimental results with different classifiers using speaker models based

on pauses (Spause). (IR = identification rate, AR = average rank, DCG = discounted

cumulative gain).

(a) Results with 13 speakers

Classifier IR AR DCG

L1 0.269 3.000 0.619

χ2 0.385 2.423 0.697

K-S 0.308 3.615 0.613

Random 0.077 7 0.412

Best case 1 1 1

(b) Results with 20 speakers

Classifier IR AR DCG

L1 0.275 5.050 0.572

χ2 0.175 4.475 0.545

K-S 0.225 5.525 0.542

Random 0.050 10.5 0.352

Best case 1 1 1

Table 3. Experimental results with different classifiers using speaker models based on

voice segments (Svoice). (IR = identification rate, AR = average rank, DCG = dis-

counted cumulative gain).

(a) Results with 13 speakers

Classifier IR AR DCG

L1 0.500 2.808 0.729

χ2 0.577 2.692 0.763

K-S 0.308 3.731 0.611

Random 0.077 7 0.412

Best case 1 1 1

(b) Results with 20 speakers

Classifier IR AR DCG

L1 0.425 4.675 0.652

χ2 0.475 4.625 0.679

K-S 0.325 5.050 0.594

Random 0.050 10.5 0.352

Best case 1 1 1

Table 4. Experimental results with different classifiers using speaker models based on

three-tuples of pauses and voice segments (S3). (IR = identification rate, AR = average

rank, DCG = discounted cumulative gain).

(a) Results with 13 speakers

Classifier IR AR DCG

L1 0.654 2.692 0.789

χ2 0.615 2.192 0.801

K-S 0.308 3.731 0.615

Random 0.077 7 0.412

Best case 1 1 1

(b) Results with 20 speakers

Classifier IR AR DCG

L1 0.300 4.725 0.619

χ2 0.400 4.050 0.670

K-S 0.225 5.075 0.547

Random 0.050 10.5 0.352

Best case 1 1 1

Speaker Recognition in Encrypted Voice Streams 521

0

0.2

0.4

0.6

0.8

1

2 4 6 8 10 12 14 16 18 20

%
 e

xp
er

im
en

ts

Rank

Fig. 4. Cumulative match characteristic (CMC) curve for the χ2 classifier with 20

speakers, using speaker models based on three-tuples (S3): the horizontal axis depicts

the rank i assigned by the classifier; the vertical axis denotes the percentage of exper-

iments in which the correct speaker was assigned at least rank i

using different metrics are also given in Tables 2, 3, 4, and Figure 4, respectively.
We believe that these alternative metrics are relevant in terms of their security
interpretation. For example, the top x-metric seems to be closely connected to
the notion of anonymity sets of size x [24]. We leave a thorough investigation of
this connection to future work.

5 Conclusion

Performance-enhancing techniques such as voice activity detection create pat-
terns in the volume of telephone traffic that are observable by eavesdroppers
even if the traffic is encrypted. In turn, these patterns reveal patterns of pauses
in the underlying voice stream. We have developed a novel approach for unveil-
ing the identity of speakers who participate in encrypted voice communication:
we show that these patterns are characteristic for different speakers, and that
they are sufficient to undermine the anonymity of the speaker in encrypted voice
communication. In an empirical setup with 20 speakers our analysis is able to
correctly identify an unknown speaker in about 48% of all cases. This raises
serious concerns about the anonymity in such conversations and is particularly
relevant for communication from mobile and public devices.

References

1. 3GPP. The 3rd Generation Partnership Project, http://www.3gpp.org/
2. Administration of the President of the Russian Federation. Videoblog of the Pres-

ident of the Russian Federation, http://blog.kremlin.ru/

http://www.3gpp.org/
http://blog.kremlin.ru/

522 M. Backes et al.

3. Barkan, E., Biham, E., Keller, N.: Instant ciphertext-only cryptanalysis of GSM

encrypted communication. Journal of Cryptology 21(3), 392–429 (2008)

4. Benus, S., Enos, F., Hirschberg, J., Shriberg, E.: Pauses in deceptive speech. In:

Proc. of ISCA 3rd International Conference on Speech Prosody (2006)

5. Biryukov, A., Shamir, A., Wagner, D.: Real time cryptanalysis of A5/1 on a PC.

In: Schneier, B. (ed.) FSE 2000. LNCS, vol. 1978, pp. 1–18. Springer, Heidelberg

(2001)

6. Doychev, G.: Speaker recognition in encrypted voice streams, Bachelor’s thesis,

Department of Computer Science, University of Saarland, Saarbrücken, Germany

(December 2009)

7. Dunkelman, O., Keller, N., Shamir, A.: A practical-time attack on the A5/3 cryp-

tosystem used in third generation GSM telephony. Cryptology ePrint Archive,

Report 2010/013 (2010), http://eprint.iacr.org/

8. Ekdahl, P., Johansson, T.: Another attack on A5/1. IEEE Transactions on Infor-

mation Theory 49(1), 284–289 (2003)

9. Ekiga, http://ekiga.org/

10. El-Moussa, F., Mudhar, P., Jones, A.: Overview of SIP attacks and countermea-

sures. In: Information Security and Digital Forensics. LNICST, pp. 82–91. Springer,

Heidelberg (2010)

11. Ferrer, L., Bratt, H., Gadde, V.R.R., Kajarekar, S., Shriberg, E., Andreas, K.S.,

Venkataraman, S.A.: Modeling duration patterns for speaker recognition. In: Proc.

of the EUROSPEECH, pp. 2017–2020 (2003)

12. Google Inc. Google Talk, http://www.google.com/talk/

13. GSM-Association. GSM - Global System for Mobile communications,

http://www.gsmworld.com/

14. Hansen, J.H., Patil, S.: Speech under stress: Analysis, modeling and recognition. In:

Müller, C. (ed.) Speaker Classification 2007. LNCS (LNAI), vol. 4343, pp. 108–137.

Springer, Heidelberg (2007)

15. Järvelin, K., Kekäläinen, J.: IR evaluation methods for retrieving highly relevant

documents. In: Proc. of the 23rd Annual International ACM SIGIR Conference on

Research and Development in Information Retrieval, pp. 41–48. ACM Press, New

York (2000)

16. Jiang, W., Schulzrinne, H.: Analysis of on-off patterns in VoIP and their effect on

voice traffic aggregation. In: Proc. of the 9th International Conference on Computer

Communications and Networks (ICCCN 2000), pp. 82–87 (2000)

17. Khan, L., Baig, M., Youssef, A.M.: Speaker recognition from encrypted VoIP com-

munications. Digital Investigation (2009) (in Press)

18. Linville, S.E.: Vocal Aging. Singular (2001)

19. Lu, Y.: On traffic analysis attacks to encrypted VoIP calls, Master’s thesis, Cleve-

land State University (November 2009)

20. Microsoft Corporation. Microsoft Netmeeting,

http://www.microsoft.com/downloads/details.aspx?

FamilyID=26c9da7c-f778-4422-a6f4-efb8abba021e&displaylang=en

21. Mitchell, B.: A comparison of chi-square and Kolmogorov-Smirnov tests. Area 3,

237–241 (1971)

22. Moon, H., Phillips, P.J.: Computational and performance aspects of PCA-based

face-recognition algorithms. Perception 30, 303–321 (2001)

23. Peskin, B., Navratil, J., Abramson, J., Jones, D., Klusacek, D., Reynolds, D.A.,

Xiang, B.: Using prosodic and conversational features for high-performance speaker

recognition. In: Proc. of the International Conference on Acoustics, Speech, and

Signal Processing (ICASSP 2003), pp. 792–795 (2003)

http://eprint.iacr.org/
http://ekiga.org/
http://www.google.com/talk/
http://www.gsmworld.com/
http://www.microsoft.com/downloads/details.aspx?FamilyID=26c9da7c-f778-4422-a6f4-efb8abba021e&displaylang=en
http://www.microsoft.com/downloads/details.aspx?FamilyID=26c9da7c-f778-4422-a6f4-efb8abba021e&displaylang=en

Speaker Recognition in Encrypted Voice Streams 523

24. Pfitzmann, A., Köhntopp, M.: Anonymity, Unobservability, and Pseudonymity -

A Proposal for Terminology. In: Federrath, H. (ed.) Designing Privacy Enhancing

Technologies. LNCS, vol. 2009, pp. 1–9. Springer, Heidelberg (2001)

25. Reynolds, D., Campbell, J., Campbell, B., Dunn, B., Gleason, T., Jones, D.,

Quatieri, T., Quillen, C., Sturim, D., Torres-Carrasquillo, P.: Beyond cepstra: Ex-

ploiting high-level information in speaker recognition. In: Proc. of the Workshop

on Multimodal User Authentication, Santa Barbara, Calif, USA, pp. 223–229 (De-

cember 2003)

26. Schötz, S.: Acoustic analysis of adult speaker age. In: Müller, C. (ed.) Speaker

Classification 2007. LNCS (LNAI), vol. 4343, pp. 88–107. Springer, Heidelberg

(2007)

27. Schötz, S., Müller, C.: A study of acoustic correlates of speaker age. In: Müller, C.

(ed.) Speaker Classifcation II. LNCS (LNAI), vol. 4441, pp. 1–9. Springer, Heidel-

berg (2007)

28. Schulzrinne, H., Casner, S., Frederick, R., Jacobson, V.: RTP: A transport protocol

for real-time applications (1996)

29. Skype Limited. Skype, http://www.skype.com/

30. TeamSpeak Systems GmbH. TeamSpeak, http://www.teamspeak.com/

31. The American Presidency Project. Audio/Video Archive,

http://www.presidency.ucsb.edu/media.php

32. The Press and Information Office of the German Federal Government. Podcasts,

http://www.bundeskanzlerin.de/Webs/BK/De/Aktuell/Podcasts/podcast.html

33. The White House. Your weekly address,

http://www.whitehouse.gov/briefing-room/weekly-address

34. Wright, C.V., Ballard, L., Coull, S.E., Monrose, F., Masson, G.M.: Spot me if

you can: Uncovering spoken phrases in encrypted VoIP conversations. In: Proc. of

the 2008 IEEE Symposium on Security and Privacy, pp. 35–49. IEEE Computer

Society Press, Los Alamitos (2008)

35. Wright, C.V., Ballard, L., Monrose, F., Masson, G.M.: Language identification

of encrypted VoIP traffic: Alejandra y Roberto or Alice and Bob? In: Proc. of

16th USENIX Security Symposium on USENIX Security Symposium, pp. 1–12.

USENIX Association (2007)

36. Xiph.Org. Speex: A free codec for free speech, http://speex.org/

37. Zhang, G., Ehlert, S., Magedanz, T., Sisalem, D.: Denial of service attack and

prevention on SIP VoIP infrastructures using DNS flooding. In: Proc. of 1st Inter-

national Conference on Principles, Systems and Applications of IP Telecommuni-

cations, pp. 57–66. ACM, New York (2007)

38. Zhang, R., Wang, X., Yang, X., Jiang, X.: Billing attacks on SIP-based VoIP

systems. In: Proc. of the First USENIX Workshop on Offensive Technologies, pp.

1–8. USENIX Association (2007)

http://www.skype.com/
http://www.teamspeak.com/
http://www.presidency.ucsb.edu/media.php
http://www.bundeskanzlerin.de/Webs/BK/De/Aktuell/Podcasts/podcast.html
http://www.whitehouse.gov/briefing-room/weekly-address
http://speex.org/

Evaluating Adversarial Partitions

Andreas Pashalidis and Stefan Schiffner

K.U. Leuven/IBBT, ESAT/SCD-COSIC

Kasteelpark Arenberg 10,

Leuven, Belgium

{andreas.pashalidis,stefan.schiffner}@esat.kuleuven.be

Abstract. In this paper, we introduce a framework for measuring un-

linkability both per subject and for an entire system. The framework

enables the evaluator to attach different sensitivities to individual items

in the system, and to specify the severity of different types of error that

an adversary can make. These parameters, as well as a threshold that

defines what constitutes a privacy breach, may be varied for each subject

in the system; the framework respects and combines these potentially dif-

fering parametrisations. It also makes use of graphs in a way that results

in intuitive feedback of different levels of detail. We exhibit the behaviour

of our measures in two experimental settings, namely that of adversaries

that output randomly chosen partitions, and that of adversaries that

launch attacks of different effectiveness.

1 Introduction

An adversary on unlinkability aims to divide a given set of elements into non-
overlapping clusters, such that the elements in each cluster belong to the same
subject or, more generally, share a well-defined property. In the electronic world,
such elements are typically digital data items that arise as a result of online
transactions, e.g. personal messages, shopping records, user attributes, protocol
transcripts, or entries in an audit log. Measuring linkability is important because
an adversary’s ability to link elements that should be unlinkable constitutes a
privacy breach. Moreover, successful attacks on linkability can lead to further
privacy breaches such as the unauthorised (re-)identification of subjects [13].
We stress, however, that an adversary on unlinkability does not necessarily care
about identifying subjects.

Linkability measurements are not straightforward. Consider, for example, the
partition Π = {{◦, ◦, ◦, ◦, ◦}, {•, •}}, and let us call its two clusters ‘Alice’s
and Bob’s items’. An adversary assuming that the correct partition is {{◦, ◦, ◦,
◦, ◦}, {•}, {•}}, obviously failed to link Bob’s items, but has linked Alice’s items
perfectly. It is, however, not obvious which of the partitions, Π ′

1 = {{◦, ◦, ◦, ◦},
{◦, •, •}}, Π ′

2 = {{◦, ◦, ◦, •}, {◦, ◦}, {•}}, and Π ′
3 = {{◦, ◦, ◦}, {◦}, {◦}, {•, •}},

for example, is a better approximation of Π , both overall and with respect to
any given subject. In order to demonstrate this, we first focus on Alice’s items
but ignore, for the moment, Bob’s. According to Π ′

1, almost all her items have

D. Gritzalis, B. Preneel, and M. Theoharidou (Eds.): ESORICS 2010, LNCS 6345, pp. 524–539, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Evaluating Adversarial Partitions 525

been identified as belonging together, with the exception of one, which belongs to
a different cluster. Π ′

2 also divides Alice’s items into two clusters, but the second
one contains two items rather than only one. Intuition therefore suggests that
Π ′

2 is a worse approximation than Π ′
1, at least with respect to Alice’s items.

Π ′
3 divides Alice’s items into three clusters. However, one has to re-allocate

the same amount of items (two) in both Π ′
2 and Π ′

3 to completely link Alice’s
items. This, however, does not necessarily mean that both clusters are equally
good approximations; Π ′

3 may still be considered worse than Π ′
2 since, in Π ′

2, a
single cluster merging suffices to completely link Alice’s items, while, in Π ′

3, two
such mergings are required. We now stop ignoring Bob’s items, but still focus
on unlinkability from Alice’s point of view. While Π ′

1 contains a cluster that
mixes two of Bob’s items with some of Alice’s, Π ′

2 mixes only one. Moreover,
Π ′

3 contains no cluster that mixes items of both Alice and Bob. This second
viewpoint leads to opposite conclusions: Π ′

3 is a better approximation of Π than
Π ′

2, and Π ′
2 is better than Π ′

1.
In order to decide which of the two viewpoints should prevail, it is important

to know more about the concrete context. A loan seeker, for example, would like
to prevent his bank from being able to link his negative credit ratings, but if
linking happens anyway, then he is likely to prefer correct rather than incorrect
inferences to be made.1 A consumer, on the other hand, would like to prevent the
direct marketing company from being able to aggregate his shopping behaviour
into a detailed profile, but if this happens anyway, he is likely to prefer his profile
to be ‘contaminated’ with the shopping histories of other people. Both the loan
seeker and the consumer are therefore interested in both viewpoints, but have
different preferred outcomes with respect to the latter viewpoint.

In this paper, we develop a novel evaluation framework for adversarial par-
titions that enables one to take these different viewpoints. The framework is
flexible in multiple ways, as it enables the evaluator to attach different sensitiv-
ities to individual items in the system, to specify the severity of different types
of error that an adversary can make, and to define a threshold that defines what
constitutes a privacy breach. These parametrisations may vary for each subject
in the system; the framework respects and combines them. Evaluations are com-
municated by means of intuitive graphs and, since they are performed on the
subject level, can serve as the basis for further analysis such as fairness.

The rest of this paper is organised as follows. The next section surveys related
work, and section 3 introduces our evaluation framework. Section 4 illustrates its
application on a toy example. Section 5 compares the behaviour of our measures
to that of other distance measures. Finally, section 6 concludes.

2 Related Work

Two research areas relate to our work, namely that of privacy and that of sta-
tistical classification. In particular, we build on ideas on measuring unlinkability
1 We assume that the loan seeker is willing to pay back his own debts in order to erase

negative credit ratings if necessary, but unwilling to do so for other people’s debts.

526 A. Pashalidis and S. Schiffner

from the former, and comparing clusterings from the latter area. Works from
the first area deal with the question of how effectively certain privacy preserv-
ing systems protect the unlinkability of the elements that arise in the system.
While [3,4,9,11], for example, measure unlinkability in general, [13,14] and [1] do
so in the context of anonymous communication and attribute sharing, respec-
tively. In addition, [11] considers fairness.

The literature on comparing clusterings, on the other hand, has a longer
history, and many distance metrics on partitions have been defined and used over
the years [5,15]. The Rand index [12], for example, considers the extent to which
two partitions treat all element pairs similarly, the minimum transfer distance [2]
considers the number of element transfers until two partitions are identical and
the variation of information [7] uses information-theoretic primitives.

The overall goal of both research areas is to provide the basis to compare
partitions. The difference is that, in the ‘measuring unlinkability’ area, these
partitions represent attacks on specific privacy preserving systems, while, in the
‘comparing clusterings’ context, they represent algorithms that aim to classify
the items of a given dataset in some useful way. Unfortunately, the approaches
from both areas suffer from certain inflexibilities that limit their suitability when
it comes to evaluating adversarial partitions in a privacy setting. These inflexi-
bilities manifest themselves in three different ways, as follows.

Firstly, existing approaches do not take into account important aspects of
adversarial partitions. While [14], for example, mainly focuses on the question
of whether or not two given elements are linked, [3,9] as well as the literature on
comparing clusterings, compute measurements over a given partition as a whole.
Both approaches do not measure unlinkability on the crucial subject level. Other
works, e.g. [4,11,14], also consider the (degree of) unlinkability of arbitrary ele-
ment subsets; their focus is, however, on the extent to which the elements of the
subset can be linked, while the extent to which foreign elements (i.e. elements not
in the subset) ‘contaminate’ the adversary’s view on the subset, are disregarded.
(Here it should be mentioned that this is not entirely true for the ‘white-box’
analysis approach described in [3]; depending on the chosen partition distance
metric, contamination levels may be taken into account. This, however, does not
happen on the subject level, but rather on the overall partition level.) In this
work, we ask the question ‘how well is a given solution cluster hidden within the
adversarial partition?’. That is, we perform separate measurements pertaining to
each subject without ignoring foreign elements (i.e. elements belonging to other
subjects), and, if necessary, combine these into an overall average only in the
last step. This approach yields not only measurements on the subject level, but
also natural ways to evaluate the fairness provided by the underlying system.

Secondly, existing approaches do not distinguish between the sensitivity that
users or evaluators attach to the elements in a system. They also do not let
the evaluator specify his sensitivity towards different types of error that an ad-
versarial partition may exhibit. That is, existing approaches do not account for
the fact that the same adversarial partition may represent attacks of different

Evaluating Adversarial Partitions 527

seriousness in different contexts. Our evaluation framework enables the evaluator
to formulate such sensitivities.

Thirdly, it is unclear how to construct supportive material, such as illus-
trations or graphics, that show, in a sufficiently intuitive way, how a given
(un)linkability measurement comes about. While the graphs that represent an
attacker’s internal state as defined in [9] are certainly an exception, they do not
convey the information of how well a given subject’s cluster is hidden within the
adversary’s state (especially in the presence of ‘transitivity contradictions’). Our
evaluation framework uses graphs that depict meaningful quantities that indi-
vidual subjects are likely to care about. In fact, in our framework, these graphs
do not depict the final unlinkability measurements. Rather conversely, the final
unlinkability measurements are derived from the graphs.

Our approach remains agnostic to specific applications, and combines ideas
from both research areas above. From the literature of measuring unlinkability we
follow the idea that unlinkability generally decreases as the adversary links more
of a given subject’s elements, and we take into account adversaries that output
multiple, in their view probable partitions. From the literature on comparing
clusterings, we adopt some (very) basic notions of [7]. Namely, the intersection
of cluster pairs is an important quantity that defines, among other parameters,
both ‘miss’ and ‘include’ error counts in our approach. These same intersections
also play a central role in the ‘variation of information’ metric (see Equation 15
in [7]). However, it is not our goal to define distance metrics in the strict sense;
therefore our framework does not aim to fulfill the axioms put forth in [8]. It
does, however, fulfill the informal criteria listed in [3], namely taking into account
both the certainty and the consistency of the adversary.

3 Evaluating Adversarial Partitions

Our evaluation methodology focuses on the errors made by an adversary, and
distinguishes between primary and secondary errors. The motivation for this
distinction lies in the ‘sort of story’ that the two error types tell: primary errors
describe the adversary’s current state, while secondary errors describe the risk
that this state represents for the future. More precisely, primary errors describe
how well a given solution cluster is currently hidden within a given adversarial
partition, while secondary errors describe how well the cluster remains hidden
if additional information would enable the adversary to further refine its cur-
rent assessment. In the following, Π denotes the solution partition, and Π ′ the
adversarial partition. We assume that both Π and Π ′ are set partitions of the
same finite set of size n =

∑
C∈Π |C| and use the notation C and C′ to refer to

individual clusters of Π and Π ′, respectively.

3.1 Primary Errors

Motivated by the example in the introduction, we consider two types of primary
error that an adversary can make with respect to a solution cluster: a ‘miss’ error

528 A. Pashalidis and S. Schiffner

occurs if the adversary fails to include an element that should be included in the
cluster, and an ‘include’ error occurs if it includes an element that should not
have been included. Formally, given a cluster pair C, C′, the number of miss and
include errors is defined as m(C, C′) = |C −C′| and i(C, C′) = |C′−C|, respec-
tively. The miss (resp. include) error counts can also be defined as m(C, C′) =
|C|−|C∩C′| (resp. i(C, C′) = |C′|−|C∩C′|). This makes explicit the intersection
mentioned in section 2.

The evaluator may be more sensitive towards miss than he is towards include
errors, or vice versa. We let the evaluator indicate this sensitivity by means of
a ‘policy parameter’ α ∈ [0, 1]: setting α = 0 indicates that he cares exclusively
about the extent to which the elements of interest are linked, while completely
ignoring foreign elements. Setting α = 1, on the other hand, means that the
evaluator is agnostic to the extent to which the adversary has managed to link
the elements, and is only interested in the extent to which foreign elements are
being mixed together with the correct ones. If both error types are to be deemed
equally important, then the evaluator has to set α = 1/2.

We are interested to count errors per subject, i.e. per solution cluster. One
approach would be, given a solution cluster, to average the error counts over all
adversarial clusters. However, since only few adversarial clusters are likely to be
related to any given solution cluster C, we do not follow this approach. Instead
we use only the most relevant adversarial cluster as the basis to count primary
errors. This cluster is one of the adversarial clusters that have at least one element
in common with C, and we use the policy parameter α to identify which one
it is. We proceed as follows. Given C, we first determine the subset of related
clusters L(C, Π ′) = {C′ ∈ Π ′ : |C ∩ C′| ≥ 1}. Then, we calculate the priority
for each cluster in L(C, Π ′) as pα(C, C′) = (αm(C, C′)+(1−α)i(C, C′))−1. The
most relevant adversarial cluster is the one with the highest priority.

If two or more related adversarial clusters yield this maximum, then we
take the average of their error counts. The complete formal procedure is there-
fore as follows. Given a solution cluster C, we first determine the set of most
relevant adversarial clusters as Rα(C, Π ′) = {C′ ∈ L(C, Π ′) : pα(C, C′) =
maxC′∈L(C,Π′) pα(C, C′)}. Then the error counts for solution cluster C with re-
spect to an adversarial partition Π ′ are given by m(C, Π ′, α) =

∑
C′∈Rα(C,Π′)

m(C,C′)/|Rα(C,Π′)| and i(C, Π ′, α) =
∑

C′∈Rα(C,Π′)
i(C,C′)/|Rα(C,Π′)|. Finally, the

total error counts are obtained simply by adding up the per solution cluster
counts: m(Π, Π ′, α) =

∑
C∈Π m(C, Π ′, α) and i(Π, Π ′, α) =

∑
C∈Π i(C, Π ′, α).

Remark 1. If m(Π, Π ′, α) > i(Π, Π ′, α), then we call Π ′ ‘conservative’, if m(Π,
Π ′, α) < i(Π, Π ′, α) then we call it ‘liberal’, and ‘neutral’ in case of equality.
If α = 0 (resp. α = 1), then the evaluator prefers conservative rather than
liberal (resp. liberal rather than conservative) adversarial partitions. Consider
an adversary thinking that, by default, all elements are unlinked (resp. linked),
and links (resp. unlinks) elements only if it observes strong evidence in support
of this. Roughly speaking, in the presence of uncertainty, such an adversary is
likely to make more miss (resp. include) rather than include (resp. miss) errors,
and thus end up with a conservative (resp. liberal) partition.

Evaluating Adversarial Partitions 529

Remark 2. Note that m(Π, Π ′, α) and i(Π, Π ′, α) as well as their sum can be
seen as distance measures between the two partitions. One should keep in mind,
however, that they are asymmetric. If, for example, Π = {{◦, •,�}} and Π ′ =
{{◦, •}, {�}}, then m(Π, Π ′, 1/2) = 1 but m(Π ′, Π, 1/2) = 0, and i(Π, Π ′, 1/2) =
0 but i(Π ′, Π, 1/2) = 3. We do not consider this asymmetry to be a problem
because we do not aim to specify a real distance metric over the partition space.
It is nevertheless important that our measures behave consistently with real
distance metrics; see section 5 for an examination in this respect.

Combining and normalising primary errors. For a given policy parameter
α and solution cluster C, the combined error count with respect to an adversar-
ial partition Π ′ is defined by e(C, Π ′, α) = αm(C, Π ′, α) + (1 − α)i(C, Π ′, α).
In order to normalise this combined error count, we consider the worst case,
i.e. the adversarial partition that maximises it. Assuming that n ≥ 2, the worst
case occurs if α = 0, |C| = 1 and Π ′ is a singleton: in this case, there occur
m(C, Π ′, α) = |C| − 1 = 0 miss errors and i(C, Π) = n − |C| = n − 1 include
errors, and, thus, n − 1 errors in total. We therefore define the normalised er-
ror count of Π ′ with respect to C as e∗(C, Π ′, α) = e(C,Π′,α)/n−1. Note that
0 ≤ e∗(C, Π ′, α) ≤ 1; it is zero if the adversary has made no errors that the
evaluator cares about, and one in the worst case just described. Also note that
normalisation is possible only if n ≥ 2. The overall normalised error count is the
average e∗(Π, Π ′, α) =

∑
C∈Π

e∗(C,Π′,α)/|Π|.

3.2 Secondary Errors

If an adversarial partition contains many more clusters than the solution parti-
tion, then primary error counts are bound to give an incomplete picture, because
they ignore the exact structure of all but the most relevant clusters. We are thus
interested in more detailed evaluation, and, in particular, in the number of merg-
ings that are required until a given percentage of elements of a particular solution
cluster have been linked in the adversarial partition. The smaller the number of
required mergings, the better the partition. However, every merging potentially
brings with it foreign elements, and the sensitivity towards the presence of such
elements is a matter of the evaluator’s policy.

Moreover, we must decide in which order the mergings are performed until
the target percentage is reached. Our Plot algorithm, shown in Fig. 1, makes
use of the evaluator’s policy parameter in order to establish this ordering. Given
a solution cluster C, the adversarial partition Π ′, the policy parameter α, and a
bit b that indicates whether or not contamination is desirable from the subject’s
point of view (if b = 1 then contamination is desirable)2, the algorithm produces
a plot of two graphs that communicates the quality of the adversarial partition
with respect to C in an intuitive way. The linked graph, in particular, shows
how quickly consecutive mergings lead to element linking, and the mixed graph
shows how quickly foreign elements are mixed into the cluster as a result of

2 The loan seeker (resp. consumer) from the introduction would set b = 0 (resp. b = 1).

530 A. Pashalidis and S. Schiffner

the same mergings. The worst-case complexity of our implementation of the
PlotForCluster algorithm is O(n2).

PlotForCluster (input: C, Π ′, α, b)

1. For all C′ ∈ L(C, Π ′), compute the priority pα(C, C′). Then order L(C, Π ′)
according to the priority, highest value first. Resolve ties by giving priority

to clusters with fewer foreign elements. Resolve remaining ties arbitrarily.

2. Start with an empty cluster X.

3. For values of j = 1 until |L(C, Π ′)|, do the following.

(a) Merge X with the jth cluster from L(C, Π ′).
(b) Plot the data point (j − 1, 1 − (m(C,X)/|C|) in the ‘linked’ graph.

(c) If |C| = n, set y = 0. Otherwise set y = i(C,X)/n−|C|.
(d) If b = 0 (resp. b = 1), plot the data point (j − 1, y) (resp. (j − 1, 1 − y))

in the ‘mixed’ graph.

Fig. 1. Plotting the ‘linked’ and ‘mixed’ graphs for a given solution cluster

Based on these plots, we can measure how ‘dangerously’ the adversarial par-
tition approaches any given threshold β ∈ [0, 1], where β represents a percentage
of to-be-linked elements of a given solution cluster C. This is done as follows.
First, we let yλ,C,Π′(x) (resp. yμ,C,Π′(x)) denote the y-coordinate of the data
point at x in that cluster’s linked (resp. mixed) graph. If β ≤ yλ,C,Π′(0), then
the threshold β has already been surpassed by the partition Π ′; no mergings
are required to reach β. If β > yλ,C,Π′(0), on the other hand, then we proceed
as follows. First, we draw a horizontal line starting at the point (0, β). Using
this line, we find the point (xλ,C,β , yλ,C,β) of the linked graph that corresponds
to β. From there, we draw a vertical line and find the point (xμ,C,β , yμ,C,β)
where this line meets the mixed graph. We call the vectors that start at the
origin and point to (xλ,C,β , yλ,C,β) and (xμ,C,β , yμ,C,β), the ‘β-linked’ and the
‘β-mixed’ vectors, respectively. The slope of the β-linked vector, expressed as a
percentage, is then used as a measure of how quickly the adversarial partition
approaches the threshold.

Combining and normalising secondary errors. Unless α = 0, the slope of
the β-linked vector must be co-evaluated with the slope of the β-mixed vec-
tor, because the latter expresses how quickly foreign elements ‘contaminate’
the adversarial cluster as it approaches the given threshold. We again use the
policy parameter α in order to combine the two slopes into a single measure-
ment: the risk slope of a given solution cluster C with respect to an adversarial
partition Π ′, a threshold β > yλ,C,Π′(0), and policy parameter α is defined
as Δ(C, Π ′, β, α) = 2/π[α arctan(yλ,C,β/xλ,C,β) + (1 − α) arctan(yμ,C,β/xμ,C,β)].
Note that 0 ≤ Δ(C, Π ′, β, α) ≤ 1.

Evaluating the entire partition. The above computations and graphs mea-
sure the extent to which a given solution cluster is hidden within an adversarial
partition. We would like to plot a single graph that summarises the situation

Evaluating Adversarial Partitions 531

for the entire solution partition and that somehow conveys the extent to which
‘the typical’ solution cluster is hidden in the solution partition. Unfortunately,
taking the straight-forward average |Π |−1

∑
C∈Π Δ(C, Π ′, β, α) is not an option,

because the values of yλ,C,Π′(0) are likely to differ for each C and this forces
this expression to remain undefined for all β ≤ maxC∈Π yλ,C,Π′(0).

We circumvent this problem by plotting the ‘overall’ linked and mixed graphs
using the PlotForPartition algorithm shown in Fig. 2. Note that, in order to
make the algorithm work, the quantities yλ,C,Π′(x) and yμ,C,Π′(x) for values
of x between |L(C, Π ′)| and |Π | − 1 (inclusive) must first be defined; recall
that, since both graphs in the plot for cluster C have exactly |L(C, Π ′)| data
points (one representing the adversary’s current state, and one for every merging
until the adversary has linked all elements in C), these quantities were defined
above only for x < |L(C, Π ′)|. We use the following recursive flat definitions to
define yλ,C,Π′(x) and yμ,C,Π′(x) for the missing range: for all x ≥ |L(C, Π ′)|,
yλ,C,Π′(x) def= yλ,C,Π′(|L(C, Π ′)| − 1) = 1 and yμ,C,Π′(x) def= yμ,C,Π′(|L(C, Π ′)| −
1). If, for example, a plot does not contain a data point for the third merging
because the adversary can fully link the elements of the cluster in, say, two
mergings – |L(C, Π ′)| = 3 in this case – , then we take into account the situation
after the final (i.e. second) merging. That is, the y-coordinates of all data points
for three or more mergings, are defined to be identical to the y-coordinates of
the data points at the second merging. For the linked graph, these coordinates
are always 1 (since it is the final merging). For the mixed graph, they are equal
to the percentage of foreign elements that were present after the final merging.

Given this definition, the linked (resp. mixed) graph produced by PlotFor-
Partition represents the average percentage of elements, over all subjects, that
are linked (resp. mixed) after the adversary is given an allowance of performing
up to x cluster mergings. Armed with these graphs, the risk slope Δ(Π, Π ′, β, α)
representing the ‘average solution cluster’ for a given threshold β can be com-
puted in the same manner as Δ(C, Π ′, β, α). The worst-case complexity of our
implementation of PlotForPartition is O(n3).

PlotForPartition (input: Π, Π ′, α)

1. Run PlotForCluster for all clusters C ∈ Π .

2. For values of j = 0 until |Π | − 1, do the following.

(a) Compute the averages ŷl =

∑
C∈Π yλ,C,Π′ (j)

|Π| and ŷm =

∑
C∈Π yμ,C,Π′ (j)

|Π| .

(b) Plot (j, ŷl) and (j, ŷm) in the ‘linked’ and ‘mixed’ graphs, respectively.

Fig. 2. Plotting the ‘linked’ and ‘mixed’ graphs for the entire partition

3.3 Sensitive Elements

Merely counting errors presumes that all elements are equal. In reality, how-
ever, often only little harm is done if an adversary links some elements, as long
as certain particularly sensitive ones remain unlinked. Similarly, one may be

532 A. Pashalidis and S. Schiffner

not suffer much if an adversary links some (or all) of one’s elements, as long
as certain foreign elements, perhaps of a particularly desirable type, are being
mixed according to the adversary’s view. In order to account for different ele-
ment sensitivities, we enable the evaluator to first attach a weight w� ∈ [0, 1]
to each element �. The weights are required to represent the relative sensitivity
of the elements. We therefore generalise the miss and error count formulas as
m(C, C′) =

∑
�∈{C−C′} w� and i(C, C′) =

∑
�∈{C′−C} w�; the remainder of our

framework remains unchanged.
Note that subjects may disagree as to which elements are more sensitive than

others. They may also disagree on the value that the policy parameter α should
have. This is not a problem in our framework; the evaluator may assign both
different sensitivities to the elements and different values to α and well as bfor
each solution cluster evaluation. That is, each cluster plot may have a different
underlying sensitivities; since step 2 of PlotForPartition does not take sensi-
tivities into account, divergent sensitivities cause no problem. On the contrary,
they will cause the overall plot to represent more accurately the summary of the
risk as perceived by each subject.

3.4 Adversarial Views over Partitions

So far we have assumed that the adversary outputs a single partition. It may,
however, output a probability distribution over the space of partitions. Note that
a computationally bounded adversary can only output a distribution that can
be encoded in polynomial length. Without loss of generality, we assume that
an adversary outputs a view V = {(Π ′

1, Pr(Π ′
1 = Π)), (Π ′

2, Pr(Π ′
2 = Π)), . . . }

such that , for all 1 ≤ i ≤ |V|, Pr(Π ′
i = Π) > 0 and

∑
i Pr(Π ′

i = Π) = 1. The
pair (Π ′

i , Pr(Π ′
i = Π)) means that, according to the adversary’s view, Π ′

i is the
correct partition with probability Pr(Π ′

i = Π).

Primary errors. We define the average miss and include error counts for so-
lution cluster C with respect to a view V as

m(C,V , α) =
∑

((Π′,Pr(Π′=Π))∈V
Pr(Π ′ = Π)m(C, Π ′, α) and

i(C,V , α) =
∑

((Π′,Pr(Π′=Π))∈V
Pr(Π ′ = Π)i(C, Π ′, α),

respectively.3 These formulas then replace m(C, Π, α) and m(C, Π, α), and the
remainder of the primary error evaluation as described in section 3.1 remains
unchanged.

3 These definitions follow the spirit of Equation 3 in [3], which also weighs a particular

partition-dependent quantity by the probability that the underlying partition is the

correct one.

Evaluating Adversarial Partitions 533

Secondary errors. In order to plot the linked and mixed graphs for a given
solution cluster with respect to an adversarial view V , we use the PlotFor-
ClusterGivenView algorithm shown in Fig. 3. This algorithm is very similar
in spirit with the PlotForPartition algorithm; the difference is that the plot-
ted values are not averages over clusters, but rather weighted averages over
the partitions in the view. Note that, as expected, both PlotForCluster and
PlotForClusterGivenView effectively yield identical plots for adversaries that
output a single partition. Also note that the worst-case complexity of PlotFor-
ClusterGivenView is O(n2|V|). That is, the evaluation of sufficiently lengthy
adversarial views, i.e. such that |V| � n2, is roughly linear in their size.

PlotForClusterGivenView (input: C,V, α)

1. Run PlotForCluster(C, Π ′, α) for all Π ′ ∈ V.

2. For values of j = 0 until |Π ′| − 1, do the following.

(a) Compute the weighted averages ŷλ =
∑

Π′∈V Pr(Π ′ = Π)yλ,C,Π′(j)
and ŷμ =

∑
Π′∈V Pr(Π ′ = Π)yμ,C,Π′(j)

(b) Plot (j, ŷl) and (j, ŷm) in the ‘linked’ and ‘mixed’ graphs, respectively.

Fig. 3. Plotting the ‘linked’ and ‘mixed’ graphs of given solution cluster with respect

to an adversarial view over the partition space

4 Example

Consider a set of 24 items and the solution partition Π that divides it into four
clusters of equal size: triangles, squares, circles, and stars. Suppose that two
adversaries, which are asked to partition the set, come up with the adversarial
partitions shown in Fig. 4 (first row). Assuming that our policy parameter is α =
1/2, the left partition Π ′

1 is a conservative one, because it exhibits m(Π, Π ′
1, α) =

m(triangles, Π ′
1, α) + m(squares, Π ′

1, α) + m(circles, Π ′
1, α) + m(stars, Π ′

1, α) =
4 + 2 + 3 + 3 = 12 miss errors, but only i(Π, Π ′

1, α) = 4 include errors. The
right partition Π ′

2 is a liberal one: it exhibits m(Π, Π ′
2, α) = 7 miss errors and

i(Π, Π ′
2, α) = 15 include errors.

The star-star-circle cluster of Π ′
1, for example, does not contribute to the pri-

mary error counts at all. We therefore evaluate the partitions with respect to
secondary errors. The second row of Fig. 4 shows the output of PlotForClus-
ter for the star cluster, and with respect to the two adversarial partitions Π ′

1

(left) and Π ′
2 (right). The left (resp. right) side plot also shows the ‘linked’ and

‘mixed’ vectors corresponding to the linkage of β = 90% (resp. β = 70%) of
the stars. We have that Δ(Π, Π ′

1, 0.9, 1/2) ≈ 1/2(0.364 + 0.100) ≈ 23.20% and
Δ(Π, Π ′

2, 0.7, 1/2) ≈ 1/2(0.361 + 0.340) ≈ 35.03%.
The third row of Fig. 4 shows the output of PlotForPartition with respect

to the two adversarial partitions, for different values of the parameter α. Note
that, for most parameter values, the linked and mixed graphs coincide partially
or entirely. Finally, the fourth row of Fig. 4 shows the the risk slopes, i.e. the
value of Δ(Π, Π ′, β, α) as a function of the threshold percentage β.

534 A. Pashalidis and S. Schiffner

Fig. 4. First row: a conservative (left) and a liberal (right) adversarial partition. Second

row: linked and mixed graphs for the star cluster and with respect to the adversarial

partitions above (α = 1/2). Third row: overall linked and mixed graphs, with respect to

the adversarial partitions above, and for all α ∈ {0, 1/3, 2/3, 1}. Fourth row: risk slopes

Δ(Π,Π ′, β, α) of the plots in the third row, as a function of the threshold β, for all

α ∈ {0, 1/3, 1/2, 2/3, 1}. Contamination is assumed to be undesirable (i.e. b = 0).

5 Simulated Attacks

This section examines the behaviour of our risk slope measure. Our motivation
is to demonstrate that it behaves intuitively when viewed as a distance measure
between partitions. We first take a brief look at its behaviour in the setting of
uniformly at random chosen partitions. (For an efficient way to choose partitions
in this way, see chapter 10 of [10].) Due to space constraints we only show results
for the case where contamination is undesirable, i.e. where b = 0. Figure 5 shows
and constrasts how three distance measures behave for uniformly at random
chosen partitions as the number of elements n grows. The three measures shown
are Δ(Π, Π ′, β, α) (for α = 1/3, 2/3 and β = 0.7, 0.8), the variation of information
(VOI) [7], and the minimal transfer distance (MTD) [2].

We observe that, similarly to the MTD and VOI, Δ(Π, Π ′, β, α) behaves
smoothly as n grows. This is important because a weak dependence on n is
preferable to a strong one (see section 5 of [7]). Moreover, while the MTD and
the VOI measures only depend on Π and Π ′, Δ(Π, Π ′, β, α) varies depend-
ing on the sensitivities specified by the evaluator. The figure demonstrates that

Evaluating Adversarial Partitions 535

Δ(Π, Π ′, 0.7, α) > Δ(Π, Π ′, 0.8, α). This matches our intuition that, since link-
ing 70% of a subjet’s elements is generally easier than linking 80%, the risk
of this happening is higher, too. The figure also shows that Δ(Π, Π ′, β, 2/3) >
Δ(Π, Π ′, β, 1/3). This matches our intution that, since uniformly at random cho-
sen partitions tend to be conservative (i.e. have many relatively small, rather
than few very large clusters), attaching more importance to the presence of for-
eign elements results in lower risk levels. Finally, we observe that, as n grows,
the MTD increases while the other measures decrease. The reasons for this lie as
much with the measures themselves as with the nature of uniformly at random
chosen partitions and the applied normalisations. Due to space constraints we
do not analyse this further here. See appendix A for more information on the
behaviour of our measures in the setting of random partitions.

Fig. 5. Δ(Π,Π ′, β, α), the variation of information normalised by log2(n) (see sec-

tion 5.1 of [7]), and the minimal transfer distance [2], normalised by n− 1. The shown

results are averages of 1000 experiment repetitions.

In order to demonstrate that the behaviour of Δ(Π, Π ′, β, α) is consistent and
intuitive, we now compare it to the behaviour of the VOI distance in more detail.
While we could use any reasonable measure as the basis for our comparison, we
use the VOI because it has been shown to be a true metric [7]. We generate
data for the comparison as follows. First, we choose a solution partition Π .
Then we generate many partitions Π ′ that have different distances from Π .
These partitions are generated by means of random walks of different lengths
that start at Π and explore the solution space from there. Finally, we plot the
Δ(Π, Π ′, β, α) distance (vertical axis) against the VOI distance (horizontal axis)
between Π and each Π ′. Since the partitions Π ′ have different distances from Π ,
this partition generation method simulates attacks on unlinkability of different
effectiveness.

The three plots in Figure 6 show how Δ(Π, Π ′, β, α) behaves as the VOI
distance between partitions over a set of n = 200 elements increases. They
demonstrate that the risk slope decreases monotonically as the VOI distance
between partitions increases. This matches our intuition that, as the distance
between the true partition and the adversary’s guess increases, the average risk
of reaching a particular threshold, also decreases.

Figure 6 (a) shows the effect of two selection methods for Π : the upper graph
shows the simulation results when Π is chosen uniformly at random, and the

536 A. Pashalidis and S. Schiffner

Fig. 6. The behaviour of Δ(Π,Π ′, β, α) with respect to the VOI metric

lower graph shows the extreme case where Π is the singleton partition. For both
graphs, parameters were set to α = 0.75 and β = 0.80. Figure 6 (b) demon-
strates the influence of the policy parameter α. The graphs show the cases for
α = 1/4, 1/2, and 3/4, respectively. The underlying partition Π ′ was chosen uni-
formly at random and the threshold parameter was fixed at β = 0.8. Note that, as
α decreases, Δ(Π, Π ′, β, α) decreases. As explained above, this is due to the con-
servative nature of uniformly at random chosen partitions. Finally, Figure 6 (c)
demonstrates the effect of β. The graphs show the cases for β = 0.6, 0.8, and 0.95,
respectively. The underlying partition Π ′ was chosen uniformly at random and
the policy parameter was fixed at α = 3/4. The plot demonstrates the intuitive
result that, as β increases, the risk slope decreases.

6 Concluding Remarks

We introduced a framework for the evaluation of adversarial partitions. The
framework is flexible because it enables the evaluator to attach different levels of
importance to the adversary’s inability to link a given subject’s elements, and its
inability to distinguish the subject’s elements from elements of other subjects.
The evaluator may also specify, for each subject, different sensitivities for each
element in the system as well as a threshold that represents what constitutes a
privacy breach.

Our framework focuses on errors made by the adversary and distinguishes
between primary and secondary errors. While primary errors measure how well
a given subject’s elements are currently linked and mixed with other subjects’
elements, secondary errors project the risk that the adversary’s current state
represents for the future. Underlying this risk measurement is the implicit as-
sumption that the adversary will obtain, in this future, information that enables
a gradual merging of the clusters that contain some of that subject’s elements,
without at the same time filtering out foreign elements. In some settings, the
adversary may be able to obtain information that leads to different ways of re-
fining its current view. In such cases, secondary errors may turn out to be a
less accurate representation of the real risk. We believe that, nevertheless, this
does not invalidate the current approach because any refinement can be defined

Evaluating Adversarial Partitions 537

as a set of cluster mergings and splittings: our linked graph accounts for the
mergings, and our mixed graph partially accounts for the splittings.

Our evaluation framework does not, however, fully account for the number of
splittings necessary to divide all elements into clusters. This is because, while
the mixed graph represents the number of foreign elements, it does not take into
account the exact number of subjects that correspond to these foreign elements.
In some settings, for example [6], this number, as well as the requirement that
each other subject should be represented by an approximately equal number of
foreign elements, is important. Refining the evaluation framework in this respect
while retaining its intuitive and flexible nature, is future work.

We envision our measures to be used for the evaluation of attacks on unlinka-
bility in diverse settings including anonymous communication, online anonymous
transactions, and identity management. We expect them to be useful because,
by enabling the evaluator to play with the α and β parameters on the subject
level, they offer the ability to evaluate attacks in more detail. Of course, in order
to visualise and evaluate the adversary’s state, this state must first be gathered.
While this is typically not a problem in experimental settings, doing this without
turning the data gatherer himself into the adversary remains a challenge in most
real-world settings. Sometimes, however, for example in the setting of database
sanitisation, the adversary’s state is published. We expect our measures, just
like other privacy measures, to be useful in pre-deployment analysis and in cases
where reliable information about the adversary’s state is available.

Acknowledgements

The authors are grateful to Filipe Beato and Markulf Kohlweiss for their in-
sightful comments on an earlier version of this paper. This paper describes
work undertaken partly in the context of the ‘Trusted Architecture for Securely
Shared Services’ (TAS3) project (www.tas3.eu). TAS3 is a collaborative project
supported by the 7th European Framework Programme, with contract number
216287.

References

1. Clauß, S.: A framework for quantification of linkability within a privacy-enhancing

identity management system. In: Müller, G. (ed.) ETRICS 2006. LNCS, vol. 3995,

pp. 191–205. Springer, Heidelberg (2006)

2. Denœud, L., Guénoche, A.: Comparison of distance indices between partitions.

In: Batagelj, V., Bock, H.-H., Ferligoj, A., Ziberna, A. (eds.) Data Science and

Classification, Mathematics and Statistics, pp. 21–28. Springer, Berlin (2006)

3. Fischer, L., Katzenbeisser, S., Eckert, C.: Measuring unlinkability revisited. In:

Proceedings of the 2008 ACM Workshop on Privacy in the Electronic Society,

WPES 2008, Alexandria, Virginia, USA, October 27, pp. 111–116. ACM Press,

New York (2008)

4. Franz, M., Meyer, B., Pashalidis, A.: Attacking unlinkability: The importance of

context. In: Borisov, N., Golle, P. (eds.) PET 2007. LNCS, vol. 4776, pp. 1–16.

Springer, Heidelberg (2007)

538 A. Pashalidis and S. Schiffner

5. Kogan, J.: Introduction to Clustering Large and High-Dimensional Data. Cam-

bridge University Press, Cambridge (2007)

6. Machanavajjhala, A., Kifer, D., Gehrke, J., Venkitasubramaniam, M.: L-diversity:

Privacy beyond k-anonymity. ACM Trans. Knowl. Discov. Data 1(1), 3 (2007)

7. Meilă, M.: Comparing clusterings—an information based distance. J. Multivar.

Anal. 98(5), 873–895 (2007)

8. Meilǎ, M.: Comparing clusterings: an axiomatic view. In: ICML 2005: Proceedings

of the 22nd International Conference on Machine Learning, Bonn, Germany, pp.

577–584. ACM Press, New York (2005)

9. Neubauer, M.: Modelling of pseudonymity under probabilistic linkability attacks.

In: IEEE International Conference on Computational Science and Engineering,

vol. 3, pp. 160–167 (2009)

10. Nijenhuis, A., Wilf, H.S.: Combinatorial Algorithms, 2nd edn. Academic Press Inc.,

London (1978)

11. Pashalidis, A.: Measuring the effectiveness and the fairness of relation hiding sys-

tems. In: Proceedings of the First International Workshop on Multimedia, Infor-

mation Privacy and Intelligent Computing Systems (2008)

12. Rand, W.M.: Objective criteria for the evaluation of clustering methods. Journal

of the American Statistical Association 66(336), 846–850 (1971)

13. Schiffner, S., Clauß, S.: Using linkability information to attack mix-based

anonymity services. In: Goldberg, I., Atallah, M.J. (eds.) PETS 2009. LNCS,

vol. 5672, pp. 94–107. Springer, Heidelberg (2009)

14. Steinbrecher, S., Köpsell, S.: Modelling unlinkability. In: Dingledine, R. (ed.) PET

2003. LNCS, vol. 2760, pp. 32–47. Springer, Heidelberg (2003)

15. Wagner, D., Wagner, S.: Comparing clusterings–an overview. Technical Report

2006-04, Faculty of Informatics, University of Karlsruhe, TH (2006)

A Random Partitions

This section experimentally examines how our measures behave for randomly
chosen adversarial partitions. This examination provides reference points to at-
tack evaluators which can be used to quantify by how much an adversary outper-
forms random guessing. We perform two experiments which we call the ‘uniform’
and the ‘non-uniform’ experiment, respectively. In both experiments, Π and Π ′

are randomly generated from the space of all set partitions of sets of size n.
The experiments differ in the way the partitions are drawn from the space. In
the uniform experiment, in particular, Π and Π ′ are chosen uniformly from the
space of partitions. In the non-uniform experiment, Π and Π ′ are generated as
follows. Initially, the to-be-generated partition consists of a ‘cluster population’
containing a single cluster that contains the first element. The remaining n− 1
elements are then assigned to clusters, one by one, as follows. For each element,
a fair coin is tossed. In case of heads, a new cluster is created, the element is
assigned to that cluster, and the cluster is added to the cluster population; oth-
erwise, a cluster already in the population is chosen uniformly at random and
the element is assigned to it.

Fig. 7 shows some experiment results. As far as primary errors are concerned,
in the uniform experiment occur, on average, slightly more errors than in the

Evaluating Adversarial Partitions 539

Fig. 7. First row: Average number of miss and include errors, i.e. m(Π,Π ′, α) and

i(Π,Π ′, α), for varying n. Second row: normalised combined error counts e∗(Π, Π ′, α)

on a logarithmic scale, for varying n. Third row: Risk slope Δ(Π,Π ′, 0.8, α) for

varying n. Fourth row: Risk slope Δ(Π, Π ′, β, α), for constant n = 50 and varying

threshold β. The results shown are for all parameter values α ∈ {0, 1/3, 1/2, 2/3, 1} and

contamination is assumed to be undesirable (b = 0). Plots on the left and right hand

side show results from the uniform and non-uniform experiment, respectively.

non-uniform experiment. Observe that, unless α takes very high values, in both
experiments there occur less include than miss errors. For high values for α (say,
above 90%), there occur more include rather than miss errors. This is because
foreign elements are largely disregarded when determining the most relevant
cluster and, as a result, that cluster has more foreign than correct elements.
The average combined normalised error counts reflect the fact that there occur
slightly fewer primary errors in the non-uniform than in the uniform experiment.
Observe that, in our experiments, the choice of α has no significant impact on
this measure.

The value of α has, on the other hand, a significant impact on the risk slopes
Δ(Π, Π ′, β, α); higher values of α yield higher risk slopes. Moreover, in the uni-
form experiment, the difference between the risk slopes for low and high values
for α is much smaller than the corresponding difference in the non-uniform ex-
periment. Finally, as the threshold β increases, the risk slopes converge. In the
uniform experiment they converge slowly; in the non-uniform experiment they
do not converge until β ≈ 0.7, but then they converge fast.

Providing Mobile Users’ Anonymity
in Hybrid Networks�

Claudio A. Ardagna1, Sushil Jajodia2,
Pierangela Samarati1, and Angelos Stavrou2

1 DTI - Università degli Studi di Milano, 26013 Crema, Italia

{claudio.ardagna,pierangela.samarati}@unimi.it
2 CSIS - George Mason University, Fairfax, VA 22030-4444, USA

{jajodia,astavrou}@gmu.edu

Abstract. We present a novel hybrid communication protocol that guar-

antees mobile users’ k-anonymity against a wide-range of adversaries by

exploiting the capability of handheld devices to connect to both WiFi

and cellular networks. Unlike existing anonymity schemes, we consider all

parties that can intercept communications between the mobile user and

a server as potential privacy threats. We formally quantify the privacy

exposure and the protection of our system in the presence of malicious

neighboring peers, global WiFi eavesdroppers, and omniscient mobile

network operators. We show how our system provides an automatic in-

centive for users to collaborate, since by forwarding packets for other

peers users gain anonymity for their own traffic.

1 Introduction

We live in a globally interconnected society characterized by pervasive ubiqui-
tous devices and communication technologies. The wide diffusion of the Internet,
cellular networks, WiFi, low cost mobile devices, and the high availability of on-
line services enable today’s e-citizens to carry out tasks, access services, and stay
connected virtually anywhere anytime. Unfortunately, the price we pay for this
usability and convenience is an increased exposure of users’ information and on-
line activities. Organizations and individuals are slowly becoming aware of the
privacy risks to which they are exposed. This scenario has sparked a renewed
interest in the problem of providing privacy guarantees to users when operat-
ing in this brave new electronic world. Previous research has addressed different
angles of the privacy problem. With respect to users’ privacy, approaches like
Mix-net [5], Onion Routing [8], and Crowds [19] were geared towards protect-
ing the network anonymity of the users, preventing an adversary from linking
� This work was supported in part by the EU within the 7FP project “PrimeLife”

under grant agreement 216483; by the Italian Ministry of Research within the PRIN

2008 project “PEPPER” (2008SY2PH4); by the National Science Foundation under

grants CT-20013A, CT-0716567, CT-0716323, CT-0627493, and CCF-1037987; by

the Air Force Office of Scientific Research under grants FA9550-07-1-0527, FA9550-

09-1-0421, and FA9550-08-1-0157; and by the Army Research Office DURIP award

W911NF-09-01-0352.

D. Gritzalis, B. Preneel, and M. Theoharidou (Eds.): ESORICS 2010, LNCS 6345, pp. 540–557, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Providing Mobile Users’ Anonymity in Hybrid Networks 541

the user to a service request. All these solutions were designed with traditional
wired networks in mind, and shared the implicit assumptions on the stability
of the routing configuration and network topology. In addition, many of them
use the same path to route both user requests and responses. Existing solu-
tions for wired networks are then not applicable in mobile networks where users
can move fast in a short period of time and therefore cannot maintain a static
communication path involving the same nodes between requests and responses.
Approaches that have addressed the privacy problem in mobile ad-hoc networks
(e.g., [14,17]) have been mostly aimed at providing anonymous routing protocols
and have not considered protection of users’ anonymity against the network op-
erators; also, they typically rely on expensive multiparty computation and are
therefore not suitable for mobile scenarios. On the other hand, privacy proposals
for mobile networks (e.g., [7]) have addressed the problem of protecting users’
anonymity against the services they access. These proposals, however, assume
the mobile network operator to be in a privileged position and able to observe
all the communications of the users.

In this paper, we study the privacy problem in hybrid networks where users,
in addition to accessing online services via the cellular network, can communi-
cate among each other over a WiFi network. Our goal is then to enable users
to access online services using a cellular network in a privacy preserving way.
To this end, we introduce a protocol that relies on the hybrid nature of mobile
devices to create a local WiFi network which is impervious against global eaves-
droppers that operate in the cellular network (e.g., mobile network operators).
Our approach bases on the cooperation among peers in the WiFi network. An in-
teresting aspect is that by collaborating in providing anonymity to others, peers
gain themselves an immediate benefit on the anonymity of their communication.
There is therefore an automatic incentive for peers to cooperate in the protocol.

Our approach represents an important paradigm shift, departing from the
usual assumption of the mobile network operator as a trusted powerful entity
able to know and observe all the traffic in the network. The mobile operator,
while considered trustworthy with respect to the availability and working of the
network, is restricted in terms of the view and traffic it can reconstruct. Ad-
dressing a novel threat and problem, our work is therefore complementary to
existing solutions for privacy protection and could be applied in conjunction
with them. Furthermore, we offer two important advantages over previous ap-
proaches. First, we do not rely on expensive communication or cryptographic
operations including the use of multiparty computation, and we do not employ
public key cryptography to convey the information to the server, beyond the con-
nection establishment phase. Instead, we introduce a new fast packet filtering
that leverages pseudo-random number generation to guarantee communication
integrity. This aspect is particularly important to ensure applicability in a mobile
environment, where low computation overhead and limited battery consumption
are important requirements. Second, while guaranteeing privacy, we provide pro-
tection of the system against possible abuses of anonymity by maintaining the
ability to block malicious traffic.

542 C.A. Ardagna et al.

2 Problem Definition

Our reference model is a distributed and mobile infrastructure which forms a
hybrid network, integrating wireless, cellular , and wired connections. The partic-
ipating entities are: 1) mobile users, that carry mobile devices supporting both
GSM/3G and WiFi protocols for communication; 2) mobile network operators,
that manage radio cells of the cellular networks to provide wired network access
to mobile users; and 3) servers, that provide online services over the cellular net-
work or the Internet. Mobile users can establish ad-hoc (WiFi) point-to-point
connections with other mobile users in the network, resulting in several Mobile
Ad-hoc NETworks (MANETs). Each mobile user, receiving signals from radio
cells, is also registered with a given mobile network operator to access cellular
functionalities. The cellular network acts as a gateway establishing a point-to-
point connection with the user and the server. Communication is a bidirectional
exchange of messages that involves a user u and a server s . Our goal is to pro-
vide a means for users to communicate with servers without giving the operator
the ability to observe the communication profiles, that is, the pairs 〈user,server〉
describing service accesses. Protection is enacted by involving, in the communi-
cation with the mobile operator, other peers (users) with whom the user commu-
nicates via the WiFi network. Our approach guarantees that also participating
peers will not be able to reconstruct the communication profile. We define the
degree of anonymity protection enjoyed by a communication by modeling the
uncertainty over the user and the server involved in it as follows.

Definition 1 ((k, h)-anonymity). A communication is said to be (k, h)-
anonymous against an adversary v, if v cannot relate the communication to
less that k users and h servers.

A communication is (k, h)-anonymous against an adversary, if the probability
for the adversary of associating any u as the originating user is at most 1

k and
the probability of associating any s as the server is at most 1

h . A ∗ in place of
a specific value for k (h, resp.) denotes that no inference can be drawn on the
user (server, resp.) of a communication, which can therefore be any user (server,
resp.) of the network. The degree of anonymity of a communication depends on
the adversary. For each communication, user and server are known to each other,
so their communications are (1, 1)-anonymous to them. We assume the server of
a communication to be always known to the mobile operator. With respect to a
mobile operator, all communications will therefore be (k, 1)-anonymous, where
k defines the degree of k-anonymity [6,23] set by the user and provided by our
protocol. Since the focus of our work is the protection of user’s relations with
servers against the mobile operator, our goal is to guarantee the k defined by
the user. The reason for considering communication anonymity as a pair taking
into consideration also the uncertainty on the server, is to model also the view of
peers in the network (which do not know the servers to whom packets are being
delivered). A communication between a user and a server is said to be completely
exposed to an adversary if it is (1, 1)-anonymous to her. It is considered protected
if it is (k, h)-anonymous with max (k, h) > 1.

Providing Mobile Users’ Anonymity in Hybrid Networks 543

3 Rationale and Basics of Our Approach

The core idea of our approach is to empower users to anonymously involve other
peers in sending a message to the server via a mobile operator using the WiFi
network. Each message is split in k different packets and randomly distributed
to k distinct peers in the WiFi network for their forwarding to the mobile net-
work operator, that will then receive k indistinguishable packets from k different
senders. Before introducing our communication protocol, we illustrate the ba-
sic knowledge that peers, operators, and servers participating in the network
maintain or share.

Before any anonymous communication can be established, the user has to
register and agree upon a secret key with the server. This pre-established secret
key is used as a seed by the user to generate pseudo-random numbers to be
associated with packets. All the servers, based on the seeds agreed with the
users, jointly create a global table Legitimate. Legitimate consists of pairs
(R1, R2) of pseudo-random numbers. This table can be either hosted by an
external server accessible by the mobile network operators or alternatively stored
by the operators themselves. Upon a packet arrival, the mobile network operator
retrieves the pseudo random number attached to the packet and performs a
lookup to the Legitimate table to verify the validity of a packet. The cost
of maintaining the Legitimate table is manageable. For instance, assuming
128 pairs (R1, R2) of 64 bits of pseudo-random numbers to be used for packet
verification and 1000 servers with 1 million users each, the storage requirements
are approximately 1 TB which can be maintained by today off-the-shelf disks.
The use of an external repository can then eliminate the need for a pre-storage
of the random numbers since this repository can act as an intermediary between
the individual servers and the mobile network operators. The size of R1 and
R2 is chosen to be only 32 bits because each number is used only once and
then discarded to avoid correlation attacks. The Legitimate table acts as a
blind firewall filter, allowing only packets tagged with an existing pseudo-random
number (R1) and having a valid encrypted message body to pass through.

Each peer p maintains the following tables: Sentp contains the identifiers of
the communications that the peer has helped distributing (including those orig-
inated by the peer) by forwarding a packet to the mobile operator; Myprnp,seed

contains the set of pseudo-random numbers prni=(R1
i , R2

i) generated by p us-
ing the seed shared with the corresponding server. Myprnp,seed contains the
same prn generated by the server and is then a subset of the Legitimate table.
Each server s has a public/secret key pair 〈Ps ,Ss〉. Ps is used by users when
requesting connection establishment to encrypt the body of their message. This
body includes a shared session key SK to be used by the user and the server
for all further message exchanges in the session. Finally, each server s locally
maintains a table Origsid for each session sid, which stores the original set of
peers (including user u) involved in the connection establishment.

To enforce integrity verification, we employ the UMAC [3] algorithm with R2

as the key and the first 64 bits of the encrypted body of the message as a nonce
for message authentication control. UMAC is designed to be very fast to compute

544 C.A. Ardagna et al.

in software on contemporary uniprocessors with measured speeds as low as one
cycle per byte [15] . In addition, the analysis of UMAC shows this scheme to
have provable security, in the sense of modern cryptography, by way of tight
reductions. Once a packet is forwarded to the server, the pseudo-random pair is
removed from the table. Packets with invalid (i.e., non-existing) R1 or invalid
UMACs are discarded. The use of random numbers enables the protection of the
servers against flooding attacks (mobile operators will discard packets that are
found to be not genuine) preventing Denial-of-Service (DoS) attacks to servers.

4 Protocol

We present the working of the communication protocol distinguishing manage-
ment of requests and responses. We use standard notation Es

K() and Ds
K() to de-

note symmetric encryption and decryption operation with key K whereas Ep
K()

and Dp
K() denote public key operations used only for connection establishment.

Also, we will use P , O, and S to denote respectively the set of peers, mobile
network operators, and servers in the hybrid network, and idp and ids as the
identifiers of a peer and a server. Note that, to access a server, a user has first to
establish a connection. In our protocol, connection requests and service access
requests are indistinguishable to parties different from the initiating user and
the server; all these parties (participating peers and mobile network operators)
will simply observe packets without knowing whether they relate to a connec-
tion establishment or to a service access. The protocol and the behavior of the
involved parties are the same for the two cases; the only differences are: i) in the
set of peers selected, which contains user u, in the case of connection request;
ii) within the content of the message, which contains the key for the session, in
the case of connection request, and the id of the session, in the case of service
request. Also, the body of the connection request packet is encrypted with the
server’s public key while the body of the service request packet is encrypted with
the session key to which the request refers. Finally, for each service request, the
response is also returned to peers in Origsid.

Figure 1 illustrates the protocol operations at the different participating par-
ties. Figure 2 illustrates the distribution of packets among parties illustrating
also how the content of the packets changes. Arcs with double lines refer to
communications over the WiFi network (among peers), arcs with a single line
refer to communications over the cellular network (between peers and mobile
operators), arcs with a bold line refer to communications that can be carried
on either over the wired or the cellular network (between the mobile operators
and the servers), and arcs with a dotted line represent internal computations.
Encrypted content is reported as a box with the encryption key appearing in the
lower right corner of the box. Packets in Figure 2 refer to service access.

4.1 Request

For each session, a user can specify a privacy degree k to be guaranteed for
all communications (connection and service requests related to the session) and

Providing Mobile Users’ Anonymity in Hybrid Networks 545

REQUEST (u → s)
User u∈P
u1.1 Let m be the message to be sent and payload its content.

