Dimitris Gritzalis
Bart Preneel
Marianthi Theoharidou (Eds.)

Computer Security -
ESORICS 2010

15th European Symposium on Research in Computer Security
Athens, Greece, September 2010
Proceedings

LNCS 6345

@ Springer




Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison

Lancaster University, UK
Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler

University of Surrey, Guildford, UK
Jon M. Kleinberg

Cornell University, Ithaca, NY, USA
Alfred Kobsa

University of California, Irvine, CA, USA
Friedemann Mattern

ETH Zurich, Switzerland
John C. Mitchell

Stanford University, CA, USA
Moni Naor

Weizmann Institute of Science, Rehovot, Israel
Oscar Nierstrasz

University of Bern, Switzerland
C. Pandu Rangan

Indian Institute of Technology, Madras, India
Bernhard Steffen

TU Dortmund University, Germany
Madhu Sudan

Microsoft Research, Cambridge, MA, USA
Demetri Terzopoulos

University of California, Los Angeles, CA, USA
Doug Tygar

University of California, Berkeley, CA, USA
Gerhard Weikum

Max Planck Institute for Informatics, Saarbruecken, Germany

6345



Dimitris Gritzalis Bart Preneel
Marianthi Theoharidou (Eds.)

Computer Security —
ESORICS 2010

15th European Symposium on Research in Computer Security
Athens, Greece, September 20-22, 2010
Proceedings

@ Springer



Volume Editors

Dimitris Gritzalis

Marianthi Theoharidou

Athens University of Economics and Business

Information Security and Critical Infrastructure Protection Research Group
Department of Informatics

76 Patission Ave., Athens, 10434, Greece

E-mail: {dgrit, mtheohar} @aueb.gr

Bart Preneel

Katholieke Universiteit Leuven

Department of Electrical Engineering-ESAT/COSIC
Kasteelpark Arenberg 10, Bus 2446, 3001 Leuven, Belgium
E-mail: bart.preneel @esat.kuleuven.be

Library of Congress Control Number: 2010933238

CR Subject Classification (1998): C.2, K.6.5, D.4.6, E.3, H.4, J.1
LNCS Sublibrary: SL 4 — Security and Cryptology

ISSN 0302-9743
ISBN-10 3-642-15496-4 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-15496-6 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2010
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper 06/3180



Preface

The European Symposium on Research in Computer Security (ESORICS) has a
tradition that goes back two decades. It tries to bring together the international
research community in a top-quality event that covers all the areas of computer
security, ranging from theory to applications.

ESORICS 2010 was the 15th edition of the event. It was held in Athens,
Greece, September 20-22, 2010. The conference received 201 submissions. The
papers went through a careful review process. In a first round, each paper re-
ceived three independent reviews. For the majority of the papers an electronic
discussion was also organized to arrive at the final decision. As a result of the
review process, 42 papers were selected for the final program, resulting in an ac-
ceptance rate of as low as 21%. The authors of accepted papers were requested
to revise their papers, based on the comments received. The program was com-
pleted with an invited talk by Udo Helmbrecht, Executive Director of ENISA
(European Network and Information Security Agency).

ESORICS 2010 was organized under the aegis of three Ministries of the Gov-
ernment of Greece, namely: (a) the Ministry of Infrastructure, Transport, and
Networks, (b) the General Secretariat for Information Systems of the Ministry
of Economy and Finance, and (c) the General Secretariat for e-Governance of
the Ministry of Interior, Decentralization, and e-Government.

First and foremost, we would like to thank the members of the Program
Committee for their extensive efforts both during the review and the discussion
phase. Our task would not have been feasible without their collective knowledge
and wisdom. We would also like to express our thanks to the numerous external
reviewers for their contributions.

We are indebted to Sokratis Katsikas—our General Chair—for his kind en-
couragement, as well as to Nikos Kyrloglou—our Organizing Committee Co-
chair—for his continuous support. Our appreciation goes to Triaena Tours &
Congress S.A., our local organizer and official travel agent, for our fruitful co-
operation.

Last, but not least, we are sincerely grateful to our sponsor, Vodafone S.A.,
as well as to our supporters (in alphabetical order) Adacom S.A., Encode S.A.,
Ernst & Young S.A., Quality & Reliability S.A., and Unisystems S.A. for their
kind and generous support.

Finally, we would like to thank the submitters, authors, presenters, and par-
ticipants who, all together, made ESORICS 2010 a great success.

We hope that the papers in this volume can help you with your research and
professional activities, and serve as a source of inspiration during the difficult
but fascinating route towards an on-line world with adequate security.

September 2010 Dimitris Gritzalis
Bart Preneel
Marianthi Theoharidou



General Chair

Sokratis Katsikas

Organization

University of Piraeus (Greece)

Program Committee Chairs

Dimitris Gritzalis

Bart Preneel

Athens University of Economics and Business
(Greece)
K. U. Leuven (Belgium)

Organizing Committee Chairs

Nikolaos Kyrloglou

Marianthi Theoharidou

Publicity Chair

Sara Foresti

Program Committee

Vijay Atluri
Michael Backes
Feng Bao
Joachim Biskup
Carlo Blundo
Xavier Boyen
Jan Camenisch
Srdjan Capkun
Richard Clayton
Véronique Cortie
Frédéric Cuppens
George Danezis
Sabrina de Capitani
di Vimercati
Claudia Diaz
Simon Foley
Cédric Fournet

Athens Chamber of Commerce and Industry
(Greece)
Athens University of Economics and Business

(Greece)

Universita degli Studi di Milano (Italy)

Rutgers University (USA)

Saarland University and MPI-SWS (Germany)
Institute for Infocomm Research (Singapore)
University of Dortmund (Germany)
Universita di Salerno (Italy)

Stanford University (USA)

IBM Research Zurich (Switzerland)

ETH Zurich (Switzerland)

Cambridge University (UK)

LORIA-CNRS (France)

TELECOM Bretagne (France)

Microsoft Research (UK)

Universita degli Studi di Milano (Italy)

K.U. Leuven (Belgium)
University College Cork (Ireland)
Microsoft Research (UK)



VIII Organization

Deborah Frincke
Dieter Gollmann

Thorsten Holz

Bart Jacobs

Sushil Jajodia

Tom Karygiannis
Stefan Katzenbeisser
Dogan Kesdogan
Aggelos Kiayias
Michiharu Kudo
Klaus Kursawe

Costas Lambrinoudakis

Wenke Lee

Javier Lopez
Toannis Mavridis
Chris Mitchell

John Mitchell
Radia Perlman
Andreas Pfitzmann
Benny Pinkas
Michael Reiter
Peter Ryan

Rei Safavi-Naini
Pierangela Samarati
Einar Snekkenes
George Spanoudakis
Toannis Stamatiou
Paul Syverson

Bill Tsoumas

Michael Waidner
Dirk Westhoff

Pacific Northwest National Laboratory (USA)
Hamburg University of Technology

(Germany)

Vienna University of Technology (Austria)
University of Nijmengen (The Netherlands)
George Mason University (USA)

NIST (USA)

T.U. Darmstadt (Germany)

University of Siegen (Germany)
University of Athens (Greece)

IBM Tokyo Research Laboratory (Japan)
Philips Research (The Netherlands)
University of Piraeus (Greece)

Georgia Institute of Technology (USA)
University of Malaga (Spain)

University of Macedonia (Greece)
University of London (UK)

Stanford University (USA)

Intel Corporation (USA)

T.U. Dresden (Germany)

University of Haifa (Israel)

University of North Carolina (USA)
University of Luxembourg (Luxembourg)
University of Calgary (Canada)
Universita degli studi Milano (Italy)
Gjovik University College (Norway)

City University London (UK)

University of Ioannina (Greece)

Naval Research Laboratory (USA)
Athens University of Economics and Business

(Greece)

IBM T.J. Watson Research Center (USA)
HAW Hamburg (Germany)

Additional Reviewers

Agudo, Isaac
Ahmadi, Hadi
Alcaraz, Cristina
Anderson, Jonathan
Autrel, Fabien
Barati, Masoud
Batina, Lejla

Ben Ghorbel, Meriam
Bonneau, Joseph

Brinkman, Richard
Buttyan, Levente
Chada, Rohit
Chadha, Rohit
Chan, Haowen
Chase, Melissa
Chen, Liqun
Chenette, Nathan
Clarkson, Michael

Clauf}, Sebastian
Cuppens-Boulahia, Nora
D’ Arco, Paolo

De Caro, Angelo
Deursen, van, Ton
Dobias, Jaromir

Doets, Peter Jan
Dritsas, Stelios
Drogkaris, Prokopis



Fan, Junfeng
Fernandez-Gago,
Carmen
Fitzgerald, William
Gagne, Marin
Galindo, David
Garcia, Flavio
Garcia-Alfaro, Joaquin
Geneiatakis, Dimitris
Gierlichs, Benedikt
Gouglidis, Antonios
Gregoire, Benjamin
Hartog, den, Jerry
Hermans, Jens
Hoepman, Jaap-Henk
Hoffman, Johannes
Tovino, Vincenzo
Jarrous, Ayman
Jonker, Hugo
Kopsell, Stefan
Kellermann, Benjamin
Kirchner, Matthias
Konstantinou, Elisavet
Kontogiannis, Spyros

Laud, Peeter

Leh, Hoi

Li, Jiangtao

Li, Peng

Lochner, Jan Hendrik

Maes, Roel

Maffei, Matteo

Meier, Michael

Moran, Tal

Mostowski, Wojciech

Murdoch, Steven

Najera, Pablo

Narayan,
Shivaramakrishnan

Nastou, Panayiotis

Nieto, Ana

Onieva, Jose A.

Oostendorp, Thom

Papagiannakopoulos,
Panagiotis

Paskin-Cherniavsky,
Anat

Poll, Erik

Reinman, Tzachy

Organization IX

Rekleitis, Evangelos
Rial, Alfredo
Rizomiliotis, Panagiotis
Roman, Rodrigo
Safa, Nashad Ahmad
Scafuro, Alessandra
Schiffner, Stefan
Shahandashti, Siamak
Song, Boyeon

Steel, Graham
Traore, Jacques
Troncoso, Carmela
Tuhin, Ashraful
Valeontis, Eytyhios
Vavitsas, Giorgos
Vercauteren, Frederik
Vergnaud, Damien
Visconti, Ivan

Vivas, Jose L.
Vrakas, Nikos

Wang, Pengwei
Yoshihama, Sachiko



Table of Contents

RFID and Privacy

A New Framework for RFID Privacy ........ ... ... ... ... . ...
Robert H. Deng, Yingjiu Li, Moti Yung, and Yunlei Zhao

Readers Behaving Badly: Reader Revocation in PKI-Based RFID
SYSEEINS . . oot
Rishab Nithyanand, Gene Tsudik, and Ersin Uzun

Privacy-Preserving, Taxable Bank Accounts .........................
Elli Androulaki, Binh Vo, and Steven Bellovin

Formal Analysis of Privacy for Vehicular Mix-Zones . .................
Morten Dahl, Stéphanie Delaune, and Graham Steel

Software Security

IntPatch: Automatically Fix Integer-Overflow-to-Buffer-Overflow
Vulnerability at Compile-Time. ... ..... . ... .. ..
Chao Zhang, Tielei Wang, Tao Wei, Yu Chen, and Wei Zou

A Theory of Runtime Enforcement, with Results.................. ...
Jay Ligatti and Srikar Reddy

Enforcing Secure Object Initialization in Java ............. ... ... ...
Laurent Hubert, Thomas Jensen, Vincent Monfort, and
David Pichardie

Flexible Scheduler-Independent Security ........... ... ... ... ......
Heiko Mantel and Henning Sudbrock

Cryptographic Protocols

Secure Multiparty Linear Programming Using Fixed-Point
Arithmetic .. ... o
Octavian Catrina and Sebastiaan de Hoogh

A Certifying Compiler for Zero-Knowledge Proofs of Knowledge Based
on Y-Protocols . ... ...
José Bacelar Almeida, Endre Bangerter, Manuel Barbosa,
Stephan Krenn, Ahmad-Reza Sadeghi, and Thomas Schneider



XII Table of Contents

Short Generic Transformation to Strongly Unforgeable Signature in the
Standard Model . ....... ...
Joseph K. Liu, Man Ho Au, Willy Susilo, and Jianying Zhou

DRQFT: Efficient Remote Attestation Framework for Dynamic
SYSEEINS . . oot
Wenguan Xu, Gail-Joon Ahn, Hongzrin Hu, Xinwen Zhang, and

Jean-Pierre Seifert

Traffic Analysis

Website Fingerprinting and Identification Using Ordered Feature
SEQUEIICES .+« . ettt et e e e
Liming Lu, Fe-Chien Chang, and Mun Choon Chan

Web Browser History Detection as a Real-World Privacy Threat . ......
Artur Janc and Lukasz Olejnik

On the Secrecy of Spread-Spectrum Flow Watermarks . ...............
Xiapu Luo, Junjie Zhang, Roberto Perdisci, and Wenke Lee

Traffic Analysis against Low-Latency Anonymity Networks Using
Available Bandwidth Estimation ........... ... ... ... .. ... ... ...
Sambuddho Chakravarty, Angelos Stavrou, and Angelos D. Keromytis

End-User Security

A Hierarchical Adaptive Probabilistic Approach for Zero Hour Phish
Detection . ...
Guang Xiang, Bryan A. Pendleton, Jason Hong, and
Carolyn P. Rose

Kamouflage: Loss-Resistant Password Management...................
Hristo Bojinov, Elie Bursztein, Xavier Boyen, and Dan Boneh

Formal Analysis

Sequential Protocol Composition in Maude-NPA .....................
Santiago Fscobar, Catherine Meadows, José Meseguer, and
Sonia Santiago

Verifying Security Property of Peer-to-Peer Systems Using CSP........
Tien Tuan Anh Dinh and Mark Ryan

Modeling and Analyzing Security in the Presence of Compromising
AdVersaries .. ...t
David Basin and Cas Cremers

168

182

199

215

232

249

268

286

303

319

340



Table of Contents

On Bounding Problems of Quantitative Information Flow .............
Hirotoshi Yasuoka and Tachio Terauchi

E-voting and Broadcast

On E-Vote Integrity in the Case of Malicious Voter Computers ........
Sven Heiberg, Helger Lipmaa, and Filip van Laenen

Election Verifiability in Electronic Voting Protocols ..................
Steve Kremer, Mark Ryan, and Ben Smyth

Pretty Good Democracy for More Expressive Voting Schemes. .........
James Heather, Peter Y.A. Ryan, and Vanessa Teague

Efficient Multi-dimensional Key Management in Broadcast Services .. ..
Marina Blanton and Keith B. Frikken

Authentication, Access Control, Authorization and
Attestation

Caught in the Maze of Security Standards............. ... ... ... ...
Jan Meier and Dieter Gollmann

User-Role Reachability Analysis of Evolving Administrative Role Based
Access Control ... ... ...
Mikhail 1. Gofman, Ruiqi Luo, and Ping Yang

An Authorization Framework Resilient to Policy Evaluation Failures . ..
Jason Crampton and Michael Huth

Optimistic Fair Exchange with Multiple Arbiters.....................
Alptekin Kiip¢ii and Anna Lysyanskaya
Anonymity and Unlinkability

Speaker Recognition in Encrypted Voice Streams.....................
Michael Backes, Goran Doychev, Markus Dirmuth, and Boris Kopf

Evaluating Adversarial Partitions ................ ... ... .. ... ......
Andreas Pashalidis and Stefan Schiffner

Providing Mobile Users’ Anonymity in Hybrid Networks ..............
Claudio A. Ardagna, Sushil Jajodia, Pierangela Samarati, and
Angelos Stavrou

Complexity of Anonymity for Security Protocols .................. ...
Ferucio Laurentiu Tiplea, Loredana Vamanu, and Cosmin Varlan



XIV Table of Contents

Network Security and Economics

k-Zero Day Safety: Measuring the Security Risk of Networks against
Unknown Attacks . .. ...t 573
Lingyu Wang, Sushil Jajodia, Anoop Singhal, and Steven Noel

Are Security Experts Useful? Bayesian Nash Equilibria for Network
Security Games with Limited Information..................... ... ... 588

Benjamin Johnson, Jens Grossklags, Nicolas Christin, and
John Chuang

RatFish: A File Sharing Protocol Provably Secure against Rational
L 607
Michael Backes, Oana Ciobotaru, and Anton Krohmer

A Service Dependency Model for Cost-Sensitive Intrusion Response .... 626
Nizar Kheir, Nora Cuppens-Boulahia, Frédéric Cuppens, and
Hervé Debar

Secure Update, DOS and Intrustion Detection

Secure Code Update for Embedded Devices via Proofs of Secure
Erasure . ... 643
Daniele Perito and Gene Tsudik

D(e|i)aling with VoIP: Robust Prevention of DIAL Attacks............ 663
Alexandros Kapravelos, Iasonas Polakis, Elias Athanasopoulos,
Sotiris Toannidis, and Evangelos P. Markatos

Low-Cost Client Puzzles Based on Modular Exponentiation ........... 679
Ghassan O. Karame and Srdjan Capkun

Expressive, Efficient and Obfuscation Resilient Behavior Based IDS .... 698
Arnur G. Tokhtabayev, Victor A. Skormin, and Andrey M. Dolgzkh

Author Index . ... ... e 717



A New Framework for RFID Privacy*

Robert H. Deng?, Yingjiu Li!, Moti Yung?, and Yunlei Zhao®**

! Singapore Management University
2 Google Inc. and Columbia University
3 Software School, Fudan University
ylzhao@fudan.edu.cn

Abstract. Formal RFID security and privacy frameworks are fundamental to the
design and analysis of robust RFID systems. In this paper, we develop a new
definitional framework for RFID privacy in a rigorous and precise manner. Our
framework is based on a zero-knowledge (ZK) formulation [8l6] and incorpo-
rates the notions of adaptive completeness and mutual authentication. We provide
meticulous justification of the new framework and contrast it with existing ones in
the literature. In particular, we prove that our framework is strictly stronger than
the ind-privacy model of [18], which answers an open question posed in [[18] for
developing stronger RFID privacy models. We also clarify certain confusions and
rectify several defects in the existing frameworks. Finally, based on the protocol
of [20], we propose an efficient RFID mutual authentication protocol and analyze
its security and privacy. The methodology used in our analysis can also be applied
to analyze other RFID protocols within the new framework.

1 Introduction

Radio Frequency IDentification (RFID) tags are low-cost electronic devices, from which
the stored information can be collected by an RFID reader efficiently (from tens to hun-
dreds of tags per second) at a distance (from several centimeters to several meters)
without the line of sight [25]]. RFID technology has been widely used in numerous ap-
plications, ranging from manufacturing, logistics, transportation, warehouse inventory
control, supermarket checkout counters, to many emerging applications [1]. As a key
component of future ubiquitous computing environment, however, RFID technology
has triggered significant concerns on its security and privacy as a tag’s information can
be read or traced by malicious readers from a distance without its owner’s awareness
[I8UT3UTSU19L5014]).

It is critical to investigate formal RFID security and privacy frameworks that are fun-
damental to the design and analysis of robust RFID systems [[18lI3126/23|10121120i22].

* The first author and the second author’s work is partly supported by A*Star SERC Grant No.
082 101 0022 in Singapore. The first author’s work is also partly supported by the Office of
Research at Singapore Management University. The fourth author’s work is partly supported
by a grant from the Major State Basic Research Development (973) Program of China (No.
2007CB807901) and a grant from the National Natural Science Foundation of China NSFC
(No. 60703091) and the QiMingXing Program of Shanghai.

** Contact author.

D. Gritzalis, B. Preneel, and M. Theoharidou (Eds.): ESORICS 2010, LNCS 6345, pp. 1118,/2010.
(© Springer-Verlag Berlin Heidelberg 2010



2 R.H. Deng et al.

However, due to high system complexity, it turns out to be full of subtleties in develop-
ing rigorous and precise RFID system models. By examining the existing RFID system
models, in this paper we develop a new definitional framework for RFID security and
privacy in a rigorous and precise manner. Our framework is based on a zero-knowledge
formulation [8l6], and incorporates the notions of adaptive completeness and mutual au-
thentication. Compared to existing frameworks, our framework is more practical than
those of [[10J20]], and is stronger in terms of privacy than those of [18l3]. Along the way,
we also clarify certain confusions and rectify several defects in the existing frameworks.

To show how this new framework can be applied, we design an efficient RFID mutual
authentication protocol based on the RFID protocol of [20] and analyze its security and
privacy. The methodology used in our analysis is of independent interest and can be
applied to analyze other RFID protocols within the new framework.

2 Preliminaries

If A(-,-,...) is a randomized algorithm, then y «— A(z1, 2, ...;p) means that y is
assigned with the unique output of the algorithm A on inputs 1, x5, ... and coins p,
while y«—A(z1, z2,...) is a shorthand for first picking p at random and then setting
y «— A(xy, 72, ...;p). Lety « AP1On (2 x5, ...) denote that y is assigned with the
output of the algorithm A which takes x1, zo, ... as inputs and has oracle accesses to
O1,...,0,. If S is a set, then s €r S indicates that s is chosen uniformly at random
from S.If x1, z2, ... are strings, then x; ||z2|| - - - denotes the concatenation of them. If
x is a string, then |x| denotes its bit length in binary code. If S is a set, then |.S| denotes
its cardinality (i.e. the number of elements of .S). Let Pr[E'] denote the probability that
an event E occurs, A/ denote the set of all integers, R denote the set of all real numbers.

A function f : N' — R is said to be negligible if for every ¢ > 0 there exits a number
m € N such that f(n) < . holds forall n > m.

Given a security parameter s, let m(-) and [(-) be two positive polynomials in «. We
say that {Fj, : {0,1}™(") — {0, 1}®)}; c 5 13« is a pseudorandom function (PRF)
ensemble according to the definition given in [7]].

3 Model of RFID Systems

In this section, we first give a formal description of RFID system setting and adversary.
We then define RFID systems to be “complete” in term of adaptive completeness, and
“sound” in terms of mutual authentication.

3.1 RFID System Setting

Consider an RFID system comprising of a single legitimate reader R and a set of £ tags
T ={Ti,..., Ty}, where { is a polynomial in a security parameter . The reader and the
tags are probabilistic polynomial time (PPT) interactive Turing machines. The RFID
system (R, 7) is setup by a procedure, denoted Setup(x, ¢). Specifically, on (k, £), this
setup procedure generates the public system parameter o, the reader secret-key kgr



A New Framework for RFID Privacy 3

and initial internal state 5}3 (if needed) for R. It may also setup an initial database D B!
for R to store necessary information for identifying and authenticating tags. For each 1,
1 <i < ¢, this procedure generates the public parameter £7; and the initial secret-key
le for a tag 7; and sets the tag’s initial internal state s%— (typically, s%—l includes the
public parameters o, £7;). It may also associate the tag 7; with its unique ID, as well
as other necessary information such as tag key and/or tag state information, as a record
in the initial database D B! of R. Note that £z, or/and 517 can be empty strings.

We use para = (og, &1, - , &) to denote the public system parameters. We assume
that in the RFID system, the reader is secure; in other words, the legitimate reader is a
“black-box” to an adversary.

Atag 7;, 1 < i < /, exchanges messages with the reader R through a protocol
(R, T;). Without loss of generality, we assume the protocol run of 7 is always initiated
by R and 7 consists of 2+ 4 1 rounds for some v > 1. Each protocol run of 7 is called
a session. We assume each tag interacts with the reader sequentially, but multiple tags
can interact with the reader “concurrently” (with some anti-collision protocols [27]). To
allow and distinguish concurrent sessions (at the side of the reader R), we associate each
session of protocol 7 with a unique session identifier s¢d. In practice, sid is typically
generated by the reader when it is invoked to send the first-round message. We assume
each message from a tag to the reader always bears the corresponding session-identifier.

Each tag 7;, as well as the reader R, uses fresh and independent random coins (gen-
erated on the fly) in each session, in case it is an randomized algorithm. We assume that
the random coins used in each session are erased once the session is completed (whether
successfully finished or aborted). Also, in each session run, the tag may update its inter-
nal state and secret-key, and the reader may update its internal state and database. We
assume that the update process of new internal state and secret-key by an uncorrupted
tag automatically overwrites (i.e., erases) its old internal state and secret-key.

Given a security parameter «, we assume that each tag 7; takes part in at most s
(sequential) sessions in its life time with R, and thus R involves at most s/ sessions,
where s is some polynomial in . In practice, the value s can be a fixed constant (e.g.,
s =228 [I)).

More precisely, for the j-th session (ordered by the session initiation time) where
1 < j < sl,thereader R takes the input from the system parameters para, its secret-key
kg, current internal state sﬁ, database D B?, random coins pﬁ, and a partial transcript
T, where T is either an empty string (which indicates the starting of a new session)
or a sequence of messages (sid, c1,1,Ca, 2, ,Cy,0), 1 < u < ~ (which indi-
cates the on-going of session sid). The reader R outputs the next message c,+1. In the
case of T = (sid, c1, 01, C2, (2, - - , Cy, by ), besides sending back the last-round mes-
sage cy+1, the reader R also updates its internal state to sgl, its database to DBJ*1!,
and stops the session by additionally outputting a bit, denoted by 0%:?. This output bit
indicates either acceptance (O%d = 1) or rejection (O%d = 0) of the current session.

Without loss of generality, we assume that the j-th session run by the reader R cor-
responds to the v-th session (of session-identifier sid) run by tag 7;, where 1 < v < s
and 1 < ¢ < /. In this session, 7; takes the input from the system parameters para,
its current secret-key kg— , current internal state s%, random coins p%, and a partial
transcript 7' = (sid, c1, a1, g, cu), where 1 < u < ~y. The tag 7T, outputs the



4 R.H. Deng et al.

next message (sid, o). In the case of T' = (sid, c1, 1, , Cy, @y, Cy41) (€., T; has

received the last-round message of the session sid), 7; updates its internal state to s”{l,

its secret-key to k”le, and stops the session by additionally outputting a bit, denoted by

0%, This output bit indicates either acceptance (05 = 1) or rejection (05 = 0) of
the current session run by 7;.

Note that in the above description, it is assumed that the reader and tags update
their internal states, database, or keys at the end of each protocol run. In reality, this
can be performed at any point of each protocol run. Also, for RFID protocol 7 with
unidirectional authentication from tag to reader, the tag may not have a session output.

In this case, the session output o%d is set to “0” always.

3.2 Adversary

After an RFID system (R, 7) is setup by invoking Setup(x, ¢), we model a proba-
bilistic polynomial-time concurrent man-in-the-middle (CMIM) adversary A against
(R, T), with adaptive tag corruption. We use 1 to denote a message sent by adversary
A, and m to denote the actual message sent by reader R or an uncorrupted tag. The
adversary is given access to the following oracles:

InitReader(): A invokes R to start a session of protocol 7 and generate the first-
round message c; which is also used as the session identifier sid. Supposing that the
new session is the j-th session run by R, the reader R stores c; into its internal state sﬁ,
and returns c; to the adversary.

SendT(7;, 7): Adversary A sends m to 7;. (Here, for simplicity, we abuse the no-
tation 7; to denote any virtual identity of a tag in 7 (not the tag’s real identity) labeled
by A when A selects the tag from 7".) After receiving 7, 7; works as follows: (1)
If 7; currently does not run any existing session, 7; initiates a new session with the
session-identifier sid set to 1, treats 1m as the first-round message of the new session,
and returns the second-round message (sid, a1 ). (2) If 7; is currently running an incom-
plete session with session-identifier sid = ¢, and is waiting for the u-th message from
R, where u > 2, 7; works as follows: If 2 < u < +, it treats /1 as the u-th message
from the reader and returns the next round message (sid, a,,). If w = v + 1 (i.e., 7; is
waiting for the last-round message of the session sid), 7; returns its output o%d to the
adversary, and (internally) updates its internal state to s”T:rl, assuming that the session
sid is the v—£1\1 session run by 7;, where 1/\§ v < s. -

SendR(sid, &): Adversary A sends (sid, &) to R. After receiving (sid, &), R checks
from its internal state whether it is running a session of session identifier sid = s/izi, and
works as follows: (1) If R is currently running an incomplete session with sid = sid
and is waiting for the u-th message from a tag, where 1 < u < v, R acts as follows: If
u < 7, it treats & as the u-th message from the tag, and returns the next round message
cut1 to A. If u = ~, it returns the last-round message c,41 and the output O%d to A,
and internally updates its internal state to s{{rl and the database to DB’*!, assuming
that the session s¢d corresponds to the j-th session run by R. (2) In all other cases, R
returns a special symbol L (indicating invalid query).



A New Framework for RFID Privacy 5

Corrupt(7Z;): Adversary A obtains the secret-key and internal state information (as
well as the random coins) currently held by 7;. Once a tag 7; is corrupted, all its actions
are controlled and performed by the adversary A.

Let O1,02, O3 and Oy4 denote the above oracles, respectively. These oracles fully
capture the capability of any PPT CMIM adversary with adaptive tag corruption. (Here,
for simpler definitional complexity, we assume all tags are always within the attack
scope of adversary. In practice, some tags may be in or out from the attack scope of
adversary at different time [26].) For presentation simplicity, we denote by O the set of
the four oracles {O1, Oz, O3, O4} specified above. An adversary is a (t, n1, n2, n3, ng)-
adversary, if it works in time t and makes oracle queries to O,, without exceeding n,,
times, where 1 < p < 4. We treat each oracle call as a unit operation, and thus for
a t-time adversary it holds that Eﬁzln,,, < t. We denote by A°(R,T,para) a PPT
algorithm A that, on input of some system public parameter para, concurrently interacts
with R and the tags in 7 via the four oracles in O, where (R, 7') is setup by Setup(k, £).

Note that in our formulation, the output bits of protocol participants (which indicate
authentication success or failure) are publicly accessible to the adversary. The reason
is that, in reality, such outputs can be publicly observed from the behaviors of protocol
participants during/after the protocol run or can be learnt by some other side channels.

3.3 Adaptive Completeness and Mutual Authentication

Roughly speaking, adaptive completeness says that, after any attacks (particularly the
desynchronizing attacks) made by the adversary A, the protocol execution between the
reader R and any honest uncorrupted tag is still complete (e.g., being able to recover
from desynchronization). In other words, after undergoing arbitrary attacks, the uncor-
rupted parties of the RFID system still can recover whenever the attacks stop.

Definition 3.1 (adaptive completeness). For an RFID system (R, T ) setup by Setup
(k, ), denote by

. sid  sid sid sid sid _sid
(sid, ", i, -+ adt? ey o, 07") — m(R, T;)

the running of a session with identifier sid of the protocol T between R and an uncor-
rupted tag I; € T. Suppose that the session sid corresponds to the v-th session at the

side of T; and the j-th session at the side of R, where 1 < v < sand 1 < j < st
Consider the case that the two sessions are of the same round messages, and that all
the exchanged messages in these two (matching) sessions are honestly generated by R
and T; respectively. Denote by E the event that OSR’:d = 0 holds (or O%‘i = 0 holds if the
protocol 7 is for mutual authentication) or R identifies a different tag T, # T; in its
j-th session.

A PPT CMIM adversary A (t,€,n1,n2,n3,n4)-breaks the adaptive completeness
of the RFID system against the uncorrupted T;, if the probability that event E occurs
is at least € and A is a (t,n1,n2,n3, ng)-adversary. The probability is taken over the
coins used by Setup(k, ), the coins of A, the coins used by R (up to finishing the
j-th session), and the coins used by 7; (up to finishing the v-th session). An RFID
system (R, T) satisfies adaptive completeness, if for all sufficiently large  and for any
uncorrupted tag T;, there exists no adversary A that can (t, €, n1,na, n3, ny)-break the
adaptive completeness against T;, for any (t,€), where t is polynomial in k and € is
non-negligible in k.



6 R.H. Deng et al.

Next, we define mutual authentication of RFID protocols. Roughly speaking, for a pro-
tocol 7 of the RFID system (R, 7 ), authentication from reader to tag (resp., from tag
to reader) means that a CMIM adversary A cannot impersonate the reader R (resp.,
an uncorrupted tag 7; € 7) to an uncorrupted tag 7; € 7 (resp., reader R), unless A
honestly relays messages actually generated and sent by R and the uncorrupted tag 7;.
Before we define mutual authentication for RFID protocols, we first clarify the notion
of matching sessions.

Definition 3.2 (matching sessions). Denote by (sid, ¢§'®, a5, . ' ¢34 the
transcript of exchanged round messages (except the session outputs) of a successfully
completed session sid of the protocol w run by a tag T;, where 1 < i < (. This session
has a matching session at the side of the reader R, if R ever successfully completed a
session of the identical session transcript.

Denote by (sid', c§'* a5 |- - - | ai’d , cfffl) the transcript of exchanged round mes-
sages (except the session outputs) of a successfully completed session sid’ run by R.
This session has a matching session at the side of some tag T;, where 1 < 1 < {, if

either of the following conditions holds:

— 7, ever completed, whether successfully finished or aborted, a session of the iden-

. . . el e 14 e 14
tical transcript prefix (sid’, c§'® a3 | . . ,ai"d );
. . . . . . . 7! - 77 - 77
— Or; T, is now running a session with partial transcript (sid’ , c¢5'¢ | ai’d S, ai’d )

and is waiting for the last-round message of the session sid/'.

The matching-session definition, for a successfully completed session run by the reader
R, takes into account the following “cutting-last-message” attack: a CMIM adversary
A relays the messages being exchanged by R and an uncorrupted tag 7; for a protocol
run of 7 until receiving the last-round message c;’jri/l from R; after this, A sends an
arbitrary message éi’ﬁ; (# ci’ﬁ;) to 7; (which typically causes 7; to abort the session),
or, just drops the session at the side of 7; without sending 7; the last-round message.
Such “cutting-last-message” attacks are unpreventable.

Figure [Tl shows the authentication experiment Exp%th [k, £]. A CMIM adversary A
interacts with R and tags in 7 via the four oracles in O; At the end of the experiment,
A outputs the transcript, trans, of a session. Denote by E; the event that trans cor-
responds to the transcript of a successfully completed session run by R in which R
successfully identifies an uncorrupted tag 7;, but this session has no matching session
at the side of the uncorrupted tag 7;. Denote by E5 the event that trans corresponds to
the transcript of a successfully completed session run by some uncorrupted tag 7; € T,

and this session has no matching session at the side of R.

Experiment Exp%*" [k, (]
1. run Setup(k, £) to setup the reader R and a set of tags 7 ;
denote by para the public system parameters;
2. trans — A° (R, T, para).

Fig. 1. Authentication Experiment



A New Framework for RFID Privacy 7

Definition 3.3 (authentication). On a security parameter k, an adversary A (€, t,nq,
ng, N3, ng)-breaks the authentication of an RFID system (R, T) against the reader R
(resp., an uncorrupted tag T; € T ) if the probability that event F (resp., Es) occurs is
at least € and A is a (t,n1,n2,n3, ng)-adversary.

The RFID system (R, T) satisfies tag-to-reader authentication (resp., reader-to-tag
authentication), if for all sufficiently large r there exists no adversary A that can
(e,t,n1, N2, N3, ng)-break the authentication of (R,T) against the reader R (resp.,
any uncorrupted tag T; € T), for any (t, €), where t is polynomial in k and € is non-
negligible in k. An RFID system is of mutual authentication, if it satisfies both tag-to-
reader authentication and reader-to-tag authentication.

4 Zero-Knowledge Based RFID Privacy

In this section, we present a zero-knowledge based definitional framework for RFID
privacy. To make our definition formal, we need to clarify the notion of blind access to
tags and the notion of clean tags.

Let A9(R,T,Z(7,),auz) be a PPT algorithm A that, on input auz € {0,1}*
(typically, aux includes the system parameters or some historical state information
of A), concurrently interacts with R and a set of tags 7 via the four oracles O =
{01,04,03,04}. We say that A has blind access to a challenge tag 7, ¢ T if A in-
teracts with 7, via a special interface Z. Specifically, 7 is a PPT algorithm that runs 7,
internally, and interacts with A externally. To send a message ¢ to 7,4, A sendsto 7 a
special Oy oracle query of the form SendT(challenge, ¢); after receiving this special
O3 query, 7 invokes 7, with SendT (7, ¢), and returns to A the output by 7,. From
the viewpoint of A, it does not know which tag it is interacting with. It is also required
that A interacts with 7; via Oz queries only.

Next, we define the notion of clean tags. A tag 7; is called clean, if it is not corrupted
(i.e., the adversary has not made any Oy query to 7;), and is not currently running
an incomplete session with the reader (i.e., the last session of the tag has been either
finished or aborted). In other words, a clean tag is an uncorrupted tag that is currently at
the status of waiting for the first-round message from the reader to start a new session.

Now, we are ready to give a formal definition of zero-knowledge based RFID privacy
(zk-privacy, for short). Figure 2] (page [§) illustrates the real world of the zk-privacy
experiment, Expffp [5,£] (Expffp , for simplicity), in which a PPT CMIM adversary
A is comprised of a pair of algorithms (Aj;, . A2) and runs in two stages. In the first
stage, algorithm A; is concurrently interacting with R and all the tags in 7 via the four
oracles in O, and is required to output a set C of clean tags at the end of the first stage,
where C C 7 consists of ¢ clean tags, denoted as {7;,,--- ,7;, }. The algorithm .4,
also outputs a state information st, which will be transmitted to algorithm .4,. Between
the first stage and the second stage, a challenge tag, denoted as 7, is taken uniformly at
random from C. Note that if § = 0, then no challenge tag is selected, and A is reduced
to A; in this experiment. In the second stage, on input st, As concurrently interacts
with the reader R and the tags in 7 = 7 — C via the four oracles in O, and additionally
has blind access to 7,. Note that A cannot corrupt any tag (particularly 7,) in C, and
A does not have access to tags in C — {7} in the second stage. Finally, A5 outputs its



8 R.H. Deng et al.

view, denoted by view 4, at the end of the second stage. Specifically, view 4 is defined
to include the system public parameters para, the random coins used by A, p 4, and
the (ordered) list of all oracle answers to the queries made by A in the experiment
Expffp . Note that view 4 does not explicitly include the oracle queries made by .4 and
A’s output at the first stage, as all these values are implicitly determined by the system
public parameter para, A’s coins and all oracle answers to .A’s queries. The output of
experiment Expffp is defined to be (g, view 4). Denote by (g, view 4(k, £)) the random

variable describing the output of experiment Expi{cp [k, €]

Experiment Expffp [k, 0]

1. run Setup(x, £) to setup the reader R and a set of tags
T'; denote by para the public system parameter;

2.{C, st} — A (R, T,para), where C = {T;,, T;,, - ,
Tis} € T isasetof clean tags, 0 < § < ¢;

3.g€r{l, -, 6} setTy =1T;, and’]A':T—C;

4. view 4 +— AS (R, ?,I(’Z;), st);

5. output (g, view 4).

Fig. 2. zk-privacy experiment: real world

Experiment Exp%™[x, /]

1. run Setup(k, £) to setup the reader R and a set of tags
T'; denote by para the public system parameter;

2.{C, st} « SP(R,T,para), where C = {T;,, T;
T;,} C T isaset of clean tags, 0 < § < ¢;

3.9er {1, - ,6},andset’]A’:’T—C;

4. sview «— S§ (R, 7, st), where sview particularly
includes all oracle answers to queries made by S;

5. output (g, sview).

25"

Fig. 3. zk-privacy experiment: simulated world

Figure [3] illustrates the simulated world of zk-privacy experiment, Expgkp [K,¢]
(Expgkp , for simplicity), in which a PPT simulator S is comprised of a pair of algo-
rithms (S1,S2) and runs in two stages. In the first stage, algorithm S; concurrently
interacts with R and all the tags in 7 via the four oracles in O, and outputs a set, de-
noted C, of clean tags, where |C| = § and 0 < ¢ < £. It also outputs a state information
st, which will be transmitted to algorithm S,. Between the two stages, a value g is taken
uniformly at random from {1, - - - , |C|} (which is unknown to S). In the second stage of
S, on input st, Sy concurrently interacts with the reader R and the tags in T=T-— C,
and outputs a simulated view, denoted sview, at the end of the second stage. We require
that all oracle answers to the queries made by S (in both the first stage and the second



A New Framework for RFID Privacy 9

stage) in the experiment Expgkp are included in sview. The output of the experiment
Expgkp is defined to be (g, sview). Denote by (g, sview(k, £)) the random variable
describing the output of the experiment Expgkp [k,0].

Informally, an RFID protocol 7 satisfies zk-privacy, if what can be derived by inter-
acting with the challenge tag 7, in the second-stage of .A can actually be derived by A
itself without interacting with T,. In this sense, the interaction between A, and 7, leaks
“zero knowledge” to .A. For this reason, our RFID privacy notion is named zk-privacy.

Definition 4.1 (zk-privacy). An RFID protocol m satisfies computational (resp., sta-
tistical) zk-privacy, if for any PPT CMIM adversary A there exists a polynomial-time
simulator S such that for all sufficiently large k and any ¢ which is polynomials in k
(i.e., ¢ = poly(k), where poly(-) is some positive polynomial), the following ensembles
are computationally (resp., statistically) indistinguishable:

- {97Uie.wA(Kag)}neN,ZEpoly(N)
- {gv svlew(mvg)}meN,KEpoly(n)

That is, for any polynomial-time (resp., any computational power unlimited) algorithm
D, it holds that | Pr[D(k, £, g, view4(k, £)) = 1] — Pr[D(k, ¢, g, sview(k, £)) = 1]| =
€, where ¢ is negligible in k. The probability is taken over the random coins used by
Setup(k, L), the random coins used by A, S, the reader R and all (uncorrupted) tags,
the choice of g, and the coins used by the distinguisher algorithm D.

We now extend our definition to forward and backward zk-privacy. Denote by (k sz )
(resp., (k3 7, sT ) the final (resp., initial) secret-key and internal state of 7 at the end of

(resp., beginning) of the experiment Exp’ P An RFID protocol 7 is of forward (resp.,
backward) zk-privacy, if for any PPT CMIM adversary A there exists a polynomial-
time simulator S such that for all sufficiently large x and any ¢ = poly(k), the fol-
lowing distributions are indistinguishable: {kg—q ; s% (resp., leq , s%—q), g,viewa(k, 0)}
and {kT ,sT (resp., le ,s%— ), g, sview(k, £) }. For forward/backward zk-privacy, it is
required that the challenge tag 7, should remain clean at the end of experiment Epokp .
Note that the adversary is allowed to corrupt the challenge tag after the end of Epokp .

4.1 Discussions

Why allow Ay to output an arbitrary set C of tags, and limit As to blind access to a
challenge tag chosen randomly from C? The definition of zk-privacy implies that the
adversary A cannot distinguish any challenge tag 7, from any set C of tags; otherwise,
A can figure out the identity of 7, in C from its view view 4, while this tag’s identity
cannot be derived from any simulator’s view sview (a formal proof of this in case of
|C] = 2 is provided in Section5.1). If C is removed from the definition of zk-privacy,
it is possible for the adversary to distinguish any two tags under its attack, even if each
of the tags can be perfectly simulated by a simulator. A special case is that each tag has
an upper-bound of sessions in its life time so that an adversary can distinguish any two
tags by setting one tag to be run out of sessions in the learning stage [[18]]. In addition,
we do not restrict C to two tags so as to take into account the case that any number of
tags may be correlated.



10 R.H. Deng et al.

Why limit A; to output of clean tags? If A; is allowed to output “unclean tags”, A,
can trivially violate the zk-privacy. Consider that A; selects two tags that are waiting
for different round message (e.g., one tag is clean and the other is not), then A5 can
trivially distinguish them by forwarding to 7, different round messages.

Why allow S to have access to oracles in O? Suppose that S simulates a tag from
scratch and A4 (run by S as a subroutine) requests to corrupt the tag in the middle of the
simulation. Without oracle access, it is difficult or even impossible for S to continue its
simulation and keep it consistent with its previous simulation for the same tag.

Why limit sview to include all oracle answers to queries made by S? This is to
restrict S not to access the oracles in O more than A does. The indistinguishability be-
tween the simulated view sview and the real view view 4 of adversary A in zk-privacy
implies that for any (¢, n1, ne, n3, n4)-adversary A, with overwhelming probability, S
cannot query O1, Oz, O3, O4 more than n1, ny, n3, ng times, respectively.

Why require 1, to remain clean at the end of Expj” for forward/backward privacy?
In general, forward/backward privacy cannot be achieved if the adversary is allowed to
corrupt the challenge tag before the end of its sessions in Expilkp (i.e., the tag is not
clean at the moment of corruption); otherwise, the adversary is able to derive certain
protocol messages from the tag’s internal state, secret-key, random coins, and the partial
session transcript.

More on backward privacy. In general, backward privacy means that even if .4 learns
the internal state and secret-key of a tag for the v-th session, it still cannot distinguish
the run of (v + 1)-th session run by this tag from a simulated session run. Without loss
of generality, we assume that the internal state and secret-key known to A are the initial
ones (i.e., leJ and sng ). For most RFID protocols in practice, the internal state and the
secret-key of any tag at any time ¢ can be determined by the tag’s initial state, initial
secret-key, and the session transcript related to the tag up to time ¢. In such a case, the
indistinguishability between the simulated view sview of S and the real view view 4
of A relies upon the random coins used by 7, in experiment Expff P These random
coins are not disclosed to A since the random coins used by an uncorrupted tag in any
session are erased once the session is completed, and the challenge tag 7, is required to
be clean at the end of Expjzo )

On some special cases in zk-privacy experiments. One special case is that in the
experiment Expi{cp , A1 outputs C = 7. In this case, the simulator Sy does not have
oracle access to any tag. The zk-privacy is analogue to auxiliary-input zero-knowledge
[6]], where the view of A;/S; corresponds to the auxiliary input. Another special case
is that A; outputs only a single tag in C, and all other tags can be corrupted by .A; and
As. In this case, the forward/backward zk-privacy implies that both adversary A and
simulator S have access to certain secret information of all tags.

5 Comparison with Existing Frameworks

In this section, we compare our RFID security and privacy framework with typical
existing frameworks. We argue that our framework is more reasonable in practice than
some frameworks, and it is stronger in terms of privacy than at least one of the existing
frameworks. We also clarify some subtleties and confusions in the existing frameworks.



A New Framework for RFID Privacy 11

The detailed comparisons, along with subtlety clarifications, also further justify the zk-
privacy formulation.

5.1 Comparison with Model in [18]

The RFID privacy model proposed in [18] describes the indistinguishability between
any two tags by an adversary. We refer to this privacy notion as “ind-privacy”. It was
mentioned in [18] that an important area for future research is to study stronger RFID
privacy notions. We shall prove that zk-privacy is strictly stronger than a revised version
of ind-privacy after some subtleties are clarified.

Roughly speaking, consider any PPT adversary A = (A;,.A2): A; outputs a pair
of uncorrupted tags (7;,,7;, ) after arbitrary attacks, then a bit ¢ is chosen randomly
and independently (which is unknown to A), and then A3 is given blind access to 7;,
and finally outputs a guessed bit b’. We say a PPT adversary A (e, t, ny, ng, n3, ng)-
breaks the ind-privacy of an RFID system if A is a (¢, n1, no, n3, n4)-adversary and
Pr[t) = g] = ; + €, where € is non-negligible and ¢ is polynomial in .

On some subtleties in ind-privacy. In the original definition of ind-privacy, it is not
explicitly specified that the two tags output by .A4; must be clean tags. In the definition
of forward ind-privacy [18], it is not precisely specified the time point of tag corruption
and the actions of adversary after tag corruption.

zk-privacy vs. ind-privacy for single-tag systems. We note that any RFID protocol, even
if it just reveals the tag’s secret-key, trivially satisfies ind-privacy for special RFID sys-
tems consisting only one tag (e.g., for a unique item of high value). The reason is that in
this special scenario, the view of A is independent of the random bit ¢ (as the challenge
tag 7;, is always the unique tag regardless of the choice of g), and thus Pr[b’ = g] is
just % for any adversary. In comparison, in this special scenario the zk-privacy is es-
sentially degenerated to the traditional zero-knowledge definition, which still provides
very reasonable privacy guarantee.

Theorem 1. zk-privacy is stronger than ind-privacy.

Proof. First, we show that zk-privacy implies ind-privacy, which holds uncondition-
ally. In other words, if an RFID system (R, 7') does not satisfy ind-privacy, then it also
does not satisfy zk-privacy. To prove this, we show that if there exists a PPT adversary
A = (A1, A2) which can (e, t,n1,no, ng, ng)-break the ind-privacy of the RFID sys-
tem (R, 7'), then we can construct another PPT adversary A’ such that no PPT simulator
exists for A’

In the experiment Expff,p , let A’ run A and do whatever A does. In particular, A’
and A are of the same parameters (¢, n1, n2, n3, n4). Since A run by A" always outputs
a pair of clean tags at the end of its first stage, Expj;p outputs (g, view 1), where
g € {0,1} is a random bit, and view 4 implicitly determines the output of A (i.e.,
the guessed bit b’). That is, the guessed bit b’ can be computed out from view 4/ in
polynomial-time. As we assume A (¢, ¢, n1, ne, n3, ng)-breaks ind-privacy, it holds that

Pr[b’ = g]is atleast  +e for the output of Expff;p . However, the simulated view sview

in the output of the experiment Expgkp is independent of g (recall that the random

value g is unknown to the simulator S). Therefore, for the guessed bit b" implied by



12 R.H. Deng et al.

svtew (which can be computed out from sview in polynomial-time), it always holds
that Pr[b’ = g] = }. This shows that for the above .4’ and for any polynomial-time
simulator, there exists a polynomial-time distinguisher that can distinguish the output
of Expffp and that of Expgkp with non-negligible probability at least €.

Next, we present several protocol examples (based on one-time secure signatures or
CPA-secure public-key encryption) that satisfy ind-privacy but dissatisfy zk-privacy.

Consider a special RFID system that consists of only one tag 77 (and a reader R). The
secret-key of 77 is the signature of 77’s ID, denoted s;p, signed by R under the public-
key of R. Consider an RFID protocol 7 in which 77 just reveals its secret-key syp to R.
As discussed above, any RFID protocol trivially satisfies ind-privacy for RFID systems
consisting of only one tag, and thus the protocol 7 is of ind-privacy. But, 7 clearly does
not satisfy zk-privacy. Specifically, considering an adversary A = (A, As) where A
simply outputs C = {77} and then A, invokes 7, = 7; to get the signature s;p, no
PPT simulator can output s;p by the security of the underlying signature scheme. Note
that one-time secure signature is sufficient to show this protocol example not satisfying
zk-privacy, and one-time secure signatures can be based on any one-way function [24].

Given any ind-private two-round RFID protocol 7 = (c¢,a) for an RFID system
(R, T), where 7 consists of polynomially many tags, c is the first-round message from
the reader and a is the response from a tag, we transform 7 into a new protocol 7’
as follows: In the protocol 7/, besides their respective secret-keys all tags in 7 also
share a unique pair of public-key PK and secret-key SK for a CPA-secure public-key
encryption scheme. For a protocol run of 7’ between the reader R and a tag 7;, R sends
¢ = Epk/(c) in the first-round, and 7; decrypts ¢’ to get ¢ and then sends back o’ =
¢||a. The protocol 7/ could appear in the scenario of tag group authentication, where the
ability of sending back c can demonstrate the membership of the group identified by the
public-key P K. Furthermore, in the scenario of anonymizer-enabled RFID systems [9],
the decryption operation can be performed by the anonymizer. As in the new protocol 7’
all tags share the same public-key P K, the ind-privacy of 7’ is inherited from that of .
Specifically, the session transcripts of 7’ can be computed in polynomial-time from the
session transcripts of 7 and the public-key P K. However, 7’ does not satisfy zk-privacy.
Specifically, consider an adversary A = (A;, Az), where A; simply outputs the set of
clean tags C = 7 (in particular, .4 never corrupts tags) and then Az blindly interacts
with the challenge tag 7, for only one session. By the CPA-security of the underlying
public-key encryption scheme, no PPT simulator can handle the SendT(challenge, ¢)
queries made by Ao, as such ability implies the ability of ciphertext decryption. Note
that CPA security is sufficient here, as the adversary .4 involves only one session with
the challenge tag 7. |

We remark that though the above two protocol examples may not be very realistic, they
do separate the zk-privacy notion and the ind-privacy notion. We leave it an interesting
question to find more protocol examples that are ind-private but not zk-private.