Let k be the privacy preference, (1 − Pf) the probability of forwarding to the operator, cid the
communication id, UMACR a Universal Message Authentication Code (UMAC) using key R

u1.2 Generate a random message identifier mid and obtain the timestamp tmp

u1.3 Split payload in k parts payloadi, each with a sequence number seqi, with i:=1. . . k
u1.4 for i:=1. . . k do

Generate prni = (R1
i , R

2
i) using the seed

toi:= R1
i

if the message is a connection request
then generate session key SK

bodyi:= E
p

Ps
(idu ,seqi,payloadi,SK,mid,tmp) /*connection establishment*/

else bodyi:= Es

SK
(idu ,seqi,payloadi,sid,mid,tmp) /*service access*/

u1.5 Wait until k peers are available
u1.6 for i:=2. . . k do

Choose a peer pi ∈P
With random delay, send mi:=[toi,bodyi,UMAC

R2
i

{bodyi},cid] to pi in the WiFi network

u1.7 if (cid /∈Sentu)
then Sentu:=Sentu ∪ {cid}

With random delay, forward [to1,body1,UMAC
R2

1
{body1}] to o over the cellular network

else Send m1:=[to1,body1,UMAC
R2

1
{body1},cid] to p1 in the WiFi network

Peer p∈P
Upon receiving a packet [to,body,UMAC

R2{body},cid]
p1.1 if (cid /∈Sentp)

then With probability (1 − Pf): (Forward [to,body,UMAC
R2{body}] to o

over the cellular network; Sentp:=Sentp ∪ {cid}; exit)
Send [to,body,UMAC

R2{body},cid] to a peer p∈ P
Operator o∈O
Upon receiving [to,body,UMAC

R2{body}] from peer p

o1.1 if ((to∈Legitimate) and (UMAC
R2{body} is valid)

then Identify s using (to, R2), remove (to, R2) from Legitimate and forward [idp,to,body] to s

else Drop the packet and exit
Server s∈S
Upon receiving [idp,to,body] from p via o

s1.1 Based on to, retrieve the content as Dp

K
(body) ∨ Ds

K(body) with K:=Ss ∨ K:=SK respectively
s1.2 Origsid = Origsid∪{[idp,o]} /*connection establishment*/
s1.3 Assemble the original message m with identifier mid

RESPONSE (s → u)
Server s∈S
Upon receiving all packets [idp,to,body] for a request
s2.1 Let payload be the response, sid be the session id, and SK the session key
s2.2 for i:=1. . . k do

Let idpi
and oi be the peer id and the operator of the i-th packet of message mid

Generate the next random number from the seed prni=(R1
i , R

2
i)

bodyi:=ESK (payload,sid,tmp)

Send [idpi
,ids ,prni,bodyi] to oi

s2.3 for each ej ∈ Origsid with j=1. . .k /*service access*/
Generate the next random number from the seed prnj=(R1

j , R
2
j)

bodyj :=ESK (payload,sid,tmp)

Send [ej .idp,ids ,prnj ,bodyj] to ej .o

Operator o∈O
Upon receiving [idp,ids ,prn,body] from s

o2.1 Remove prn from Legitimate and forward [ids ,prn,body] to p

User/Peer p∈P
Upon receiving [ids ,prn,body]
up2.1 if (prn∈Myprnp,seed)

then retrieve response as Ds

SK
(body)

else drop the packet

Fig. 1. Communication protocol

546 C.A. Ardagna et al.

...

...

ids

idpi idpi

idu sid

Ds
SK

seqi payloadi mid tmp

idu prniprniprni

prniprniprni

sidpayload tmp

User Peers Operator Server

...

...

bodyi SK

bodyiSK

bodyiSK bodyi SK

bodyiSK

bodyiSK
bodyiSK

bodyiSK

bodyiSK

bodyiSK

R
eq
ue
st

R
es
po
ns
e

i=1

i=2..k

i=1

i=2..k

...

......

ids

idpi ids

iduids

idpi idsids

ids

1-pf

pf

pf

pf

toi
UMAC

{R2
i(bodyi)}

Check

cidtoi bodyi
UMAC

[R2
i(bodyi)]

Check

R1
i

toi toi

cidtoi bodyi SK
UMAC

[R2
i(bodyi)]

cidtoi bodyi SK
UMAC

[R2
i(bodyi)]

cidtoi bodyi SK
UMAC

[R2
i(bodyi)]

cidtoi bodyi SK
UMAC

[R2
i(bodyi)]

SK

Ds
SK

Fig. 2. Flow of packets within our protocol

the communication identifier cid to be used for all WiFi communications. The
reason for cid is to limit to one the number of packets that a peer can send to
the operator in each session (or in a window of time W like in Section 5).

User. Let m be a message with content payload to be sent by user u to server
s . Let k be the privacy degree to be enforced, Pf and (1− Pf) the probability
of forwarding to a peer in the communication range and to the operator, re-
spectively, cid the communication identifier, and UMACR a Universal Message
Authentication Code (UMAC) using key R. First, the user generates a random
number mid that will be used as identifier for the message, and obtains the
timestamp tmp. Then, the payload of the message is split into k different parts,
payload1,. . .,payloadk , each identified with its sequence number seqi, to be sent
via k different packets, composed as follows. For each packet mi to be sent, to
prove that the packet originates from a genuine user, the user generates, using
the seed agreed with the server, a 64 bits pseudo-random number and splits it
into two parts (i.e., prn i = (R1

i , R2
i)). It then uses R1

i as the toi field of packet
mi. The body body i of each packet to be sent, composed of the user id (idu),
sequence number of the packet (seqi), packet payload (payload i), message iden-
tifier mid, timestamp tmp, and either session key SK to be used for subsequent
communication in the session (for connection requests), or session identifier sid

Providing Mobile Users’ Anonymity in Hybrid Networks 547

(for service access requests), is then encrypted. Encryption is performed with
the server’s public key Ps in case of connection requests and with the symmetric
session key SK in case of service requests. In addition, a UMAC with R2

i as the
key is used to produce the signature of the first 64 bits of the encrypted body,
UMACR2

i
{body}, that is then appended at the end of the packet. Therefore,

each packet mi composed of [toi,body i,UMACR2
i
{body i},cid], with i := 1, . . . , k,

is sent with a random delay to a different peer in the communication range. To
avoid infinite loops in the distribution process, the user verifies through the WiFi
channel if at least k peers (including u itself) are available in her proximity. If
this is not the case, the user will not send the packet until enough peers become
available. In the case of connection establishment (i.e., cid/∈Sentu), the first
packet m1 is managed by u herself, that adds cid to Sentu, keeping track of
communications for which a packet has been forwarded to the operator; more-
over, with a random delay, u forwards m1=[to1,body1, UMACR2

1
{body1}] to her

operator o.

Peer. Upon receiving a packet [to,body ,UMACR2{body},cid], each peer p checks
if it has already sent to the mobile operator any packet for the same communi-
cation (i.e., cid∈Sentp). If it has not, the peer p sends the packet to its operator
o with probability (1− Pf) and adds cid to Sentp; while with probability Pf ,
it sends the packet unchanged to a peer in the communication range.

Operator. Upon receiving a packet [to,body , UMACR2{body}] from a peer p,
the operator uses R1 in the to field to retrieve the pair (R1, R2) in the global
table Legitimate, and checks the validity of UMACR2{body}. If R1 is a legit-
imate number (i.e., belongs to global table Legitimate) and UMACR2{body}
is a valid signature, the packet is genuine and the operator sends a message
[idp ,to,body] to server id s . The remote server id s is identified as the one that
provided the pair associated with the packet. Also, the pair (R1, R2) is removed
from the global table Legitimate to ensure one-time use. If either R1 is not
in the table or the UMAC value of the body using R2 is invalid, the packet is
considered not genuine and dropped. Note that, the reason for including R1 in
each message to the servers, is to allow servers to quickly determine the key to
be used in body decryption.

Server. Upon receiving a packet [idp ,to,body] from operator o, using the field
to, the server determines the encryption key K with which body was encrypted
(server’s public key Ps or session key SK), and decrypts body accordingly (with
server’s private key Ss or session key SK, respectively). It then assembles the
original message by merging the payloads in the bodies of the different packets.
If the original message cannot be reconstructed, the communication is dropped
and no response is returned to the user. In the case of connection establishment,
for each received packet, the server adds {[idp ,o]} to her local table Origsid.

4.2 Response

Upon completion of the reception of all packets for the same message, the server
determines the responses to be sent to different peers.

548 C.A. Ardagna et al.

Server. Let payload be the response to be sent, sid be the session it refers to,
and SK be the corresponding session key. For each packet related to message
mid, received from peer pi via operator oi, the server generates prn i = (R1

i , R2
i)

based on the seed shared with u. The body body i of the response is determined by
encrypting, with session key SK: payload of the response, session identifier sid ,
and timestamp tmp. The server then sends [idpi ,ids ,prn i,body i] to operator oi.
Note that to make the body of responses referred to the same message different
and indistinguishable from one another, the same body is encrypted i different
times, by using a symmetric key encryption algorithm (e.g., 3DES, AES). In
service access communication, a response [ej .idp,id s ,prnj ,bodyj] is also sent to
each peer ej ∈Origsid. As above, j different prn are used and j different body
are generated by encrypting j individual times the plain message.

Operator. Upon receiving a response packet [idp ,ids ,prn ,body], the operator
removes prni from table Legitimate and forwards [ids ,prn ,body] to peer p.

User/Peer. Upon receiving a response packet [ids ,prn ,body] each peer p
determines if prn belongs to one of her sets of pseudo random numbers
(prn∈Myprnp,seed). If so, the peer was the initiating user u of the message to
which the response refers, and can determine the decryption key thus retrieving
body accordingly. Else, the peer drops the packet.

5 Assessing k-Anonymity

In our approach, a user establishing a connection needs to specify the number
of peers whose cooperation it requests for achieving k-anonymity. In absence
of previous history and in a non malicious environment, k-anonymity can be
achieved by requesting cooperation of exactly k peers (as assumed in Section 4).
However, the necessary number N of peers to involve to reach k-anonymity
can decrease leveraging on previous communications in which the requester was
involved, either as requester or participant on behalf of others, which introduce
entropy. By contrast, it can increase in the presence of malicious peers and the
consequent need to introduce redundancy in the system to provide resilience
against them. In this section we discuss how a user can establish the number
N of peers to involve in the protocol based on past communications and on a
possible adversarial environment.

To prevent potential attacks from adversaries who try to subvert anonymity
by using traffic analysis, we use a probabilistic path length and a multi-path
approach. The expected path length L between a mobile user and the net-
work operator (i.e., the number of hops taken by a packet in its path from
a source to a destination) is randomly and exponentially distributed. In our
multi-path configuration, a message originator or one of the peers forward each
packet to a random next-hop peer with the same probability of forwarding Pf .
Different packets of the same message follow different paths (that can be par-
tially overlapped). The last peer on each path that has received a packet sends
it to the network operator directly with the probability (1− Pf). Thus, like

Providing Mobile Users’ Anonymity in Hybrid Networks 549

in [19], we can derive the expected path length in non-malicious environment as:
L = (1− Pf)

∑∞
k=0(k + 2)Pf

k = Pf

(1−Pf) + 2.
Unfortunately, not all forwarded packets can be considered legitimate and

not all neighboring peers are honest. To account for this, we define a threshold
probability Pd of peers who misbehave. This probability includes peers moving
out of the transmission range, dropping out of the network, acting maliciously
by dropping or falsifying the packets they receive, or, in general, attempting to
disrupt the normal operation of the system. Moreover, this probability threshold
accounts for Sybil attacks [10] where a malicious peer can assume multiple false
identities by pretending to have multiple WiFi physical occurrences. We assume
that some fraction of peers in the WiFi network are malicious but the message
originator is not. The expected path length in the presence of malicious peers
that drop a packet can then be calculated as: L = (1−Pd)Pf

1−(1−Pd)Pf
+ 2.

In the remainder of this section, we analyze how the user can determine the
number of peers to involve in the protocol to guarantee k-anonymity in case of
communications involving a single request-response (Subsection 5.1) and multi-
ple requests-responses (Subsection 5.2).

5.1 Single Request-Response

Each mobile user maintains the number Ms of packets forwarded for others to
server s within a window of time W . In the protocol, to allow peers to calculate
Ms , the server identifier id s is declared in the response. The reason for declaring
the server in the response, rather than in the request, is that the response trav-
eling over the cellular network is not visible to WiFi eavesdroppers (see Section
6.1). While in Section 4 we assumed W to be equal to the session window, in
the following, window W can be as large or as small as the mobile user prefers
and is taken as a reference to evaluate the degree of anonymity. The value of W
is not critical for single requests but becomes significant in case of consecutive
requests to the same server. We envision that a typical value of W can range
from a few seconds to several minutes. Assuming no malicious neighbors, the
number of peers N , that user u needs to involve in a communication to achieve
the required k-anonymity, is N = k − Ms , where Ms represents the number of
packets the user has forwarded for other mobile peers to server s . In fact, if the
user has participated in Ms previous communications, there must exist at least
one peer that also participated in each of them.

Assuming the probability of malicious peers is at most Pd, to achieve the
required k-anonymity for a request to server s in the window of time W , u must
select at least N peers to satisfy the following formula:

k =
N∑
i

(1− Pd)L

︸ ︷︷ ︸
Nf

+ Ms · (1− Pd)︸ ︷︷ ︸
Nm

(1)

Equation (1) has two contributing factors: Nf =
∑N

i (1 − Pd)L indicates the
expected number of successfully forwarded packets to the operator even in the

550 C.A. Ardagna et al.

presence of a fraction of Pd malicious peers; Nm = Ms · (1 − Pd) accounts
for the anonymity the user has gained by virtue of forwarding Ms packets for
other mobile peers to server s . Of course, the mobile user will not be able to
know the size UP of the set of unique peers that have communicated with the
server but she can estimate that: Ms · (1 − Pd) ≤ UP ≤

∑Ms

i=1 li · (1 − Pd),
where li is the number of peers that participate in the i-th communication. We
consider the worst case scenario of having each li=1, and thus UP=Ms ·(1−Pd).
Therefore, by forwarding packets for other mobile peers, a mobile user builds
the necessary communication history that allows her to gain k-anonymity for
her own traffic. In general, to determine the number N of necessary peers to
involve in a communication, there are two extremes (see Equation 1): if u does
not have any packet history within the window W , she needs to select a set of
N peers that will successfully forward k packets to the server s , even if there is
a fraction of Pd malicious peers. On the other hand, if u has already forwarded
Ms packets to server s for other peers, if Nm ≥ k, u can still enjoy k-anonymity
without using any neighboring mobile peer, even assuming that Pd of them are
malicious. A combination of the two extremes is also possible. In addition, based
on the discussion in Section 4, a safe distribution process starts if and only if k
peers (possibly including u) are available in users’ proximity (i.e., path lenght
L=1). Therefore, if we consider Equation 1 with probability of malicious users
Pd, a user can safely start the communication if the number of available peers
N satisfies k = (N + Ms) · (1− Pd).

5.2 Multiple Requests-Responses

The analysis in Subsection 5.1 assumed that the communication between a user
and server entails at most one message exchange. In practical applications, ser-
vice access may require several messages between the involved user and the
server. This opens the door to possible intersection attacks by which an observer
can exploit the fact that a given user appears in different messages directed to
a server. To counteract intersection attacks we ensure that both the requester
as well as any other peer participate at most in the delivery of one message to
the server in each given window W . The requester participates only in the first
message exchange, but will receive all the responses since the server will send
all responses to the original senders Origsid (step s2.3). Also, peers participate
in delivering a message only if they have not yet delivered any message for that
communication (step p1.1). The important parameter is therefore the length of
window W after which cid and Origsid should be reset. Large sizes of W in-
crease the potential level of anonymity but can decrease the ability of successfully
concluding the communication. In fact peers that have participated in previous
message delivery within a window become not usable anymore for forwarding
packets to the operator and can then be modeled, with the formalization pro-
vided in Subsection 5.1, as malicious peers. The probability of packet dropping
would then become Pd = Pd + i k

|P| , where i is the number of request-response
steps in the communication, |P| is the total number of peers in the network, and
k is the preference of the requester. The probability Pd is then proportional to

Providing Mobile Users’ Anonymity in Hybrid Networks 551

the number of steps i ; correspondingly, the probability of finding enough peers
around u (i.e., N such that k = (N +Ms)·(1−Pd) holds) decreases. By contrast,
if W is small the probability of identifying the requester by means of intersec-
tion attacks increases. Each requester is in fact involved many times in a single
communication and is more likely to be identified by an adversary. One limit
case is when W is close to 0. In this case, the requester is involved in the packet
forwarding of each request and thus she can be exposed with high probability.

6 Adversarial Analysis

Here, we present an analysis of our protocol against attacks by individual or
colluding adversaries eavesdropping the communication as well as against tim-
ing and predecessor attacks. In addition, we point out the differences between
wireless and wired networks and between full and k-anonymity.

6.1 Adversaries Eavesdropping the Communication

We assume that all participating parties in our system can play the role of
adversary eavesdropping the communication and possibly collude.

Operator. A single o can only observe the communications involving peers that
use o to forward their communications over the cellular network. Our system is
designed to prevent o from identifying the originator u of a request below the
k-anonymity threshold that the user selects. In fact, the originator u may not
be subscribed to o, and then o is not able to observe the packets sent by u.
Therefore, although o can relate the request to server s , it cannot deduct any
information regarding u; hence, (∗, 1)-anonymity is preserved.

Global WiFi eavesdropper. A Global WiFi eavesdropper can collect and an-
alyze all WiFi traffic. Therefore, it can identify packets originating from mobile
peers and potentially breach the requester’s k-anonymity. However, a WiFi eaves-
dropper is not capable of identifying packets of the same message (i.e., with the
same mid) in a short time interval. Moreover, it does not receive the responses
from the server (which are communicated via the cellular network) and then it
does not know the identity of server s . Therefore, a WiFi eavesdropper, short
of breaking the cryptographic keys, cannot extract any information regarding o
and s ; hence (1, ∗)-anonymity is preserved.

But how easy is to create a WiFi eavesdropper? In WiFi communications peers
establish point-to-point WiFi connections on ad-hoc channels. Hence, traditional
WiFi providers are not able to simply use their access points to observe all
WiFi communications. Rather, they need to employ ad-hoc antennas to cover
all the area of interest and overhear on all point-to-point communications. Thus,
the global WiFi eavesdropper scenario is possible in principle but difficult in
practice. Another avenue of attack is to simulate a global WiFi eavesdropper
employing “shadowing” neighbor peers that follow the victim. This attack is a
special case of global WiFi eavesdropper. On their own, these nodes do not have

552 C.A. Ardagna et al.

access to message content both in connection establishment and service access
sub-protocols. In addition, every WiFi peer overhearing on the communications
cannot assume that each packet forwarded by u, is originated by u himself, due to
the hidden terminal problem that exists in all IEEE 802.11 communications [2].
This is a serious limitation and assumes that the WiFi nodes shadowing the
victim will have to calculate and compensate for channel fading and signal loss
due to physical objects. Finally, since packets need not to be manipulated by
intermediate peers, there is no need to add identity or identifiable information
to the packets in clear. Thus, the adversary is not able to infer who is the peer
broadcasting a packet, unless there is a single peer in the communication range
that is also physically visible by the adversary. (k, ∗)-anonymity is therefore
preserved.

Colluding operators. This adversarial model results in an omniscient operator
o that can observe all the traffic in the cellular network generated by mobile
users using o to route their packets to the server. Our system does not attempt
to protect the server’s anonymity from such o and thus, o can observe all packets
header information for a given time interval. Therefore, for each window of time
W , o receives a set M = {mp,s,t} of packets from the cellular network where
p denotes a mobile user, s is a server, and t is o’s packet timestamp. Also, P
denotes the set of mobile peers, S the set of servers, with |S| ≤ |P|, and K =
{k1, . . . , k|P|} the set of peers’ preferences. Operator o can place the observed
packets in different sets, grouping packets having the same s , the same p, or the
same pair (p, s). Given a server s , M∗,s={mp′,s′,t′ ∈ M |s ′ = s} is the set of all
packets sent to the same server s , and Mp,s={mp′,s′,t′ ∈ M |p′ = p, s ′ = s} is
the set of packets sent from a peer p to a server s .

But, what can o extract from these sets that can be used for inference? There
are two important metrics in each window of time W : i) the number of packets
transmitted by unique peers to a server s , that is, |M̂∗,s |, and ii) the maximum
number of packet repetitions from a specific mobile peer p towards a specific
server s . The first metric can be used to bound the maximum number of mobile
peers that have potentially communicated with server s assuming that o receives
all the packets from all the mobile peers. Let max{ku} be the greatest among
all preferences of requesters ui. If max{ku} ≤ |M̂∗,s |, k-anonymity is preserved.
This holds because if there are more than one requester communicating with
the same server, then o will receive packets from all the peers involved in the
communications. Our analysis in Section 5 (Equation 1) proves that max{ku} is
the lower bound that we guarantee to all requesters. The second metric can be
used to infer the lower bound on the number of communications that a server s
received, that is, the maximum number of packet repetitions from a single peer.
Although o may infer a lower bound to the number of communications, it will
not be able to infer if a given user was the requester or a mere facilitator of
the communication. Hence, (k, 1)-anonymity is preserved. In case that an om-
niscient operator employs a WiFi antenna, it could be able to observe both the
cellular and WiFi channels in a given area, thus breaching the k-anonymity of
the users in that area. However, the omniscient operator has to solve a much

Providing Mobile Users’ Anonymity in Hybrid Networks 553

more complex problem. This involves all challenges discussed in the Global WiFi
eavesdropper scenario, including the hidden terminal problem and the difference
in range between cellular and WiFi transmissions. To be successful, an adversary
in the form of an omniscient operator has to employ many resources which make
some of the attacks difficult to implement in practice: install WiFi antennas in
strategic points for all areas of interest and utilize them solely for the purpose
of eavedropping on all the available channels (each non-ovelapping channels re-
quires yet another antenna). This constitues a significant investment of resources
making the global WiFi eavesdropper a very expensive targeted attack with un-
certain outcomes due to the user’s mobility, the hidden terminal problem, and
static or moving physical objects.

Colluding operators and WiFi eavesdroppers. This is the worst case sce-
nario in which all parties are assumed to be malicious and colluding. In this case,
we cannot provide any protection: all communications are monitored. Therefore
information about both the cellular and the WiFi networks can be exposed. How-
ever, to be successful, this attack would require a malicious WiFi access point
with enough range and capability of spectrum eaveasdropping or a fraction of
malicious neighboring peers that shadow the user’s every move. Although not
infeasible, such sophisticated adversaries are highly unlikely to occur in practice
for the large investements of resources they would require. Lastly, the higher the
number of legitimate or non-cooperating neighboring peers, the more difficult
it is for malicious peers to reach the required number of nodes to successfully
breach k-anonymity.

6.2 Traditional Attacks

Our anonymity scheme can be further evaluated against attacks that have been
primarily defined for wired networks. Two classes of such attacks are timing at-
tacks [16] and predecessor attacks [24]. Timing attacks [16] focus on the analysis
of the timing of network messages as they propagate through the system with
the intent to link them back to the real user. This class of attacks has been suc-
cessful in mix-based anonymity schemes for wired networks. They require the
capability to manipulate the timing of packets and monitor its propagation on
the victim’s path. This usually requires at least one malicous node in the victim’s
path. In our scheme, there is no recurrent path due the definition of our protocol
to the mobility of the users. Therefore, timing attacks are not effective against
our approach. Indeed, the path and its length are generated probabilistically and
change at each request. This makes practically infeasible for adversaries to setup
a timing attack. Finally, the latency of each hop is intrinsically noisy: wireless
communication performance can change due to weather conditions, interference
by other devices, and physical obstacles. The predecessor attack [24] builds on
the idea that by monitoring the communication for a given number of rounds
(i.e., windows in this paper), a set of colluding attackers will receive messages
with a higher rate from the real requesters. This is also based on the assumption
that the real requesters communicate multiple times with the server and that are

554 C.A. Ardagna et al.

part of anonymity groups (more or less stable). Our solution is not vulnerable
to the predecessor attack since, by design, our protocol does not consider groups
and assumes mobile users with ephemeral connectivity. A requester u that com-
municates on the mobile ad-hoc network moves fast and randomly during the
communication. This makes it difficult for a set of adversaries to infer informa-
tion about the requester by tracking her and intercepting her traffic. Moreover,
the set of neighborhood peers around u may change at two consecutive time
instants, and u may be involved in several other anonymous communications.
Finally, to be successful in our settings, predecessor attacks must require the
availability of a great fraction of corrupted peers, which follow the requester
in her every move. This scenario is equivalent to the global WiFi eavesdropper
discussed in Section 6.1. Note that, also in case of a static requester u, the sor-
rounding peers are not able to expose the identity of u, since the broadcasted
packets do not contain identifiable information. Nevertheless, communication
anonymity is preserved since peers do not know the server with whom u is com-
municating. If we change our view by considering a predecessor attack brought
by an omniscient operator o, we can counteract this attack by tuning the length
of the communication window. Contrary to Crowds [19], the “path reformation”
(i.e., the definition of a set of forwarding peers including u) does not happen
each time a peer joins or leaves the set of available peers but only at the end of
the window. Moreover, while in Crowds the system is aware of peers joining or
leaving, in our solution no involved parties (i.e., peers, mobile network operators)
have knowledge of the length of the used window at any time. This leaves the
adversary with guessing as the only option and increases dramatically the effort
required to identify the window expiration time and protocol re-initialization.

7 Performance Evaluation

We have performed experiments to evaluate the performance of our protocol in
terms of latency overhead imposed on the communication among parties. We
measured the systems’ performance using the Emulab (http://www.emulab.
net/) and Orbit (http://www.wirelessorbit.com/) testbeds. In all of our ex-
periments, we used devices equipped with standard IEEE 802.11 wireless net-
work communication cards. All the results represent the average of multiple
measurements (> 50) repeated over different periods of time to avoid wireless
interference and transient effects from the wireless equipments. We varied the
Signal-to-Noise Ratio (SNR) of the wireless link for single hop, peer-to-peer
wireless connections, between 14 and 64, and we measured its impact on the
link latency. As expected, our results show that the latency varies between 1ms
and 52ms when the SNR is greater than 16. To characterize the behavior of
a multi-hop wireless ad-hoc network, we employed the Random Waypoint [22]
and the Orbit Mobility Framework [12] using city models for pedestrians. These
models take into consideration mobility and interference which can degrade the
signal quality. Then, we employed node mobility scenarios consisting of tens of
nodes (5−30). For mobility scenarios, we varied the SNR between 24 and 64 us-
ing a timed event script, and we measured the impact of our anonymity protocol

http://www.emulab.net/
http://www.emulab.net/
http://www.wirelessorbit.com/

Providing Mobile Users’ Anonymity in Hybrid Networks 555

on the end-to-end latency. The overhead trend is linear with the number of hops
and ranges between 28.9ms for 2-hops and 127.9 for 6-hops in average. This over-
head includes both the communication and the computational costs. The worst
case scenario, in terms of overhead we observed, was for a 6-hop network. The
maximum increase in latency overhead was approximately 150ms, which is ac-
ceptable for the majority of time-sensitive streaming applications. The latency
impact when selecting a 3-hop or 4-hop network is relatively low (about 50ms
and 70ms, respectively). The latency results indicate that our solution does not
incur prohibitive overhead or packet losses.

8 Related Work

Past research addressing communication privacy in mobile networks [4,17,20]
has been inspired by works in wired networks. Traditional solutions like TOR [8]
for route anonymity and Crowds [19] for Web-communication anonymity usu-
ally assume a known network topology to create meaningful routes and use the
path generated by the sender for both the request and the response. In addi-
tion, they often rely on trusted third parties (e.g., mix, onion router, blender)
and on heavy multiparty computation. Other systems including I2P [13], Mor-
phMix [21] take a different approach and provide P2P-based solutions for net-
work anonymity. I2P [13] is an anonymizing network for secure communication
that relies on tunnels and garlic routing to route data anonymously. I2P does
not rely on centralized resources and does not use the same path for both the
request and the response. MorphMix [21] is a P2P system for Internet-based
anonymous communications, where each node is also a mix and can contribute
to the anonymization process. Both I2P and MorphMix are based on heavy
multiparty computation, consider wired networks, and are not able to manage
mobility of the users. In general, all the above solutions are not applicable in
a mobile scenario, where users move fast, form networks of arbitrary topology,
and use devices with limited capabilities. Some solutions using mixes however
have been designed for protecting privacy in mobile scenarios with constrained
devices [11,18]. They focused on location management and protection, rather
than on identity protection, and assume the existence of trusted parties.

Existing research in the context of mobile networks mainly focused on pro-
tecting privacy in mobile and vehicular ad-hoc networks [9,17,20,25], and mobile
hybrid networks [1,4]. Dong et al. [9] propose an anonymous protocol for mobile
ad-hoc networks that does not rely on topological information to protect identi-
ties and the locations of the nodes. Data packets are forwarded in real and fake
routes to assure random route transmission and confuse adversaries, at a price
of an increased communication overhead. GSIS [17] presents a protocol, based
on Group Signature and Identity-based Signature techniques, used to protect
security and privacy in vehicular networks. Capkun et al. [4] provide a scheme
for secure and privacy-preserving communications in hybrid ad-hoc networks
based on pseudonyms and cryptographic keys. Differently from the above works,
our solution does not rely on multiparty computation, preserves the privacy of

556 C.A. Ardagna et al.

the requester also from the mobile network operators, and provides an anony-
mous mechanism to verify the legitimacy of the traffic produced by mobile users.
Ardagna et al. [1] present a multi-path approach for k-anonymity in mobile hy-
brid networks. The system in this paper considerably extends and improves the
work presented in [1] by: i) removing public key encryption except for connection
establishment; ii) extending the communication protocol to make it resistant to
intersection attacks and suitable for multiple rounds of requests-responses, iii)
allowing the requester to assess if there is enough entropy in the system to build
communication anonymity, before start sending the message, and iv) providing
a deep analysis and evaluation of the attacker model. Similarly to our approach,
the work by Ren and Lou [20] is aimed at providing a privacy yet accountable
security framework. This solution, however, is based on multiparty computa-
tion and groups of users established a priori, and assumes a semi-trusted group
manager and network operator.

9 Conclusions

We proposed a protocol for protecting users’ privacy that harness the availability
of both mobile and WiFi connectivity in current phones creating a hybrid net-
work. Differently from traditional solutions that offer privacy protection against
servers and other peers only, we assumed mobile network operators as a poten-
tial source of privacy threats. The intuition behind our approach is that while
users can trust the mobile operators to properly provide network accessibility,
they want at the same time to be maintained free to act in the network without
feeling their activities are constantly monitored. Therefore, our solution protects
the privacy of the requester from all parties involved in a communication.

References

1. Ardagna, C., Jajodia, S., Samarati, P., Stavrou, A.: Privacy preservation over un-

trusted mobile networks. In: Bettini, Jajodia, S., Samarati, P., Wang, S. (eds.)

Privacy in Location Based Applications. Springer, Heidelberg (2009)

2. Bianchi, G.: Performance analysis of the IEEE 802.11 distributed coordination

function. IEEE Journal on selected areas in communications 18(3), 535–547 (2000)

3. Black, J., Halevi, S., Krawczyk, H., Krovetz, T., Rogaway, P.: UMAC: Fast and se-

cure message authentication. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666,

p. 216. Springer, Heidelberg (1999)

4. Capkun, S., Hubaux, J.-P., Jakobsson, M.: Secure and Privacy-Preserving Commu-

nication in Hybrid Ad Hoc Networks, Tech. Rep. IC/2004/10, EPFL-IC, Lausanne,

Switzerland (January 2004)

5. Chaum, D.: Untraceable electronic mail, return addresses, and digital pseudonyms.

Communications of the ACM 24(2), 84–88 (1981)

6. Ciriani, V., De Capitani di Vimercati, S., Foresti, S., Samarati, P.: k-Anonymity.

In: Yu, T., Jajodia, S. (eds.) Secure Data Management in Decentralized Systems.

Springer, Heidelberg (2007)

Providing Mobile Users’ Anonymity in Hybrid Networks 557

7. Cornelius, C., Kapadia, A., Kotz, D., Peebles, D., Shin, M., Triandopoulos, N.:

Anonysense: privacy-aware people-centric sensing. In: Proc. of MobiSys 2008,

Breckenridge, CO, USA (June 2008)

8. Dingledine, R., Mathewson, N., Syverson, P.: Tor: The second-generation onion

router. In: Proc. of the 13th USENIX Security Symposium, San Diego, CA, USA

(August 2004)

9. Dong, Y., Chim, T., Li, V., Yiu, S., Hui, C.: ARMR: Anonymous routing proto-

col with multiple routes for communications in mobile ad hoc networks. Ad Hoc

Networks 7(8), 1536–1550 (2009)

10. Douceur, J.: The sybil attack. In: Druschel, P., Kaashoek, M.F., Rowstron, A.

(eds.) IPTPS 2002. LNCS, vol. 2429, p. 251. Springer, Heidelberg (2002)

11. Federrath, H., Jerichow, A., Pfitzmann, A.: Mixes in mobile communication sys-

tems: Location management with privacy. In: Anderson, R. (ed.) IH 1996. LNCS,

vol. 1174, Springer, Heidelberg (1996)

12. Hong, X., Kwon, T., Gerla, M., Gu, D., Pei, G.: A mobility framework for ad hoc

wireless networks. In: Tan, K.-L., Franklin, M.J., Lui, J.C.-S. (eds.) MDM 2001.

LNCS, vol. 1987, pp. 185–196. Springer, Heidelberg (2000)

13. I2P Anonymous Network, http://www.i2p2.de/

14. Kong, J., Hong, X.: ANODR: Anonymous on demand routing with untraceable

routes for mobile ad-hoc networks. In: Proc. of MobiHoc 2003, Annapolis, MD,

USA (June 2003)

15. Krovetz, T.: UMAC: Message authentication code using universal hashing. RFC

4418 (Informational) (March 2006)

16. Levine, B., Reiter, M., Wang, C., Wright, M.: Timing attacks in low-latency mix

systems (extended abstract). In: Juels, A. (ed.) FC 2004. LNCS, vol. 3110, pp.

251–265. Springer, Heidelberg (2004)

17. Lin, X., Sun, X., Ho, P.-H., Shen, X.: GSIS: A secure and privacy preserving

protocol for vehicular communications. IEEE Transaction on Vehicular Technol-

ogy 56(6), 3442–3456 (2007)

18. Reed, M., Syverson, P., Goldschlag, D.: Protocols using anonymous connections:

Mobile applications. In: Christianson, B., Lomas, M. (eds.) Security Protocols 1997.

LNCS, vol. 1361, Springer, Heidelberg (1998)

19. Reiter, M.K., Rubin, A.D.: Crowds: Anonymity for web transactions. ACM TIS-

SEC 1(1), 66–92 (1998)

20. Ren, K., Lou, W.: A sophisticated privacy-enhanced yet accountable security

framework for metropolitan wireless mesh networks. In: Proc. of ICDCS 2008,

Beijing, China (June 2008)

21. Rennhard, M., Plattner, B.: Introducing MorphMix: peer-to-peer based anonymous

internet usage with collusion detection. In: Proc. of WPES 2002, Washington, DC,

USA (November 2002)

22. Saha, A., Johnson, D.: Modeling mobility for vehicular ad-hoc networks. In: Proc.

of VANET 2004, Philadelphia, PA, USA (October 2004)

23. Samarati, P.: Protecting respondents’ identities in microdata release. IEEE Trans-

actions on Knowledge and Data Engineering 13(6), 1010–1027 (2001)

24. Wright, M., Adler, M., Levine, B.N., Shields, C.: The predecessor attack: An analy-

sis of a threat to anonymous communications systems. ACM TISSEC 7(4), 489–522

(2004)

25. Zhang, Y., Liu, W., Lou, W., Fang, Y.: Mask: Anonymous on-demand routing

in mobile ad hoc networks. IEEE Transaction on Wireless Communications 5(9),

2376–2385 (2006)

http://www.i2p2.de/

Complexity of Anonymity for Security Protocols

Ferucio Laurenţiu Ţiplea, Loredana Vamanu, and Cosmin Vârlan

Department of Computer Science

“Al.I.Cuza” University of Iaşi

Iaşi 700506, Romania

{fltiplea,loredana.vamanu,vcosmin}@info.uaic.ro

Abstract. Anonymity, as an instance of information hiding, is one of

the security properties intensively studied nowadays due to its applica-

tions to various fields such as e-voting, e-commerce, e-mail, e -cash, and

so on. In this paper we study the decidability and complexity status of

the anonymity property in security protocols. We show that anonymity is

undecidable for unrestricted security protocols, is NEXPTIME-complete

for bounded security protocols, and it is NP-complete for 1-session boun-

ded security protocols. In order to reach these objectives, an epistemic

language and logic to reason about anonymity properties for security

protocols under an active intruder, are provided. Agent states are en-

dowed with facts derived from actions performed by agents in protocol

executions, and an inference system is provided. To define anonymity,

an observational equivalence is used, which is shown to be decidable in

deterministic polynomial time.

1 Introduction

Anonymity, as an instance of information hiding, is one of the security properties
intensively studied nowadays due to its applications to various fields such as
electronic voting, electronic commerce, electronic mail, electronic cash and so
on. It embraces many forms, such as sender or receiver anonymity, and it is
closely related to unlinkability, indistinguishability, and role interchangeability
[12, 10, 17]. The intuition behind anonymity is that an agent who performed
some action is not “identifiable” by some observer of the system. “Non-identifia-
bility” might mean that the observer is not able to see that the agent performed
that action, or he saw that many other agents performed that action.

Several approaches to model anonymity have been proposed, such as [15,16,8,
7,5,9]. The approach in [15] is CSP-based, while the ones in [16,7] are based on
epistemic logics. The authors in [16] show, in an epistemic logic framework, how
the agent states can be augmented with information about actions performed by
agents during protocol computations, and then propose an inference mechanism
by which more information can be deduced. Several anonymity concepts are then
proposed and discussed. The epistemic approach in [7] models anonymity in a
multi-agent system framework. This is a very nice and general approach to talk
about anonymity-related properties and many other papers on anonymity built

D. Gritzalis, B. Preneel, and M. Theoharidou (Eds.): ESORICS 2010, LNCS 6345, pp. 558–572, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Complexity of Anonymity for Security Protocols 559

on it [10,17]. Based on the concept of a function view as a concise representation
of the intruder’s partial knowledge about a function, Hughes and Shmatikov
have proposed a rich variety of anonymity-related properties in [8]. The cryp-
tographic protocol logic (CPL) in [9] came as an ambitious general framework
for formalizing a very large class of security properties, including anonymity as
well. While CPL seems very expressive, the model checking problem for it is
undecidable and not too much about decidable fragments and proof systems for
the core CPL is known.

From a computational point of view, the anonymity problem for security pro-
tocols is a decision problem: it is the problem to decide, given a security protocol
and an action of it, whether or not the action is anonymous with respect to some
agent. None of the papers mentioned above discusses the decidability and com-
plexity status of this problem. As anonymity is not a trace-based property but it
is based on an observational equivalence on protocol states, it is expected that
anonymity is harder than secrecy or authentication. This is because, given a
state of the protocol which is to be checked against some property, it might be
the case that all observationally equivalent states are needed to be analyzed in
order to decide the property.

In this paper we study the decidability and complexity status of the anonymity
property for security protocols. Thus, we show that anonymity is undecidable for
unrestricted security protocols, is NEXPTIME-complete for bounded security
protocols, and it is NP-complete for 1-session bounded security protocols. In
order to reach these objectives we enrich the security protocol model in [13,
19] by adding facts to agent states. Then we develop an inference system by
which agents can infer more properties from facts. This inference system has
special constructs, mainly due to the fact that in our approach the intruder is
active, and this makes it different from the one in [16] (if the intruder is passive,
then any receiver knows exactly from whom the message he received comes).
To define anonymity, an observational equivalence is used, which is decidable in
deterministic polynomial time.

The paper is organized in five sections. The formal model we use in this
paper for security protocols is introduced in Section 2. Facts, as a way to cope
with information about actions performed by agents in a security protocol, are
introduced in Section 3, together with an inference system. Our observational
equivalence is also a topic of this section, as well as the anonymity concepts we
use in the paper. It is shown that the observational equivalence is decidable in
deterministic polynomial time. Section 4 presents the main results of the paper.
We conclude in Section 5.

2 Modeling Security Protocols

We recall the formalism in [13] with slight modifications [19], and use it in order
to develop the main results of the paper.
Protocol signatures and terms. A security protocol signature is a 3-tuple
S = (A,K,N) consisting of a finite set A of agent names (or shortly, agents)

560 F.L. Ţiplea, L. Vamanu, and C. Vârlan

and two at most countable sets K and N of keys and nonces, respectively. It is
assumed that:

– A contains a special element denoted by I and called the intruder. All the
other elements are called honest agents and Ho denotes their set;

– K = K0 ∪ K1, where K0 is the set of short-term keys and K1 is a finite set
of long-term keys. The elements of K1 are of the form Ke

A (A’s public key),
or Kd

A (A’s private key), or KAB (shared key by A and B), where A and B
are distinct agents;

– some honest agents A may be provided from the beginning with some secret
information SecretA ⊆ K0∪N , not known to the intruder. SecretA does not
contain long-term keys because they will never be communicated by agents
during the runs;

– the intruder is provided from the beginning with a set of nonces NI ⊆ N
and a set of short-term keys K0,I ⊆ K0. It is assumed that no elements in
NI ∪K0,I can be generated by honest agents.

The set of basic terms is T0 = A∪K∪N . The set T of terms is defined inductively:
every basic term is a term; if t1 and t2 are terms, then (t1, t2) is a term; if t is
a term and K is a key, then {t}K is a term. We extend the construct (t1, t2) to
(t1, . . . , tn) as usual by letting (t1, . . . , tn) = ((t1, . . . , tn−1), tn), for all n ≥ 3.
Sometimes, parenthesis will be omitted. Given a term t, Sub(t) is the set of all
subterms of t (defined as usual). This notation is extended to sets of terms by
union.

The length of a term is defined as usual, by taking into consideration that
pairing and encryption are operations. Thus, |t| = 1 for any t ∈ T0, |(t1, t2)| =
|t1| + |t2| + 1, for any terms t1 and t2, and |{t}K | = |t| + 2, for any term t and
key K.

The perfect encryption assumption we adopt [1] states that a message en-
crypted with a key K can be decrypted only by an agent who knows the corre-
sponding inverse of K (denoted K−1), and the only way to compute {t}K is by
encrypting t with K.

Actions. There are two types of actions, send and receive. A send action is of
the form A!B : (M)t, and a receive action is of the form A?B : t. In both cases,
A is assumed an honest agent who performs the action, A �= B, t ∈ T is the
term of the action, and M ⊆ Sub(t) ∩ (N ∪ K0) is the set of new terms of the
action.

M(a) denotes M , if a = A!B : (M)t, and the empty set, if a = A?B : t;
t(a) stands for the term of a. When M = ∅ we will simply write A!B : t. For a
sequence of actions w = a1 · · ·al and an agent A, define the restriction of w to
A, denoted w|A, as being the sequence obtained from w by removing all actions
not performed by A. The notations M(a) and t(a) are extended to sequences of
actions by union.

Protocols. A security protocol (or simply, protocol) is a triple P = (S, C, w),
where S is a security protocol signature, C is a subset of T0, called the set of
constants of P , and w is a non-empty sequence of actions, called the body of the

Complexity of Anonymity for Security Protocols 561

protocol, such that no action in w contains the intruder. Constants are publicly
known elements in the protocol that cannot be re-instantiated (as it will be
explained below). As usual, C does not include private keys, elements in SecretA
for any honest agent A, or elements in NI , K0,I and M(w).

Any non-empty sequence w|A, where A is an agent, is called a role of the
protocol. A role specifies the actions a participant should perform in a protocol,
and the order of these actions.

Substitutions and events. Instantiations of a protocol are given by substi-
tutions, which are functions σ that map agents to agents, nonces to arbitrary
terms, short-term keys to short-term keys, and long-term keys to long-term keys.
Moreover, for long-term keys, σ should satisfy σ(Ke

A) = Ke
σ(A), σ(Kd

A) = Kd
σ(A),

and σ(KAB) = Kσ(A)σ(B), for any distinct agents A and B.
Substitutions are homomorphically extended to terms, actions, and sequences

of actions. A substitution σ is called suitable for an action a = AxB : y if
σ(A) is an honest agent, σ(A) �= σ(B), and σ maps distinct nonces from M(a)
into distinct nonces, distinct keys into distinct keys, and it has disjoint ranges
for M(a) and Sub(t(a)) −M(a). σ is suitable for a sequence of actions if it is
suitable for each action in the sequence, and σ is suitable for a subset C ⊆ T0 if
it is the identity on C.

An event of a protocol P = (S, C, w) is any triple ei = (u, σ, i), where u =
a1 · · · al is a role of P , σ is a substitution suitable for u and C, and 1 ≤ i ≤ l.
σ(ai) is the action of the event ei. As usual, act(ei) (t(ei), M(ei)) stands for the
the action of ei (term of ei, set of new terms of ei). The local precedence relation
on events is defined by (u, σ, i) → (u′, σ′, i′) if and only if u′ = u, σ′ = σ, and
i′ = i+1, provided that i < |u|. +→ is the transitive closure of→. Given an event
e, •e stands for the set of all local predecessors of e, i.e., •e = {e′|e′ +→ e}.

Message generation rules. Given X a set of terms, analz(X) stands for the
least set which includes X , contains t1 and t2 whenever it contains (t1, t2), and
contains t whenever it contains {{t}K}K−1 or {t}K and K−1. By synth(X) we
denote the least set which includes X , contains (t1, t2), for any terms t1, t2 ∈
synth(X), and contains {t}K , for any term t and key K in synth(X). Moreover,
X stands for synth(analz(X)).

States and runs. A state of a protocol P is an indexed set s = (sA|A ∈ A),
where sA ⊆ T , for any agent A. The initial state is s0 = (s0A|A ∈ A), where
s0A = A∪C ∪KA ∪ SecretA for any A ∈ Ho, s0I = A∪C ∪KI ∪NI ∪K0,I , and
KX is the set of long-term keys known by X ∈ A.

For two states s and s′ and an action a, we write s[a〉s′ if and only if:

1. if a is of the form A!B : (M)t, then:
(a) t ∈ sA ∪M and M ∩ Sub(s) = ∅; (enabling condition)
(b) s′A = sA ∪M ∪ {t}, s′I = sI ∪ {t}, and s′C = sC for any C ∈ A− {A, I};

2. if a is of the form A?B : t, then:
(a) t ∈ sI ; (enabling condition)
(b) s′A = sA ∪ {t} and s′C = sC , for all C �= A.

562 F.L. Ţiplea, L. Vamanu, and C. Vârlan

We extend the notation “[·〉” to events by letting s[e〉s′ whenever s[act(e)〉s′,
and we call s[e〉s′ a computation step. A computation or run of a security pro-
tocol is any sequence s0[e1〉s1 · · · sk−1[ek〉sk of computation steps, also written
as s0[e1 · · · ek〉s or even e1 · · · ek, such that si−1[ei〉si for any 1 ≤ i ≤ k, and
•ei ⊆ {e1, . . . , ei−1} for any 1 ≤ i ≤ k (for i = 1, •ei should be empty).

3 Anonymity-Related Security Properties

In this section we show how the model presented in the previous section can
be endowed with information necessary to define and reason about anonymity
properties in security protocols. The main idea is to add facts to agent states
once the agents perform actions in the protocol. Each agent may then deduce
new facts by using his knowledge at some point in the protocol. Although the
idea of endowing agent states by facts was already used in [16], our approach
is different. We endow the agent states with less information but sufficient to
define and reason about a large spectrum of anonymity properties. While [16]
assumes a passive intruder, in our approach the intruder is active. This asks for
special deduction rules, making the deduction process more complex.

To define anonymity, a state-based observational equivalence is used in our pa-
per. Two states are observationally equivalent w.r.t. an agent if the agent can de-
rive the same “meaningful information” from each of the states. The anonymity
concepts in [16] are not based on any observational equivalence. Halpern and
O’Neill’s approach to anonymity [7] is a very general one, so the observational
equivalence is not precisely defined in their paper. Precise observational equiva-
lences have been proposed, but for particular classes of anonymous communica-
tion [3]. The observational equivalence in [5] is trace-based. However, anonymity
is not a trace-based property (or, at least, it cannot be naturally defined as a
trace-based property such as secrecy or authentication).

3.1 Augmenting Agent States with Facts

When an agent in a security protocol performs a send or a receive action, he may
record a number of important pieces of information. These pieces of information
can be formalized by using facts1, that is, sentences of the form P (t1, . . . , ti),
where P is a predicate symbol of arity at least one and t1, . . . , ti are message
terms (facts beginning by the same predicate symbol P will also be called P -
facts).

In order to exemplify this we shall consider a running example. In the protocol
in Figure 1, the agent A asks B for a ticket to access some network service H
guarded by some agent C. Once A gets the authenticated ticket from B, it sends
it to C together with an encrypted copy for H . C checks the ticket and then
sends the encrypted copy to H .

Four classes of information pieces are to be recorded by agents in our
formalism:
1 Later in this section, facts will be considered primitive propositions for defining the

epistemic logic we use to talk about anonymity properties.

Complexity of Anonymity for Security Protocols 563

A ! B : ({NA, K}) {A, B, H, NA, K}Ke
B

B ? A : {A, B, H, NA, K}Ke
B

B ! A : {NA, B, T icket}K, {NA, B, T icket}Kd
B

A ? B : {NA, B, T icket}K, {NA, B, T icket}Kd
B

A ! C : {T icket, {T icket}KAH}KAC

C ? A : {T icket, {T icket}KAH}KAC

C ! H : {{T icket}KAH}KCH

H ? C : {{T icket}KAH}KCH

Fig. 1. A running example

1. sent-facts. Each agent X who sends a message t to some agent Y records a
fact sent(X, t, Y). For instance, when the first action of our example will be
performed, A records sent(A, {A, B, H, NA, K}Ke

B
, B);

2. rec-facts. According to the intruder type, two cases are to be considered:
(a) passive intruder . If an action X ? Y : t was performed by X , then X

may safely record a fact rec(X, t, Y) because he knows that the message
he received is from Y . For instance, if action two in our running exam-
ple was performed in some computation, then B may record the fact
rec(B, {A, B, H, NA, K}Ke

B
, A);

(b) active intruder . If an action X ? Y : t was performed by X , then X might
not be sure whether t comes from Y or from the intruder. In such a case
X records a fact rec(X, t, (Y, I)) showing that t may be from Y or from I.
For instance, if action two in our running example was performed in some
computation, then B records the fact rec(B, {A, B, H, NA, K}Ke

B
, (A, I));

3. gen-facts. The message in the first action of our running example is
generated by A for B because it is encrypted by B’s public key; denoted this by
gen(A, {A, B, H, NA, K}Ke

B
, B) and record it in A’s state. Similarly,

{T icket}KAH inthefifthaction isgeneratedbyA forH because it is encryptedby
a key shared by A and H . Therefore, gen(A, {T icket}KAH , H) will be recorded
in A’s state;

4. auth-facts. In the third action of the protocol, the message sent by B to
A contains a sub-message of the form {NA, B, T icket}Kd

B
. This is in fact

B’s digital signature on the message (NA, B, T icket); we denote this by
auth(B, (NA, B, T icket, {NA, B, T icket}Kd

B
)) and record it in B’s state.

We will now formalize our discussion above. First, we extend the concept of an
agent state from Section 2 as follows. A state of an agent A is a pair of sets
sA = (sA,m, sA,f), where sA,m is a set of messages and sA,f is a set of facts.
Intuitively, sA,m represents the set of all messages the agent A sent or received
in some computation ξ from the initial state to the state sA, and sA,f represents
the set of facts which give information about the actions the agent A performed
in ξ.

Then, a protocol state is of the form s = (sA|A ∈ A), where each sA has the
form sA = (sA,m, sA,f). We naturally extend the notation Sub for terms and

564 F.L. Ţiplea, L. Vamanu, and C. Vârlan

sets of terms to agent states by Sub(sA) = Sub(sA,m), and to protocol states by
Sub(s) =

⋃
A∈A−{I} Sub(sA).

The protocol computation rule has to be changed accordingly. Given two
states s and s′ and an action a, we write s[a〉s′ if and only if:

1. if a is of the form A!B : (M)t, then:
(a) t ∈ sA,m ∪M and M ∩ Sub(s) = ∅;
(b) s′A,m = sA,m ∪M ∪ {t}, s′I,m = sI,m ∪ {t}, and s′C,m = sC,m for any

C ∈ A− {A, I};
(c) the facts in s′ are obtained as follows:

i. add sent(A, t, B) to sA,f and sI,f ;
ii. if some term t1 = {t′}KAC or t1 = {t′}Ke

C
has been built by A in

order to build t, then add gen(A, t1, C) to sA,f ;
iii. if some term t1 = (t′, {t′}Kd

A
) has been built by A in order to build

t, then add auth(A, t1) to sA,f ;
iv. s′C,f = sC,f , for any C ∈ A− {A, I};

2. if a is of the form A?B : t, then:
(a) t ∈ sI,m;
(b) s′A,m = sA,m ∪ {t} and s′C,m = sC,m, for all C ∈ A− {A};
(c) the facts in s′ are obtained as follows:

i. add rec(A, t, (B, I)) to sA,f and sI,f ;
ii. s′C,f = sC,f , for any C ∈ A− {A, I}.

In the case of a passive intruder (2a) should be “t ∈ sB,m” and (2ci) above
should be “add rec(A, t, B) to sA,f and sI,f”. All the other concepts, such as
computation step or computation (run), remain unchanged.

3.2 Fact Derivation

At each point in the evolution of a protocol, each agent may derive new facts from
the facts he owns at that point. For instance, when A performs the first action
in our running example and sends {A, B, H, NA, K}Ke

B
to B, A records the fact

sent(A, {A, B, H, NA, K}Ke
B
, B) in his state. As A built this message for B, he

knows all the “ingredients” he used to built it and, therefore, A may think that he
sent to B each such ingredient. Therefore, from sent(A, {A, B, H, NA, K}Ke

B
, B)

the agent A should be able to derive sent(A, NA, B), or sent(A, K, B), and so
on. Even more, A should be able to derive facts like sent(A, NA) (“A sent NA to
some agent”) or sent(A) (“A sent some message”) or sent(NA, B) (“NA was sent
to B”) or sent(A, B) (“A sent some message to B”) or sent(NA) (“NA was sent
by some agent”). In order not to overload the notation we have used the same
predicate symbol “sent” to denote these new facts; the distinction will always be
clear from the context (alternatively, one may use the notation sent(A, NA,),
sent(A, ,), and so on).

The derivation process sketched above is guided by deduction rules. Some of
these rules are based on the trace of a message with respect to an agent state.
Intuitively, the trace of t w.r.t. s = (sm, sf), denoted trace(t, s), is the set of all
messages an agent in state s could use in order to build t.

Complexity of Anonymity for Security Protocols 565

Definition 1. A message t is called decomposable over an agent state s =
(sm, sf) if t ∈ T0, or t = (t1, t2) for some messages t1 and t2, or t = {t′}K
for some message t′ and key K with K−1 ∈ analz(sm), or gen(A, t, B) ∈ sf for
some honest agents A and B.

“gen(A, t, B)” in Definition 1 covers the case when A generates t for B by en-
crypting some message by B’s public key (A does not know B’s corresponding
private key but knows how he built t and, from this point of view, we may say
that t is decomposable).

Definition 2. The function trace(t, s), where t is a message and s = (sm, sf)
is an agent state, is given by:

– trace(t, s) = {t}, if t ∈ T0;
– trace(t, s) = {t} ∪ trace(t1, s) ∪ trace(t2, s), if t = (t1, t2) for some terms t1

and t2;
– trace(t, s) = {t}, if t is not decomposable over s;
– trace(t, s) = {t}∪ trace(t′, s), if t = {t′}K is an encrypted but decomposable

message over s.

We are now in a position to present our deduction rules:

– fact simplification rules

(S1) sent(A,t,B)
sent(A,t),sent(A,B),sent(t,B) (S2) sent(A,B)

sent(A)

(S3) sent(A,t)
sent(A),sent(t) (S4) sent(t,B)

sent(t)

(R1) rec(A,t,x)
rec(A,t),rec(A,x),rec(t,x) (R2) rec(A,x)

rec(A)

(R3) rec(A,t)
rec(A),rec(t) (R4) rec(t,x)

rec(t)

where x is B or (B, I), and B is an honest agent different than A (if “A sent
t to B” then we may also say that “A send t”, or “A sent some message to
B”, or “the message t was sent to B”, and so on);

– message simplification rules

(S5) sent(A,t,B), t′∈trace(t,s)
sent(A,t′,B) (R5) rec(A,t,B), t′∈trace(t,s)

rec(A,t′,B)

(R5′) rec(A,t,(B,I)), t′∈trace(t,s)
rec(A,t′,(B,I))

where s is an agent state (if “A sent t to B” and t′ was used by A to build
t, then “A sent t′ to B”, and so on);

– from rec-facts to gen- and auth-facts

(RG) rec(B,{t}KAB
)

gen(A,{t}KAB
,B) (RA)

rec(B,(t,{t}
Kd

A
))

auth(A,(t,{t}
Kd

A
))

(if B received {t}KAB , then B knows that A is the only agent who could
generate this message for him. If B verifies the signature on t and it turns
out to be A’s signature, then B knows that A authenticated the message t);

566 F.L. Ţiplea, L. Vamanu, and C. Vârlan

– from rec-facts to sent-facts

(RS1) rec(A,t,B)
sent(B,t,A) (RS1′) rec(A,t,(B,I))

sent(B)

(if A knows that he received t from B, then B sent t to A; however, if A is
not sure whether he received t from B, then what he knows is that B sent
some message)

(RGS) rec(A,t), gen(C,t,A)
sent(C,t,A) (RAS) rec(A,t), auth(C,t)

sent(C,t)

(if A received some message t that was generated for him by C, then A can
conclude that C sent the message to him. If A received an authentic message
to C, then he can conclude that C sent the message);

– from rec-facts to rec-facts

(RGR) rec(A,t,(B,I)), gen(B,t,A)
rec(A,t,B) (RAR) rec(A,t,(B,I)), auth(B,t)

rec(A,t,B)

(if A is not sure whether he received the message t from B or from intruder,
but the message t turns out to be generated by B for A or it is an authentic
message to B, then A should be sure that the message t comes from B);

– from sent-facts to sent-facts

(SGS) sent(A,t), gen(A,t,B)
sent(A,t,B)

(if A sent t and generated it for B, then A sent t for B);
– from sent-facts to rec-facts

(SGR) sent(A,t,B), gen(C,t,B)
rec(A,t,C)

(if A sent t to B, and t was generated by C for B, then A received t from
C).

As an example of deduction, one can easily derive from (SGR) and (RS1) the
following rule:

(RGS′)
rec(A, t, B), gen(C, t, A)

sent(C, t, B)

(RGS′) captures a situation like the one in the Kerberos protocol (Figure 2)
where C sends a ticket {t}KAC to A via B. In this case, from the facts rec(A, t, B)
and gen(C, t, A), the agent A is able to deduce sent(C, t, A) (by using (RGS),
(S1), and (SGS)).

C B A
{· · · , {t}KAC }KBC {· · · }, {t}KAC

Fig. 2. Deduction rule (RGS′)

The rule (RGS′) can be used with our running example and allows H to
deduce sent(A, {T icket}KAH , C) at some state in the protocol (i.e., H will learn
that A is the one who sent him the ticket T icket).

Complexity of Anonymity for Security Protocols 567

Given a set M of messages and a set F of facts, denote by Analz(M, F) the
set of all facts that can be inferred from F and M . If s = (sm, sf) is an agent
state, then Analz(s) stands for Analz(sm, sf).

We note the difference between “analz” (Section 2) and “Analz”.

3.3 Observational Equivalence

Anonymity, and other similar properties, are crucially based on what agents are
able to “observe”. If two distinct messages can be decomposed into the same
atomic messages or both are encrypted by keys the agent A does not know, then
the two messages are “observationally equivalent” from A’s point of view in the
sense that none of them reveals more “meaningful information” to A than the
other. This can be extended to facts and agent states as follows.

Given a pair of agent states (s, s′) define the binary relation ∼s,s′ on message
terms by:

– t ∼s,s′ t, for any t ∈ T0;
– t ∼s,s′ t′, for any term t undecomposable over s and any term t′ undecom-

posable over s′;
– (t1, t2) ∼s,s′ (t′1, t

′
2), for any terms t1, t2, t′1, and t′2 with t1 ∼s,s′ t′1 and

t2 ∼s,s′ t′2;
– {t}K ∼s,s′ {t′}K , for any terms t and t′ and any key K with t ∼s,s′ t′ and

K−1 ∈ analz(sm) ∩ analz(s′m).

Component-wise extend the relation ∼s,s′ to facts:

P (t1, . . . , ti) ∼s,s′ P (t′1, . . . , t
′
i) ⇔ (∀1 ≤ j ≤ i)(tj ∼s,s′ t′j).

Definition 3. Two agent states s = (sm, sf) and s′ = (s′m, s′f) are observation-
ally equivalent, denoted s ∼ s′, if the following hold:

– analz(sm) ∩ T0 = analz(s′m) ∩ T0;
– for any ϕ ∈ Analz(s) there is ϕ′ ∈ Analz(s′) such that ϕ ∼s,s′ ϕ′;
– for any ϕ′ ∈ Analz(s′) there is ϕ ∈ Analz(s) such that ϕ′ ∼s′,s ϕ.

Roughly speaking, Definition 3 says that if s = (sm, sf) and s′ = (s′m, s′f) are
two observationally equivalent states of an agent, then the agent can derive the
same meaningful information from any of these two states. Or, in other words,
these two states are indistinguishable.

Let sm = {{NC}K}, sf = {rec(A, {NC}K , B)}, s′m = {{C, NC}K}, and s′f =
{rec(A, {C, NC}K , B)}, where K is a symmetric key. According to Definition 3,
s = (sm, sf) and s′ = (s′m, s′f) are observationally equivalent. If we replace sm

above by {{NC}K , C, K} and s′m by {{C, NC}K , K}, then s and s′ are not any-
more observationally equivalent because from rec(A, {C, NC}K , B) and s′m one
can infer rec(A, C, B), and this fact cannot be inferred from rec(A, {NC}K , B)
and sm.

568 F.L. Ţiplea, L. Vamanu, and C. Vârlan

Proposition 1. The observational equivalence on agent states is an equivalence
relation decidable in O(f4l4) time complexity, where f is the maximum number
of facts in the states, and l is the maximum length of the messages in the states.

Recall that a protocol state is a tuple s = (sA|A ∈ A). We extend the equivalence
relation defined above to protocol states on coordinates, that is, two protocol
states s and s′ are observationally equivalent with respect to an agent A, denoted
s ∼A s′ if sA ∼ s′A. From Proposition 1 it follows that ∼A is an equivalence
relation on protocol states, for any agent A.

3.4 Anonymity

We use the epistemic logic in [2, 7] to reason about anonymity, tailored to our
paper as follows:

ϕ ::= p |ϕ ∧ ϕ | ¬ϕ | KAϕ

where A ranges over a non-empty finite set A of agent names and p ranges over
a set Φ of sent-, rec-, gen-, and auth-facts such that no rec-fact contains terms
of the form (B, I).

The anonymity concepts we will define make use of only one occurrence of the
operator K in any formula and so, the truth value of a formula ϕ in a security
protocol P is defined inductively as follows:

– P |= ϕ iff (P , s) |= ϕ, for any reachable state s in P ;
– (P , s) |= p iff (P , sA) |= p, for some agent A �= I;
– (P , sX) |= p iff p ∈ Analz(sX), where X ∈ A;
– (P , s) |= ¬ϕ iff (P , s) �|= ϕ;
– (P , s) |= ϕ ∧ ψ iff (P , s) |= ϕ and (P , s) |= ψ;
– (P , s) |= KAϕ iff (P , s′A) |= ϕ, for any reachable state s′ with s′ ∼A s.

The formula KAϕ means “agent A knows ϕ”. As usual, we use PAϕ as an ab-
breviation for ¬KA¬ϕ. PAϕ means “agent A thinks that ϕ is possible”. We shall
simply write s |= ϕ instead of (P , s) |= ϕ, whenever the protocol P is understood
from the context.

Anonymity for securityprotocolswill bedefined for actionsperformedbyagents.
By an action we will understand a sent-fact (these are also called sent-actions),
or a rec-fact that does not contain terms of the form (B, I) (these are also called
rec-actions). Therefore, the sent-actions are of the form sent(A, t, B), sent(A, t),
sent(A, B), sent(A), sent(t), or sent(t, B), while the rec-actions are of the form
rec(A, t, B), rec(A, t), rec(A, B), rec(A), rec(t), or rec(t, B). By act we will denote
a generic action of the one of the forms above.

Now, following [7], define minimal anonymity for security protocols.

Definition 4. Let P be a security protocol and X an agent in P (X may be an
honest agent H or the intruder I). An action act of P is minimally anonymous
w.r.t. X if P |= act⇒ ¬KXact.

Complexity of Anonymity for Security Protocols 569

As we can see, we have defined anonymity not only with respect to an honest
agent but also with respect to the intruder. This is motivated by the fact that
the intruder is an observer of the entire protocol execution and, in spite of the
fact that he records all send and receive actions, he might not be able to see
precisely the action performed by some agent. For instance, the intruder may be
able to see that A performed a send action but he might not be able to see that
A sent some specific message. On the other side, honest agents may have more
deduction power than the intruder, but might not observe all send and receive
actions performed in the protocol. Therefore, from the anonymity point of view,
honest agents and the intruder have incomparable powers. This makes the study
of anonymity with respect to the intruder very appealing.

The action sent(B, T icket, A) in our running example is minimally anonymous
w.r.t. C because, whenever this action is performed, C is not able to deduce it
from his knowledge. On the other side, the action sent(A, {T icket}KAH , C) is
not minimally anonymous w.r.t. H because H can learn it by the deduction rule
(RGS′), but it is minimally anonymous w.r.t. I because I cannot learn it.

Remark 1. We want to emphasize that the anonymity of an action which con-
tains messages, such as sent(A, t), should not be confused with the secrecy of
t. The minimal anonymity of sent(A, t) w.r.t. H means that H was not able to
observe at some point that the agent A performed the “action of sending the
message t” (although H might knew t).

Remark 2. The anonymity of an action within a group of agents (anonymity set)
as defined in ([7], Definition 3.4) can be expressed in our formalism as well, and
the results in Section 4 obtained for minimal anonymity hold for this kind of
anonymity too. However, the lack of space does not allow us to go into details.

4 Complexity of Anonymity

In this section we establish several complexity results for the anonymity problem
in security protocols. First, we fix a few notations.

Each action has a type which is a tuple. For instance, sent(A, t, B) has type
(s, a, m, a), where s stands for sent, a for “agent”, and m for “message”. Sim-
ilarly, sent(t, B) has type (s, m, a), rec(A, t) has type (r, a, m), where r stands
for rec, and so on.

Each action type τ induces two decision problems w.r.t. anonymity:

1. the minimal anonymity problem for actions of type τ w.r.t. an honest agent
(abbreviated MAP (τ)), which is the problem to decide, given a security
protocol P , an action act of type τ , and an honest agent H , whether act is
minimally anonymous w.r.t. H in P ;

2. the minimal anonymity problem for actions of type τ w.r.t. the intruder
(abbreviated MAPI(τ)), which is the problem to decide, given a security
protocol P and an action act of type τ , whether act is minimally anonymous
w.r.t. the intruder in P .

570 F.L. Ţiplea, L. Vamanu, and C. Vârlan

Minimal anonymity w.r.t. honest agents in unrestricted security protocols is
undecidable. This can be obtained by reducing the halting problem for counter
machines to the complement of the minimal anonymity problem. The reduction
follows, somehow, a classical line for simulating counter machines [14]. When the
machine halts, some action in the security protocol simulating the machine will
not be minimally anonymous w.r.t. some honest agent, and this happens only
when the machine halts.

Theorem 1. MAP (τ) is undecidable in unrestricted security protocols, for any
action type τ .

The undecidability result in Theorem 1 can be extended to minimal anonymity
w.r.t. the intruder, but not for all action types.

Theorem 2. MAPI(τ) is undecidable in unrestricted security protocols, for
any action type τ except for (r, a, a), (r, m, a), and (r, a, m, a).

If we focus on bounded security protocols then the anonymity is decidable. Recall
that a bounded security protocol [19] is a security protocol whose message terms
are built over some finite set of basic terms and whose length do not exceed
some constant k. As a conclusion, the state space of a bounded security protocol
is finite and so, we should be able to decide whether an action act is minimally
anonymous w.r.t. some agent X (honest or the intruder). An obvious algorithm
for checking whether an action act is minimally anonymous w.r.t. X would be
the following:

for any reachable state s with s |= act do
if there exists a reachable state s′ with s′ ∼X s and s′X �|= act then

act is minimally anonymous w.r.t. X
else act is not minimally anonymous w.r.t. X

end

This algorithm searches the state space twice: once for reachable states s with
s |= act and then, if such a state is found, for a state s′ with s′ ∼X s and
s′X �|= act. As the number of events of a bounded security protocol is exponential
w.r.t. the size of the protocol [19], this algorithm has a very high time complexity
(w.r.t. the size of the protocol).

The complexity can be cut down if we restrict the minimal anonymity problem
to basic-term actions. An action act of a security protocol is called a basic-term
action if all terms in the action are basic terms. For instance, sent(A, NA, B),
where NA is a nonce, is a basic-term action, whereas sent(A, {NA}K , B) is not.
For basic-term actions the following property holds: if s′ ∼X s then s′X �|= act
if and only if sX �|= act. Therefore, for basic-term actions, the above algorithm
can be simplified by replacing the test in the if-statement by the simpler one
“sX �|= act”. Thus, we obtain the following result.

Theorem 3. MAP (τ) and MAPI(τ) are in NEXPTIME for any τ if they
are restricted to basic-term actions of type τ and bounded security protocols.
Moreover, except for MAPI(r, a, a), MAPI(r, m, a), and MAPI(r, a, m, a), all

Complexity of Anonymity for Security Protocols 571

the other minimal anonymity problems restricted as above are complete for
NEXPTIME.

If we restrict more bounded security protocols by allowing only 1-session runs,
then we obtain the following complexity results.

Theorem 4. MAP (τ) and MAPI(τ) are in NP for any τ if they are restricted
to basic-term actions of type τ and 1-session bounded security protocols. More-
over, except for MAPI(r, a, a), MAPI(r, m, a), and MAPI(r, a, m, a), all the
other minimal anonymity problems restricted as above are complete for NP .

5 Conclusions

Using an epistemic logic framework, we have considered in this paper a large va-
riety of anonymity-related concepts for security protocols: six variants of sender
anonymity and six variants of receiver anonymity. All of them were formulated
both w.r.t. an honest agent and w.r.t. the intruder, and are based on an ob-
servational equivalence on protocol states, which is decidable in deterministic
polynomial time.

We have shown that the decision problems induced by them are undecidable in
unrestricted security protocols under an active intruder. For bounded (1-session
bounded) security protocols we have shown that some of these decision problems
are complete for NEXPTIME (NP). The status of the others is left open.

We have obtained similar results to those in Section 4 for other types of
anonymity, such as the one in ([7], Definition 3.4), but they could not have been
included here due to the lack of space.

References

1. Dolev, D., Yao, A.: On the Security of Public-Key Protocols. IEEE Transactions

on Information Theory 29, 198–208 (1983)

2. Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Reasoning About Knowledge.

The MIT Press, Cambridge (2003)

3. Feigenbaum, J., Johnson, A., Syverson, P.: A model of onion routing with prov-

able anonymity. In: Proceedings of the 11th International Conference on Financial

Cryptography and 1st International Conference on Usable Security, Scarborough,

Trinidad and Tobago, February 12-16 (2007)

4. Fischer, P.C., Meyer, A.R., Rosenberg, A.L.: Counter Machines and Counter Lan-

guages. Mathematical System Theory 2, 265–283 (1968)

5. Garcia, F.D., Hasuo, I., Pieters, W., van Rossum, P.: Provable Anonymity. In: Pro-

ceedings of the 3rd ACM Workshop on Formal Methods in Security Engineering:

From Specifications to Code, FMSE 2005, Alexandria, USA (2005)

6. Greibach, S.A.: Remarks on Blind and Partially Blind One-way Multicounter Ma-

chines. Theoretical Computer Science 7, 311–324 (1978)

7. Halpern, J.Y., O’Neill, K.R.: Anonymity and Information Hiding in Multi-agent

Systems. Journal of Computer Security 13(3), 483–514 (2005)

572 F.L. Ţiplea, L. Vamanu, and C. Vârlan

8. Hughes, D., Shmatikov, V.: Information Hiding, Anonymity and Privacy: A Mod-

ular Approach. Journal of Computer Security 12(1), 3–36 (2004)

9. Kramer, S.: Cryptographic Protocol Logic: Satisfaction for (Timed) Dolev-Yao

Cryptography. The Journal of Logic and Algebraic Programming 77, 60–91 (2008)

10. Mano, K., Kawabe, Y., Sakurada, H., Tsukada, Y.: Role Interchangibility and

Verification of Electronic Voting. In: The 2006 Symposium on Cryptography and

Information Security, Hiroshima, Japan (2006)

11. Minsky, M.L.: “Recursvive” Unsolvability of Post’s Problem of “Tag” and other

Topics in Theory of Turing Machines. Annals of Mathematics 74(3) (1961)

12. Pfitzmann, A., Hansen, M.: Anonymity, Unlinkability, Undetectability, Unobserv-

ability, Pseudonymity, and Identity Management – A Consolidated Proposal for

Terminology. Technical Report, Technische Universität Dresden (2008)

13. Ramanujam, R., Suresh, S.P.: A Decidable Subclass of Unbounded Security Pro-

tocols. In: Proceedings of Workshop on Issues in the Theory of Security (WITS

2001), pp. 11–20 (2003)

14. Ramanujam, R., Suresh, S.P.: Undecidability of Secrecy for Security Protocols.

Manuscript (2003) http://www.imsc.res.in/~jam/

15. Schneider, P., Sidiropoulos, A.: CSP and Anonymity. In: Martella, G., Kurth, H.,

Montolivo, E., Bertino, E. (eds.) ESORICS 1996. LNCS, vol. 1146, pp. 198–218.

Springer, Heidelberg (1996)

16. Syverson, P.F., Stubblebine, S.G.: Group Principals and the Formalization of

Anonymity. In: Wing, J.M., Woodcock, J.C.P., Davies, J. (eds.) FM 1999, vol. 1708,

pp. 314–333. Springer, Heidelberg (1999)

17. Tsukada, Y., Mano, K., Sakurada, H., Kawabe, Y.: Anonymity, Privacy, Onymity,

and Identity: A Modal Logic Approach. In: Proceedings of the 2009 IEEE Interna-

tional Conference on Privacy, Security, Risk and Trust (PASSAT 2009), pp. 42–51

(2009)

18. Ţiplea, F.L., B̂ırjoveanu, C.V., Enea, C.: Complexity of the Secrecy for Bounded

Security Protocols. In: Proceedings of the NATO Advanced Research Workshop

on Information Security in Wireless Networks, Suceava, România (2006)

19. Ţiplea, F.L., B̂ırjoveanu, C.V., Enea, C., Boureanu, I.: Secrecy for Bounded Pro-

tocols with Freshness Check is NEXPTIME-complete. Journal of Computer Secu-

rity 16(6), 689–712 (2008)

http://www.imsc.res.in/~jam/

k-Zero Day Safety: Measuring the Security Risk of
Networks against Unknown Attacks

Lingyu Wang1, Sushil Jajodia2, Anoop Singhal3, and Steven Noel2

1 Concordia Institute for Information Systems Engineering, Concordia University
wang@ciise.concordia.ca

2 Center for Secure Information Systems, George Mason University
{jajodia,snoel}@gmu.edu

3 Computer Security Division, National Institute of Standards and Technology
anoop.singhal@nist.gov

Abstract. The security risk of a network against unknown zero day attacks has
been considered as something unmeasurable since software flaws are less pre-
dictable than hardware faults and the process of finding such flaws and develop-
ing exploits seems to be chaotic [10]. In this paper, we propose a novel security
metric, k-zero day safety, based on the number of unknown zero day vulnerabili-
ties. That is, the metric simply counts how many unknown vulnerabilities would
be required for compromising a network asset, regardless of what vulnerabilities
those might be. We formally define the metric based on an abstract model of net-
works and attacks. We then devise algorithms for computing the metric. Finally,
we show the metric can quantify many existing practices in hardening a network.

1 Introduction

Today’s critical infrastructures and enterprises increasingly rely on networked computer
systems. Such systems must thus be secured against potential network intrusions. How-
ever, before we can improve the security of a network, we must be able to measure it,
since you cannot improve what you cannot measure. A network security metric is desir-
able since it will allow for a direct measurement of how secure a network currently is,
and how secure it would be after introducing new security mechanisms or configuration
changes. Such a capability will make the effort of network hardening a science rather
than an art.

Emerging efforts on network security metrics (Section 5 will review related work)
typically assign numeric scores to vulnerabilities as their relative exploitability or like-
lihood. The assignment is usually based on known facts about each vulnerability (e.g.,
whether it requires an authenticated user account). However, such a methodology is no
longer applicable when considering zero day vulnerabilities about which we have no
prior knowledge or experience. In fact, a major criticism of existing efforts on secu-
rity metrics is that unknown zero day vulnerabilities are unmeasurable [10]. First, the
knowledge about a software system itself is not likely to help because unlike hardware
faults, software flaws leading to vulnerabilities are known to be much less predictable.
Second, modeling adversaries is not feasible either, because the process of finding flaws

D. Gritzalis, B. Preneel, and M. Theoharidou (Eds.): ESORICS 2010, LNCS 6345, pp. 573–587, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

574 L. Wang et al.

and developing exploits is believed to be chaotic. Third, existing metrics for known vul-
nerabilities are not helpful, because they measure the difficulty of exploiting a known
vulnerability but not that of finding a zero day vulnerability.

The incapability of measuring unknown zero day vulnerabilities can potentially di-
minish the value of security mechanisms since an attacker can simply step outside the
implementation and do as he pleases [10]. What is the value of a more secure configu-
ration, if it is equally susceptible to zero day attacks? We thus fall into the agnosticism
that security is not quantifiable until we can fix all security flaws (by then we certainly
do not need any security metric, either).

We propose a novel security metric, k-zero day safety, to address this issue. Instead
of attempting to measure which zero day vulnerability is more likely, our metric counts
how many distinct zero day vulnerabilities are required to compromise a network asset1.
A larger number will indicate a relatively more secure network, since the likelihood
of having more unknown vulnerabilities all available at the same time, applicable to
the same network, and exploitable by the same attacker, will be lower. Based on an
abstract model of networks and attacks, we formally define the metric and prove it to
satisfy the three algebraic properties of a metric function. We then design algorithms for
computing the metric. Finally, we show the metric can quantify many existing practices
in network hardening and discuss practical issues in instantiating the model.

The contribution of this work is twofold. First, to the best of our knowledge, this is
the first effort capable of quantifying the security risk of a network against unknown
zero day attacks. Second, we believe the metric would bring about new opportunities to
the evaluation, hardening, and design of secure networks.

In the rest of this paper, we first build intuitions through a running example. We
then present a model and define the metric in Section 2, design and analyze algorithms
in Section 3, discuss network hardening and model instantiation in Section 4, review
related work in Section 5, and finally conclude the paper in Section 6. Due to space
limitations, the proof of theorems is given in [21].

1.1 Motivating Example

The left-hand side of Figure 1 shows a toy example where host 1 provides an HTTP
service (http) and a secure shell service (ssh), and host 2 provides only ssh. The firewall
allows traffic to and from host 1, but only connections originated from host 2. Assume
the main security concern is over the root privilege on host 2. Clearly, if all the services
are free of known vulnerabilities, a vulnerability scanner or attack graph will both lead to
the same conclusion, that is, the network is secure (an attacker on host 0 can never obtain
the root privilege on host 2), and no additional network hardening effort is necessary.

However, we shall reach a different conclusion by considering how many distinct
zero day attacks the network can resist. The upper-right corner of Figure 1 shows three
sequences of zero day attacks leading to 〈root, 2〉 (each pair denotes a condition and
each triple inside oval denotes the exploitation of a zero day vulnerability): An attacker
on host 0 can exploit a zero day vulnerability in either http or ssh on host 1 to obtain

1 In our model, an asset is a general concept that may encompass one or more aspects of security,
such as confidentiality, integrity, and availability.

k-Zero Day Safety: Measuring the Security Risk of Networks 575

host 0

host 1

host 2

http

(iptables) ssh

ssh

firewall
〈user,0〉

〈root,1〉

〈root,2〉

〈vhttp,0,1〉

〈vssh,0,2〉

〈vssh,0, 1〉

〈vfirewall,0,F〉 〈0,2〉

〈root,1〉

〈root,2〉

〈vhttp,0,1〉

〈vssh,1,2〉〈vssh,0,1〉
〈viptables,0,1〉

〈ssh,1〉
〈user,0〉

〈vfirewall,0,F〉 〈0,2〉 〈vssh,0,2〉

〈vssh,1,2〉

Fig. 1. Network Configuration and Sequences of Zero Day Attacks

the root privilege; using host 1 as a stepping stone, he/she can exploit a zero day vulner-
ability in ssh on host 2 to reach 〈root, 2〉; alternatively, he/she can exploit a zero day
vulnerability in the firewall (e.g., a weak password in its Web-base remote administra-
tion interface) to re-establish the blocked connection to host 2 and then exploit ssh on
host 2. The network can resist at most one zero day attack since the second sequence
only requires one unique zero day vulnerability in ssh (on both host 1 and 2).

Now consider hardening the network by using iptables rules (iptables) to allow only
specific hosts, not including host 0, to connect to ssh on host 1. The lower-right corner
of Figure 1 shows four sequences of zero day attacks (the two new sequences indicate
exploiting a zero day vulnerability in iptables to either connect to ssh, or obtain the
root privilege, on host 1). It can be observed that all four sequences now require two dis-
tinct zero day vulnerabilities. The seemingly unnecessary hardening effort thus allows
the network to resist one more zero day attack. The hardened network can be consid-
ered relatively more secure, since the likelihood of having more zero day vulnerabilities
available at the same time, in the same network, and exploitable by the same attacker,
will be lower2. Therefore, the number of distinct zero day vulnerabilities can be used to
measure the relative security risk of different networks, which may otherwise be indis-
tinguishable by existing techniques. Those discussions, however, clearly oversimplify
many issues, which will be addressed in the rest of this paper.

2 Modeling k-Zero Day Safety

In this section, we define the k-zero day safety metric based on an abstract model of
network components. We shall delay to Section 4 the discussion of practical issues in
instantiating the abstract model based on a real world network.

2.1 The Network Model

Definition 1 gives an abstract model of network components relevant to measuring zero
day attacks (all notations will later be summarized in Table 1). The model will allow us
to formally define and reason about the proposed metric.

2 This likelihood would decrease exponentially in the number of vulnerabilities if such vulnera-
bilities can be modeled as i.i.d. random variables, but we shall not assume any specific model
since the process of developing exploits is believed to be chaotic [10].

576 L. Wang et al.

Definition 1 (Network). Our network model has the following components:

– H , S, and P , which denotes the set of hosts (computers and networking devices),
services, and privileges, respectively.

– serv(.) : H → 2S and priv(.) : H → 2P , which denotes a function that maps
each host to a set of services and that of privileges, respectively.

– conn ⊆ H×H , and�⊆ priv(h)×priv(h), which denotes a connectivity relation
and a privilege hierarchy relation, respectively.

Here hosts are meant to also include networking devices because such devices are
vulnerable to zero day attacks, and a compromised device may re-enable accesses to
blocked services (e.g., the firewall in Figure 1). Also, tightly-coupled systems (e.g., a
server hosting multiple replicas of a virtual host under the Byzantine-Fault Tolerance
algorithm [3]) should be regarded as a single host, since we shall only consider causal
relationships between hosts.

A service in the model is either remotely accessible over the network, in which case
called a remote service, or used to disable a remote service or network connection,
in which case called a security service. The model does not include services or ap-
plications that can only be exploited locally for a privilege escalation (modeling such
applications may not be feasible at all considering that an attacker may install his/her
own applications after obtaining accesses to a host). On the other hand, the model in-
cludes remote services and connectivity currently disabled by security services, since
the former may be re-enabled through zero day attacks on the latter (e.g., ssh behind
iptables in Figure 1).

In the model, privileges are meant to include those under which services are running
and those that can potentially be obtained through a privilege escalation. The purpose of
including the latter is not to model privilege escalation itself but to model the strength
of isolation techniques (e.g., sandboxing or virtual machines) that may prevent such an
escalation, as we shall elaborate shortly.

Example 1. In Figure 1, we have

– H = {0, 1, 2, F} (F denotes the firewall),
– conn = {〈0, F 〉, 〈0, 1〉, 〈0, 2〉, 〈1, F 〉, 〈1, 0〉, 〈1, 2〉, 〈2, F 〉, 〈2, 0〉, 〈2, 1〉} (we in-

clude 〈0, 2〉 since it can be enabled by a zero day attack on the firewall),
– serv(1) = {http, ssh, iptables}, serv(2) = {ssh}, and serv(F) = { firewall}

(firewall is a security service and it disables connection 〈0, 2〉),
– priv(1) = priv(2) = {user, root}.

2.2 The Zero Day Attack Model

The very notion of unknown zero day vulnerability means we cannot assume any
vulnerability-specific property, such as the likelihood or severity. We can, however, as-
sume generic properties common to vulnerabilities, as in Definition 2.

k-Zero Day Safety: Measuring the Security Risk of Networks 577

Definition 2 (Zero Day Vulnerability). A zero day vulnerability is a vulnerability
whose details are unknown except that it satisfies the following3.

1. It cannot be exploited unless
(a) a network connection exists between the source and destination hosts,
(b) a remote service with the vulnerability exists on the destination host,
(c) and the attacker already has a privilege on the source host.

2. Its exploitation can potentially yield any privilege on the destination host.

The assumptions essentially depict a worst-case scenario about the pre- and post-
conditions, respectively, of exploiting a zero day vulnerability. That is, a particular zero
day vulnerability may in reality require stronger pre-conditions while implying weaker
post-conditions than those stated above. This fact ensures our metric to always yield
a conservative result (the metric can be extended to benefit from weaker assumptions
when they can be safely made). For a similar purpose, we shall assign one zero day
vulnerability to each service although in reality a service may have more vulnerabili-
ties (note that a more conservative result of a metric is one that requires less zero day
vulnerabilities).

We more formally state above assumptions in Definition 3 and 4. In Definition 3, the
zero day exploit of a privilege will act as a placeholder when we later model isolation
techniques. In Definition 4, unlike the exploit of a known vulnerability which has its
unique pre- and post-conditions, all zero day exploits share the same hard-coded con-
ditions, as assumed above. Also note that the zero day exploit of each security service
has additional post-conditions, which indicates the exploit will re-enable the disabled
conditions. For zero day exploits of a privilege p, the pre-conditions include the privi-
lege of every service, unless if that privilege already implies p (in which case including
it will result in redundancy). This follows from our assumption that a zero day exploit
may potentially lead to any priviledge.

Definition 3 (Zero Day Exploit). For each h ∈ H and x ∈ (serv(h) ∪ priv(h)),
denote by vx a zero day vulnerability. A zero day exploit is the triple

– 〈vs, h, h′〉 where 〈h, h′〉 ∈ conn and s ∈ serv(h′), or
– 〈vp, h, h〉 where p ∈ priv(h).

Definition 4 (Condition). Denote by E0 the set of all zero day exploits, C0 the set of
conditions (conn ∪ {〈x, h〉 : h ∈ H, x ∈ serv(h) ∪ priv(h)}), and define functions
pre(.) : E0 → C0 and post(.) : E0 → C0 as

– pre(〈vs, h, h′〉) = {〈h, h′〉, 〈s, h′〉, 〈pmin, h〉} for each s ∈ serv(h), where pmin

is the least privilege on h.
– pre(〈vp, h, h〉) = {ps : s ∈ serv(h),¬(p � ps)} for each p ∈ priv(h).
– post(〈vs, h, h′〉) = {ps} for each remote service s with privilege ps.
– post(〈vs, h, h′〉) = {ps} ∪ Cs for each security service s, where Cs is the set of

conditions disabled by s.
– post(〈vp, h, h〉) = {〈p, h〉} for each p ∈ priv(h).

3 While we shall focus on such a restrictive model of zero-day vulnerabilities in this paper, an
interesting future direction is to extend the model to address other types of zero-day vulnera-
bilities, such as a time bomb whose exploitation does not require a network connection.

578 L. Wang et al.

In Definition 5, a zero day attack graph is composed by relating both exploits of known
vulnerabilities and zero day exploits through common pre- and post-conditions. In a
zero day attack graph, the exploits of known vulnerabilities can be considered as short-
cuts that help attackers to satisfy a condition with less zero day exploits. Therefore,
exploits of known vulnerabilities here may also be a trust relationship or a misconfig-
ured application, as long as they serve the same purpose of a shortcut for bypassing zero
day exploits.

Definition 5 (Zero Day Attack Graph). Given the set of exploits of known vulnera-
bilities E1 and their pre- and post-conditions C1, let E = E0 ∪E1, C = C0 ∪C1, and
extend pre(.) and post(.) to E → C (as the union of relations). The directed graph
G = 〈E ∪ C, {〈x, y〉 : (y ∈ E ∧ x ∈ pre(y)) ∨ (x ∈ E ∧ y ∈ post(x))}〉 is called a
zero day attack graph.

In Definition 6, the notion of initial condition serves two purposes. First, it includes all
conditions that are not post-conditions of any exploit (which is the usual interpretation
of the notion). Second, it is meant to also include conditions that may be satisfied as the
result of insider attacks or user mistakes. In another word, the effect of such attacks or
mistakes is modeled as the capability of satisfying post-conditions of an exploit without
first executing the exploit4. Also note that in the definition, an attack sequence is defined
as a total order, which means multiple attack sequences may lead to the same asset.
However, this is not a limitation since our metric will not require the attack sequence to
be unique, as we shall show.

Instead of the usual way of modeling an asset as a single condition, we take a more
general approach. The logical connectives ∧, ∨, and ¬ respectively model cases where
multiple conditions must be satisfied altogether to cause a damage (e.g., the availability
of a file with multiple backups on different hosts), cases where satisfying at least one
condition will cause the damage (e.g., the confidentiality of the aforementioned file),
and cases where conditions are not to be satisfied during an attack (for example, condi-
tions that will trigger an alarm). The asset value is introduced as the relative weight of
independent assets.

Definition 6 (Initial Condition, Attack Sequence, and Asset). Given a zero day at-
tack graph G,

– the set of initial conditions is given as any CI ⊆ C satisfying CI ⊇ {c : (∀e ∈
E)(c /∈ post(e))},

– an attack sequence is any sequence of exploits e1, e2, . . . , ej satisfying (∀i ∈ [1, j])
(∀c ∈ pre(ei)) (c ∈ CI) ∨ (∃x ∈ [1, i− 1] c ∈ post(ex)),

– an asset a is any logical proposition composed of conditions and the logic con-
nectives ∧, ∨, and ¬ for which an asset value v(a) is given through a function
v(.) : A→ [0,∞) where A denotes the set of all assets, and

– define a function seq(.) : A → 2Q as seq(a) = {e1, e2, . . . , ej : a ∈ post(ej)}
where Q denotes the set of all attack sequences.

4 In a broader sense, we should improve robustness of the model such that it will fail gracefully
when assumptions fail, which is beyond the scope of this paper.

k-Zero Day Safety: Measuring the Security Risk of Networks 579

Example 2. Figure 2 shows the zero day attack graph of our running example,

– if we do not consider insider attacks or user mistakes, the following attack se-
quences will lead to the asset 〈root, 2〉.
1. 〈vhttp, 0, 1〉, 〈vssh, 1, 2〉, 〈vroot, 2, 2〉
2. 〈viptables, 0, 1〉, 〈vssh, 1, 2〉, 〈vroot, 2, 2〉
3. 〈viptables, 0, 1〉, 〈vssh, 0, 1〉, 〈vssh, 1, 2〉, 〈vroot, 2, 2〉
4. 〈vfirewall, 0, F 〉, 〈vssh, 0, 2〉, 〈vroot, 2, 2〉

– if we consider insider attacks on host 1, only sequence 〈vssh, 1, 2〉, 〈vroot, 2, 2〉 and
the fourth attack sequence above will be needed to compromise 〈root, 2〉.

– if we consider a different asset 〈root, 1〉 ∧ 〈root, 2〉, then only the first three attack
sequences above can compromise this asset.

<user ,0>

<v_iptables,0,1> <v_firewal l ,0 ,F><v_ht tp ,0 ,1>

<v_ssh ,0 ,1> <v_ssh ,0 ,2>

<firewall ,F> <0,F><iptables,1><0,1>

<ssh ,1>

<user ,1>

<v_root ,1 ,1> <v_ssh ,1 ,2>

<root ,1>

<root ,F> <0,2>

<http,1>

<ssh ,2>

<1,2>

<user ,2>

<v_root ,2 ,2>

<root ,2>

Fig. 2. An Example of Zero Day Attack Graph

2.3 The k-Zero Day Safety Model

In Definition 7, the relation≡v models two distinct cases in which two zero day exploits
should only be counted once. First, both exploits involve the same zero day vulnerabil-
ity. Second, the exploit of a service is related to the exploit of a privilege to indicate that
the former will directly yield the privilege due to the lack of isolation between the two
(note that we do not model the details of any involved privilege escalation). A proba-
bility can be associated to relation ≡v to indicate the degree of similarity or isolation,
when such information is available. Although the relationship between exploits has dis-
tinct meanings in those two cases, the effect of such a relationship towards our metric
will be the same. Therefore, the relation≡v models such relationships in a unified way.

580 L. Wang et al.

Given two sets of zero day exploits, the function k0d(.) counts how many exploits in
their symmetric difference are distinct (that is, these exploits cannot be related through
≡v). In particular, if one of the sets is empty, then the function k0d(.) will yield the
number of distinct zero day exploits in the other set. When a probabilistic approach is
adopted in defining the relation ≡v, the function k0d(.) can be revised to give the ex-
pected value (mean). The reason of defining the function over the symmetric difference
of two sets is given in Theorem 1.

Definition 7 (Relation≡v and Metric Function k0d(.))

– Define a relation ≡v ⊆ E0 × E0 such that e ≡v e′ indicates either e and e′ are
exploits of the same zero day vulnerability, or e = 〈vs, h1, h2〉, e′ = 〈vp, h2, h2〉
and exploiting s yields p. We say e and e′ are distinct if e �≡v e′.

– Define a function k0d(.) : 2E0 × 2E0 → [0,∞] as k0d(F, F ′) = max({ |F ′′| :
F ′′ ⊆ (F F ′), (∀e1, e2 ∈ F ′′) (e1 �≡v e2)}) where |F ′′| denotes the cardinal-
ity of F ′′, max(.) denotes the maximum value in a set, and F F ′ denotes the
symmetric difference (that is, (F \ F ′) ∪ (F ′ \ F)).

Theorem 1. The function k0d(.) is a metric.

In Definition 8, we apply the metric k0d(.) to assets, sets of assets, and a network.
First, k0d(a) indicates the minimum number of distinct zero day exploits required to
compromise a. This number is unique for each asset, although multiple attack sequences
may compromise the asset. The empty set in the definition can be interpreted as the
conjunction of all initial conditions (which can always be compromised without any
zero day exploit). Second, the metric is applied to a set of independent assets by taking
the weighted average with asset values as the weight. Finally, by applying the metric
to all assets, we obtain a measurement of a network’s resistance to potential zero day
attacks.

Definition 8 (k-Zero Day Safety). Given a zero day attack graph G, the set of initial
conditions CI , and the set of assets A,

– for any a ∈ A, we use k0d(a) for min({k0d(q ∩ E0, φ) : q ∈ seq(a)}) where
min(.) denotes the minimum value in a set and q stands for both a sequence and a
set. For any k ∈ [0, kod(a)), we say a is k-zero day safe.

– given any A′ ⊆ A, we use k0d(A′) for
∑

a∈A′(k0d(a) · v(a))/
∑

a∈A′ v(a). For
any k ∈ [0, kod(A′)), we say A′ is k-zero day safe.

– in particular, when A′ = A, we say the network is k-zero day safe.

Example 3. For the running example, suppose all exploits of services involve distinct
vulnerabilities except 〈vssh, 0, 1〉, 〈vssh, 1, 2〉, and 〈vssh, 0, 2〉. Assume ssh and http
are not protected by isolation but iptables is protected. Then, the relation≡v is shown in
the left-hand side of Table 1 where 1 indicates two exploits are related and 0 the opposite
(or, by adopting a probabilistic approach, these can be regarded as the probabilities
associated with the relation ≡v).

k-Zero Day Safety: Measuring the Security Risk of Networks 581

3 Computing k-Zero Day Safety

This section presents algorithms for computing the k-zero day safety.

3.1 Computing the Value of k

To compute the k-zero day safety of a network, we first derive a logic proposition of
each asset in terms of exploits. Then, each conjunctive clause in the disjunctive normal
form (DNF) of the derived proposition will correspond to a minimal set of exploits that
jointly compromise the asset. The value of k can then be decided by applying the metric
k0d(.) to each such conjunctive clause.

Table 1. An Example of Relation ≡v (Left) and the Notation Table (Right)

〈v
i
p

t
a

b
le

s
,
0
,
1
〉

〈v
h

t
t
p
,
0
,
1
〉

〈v
s

s
h
,
0
,
1
〉

〈v
r

o
o

t
,
1
,
1
〉

〈v
s

s
h
,
1
,
2
〉

〈v
f

i
r

e
w

a
ll

,
0
,
F
〉

〈v
s

s
h
,
0
,
2
〉

〈v
r

o
o

t
,
2
,
2
〉

〈viptables, 0, 1〉 1 0 0 0 0 0 0 0
〈vhttp, 0, 1〉 0 1 0 1 0 0 0 0
〈vssh, 0, 1〉 0 0 1 1 1 0 1 0
〈vroot, 1, 1〉 0 1 1 1 0 0 0 0
〈vssh, 1, 2〉 0 0 1 0 1 0 1 1
〈vfirewall, 0, F 〉 0 0 0 0 0 1 0 0
〈vssh, 0, 2〉 0 0 1 0 1 0 1 1
〈vroot, 2, 2〉 0 0 0 0 1 0 1 1

Notation Explanation
H, h A set of hosts, a host
S, s A set of services, a service
P , p A set of privileges, a privilege
serv(.) Services on a host
priv(.) Privileges on a host
conn Connectivity
vs, vp Zero day vulnerability
〈vx, h, h′〉 Zero day exploit
pre(.), post(.) Pre- and post-conditions
G Zero day attack graph
CI Initial conditions
e1, e2, . . . , ej Attack sequence
A Assets
seq(a) Attack sequences compromising a
≡v Relation of non-distinct exploits
k0d(.) The k-zero day safety metric

More precisely, we interpret a given zero day attack graph as a logic program by
regarding each exploit or condition as a Boolean variable and by having a logic propo-
sition c ← . for each initial condition c, a proposition e ←

∧
c∈pre(e) c and a set of

propositions {c ← e : c ∈ post(e)} for each pre- and post-condition relationship,
respectively. We can then apply Procedure k0d Bwd shown in Figure 3 to obtain the
value of k. The main loop (lines 1-8) computes the k-zero day safety for each asset. The
results of all iterations are aggregated as the final output (line 9). The inner loop (lines
3-6) repetitively applies the afore-mentioned logic propositions to derive a formula,
which is converted into its DNF (line 7) from which the k-zero day safety is computed
(line 8).

Complexity. The procedure’s worst-case complexity is exponential in the size of the zero
day attack graph. Specifically, the complexity is dominated by the size of the derived
proposition L and its DNF; both may be exponential. Indeed, Theorem 2 shows that the
problem of computing k-zero day safety is NP-hard.

Theorem 2. Given a zero day attack graph and an asset a, finding an attack sequence
q ∈ seq(a) to minimize k0d(q ∩ E0, φ) is NP-complete.

582 L. Wang et al.

Procedure k0d Bwd
Input: A zero day attack graph G, a set of assets A with the valuation function v(.)
Output: A non-negative real number k
Method:
1. For each asset a ∈ A
2. Let L be the logic proposition representing a
3. While at least one of the following is possible, do
4. Replace each initial condition c with TRUE
5. Replace each condition c with

∨
e∈{e′:c∈post(e′)} e

6. Replace each non-negated exploit e with e ∧ (
∧

c∈pre(e) c)

7. Let L1 ∨ L2 ∨ . . . Ln be the DNF of L
8. Let ka = min({k0d(Fi ∩ E0, φ) : Fi is the set of non-negated exploits in Li, 1 ≤ i ≤ n})
9. Return

∑
a∈A(ka · v(a))/

∑
a∈A v(a)

Fig. 3. Computing the Value of k

Note that the intractability result here only implies that a single algorithm is not likely
to be found to efficiently determine k for all possible inputs (that is, arbitrary zero day
attack graphs). However, efficient solutions still exist for practical purposes. We shall
examine such a case in the following.

3.2 Determining k-Zero Day Safety for a Given Small k

For many practical purposes, it may suffice to know that every asset in a network is
k-zero day safe for a given value of k, even though the network may in reality be k′-
zero day safe for some unknown k′ > k (note that we have shown determining k′ to be
intractable). We now describe a solution whose complexity is polynomial in the size of
a zero day attack graph if k is a constant compared to this size. Roughly speaking, we
attempt to compromise each asset with less than k distinct zero day exploits through a
forward search of limited depth. The asset is not k-zero day safe if any branch of the
search succeeds, and vice versa.

Specifically, Figure 4 shows the recursive Procedure k0d Fwd with two base cases
(lines 1-2 and 3-4, respectively) and one recursive case (lines 5-9). In the first base
case, the procedure returns FALSE when asset a can be compromised with less than
k distinct zero day exploits in Te. The Sub-Procedure k0d Reachable expands Te with
all reachable known exploits since they do not count in terms of the k0d(.) metric. In
the second base case, the procedure returns TRUE when the set Te already has more
than k distinct zero day exploits (regardless of whether a can be satisfied with Tc).

The main procedure enters the recursive case only when Te includes less than k dis-
tinct zero day exploits and a cannot be satisfied with Tc. In this case, the Sub-Procedure
k0d Reachable must have already added all known exploits and their post-conditions to
Te and Tc, respectively. Now the main procedure iteratively visits each zero day exploit
e reachable from Tc (line 6), and starts a recursive search from e (line 7). If no such
e exists, the procedure will return TRUE indicating the end of a sequence is reached
(line 9). If any branch of the search succeeds, FALSE will be recursively returned to
indicate a is not k-zero day safe (line 8); otherwise, TRUE is returned (line 9).

Complexity. To find reachable known exploits from E1, the sub-procedure will check
the pre-conditions of each known exploit, which takes time O(|C| · |E1|). This will
be repeated upon adding an exploit to Te and its post-conditions to Tc. Therefore,

k-Zero Day Safety: Measuring the Security Risk of Networks 583

Procedure k0d Fwd
Input: A zero day attack graph G, an asset a, a real number k > 0, Te = φ, Tc = CI

//Te and Tc include the exploits and conditions visited so far, respectively
Output: TRUE, if k0d(a) > k; FALSE, otherwise
Method:
1. If k0d reachable(Te, Tc) ∧ k0d(Te) < k
2. Return FALSE
3. ElseIf k0d(Te) ≥ k
4. Return TRUE
5. Else
6. For each e ∈ E0 \ Te satisfying pre(e) ⊆ Tc

7. If ¬ k0d Fwd(G, a, k, Te ∪ {e}, Tc ∪ post(e))
8. Return FALSE
9. Return TRUE

Sub-Procedure k0d Reachable
Input: Te, Tc

Output: TRUE or FALSE
Method:
10. While (∃e ∈ E1 \ Te)(pre(e) ⊆ Tc)
11. Let Te = Te ∪ {e}
12. Let Tc = Tc ∪ post(e)
13. Return (

∧
c∈Tc

c → a)

Fig. 4. Determining k-Zero Day Safety for a Given k

k0d Reachable takes time O(|C| · |E1|2), which is also the complexity for the base
cases of the main procedure since it dominates the complexity of other steps. For the
recursive case, we have the recurrence formula t = O(|C| · |E1|2) + |E0| · t′ where t
and t′ denote the complexity of the recursive case and that of each recursive call. Since
the recursive case cannot be entered unless k0d(Te) < k and each recursive call will
add one more zero day exploit to Te, the maximum layers of recursion can be written
as l = max({|q| : q is an attack sequence satisfying k0d(q, φ) < k + 1}). Solving the
recurrence formula, we have that t = |C| · |E1|2 · |E0|l. Therefore, the complexity is
polynomial in the size of the zero day attack graph if k is a constant.

4 Discussions

In this section, we demonstrate the power of our metric through an example application,
network hardening, and discuss issues in instantiating the model.

Network Hardening Using the Metric. Based on the proposed metric, network harden-
ing can be defined as making a network k-zero day safe for a larger k. Such a concept
generalizes the existing qualitative approach in [22], which essentially achieves k > 0.
Moreover, the metric immediately imply a collection of hardening options. To see this,
we first unfold k based on the model:

k = k0d(A) =
∑
a∈A

(k0d(a) · v(a))/
∑
a∈A

v(a) (1)

k0d(a) = min({k0d(q ∩ E0, φ) : q ∈ seq(a)}) (2)

k0d(q ∩ E0, φ
′
) = max({ |F | : F ⊆ q ∩ E0, (∀e1, e2 ∈ F) (e1 �≡v e2)}) (3)

seq(a) = {e1, e2, . . . , ej : a ∈ post(ej), (4)

(∀i ∈ [1, j]) (∀c ∈ pre(ei)) (c ∈ CI) ∨ (∃x ∈ [1, i − 1] c ∈ post(ex))} (5)

Therefore, k can be increased by:

– Increasing the diversity of services such that exploits will involve more distinct
zero-day vulnerabilities (and no longer related by≡v) in Equation (3).

– Strengthening isolation techniques for a similar effect as above.
– Disabling initial conditions (e.g., removing a service or a connection) in CI to yield

longer attack sequences in above line (5) (part of Equation (4)).
– Enforcing more strict access control policies to lessen the risk of insider attacks or

user mistakes (thus removing conditions from CI in line (5)).

584 L. Wang et al.

– Protecting assets with backups (conjunction of conditions) and detection efforts
(negation of conditions) to yield a longer sequence in Equation (4).

– Introducing more security services to regulate accesses to remote services in such
a way that a longer sequence can be obtained in Equation (4).

– Patching known vulnerabilities such that less shortcuts for bypassing zero day ex-
ploits yield a longer sequence in Equation (4).

– Prioritizing the above options based on the asset values in Equation (1) and shortest
attack sequences in Equation (2).

Clearly, these hardening options closely match current practices, such as the so-called
layered defense, defense in depth, security through virtualization, and security through
diversity approaches. However, their effectiveness 5 can now be quantified in a simple,
intuitive way; their cost can now be more easily justified, not based upon speculation or
good will, but simply with a larger k.

Instantiating the Model. Since the proposed metric and algorithms are based on an ab-
stract model of networks, how to instantiate the model for given networks is an equally
important (and admittedly difficult) issue. We now address several key aspects of the
issue while leaving more research to future work.

– While instantiating the model, an uncertain situation can be dealt with by either
taking a conservative assumption under which the metric yields a lower k (e.g., any
host should be included unless it is believed to be absolutely immune from zero
day attacks) or by taking a probabilistic approach (e.g., we have discussed how
associating a probability to relation ≡v can help to model the degree of similarity
in vulnerabilities and strength of isolation). Our future work will further explore
such probabilistic approaches.

– An extremely conservative assumption may yield a trivial result (e.g., no network is
1-zero day safe, if insider attacks are considered possible on every host). While such
an assumption may be the safest, it is also the least helpful in terms of improving
the security since nothing would be helpful.

– The remote services and network connectivity must be identified by examining
hosts’ configuration. A network scanning is insufficient since it will not reveal
services or connectivity currently disabled by security services (e.g., ssh behind
iptables in Figure 1). The model is thus more concerned about the existence, in-
stead of the current reachability, of a service or host.

– A zero day attack graph cannot be obtained by injecting zero day exploits into an
existing attack graph of known vulnerabilities. The reason is that some unreach-
able exploits may be discarded in generating an attack graph of known vulnerabil-
ities [1], whereas such exploits may indeed serve as shortcuts for bypassing zero
day exploits in a zero day attack graph.

– The model itself does not provide a means for determining which conditions are
likely to be subject to insider attacks or user mistakes, which should be determined
based on knowledge about access control polices (which users are allowed to do
what on which hosts) and how trustworthy each user is.

5 None of options can always guarantee improved security, which is why we need a metric.

k-Zero Day Safety: Measuring the Security Risk of Networks 585

5 Related Work

Standardization efforts on vulnerability assessment include the Common Vulnerability
Scoring System (CVSS) [12] which measures vulnerabilities in isolation. The NIST’s
efforts on standardizing security metrics are also given in [13] and more recently in [19].
The research on security metrics has attracted much attention lately [7]. Earlier work
include the a metric in terms of time and efforts based on a Markov model [4]. More
recently, several security metrics are proposed by combining CVSS scores based on
attack graphs [20,5]. The minimum efforts required for executing each exploit is used
as a metric in [2,15]. A mean time-to-compromise metric is proposed based on the
predator state-space model (SSM) used in the biological sciences in [9]. The cost of
network hardening is quantified in [22]. Security metrics are also developed for specific
applications, such as IDSs [8] and distributed trust managment [17].

More closely related to our work, attack surface measures how likely a software is
vulnerable to attacks based on the degree of exposure [14]. Our work borrows from
attack surface the idea of focusing on interfaces, instead of internal details, of a system.
However, we apply the idea to a network of computer systems instead of a single soft-
ware system. Parallel to the study of security metrics, fault tolerance algorithms rely on
replication and diversity to improve the availability of services [3]. Our metric provides
a means for measuring the effectiveness of systems running such algorithms in the con-
text of a network. Our work is partially inspired by the well known data privacy metric
k-anonymity [16] which measures the amount of privacy using an integer regardless of
specific application semantic. In our study, we adopt the graph-based representation of
attack graphs proposed in [1], which avoids the state explosion problem that may face
a model checking-based approach [18].

To the best of our knowledge, few work exist on measuring zero day attacks. An
empirical study of the total number of zero day vulnerabilities available on a single day
is given based on existing data [11]. If such a result can be obtained or estimated in real
time, it may be incorporated into our metric by dynamically adjusting the value of k (a
larger k is needed when more vulnerabilities are available). Another recent effort orders
different applications in a system by the seriousness of consequences of having a single
zero day vulnerability [6]. In contrast to our work, it has a different focus (applications
instead of networks) and metric (seriousness of consequences instead of number of
vulnerabilities).

6 Conclusion

We have proposed k-zero day safety as a novel security metric for measuring the rela-
tive security of networks against potential zero day attacks. In doing so, we have trans-
formed the unmeasureability of unknown vulnerabilities from a commonly perceived
obstacle to an opportunity for security metrics. While the general problem of comput-
ing the metric is intractable, we have demonstrated that practical security issues can be
formulated and solved in polynomial time. For future work, we shall extend the model
to address various limitations mentioned in this paper; we shall also integrate the pro-
posed algorithms into existing attack graph-based security tools so to validate their real
world effectiveness.

586 L. Wang et al.

Acknowledgements. The authors thank the anonymous reviewers for their valuable
comments. This material is based upon work supported by the National Institute of
Standards and Technology Computer Security Division under grant 60NANB9D9192;
by the Army Research Office MURI award number W911NF-09-1-0525 administered
by The Pennsylvania State University; by the National Science Foundation under the
grants CT-20013A, CT-0716567, CT-0716323, and CT-0627493; by the Air Force Of-
fice of Scientific Research under grants FA9550-07-1-0527, FA9550-09-1-0421, and
FA9550-08-1-0157; by the Army Research Office DURIP award W911NF-09-01-0352;
by the Natural Sciences and Engineering Research Council of Canada under Discovery
Grant N01035, and by Fonds de recherche sur la nature et les technologies. Any opin-
ions, findings, and conclusions or recommendations expressed in this material are those
of the authors and do not necessarily reflect the views of the sponsoring organizations.

References

1. Ammann, P., Wijesekera, D., Kaushik, S.: Scalable, graph-based network vulnerability anal-
ysis. In: Proceedings of CCS 2002 (2002)

2. Balzarotti, D., Monga, M., Sicari, S.: Assessing the risk of using vulnerable components. In:
Proceedings of the 1st Workshop on Quality of Protection (2005)

3. Castro, M., Liskov, B.: Practical byzantine fault tolerance and proactive recovery. ACM
Trans. Comput. Syst. 20(4), 398–461 (2002)

4. Dacier, M.: Towards quantitative evaluation of computer security. Ph.D. Thesis, Institut Na-
tional Polytechnique de Toulouse (1994)

5. Frigault, M., Wang, L., Singhal, A., Jajodia, S.: Measuring network security using dynamic
bayesian network. In: Proceedings of ACM Workshop on Quality of protection (2008)

6. Ingols, K., Chu, M., Lippmann, R., Webster, S., Boyer, S.: Modeling modern network attacks
and countermeasures using attack graphs. In: Proceedings of ACSAC 2009, Washington, DC,
USA, 2009, pp. 117–126. IEEE Computer Society Press, Los Alamitos (2009)

7. Jaquith, A.: Security Merics: Replacing Fear Uncertainity and Doubt. Addison Wesley, Read-
ing (2007)

8. Lee, W., Xiang, D.: Information-theoretic measures for anomaly detection. In: Proceedings
of the 2001 IEEE Symposium on Security and Privacy, Washington, DC, USA, p. 130. IEEE
Computer Society Press, Los Alamitos (2001)

9. Leversage, D.J., Byres, E.J.: Estimating a system’s mean time-to-compromise. IEEE Security
and Privacy 6(1), 52–60 (2008)

10. McHugh, J.: Quality of protection: Measuring the unmeasurable? In: Proceedings of the 2nd
ACM Workshop on Quality of Protection (QoP 2006), pp. 1–2 (2006)

11. McQueen, M., McQueen, T., Boyer, W., Chaffin, M.: Empirical estimates and observations
of 0day vulnerabilities. In: Hawaii International Conference on System Sciences, pp. 1–12
(2009)

12. Mell, P., Scarfone, K., Romanosky, S.: Common vulnerability scoring system. IEEE Security
& Privacy Magazine 4(6), 85–89 (2006)

13. National Institute of Standards and Technology. Technology assessment: Methods for mea-
suring the level of computer security. NIST Special Publication 500-133 (1985)

14. Manadhata, J.W.P.: An attack surface metric. Technical Report CMU-CS-05-155 (2005)
15. Pamula, J., Jajodia, S., Ammann, P., Swarup, V.: A weakest-adversary security metric for net-

work configuration security analysis. In: Proceedings of the 2nd ACM Workshop on Quality
of Protection, pp. 31–38. ACM Press, New York (2006)

k-Zero Day Safety: Measuring the Security Risk of Networks 587

16. Samarati, P.: Protecting respondents’ identities in microdata release. IEEE Transactions on
Knowledge and Data Engineering (TKDE), 1010–1027 (2001)

17. Reiter, M., Stubblebine, S.: Authentication metric analysis and design. ACM Transactions
on Information and System Security 2(2), 138–158, 5 (1999)

18. Sheyner, O., Haines, J., Jha, S., Lippmann, R., Wing, J.: Automated generation and analysis
of attack graphs. In: Proceedings of the IEEE Symposium on Security and Privacy (2002)

19. Swanson, M., Bartol, N., Sabato, J., Hash, J., Graffo, L.: Security metrics guide for informa-
tion technology systems. NIST Special Publication 800-55 (2003)

20. Wang, L., Islam, T., Long, T., Singhal, A., Jajodia, S.: An attack graph-based probabilistic
security metric. In: Atluri, V. (ed.) DAS 2008. LNCS, vol. 5094, pp. 283–296. Springer,
Heidelberg (2008)

21. Wang, L., Jajodia, S., Singhal, A., Noel, S.: k-zero day safety: Measuring the security risk
of networks against unknown attacks. Technical report, Spectrum Research Repository, Con-
cordia University (2010),
http://spectrum.library.concordia.ca/6744/1/k0d.pdf

22. Wang, L., Noel, S., Jajodia, S.: Minimum-cost network hardening using attack graphs. Com-
puter Communications 29(18), 3812–3824, 11 (2006)

http://spectrum.library.concordia.ca/6744/1/k0d.pdf

Are Security Experts Useful?
Bayesian Nash Equilibria for Network Security Games

with Limited Information

Benjamin Johnson1, Jens Grossklags2, Nicolas Christin1, and John Chuang3

1 CyLab, Carnegie Mellon University
2 Center for Information Technology Policy, Princeton University

3 School of Information, University of California, Berkeley

Abstract. A common assumption in security research is that more individual
expertise unambiguously leads to a more secure overall network. We present a
game-theoretic model in which this common assumption does not hold. Our find-
ings indicate that expert users can be not only invaluable contributors, but also
free-riders, defectors, and narcissistic opportunists. A direct application is that
user education needs to highlight the cooperative nature of security, and foster
the community sense, in particular, of higher skilled computer users.

As a technical contribution, this paper represents, to our knowledge, the first
formal study to quantitatively assess the impact of different degrees of informa-
tion security expertise on the overall security of a network.

Keywords: Security Economics, Game Theory, Bounded Rationality, Limited
Information.

1 Introduction

To what extent does information security expertise help make a network more secure?
Common sense seems to dictate that the more security experts participate in the net-

work, the higher the level of overall security should be, since each expert can contribute
her own knowledge to improving the security of all parties. However, such a reasoning
does not take into account that most modern information networks such as the Internet
are distributed over potentially competing entities. In other words, it may not be in ev-
erybody’s best interest to contribute resources to secure the network, particularly if the
benefits of such contributions are unclear.

As an illustration, consider a simple denial-of-service example. The attacker is a
customer of Internet Service Provider (ISP) A, while the target is a customer of a
different ISP B. A is not directly connected to B, instead traffic going from A to
B may have to cross several other administrative boundaries (e.g., ISPs C, D, . . .),
causing potential congestion at all of these intermediaries. A very desirable solution,
from an engineering standpoint, is to filter traffic at ISP A, before it even enters the
rest of the network (ingress filtering, [9]). Yet, what is the incentive for ISP A to per-
form ingress filtering? From A’s perspective, ingress filtering means they have to refuse
some of their customers’ traffic and perhaps deploy intrusive techniques such as deep
packet inspection, in order to improve their competitors’ security, which may be an
economically questionable proposition. Worse even, with modern attack configurations

D. Gritzalis, B. Preneel, and M. Theoharidou (Eds.): ESORICS 2010, LNCS 6345, pp. 588–606, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Are Security Experts Useful? 589

(e.g., botnets [20]), where attack traffic is originating from several different ISPs (A1,
A2, . . ., An) it may be difficult for the source ISPs Ai to distinguish attacks from benign
traffic. Thus, ingress filtering could result in unwillingly discarding legitimate traffic,
which in turn would certainly lead to loss of reputation, and of customer revenue at the
filtering ISPs.

Through the denial-of-service example, we observe that negative externalities play a
predominant role in security strategies, even (and especially) when network participants
are knowledgeable about security dependencies. Furthermore, in large scale networks
such as the Internet, the limited information available about other players renders the
decision choices even more complex.

In our previous work [17, 16], we explored the impact of limited information on the
strategies chosen by a single expert in a network of naı̈ve players all facing a similar
security threat. Naı̈ve players took a myopic view of the network, ignoring all external-
ities, while the expert player had better threat modeling, and understood externalities
arising from the threat faced; this naı̈ve approach is substantiated by empirical sur-
veys of organizational security, e.g., [4]. Addressing the problem relied on a decision-
theoretic formulation, where the expert was optimizing her strategy in absence of strate-
gic competition from the naı̈ve players.

In the present work, we address the more general case, where a number k of experts
(1 ≤ k ≤ N , with N the size of the network) are making security decisions based
both on the security threat they face, and on the behavior of other (expert and naı̈ve)
players. The main contribution of this paper is to give formal elements of answer to the
question posed in the preamble to this paper, that is, to provide a formal characterization
of the impact of the number of competing expert players on the overall security of an
information network.

We build upon previously proposed models of network security games [35, 14, 15],
which abstract security interactions between network participants by a set of stylized
games (weakest link, best shot, total effort). The strategy set for each player is defined
by two actions: self-protection, and self-insurance. Self-protection reduces the proba-
bility an attack is successful in causing losses to the player, while self-insurance deter-
ministically reduces these losses when a successful attack has happened. Protection is
a public good, in that the level of protection chosen by each player impacts (positively
or negatively) the overall level of protection all players receive, while self-insurance is
a private good, which only benefits the players investing in it.

The remainder of this paper is organized as follows. We review related work in Sec-
tion 2. In Section 3, we describe our security model, including several simplifications to
models presented in our prior work [14]. In Section 4, we explain the methodology of
our game-theoretic analysis. Section 5 discusses our numerical results and we conclude
in Section 6.

2 Related Work

2.1 Limited Information

Strategic aspects of different interdependency scenarios have been studied in limited
information environments (without self-insurance [18]). In particular, Xu computes

590 B. Johnson et al.

Bayesian Nash equilibria for the traditional best shot game when the net benefit of
the public good is common knowledge, however, each player’s contribution cost is her
private information and the general distribution of effort costs are known to all play-
ers [38]. Burnett utilizes the weaker link model (in which marginal and declining ben-
efits of contributions above the group minimum exist [8]) to study a model of defense
against invasive species. She also assumes common knowledge about the distribution
of costs, and limited information about individual effort costs [5]. Somewhat comple-
mentary is Manzini and Mariotti’s model on negotiations between individual actors and
small alliances [24]. In this model, they presume that alliance members are uninformed
about the other members’ negotiation toughness.

In the context of the value of security information, research has been mostly con-
cerned with incentives for sharing and disclosure. Several models investigate under
which conditions organizations are willing to contribute to an information pool about
security breaches and investments when competitive effects may result from this co-
operation [11, 12]. Empirical papers explore the impact of mandated disclosures [6]
or publication of software vulnerabilities [33] on the financial market value of corpora-
tions. Other contributions to the security field include the computation of Bayesian Nash
outcomes for an intrusion detection game [23], security patrol versus robber avoidance
scenarios [27], and the preservation of location privacy in mobile networks [10].

2.2 Mixed Player Populations and Bounded Rationality

In the economic literature, the distinction between perfect rational and bounded ratio-
nal preferences has found recognition in several psychologically-inspired studies. For
example, analytical models for present-biased preferences (i.e., where individuals as-
sign stronger relative importance to a moment in time as it gets closer) consider both
sophisticated and naı̈ve agents. The former foresee and comprehend their self-control
problems, whereas the latter lack the strategic understanding of their personal falla-
cies [26]. Acquisti studies these types of preferences in the context of information se-
curity [1]. In a related paper, Acquisti and Varian study how individuals interact with a
price-discriminating merchant. In their work, myopic agents do not react strategically
to the seller’s actions [3]. An additional form of preferences is the resolute type where
agent stick to their initial strategy during each subsequent choice [36].

However, common to these studies is typically that they evaluate the decision-making
behavior of the different agent types separately, whereas in practice it is likely that
many marketplace decisions are subject to the interaction with mixed populations with
diverse degrees of sophistication. An exception are studies that consider the choice of
an intermediary given the interaction with a probabilistically unknown agent type. For
example, in signalling games an agent is endowed by nature with a particular type (e.g.,
good or malicious) and the agent can provide evidence of her type to the intermediary
via a costly signal [31]. In a similar fashion, Stigler interpreted the concern for privacy
as the rightful ownership of knowledge about a person. Individuals want to achieve and
maintain a high degree of reputation while keeping undesirable information a secret
[32]. Intermediaries such as employers want to learn the individual’s type via signalling
or other forms of information revelation.

Are Security Experts Useful? 591

In agent-based economics, mixed populations have been mostly studied in the tour-
nament context with the goal to determine the most successful agent types in a chal-
lenging environment. For example, in the 2001 Trading Auction Competition agents
lumped together in small groups were tasked to arrange and automatically purchase
travel bundles [37]. Similarly, in the Santa Fe Double Auction tournament, researchers
were invited to submit automatic agents to compete on an auction market [29]. In the
auction tournament, a majority of agent types did not follow explicit optimization prin-
ciples, but rather applied heuristic principles [22]. The trading approaches varied in
complexity, and the capability to predict and adapt [29]. A more recent example is the
lemonade stand tournament in which agents were able to optimize direct sales aspects
(such as inventory, quality, and price) and generate indirect payoffs with information
trading [25].

In the online safety context, we might wonder whether security markets or large-
scale interactions will wipe out any unfamiliar, non-optimizing psychological phenom-
ena (e.g., naı̈veté) [28]? We doubt that any current trends are able to overcome the
rationality obstacles furthered by the complexity of online interactions, and existing in-
formation barriers [2]. Therefore, in absence of an effective and sustainable learning
process for computer security we have to consider distributional and efficiency conse-
quences of bounded rationality, and the impact on overall system security.

3 Model Overview

The security model adopted in this paper builds upon the hybrid public/private goods
model that was defined in [14], and extended and refined in [15, 17]. Specifically, we
consider a network of N (N ∈ N) agents that are subject to an exogenous security
threat. Each agent i is endowed with an amount of money Mi, and stands to lose Li if
the attack is successful. For now, we hypothesize that attacks occur with a probability
p, exogenous to the game.

Agents can reduce the probability an attack is successful, by choosing a self-protection
level ei (0 ≤ ei ≤ 1). They can also lower the damage in case an attack is in fact suc-
cessful, with a self-insurance effort si (0 ≤ si ≤ 1). Self-protection and self-insurance
have nominal costs of bi and ci, respectively.

With these definitions, the expected payoff to player i is defined as

Ui = Mi − pLi(1− si)(1−H(e1, . . . , eN))− biei − cisi , (1)

where H is a joint “contribution” function that characterizes the externalities in the
security game being played. As in [35], we consider three different security games:

– Weakest-link: The level of protection achieved by player i is that contributed
by the least protected player in the entire network. That is, H(e1, . . . , eN) =
min1≤j≤N{ej}.

– Best shot: The level of protection achieved by player i is that contributed by the
most-protected player in the network. That is, H(e1, . . . , eN) = max1≤j≤N{ej}.

– Total effort: The level of protection achieved by player i is equal to the average
protection level for the N players. That is, H(e1, . . . , eN) = 1

N

∑N
j=1 ej .

592 B. Johnson et al.

All three games have practical applications [14]. Best shot, for instance, is useful in
modeling the level of security achieved in a censorship-resilient network like a mix-
net [7], where the overall security of the network is guaranteed as long as a single node
remains uncompromised. Weakest link is a relatively accurate modeling of perimeter
security, where a network, shielded from the rest of the Internet by connecting only
through a set of protected machines (routers, firewalls) can be reached by intruders
as long as these intruders manage to compromise one of these protected machines.
Finally, total effort is a good model of parallelized file transfers (e.g., in the case of a
peer-to-peer network), where the achieved throughput is roughly equal to the aggregate
throughput provided by all peers one is downloading from.

3.1 Simplifications and Additional Assumptions

In an effort to alleviate notational burden, we adopt several simplifying modifications
to the model described by Eqn. (1). The purpose of the following discussion is to justify
that these simplifications do not considerably restrict the generality of our results and
conclusions.

First, the total endowment Mi is not relevant to the strategies that a player chooses, as
it is an a priori known constant. We will dispense with this parameter, studying instead
the net changes in the utility Ui (which we now denote by ui).

Since we are now considering only changes in utilities, it makes sense to normal-
ize the remaining parameters, so that the maximum total loss to player i is set to 1.
Henceforth we assume that bi, ci, Li ∈ [0, 1].

The next change is to incorporate the attack probability p into the loss parameter
Li, treating Li an expected loss, as opposed to a realized loss. This modification is
mathematically without loss of generality since the model was simply treating p as a
known constant.

Ultimately, Eqn. (1) becomes:

ui = −Li(1− si)(1 −H(e1, . . . , eN))− bei − csi , (2)

with 0 ≤ bi, ci, Li, ei, si ≤ 1, and H as defined above for the three games under
consideration.

All remaining assumptions about the model are the same as those adopted in [17].
To simplify the analysis we assume that self-insurance and protection costs are homo-
geneous.1 To focus on the interesting case in which protection and self-insurance are
rationally interesting prospects we assume that bi, ci ≤ Li. Due to our intent to focus
on utility-maximizing equilibria we assume that ei, si are in fact discrete decision vari-
ables taking values in {0, 1}. Each of these assumptions is discussed more thoroughly
in [17].

Finally, to improve readability of the presentation, we will derive our initial results
on protection equilibrium while ignoring caveats resulting from the availability of self-
insurance. Expanded results incorporating self-insurance are included in Appendix A.

1 Note that, for the full information, only-expert player case, we explored the case where bi and
ci are heterogeneous in [15].

Are Security Experts Useful? 593

4 Analysis

4.1 Methodology

To determine how the composition of experts can affect systemwide network protection
in a security context, we analyze three distinct N -player security games in which there
are k selfish experts (0 ≤ k ≤ N) and N − k naı̈ve players. We assume that the experts
understand the dynamics of each game and choose strategies to maximize their own
expected payoffs, while the naı̈ve players choose whether to protect based on a simple
cost-benefit analysis – comparing protection costs to their individual expected loss in
the event of protection failure.

For expert agents, we distinguish between knowledge conditions about other players’
expected losses. In a complete information environment, each expert has full knowledge
of the expected losses of all players resulting from network protection failure. In an
incomplete information environment, each expert knows her own expected loss in the
event of protection failure, but only knows the distribution on these expected losses for
all players (the uniform distribution).

Finally, to illustrate the drawbacks of selfish equilibria more generally, we compute
the social optimum strategy for each game. To facilitate comparisons with the scenario
involving selfish experts, we characterize the social optimum from the individual per-
spective of N cooperative agents.

4.2 Protection Strategies in the Best Shot Security Game

In the best shot security game, the security of the network is determined by the highest
protection level of any player (i.e. H(e1, . . . , eN) = maxj ej). The upshot of this game
is that if a single player pays for full protection, then the whole network is protected.
This scenario gives selfish experts an incentive to shirk protection responsibilities and
pass the buck to other players. In the paragraphs below, we consider three different
types of player configurations: k selfish experts with incomplete information, k selfish
experts with complete information, and N cooperative experts.

Best Shot: k selfish experts with incomplete information. In this player configura-
tion, the rationale for expert i goes as follows. If she protects, she pays b; and if she
does not protect, she pays Li · FailE∗

¬i · FailN∗
¬i, where FailE∗

¬i is the probability
(over the distribution on the expected losses Lj) that all other experts fail to protect,
and FailN∗

¬i is the probability that all naive players fail to protect. We can easily com-
pute FailN∗

¬i = bN−k (since naı̈ve player j protects if and only if Lj ≥ b). It follows
that expert i should protect if and only if b ≤ Li · FailE∗

¬i · bN−k, or equivalently,
Li ≥ 1

bN−k−1·FailE∗
¬i

. To solidify the proper strategy, it remains to determine FailE∗
¬i.

To do this, we assume that the strategy is a symmetric Bayesian Nash equilibrium. In
this event, all experts have the same (pure) strategy of the form: ”protect if and only
if Lj ≥ α,” (where α depends on b, k, and N). Since α represents the lower protec-
tion threshold for all experts, we have FailE∗

¬i = αk−1, and we can solve for α using
α = 1

bN−k−1·αk−1 . The result is α = b
−N+k+1

k . Thus the equilibrium strategy for expert

i is to protect iff Li ≥ b
−N+k+1

k .

594 B. Johnson et al.

If k < N , then this strategy reduces to the simple conclusion that expert i should
never protect.2 The explanation is that if there are any naı̈ve players in the network, the
likelihood that any such player fails to protect is at most the cost of protection. Thus the
expected loss of expert i in the event of a protection failure is strictly less than the cost
of protecting.

If there are N players, then the above strategy simplifies to ”protect if and only if
Li ≥ b

1
N .” Uniform adoption of this strategy among all experts yields a viable symmet-

ric Bayesian Nash equilibrium.