5.2 Comparison with Model in [26,23]

In [26/23]], the simulator is not required to handle tag corruption queries by the adver-
sary. In other words, the simulator works only for those adversaries which do not make
tag corruption queries. It is not clear how such a simulator acts upon tag corruption



A New Framework for RFID Privacy 13

queries made by an adversary. Suppose that S simulates a tag from scratch and A (typ-
ically run by S as a subroutine) requests to corrupt the tag in the middle of simulation
(possibly in the middle of a session run). Without access to tag corruption queries, it
is difficult or even impossible for S to continue its simulation for the tag and keep it
consistent with its previous simulation for the same tag.

The adversary considered in our framework essentially corresponds to strong adver-
sary in [26/23]], with the difference in that the adversary cannot corrupt any tag in set C'
before the end of zk-privacy experiment Expff”. In comparison, the model in [26[23]]
poses no restriction on tag corruption (though it is not clear how the simulator handles
such adversaries), which implies that an adversary can corrupt any tag at any time (pos-
sibly in the middle of session). However, in such a case, forward/backward privacy may
not be achievable if the challenge tag is corrupted in the middle of a session; this is the
reason why we require that the challenge tag 7, must remain clean at the moment of
corruption. Indeed, there are some confusions in [26423]].

The matching session concept defined in [26/23] is restricted to identical session
transcript, without clarifying some subtleties such as the “last-round-message attacks”
for defining authentication from tag to reader.

The notion of adaptive completeness is not defined in [26/23]]. The completeness
notion in [26J23]] is defined for honest protocol execution only, with no adversarial
desynchronizing attacks being taken into account.

The privacy notions proposed in [26/23] and that proposed in [18] are essentially
incomparable, while the privacy notion proposed in this work is strictly stronger than
that of [[18]].

5.3 Comparison with Models in [10,20]

The RFID privacy notion given in [10420] is formulated based on the unpredictability
of protocol output. We refer to this privacy notion as “unp-privacy.” The unp-privacy
is formulated with respect to RFID protocols with a 3-round canonical form, denoted
as m = (c,r, f), where ¢,r, f stand for the first, second, and third round message,
respectively. Note that our framework, as well as models in [[1826423]]), are not confined
to this protocol structure.

The unp-privacy notion formulated in [10420] essentially says that the second-round
message sent from a tag must be pseudorandom (i.e., indistinguishable from a truly
random string). We observe that this requirement has certain limitations. First, given
any unp-private RFID protocol m = (¢, r, f) between a reader and a tag, we can modify
the protocol to " = (¢, r||1, f), where ““||” denotes the string concatenation operation.
That is, the modified protocol 7’ is identical to 7 except that in the second-round the
tag additionally concatenates a bit ‘1’ to r. This modified RFID-protocol 7" is not of
unp-privacy, as the second-round message 7||1 is clearly not pseudorandom. However,
intuitively, the tags’ privacy should be preserved since the same bit ‘1’ is appended to all
second-round messages for all tags. Notice that when RFID-protocols are implemented
in practice, the messages being exchanged between reader and tags normally bear some
non-random information such as version number of RFID standard. Another limitation
is that the unp-privacy may exclude the use of public-key encryption in RFID-protocols,
as public-key generated ciphertexts are typically not pseudorandom.




14 R.H. Deng et al.

Another point is that the adversaries considered in the definition of unp-privacy
[[LOL20Q] is not allowed to access protocol outputs. Therefore, such adversaries are nar-
row ones as defined in [26/23]]. Informally, the unp-privacy experiment works as fol-
lows. Given a first-round message ¢ (which could be generated by the adversary A),
the experiment selects a value r which could be either the actual second-round message
generated by an uncorrupted tag in response to ¢ or just a random value in a certain
domain; then the experiment presents the value r to .A. The unp-privacy means that A
cannot determine in which case the value r is. Note that if .4 has access to protocol
outputs, it can simply distinguish between the two cases of . What .4 needs to do is to
forward r to the reader R as the second round message. If 7 is generated by an uncor-
rupted tag (and the value c was generated by the reader in a matching session), R will
always output “accept.” On the other hand, if r is just a random value, with overwhelm-
ing probability R will reject the message due to authentication soundness from tag to
reader.

In summary, we argue that zk-privacy is more reasonable than unp-privacy in prac-
tice. It allows for more general protocol structure, more powerful adversary, and non-
pseudorandom protocol messages.

6 An RFID Protocol within Our Framework

Let Fg: {0,1}%¢ — {0,1}? be a pre-specified keyed PRF and F} (resp., F}!) the x-
bit prefix (resp., suffix) of the output of F}, where « is the system security parameter.
In practice, the PRF can be implemented based on some lightweight stream or block
ciphers [12/2/11]. When a tag 7, with identity I D registers to the reader R, it is assigned
a secret-key k €r {0,1}", a counter ctr of length I, with initial value 1. R pre-
computes an initial index I = F(1||pad; ) for the tag, where pad; € {0,1}2~letr is a
fixed padding, and stores the tuple (I, k, ctr, I D) into its database.

At the start of a new protocol session, R sends a challenge string ¢ € {0,1}" to
7;, which also serves as the session identifier. To simplify the presentation, the session
identifier and the corresponding verification of the identifier by protocol players are
implicitly implied and will not be explicitly mentioned in the following.

Upon receiving ¢ from R, 7; computes I = F?(ctr||pady), (ro,m1) = Fg(c||I)
(where rg = FY(c||I) and 7y = FQ(c||])), and r7 = ro @ (ctr||pads). T; sends (I, 77)
to R and then updates its counter ctr = ctr + 1, where pads € {0, 1}~ !+ is another
predetermined padding string.

After receiving (I, r7), R searches its database to find a tuple indexed by I:

- If R finds such a tuple, say (I, k, ctr’, ID), it computes (ro, 1) = Fy(c||I), and
checks whether ctr’||pads = ro @ r7: If yes, R accepts 7; by outputting “1”, sends
rr = 71 to the tag, updates the tuple (I, k, ctr’, ID) with ctr’ = ctr’ + 1 and
I = FQ(ctr'||pady); If not, R searches for the next tuple including I (to avoid
potential collision of index I, i.e., two different tuples are of the same index ).

— If no tuple is found to have an index I (which indicates counter desynchroniza-
tion between R and 7;), for each tuple (I’ k,ctr’,ID) in its database, R com-
putes (r9,71) = Fk(c||I) and ctr||pads = ro @ r7, and checks whether I =
FY(ctr||pady): If yes (which indicates ctr is the correct counter value at 7;), R



A New Framework for RFID Privacy 15

accepts 7;, outputs “1”, sends back g = r1 as the third message, and updates the
tuple (I', k,ctr’, ID) with ctr’ = ctr + 1 and I’ = F{(ctr’||pady). In the case
that R fails with all the tuples in its database, it rejects the tag and outputs “0”.

Upon receiving r g, 7; checks whether rg = r1: If yes, 7; accepts the reader and outputs
“17; otherwise it rejects the reader and outputs “0”.

In comparison with the protocol proposed in [20], the above protocol adds mutual
authentication (and is logically more precise), and we can formally prove that it is of
adaptive completeness, mutual authentication, and zk-privacy within the new frame-
work. Analysis of completeness and authentication was not conducted in [20]], and as
we shall see, the zk-privacy analysis of the new protocol is much more complicated than
the unp-privacy analysis in [20]. We suggest that the methodology used in our analy-
sis is of independent interest, which can be applied to analyze other RFID protocols
(particularly those based on PRFs) within our new framework.

Theorem 2. Assuming F}, is a pseudorandom function, the protocol specified above
satisfies adaptive completeness, mutual authentication and zk-privacy.

The reader is referred to the full paper [4] for the complete proof of this theorem. Below
we provide a high level analysis of the zk-privacy property.

The core of the simulation by the simulator S = (S1, S2), who runs the underlying
adversary A = (A;,.As) as a subroutine, lies in the actions of S in dealing with the
following queries made by A5 to the reader R and the challenge tag 7. S; just mimics
A; by using the PRF F}.

1. On oracle query InitReader(), S makes the same oracle query to R, and gets back
arandom string ¢ € {0,1}" from R. Then, S, relays back ¢ to A,.

2. On oracle query SendT (challenge, &), where the challenge tag 7, (simulated by
&) currently does not run any session, Sy opens a session for 7, with ¢ as the
first-round message (that also serves as the session-identifier of this new session);
Then, Sz randomly selects I, 7+ €r {0,1}", and sends back I||rs to Az as the
second-round message.

3. On oracle query SendR(¢, I||7r), Sy works as follows:
Case-3.1. If I ﬁer was sent by 7, (simulated by S») in a session of session-identifier

¢, Sy simulates the responses of the reader R as follows:

Case-3.1.1 If R is running an incomplete session of session-identifier ¢ (i.e., ¢
was sent by R upon an InitReader query and R is waiting for the second-
round message), Ss just returns a random string g €g {0,1}" to Az, and
outputs “1” indicating “accept”.

Case-3.1.2. Otherwise, Sy simply returns a special symbol “_L” indicating in-
valid query.

Case-3.2. In all other cases, S, makes the same oracle query SendR(¢, I||77) to
the reader R, and relays back the answer from R to As.

4. On oracle query SendT (challenge, 7'r), where the challenge tag 7, (simulated by
&) currently runs a session of partial session-transcript (¢, I||r7) and is waiting
for the third-round message, S, works as follows:

Case-4.1. If there exists a matching session of the same session transcript (¢, I||rr,
7r) at the side of R (where 7' may be simulated by S» as in the above Case-

3.1), Sz outputs “1” indicating “accept”.



16 R.H. Deng et al.

Case-4.2. Otherwise, Sy simply outputs “0” indicating “reject”.

5. Output of Sa: Finally, whenever Az stops, Sz also stops and outputs the simulated
view sview as specified in the zk-privacy definition, which particularly consists
of all oracle answers (including ones provided by the real oracles in O and ones
simulated by S») to queries made by A.

Itis easy to see that S works in polynomial-time. We investigate the differences between

the simulated view sview output by S and the real view view 4 of A:

Difference-1: In Case-4.1 (resp., Case-4.2) Sy always outputs “accept” (resp., “re-
ject”), while the actual challenge tag 7, may output “reject” in Case-4.1 (resp.,

“accept” in Case-4.2) in the experiment Exp’} “kp
Difference-2: On oracle query SendT(challenge c) or in Case-3.1 upon the oracle

query SendR(¢, I||7), S always returns truly random strings, while the actual
players (i.e., 7, and R) provide pseudorandom strings in the experiment Epokp by
invoking the PRF F}, where k is the secret-key of 7.

Intuitively, Difference-1 can occur only with negligible probability, by the properties of
adaptive completeness and mutual authentication. The subsequent analysis argues that
the properties of adaptive completeness and mutual authentication indeed hold under
the simulation of S in Exp‘zgkzo .

Intuitively, Difference-2 should not constitute distinguishable gap between sview
and view 4, due to the pseudorandomness of Fj. However, the technical difficulty and
subtlety here is that: the difference between pseudorandomness and real randomness
only occurs in the second stages of both EXkap and Expgkp (i.e., Ay and S»), while
both S; and A; are w.r.t. the PRF Fj. In other words, to distinguish the PRF F}, from
a truly random one in the second stage, the distinguisher has already accessed F}, for
polynomially many times in the first stage. In general, the definition of PRF says nothing
on the pseudorandomness in the second stage. To overcome this technical difficulty, we
build a list of hybrid experiments.

In the first hybrid experiment, a polynomial-time algorithm S runs A as a subroutine
and has oracle access to the PRF F}; or a truly random function H. S first randomly
guesses the challenge tag 7, (by taking ¢ uniformly at random from {1, --- , ¢}), and
then setups the RFID system (R, 7) except for the challenge-tag 7,. Note that S can
perfectly handle all oracle queries made by A to the reader R and all tagsin 7 — {7,}.
For oracle queries directed to 7, 5' mimics 7, with the aid of its oracle, i.e, the PRF F},
or a truly random function H. Denote by the v1ew of A under the run of S with oracle
access to Fj, (resp H) as view?, A * (resp., view, A ) By the pseudorandomness of F,
we have that view? A " and view$, A are indistinguishable. Next, suppose S successfully

guesses the challenge tag 7, (that occurs with probability () view? A “* s identical to
view 4. In particular, in thlS case, the properties of adaptive Completeness and mutual
authentication hold in view?, A " and thus also in view AH (as viewS A “* and view?, A are
indistinguishable). Thus, to show the indistinguishability between view A and sview,
it is reduced to show the indistinguishability between view AH (in case S successfully
guesses the challenge tag 7,) and sview.

In the second hybrid experiment, we consider another polynomial-time algorithm S’
that mimics S , with oracle access to Fj, or H, but with the following modifications:



A New Framework for RFID Privacy 17

in the second stage of this hybrid experiment, S’ essentially mimics the original zk-
privacy simulator S. Denote by the view of .4 under the run of S” with oracle access to

. 1F . 'H . 1F
F}, (resp., H) as view?; “ (resp., view? ). By the pseudorandomness of Fy, view? "

. 1H . .. . . 1H . H
and view?  are indistinguishable. We can show that view?, and view? are also

indistinguishable, and that viewf(pk and sview are also indistinguishable (conditioned
on S’ successfully guesses the challenge tag 7;), which particularly implies that the
properties of adaptive completeness and mutual authentication hold also in sview. This
establishes the indistinguishability between sview and view 4.

7 Future Work

One of our future research directions is to analyze existing RFID protocols and design
new protocols within the new framework presented in this paper.

Since our framework is formulated w.r.t. the basic scenario of an RFID system, an-
other future research direction is to extend our RFID privacy framework to more so-
phisticated and practical scenarios which allow compromising of readers, tag cloning
(or more feasibly, protocols to prevent swapping attacks) [[16417]], tag group authentica-
tion, anonymizer-enabled RFID systems, and tag ownership transfer.

Acknowledgment. We are indebted to Andrew C. Yao for many contributions to this
work, though he finally declined the coauthorship. The contact author thanks Shaoying
Cai for helpful discussions on RFID security and privacy. We thank the anonymous
referee for referring us to [[L6J17]].

References

1. Berbain, C., Billet, O., Etrog, J., Gilbert, H.: An Efficient Forward Private RFID Protocol.
In: Conference on Computer and Communications Security — CCS 2009 (2009)

2. de Canniere, C., Preneel, B.: Trivium. In: Robshaw, M.J.B., Billet, O. (eds.) New Stream
Cipher Designs. LNCS, vol. 4986, pp. 244-266. Springer, Heidelberg (2008)

3. Damgard, I., Ostergaard, M.: RFID Security: Tradeoffs between Security and Efficiency.
In: Malkin, T.G. (ed.) CT-RSA 2008. LNCS, vol. 4964, pp. 318-332. Springer, Heidelberg
(2008)

4. Deng, R.H., Li, Y., Yao, A.C., Yung, M., Zhao, Y.: A New Framework for RFID Privacy.
Cryptology ePrint Archive, Report No. 2010/059

5. Garfinkel, S., Juels, A., Pappu, R.: RFID Privacy: An Overview of Problems and Proposed
Solutions. IEEE Security and Privacy 3(3), 34—43 (2005)

6. Goldreich, O.: The Foundations of Cryptography. Basic Tools, vol. I. Cambridge University
Press, Cambridge (2001)

7. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. J. ACM 33(4),
792-807 (1986)

8. Goldwasser, S., Micali, S., Rackoff, C.: The Knowledge Complexity of Interactive Proof-
Systems. In: ACM Symposium on Theory of Computing, pp. 291-304 (1985)

9. Golle, P., Jakobsson, M., Juels, A., Syverson, P.: Universal reencryption for mixnets. In:
Okamoto, T. (ed.) CT-RSA 2004. LNCS, vol. 2964, pp. 163-178. Springer, Heidelberg
(2004)



18

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

R.H. Deng et al.

. Ha, J., Moon, S., Zhou, J., Ha, J.: A new formal proof model for RFID location privacy.

In: Jajodia, S., Lopez, J. (eds.) ESORICS 2008. LNCS, vol. 5283, pp. 267-281. Springer,
Heidelberg (2008)

. Hell, M., Johansson, T., Meier, W.: The Grain Family of Stream Ciphers. In: Robshaw,

M.J.B., Billet, O. (eds.) New Stream Cipher Designs. LNCS, vol. 4986, pp. 179-190.
Springer, Heidelberg (2008)

. International Standard ISO/IEC 9798 Information technology—Security techniques—Entity

authentication—Part 5: Mechanisms using Zero-Knowledge Techniques

. Hopper, N.J., Blum, M.: Secure human identification protocols. In: Boyd, C. (ed.) ASI-

ACRYPT 2001. LNCS, vol. 2248, pp. 52-66. Springer, Heidelberg (2001)

. Juels, A.: RFID Security and Privacy: A Research Survey. IEEE Journal on Selected Areas

in Communications 24(2), 381-394 (2006)

. Juels, A., Rivest, R.L., Szydlo, M.: The blocker tag: Selective blocking of RFID tags for

consumer privacy. In: ACM CCS 2003, pp. 103-111 (2003)

. Juels, A., Pappu, R.: Squealing Euros: Privacy Protection in RFID-Enabled Banknotes.

Financial Cryptography, 103—121 (2003)

. Juels, A., Syverson, P., Bailey, D.: High-Power Proxies for Enhancing RFID Privacy and

Utility. In: Danezis, G., Martin, D. (eds.) PET 2005. LNCS, vol. 3856, pp. 210-226. Springer,
Heidelberg (2006)

Juels, A., Weis, S.: Defining Strong Privacy for RFID. In: International Conference on Per-
vasive Computing and Communications — PerCom 2007 (2007)

Juels, A., Weis, S.: Authenticating pervasive devices with human protocols. In: Shoup, V.
(ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 293-308. Springer, Heidelberg (2005)

Ma, C, Li, Y., Deng, R., Li, T.: RFID Privacy: Relation Between Two Notions, Minimal
Condition, and Efficient Construction. In: ACM CCS (2009)

Yu Ng, C., Susilo, W., Mu, Y., Safavi-Naini, R.: RFID privacy models revisited. In: Jajodia,
S., Lopez, J. (eds.) ESORICS 2008. LNCS, vol. 5283, pp. 251-266. Springer, Heidelberg
(2008)

Yu Ng, C., Susilo, W., Mu, Y., Safavi-Naini, R.: New Privacy Results on Synchronized RFID
Authentication Protocols against Tag Tracing. In: Backes, M., Ning, P. (eds.) ESORICS 2009.
LNCS, vol. 5789, pp. 321-336. Springer, Heidelberg (2009)

Paise, R.L., Vaudenay, S.: Muthal Authentication in RFID: Security and Privacy. In: AsiaCCS
2008, pp- 292-299 (2008)

Rompel, J.: One-Way Functions are Necessary and Sufficient for Digital Signatures. In: 22nd
ACM Symposium on Theory of Computing (STOC 1990), pp. 12-19 (1990)

Shamir, A.: SQUASH: A New MAC with Provable Security Properties for Highly Con-
strained Devices Such as RFID Tags. In: Nyberg, K. (ed.) FSE 2008. LNCS, vol. 5086, pp.
144-157. Springer, Heidelberg (2008)

Vaudenay, S.: On Privacy Models for RFID. In: Kurosawa, K. (ed.) ASIACRYPT 2007.
LNCS, vol. 4833, pp. 68-87. Springer, Heidelberg (2007)

860 MHz - 930 MHz Class 1 RFID Tag Radio Frequency and Logical Communication Inter-
face Specification Candidate Recommendation Version 1.0.1, Auto-ID Center (2002)



Readers Behaving Badly
Reader Revocation in PKI-Based RFID Systems

Rishab Nithyanand, Gene Tsudik, and Ersin Uzun

Computer Science Department
University of California
Irvine, CA 92697

{rishabn,gts,euzun}@ics.uci.edu

Abstract. Recent emergence of RFID tags capable of performing pub-
lic key operations motivates new RFID applications, including electronic
travel documents, identification cards and payment instruments. In this
context, public key certificates form the cornerstone of the overall system
security. In this paper, we argue that one of the prominent challenges is
how to handle revocation and expiration checking of RFID reader certifi-
cates. This is an important issue considering that these high-end RFID
tags are geared for applications such as e-documents and contactless
payment instruments. Furthermore, the problem is unique to public key-
based RFID systems, since a passive RFID tag has no clock and thus
cannot use (time-based) off-line methods.

In this paper, we address the problem of reader certificate expiration
and revocation in PKI-Based RFID systems. We begin by observing an
important distinguishing feature of personal RFID tags used in authen-
tication, access control or payment applications — the involvement of a
human user. We take advantage of the user’s awareness and presence
to construct a simple, efficient, secure and (most importantly) feasible
solution. We evaluate the usability and practical security of our solution
via user studies and discuss its feasibility.

1 Introduction

Radio Frequency Identification (RFID) is a wireless technology mainly used for
identification of various types of objects, e.g, merchandise. An RFID tag is a
passive device, i.e., it has no power source of its own. Information stored on an
RFID tag can be read by special devices called RFID readers, from some distance
away and without requiring line-of-sight alignment. Although RFID technology
was initially envisaged as a replacement for barcodes in supply chain and in-
ventory management, its many advantages have greatly broadened the scope
of possible applications. Current and emerging applications range from visible
and personal (e.g., toll transponders, passports, credit cards, access badges, live-
stock/pet tracking devices) to stealthy tags in merchandise (e.g., clothes, phar-
maceuticals and library books). The cost and capabilities of an RFID tag vary
widely depending on the target application. At the high end of the spectrum are

D. Gritzalis, B. Preneel, and M. Theoharidou (Eds.): ESORICS 2010, LNCS 6345, pp. 19 2010.
© Springer-Verlag Berlin Heidelberg 2010



20 R. Nithyanand, G. Tsudik, and E. Uzun

the tags used in e-Passports, electronic ID (e-ID) Cards, e-Licenses, and con-
tactless payment instruments. Such applications involve relatively sophisticated
tags each costing a few (usually < 10 ) dollars. These tags are powerful enough
to perform public key cryptographic operations.

In the “real world”, one of the main security issues in using public key cryp-
tography is certificate revocation. Any certificate-based public key infrastruc-
ture (PKI) needs an effective revocation mechanism. Revocation can be handled
implicitly, via certificate expiration, or explicitly, via revocation status check-
ing. Most PKI-s use a combination of implicit and explicit methods. The latter
can be done off-line, using Certificate Revocation Lists (CRLs) [12] and similar
structures, or on-line, using protocols such as Open Certificate Status Protocol
(OCSP) [27]. However, as discussed below, these approaches are untenable in
public key-enabled RFID systems.

Intuitively, certificate revocation in RFID systems should concern two entities:
RFID tags and RFID readers. The former only becomes relevant if each tag
has a “public key identity”. We claim that revocation of RFID tags is a non-
issue, since, once a tag identifies itself to a reader, the latter (as the entity
performing a revocation check) can use any current revocation method, except
perhaps OCSP which requires full-time Internet connectivity. This is reasonable
because an RFID reader is a full-blown computing device with its own clock as
well as ample power, memory, secondary storage and communication interfaces.
Consequently, it can avail itself of any suitable revocation checking technique.

In contrast, revocation of readers is a problem in any public key-enabled RFID
system. While a tag may or may not have public key identity, a reader must
have one; otherwise, the use of public key cryptography becomes non-sensical.
Therefore, before a tag discloses any information to a reader, it must make sure
that the reader’s public key certificate (PKC) is not expired or revoked.

1.1 Why Bother?

One common and central purpose of all RFID tags and systems is to enable tag
identification (at various levels of granularity) by readers. With that in mind,
many protocols have been proposed to protect the identification process (i.e., the
tag-reader dialog) from a range of attacks. In systems where tags can not perform
cryptographic operations or where they are limited to symmetric cryptography,
reader revocation is not an issue, since it is essentially impossible. Whereas, in
the context of public key-enabled tags, reader revocation is both imperative and
possible, as we show later in this paper. It is imperative, because not doing
it prompts some serious threats. For example, consider the following events: a
reader is lost, stolen, compromised (perhaps without its owner’s knowledge), or
decommissioned.

In all of these cases, if it cannot be revoked effectively, a reader that has fallen
into the wrong hands can be used to identify and track tags. In case of personal
tags — e.g., ePassports, credit-cards or eIDs — other threats are possible, such as
identity theft or credit card fraud.



Readers Behaving Badly 21

Thus far, it might seem that our motivation is based solely on the need to
detect explicitly revoked reader certificated]. However, what if a reader certificate
naturally expires? This indicates implicit revocation and a well-behaved reader
would not be operated further until a new certificate is obtained. However, if a
reader (or rather its owner) is not well-behaved, it might continue operation with
an expired certificate. Without checking certificate expiration, an unsuspecting
tag could be tricked into identifying itself and possibly divulging other sensitive
information.

In the remainder of this paper, we make no distinction between explicit revo-
cation (i.e., revocation before expiration) and implicit revocation (i.e., certificate
expiration) checking. The reason is that both tasks are essential for security and
both require current time.

1.2 Why Is Reader Revocation Hard?

When presented with a PKC of a reader, a tag needs to check three things:
(1) signature of the issuing certification authority (CA), (2) ezpiration and (3)
revocation status.