Best Shot: k selfish experts with complete information. In this player configuration,
the rationale for expert i goes as follows. If any of the naive players draws Li > b they
will protect, so none of the experts needs to (or in their own selfish interest ought to)
protect. If none of the naive players make such draws, then the game reduces to one con-
sisting of all expert players. Because the losses are drawn from a uniform distribution,
one of the experts will have the highest draw L∗

j . If L∗
j ≥ b, then this expert should

protect. All other experts can refrain from protecting. If all of the Lj are less than b,
then the network will remain unprotected. To summarize, the equilibrium strategy is for
expert i to protect if and only if b ≤ Lj < Li for all j �= i.

Best Shot: N cooperative experts with complete information. We next consider
what happens in the best shot game if experts can cooperate to share wealth in an effort
to reduce their overall expected costs. First note that if the network is not protected,
then the sum of players’ losses is

∑N
j=1 Lj . If

∑N
j=1 Lj ≥ b, then for the purpose of

maximizing expected outcomes, it would be advantageous for each expert to contribute
toward ensuring protection. One quite reasonable strategy is for player i to pay Li·b∑ N

j=1 Lj
,

and for the sum paid (which is b) to be used to pay for a single player’s protection cost
(say the player with the highest Lj). This strategy is fair, symmetric, and results in the
lowest possible sum of expected long term costs for all players.

4.3 Protection Strategies in the Weakest Link Security Game

In the weakest link security game, the security of the network is determined by the
lowest protection level of any player (i.e. H(e1, . . . , eN) = minj ej). The upshot of
this game is that for the network to be protected, every player must pay for protection.
This scenario gives rational players cause to worry whether other players will defect,
ultimately resulting in a notable systemwide protection disincentive. Our analysis of
player configurations below is structured analogously to the best shot case.

Weakest Link: k selfish experts with incomplete information. In this player config-
uration, the rationale for expert i can be framed as follows. If she does not protect, then
she loses Li, while if she protects, she pays b + Li · (1 − ProtE∗

¬i · ProtN∗
¬i), where

ProtE∗
¬i is the probability that all other experts protect, and ProtN∗

¬i is the probability
that all naive players protect. The condition for player i to choose protection can be ex-
pressed as b+Li ·(1−ProtE∗

¬i ·ProtN∗
¬i) ≤ Li, and this can be simplified (assuming

the probabilities in question are non-zero) to the condition: Li ≥ b
ProtE∗

¬i·ProtN∗
¬i

.

2 This idea confirms the result from [17] which considered the case of one expert.

Are Security Experts Useful? 595

We know that ProtN∗
¬i = (1 − b)N−k, because naive player j protects if and only

if Lj ≥ b; and it remains to determine ProtE∗
¬i. As we did in the best shot case, we

will assume that the strategy for player i is one component of a symmetric Bayesian
Nash equilibrium, and that expert j plays an identical strategy of the form ”protect if
and only if Lj ≥ γ”, for some γ depending on b, k, and N . Under these conditions, we
have ProtE∗

¬i = (1− γ)k−1, and so we may solve for γ using γ = b
(1−γ)k−1(1−b)N−k .

For the purpose of numerical analysis we can rewrite the above equation as

γ(1− γ)k−1 =
b

(1− b)N−k
. (3)

Unfortunately, there is no algebraic solution for γ when k ≥ 5. Figure 1 plots γ as a
function of b for various values of k and N .

0.02 0.04 0.06 0.08 0.10
b

0.02

0.04

0.06

0.08

0.10

0.12

0.14

γ

N=200. k=5

N=12, k=9

N=12, k=6

N=12, k=3

N=6,k=6

N=6, k=2

Fig. 1. Evolution of γ as defined by Eqn. (3). We plot the evolution of γ as a function of the
protection cost b for various network sizes N and various number of expert users k Recall that γ
is an upper bound for expected losses that determines whether an expert in the given configuration
will participate in a protection equilibrium. Player i protects if and only if Li ≥ γ.

Weakest Link: k selfish experts with complete information. In this player config-
uration, if any naive player j draws Lj < b he will not protect, and so systemwide
protection will fail, and so no expert will protect. Similarly if expert j draws Lj < b
then (absent cooperation opportunities) she will not protect, and again systemwide pro-
tection will fail. The only (noncooperative) scenario in which the network is protected,
thus occurs when each and every player draws Lj ≥ b. In this case, everyone will pro-
tect, and the network will be protected. The equilibrium strategy for expert i is thus to
protect if and only if every player j draws Lj ≥ b.

Weakest Link: N cooperative experts with complete information. The cost to pro-
tect the entire network in the weakest link game is bN . Thus if

∑N
j=1 Lj ≥ bN , it is,

over the long term, advantageous for all the players to cooperate and protect the net-
work. A sensible cooperative equilibrium strategy in this instance is for player i to pay

LibN∑
N
j=1 Lj

if and only if
∑N

j=1 Lj ≥ bN ; and for the total amount collected (bN) to be

divided equally among all players for the purpose of network protection.

596 B. Johnson et al.

4.4 Protection Strategies in the Total Effort Security Game

In the total effort security game, the security of the network is determined by the average
protection level of players, (i.e. H(e1, . . . , eN) =

∑
j

1
N ej). The upshot of this game is

that every player receives a partial benefit from his or her contribution to the protection
effort. It turns out that this benefit does not depend on the number of other players
who choose to protect. Thus a player’s decision to contribute to the protection effort
can be made without considering the choices of other players. We discuss three player
configuration below, following the format of the other two games described above.

Total Effort: k selfish experts with incomplete information. In this configuration,
player i’s strategy can be framed as follows. If she protects, she pays b + Li · (1 −
ExpProt∗¬i+1

N) where ExpProt∗¬i is the expected number of players in the network

other than i that choose protection. If she does not protect she pays Li ·(1− ExpProt∗¬i

N).
Thus player i should protect if and only if b + Li · (1 − ExpProt∗¬i+1

N) ≤ Li · (1 −
ExpProt∗¬i

N). This inequality simplifies to Li ≥ bN . Notably, this condition does not
depend on the value of ExpProt∗¬i or any other variable related to the choices of other
players. Expert i should protect if and only if Li ≥ bN .

Total Effort: k selfish experts with complete information. Similar to the situation
above, if experts have complete information in a total effort security game, they can
determine other players’ protection incentives. However, the core economic structure
remains the same as in the case incomplete information. That is, for protection to be a
worthwhile investment strategy for player i, it is necessary and sufficient that Li ≥ bN .

Total Effort: N cooperative experts with complete information. If coordination is
allowed in this game, the situation is analogous to the cooperative efforts in the weakest
link game. The cost to protect the entire network in the total effort game is still bN .
Thus if

∑N
j=1 Lj ≥ bN , it is, over the long term, advantageous for all the players to

cooperate and protect the network. A sensible cooperative equilibrium strategy in this
instance is for player i to pay LibN∑ N

j=1 Lj
if and only if

∑N
j=1 Lj ≥ bN ; and for the

total amount collected (bN) to be divided equally among all players for the purpose of
network protection. Such a strategy, if agreed upon in advance, in guaranteed to yield a
higher expected payoff for every player over the course of time – i.e. over the course of
numerous draws of expected losses Li from the uniform distribution on [0, 1].

5 Numerical Illustrations and Observations

To synthesize the information from our previous analysis, we compare, using tables
and graphs, the decision outcomes resulting from various configurations of information
conditions and expert player configurations. For each game, we compute the conditions
for expert i to protect, the probability that expert i protects (over the distribution on
Li), the expected contribution of expert i, and the expected level of network protec-
tion – where 1 denotes complete network protection and 0 denotes no protection. All

Are Security Experts Useful? 597

probabilities and expected values are computed assuming each Li is drawn indepen-
dently from the uniform distribution on [0, 1]. Our discussion of these numerical results
focuses primarily on the effect of experts on the probability of network protection.

5.1 Best Shot

Systemwide protection results for the best shot game are shown in Table 1.

Table 1. Best Shot Security Game: Bayesian Nash Symmetric Protection Equilibrium with N
Players

Composition Experts’ Conditions Probability Expected Probability
of Expert Knowledge under which that Player Contribution of Network
Players of Losses Expert i Protects i Protects from Player i Protection

k Selfish incomplete Never 0 0 1 − bN−k

1 ≤ k < N

N Selfish incomplete Li ≥ b
1
N 1 − b

1
N b ·

(
1 − b

1
N

)
1 − b

k Selfish complete ∀ Expert j �= i, Li > Lj
bN−k(1−b)

k
bN+1−k(1−b)

k
1 − bN

1 ≤ k ≤ N and ∀ Naı̈ve j, Lj < b
and Li ≥ b

N Naı̈ve - Li ≥ b 1 − b b(1 − b) 1 − bN

N Cooperative complete
∑

i Li ≥ b 1 − bN

N!
b
N

(
1 − bN

N!

)
1 − bN

N!

Perhaps the most interesting point to observe about this table in terms of overall
network protection is that, in the incomplete information case, increasing the number of
experts actually decreases the protection level of the network. This is because experts
are incentivized to free-ride when other players are paying for protection. The more
experts there are in the network, the more freeriding takes place.This effect can be seen
directly in Figure 2 which plots the expected systemwide network protection level as a
function of protection costs for various configurations of experts in a 6-player best shot
game.

0.2 0.4 0.6 0.8 1.0
b

0.2

0.4

0.6

0.8

1.0
Network Protection Level All cooperative

k=0 or Complete information
k=1

k=2

k=3
k=4

k>5

Fig. 2. Best shot. Evolution of the network protection level as a function of the protection cost b.
The different plots vary the number of experts k in a network of N = 6 players. We observe that
the fewer experts participating in the game, the higher the network protection level is, on average.

598 B. Johnson et al.

In the complete information case, the expected protection outcome for the network is
the same regardless of the number of experts. The net effect is always that the network
will always be protected if any of the players draws Li ≥ b.

The best shot game is especially effective at highlighting the advantage of coopera-
tion. In a configuration of cooperative experts, each player bears a substantially smaller
expected cost burden, and the network is far more likely to be secure, in comparison to
the analogous configuration of selfish experts with complete information.

5.2 Weakest Link

Systemwide protection results for the weakest link game are shown in Table 2. As was
the case in the shot game, the limited information scenario has the property that increas-
ing the number of experts in the game decreases the protection level of the network.
Experts are influenced by the risk that other players will be the weak link that causes a
protection failure. This risk has a cascading effect, so that as more experts are added,
the risk of defection increases.

Except for the similarity between 1 and 2 experts, each additional expert reduces the
likelihood of systemwide protection. Figure 3 plots the expected systemwide network
protection level as a function of protection costs for various configurations of experts in
a 6-player weakest link game.

Observe that in configurations of experts with limited information in the weakest link
game, there is an abrupt cut-off in the protection levels facilitating protection conditions.
As shown in the decision analysis, once the price of protection exceeds a given value,
there no longer exist any protection equilibrium, and so all the experts in the network
will choose not to protect.

In the case of complete information, the only scenario in which the network is pro-
tected is when, for every player, the individual expected loss is more than the protection
cost. The same network protection outcome results from a configuration of N naı̈ve

Table 2. Weakest Link Security Game. Bayesian Nash Symmetric Protection Equilibrium with
N Players

Composition Experts’ Conditions Probability Expected Probability
of Expert Knowledge under which that Player Contribution of Network
Players of Losses Expert i Protects i Protects from Player i Protection

k Selfish incomplete * Li ≥ γ 1 − γ b(1 − γ) (1 − b)N−k(1 − γ)k

1 ≤ k ≤ N

k Selfish complete ∀j, Lj ≥ b (1 − b)N b(1 − b)N (1 − b)N

1 ≤ k ≤ N

N Naı̈ve - Li ≥ b (1 − b) b(1 − b) (1 − b)N

N Cooperative complete
∑

j Lj ≥ bN ** ρ bρ ρ

* γ is the least positive solution (if a solution exists) to the equation γ(1 − γ)k−1 = b
(1−b)N−k .

** ρ can be computed using well-known formulas for the uniform sum distribution. If bN ≤ 1,

we have ρ = 1 − (bN)N

N!
. More generally, ρ =

∫ N

bN
1

2(N−1)!

∑N
k=0(−1)k

(
n
k

)
(bN − k)N−1 ·

sgn(bN − k).

Are Security Experts Useful? 599

players (although the naı̈ve players pay a much higher expected cost for the same net
protection effect).

0.2 0.4 0.6 0.8 1.0
b

0.2

0.4

0.6

0.8

1.0

Network Protection Level

Zoomed area in (b)

All cooperative

complete

info

k=0, or

(a) Evolution of expected network protection
as a function of b. The thick lines represent
cases on which we zoom in (b).

0.02 0.04 0.06 0.08 0.10
b

0.6

0.7

0.8

0.9

Network Protection Level

1.0

k=1,2

k=6

k=5

k=0, or complete info

k=4k=3

All cooperative

(b) Zoom on small values of the protection
cost b.

Fig. 3. Weakest link. Evolution of the network protection level as a function of the protection
cost b. The short lines illustrate the presence of limiting conditions on protection equilibria for
this game. Where the lines end, the expected network protection level becomes zero. Also note
that the cases k = 1 and k = 2 produce identical curves.

In the cooperative game, the expected protection cost for each player is a bit higher,
but the overall expected cost is less (compared to the analogous game with selfish ex-
perts), and systemwide network protection is substantially improved. Computing the
expected protection contribution for this game requires determining the likelihood that
a sum of independently and uniformly distributed random variables from [0, 1] exceeds
an arbitrary threshold (bN). The desired probability is easily computed using well-
known formulas for the uniform sum distribution, although it is somewhat cumbersome
to express.

5.3 Total Effort

Systemwide protection results for the total effort game are shown in Table 3. This game
differs from the best shot and weakest link games in that the decision to protect does
not depend on the choices of the other players. It is individually worthwhile for an
expert to protect the network only if the cost of protection is a 1

N fraction of the player’s
expected loss. For experts, this results in a high threshold for protection – an unfortunate
occurrence since protection by any individual player would increase the utility for every
player.

In the configuration consisting only of naı̈ve players, protection is much more likely,
even though much of the time (over the distribution on Li) paying that protection cost
is a losing investment. This can be seen by comparing the naı̈ve configuration to the
cooperative one as shown in Figure 4. The expected network protection level for naı̈ve
users exceeds the social optimum protection level whenever b ≥ 1

2 .
The cooperative game affords the same result as in the weakest link game.

600 B. Johnson et al.

Table 3. Total Effort Security Game. Bayesian Nash Symmetric Protection Equilibrium with
N Players

Composition Experts’ Conditions Probability Expected Expected Level
of Expert Knowledge under which that Player Contribution of Network
Players of Losses Expert i Protects i Protects from Player i Protection

k Selfish incomplete Li ≥ bN 1 − bN b(1 − bN) 1 − bN
1 ≤ k ≤ N if bN < 1

k Selfish complete Li ≥ bN 1 − bN b(1 − bN) 1 − bN
1 ≤ k ≤ N if bN < 1

N Naı̈ve - Li ≥ b (1 − b) b(1 − b) (1 − b)

N Cooperative complete
∑

j Lj ≥ bN * ρ bρ ρ

* ρ can be computed using well-known formulas for the uniform sum distribution. If bN ≤ 1,

we have ρ = (1 − (bN)N

N!
). More generally, ρ =

∫ N

bN
1

2(N−1)!

∑N
k=0(−1)k

(
n
k

)
(bN − k)N−1 ·

sgn(bN − k).

0.2 0.4 0.6 0.8 1.0
b

0.2

0.4

0.6

0.8

1.0
Network Protection Level

k=0, N=6 naive players

All cooperative

k>1

Fig. 4. Total effort. Evolution of the network protection level as a function of the protection cost
b. For any number of experts k ≥ 1, the network protection level is inferior to that obtained with
a network solely consisting of naı̈ve players. The cooperative equilibrium, here, provides a less
desirable overall system outcome as soon as b exceeds 0.5.

6 Discussion and Conclusion

We carried out a game-theoretic analysis of the impact of the number of security experts
in a network of competitive players facing a common security threat, under limited in-
formation. Our results are somewhat counter-intuitive, in that in all three scenarios con-
sidered (best shot, weakest-link and total effort), the addition of selfish experts actually
never increases the expected level of systemwide network protection. This outcome is
rather unexpected, considering our previous result [17], which showed that a lone ex-
pert in a network of naı̈ve players stood to make considerable payoff gains compared
to naı̈ve players, regardless of the information condition in which the game was played.
We thus could have expected that adding more experts would help the network as a
whole, but the force of the negative externalities in play in all scenarios actually drives
the overall security of the network down.

Are Security Experts Useful? 601

On the other hand, and much less surprisingly, having N cooperative experts im-
proves individual expected payoffs, and dramatically increases the expected level of
systemwide network protection (relative to N selfish experts).

In sum, we showed in [17] that user expertise could lead to strong individual benefits
even in the case of limited information. The present paper shows that, from a community
standpoint, expert users may not only be invaluable contributors, but also free-riders
preying on the weaknesses of naı̈ve users. As a result, even networks populated with a
large share of sophisticated users will frequently not achieve superior security. One of
the direct outcomes of this work is that user education needs to highlight the cooperative
nature of security, and heighten the community sense of better educated computer users.

While the model proposed has some limitations, and oversimplifications, we be-
lieve that it raises a number of points that warrant further consideration by security
practitioners.

6.1 Caveats

Our model of limited information is decidedly simple. Only one parameter is unknown
to player i, the expected loss Lj for players j �= i. Even so, we assume that player i
knows the probability distribution of Lj .3 In practice, even that probability distribution
may be unknown to most players, and the nominal costs of protecting or self-insuring
(b and c respectively) may also be heterogeneous, and unknown. We note that, if all
external costs and potential losses are unknown, all players may have to resort to naı̈ve
strategies since they have no way of estimating the externalities in play. More generally,
our crude, binary, distinction between naı̈ve and expert players is much more nuanced
in practice, where we likely would find a near-continuum of expertise levels, ranging
from the abysmally clueless to the highly cognizant. Nonetheless, we believe that our
model captures the salient distinction between users who do understand externalities
and the role they play, and those who do not.

6.2 Applications

There are three immediate applications of the mathematical results we obtained.

Tragedy of the commons in best-shot games. Best shot security environments are in
theory extremely resilient to security threats, since only one agent needs to contribute
vigorously (or act securely) to save the whole network. However, our results indicate
that there may be a “tragedy of the commons” situation in play, where none of the
agents actually has an interest in fulfilling that role. The interesting point is that lim-
ited information exacerbates this phenomenon, something we first identified in prior
work [14].

Fragility of weakest-link games. Likewise, we discovered that weakest-link games have
an increased fragility in presence of expert players and limited information. Weakest-
link games are known to offer a vexing set of negative externalities [15, 14, 35], and

3 For the sake of simplicity of the presentation, we assumed the uniform distribution, but similar
derivations could be carried out for any known, “well-behaved” probability distribution.

602 B. Johnson et al.

they rarely converge to a satisfying equilibrium [34]. Unfortunately, one outcome of
this work is that limited information degrades even more the likelihood of reaching an
acceptable state when players understand the externalities at hand.

Developing side-payment mechanisms. The main take-away from the mathematical
formalism proposed in this paper is that, while selfish experts lead to extremely unde-
sirable protection equilibria in the presence of limited information, cooperative experts
can completely change the outcome of a game, and cooperation can likely be enforced
by simply considering side-payments between users [21]. Determining how these side-
payments could be carried out highly depends on the context in which the game is
played, but it is not inconceivable to imagine bilateral contractual relationships between
pairs of players. For example, between ISPs, such side-payments could be made at the
time transit agreements are established.

6.3 Public Policy Impact

Beyond the applications outlined above, we believe that our work has a clear public
policy impact, on at least two levels.

Inter-agency collaboration. In the United States, and in many other countries, national
security is not within the purview of a single governmental agency. While, in the U.S.,
the Department of Homeland Security was created after 9/11 as a vehicle to central-
ize national security decisions, the reality is that a multitude of government agencies
(CIA, NSA, Pentagon, Coast Guard, Bureau of Alcohol, Tobacco and Firearms etc.)
are involved, at one degree or another, in such decisions. Such agencies are usually
competing for funding budgets, and could be viewed as competing players in national
security matters. What we have seen from our model, is that having qualified person-
nel in all of these agencies actually exacerbates the harmful effects of competition. As
such, enforcing collaboration between the different agencies playing a role in contain-
ing a threat is not just a desirable goal, it is an absolute necessity to achieve any level of
security.

User education The need for technical user education and training has been repeatedly
emphasized by security researchers, based on empirical field studies (e.g., [30]) and
analytical results (e.g., [17, 16]). Yet, while user education has primarily focused on
better understanding of the threats faced, our results indicate that, an equally, if not more
important aspect of user education should be in highlighting the cooperative nature of
security, and fostering the community sense of high-skilled computer users.

6.4 Future Research Directions

This paper closes an arc of research on game-theoretic modeling of negative external-
ities in information security, by complementing our previous work on game-theoretic
models of complete information [14, 15], and decision-theoretic models of incomplete
information [17,16]. This does not mean that there are no other interesting directions to
pursue on these models, but we believe that to go to the next level, we need to inform

Are Security Experts Useful? 603

our models with field data. In particular, we are interested in removing assumptions on
the nature of the various cost functions on which we rely. For instance, surely, the cost
incurred by deploying protection measures is not perfectly linear in the degree of protec-
tion deployed. Behavioral biases (e.g., risk-aversion [19]) can also create a dichotomy
between actual and perceived costs. We have started preliminary investigations through
user studies [13], but plan on enriching our models with field data applied to specific
contexts. For instance, we are considering whether we can find evidence of correlation
between (de)peering decisions and the amount of undesirable traffic (e.g., attack traffic)
traversing different ISP networks.

References

1. Acquisti, A.: Privacy in electronic commerce and the economics of immediate gratification.
In: Proceedings of the 5th ACM Conference on Electronic Commerce (EC 2004), New York,
NY, May 2004, pp. 21–29 (2004)

2. Acquisti, A., Grossklags, J.: Privacy and rationality in individual decision making. IEEE
Security & Privacy 3(1), 26–33 (2005)

3. Acquisti, A., Varian, H.: Conditioning prices on purchase history. Marketing Science 24(3),
367–381 (Summer 2005)

4. Bashir, M., Christin, N.: Three case studies in quantitative information risk analysis. In:
Proceedings of the CERT/SEI Making the Business Case for Software Assurance Workshop,
Pittsburgh, PA, pp. 77–86 (September 2008)

5. Burnett, K.: Introductions of invasive species: Failure of the weaker link. Agricultural and
Resource Economics Review 35(1), 21–28 (2006)

6. Campbell, K., Gordon, L., Loeb, M., Zhou, L.: The economic cost of publicly announced in-
formation security breaches: Empirical evidence from the stock market. Journal of Computer
Security 11(3), 431–448 (2003)

7. Chaum, D.: Untraceable electronic mail, return addresses, and digital pseudonyms. Commu-
nications of the ACM 24(2), 84–90 (1981)

8. Cornes, R.: Dyke maintenance and other stories: Some neglected types of public goods.
Quarterly Journal of Economics 108(1), 259–271 (1993)

9. Ferguson, P., Senie, D.: Network ingress filtering: Defeating denial of service attacks which
employ IP source address spoofing, RFC 2267 (January 1998)

10. Freudiger, J., Manshaei, M., Hubaux, J.-P., Parkes, D.: On non-cooperative location privacy:
A game-theoretic analysis. In: Proceedings of the 16th ACM Conference on Computer and
Communications Security (CCS 2009), Chicago, IL, p. 324–337 (November 2009)

11. Gal-Or, E., Ghose, A.: The economic incentives for sharing security information. Information
Systems Research 16(2), 186–208 (2005)

12. Gordon, L.A., Loeb, M., Lucyshyn, W.: Sharing information on computer systems security:
An economic analysis. Journal of Accounting and Public Policy 22(6), 461–485 (2003)

13. Grossklags, J., Christin, N., Chuang, J.: Predicted and observed behavior in the weakest-link
security game. In: Proceedings of the 2008 USENIX Workshop on Usability, Privacy and
Security (UPSEC 2008), San Francisco, CA (April 2008)

14. Grossklags, J., Christin, N., Chuang, J.: Secure or insure? A game-theoretic analysis of in-
formation security games. In: Proceedings of the 2008 World Wide Web Conference (WWW
2008), Beijing, China, pp. 209–218 (April 2008)

15. Grossklags, J., Christin, N., Chuang, J.: Security and insurance management in networks with
heterogeneous agents. In: Proceedings of the 9th ACM Conference on Electronic Commerce
(EC 2008), Chicago, IL, pp. 160–169 (July 2008)

604 B. Johnson et al.

16. Grossklags, J., Johnson, B., Christin, N.: The price of uncertainty in security games. In:
Proceedings (online) of the Eighth Workshop on the Economics of Information Security
(WEIS), London, UK (June 2009)

17. Grossklags, J., Johnson, B., Christin, N.: When information improves information security.
In: Proceedings of the 2010 Financial Cryptography Conference (FC 2010), Canary Islands,
Spain (January 2010)

18. Hirshleifer, J.: From weakest-link to best-shot: The voluntary provision of public goods.
Public Choice 41(3), 371–386 (1983)

19. Kahneman, D., Tversky, A.: Prospect theory: An analysis of decision under risk. Economet-
rica XLVII, 263–291 (1979)

20. Kandula, S., Katabi, D., Jacob, M., Berger, A.: Botz-4-sale: Surviving organized DDoS at-
tacks that mimic flash crowds. In: Proceedings of the 2nd USENIX Symposium on Net-
worked Systems Design & Implementation (NSDI 2005), Boston, MA, pp. 287–300 (May
2005)

21. Katz, M., Shapiro, C.: Network externalities, competition, and compatibility. American Eco-
nomic Review 75(3), 424–440 (1985)

22. Lettau, M., Uhlig, H.: Rules of thumb versus dynamic programming. American Economic
Review 89(1), 148–174 (1999)

23. Liu, Y., Comaniciu, C., Man, H.: A Bayesian game approach for intrusion detection in wire-
less ad hoc networks. In: Proceedings of the Workshop on Game Theory for Communications
and Networks, page Article No. 4 (2006)

24. Manzini, P., Mariotti, M.: Alliances and negotiations: An incomplete information example.
Review of Economic Design 13(3), 195–203 (2009)

25. Noy, A., Raban, D., Ravid, G.: Testing social theories in computer-mediated communication
through gaming and simulation. Simulation & Gaming 37(2), 174–194 (2006)

26. O’Donoghue, T., Rabin, M.: Doing it now or later. American Economic Review 89(1), 103–
124 (1999)

27. Paruchuri, P., Pearce, J., Marecki, J., Tambe, M., Ordonez, F., Kraus, S.: Playing games for
security: An efficient exact algorithm for solving Bayesian Stackelberg games. In: Proceed-
ings of the 7th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2008), Estoril, Portugal, pp. 895–902 (May 2008)

28. Rabin, M.: A perspective on psychology and economics. European Economic Review 46(4-
5), 657–685 (2002)

29. Rust, J., Miller, J., Palmer, R.: Characterizing effective trading strategies: Insights from a
computerized double auction tournament. Journal of Economic Dynamics and Control 18(1),
61–96 (1994)

30. Sheng, S., Magnien, B., Kumaraguru, P., Acquisti, A., Cranor, L., Hong, J., Nunge, E.: Anti-
Phishing Phil: The design and evaluation of a game that teaches people not to fall for Phish.
In: Proceedings of the 3rd Symposium on Usable Privacy and Security (SOUPS 2007), Pitts-
burgh, PA, July 2007, pp. 88–99 (2007)

31. Spence, A.: Job market signaling. Quarterly Journal of Economics 3(87), 355–374 (1973)
32. Stigler, G.: An Introduction to Privacy in Economics and Politics. The Journal of Legal Stud-

ies 4(9), 623–644 (1980)
33. Telang, R., Wattal, S.: An empirical analysis of the impact of software vulnerability an-

nouncements on firm stock price. IEEE Transactions on Software Engineering 33(8), 544–
557 (2007)

34. Van Huyck, J., Battallio, R., Beil, R.: Tacit coordination games, strategic uncertainty, and
coordination failure. American Economic Review 80(1), 234–248 (1990)

35. Varian, H.R.: System reliability and free riding. In: Camp, L.J., Lewis, S. (eds.) Economics of
Information Security. Advances in Information Security, vol. 12, pp. 1–15. Kluwer Academic
Publishers, Dordrecht (2004)

Are Security Experts Useful? 605

36. von Auer, L.: Revealed preferences in intertemporal decision making. Theory and Deci-
sion 56(3), 269–290 (2004)

37. Wellman, M., Wurman, P., O’Malley, K., Bangera, R., Lin, S., Reeves, D., Walsh, W.: De-
signing the market game for a trading agent competition. IEEE Internet Computing 5(2),
43–51 (2001)

38. Xu, X.: Group size and the private supply of a best-shot public good. European Journal of
Political Economy 17(4), 897–904 (2001)

A Self-insurance Considerations

In this section, we briefly revisit the prior analysis by considering the ways in which
self-insurance further decreases the protection likelihood for expert players. Because
some of the derivations required in the complete analysis are especially cumbersome,
especially in the weakest link game, we shall resort to a high level overview of the
situation.

A.1 Self-insurance in the Best Shot Game

In the best shot game, self-insurance is easy to address. Self-insurance is only a spoiler
for a self-protection equilibrium when it is cheaper than protection (c < b). In this event,
all selfish expert players (and even the naı̈ve players) would defect to the self-insurance
strategy to improve their own payoff. On the other hand, cooperative experts could still
work together to protect the network as long as b < cN (and

∑N
j=1 Lj ≥ b). If b < c,

then no player will choose the self-insurance strategy because it is cheaper to protect
for the same individual result.

A.2 Self-insurance in the Weakest Link Game

How could the existence of self-insurance spoil the weakest-link protection equilib-
rium? For a short but not entirely simple answer, the expert i will defect to the self-
insurance strategy if Li ≥ c−b

1−Prot∗¬i
where Prot∗¬i is the probability that (under the

current value of cost parameters) all the players other than i will protect. Unfortunately,
unless the number of other experts is zero, the value of Prot∗¬i is not amenable toward a
closed form formula involving b, c, N and k. Because self-insurance introduces an up-
per bound on expected losses, a symmetric equilibrium strategy in which the network
has a chance of protection requires expert i to protect iff α ≤ Li ≤ β, for some param-
eters α and β which both depend on b, c, k, and N . Even when N = k, determining α
and β requires solving the following parametrized system of equations for α and β:

b

L(β − α)N−1
= α (4)

c− b

L (1− (β − α)N−1)
= β. (5)

We can do this, and derive some relations between parameters, but in the end of this
process the resulting inequality conditions do not yield substantial insights beyond what

606 B. Johnson et al.

is already obvious from a high-level view – namely that availability of self-insurance
can be a serious distractor for a protection equilibrium outcome in the weakest link
game. We already deduced from the restricted game without self-insurance, that for any
protection equilibria to exist, the protection costs must be very small, on the order of a
constant times 1

N . The presence of self-insurance exacerbates the problem, ruining the
chances of there being a protection equilibrium even for low values of b and moderately
high values of c. (For a simple example, even if b is as low as 1

eN , self-insurance can
serve as a deterrent to protection investment with values of c as high as 2

3).

A.3 Self-insurance in the Total Effort Game

In the total effort game, conditions under which the presence of the self-insurance al-
ternative spoils a protection equilibrium are simple to express (although the derivation
of these conditions is nontrivial). If c < bN , then there is no protection equilibrium,
because an expert for whom it is worthwhile to protect must have a loss Li exceeding
bN . Under such conditions, one can derive that it is more advantageous for the expert
to pay the self-insurance premium c. On the other hand, if c > bN , then the equilibrium
strategy defined previously in which expert i protects if and only if Li ≥ bN continues
to be a Pareto-dominant Bayesian Nash equilibrium.

A.4 Overall Effects of Self-insurance

The results in this section indicate that the existence of self-insurance strategies can be
a deterrent toward protection investments, especially in the weakest link game. Indeed
the existence of self-insurance only contributes further to the overarching theme of our
analysis – that the number of experts does not improve the security of the network when
those agents are acting in their own best interest.

RatFish: A File Sharing Protocol Provably
Secure against Rational Users

Michael Backes1,2, Oana Ciobotaru1, and Anton Krohmer1

1 Saarland University
2 MPI-SWS

Abstract. The proliferation of P2P computing has recently been pro-

pelled by popular applications, most notably file sharing protocols such

as BitTorrent. These protocols provide remarkable efficiency and scala-

bility, as well as adaptivity to dynamic situations. However, none of them

is secure against attacks from rational users, i.e., users that misuse the

protocol if doing so increases their benefits (e.g., reduces download time

or amount of upload capacity).

We propose a rigorous model of rational file sharing for both seed-

ers and leechers, building upon the concept of rational cryptography.

We design a novel file sharing protocol called RatFish, and we formally

prove that no rational party has an incentive to deviate from RatFish;

i.e., RatFish constitutes a Nash equilibrium. Compared to existing file

sharing protocols such as BitTorrent, the tracker in RatFish is assigned

additional tasks while the communication overhead of a RatFish client

is kept to a minimum. We demonstrate by means of a prototype imple-

mentation that RatFish is practical and efficient.

1 Introduction

Recently, the peer-to-peer (P2P) paradigm has emerged as a decentralized way to
share data and services among a network of loosely connected nodes. Character-
istics such as failure resilience, scalability and adaptivity to dynamic situations
have popularized P2P networks in both academia and industry. The prolifera-
tion of P2P computing has also been propelled by popular applications, most
notably file sharing protocols such as BitTorrent [5].

A crucial assumption underlying the design of such file sharing protocols is
that users follow the protocol as specified; i.e., they do not try to bypass the
design choices in order to achieve higher download rates, or to avoid uploading
to the system at all. However, not all users are necessarily altruistic, and publicly
available, modified BitTorrent clients like BitThief [19] or BitTyrant [21] can be
used to strategically exploit BitTorrent’s design to achieve a higher download
while contributing less or nothing at all in return. While several minor proto-
col adaptations have been suggested to mitigate the attacks underlying these
clients [28], the core weaknesses remain: In its current form, BitTorrent – and
current file sharing protocols in general – offer better service to cheating clients,
thereby creating incentives for users to deviate from the protocol; in turn, it

D. Gritzalis, B. Preneel, and M. Theoharidou (Eds.): ESORICS 2010, LNCS 6345, pp. 607–625, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

608 M. Backes, O. Ciobotaru, and A. Krohmer

further decreases the performance of honest clients. The task is thus to design
a protocol that not only retains the remarkable characteristics of current file
sharing protocols, but that is rational in the sense that it offers sufficient in-
centives for users to stick to the precise protocol specification. In more technical
terms, this file sharing protocol should constitute an equilibrium state: Adhering
to the protocol should optimize the benefits received by each individual partici-
pant, and any deviation from the protocol should result in a lower payoff for the
cheating user.

1.1 Our Contribution

We contribute RatFish, a protocol for rational file sharing. RatFish is built
upon the concepts and design choices that underlie BitTorrent, but it resolves
the weaknesses that BitThief and BitTyrant exploit. We achieve this mostly
by ensuring fair exchange of pieces between leechers and by having the tracker
participate in the coordination of the downloads.

The distinctive feature of RatFish, however, is not that it discourages the use
of several selfish strategies, but that it comes with a formal proof that deviating
from RatFish is irrational for both seeders and leechers. In order to do this,
we first characterize rational behaviors of leechers and seeders in file sharing
protocols, building upon the concept of the recently emerging field of rational
cryptography, in which users are defined as rational players in a game-theoretic
sense. Intuitively, leechers are primarily interested in minimizing their download
time and the amount of uploaded data, whereas seeders value the efficiency of
the protocol in using their upload capacity. We cast this intuition into a rigorous
mathematical model, and we formally prove that our protocol is secure against
deviations of rational parties, by showing that it constitutes a Nash equilibrium.
This holds even though RatFish allows dynamically leaving and (re-)joining
users. We prove this Nash equilibrium using a new proof technique that is of
independent interest for rational cryptography: the step-by-step substitution of
a deviating strategy with hybrid, semi-rational strategies.

We have built a prototype implementation of RatFish that demonstrates that
RatFish is practical and efficient. We stress though that the purpose of RatFish
is not to achieve performance improvements over existing protocols, but to estab-
lish a formal proof that under realistic conditions, such as dynamically joining
users, no rationally-behaving user has an incentive to deviate from RatFish. The
additional computational overhead of RatFish compared to BitTorrent is small:
basic cryptographic primitives (symmetric encryptions and digital signatures
schemes) are used, and the tracker is assigned additional tasks such as the coor-
dination of downloads and the generation of user incentives. The communication
overhead of a RatFish client is kept to a minimum.

1.2 Related Work

The performance of BitTorrent has been thoroughly studied [24,3,11,23,22]. All
these works attest to the impressive performance of BitTorrent in the presence

RatFish: A File Sharing Protocol Provably Secure against Rational Users 609

of honest participants; however, [3] has noted that the rate-based Tit-For-Tat
policy of BitTorrent does not prevent nodes from uploading less content than
they should serve (in all fairness), thereby creating an incentive for abuse of the
protocol.

The behavior of BitTorrent in the presence of cheating peers was subsequently
investigated [18,21,19,26], revealing that cheating leads to a loss in overall per-
formance for honest peers.

Our rigorous model of rational file sharing is grounded in the recently emerging
field of rational cryptography, where users are assumed to only deviate from a
protocol if doing so offers them an advantage. Rational cryptography is centered
around (adapted) notions of game theory such as computational equilibria [6].
A comprehensive line of work already exists that develops novel protocols for
important cryptographic primitives such as rational secret sharing and rational
secure multiparty computation [7,10,9,1,14,8].

In this spirit, there has been a variety of research aimed at making BitTorrent
more robust against deviations of rationally-behaving users [28,15,22,20,27]. All
these works provide stronger user incentives: they choke problematic connections
[28], grant additional bandwidth to generously uploading neighbors [15], reward
leechers that continue seeding after their download is completed [22], optimally
distribute a seeder’s bandwidth across swarms [20], and employ fair exchange
protocols to stop leechers from aborting the protocol [27] early. These modified
protocols, however, are still prone to rational attacks; in particular, none of these
works reached a (Nash) equilibrium.1

The first work that strived to establish an equilibrium in the context of file
sharing is [24]. However, this equilibrium was severely restricted in that it was
only guaranteed when rational parties were allowed to only tweak the protocol
parameters, but not when they could deviate in larger ways.

More recent research such as BAR-B [2], Equicast [13], and FOX [25] aimed
at deploying incentives and punishments such that obeying the protocol is the
best strategy for every rational player. The first two protocols were shown to be
strict Nash equilibria, i.e., a rational peer obtains no benefit from unilaterally de-
viating from the assigned strategy. The drawback is that their strict equilibrium
solutions limit the design: the BAR-B system only permits a static set of users.
Equicast requires the rate at which leechers join to precisely match the rate of
which they leave and considers only restricted utility functions that do not take
downloading time into account; moreover, these protocols require nodes to waste
network bandwidth by sending garbage data to balance bandwidth consumption.
[25] establishes a stable Nash equilibrium, but again it only allows a static set
of leechers; moreover, its rationality is not grounded on incentives but on fear
of retaliation such that a single Byzantine node can cause the entire system to
collapse. Somewhat orthogonal to our work are the file streaming applications

1 [27] contains proofs that certain deviations from selfish leechers or attacks of ma-

licious peers cannot succeed (e.g., no peer can assume another authorized peer’s

identity), but there is no equilibirum proof, i.e., that deviating from the protocol

cannot yield better results.

610 M. Backes, O. Ciobotaru, and A. Krohmer

BAR-Gossip [17] and FlightPath [16]. Both works show a Nash equilibrium (a
strict one for BAR-GOSSIP, and an approximate one for Flightpath), but ratio-
nal players are only interested in minimizing the amount of uploaded data and
reducing jitter. While such time-independent utility functions are reasonable for
streaming applications, they do not apply to the more sophisticated setting of
rational file sharing, where minimizing the time to complete a download is usu-
ally the primary goal. Moreover, none of these five protocols considers seeders as
part of the rational model. We conclude by saying that like our approach, none
of these works offers resistance against Sybil attacks.2

1.3 Outline

Section 2 provides a bird’s eye view of the core ideas underlying how we cre-
ate incentives in file sharing. Section 3 summarizes the concepts we use from
rational cryptography and defines rational behaviors of seeders and leechers.
Section 4 presents the RatFish protocol in detail. Section 5 contains the proof
of equilibrium for RatFish; i.e., it shows that users cannot achieve a better pay-
off by deviating from the protocol. Section 6 discusses our experimental results.
Section 7 concludes.

2 A Bird’s Eye View on How to Rationalize P2P

For the sake of exposition, we provide a high-level overview of the core ideas
underlying how we create incentives in file sharing. We briefly discuss which
behaviors of seeders and leechers we consider rational, intuitively explain how to
incentivize these behaviors, and finally discuss how an equilibrium is obtained
for a small example protocol. In this section, we abstract away many important
systems details and impose several assumptions to improve understanding.

In the following, we consider a single seeder S that intends to upload a file f to
leechers L1, . . . , LM . The file is split into pieces f1, . . . , fM2 . In this exposition,
we describe a simplistic protocol that proceeds in a sequence of M +1 monolithic
rounds. We assume that the seeder can upload exactly M pieces per round and
that every leecher is able to upload and to download at least M pieces of the file
in each round.

On the Rationality of Seeding. A seeder is a player that uploads without
requesting reciprocation. Intuitively, it thus acts rationally if it uses its upload
time and upload speed as efficiently as possible; i.e., for any fixed upload speed
and time that the seeder spends within the system, the average download time
for all leechers should be as small as possible. It is thus in the interest of the
seeder to incentivize leechers to share parts of the file amongst each other as this

2 A Nash equilibrium ensures that no individual user has an incentive to deviate.

However, it conceptually does not take coalitions of users into account, rendering

Sybil attacks possible in most works on rationally secure protocols.

RatFish: A File Sharing Protocol Provably Secure against Rational Users 611

increases the throughput of the whole system.3 In the simplistic protocol, the
seeder sends to each leecher Li in each round j the piece fj·M+i.

On the Rationality of Leechers. Leechers aim to download the file as fast as
possible while saving upload capacity. The protocol thus has to enforce leecher
participation as they will otherwise just download and leave. We need to pro-
pose a suitable piece selection algorithm and a piece exchange mechanism that
prevents parties from cheating each other. In our example, piece selection is
easy: In each round j a leecher Li holds a piece fj·M+i obtained from the seeder
that no one else has. As the leecher can upload M pieces per round, he can ex-
change with the rest of the leechers their unique pieces. To ensure fair exchanges,
leechers first exchange the pieces in encrypted form and subsequently send the
corresponding decryption keys.

How an Equilibrium is Achieved. We conclude with some basic intuition on
why no rational user has an incentive to deviate from the protocol. If all peers
adhere to the protocol, the seeder will upload the file exactly once and stay in
the system for M rounds. Each of the leechers will upload M2 −M pieces and
complete its download after M + 1 rounds. It is easy to see that the average
download time and hence the seeder’s utility cannot be improved.

This outcome cannot be further improved for the leechers either: None of the
leechers can download the file in less than M + 1 rounds since after round M
each of them is missing at least M − 1 pieces.4 Moreover, since the seeder only
provides M pieces to each of its peers, no leecher can obtain the full file without
uploading at least M2−M pieces in exchange for the pieces that it is missing from
the seeder. This statement holds as no leecher can cheat during the fair piece
exchange protocol: A leecher spends his upload capacity to receive an encrypted
piece, hence he has no incentive not to send the much smaller decryption key
to its partner. Thus, no party can improve its utility by deviating from the
protocol.

3 A Game-Theoretic Model for File Sharing

In this section, we propose a game-theoretic model for rationally secure file
sharing. We start by reviewing central concepts from game theory and rational
cryptography.

3 As a consequence, the naive approach of uploading the whole file to an arbitrary

leecher at once cannot yield a rationally secure protocol: This leecher may just

complete the download and leave, causing some pieces of the file to be effectively

lost from the system. Moreover, since there is only one seeder in this simplistic

protocol and the number of leechers is known and does not change, there is no need

for a third party, i.e., a tracker.
4 This holds because the protocol treats the rounds integrally. Otherwise, we could

split a sufficiently big file into MK pieces for some K and achieve a slightly reduced,

optimal download time of M + M2

MK using an analog algorithm.

612 M. Backes, O. Ciobotaru, and A. Krohmer

3.1 Review of Game-Theoretic Definitions

A game Γ = ({Ai}ni=1, {ui}ni=1) consists of players 1, . . . , n where each of them
has a set Ai of possible actions to play and individual utility functions ui. All
actions are played simultaneously; afterwards, every player i receives a payoff
that is determined by applying its utility function ui to the vector of actions
played in the game.

Recent work has extended the traditional notion of a game to the require-
ments of cryptographic settings with their probabilistically generated actions
and computationally-bounded running times. The resulting definition – called
computational game [12] – allows each player i to decide on a probabilistic
polynomial-time (in the security parameter) interactive Turing machine Mi (short
PPITM). The machine Mi is called the strategy for player i. The output of Mi

in the joint execution of these interactive Turing machines denotes the action of
player i.

Definition 1 (Computational Game). Let k be the security parameter and
Γ = ({Ai}ni=1, {ui}ni=1) a game. Then Γ is a computational game if the played
action Ai of each participant i is computed by a PPITM Mi and if the utility ui

of each player i is polynomial-time computable.

Because of the probabilistic strategies, the utility functions ui now correspond to
the expected payoffs. Rationally behaving players aim to maximize these payoffs.
In particular, if a player knew which strategies the remaining players intend
to choose, he would hence pick the strategy that induces the most beneficial
outcome of the game. As this simultaneously holds for every player, we are
looking for a so-called Nash equilibrium, i.e., a strategy vector where each player
has no incentive to deviate from, provided that the remaining strategies do not
change. Similar to the notion of a game, we consider a computational variant of
a Nash equilibrium.

Definition 2 (Computational Nash Equilibrium). Let Γ = ({Ai}ni=1,
{ui}ni=1) be a computational game and k the security parameter. A strategy vector
consisting of PPITMs M = (M1, . . . , Mn) is a computational Nash equilibrium
if for all i and any PPITM M ′

i there exists a negligible function ε such that
ui(k, M ′

i ,M−i)− ui(k,M) ≤ ε(k) holds.

Here ui(k, M ′
i ,M−i) denotes the function ui applied to the setting where every

player j �= i sticks to its designated strategy Mj and only player i deviates by
choosing the strategy M ′

i .
We finally define the outcome of a computational game as the transcript of all

players’ inputs and the actions each has taken. In contrast to strategy vectors,
an outcome thus constitutes a finished game where every player can determine
its payoff directly. A utility function is thus naturally defined on the outcome of
a computational game: When applied to a strategy vector (with its probabilistic
choices), it describes the vector’s expected payoff; when applied to an outcome
of the game, it describes the exact payoff for this outcome.

RatFish: A File Sharing Protocol Provably Secure against Rational Users 613

3.2 A Game-Theoretic Model for File Sharing Protocols

We now define the utility functions for seeders and leechers such that these
functions characterize rational behavior in a file sharing protocol. We start by
introducing common notation and some preliminaries.

Notation and Preliminaries. Following the BitTorrent convention, we call a
player in the file sharing game a peer. The peers are divided into two groups: A
seeder uploads to other peers a file f that it owns, whereas a leecher downloads
f . To mediate the communication among peers, we require a trusted party called
the tracker. The tracker holds a signing key pair (pk , sk), and we assume that
its IP address and public key pk are known to all peers.

The file f consists of pieces f1, . . . , fN , each of length B bytes. The partici-
pants in the file sharing protocol hold the values h1 = h(f1), . . . , hN = h(fN),
where h is a publicly known hash function. When deployed in practice, this pub-
licly known information is distributed via a metainfo file. The tracker is only
responsible for coordinating peers that are exchanging the same file. In order
to stay close to a realistic setting, we allow different peers to have different up-
load and download capacities. Every seeder Si has its individual upload speed
ups

i (t, o) that depends on the time t and the outcome o. Note that a seeder
does not download anything except for metadata; hence we do not consider the
download speed of seeders in this paper. Similarly, every leecher Li has individ-
ual upload and download speeds upl

i(t, o) and downl
i(t, o). We denote by Ti,fin(o)

the total time that leecher Li spends downloading the file. To increase readabil-
ity, we omit the outcome in all formulas whenever it is clear from the context.
We also introduce the sets L = {i | Li is a leecher} and S = {i | Si is a seeder}.

Rationally-behaving Seeders. A seeder uploads parts of the file to other peers
without requesting reciprocation. Intuitively, a seeder is interested in using as
efficiently as possible its upload time and upload speed. Thus for any fixed upload
speed and time that the seeder spends within the system, the average download
time for all leechers should be as small as possible. We express this preference
by the following seeder’s utility function.

Definition 3 (Seeder’s Utility Function). We say that us
i is a utility func-

tion for a seeder Si if for any two outcomes o, o′ of the game with the same
fixed upload speed ups

i and fixed time T s
i spent by Si in the system, it holds that

ui(o) ≥ ui(o′) if and only if 1
|L|

∑
i∈L Ti,fin(o) ≤ 1

|L|
∑

i∈L Ti,fin(o′).

If Si is the first seeder in the system, we thus require that Si uploads the whole
file at least once. Otherwise, it is not rational to share the file in the first place.

Rationally-behaving Leechers. Leechers aim at downloading the shared file
as fast as possible; moreover, they also try to use as little upload capacity as
possible. The relative weight of these two (typically contradictory) goals is given
by a parameter αi in the system measuring time units per capacity units, e.g.,
seconds per kilobytes.

614 M. Backes, O. Ciobotaru, and A. Krohmer

Definition 4 (Leecher’s Utility Function). Let αi ≥ 0 be a fixed value. We
say that ul

i is a utility function for leecher Li if the following condition holds:
For two outcomes o, o′, Li prefers outcome o to o′ if and only if

αi ·
∫ Ti,fin(o)

0

upl
i(t, o) dt + Ti,fin(o) ≤ αi ·

∫ Ti,fin(o′)

0

upl
i(t, o

′) dt + Ti,fin(o′).

The value αi corresponds to Li’s individual valuation for upload speed and time;
e.g., if αi = 0.5, the leecher values time twice as much as the uploaded data.

In particular, this definition implies that a rationally-behaving leecher pri-
oritizes completing the download over everything else: If the leecher does not
download the file in outcome o, then Ti,fin(o) equals infinity. If it downloads the
file in some outcome o′, then Ti,fin(o′) is finite and thus increases its payoff.

4 The RatFish Protocol

We now present the RatFish protocol. We start with the description of the
tracker and proceed with the seeders and leechers, respectively.

4.1 The Protocol of the Tracker

Similar to BitTorrent, our tracker manages all valid IP addresses in the system
and introduces new leechers to a set of neighbors. However, we assign the tracker
additional tasks: First, our tracker is responsible for awarding each newcomer
with seeding capacity equivalent to γ file pieces (for a tunable parameter γ).5

Second, our tracker keeps track of which file pieces each peer owns at any given
moment. This bookkeeping will be crucial for incentivizing peers to follow the
RatFish protocol, for computing the deserved rewards and for answering queries
about the leechers’ availabilities. Third, the tracker imposes a forced wait for
every leecher upon connecting, thereby preventing leechers from gaining advan-
tages by frequently disconnecting and rejoining the protocol. Finally, if a leecher
wishes to disconnect, the tracker provides a certificate on the most recent set of
pieces the leecher has to offer. This allows leechers to later reconnect to RatFish
and use their partially downloaded data, i.e., in order to cope with network dis-
ruptions. In the following, we describe the individual subprotocols of the tracker
in detail. A rigorous description is given in Fig. 1.

The Connect Protocol. The tracker assigns every new leecher Li a random
subset of size H of all leechers that are currently in the system. This random
subset corresponds to Li’s local neighborhood. The tracker sends this neigh-
borhood information to Li after T seconds. Once the forced wait is over, the
leecher may start downloading γ free pieces from seeders. The rationale behind

5 In practice, γ is a small constant number just big enough for the new leecher to

participate in the system. As long as the seeders can provide γ pieces to each newly

joining leecher, this value does not influence the existence of the Nash equilibrium.

RatFish: A File Sharing Protocol Provably Secure against Rational Users 615

TrackerConnect(peer)

If peer is a seeder Si, receive the seeder’s upload speed ups
i and store it. Else, do:

– If a message “PIECES(a1, . . . , aN , id r, sigt′)” is received from Li, verify that

sigt′ is a valid signature on (a1, . . . , aN , id r) for verification key pk and that

p = (a1, . . . , aN , id r) was previously stored. In this case, remove p from storage

and set Am
i := am for all m ∈ {1, . . . , N}. Otherwise select a random id r.

– As soon as the current time Tc is larger than T + Tp, where Tp is the con-

necting time of the leecher, i.e., after the forced wait of T seconds, send Li

a random subset of size H of current leechers’ IP addresses, corresponding

to Li’s neighborhood. Moreover, compute Ssk(i, Tp), yielding a signature sigt.

Send TIME(Tp, id r, sigt) to Li.

CheckExchange
Do the following steps unless one of their checks fail; abort in this case:

– Upon receiving a message HAS(j, y) from a leecher Li, send back yes if Ay
j = 1,

and no otherwise.

– Upon receiving a message EXCHANGED(j, x, y) from a leecher Li, indicating

that the pieces x and y have been exchanged with Lj , check Ax
i = 1 and Ay

j =

1. Send the message ACKNOWLEDGE(i, x, y) to Lj .

– Upon subsequently receiving the message OK(i, x, y) from Lj , set Xi := Xi+1

and Ay
i := 1, and send the message OK(j, x, y) to Li.

RewardLeechers (called every T seconds, i.e., at the start of a new round)

– Award γ pieces to every leecher that joined in the previous round. Let prev
be the number of these leechers.

– Compute for every leecher Li its deserved percentage of seeders’ upload speed:

ri := min

j
XiP

k∈L Xk
,
1

2

ff

– Let βi := ri ·
“ P

k∈S ups
k·T

B
− γ · prev

”
. For every i, determine a set of seeders

that can jointly offer βi new pieces to Li such that the individual upload

capacity of the seeders is respected, see Sect. 4.1. Send to every seeder the

corresponding set of leechers and the number of pieces that these leechers

should download from them.

– Set Ay
j := 1 if a seeder already informed the tracker that y was downloaded

by Sj . Set Xi := 0 for all i.

PeerLeave(i)

– Compute sigp := Ssk (A
1
i , . . . , A

N
i , id r). Store (A1

i , . . . , A
N
i , id r).

– Send the message LEAVE(sigp) to Li and disconnect from Li.

Fig. 1. The protocol of the tracker. The variable Ai used in these protocols represents

an array that stores which file pieces Li has already downloaded. The algorithm ensures

that Am
i = 1 if leecher Li has the m-th piece of f , and Am

i = 0 otherwise.

616 M. Backes, O. Ciobotaru, and A. Krohmer

Seeders' Capacity

L1 L2 L3 L4

Number of
Exchanges

Deserved Reward

L1 L2 L3 L4

S1 S2 S3 S4

Fig. 2. Schematic distribution of the rewards

this forced wait is that granting newly joined leechers free pieces creates incen-
tives for whitewashing, i.e., frequent disconnecting and rejoining. Intuitively, the
forced wait is a simple defense against such a behavior. From a rational per-
spective, if a leecher joins the system only once, the induced small delay will
not be hurtful; however, whitewashing by frequently rejoining will cause an ac-
cumulated delay that will result in a smaller payoff. The forced wait is achieved
by having the tracker sign the leecher’s connecting time and IP address. Such
signed timestamps are exchanged between neighboors and are used to determine
whether leechers are allowed to start uploading to eachother. Neighbors use the
timestamps to determine whether they are allowed to start uploading to each
other. Thus as long as a user’s IP address does not change, it can idle and be-
come active again without being penalized by a forced wait, since the user’s old
signature on its IP address and time is still valid.

The RatFish tracker has a mechanism for proving availability of rejoining
leechers: it chooses a random rejoin ID id r and signs it together with the de-
parting leecher’s availability. The leecher uses id r to prove its availability upon
rejoining the system. The rejoining id r is then deleted from the tracker’s memory
preventing leechers from reconnecting twice using the same reconnect id r.

The Reward Protocol. The reward system constitutes the crucial part of
RatFish. The underlying idea is to reward only leechers who are exchanging. We
only allow one exception to this rule: The leechers that connected to the tracker
in the previous round are also entitled to a reward of γ pieces in the current
round. Thus the seeders do not automatically upload to their neighborhood as
in BitTorrent; rather they are told by the tracker whom to upload to.

To determine whether an exchange between Li and Lj has happened, the
tracker asks both Li and Lj to acknowledge the exchange. If the acknowledge-
ments succeed, the tracker internally increases the variables Xi and Xj , which

RatFish: A File Sharing Protocol Provably Secure against Rational Users 617

Seedingj

Upon connecting, the seeder sends its upload speed ups
j to the tracker. In each

round, do:

– Receive from the tracker a set M of leechers and the corresponding number

of pieces ωi that every leecher Li ∈ M should receive.

– Inform every leecher Li ∈ M how many pieces ωi they are allowed to down-

load.

– When a leecher Li ∈ M request at most ωi pieces by Li (potentially incre-

mentally in this round, i.e., it may ask for a few pieces first), send these pieces

to Li and send a message to the tracker that these pieces have been uploaded

to Li. Requests by leechers Lj �∈ M are ignored.

Fig. 3. The protocol of the seeder Sj .

corresponds to the number of file piece exchanges of Li and Lj, respectively.
The tracker moreover stores which pieces of the file the leechers now addition-
ally know. Details on the participation of the tracker in the exchange protocol
are given in Sect. 4.3, where the exchange of pieces between leechers is explained.

Every round, i.e., after T seconds, the actual rewards are given out. The
tracker distributes the seeders’ upstream in proportion to the number of ex-
changes every leecher made. Hence, the more exchanges a leecher completed,
the larger the reward it obtains from the tracker, and hence the more down-
load capacity it receives from the seeders. A graphical illustration of the reward
protocol is given in Fig. 2.

4.2 The Protocol of the Seeder

Upon connecting, the seeder informs the tracker about the upload speed it is
going to offer. The tracker adds the seeder’s speed to the amount of free available
upload capacity. As the tracker performs all the computations for determining
the rewards, the seeder simply proceeds by uploading the number of file pieces
to the leechers as instructed by the tracker. To keep the tracker’s information
about individual leechers up-to-date, the seeder informs the tracker whenever it
uploads a piece to a leecher. A rigorous description is given in Fig. 3.

4.3 The Protocol of the Leecher

From a rational perspective, the leecher protocol is the most difficult to get
right: while the tracker is honest and seeders partially altruistic, a leecher tries
to bypass the incentives for uploading wherever reasonable.

Leechers can use the signed messages from the tracker to verify each other’s
join times. Also, when two leechers exchange data, the tracker participates in this
exchange: Before two leechers start an exchange, they verify with the tracker that
the other party holds the desired piece. If this check succeeds, two encryptions of

618 M. Backes, O. Ciobotaru, and A. Krohmer

the pieces are exchanged. Before they also send the key to each other to decrypt
these messages, both leechers acknowledge the exchange to each other so that
they get a higher reward.

The Connect Protocol. When a leecher connects to the tracker for the first
time it requests a local neighborhood. If the leecher rejoins, it additionally proves
to the tracker that it already owns some pieces of the file by sending the sig-
nature received from the tracker at its last disconnect. When connecting to a

LeecherConnecti(party)

If party is the tracker, distinguish two cases:

1. If Li rejoins the protocol, send PIECES(a1, . . . , aN , idr, sigp) to the tracker

where am = 1 if Li owns the m-th piece of the file, idr is the rejoin ID and

sigp is the signature received when disconnecting from system last time. If Li

is a new leecher, it sends PIECES(0, . . . , 0, ε, ε).
2. Receive TIME(Tp, idr, sigt) from the tracker – indicating the signed connecting

time and ID, as well as a set of neighbors’ IP addresses. Connect to them.

If party is a leecher Lj , do (abort if a check fails):

– Send the message MYTIME(Tp, sigt) to Lj .

– Receive the message MYTIME(T ′
p, sig′

t) from Lj . Verify that sig′
t is a valid

signature on (j, T ′
p) for pk and that Tc > T ′

p + T holds.

– Send AVAILABILITY(a1, . . . , aN) to Lj where am = 1 if Li owns fm.

– Receive the message AVAILABILITY(a′
1, . . . , a

′
N) from Lj .

LeecherAwarded
Whenever Li is informed by a seeder Sj that it can download ωi pieces, request

up to ωi pieces from Sj (potentially incrementally in this round, i.e., Li may ask

for a few pieces first), and download these pieces.

Exchangei(fx, j, y)

If any of the following checks fails, blacklist Lj and abort.

– Send the message HAS(j, y) to the tracker and wait for a positive answer.

– Choose a random key kj,x and compute cj,x ← E(kj,x, fx).

– Send cj,x to Lj and wait for cy from Lj .

– Perform the following two steps in parallel and proceed once both steps are

completed:

• Send EXCHANGED(j, x, y) to the tracker and wait for OK(j, x, y) as re-

sponse

• If receiving ACKNOWLEDGE(j, y, x) from the tracker, reply with

OK(j, y, x).

– Send the key kj,x to Lj .

– Upon receiving ky from Lj , retrieve f ′
y ← D(ky, cy) and verify hy = h(f ′

y).

– Broadcast to the local neighborhood that you now own the piece y.

Fig. 4. The protocol of the leecher Li

RatFish: A File Sharing Protocol Provably Secure against Rational Users 619

seeder, the leecher requests pieces until its seeder’s reward is depleted. Upon
contacting another leecher, it waits until both forced waits are over. Afterwards,
both parties exchange information such that they know which pieces they can
request from each other. To keep track of the availability in its neighborhood,
the leecher observes the messages that leechers broadcast to their local neigh-
borhood, indicating which pieces of the file they have just downloaded.

The Piece Exchange. The piece exchange protocol run between two leechers
uses encryptions to ensure that no leecher can get a piece without completing the
exchange phase. From a practical perspective, it is important to note that the
key sizes are small compared to a file piece size. Thus the communication and
storage overhead induced by the keys and cryptographic operations is kept man-
ageable. Leechers additionally query the tracker to ensure that the corresponding
party owns a file piece they need. Moreover, leechers want their exchanges to be
counted and rewarded. Thus, after the encryptions are exchanged, each leecher
prompts the tracker to ask the other leecher for an acknowledgement. Intuitively,
there is no incentive to deviate in this step as they still lack the key from the other
party. Once the acknowledgement step is successfully completed, both leechers
exchange the keys. If one leecher deviates from this procedure, it is blacklisted
by the other leecher. We stress that blacklisting is not required for the security
proof; it solely constitutes a common technique in this setting to deal with ma-
licious parties. A rigorous description is given in Fig. 4. Fair exchange protocols
have been used in prior work to incentivize peers to fairly exchange information
[27]. In contrast to [27], however, RatFish needs to neither periodically renew
cryptographic keys nor implement a non-repudiable complaint mechanism to
allow parties to prove possible misbehaviors; instead it relies on short acknowl-
edgment messages for each recipient and on collecting these messages to monitor
the file completion for the participants. A schematic overview of the core part
of the piece exchange protocol is provided in Fig. 5.

cy

k
fy ← D(k, cy)

Leecher Li

Acknowledge

OK

OK

Tracker

Lj

Exchanged y
for x with j

cx := E(kj,x, fx)kj,x ← Un

Ay
i := 1
Xi++

kj,x

Fig. 5. The core part of the piece exchange protocol between two leechers

620 M. Backes, O. Ciobotaru, and A. Krohmer

5 Equilibrium Proof

In this section we prove that RatFish yields a computational Nash equilibrium;
i.e., no leecher or seeder has an incentive to deviate from the protocol.

5.1 Underlying Assumptions

Recall that RatFish proceeds in rounds of T seconds. For simplicity, we assume
that peers can join / leave only at the beginning / end of a round6 and that
it is impossible to forge identities on the IP layer (e.g., by using appropriate
authentication mechanisms). We assume that at least one seeder is present and
that the overall seeding capacity does not exceed twice the overall upload ca-
pacity of the leechers; this bound on the seeding capacity prevents the leechers
from free riding, which is easy given enough seeding power. We moreover as-
sume that each leecher’s dedicated upload speed upl

i is fully exhausted by other
peers. These assumptions seem reasonable as the average seeders/leechers ratio
is often close to 1:1 [4], and optimized centralized coordinators are capable of
distributing upload capacities among different swarms [20]. Additionally, we as-
sume keys do not contribute to the uploaded amount, since in practice, the size
of the short keys is dominated by the size of the encrypted file piece. Moreover,
we assume that each peer is only able to maintain one identity in the system.
This in particular excludes Sybil attacks, in which multiple distinct identities are
created by the same peer to subvert the reputation system of a P2P network.
This assumption does not come as a surprise, since the Nash equilibrium con-
ceptually does not defend against coalitions, rendering Sybil attacks possible in
most works on rationally secure protocols. (See Section 7 for an outlook on how
to tackle this problem.) Regarding the cryptographic primitives, we assume that
the signature scheme used by the tracker is secure against existential forgery
under chosen-message attack and that the encryption scheme is semantically
secure under chosen-plaintext attack.

5.2 Proving the Nash Equilibrium

We finally show that RatFish constitutes a Nash equilibrium. Due to space
constraints, we concentrate on illustrating how the proof is conducted and on
highlighting the novel proof technique that was used. The technical parts of the
proof are given in the full version.

We first show that a leecher deviating from the protocol cannot increase its
utility by more than at most a negligible value, provided that no other party
deviates. To show this, we determine two sets of possible cheating actions for
leechers, which we call independent actions and correlated actions. Intuitively,
the independent cheating actions can be individually replaced by honest actions

6 This assumption can be easily enforced by letting the tracker force joining peers to

wait until the next round.

RatFish: A File Sharing Protocol Provably Secure against Rational Users 621

without decreasing the utility, independent of the remaining parts of the de-
viating strategy. Correlated cheating actions are sensitive to the details of the
deviating strategy: we can only replace a correlated cheating action by a cor-
responding honest action without decreasing the utility if all deviating actions
that jointly influence the leecher’s utility are simultaneously replaced in one
round. We show that the only correlated cheating action is to not acknowledge
an exchange.

Our proof technique starts with an arbitrary deviating strategy M ′
i and pro-

vides a proof in two steps: In the first step, we replace all independent cheating
actions step-by-step; here, a step within a strategy denotes the computation
performed within the strategy between two consecutive outputs. Slightly more
formally, let Mi be the honest strategy for leecher Li, M ′

i a deviating strat-
egy, and {H∗

ack,j}j the set of all strategies that in every step are honest or do
not acknowledge an exchange. Then our technique yields a so-called semi-honest
strategy M∗

i ∈ {H∗
ack,j}j that for every input and random tape outputs in every

step the same action as M ′
i whenever possible, and plays honest otherwise. We

then show that the semi-honest strategy cannot yield a worse payoff than M ′
i .

The proof is based on the novel concept of hybrid concatenation of strategies.

Lemma 1 (No Independent Cheating Actions of Leechers). Let γ be
the number of uploaded pieces a newly joined leecher is awarded. Let M ′

i be a
deviating strategy of Li and let M∗

i be the semi-rational strategy as defined above.
Then for αi ∈ [0, T

3·γ·B], we have ui(k, M ′
i ,M−i) − ui(k, M∗

i ,M−i) ≤ ε(k) for
some negligible function ε.

Thus far, we have transformed a deviating strategy M ′
i into a semi-rational

strategy M∗
i that uses only correlated cheating actions and does not decrease

the payoff. In the second step, we replace all correlated cheating actions round-
by-round until we reach the honest strategy Mi. We use a hybrid argument
based on the hybrid concatenation of strategies to show that the honest strategy
outperforms the semi-rational strategy for leechers.

Lemma 2 (No Correlated Cheating Actions of Leechers). Let Mi be the
honest strategy for Li, i.e., following the RatFish protocol and let M∗

i be the semi-
rational strategy as defined above. Then ui(k, M∗

i ,M−i)−ui(k, Mi,M−i) ≤ ε(k)
holds for some negligible function ε.

Showing that seeders have no incentive to deviate from the protocol is consid-
erably easier than the corresponding statement for leechers, since seeders are
considered partially altruistic. We show that as long as all leechers follow the
protocol, a seeder cannot run a deviating strategy to improve its payoff.

Lemma 3 (No Seeder Deviation). There is no deviating strategy for any
seeder that increases its payoff if all other parties follow the RatFish protocol.

We finally combine the results that neither leechers nor seeders have an incentive
to deviate (the tracker is honest by assumption) to establish our main result.

Theorem 1 (Computational Nash Equilibrium). The RatFish protocol con-
stitutes a computational Nash equilibrium if αi ∈ [0, T

3·γ·B] holds for all i ∈ L.

622 M. Backes, O. Ciobotaru, and A. Krohmer

6 Implementation and Performance Evaluation

In this section, we describe the implementation of RatFish and experimentally
evaluate its performance. We focus on the implementation and performance eval-
uation of the tracker, since the tracker took on several additional responsibilities
and is now involved in every exchange. In contrast to the tracker, seeders and
leechers are largely unchanged when compared to BitTorrent: the exchange of
encrypted pieces constitutes a small computational overhead, but leaves the
network complexity that usually constitutes the performance bottleneck of P2P
protocols essentially unchanged.

6.1 Implementation

The RatFish tracker was implemented using about 5000 lines of code in Java,
thus ensuring compatibility with common operating systems. The implementa-
tion is designed to work with both UDP and TCP.

The messages sent in the protocol start with the protocol version number
and message ID (which determines the length of the message), followed by the
torrent ID, and additional information that depends on the type of message.

Afterwards, a task is created that processes the received message. This task
is given to the threadpool executor – the main part of the RatFish tracker that
also ensures parallelization. The threadpool sustains eight parallel threads and
assigns new tasks to the next free thread. For instance, when the tracker receives
a notification that a leecher joined the protocol, the task extracts the leecher’s
IP from this message and triggers the forced wait. After T seconds it replies
with a digital signature for the leecher using an RSA-based signature scheme
that signs SHA-1 hashes.

6.2 Experimental Setup

For the evaluation, we ran the RatFish tracker on a server with a 2-cores Intel
Xeon CPU, 2GB of RAM, a 100MBit Internet connection and an Ubuntu SMP
operating system with kernel version 2.6.28-18. We simulated a swarm with up to
50,000 peers, divided into neighborhoods of size 4. The simulated leechers send
the same messages as a real leecher would, thus yielding an accurate workload
measure for the tracker. Every leecher was configured to complete one exchange
per second, and we chose the size of a piece to be 256 kB according to BitTorrent
standards. Hence every leecher has a virtual upload speed of 256 kB/s. The size
of the shared file is 50 MB, and the seeders upload one forth of the file per
second in a round-robin fashion to their neighborhoods. The simulated clients are
running on a separate machine. This allows us to measure network throughput.
In our simulation, we need to pretend to the tracker that clients connect from
different IPs. We thus used UDP in our experiments. Deploying RatFish in
reality would presumably be based on TCP, which would slightly increase the
network complexity.

RatFish: A File Sharing Protocol Provably Secure against Rational Users 623

6.3 Performance Evaluations

Fig. 6 depicts the results for our experiments. The main observation, shown
in the left part of Fig. 6, is that even though we engage the tracker in every
exchange in the swarm, the protocol scales well (a resource usage of 65% for
50,000 leechers). One can also observe that the computation complexity becomes
a limiting factor, but we expect this to change for more cores given our highly
parallelized implementation. Memory was not a bottleneck in any experiment.

The right part of Fig. 6 considers the case where many leechers join at once,
but no exchanges are happening. This study is important since the tracker’s
most expensive task is to sign the join time of leechers. In our experiments, the
tracker was able to serve about 400 new leechers per second. Since the server
has T seconds for signing in practical deployments, the signature computation
would be scheduled in free CPU time and hence not delay ongoing exchanges.
We also observed that the two measurements depicted in Fig. 6 on CPU usage
are additive, e.g., a system with 30,000 leechers and 200 joining leechers per
second uses approximately 90% of the CPU.

10000 30000 50000
0

20

40

60

80

100

Joining leechers per swarm

%CPU

%Bandwidth

%Memory

100 200 300 400
0

20

40

60

80

100

Joining leechers per second

%CPU

%Bandwidth

Fig. 6. Left: Resource usage for a static number of leechers engaging in exchanges.

Right: Resource usage for dynamically joining leechers.

7 Conclusions and Future Work

We have proposed a file sharing protocol called RatFish that we have proven
secure against deviations of rational users. We first characterized rational behav-
iors of leechers and seeders in file sharing protocols. Subsequently, we formally
showed that no rational party has an incentive to deviate from RatFish; i.e., Rat-
Fish constitutes a Nash equilibrium. While the tracker in RatFish is assigned
additional tasks compared to existing file sharing protocols such as BitTorrent,
the communication overhead of a RatFish client compared to a BitTorrent client
is minimal. We have demonstrated by means of a prototype implementation that
RatFish is practical and efficient.

A central question for future work on rational file sharing – and for rational
cryptography in general – is whether the Nash equilibrium is a strong enough
notion for real-world applications and threat models. Robustness against user

624 M. Backes, O. Ciobotaru, and A. Krohmer

coalitions would be more desirable. (See the discussion in [7] and [1].) RatFish
already provides suitable hooks for potential mitigation techniques against coali-
tions, e.g., by ensuring that players entering small coalitions can only increase
their utilities by a negligible amount; hence entering a coalition would be ir-
rational in the first place. Moreover, RatFish currently considers file sharing
for independent swarms only, i.e., seeders in one swarm cannot be leechers in
another swarm. Extending RatFish to cope with such more a general setting
requires to generalize the seeders’ utility functions and to adapt the relevant
parts of RatFish in order to maintain the Nash equilibrium property.

References

1. Abraham, I., Dolev, D., Gonen, R., Halpern, J.: Distributed computing meets game

theory: robust mechanisms for rational secret sharing and multiparty computation.

In: 25th Annual ACM Symposium on Principles of Distributed Computing (PODC

2006), pp. 53–62 (2006)

2. Aiyer, A.S., Alvisi, L., Clement, A., Dahlin, M., Martin, J.P., Porth, C.: BAR fault

tolerance for cooperative services. Operating Systems Review (OSR) 39(5), 45–58

(2005)

3. Bharambe, A.R., Herley, C., Padmanabhan, V.N.: Analyzing and improving a Bit-

Torrent network’s performance mechanisms. In: The 25th IEEE Conference on

Computer Communications, INFOCOM 2006 (2005)

4. Bieber, J., Kenney, M., Torre, N., Cox, L.P.: An empirical study of seeders in

BitTorrent. Tech. rep., Duke University (2006)

5. Cohen, B.: Incentives build robustness in BitTorrent. Tech. rep., bittorrent.org

(2003)

6. Dodis, Y., Halevi, S., Rabin, T.: A cryptographic solution to a game theoretic prob-

lem. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 112–130. Springer,

Heidelberg (2000)

7. Feigenbaum, J., Shenker, S.: Distributed algorithmic mechanism design: recent re-

sults and future directions. In: 6th International Workshop on Discrete Algorithms

and Methods for Mobile Computing and Communications (DIAL-M 2002), pp.

1–13 (2002)

8. Fuchsbauer, G., Katz, J., Naccache, D.: Efficient rational secret sharing in standard

communication networks. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp.

419–436. Springer, Heidelberg (2010)

9. Gordon, D., Katz, J.: Rational secret sharing, revisited. In: De Prisco, R., Yung,

M. (eds.) SCN 2006. LNCS, vol. 4116, pp. 229–241. Springer, Heidelberg (2006)

10. Halpern, J., Teague, V.: Rational secret sharing and multiparty computation: ex-

tended abstract. In: STOC 2004, pp. 623–632 (2004)

11. Izal, M., Uroy-Keller, G., Biersack, E., Felber, P.A., Hamra, A.A., Garces-Erice,

L.: Dissecting BitTorrent: Five months in torrent’s lifetime. In: Barakat, C., Pratt,

I. (eds.) PAM 2004. LNCS, vol. 3015, pp. 1–11. Springer, Heidelberg (2004)

12. Katz, J.: Bridging game theory and cryptography: Recent results and future di-

rections. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 251–272. Springer,

Heidelberg (2008)

13. Keidar, I., Melamed, R., Orda, A.: Equicast: Scalable multicast with selfish users.

Computer Networks 53(13), 2373–2386 (2009)

RatFish: A File Sharing Protocol Provably Secure against Rational Users 625

14. Kol, G., Naor, M.: Cryptography and game theory: Designing protocols for ex-

changing information. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 320–

339. Springer, Heidelberg (2008)

15. Levin, D., LaCurts, K., Spring, N., Bhattacharjee, B.: BitTorrent is an auction: an-

alyzing and improving BitTorrent’s incentives. Computer Communications Review

(CCR) 38(4), 243–254 (2008)

16. Li, H.C., Clement, A., Marchetti, M., Kapritsos, M., Robison, L., Alvisi, L., Dahlin,

M.: FlightPath: Obedience vs. choice in cooperative services. In: USENIX OSDI

2008, pp. 355–368 (2008)

17. Li, H.C., Clement, A., Wong, E.L., Napper, J., Roy, I., Alvisi, L., Dahlin, M.: BAR

gossip. In: USENIX OSDI 2006, pp. 191–204 (2006)

18. Liogkas, N., Nelson, R., Kohler, E., Zhang, L.: Exploiting BitTorrent for fun (not

for profit) (2006), http://iptps06.cs.ucsb.edu/

19. Locher, T., Moor, P., Schmid, S., Wattenhofer, R.: Free riding in BitTorrent is

cheap. In: 5th Workshop on Hot Topics in Networks (HotNets-V), pp. 85–90 (2006)

20. Peterson, R.S., Sirer, E.G.: Antfarm: efficient content distribution with managed

swarms. In: USENIX NSDI 2009, pp. 107–122 (2009)

21. Piatek, M., Isdal, T., Anderson, T., Krishnamurthy, A., Venkataramani, A.: Do

incentives build robustness in BitTorrent? In: USENIX NSDI 2007, pp. 1–14 (2007)

22. Piatek, M., Isdal, T., Krishnamurthy, A., Anderson, T.: One hop reputations for

peer to peer file sharing workloads. In: USENIX NSDI 2008, pp. 1–14 (2008)

23. Pouwelse, J.A., Garbacki, P., Epema, D., Sips, H.J.: The BitTorrent p2p file-sharing

system: Measurements and analysis. In: Castro, M., van Renesse, R. (eds.) IPTPS

2005. LNCS, vol. 3640, pp. 205–216. Springer, Heidelberg (2005)

24. Qiu, D., Srikant, R.: Modeling and performance analysis of BitTorrent-like peer-

to-peer networks. In: SIGCOMM 2004, pp. 367–378 (2004)

25. Rob, D.L., Sherwood, R., Bhattacharjee, B.: Fair file swarming with FOX (2006),

http://iptps06.cs.ucsb.edu/

26. Shneidman, J., Parkes, D., Massoulie, L.: Faithfulness in internet algorithms. In:

Workshop on Practice and Theory of Incentives and Game Theory in Networked

Systems (PINS 2004), pp. 220–227 (2004)

27. Sirivianos, M., Yang, X., Jarecki, S.: Robust and efficient incentives for cooperative

content distribution. Transactions On Networking (TON) 17(6), 1766–1779 (2009)

28. Thommes, R., Coates, M.: BitTorrent fairness: Analysis and improvements. In:

4th IEEE Workshop on the Internet, Telecommunications and Signal Processing,

WITSP 2005 (2005)

http://iptps06.cs.ucsb.edu/
http://iptps06.cs.ucsb.edu/

A Service Dependency Model for Cost-Sensitive
Intrusion Response

Nizar Kheir1,2, Nora Cuppens-Boulahia1,
Frédéric Cuppens1, and Hervé Debar3

1 Télécom Bretagne, 2 rue de la Chataigneraie, 35512 Cesson Sévigné, France

{nora.cuppens,frederic.cuppens}@telecom-bretagne.eu
2 France Télécom R&D, 42 Rue des Coutures, 14066 Caen, France

nizar.kheir@orange-ftgroup.com
3 Télécom SudParis, 9 rue Charles Fourier, 91011 Evry, France

herve.debar@telecom-sudparis.eu

Abstract. Recent advances in intrusion detection and prevention have

brought promising solutions to enhance IT security. Despite these efforts,

the battle with cyber attackers has reached a deadlock. While attackers

always try to unveil new vulnerabilities, security experts are bounded

to keep their softwares compliant with the latest updates. Intrusion re-

sponse systems are thus relegated to a second rank because no one trusts

them to modify system configuration during runtime.

Current response cost evaluation techniques do not cover all impact

aspects, favoring availability over confidentiality and integrity. They do

not profit from the findings in intrusion prevention which led to pow-

erful models including vulnerability graphs, exploit graphs, etc. This

paper bridges the gap between these models and service dependency

models that are used for response evaluation. It proposes a new service

dependency representation that enables intrusion and response impact

evaluation. The outcome is a service dependency model and a complete

methodology to use this model in order to evaluate intrusion and re-

sponse costs. The latter covers response collateral damages and positive

response effects as they reduce intrusion costs.

1 Introduction

The dot-com bubble that occurred in the late nineteen nineties has changed
the nature of market places, maybe for ever. These have become very dynamic,
pushing IT industries to propose innovative software tools in order to attract new
customers. IT industries started suffering increasing challenges, among which are
shorter product life cycles, rapid outsourcing and price erosion caused by a fierce
worldwide competition [19]. In order to withstand to these challenges, products’
security had been relegated to a secondary priority that is handled as an add-on
property [18]. Security flaws are more likely to be tolerated in newly released
products. IT industries become inclined to reveal new updates and patches on a
regular basis in order to strengthen the security of their products. The opposite
coin facet for this reality is a vicious race between security experts and cyber

D. Gritzalis, B. Preneel, and M. Theoharidou (Eds.): ESORICS 2010, LNCS 6345, pp. 626–642, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

A Service Dependency Model for Cost-Sensitive Intrusion Response 627

attackers. By the time a new security flaw is discovered, thousands of cyber
attacks are being reported before a suitable patch is released. For instance, an
article from the techworld magazine discusses the effect of one security flaw
for the Microsoft Internet Explorer browser. After just a couple of weeks this
security flaw is disclosed, and before the next scheduled security updates are
revealed, more than thirty thousand daily attacks have been reported [17]. In
such a teased environment, security experts cannot only rely on the security of
their products when they are constantly updated with new patches. Indeed, they
must be equipped with powerful prevention and monitoring tools that help to
prevent security breaches when they occur, and detect these before they succeed.

Setting and keeping security equipments require increasing investments that
constitute a heavy burden on the shoulders of small and medium companies.
Nonetheless, these equipments are often bypassed by skilled attackers, but also
script-kiddies, proving to be insufficient when used as a single line of defense. As
a consequence, intrusion response systems have started to play a growing role
in today’s security architectures [24]. Response systems are unable to prevent
the threat before it occurs, but they react as it occurs in order to prevent its
direct effects. They modify configuration setups in order to contain an attack
or prevent its success. Unfortunately, trivial responses that use static mappings
between intrusive patterns and available responses do not provide a reliable
solution. Attackers rapidly learn about those mappings and adapt their attacks
in consequence. This has promoted the need for more advanced response systems
that implement more sophisticated strategies, including security policies [8].

Although response systems have reached a high level of sophistication [24],
security experts are still reluctant to use those systems due to the potential of
damages they may provoke. In fact, current systems are increasingly growing
in complexity. They experience growing trends towards providing more interac-
tive services to support every user’s need in terms of quality of service. Service
providers are thus constrained to use granular and interdependent service ar-
chitectures which yield a better agility for service configuration. However, the
aftermath of one security breach could be drastic because impacts rapidly spread
through service dependencies [10]. Besides, cyber attacks are becoming more so-
phisticated. Internet provides an exceptional facility to conduct collaborative
attacks or to use the excessively available botnets [20]. As attacks are getting
extremely complicated, they require accurate and severe responses in order to
be contained or blocked. The decision to take these responses is more likely to
be taken by a security expert in order to avoid boomerang effects as the self-
inflicted denial of service. We believe that the lack of a comprehensive approach
to represent service dependencies is a major reason for not using those depen-
dencies to support decisions for intrusion response. This is a major limitation
because service dependencies provide a well-suited platform to compare intrusion
responses and to select cost-sensitive responses [12][25]. One major contribution
of this paper is thus to develop a new service dependency representation that is
used to evaluate and compare intrusion and response impacts in order to select
optimal responses, i.e. responses that inflict less impact to the system.

628 N. Kheir et al.

When inspecting the literature of the domain, we find that dependencies
in their broadest sense have been longly used for intrusion response. We will
thus precise what makes this contribution so different. In fact, dependencies are
mostly structured into dependency graphs that embed either logical or functional
dependencies. In the former category, we cite the examples of privilege graphs,
attack graphs and vulnerability graphs. Privilege graphs [7][6] trace the attacker
privilege escalations in target systems. Dependencies point-out privileges that
enable an attacker to achieve a security objective. Attack graphs [23][3] specify
causal relations between potential attacker actions. Finally, vulnerability graphs
[2][11] describe the access that is required for an attacker in order to carry out an
attack. These approaches offer to assess intrusion costs by statically assigning
quantitative cost metrics to nodes in these graphs. Intrusion costs are evalu-
ated as the aggregation of elementary costs for the already achieved steps in the
graph. Meanwhile, and unless they rely on expert knowledge, no formal approach
to evaluate elementary costs is yet provided. This is due to the fact that critical
services and their dependencies are not represented in these graphs. Moreover,
service dependencies are dynamic and may be modified by intrusion responses,
which modifies the static elementary costs in these graphs. Another limitation
for using these graphs without further extensions is the inability to assess re-
sponse costs. In fact, only positive response costs may be evaluated, i.e. intrusion
costs that are prevented by a response. To the best of our knowledge, no formal
approach to evaluate response collateral damages can be applied.

On the other hand, functional dependencies are dependencies between system
resources [4][10][12][13][26]. They represent the need for a dependent resource
to use an antecedent resource in order to be fully operational. Functional de-
pendency graphs propagate impacts as applied in system dependability manage-
ment. Although they are more appropriate to evaluate intrusion and response
impacts, these graphs suffer multiple limitations. In fact, intrusion impacts are
often propagated downwards in these graphs, i.e. from an antecedent resource
towards a dependent resource. They are also used to evaluate only response neg-
ative impacts, i.e. the response collateral damages. However, they are less likely
to be used in order to evaluate response positive impacts.

This paper is motivated by the limitations of both existing approaches. It
rather bridges the gap between them, by representing both security objectives
in logical dependency graphs and resource dynamic dependencies in functional
dependency graphs. It provides a new service dependency representation and
implements intrusions and responses using the same semantics as for service de-
pendencies. A simulation platform is defined, which simulates intrusion impacts,
response impacts and the combined impacts for intrusion and response. Measures
are further aggregated in order to select the most cost-effective response. This
paper is structured as follows. Section 2 defines a new response index in order to
compare and select intrusion responses. Section 3 implements the attributes that
constitute this index using service dependencies. Section 4 presents the simula-
tion platform that is used to compute those attributes. Section 5 demonstrates
the use of this platform using a real-world example and section 6 concludes.

A Service Dependency Model for Cost-Sensitive Intrusion Response 629

2 Return-On-Response-Investment index

The fundamental question an intrusion response system must answer is whether
the self-inflicted response cost is reasonably tolerated when reacting against an
intrusion attempt. In fact, this question challenges every aspect of IT security,
that is whether a security investment is justified to avoid a security threat.
Finance books provide multiple indicators that answer this question, among
which the Return-On-Investment (ROI) index [21]. The ROI index, written as
the ratio of net benefit to costs, compares multiple investment alternatives. It is
used during risk analysis and to decide about investments in intrusion prevention
[1]. The yet Return-On-Security-Investment (ROSI) index is used to promote
investments in preventive IT security measures. It is defined in [1] as:

ROSI =
(Expected Losses − Residual Losses) − Investment Costs

Investment Costs

Among multiple security investments, the security expert picks-up the one that
satisfies a maximal positive ROSI index. Based on these facts, this paper proposes
a new decision making process for intrusion response that is rather based on a
financial comparison of response alternatives. We consider that a system often
specifies some security objectives that are directly expressed in terms of mon-
etary losses when they are not satisfied. Intrusions and responses inflict some
costs when they affect these security objectives. These costs are classified into
three components: response goodness (RG), response collateral damages (CD) and
response operational costs (OC) [25]. RG measures the response ability to reduce
the costs inflicted by the intrusion attempt. By analogy to the ROSI index, RG is
compared to the prevented losses due to security investments. CD is the cost that
is added by a newly enacted response, and that is not related to intrusion costs.
It is inherent to the response mechanism as the latter affects some security ob-
jectives. OC is independent from the security objectives of the system. It includes
response setup and deployment costs, such as manpower and over provisioning.
By analogy to the ROSI index, investment costs are compared to the aggregation
of CD and OC. We adapt the ROSI index to the response process, and thus we
obtain the Return-On-Response-Investment (RORI) index, as follows.

RORI =
RG− (CD + OC)

CD + OC

To specify the response goodness index, we define the following cost metrics.
ICb represents expected intrusion impacts when no response is enacted. ICa

represents expected intrusion impacts after some response is enacted. ICa is
difficult to evaluate because it is almost impossible to discern intrusion and
response costs when they are applied simultaneously. We thus propose the index
RC to represent the combined impact for both intrusion and response. Based on
these metrics, we develop the expression of the RORI index as follows.

RORI =
(ICb − ICa) − (CD + OC)

CD + OC
=

ICb − (ICa + CD) − OC

CD + OC
=

[ICb − RC] − OC

CD+ OC

630 N. Kheir et al.

The OC metric is not related to the system security objectives. It is statically de-
fined as part of a risk analysis plan prior to system runtime. The three remaining
metrics, i.e. ICb, RC and CD, are evaluated online as soon as new intrusions are
detected and new candidate responses are proposed. These metrics, for the same
intrusion and response combinations, depend on current service configuration. In
following sections, we propose a complete methodology to evaluate those metrics
using service dependencies. The ultimate goal is to select the candidate response
set that provides a maximal positive RORI index, if any.

3 Service Dependency Framework

3.1 Specification of System Security Objectives

We denote security objectives as the set of security guidelines that must be
satisfied. These guidelines are specified within security policies that characterize
users and their access permissions. Access permissions are sometimes explicitly
granted to users; they constitute explicit privileges, e.g. all employees are granted
personal laptops. IT systems also implement service architectures where users
interact with the system in order to obtain additional privileges. Users are thus
less likely to be granted explicit privileges, but only credentials that enable them
to interact with the system, e.g. PKI certificates. Users belong to equivalence
classes Cui�n

i=1 where they enjoy the same access permissions. An equivalence
class is compared to a role where all users have the same privileges. A user
may thus belong to more than one equivalence class. We use equivalence classes
and user privileges in order to define security objectives, as follows: The IT
system must guarantee the secure user access to the privileges that are relevant
within his/her equivalence class. The secure access covers privilege availability,
i.e. user ability to acquire this privilege, but also privilege misuse, i.e. to be
acquired by an unintended user. Failing to do so implies some security objectives
to be unsatisfied. The resulting impacts are manifested as availability impacts,
or confidentiality and integrity impacts following a privilege misuse. Before we
evaluate those impacts, we first formalize the conditions under which they occur.

We assign a privilege p to an equivalence class Cui using the predicate assign.
Assigning a privilege to an equivalence class means that users of this class require
access to this privilege. We express this statement as follows: assign(p, Cui) ⇔
∀u ∈ Cui, requires(u, p). We note that assigning a privilege to an equivalence
class does not mean users are explicitly granted this privilege. It only means that
a security objective is unsatisfied when users cannot acquire this privilege. We
model the granting of a privilege to a user with the predicate granted, which
implies the following statement: assign(p, Cui) � ∀u ∈ Cui, granted(p, u). It
follows up that revoking a privilege to a user within an equivalence class provokes
the failure of a security objective only when this privilege is assigned to this class.
We propose the revoked predicate to represent this statement. It is defined as:
revoked(p, Cui) ⇔ ∃u ∈ Cui, assign(p, Cui), ¬granted(p, u).

Definition: we define an availability failure every combination of one privilege
p and one equivalence class Cui that satisfies the predicate revoked(p, Cui).

A Service Dependency Model for Cost-Sensitive Intrusion Response 631

We also define the condition for a privilege misuse, that is a privilege to be
granted to an unintended user. We use the predicate infected that is defined
as: infected(p, Cui) ⇔ ∃u /∈ Cui : assign(p, Cui), ¬requires(u, p), granted (p, u).
The outcome of a privilege infection is the granting of inappropriate permissions
to a user, which may provoke integrity or confidentiality impacts, according to
the permissions that are associated to this privilege.

Definition: we define a confidentiality or integrity failure every combination
of one privilege p and one equivalence class Cui that satisfies the predicate
infected(p, Cui).

We propose to use privilege infection and revocation in order to quantify costs for
intrusion and response, i.e. to evaluate the metrics ICb, RC and CD that constitute
the RORI index. Meanwhile, intrusions and responses target either users or system
services. They infect and/or revoke privileges on either user-side or system-side.
Impacts further propagate through service dependencies until they affect end-
users. Precisely one needs to know how users interact with system services, and
how dependencies influence the impact propagation process.

3.2 Privilege Sharing and Service Dependencies

Trust relationship: As far as users are only granted credentials, they interact
with the system services in order to acquire the privileges they are assigned.
Privileges are initially held by services and shared with users in counterpart to
trusted credentials and privileges. We introduce trust relationships as part of an
authorization scheme by which we specify the way privileges are shared between
users and services. Trust relationships do not only apply to user credentials, but
also to privileges. In fact, some services may evolve in a trusted environment,
e.g. a shared repository service accessible via an Intranet connection. As a con-
sequence, users who have the privilege of ‘being connected to the Intranet’ are
granted the permission to ‘upload data to this service’. We define a trust rela-
tionship tr using the predicate trust(tr). tr has two attributes: (1) The trustee
specifies a privilege or credential priv2 trusted by the service subj1 that imple-
ments tr (i.e. implement(subj1, tr)). (2) The grantee specifies a privilege priv1

that is granted by the service subj1 when the trusted privilege or credential is
used by a subject subj2. We formalize the notion of trust as follows.

granted(priv1, subj2) ← trust(tr), implement(subj1, tr), grantee(tr, priv1),
trustee(tr, priv2), granted(priv2, subj2)

Trust relationships are implemented in order to set and configure service de-
pendencies. They enable access control as they restrain access to an antecedent
service to the only service that is granted the trusted credentials and privileges.

Service dependencies are made explicit by a request to an antecedent service.
The Role-based Trust-management (RT) framework in [16] represents the request
concept as a delegation process by which the requester delegates some privileges
to its request. The RT framework applies to role management and delegation.

632 N. Kheir et al.

For instance, that some subject Ea requests an authorization which belongs to
the role Rb from Eb with its capacity of being empowered in the role Ra is

represented as: Ea
Ea as Ra

−−−−−−→ Eb.Rb. Service dependencies comply to the same
request specification. A dependent service uses credentials and privileges to sat-
isfy trust relationships implemented by an antecedent service. The role concept
in the RT framework is treated as a collection of permissions [22], which makes it
compatible with the privilege concept for service dependencies. We use the dot
notation ‘.’ to represent the fact that a subject subj is granted a privilege or
credential priv. It is defined as: subj.priv ⇔ granted(priv, subj). We introduce

a service dependency with the statement: dep
dep.priv1

−−−−−−→ ant.priv2. It states that
the dependent subject dep uses the privilege priv1 in order to support its request
through which it requires the privilege priv2 from the antecedent subject ant.

Example: A web server has its root directories hosted by a network file system
(NFS) service. Access to NFS service is controlled using the /etc/exports file
where IP addresses are registered. The request statement is modeled as:

Web
Web IP in /etc/exports

−−−−−−−−−−−−−−−−→ NFS.permission(access, Root directories)

Dependency satisfaction constraint: A dependency is satisfied after the
dependent service obtains the required privileges. The outcome is expressed as
the fact that the dependent service shares some privileges with the antecedent
service. We infer, using the definitions of dependency and trust, the condition
for a dependency to be satisfied. A dependency is satisfied if, and only if, the
dependent service uses the credentials and privileges that are trusted by the
antecedent service. The antecedent service trusts a privilege if it implements
trust relationships that map between this privilege and the privilege requested
by the dependent service. We formalize these concepts as follows.

(dep
dep.priv1,..,dep.privn

−−−−−−−−−−−−−−→ ant.privo → granted(privo, dep)) ⇔
(∀tr : (implement(ant, tr) ∧ grantee(tr, privo)), ∃i(trustee(tr, privi)))

Dependency compositions occur when multiple dependencies contribute to
providing the same privilege. Dependency compositions include two types of el-
ementary patterns, which are logical and functional compositions. We use the
same request statement to express these patterns, as in figure 1. In a logical com-
position (Fig. 1a), the dependent service cannot satisfy its second dependency
for the service ant2 until the former dependency for ant1 has been satisfied.
In a functional composition (Fig. 1b), the dependent service satisfies its unique
dependency when the antecedent service ant1 satisfies its own dependency for
service ant2. Dependency compositions constitute elementary patterns through
which intrusion and response impacts propagate as discussed in section 3.3.

Example: In the example of the web and NFS services, the web service provides
applications for Intranet users. We have two composition patterns. In fact, only
authenticated users access the web service; the latter cannot answer requests
unless it accesses the NFS service. We model this example as follows:

A Service Dependency Model for Cost-Sensitive Intrusion Response 633

(a) Logical composition (b) Functional composition

Fig. 1. Dependency composition

User
valid Login/Password

−−−−−−−−−−−−−−−→ Auth.permission(connect, Intranet)

User
Intranet connection

−−−−−−−−−−−−−−−→ Web.permission(access, web applications)

Web
Web IP in /etc/exports

−−−−−−−−−−−−−−−−→ NFS.permission(access, Root directories)

3.3 Intrusions, Responses and Impact Propagations

This section uses service privileges in order to introduce the impact of intrusions
and responses. It relies on existing methods to represent IT attacks, namely
attack graphs. It rather bridges the gap between attack graphs and service de-
pendency models using the dependency representation described in section 3.2.

Intrusion costs: It is shown in [5] that the impact of an attack on a target com-
ponent can be fully characterized using pre/post-condition statements. Attack
pre-conditions define the state of the target system prior to an attack success.
Post-conditions define the system state after an attack succeeds. From a service
dependency perspective, that means an attacker should have enough privileges
to access a vulnerability and thus to conduct his attack. The outcome of this
attack is that some privileges are either revoked to the target component or in-
fected by the attacker. The National Vulnerability Database1 provides a similar
classification of vulnerabilities. It associates to a vulnerability (1) an access vec-
tor that indicates the requirements that enable exploiting a vulnerability and
(2) an impact vector that indicates the post-attack effects on the target service.

We introduce a vulnerability v using the predicate vulnerability(v, subj)where
subj is the vulnerable subject. v is assigned three properties: infects(v, priv),
revokes(v, priv) and access(v, priv). The first property specifies privileges priv
that are infected when v is exploited by an attacker. The second property specifies
privileges that are revoked to the vulnerable service when v is exploited. The third
property specifies attacker privileges that are required to access the vulnerability
v. We use the predicate vulnerability to propose a privilege-based definition of at-
tacks. We use the same request statement as for service dependencies. Meanwhile,

1 http://nvd.nist.gov/

http://nvd.nist.gov/

634 N. Kheir et al.

the attack success criteria are different since the attacker uses an illicit access path.
We define an attack and its success criteria as follows:

Listing 1.1. Attack success criteria

(att
att.priv1,..,att.privn−−−−−−−−−−−−−−−→ tgt.privo → granted(privo, att)) ⇔

(∃v : (vulnerability(v, tgt), infects(v, privo)),¬(access(v, q),∀i(q �= privi)))

(att
att.priv1,..,att.privn−−−−−−−−−−−−−−−→ tgt.privo → revoked(privo, tgt)) ⇔

(∃v : (vulnerability(v, tgt), revokes(v, privo)),¬(access(v, q),∀i(q �= privi)))

Privileges that are granted to an attacker are also infected privileges, we may thus
infer the statement infected(privo, tgt). An intrusion impact further propagates
through service dependencies because the attacker abuses of trust relationships
implemented to satisfy those dependencies. Impacts either propagate upwards
or downwards as illustrated by the following propagation patterns.

Listing 1.2. Impact propagation patterns

infected(privo, tgt) ∧ ∃(ant, priva) : tgt
tgt.privo−−−−−−−→ ant.priva ⇒ infected(priva, tgt)

infected(privo, tgt) ∧ ∃(dep, priva) : dep
dep.priva−−−−−−−→ tgt.privo ⇒ infected(privo, dep)

revoked(privo, tgt) ∧ ∃(dep, priva) : dep
dep.priva−−−−−−−→ tgt.privo ⇒ revoked(privo, dep)

revoked(privo, tgt) ∧ ∃(ant, priva) : tgt
tgt.privo−−−−−−−→ ant.priva ⇒ revoked(priva, tgt)

We add intrusions to the model and we propagate their impacts using the propa-
gation patterns in listing 1.2 in order to evaluate intrusion costs. These costs are
a direct consequence to the intrusion impacts in terms of revoked and infected
privileges, as in section 3.1. We may use existing approaches to convert service
failures into costs, as in [15][25]. We evaluate the expected intrusion costs when
no response is enacted, i.e. the ICb metric in the RORI expression. We still need to
evaluate the RC and CD metrics, which requires to represent intrusion responses.

Response representation: We model intrusion responses using the same ap-
proach that we used to model intrusions. We shall point out two differences
between intrusions and responses, and how we handle them in our model. A
response is first a decision that is deliberately taken by the system. The latter
degrades some security objectives in order to react against an ongoing threat.
We thus dispose of the attacker notation (Att) in the response representation.
Besides, a response does not infect privileges as intrusions do, at least for con-
ventional responses we consider in this paper (e.g. quarantine host, set firewall
rule, block port, stop service, block account). They only render a service more
vulnerable to an attack. Privilege infections that may occur if this service is
further attacked are not a direct consequence to this response. An attack is still
required in order for these infections to take place. We thus dispose of privilege
infections (i.e. infects predicate) in the response representation.

A Service Dependency Model for Cost-Sensitive Intrusion Response 635

A response grants and/or revokes some privileges to a target subject. It is ex-
pected to prevent the attack or to contain its impacts. An intrusion is prevented
when the response revokes some privileges used by the attacker in order to ac-
cess the target vulnerability. Intrusion impacts (ICa) are thus reduced to null.
Intrusion prevention analysis is not a particularity to our model, it is already
handled using attack graphs and anti-correlation techniques [5]. Meanwhile, the
containment of attack impacts is difficult to handle using only attack graphs. In
fact, we separate between attack containment and attack impact containment.
In the former, we shall prevent the attacker from using the privileges he acquired
in order to conduct a new attack step. Attack containment is possible using tech-
niques based on attack graphs and does not require excessive knowledge about
service dependencies [9]. Meanwhile, attack impact containment requires inter-
leaving with service dependencies in order to prevent the attacker from realizing
any benefit when he/she uses the infected privileges. It prevents impact propa-
gations through service dependencies as presented in the previous paragraph.

We introduce the predicate response(resp, tgt) to model the enforcement of
a response resp on a target resource tgt. We represent the impact of response
on the target resource as: response(resp, tgt) ⇒ ∃priv : granted(priv, tgt) ∨
revoked(priv, tgt). We note that this definition applies to one elementary response.
A comprehensive response scenario against an ongoing attack includes multiple
elementary responses that are modeled each using the predicate response. These
responses interfere with intrusion impact propagations, by either increasing or -
hopefully - decreasing those impacts. We shall evaluate response impacts in order
to infer the RC and CD metrics.

Intrusion prevention is modeled using the following statement:

att
att.priv1,..,att.privn

−−−−−−−−−−−−−−→ tgt.privo ∧∃i(revoked(privi, att)) ⇒
¬(infected(privo, tgt) ∨ revoked(privo, tgt))

This response expression is a direct consequence to the attack success criteria
in listing 1.1. These may no longer be satisfied because the attacker is revoked
from privileges that he needs in order to access the vulnerable service. A targeted
response like this does not impact the system security objectives because it only
affects the malicious user. Although it often constitutes an ideal case, it could
be impossible because of multiple reasons. In fact, an attacker may be unknown
(e.g. IP spoofing), which constrains the system to select target-centric responses.
An intrusion scenario may also be detected at mid-point to its ultimate goal.
The known attacker would be only a stepping stone to the real remote attacker.
Attacker-centric responses would thus apply to some system component and
not to the real attacker. Besides, the attacker-centric response may be excluded
because the system may not have enough capability to do so. Therefore, and by
the time a privilege is revoked to some system component, impacts may further
propagate as used for intrusion impacts.

Intrusion impact containment does not deal with the direct causes of an in-
trusion, but limits its impacts when they occur. Intrusion impacts are actually

636 N. Kheir et al.

prevented from propagating through service dependency paths. Responses in-
terleave with these paths in order to stop impact propagations. This paragraph
discusses propagation patterns in listing 1.2 and shows how responses interleave
with these patterns. We use the example of the web-NFS dependency in section
3.2 in order to illustrate each of these patterns.

First propagation pattern represents upward infection propagation. In-
fected privileges for a dependent service are misused in order to infect privileges
to an antecedent service. Impact propagation is contained by denying access to
the antecedent service (revoked(privo, tgt)) or by quarantining (i.e. revoking)
the threatened privileges for the antecedent service (revoked(priva, ant)). The
counterpart of this response (CD metric) is to initiate new impact propagations
that are described by the third and fourth propagation patterns in listing 1.2.

Example: An attacker conducts a buffer overflow against the web server, which
enables him to execute arbitrary code using the web server permissions, including
its IP address (infected (web IP in /etc/exports, web)). Upward propa-
gation affects the NFS server, i.e. infected(access root directories, web)
(please refer to the first pattern in listing 1.2). Responses revoke access to root
directories for the NFS server (revoked(access root directories, NFS)) or
deny web access to the NFS server (revoked(web IP in /etc/exports, web)).

Second propagation pattern represents downward infection propagation.
Infected privileges for an antecedent service remain infected when they are shared
with its dependent services. In fact, infected privileges are granted to the at-
tacker. He actually uses these privileges wherever the service configuration (i.e.
dependency) enables to do so. Downward propagation is prevented, as for up-
ward propagation, by disabling the threatened dependency. It either requires to
revoke infected privileges to the target resource, (revoked(privo, tgt)) or to deny
access to those privileges for other dependent services (revoked(priva, dep)).

Example: An attacker targets the NFS server, and thus directly provoking the
infection infected(access root directories, NFS). Root directories remain
infected when they are shared through the web-NFS dependency (please refer to
the second pattern in listing 1.2). The denial of web access to the NFS service
(revoked(web IP in /etc/exports, web)) keeps the root directories infected,
but hampers the use of infected directories by the web service. Downward prop-
agation is also hampered by denying access to the root directories for the NFS
service, i.e. revoked(access root directories, NFS).

Third propagation pattern mimics availability impact propagations that
occur in case of functional dependency compositions. A privilege that is revoked
to a service is also revoked to all its dependent services. Interleaving with avail-
ability propagations includes the ability to implement disjunctive dependencies.
Impact propagation may be prevented if the following condition is satisfied. It ex-
presses the ability for a dependent service to use more than only one antecedent
service in order to obtain its required privileges.

A Service Dependency Model for Cost-Sensitive Intrusion Response 637

revoked(privo, tgt) ∧ ∃(dep, ant, priva, privb) : (dep
dep.priva

−−−−−−→ tgt.privo)∧

(dep
dep.privb

−−−−−−→ ant.privo) ∧ granted(privo, ant) ⇒ ¬revoked(privo, dep)

Example: we discuss the example of a DoS attack against the NFS service. It re-
vokes access to the root directories for the NFS service, i.e. revoked(access root
directories, NFS). This privilege may no longer be shared with the web ser-
vice, i.e. revoked(access root directories, web). Impact propagation may
be hampered in case of another web-NFS dependency providing load balancing
with the failed NFS dependency.

Fourth propagation pattern mimics availability impact propagations that
occur in case of logical dependency compositions. A privilege that is revoked to
a service may no longer be used by this service in order to support dependencies
for other services. We also refer to dependency disjunction in order to illustrate
the condition for a response to prevent this pattern. It is written as:

revoked(privo, tgt) ∧ ∃(ant1, ant2, priva, priv1) : (tgt
tgt.privo

−−−−−−→ ant1.priva)∧

(tgt
tgt.priv1

−−−−−−→ ant2.priva) ∧ granted(priv1, tgt) ⇒ ¬revoked(priva, tgt)

The example for this inference rule is similar to the one of the third rule, but
denying the web instead of the NFS service. It thus revokes the IP connection to
the NFS service, i.e. revoked(web IP in /etc/exports, web).

The evaluation of response collateral damages, i.e. the CD metric, consists of
adding only the response to the model and to exclude the intrusion. Response
collateral damages are not only restrained to availability impacts, that is privi-
lege revocations. It may also provoke privilege infection when yet some granted
privilege enables the propagation of an infection that was previously intercepted.
This is automatically depicted by the inference process using the rules in listing
1.2. Response collateral damages are thus closely related to the current system
state and may not be statically defined beforehand. On the other hand, the eval-
uation of the RC metric, that is the combined impact of intrusion and response,
requires adding both intrusion and response to the model. The resulting cost
after all impacts have been propagated corresponds to the metric RC. The use
of inference rules that are based on first order logic statements guarantees the
convergence of the propagation process within a polynomial time.

The response evaluation process presented in this section is used to assist
intrusion response systems by comparing candidate responses. It is implemented
in a dynamic environment that requires interleaving with the dependency model.
An appropriate implementation of this model must be thus provided. We suggest
using Colored Petri Nets (CPN) for this purpose.

4 Simulation Platform

4.1 Using Colored Petri Nets

Although we may use a datalog inference process to implement our model, we
discarded this alternative for the following reasons. The use of our dependency

638 N. Kheir et al.

model as part of a cost-sensitive response mechanism requires interleaving with
the inference process. This is, to the best of our knowledge, difficult to integrate
in a datalog engine. Furthermore, the size of datalog inference engines may often
be unacceptable. The complexity of these engines makes them inappropriate for
systems including a large number of resources and dependencies.

On the other hand, CPNs [14] provide appropriate features to implement our
model. They are extensions of petri nets where tokens transit between model
places. We use CPN tokens to represent privileges in our model. A service de-
pendency is modeled as a CPN transition that is enabled when some conditions
are met, i.e. enough privileges for the dependent service to support its depen-
dency. We also use CPN places to represent user equivalence classes. They are
initially marked with default user privileges. User places thus interact with sys-
tem services through well-defined interfaces. Attackers are actually modeled in
a different way. They are not assigned explicit places because their behavior is
considered as unpredictable. Any infected privilege (i.e. token) would be thus
considered as an attacker property. Last but not least, a CPN simulator enables
the iterative simulation and interleaving with the simulation process. It may also
constrain the simulation to run on a transition basis. System costs are obtained
after the CPN reaches a state where no more transitions are activated.

We transform the request statement that represents a service dependency into
the CPN transition in figure 2. This transition shares tokens (i.e. requested priv-
ileges) between the dependent and the antecedent services represented as CPN
places. This transition is constrained by the existence of specific tokens (i.e. de-
pendency requirements) in the destination place (i.e. dependent service). The
privileges used by the dependent service to support its request are implemented
as a transition activation constraint. This transition satisfies the properties of
the request statement for service dependencies. It is not activated unless the
destination place contains the privileges that are required to support the depen-
dency (i.e. privi). It also shares the privilege privo between the dependent and
antecedent resources. The transition in figure 2 also satisfies the impact prop-
agation patterns. The token privo is infected in the destination place when all
privi tokens are infected or when privo was already infected at the source place
(we add a boolean attribute to a token definition, it is set to true when this
token is infected). We thus implement the first and second statements in listing
1.2. On the other hand, the transition is only activated when the source place
includes the privo token and the destination place includes the privi tokens. We
thus implement the third and fourth statements in listing 1.2.

4.2 Simulation Process

We implement the simulation platform using the CPN tools simulator2. The over-
all architecture we use is illustrated in figure 3. The service dependency model,
expressed as a CPN skeleton (without initial marking) is a static input to the
CPN simulator. It reliably describes the services that constitute the modeled

2 http://wiki.daimi.au.dk/cpntools/

http://wiki.daimi.au.dk/cpntools/

A Service Dependency Model for Cost-Sensitive Intrusion Response 639

Dependent
Resource

Antecedent
Resource

[priv] [priv]o

[priv]o

i i=1
n

if infected(priv ,dep)
=>infected(priv ,dep)

i

o

Fig. 2. CPN dependency

Service dependency model

Mission obectives

Equivalence
user classes

Vulnerability
Database

OSVDB

NVDResponse
database

Intrusion
alerts

Set Initial Marking

Intrusion detection

IC marking

RC marking

CD marking

CPN simulator RORI index

Fig. 3. Dependency simulation framework

environment and its dependencies. It is obtained by transforming dependency
statements into a CPN model, as shown in the previous paragraph. The initial
marking of the CPN model is dynamic. It characterizes the dynamic system state,
including currently applied responses and the existing, but contained, intrusions.
Responses either grant or revoke privileges to their target components. This is
represented as token assignment or token extraction from appropriate places. A
token is either explicitly infected by an intrusion when determining the initial
marking of the CPN model (infection boolean attribute set to true), or further
infected through CPN simulation (please refer to figure 2). By the end of the
simulation, all infected tokens (the boolean attribute set to true) and revoked
tokens (by comparing the final marking of the CPN model to the equivalence
classes) are used to evaluate the RORI index attributes. As illustrated in figure
3, the CPN model is simulated three times for each candidate response set. The
first simulation is executed by introducing only the intrusion attempt in order
to obtain the ICb metric. The second simulation is executed by introducing only
the response in order to obtain the CD metric. Finally, the third simulation is
executed by introducing both intrusion and response in order to obtain the RC
metric. Measures are combined within the RORI index. This operation is iterated
for all candidate response sets that are proposed by an external response system.
We finally choose the response set that provides a maximal positive RORI index.

5 Case Study

We demonstrate the use of our proposal through the simplified example of an
enterprise email service, which is illustrated in figure 4. It uses IMAP and the
native exchange mailing protocols, i.e. outlook and outlook web access. Intranet
users access the email service using a courier-Imap server or the outlook web
access (OWA). The courier-Imap server uses IMAP extension for the exchange
server. Extranet users connect to the email service through web access to an
apache2 server connected to a DMZ. The latter connects to the IMAP server or to
the OWA server using the mod-proxy extension for apache2 server.

640 N. Kheir et al.

In our simple example, we pick-up two user classes, which are Intranet and
Extranet email users. Extranet users have the privilege of being able to connect
to the web server, as well as one credential, which is a valid email account.
Intranet users have the privilege of being connected to the Intranet, and
the same credential as for Extranet users. Both user classes require access to
mailboxes hosted by the exchange server. The security objectives in this example
are to guarantee the mailbox availability and to prevent unintended mailbox
access. The email platform also includes four elementary services, which are the
web, IMAP, OWA and Exchange services. Service dependencies are summarized in
the resulting CPN model in figure 5. The default initial marking (i.e. with no
security threats) is illustrated within parenthesis inside CPN places.

We examine the following attack scenario. In a first step, an attacker exploits
a vulnerability to the web application that enables to execute arbitrary code on
the web server. The attacker uses the web server as a stepping stone in order
to access the IMAP server through the DMZ-Intranet firewall. He exploits a flaw
for the authentication front-end of the courier-Imap server which enables the
attacker to connect to the IMAP server. The attacker finally conducts a buffer
overflow attack to have a root shell on the IMAP server. The first attack step
infects the Dm token (please refer to figure 5), that is to have direct access to the
DMZ. The infection does not propagate through the dependency between the web
and the mail delivery services because the web-Intranet transition also requires
the Vm token to be infected (i.e. a valid user account) in order to propagate the
infection. The second attack step infects the Int token, that is the connection to
the IMAP service. The infection does not propagate elsewhere (please check the
CPN model). The last attack step infects the token Ex, i.e. the IMAP account to the
exchange server. The infection propagates through the IMAP-Exchange transition
because both Ex and Int tokens are infected. The mailbox access (Mb) token is
thus infected (first propagation pattern in listing 1.2). One security objective
has failed, that is the misuse of user mailboxes (infected(Mb, Exchange)).

Two responses are possible: The first blocks access to the web application.
It revokes the Cw token for Extranet users since the attacker is unknown. The
second denies access to the Exchange server for the vulnerable IMAP service, i.e.
to revoke the token Ex to the IMAP place. By revoking the Cw token, extranet
users cannot access their emails because the appropriate transitions are disabled

Internet

Apache2
web serverDMZ

Intranet

Intranet
mail user

IMAP
server

Exchange
server

Owa
server

Fig. 4. Email case study

Web
(Dm)

IMAP
(Ex,Int)

OWA
(Ex,Int)

Exchan.
(Mb,Int)

Intranet
(Vm,Int)

Extranet
(Vm,Cw)

Token-privilege Values:
 Mb: Mailbox access
 Int/Dm: Intranet/DMZ access
 Vm: Valid mail credentials
 Cw: Connection to the web
 Ex: Exchange server account

Vm++
Cw

Vm Mb

Cw Mb

Vm++Dm

Mb
Mb

Vm++Int

Vm++Int Vm

Vm

Ex++
Int

Mb

Mb

Ex++
Int

Mb

Mb

Mb++VmInt

Int

Mb++Vm

Dm

Mb

Mb

Fig. 5. CPN dependency representation

A Service Dependency Model for Cost-Sensitive Intrusion Response 641

(fourth propagation pattern in listing 1.2). Meanwhile, Intranet users are not
affected (please check the CPN model). The second response prevents email access
only through the IMAP protocol while not affecting other protocols. The second
response has less collateral damages since it does not prevent email access for ex-
ternal users (disjunctive dependency that prevents the third propagation pattern
in listing 1.2). Both responses prevent the infection to propagate to user mail-
boxes. Based on the RORI index values provided by the CPN simulations discussed
above, the second response is selected when detecting the third attack.

6 Conclusion

We implemented in this paper the Return-On-Response-Investment as an adap-
tation to the ROI index. The RORI index, in contrast to most existing response
evaluation functions, does not use informal cost metrics that rely on expert
knowledge. Rather, it is accompanied with a complete methodology to evaluate
the metrics that contribute to this index. To the best of our knowledge, the
RORI index is the first to consider not only response collateral damages, but
also response effects on intrusion. The RORI index is implemented along with
a comprehensive service dependency model that enables to track intrusion and
response impacts in the target system. By doing so, we introduce intrusions
and responses in the model and analyze the interference between their impacts.
The RORI index supports privilege infections, that express confidentiality and in-
tegrity impacts, but also privilege revocations that express availability impacts.
It outruns most existing response evaluation mechanisms that rely on depend-
ability management techniques and therefore only apply to availability failures.

Future work will investigate how time may be added to the RORI index. The
cost of a privilege infection or revocation may not be static. A response may
have a higher RORI index when an attack is detected, but later for this index
to be degraded in favor of other responses. We may also extend the RORI index
to tune impacts as the attacker gets closer to critical mission objectives. An
intrusion impact will not be restrained to the direct effects in terms of privilege
infection and revocation. It will also consider the impact of new attack steps
that are made possible by the current intrusion if no response is enacted.

References

1. Aceituno, V.: Return on security investment. ISSA Jounal 1, 16–19 (2006)

2. Ammann, P., Wijesekera, D., Kaushik, S.: Scalable, graph-based network vulner-

ability analysis. In: Proc. 9th ACM Conf. on Computer and Communications Se-

curity, pp. 217–224 (2002)

3. Artz, M.L.: A Network Security Planning Architecture. Ph.D. thesis, Cambrdige:

Massachusetts Institute of Technology (May 2002)

4. Balepin, I., Maltsev, S., Rowe, J., Levitt, K.: Using specification-based intrusion

detection for automated response. In: Vigna, G., Krügel, C., Jonsson, E. (eds.)

RAID 2003. LNCS, vol. 2820, pp. 136–154. Springer, Heidelberg (2003)

5. Cuppens, F., Autrel, F., Yacine Bouzida, J.G., Gombault, S., Sans, T.: Anti-

correlation as a criterion to select appropriate counter-measures in an intrusion

detection framework. Annals of Telecommunications 61, 197–217 (2006)

642 N. Kheir et al.

6. Dacier, M., Deswarte, Y., Kaaniche, M.: Quantitative assessment of operational

security: models and tools. Tech. Rep. 96493, LAAS (May 1996)

7. Dacier, M., Deswartes, Y.: Privilege graph: An extension to the typed access matrix

model. In: European Symp. on Research in Computer Security, pp. 319–334 (1994)

8. Debar, H., Thomas, Y., Cuppens, F., Cuppens-Boulahia, N.: Enabling automated

threat response through the use of a dynamic security policy. Journal in Computer

Virology 3, 195–210 (2007)

9. Foo, B., Wu, Y.S., Mao, Y.C., Bagchi, S., Spafford, E.: Adepts: Adaptive intrusion

response using attack graphs in an e-commerce environment. In: Proc. Intr’l Conf.

DSN, pp. 508–517 (2005)

10. Jahnke, M., Thul, C., Martini, P.: Graph based metrics for intrusion response

measures in computer networks. In: 32nd IEEE Conf. Local Computer Networks

(2007)

11. Jajodia, S., Noel, S.: Topological vulnerability analysis: A powerful new approach

for network attack prevention, detection, and response. Algorithms, Architectures

and Information Systems Security 1, 285–305 (2007)

12. Kheir, N., Debar, H., Cuppens, F., Cuppens-Boulahia, N., Viinikka, J.: A service

dependency modeling framework for policy-based response enforcement. In: Flegel,

U., Bruschi, D. (eds.) DIMVA 2009. LNCS, vol. 5587, pp. 174–193. Springer, Hei-

delberg (2009)

13. Kheir, N., Debar, H., Cuppens-Boulahia, N., Cuppens, F., Viinikka, J.: Cost as-

sessment for intrusion response using dependency graphs. In: Proc. IFIP Intrn’l

Conf. N2S (2009)

14. Kristensen, L.M., Christensen, S., Jensen, K.: The practitioner’s guide to coloured

petri nets. Intr’l Journal Software Tools for Technology Transfer, 98–132 (1998)

15. Lee, W., Fan, W., Miller, M., Stolfo, S.J., Zadok, E.: Toward cost-sensitive modeling

for intrusion detection and response. Journal of Computer Security 10, 5–22 (2002)

16. Li, N., Mitchell, J., Winsborough, W.: Design of a role-based trust-management

framework. In: Proc. IEEE Symp. on Security and Privacy, p. 114 (2002)

17. McMillan, R.: Internet explorer vulnerable to hackers, warn experts. microsoft and

avg warn of danger. TechWorld magazine (March 2010)

18. Mead, N.R., McGraw, G.: A portal for software security. In: IEEE Security &

Privacy, pp. 75–79 (2005)

19. Microsoft: Why microsoft dynamics for high-tech and electronics manufacturers?

Microsoft Dynamics CRM

20. Rajab, M.A., Zarfoss, J., Monrose, F., Terzis, A.: A multifaceted approach to under-

standing the botnet phenomenon. In: Proc. 6th ACM Conf. Internet measurement,

pp. 41–52 (2006)

21. Ross, S., Westerfield, R., Jordan, B.: Fundamentals of Corporate Finance Standard

Edition. McGraw-Hill/Irwin (2005)

22. Sandhu, R.S., Coynek, E.J., Feinsteink, H.L., Youmank, C.E.: Role-based access

control models. IEEE Computer 29, 38–47 (1996)

23. Sheyner, O., Haines, J., Jha, S., Lippmann, R., Wing, J.M.: Automated generation

and analysis of attack graphs. In: IEEE Symp. Security & Privacy (2002)

24. Stakhanova, N., Basu, S., Wong, J.: A taxonomy of intrusion response systems.

Intr’l Journal of Information and Computer Security 1, 169–184 (2007)

25. Strasburg, C., Stakhanova, N., Basu, S., Wong, J.S.: Intrusion response cost as-

sessment methodology. In: Proc. ACM Symp. ASIACCS, pp. 388–391 (2009)

26. Toth, T., Kruegel, C.: Evaluating the impact of automated intrusion response

mechanisms. In: Proc. 18th Annual Conf. ACSAC (2002)

Secure Code Update for Embedded Devices
via Proofs of Secure Erasure

Daniele Perito1 and Gene Tsudik2

1 INRIA Rhône-Alpes, France
2 University of California, Irvine, USA

Abstract. Remote attestation is the process of verifying internal state

of a remote embedded device. It is an important component of many

security protocols and applications. Although previously proposed re-

mote attestation techniques assisted by specialized secure hardware are

effective, they not yet viable for low-cost embedded devices. One no-

table alternative is software-based attestation, that is both less costly

and more efficient. However, recent results identified weaknesses in some

proposed software-based methods, thus showing that security of remote

software attestation remains a challenge.

Inspired by these developments, this paper explores an approach that

relies neither on secure hardware nor on tight timing constraints typi-

cal of software-based technqiques. By taking advantage of the bounded

memory/storage model of low-cost embedded devices and assuming a

small amount of read-only memory (ROM), our approach involves a new

primitive – Proofs of Secure Erasure (PoSE-s). We also show that, even

though it is effective and provably secure, PoSE-based attestation is not

cheap. However, it is particularly well-suited and practical for two other

related tasks: secure code update and secure memory/storage erasure.

We consider several flavors of PoSE-based protocols and demonstrate

their feasibility in the context of existing commodity embedded devices.

1 Introduction

Embedded systems are encountered in many settings, ranging from mundane to
critical. In particular, wireless sensor and actuator networks are used to con-
trol industrial systems as well as various utility distribution networks, such as
electric power, water and fuel [24,13]. They are also widely utilized in automo-
tive, railroad and other transportation systems. In such environments, it is often
imperative to verify the internal state of an embedded device to assure lack of
spurious, malicious or simply residual code and/or data.

Attacks on individual devices can be perpetrated either physically [1] or re-
motely [30,14,15]. It is clearly desirable to detect and isolate (or at least restore)
compromised nodes. One way to accomplish this is via device attestation, a pro-
cess whereby a trusted entity (e.g., a base station or a sink) verifies that an
embedded device is indeed running the expected application code and, hence,

D. Gritzalis, B. Preneel, and M. Theoharidou (Eds.): ESORICS 2010, LNCS 6345, pp. 643–662, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

644 D. Perito and G. Tsudik

has not been compromised. In recent years, several software-based attestation
protocols have been proposed [27,29,31]. The goal of these protocols is to ver-
ify the trustworthiness of resource-constrained systems, without requiring ded-
icated tamper-resistant hardware or physical access to the device. Attestation
based on tamper-resistant hardware [12], though effective [17], is not yet viable
on low-cost commodity embedded devices. Furthermore, hardware attestation
techniques, while having stronger security properties, ultimately rely on a per-
device TPM and the availability of a trusted BIOS that begins attestation at
boot time.

In contrast, remote software attestation typically involves a challenge-response
interaction, whereby a trusted entity, the verifier, challenges a remote system,
called the prover, to compute a cryptographic checksum of its internal state,
i.e., code memory, registers and program counter. Depending on the specific
scheme, the prover either computes this checksum using a fixed checksum routine
and a nonce [29], or downloads a new routine from the verifier as part of the
protocol [31]. The checksum routine sequentially updates the checksum value
by loading and processing device memory blocks. Since the verifier is assumed
to know the exact memory contents and hardware configuration of the prover,
it can compute the expected checksum value and match it with the prover’s
response. If there is a match, the prover is assumed to be clean; otherwise, either
it has been compromised or a fault has occurred. In either case, appropriate
actions can be taken by the verifier.

Recently, several proposed software-based attestation schemes were shown to
be vulnerable [9] to certain attacks, summarized in Section 2. These negative
results show that software-based attestation remains to be an interesting and
important research challenge.

To summarize, hardware-based attestation techniques are not quite practical
for current and legacy low-cost embedded systems. Whereas, state-of-the-art in
software-based attestation offers unclear (or, at best, ad hoc) security guaran-
tees. These factors motivate us to look for alternative approaches. Specifically,
in this paper we zoom out of just attestation and consider a broader issue of
secure remote code update. To obtain it, we introduce a new cryptographic prim-
itive called a Proof of Secure Erasure (PoSE). We suggest some simple PoSE
constructs based on equally simple cryptographic building blocks. This allows
us, in contrast to prior software-based attestation techniques, to obtain provable
security guarantees, under reasonable assumptions.

Our approach can be used to obtain several related security properties for re-
mote embedded devices. The most natural application is secure memory erasure.
Embedded devices might collect sensitive or valuable data that – after being up-
loaded to a sink or a base station – must be securely erased. Also, if code resident
on an embedded device is sensitive or proprietary, it might eventually need to
be securely erased by a remote controller. We note that secure erasure may be
used as a prelude to secure code update or attestation. This is because, after

Secure Code Update for Embedded Devices 645

secure erasure of all prior state, new (or old) code can be downloaded onto an
embedded device with the assurance that no other code or data is being stored.

The intended contribution of this paper is three-fold:

1. We suggest a simple, novel and practical approach to secure erasure, code up-
date and attestation that falls between (secure, but costly) hardware-based
and (efficient, but uncertain in terms of security) software-based techniques.

2. We show that the problem of secure remote code update can be addressed
using Proofs of Secure Erasure (PoSE-s).

3. We propose several PoSE variants and analyze their security as well as
efficiency features. We also assess their viability on a commodity sensor
platform.

Organization: Section 2 reviews related work. Next, Section 3 describes the en-
visaged network environment and states our assumptions. Section 4 presents our
design rationale, followed by proposed protocols in Section 5. Implementation,
experiments and performance issues are discussed in Section 6. Limitations and
directions for future work are addressed in Section 7. An extension to support
multi-device attestation is deferred to Appendix A.

2 Related Work

We now summarize related work, which generally falls into either software- or
hardware-based attestation methods. We also summarize some relevant crypto-
graphic constructs.

2.1 Hardware Attestation

Static Integrity Measures: Secure boot [2] was proposed to ensure a chain of
trusted integrity checks, beginning at power-on with the BIOS and continuing
until the kernel is loaded. These integrity checks compare the computation of
a cryptographic hash function with a signed value associated with the checked
component. If one of the checks fails, the system is rebooted and brought back
to a known saved state.

Trusted Platform Module (TPM) is a secure coprocessor that stores an in-
tegrity measure of a system according to the specifications of the Trusted Com-
puting Group (TCG) [34]. Upon boot, the control is passed to an immutable
code base that computes a cryptographic hash of the BIOS, hash that is then
securely stored in the TPM. Later, control is passed to the BIOS and the same
procedure is applied recursively until the kernel is loaded. In contrast to secure
boot, this approach does not detect integrity violations, instead the task is left
to a remote verifier to check for integrity.

[25] proposed to extend the functionality of the TPM to maintain a chain of
trust up to the application layer and system configuration. In order to do so,

646 D. Perito and G. Tsudik

they extend the Linux kernel to include a new system call that measures files
and adds the checksum in a list stored by the kernel. The integrity of this list
is then sealed in the TPM. A similar goal is pursued in NGSCB [12], that takes
a more radical approach by partitioning a system in a trusted and an untrusted
part, each running a separate operating system, where only the trusted part is
checked.

Dynamic Integrity Measures: In [21], the use of TPM is extended to provide
system integrity checks of run-time properties with ReDAS (Remote Dynamic
Attestation System). At every system call, a kernel module checks the integrity
of constant properties of dynamic objects, e.g., invariant relations between the
saved frame pointer and the caller’s stack frame. Upon detection of an integrity
violation, the kernel driver seals the information about the violation in the TPM.
A remote verifier can ask the prover to send the sealed integrity measures and
thus verify that no integrity violations occurred. However ReDAS only checks
for violations of a subset of the invariant system properties and nothing prevents
an adversary to succeed in subverting a system without modifying the properties
checked by ReDAS. Extending the set of attested properties is difficult due to
the increased number of false positives generated by this approach, for example
in case of dynamic properties classified as invariants by mistake.

2.2 Software Attestation

Most software-based techniques rely on challenge-response protocols that verify
the integrity of code memory of a remote device: an attestation routine on the
prover computes a checksum of its memory along with a challenge supplied by
the verifier. In practice, memory words are read sequentially and fed into the
attestation function. However, this simple approach does not guarantee that
the attestation routine is computed faithfully by the prover. In other words,
a prover can deviate (via some malicious code) from its expected behavior and
still compute a correct checksum, even in the presence of some malicious memory
content.