The first is easy for any public key-enabled (pk-enabled) tag and has been
already incorporated into some reader authentication schemes [6], [I4]. However,
(2) and (3) are problematic. Note that even a high-end tag is a passive device
lacking a clock. Thus, a tag, by itself, has no means of deciding whether a
presented certificate is expired.

Revocation checking is even more challenging. First, similar to expiration, off-
line revocation checking (e.g., CRL-based) requires current time because the tag
needs to check the timeliness of the presented proof of non-revocation. Also, com-
municating a proof of non-revocation entails extra bandwidth from the reader
to the tag. For CRLs, the bandwidth is O(n) and, for more efficient CRTs, the
bandwidth is O(log n) — a non-negligible number for large values of n, where n
is the number of revoked readerdqd. Whereas, online revocation checking proto-
cols (such as OSCP) offer constant-size proofs of non-revocation. However, such
protocols are unsuitable due to their connectivity and availability requirements
;see Section B] for further discussion.

1.3 Roadmap

We focus on a class of pk-enabled RFID systems where tags are both personal
and attended. This includes e-Passports, e-Licenses and contactless credit cards.
Personal means that a tag belongs to a human user and attended means that
a tag is supposed to be activated only with that user’s (owner’s) consent. Our
approach is based on several observations:

! “Explicitly” means before the expiration of the PKC.
2 The problem of the high communication cost of CRL-s in current solutions has been
noted by Blundo, et al. [4].



22 R. Nithyanand, G. Tsudik, and E. Uzun

— User/owner presence and (implicit) consent are already required for the tag
to be activated.

— Low-cost and low-power flexible display technology is a reality, e.g., e-paper
and OLED. In fact, passive RFID tags with small (6-10 digit) displays have
been demonstrated and are currently feasible.

— Since certificate revocation and expiration granularity is usually relatively
coarse-grained (i.e., days or weeks, but not seconds or minutes), users can
distinguish between timely and stale date/time values.

The rest is straight-forward: a display-equipped tag receives, from a reader,
a PKC along with a signed and time-stamped proof of non-revocation. After
verifying the respective signatures on the reader’s PKC and the non-revocation
proof, the tag displays the lesser of: (1) PKC expiration time and (2) non-
revocation proof expiration time. The user, who is assumed to be reasonably
aware of current time, validates the timeliness of the displayed time. If it is
deemed to be stale, the user aborts the interaction with the reader. Otherwise,
user allows the interaction to proceed.

Organization: We summarize related work in Section [2] and overview some triv-
ial solutions in Section [l We describe our approach in Section [l followed by
results of the usability study in Section Bl The paper ends with the summary in
Section

2 Related Work

There are many ways of handling certificate revocation. Of these, Certificate Re-
vocation Lists (CRLs) are the most commonly used mechanism. Notably, CRLs
are used by the X.509 Public Key Infrastructure for the Internet [I2]. Some
techniques improve the efficiency of revocation checking. Certificate Revocation
Trees (CRTs) [19] use Merkle’s Hash Trees [23] to communicate a relatively short
non-revocation proofs (of size log n). Skip-lists [9] and 2-3 Trees [28] improve on
the CRT update procedure through the use of dynamic data structures, offering
asymptotically shorter proofs. Online Certificate Status Protocol (OCSP) [27]
is an on-line method that reduces storage requirements and provides timely re-
vocation status information. Certificate Revocation System (CRS) [25/24] offers
fully implicit certificate revocation by placing the bulk of revocation burden on
the prover (certificate owner) and yields compact proofs of certificate validity.

In spite of substantial prior work in both certificate revocation and RFID
security, very little has been done with respect to reader revocation and expi-
ration checking. However, the problem has been recognized in previous litera-
ture [26/TTITSITOII30].

3 Trivial Solutions

We now consider some trivial reader revocation techniques and discuss their
shortcomings.



Readers Behaving Badly 23

3.1 Date Register and Time Stamps

Every PKC has a validity period defined by its effective date (D.sy) and expira-
tion date (Degp). During certificate verification, a tag can use the date stored in
its register (Dgy,r) to determine whether a certificate has expired. Verification
steps are as follows:

1. Tag verifies the CA signature of the reader’s certificate.

2. Tag checks that Dy, is greater than Deyrr.

3. If (1) and (2) succeed, the tag accepts the certificate. If D,y is greater than
Dyrr, the tag updates Deyrr t0 Dy

With this approach, the estimate of the current date — D, — stored by the tag
is not guaranteed to be accurate and thus can not always protect it from readers
with expired or revoked certificates. This is especially the case for a tag that has
not been used for some time. The value of D, might reflect a date far in the
past, exposing the tag to attacks from readers revoked at any point after Dgy .

3.2 On-Line Revocation Checking

Online revocation-checking approaches, such as OCSP [27], alleviate client stor-
age requirements by introducing trusted third parties (responders) that provide
on-demand and up-to-date certificate status information. To validate a certifi-
cate, a client sends an OCSP status request to the appropriate responder and
receives a signed status. In its basic form, OCSP requires a clock on the client, as
it uses time-stamps to assure freshness. However, an optional OCSP extension
supports the use of nonces as an alternative.

Although suitable for a large and well-connected infrastructure, such as a
private network or the Internet, OCSP is problematic in RFID systems. Its use
would require a tag to generate random challenges and conduct a 2-round (on-
line) challenge-response protocol with an OCSP responder. Random challenges
must be generated using a Pseudo-Random Number Generator (PRNG), which
requires extra resources on the tag. More importantly, OCSP would necessitate
constant infrastructure connectivity for all readers and availability of OCSP
responders. Furthermore, the turnaround time for tag-reader interaction would
become dependent on external factors, such as congestion of the communication
infrastructure (e.g., the Internet) and current load on OCSP responders. Either
factor might occasionally cause significant delays and prompt the need for back-
up actions.

3.3 Internal Clocks

An internal clock would allow tags to accurately determine whether a certificate
is expired and whether a non-revocation proof is current. However, a typical
RFID tag is a purely passive device powered by radio waves emitted from a
nearby reader. Since a real-time clock needs uninterrupted power, it cannot
be sustained by passive tags. One might consider equipping RFID tags with
batteries, however, this raises a slew of new problems, such as battery cost,
clock synchronization and battery replacement.



24

4

R. Nithyanand, G. Tsudik, and E. Uzun

Proposed Technique

We re-emphasize that our approach is aimed only at pk-based RFID systems. It
has one simple goal: secure and reliable revocation checking on RFID tags. In
the rest of this section, we discuss our assumptions and details of the proposed
solution.

4.1 Assumptions

Our design entails the following assumptionﬁ:

1.

10.

Each tag is owned and physically attended by a person who understands tag
operation and who is reasonably aware of the current date.

. Each tag is equipped with a one-line alpha-numeric (OLED or ePaper) dis-

play capable of showing a 6-8 digit date.
FEach tag has a mechanism that allows it to become temporarily inaccessible
to the reader (i.e., to be “turned off”).

. Each tag is aware of the name and the public key of a system-wide trusted

certification authority (CA).

The CA is assumed to be infallible: anything signed by the CA is guaranteed
to be genuine and error-free.

The CA issues an updated revocation structure (e.g., a CRL) periodically.
It includes serial numbers of all revoked reader certificates.

Each tag knows the periodicity of revocation issuance (i.e., it can calculate
the expiration date of revocation status information by knowing its issuance
date.)

While powered up by a reader, a tag is capable of maintaining a count-down
timer.

A tag can retain (in its non-volatile storage) the last valid date it encoun-
tered.

[Optional] A tag may have a single button for user input.

4.2 Basic Idea

Before providing any information to the reader, a tag has to validate the reader
PKC. Recall our assumption that the user is physically near (e.g., holds) his tag
during the entire process. Verification is done as follows:

1

3

. The freshly powered-up tag receives the CRL and the reader PKC. Let
CRLiss, CRLcyp, PKCiss and PKC,y, denote issuance and expiration
times for purported CRL and PKC, respectively. Let the last valid date
stored in the tag be T'agcyrr-

Although we use ”date” as the revocation/expiration granularity, proposed technique
is equally applicable to both coarser- and finer-granular measures, e.g., month or
hour.



Readers Behaving Badly 25

§ 20200

Fig. 1. A Display and Button Equipped RFID Tag

2. If either CRLcyp or PKC.yp is smaller than T'ageyrr, o CRL;ss > PKCoegyp,
the tag aborts.

3. The tag checks whether the CRL includes the serial number of the reader
certificate. If so, it aborts.

4. The tag checks the CA signatures of the PKC and CRL. If either check fails,
the tag aborts.

5. If CRL;ss or PK (s is more recent than the currently stored date, the tag
updates it to the more recent of the two.

6. The tag displays the lesser of the CRL.;, and PKCgyp. It then enters a
countdown stage of fixed duration (e.g., 10 seconds).

7. The user views the date on the display.

[OPTION A:]

(a) If the displayed date is not in the past, the user does nothing and in-
teraction between the tag and the reader resumes after the countdown
stage.

(b) Otherwise, the user terminates the protocol by initiating an escape action
while the tag is still in countdown stage.

[OPTION B:] (If Assumption 10 holds)

(a) If the displayed date is in the future, the user presses the button on
the tag before the timer runs out, and communication with the reader
continues normally.

(b) Otherwise, the timer runs out and the tag automatically aborts the pro-
tocol.

4.3 Escape Actions

As evident from the above, an escape action is required whenever the user de-
cides that the displayed date is stale. Although the choice of an escape action is
likely to be application-dependent, we sketch out several simple and viable
examples.



26 R. Nithyanand, G. Tsudik, and E. Uzun

Using a Button: Recent developments in low-power hardware integration on
contactless cards have led to deployment of buttons on RFID tags [20/33]. On
such tags, the user can be asked to press a button (within a fixed interval)
as a signal of acceptance@. If the button is not pressed within that interval,
the protocol is automatically terminated by the tag. Thus, the escape action
in this case involves no explicit action by the user. We recommend this variant
over alternatives discussed below, since it complies with the safe defaults design
principle, i.e., without explicit approval by the user, the tag automatically aborts
its interaction with the reader.

Faraday Cages: A Faraday Cage is a jacket made of highly conductive material
that blocks external electric fields from reaching the device it encloses. Since tags
are powered by the electric field emitted from a reader, it is theoretically possible
to isolate them from all reader access by simply enclosing them in a Faraday cage.
For tags that have an enclosing Faraday cage — such as e-Passports that have
one inside their cover pages — the natural escape action is simply closing the
passport.

Disconnecting Antennas: An RFID tag communicates and receives power
through a coil antenna attached to its chip. Disconnecting the antenna from
the chip immediately halts communication and shuts down the tag. A simple
physical switch placed between a tag and its antenna can be used as an escape
action. Similar mechanical actions aimed to halt communication between a tag
and a reader are described in [I7]. One drawback of such techniques is that
physical damage to the tag is possible if the switch is handled roughly.

4.4 Efficient Revocation Checking

Although we hinted at using CRLs earlier in the paper, our approach would
work with CRTs or any other off-line revocation scheme. However, both CRLs
and CRTs become inefficient as the number of revoked readers increases. CRLs
are linear and CRTs — logarithmic, in the number of revoked certificates. Our
goal is to minimize bandwidth consumed by revocation information by making
it constant, i.e, O(1). To achieve this, we take advantage of a previously pro-
posed modified CRL technique originally intended to provide privacy-preserving
revocation checking [29].

In traditional CRLs, the only signature is computed over the hash of the entire
list of revoked PKCs. Consequently, the entire list must be communicated to the
verifier. To make CRLs bandwidth-optimal, [29] requires the CA or a Revocation
Authority to sign each (sorted) entry in a CRL individually and bind it with
the previous entry. In more detail, the modified CRL technique works as follows:
assume that the CRL is sorted in ascending order by the revoked certificate serial

* For tags that have no buttons but built-in accelerometers, gestures (see [8] for more
details) can also be used to signal user acceptance.



Readers Behaving Badly 27

numbers. For a CRL with n entries, the CA generates a signature for the i-th
entry (1 < i <n) as follows:

Sign(i) = {h(CRLiss||SNi|[SNi-1)} s, s

where, C RL;ss is the issuance date of this current CRL, S'V; is the i-th certificate
serial number on the ordered CRL, SN;_; is the immediately preceding revoked
serial number, SK g4 is the secret key of the CA and h is a suitable cryptographic
hash function. To mark the beginning and the end of a CRL, the CA uses two
fixed sentinel values: 400 and —oo.

When authenticating to a tag, a non-revoked reader provides its own PKC as
well as the following constant-size non-revocation proof:

SNj, SNj_1, CRLss, Sign(j)

where reader certificate serial number SN,q, is such that SN;_; < SN,q4, <
SN;. The reader PKC, along with the above information, allows the tag to easily
check that: (1) the range between adjacent revoked certificate serial numbers
contains the serial number of the reader PKC, and (2) the signature Sign(j)
is valid. If both are true, the tag continues with the protocol by displaying the
lesser of the CRL¢yp, and PKCeyp, as in step 6 of Section

Compared with traditional CRLs, this scheme reduces both storage and com-
munication overhead from O(n) to O(1) for both, readers and tags. On the other
hand, the CA has to separately sign each CRL entry. Although this translates
into significantly higher computational overhead for the CA, we note that CAs
are powerful entities running on resource-rich systems and CRLs are not usually
re-issued very frequently, i.e., weekly or daily, but not every minute or even every
hour.

4.5 Security Considerations

Assuming that all cryptographic primitives used in the system are secure and
the user executes necessary escape actions in case of expired (or revoked) reader
certificates, the security of the proposed reader revocation checking mechanism
is evident.

We acknowledge that user’s awareness of time and ability to abort the protocol
(when needed) are crucial for the overall security. To this end, we conducted
some usability studies, including both surveys and experiments with a mock
implementation. As discussed in section [ our studies showed that people are
reasonably aware of date and also able to execute the protocol with low error
rates.

4.6 Cost Assessment

Recent technological advances have enabled mass production of small inexpen-
sive displays (e.g., ePaper) that can be easily powered by high-end RFID tags



28 R. Nithyanand, G. Tsudik, and E. Uzun

aided by nearby readerdd. The current (total) cost of an ePaper display-equipped
and public key-enabled RFID tag is about 17 Euros in quantities of 100, 000 and
the cost goes down appreciably in larger quantities [33]. Although this might
seem high, we anticipate that the cost of cutting-edge passive display technolo-
gies (i.e., ePaper and OLED) will sharply decrease in the near future. Moreover,
once a display is available, it can be used for other purposes, thus amortizing the
expense. We briefly describe some potential alternative uses for display-equipped
RFID tags:

Transaction Verification: RFID tags are commonly used as payment and
transaction instruments (e.g., credit, ATM and voting cards). In such settings,
a direct auxiliary channel between the tag and the user is necessary to verify
the details of a transaction. This problem becomes especially apparent with
payment applications. A malicious reader can easily fool the tag into signing
or authorizing a transaction for an amount different from that communicated
to the user. A display on a contactless payment card would solve this problem
by showing the transaction amount requested by the reader on its display and
waiting for explicit user approval before authorizing it.

Device Pairing: A display may be used for secure pairing of tags with other
devices that do not share a CA with the tag. Visual channel-based secure device
pairing methods that are proposed for personal gadgets can be used with display-
equipped RFID tags (See [21] and [18] for a survey of such methods). The ability
to establish a secure ad-hoc connection with arbitrary devices is a new concept
for RFID tags that might open doors for new applications, e.g., the use of NFC-
capable personal devices (e.g., cell-phones) to change and control settings on
personal RFID tags.

User/Owner Authentication: In some scenarios, it might be necessary for a
user to authenticate to a tag (e.g., credit card or passport). Currently this can
be done only via trusted third party devices such as readers, mobile phones [31],
personal computers and wearable beepers [16]. However, in the future, with a
display-equipped RFID tag, the need for additional trusted devices might be
obviated.

5 Usability

Since the proposed technique requires active user involvement, its usability is one
of the key factors influencing its potential acceptance. Also, due to the nature
of the protocol, certain type of user errors (i.e., accepting an incorrect or stale
date) can result in a loss of security. Thus, we conducted two separate usability
studies: online surveys and hands-on usability experiments. The goal of these
studies was to answer the following questions:

1. Do everyday users worry about the reader revocation problem?

5 Power feasibility analysis of integrating a display into a passive RFID tag circuit is
discussed in Appendix [Al



Readers Behaving Badly 29

2. How do these users rate the usability of our solution?
3. Are users reasonably aware of the current date? What are the expected error
rates?

5.1 Usability Experiment

In order to assess the usability of our method in the context of real users, 25
subjects were recruited to take part in the usability study. In order to prevent
subjects from being explicitly aware of the date during the tests, care was taken
to avoid setting up prior test appointments. Instead, subjects were recruited by
the test coordinator at various campus venues, e.g., cafés, dorms, classrooms,
offices, labs and other similar settings.

Apparatus and Implementation: Our test mock-up was implemented using
two mobile phones: a Nokia N95 [2] (simulating the tag) and a Nokia E51 [I]
(simulating the reader). These devices were chosen since, at the time of this
study, actual RFID tags with displays and buttons could not be ordered in
modest quantities. We used Bluetooth as the wireless communication medium
between the N95 and E51. All implementation code was written in Java Mobile
Edition. The time period for the automatic reject was set to 10 seconds.

Subjects: Our study participants were mainly students at the University of
California, Irvine. Their age was well distributed among three groups: 36% —
18-24, 32% — 25-29, 32% — 30 +. Gender distribution was controlled for and
almost evenly split between male and female (52% and 48%, respectively). On
the other hand, 80% of the subjects had a bachelors degree, thus yielding a
rather educated sample. We attribute this to the specifics of the study venue (a
university campus).

Procedure: To help subjects in understanding the concept of personal RFID
tags, the ePassport example was used throughout the test and the questionnaire
phases. First, subjects were asked not to consult any source of current date/time
before and during the tests. Then, they were given a brief overview of our method
and the importance of maintaining natural behavior during the experiments.
Next, each subject was presented with a mock-up implementation and was asked
to execute the protocol six times. Finally, subject opinions were solicited via the
post-test questionnaire.

The set of dates used in the study process was: +/-1 day, -3 days, +7 days,
-29 days, and -364 days, from the actual test date (Note that "+” and 7-”
indicate future and past dates, respectively). All experiments were conducted
during the first week of December 2009, and choices of -29 days and -364 days
were deliberate so as to make the staleness of these dates more deceiving to the
subjects.

Test cases were presented to each subject in random order. The test ad-
ministrator held the phone simulating the reader and sent dates to the device
simulated the tag. After a date was displayed on the “personal tag”, the test
subject was asked to decide whether to: (1) accept the date by pressing the



30 R. Nithyanand, G. Tsudik, and E. Uzun

button within ten seconds, or (2) reject it by doing nothing. The process was
repeated six times for each test-case.

Results

Completion Time and Error Rates: For subjects who accepted displayed dates,
the study yielded average completion time of 3.07 seconds, with standard devi-
ation of 1.58 seconds. This shows that subjects were quick in reacting whenever
they considered the date to be valid. This also confirms that our choice of a
10-second time-out was appropriate.

Among the 25 subjects, the false negative rate (reject for a date that was
not stale) was quite low. No one rejected a date that was one day in future,
and only one subject (4% of the sample) rejected the date that was seven days
in the future. The false positive rate (accept a stale date) was also low in all
cases, except one. When subjects were shown dates that were, respectively: 1,
3 and 29 days earlier, the corresponding observed error rates were 0%, 0% and
4%. However, surprisingly, the error rate spiked up to 40% when subjects were
shown a date that was almost a year (364 days) earlier. We discuss this further
in Section below.

User Opinions: Subjects who tried our mock-up implementation rated its usabil-
ity at 77% on the original System Usability Scale (SUS) [5], a score that is about
13% higher than that obtained from the on-line survey, where participants rated
it solely based on its written description. 84% of the subjects who tested our
implementation stated that they would like this system implemented on their
own personal tags, while 12% were neutral to the idea (the average score on a
5-point Likert scale was 4.1 with the standard deviation of 0.75).

5.2 On-Line Survey

We created an online survey [3] that was used to anonymously sample 98 individ-
uals. The purpose was to collect information regarding perceived usability and
general acceptance of our solution, rather than its actual usability. Participants
were given an explanation of the reader revocation problem. Then, they were
presented with the detailed description of our approach that included all user
interaction.

Survey Results: The proposed technique yielded a score of 68/100 on the sys-
tem usability scale (SUS). 66% of the participants stated that they would like
to see it implemented on their E-passports, while 26% were neutral (the average
score on 5-point Likert scale was 3.67 with the standard deviation of 0.87). 84%
of the participants were worried about identity theft and 88% stated that they
are concerned about revealing personal information to unauthorized parties in
general.

In the online survey, we did not ask the subjects for their estimate of the
current date or whether a displayed is stale, as this data would have been severely
biased owing to the availability of the current date on their computer screen.
Instead, participants were asked about their general awareness of the current



Readers Behaving Badly 31

date. 40% indicated that they are usually aware of the exact date, 35% were
confident to know it with at most one-day error margin and 22% claimed to be
within the +/- 3-day range. The remaining 3% indicated that 7 or more days
error would be possible on their estimate of the current date.

5.3 Discussion

Based on our usability results, we now attempt to answer the questions raised
at the beginning of this section:

Are people concerned with the problem we aim to solve? Among the 123 total
participants (98425, in both studies) 88% are worried about revealing informa-
tion to unauthorized parties. 70% said that they wanted to see the proposed
technique implemented on their personal tags.

How do people rate the usability of our approach? Given the detailed description
of the method and required interaction, 98 participants rated its usability at
68% on SUS scale. The usability rating was even higher (77%) for 25 subjects
who actually experimented with the mock-up implementation. Both scores are
above industry averages [22] and indicate good usability and acceptability char-
acteristics.

Are users aware of current date? As results show, our method very rarely yields
false negatives: users are capable of not mistaking valid (future) dates for being
in the past. As far as false positives, however, results are mixed. Stale days and
months are, for the most part, easily recognized as such. However, with the stale
year, the error rate is quite high, at 40%. This deserves a closer look. While we
do not claim to know the exact reason(s), some conjectures can be made.

When confronted with a date, most of us are conditioned to first check day
and month, e.g., current dates on documents and expiration dates on perishable
products. At the same time, users do not tend to pay as much attention to more
gross or blatant errors (such as wrong year) perhaps because they consider it to
be an unlikely event. Also, we note that among six test-cases for each user, just
one had a date with the wrong year. This may have inadvertently conditioned
the subjects to pay more attention to the month/day fields of the dates.

On the other hand, we anticipate that year mismatches will be quite rare in
practice, since the tags can record the most recent wvalid date they encounter.
Therefore, dates with stale year values will be mostly automatically detected
and rejected by tags without the need for any user interaction. However, high
user error rates in wrong year values can still pose a threat if a tag is not used
for a year or longer.

Another approach that may yield lower error rates is showing today’s date to
the users instead of an expiration date. This approach can be implemented as
follows:

1. The reader sends the tag its claimed value for “today’s date” (Deyrr) in
addition to its PKC and the most recent CRL.



32 R. Nithyanand, G. Tsudik, and E. Uzun

2. The tag checks that Dcyrr < PKCegp and Deyrr < CRLegp. If either check

fails, the tag aborts.

The tag displays D¢y to the user.

4. The user is now required to verify that the displayed date is indeed “today’s
date”.

w

We believe more comprehensive user-studies are needed to evaluate whether the
above approach or certain changes in date representation and formatting (for
e.g., displaying YYYY/MM/DD instead of MM/DD/YY) might help lower user

errors.

6 Conclusions

In this paper, we presented a simple and effective method for reader revocation
on pk-enabled RFID tags. Our approach requires each tag to be equipped with
a small display and be attended by a human user during certificate validation.
As long as the user (tag owner) plays its part correctly, our solution eliminates
the period of vulnerability with respect to detecting revoked readers.

Recent advances in display technology, such as ePaper and OLED, have al-
ready yielded inexpensive display-equipped RFID tags. The low cost of these
displays combined with the better security properties and potential new ap-
plication domains make displays on RFID tags a near reality. Moreover, our
usability studies suggest that users find this solution usable and they are ca-
pable of performing their roles within reasonable error rates. We believe that
display-equipped RFID tags will soon be in mass production and the method
proposed in this paper will be applicable to a wide variety of public key-enabled
tags.

Acknowledgments. The authors are grateful to Bruno Crispo and Markus
Ullman for their valuable comments on the previous version of this paper. This
work is supported in part by NSF Cybertrust grant #0831526.

References

1. Nokia €51 specifications, http://europe.nokia.com/find-products/devices/
nokia-eb51/specifications

2. Nokia n95 specifications, http://www.nokiausa.com/find-products/phones/
nokia-n95-8gb/specifications

3. Display enabled identification and payment instruments (November 2009),
http://sprout.ics.uci.edu/projects/usec/survey.html

4. Blundo, C., Persiano, G., Sadeghi, A.-R., Visconti, [.: Resettable and Non-
Transferable Chip Authentication for ePassports. In: Conference on RFID Security
(2008)

5. Brooke, J.: Sus - a quick and dirty usability scale. Usability Evaluation in Industry
(1996)

6. Bundesamt fur Sicherheit in der Informationstechnik. Advanced Security Mecha-
nisms for Machine Readable Travel Documents : Version 2.0 (2008)


http://europe.nokia.com/find-products/devices/nokia-e51/specifications
http://europe.nokia.com/find-products/devices/nokia-e51/specifications
http://www.nokiausa.com/find-products/phones/nokia-n95-8gb/specifications
http://www.nokiausa.com/find-products/phones/nokia-n95-8gb/specifications
http://sprout.ics.uci.edu/projects/usec/survey.html

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

Readers Behaving Badly 33

. Cheon, J.H., Hong, J., Tsudik, G.: Reducing RFID Reader Load with the Meet-

in-the-Middle Strategy. Cryptology ePrint Archive, Report 2009/092 (2009)

. Czeskis, A., Koscher, K., Smith, J.R., Kohno, T.: Rfids and secret handshakes:

defending against ghost-and-leech attacks and unauthorized reads with context-
aware communications. In: Computer and Communications Security — CCS (2008)

. Goodrich, M., Tamassia, R.: Efficient authenticated dictionaries with skip lists and

commutative hashing, US Patent App. 10/416,015 (May 7, 2003)
Heydt-Benjamin, T., Bailey, D., Fu, K., Juels, A., O’hare, T.: Vulnerabilities
in first-generation RFID-enabled credit cards. Financial Cryptography and Data
Security (2007)

Hoepman, J.-H., Hubbers, E., Jacobs, B., Oostdijk, M., Wichers Schreur, R.: Cross-
ing Borders: Security and Privacy Issues of the European e-Passport. In: Yoshiura,
H., Sakurai, K., Rannenberg, K., Murayama, Y., Kawamura, S.-i. (eds.) IWSEC
2006. LNCS, vol. 4266, pp. 152-167. Springer, Heidelberg (2006)

Housley, R., Ford, W., Polk, W., Solo, D.: RFC 2459: Internet X.509 public key
infrastructure certificate and CRL profile (January 1999)

Infineon Technologies AG, AIM CC. Preliminary Short Product Information: Chip
Card and Security IC’s (2006)

International Civil Aviation Organization. Machine Readable Travel Documents:
Specifications for Electronically Enabled Passports with Biometric Identification
Capability (2006)

Juels, A., Molnar, D., Wagner, D.: Security and privacy issues in e-passports.
In: Security and Privacy for Emerging Areas in Communications Networks — SE-
CURECOMM (2005)

Kaliski, B.: Future directions in user authentication. In: IT-DEFENSE (2005)
Karjoth, G., Moskowitz, P.A.: Disabling rfid tags with visible confirmation: clipped
tags are silenced. In: Workshop on Privacy in the Electronic Society — WPES (2005)
Kobsa, A., Sonawalla, R., Tsudik, G., Uzun, E., Wang, Y.: Serial hook-ups: a
comparative usability study of secure device pairing methods. In: Symposium on
Usable Privacy and Security — SOUPS (2009)

Kocher, P.C.: On certificate revocation and validation. In: Hirschfeld, R. (ed.) FC
1998. LNCS, vol. 1465, pp. 172-177. Springer, Heidelberg (1998)

Kugler, D., Ullman, M.: Contactless security tokens - enhanced security by using
new hardware features in cryptographic based security mechanisms. In: Dagstuhl
Seminar Proceedings of Foundations for Forgery - Resilient Cryptographic Hard-
ware (July 2009)

Kumar, A., Saxena, N., Tsudik, G., Uzun, E.: Caveat eptor: A comparative study
of secure device pairing methods (2009)

Lewis, J., Sauro, J.: The factor structure of the system usability scale. In: Proceed-
ings of the Human Computer Interaction International Conference (HCII 2009),
San Diego CA, USA (2009)

Merkle, R.C.: Secrecy, authentication, and public key systems. Technical report,
Stanford University (1979)

Micali, S.: Efficient certificate revocation. Technical Memo MIT/LCS/TM-542b,
Massachusetts Institute of Technology (1996)

Micali, S.: Certificate revocation system. United States Patent, US Patent 5,666,416
(September 1997)

Monnerat, J., Vaudenay, S., Vuagnoux, M.: About Machine-Readable Travel Doc-
uments. In: Conference on RFID Security (2007)

Myers, M., Ankney, R., Malpani, A., Galperin, S., Adams, C.: Internet public key
infrastructure online certificate status protocol- ocsp (1999)



34 R. Nithyanand, G. Tsudik, and E. Uzun

28. Naor, M., Nissim, K.: Certificate revocation and certificate update. Technical report
(1999)

29. Narasimha, M., Solis, J., Tsudik, G.: Privacy preserving revocation checking. In-
ternational Journal of Information Security 8(1), 61-75 (2009)

30. Oren, Y., Feldhofer, M.: A Low-Resource Public-Key Identification Scheme for
RFID Tags and Sensor Nodes. In: ACM Conference on Wireless Network Security
— WiSec (2009)

31. Saxena, N., Uddin, M. B., Voris, J.: Treat ’em like other devices: user authentication
of multiple personal rfid tags. In: SOUPS (2009)

32. Scholz, P., Reihold, C., John, W., Hilleringmann, U.: Analysis of energy transmis-
sion for inductive coupled rfid tags. In: International Conference on RFID (2007)

33. Ullman, M.: Personal communication (September 2009)

A Power Feasibility Analysis

The aim of this section is to show that it is completely feasible to integrate low
power display technologies on passive RFID tags without any change on reader
specifications. We analyze the maximum power requirements of the proposed
system and its effect on the (theoretical) maximum working distance with current
readers. In the rest of this section, we use ePassports as an example due to their
clear tag and reader specifications.

We propose the use of display technologies such as ePaper, OLED, and other
such low-power bistable displays. These displays require power of the order of
100mW (for a 2” display unit) during display updates and 0OmW of power during
standby.

A.1 Power Analysis

ePassport tags such as those supplied by Infineon Technologies, require up to
55mW of power to operate [I3] while the display unit requires a maximum power
of 100mW to operate. We analyze the power requirements of the proposed system
from three aspects:

1. The ePassport tag is operating at maximum power and the display unit is
static or non-existent.

2. The ePassport tag is on standby and the display unit is being updated (i.e.,
refreshed).

3. The ePassport tag is operating at maximum power and the display unit is
being updated (i.e., refreshed).

In the first case, the power required by the ePassport circuit to operate will
be ~ 55mW (the power required by the display unit at this time is zero). In
the second case, the power required by the ePassport circuit to operate will
be ~100mW (the power required by the tag during standby is negligible). In
the final case, the power required by the ePassport circuit to operate will be
~155mW (the sum of the maximum power required by the tag and display).



Readers Behaving Badly 35

The ePassport tag and reader when placed parallel to each other can be repre-
sented as a circuit, with circuit parameters set in the manner described by Scholz
et al. [32].

First, we establish a relationship between the mutual inductance (M) and the
distance (z) between the antenna of the tag and the reader.

_ /,L7TN1N2(’I“1T2)2
2/ +22)°

Where (4 is the Permeability [H/m]; N1 and Na are the number of turns in the
antennas of the tag and reader; r; and ro are the radii [mm] of each of these
turns. Substituting default values [32] we get the relation

(1)

157 x 10712

M 3

(2)
Now we establish a relationship between the power required by the tag (Prqg)
and distance (x). This is done through the series of equations below.

Pro, = I} Ry (3)

Where I is the current running in the reader circuit [mA] and Ry represents
the tag impedance which is given by (4).

M?R
RT = L2 v (4)
2

Where Lj is assigned a value of 168nH [32] and Ry, is the load resistance given

by (5). ,
Vi

= n ()
Tag

Vr is the voltage required in the tag circuit (5.5 Volts). The value of Ry, is 195.1
2 in the case that the ePassport tag and display unit operate at maximum power
together (case 3). Ry, is 302.5 {2 in the case that the ePassport tag is on standby
when the display unit is refreshed (case 1). Finally, by combining equations 2
through 5, we can get a relationship between = and Prqg.

Ry,

¢ (157 x1071%)% x (I1)* x (Rg) 6
= PTag X (L2)2 ( )

Making the necessary substitutions, we get the following values for x, where x
represents the maximum possible operating distance:

— An ePassport tag without a display unit or with display on stand-by (i.e.,
not refreshing):

Prag =55 mW, Ry, =550 2 = x = .097 m (7)



36 R. Nithyanand, G. Tsudik, and E. Uzun

— An ePassport display unit while refreshing output when the tag is in standby
mode:

Prag =100 mW, Ry = 302.5 2 = 2 = .080 m (8)

— An ePassport tag and the display unit operating at maximum power:
Prog =155 mW, R =195.1 2 =z = .069 m (9)

From the above results it is clear that even with the current reader and antenna
specification, adding a display reduces the maximum operating distance between
the tag and reader only by 2.8 cm. Therefore, adding a display unit to the
current ePassport circuit is feasible and doesn’t require any changes over the
power specifications in the original proposal [6]. If longer operating distances
(over 6.9 cm) are needed, it can be achieved with small modifications on the
RFID antenna design or by increasing power of a reader.



Privacy-Preserving, Taxable Bank Accounts

Elli Androulaki, Binh Vo, and Steven Bellovin

Columbia University
{elli,binh,smb}@cs.columbia.edu

Abstract. Current banking systems do not aim to protect user privacy.
Purchases made from a single bank account can be linked to each other
by many parties. This could be addressed in a straight-forward way by
generating unlinkable credentials from a single master credential using
Camenisch and Lysyanskaya’s algorithm; however, if bank accounts are
taxable, some report must be made to the tax authority about each ac-
count. Assuming a flat-rate taxation mechanism (which can be extended
to a progressive one) and using unlinkable credentials, digital cash, and
zero knowledge proofs of knowledge, we present a solution that prevents
anyone, even the tax authority, from knowing which accounts belong to
which users, or from being able to link any account to another or to
purchases or deposits.

1 Introduction

One of the hardest realms in which to achieve privacy is finance. Apart from
the obvious — few transactions are made via cash or other anonymous payment
mechanisms — society often requires that other information about bank accounts
be disclosed. In the U.S., for example, banks and other financial institutions
are required to report interest or dividend payments, since they are generally
considered to be taxable income. Some jurisdictions require that a portion of
the interest be paid directly to the government; other jurisdictions impose taxes
on actual balances. These requirements conflict with a desire for privacy and
suggesting a way to combine the two is the topic of this paper.

Pseudonymity as Privacy Mechanism. One particular aspect of the conflict con-
cerns a very common technique for achieving transactional privacy: pseudonymity.
In pseudonymous systems, an individual has a multitude of separate, unlinkable
identities that can be used as desired. A separate pseudonym can be used for each
peer, thus preventing linkage between different sorts of activities.

We claim that pseudonymity may be adopted in the banking system to achieve
privacy, as, at least for tax purposes, neither banks nor the government need to
know who owns a particular bank account. In fact, there are both security and
privacy benefits to having multiple pseudonymous accounts. Often, knowledge
of a “routing number” (effectively, the bank’s identity) and an account number
are sufficient to withdraw money from an account as well as deposit money into

D. Gritzalis, B. Preneel, and M. Theoharidou (Eds.): ESORICS 2010, LNCS 6345, pp. 372010.
© Springer-Verlag Berlin Heidelberg 2010



38 E. Androulaki, B. Vo, and S. Bellovin

it. Having multiple pseudonymous accounts — and closing those created for a
special purpose when they are no longer needed — could prevent such incidents.

The Challenge. Although the identity of the account owners is not a functional
requirement of the banking system, pseudonymity may harden authorization
and encourage fairness attacks as it lacks accountability. Banks need to know
that only authorized parties withdraw money from accounts; governments need
ensure that balances and income are properly reported, and taxes paid. An ideal
system would be one where an individual could open a bank account without
disclosing his or her real identity; nevertheless the relevant tax authorities would
receive accurate reports of relevant information.

Our Contribution. We present a solution that accomplishes these goals. Individ-
uals need present strong identification credentials only to obtain a single mem-
bership to the bank, after which he may open an arbitrary number of anonymous
or nominal accounts, without anyone being able to link those accounts to their
owner or one to the other. Periodically, appropriate information on taxable items
is supplied; the tax authority can verify that all accounts are properly reported.
Our protocols consider non-progressive taxes, can easily cover progressive ones,
and are secure under the strong RSA assumption.

Organization. In Section2] we give a more precise statement of the architecture
and requirements for the system. The protocols are described in Section [Bl We
explain why we believe this system to be secure in Section 4l Section [ discusses
related work; Section [l has concluding thoughts.

2 System Architecture

Our goal is to build a bank account mechanism, where an honest individual is
able to own and handle multiple anonymous bank accounts not entirely con-
nected to his identity, while being taxed fairly and privately. More specifically,
we consider an architecture consisting of Users, i..e, individuals who open bank
accounts and must pay taxes, Banks, who allow users to open accounts for the
purpose of storing cash and handling financial transactions, while responsible for
reporting interest for income tax purposes, and the Taz Authority (TA), which
is responsible for ensuring that correct income taxes are paid by all users. Tax
Authority corresponds to the U.S.’s Internal Revenue Service (IRS), the Canada
Revenue Agency, the U.K.’s HM Revenue & Customs, etc.

Accountability requires that a single identity should be accounted for repeti-
tive misbehaviors of the same user. To restrict registration entries to one per user,
banks require that users present at Registration strong unforgeable identification
credentials. Users may then open and manage two types of bank accounts: nomi-
nal accounts, which carry the identity their owner and whose activity can be fully
traced, and anonymous accounts, where the identity of the owner is concealed
to the bank. To handle the the data related to these accounts, the bank main-
tains Dreg and D, databases, respectively. Anonymous accounts may be opened



Privacy-Preserving, Taxable Bank Accounts 39

(AccountOpen operation) after special user-requests. To manage their accounts,
users are required to create pseudonyms strongly (but secretly) connected to
their bank identity. On an annual basis, all accounts are withheld taxes which
are reported in a four stage procedure: the TaxReportlssue, where the account
owner and the bank issue an anonymous account’s report, the TaxReportTran-
form, where the user transforms his report into a different but valid form, the
TaxReportDeposit, where the user deposits the tax report to the tax authority
and TotalTaxCalculation, where all the reports of the user are used to extract
the overall tax withheld. Auxiliary operations of the system are the Bkeygen and
Ukeygen, the key generation algorithms for the bank and the users respectively.
See [AVBI(] for more details.

Threat Model. We make the following assumptions:

1. Users may try to cheat. A user trying to avoid paying taxes may lie regarding
the tax withheld, attempt any type of forgery in tax reporting. Also, malicious
users may try to collaborate in order to minimize the reported balance, as long
as they do not endanger their funds.

2. Banks are “honest but curious”. Aiming to maintain their clientele, banks are
trusted to perform all their functional operations correctly, i.e., they issue cre-
dentials, open and update accounts as instructed by their customers. However,
they may use the information they possess for other reasons, i.e., to sell credit
card based profiles to advertising companies, while they may collaborate with
tax authority to reveal the identity behind an anonymous account.

8. Tax Authority is considered “honest but curious”. Although we assume that it
is operated by the government who wants to protect honest users, it, however, is
not assumed to protect privacy; indeed, there have been a number of incidents in
the U.S. of privacy violations by tax authorities or by unscrupulous individuals
employed by the tax authorities.

Requirements. Privacy and security are the core requirements of our system.
Privacy refers to the user, while security guarantees the proper operation of
the entire system. Privacy requires that the activity of an honest individual is
untraceable to other users, banks, the tax authority or collaborations between
them, and, thus, translated to:

1. Account-Account-owner Unlinkability. It can be inducted to account-
pseudonym — account-owner unlinkability and account — account tax-report un-
linkability. The first requires that given a pseudonym P, that does not belong to a
corrupted party, the adversary can learn which user owns P, | no better than guess-
ing at random among all non-corrupted users that appear consistent with P, . Ac-
count — account tax-report unlinkability requires that given a tax report % that
does not belong to a corrupted party, the adversary can learn which user owns T’
no better than guessing at random among all non-corrupted users in D . In addi-
tion, given a transformed tax report 7T, that does not belong to a corrupted party,



40 E. Androulaki, B. Vo, and S. Bellovin

the adversary can learn which pseudonym (and thus which account) it corresponds
to no better than guessing at random among all pseudonyms (accounts) of non-
corrupted users in Dy,.

2. Account-Account Unlinkability. It can similarly be analyzed to account-

pseudonym — account-pseudonym unlinkability and account-tax report — account

tax-report unlinkabilty. The first requires that given two pseudonyms Pb ,P? that

donot belong to corrupted parties, the adversary has no advantage in telling WLﬁLether
Pb, Pf) belong to the same user or not. The second, that given two recently gener-

ated tax reports T, T2 that do not belong to corrupted parties, the adversary has

no advantage in telling whether they belong to the same user or not. There should

be no way for any entity or collaboration of entities, including the bank and tax

authority, to link different accounts of the same user.

Security is defined as the combination of the following properties:

1. Fairness. Suppose that n users Uy,..., U, collude together. Let the sum of
the tax withheld by all of them together is SumTax =", , TotalTaz®, where
TotalTaz" is U;’s tax amount withheld. Fairness requires that the group of users
may report in total at least SumTax. We also require that the following hold

a. Tax Report non-Transferability. No user should be able to use (deposit) the
tax report of another user. Assuming two corrupted users U; and Uy, where Uy
has issued T!. Tax Report non-Transferability requires that there is no valid
transformation TT*! of T (through TaxReportTransform) for which the following
happens with non negligible probability: if U, attempts to deposit 77" in honest
B through TaxReportDeposit, B accepts.

b. Tax Report Unforgeability. No user or coalition of users should be able to
construct a valid tax report for his accounts, i.e., a tax report for which TaxRe-
portDeposit is accepted by the tax authority or the bank.

2. Accountability. Users who attempt to avoid paying taxes for their accounts
are traced and punished.

3 Taxation Protocol

Accountability poses important a form of “privacy-preserving” centralization of
user activity inside the bank. Thus, each user can be privately authenticated by
demonstrating knowledge of a master secret, msy, which he generates at the reg-
istration procedure. Users are highly motivated not to share their secret, which
they use to open and manage their anonymous accounts. More, specifically the
user utilizes his msy to issue single use, bank (blindly) authorized permissions
perm,,, which he later deposits anonymously to open accounts. To manage them,
the anonymous user generates account pseudonyms, which are secretly, but prov-
ably, connected to their owner’s msy. Users deposit annually to the tax authority
an number of tax reports equal to the number of accounts they own. Tax report-
ing consists of two phases:



Privacy-Preserving, Taxable Bank Accounts 41

1. Tax Report Generation. It involves three stages:

1.

Tax-Report-number Acquisition, where account owners obtain one valid tax-
report-number (TRN) per account. It is important to note that TRNs are
not linked to the accounts they are used for.

. Actual Report Generation, where the account pseudonym proves that it

is the owner of the account — by demonstrating knowledge of the corre-
sponding msy — and provides a verifiable commitment to both his msy
and TRN. The bank signs it and produces the prime version of the ac-
count’s tax report: (77, T™) = (Sigg(TaxInfo), TaxInfo), where TaxInfo
= Tax || Commit(TRN, Master-Secret), Tax is the tax withheld from the
user’s account and by Sigg (M), we denote a complicated procedure which
involves bank’s (z-multiple) signature on M. The exact number of bank sig-
natures applied on M is not revealed to the user. However, the bank provides
the user with a randomized token Siglnfo which contains that information, in
a form only readable by the taxation authority, along with re-randomization
information SlTranform for the user to make Siglnfo unlinkable to its initial
form.

Tax Report Transformation, where the account owner, applies a transfor-
mation function F' to both, the bank-signed tax report 7, and the corre-
sponding unsigned message, ending up to the depositables TT? = F(T7),
and TTM = F(TM). The account owner also transforms Siglnfo through
SlITranform.

2. Tax Report Deposit. Each user deposits all of his tax reports to the bank.
The deposit of tax reports includes three stages:

1.

2.

Deposit of all the unused perm,,. In this way, the bank can accurately com-
pute the number of anonymous accounts of each user.

Deposit of the depositable tax report pairs, (TT°, TT™) corresponding to
each account of the accounts owned by the user.The user proves that each tax
report pair is valid, i.e., that it corresponds to bank signature(s) (according
to the transformed version of Siglnfo), that was constructed using the same
user’s master secret and that it has not been deposited before.

Tax Amount Calculation procedure. The bank collaborates with the user to
calculate the overall tax withheld the latter’s accounts..

3.1 Building Blocks — Primitives for the Suggested Solution

Ecash. An E-Cash [CHLOS| system consists of three types of players: the bank,
users, and merchants. The input and output specifications of the basic operations
are as follows. For convenience, we will assume that the operations take place
between a merchant M, a user U and the Bank B.

(pkg, sks) < EC.BKeyGen (1%, params) and (pky,sky) < EC.UKeyGen(1*, params),

which are the key generation algorithm for the bank and the users respectively.
(W, T) « EC.Withdraw(pkg, pkyj,n) [U(sky), B(sks)]. U withdraws a wallet W of n

coins from B.



42 E. Androulaki, B. Vo, and S. Bellovin

(W', (S, m)) « EC.Spend(pkpg, pkg, n) [U(W), M(skM)} U spends a coin with serial
S from h1s wallet W to M. W is then reduced to W', M obtains a coin (S, 7), where
™

is a proof of a valid spent coin with a serial S.
/L, L") — EC.Deposit(pkp, pkg) [M(skpg, S, ), B(sks,L)]. M deposits a coin

(T
(S,m) into its account in B. If successful, M’s output will be T and the B’s list

L of the spent coins will be updated to L’.
o (pky, IIg) « EC.ldentify(params, S, 71, m2). It outputs the public key of the violator

U, who spent a coin with serial S twice, producing validity proofs m and 72, and a

proof of Emlt Ig.
o T /L « EC.VerifyGuilt(params, S, pkyy, I[Ig). This algorithm, given IT¢ publicly ver-

1ﬁes the violation of pk
o {(Si,II;)}; — EC. Trace%lpamwns7 S, pky; g, D,n). This algorithm provides the list

of serials S; of the coins a violator pkyy has issued, with the corresponding ownership

proofs II;.
o T/1 «— EC. VerifyOwnership(params, S, IT, pk|j,n). Given a ownership proof IT it

verifies that a coin with serial number S belongs to a user with public key pkyj.

Security Properties: (a) Correctness. (b) Balance. No collection of users and
merchants can ever spend more coins than they withdrew. (¢) Identification of
Violators. Given a violation and the corresponding proofs of guilt, the violator’s
public pky; key is revealed such that EC.VerifyGuilt accepts. (d) Anonymity of
users. The bank, even when cooperating with any collection of malicious users
and merchants, cannot learn anything about a user’s spendings. (e¢) Ezxculpabil-
ity. An honest user U cannot be accused for conducting a violation such that
EC.VerifyGuilt accepts. (f) Violators’ Traceability. Given a violator U with a proof
of violation I1g, this property guarantees that EC.Trace will output the serial
numbers of all coins that belong to U with the corresponding ownership proofs.

Pseudonym Systems. Pseudonym systems have three types of players: users,
organizations, and verifiers. Users are entities that receive credentials. Organiza-
tions are entities that grant and verify the credentials of users. Finally, verifiers
are entities that verify credentials of the users. See [LRSW99|[CLOI] for more
details. The standard operations supported are the following:

— (pko,sko) < PS.OKeyGen(1 k). This procedure generates a public/secret key pair
for an organization. We denote a key pair for an organization O by (pkg, sko).

— (pky,sky) < PS.UKeyGen(1 k). This procedure generates a public/secret key pair
for a user. We denote a key pair for a user U by (pkyy,sky). Sometimes we refer
to the secret key of a user as a master secret key for the user.

— ((N,NSecrn), (N,NLog)) < PS.FromNym(pko) [U(pkyy,skyy), O(sko)]. This in-
teractive procedure between a user and an organization generate a pseudonym (or
simply nym). The common input is the public key of the organization O. The
output for the user is a nym N and some secret information NSecry, and for the
organization the nym N and some secret information NLog ;.

— (credn, CLogeq, ) < PS.GrantCred(N, pko) [U(pkyy, skyy, NSecrn ), O(sko, NLog x)].
This interactive procedure between a user and an organization generate a credential
for anym N. The common input is NV and pky. The output for the user is the creden-
tial cred x for the nym N. The output for the organization is some secret information
CLog,eq,, for the credential.

- (T, T /{NL 1) « PS.VerifyCred(pkg) [U(V,credn), V]. In this interactive proce-
dure between a user and a verifier, the user proves that he has a credential on the
nym N issued by the organization O.



Privacy-Preserving, Taxable Bank Accounts 43

= (T, T)/{L, L) « PS.VerifyCredOnNym (N, pko, pko, ) [U(N1, credn, ), O(NLog )]
In this interactive procedure between a user and the organization O, the user proves
that N is his valid nym of the organization O and that he has a credential credy,
on the nym N; issued by the organization O;.

Security Properties. (a) Unique User for Each Pseudonym. Even though the
identity of a user who owns a nym must remain unknown, the owner should be
unique. (b) Unlinkability of Pseudonyms. Nyms of a user are not linkable at any
time better than by random guessing. (¢) Unforgeability of Credentials. A cre-
dential may not be issued to a user without the organization’s cooperation. (d)
Non-Transferability. Whenever a user U; discloses some information that allows
a user Uy to use her credentials or nyms, U; is effectively disclosing her master
secret key to him.

Commitment Schemes. In a typical commitment scheme, there are provers
(let each be P) who are required to commit to a particular value towards verifiers
(let each be V), who may be able to see the committed value when provers decide
to. The procedures supported are the following:

o (params) «— CS.Setup(1¥), which outputs the parameters of a commitment scheme.
o (C/false) « CS.Commit(params)[P(r,m)]. It outputs either the commitment itself

to a value m or not-completed. P’s input is the message m and randomness 7.
e (T/L,m/Ll) — CS.Open(C)[P(m),V]. In this operation the P shows the committed

value m to V. V accepts it if m is the value matching C.

Security Properties: (a) Binding. It should be computationally impossible for P,
after having committed to m, to generate another message m’ that has the same
commitment value C. (b) Hiding. It should be computationally impossible for a
verifier who knows C to get any information regarding m.

Blind Signatures. In a typical blind signature scheme, there are signers (let
each be S) who produce blind signatures on messages of users (let each be U).
The following procedures are supported:

o (pkg,sks) «— BS.KeyGen(1*). This is a key-generation algorithm that outputs a

public/secret key-pair (pke, sks).
e (T/L, o/1) < BS.Sign(pks)[S(sks), C(m)]. At the end of this interactive procedure,

the output of the S is either completed or not-completed and the output of U is either
the signature (o) or a failure sign ().
e (T/L) « BS.Verify(m, o, pks) is a verification algorithm.
Security Properties: (a) Unforgeability. No one but the signer should be able to
produce a valid signature o on a blinded message m. (b) Blindness S does not
learn any information about the message m on which it generates a signature o.