Time-based attestation: SWATT [29] is a technique that relies on response tim-
ing to identify compromised code: memory is traversed using a pseudo-random
sequence of indexes generated from a unique seed sent by the verifier. If a compro-
mised prover wants to pass attestation, it has to redirect some memory accesses
to compute a correct checksum. These redirections are assumed to induce a re-
motely measurable delay in the attestation that can be used by the verifier to
decide whether to trust the prover’s response. The same concept is used in [27]
where, the checksum calculation is extended to include also dynamic properties,
e.g., the program counter or the status register. Furthermore the computation
is optimised by having the checksum computed only on the attestation function
itself.

Secure Code Update for Embedded Devices 647

Fig. 1. Generic remote attestation

Jakobsson, et al. [18] proposed an attestation scheme to detect malware
on mobile phones. This attestation scheme relies on both careful response tim-
ing and memory filling. Timing is used to measure attestation computation as
well as external memory access and wireless links. Security of this approach de-
pends on a number of hardware-specific details (e.g., flash memory access time).
Hence, formal guarantees and portability to different platforms appear difficult
to achieve.

Memory-based attestation: In [35] sensors collaborate to attest the integrity
of their peers. At deployment time, each empty node’s memory is filled with
randomness, that is supposed to prevent malicious software from being stored,
without deleting some parts of the original memory. A similar approach is taken
in [10], but, instead of relying on pre-deployed randomness, random values are
generated using a PRF seeded by a challenge sent by the verifier and are used
to fill the prover’s memory. However, this does not assure compliance to the
protocol of a malicious node that could trade computation for memory and still
produce a valid checksum.

Gatzer et al. [16] suggest a method where random values are sent to a low-end
embedded device (e.g., a SIM card) and then read back by the verifier, together
with the attestation routine itself (called Quine in the paper). This construction,
while quite valid, was only shown to be effective on an 8-bit Motorola MCU with
an extremely simple instruction set. Also, this scheme applies only to RAM,
whereas, we our approach aims to verify all memory/storage of an embedded
device.

Attestation based on self-modifying code: [31] proposed to use a distinct attesta-
tion routine for each attestation instance. The routine is transferred right before
the protocol is run and uses self-modifying code and obfuscation techniques to
prevent static analysis. Combined with timing of responses, this makes it difficult
for the adversary to reverse-engineer the attestation routine fast enough to cheat
the protocol and produce a valid (but forged) result. However, this approach

648 D. Perito and G. Tsudik

relies on obfuscation techniques that are difficult to prove secure. Furthermore,
some such techniques are difficult to implement on embedded systems, where
code is stored in flash memory programmable only by pages.

Attacks: Recently, [9] demonstrated several flaws and attacks against some soft-
ware attestation protocols. Attacks can be summarized as: failure to verify other
memories apart from code memory (exploited through ROP attacks [30]); insuf-
ficient non-linearity in time-based attestation routines, which could be exploited
to generate correct results over forged memory; failure to recognize that legiti-
mate code memory can be compressed and thus save space for malicious code,
while still remaining accessible for attestation. Also, [32] points out that side-
effects, such as cache misses, are not sufficient to check software integrity using
time-based approaches such as [20].

2.3 Provable Data Possession and Proofs of Retrievability

The problem at hand bears some resemblance to Provable Data Possession
(PDP) [3,4] and Proof of Retrievability (POR) schemes [19]. However, this re-
semblance is superficial. In settings envisaged by POR and PDP, a resource-poor
client outsources a large amount of data to a server with an unlimited storage
capacity. The main challenge is for a client to efficiently and repeatedly verify
that the server indeed stores all of the client’s data. This is markedly different
from attestation where the prover (embedded device) must not only prove that
it has the correct code, but also that it stores nothing else. Another major dis-
tinction is that, in POR and PDP, the verifier (client) is assumed not to keep a
copy of its outsourced data. Whereas, in our setting, the verifier (base station)
obviously keeps a copy of any code (and/or data) that embedded devices must
store.

2.4 Memory-Bounded Adversary

Cryptographic literature contains a number of results on security in the presence
of a memory-bounded adversary [8]. Our setting also features an adversary in
the guise of a memory-limited prover. However, the memory-bounded adversary
model involves two or more honest parties that aim to perform some secure
computation. Whereas, in our case, the only honest party is the verifier and no
secrets are being computed as part of the attestation process.

3 Assumptions and Adversary Model

Secure code update involves a verifier V and a prover P . Internal state of P is
represented by a tuple S = (M, RG, pc) where M denotes P ’s memory of size n

(in bits), RG = rg1, ..., rgm is the set of registers and pc is the program counter.
We refer to SP as the real internal state of the prover and SV the internal state

Secure Code Update for Embedded Devices 649

Table 1. Notation Summary

X ←− Y : Z Y sends message Z to X

X1, ..., Xt ⇐= Y : Z Y multicasts message Z to X1, ..., Xt

V Verifier

P Prover

ADV Adversary

M Prover’s contiguous memory

M [i] i-th bit in M (0 ≤ i < n)

n Bit-size of M

RG Prover’s registers rg1, ..., rgm

pc Prover’s program counter

SP = (M, R, pc) Prover’s internal state

SV Verifier’ view of Prover’s internal state

R1...Rn Verifier’s n-bit random challenge

C1...Cn n-bit program code (see below)

k Security parameter

K MAC key

of the prover, as viewed by the verifier. Secure code update can be viewed as a
means to ensure that SV = SP . Our notation is reflected in Table 1.

P is assumed to be a generic embedded device – e.g., a sensor, an actuator
or a computer peripheral – with limited memory and other forms of storage.
For the ease of exposition, we assume that all P’s storage is homogeneous and
contiguous. (This assumption can be easily relaxed, as discussed in section 6.2)
From here on, the term “memory” is used to denote all writable storage on
the device. The verifier is a comparatively powerful computing device, e.g., a
laptop-class machine.

Our protocol aims to ascertain the internal state of P . The adversary is a
program running in the prover’s memory, e.g., a malware or a virus. Since the
adversary executes on P, it is bounded by the computational capabilities of the
latter, i.e., memory size n.

We assume that the adversary cannot modify hardware configuration of P1,
i.e., all anticipated attacks are software-based. The adversary has complete read-
/write access to P ’s memory, including all cryptographic keys and code. How-
ever, in order to achieve provable security, our protocol relies on the availability of
a small amount of Read-Only Memory (ROM) that the adversary can read, but
not modify. Finally, the adversary can perform both passive (such as eavesdrop-
ping) and active (such as replay) attacks. An attack succeeds if the compromised
P device passes the attestation protocol despite presence of malicious code or

data.

1 In fact, one could easily prove that software attestation is in general impossible to

achieve against hardware modifications.

650 D. Perito and G. Tsudik

We note that ROM is not unusual in commodity embedded systems. For
example, the Atmel ATMEGA128 micro-controller allows a small portion of its
flash memory to be designated as read-only. Writing to this memory portion via
software becomes impossible and can only be enabled by physically accessing
the micro-controller with an external debugger.

As in prior attestation literature, [10,23,26,27,28,29,31,35], we assume that
the compromised prover device does not have any real time help. In other words,
during attestation, it does not communicate with any other party, except the
verifier. Put another way, the adversary maintains complete radio silence dur-
ing attestation. In all other respects, the adversary’s power is assumed to be
unlimited.

4 Design Rationale

Our design rationale is simple and based on three premises:

– First, we broaden our scope beyond attestation, to include both secure mem-
ory erasure and secure code update. In the event that the updated code is
the same as the prior code, secure code update yields secure code attesta-
tion. We thus consider secure code update to be a more general primitive
than attestation.

– Second, we consider two ways of obtaining secure code update: (1) download
new code to the device and then perform code attestation, or, (2) securely
erase everything on the device and then download new code. The former
brings us right back to the problematic software-based attestation, while the
latter translates into a simpler problem of secure memory erasure, followed
by the download of the new code. We naturally choose the latter.

Correctness of this approach is intuitive: since the prover’s memory is
strictly limited, its secure erasure implies that no prior data or code is res-
ident; except for a small amount of code in ROM, which is immutable. Be-
cause the adversary is assumed to be passive during code update, download
of new code always succeeds, barring any communication errors.

– Third, based on the above, we do not aim to detect the presence of any
malicious code or extraneous data on the prover. Instead, our goal is to
make sure that, after erasure or secure code update, no malicious code or
extraneous data remains.

Because our approach entails secure erasure of all memory, followed by the code
download, it might appear to be very inefficient. However, as discussed in sub-
sequent sections, we use the aforementioned approach as a base case that offers
unconditional security. Thereafter, we consider ways of improving and optimizing
the base case to obtain appreciably more practical solutions.

Secure Code Update for Embedded Devices 651

5 Secure Code Update

The base case for our secure code update approach is depicted in Figure 3. It is
essentially a four-round protocol, where:

– Rounds one and two comprise secure erasure of all writable memory contents.
– Rounds three and four represent code update.

Note that there is absolutely no interleaving between any adjacent rounds. The
“evolution” of prover’s memory during the protocol is shown in Figure 2.

As mentioned earlier, we assume a small ROM unit on the prover. In the base
case, ROM houses two functions: read-and-send and receive-and-write. During
round one, receive-and-write is used to receive a random bit Ri and write it in
location M [i], for 0 ≤ i < n. At round two, read-and-send reads a bit from
location M [i] and sends it to the prover, for 0 ≤ i < n. (In practice, read and
write operations involve words and not individual bits. However, this makes no
difference in our description.)

If we assume that the V↔ P communication channel is lossless and error-
free, it suffices for round four to be a simple acknowledgement. Otherwise, round
four must be a checksum of the code downloaded in round three. In this case, the
checksum routine must reside in ROM; denoted by H() in round four of Figure
3. In the event of an error, the entire procedure is repeated.

Fig. 2. Prover’s Memory during Protocol Execution

[1] P ←− V : R1, ..., Rn

[2] P −→ V : R1, ..., Rn

[3] P ←− V : C1, ..., Cn

[4] P −→ V : ACK or H(C1, ..., Cn)

Fig. 3. Base Case Protocol

652 D. Perito and G. Tsudik

5.1 Efficient Proof of Secure Erasure

As shown in Figure 3, secure erasure is achieved by filling prover’s memory with
verifier-selected randomness, followed by the prover returning the very same
randomness to the verifier. On the prover, these two tasks are executed by the
ROM-resident read-and-send and receive-and-write functions, respectively.

It is easy to see that, given our assumptions of: i) adversary’s software only
attacks, ii) prover’s fixed-size memory M , iii) no hardware modification of com-
promised provers, and iv) source of true randomness on the verifier, the proof
of secure erasure holds. In fact, the security of erasure is unconditional, due to
lack of any computational assumptions.

Unfortunately, this simple approach is woefully inefficient as it requires a
resource-challenged P to send and receive n bits. This prompts us to consider
whether secure erasure can be achieved by either (1) sending fewer than n bits
to P in round one, or (2) having P respond with fewer than n bits in round
two. We defer (1) to future work. However, if we sacrifice unconditional security,
bandwidth in round two can be reduced significantly.

One way to reduce bandwidth is by having P return a fixed-sized function
of entire randomness received in round one. However, choosing this function is
not entirely obvious: for example, simply using a cryptographically suitable hash
function yields an insecure protocol. Suppose we replace round two with CHK =
H(R1, ..., Rn) where H() is a hash function, e.g., SHA. Then, a malicious P can
start computing CHK in real time, while receiving R1, ..., Rn during round one,
without storing these random values.

An alternative is for P to compute a MAC (Message Authentication Code)
using the last k bits of randomness – received from V in round one – as the key.
(Where k is sufficiently large, i.e., at least 128 bits.) A MAC function can be
instantiated using constructs, such as AES CBC-based MAC [7], AES CMAC
or HMAC [6] However, minimum code size varies, as discussed in Section 6. In
this version of the protocol, the MAC function must be stored in ROM. Clearly,
a function with the lowest memory utilization is preferable in order to minimize
the amount of working memory that P needs to reserve for computing MAC-s.

Claim: Assuming a cryptographically strong source of randomness on V and a
cryptographically strong MAC function, the following 2-round protocol achieves
secure erasure of all writable memory M on P:

[1] P ←− V : R1, ..., Rn where K = Rn−k+1...Rn

[2] P −→ V : MACK(R1, ..., Rn−k)

where k is the security parameter (bit-size of the MAC key) and K is the k-bit
string Rn−k+1, ..., Rn.

Proof (Sketch): Suppose that malicious code MC occupies b > 0 bits and
persists in M after completion of the secure code update protocol. Then, during
round one, either: (1) some MAC pre-computation was performed and certain

Secure Code Update for Embedded Devices 653

bits (at least b) of R1, ..., Rn−k were not stored in M , or (2) the bit-string
R1, ..., Rn−k was compressed into a smaller x-bit string (x < n − k − b). How-
ever, (1) is infeasible since the key K is only communicated to P at the very
end of round one, which precludes any MAC pre-computation. Also, (2) is in-
feasible since R1, ..., Rn−k is originates from a cryptographically strong source
of randomness and its entropy rules out any compression. �

Despite its security and greatly reduced bandwidth overhead, this approach is
still computationally costly considering that it requires a MAC to be computed
over entire n-bit memory M . One way to alleviate its computational cost is
by borrowing a technique from [4] that is designed to obtain a probabilistic
proof in a Provable Data Possession (PDP) setting discussed in Section 2.3. The
PDP scheme in [4] assumes that data outsourced by V (client) to P (server)
is partitioned into fixed-size m-bit blocks. V generates a sequence of t block
indices and a one-time key K which are sent to P. The latter is then asked
to compute and return a MAC (using K) of the t index blocks. In fact, these t

indices are not explicitly transferred to P; instead, V supplies a random seed
from which P (e.g., using a hash function or a PRF) generates a sequence of
indices.

As shown in [4], this technique achieves detection probability of: P = 1− (1−
m
d)t where m is the number of blocks that V did not store (i.e., blocks where
malicious code resides), d is the total number of blocks and t is the number of
blocks being checked.

Consider a concrete example of a Mica Mote with 128 Kbytes of processor
RAM and further 512 Kbytes of data memory, totaling 640 Kbytes. Suppose
that block size is 128 bytes and there are thus 5, 120 blocks. If m

d = 1%, i.e.,
m = 51 blocks, with t = 512, detection probability amounts to about 99.94%.
This represents an acceptable trade-off for applications where the advantage
of MAC-ing 1

10 -th of verifier memory outweighs the 0.06% chance of residual
malicious code and/or data. Figure 4 plots the probability t for different values
of m.

 0.92

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 300 400 500 600 700 800 900 1000

De
tec

tio
n p

rob
ab

ility

Number of blocks checked

m=51
m=80

Fig. 4. Probability of detecting memory modifications for # of checked blocks varying

between 256 (5%) and 1024 (20%)

654 D. Perito and G. Tsudik

5.2 Optimizing Code Update

Recall that, in the base case of Figure 3, round three corresponds to code update.
Although, in practice, code size is likely to be less than n, receiving and storing
entire code is a costly step. This motivates the need for shortcuts. Fortunately,
there is one effective and obvious shortcut. The main idea is to replace a random
(n − k)-bit string with the same-length encryption of new code under some key
K ′. This way, after round two (whether as in the base case or optimized as in
the previous section), V sends K ′ to P which uses K ′ to decrypt the code. The
resulting protocol is shown in Figure 5.

[1] P ←− V : R1, ..., Rn

[2] P −→ V : MACK(R1, ..., Rn−k)

[3.1] P ←− V : K′

[3.2] P : C1, ..., Cn−k = DK′(R1, ..., Rn−k),

where D() is decryption and C1, ..., Cn−k is new code

[4] P −→ V : ACK

Fig. 5. Optimized Protocol

Note again that, since we assume no communication interference and no
packet loss or communication errors, the last round is just an acknowledgement,
i.e., not a function of decrypted code or K ′. This optimization does not affect
the security of our scheme if a secure block cipher is used, since encryption of
code [C1, ..., Cn−k] with key K ′ is random and unpredictable to the prover before
key K ′ is disclosed. Hence, the proof in Section 5.1 also holds for this optimized
version of the protocol.

6 Implementation and Performance Considerations

In order to estimate its performance and power requirements, we implemented
PoSE on the ATMEGA128 micro-controller mounted on a MicaZ sensor. Char-
acteristics of this sensor [11] platform relevant to our scheme are: 648KB total
programmable memory; 250kbps data rate for the wireless communication chan-
nel. The total memory is divided into: 128KB of internal flash; 4KB of internal
SRAM; 4KB of configuration EEPROM; 512KB of external flash memory. The
application was implemented on TinyOS.

6.1 Performance Evaluation

Three main metrics affect the performance of our scheme and for this reason will
be evaluated separately: communication speed; read/write memory access time;
computation speed of the message authentication code.

Secure Code Update for Embedded Devices 655

Communication channel throughput. The maximum claimed throughput
of TI-CC2420 radio chip, as reported in the specifications, is 250kbps, which
translates to 31, 250 bytes/sec. This upper-bound is unfortunately quite unattain-
able and our tests show that, in a realistic scenario, throughput hovers around
11, 000 bytes/sec. The total memory available on a MicaZ is 644KB, including
external and internal flash and EEPROM. Our efficient proof of erasure only
requires randomness to be sent once, from the verifier to the prover. Then a
realistic estimate for the transmission time of the randomness amounts to ap-
proximately 59 seconds, as was indeed witnessed in our experimental setup.

Memory Access. Another important factor in the performance of PoSE is
memory access and write time. Write speed on the internal and external flash
memory is 60KB/sec according to specifications. This estimate has also been
confirmed by our experiments. Therefore, memory access accounts for only a
small fraction of the total run-time.

MAC Computation. We evaluated the performance of three different MAC
constructs: HMAC-MD5, HMAC-SHA1 and SkipJack in CBC-MAC. Note that,
even though there are well-known attacks on MD5 that find chosen-prefix col-
lisions [33], the short-lived nature of the integrity check needed in our protocol
rules out attacks that require 250 calls to the underlying compression function.
Table 2(a) shows the results: in each case we timed MAC computation over
644KB of memory on MicaZ.

The fact that MD5 is the fastest is not surprising, given that, in our imple-
mentation, the code is heavily in-lined, which reduces the number of context
switches for function calls while also resulting in increased code size.

6.2 Memory Usage

We now attempt to estimate the amounts of code and volatile memory needed
to run PoSe. An estimate of code memory needed to run it is necessary to
understand ROM size requirements. Furthermore, estimating required volatile
memory is critical for the security of the protocol. In fact, in order to correctly
follow the protocol, the prover needs a minimal amount of working memory.
This memory can not be filled with randomness and hence P could use it to
store arbitrary values. However, by keeping the amount of volatile memory to
a minimum we can guarantee that P can not store both arbitrary values and
carry on the necessary computation to complete the protocol.

Since assuring that the amount of volatile memory used in a specific imple-
mentation is difficult, one way to minimize effects of volatile memory is to include
it in the computation of the keyed MAC (or send it back to V in the base case).
Even though the contents of volatile memory are dynamic, they are entirely
depended on the inputs from V . Therefore, they are essentially deterministic.
In this case, the verifier would have to either simulate or re-run the attestation
routine to compute the correct (expected) volatile memory contents.

656 D. Perito and G. Tsudik

Table 2. MAC constructions on MicaZ

(a) Energy consumption and time

MAC Time (sec) Energy (μJ/byte)

HMAC-MD5 28.3 1

HMAC-SHA1 95 3.5

Skipjack CBC-MAC 88 3.1

(b) Code and working memory required

MAC ROM (bytes) RAM (bytes)

HMAC-MD5 9,728 110

HMAC-SHA1 4,646 124

Skipjack CBC-MAC 2,590 106

Code Size. To estimate code size, we implemented the base case PoSE protocol
in TinyOS. It transmits and receives over the wireless channel using Active
Messages. The entire application takes 11, 314 bytes of code memory and 200
bytes of RAM. RAM is needed to hold the necessary data structures along
with the stack. Our implementation used regular TinyOS libraries and compiler.
Careful optimization would most likely reduce memory consumption.

In the optimized version of PoSE, we also need a MAC housed in ROM. Table
2(b) shows the amount of additional memory necessary to store code and data
for various MAC constructions. Finally, Table 3 shows the size of both code and
working memory for all presented above.

The reason for MD5 having a larger memory footprint is because, as discussed
above, the implementation we used is highly inlined. While this leads to better
performance (faster code) it also results in a bigger code size.

Table 3. Code and volatile memory size

Protocol ROM (bytes) RAM (bytes)

PoSE(Base Case) 11,314 200

PoSE-MD5 21,042 264

PoSE-SHA1 15,960 274

PoSE-SkipJack 13,904 260

Memory Mapping. In the previous discussion, we have abstracted away from
specific architectures by considering a system with uniformly addressable mem-
ory space M . However, in formulating this generalization extra care must be
taken: in real systems, memory is not uniform, since there can be regions as-
signed to specific functions, such as memory-mapped registers or I/O buffers. In
the former case, changing these memory locations can result in modified regis-
ters which, in turn, might cause unintended side effects. In the latter, memory
content of I/O buffers might change due to asynchronous and non-deterministic

Secure Code Update for Embedded Devices 657

events, such as reception of a packet from a wireless link. When we refer to prover
memory M , we always exclude these special regions of memory. Hence both the
verifier and the prover have to know a mapping from the virtual memory M to
the real memory. However, this mapping can be very simple, thus not requiring a
memory management unit. For example on the Atmel ATMEGA128, as used in
the MicaZ, the first 96 bytes of internal SRAM are reserved for memory-mapped
register and I/O memory.

6.3 Read-Only Memory

PoSE needs a sufficient amount of read-only memory (ROM) to store the routines
(read-and-send, receive-and-write and, in its optimized version, MAC) needed
to run the protocol. While the use of mask ROM has always been prominent
in embedded devices, recently, due to easier configuration, flash memory has
supplanted cheaper mask ROM.

However, there are other means to obtain read-only memory using different
and widely available technologies. For example, ATMEGA128 [5] allows a portion
of its flash memory to be locked in order to prevent overwriting. Even though
the size of this lockable portion of memory is limited to 4KB, this feature shows
the feasibility of such an approach on current embedded devices. Note that,
once locked, the memory portion cannot be unlocked unless an external JTAG
debugger is attached to unset the lock bit.

Moreover, ATMEGA128 has so-called fuse bits that, once set, cannot be re-
stored without unpacking the MCU and restoring the fuse. This clearly illustrates
that the functionalities needed to have secure read-only memory are already
present in commodity hardware.

Another way to achieve the same goal would be to use one-time programmable
(OTP) memory. Although this memory is less expensive than flash, it still offers
some flexibility over conventional ROM.

7 Limitations and Challenges

In this paper, our design was guided mainly by the need to obtain clear secu-
rity guarantees and not to maximize efficiency and performance. Specifically,
we aimed to explore whether remote attestation without secure hardware is
possible at all. Hence, PoSE-based protocols (even the optimized ones) have cer-
tain performance drawbacks. In particular, the first protocol round is the most
resource-consuming part of all proposed protocols. The need to transmit, receive
and write n bits is quite expensive. It remains to be investigated whether it is
possible to achieve same security guarantees with a more efficient design.

In terms of provable security, our discussion of Proofs-of-Secure-Erasure(PoSE-
s) has been rather light-weight. A more formal treatment of the PoSE primitive
needs to be undertaken. (The same holds for the multi-prover extension described
in Appendix A).

658 D. Perito and G. Tsudik

Furthermore, we have side-stepped the issue of verifier authentication. How-
ever, in practice, V must certainly authenticate itself to P before engaging in
any PoSE-like protocol. This would entail additional requirements (e.g., stor-
age of V’s public key in P’s ROM) and raise new issues, such as exactly how
(possibly compromised) P can authenticate V?

Another future direction for improving our present work is by giving the ad-
versary the capability of attacking our protocol with another device (not just
the actual prover). This device would try to aid the prover in computing the
correct responses in the protocol and pass the PoSE. Assuming wireless com-
munication, one way for verifier to prevent the prover from communicating with
another malicious device is is by actively jamming the prover.

Jamming can be used to selectively allow the prover to complete the proto-
col, while preventing it from communicating with any other party. Any attempt
to circumvent jamming by increasing transmission power can be limited by us-
ing readily available hardware. For example, the CC2420 radio, present on the
MicaZ, supports transmission power control. Thresholds can be set for the Re-
ceived Signal Strength (RSS), RSSmin and RSSmax, such that only frames with
RSS ∈ [RSSmin, RSSmax] are accepted and processed. This is enforced in hard-
ware by the radio chip. Hence, if the verifier wants to make sure that the prover
does not communicate, it can simply emit a signal with RSS > RSSmax. This
approach is similar to the one employed in [22], albeit, in a different setting.

8 Conclusions

This paper considered secure erasure, secure code update and remote attestation
in the context of embedded devices. Having examined prior attestation approaches
(both hardware- and software-based), we concluded that the former is too expen-
sive, while the latter – too uncertain. We then explored an alternative approach
that generalized the attestation problem to remote code update and secure era-
sure. Our approach, based on Proofs-of-Secure-Erasure relies neither on secure
hardware nor on tight timing constraints. Moreover, although not particularly ef-
ficient, it is viable, secure and offers some promise for the future. We also assess
the feasibility of the proposed method in the context of commodity sensors.

Acknowledgments

We thank ESORICS’10 anonymous reviewers for their comments. We are also
grateful to Ivan Martinovic, Claude Castelluccia, Aurelien Francillon and Brian
Parno for their comments on early drafts of this paper. Research presented in
this paper was supported, in part, by the European Commission-funded STREP
WSAN4CIP project, under grant agreement ICT-225186. All views and conclu-
sions contained herein are those of the authors and should not be interpreted as
representing the official policies or endorsement of the WSAN4CIP project or
the European Commission.

Secure Code Update for Embedded Devices 659

References

1. Anderson, R., Kuhn, M.: Tamper resistance - a cautionary note. In: Proceedings

of the Second USENIX Workshop on Electronic Commerce (1996)

2. Arbaugh, W.A., Farber, D.J., Smith, J.M.: A secure and reliable bootstrap ar-

chitecture. In: SP 1997: Proceedings of the 1997 IEEE Symposium on Security

and Privacy, Washington, DC, USA, p. 65. IEEE Computer Society, Los Alamitos

(1997)

3. Ateniese, G., Burns, R., Curtmola, R., Herring, J., Kissner, L., Peterson, Z., Song,

D.: Provable data possession at untrusted stores. In: CCS 2007: Proceedings of the

14th ACM Conference on Computer and Communications Security, pp. 598–609.

ACM, New York (2007)

4. Ateniese, G., Di Pietro, R., Mancini, L.V., Tsudik, G.: Scalable and efficient prov-

able data possession. In: SecureComm 2008: Proceedings of the 4th International

Conference on Security and Privacy in Communication Networks, pp. 1–10. ACM,

New York (2008)

5. Atmel Corporation. Atmega128 datasheet,

http://www.atmel.com/atmel/acrobat/doc2467.pdf

6. Bellare, M., Canetti, R., Krawczyk, H.: Keying hash functions for message authen-

tication. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 1–15. Springer,

Heidelberg (1996)

7. Bellare, M., Kilian, J., Rogaway, P.: The security of cipher block chaining. In:

Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 341–358. Springer, Hei-

delberg (1994)

8. Cachin, C., Maurer, U.: Unconditional security against memory-bounded adver-

saries. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 292–306.

Springer, Heidelberg (1997)

9. Castelluccia, C., Francillon, A., Perito, D., Soriente, C.: On the difficulty of

software-based attestation of embedded devices. In: CCS 2009: Proceedings of 16th

ACM Conference on Computer and Communications Security (November 2009)

10. Choi, Y.-G., Kang, J., Nyang, D.: Proactive code verification protocol in wireless

sensor network. In: Gervasi, O., Gavrilova, M.L. (eds.) ICCSA 2007, Part II. LNCS,

vol. 4706, pp. 1085–1096. Springer, Heidelberg (2007)

11. Crossbow Technology Inc. Micaz datasheet,

http://www.xbow.com/Products/Product pdf files/

Wireless pdf/MICAz Datasheet.pdf

12. England, P., Lampson, B., Manferdelli, J., Peinado, M., Willman, B.: A trusted

open platform. IEEE Computer 36(7) (2003)

13. Flammini, F., Gaglione, A., Mazzocca, N., Moscato, V., Pragliola, C.: Wireless

sensor data fusion for critical infrastructure security. In: CISIS 2008: Proceedings

of the International Workshop on Computational Intelligence in Security for Infor-

mation Systems (October 2008)

14. Francillon, A., Castelluccia, C.: Code injection attacks on Harvard-architecture

devices. In: Ning, P., Syverson, P.F., Jha, S. (eds.) CCS 2008: Proceedings of the

15th ACM Conference on Computer and Communications Security. ACM, New

York (2008)

15. Goodspeed, T.: Exploiting wireless sensor networks over 802.15.4. In: Texas In-

struments Developper Conference (2008)

http://www.atmel.com/atmel/acrobat/doc2467.pdf
http://www.xbow.com/Products/Product_pdf_files/Wireless_pdf/MICAz_Datasheet.pdf
http://www.xbow.com/Products/Product_pdf_files/Wireless_pdf/MICAz_Datasheet.pdf

660 D. Perito and G. Tsudik

16. Gratzer, V., Naccache, D.: Alien vs. quine. IEEE Security and Privacy 5, 26–31

(2007)

17. Hu, W., Corke, P., Shih, W.C., Overs, L.: secfleck: A public key technology platform

for wireless sensor networks. In: Roedig, U., Sreenan, C.J. (eds.) EWSN 2009.

LNCS, vol. 5432. Springer, Heidelberg (2009)

18. Jakobsson, M., Johansson, K.-A.: Assured detection of malware with ap-

plications to mobile platforms. Tech. rep., DIMACS (February 2010),

http://dimacs.rutgers.edu/TechnicalReports/TechReports/2010/2010-03.pdf

19. Juels, A., Kaliski Jr., B.S.: Pors: proofs of retrievability for large files. In: CCS

2007: Proceedings of the 14th ACM Conference on Computer and Communications

Security, pp. 584–597. ACM Press, New York (2007)

20. Kennell, R., Jamieson, L.H.: Establishing the genuinity of remote computer sys-

tems. In: SSYM 2003: Proceedings of the 12th conference on USENIX Security

Symposium, pp. 21–21. USENIX Association, Berkeley (2003)

21. Kil, C., Sezer, E.C., Azab, A.M., Ning, P., Zhang, X.: Remote attestation to dy-

namic system properties: Towards providing complete system integrity evidence.

In: DSN 2009: Proceedings of the 39th IEEE/IFIP Conference on Dependable Sys-

tems and Networks (June 2009)

22. Martinovic, I., Pichota, P., Schmitt, J.B.: Jamming for good: a fresh approach to

authentic communication in wsns. In: WiSec 2009: Proceedings of the Second ACM

Conference on Wireless Network Security, pp. 161–168. ACM, New York (2009)

23. Park, T., Shin, K.G.: Soft tamper-proofing via program integrity verification in

wireless sensor networks. IEEE Trans. Mob. Comput. 4(3) (2005)

24. Roman, R., Alcaraz, C., Lopez, J.: The role of wireless sensor networks in the area

of critical information infrastructure protection. Inf. Secur. Tech. Rep. 12(1), 24–31

(2007)

25. Sailer, R., Zhang, X., Jaeger, T., van Doorn, L.: Design and implementation of a

tcg-based integrity measurement architecture. In: SSYM 2004: Proceedings of the

13th Conference on USENIX Security Symposium, pp. 16–16. USENIX Associa-

tion, Berkeley (2004)

26. Seshadri, A., Luk, M., Perrig, A.: SAKE: Software attestation for key establish-

ment in sensor networks. In: Nikoletseas, S.E., Chlebus, B.S., Johnson, D.B., Kr-

ishnamachari, B. (eds.) DCOSS 2008. LNCS, vol. 5067, pp. 372–385. Springer,

Heidelberg (2008)

27. Seshadri, A., Luk, M., Perrig, A., van Doorn, L., Khosla, P.: SCUBA: Secure code

update by attestation in sensor networks. In: WiSe 2006: Proceedings of the 5th

ACM Workshop on Wireless Security, ACM Press, New York (2006)

28. Seshadri, A., Luk, M., Shi, E., Perrig, A., van Doorn, L., Khosla, P.: Pioneer: verify-

ing code integrity and enforcing untampered code execution on legacy systems. In:

SOSP ’05: Proceedings of the Twentieth ACM Symposium on Operating Systems

Principles. ACM, New York (2005)

29. Seshadri, A., Perrig, A., van Doorn, L., Khosla, P.K.: SWATT: SoftWare-based

ATTestation for embedded devices. In: IEEE Symposium on Security and Privacy.

IEEE Computer Society, Los Alamitos (2004)

30. Shacham, H.: The geometry of innocent flesh on the bone: Return-into-libc without

function calls (on the x86). In: CCS 2007: Proceedings of the 14th ACM Conference

on Computer and Communications Security. ACM, New York (2007)

http://dimacs.rutgers.edu/TechnicalReports/TechReports/2010/2010-03.pdf

Secure Code Update for Embedded Devices 661

31. Shaneck, M., Mahadevan, K., Kher, V., Kim, Y.: Remote software-based attesta-

tion for wireless sensors. In: Molva, R., Tsudik, G., Westhoff, D. (eds.) ESAS 2005.

LNCS, vol. 3813, pp. 27–41. Springer, Heidelberg (2005)

32. Shankar, U., Chew, M., Tygar, J.D.: Side effects are not sufficient to authenticate

software. In: Proceedings of the 13th USENIX Security Symposium (August 2004)

33. Stevens, M., Lenstra, A., Weger, B.: Chosen-prefix collisions for md5 and colliding

x.509 certificates for different identities. In: Naor, M. (ed.) EUROCRYPT 2007.

LNCS, vol. 4515, pp. 1–22. Springer, Heidelberg (2007)

34. Trusted Computing Group. Specifications

35. Yang, Y., Wang, X., Zhu, S., Cao, G.: Distributed software-based attestation for

node compromise detection in sensor networks. In: SRDS. IEEE Computer Society,

Los Alamitos (2007)

A: Dealing with Multiple Devices

Thus far, in this paper we assumed one-on-one operation: one prover and one
verifier. However, in practice, embedded devices are often deployed in groups and
in relative proximity (and density) among them, e.g., Wireless Sensor Networks
(WSNs). If the task at hand is to perform code attestation or update of multiple
proximate devices, our approach can be easily extended to support this setting
and, at the same time, obtain a significant efficiency gain. The main observation
is that, if the verifier can communicate with t > 1 devices at the same time
(i.e., via broadcast), download of randomness in the first round of our protocol
– which represents the most time-consuming part of the protocol – can be done
in parallel for all devices within the verifier’s communication range. Of course,
in order to receive replies the verifier has to be within communication range of
all t provers.

At the same time, parallel code update of multiple devices prompts us to
re-examine the adversarial model. In the one-on-one setting, it makes sense to
assume radio silence, i.e., the fact that, during the protocol, the prover device is
not communicating with any party other than the verifier, and no other (third)
device is transmitting any information that can be received by either the prover
or the verifier. Note that the term adversary refers collectively to any compro-
mised devices running malicious code as well as any extraneous devices physically
controlled by the adversary. However, the one-on-one setting does not preclude
the adversary from over-hearing communication between the prover and the ver-
ifier, i.e., eavesdropping on protocol messages. We claim that this has no bearing
on security, since each protocol involves a distinct stream of randomness.

In contrast, when multiple parallel (simultaneous) provers are involved, the
situation changes. In particular, we need to take into account that possibility that
one or more of the t provers is running malicious code. Suppose that a malicious
code-running prover Px. Then, if we näıvely modify our protocol from Figure 5
as shown in Figure 6, the resulting protocol is insecure. The reason for the lack
of security is simple: suppose that Px ignores the message in round 1.0 and does
not store verifier-supplied randomness. Then, in round 2.0, Px over-hears and

662 D. Perito and G. Tsudik

records a reply – MACK(R1, ..., Rn−k) – from an honest prover P1. Clearly,
Px can just replay this MAC and thus convince the verifier of having received

and stored the randomness from message 1.0.

Assume reachable provers P1, ..., Pt and 1 < j ≤ t

[1.0] Pj ⇐= V : R1, ..., Rn where K = Rn−k, ..., Rn

[2.0] Pj −→ V : MACK(R1, ..., Rn−k)

[3.1] Pj ⇐= V : k′

[3.2] Pj : C1, ..., Cn−k = DK′ (R1, ..., Rn−k)

[4.0] Pj −→ V : ACK

Fig. 6. Insecure Multi-Prover Protocol

The above discussion leads us to amend the adversarial model as follows: the
adversary is allowed to record any portion of the protocol. However, for fear of
being detected, it is not allowed to transmit anything that is not part of the
protocol. In particular, during the protocol, none of the (potentially compro-
mised) t provers can transmit anything that is not part of the protocol. And, no
extraneous entity can transmit anything to any of the t provers.

Assume reachable provers P1, ..., Pt and 1 < j ≤ t

[1.1] Pj ⇐= V : R1, ..., Rn − k

[1.2] Pj ←− V : Kj where k = |Kj |
[2.0] Pj −→ V : MACKj (R1, ..., Rn−k)

[3.1] Pj ⇐= V : K′

[3.2] Pj : C1, ..., Cn−k = DK′ (R1, ..., Rn−k)

[4.0] Pj −→ V : ACK

Fig. 7. Multi-Prover Protocol

The modified (and secure) protocol that supports t > 1 provers is shown in
Figure 7. The main difference from the insecure version in Figure 6 is the fact
that random and distinct keys Kj are generated and sent to each prover Pj .

This protocol guarantees that, in the context of the modified adversarial
model, each prover has to independently store the randomness sent by the ver-
ifier. Since, the key sent by the verifier is unique to each prover and so is the
MAC computation. This assertion clearly needs to be substantiated via a proof
of security. This issue will be addressed as part of our future work.

Caveat: We acknowledge that, while the multi-prover protocol achieves better
performance through parallelization, it does not improve energy consumption on
each prover. We plan to explore this issue as part of our future work.

D(e|i)aling with VoIP: Robust Prevention of
DIAL Attacks

Alexandros Kapravelos, Iasonas Polakis, Elias Athanasopoulos,
Sotiris Ioannidis, and Evangelos P. Markatos

Institute of Computer Science,

Foundation for Research and Technology Hellas, Greece

{kapravel,polakis,elathan,sotiris,markatos}@ics.forth.gr

Abstract. We carry out attacks using Internet services that aim to keep

telephone devices busy, hindering legitimate callers from gaining access.

We use the term DIAL (Digitally Initiated Abuse of teLephones), or, in

the simple form, Dial attack, to refer to this behavior. We develop a

simulation environment for modeling a Dial attack in order to quantify

its full potential and measure the effect of attack parameters. Based on

the simulation’s results we perform the attack in the real-world. By using

a Voice over IP (VoIP) provider as the attack medium, we manage to

hold an existing landline device busy for 85% of the attack duration by

issuing only 3 calls per second and, thus, render the device unusable. The

attack has zero financial cost, requires negligible computational resources

and cannot be traced back to the attacker. Furthermore, the nature of

the attack is such that anyone can launch a Dial attack towards any

telephone device.

Our investigation of existing countermeasures in VoIP providers shows

that they follow an all-or-nothing approach, but most importantly, that

their anomaly detection systems react slowly against our attacks, as we

managed to issue tens of thousands of calls before getting spotted. To

cope with this, we propose a flexible anomaly detection system for VoIP

calls, which promotes fairness for callers. With our system in place it is

hard for an adversary to keep the device busy for more than 5% of the

duration of the attack.

1 Introduction

The Internet is a complicated distributed system that interconnects different
kinds of devices and interfaces with other types of networks. Traditionally, com-
puter security deals with attacks that are launched from Internet hosts and target
other Internet hosts. However, the penetration of Internet services in everyday
life enables threats originating from Internet hosts and targeting non Internet
infrastructures. Such a non Internet infrastructure is the telephony network, a
vital commodity.

The ever increasing number of households that adopt Voice over IP technology
as their primary telephony system, demonstrates our shifting towards a digitally

D. Gritzalis, B. Preneel, and M. Theoharidou (Eds.): ESORICS 2010, LNCS 6345, pp. 663–678, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

664 A. Kapravelos et al.

interconnected community. According to estimations, IP communication sub-
scribers will reach more than 1.8 billion worldwide by 2013 [2]. While this new
technology coexists with the old technology, new methods for their interaction
emerge. Today, an Internet user can place calls to anywhere in the world reach-
ing anyone that has a telephone device and take advantage of all characteristics
inherent in such digital technologies, thus introducing new threats against tra-
ditional telephony systems.

In this paper, we explore the feasibility of an attack using Internet services
and targeting regular landline or cellular phones. We seek to characterize the pa-
rameter values that will make the attack effective and also the means to mitigate
it. Our key contributions are the following:

Dial Attack. We develop an empirical simulation in order to explore the poten-
tial effectiveness of Dial attacks. Through the simulated environment we identify
and quantify all of the attack’s fundamental properties. Using experimental eval-
uation with existing telephone lines, we demonstrate that an attacker manages
to render an ordinary landline device unusable, holding it busy for 85% of the
attack period by issuing only 3 calls per second . The attack requires no financial
resources, negligible computational resources and cannot be traced back to the
attacker.

Defenses. We seek to reveal existing countermeasures through reverse engineer-
ing of real-world VoIP providers. Our findings suggest that current schemes are
not efficient since they follow an all-or-nothing approach. We develop and ana-
lyze a server-side anomaly detection system for VoIP traffic, which significantly
reduces the attack impact. With our defense system deployed, the attacker can
no longer hold the line busy for more than 5% of the attack period.

This paper is organized as follows. We analyze our motivations in Section 2.
In Section 3 we present a threat model and a potential attack in a simulated
environment. We carry out the attack against a real landline device in Section 4.
In Section 5 we present existing countermeasures and introduce our anomaly de-
tection system, together with experiments that show how effectively our system
mitigates the attack. Finally, we review prior work in Section 6 and conclude in
Section 7.

2 Motivation

In this section we present the basic motivations that drove us to explore this
area and led to the creation of this paper. We explore our motivation in terms
of goal and attack platform.

Goal. The traditional communication through the telephone network has be-
come an important commodity. Take into account, that over 300 billion domes-
tic calls to landlines were served inside the US alone in 2005 according to the
FCC[5]. Our argument is that access to a telephone device is vital for humans.

D(e|i)aling with VoIP: Robust Prevention of DIAL Attacks 665

Considering the importance of the service, an adversary may target a tele-
phone device in order to harm a user. Prohibiting users from accessing certain
services has been done in the recent past. For example, a significant part of com-
puter viruses disrupt Internet connectivity. The impact of such an attack can be
enormous, either life threatening (targeting a fire-fighting station during a phys-
ical disaster), or financial (targeting a business, like pizza delivery, or hindering
a bank to authenticate a transfer request [6]) or simple disturb someone.

Our research is composed by two complementary goals. The first goal is to find
out if it is possible to render a telephone device unusable. We want to achieve this
goal with no financial resources, negligible computational resources and without
being traceable back to the attacker. The second goal is to design and build
technologies for protecting users from attacks that target telephones. We want
to achieve this goal with minimal deployment effort, minimal user interference
and by using existing well-known technologies.

Attack platform. In order to achieve our goals we use VoIP providers as attack
platforms against telephone devices. Our choice was driven by various reasons.
First, we wanted an attack platform, which is affordable and easy to access.
There are hundreds of free VoIP providers, which permit users to access any
landline device with no cost at all or mobile devices with a minimal cost. Sec-
ond, we wanted to be able to completely automate the attack and have enough
flexibility in fine tuning the call placement. Most VoIP providers support the
SIP protocol[19] which met our expectations. Third, we wanted to perform the
attack anonymously. The very nature of VoIP technology allows a caller to hide
his true identity. And finally, we wanted to launch the attack from a PC. The
fact that our attack platform is already provided by the industry and anyone
can use it to launch the attack motivates us highly to explore the area as a
precaution from future exploitation of VoIP services.

One can argue, that parts of the attack described in this paper are well-known
or can be carried out, manually, by performing an excessive amount of dialing.
As far as the novelty is concerned, to the best of our knowledge, this paper is the
first one to perform and evaluate a real automated attack directly targeting a
telephone device. As far as manual dialing is concerned, we already enlisted the
four reasons, which drove us to select VoIP as the attack platform. These four
reasons, reveal characteristics of a platform far superior to humans performing
manual dialing.

3 Attack Overview

In this section we present the fundamental properties of the attack we developed.
We start by describing our attack in detail; we specify the threat model, the
adversary’s overall goal and list all the assumptions we have made. We develop
a simulated environment in order to carry out the attack virtually. Based on our
findings in this section, we proceed and develop the actual attack prototype in
the next section.

666 A. Kapravelos et al.

3.1 Attack Description

The goal of the attacker is to render a telephone device unusable with zero
financial cost. This can be achieved by injecting a significant number of missed
calls towards a victim telephone device. A call is considered missed, if it is
hanged up prior to the other end answering it. By placing the calls correctly
in the network, the attacker can keep the target continuously busy and, thus,
prevent other users from accessing the telephone device. Even though many VoIP
providers allow calls to landlines free of charge, we designed our attack in a way
to be able to attack cell phones even if such calls are not free. By hanging-up
the placed calls on time, the adversary manages to launch the attack cost free.
Even if the target telephone device is answered the attack does not degrade, but
rather augments, taking into account that the resource is still in busy state.

The attack in principle consists of a resource R, an attack medium M and
calling modules. The resource represents a telephone device and has two states;
it can either be available or busy. The attack medium simulates the behavior of
a VoIP provider; it receives requests and queries the resource in order to acquire
it. A calling module places such requests to the attack medium at a configurable
rate.

The proposed attack is based on some important assumptions. First, we as-
sume that M is unreliable, meaning that communication messages may be lost,
dropped or delayed. However, we assume that all faults in M are stabilized in
the long run. Thus, we do not implement message faults for M in the simulated
environment. Second, we assume that R does not support direct querying, or at
least it supports it partially. There is no way to directly retrieve all states of R.
However, it is possible to implement detection by analyzing parts of the commu-
nication messages. Third, we assume that, when no attack is taking place, the
calling rate follows a Poisson distribution (λ = 10) [10]. When an attack is taking
place, the calling rate significantly varies from the Poisson distribution. Finally,
we make no assumptions about the routing latency for call placement, i.e. the
time it takes for a request to reach R through M , or the release time of R after
call termination. Instead, we perform real experiments to collect representative
approximations of these quantities (see next section).

3.2 Simulation

Before starting experimenting with real calls in the wild, we performed a series
of controlled experiments in a simulated environment. Based on the attack de-
scription we just presented, we developed a multi-threaded simulator where we
instantiated a virtual calling module with an aggressive behavior to represent the
attacker and one with a non-aggressive behavior to represent a legitimate caller.
Then, we modeled the resource using a data structure that allows the module to
obtain exclusive access with a certain probability. Each calling module behaves
similar to a VoIP caller, i.e. it attempts to connect to the resource R through an
attack medium M . In principle, M simulates a VoIP provider and R a telephone
device.

D(e|i)aling with VoIP: Robust Prevention of DIAL Attacks 667

seconds
0 1 2 3 4 5 6 7 8

C
al

ls
 (

%
)

0

0.2

0.4

0.6

0.8

1

Fig. 1. Cumulative distribution of routing latency times for call placement

In order to simulate the virtual calls in a realistic fashion we collected em-
pirical values of durations from real call placement and hang-up operations. We
issued 7,300 calls through a real VoIP provider over the time period of one
week (see Figure 1). In this way, we collected representative routing latencies
of call placements at various times and days of a typical week. The simulator
maintains a pool with the 7,300 routing latencies and uses one, randomly, each
time a virtual call attempt takes place. Unfortunately, we could not follow a
similar approach for the hang-up operation, since it is hard to detect represen-
tative values for hang-up times of a real VoIP provider. However, we used the
following approach, which we consider quite realistic. We injected pairs of call
placements and hang-up operations in a real VoIP provider. We initially started
injecting the pairs back-to-back. The result was that one of the two calls always
reached the telephone device when it was in the busy state. In other words,
the VoIP provider could not complete the hang-up operation of the first arrived
call, before the second arrived. We started increasing the gap between the call
pair, until we could measure that both calls had reached the telephone device
in available state. We managed to successfully issue over 1,000 such call pairs
with this property. The gap times ranged from 1 to 2 seconds. We consider this
time window a realistic window for a hang-up operation. Thus, we modeled the
virtual hang-up operation accordingly. Each virtual call hang-up operation takes
from 1 to 2 seconds to restore R’s state back to available.

Based on the above configuration we issued four 1-hour simulation runs, each
one having an aggressive calling module placing virtual calls, with different inter-
vals. We used intervals ranging from 0.01 to 5 seconds. Concurrently a legitimate
module tried to acquire R following a Poisson distribution with λ = 10.

We examine the results of our experiments in terms of the aggressive call-
ing module’s success in acquiring resource R, the virtual call status distribution
of the aggressive calling module and how many times the legitimate module
succeeded in acquiring resource R. The rate of successful R acquisitions an ag-
gressive thread managed to issue is presented in Figure 2. The best we could
achieve was more than 39 acquisitions per minute. In the real-world, this re-
sult translates into more than 39 ringing calls per minute; a severe attack rate
that would render the telephone device unusable. In Figure 3 we examine the call

668 A. Kapravelos et al.

Interval between attempts (sec)

0.01 0.1 0.2 0.3 0.5 1 5S
uc

ce
ss

fu
l R

es
ou

rc
e

A
cq

ui
si

tio
ns

/m
in

0

10

20

30

40

50

Fig. 2. Rate of successful resource acquisitions managed by an aggressive calling mod-

ule in simulation environment

status distribution of all virtual call placements the aggressive calling module
managed to issue. Observe that as the interval reduces, the amount of failures
in acquiring R increases rapidly. Practically, there is no benefit in reducing the
interval below 0.3 seconds.

The performance of the legitimate module is depicted in Figure 4. We also
plot the results for the first 10 minutes of the experiment’s duration in this
case. First, observe that the legitimate module fails to acquire R for almost 85%
of the simulation duration at the interval of 0.3 seconds, while the aggressive
module issued less than 20,000 attempts. By reducing the intervals down to 0.01
seconds, the legitimate module is completely prevented from acquiring R, with
the downside of requiring almost 200,000 more issued attempts to achieve just
15% more failed resource acquisitions compared to the interval of 0.3 seconds.
Second, we can see that the first 10 minutes approximate the result of the full
duration (1 hour) of the simulation, with tolerable error (from below 1% to 1.5%)
in most cases. An exception occurs only in the case of the 1 second interval, where
the difference is about 8%.

Our simulation experiments confirm our intuition for a potential threat against
telephone devices. In addition to this, they highlight that only 3 calls per second
are needed to render a device unusable and that the error between 1 hour and
10 minutes long experiments is tolerable.

Interval between attempts (sec)
0.01 0.1 0.2 0.3 0.5 1 5

A
tte

m
pt

s

0

2000

20000

200000
Successful
Failed

Fig. 3. Distribution of all acquire at-

tempts issued by an aggressive calling

module in simulation environment

F
ai

le
d

R
es

ou
rc

e
A

cq
ui

si
tio

n
(%

)

0

20

40

60

80

100

Interval between attempts (sec)
0.01 0.1 0.2 0.3 0.5 1 5

1 hour
10 minutes

Fig. 4. Percentage of failed resource ac-

quisitions for the legitimate module which

models a legitimate caller in simulation

environment

D(e|i)aling with VoIP: Robust Prevention of DIAL Attacks 669

4 Attack Evaluation

Based on the simulated studies we carried out in the previous section, we present
an attack prototype. Our aim is to reach the performance we achieved in the
simulated environment, using an existing system which tries to acquire an actual
telephone device.

4.1 Attack Prototype

Our attack prototype implementation uses VoipDiscount [7] as an attack medium,
which uses the Session Initiation Protocol (SIP) [19] for remote communication.
As SIP is the most common used protocol among VoIP service providers, our
prototype implementation is not limited to VoipDiscount but could be applied
using any different provider.

We implemented caller modules, which communicate with M , in our case
the VoIP provider, using the SIP protocol and exchange invite and termination
messages. We used the Python programming language and the pjsip1 library
which provides an implementation of the SIP protocol. We developed two types of
callers: (a) an attacker caller and (b) a legitimate caller. The attacker caller places
calls one after the other, trying to keep the telephone device busy continuously.
The legitimate caller places calls following the Poisson distribution (λ = 10).

Recall, from section 3, that we assumed that the resource does not support
querying, or it supports partial querying. Indeed, the telephone device does not
support querying and thus there is no easy way to track down the status of the
device, i.e. if it is in ringing or busy state. Although, SIP supports querying the
status of a placed call, many providers do not implement this feature. The one
we used is among them. Specifically, we can retrieve that the line is busy, using
a SIP operation, but we can not retrieve a ringing status. To overcome this issue
we implemented a detector module, based on a Fast Fourier Transformation of
the incoming audio signal. This way we analyze the frequency of the audio signal
and detect a ringing tone when we observe signals at 420 Hz. Notice that this
approach successfully recognizes the ringing tone, since the tone has a constant
frequency. Having immediate access to the ringing status is vital for the attack,
since we want to achieve the attack with zero financial resources. We want to keep
the telephone device busy by injecting short time lived calls (i.e. missed calls).
For the generation of a missed call, the call has to be terminated immediately
after the first ringing tone.

4.2 Real World Experiments

We conducted several real world experiments over the period of eight months
using a landline device located in our lab as a victim. For the presentation of
this section we issued a series of runs over the duration of 1 week. This subset of
runs is consistent with our overall experimental results. For each configuration
1 PJSIP, http://www.pjsip.org/.

http://www.pjsip.org/

670 A. Kapravelos et al.

Call placement interval (sec)
0.3 0.5 1 5

C
al

ls
/m

in

0

10

20

30

40

50

Fig. 5. Rate of ringing calls managed by an adversary

we issued 6 runs each with a 10 minute duration with intervals ranging from 0.3
to 5 seconds. Recall from section 3 that the first ten minutes of each simulation
run approximate the result of the full duration (1 hour) of the simulation, with
tolerable error (from below 1% to 1.5%) in most cases. Thus we face the following
trade-off: conducting more short-lived or less long-lived real world experiments.
We chose the first approach, so as to be flexible enough to conduct a larger
experimental base.

As was the case with the simulation, we are interested in three measurements:
(i) the call rate of the attacker, (ii) the call status distribution of the attacker,
and (iii) the probability for a legitimate user to acquire the resource, while an
attack is taking place.

We present the call rate achieved by the attacker in Figure 5. Observe, that the
results are highly consistent with the simulated ones (see Fig. 2). The adversary
has managed to issue almost 40 ringing calls/minute for a calling placement
interval of 0.3 seconds.

We present the distribution of all call attempts by the attacker in Figure 6.
Again, the results are highly consistent with the simulated ones (see Fig. 3).
Note, that as the call placement interval reduces, the fraction of busy calls in-
creases, having a negative impact on the attack. Another side-effect of shorter
call placement intervals is failed calls. A call is considered failed, when no ringing
or busy status is identified after 10 seconds from call placement.

Finally, in Figure 7 we present the percentage of busy calls received by a
legitimate caller, while the target telephone device was under attack. Observe,

Calling rate interval (sec)
0.3 0.5 1 5

C
al

ls

0

500

1000

1500
Ringing Calls
Busy Calls
Failed Calls

Fig. 6. Distribution of all calls issued by

an adversary

B
us

y
C

al
ls

 (
%

)

0

20

40

60

80

100

Call placement interval (sec)
0.3 0.5 1 5

Fig. 7. Percentage of busy calls received

by a legitimate caller, while the target

telephone device was under attack

D(e|i)aling with VoIP: Robust Prevention of DIAL Attacks 671

that the adversary managed to hold the target landline device busy for 85% of
the attack duration, preventing access, for most of the time, to the legitimate
caller.

4.3 Attack Impact

In our real world experiments, we managed to hold an existing landline busy for
85% of the attack duration, by issuing only 3 calls per second. By aggressively is-
suing calls, an attacker targeting the telephone centers of critical infrastructures
such as police or fire-fighting stations and hospitals can completely disrupt their
operation and create life threatening situations. By issuing dozens or hundreds
of calls an attacker can hinder legitimate users from accessing the call centers
of critical services. Taking into account that these services are vital to our soci-
ety, any threat against them must be seriously considered, and mechanisms for
protection should be designed and employed.

4.4 Attacker’s Anonymity

An important aspect of Dial attacks is that they cannot be traced back to the
attacker. This is achieved by having two layers of anonymity. The first is provided
by the part of traditional telephony network, where only the VoIP provider’s
Caller ID is revealed. In our experiments, the Caller ID was Unknown, requiring
the use of law enforcement in order to find the source of the calls. The second
layer is the communication with the VoIP provider. The only way that the
VoIP provider can track the attacker is by her IP address. In order to remain
anonymous, the call requests must be placed from a safe IP address, e.g. through
an anonymization proxy or with the use of a botnet.

5 Countermeasures

In this section we investigate existing countermeasures currently employed by
VoIP providers. We present a study about Skype, a leading provider of VoIP
services, VoipUser[8] and VoipDiscount[7], two representative VoIP providers.
Based on our analysis, we propose and implement an anomaly detection system
that promotes fairness to callers and is able to successfully mitigate the attack
outlined in this paper.

5.1 Existing Countermeasures

Skype. Skype is a popular VoIP provider with more than 400 million user
accounts and capable of serving 300,000 simultaneous calls without any service
degradation [3,1]. Skype internally uses an anomaly detection system, whose
technical details are not publicly available. In order to reverse engineer part of
its logic, we used four different user accounts and three different landline devices.
We performed experiments with very aggressive call initialization rates against

672 A. Kapravelos et al.

Time (days)
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

C
al

ls
 (

th
ou

sa
nd

s)

0

20

40

60

80

100

0 0.5 1

40

Account 1
Account 2
Account 3
Account 4

Fig. 8. Call history of each Skype ac-

count, until it is blocked

C
al

ls
 (

th
ou

sa
nd

s)

0

25

50

75

100

125

Time (days)
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

0 0.3 0.6

25

line 1
line 2
line 3

Fig. 9. Call history of each telephone line

targeted through Skype, until it is blocked

our landlines. Eventually, all four accounts were blocked permanently and all
three victim landline devices were permanently banned from the system. This
means, that the victim landlines were further inaccessible by any Skype user. We
refer to this policy as all-or-nothing, meaning that the anomaly system either
permits full access or no access at all to the service.

In Figure 8 we present the cumulative time of the call history of each blocked
Skype account. Our initial intuition was that Skype blocks our account when we
pass a specific call-rate threshold. However, each Skype account got blocked when
it exceeded a totally different threshold, indicating non-deterministic detection
based on heuristics or human inspection of call logs. With the first account
we placed more than one hundred thousand calls before the anomaly detection
system spotted us. The other accounts were blocked by making a large number
of calls in a very short time period. This is shown in Figure 8 by an almost
vertical increase of at least fifteen thousand calls.

In addition, Skype also blocked the landline telephone numbers which we
used as victims. In Figure 9 we can see the call history of these numbers. The
graphs terminate at the time the blocking actually happened. The Skype service
permitted us to place more than 130,000 calls to the first line we used, before
blocking it. The rest of the telephone lines we used were blocked as a result of
more aggressive experiments.

We consider, that the all-or-nothing policy of Skype’s anomaly detection is
highly inefficient and, most importantly, enables further abuse. We proved that
the slow reaction of the anomaly detection system allowed us to issue tens of
thousands of calls. This would be catastrophic for any service that is based on
telephone communication. We believe that the slow reaction is a fundamental
result of the all-or-nothing approach. The penalty is so high (i.e. permanent
block), that the anomaly detection system is triggered only during occasions
where there is severe abuse. An adversary, could still carry out the attack in a
more stealthy fashion. We also showed that an adversary can intentionally block
certain devices from Skype. All she needs is to issue a vast amount of missed
calls towards the victim device for it to be completely banned from the system.

D(e|i)aling with VoIP: Robust Prevention of DIAL Attacks 673

Voipdiscount. During our experiments with the Voipdiscount provider we have
not observed any countermeasures. We have used their infrastructure for multiple
experiments, issuing hundreds of thousands calls for over 8 months without being
warned or banned.

Voipuser. We speculate that Voipuser relies on manual inspection which is
not effective and cannot provide adequate defense against such attacks. After a
series of initial experiments we conducted, they blocked the accounts used, as
well as all other accounts we had created; note that these accounts had not been
used in the attack experiments. Account bans based on the correlation of the
domain of the email addresses we used for the account registrations suggest a
manual process of log inspection. However, our accounts were banned after the
experiments had ended, proving the inability of manual countermeasures for the
early detection of such attacks.

5.2 Server Side Countermeasures

Our system is based on a detection module and a policy enforcement module.
We decided to implement the detection module entirely in software, using the
well-known Intrusion Detection System (IDS), Snort[18]. As far as the policy
enforcement is concerned, we have two options. We can either implement it
in software or in hardware. For the first case, we can use the built-in firewall
functionality of Linux operating systems, iptables. However, this gives us poor
flexibility in complex policies. On the contrary, the hardware solution gives as
a range of functionalities employed by modern router devices. In order to easily
perform an evaluation of various policies, we chose to use the Click router[16],
which is a rich framework for testing router configurations. The Click router
incorporates a wide range of elements for traffic shaping, dropping decisions and
active queue management, which can also be found in most modern routers.

Detection Module. Snort is responsible for the detection. It handles user re-
quests by monitoring all incoming traffic and flags flows that belong to hosts
that initiate a large number of calls in a short amount of time. We further refer
to this threshold as abt (abuse behavior threshold), which is expressed in in-
vite2 requests per second per host. We have implemented, a Snort-rule similar
to those for port-scans for detecting hosts that exceed abt. Whenever we have a
Snort alert, the policy enforcement module is invoked, in order to mitigate the
suspicious behavior.

Policy Enforcement Module. Policies are enforced over specific time win-
dows. We refer to this quantity as pew (policy enforcement window). Each policy
applies an action to a host, that has been flagged suspicious by the detection
module. We have implemented two different types of actions: mute and shape.
The mute action drops all invitation messages and the shape action imposes
a fixed rate of message delivery in a fashion that approximates a legitimate
behavior.
2 An invite request in SIP is associated with a call placement.

674 A. Kapravelos et al.

Table 1. Policies supported by our anomaly detection system

Policy INVITE behavior Implementation

soft-mute Drop iptables

hard-mute Drop Click Router

hard-shape Fixed rate Click Router

We implemented the mute action using iptables in Linux, by using Snort’s
plugin SnortSam [4]. We provide a hypothetical hardware implementation of
both mute and shape actions using the emulation environment provided by Click.
In Table 1 we summarize the policies we support, along with their notation.

Evaluation. In order to evaluate our anomaly detection system we performed
our attack once again, but this time, both the attacker and legitimate caller were
forced to pass their requests through our system. This was done at the network
level, by rerouting all communication messages through a gateway that acts as
an anomaly detection system.

In order to eliminate false positives we decided to use a more tolerating abt
value, equal to 10 invitation messages per 30 seconds (abt = 10msg/30secs).
Notice, that although this decision leaves us with no false positives (indeed, we
have measured zero false positives in all experiments), relaxing abt is negative for
the mitigation result. The attacker can become more aggressive and still remain
under abt.

In Figure 10 we depict the effects on the attack’s firepower when our policies
are enabled. Each policy is applied for a time duration equal to pew. Notice, we
do not provide results for hard-shape values for any pew, since the hard-shape
policy is enforced for the whole attack duration. This is not explicitly forced by
our detector, but it stems from the fact that the attacker does not adapt to the
policy, and the pew is always extended.

In Figure 11 we provide a comparison of all policies along with the original
attack. For each policy we state the pew used inside parenthesis. Observe that
the attack’s firepower can be reduced to 5% using soft-mute or up to 30% using
a more relaxed policy, hard-shape. We consider the shape policy more relaxed
than the mute, since the suspicious host is not muted and thus the policy is more
tolerable in enforcing restraints on false positives.

5.3 Client Side Countermeasures

Telephone devices currently have no means of defense against a Dial attack. Our
solution is based on phone CAPTCHAs. A CAPTCHA [22] challenge aims to
distinguish between human initiated and automated actions. The core compo-
nent of our platform is the Asterisk PBX, an open-source software implemen-
tation of a private branch exchange (PBX). It supports Interactive Voice Re-
sponse (IVR) technology, can detect touch tones and respond with pre-recorded

D(e|i)aling with VoIP: Robust Prevention of DIAL Attacks 675

Policy Enforcement Window (seconds)
0 5 10 15 20 25 30

B
us

y
C

al
ls

 (
%

)

0

20

40

60

80

100

soft−mute
hard−mute

Fig. 10. Attack mitigation for soft-mute

and hard-mute policies for various pew

B
us

y
C

al
ls

 (
%

)

0

20

40

60

80

100

Policy

none soft−mute
(30s)

hard−mute
(30s)

hard−shape

Fig. 11. A comparison of all policies

along with the original attack

messages or dynamically created sound files. To handle landlines, the host ma-
chine is equipped with specialized hardware that connects it to the telephony
circuit.

When an incoming call is received, Asterisk places the call in a call queue. The
caller then receives a phone CAPTCHA and has a limited time to respond by us-
ing the phone’s dial pad. The phone CAPTCHA test requires the caller to spell a
word randomly selected from a large pool3. If the caller provides the correct an-
swer, Asterisk forwards the call to its destination. Otherwise the call is dropped.
The use of words greatly increases the difficulty of phone CAPTCHAs being bro-
ken by speech recognition software, compared to traditional audio CAPTCHAs
that only contain digits. We intend to further explore the use of CAPTCHAs as
a client side countermeasure in future work.

6 Related Work

In this work we use VoIP technology as an attack medium. Given its low access
cost and its wide deployment, VoIP services have attracted a lot of attention [15].
For example, extensive research has been recently conducted on VoIP security.
Wang et al. exploit the anonymity of VoIP calls by uniquely watermarking the
encrypted VoIP flow [23]. Wright et al. investigate whether it is possible to
determine the language of an encrypted VoIP conversation by observing the
length of encrypted VoIP packets [24]. Zhang et al. in [25] exploit the reliability
and trustworthiness of the billing of VoIP systems that use SIP [19]. Spam over
Internet Telephony has also gained significant attention [11,17]. In this paper
we explore new ways for abusing VoIP services as well as identifying possible
defenses to this abuse.

Research for attacks to the telephony network has been carried out in the past,
mostly targeting cellular networks. For example, it has been shown that a rate
of only 165 SMS messages per second is capable of clogging both text and voice
traffic across GSM networks in all of Manhattan [20,21]. Countermeasures to

3 Words have been widely used in the USA to help people memorize telephone numbers

by “translating” numbers into letters.