Zero Knowledge Proof of Knowledge Protocols. In a typical zero knowl-
edge proof of knowledge(ZKPOK) scheme there are two types of players, the
provers who need to prove possession of one or more secret number(s), that
satisfy a particular property to one or more verifiers and the verifiers. In what
follows, we will use the notation introduced by Camenisch and Stadler in [CS97]
for the various proofs of knowledge of discrete logarithms and proofs of the



44 E. Androulaki, B. Vo, and S. Bellovin

validity of statements about discrete logarithms. In particular, PK{(a, 8,7) :
y1 = g¥hY ANys = g9hI A (u < a < u)} denotes a “zero-knowledge-proof-of-
knowledge” of integers «, 3 and ~ such that y; = gi’hf and yo = gg‘h'g , where
u < a < wuand yi,91,h1, Y2, 92, he are all elements of two groups G; and Go
respectively. We make use of the following ZKPoK schemes:

A proof of knowledge of a representation of an element y € G with respect to
bases z1,...,7zy € G [CEVDGSY], i.e.,

PE{(aq,...,qp) iy =27"... 20}

A proof of equality of discrete logarithms of y1,y2 € G to the bases g,h € G
respectively, [COT] [CP93] i.e., PK{(a) : y1 = g* A y2 = h*}.

A proof of knowledge of a discrete logarithm of y € G with base g € G such that
loggy lies in the interval [a,b], [BO0],i.e.,

PK{(a) :y=g* N € [a,b]}.

Proof of knowledge that the discrete logarithms of two group elements y1 €
G1, y2 € Gy to the bases g1 € G1 and g2 € Go in the different groups Gy
and G2 are equal [BCDG8S] [CM9IY)], i.e.,

PK{(a,) : y1 =% g N y2 =92 g§ ANC = g®hP A a € [0,min(q1,¢)]},
where q1, ¢ are the order of the groups G, Gy respectively, G =< g >=< h >
is a group to which the commitment C of «, 8 is computed.

Security Properties. (a) Correctness. (b) Zero-Knowledge. The verifier learns noth-
ing other than that the prover knows the relevant values. (¢) Proof of Knowledge.
The protocol accepts iff the prover knows the secret value he claims to know.

3.2 Detailed Protocol Description

As mentioned before, the bank manages two different registries: one handling
users’ non-anonymous information (reg-setting) and accounts and another one
handling anonymous accounts (a-setting). As each setting is realized as organi-
zations in pseudonymous systems (see [CLOT] for more details), the bank runs
PS.OKeyGen twice, once for the reg-setting and once for the a setting. In par-
ticular, the bank:

— generates all the common system parameters (see [CLOT]): the length of the
RSA moduli £,, the integer intervals I" =] — 2¢r 27|, which is basically the
interval master-secrets belong to, A =] — 24 2fa[ A =] — 2% 2fa+f=] such
that €4 = €(£,+04)+1, where € is a security parameter, and £4 > {x+{A+4.

— chooses two pairs (one for each setting) of random ¢,,/2-bit primes: p’,, ¢,
such that p, = 2p/, + 1 and ¢, = 2¢}, + 1 are prime and sets modulus
Ng = Pz - ¢z, Where x = reg, .

— chooses random elements ag, by, dy, gz, he € QR,,, where z = reg,a. In
addition to the standard organization setup procedure of [CLOI], the bank
chooses for the a-setting random kq,, lo, Ma, Sa, 2o € QR

Thus, the Bank’s public-secret information for the two settings are

- {(nrega Qreg, Dreg, dreg, Jreg) hreg), (prega Qreg)}, for the reg-setting, and
- {(”av G, bas Aoy G Ravs Koy Lo, My Sas er)a (pm Qa)}v for the a-setting.



Privacy-Preserving, Taxable Bank Accounts 45

In addition to the aforementioned parameters, the bank generates a blind signa-
ture key pair (pk&, ski) and an RSA signature key pair, (skg,pkg) = ({d, Pas 4o},

{e,

Ne}), based on the a RSA-parameters and 1 < e < @(pngs) and de =

1(mod(¢(paqa)))- € is given to the taxation authority (TA). On the other hand,
TA generates an encryption key pair (pkra, skta) of a known randomized (and
re-randomizable) encryption scheme (Paillier etc) and provides the bank with
the encryption key (see Appendix [A3or [PP99] for more details).

Registration. Assuming collaborations between a user U and a bank B, in the
registration procedure, U contacts B in person to create an entry in B’s Dyeg
registry. In particular

1

2.

3.

U — B: strong identification credential, i.e., passport, id card etc.

U:runs PS.UKeyGen to obtains a bank-oriented master secret msy and a
public/secret key pair {pkla, skla} connected to his msy.

U: runs PS.FormNym using the reg-parameters to generate a registration
pseudonym P& connected to msy in zero knowledge fashion.

. U < B: execute EC.Withdraw procedure for U (see B for more details) to

withdraw a wallet WAcc) of perm,, (ecoins). WAccy) will later authorize
U to open anonymous accounts in B. Consequently, the size of the wallet
withdrawn depends on the maximum number of anonymous accounts U is
eligible for.

U < B: execute PS.GrantCred procedure so that U obtains a registration
credential cred'a for having registered in D,eg, which is provably connected
to msy.

U stores in his database his secret key (sk%), the information related to his
pseudonym(pubP™8, secP'8) and credentials (pubcredB, seccredB), while B
stores only the public information.

Account Opening. To open an anonymous account, user U contacts B initially
anonymously. Both, B and U make use of the a-parameter group. The following
interactions take place:

1.

U(anonymous) < B: run EC.Spend for U to spend an ecoin (S, 7) (perm,)
from his WACCEJ wallet. If the ecoin used has been spent before, B runs the

EC.Identify and EC.Trace procedures to recover U’s identity(pk%) and activity

. U: runs PS.FormNym, to generate a pseudonym P' for managing his new

account o, The pseudonym created has the form of P = afl Vb,
a U-B-generated value known only to U (see [CLOT]).
U(anonymous) <> B: run PS.VerifyCredOnNym, where U demonstrates own-
ership of cred% and B verifies both, that credB and P’ are bound to the
same msy (user) and that their owner has registered to the bank with a
reg-pseudonym which is bound to the same msy as P'.

U stores in his database the public/secret information related to his account-
pseudonym (pubP', secP'). B stores (pubP', S, 7).

, where s is



46 E. Androulaki, B. Vo, and S. Bellovin

Tax Report Issue. This is a procedure taking place between the owner U of
an account o', who participates through his pseudonym P' and the bank B. It
consists of three stages:

1. Tax Report Number Acquisition. The account pseudonym P' collaborates
with B in a BS.Sign procedure, for the former to obtain a (blind towards B)
TRN related ticket trtick’. U deposits in person to B the trtick’ to receive a
tax-report-number TRN’. B sends to TA the tuple (U, TRNi) and stores it
in its Dyeg. Tax report numbers are chosen from a range Ranget = [0r, ur].

2. Tax Report Generation. The following take place:

(a) P': using secP' proves that he is the owner of P!, by engaging in the
ZKPoK: PK{(3,7) : (P2 = (a2)” - (b2)"} (see [cLOT]).

i

(b) P — B: C' = Com(msy, TRN?, ) = TS0 . (TRN® ppprt.
where Com is a tax report related commitment scheme, msy U’s master-
secret, TRN?, the single-use tax-report-number, which U acquired anony-
mously, and r* is a U-generated randomness.

(c) P' « B: execute the following ZKPoK protocol for P' to show in zero
knowledge fashion that C' was computed correctly, i.e., that the com-
mitted master secret matches the master secret used in the construction
of P' (msy) and that the exponent of I, (TRN') is among the specified
range:

PEA{(7,6,2,m) s (P)2 = (a2)7(B2)° A C2 = (K2)7(12)(m2) A
vyeI AN deA A neRanger}.
(d) P' ra B: a random r,; if B has received 7, before, the procedure is

repeated.
(e) B: decides = based on ry. It then computes h}f‘xi and uses his RSA
signature key to sign T™? = hff‘xi - C' x times into T°% B provides
U with an z-related the secret piece of information Siglnfo = Encra(z),
where = € Range,. T is then:
To = g B0l MSU  TRNY,

mimri (modny,).

(f) B — U: T, Siglnfo and Siglnfo re-randomization information SITranform.

3. Tax Report Transformation. In this case, after having obtained his signed
tax reports, U applies the transformation function F', so that — although
provably valid — the modified tax reports are unlinkable to their initial
form. In our scheme F(M) is instantiated by adding an extra factor to M.
In particular, U:

(a) transforms both T7¢ and TM+ using F(M,r) = M - s'} - 272, where
M is the message to be transformed and r = ri||ry is a U-specified
randomness. Thus, we get the following for the signed tax report and

the corresponding message, respectively,

i i o d*tax; ;d*ms @ ‘ api 1P
TTo — F(TU’Z,’I"O’Z) — he kS U, lg TRN m((ix r _sgl . Zgz
; M,i M,i

TTMA F(TM’i,TM’i) - hgaxi . k;(TSU . ZIRNZ -mp, -s:;l _Z(’;z

(b) re-randomizes the encryption of Siglnfo according to SITranform



Privacy-Preserving, Taxable Bank Accounts 47

Tax Report Deposit. Each user U(using a real identity) sends to the TA all
the tax reports he has acquired, (T7%!, TT™Y) ... (TT"N, TT""N), where N
is the number of U’s accounts. U then proves that each one of these pairs were
constructed in a correct way and that they correspond to his accounts. The tax
report validation consists of two steps:

1. Signature Validation, where U shows that (TT‘”‘7 TTM’i), foralli=1...N,
correspond to transformations of bank-signatures:
(a) TA: decrypts Siglnfo, reads = and raises all TT%s to B’s signature veri-
fication key e, x times using (modn,,):
TTM % (T — % msy ,l;I'RNi Lot et ety

my, - Sa - Za

(b) U < TA: interact in the following ZKPoK protocol to prove that in each
pair, TTM* and TT™ ¥ correspond to the same TaxInfo, i.e., that in

M,i

both cases the exponents of hq, kq, lo, Mo are the same, or that TII:M, ;

is a factor of powers of s, and z,:

M,i
PE{(0.m) : (11007 = (s2)°(2)"
. Tazx Report Ownership and non-Repetition Proof. where U proves to the tax
authority TA that each one of the tax reports he deposits had been created
through his collaboration with B and that he has not deposit the same tax
report twice. The latter is achieved through the one-time-use TRN s. For
each one of TT™"s (or TT™ %), U reveals the TRN" to the TA, while he
engages to a ZKPoK protocol for the TA to verify that the exponent of k,
in 7TM* (and thus, 7TM ‘) matches the msy used in P8, i.e.,

M,i
PK 5 0.1 : (P8)2 — (g2)Y(b2) A LT17 _
(08,7200 P = @202 TEC

=hT -kl -mg-sh 20 Ayel A S A}

o

Total Tax Calculation. In this operation, TA confirms that U has deposited
tax reports for all of his accounts and then uses them to extract the overall
tax amount withheld by U’s accounts. In particular, TA and U collaborate in
an EC.Spend procedure for the latter to spend his unused ecoins from WAccE
wallet. TA estimates the exact number of U’s accounts, computes the overall tax
withheld, and based on that the overall balance of U in banks (progressive-tax
formulas may then apply):

1. TA: computes the product of all TT™* (TTM*") which because of the
homomorphism of the commitment scheme used, equals to
M, TM,i

M,i tax; ms trni rto T
Himr, NTT™" = Iz, (R kg PV 1™ my, - sdd - 2a® ) =

i M,i M,i
hTotalTaz . kNmSU _ZRt _m§i=1,...,N rt . S§i=1,...,N LT Z§i=1,...,N Ta
@ @ @ .

2. U reveals TotalTax =) ,_;  tax;, which is the overall tax withheld.



48 E. Androulaki, B. Vo, and S. Bellovin

TTM,all

3. U and TA collaborate in a ZKPoK protocol to prove that pTotaiTas Bt is

correctly created and thus prove that TotalTax is the required amount (note
that TA knows R;):

PEA{(B,7,0,¢,n) : (P*8)? = (a2)7(b2)° A
M ,a
T = (kM) -ms -8 -21 AN yel A Je A}

. R
hz;otalTam lo t

4 Discussion

The following theorem states the correctness, privacy and security of our general
scheme: if the underlying primitives (anonymous credential system, e-cash sys-
tem, blind signatures, commitments and ZKPoK) are secure, then our scheme
satisfies correctness, account—account unlinkability, account—account-owner un-
linkability, fairness in tax reporting, tax report mon transferabiliy and unforge-
ability, and accountability. We use prove this theorem with the following lemmas.
We have omitted the correctness definition and solution for space reasons (see
appendix [A] [AVBI0]).

Lemma 2. If the underlying primitives (anonymous credential system, ecash
system, and ZKPoK) are secure, then our scheme satisfies account-account un-
linkability.

Proof. Account-account unlinkability is maintained in the Account Open proce-
dure through the unlinkability property of the ecash scheme used for perm, and
the unlinkability of pseudonyms property of the underlying anonymous creden-
tial system. Account-account unlinkability is also maintained through the tax
reporting: Let a! and o two accounts of U for which he obtains tax reports
T', T? respectively. Then T' and T? are unlinkable one to the other because
of the hiding property of the commitment scheme used to generate them and
the zero knowledge property of the ZKPoK scheme used to prove their correct
construction.

Lemma 3. If the underlying primitives (anonymous credential system, ecash
system, blind signatures, commitment and ZKPoK, transformation function F,
Paillier cryptosystem) are secure, then our scheme satisfies account—account-
owner unlinkability.

Proof. Let o an anonymous account of user U managed by pseudonym P'. Let
T and TT be the tax report for o/ and its transformed version. Unlinkability
of a® and U at the AccountOpen procedure is achieved through the anonymity
property of the ecash scheme realizing perm_ s and of and pseudonym system
used for the generation of P as well as through the blindness of the blind signa-
ture scheme used for the acquisition of TRNs. T is unlinkable to U through the
hiding property of the commitment scheme, which “hides” the msy committed in
T and the security (zero knowledge) of the ZKPoK protocol used to validate the
construction of T: no information is leaked neither TRN nor for msy contained



Privacy-Preserving, Taxable Bank Accounts 49

in T. TT on the other hand, does not reveal anything regarding 7' or the ac-
count because of the hiding property of transformation function F (see appendix
for more details) used for its construction, the zero knowledge property of the
ZKPoK protocol used at its validation and the re-randomization property of the
Paillier cryptosystem used for blinding Siglnfo.

Lemma 4. If the underlying primitives (anonymous credential system, digital
signatures, commitment) are secure, then our scheme satisfies Taxz Report Un-
forgeability.

Proof. Let that user U manages an account «) through a pseudonym P and
generates tax report 7°/M | which is later transformed to 777/ through F().
We need to prove that the tax report remains unforgeable at all stages. T is
an RSA-signature-based function on a commitment on TRN’ tax; and msy. To
avoid B-signature forgeries exploiting RSA homomorphism, apply the signature
scheme on 7™ z number of times, while the RSA-signature verification key and
x are kept secret to U. x is only revealed to TA only at the TT" deposit procedure
through SigInfo. We assume that there are very few z-es w.r.t. the total number
of tax reports so that z-based linkability attacks do not apply. U has no incentive
to alter Siglnfo. To avoid such a forgery using the same tax report, we make use
of TRN s, B-chosen numbers of a pre-specified range such that summations of
two numbers in Ranger result in an invalid number. bindness property of the
commitment scheme used in 7' generation guarantees that as long as the RSA

signature is unforgeable, U cannot dispute the “TaxInfo” he has committed to
in 7M.

Lemma 5. If the underlying primitives (anonymous credential system, digital
signatures, commitment and ZKPoK) are secure, then our scheme satisfies Taz
Report non transferability.

Proof. In our system users are highly motivated not to share their msy. Thus,
assuming that they are not doing so, Tax-Report non transferability is achieved
through the need to prove knowledge of the msy at each step of the tax report-
ing. More specifically, account pseudonyms are required to show that their msy
matches the one committed in 7', which is then signed and -thus- cannot change
(unforgeability of the signature scheme). The proof of knowledge property of
the ZKPoK scheme used when depositing T'T, guarantees that user depositing
TT knows the corresponding msy, which should match the msy used in all tax
reports deposited by the same user, as well as his registration pseudonym.

Lemma 6. If the underlying primitives (anonymous credential system, ecash,
digital signatures, commitment and ZKPoK) are secure, then our scheme satisfies
Fairness.

Proof. Because of Tax Report Unforgeability and non-transferability, users can-
not change the tax reported in each report or use other users’ tax reports. Be-
cause of the Identification of Violators and Violators’ Traceability property of
ecash implementing perm,s, users cannot lie to the bank regarding the num-
ber of the accounts they have opened: if they try to prove they opened fewer



50 E. Androulaki, B. Vo, and S. Bellovin

accounts, some of the perm_s in WAcc® will be doublespent. At the same time,
because of the TRNs, users cannot avoid a tax report, by depositing another one
twice.

Lemma 7. If the underlying primitives (anonymous credential system, ecash,
digital signatures, commitment and ZKPoK) are secure, then our scheme satisfies
Accountability.

Proof. Because of the Identification of Violators and Violators' Traceability property
of ecash implementing perm s, users who lie regarding the anonymous accounts
they opened are identified. Because of the proof of knowledge property of the
ZKPoK protocols, the non-transferability of credentials property of the underly-
ing pseudonym system and the non-transferability property of tax reports, users
trying to use other users’ tax reports are detected.

5 Related Work

Legal issues related to anonymous payments, including purchase receipts have
been technically addressed in [PwP00] [BP8Y]. [1Y96], [LMPI6] are cases of pro-
tocols providing conditionally anonymous payments from user issued bank ac-
counts. However, their work is different from ours as there is either a third
trusted party involved for anonymity revocation purposes, or they do not offer
privacy against coalitions of banks. In [AB0O9], the authors provide privacy in the
management of anonymous accounts, even w.r.t. the bank through the use of
anonymous credit cards. However, we take an additional step in addressing tax
reporting for bank accounts, which is not an issue in credit-only systems.

Taxation has been addressed in the past in the stock market. In [X¥Z00],
the authors propose a scheme addressing a similar problem to ours: anonymous
and taxable stock market trading accounts. As in our system, users are using a
generated anonymous credential from a public credential to validate anonymous
stock-transaction. However, their system differs from our own in two major ways.
First, they only allow for each user to own one anonymous account, because
of the extra complications to tax reporting the multiple accounts would cause.
Addressing these complications is one of our major contributions. Secondly, they
do not aim to prevent the Tax Authority from learning which accounts the
reports are coming from. Thus if the TA were to collaborate with the Stock
Exchange Center, they could re-link the users with their anonymous accounts.
Preventing this is another contribution of our system.

6 Conclusion

In this paper we presented a privacy preserving bank account system, where
individuals may open arbitarily anonymous and unlinkable accounts w.r.t. the
bank and tax authority collaborations. All accounts are ultimately and in zero
knowledge fashion connected to their owner. We emphasize on the bank account
taxation mechanism, where individual users report the aggregated amount of
tax all of their accounts have been withheld in a fair and accountable way.



Privacy-Preserving, Taxable Bank Accounts 51

References

[ABO9]

[AvB10]

[BOO]

[BCDGSS]

[BP8Y]

[c91]

[CEVDG8S]

[CHLO5]

[cLO1]

[cM99]

[cPI3]

[cs97]

[7Y96]

[LMPI6]

Androulaki, E., Bellovin, S.: An anonymous credit card system. In:
Fischer-Hiibner, S., Lambrinoudakis, C., Pernul, G. (eds.) TrustBus 2009:
Proceedings of the 6th International Conference on Trust, Privacy and
Security in Digital Business. LNCS, vol. 5695, pp. 42-51. Springer,
Heidelberg (2009)

Androulaki, E., Vo, B., Bellovin, S.M.: Taxable, privacy-preserving bank
accounts. Technical Report CUCS-005-10, Computer Science Dept.,
Columbia University (2010),
http://www.cs.columbia.edu/research/publications

Boudot, F.: Efficient proofs that a committed number lies in an interval.
In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 431-444.
Springer, Heidelberg (2000)

Brickell, E.F., Chaum, D., Damgard, I., Graaf, J.v.d.: Gradual and veri-
fiable release of a secret. In: Pomerance, C. (ed.) CRYPTO 1987. LNCS,
vol. 293, pp. 156-166. Springer, Heidelberg (1988)

Brk, H., Pfitzmann, A.: Digital payment systems enabling security and
unobservability. Computers & Security 8 (1989)

Chaum, D.: Zero-knowledge undeniable signatures. In: Damgard, I.B.
(ed.) EUROCRYPT 1990. LNCS, vol. 473, pp. 458-464. Springer,
Heidelberg (1991)

Chaum, D., Evertse, J.-H., van de Graaf, J.: An improved protocol for
demonstrating possession of discrete logarithms and some generalizations.
In: Price, W.L., Chaum, D. (eds.) EUROCRYPT 1987. LNCS, vol. 304,
pp. 127-141. Springer, Heidelberg (1988)

Camenisch, J., Hohenberger, S., Lysyanskaya, A.: Compact e-cash. In:
Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 302-321.
Springer, Heidelberg (2005)

Camenisch, J., Lysyanskaya, A.: An efficient system for non-transferable
anonymous credentials with optional anonymity revocation. In: Pfitz-
mann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 93-118.
Springer, Heidelberg (2001)

Camenisch, J., Michels, M.: Separability and efficiency for generic group
signature schemes. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666,
pp. 413-430. Springer, Heidelberg (1999)

Chaum, D., Pedersen, T.P.: Wallet databases with observers. In: Brickell,
E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 89-105. Springer, Heidel-
berg (1993)

Camenisch, J., Stadler, M.: Effcient group signature schemes for large
groups. In: Sommer, G., Daniilidis, K., Pauli, J. (eds.) CAIP 1997. LNCS,
vol. 1296, pp. 410-424. Springer, Heidelberg (1997)

Jakobsson, M., Yung, M.: Revokable and versatile electronic money (ex-
tended abstract). In: CCS 1996: Proceedings of the 3rd ACM Conference
on Computer and Communications Security, pp. 76-87. ACM, New York
(1996)

Low, S., Maxemchuk, N.F., Paul, S.: Anonymous credit cards and its
collusion analysis. IEEE Transactions on Networking (December 1996)


http://www.cs.columbia.edu/research/publications

52 E. Androulaki, B. Vo, and S. Bellovin

[LRSW99] Lysyanskaya, A., Rivest, R., Sahai, A., Wolf, S.: Pseudonym systems. In:
Heys, H.M., Adams, C.M. (eds.) SAC 1999. LNCS, vol. 1758, pp. 184-199.
Springer, Heidelberg (2000)

[PP99] Paillier, P., Pointcheval, D.: Efficient public-key cryptosystems provably
secure against active adversaries. In: Lam, K.-Y., Okamoto, E., Xing,
C. (eds.) ASTACRYPT 1999. LNCS, vol. 1716, pp. 165-179. Springer,
Heidelberg (1999)

[PwPOO] Pfitzmann, B., Waidner, M., Pfitzmann, A.: Secure and anonymous elec-
tronic commerce: Providing legal certainty in open digital systems with-
out compromising anonymity. Technical Report 93278, IBM Research
RZ3232 (2000)

[xvz00] Xu, S., Yung, M., Zhang, G.: Scalable, tax evasion-free anonymous in-
vesting (2000)

A Complementary Security Proofs - Primitives
Instantiation

A.1 Correctness Analysis

Definition. Correctness requires that if an honest user U, who is eligible for
opening anonymous accounts with an honest bank B, runs AccountOpen with B,
then none will output an error message. Also, if honest U, has opened accounts
ai,...,ay with honest B, and runs TaxReportlssue, then no one will output an
error message, while when the user tries to deposit them and thus runs with TA
TaxReportDeposit and TotalTaxCalculation no entity will output error message
and they will output the aggregated tax withheld by honest U’s accounts.

Lemma 1. If the underlying primitives (anonymous credential system, e-cash
system, commitments and ZKPoK) are secure, then our scheme satisfies Cor-
rectness.

Proof. The first condition of correctness is satisfied directly through the cor-
rectness of the underlying schemes of ecash and anonymous credentials and
according to which if U is honest neither EC.Spend procedure of perm, nor
PS.VerifyCredOnNym (which take place at the Account Open will output an er-
ror message. The correctness and verifiability of the RSA signature scheme, its
homomorphism and the correctness of the used ZKPoK protocols used to confirm
that U is the owner of all tax reports and guarantee that TaxReportDeposit will
not output an error message.

A.2 Security of Auxiliary Functions

Lemma 8. The transformation function F', defined on Djy;x7Z, where:

— F(M,r) =M - st zr2(modng), N = Pa * Gas Pa, Ga Safe primes; sq, zq €
QRng, v = ri||re is a random number and M the message to be blinded;



Privacy-Preserving, Taxable Bank Accounts 53

— Dy ={x: 3y, z,w,j:x=hY k1Y -m (modny)}, where ho, ko, la, Mo €
QRn, are system parameters;

is computationally non-invertible and provides output indistinguishability w.r.t.
M-inputs. More specifically, we claim that F' supports:

— Non Invertibility Given an output f of F() it is computationally impossible
to compute M € Dy and r such that F(M,r) = f.

— Input-Output Unlinkability Given two messages M7 and My and an output f
of F() which corresponds to one of the messages, it is computationally hard
to decide which message corresponds to f with a better probability than
1/2.

Proof. Both properties derive directly from the discrete log assumption modulo
a safe prime product and strong RSA assumption.

Lemma 9. The function Com used, defined on (ZxZ)xZ, where
Com(z,y;r) = k2 - 1% - m[ (modn,,),

Na = Pa * o, Pa, o Safe primes, kq, lo, mq € QR,,, is & commitment scheme on
x,y with randomness r.

Proof. Function Com satisfies both properties bindness and hiding which derives
from the discrete log assumption modulo a product of safe primes and factoring
assumption.

A.3 Paillier Encryption

The Paillier cryptosystem is s a probabilistic asymmetric algorithm for public
key cryptography and bases its security on the decisional composite residuosity
assumption (see [PP99] for details). Assuming the system is meant for a user U
to be able to receive messages confidentially, the operations supported are as in
every cryptosystem the following:

— (pky,sky) < Pail.KeyGen(1¥), where U generates his encryption key pair.
In particular, U chooses two safe large prime numbers p and ¢, such that
ged(p — 1,q — 1) = 2, computes n = pg and chooses g € Z,, such that n
divides the order of g. pky = (n,9),sky = (p,q)-

— ( C/L ) « Pail.Encrypt(pky, m), where anyone may use pk(j to generate
ciphertext C on a mesage m: C = ¢g™ - 7" (modn?), where r is randomly
chosen.

— (m/L ) « Pail.Decrypt(sky, C), where U uses his secret key to receive the
plaintext.

It is apparent that a particular plaintext may have many ciphertexts, depend-
ing on r. We make use of this property in the encryption of z in two ways: (a)
two users will not be able to distinguish whether they have the same x or not,



54 E. Androulaki, B. Vo, and S. Bellovin

and are thus unable to know whether they are able to exploit RSA homomor-
phism; (b) for re-randomization of Siglnfo: users who know n can simply compute
C- (r")*(modn?) and generate another ciphertext of o unlinkable to C. Thus in
this case of encryption algorithm, SITranform is n.

Security Properties: Semantic security against chosen plaintext attacks (IND-
CPA), i.e. given pk, two messages m1,ms and a ciphertext corresponding ¢ to
one of them, it is impossible to guess which of the messages corresponds to ¢
with a better probability than 1/2.



Formal Analysis of Privacy for Vehicular
Mix-Zones

Morten Dahl*?2, Stéphanie Delaune?, and Graham Steel?

! Department of Computer Science, Aalborg University
2 LSV, ENS Cachan & CNRS & INRIA Saclay Ile-de-France

Abstract. Safety critical applications for recently proposed vehicle to
vehicle ad-hoc networks (VANETS) rely on a beacon signal, which poses
a threat to privacy since it could allow a vehicle to be tracked. Mix-
zones, where vehicles encrypt their transmissions and then change their
identifiers, have been proposed as a solution to this problem.

In this work, we describe a formal analysis of mix-zones. We model a
mix-zone and propose a formal definition of privacy for such a zone. We
give a set of necessary conditions for any mix-zone protocol to preserve
privacy. We analyse, using the tool ProVerif, a particular proposal for
key distribution in mix-zones, the CMIX protocol. We show that in many
scenarios it does not preserve privacy, and we propose a fix.

Keywords: Privacy, VANETSs, Mix-Zones, Security Protocols.

1 Introduction

Road traffic accidents are the most common cause of death in young adults in
industrialized countries [I3]. To improve road safety, a vehicle-to-vehicle commu-
nication platform is currently being developed by consortia of car manufactur-
ers and legislators [I5[I7]. Safety-related applications such as collision warning
systems and high speed toll payment are envisaged. Dubbed vehicular ad-hoc
networks (VANETS), the platform is based on decentralised mobile ad-hoc net-
works in order to retain scalability despite the high average speed of vehicles,
and the large size of the network. As a consequence, the protocols used within
the network are designed to use few steps, short messages, and not rely heavily
on infrastructure for e.g. obtaining trust. To facilitate safety-critical applications
there is a consensus that all vehicles must periodically broadcast a beacon mes-
sage consisting of the vehicle’s location (in the form of a GNSS coordinate),
velocity, and identifier. Broadcasting this data several times per second raises
privacy issues.

Fortunately, many of the envisioned applications, including collision avoid-
ance, do not need a real-world identifier such as the vehicle’s license plate, but
can instead make do with a random identifier known as a pseudonym. However,
long term tracking may still reveal the real-world identity of the driver. One can
change pseudonym from time to time, but for this to have any effect the vehicles
must change pseudonyms under the right circumstances. It seems preferable to

D. Gritzalis, B. Preneel, and M. Theoharidou (Eds.): ESORICS 2010, LNCS 6345, pp. 552010.
© Springer-Verlag Berlin Heidelberg 2010



56 M. Dahl, S. Delaune, and G. Steel

change pseudonyms e.g. at intersections where several vehicles are close together
and their paths unpredictable. This mimics the ubiquitous computing idea of a
miz-zone, where beacon signals are turned off in a mixing area [3]. Vehicles
cannot turn off beacon messages since many accidents happen at intersections,
hence the idea is to have all vehicles encrypt their beacon signals when inside
the zone [T1].

Related Work. Several papers discuss the background to the VANET privacy
problem and the merits of the pseudonymous authentication solution [TOJT2JT4].
Previous analysis work aims to evaluate the effectiveness of (a larger network of)
general mix-zones in terms of the probability of the attacker correctly linking
two pseudonyms based on assumed prior known statistics about vehicles move-
ment [6], when the effectiveness of each single mix-zone is already assumed.
Privacy for mobile devices with RFID tags has recently been treated formally
[251T8] . Tt is not clear how the definitions of privacy in these papers relate to
each other, and even less so to our own definition. We, for instance, have to
exclude scenarios where privacy is broken independently of the key establish-
ment protocol and must moreover require synchronised behaviour of vehicles.
These requirements for obtaining privacy are closer to the requirements made
for electronic voting protocols []].

Our contributions. In this paper, we investigate formally the effectiveness of ve-
hicular mix-zone proposals. We model the network traffic inside a mix-zone, and
examine under which conditions it is reasonable to expect any gain in privacy.
We use the formal notion of indistinguishability to formalise the privacy prop-
erty for a mix-zone. We analyse the CMIX protocol [11] that has been proposed
to distribute keys to vehicles entering the mix-zone. We report some scenarios
in which the use of the CMIX protocol can prevent privacy from being achieved.
These scenarios have been discovered with the aid of the protocol analysis tool
ProVerif [4]. We propose a fix to the protocol. We believe this is the first work
to investigate the privacy property of an encrypted mix-zone, in particular when
the key distribution protocol is also taken into account.

Paper outline. In the next section, we present the concept of a mix-zone and
we give a description of the CMIX protocol. Then, we give our formal model
(see Section B)) and we explain our formal definition of mix-zone privacy, which
corresponds to an indistinguishability property (Section H). In Section Bl we
give our results obtained on mix-zones, first assuming an ideal key distribution
protocol, and then using the CMIX protocol. Finally, we evaluate the protocol
and our modelling approach, we propose a fix, and we give conclusions.

2 Mix-Zones and CMIX Protocol

This section describes mix-zones, and in particular the CMIX protocol used to
distribute keys to vehicles entering a zone.



Formal Analysis of Privacy for Vehicular Mix-Zones 57

2.1 Mix-Zones

As discussed in the previous section, mix-zones are needed for the change of
pseudonyms to have any effect in preserving privacy. However, changing pseudo-
nyms while close to other vehicles is not sufficient to guarantee ‘unlinkability’,
which we define informally as the property that an attacker cannot know that the
old and new pseudonym belong to the same vehicle. To obtain this, pseudonyms
must also be changed synchronously from the point of view of the attacker.
More precisely, by synchronously, we mean that once one vehicle has started
broadcasting using a new pseudonym then all future broadcasts heard by the
attacker from at least one other vehicle must be using a new pseudonym as well.

If two vehicles in a mix-zone can agree on a precise point in time to change
their pseudonyms (for instance by one of the vehicles broadcasting the time
of when it is going to change its pseudonym) then synchronised change of
pseudonym is sufficient for unlinkability. In practice however, for several rea-
sons, one might want to allow a larger time interval for pseudonym change, e.g.
to have a better chance that another vehicle is nearby to synchronise with, to
ensure a certain level of unpredictability of trajectory, to account for clock dif-
ferences, etc. Using a longer time interval has the undesirable effect of causing
a radio-silence period during which none of the safety beacon messages can be
broadcast. Encrypted mix-zones are suggested to remedy these short-comings:
beacon messages can still be broadcast during the synchronisation time interval
as long as the attacker cannot read them. A recent proposal argues that turing
off radios at intersctions might be a worthwhile trade-off for privacy [7], but in
this paper we concentrate on investigating what privacy can be achieved when
beacon signals are required to be left on.

2.2 The CMIX Protocol

The CMIX protocol [I] distributes keys for encrypting beacon messages while in
the mix-zone with the goal of preventing an attacker from linking the pseudonym
of an in-coming vehicle with the pseudonym it uses when leaving. Every vehicle
is equipped with a tamper-resistant device (TRD) allowing access to its contents
only through its API. An offline Certification Authority (CA) run by a trusted
third party is responsible for issuing certificates cryptographically binding a
pseudonym P together with the public part (pub(K)) of an asymmetric key K.
Every vehicle has a fresh non-empty set of these key-pseudonym pairs stored in
its TRD. One pair is marked as current, to be used when sending messages.

Vehicles entering the mix-zone (part A of Figure[ll) are alerted of the presence
of a road-side unit (RSU) by a radio broadcast. This triggers the vehicles to
initiate a key establishment session.

1. V — RSU :signg, (request, Ty), signg,, , (Pv, pub(Kv))
2. RSU — V: aencpub(Kv)(signKRSU(PV7 zk:,Ts))7 SIgNK 4 (PRSU, pub(KRSU))
3.V — RSU :signy (ack, T;), signg,., (Pv,pub(Ky))



58 M. Dahl, S. Delaune, and G. Steel

Fig. 1. Intended usage of encrypted mix-zones

The first message is a signed timestamp T together with the constant request
used as a tag. The reply made by the RSU contains the zone encryption key zk
encrypted under the public key pub(Ky ) associated with the vehicle’s current
pseudonym Py . The corresponding private key is assumed to be only known by
the vehicle’s on board tamper-resistant cryptographic device, which can decrypt
the packet, store the zone key, and make available an encryption and decryption
service using this key. In this way, the zone key remains unknown to everyone,
including an attacker with a vehicle and a tamper-resistant device of his own.
The last message is an acknowledgement sent by the vehicle. Every message is
appended with the principal’s current certificate.

The zone key is then used to encrypt and decrypt beacon messages while
inside the geographical area dictated by the RSU. During their journey through
the mix-zone, the vehicles will come in close enough proximity that the attacker
is assumed unable to distinguish their locations (part B of Figure [I]). Before
leaving the mix-zone the vehicles change their pseudonyms leaving the attacker
unable to determine if they leave according to part C; or part Cs of Figure[ll

In the CMIX proposal [I1], it is not specified whether a deterministic or
probabilistic encryption scheme is used to encrypt beacon messages. Probabilistic
encryption might seem the best solution, but due to the tight size constraints
of messages in VANETS, it may be preferable to use a deterministic scheme.
Deterministic schemes might still prevent the easy comparison of ciphertexts
due to the rapidly changing content of beacon messages (such as the coordinate).
Since this would depend on the exact cipher mode, beacon message format, etc,
and this is not yet fixed [I7], we consider both types of encryption scheme in our
analysis.

A short informal analysis of the CMIX protocol is provided by Freudiger
et al. [I1]. The threat scenario they consider is unclear: they first state that
their adversary is a passive outsider [I1, §2.2] but then describe the resistance
of the protocol to attacks where the adversary sends messages to try to im-
personate an RSU [IT) §3.2]. In general, VANET protocols are assumed to be
required to withstand attack by active adversaries, as described e.g. by Raya
and Hubaux (a subset of the authors of the CMIX paper) [14]. In this paper,
therefore, we consider both the passive attacker and an active attacker that can
forge and broadcast messages, but not prevent messages from being received.



Formal Analysis of Privacy for Vehicular Mix-Zones 59

We will explain during our analysis under what assumptions particular attacks
would be effective. Note that our adversary is assumed to have no visual contact
as he would otherwise be able to track a vehicle using e.g. the license plate.

3 Formal Modelling

The process calculus of Blanchet et al. [4] used by the ProVerif tool is a variant of
the applied pi calculus [I], a process calculus for formally modelling concurrent
systems and their interactions. We recall the basic ideas and concepts of this
calculus that are needed for our analysis.

3.1 Messages

To describe messages, we start with a set of names (which are used to name
communication channels and other atomic data), a set of variables, x,y, ... and
a signature X' formed by a finite set of function symbols each with an associated
arity. Function symbols are distinguished by two categories: constructors and de-
structors. We use standard notation for function application, i.e. f(My,..., My,).
Constructors are used for building messages. Destructors represent primitives for
taking messages apart and can visibly succeed or fail (while constructors always
succeed). Messages M, N, ... are obtained by repeated application of construc-
tors on names and variables whereas a term evaluation D can also use destruc-
tors. The semantics of a destructor g of arity n is given by a set of rewrite rules
of the form g(M,, ..., M,) — My where My, ..., M, are messages that only con-
tains constructors and variables. Given a term evaluation D, we write D || M
when D can be reduced to M by applying some destructor rules.

In the following, we consider constructors to model signatures and different
kinds of encryptions (symmetric/asymmetric and deterministic/probabilistic).
The symbol pub is a constructor representing the public key associated to the
private key given in argument. The semantics of our destructors are given below:

sdec(senc(z, y),y) — =
rsdec(rsenc(z,y, 2),y) — ©
adec(aenc(zx, pub(y)),y) — x

checksign(sign(z, y), pub(y)) — «
getmsg(sign(x,y)) — x

We model probabilistic encryption by rsenc(m, k,r) where the r component is
fresh for every encryption, thus preventing comparison. We model a signature

scheme by two rewrite rules: the first one is used to verify a signature and the
second one models the fact that the signature scheme is not message concealing.

3.2 Processes

Processes are built from the grammar described below, where N is a message,
D is a term evaluation, a is a name, c is a channel name, and x a variable.



60 M. Dahl, S. Delaune, and G. Steel

P,Q,R::= processes
0 null process
P|Q parallel composition
P replication
new a; P name restriction
let N =D in P else @ term evaluation
in(¢, N); P message input
out(e, N); P message output

The process “let N = D in P else (7 tries to evaluate D; if this succeeds and
if the resulting message matches the term N then the variables in IV are bound
and P is executed; if not then @ is executed. The rest of the syntax is quite
standard. To ease the presentation, we will use tuples of messages, denoted by
parentheses, while keeping the reduction rules for these tuples implicit. We will
omit “else ()7 when the process @) is 0.

An evaluation context is a context, that is a process with a hole, built from
[],C| P, P|C and new a; C. We obtain C[P] as the result of filling C[ ]’s hole
with P. A process P is closed if all its variables are bound through an input or
a let construction.

The RSU process. To illustrate the calculus used throughout this paper, we
give below a description of the RSU part of the CMIX protocol. We follow
the description given in the previous section. The RSU sends and receives all
messages using some public channel ¢ and holds a freshly generated zone key zk.
We also model its pseudonym p,s, and its private key ks, by fresh names. We
assume that the RSU already knows its certificate sign((prsu, pub(krsu)), kca)-
Below, we only model the reception of the first message with its decomposition.
After some checks, the reply to the vehicle containing zk is constructed and sent.
We do not model the reception of the acknowledgement.

RSUcwmix &

in(c, (z*, z%));

let (%py, Tpry) = checksign(z®, pub(ke,)) in
let (request, x7) = checksign(z®, 2pky) in
let y* = sign((zpy, 2k, xT), krsy) in

let y© = sign((Drsu, Pub(krsu)), kea ) in

out (c, (aenc(y®, pk), )i -

The operational semantics of processes in the calculus of ProVerif | are essentially
defined by two relations, namely structural equivalence = and reduction —. We
write —* for the reflexive and transitive closure of —. Structural equivalence is
the smallest equivalence relation on processes that is closed under application
of evaluation contexts and some other standard rules such as associativity and
commutativity of the parallel operator. Reduction is the smallest relation closed
under structural equivalence and application of evaluation contexts such that:



Formal Analysis of Privacy for Vehicular Mix-Zones 61

RED I/0 out(e, M).Q | in(¢, N).P — Q | Po

RED FUN1 let N=D in P else Q — Po it D M
RED FUN 2 let N =D in P else Q@ — @ if there is no M such that D || M
REPL P — P |IP

where o is the substitution defined on the variables that occur in N and such

that M = No. In case such a substitution does not exist, the resulting process
will be @Q | in(e, N).P for RED I/O rule and @ for the RED FUN 1 rule.

3.3 Observational Equivalence

The notion of observational equivalence was introduced in [I]. We write P,
when P emits a message on the channel ¢, that is, when P = Clout(c, M); Q)]
for some evaluation context C' that does not bind ¢ and some process Q.

Definition 1. Observational equivalence ~ is the largest symmetric relation R
on closed processes such that P R () implies:

1. if Pl. then Ql¢;
2. if P — P’ then there exists Q' such that Q —* Q' and P' R Q';
3. C[P] R C[Q] for all evaluation contexts C.

Intuitively, a context may represent an attacker, and two processes are observa-
tionally equivalent if they cannot be distinguished by any attacker. Note that
such an attacker is too powerful for our purpose since the nature of broadcast
communication does not allow him to block all messages. When performing the
analysis we will exclude attacks that are not possible for our attacker; as we will
see, the attacks we find do not rely on the attacker blocking messages.

ProVerif is not able to check observational equivalence directly but actually
checks a stronger notion that implies observational equivalence [4]. However, this
notion is too strong in many situations. This problem has recently been studied
in and a method has been proposed to extend the class of equivalences which
ProVerif is able to verify [9]. We will use this method to overcome the limitations
of ProVerif and to automatically verify the equivalences allowing us to model
our privacy property.

4 Privacy for Vehicular Mix-Zones

In this section we show how the privacy property informally described in Sec-
tion Bl can be formalised in our setting. We build on the classical approach of
formalising privacy properties as some kind of observational equivalence in a
process algebra or calculus [8[16], and extend this to take into consideration
mix-zones and vehicle mobility.

4.1 Mix-Zones

In the previous sections we have informally used the term mix-zone to describe
a place suitable for vehicles to change their pseudonym by being able to mix



62 M. Dahl, S. Delaune, and G. Steel

or hide among each other. We formally define a mix-zone as consisting of five
locations entryy,, entrygr, proximity, exity, and exitg. We use public channels to
model these locations. If two messages are emitted on different channels, then
our attacker will be able to see a difference. This corresponds to the fact that he
is able to tell that they were transmitted from geographically different locations.
Note that messages sent on a public channel can be received on another public
channel with the help of our active attacker. Vehicles enter the mix-zone by
one of the entry locations and exit by one of the exit locations. The proximity
location models a stretch within the mix-zone where vehicles are so close to each
other that our attacker cannot tell them apart geographically.

Beacon messages are defined as consisting only of a pseudonym p, mod-
elled by a fresh name. This pseudonym is signed using the vehicle’s current
key k, and appended with the CA signed certificate binding the pseudonym
together with the public part of k,. Formally a beacon message is defined as

(sign(pv, ky), sign((py, pub(ky)), k;ca)> where k., is the private key of the CA.

Note that all the location data in beacon messages are modelled by the channel
on which they are sent.

4.2 Privacy

The formal privacy property aims to capture the fact that an attacker cannot
track a vehicle. We assume that the attacker can listen on the entire network
and hence on all public channels. Thus, in order to achieve privacy, we need to
suppose the presence of at least two vehicles.

We consider a single mix-zone with two vehicles V4 and Vg, as in Figure [1l
Va will always start in entryy, and Vg always in entryg. Going through the mix-
zone, each vehicle emits a series of beacon messages. They can do this in two
different ways:

1. The vehicle V4 moves from entry; to proximity to exit; while Vg moves
from entryr to proximity to exitg (as in part C; of Figure [II).

2. The vehicle V4 moves from entry; to proximity to exitr while Vg moves
from entrygr to prozimity to exity, (as in part Co of Figure [I]).

Intuitively, we achieve privacy if an attacker cannot tell the two cases apart. For-
mally, let V(entry, exit) stand for the vehicle that moves from entry to prozimity
to exit. Privacy holds if the following equivalence holds:

C’[V(entryL, exity) | V(entryg, ezitR)} ~ C’[V(entryL, exitr) | V(entrygr, em'tL)]

The next section presents the analysis we have performed, including the defini-
tion of the vehicles processes, and also the C contexts with which the analysis
has been performed.

5 Privacy Analysis

The analysis is performed in two models: an ideal model where the vehicles
are assumed to know the mix-zone encryption key and a CMIX model where



Formal Analysis of Privacy for Vehicular Mix-Zones 63

this key is distributed using the CMIX protocol. From our ideal model analysis,
we extract a set of scenarios where it is possible for a ‘perfect’ key distribution
protocol to guarantee privacy. We then evaluate the CMIX protocol with respect
to these scenarios.

5.1 Privacy in the Ideal Model

In the ideal model the vehicles magically know the mix-zone encryption key,
the attacker does not know it, and the only communications are the beacon
messages. As discussed in previous sections, we consider both deterministic and
probabilistic encryption of beacon messages.

Experimental Analysis. We model each vehicle using a fixed sequence of
beacon message emissions pl; {pd }a; {pZ}a; pZ where:
— pl o sign(pl, k2), sign((p, pub(k?)), kea), and
—{pi}ik il senc(p?, zk) or rsenc(p?, zk,r) depending on whether we are
considering respectively deterministic or probabilistic encryption. In this last
case, each occurrence of r represents a fresh nonce.

From this fixed sequence we generate a set of relevant scenarios by adding two
changes of location, from entry to proximity and from prozimity to exit, and we
perform a geographical synchronisation either coming into or going out of the
prozimity location. We allow each vehicle to emit each beacon three times, so
it is possible to change locations at any position in the sequence. The first pl
is always emitted at an entry location and the last p2 is always emitted at an
exit location. We then investigate whether we can prove privacy if two vehicles
in the mix-zone conform to this pattern.

We write each scenario as a process. For instance, the scenario where all p}
beacon messages are emitted at the entry location, the {pl}.; spread out over
entry and proxzimity, the {p2},; over prozimity and exit, and the p2 at exit
with deterministic encryption and synchronisation before leaving the proximity
location, is represented by:

Vehicle(entry, exit) & hew pl; new kl; new p2; new k2; out(entry,pl);
(* key establishment *)
out(entry, {p}.r);
out(proximity, {pk}.r); out(prozimity, {p2}.x);
(* geographical synchronisation *)
out(exit, {p2}.x); out(exit,p?)

where for sake of clarity we have removed duplicate instructions. The (* key
establishment *) marker is left empty since we consider an ideal model where
the vehicles magically know the mix-zone encryption key. The (* geographical
synchronisation *) marker indicates that the two vehicles will have to synchronise



64 M. Dahl, S. Delaune, and G. Steel

at this point. In other words, a vehicle can execute the instructions after this
point only once all the instructions before this point have been executed by both
vehicles.

Having turned the scenario into a process, we instantiate this process twice
using different values for entry and exit to obtain the two Vehicle processes
needed for the equivalence checking. We consider the context

Cideal = new kcq;out(c, pub(keq)); new zk; .

and ask ProVerif to try to prove observational equivalence. To overcome the
limitations due to the ProVerif tool, we perform data swapping as described
in [9].

From previous discussions it is clear that geographical synchronisation is a
necessary condition for privacy, i.e. that two vehicles either enter or exit the
mix-zone at the same time. More precisely, the necessary condition is that no
message is sent from an entry location after a message has been sent from an exit
location. If this is not satisfied then the attacker can trivially link pl with p2, so
we did not include any such scenarios in our experiments.

Results. All the scenarios we consider are listed in Figure [ along with the
obtained results. Each row is a scenario with the first columns showing where
the beacon messages in the sequence are emitted. The columns to the right of the
sequence show the results in the different encryption models: the first two give
the results for when deterministic encryption is used and the last two for when
probabilistic encryption is used. In each encryption model, the left column shows
the result if the vehicles synchronise before going into the proximity location and
the right column if they synchronise before leaving. A minus symbol (—) indicates
that ProVerif could not prove equivalence (and found an attack trace) and a plus
symbol (+) means that it could.

Analysis. Our results show a second necessary condition for privacy: that vehi-
cles do not change pseudonym too early or too late. This is shown by Scenario 1
and 2 where the vehicles are still sending unencrypted beacon messages using
the first pseudonym at the exit location. Similarly, Scenario 31 and 32 show that
privacy is lost if they move too late; in this case the second pseudonym is used
in an unencrypted beacon message at the entry location.

In the deterministic encryption model, we only have privacy in scenarios where
geographical synchronisation coincides with a change of message. This condition
is illustrated by Scenarios 10-14. In this group, ProVerif can prove privacy if the
synchronisation is before the prozimity location since the link between pl and
{pL} .k is broken. However, in Scenarios 15-20 we see from ProVerif’s counterex-
amples that when synchronisation is before the prozimity location, the attacker
can link pl and {pl}.r since they are both emitted at the same entry location.



65

Formal Analysis of Privacy for Vehicular Mix-Zones

+

+ o+ o+

+ + +

+ o+ o+ o+ o+

+ + + + +

LR IR R Y RO e RIS A R A AR ] B

L

+ -

Jaye  2J0jaq  JAye  21043q
(qoud) jeapy

(wia3ap) |eap)

[Ppow XTI 29U} Ul SIsA[eue Jo ynsoy g “S1q

zad

zad

I o

Az{gnd) pz{gad}  yz{zad)  y{tad) og{Tad} oqz{Tad)
asuanbasg afessay

nd

SR o

d

nd

™ NN O~ 00

opeualg



66 M. Dahl, S. Delaune, and G. Steel

After the synchronisation one vehicle can move to an ezit location and emit p2
while the other is still at prozimity and emitting {pl}.r. By comparing cipher-
texts the attacker will know which vehicle has “fallen behind” and which vehicle
is at the exit location, in turn allowing him to link pl and p2.