676 A. Kapravelos et al.

alleviate this problem are based on using weighted queues before traffic reaches
the air interface, and/or more strict provisioning and partitioning resources after
traffic leaves this bottleneck [12,13]. Enck et al. demonstrate the ability to deny
voice service by just using a cable modem [12]. They claim that with the use
of a medium-sized zombie network one could target the entire United States.
Their work also included suggestions on how to counter SMS-based attacks.
Specifically, they call for the separation of voice and data channels, increased
resource provisioning, and rate limits of the on-air interfaces.

Last but not least, there are concerns in the research community about attacks
that threaten the operation of emergency services. Aschenbruck et al. report that
it is possible to peer VoIP calls to public service answering points (PSAP) [9].
This peering can have grave implications because it makes it possible to carry
out DoS attacks against emergency call centers. In their work they monitored
calls from a real PSAP of a fire department which serves about one million
people. During emergencies the PSAP received approximately 1100 calls per 15
minutes. These calls overloaded the PSAP and the authors suggested that the
high call-rate was the result of citizens constantly redialing until they got service.
In their follow-up publication Fuchs et al. show that under heavy load at the
same PSAP, up to half of the incoming calls were dropped [14].

7 Conclusion

In this paper we perform an extensive exploration of Dial attacks. Initiated by
our theoretical findings, we implement a prototype and carry out the attack in
the wild proving that an adversary can keep a telephone device in busy state
for 85% of the attack duration by issuing only 3 calls per second. Our attack re-
quires zero financial resources, negligible computational resources and cannot be
traced back to the attacker. Considering the severity of such a threat, we explore
already employed countermeasures and conclude that current VoIP infrastruc-
tures employ countermeasures based on an all-or-nothing approach, react slowly
to possible abuse or offer no protection at all. As these defenses appear inefficient
we propose an anomaly detection system for VoIP calls and demonstrate that
it can mitigate Dial attacks and prevent an adversary from holding a telephone
device busy for more than 5%.

Acknowledgments. We would like to thank the anonymous reviewers for their
feedback and Professor Giovanni Vigna for his insightful comments. Alexandros
Kapravelos, Iasonas Polakis, Elias Athanasopoulos, Sotiris Ioannidis and Evan-
gelos P. Markatos are also with the University of Crete. Elias Athanasopoulos is
funded by the Microsoft Research PhD Scholarship project, which is provided by
Microsoft Research Cambridge. This work was supported in part from the FP7
project SysSec, funded by the European Commission under Grant agreement no:
257007 and by the Marie Curie Actions - Reintegration Grants project PASS.

D(e|i)aling with VoIP: Robust Prevention of DIAL Attacks 677

References

1. Ebay Inc. FQ, results (2008), http://investor.ebay.com/results.cfm

2. IDC Predicts more than 1.8 billion Worldwide Personal IP Communications Sub-

scribers by 2013,

http://www.idc.com/getdoc.jsp?containerId=219742

3. Skype Fast Facts, Q4 2008,

http://ebayinkblog.com/wp-content/uploads/2009/01/

skype-fast-facts-q4-08.pdf

4. Snortsam, http://www.snortsam.net

5. Statistics of Communications Common Carriers 2005/2006 Edition,

http://hraunfoss.fcc.gov/edocs_public/attachmatch/DOC-282813A1.pdf

6. Thieves Flood Victims Phone With Calls to Loot Bank Accounts,

http://www.wired.com/threatlevel/2010/05/telephony-dos/

7. Voipdiscount, http://www.voipdiscount.com

8. Voipuser.org, http://www.voipuser.org

9. Aschenbruck, N., Frank, M., Martini, P., Tolle, J., Legat, R., Richmann, H.: Present

and Future Challenges Concerning DoS-attacks against PSAPs in VoIP Networks.

In: Proceedings of International Workshop on Information Assurance (2006)

10. Brown, L., Gans, N., Mandelbaum, A., Sakov, A., Shen, H., Zeltyn, S., Zhao, L.:

Statistical analysis of a telephone call center. Journal of the American Statistical

Association 100(469), 36–50 (2005)

11. Dritsas, S., Soupionis, Y., Theoharidou, M., Mallios, Y., Gritzalis, D.: SPIT Identi-

fication Criteria Implementation: Effectiveness and Lessons Learned. In: Proceed-

ings of The IFIP International Information Security Conference, Springer, Heidel-

berg (2008)

12. Enck, W., Traynor, P., McDaniel, P., Porta, T.L.: Exploiting Open Functionality in

SMS Capable Cellular Networks. In: Proceedings of the 12th ACM Conference on

Computer and Communications Security (CCS 2005), Alexandria, Virginia, USA

(2005)

13. Floyd, S., Jacobson, V.: Random early detection gateways for congestion avoidance.

IEEE/ACM Transactions on Networking (1993)

14. Fuchs, C., Aschenbruck, N., Leder, F., Martini, P.: Detecting VoIP based DoS

attacks at the public safety answering point. In: ASIACCS (2008)

15. Keromytis, A.D.: A Look at VoIP Vulnerabilities. USENIX; login: Magazine 35(1)

(February 2010)

16. Kohler, E., Morris, R., Chen, B., Jannotti, J., Kaashoek, M.F.: The click modular

router. ACM Transactions on Computer Systems (2000)

17. Mathieu, B., Gourhant, Y., Loudier, Q.: SPIT mitigation by a network level Anti-

SPIT entity. In: Proc. of the 3rd Annual VoIP Security Workshop (2006)

18. Roesch, M.: Snort - lightweight intrusion detection for networks. In: LISA 1999:

Proceedings of the 13th USENIX Conference on System Administration. USENIX

Association (1999)

19. Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston, A., Peterson, J., Sparks,

R., Handley, M., Schooler, E.: SIP: Session Initiation Protocol. RFC 3261 (Pro-

posed Standard), Updated by RFCs 3265, 3853, 4320, 4916 (2002)

20. Traynor, P., Enck, W., McDaniel, P., Porta, T.L.: Mitigating Attacks on Open

Functionality in SMS-Capable Cellular Networks. In: 12th Annual International

Conference on Mobile Computing and Networking (2006)

http://investor.ebay.com/results.cfm
http://www.idc.com/getdoc.jsp?containerId=219742
http://ebayinkblog.com/wp-content/uploads/2009/01/skype-fast-facts-q4-08.pdf
http://ebayinkblog.com/wp-content/uploads/2009/01/skype-fast-facts-q4-08.pdf
http://www.snortsam.net
http://hraunfoss.fcc.gov/edocs_public/attachmatch/DOC-282813A1.pdf
http://www.wired.com/threatlevel/2010/05/telephony-dos/
http://www.voipdiscount.com
http://www.voipuser.org

678 A. Kapravelos et al.

21. Traynor, P., Mcdaniel, P., Porta, T.L.: On attack causality in internet-connected

cellular networks. In: USENIX Security Symposium (2007)

22. von Ahn, L., Blum, M., Hopper, N.J., Langford, J.: CAPTCHA: Using Hard AI

Problems for Security. LNCS. Springer, Heidelberg (2003)

23. Wang, X., Chen, S., Jajodia, S.: Tracking anonymous peer-to-peer VoIP calls on

the internet. In: CCS 2005: Proceedings of the 12th ACM conference on Computer

and Communications Security (2005)

24. Wright, C.V., Ballard, L., Monrose, F., Masson, G.M.: Language identification of

encrypted VoIP traffic: Alejandra y Roberto or Alice and Bob? In: SS 2007: Pro-

ceedings of the 16th USENIX Security Symposium. USENIX Association, Berkeley

(2007)

25. Zhang, R., Wang, X., Yang, X., Jiang, X.: Billing attacks on SIP-based VoIP sys-

tems. In: WOOT 2007: Proceedings of the First USENIX Workshop On Offensive

Technologies

Low-Cost Client Puzzles Based on Modular
Exponentiation

Ghassan O. Karame and Srdjan Čapkun

ETH Zurich, Switzerland

karameg@inf.ethz.ch, capkuns@inf.ethz.ch

Abstract. Client puzzles have been proposed as a useful mechanism

for mitigating Denial of Service attacks on network protocols. While

several puzzles have been proposed in recent years, most existing non-

parallelizable puzzles are based on modular exponentiations. The main

drawback of these puzzles is in the high cost that they incur on the puzzle

generator (the verifier). In this paper, we propose cryptographic puzzles

based on modular exponentiation that reduce this overhead. Our con-

structions are based on a reasonable intractability assumption in RSA:

essentially the difficulty of computing a small private exponent when the

public key is larger by several orders of magnitude than the semi-prime

modulus. We also discuss puzzle constructions based on CRT-RSA [11].

Given a semi-prime modulus N , the costs incurred on the verifier in our

puzzle are decreased by a factor of
|N|
k

when compared to existing mod-

ular exponentiation puzzles, where k is a security parameter. We further

show how our puzzle can be integrated in a number of protocols, in-

cluding those used for the remote verification of computing performance

of devices and for the protection against Denial of Service attacks. We

validate the performance of our puzzle on PlanetLab nodes.

Keywords: Client Puzzles, Outsourcing of Modular Exponentiation,

DoS Attacks, Secure Verification of Computing Performance.

1 Introduction

Client Puzzles are tightly coupled with Proof of Work systems in which a client
(prover) needs to demonstrate to a puzzle generator (verifier) that it has ex-
pended a certain level of computational effort in a specified interval of time.
Client puzzles found their application in a number of domains, but their main
applications concerned their use in the protection against Denial of Service (DoS)
attacks [43, 45, 49] and in the verification of computing performance [13, 44].

To be useful in practice, client puzzles have to satisfy several criteria: namely,
they need to be inexpensive to construct and verify, and in many applications
should be non-parallelizable. Non-parallelizability of puzzles is an especially im-
portant property since clients can involve other processors at their disposal e.g.,
to inflate their problem-solving performance claim.

A number of puzzles have been proposed [45], but these proposals are either
efficient and parallelizable [24,49] or non-parallelizable and inefficient (typically

D. Gritzalis, B. Preneel, and M. Theoharidou (Eds.): ESORICS 2010, LNCS 6345, pp. 679–697, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

680 G. Karame and S. Čapkun

in result verification) [13,43,44]. Non-parallelizable puzzles are mainly based on
modular exponentiation (e.g., [43]); in these puzzles, the verifier has to perform
O(log(N)) modular multiplications to construct a puzzle instance and verify its
solution. This high cost hindered the large-scale deployment of puzzles based on
modular exponentiation in today’s online applications [45].

In this paper, we propose puzzles based on modular exponentiation that re-
duce the cost incurred on the puzzle generator in existing modular exponen-
tiation puzzles. Our constructions are based on a reasonable intractability as-
sumption in RSA: informally, this assumption states that it is computation-
ally intractable to compute a small private exponent d when the public expo-
nent e is larger by several orders of magnitude than the modulus N . It is well
known that RSA is insecure when the private exponent is small and the pub-
lic key e < N1.875 [10, 50]. However, when e ≥ N2, RSA is considered to be
secure [10, 11, 50]. Defeating this assumption would essentially imply a further
restriction in the RSA problem, that has not been reported to date. Note that
when e is large, the cost of encryption and/or signature verification in RSA
is prohibitively high, which explains why this class of RSA keys is not widely
used. To the best of our knowledge, this is the first work that leverages on this
class of RSA keys to construct low-cost modular exponentiation puzzles. Where
appropriate, we also discuss puzzle constructions based on CRT-RSA [11].

Based on this intractability assumption, we show that the costs incurred on the
generator of modular exponentiation puzzles can be considerably reduced for any
exponent of choice (i.e., for any puzzle difficulty). More specifically, we provide
constructions for (variable-base) fixed-exponent and variable-exponent modular
exponentiation puzzles and we show that the verifier only needs to perform a
modest number of modular multiplications to construct and verify these puzzles.
Given a modulus N , the costs incurred on the verifier in our puzzle are decreased
by a factor of |N |

k when compared to existing modular exponentiation puzzles,
where k is a security parameter. For example, for a 1024-bit modulus N , k = 80,
the verifier’s cost is reduced by a factor of 12.

As a by-product, our puzzle can be used to efficiently verify the integrity of
outsourced modular exponentiations (modulo a semi-prime). We further show
how our puzzle can be integrated in protocols used for remote verification of
computing performance and for DoS protection. We validate the performance of
our puzzle through experiments on a large number of PlanetLab nodes [1].

The rest of the paper is organized as follows. In Section 2, we define client-
puzzles and we introduce our assumptions based on RSA. In Section 3, we in-
troduce our puzzles and we provide a security proof for their constructions. Sec-
tion 4 outlines some applications that can benefit from our proposed scheme. In
Section 5, we overview the related work and we conclude the paper in Section 6.

2 Preliminaries

2.1 Client Puzzle Properties

Here, we state the security notions of client puzzles (adapted from [14]).

Low-Cost Client Puzzles Based on Modular Exponentiation 681

Definition 1. A client puzzle Puz is given by the following algorithms:

– Setup is a probabilistic polynomial time setup algorithm that is run by the
puzzle generator. Given a security parameter k, it selects the key space S,
the hardness space T , the string space X , the puzzle instance space I and
puzzle solution space P. It then selects the puzzle parameters params ←
(S, T , X , I, P). The secret s ∈ S is kept private by the puzzle generator.

– GenPuz is a probabilistic polynomial time puzzle generation algorithm that
is run by the puzzle generator. On input s ∈ S, Q ∈ T and a ∈ X , it outputs
a puzzle instance puz ∈ I.

– FindSoln is a probabilistic solution finding algorithm. On inputs puz ∈ I and
a run time τ ∈ N , it outputs a potential solution soln ∈ P after at most τ
clock cycles of execution.

– VerAuth is a puzzle authenticity verification algorithm. On inputs s ∈ S and
puz ∈ I, it outputs true or false.

– VerSoln is a deterministic solution verification algorithm. On inputs s ∈ S,
puz ∈ I and a solution soln ∈ P, it outputs true or false.

It is required that if params ← Setup(k) and puz ← GenPuz(s, Q, a) where
s ∈ S, Q ∈ T and a ∈ X , then (1) VerAuth(s, puz) = true, (2) ∃τ ∈ N such
that soln ← FindSoln(puz, τ) and VerSoln(s, puz, soln) = true.

Definition 2. (Puzzle-unforgeability.) A client puzzle Puz is UF (unforge-
able) if the probability that any probabilistic polynomial-time adversary M suc-
ceeds in producing ¯Puz, such that ¯Puz was not previously created by the puzzle
generator and V erAuth(¯Puz) = true, is a negligible function of k.

Definition 3. (Puzzle-difficulty.) Let εk,Q(.) be a monotonically increasing
function, where k is a security parameter and Q is a hardness parameter. A
client-puzzle Puz is DIFFk,Q if for all τ ∈ N, for all security parameters k ∈ N,
for all Q ∈ N, the success of any adversary M, that is restricted to τ clock cycles
of execution, is bounded by εk,Q(τ) in solving Puz.

2.2 Rivest’s Repeated-Squaring Puzzle

In [43], Rivest et al. proposed a non-parallelizable time-lock puzzle based on
repeated-squaring to enable time-release cryptography.

In this puzzle, the puzzle generator encrypts a message M into a ciphertext
C as follows: C = M + Xat

mod N given an integer X , an exponent a, a
large integer t and an appropriate semi-prime modulus N . This computation
can be performed efficiently using the trapdoor offered by Euler’s function: Xat

mod N ≡ Xat mod φ(N) mod N . On the other hand, to acquire M from C, the
client needs to compute Xat

mod N in log(at) ≈ t modular multiplications.
When used as a client-puzzle (e.g., [44]), this puzzle is used such that the

prover is required to compute Xat

mod N given X , a, t and N . This compu-
tation is then verified by the puzzle generator through the trapdoor offered by
Euler’s function in O(log(N)) modular multiplications.

682 G. Karame and S. Čapkun

2.3 RSA with a Small Private Exponent

The RSA cryptosystem [42] is the most widely used public-key cryptosystem.
Let N = pq be the product of two large and distinct primes and let e and d
be inverses modulo φ(N) = (p − 1)(q − 1). Throughout the rest of the paper,
we assume that p and q are balanced primes; that is, |p| = |q|. For k ∈ N+

(N+ = N − {0}), the public RSA key e and the private RSA key d satisfy:
e · d − 1 = k · φ(N).

It is known that RSA is insecure when e ≤ N1.875 and d is small [8, 10, 15–
17,20,23,25,28,33,38,50]. Existing attacks on this class of “weak”RSA keys are
mostly based on Wiener’s attack [50] and/or on Boneh and Durfee’s attack [10].
Wiener’s continued fraction attack can be used to efficiently factor N when
e ≤ N and d < N

1
4−ε and Boneh and Durfee’s lattice-based attack [10] shows

that private exponents up to N0.2929 are unsafe when e < N1.875. Blömer et
al. [8] further generalized Wiener’s attack to factor N in polynomial time for
every e ≤ N satisfying ex + y ≡ 0 mod φ(N), where x and y are short. Gao1

and Howgrave-Graham and Seifert [30] extended these attacks to factor N given
several common modulus instances of RSA with d < N0.4 and e ≤ N .

2.4 Low-Cost Decryption in RSA

In this work, we consider RSA keys that do not belong to the weak class of RSA
keys, yet enable low-cost decryption in RSA. More specifically, we consider the
following class of RSA keys:

Class A: Class A is defined as the set of all RSA keys (N, e, d) where: N = pq,
p and q are two large balanced primes, e ≥ N2 such that gcd(e, φ(N)) = 1 and
d is small such that ed − 1 ≡ 0 mod φ(N).

When (N, e, d) ∈ A, the fastest known algorithm that computes d from (N, e)
runs exponentially in time with |d|. This hardness assumption on class A is based
on the observations of Wiener [50] and Boneh et al. [10]. When e ≥ N2, all known
attacks against small private RSA exponent are defeated. More specifically, the
continued fraction algorithm [50], the lattice-based attack [10] and Coppersmith’s
attack [15,16] fail even when d is small (for the reason why, refer to Appendix A).
For example, when e ≥ N2, |d| ≥ 80-bits, no known feasible algorithm can
compute d from (N, e) ∈ A, and therefore factor N . RSA keys that belong to A
clearly do not optimize the cost of RSA encryption and signature schemes; when
e is large, the cost of encryption and/or signature verification is prohibitively
high, which explains why this class is not widely used in RSA.

Remark 1. Given the work of Blömer et al. [8], we can safely extend class A to
the set of RSA keys that satisfy a generalized RSA key equation of the form
ex+ y ≡ 0 mod φ(N), where e ≥ N2 and x, y are small (for the reason why, see
Appendix B). Note that a special instance of this equation is the standard RSA
equation, where x = d and y = −1.
1 Gao’s unpublished attack is described by Howgrave-Graham and Seifert in [30].

Low-Cost Client Puzzles Based on Modular Exponentiation 683

Remark 2. One simple way to generate large public keys whose modular inverses
are small is to pick d such that |d| is small, and compute e′ = d−1 mod φ(N).
Then, a large public key e is computed from e′ as follows: e = tφ(N) + e′, where
t ∈ N+ and t ≈ N2. The verifier then deletes e′ and publishes (N, e) [9].

Where appropriate, we also consider in this work the following class of RSA keys:

Class B: Class B is defined as the set of all RSA keys (N, e, d) where: N = pq,
p and q are balanced large primes, e ∈ N+, gcd(e, φ(N)) = 1, dp ≡ d mod p and
dq ≡ d mod q such that dp �= dq, d > N0.5 and ed − 1 ≡ 0 mod φ(N).

When (N, e, d) ∈ B, the fastest known algorithm that computes d from (N, e)
runs in min(

√
dp,

√
dq). The use of RSA keys in class B is suggested by Wiener

[50] and Boneh [10] to speed up RSA decryption2. Since decryptions are often
generated modulo p and q separately and then combined using the Chinese
Remainder Theorem (CRT) [11], Wiener proposes the use of a private key d
such that both dq ≡ d mod q and dp ≡ d mod p are small (dp �= dq). The
best known attack against this scheme runs in min(

√
dp,

√
dq) [10, 26].3 When

| min(
√

dq,
√

dp)| ≥ 80 bits, |N | = 1024-bits, there exists no feasible algorithm
that can compute d from (N, e) ∈ B.

Remark 3. Throughout this paper, we consider RSA keys in the class A ∪ B as
a building block to construct low-cost puzzles based on modular exponentiation.
To simplify the description and analysis of our puzzles, we consider RSA keys
in A ∪ B where the public exponent e ≥ N2. We point out, however, that our
analysis also applies for all RSA keys in A ∪ B.

3 Low-Cost Puzzles Based on Modular Exponentiation

3.1 System and Attacker Model

We consider the following model. A verifier (puzzle generator) wants to verify
that a prover performed a certain number of modular exponentiations (modulo a
semi-prime) in a specified interval of time. For that purpose, the verifier requires
that the prover runs a software on its machine (i.e., a modular exponentiation
puzzle) for a specific amount of time. In some application scenarios, we will need
to assume that the verifier and the prover can exchange authenticated messages
over the communication channel. We assume, however, that the verifier does
not have access to the prover’s machine and thus cannot check the prover’s
environment; this includes the number of processors at the disposal of the prover,
the connections established from the prover’s machine, etc..

2 This RSA variant is widely used in smart cards.
3 Recently, Jochemsz et al. propose in [31] a polynomial attack on small private CRT-

RSA exponents. This attack only works when min(dp, dq) ≤ N0.073. However, in this

case, brute-force search attacks would also be feasible on CRT-RSA.

684 G. Karame and S. Čapkun

Verifier Prover

Compute N = pq and φ(N) = (p − 1)(q − 1)
Pick an arbitrary R ∈ N such that R > N
Compute the RSA keys (N, e, d) ∈ A ∪ B

Set s ← (e, d, φ(N))
Compute K = e − (R mod φ(N))

Pick a random nonce Zi

Compute Xi ← HMAC(d, Zi)
mA ← Xi‖N‖R‖K‖Zi

T1 :
mA ��

Compute y1 = XR
i mod N

Compute y2 = XK
i mod N

T2 :
Zi‖y1‖y2��

Compute Xi ← HMAC(d, Zi)

Verify that (y2y1)
d ≡ Xi mod N

If the verification passes, the verifier accepts the puzzle solution.

Fig. 1. Fixed-Exponent Puzzle based on Modular Exponentiation

An untrusted prover constitutes the core of our attacker model. We assume
that a prover possesses considerable technical skills by which it can efficiently an-
alyze, decompile and/or modify executable code as necessary. More specifically,
an untrusted prover has knowledge of the algorithm used for the computation
and of the algorithm that is run by the verifier. We assume that untrusted provers
are motivated to inflate their puzzle solving performance (i.e., untrusted provers
have incentives to solve the puzzle in a faster time than what they can genuinely
perform). However, we assume that provers are computationally bounded.

3.2 Low-Cost Fixed-Exponent Modular Exponentiation Puzzle

Here, we present our puzzle based on (variable-base) fixed-exponent modular
exponentiation. In Section 3.3, we propose a variant puzzle based on variable-
exponent modular exponentiation. Our puzzle is shown in Figure 1.

In the setup phase of our puzzle, the verifier picks two large balanced primes
p and q (of sufficient size to prevent factoring of N = pq, e.g., |p| = |q| ≥ 512-
bits), computes N = pq and φ(N) = (p − 1)(q − 1). Given N , the verifier also
generates RSA keys (N, e, d) such that (N, e, d) ∈ A, |d| = k, where k is a security
parameter or (N, e, d) ∈ B, where | min(

√
dp,

√
dq)| = k. The verifier also picks

a puzzle difficulty R ∈ N and computes K = e − (R mod φ(N)). We show
later that K will enable low-cost verification of the puzzle solution. (N, R, K)
are public parameters that set the puzzle hardness and s ← (e, d, φ(N)) is kept
secret. Note that R needs to be larger than φ(N) to ensure the security of our
scheme4. Typically, R is chosen such that R � φ(N) (|R| ≥ 100, 000 bits) to
achieve a moderate runtime of the puzzle (in the order of tens of milliseconds, see
Section 3.4). However, even in the case where the verifier would like to e.g., simply
outsource the computation of an arbitrary R′ ≤ φ(N), this can be remedied by
setting R ← R′ + tφ(N), where t ∈ N+.
4 This can be achieved by setting R > N .

Low-Cost Client Puzzles Based on Modular Exponentiation 685

– Puzzle Generation: In round i, the verifier generates puz ← (Xi, Zi, R, K,
N),5 where Xi ← HMAC(d, Zi). Here, Zi is a nonce and |Xi| ≥ k. In the
sequel, we assume that HMAC(X, Y) is a keyed collision-resistant pseudo-
random function, where X is used as an input key.

– Puzzle Solution: Given puz, the prover computes soln ← (y1 = XR
i mod N,

y2 = XK
i mod N, Zi).

– Solution Verification: Given soln, the verifier checks if (y2y1)d ≡ X
d(R+K)
i

mod N ≡ Xed
i mod N ≡ Xi mod N .

Remark 4. Note that our puzzle is stateless; only a single value of the secret
s ← (e, d, φ(N)) is stored by the verifier regardless of the number of puzzles
(instances) that the verifier generates. All the required data to solve a given
puzzle is contained in puz, whereas the knowledge of s and soln are sufficient to
verify the puzzle solution soln. The uniqueness of each puzzle instance can be
ensured by having GenPuz select Zi a counter and increment Zi in each puzzle
instance.

Remark 5. When R = 0, the prover simply computes y2 = Xe
i mod N , and the

verifier verifies the puzzle solution by computing yd
2 . Such a puzzle is then based

on “standard” RSA. The major limitation of this “standard” RSA-based puzzle
is that the choice of the puzzle difficulty (i.e., the exponent) is dependent on the
choice of d and φ(N). This particularly hinders the construction of repeated-
squaring puzzles (e.g., [43]) or the secure outsourcing of modular exponentiations
for a given exponent.

Puzzle Construction and Verification Costs: In our puzzle, the verifier
only needs to perform 1 HMAC operation (2 hashes) to construct the puzzle
and a small number of modular multiplications (computing (y2y1)d) to verify
the puzzle solution:

– (N, e, d) ∈ A: In this case, the puzzle verification is performed in O(log d)
modular multiplications. When |d| = k, the verifier’s cost is reduced by
a factor of log N

log d = |N |
k , when compared to the original repeated-squaring

puzzle [43]. When |N | = 1024, k = 80, the puzzle verification cost could be
as low as 3

280 = 120 modular multiplications6 and the average improvement
gain in the puzzle solution verification is almost 12 (i.e., 1.5×1024

1.5×80). Similarly,
when |N | = 2048, k = 112, the average improvement gain increases to 18.

– (N, e, d) ∈ B: In this case, the puzzle verification is performed in O(log(dp)+
log(dq)) modular multiplications using the CRT. When | min(

√
dp,

√
dq)| =

k, the verifier’s cost is reduced by a factor of log N
2 log d = |N |

4k , when compared
to the original repeated-squaring puzzle [43].

5 When R is very large, the verifier can reduce the communication costs by sending

r � R, such that R = F (r), where F (r) is an expansion function of r.
6 On average, the computation of Xd mod N requires 1.5 log d modular multiplica-

tions [35].

686 G. Karame and S. Čapkun

Prime number generation (i.e., computing N) and the pre-computation of e and
d are generally expensive operations for the verifier; however, this computation
is performed only once at the setup phase7 and (N, e, d) are subsequently used
for all the puzzles generated by the verifier.

Security Analysis: To analyze the security of our scheme, we first show that
it is computationally infeasible for an adversary to acquire the secret s held by
the verifier in our puzzle. Based on this, we show that an adversary needs to
perform at least O(log R) modular multiplications to compute the solution soln
to a puzzle instance puz such that VerSoln(s, puz, soln) = true.

We use the following game ExecM(k) between a challenger and a probabilistic
polynomial time (p.p.t.) adversary M:

– The challenger runs Setup on input k to obtain N = pq chosen uniformly at
random from N , d chosen uniformly at random from {2k..2k+1} and com-
putes e such that (N, e, d) ∈ A ∪ B. The challenger, then stores the secret
s ← (e, d, φ(N)). The challenger further picks R > N chosen uniformly at
random from R and computes K as shown in Figure 1.

– The adversary M gets to make as many CreatePuz(Zi) queries as it likes.
In response, the challenger (1) creates puz ← (Xi, Zi, R, K, N) as shown in
Figure 1, (2) computes soln such that VerSoln(s, puz, soln) = true and (3)
outputs (puz, soln).

Adversary M terminates the game by outputting an integer C. We say that M
wins ExecM(k) if C ≡ 0 mod φ(N) (i.e., if M computes a multiple of φ(N)).
In this case, we set the output of ExecM(k) to be 1 and otherwise to 0. We then
define the success of M as SuccM(k) = Pr[ExecM(k) = 1].

Theorem 1. Computing a multiple of φ(N) and, in particular, computing d
given (N, e) is computationally as hard as factoring (see [40] for the proof).

Lemma 1. (N, R + K, d) ∈ A ∪ B if (N, e, d) ∈ A ∪ B.

Proof. Let (N, e, d) ∈ A∪B satisfy the RSA key equation: ed−1 ≡ 0 mod φ(N).
Recall that e is kept secret by the challenger. Since K = e − (R mod φ(N)),
then ∃t1 ∈ N+ (since R > N) such that R + K = e + t1φ(N). This means that
d(R + K) ≡ de ≡ 1 mod φ(N).

Given Theorem 1, computing e from (R + K) is computationally as hard as
factoring8. Since d is the modular inverse of e, d is equally the modular inverse
of (R + K). More specifically, it is easy to see that since (N, e, d) ∈ A ∪ B, then
(N, (R + K), d) are RSA keys in A ∪ B (since (R + K) > e).

Lemma 2. For any p.p.t. adversary M, SuccM(k) is a negligible function of k.

7 Note that the computational load incurred by prime number generation equally

applies to all protocols that make use of modular exponentiation or repeated-squaring

(e.g., [43,49]).
8 (R + K − e) is a multiple of φ(N).

Low-Cost Client Puzzles Based on Modular Exponentiation 687

Proof. We show that if M can compute a multiple of φ(N) in the ExecM(k)
game, then we can construct a polynomial-time algorithm that uses M as a
subroutine to solve the RSA problem in A ∪ B, i.e., to compute d̄ given a public
RSA key (N̄ , ē) where (N̄ , ē, d̄) ∈ A ∪ B.

Let M be a p.p.t. adversary that outputs a multiple of φ(N) in the game
ExecM(k) with probability SuccM(k). In the ExecM(k) game, let R + K = e′.
Recall that in ExecM(k), K = e − R mod φ(N), where e is chosen uniformly
at random from A ∪ B and R > N . Given this, note that e′ > e + φ(N) and
K ≥ N2 − φ(N); this suggests that R + K = e′ > R + N2 − φ(N) and therefore
R < e′ − N2.

Let (N̄ , ē, d̄) ∈ A ∪ B, where N ∈ N , d ∈ [2k, .., 2k+1[, ē ≥ N2 + φ(N). Then,
we construct a polynomial-time algorithm E that interacts with M as follows:

– Given the public key (N̄ , ē), E picks R̄ at random from {N + 1, .., ē − N2}.
– E computes K̄ = ē − R̄ and constructs a transcript T̄ that is composed of a

number of tuples of the form (X̄i, Z̄i, R̄, K̄, N̄ , X̄i
R̄ mod N̄ , X̄i

K̄ mod N̄),
i ∈ N, where X̄i is a pseudorandom string that has a similar distribution as
HMAC(.) and Z̄i is a counter.

Note that since R̄ > N̄ , ∃t1 ∈ N+ such that R̄ − t1φ(N̄) = (R̄ mod φ(N̄)). Let
ē1 = ē − t1φ(N̄). It is easy to see in this case that K̄ = ē1 − (R̄ mod φ(N̄)).
Furthermore, since ē1 ≡ ē mod φ(N̄), then d is a modular inverse of ē1. We point
out that since ē1 = ē− t1φ(N̄) = ē− R̄+(R̄ mod φ(N̄)), then ē1 > ē− R̄ ≥ N2,
since by construction R̄ ≤ ē − N2. Therefore, (N̄ , ē1, d̄) ∈ A ∪ B.

Given this, it is easy to see that the view of M when run as a subroutine by
E is distributed identically to the view of M in the game ExecM(k). Recall that
in ExecM(k), Xi is a pseudorandom string, K = e − R mod φ(N), where e is a
secret such that (N, e, d) ∈ A ∪ B and (N, R + K, d) ∈ A ∪ B.

Therefore, if M can compute a multiple of φ(N) in the ExecM(k) game, then
it can solve the above RSA problem. By the hardness assumption on A and B,
it is computationally infeasible for M to compute d̄, or equivalently a multiple
of φ(N̄) (Theorem 1), from (N̄ , ē) when (N̄ , ē, d̄) ∈ A ∪ B. Therefore, SuccM(k)
is negligible, thus concluding the proof.

Given this, we can show that our puzzle construction is both unforgeable (UF)
and difficult (DIFFk,R).

Corollary 1. The puzzle construction of Figure 1 is UF.

Proof Sketch: Given a puzzle instance puz ← (Xi, Zi, R, K, N), VerAuth(s,
puz) = true if and only if Xi ← HMAC(d, Zi).

Therefore, the only viable way for M to construct ¯puz ← (X̄i, Z̄i, R, K, N)
such that VerAuth(¯puz) = true and ¯puz, X̄i, Z̄i were not previously created
by the challenger is to construct (X̄i, Z̄i) such that X̄i ← HMAC(d, Z̄i). Since
HMAC(.) is a pseudorandom collision-resistant function, M cannot construct
(X̄i, Z̄i) without the knowledge of d. Following from Lemma 2, the success prob-
ability for M in acquiring d from our puzzle – and therefore constructing ¯puz
such that VerAuth(¯puz) = true – is bounded by O(2−k).

688 G. Karame and S. Čapkun

Corollary 2. The puzzle construction of Figure 1 is DIFFk,R.

Proof Sketch: Following from Lemma 2, it is computationally infeasible for M
to compute a multiple of φ(N) given our puzzle. Furthermore, M cannot pre-
compute the solution of the puzzle since it cannot predict Xi (|Xi| ≥ k) nor the
outcome of y2y1 (since e is kept secret by the verifier).

The fastest known way for M to solve our puzzle is to compute y1 and y2

correctly. Modular Multiplication is an inherently sequential process [43]. The
running time of the fastest known algorithm for modular exponentiation is linear
in the size of the exponent. Although M might try to parallelize the computation
of y1 and/or y2, the parallelization advantage is expected to be negligible9 [43,44].

Note that M might try to perform the computation of y1 and y2, in parallel,
using different machines at its disposal. In typical cases, R � K; this means that
the computation of y1 and y2 requires at least O(log R) sequential modular mul-
tiplications. We point out that the verifier can prevent the separate computation
of y1 and y2, by sending K to the prover once it receives y1 (see Figure 2).

M can equally try to compute y1 and/or y2 through intermediate results that
it previously computed (or intercepted) (e.g., when the base Xi is the result of a
multiplication of two previously used numbers). This also applies to the original
time-lock puzzle proposed in [43]; this can be remedied, with high probability,
by setting |HMAC(.)| � |Zi|.

Given this, the success of M – restricted to τ clock cycles of execution – in
solving our puzzle is bounded by εk,R(τ) = min(� τ

log R� + O(2−k), 1); M needs
to perform at least τ = log(R) clock cycles of execution to solve our puzzle.

3.3 Low-Cost Variable-Exponent Modular Exponentiation Puzzle

In some settings, the verifier might need to change the puzzle difficulty (i.e., the
exponent) “on the fly” (e.g., when subject to DoS attacks). We briefly discuss
how this can be achieved based on the proposed fixed-exponent puzzle.

Our variable-exponent puzzle and the related protocol are depicted in Fig-
ure 2. Similar to the fixed-exponent puzzle (Figure 1), in round i, the ver-
ifier creates the RSA keys (N, e, d) ∈ A ∪ B, picks Zi ∈ N and computes
Xi ← HMAC(d, Zi). Here, in addition, the verifier computes vi ← HMAC(d, Xi)
such that |vi| = k and gcd(vi, d) = 1.10

9 M might try to parallelize the multiplication of large numbers by splitting the mul-

tiplicands into smaller “words” and involving other processors in the multiplication

of these words. Further details about this process can be found in [36]. However,

this attack incurs a significant communication overhead that prevents an M from

gaining any substantial speedup; given a large number of squaring rounds, the RTT

between the cooperating processors needs to be in the order of few nanoseconds to

achieve even a modest speedup.
10 The probability that any number is coprime with d is 6

π2 ≈ 0.61. Therefore, only two

choices are sufficient, on average, to create such a vi (i.e., if gcd(HMAC(d,Xi)), d) �=
1, then with high probability gcd(HMAC(d, Xi+1)), d) = 1).

Low-Cost Client Puzzles Based on Modular Exponentiation 689

Verifier Prover

Given k, compute (N, e, d) ∈ A ∪ B
Set s ← (e, d, φ(N))

Pick an arbitrary Ri > e such that
Ri
Rj

≥ N2, ∀i �= j

Pick a random nonce Zi

Compute Xi ← HMAC(d, Zi)
vi ← HMAC(d, Xi), |vi| ≥ k, gcd(vi, d) = 1

Compute Ki = vi · e − (Ri mod φ(N))
mA ← Xi‖N‖Ri‖Zi

T1
mA ��

Compute y1 = X
Ri
i mod N

T2
Zi‖y1��

mB ← Xi‖N‖Ki‖Zi

T3
mB ��

Compute y2 = X
Ki
i mod N

T4
Zi‖y2��

Compute Xi ← HMAC(d, Zi)
Compute vi ← HMAC(d, Xi)

Verify that (y2y1)
d ≡ X

vi
i mod N .

Fig. 2. Variable-Exponent Puzzle based on Modular Exponentiation. Note that y1 and

y2 could be also transmitted in the same message. The separate transmission of y1 and

y2, however, prevents the computation of y1 and y2 in parallel and enables the use of

this puzzle to remotely verify the computing performance of devices (see Section 4.2).

The puzzle instance at round i is then comprised of the tuple puz ← (Xi, Zi, N,
Ri, Ki), where Ki = vie − (Ri mod φ(N)), and Ri ∈ N. Its solution is soln ←
(Zi, X

Ri

i mod N, XKi

i mod N). To verify soln, the verifier checks if (y2y1)d ≡
Xvi

i mod N .
It is easy to see that the cost incurred on the verifier in this puzzle exceeds that

of the fixed-exponent puzzle by |vi| = k = 80 modular multiplications (mainly
in puzzle solution verification). For instance, when (N, e, d) ∈ A, soln can be
verified in 240 modular multiplication; the verification gain when compared to
existing modular exponentiation puzzles is then 1536

240 ≈ 7, given a 1024-bit N .

Corollary 3. The puzzle construction of Figure 2 is UF and DIFFk,Ri when (1)
(N, e, d) ∈ A and Ri > e such that Ri

Rj
≥ N2, ∀i �= j, or (2) (N, e, d) ∈ B.

Proof Sketch: Due to lack of space, we only provide the main intuition behind
the proof.

Consider a variant of the aforementioned ExecM(k) game where the transcript
of interaction T between the adversary M and the challenger is composed of a
number of tuples (Xi, Zi, Ri, Ki, N, XRi

i mod N, XKi

i mod N), i ∈ N.
Similar to the analysis in Lemma 2, we can show that if M can compute a

multiple of φ(N) in this variant ExecM(k) game, then it can compute a multiple
of φ(N) given several instances of the generic RSA key equation eixi + yi ≡ 0
mod φ(N) with common modulus and unknown xi, yi, where ei = Ri + Ki,
xi = d and yi = −vi. Note that vi �= vj , ∀i �= j. This is especially important for

690 G. Karame and S. Čapkun

Table 1. Construction and Verification Costs of Puzzles. “Mod. Mul.” denotes modular

multiplication and “Mul.” refers to multiplication. B-Puzzle and A-Puzzle refer to our

proposed puzzle created using classes B and A, respectively, of RSA keys. (∗) Note that

d � N , v � N ; |v| = |d| = k ≥ 80.

Verifier Cost Prover Cost

Repeated-Squaring [43]
1 modulus, 1 mul.

O(log R) mod. mul.
O(log(N)) mod. mul.

Fixed Exponent 1 modulus, 1 HMAC O(log R) + O(log(N))

A-Puzzle O(log(d)) mod. mul. (∗) mod. mul.
Variable Exponent 1 modulus, 2 HMAC O(log R) + O(log(N))

A-Puzzle O(log(d) + log(v)) mod. mul. (∗) mod. mul.
Fixed Exponent 1 modulus, 1 HMAC O(log R) + O(log(N))

B-Puzzle O(log d2) mod. mul. (∗) mod. mul.
Variable Exponent 1 modulus, 2 HMAC O(log R) + O(log(N))

B-Puzzle O(log d2 + log(v)) mod. mul. (∗) mod. mul.

the security of our puzzle. Otherwise, M can compute a multiple of φ(N) solely
from Ri and Rj ((Ri − Rj) ≡ 0 mod φ(N)).

When (N, e, d) ∈ A and Ri > e such that Ri

Rj
≥ N2, ∀i �= j, then ei

ej
=

Ri+Ki

(Rj+Kj
> N, ∀i �= j. In this case, all existing attacks on common modulus in-

stances of RSA are defeated (refer to Remark 1 and the related Appendix B);
the best known algorithm that computes φ(N) from (N, ei) runs exponentially
in time in |xiyi| = |dvi| since d and vi are in lowest terms by construction (i.e.,
gcd(d, vi) = 1). In our case, |dvi| ≥ 2k = 160. We conclude that it is computa-
tionally infeasible for M to compute a multiple of φ(N) from T . Similarly, when
(N, e, d) ∈ B, d = |xi| > N0.5 [10,50], there exists no polynomial-time algorithm
that can factor N in this case [27].

Similar to Corollaries 1 and 2, it can be shown that the puzzle construction
of Figure 2 is UF and DIFFk,Ri .

3.4 Performance Evaluation

Table 1 summarizes the costs incurred in our puzzles when compared with those
in the repeated-squaring puzzle of [43]. To the best of our knowledge, there are
no other proposed non-parallelizable puzzles that are based on modular expo-
nentiation.

To evaluate the performance of our puzzle, we implemented it in JAVA on
four different workstations. We evaluate the performance of our scheme on var-
ious other processors in Section 4.2. In our implementation, we used built-in
JAVA functions for prime number generation, repeated-squaring using addition
chains, etc.. While a faster implementation of our scheme could be achieved us-
ing lower-level programming and/or specialized hardware or software, we aim
to demonstrate in this work the feasibility of our proposal using available stan-
dard algorithms and programming tools. Our findings (Table 2) show that our
schemes considerably reduce the cost incurred on the generator of modular ex-
ponentiation puzzles.

Low-Cost Client Puzzles Based on Modular Exponentiation 691

Table 2. Implementation results on four different workstations equipped with Intel(R)

Core(TM)2 Duo CPU T7500 processor running at 2.20 GHz. Here, N is 1024-bit com-

posite integer, k = 80. We conducted our measurements over the LAN (max RTT = 100

ms). Our results are averaged over 10 distinct measurements. The puzzle verification

time is interpolated from the number of squarings per second on each machine.

Squaring Puzzle Runtime Verification Time Verification Time Verification Time
(Size of R in bits) A-Puzzle B-Puzzle of [43]

6500000 154.067 s 1.89 ms 7.56 ms 24.3 ms
6500000 172.174 s 2.11 ms 8.5 ms 27.12 ms
6500000 170.611 s 2.1 ms 8.4 ms 26.9 ms
6500000 165.034 s 2.03 ms 8.12 ms 26 ms

4 Applications

4.1 Efficient Resilience to DoS Attacks

A natural application of our puzzles lies in the area of protection against DoS
attacks. In this context, an online server requires that its clients solve our puzzles
before attending to their requests in order to prevent DoS attacks.

When used in DoS protection, it is important, however, that the server ensures
that puzzle instances and solution pairs are used only once. To achieve this,
the server should filter out resubmitted correctly solved puzzles and solution
pairs [14, 32]. In our case, the storage is minimized since the server can simply
store the hash of the nonce Zi that corresponds to the most recent solved puzzle
(where Zi is a counter). The verifier will then accept to verify only recent puzzles.

4.2 Remote Verification of Computing Performance

To cope with the advances in processing power, the computing community is
relying on the use of benchmarks. While several benchmarks [2, 13, 19, 44] were
proposed as a mean to evaluate a processor’s computing power, most of these
benchmarks are parallelizable (see Section 5).

Based on our variable-exponent puzzle (Figure 2), we construct a secure
benchmark that enables any machine (even with modest computation power,
e.g., a PDA device) to remotely upper-bound the computing performance of
single-processors. Our benchmark differs from the puzzle in Figure 2 as follows:
upon reception of y1, the verifier estimates the number of squarings per second:
S = Ri

T2−T1
of the prover’s machine. This estimate is accepted by the verifier if,

after receiving y2 at time T4: (1) (T4 − T3) ≤ ε · (T2 − T1), given a negligible ε
and (2) (y2y1)d ≡ Xvi mod N .

Corollary 4. Given the puzzle depicted in Figure 2, the success of a p.p.t. ad-
versary M in inflating the number of squarings that it can perform per second
by more than a small ε is negligible.

Proof Sketch: Recall that our puzzle is UF and DIFFk,Ri . Therefore, the only
viable method for M to inflate its performance claim is to send ȳ1, chosen at
random, ahead of time, compute y1 correctly and distribute the computation of

692 G. Karame and S. Čapkun

the corresponding ȳ2 and y2, such that ȳ2ȳ1 ≡ y2y1 mod N , to other nodes at
its disposal. This would enable M to decrease the measured time corresponding
to the computation of O(log Ri) modular multiplications by Δ = (T4 − T3) time
units (Δ includes the communication delay D of the path between the verifier
and M). However, this is countered by the fact that the verifier does not accept
the prover’s performance claim unless (T4 − T3) ≤ ε · (T2 − T1).

In this case, the maximum performance claim that M can make is Smax =
|Ri|

(1−ε)·(T2−T1)
. Note that ε is interpolated from the measured number of squarings

per second S; if it takes (T2 − T1) time units for M to perform log(Ri) modular
multiplications, then the computation of y2 can be upper-bounded by choosing
ε = log(e−N)

log(Ri)
. For a 1024-bit modulus N (|φ(N)| ≈ |N |), |e| ≈ |N2| and |Ri| >

100, 000, then ε � Smax

S � 0.03 squarings per second.

Table 3. Implementation results on 12 differ-

ent PlanetLab Nodes. S refers to the number

of squarings per ms.

CPU Description Idle CPU S

Intel(R) Pentium(R) D 3.20GHz 6.40% 7.48
Intel(R) Pentium(R) D 3.00GHz 26.20% 15.24
Intel(R) Pentium(R) 4 3.20GHz 30.70% 15.81
Intel(R) Pentium(R) D 3.40GHz 14.10% 18.22
Intel(R) Xeon(R) 3060 2.40GHz 46.60% 28.01
Intel(R) Pentium(R) D 3.20GHz 20.00% 29.35
Intel(R) Xeon(R) 3075 2.66GHz 19.70% 29.72
Intel(R) Pentium(R) 4 3.06GHz 92.00% 31.72
Intel(R) Duo E6550 2.33GHz 63.80% 36.05
Intel(R) Duo T7500 2.20GHz 76.00% 38.11

Intel(R) Xeon(R) X3220 2.40GHz 73.30% 41.67
Intel(R) Xeon(R) E5420 2.50GHz 87.70% 50.97

Our protocol finds applicability
in a multitude of application do-
mains. For example, our bench-
mark can be used in online dis-
tributed computing applications
(e.g., [3]) or in the secure rank-
ing of supercomputers (e.g., [4]) to
prevent possible frauds in perfor-
mance claims11.

We evaluated our benchmark on
various processors running on 12
different PlanetLab nodes [1] (refer
to Section 3.4 for implementation
details). Our findings (see Table 3)
suggest that our proposed bench-
mark reflects well the performance
of various processors.

5 Related Work

Client puzzles found their application in several domains (e.g., prevention against
DoS attacks [21, 48], protection from connection depletion attacks [32], protec-
tion against collusion [41]). Several computational puzzles have been proposed
in the recent years [43,45,49]. However, most of these puzzles are parallelizable;
a comprehensive survey of existing client puzzles can be found in [45]. In [43],
Rivest et al. proposed a non-parallelizable puzzle based on repeated-squaring to
enable time-release cryptography. The drawback of this scheme, if used for DoS
protection, is that it incurs an expensive cost on the puzzle generator. Wang et al.
11 For instance, a supercomputer, connected to a hidden processor cluster, can inflate

its performance claims by involving these other processors in the construction of

the benchmark’s solution. The literature contains a significant number of similar

“anecdotes”where both individuals and manufacturers have tendencies to exaggerate

their computing performance (e.g., [5, 6]).

Low-Cost Client Puzzles Based on Modular Exponentiation 693

propose in [47] a scheme that enables the server to adjust the puzzle difficulty in
the presence of an adversary whose computing power is unknown. In [14], Chen
et al. provide a formal model for the security of client-puzzles. In this work, we
use their model as a building block for analyzing the security of our proposed
puzzle. Several other contributions address the problem of secure outsourcing of
computations to untrusted servers (e.g., [7, 12]). Clarke et al. present protocols
for speeding up exponentiation using untrusted servers in [46]. In [29], Hohen-
berger et al. describe a scheme to outsource cryptographic computations where
the verifier can use two untrusted exponentiation programs to assist him in the
computations. Memory-bound puzzles were proposed in [22,37] to overcome the
limitations of existing computational puzzles. However, memory-bound puzzles
cannot entirely substitute their computational counterpart e.g., in applications
where the client’s memory is limited (e.g., PDA devices) or to evaluate the com-
puting performance of devices, etc.. Other protocols for creating secure bench-
marks to evaluate a machine’s computing performance were also proposed [44];
these benchmarks can however be easily parallelized [18, 34, 39].

6 Conclusion

In this paper, we proposed low-cost fixed-exponent and variable-exponent puzzles
based on modular exponentiation. Given a modulus N , the costs incurred on
the verifier in our puzzle are decreased by a factor of |N |

k when compared to
existing modular exponentiation puzzles, where k is a security parameter. Our
constructions are based on a reasonable intractability assumption: essentially
the difficulty of computing a small private exponent in RSA (or CRT-RSA)
when the public key is larger by several orders of magnitude than the semi-
prime modulus. As a by-product, our puzzle can be used to efficiently verify
the integrity of outsourced exponentiations modular a semi-prime. We further
showed how our puzzle can be integrated in a number of protocols, including
those used for the remote verification of computing performance of devices and
for protection from DoS attacks.

Acknowledgments

The authors thank Rolf Wagner for implementing the repeated-squaring proto-
cols. The authors also thank Cas Cremers, Patrick Schaller, Stephano Tessaro
and Divesh Aggarwal for helpful discussions. Finally, the authors would like to
thank the anonymous reviewers for their insightful suggestions and feedback.

References

1. PlanetLab, An open platform for developing, deploying, and accessing planetary-

scale services, http://www.planet-lab.org/
2. Linpack, http://www.netlib.org/linpack/
3. Distributed.Net, http://distributed.net/
4. TOP500 Supercomputing Sites, http://www.top500.org/
5. Conroe Performance Claim being Busted, http://sharikou.blogspot.com/2006/

04/conroe-performance-claim-being-busted.html

http://www.planet-lab.org/
http://www.netlib.org/linpack/
http://distributed.net/
http://www.top500.org/
http://sharikou.blogspot.com/2006/04/conroe-performance-claim-being-busted.html
http://sharikou.blogspot.com/2006/04/conroe-performance-claim-being-busted.html

694 G. Karame and S. Čapkun

6. Computer Software Manufacturer agrees to settle Charges,

http://www.ftc.gov/opa/1996/07/softram.shtm
7. Atallah, M.J., Pantazopoulos, K.N., Rice, J.R., Spafford, E.H.: Secure Outsourcing

of Scientific Computations. In: Advances in Computers (2001)

8. Blomer, J., May, A.: Low Secret Exponent RSA Revisited. In: Silverman, J.H. (ed.)

CaLC 2001. LNCS, vol. 2146, p. 4. Springer, Heidelberg (2001)

9. Boneh, D.: Twenty Years of Attacks on the RSA Cryptosystem. Notices of the

American Mathematical Society, AMS (1999)

10. Boneh, D., Durfee, G.: Cryptanalysis of RSA with private key d less than N0.292.

IEEE Transactions on Information Theory, 1339–1349 (2000)

11. Boneh, D., Schackam, H.: Fast Variants of RSA. In: CryptoBytes (2002)

12. Burns, J., Mitchell, C.J.: On parameter selection for server-aided RSA computation

schemes. IEEE Transactions on Computers (1994)

13. Cai, J., Nerurkar, A., Wu, M.: The Design of Uncheatable Benchmarks Using Com-

plexity Theory, ftp://ftp.cs.buffalo.edu/pub/tech-reports/./97-10.ps.Z
14. Chen, L., Morrissey, P., Smart, N., Warinschi, B.: Security Notions and Generic

Constructions for Client Puzzles. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS,

vol. 5912, pp. 505–523. Springer, Heidelberg (2009)

15. Coppersmith, D.: Finding a Small Root of a Univariate Modular Equation. In:

Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 155–165. Springer,

Heidelberg (1996)

16. Coppersmith, D.: Small solutions to polynomial equations and low exponent vul-

nerabilities. Journal of Cryptology, 223–260 (1997)

17. Coppersmith, D., Franklin, M., Patarin, J., Reiter, M.: Low-exponent RSA with

related messages. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070,

pp. 1–9. Springer, Heidelberg (1996)

18. Cui-xiang, Z., Guo-qiang, H., Ming-he, H.: Some New Parallel Fast Fourier Trans-

form Algorithms. In: Proceedings of Parallel and Distributed Computing, Appli-

cations and Technologies (2005)

19. Curnow, H.J., Wichman, B.A.: A Synthetic Benchmark. Computer Journal (1976)

20. de Weger, B.: Cryptanalysis of RSA with small prime difference. In: Applicable

Algebra in Engineering, Communication and Computing (2002)

21. Dean, D., Stubblefield, A.: Using client puzzles to protect TLS. In: Proceedings of

the USENIX Security Symposium (2001)

22. Doshi, S., Monrose, F., Rubin, A.: Efficient Memory Bound Puzzles using Pattern

Databases. In: Zhou, J., Yung, M., Bao, F. (eds.) ACNS 2006. LNCS, vol. 3989,

pp. 98–113. Springer, Heidelberg (2006)

23. Durfee, G., Nguyen, P.: Cryptanalysis of the RSA Schemes with Short Secret Ex-

ponent from Asiacrypt 1999. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS,

vol. 1976, p. 14. Springer, Heidelberg (2000)

24. Gao, Y.: Efficient Trapdoor-Based Client Puzzle System against DoS Attacks (2005)

25. Hastad, J.: Solving Simultaneous Modular Equations of Low Degree. SIAM J.

Computing (1988)

26. Hinek, M.J.: Cryptanalysis of RSA and its variants. In: Cryptography and Network

Security, Chapman & Hall/CRC (2009)

27. Hinek, M.J., Lam, C.C.Y.: Common Modulus Attacks on Small Private Exponent

RSA and Some Fast Variants (in Practice). In: Cryptology ePrint Archive (2009)

28. Hinek, M.J.: Another Look at Small RSA Exponents. In: Pointcheval, D. (ed.)

CT-RSA 2006. LNCS, vol. 3860, pp. 82–98. Springer, Heidelberg (2006)

29. Hohenberger, S., Lysyanskaya, A.: How to Securely Outsource Cryptographic Com-

putations. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 264–282. Springer,

Heidelberg (2005)

http://www.ftc.gov/opa/1996/07/softram.shtm
ftp://ftp.cs.buffalo.edu/pub/tech-reports/./97-10.ps.Z

Low-Cost Client Puzzles Based on Modular Exponentiation 695

30. Howgrave-Graham, N., Seifert, J.P.: Extending Wiener’s Attack in the Presence of

Many Decrypting Exponents. In: Proceedings of the International Exhibition and

Congress on Secure Networking (1999)

31. Jochemsz, E., May, A.: A Polynomial Time Attack on RSA with Private CRT-

Exponents Smaller Than N0.073. In: Menezes, A. (ed.) CRYPTO 2007. LNCS,

vol. 4622, pp. 395–411. Springer, Heidelberg (2007)

32. Juels, A., Brainard, J.: Client Puzzles: A Cryptographic Countermeasure Against

Connection Depletion Attacks. In: Proceedings of NDSS (1999)

33. Katzenbeisser, S.: Recent Advanves in RSA Cryptography. In: Advances in Infor-

mation Security, vol. 3 (2001)

34. Keqin, L.: Scalable Parallel Matrix Multiplication on Distributed Memory-Parallel

Computers. In: Proceedings of IPDPS (2000)

35. Koblitz, N.: A Course in Number Theory (1987)

36. Kaya Koc, C., Acar, T., Kaliski, B.S.: Analyzing and Comparing Montgomery

Multiplication Algorithms (1996)

37. Martin, A., Burrows, M., Manasse, M., Wobber, T.: Moderately Hard, Memory-

Bound Functions. ACM Transcations on Internet Technologies (2005)

38. May, A.: Secret Exponent Attacks on RSA-type Schemes with Moduli N = prq.

In: Bao, F., Deng, R., Zhou, J. (eds.) PKC 2004. LNCS, vol. 2947, pp. 218–230.

Springer, Heidelberg (2004)

39. McGinn, S.F., Shaw, R.E.: Parallel Gaussian elimination using OpenMP and MPI.

In: Proceedings of the International Symposium on High Performance Computing

Systems and Applications (2002)

40. Miller, G.L.: Riemann’s Hypothesis and Tests for Primality. In: Proc. Seventh

Annual ACM Symp. on the Theory of Computing (1975)

41. Reiter, M.K., Sekar, V., Spensky, C., Zhang, Z.: Making peer-assisted content dis-

tribution robust to collusion using bandwidth puzzles. In: Prakash, A., Sen Gupta,

I. (eds.) ICISS 2009. LNCS, vol. 5905, pp. 132–147. Springer, Heidelberg (2009)

42. Rivest, R.L., Shamir, A., Adleman, L.M.: A Method for Obtaining Digital Sig-

natures and Public-Key Cryptosystems. Communications of the ACM, 120–126

(1978)

43. Rivest, R.L., Shamir, A., Wagner, D.A.: Time-lock Puzzles and Timed-release

Crypto. MIT Technical Report (1996)

44. Sedgewick, R., Chi-Chih Yao, A.: Towards Uncheatable Benchmarks. In: Proceed-

ings of The Structure in Complexity Theory Conference (1993)

45. Tritilanunt, S., Boyd, C., Gonzalez Nieto, J.M., Foo, E.: Toward Non-Parallelizable

Client Puzzles. In: Bao, F., Ling, S., Okamoto, T., Wang, H., Xing, C. (eds.) CANS

2007. LNCS, vol. 4856, pp. 247–264. Springer, Heidelberg (2007)

46. van Dijk, M., Clarke, D., Gassend, B., Suh, G.E., Devadas, S.: Speeding up Ex-

ponentiation using an Untrusted Computational Resource. In: Designs, Codes and

Cryptography, vol. 39, pp. 253–273 (2006)

47. Wang, X., Reiter, M.: Defending Against Denial-of-Service Attacks with Puzzle

Auctions. In: Proceedings of the IEEE Symposium on Security and Privacy (2003)

48. Wang, X., Reiter, M.K.: A Multi-layer Framework for Puzzle-based Denial-of-

Service Defense. International Journal of Information Security (2007)

49. Waters, B., Juels, A., Halderman, J.A., Felten, E.W.: New client puzzle outsourcing

techniques for DoS resistance. In: Proceedings of the ACM Conference on Computer

and Communications Security (2004)

50. Wiener, M.: Cryptanalysis of short RSA secret exponents. IEEE Transactions on

Information Theory, 553–558 (1990)

696 G. Karame and S. Čapkun

A Cryptanalysis of RSA with Large Public Key and
Small Private Exponent

Consider an RSA system (N, e, d), where N = pq, p and q are large primes, and
e ∈ N+ such that e ≥ N2, gcd(e, φ(N)) = 1 and d is small. Recall that in RSA,
e · d − 1 = k · φ(N), where φ(N) = (p − 1)(q − 1) and k ∈ N+.

A.1 Resilience to the Continued Fraction Attack

Theorem 2. Let a, b, c, d ∈ N+ such that
∣∣a

b − c
d

∣∣ < 1
2d2 , where gcd(a, b) = 1

and gcd(c, d) = 1 Then, c
d is one of the convergents in the continued fraction

expansion of a
b . Furthermore, the continued fraction expansion of a

b is finite with
the total number of convergents that is polynomial in log(b).

In [50], Wiener describes a cryptanalytic attack on the use of an RSA private
key d < N0.25, when e < pq. The attack makes use of an algorithm based on
continued fractions that finds the numerator and denominator of a fraction in
polynomial time when a close enough estimate of the fraction is known. This will
enable the retrieval of a multiple of φ(N), which will equally result in the factor-
ing of N [40]. The convergence of the continued fraction algorithm is guaranteed
when kd < pq

3
2 (p+q)

.

When e ≥ N2, k ≥ dpq. Substituting k = dpq in the equation above yields d <
1. More generally, when e > N1.5, Wiener’s attack will fail since the continued
fraction algorithm will not work for any size of the secret exponent d [50].

A.2 Resilience to the Lattice-Based Attack

Boneh and Durfee [10] describe a scheme that solves the RSA small-inverse
problem when e < N δ and d < Nα. As shown in [10], this attack is a heuristic
that applies Coppersmith’s techniques [15] to bivariate modular polynomials and
can only succeed when α < 7

6 − 1
3

√
1 + 6δ.

Indeed, when δ = 1, e ≤ N , we achieve the bounds reported in [10]: RSA is
insecure when d < N0.292. However, when e ≥ N2, δ > 2, then this attack will
definitely fail (α < −0.0.35).

B Cryptanalysis of ex + y ≡ 0 mod φ(N)

B.1 Single Instance of ex + y ≡ 0 mod φ(N)

In [8], Blömer et al. describe a cryptanalytic attack (based on Wiener’s continued
fraction algorithm [50]) on a generic RSA key equation of the form ex + y ≡ 0
mod φ(N), when e ≤ N, 0 < x < 1

3N
1
4 and |y| < cN

−3
4 ex, where c ≤ 1.

Let ex + y = kφ(N) = k(N − p − q + 1), where k ∈ N+. It then follows that:

e

N
− k

x
=

−y − k(p + q − 1)
Nx

.

Low-Cost Client Puzzles Based on Modular Exponentiation 697

The main intuition behind the attack in [8] is to estimate k
x from e

N using the
continued fraction algorithm. For the attack to be successful, k

x has to be one of
the convergents of e

N . This is the case when | e
N − k

x | = |−y−k(p+q−1)
Nx | < 1

2x2 (see
Theorem 2); that is, when k(p + q − 1) + y < N

2x .
When e ≥ N2, k ≥ Nφ(N) (|φ(N)| ≈ |N |). It is easy to see in this case that

the continued fraction algorithm will not converge (k(p + q − 1) + y � N
2x).

B.2 Multiple Instances of ex + y ≡ 0 mod φ(N) with Common
Modulus)

Gao (described in [30]) and Howgrave-Graham and Seifert [30] extended Wiener’s
attack to factor the common modulus when several instances of RSA with e ≤ N
and d < N0.4−ε are given.

In what follows, we show that these attacks are defeated given several common
modulus instances of ex + y ≡ 0 mod φ(N) with e ≥ N2.

Let (N1, e1), (N2, e2), be two instances of RSA, then there exists k1, k2 ∈ N+

such that:
e1x1 = −y1 + k1φ(N)
e2x2 = −y2 + k2φ(N)

Guo’s main observation is that these equations can be combined to remove φ(N)
as follows k2e1x1 − k1e2x2 = k1y2 − k2y1.

With this equation as a starting point, the attack then proceeds in a similar
way as Wiener’s continued fraction attack:

e1

e2
− k1x2

k2x1
=

k1y2 − k2y1

e2k2x1

Given Theorem 2, this suggests that k1x2
k2x1

can be obtained from the continued
fraction expansion of e1

e2
when:∣∣∣∣k1y2 − k2y1

e2k2x1

∣∣∣∣ <
1

2(k2x1)2

2k2x1|k1y2 − k2y1| < e2

When e1 > N2 and e1 > Ne2, then 2k2x1|k1y2 − k2y1| ≈ e2
φ(N)x1(Ne2

φ(N)y2 −
e2

φ(N)y1) � e2. The continued fraction algorithm will not converge and this attack
with then fail. This attack will fail even when x1 = x2.

Howgrave-Graham and Seifert’s attack [30] combines Wiener’s, Boneh’s and
Guo’s attacks to factor N given r ≥ 2 instances of RSA with common modulus.
When ei > N2 and ei > Nej, ∀i �= j, their attack will equally fail given any
number of common modulus instances12.
12 The complexity of existing attacks on common modulus RSA instances increases

exponentially with the number of instances; these are only practical for a small

number of instances [30], [27].

D. Gritzalis, B. Preneel, and M. Theoharidou (Eds.): ESORICS 2010, LNCS 6345, pp. 698–715, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Expressive, Efficient and Obfuscation Resilient Behavior
Based IDS

Arnur G. Tokhtabayev, Victor A. Skormin, and Andrey M. Dolgikh

Center for Advanced Information Technologies, Binghamton University
{atokhta1,vskormin,adolgik1}@binghmaton.edu

Abstract. Behavior based intrusion detection systems (BIDS) offer the only ef-
fective solution against modern malware. While dynamic BIDS have obvious
advantages, their success hinges upon three interrelated factors: signature ex-
pressiveness, vulnerability to behavioral obfuscation and run-time efficiency of
signature matching. To achieve higher signature expressiveness, a new ap-
proach for formal specification of the malicious functionalities based on ab-
stract activity diagrams (AD) which incorporate multiple realizations of the
specified functionality. We analyzed both inter and intra-process behavioral ob-
fuscation techniques that can compromise existing BIDS. As a solution, we
proposed specification generalization that implies augmenting (generalizing)
otherwise obfuscation prone specification into more generic, obfuscation resil-
ient specification. We suggest colored Petri nets as a basis for functionality rec-
ognition at the system call level. We implemented a prototype IDS that has
been evaluated on malicious and legitimate programs. The experimental results
indicated extremely low false positives and negatives. Moreover, the IDS shows
very low execution overhead and negligible overhead penalty due to anti-
obfuscation generalization.

Keywords: IDS, Dynamic behavior detection, Behavior obfuscation, Behavior
metamorphism, Colored Petri Nets.

1 Introduction

Behavior based intrusion detection systems (BIDS) offer the only effective solution
against modern malware. While dynamic BIDS have obvious advantages, the success
of BIDS is limited by three interrelated factors: signature expressiveness, vulnerabil-
ity to behavioral obfuscation and signature matching efficiency. Signature expressive-
ness determines the success of IDS in detecting new realizations of the same malware.
Since most malware are derivatives of other malware, the signature must capture in-
variant generic features of the entire malware family and be expressive enough to
reflect most possible malware realizations. Behavioral obfuscation/ metamorphism is
an emerging threat that, given the extensive development of BIDS, is expected to be-
come a standard feature of future malware[1].

Based on this reality, we developed a novel system call domain IDS addressing
limitations of BIDS. To enhance signature expressiveness, we proposed an approach to
specify the functionalities of interest, specifically malicious ones, via abstract activity

 Expressive, Efficient and Obfuscation Resilient Behavior Based IDS 699

Fig. 1. System architecture

diagrams (AD) which can incorporate multiple realizations of the functionality. We
studied possible inter and intra-process behavioral obfuscation approaches. As a miti-
gation solution, we proposed the concept of the specification generalization resulting in
resiliency to obfuscations. Finally, we utilized Colored Petri Nets (CPN) for run-time
detection of the specified functionalities at the level of system calls, and developed a
procedure that automatically converts ADs into CPNs.

The IDS architecture is shown in
Figure 1. At the learning phase, an
expert designs ADs of known mali-
cious functionalities. The Specifica-
tion Generalizer module augments
the ADs into more generic, obfusca-
tion resilient ones. The CPN Con-
structor generates low and high-
level CPNs from generic ADs. At
the detection phase, the low-level
CPN recognizes individual subsys-
tem (user level) object operations in
the system call domain thus aggre-
gating system call information for
processing at the higher level. The
high-level CPN detects the function-
alities in the domain of OS object
operations. Also, the recognizers

have an access to Information Flow Tracer to feed data dependencies for particular
transitions of CPNs.

This paper delivers the following contributions.

• Formal functionality specification by AD defined at the system object level.
• AD abstraction via functional objects encapsulating various system resources.
• Analysis and classification of possible behavioral obfuscations.
• Automatic AD generalization neutralizing the effects of behavioral obfuscations.
• Automatic AD to CPN transformation. Such CPN recognizes the functionality in

the system call / information flow domain.
• Efficient CPN simulator for recognizing functionalities in the system call / informa-

tion flow domain.

2 Functionality Specification and Abstraction

Processes invoke system calls to operate system objects to facilitate some semanti-
cally distinct actions, such as sending a file to a specified IP address. We define func-
tionality as a chain of such actions achieving a certain high-level objective.

Analogously with [3] and [4], we formulate the following requirements for the
functional specifications:

1. The specification must define the control flow for object operations. It must
support conditional branching and concurrent execution allowing for specifying alter-
native/independent object manipulation sessions.

700 A.G. Tokhtabayev, V.A. Skormin, and A.M. Dolgikh

2. The specification must define data/information flow among object operations.
An attribute data flow determines the discriminatory power of the specification. We
should point out that data may be passed by value constituting data flow or may be
passed by information constituting information flow [5].

In addition, we introduce the third requirement to overcome multi-processes limi-
tations such as in [4].

3. The specification shall not be constrained to the context of one process. This
allows for specifying inter-process functionalities by relating objects and operations
invoked by different processes.

The above requirements can be met by utilizing UML Activity Diagrams (AD)
[6]. As an example, figure 2 depicts the AD of the Remote Shell functionality in both
graphical and analytical forms. This functionality establishes a backdoor allowing an
attacker to remotely execute system commands. In the figure 2, the decision node “a”
starts two alternative realizations of the functionality. The left branch (nodes 1-2)
represents the first step of the Reverse Shell realization. The right branch (nodes 3-6)
represents the first step of the Bind Shell realization that has two independent sessions
(nodes 3-4 and 5-6). Node 7 is the common step for both realizations.

Formally, functionality is specified is as an AD tuple:

 (1), where

Nodes is a multi-set defined in Line 2 (Fig. 2). It consists of State and Pseudo
nodes. There are two types of State nodes: Instances and Manipulations (line 3). Each

Fig. 2. Activity diagram of Remote Shell functionality

 Expressive, Efficient and Obfuscation Resilient Behavior Based IDS 701

Instance node represents a created object and its attributes (e.g. line 5). Each Manipu-
lation node represents an object operation with the parameters (e.g. line 6).

Arcs is a set of directed arcs showing the execution flow of the AD nodes.
Vars is a set of local variables utilized to define data flow among object opera-

tions. An information flow is specified via special transformation notation T().
Assign is a function that binds variable assignment expressions to corresponding

arcs. Line 9 shows the definition of such a function indicating that V1 is assigned with
handle created in node 2 or node 3.

To address the third specification requirement, each State node is assigned with a
unique index of the process that performs the manipulation represented by the node.

Since our system is expert driven a specification must be as generic as possible
enabling an expert to concentrate only on the conceptual realizations. To achieve this,
we introduced a so-called functional objects that represents certain semantically dis-
tinct functionalities such as Inter-Process Communication (IPC), File Download, etc.
Functional objects have a set of operations representing high-level activities. While
specifying an AD, the expert may create and manipulate functional objects as ordi-
nary OS objects. Technically, each functional object abstracts several alternative
realizations of the particular functionality by encapsulating necessary OS objects util-
ized in these realizations.

Due to space limitations, in this paper we describe only limited set of functional
objects, particularly the ones facilitating data transfer (Table 1). This set is just an
example; however, it demonstrates the generalization power of our specification,
which is the ability of utilization functional objects by other functional objects as with
FileTransfer object. Object “GenericFile” abstracts file access operations; it encapsu-
lates both “file” and “file mapping” objects. “RemoteIPC” represents IPC encapsulat-
ing socket, pipe and mailslot. For an expert, the utilization of such functional objects
is transparent. For instance, when using RemoteRPC in a specification, the expert
should not make any assumptions on how a malware will perform IPC, through
socket, pipe or mailslot. Armed with such functional objects, an expert can build quite
generic specifications yet preserving its discriminatory power.

Table 1. Functional objects for data transfer

Functional
object

Based on
objects

Operations Attributes (input => output)

Create FileName
Read BufferLength => Buffer

GenericFile File,
FileMapping

Write FileName, Buffer
Create EndPoint (server, client), ID => Type, Handle
Accept Type, Handle
Recv Type, Handle => Buffer

RemoteIPC Socket, Pipe,
MailSlot

Send Buffer, Type, Handle => Buffer
Create EndPoint (server, client), ID => Type
Recv =>Buffer

LocalIPC GereicFile,
FileMapping
RemoteIPC Send Buffer

Create FileName, RemoteHost => Type, FileHandle, IPC

Send (Type, FileHandle, IPCHandle) FileTransfer
GenericFile,
RemoteIPC

Recv (Type, FileHandle, IPCHandle)

702 A.G. Tokhtabayev, V.A. Skormin, and A.M. Dolgikh

3 Mitigating Behavior Obfuscations

Since our approach is signature based, the discriminatory power of a specification
mostly depends on an expert. Using functional objects, the expert may encompass
most of the functionality realizations. Consequently, an attacker will have difficulty to
discover yet another conceptually different realization with different system objects.
However, to evade detection, the attacker does not have to implement a completely
new realization. It is enough to simply obfuscate a known realization breaking the
specification. We distinguish inter and intra-process approaches to obfuscation. Inter-
process obfuscation techniques utilize multiple processes. Intra-process obfuscation
locally alters a functionality realization while preserving its behavioral semantics.

Consider possible inter-process obfuscation approaches.
1. Utilization of legitimate third party utilities to perform required activity. A

malicious process may run legitimate utilities to execute some important tasks being a
part of the functionality. In this way, the process executes the functionality without
performing some key object manipulations involved in the task. For instance, a file
virus usually searches for executables using “FindFirstFile” and “FindNextFile” API.
Instead, the virus may utilize system command interpreter to retrieve a list of executa-
ble files in a folder and then access the files one by one.

2. Inter-process functionality distribution (multipartite approach). A multipartite
malware distributes its functionality among several benign processes by self-injecting
to the legitimate processes or by creating the new ones. While such processes indi-
vidually exhibit no malicious behavior, their combined activity represents an inter-
process malicious functionality. Examples of such malware are Key-Logger or K-ary
virus consisting of two processes [7]. Process A opens an executable file and passes
the file handle to process B. Process B attaches the code of process A to the opened
victim file. This scenario does not involve actions deemed malicious: process B does
not open the victim file and does not inject its code; process A gets replicated into the
victim file without performing write operation or self-access operations.

Now, consider possible intra-process behavioral obfuscation.
3. Object relocation and duplication. Since a functionality may be constrained by

a particular object parameter (e.g. file name), an attacker can change the parameter of
the object (e.g. copy, rename or move an image) before manipulating it. An object
handle may be duplicated during the manipulation sequence to break system call bind-
ing. Also, an attacker may access objects via symbolic links instead of handles.

4. Non-direct object manipulation. It is achieved by specific, low-level system
tricks such as utilization of non-trivial OS resources that allow for accessing objects
whether in unusual way or via a “middleman” object. For instance, an attacker can
create reparse points or access files by their streams. He also may add an alternative
path to a target file through relinking system calls.

To mitigate the behavioral obfuscations, we propose the concept of specification
generalization that would fill experts’ experience/attention gap. Generalization algo-
rithms suggested below augment a given AD making it less prone to obfuscations.

TraceFiles – Augments the given AD with functionalities tracing renaming and re-
location of all files involved in the specification (addresses obfuscation #3).

 Expressive, Efficient and Obfuscation Resilient Behavior Based IDS 703

TraceHandles – Augments the given AD with functionalities that trace object han-
dle propagation among processes, which requires tracking handle duplication and IPC
used for handle transfer. It addresses the first three obfuscation techniques.

TraceProcesses – Augments the given AD with functionalities that track process
generation, remote code injection and inter-process coordination. This involves de-
tecting several realizations of code injection including remote thread based and re-
mote hook based. The augmented AD would relate object manipulations performed
by multiple processes. This algorithm mitigates obfuscation techniques #1 and #2.

To address obfuscation #4, we do not need any post-processing of the AD. Instead,
we can simply extend functional objects with necessary semantics that would trace
low-level objects involved in the obfuscation. This addresses the obfuscation at the
stage of AD specification, rather than automatic post-generalization. Particularly, we
add reparse points and file streams into “GenericFile” functional object.

The proposed algorithms augment AD with special generalization functionalities
which trace certain activity involved in a particular obfuscation. These functionalities
maintain certain global variables that qualify the traced activities, e.g. generated proc-
esses, duplicated files or established IPC channels. The algorithms also utilize several
primitive functions that process and modify an AD.

TraceFiles algorithm iterates over operations and object instances (line 1). If an op-
eration has “file name” as an argument (line 2), the procedure provides the AD with
“FileRelocation” generalization functionality (line 6) that traces all duplicates of a
given file. If the file name is a variable, we start the parallel flow right after the node
where the variable is assigned for the last time. Finally, we join “FileRelocation” par-
allel flow with the original AD right before the node performing the operation on the
target file. The “FileRelocation” is added by AddParallelFunct(Origin,New,
Start,Merge) function. It adds an AD named New to an AD named Origin as a parallel
flow that starts right after the node Start and joins to the AD Origin just before the
node Merge. The node Start is determined in lines 4, 5. If the file name is a variable,
the node Start is determined through the function - GetAssignNode(x) that returns the
node which output arc has an assignment expression for variable x. Line 7 modifies
the AD to make it consistent with the AD formalism (1).

TraceHandles augments the original functionality, in Line 1, with parallel flow
with “HandleDuplication” functionality that traces all handles derived from the given
object handle. Lines 2-8 constitute a loop that iterates over all object instances of the

{ }

Algorithm

Input: - An activity diagram specification

Output: Generilized AD

1. AD.Instances AD.Manipulations

2.

Operation

lpFileName

− −
∈ ∪

AD

foreach :

if

TraceFiles

()()
()

()() ()

AttList

3. : GetAttributeValue , ;

4.

5. AD.initial;

6. AddParallelFunct AD,

Operation

TargetFileName Operation lpFileName

isVariable TargetFileName RelocStartNode GetAssignNode TargetFileName

RelocStartNode

∈

=

=

=

:

if :

else :

()()FileRelocation , , ;

, ,
7. SetAttributeValueExpression ;

" [" "]"

TargetFileName RelocStartNode Operation

Operation lpFileName

lpFileName in FList TargetFileName

⎛ ⎞
⎜ ⎟+ +⎝ ⎠

704 A.G. Tokhtabayev, V.A. Skormin, and A.M. Dolgikh

AD. For each instance, a new element in DupH dictionary is initialized with PID and
Handle of the instance (lines 3, 4). It sets “HandleDuplication” to trace handle dupli-
cates of the current object instance. Line 6 iterates over object operations performed
on the current object instance. For each object operation, the algorithm redefines PID
and Handle expressions to allow the operation to utilize any duplicated handle be-
longing to original object instance.

In the first obfuscation, a malware performs system tasks via an external utility
that, in its turn, uses the OS resources the same way as the malware would. Hence,
malware simply outsources its operations to the utility. From this perspective, starting
a utility to perform a part of the malicious functionality represents a multipartite ap-
proach. Hence, the first two obfuscations should be addressed similarly: by tracing
functionality distribution among several processes. This requires tracing processes
generated by the malware as well as processes to which malware injected its code.
Then we attribute object operations to the generated/infected processes.

TraceProcesses addresses the first two obfuscations. It introduces “ProcessGenera-
tion”, “CodeInjection” and “LocalIPCEstablishment” functionalities to the input AD.
“ProcessGeneration” and “CodeInjection” generalization functionalities trace all de-
scendant and injected processes from the original given process. “LocalIPCEstab-
lishment” functionality tracks all IPC channels (with handles and IDs) established by
the given set of processes. The algorithm also introduces IPC required for coordinat-
ing multipartite agents and/or communicating with the utility.

We additionally trace data transmission between processes that represents technical
yet vital activity. For instance, a process retrieves (reads) data through an object, rep-
resenting data source, and then this data or its informational dependency is transferred
(written) through another object, called data sink. Distributing this activity in a way
that one process would access a source object and another process would access a sink
object requires using IPC responsible for data transmission from the source process to
the sink process. Such functionality in fact implements an inter-process information
link between source and sink objects. Data source and sink could be presented by the
following OS/functional objects: File, Pipe, Mailslot (kernel32.dll - Read, Write),
Socket (ws2_32.dll - Recv, Send), Registry (Advapi32.dll - ReadValue, WriteValue)
and RemoteIPC, LocalIPC (functional - Recv, Send).

()

Algorithm

Input: - An activity diagram specification

Output: Generilized

1. AddParallelFunct AD, HandleDuplication, AD.initial, AD.final ;

2.

− −

AD

AD

fore

TraceHandles

() { }()
() { }()

()()

 AD.Instances

3. SetAssignExpression OutputArc , " DupH[][] " ;

4. SetAssignExpression OutputArc , " DupP[] " ;

5. CreateNewVar OutputArc , " " ;

6.

∈

=

=

=

ach :

f

Object

Object Handle PID Handle

Object Handle PID

HandleVarName Object Handle

()
()

 GetObjectOperations AD,

7. SetNodePIDExpression , " PID in DupP[" "] " ;

, ,
8. SetAttributeValueExpression ;

" in DupH [" "][]"

∈

+ +

+ +
⎛ ⎞
⎜ ⎟
⎝ ⎠

oreach :Operation Object

Operation HandleVarName

Operation Handle

Handle HandleVarName PID

 Expressive, Efficient and Obfuscation Resilient Behavior Based IDS 705

As an example, we generalized “Remote Shell” AD (Fig. 3). Here, the fork node
“b” starts two sessions. The left session corresponds to the first steps of “Reverse
Shell” and “Bind Shell” realizations (nodes 1-3). The right session constitutes single
operation - “FileRelocation” (node 4) that traces “cmd.exe” file and outputs a list of
files descending from it. Nodes 1, 2 create RemoteIPC objects which handle is traced
by “HandleDuplication” functionality (node 6). Expression “PID in PList” in nodes 1,
2 means that PID of the process performing the operation must belong to the PList.
Nodes 1, 2 and 3 represent inter-process part of the “Remote Shell” functionality.
Such inter-process part along with node 7 addresses obfuscation techniques #2 and
#3. Indeed, nodes 1, 2, 3 outsource IPC creation to other processes.

The final step of the “Remote Shell” is to run “cmd.exe”. Node 5 creates a process
which image belongs to the list of files originated from “cmd.exe”. Note that this
FList was produced by “FileRelocation” functional operation (node 4). Moreover, the
process is created with standard input set to duplicate/original handle of the IPC end-
point, server or client. Note, the generic specification AD (Fig. 3) defines six different
realizations against two of the original AD (Fig. 2).

The more obfuscation types we address, the more complex the generalized specifi-
cation is expected to be. However, the specification is not yet a recognition mecha-
nism since it merely represents how the functionality is implemented in terms of ob-
ject manipulations. Hence, the efficiency of a recognition mechanism determines how
many obfuscations we can address. We proposed highly efficient recognition model
that is scalable enough to detect specifications with all discussed obfuscations.

Fig. 3. Generalized AD for Remote Shell

706 A.G. Tokhtabayev, V.A. Skormin, and A.M. Dolgikh

4 Functionality Recognition

Functionalities are recognized in two stages (Fig. 1). At the first stage, we recognize
high-level object manipulations as their dedicated API functions in the system call
domain. At the second stage, we recognize functionalities at the level of the identified
object manipulations, i.e. APIs. Since an API may invoke several minor system calls
that are not critical for the manipulation implementation, only the essential, semanti-
cally critical part of the API is recognized. It mitigates an evasion technique when a
malware does not invoke the entire API but only its critical system calls, thus only
partially realizing the API yet achieving the required manipulation.

Since AD specification (1) defines data dependencies among system call attributes,
it represents a context sensitive language. Therefore, in general, a functionality de-
fined by AD formalism (1), can be recognized by any contest-sensitive acceptor such
as linear bound automata (LBA) [9]. However, state machines such as LBA are dis-
advantageous in processing multiple instances of the operation chains (words): should
a chain be executed more than once, an LBA model reserves extra states for each in-
stance of the chain. In contrast, a CPN is free of such a drawback, because it repre-
sents an executed operation chain as one token residing in the corresponding place
that allows for processing of multiple chain instances with low overhead [10]. In a
way, this justifies the choice of CPN as a recognition model.

A CPN is defined as a tuple [11]: CPN=(S,P,T,A,N,C,G,E,I) (2)

where: S – color set, P – set of places, T – set of transitions, A – set of arcs , N –
node function, C – color function, G – guard function, E – arc expression function, I –
initialization function.

CPN places must represent such states as: object instances; object manipulations;
pseudo states routing the control flow of AD and functionalities.

Hence, formally set of places of the CPN consists of four disjoint dedicated subsets –
Object places, Manipulation places, Functional places and Pseudo places:

 P=P P P Pobj manip fun pseudo∪ ∪ ∪ ,

such that, each Object place is associated with a unique OS object; every Manipula-
tion place represents a particular (individual) operation of an object; any Functional
place corresponds to a unique functionality and a Pseudo place is associated with
pseudo states of the AD.

Object place tokens represent instances of the object. Such a token is defined as a
tuple: handle of the object instance and set of object parameters. The color set of Ob-
ject places typically constitutes a pair of two sets: system handles and a set of object
attributes such as: file names, access flags, buffer address, etc.

Manipulation place tokens represent successful execution of corresponding opera-
tion with an object instance. Each token comprises a handle of the manipulated object
and critical parameters of the operation represented by the place. The color set of Ma-
nipulation places consists of space of system handles and set a set of selected parame-
ters of possible operations on objects involved in the functionality.

Functional place tokens represent successful recognition of the given functionality.
Color set of Functional places includes selected attributes of necessary objects in-
volved in the respective functionality as well as objects operation parameters that in-
dividualize the functionality.

 Expressive, Efficient and Obfuscation Resilient Behavior Based IDS 707

Places of CP-nets represent executed object operations; therefore a transition must
be attributed to execution of one of the equivalent API functions or system calls im-
plementing the respective manipulations. Hence, the set of transitions consists of three
disjoint sets:

 , where

- manipulation transitions representing system calls/API.

 - functional

transitions such that their input and output places constitute functionalities, -

pseudo transitions reflecting AD pseudo states.
Each manipulation transition corresponds to a particular system call or group of

functionally equivalent APIs performing the same manipulation, and the transition is
enabled when the system call or one of the equivalent APIs has been invoked. Transi-
tion guard expressions check manipulation handles and parameters to ensure that tran-
sitions are enabled only by manipulations with correct attributes, specified in the AD.
The arc expressions generate tokens containing necessary attributes of the system
calls/APIs utilized in AD. This provides enough flexibility to distinguish between
similar yet semantically different functionalities.

We developed procedure “ADtoCPN” which translates the given AD to CPN pos-
sessing the necessary execution semantics for functionality recognition. Due to limita-
tions, we describe only high-level steps.

Procedure ADtoCPN
Input: F – an AD of the functionality defined by the formalism (1).
Output: CPN – a CP-net that recognizes the given functionality F.
1. Compose the CPN structure (P, T, A) corresponding to the constructs of the AD

of the functionality. Arcs of the AD are replaced by transitions and nodes are re-
placed by places.

1.1 Form a set of places P and set of transitions T that correspond to the state
and pseudo state nodes of the functionality F.

1.2 Form a set of the CPN arcs (A) connecting the places and transitions cre-
ated in the previous step (1.1)

1.3 Form a set of functional places, transitions and corresponding arcs.
2. Define place colors (C), guard expressions (G) and arc expressions (E) that define

execution semantics of the functionality F in the given domain.
2.1 Define guard expressions of the manipulation transitions that check the

executed manipulation parameters against parameters specified in the
functionality’s AD.

2.2 Define guard expressions at the transitions that represent branching arcs of
the AD decision nodes.

2.3 Define a color function (C) that would reflect variables of the functional-
ity.

2.4 Define arc expressions representing variable assignment in the functional-
ity’s AD.

2.5 Induce Color set (S) and the rest of the arc expressions from the color
function (C) and the CPN structure (P,T,A)

3. Compile a CP-net (CPN=(S,P,T,A,N,C,G,E,I)) from the component sets

obtained in Steps 1 and 2.

708 A.G. Tokhtabayev, V.A. Skormin, and A.M. Dolgikh

5 Experimental Evaluation

All experiments were conducted in the network testbed at Binghamton University
[19-20]. Our network comprised dozens victim hosts, i.e. virtual machines with vul-
nerable Windows OS equipped with our IDS. We experimented with various malware
known to expose the following potentially malicious functionalities.

Replication engines:

• R1. Self code injection – a malware infects an executable file through injecting its
code into the executable body and replacing code entry points. It is used by file vi-
ruses.

• R2. Self mailing - a malware emails its image as an attachment. It is used by e-mail
worms

• R3. Executable Download and Execute – Downloads a file from Internet and exe-
cutes it. Used as a part of self-propagation engine of network worms [19], hence
exposed by exploited processes. Also, exposed by network bot agents such as Tro-
jan-downloaders.

• R4. Remote shell - Exposed by net-bots payloads and worms propagation engines
(see section 2).

Malicious payloads:

• P1. Dll/thread injection - Injects DLL/thread to a process for password stealing or
control highjacking.

• P2. Self manage cmd script create and execute – Malwrare creates cmd script and
executes it by cmd interpreter. The script manages the malware image/dlls after its
termination. Usually, this functionality relocates/deletes the malware image to con-
ceal its footprint. Afterwards, the script usually erases itself.

• P3. Remote hook - sets a remote hook into victim process for a particular event.
Used for keylogging.

These functionalities were specified, generalized and translated to CPNs. To de-
crease simulation overhead, we integrated the high-level CPNs into a single universal
CPN having a recognition place for each given malicious functionality. Since the
given functionalities share the same object operation sessions, by integrating recogni-
tion CPNs, we eliminated CPNs structural redundancy, hence minimized combined
recognition overhead. The low-level CPNs are also integrated into a single CPN
detecting object operations involved in the functionalities. The CPN configurations
finally were loaded to the Recognizer modules.

To verify the detection rate, we experimented with the following malware, that ac-
cording to AV descriptions, are known for perpetrating at least one of the malicious
functionalities:

• 7 File viruses – Neo, Abigor, Crucio, Savior, Nother, Halen, HempHoper
• 10 Network worms - Welchia.A, Sasser.C, Bozori, Iberio, HLLW.Raleka.A, Alas-

rou.A, Kassbot, Shelp.A, Blaster, Francette
• 9 E-mail worms –5 variants of w32.Netsky and 4 variants of w32.Beagle
• Network bots/Trojans – SpyBot.gen, IRC.SdBot, RxBot families, Win32.Banker,

Win32.lespy

 Expressive, Efficient and Obfuscation Resilient Behavior Based IDS 709

We run malware in the corresponding environment enabling it to execute its pay-
loads or replicate properly. To trigger replication activity, we utilized our previous
setup to attack victim hosts with various worms [19], [21]. To invoke malicious pay-
loads, we executed malware in certain preset conditions, for instance, we established
an ftp/tftp server for executable download and execute functionality. In some cases,
we had to enforce malware strains to run their payloads through debugging with run-
time code modification.

In order to evaluate the false positive rate, we run multitude of benign software that
include web-browsers, messengers, email clients, file utilities, network and system
utilities and office tools. We run the tested software under various conditions/inputs to
expose their functionalities. We should point out that our experiments hardly covered
all execution branches of the tested programs missing certain minor behavior. Never-
theless, we believe that the main activity of the tested software was exposed in our
experiments.

The experiment results are depicted in Table 2, where the upper part indicates de-
tection results for the legitimate software. Here, each cell indicates how many legiti-
mate programs were detected by our IDS with the given functionality. The lower part
of the table summarizes results for malicious software. For each malware set, we indi-
cate how many instances, possessing the given functionality, were actually detected
by our IDS. For example, 4/4 means that there are four instances from the set that
have the given functionality and all four exposed it and were detected by IDS.

Table 2. Functionalities detection rate and false positive rate

Self-
replication

Replication/
payloads

Payloads

R1 R2 R3 R4 P1 P2 P3
201 System tools, office apps, other

utilities
 1 1

6 Web and file browsers (Opera,
IE, FAR, Win Explorer)

 3 1

3 E-mail/messang. clients
(Outlook, Eudora, Yahoo
messang.)

 1 1 L
eg

iti
m

at
e

 Total detected 4/210 1/210 2/210

7 File viruses 7/7
10 Network worm shell codes 2/2 8/8
6 Network worm payloads 4/4 1/1 1/1 1/1
9 E-mail worms 9/9
 SpyBot.gen family all all all
 IRC.SdBot family all all all all

M
al

w
ar

e

 RxBot family (11) all all all all all
False positive rate 0% 1.92% 0% 0.48% 0.96%

Detection rate 100%

False negatives (detection rate). As Table 2 indicates, for each malware that has the
given functionality, our IDS successfully detected the functionality showing no false
negatives. Such low false negative rate could be attributed to the signature generalization.

710 A.G. Tokhtabayev, V.A. Skormin, and A.M. Dolgikh

For instance, the Beagle worm drops itself into the system folder, and then it e-mails its
dropper. However, our prototype system successfully detected the self-mailing activity
because it traced the dropper as object relocation functionality.

During the experiment, we realized that malware strains within the same family
rarely change/add a conceptually novel functionality realization. However, the new
malware strains frequently introduce minor alterations to their functionality realiza-
tions such as utilization of alternative APIs or changing Local IPC, i.e. switching from
named pipe to shared files. We see two reasons for this trend. Firstly, authors try to
change malware system footprint in order to avoid certain AV signatures. Secondly,
in case of net-bots, the authors simply try to increase performance of malware by op-
timizing or simplifying their implementation.

False positives. For the experiment, we run 210 legitimate programs including web
browsers, e-mail clients, file managers, system and office tools, hooking software etc.
Note that we mostly focused on the main features of each program. In Table 2, we
distinguished and grouped 9 programs most of which exposed false positives. In the
first row of the table, we summarize the rest 201 programs, almost free of false posi-
tives, including various applications (office, utilities) and system tools (from Win-
dows system folder).

Table 2 indicates that eight programs out of 210 showed false positives. Below, we
give possible reasons of why a particular functionality was exposed by certain legiti-
mate software.

• Executable Download and Execute can be performed by internet browsers or file
managers. Mostly, such activity is performed on behalf of an end-user. In addition,
many programs periodically perform checking for updates. If there is an update
available, the program downloads it and then executes it.

• DLL/thread injection. It can be performed by user/system monitoring software.
Particularly, Easy Hook library injects DLL to trace API calls performed by arbi-
trary program. WinSpy program performs DLL injection in order to retrieve win-
dow objects data of a foreign program.

• Self manage cmd script create and execute. To uninstall hooks, the Easy Hook ex-
iting functions run a cmd script that waits the hooking process to end, then removes
the hooked DLLs.

• Remote hook. Hooking can be performed by chat programs to indentify whether a
user is idle. These programs hook into other processes for the input events such as
keystroke and mouse message.

Note that Table 2 also illustrates the discriminatory power of the functionalities fre-
quently exposed by malware. For instance, according to Table 2, “Self-code inject”,
“Self-mailing” and “Remote shell” have never been exposed by benign software, thus
they have perfect discriminatory power and can be dependably used for malware de-
tection. However, functionality “Executable Download and Execute” is too often ex-
posed by benign software, such as web browser, consequently its discriminatory
power is low, and it can not be recommended as a behavior signature. Hence, the de-
tection capability of a particular functionality should not be attributed to the credibil-
ity of our approach. Indeed, our methodology allows for specifying, generalizing and
detecting of functionalities, but selecting particular ones for the detection purpose
presents a specific task that can be accomplished based on comparative analysis of
their discriminatory powers.

 Expressive, Efficient and Obfuscation Resilient Behavior Based IDS 711

6 Performance Overhead

The experiments were executed on Windows XP Professional SP2 running on an
AMD Athlon 64 X2 (2200 Mhz) processor with 2 Gb of memory. We measured IDS
overhead imposed on system and application tasks using commercial benchmarks and
manual setup. Moreover, we estimated performance penalty for behavioral de-
obfuscation. To achieve consistent results on Windows XP, we deactivated Windows
prefetcher, scheduled tasks and accounted only for warm runs (to minimize cache
influence). Some tests such, as file search and software installation were performed in
virtual machine with reverting initial snapshot state for each run.

The test results are showed in Table 3 for Remote Shell functionality. We showed
here a selected set of standard tests that are representative with respect to execution
overhead. The table depicts five system and application tasks that intensively utilized
OS resources (services) resulting in a large number of invoked system calls. Some
tasks involved user interaction with GUI of the corresponding application. In these
cases, we utilized TestComplete software [22] to simulate user behavior. We also run
series of benchmarks using well-known PC Mark 05 suite [23]. Internet Explorer was
tested with Peacekeeper benchmark [23]. We run each task/benchmark several dozen
times with identical initial conditions and computed mean value of the execution
time/score assuming normal distribution.

Table 3. Execution overhead imposed by IDS

Overhead (IDS On)
Benchmark/Application (Task description)

Execution time
without IDS Basic CPN Full CPN

Files Search (Search *.exe in c:\) 58.96 5.2% 7.96%

Apps Installation (Install DirectX 9.0c) 112.3 1.15% 1.15%

MS Word (Save a big file as rtf) 35.9 4.18% 4.18%

WinRar (Compress Windows system folder) 292 2.05% 2.05%

A
pp

lic
at

io
n/

sy
s-

ta
sk

s

Internet Explorer 8 (Peacekeeper Browser
Benchmark,
www.futuremark.com)

702
 (score)

5.3% 6.4%

Application loading (Mb/sec) 4.96 1.84% 1.84%

Web page rendering (pages/sec) 2.0332 7.08% 7.08%

File Encryption (Mb/sec) 36.827 2.93% 2.93%

P
C

 M
ar

k
20

05

XP Startup (Mb/sec) 5.88 2.21% 2.21%

Average execution overhead 3.55% 3.98%

To estimate qualitative the scalability of our IDS, we tested each task against two

CPN configurations: Basic and Full. The Basic configuration covers alternative reali-
zations of the functionality in question, but it does not employ functional objects. In
contrast, the Full CPN is obtained by generalizing the Basic CPN. As a result, the Full

712 A.G. Tokhtabayev, V.A. Skormin, and A.M. Dolgikh

CPN uses functional (generic) objects and addresses all three obfuscations. To esti-
mate quantitative scalability, our IDS observed all processes, but CPN recognizer in
all performed tests.

For each task, Table 3 shows: base execution time when IDS is disabled (no system
call monitoring or processing) and execution time overhead when IDS is enabled with
both Basic and Full CPNs recognizing Remote Shell functionality (with monitoring
all active processes). The table indicates that even Full CPN IDS does not impose
much overhead (less than 4% in average), while monitoring more than 50 (all active)
processes. In fact, we also run IDS with highly loaded Windows XP with more than
100 processes without any significant overhead. This result shows sufficient scalabil-
ity to protect all processes of a modern OS.

It could be seen that generalization and de-obfuscation does not impose much
overhead penalty which is 0.43% in average. Note that in some tests Full and Base
CPN overheads are considered to be invariant under statistical hypothesis with 80%
power. This shows that our IDS is highly scalable and can address much more behav-
ioral obfuscations.

7 Related Work

Success of a Behavior based IDS is determined by two aspects: expressiveness of the
signature specification language and efficiency of the recognition mechanism. More-
over, IDS usability depends on degree of abstractness of the specification language.
We survey existing behavioral specification languages and discuss advantages of our
approach. Then we show in what way our system is different and better than existing
system call domain behavioral IDSs.

There are two types of specification languages widely used in the literature: State-
Transition/CPN based specifications [24-27] and Declarative/Analytical Specifica-
tions [28-32]. CPN specifications are very efficient in recognition, however they are
not abstract and less expressive. On the other hand, declarative and analytical specifi-
cations could be very generic and highly expressive, however in general, run-time
recognition of such specifications may impose high overhead.

With respect to the specification language, our method takes the best of the both
approaches. On one hand, the proposed AD-based specification is abstract due to
functional objects, which allows for creating highly generic and expressive signatures
free of implementation details. On the other hand, we proposed a highly efficient rec-
ognition mechanism via hierarchal CPNs defined in the detection domain – system
calls with information flow. In our case, the separation of the specification domain
from the detection domain was possible due to automatic translation of an abstract
AD to the system coherent CPN.

The above papers do not address specification generalization and behavioral obfus-
cation issues, which is one of our main contributions. Since our goal is recognizing
malicious functionality rather than malicious behavior, we have to provide all realiza-
tions (behaviors) of the functionality. Hence, automatic specification generalization
becomes a critical issue. We augment specification with most realizations via both
functional objects and generalization that also provides obfuscation resiliency. We
understand that we addressed rather limited set of obfuscations, but given the flexibil-
ity of our functionality specification, developing new generalization algorithms for
anti-obfuscation should be feasible for an expert.

 Expressive, Efficient and Obfuscation Resilient Behavior Based IDS 713

8 Conclusion

In this paper, we addressed present and future limitations of the current Behavior
Based IDS (BBIDS) in terms of signature expressiveness, behavioral obfuscation and
detection efficiency. We proposed a formal specification of the malicious functional-
ities based on activity diagrams (AD) defined in the abstract domain. We advocated
for the separation of the specification and detection domains, which is achieved via
automatic translation of an abstract AD to a hierarchical CPN defined in the system
call domain. In practice, such CPN showed itself to be a very efficient recognition
mechanism. To achieve fine-grained recognition, we also incorporated information
dependencies into AD specification and consequently to CPNs.

We analyzed both inter and intra-process behavioral obfuscation techniques that
can compromise existing BBIDS. As a solution, we proposed a concept of specifica-
tion generalization that implies augmenting (generalizing) otherwise obfuscation
prone specification into more generic obfuscation resilient specification. We pre-
sented generalization algorithms making an AD immune to the obfuscations.

We implemented a prototype IDS with CPN simulator and Information Flow
Tracer. The AD formalism is specified using standard UML AD constructs. In the
prototype, the entire process of signature generation is automated, which includes
computer aided AD design, automatic AD generalization and finally automatic AD
translation to CPN. Experiments demonstrated that such an approach minimizes de-
signing routine for an expert allowing him to concentrate on conceptual realizations
omitting certain implementation details.

The IDS was evaluated on dozens of malware and hundreds of legitimate pro-
grams. In the experiments, we detected various malicious functionalities including
self-replication engines as well as payloads. The results showed extremely low false
positives and negatives. Finally, we performed series of experiments to estimate run-
time overhead due to IDS. The results indicated two practical advantages. First, IDS
causes extremely low execution overhead that is less than 4%. Second, the overhead
increase due to the anti-obfuscation generalization is only 0.43%. Such low overhead
difference between generalized and original CPN indicates that an expert can always
address even more obfuscations with negligible execution cost.

Acknowledgment

This research is funded by the Air Force Office of Scientific Research (AFOSR). The
authors are grateful to Dr. Robert Herklotz of AFOSR for supporting this effort.

References

[1] Parampalli, C., Sekar, R., Johnson, R.: A practical mimicry attack against powerful sys-
tem-call monitors. In: Proc. ACM Symposium on Information, Computer and Communi-
cations Security, ASIACCS 2008 (2008)

[2] Russinovich, M.E., Solomon, D.A.: Microsoft Windows Internals, 4th edn. Microsoft
Press, Redmond (2005)

714 A.G. Tokhtabayev, V.A. Skormin, and A.M. Dolgikh

[3] Christodorescu, M., Jha, S., Kruegel, C.: Mining specications of malicious behavior. In:
Proc. ACM SIGSOFT Symposium on the Foundations of Software Engineering (August
2007)

[4] Martignoni, L., et al.: A Layered Architecture for Detecting Malicious Behaviors. In:
Lippmann, R., Kirda, E., Trachtenberg, A. (eds.) RAID 2008. LNCS, vol. 5230, pp. 78–
97. Springer, Heidelberg (2008)

[5] Cavallaro, L., Saxena, P., Sekar, R.: On the Limits of Information Flow Techniques for
Malware Analysis and Containment. In: Zamboni, D. (ed.) DIMVA 2008. LNCS,
vol. 5137, pp. 143–163. Springer, Heidelberg (2008)

[6] UML (2010), http://www.uml.org/
[7] Filiol, E.: Formalization and Implementation Aspects of K-ary (malicious) Codes. In:

Brouck, V. (ed.) EICAR 2007 Special Issue (2007); Journal in Computer Virology 3(2)
(2007)

[8] Visual Paradigm for UML (2009), http://www.visual-paradigm.com/
[9] Linz, P.: An Introduction to Formal Language and Automata, 4th edn. Jones & Bartlett

Pub., USA (2006)
[10] Jones, N.D., et al.: Complexity of Some Problems in Petri Nets. Theoretical Computer

Science 4, 277–299 (1977)
[11] Jensen, K.: Coloured Petri nets (2nd ed.): basic concepts, analysis methods and practical

use, 2nd edn., vol. 1. Springer, Berlin (1996)
[12] Newsome, J., Song, D.: Dynamic taint analysis for automatic detection, analysis, and sig-

nature generation of exploits on commodity software. In: Proc. 12th Annual Network and
Distributed System Security Symposium, NDSS (2005)

[13] Egele, M., Kruegel, C., Kirda, E., Yin, H., Song, D.: Dynamic spyware analysis. In: Proc.
USENIX Annual Technical Conference (June 2007)

[14] Volpano, D.M.: Safety versus secrecy. In: Cortesi, A., Filé, G. (eds.) SAS 1999. LNCS,
vol. 1694, p. 303. Springer, Heidelberg (1999)

[15] Bayer, U., Comparetti, P.M., Hlauschek, C., Kruegel, C., Kirda, E.: Scalable, Behavior-
Based Malware Clustering. In: Proc. NDSS (2009)

[16] Moser, A., Kruegel, C., Kirda, E.: Exploring multiple execution paths for malware analy-
sis. In: Proc. IEEE Security and Privacy (2007)

[17] Skormin, V., Volynkin, A., Summerville, D., Moronski, J.: Run-Time Detection of Mali-
cious Self-Replication in Binary Executables. Journal of Computer Security 15(2), 273–
301 (2007)

[18] Hoglund, G., Butler, J.: Subverting the Windows Kernel – Rootkits. Addison Wesley,
Reading (2006)

[19] Tokhtabayev, A.G., Skormin, V.A., Dolgikh, A.M.: Detection of Worm Propagation En-
gines in the System Call Domain using Colored Petri Nets. In: Proc. 27th IEEE Interna-
tional Performance Computing and Communications Conference (IPCCC), Austin, TX
(December 2008)

[20] Volynkin, A., Skormin, V.: Large-scale Reconfigurable Virtual Testbed for Information
Security Experiments. In: Proc. of the 3rd International Conference on Testbeds and Re-
search Infrastructures for the Development of Networks and Communities, Orlando, FL,
May 21-23 (2007)

[21] Tokhtabayev, A., Skormin, V., Dolgikh, A., Beisenbi, M., Kargaldayeva, M.: Detection
of Specific Semantic Functionalities, such as Self-Replication Mechanism, in Malware
Using Colored Petri Nets. In: Proc. SAM 2009, Las Vegas, NV (July 2009)

[22] TestComplete (2010), http://www.automatedqa.com/
[23] PCMark 2005, Peacekeeper (2010), http://www.futuremark.com/

 Expressive, Efficient and Obfuscation Resilient Behavior Based IDS 715

[24] Kumar, S., Spafford, E.H.: A Pattern Matching Model for Misuse Intrusion Detection
Approach. In: Proc. of the 17th National Computer Security Conference (1994)

[25] Helmer, G., Wong, J., Slagell, M., Honavar, V., Miller, L., Wang, Y., Wang, X., Stakha-
nova, N.: A Software Fault Tree and Colored Petri Nets based specification, Design and
Implementation of Agent Based Intrusion Detection Systems. International Journal of In-
formation and Computer Security 1(1/2), 109–142 (2007)

[26] Ho, Y., Frincke, D., Tobin Jr., D.: Planning, Petri Nets, and Intrusion Detection. In: Pro-
ceedings of the 21st National Information Systems Security Conference, Crystal City,
Virginia (October 1998)

[27] Eckmann, S., Vigna, G., Kemmerer, R.: STATL: an Attack Language for State-based In-
trusion Detection. In: Proc. of the ACM Workshop on Intrusion Detection, Athens,
Greece (November 2000)

[28] Cuppens, F., Ortalo, R.: LAMBDA: A Language to Model a Database for Detection of
Attacks. In: Debar, H., Mé, L., Wu, S.F. (eds.) RAID 2000. LNCS, vol. 1907, p. 197.
Springer, Heidelberg (2000)

[29] Michel, C., Me, L.: ADeLe: An Attack Description Language for Knowledge-based In-
trusion Detection. In: Proc. International Conference on Information Security, June 2001,
Kluwer, Dordrecht (2001)

[30] Pouzol, J.-P., Ducassé, M.: From Declarative Signatures to Misuse IDS. In: Lee, W., Mé,
L., Wespi, A. (eds.) RAID 2001. LNCS, vol. 2212, pp. 1–21. Springer, Heidelberg (2001)

[31] Ning, P., Jajodia, S., Wang, X.S.: Abstraction-Based Intrusion Detection In Distributed
Environments. ACM Transactions on Information and System Security 4(4), 407–452
(2001)

[32] Meier, M., Bischof, N., Holz, T.: SHEDEL - A Simple Hierarchical Event Description
Language for Specifying Attack Signatures. In: Proc. 17th International Conference on
Information Security, pp. 559–571. Kluwer, Dordrecht (2002)

Author Index

Ahn, Gail-Joon 182

Almeida, José Bacelar 151

Androulaki, Elli 37

Ardagna, Claudio A. 540

Athanasopoulos, Elias 663

Au, Man Ho 168

Backes, Michael 508, 607

Bangerter, Endre 151

Barbosa, Manuel 151

Basin, David 340

Bellovin, Steven 37

Blanton, Marina 424

Bojinov, Hristo 286

Boneh, Dan 286

Boyen, Xavier 286

Bursztein, Elie 286

Čapkun, Srdjan 679

Catrina, Octavian 134

Chakravarty, Sambuddho 249

Chang, Ee-Chien 199

Chan, Mun Choon 199

Chen, Yu 71

Christin, Nicolas 588

Chuang, John 588

Ciobotaru, Oana 607

Crampton, Jason 472

Cremers, Cas 340

Cuppens-Boulahia, Nora 626

Cuppens, Frédéric 626

Dahl, Morten 55

Debar, Hervé 626

de Hoogh, Sebastiaan 134

Delaune, Stéphanie 55

Deng, Robert H. 1

Dinh, Tien Tuan Anh 319

Dolgikh, Andrey M. 698

Doychev, Goran 508

Dürmuth, Markus 508

Escobar, Santiago 303

Frikken, Keith B. 424

Gofman, Mikhail I. 455

Gollmann, Dieter 441

Grossklags, Jens 588

Heather, James 405

Heiberg, Sven 373

Hong, Jason 268

Hubert, Laurent 101

Hu, Hongxin 182

Huth, Michael 472

Ioannidis, Sotiris 663

Jajodia, Sushil 540, 573

Janc, Artur 215

Jensen, Thomas 101

Johnson, Benjamin 588

Kapravelos, Alexandros 663

Karame, Ghassan O. 679

Keromytis, Angelos D. 249

Kheir, Nizar 626

Köpf, Boris 508

Kremer, Steve 389

Krenn, Stephan 151

Krohmer, Anton 607

Küpçü, Alptekin 488

Lee, Wenke 232

Ligatti, Jay 87

Lipmaa, Helger 373

Liu, Joseph K. 168

Li, Yingjiu 1

Lu, Liming 199

Luo, Ruiqi 455

Luo, Xiapu 232

Lysyanskaya, Anna 488

Mantel, Heiko 116

Markatos, Evangelos P. 663

Meadows, Catherine 303

Meier, Jan 441

Meseguer, José 303

Monfort, Vincent 101

718 Author Index

Nithyanand, Rishab 19

Noel, Steven 573

Olejnik, Lukasz 215

Pashalidis, Andreas 524

Pendleton, Bryan A. 268

Perdisci, Roberto 232

Perito, Daniele 643

Pichardie, David 101

Polakis, Iasonas 663

Reddy, Srikar 87

Rose, Carolyn P. 268

Ryan, Mark 319, 389

Ryan, Peter Y.A. 405

Sadeghi, Ahmad-Reza 151

Samarati, Pierangela 540

Santiago, Sonia 303

Schiffner, Stefan 524

Schneider, Thomas 151

Seifert, Jean-Pierre 182

Singhal, Anoop 573

Skormin, Victor A. 698

Smyth, Ben 389

Stavrou, Angelos 249, 540

Steel, Graham 55

Sudbrock, Henning 116

Susilo, Willy 168

Teague, Vanessa 405

Terauchi, Tachio 357

Ţiplea, Ferucio Laurenţiu 558

Tokhtabayev, Arnur G. 698

Tsudik, Gene 19, 643

Uzun, Ersin 19

Vamanu, Loredana 558

van Laenen, Filip 373

Vârlan, Cosmin 558

Vo, Binh 37

Wang, Lingyu 573

Wang, Tielei 71

Wei, Tao 71

Xiang, Guang 268

Xu, Wenjuan 182

Yang, Ping 455

Yasuoka, Hirotoshi 357

Yung, Moti 1

Zhang, Chao 71

Zhang, Junjie 232

Zhang, Xinwen 182

Zhao, Yunlei 1

Zhou, Jianying 168

Zou, Wei 71

	Title Page
	Preface
	Organization
	Table of Contents
	RFID and Privacy
	A New Framework for RFID Privacy
	Introduction
	Preliminaries
	Model of RFID Systems
	RFID System Setting
	Adversary
	Adaptive Completeness and Mutual Authentication

	Zero-Knowledge Based RFID Privacy
	Discussions

	Comparison with Existing Frameworks
	Comparison with Model in Model in [18]
	Comparison with Model in Model in [26,23]
	Comparison with Models in Model in [10,20]

	An RFID Protocol within Our Framework
	Future Work
	References

	Readers Behaving Badly Reader Revocation in PKI-Based RFID Systems
	Introduction
	Why Bother?
	Why Is Reader Revocation Hard?
	Roadmap

	Related Work
	Trivial Solutions
	Date Register and Time Stamps
	On-Line Revocation Checking
	Internal Clocks

	Proposed Technique
	Assumptions
	Basic Idea
	Escape Actions
	Efficient Revocation Checking
	Security Considerations
	Cost Assessment

	Usability
	Usability Experiment
	On-Line Survey
	Discussion

	Conclusions
	References

	Privacy-Preserving, Taxable Bank Accounts
	Introduction
	System Architecture
	Taxation Protocol
	Building Blocks — Primitives for the Suggested Solution
	Detailed Protocol Description

	Discussion
	Related Work
	Conclusion
	References

	Formal Analysis of Privacy for Vehicular Mix-Zones
	Introduction
	Mix-Zones and CMIX Protocol
	Mix-Zones
	The CMIX Protocol

	Formal Modelling
	Messages
	Processes
	Observational Equivalence

	Privacy for Vehicular Mix-Zones
	Mix-Zones
	Privacy

	Privacy Analysis
	Privacy in the Ideal Model
	Privacy in the CMIX Model
	Fixing the Key Establishment Protocol

	Conclusion
	References

	Software Security
	IntPatch: Automatically Fix Integer-Overflow-to-Buffer-Overflow Vulnerability at Compile-Time
	Introduction
	Background
	What Is an IO2BO Vulnerability?
	How to Fix IO2BO Vulnerabilities?

	System Overview
	Identify Potential IO2BO Vulnerabilities
	Locate Vulnerable Arithmetic Operations and Patch

	Implementation
	LLVM
	Type Analysis
	Locate Vulnerable Arithmetic Operations and Patch
	Another Compiler Interface

	Evaluation
	Check Density
	Performance Overhead
	False Positives and False Negatives
	Zero-Day Bugs
	Limitation

	Related Work
	Conclusion
	References

	A Theory of Runtime Enforcement, with Results
	Introduction
	Related Work
	Contributions

	Background Definitions and Notation
	Mandatory Results Automata
	Definition of MRAs
	Example MRAs
	Generalizing the Operational Semantics

	MRA-Based Enforcement
	Policies and Properties
	Enforcement
	Wanted: Auxiliary Predicates, Dead and Alive

	Analysis of MRA-Enforceable Policies
	Conclusions
	References

	Enforcing Secure Object Initialization in Java
	Introduction
	Related Work
	Context Overview
	The Right Way: A Type System
	Specifying an Initialization Policy with Annotations
	Checking the Initialization Policy

	Formal Study of the Type System
	A Case Study: Sun's JRE
	Conclusion and Future Work
	References

	Flexible Scheduler-Independent Security
	Introduction
	Preliminaries
	Execution Model
	Traces

	Scheduling and Scheduler-Specific Security
	An Explicit Scheduler Model
	Scheduler-Specific Security Property

	Scheduler-Independent Information Flow Security
	A Novel Security Property
	The Class of Robust Schedulers
	Scheduler Independence Result

	Security Analysis for a Multi-threaded Language
	Security Type System
	Exemplary Security Analysis

	Related Work
	Conclusion
	References

	Cryptographic Protocols
	Secure Multiparty Linear Programming Using Fixed-Point Arithmetic
	Introduction
	Preliminaries
	Linear Programming and the Simplex Algorithm
	Core Protocols

	Arithmetic Protocols
	Secure Simplex Protocol
	Performance Evaluation and Conclusions
	References

	A Certifying Compiler for Zero-Knowledge Proofs of Knowledge Based on Σ-Protocols
	Introduction
	Preliminaries
	Σ-Protocols as ZK-PoK Protocols
	Proving Atoms
	Operations on Σ-Protocols

	Compiler
	Architecture
	Protocol Specification Language and Optimizations

	Verification
	References

	Short Generic Transformation to Strongly Unforgeable Signature in the Standard Model
	Introduction
	Generic Security-Amplifying Methods for Ordinary Digital Signatures
	Our Result
	Related Works
	Organization

	Definition
	Mathematical Assumption
	Security Definition

	Given-Target One-Way Chameleon Hash
	Definition
	Scheme under DL Assumption
	Scheme under One-More-DL Assumption

	Generic Transformation to SUF-CMA Secure Signature
	Our Transformation
	Security Analysis

	Conclusion
	References

	DR@FT: Efficient Remote Attestation Framework for Dynamic Systems
	Introduction
	Background
	Attestation
	Integrity Models

	Domain-Based Isolation
	Design of DR@FT
	System State and Trust Requirement
	Attestation Procedures

	Integrity Violation Analysis
	Policy Violation Graph
	Ranking Policy Violation Graph
	Evaluating Trustworthiness

	Implementation and Evaluation
	Attestation Implementation
	Evaluation
	Performance

	Conclusion
	References

	Traffic Analysis
	Website Fingerprinting and Identification Using Ordered Feature Sequences
	Introduction
	Related Work
	Our Website Fingerprinting Scheme
	Model
	Fingerprint Feature Selection
	Fingerprint Similarity Measurement

	Website Fingerprinting under Traffic Morphing
	Fingerprint Differentiation

	Evaluation
	Experiment Setup and Data Collection
	Fingerprint Identification Accuracy
	Accuracy with Traffic Morphing
	Consistency of Fingerprints

	Countermeasures
	Conclusion
	References

	Web Browser History Detection as a Real-World Privacy Threat
	Introduction
	Background
	Analysis
	Basic Implementation
	Resource Detectability
	Performance

	Methodology
	System Overview
	Link Selection
	Processing Results

	Results
	General Results
	Social News Site Links
	Uncovering Private Information

	Conclusions
	References

	On the Secrecy of Spread-Spectrum Flow Watermarks
	Introduction
	Background
	Threat Model
	Spread-Spectrum Flow Watermarks
	Countermeasures

	Detection System
	Basic Idea
	Low-Throughput Periods Resulted from PN Codes
	Locating Low-Throughput Periods
	Detection Algorithm

	Elimination System
	Evaluation
	Evaluation of the Detection System Using Planetlab Traces
	Evaluation of the Detection System Using Tor Traces from [28]
	Evaluation of the Elimination System

	Conclusion
	References

	Traffic Analysis against Low-Latency Anonymity Networks Using Available Bandwidth Estimation
	Introduction
	Related Work
	Attack Methodology
	Experimental Evaluation
	Experiments Using the DETER Testbed
	In-Lab Experiments
	Probing Tor Relays, Clients and Hidden Services

	Issues, Discussion and Possible Counter-Measures
	Conclusions
	References

	End-User Security
	A Hierarchical Adaptive Probabilistic Approach for Zero Hour Phish Detection
	Introduction
	Related Work
	Methods for Automatic Phish Detection
	Toolkits for Creating Phishing Sites

	A Multi-layered Phish Detection Algorithm
	System Architecture
	Shingling-Based Probabilistic Matching
	Search Engine Enhanced Filtering
	Incremental Model Building via Sliding Window

	Experiment
	Domain Whitelists
	Webpage Corpus
	Test Methodology
	Experimental Results

	Discussion
	Domain Whitelist and URL Blacklist
	Blacklist-Based Soft Matching
	Effectiveness of TF-IDF Filtering
	Legitimate Corpus
	Runtime Performance
	How Phishers May Respond

	Conclusion
	References

	Kamouflage: Loss-Resistant Password Management
	Introduction
	How Users Choose Passwords
	Threat Model
	Architecture
	Password Set Generation
	Implementation

	Extensions
	Why and How to Encrypt
	Website Policy Compatibility
	``Honeywords'': Using Decoys as Attacker Traps
	Master Password Fingerprinting
	Kamouflage Summarized

	Additional Related Work
	Conclusions
	References

	Formal Analysis
	Sequential Protocol Composition in Maude-NPA
	Introduction
	Two Motivating Examples
	Background on Term Rewriting
	Maude-NPA's Execution Model
	Syntax for Protocol Specification and Composition
	Maude-NPA's Composition Execution Model
	Composition Execution Model
	Protocol Composition by Protocol Transformation

	Related Work and Conclusions
	References

	Verifying Security Property of Peer-to-Peer Systems Using CSP
	Introduction
	Security Issues in P2P Systems
	Overview
	Root Authenticity Property of a P2P System

	A Secure P2P System Using Trusted Computing
	Trusted Computing and Trusted Platform Modules
	A Secure P2P System Using Trusted Computing

	Formal Model in CSP
	The System Model in CSP
	Checking the RA Property

	Verification
	Conclusion
	References

	Modeling and Analyzing Security in the Presence of Compromising Adversaries
	Introduction
	Compromising Adversary Model
	Terms and Events
	Protocols and Threads
	Execution Model
	Adversary-Compromise Rules
	Transition Relation and Security Properties

	Applications and Case Studies
	Related Work
	Conclusions
	References

	On Bounding Problems of Quantitative Information Flow
	Introduction
	Preliminaries
	Non-interference
	Bounding Problem

	K-Safety Property
	K-Safety under a Constant Bound

	Complexities for Loop-Free Boolean Programs
	Discussion
	Bounding the Domains
	Low Security Inputs

	Related Work
	Conclusions and Future Work
	References

	E-voting and Broadcast
	On E-Vote Integrity in the Case of Malicious Voter Computers
	Introduction
	Cryptographic Preliminaries
	Cryptographic Tools
	Strong Proxy Oblivious Transfer
	New NIZK Proof of Knowledge

	Cryptographic Protocol for E-Vote Integrity
	Security of Integrity Protocol
	Discussion
	Implementation Data
	References

	Election Verifiability in Electronic Voting Protocols
	Introduction
	Applied pi Calculus
	Formalising Voting Protocols
	Election Verifiability
	Individual and Universal Verifiability
	Case Study: FOO
	Case Study: Helios 2.0

	Eligibility Verifiability
	Case Study: JCJ-Civitas

	Conclusion
	References

	Pretty Good Democracy for More Expressive Voting Schemes
	Introduction
	Review of PGD 1.0
	New Protocol Comparison

	Protocol A: The Simple Solution
	Discussion

	Protocol B: Returning the Acknowledgement Codes in Ballot Order
	Security Properties
	Voter Interface Details
	Details of Ballot Construction, Acknowledgement and Tallying
	Proofs of Correctness

	Protocol C: Two-Dimensional Tables
	Details of Ballot Construction, Ack Return and Tallying
	Proofs of Correctness for Protocol C

	Discussion
	References

	Efficient Multi-dimensional Key Management in Broadcast Services
	Introduction
	Related Work
	Model Description and Definitions
	Description of the Scheme
	Security Analysis
	Extensions
	Performance
	Conclusions
	References

	Authentication, Access Control, Authorization and Attestation
	Caught in the Maze of Security Standards
	Introduction
	Smart Card Details

	Standards Relevant for eCard Applications
	Cryptographic Protocols
	Smart Card Standards

	Case Study: Specifications for Smart Card Based Authentication Protocols
	Authentication with Key Establishment
	Challenge-Response Authentication Protocol

	Gaps in Smart Card Based Authentication Protocol Specifications
	Authentication Protocol with Key Establishment
	On the Use of Xor
	Challenge-Response Authentication Protocol
	Protocol Performance

	The Maze of Standards
	Certification Issues
	Conclusion
	References

	User-Role Reachability Analysis of Evolving Administrative Role Based Access Control
	Introduction
	Preliminaries
	Role Based Access Control
	User-Role Reachability Analysis

	Incremental Forward Algorithms
	Incremental Algorithm: IncFwd1
	Incremental Algorithm: IncFwd2
	Lazy Incremental Forward Algorithm

	Incremental Backward Algorithm
	Experimental Results
	Experimental Results: Incremental Forward Analysis Algorithms
	Experimental Results: Incremental Backward Algorithm

	Related Work
	Conclusion
	References

	An Authorization Framework Resilient to Policy Evaluation Failures
	Introduction
	A Simple Policy Language
	Policy Semantics
	Policy Evaluation
	Concluding Remarks
	References

	Optimistic Fair Exchange with Multiple Arbiters
	Introduction
	Definition of a DAFE Protocol
	Sample DAFE Protocols

	Notation
	DAFET Protocols (DAFE Protocols with Timeouts)

	Framework for Analysis of DAFE Protocols
	Scenario 1: M Can Abort
	Scenario 2: Only H Can Abort
	Scenario 3: H Can Resolve Only After Timeout
	Scenario 4: M Already Resolved

	Impossibility Results on DAFE Protocols
	Protocol 1: Alice and Bob Can Abort and Resolve
	Protocol 2: Only One Party Can Abort

	Applying DAFET Framework to Prove Optimality of an Existing Protocol
	Conclusion
	References

	Anonymity and Unlinkability
	Speaker Recognition in Encrypted Voice Streams
	Introduction
	Our Contribution
	Related Work
	Outline

	Building Speaker Profiles
	Abstract Voice Streams
	Adapting Abstract Voice Streams to the Codec's Characteristics
	Basic Speaker Profiles
	Advanced Speaker Profiles
	Clustering

	Measuring Distance of Speaker Profiles
	The $L-1$-Distance
	The χ2-Distance
	The $K-S$-Distance
	Classifier Evaluation

	Experimental Evaluation
	Experimental Setup
	Results and Discussion

	Conclusion
	References

	Evaluating Adversarial Partitions
	Introduction
	Related Work
	Evaluating Adversarial Partitions
	Primary Errors
	Secondary Errors
	Sensitive Elements
	Adversarial Views over Partitions

	Example
	Simulated Attacks
	Concluding Remarks
	References

	Providing Mobile Users’ Anonymity in Hybrid Networks
	Introduction
	Problem Definition
	Rationale and Basics of Our Approach
	Protocol
	Request
	Response

	Assessing k-Anonymity
	Single Request-Response
	Multiple Requests-Responses

	Adversarial Analysis
	Adversaries Eavesdropping the Communication
	Traditional Attacks

	Performance Evaluation
	Related Work
	Conclusions
	References

	Complexity of Anonymity for Security Protocols
	Introduction
	Modeling Security Protocols
	Anonymity-Related Security Properties
	Augmenting Agent States with Facts
	Fact Derivation
	Observational Equivalence
	Anonymity

	Complexity of Anonymity
	Conclusions
	References

	Network Security and Economics
	k-Zero Day Safety: Measuring the Security Risk of Networks against Unknown Attacks
	Introduction
	Motivating Example

	Modeling k-Zero Day Safety
	The Network Model
	The Zero Day Attack Model
	The k-Zero Day Safety Model

	Computing k-Zero Day Safety
	Computing the Value of k
	Determining k-Zero Day Safety for a Given Small k

	Discussions
	Related Work
	Conclusion
	References

	Are Security Experts Useful? Bayesian Nash Equilibria for Network Security Games with Limited Information
	Introduction
	Related Work
	Limited Information
	Mixed Player Populations and Bounded Rationality

	Model Overview
	Simplifications and Additional Assumptions

	Analysis
	Methodology
	Protection Strategies in the Best Shot Security Game
	Protection Strategies in the Weakest Link Security Game
	Protection Strategies in the Total Effort Security Game

	Numerical Illustrations and Observations
	Best Shot
	Weakest Link
	Total Effort

	Discussion and Conclusion
	Caveats
	Applications
	Public Policy Impact
	Future Research Directions

	References

	RatFish: A File Sharing Protocol Provably Secure against Rational Users
	Introduction
	Our Contribution
	Related Work
	Outline

	A Bird's Eye View on How to Rationalize P2P
	A Game-Theoretic Model for File Sharing
	Review of Game-Theoretic Definitions
	A Game-Theoretic Model for File Sharing Protocols

	The RatFish Protocol
	The Protocol of the Tracker
	The Protocol of the Seeder
	The Protocol of the Leecher

	Equilibrium Proof
	Underlying Assumptions
	Proving the Nash Equilibrium

	Implementation and Performance Evaluation
	Implementation
	Experimental Setup
	Performance Evaluations

	Conclusions and Future Work
	References

	A Service Dependency Model for Cost-Sensitive Intrusion Response
	Introduction
	Return-On-Response-Investment index
	Service Dependency Framework
	Specification of System Security Objectives
	Privilege Sharing and Service Dependencies
	Intrusions, Responses and Impact Propagations

	Simulation Platform
	Using Colored Petri Nets
	Simulation Process

	Case Study
	Conclusion
	References

	Secure Update, DOS and Intrustion Detection
	Secure Code Update for Embedded Devices via Proofs of Secure Erasure
	Introduction
	Related Work
	Hardware Attestation
	Software Attestation
	Provable Data Possession and Proofs of Retrievability
	Memory-Bounded Adversary

	Assumptions and Adversary Model
	Design Rationale
	Secure Code Update
	Efficient Proof of Secure Erasure
	Optimizing Code Update

	Implementation and Performance Considerations
	Performance Evaluation
	Memory Usage
	Read-Only Memory

	Limitations and Challenges
	Conclusions
	References

	D(e|i)aling with VoIP: Robust Prevention of DIAL Attacks
	Introduction
	Motivation
	Attack Overview
	Attack Description
	Simulation

	Attack Evaluation
	Attack Prototype
	Real World Experiments
	Attack Impact
	Attacker's Anonymity

	Countermeasures
	Existing Countermeasures
	Server Side Countermeasures
	Client Side Countermeasures

	Related Work
	Conclusion
	References

	Low-Cost Client Puzzles Based on Modular Exponentiation
	Introduction
	Preliminaries
	Client Puzzle Properties
	Rivest's Repeated-Squaring Puzzle
	RSA with a Small Private Exponent
	Low-Cost Decryption in RSA

	Low-Cost Puzzles Based on Modular Exponentiation
	System and Attacker Model
	Low-Cost Fixed-Exponent Modular Exponentiation Puzzle
	Low-Cost Variable-Exponent Modular Exponentiation Puzzle
	Performance Evaluation

	Applications
	Efficient Resilience to DoS Attacks
	Remote Verification of Computing Performance

	Related Work
	Conclusion
	References

	Expressive, Efficient and Obfuscation Resilient Behavior Based IDS
	Introduction
	Functionality Specification and Abstraction
	Mitigating Behavior Obfuscations
	Functionality Recognition
	Experimental Evaluation
	Performance Overhead
	Related Work
	Conclusion
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