The situation changes when probabilistic encryption is used. In this case we
have that ProVerif can prove equivalence for all the cases where deterministic
encryption allows privacy, and in addition, scenarios where the geographical
synchronisation is between two encrypted messages, e.g. Scenarios 4, 6, 15, 16.
This is an important result, since it means that two vehicle only need to get
into a mix zone and encrypt at the same time as another vehicle, then change
the pseudonym before leaving. It seems clear that an encryption scheme that
renders encrypted beacons incomparable must be used.

As a final remark we note that the results show that in our model, use of
encryption is not necessary to obtain privacy: if the vehicles agree on when to
change their pseudonym then no encryption is needed. This is best illustrated in
Scenario 21. Although encryption is used, it has no effect since beacon messages
can be trivially linked with their encryption by the location where they are
emitted. Furthermore, no messages are emitted at the prozimity location.

5.2 Privacy in the CMIX Model

Based on the conclusions of the previous section, we consider only probabilistic
encryption when analysing the CMIX key distribution protocol. We consider all
scenarios where privacy is provable in the ideal model. First, we add one session
of the CMIX protocol to both vehicle processes, to be executed before entering
the proximity zone. We found that in all cases where privacy was possible in the
ideal model, it was also possible herd].

We recall that according to the CMIX paper [I1], a key request message is
triggered in the vehicle when it either receives a message that it cannot decrypt,
or when it receives an alert message from the RSU. The former situation could be
used by an active attacker to trigger a second CMIX session (after the first was
finished). The nearby presence of other mix-zones or simply a corrupted broad-
cast might also trigger a second session in the presence of a passive attacker.
Hence we consider all variations of the scenarios obtained by interleaving two
sequential sessions of the key establishment protocol. One session is always at the
entry location using the first pseudonym and before emitting any encrypted bea-
con messages, but the location of the second session is varied between proximity
and exit, and further by which of the pseudonyms it uses.

To illustrate the modelling of subscenarios we consider the variation of the sce-
nario from the previous subsection obtained by placing the second key establish-
ment session at the exit location after changing pseudonym. The process for this
subscenario is similar to the vehicle process given in Section B.1] expect that
Vehiclecmix (entry, pL, k1) defined in Figure [3] replaces the marker (* key estab-
lishment *) and Vehiclecwix (exit, p2, k2) is inserted just after the (* geographical

! Full results can be found online at http://www.cs.aau.dk/~dahl/mixzoneprivacy/


http://www.cs.aau.dk/~dahl/mixzoneprivacy/

Formal Analysis of Privacy for Vehicular Mix-Zones 67

Vehiclecmix (¢, po, ko) & new b

let ©° = sign((request, ts), kv) in

let ¢ = S|g n((pv, pub(ky)), kea) in

out(c, (z%, z%));

in(c, (y yc))

let (xpmu,xpkrsu) = checksign(y°, pub(kcq)) in
let y° = adec(y®, ky) in
let (po, T2k, ts) = checksign(y®, Zpkrsu) i
let z° = sign((ack, ts), kv) in
let z¢ = sign((pv, pub(ky)), kea) in
out (¢, (2°, 29))

Fig. 3. Vehicle’s part of CMIX key establishment protocol

synchronisation *) marker. Note that to make the analysis practical the opera-
tions of the TRD are inlined.

For the analysis, we place the two instantiated vehicle processes in the context
given by:

Cemix déf new kca; OUt(ca pUb(kca));
new krsu; NEW Drsa; OUt(Cv (prsua pUb(krsu))); new Zk'; (!RSUCMIX | )

which, contrary to the context used in the ideal model, includes the RSU.

Results. The experiments show that the CMIX key establishment protocol as
described in the paper can break privacy in scenarios where it is assured in
the ideal model. The reason is that the pseudonym is sent in clear in the re-
quest message. More precisely, the experiments show that if a key establishment
session is triggered at the exit location then there is an attack when the vehi-
cle has not yet changed its pseudonym: the key establishment session reveals
the first pseudonym which can be link to the second pseudonym by the loca-
tion. Perhaps less obviously, if a key establishment session is triggered at the
proximity location then there is also an attack when the geographical synchro-
nisation does not separate it from the unencrypted beacon messages sent using
the other pseudonym. This attack is an instance of the general “fallen behind”
attack that arises when both pseudonyms are revealed in locations not separated
by a geographical synchronisation.

Contrary to the analysis in the ideal model, where the running time of ProVerif
on a 2.5 GHz Intel Xero processor was less than a few minutes for each variation,
the running time in the CMIX model ranged between a few seconds and 3 hours
for each scenario.

5.3 Fixing the Key Establishment Protocol

A simple fix to the CMIX key establishment protocol that does not increase the
number of rounds is to encrypt the request and the acknowledgement message



68 M. Dahl, S. Delaune, and G. Steel

under the RSU’s public key. This assumes vehicles know the certificate of the
RSU before performing a key request, which could be ensured by, for instance,
including the certificate in the messages broadcast from the RSU to inform
vehicles about the mix-zone.

We modelled this revised protocol in ProVerif and retried all the scenarios. For
most of them ProVerif was able to prove privacy in the CMIX model when there
was privacy in the ideal model, but in a fraction of the scenarios (1/13) a false
attack was reported. The false attack seems to be due to the stronger equivalence
that ProVerif tried to prove, and arises when two key establishment sessions
using the same pseudonyms are separated by a geographical synchronisation.
By recording the RSU’s response in the first session with the vehicle using key
kv and replaying this message to a vehicle during the second session, the vehicle
not using kv will fail at decryption whereas the vehicle using kv will correctly
decrypt but fail at a different step in the process, namely when comparing time
stamps. The observations are the same, but the processes execute differently, so
ProVerif is unable to prove equivalence.

6 Conclusion

In this paper, we have proposed a formal notion of privacy for mix-zones based
on classical ideas of equivalence: if the equivalence is satisfied then no attacker
can link the pseudonyms used by two vehicles entering a mix-zone with the
pseudonyms they use when exiting. We have seen that for an idealised vehicular
mix-zone to achieve privacy requires geographical and pseudonym change syn-
chronisation. Our experiments on a variety of scenarios suggest that probabilistic
encryption gives a significantly better chance of achieving privacy than deter-
ministic encryption. We have analysed the CMIX proposal for key distribution
in mix-zones, and shown that the use of the protocol can inadvertently prevent
privacy from being achieved in many scenarios. We have shown that the CMIX
protocol can be modified to preserve privacy.

As future work it seems natural to examine to what extent our experiments
on a fixed series of beacon signals identical for both vehicles captures the space
of possible scenarios satisfactorily. Although some cases of vehicles performing
different scenarios are captured by our experiments, the case where one vehicle
changes pseudonym at the entry location while the other changes at the exit
location is for instance not captured. Another limitation of our modelling is that
the messages of a key establishment session cannot be emitted across several
locations. If the attacker can identify to which session messages belong then a
session spanning across a geograpical synchronisation might break privacy, even
against a passive attacker. Capturing this type of attack is also left for future
work.

We plan to examine the API of the on board tamper-resistant cryptographic
device to see how it might prevent insider attacks, i.e. attacks by an adversary
who owns a legitimate vehicle. We also plan to investigate more fully the prop-
erties of our modelling approach, by e.g. comparing our notion of privacy to
existing notions of anonymity, untraceability and unlinkability in the literature.



Formal Analysis of Privacy for Vehicular Mix-Zones 69

References

10.

11.

12.

13.

14.

15.
16.

. Abadi, M., Fournet, C.: Mobile values, new names, and secure communication.

In: Proc. 28th ACM Symposium on Principles of Programming Languages (POPL
2001), pp. 104-115. ACM Press, New York (2001)

Arapinis, M., Chothia, T., Ritter, E., Ryan, M.: Analysing unlinkability and
anonymity using the applied pi calculus. In: Proc. 23rd IEEE Computer Security
Foundations Symposium, CSF 2010 (to appear, 2010)

Beresford, A.R., Stajano, F.: Location privacy in pervasive computing. IEEE Per-
vasive Computing 2(1), 46-55 (2003)

Blanchet, B., Abadi, M., Fournet, C.: Automated verification of selected equiva-
lences for security protocols. Journal of Logic and Algebraic Programming 75(1),
3-51 (2008)

Brusé, M., Chatzikokolakis, K., den Hartog, J.: Formal verification of privacy for
RFID systems. In: Proc. 23rd IEEE Computer Security Foundations Symposium,
CSF 2010 (to appear, 2010)

Buttyan, L., Holczer, T., Vajda, I.: On the effectiveness of changing pseudonyms
to provide location privacy in VANETSs. In: Stajano, F., Meadows, C., Capkun, S.,
Moore, T. (eds.) ESAS 2007. LNCS, vol. 4572, pp. 129-141. Springer, Heidelberg
(2007)

Buttydn, L., Holczer, T., Weimerskirch, A., Whyte, W.: SLOW: A practical
pseudonym changing scheme for location privacy in VANETSs. In: IEEE Vehicular
Networking Conference (VNC), Tokyo, Japan, October 2009, pp. 1-8 (2009)
Delaune, S., Kremer, S., Ryan, M.D.: Verifying privacy-type properties of electronic
voting protocols. Journal of Computer Security 17(4), 435-487 (2009)

Delaune, S., Ryan, M.D., Smyth, B.: Automatic verification of privacy properties in
the applied pi-calculus. In: Karabulut, Y., Mitchell, J., Herrmann, P., Jensen, C.D.
(eds.) Proc. 2nd Joint iTrust and PST Conferences on Privacy, Trust Management
and Security (IFIPTM 2008), Trondheim, Norway, June 2008. IFIP Conference
Proceedings, vol. 263, pp. 263-278. Springer, Heidelberg (2008)

Doetzer, F.: Privacy issues in vehicular ad hoc networks. In: Danezis, G., Martin,
D. (eds.) PET 2005. LNCS, vol. 3856, pp. 197-209. Springer, Heidelberg (2006)
Freudiger, J., Raya, M., Félegyhdzi, M., Papadimitratos, P., Hubaux, J.-P.: Mix-
zones for location privacy in vehicular networks. In: Proc. of ACM Workshop on
Wireless Networking for Intelligent Transportation Systems, WiN-ITS 2007 (2007)
Parno, B., Perrig, A.: Challenges in securing vehicular networks. In: Proc. 4th
Workshop on Hot Topics in Networks (November 2005)

Sleet, D., Peden, M., Scurfield, R.: World report on traffic injury prevention. World
Health Organization Report (2004)

Raya, M., Hubaux, J.-P.: The Security of Vehicular Ad Hoc Networks. In: Proc.
3rd ACM Workshop on Security of Ad Hoc and Sensor Networks (SASN 2005),
pp. 11-21 (2005)

Safespot project (2006-2010), http://www.safespot-eu.org/

Schneider, S., Sidiropoulos, A.: CSP and anonymity. In: Martella, G., Kurth, H.,
Montolivo, E., Bertino, E. (eds.) ESORICS 1996. LNCS, vol. 1146, pp. 198-218.
Springer, Heidelberg (1996)


http://www.safespot-eu.org/

70 M. Dahl, S. Delaune, and G. Steel

17. TIEEE standard. IEEE Trial-Use Standard for Wireless Access in Vehicular Environ-
ments — Security Services for Applications and Management Messages (approved
June 8, 2006)

18. van Deursen, T., Mauw, S., Radomirovic, S.: Untraceability of RFID protocols.
In: Onieva, J.A., Sauveron, D., Chaumette, S., Gollmann, D., Markantonakis, K.
(eds.) WISTP 2008. LNCS, vol. 5019, pp. 1-15. Springer, Heidelberg (2008)



IntPatch: Automatically Fix
Integer-Overflow-to-Buffer-Overflow
Vulnerability at Compile-Time

Chao Zhang, Tielei Wang, Tao Wei, Yu Chen, and Wei Zou

Institute of Computer Science and Technology, Peking University
Key Laboratory of Network and Software Security Assurance (Peking University),
Ministry of Education
{zhangchao,wangtielei,weitao,chenyu,zouwei}@icst.pku.edu.cn

Abstract. The Integer-Overflow-to-Buffer-Overflow (I02B0O) vulnera-
bility is an underestimated threat. Automatically identifying and fixing
this kind of vulnerability are critical for software security. In this pa-
per, we present the design and implementation of IntPatch, a compiler
extension for automatically fixing IO2BO vulnerabilities in C/C++ pro-
grams at compile time. IntPatch utilizes classic type theory and dataflow
analysis framework to identify potential IO2BO vulnerabilities, and then
instruments programs with runtime checks. Moreover, IntPatch provides
an interface for programmers to facilitate checking integer overflows. We
evaluate IntPatch on a number of real-world applications. It has caught
all 46 previously known I02BO vulnerabilities in our test suite and found
21 new bugs. Applications patched by IntPatch have a negligible runtime
performance loss which is averaging about 1%.

1 Introduction

The Integer Overflow to Buffer Overflow vulnerability (I02BO for short), defined
in Common Weakness Enumeration (CWE-680 [7]), is a kind of vulnerability
caused by integer overflows, i.e. an integer overflow occurs when a program
performs a calculation to determine how much memory to allocate, which causes
less memory to be allocated than expected, leading to a buffer overflow.

For instance, figure [[l(a) shows a typical IO2BO vulnerability which existed
in the old version of Faad2 [I1]. In this code snippet, the argument mp4ff_t *f
represents a mp4-file stream. Routine mp4ff_read_int32(f) at line 467 reads an
integer value from external file f without any checks. The unchecked integer value
(e.g. 0280000001) is then used in a memory allocation function at line 469. If an
overflow occurs there, a smaller than expected memory (e.g. 0280000001 x4 = 4)
will be allocated. At line 483, some values read from external file without any
checks will be written to the allocated memory chunk. Because the allocated
memory is smaller than expected, these writes will corrupt the heap and may
lead to arbitrary code execution [40)].

D. Gritzalis, B. Preneel, and M. Theoharidou (Eds.): ESORICS 2010, LNCS 6345, pp. 71 2010.
© Springer-Verlag Berlin Heidelberg 2010



72 C. Zhang et al.

458. static int32 t mp4ff read ctts(mpdff t *f)
459. {
460. // sth. omitted ...
467. p_track—>ctts_entry count = mp4ff read int32(f);
468.
469. p_track—>ctts_sample count =

(int32 t*) malloc (p track dctts entry count * sizeof(int32 t));
470. p_track—>ctts_sample offset =

(int32 t*) malloc (p_track—>ctts entry count * sizeof (int32 t));

481. for (i = 0; i < p_track—>ctts entry count; i++)

482, { integer overflows heap overflows

484. p_track->ctts sample offset[i] = mp4ff read int32(f);
485. )

486. return 1;

488. )

102BO vulnerabilities

(@ (b)

Fig.1. (a)A real-world I02BO vulnerability in Faad2. (b)Number of vulnerabilities
reported by NVD from April 1, 2009 to April 1, 2010. There are 129 (=72+57) integer
overflows and 182 (=57+125) heap overflows. More than 44% (=57/129) of integer
overflows are I02BO vulnerabilities.

I02BO is an underestimated threat. In recent years, we have witnessed that
I02BO is being widely used by attackers, such as bypassing the SSH authenti-
cation in [30] and the heap corruption attack in [40]. Moreover, according to the
statistical data (from April 2009 to April 2010) in the National Vulnerability
Database (NVD [I7]), nearly a half of integer overflow vulnerabilities and one
third of heap overflow vulnerabilities are I02BO, as shown in Fig. [Ii(b).

The main reason that I02BO is so popular is that many programmers have
not yet realized the danger brought by integer overflows. Even for those who are
aware of integer overflows, fixing these bugs is tedious and error-prone. For ex-
ample, CUPS [4], a well-known open source printing system, has an I02BO vul-
nerability in the function _cupsImageReadPNG [6]. CUPS first released a patch,
but the initial patch failed to fix the vulnerability properly [B]. The developers
had to release another patch to completely fix this vulnerability. Moreover, the
C99 standard [12] specifies that signed overflow is considered as an undefined
behavior, thus some patches that work properly in some compiler environments
may fail in others.

Some compilers or compiler extensions such as RICH [25] have the ability
to insert extra code to capture integer overflows at runtime. For example, with
-ftrapv option, GCC can insert additional code to catch each overflow at run-
time. However, there exists benign integer overflows deliberately used in ran-
dom numbers generating, message encoding/decoding or modulo arithmetic [25],
and thus such full instrumentation inevitably generates false positives. Further-
more, the instrumented programs usually suffer from a non-trivial performance
overhead.

There are a number of integer overflow detection studies, such as [41] [38]
[29] |28]. For the static-analysis-based tools, false positives are non-negligible.



IntPatch: Automatically Fix IO2BO Vulnerability at Compile-Time 73

Manually analyzing and patching the potential integer overflows is still error-
prone. For the dynamic-analysis-based tools, the main disadvantage is their false
negatives. Although many dynamic analysis systems (such as KLEE [26], EXE
[27], CUTE [39], DART [35]) use symbolic execution techniques to improve code
coverage and can be extended for detecting integer overflows, the analysis results
are not sound.

In this paper, we present IntPatch, a tool capable of identifying potential
102BO vulnerabilities and fixing them automatically. First, we use a type anal-
ysis to detect potential IO2BO vulnerabilities. Then, for each candidate vulner-
ability, another analysis pass is made to locate the points to fix at.

In the type analysis process, we consider each variable’s taintedness and
whether it overflows. If a tainted (thus untrusted) and maybe overflowed variable
is used in a memory allocation function, there is a potential IO2BO vulnerabil-
ity. In the locating and patching process, we use backward slicing [42] technique
to identify those related vulnerable arithmetic operations and then insert check
statements after them to catch vulnerability at runtime.

We implement IntPatch based on LLVM (Low Level Virtual Machine [36/37])
and evaluate its performance on a number of real-world open-source applications.
Experiments show that IntPatch has caught all 46 previously known I02BO vul-
nerabilities and it helps us find 21 zero-day bugs. These zero-day bugs are in the
process of being submitted. Compared to their original versions, the patched ap-
plications have a negligible runtime performance loss which is averaging about
1%. Thus, IntPatch is a powerful and lightweight tool which can efficiently cap-
ture and fix IO2BO vulnerabilities. It could help programmers accelerate soft-
ware development and greatly promote programs’ security.

Contributions. This paper presents an automatic tool for efficiently protecting
against IO2BO vulnerabilities. Specially, we:

— Survey 46 I02BO vulnerabilities and compare some of them with their
patched versions. We figure out that fixing IO2BO is tedious and error-prone.

— Construct a type system to model I02BO vulnerabilities and present a
framework for automatically identifying and fixing them at compile time.

— Provide an API for programmers who want to fix IO2BO vulnerabilities
manually.

— Implement a tool called IntPatch. It inserts dynamic check code to protect
against I02BO. The patched version’s performance overhead is low, on av-
erage about 1%. Experiments also show that IntPatch is able to capture all
previously known IO2BO vulnerabilities.

— Identify 21 zero-day bugs in open-source applications with IntPatch.

Outline. We first describe what an I02BO-type vulnerability is and how com-
plicated it is when we try to fix it in Sect. 2l Our system overview and the type
system we used to model IO2BO vulnerability are shown in Sect. Bl In Sect. (]



74 C. Zhang et al.

we discuss our system’s implementation, including the interface provided for
programmers. Section [ evaluates our work, and shows the performance and
false positives. Related work and conclusion are discussed in Sect. [6land Sect. [l

2 Background

Although integer overflows may cause many other vulnerability types [2325],
the most typical case is IO2BO. In this section, we will discuss in detail what an
I02BO vulnerability is and what difficulties programmers may meet when they
try to fix it.

2.1 What Is an I02BO Vulnerability?

An TIO2BO vulnerability, as defined in CWE [1], is a kind of vulnerability caused
by integer overflow. Specifically, when an overflowed value (smaller than ex-
pected) is used as the size of a memory allocation, subsequent reads or writes
on this allocated heap chunk will trigger a heap overflow vulnerability. A typical
instance has been shown in the previous section.

Characteristics of IO2BO Vulnerabilities. We have surveyed 46 102BO
vulnerabilities consisting of 17 bugs found by IntScope [41] and 29 bugs reported
in CVE [2], Secunia [21I], VUPEN [22], CERT [I] and oCERT [I§].

According to the survey, we find that an exploitable IO2BO vulnerability has
many significant features, similar to those presented in [41]. First, the program
reads some user-supplied thus untrusted input. Then, the input value is used in
an arithmetic operation to trigger an integer overflow. Finally, the overflowed
value is propagated to the memory allocation function, and thus a smaller than
expected memory is allocated.

Overflow in the Context of IO2BO Cannot be Benign. As mentioned in
the introduction, it is difficult to distinguish integer overflow vulnerabilities from
benign overflows. However, we argue that, in a context of I02BO, the involved
integer overflow cannot be benign.

More precisely, if an untrusted value triggers an integer overflow and then the
overflowed result is used in memory allocation, the involved integer overflow is
a real vulnerability. Usually, the overflowed result is smaller than its expected
value. Besides, allocating a small memory chunk rather than a huge one doesn’t
cause any warnings or failures. Thus, programmers have no idea that the allo-
cated memory is smaller than expected. It is note worthy that, further actions
such as read/write will still be taken on the expected memory chunk, and then
trigger buffer overflows. So, the involved integer overflow is a real vulnerability.

With this argument, we can conclude that, if an integer overflow in the context
of IO2BO is caught at runtime, this overflow should be a real vulnerability. Thus,
it is possible to construct a fixing mechanism with a low false positive rate for
protecting against I02BO.



IntPatch: Automatically Fix IO2BO Vulnerability at Compile-Time 75

2.2 How to Fix I02BO Vulnerabilities?

Among the 46 I02BO vulnerabilities, we investigate 18 patches of them. We
find that manually fixing integer overflows is tedious. Even worse, some patches
cannot fix integer overflows correctly.

Input Validation. Fixing integer overflows is essentially an input validation
problem. Incomplete input validation is the origin of IO2BO vulnerability.
The widely used method for checking integer overflow in practice looks like:

if (b#0 && (axb)/b+#a) MSG(” overflow occurs”);

However, this method has some problems when programs are compiled with
GCC. We will discuss later.

On assembly language level, to check an integer overflow is also an annoy-
ing work. For example, on x86 architecture, methods for checking overflows in
signed /unsigned multiplications/additions are different. Instructions jo, jc, and
js should be used in combination to check those overflows [13].

Fallibility and Complexity. Fixing integer overflow manually is error-prone.
Figure [l illustrates an erroneous patch in CUPS. Field img->ysize is propa-
gated from the argument height which is read from external. If this field is
given a big enough value, operation img->ysizex*3 may overflow first, then it
will make the check in this patch useless. For example, let img->xsize=2 and
img->ysize=0x60000000, then img->ysize*3 will be equal to 0220000000 (over-
flowed). Then the product of img->xsize, img->ysize and 3 overflows but this
overflow cannot be caught by the check in this patch.

png get IHDR(pp, info, &width, &height, // untrusted source read from file
&bit depth, &color type, &interlace type, &compression type, &filter type);

img—>xsize = width; // propagate
img—>ysize = height;

= in = malloc (img—>xsize * img—>ysize * 3); // overflow occurs, and
// used in sensitive operation
{
bufsize = img—>xsize * img—>ysize * 3;
if ((bufsize / (img—>ysize * 3)) != img—>xsize) // incorrect patch
fprintf (stderr, "+ );

+ + 4+ + +

}

+ in = malloc (bufsize) ;

Fig. 2. Incorrect Patch in CUPS-1.3 for vulnerability whose ID is CVE-2008-1722 [6]



76 C. Zhang et al.

The correct method for checking overflow in this expression will take two
steps. First, check whether expression img->ysize*3 overflows. Then, check
whether expression product*img->xsize overflows, where product is the prod-
uct of img->ysize and 3.

Suppose we want to check an overflow in a long expression such as a*b*cxd*e*f,
it follows that five sub-expressions should be checked separately. Since methods
for checking each sub-expression are similar, it is too tedious for a programmer
to manually fix integer overflows.

Compiler Problem. In this section, we will explain why the widely used
method for checking integer overflow listed above will be useless when programs
are compiled with GCC.

The C99 standard [10] specifies that signed overflow is considered as undefined
behavior, thus implementation specific. And the GCC developers think that
programmers should detect an overflow before an overflow is going to happen
rather than using the overflowed result to check the existence of overflow. The
detailed discussion between programmers and GCC developers can be found
in [9].

As a result, the condition statement if (a*b/b!=a) in the widely used method
may be removed totally when the program is compiled with GCC, especially
when it is compiled with optimization options. The Python interpreter is a victim
of this problem. Python developers use a check like if (x>0 && x+x<0) to test
whether x+x (where x is a signed int variable) could overflow. However, the check
may be optimized and discarded by GCC compiler [20], so that the code is still
vulnerable. See [20] for more information.

So, freeing programmers from fixing integer overflows is necessary. Compilers
should be responsible for fixing integer overflows.

3 System Overview

In this section, we describe the overview of our system which is aimed at fix-
ing I02BO vulnerabilities automatically. To fix IO2BO vulnerabilities, we must
identify them first. According to the features of IO2BO vulnerabilities, we use
a type analysis to detect them. Then another analysis is made upon those can-
didate vulnerabilities to decide which points to fix at. Finally, runtime check
statements are inserted at those points.

3.1 Identify Potential IO2BO Vulnerabilities

As mentioned above, an I02BO vulnerability has some significant features. Thus,
properties of variables, such as whether they are trusted and whether they may
be overflowed, are considered. Then a type system is constructed and a type
analysis to identify potential IO2BO vulnerabilities is made.



IntPatch: Automatically Fix I02BO Vulnerability at Compile-Time 77

Type System. Figure Bla) shows our type system. Our type system forms
a lattice. The bottom of the lattice is type Tgg. Variables with this type are
trusted, i.e. their values are not from program input, and non-overflowed. The
top of this lattice is type T11, which represents for untrusted and may-overflow.
Variables with this type origins from program input, and origins from some
variables possibly overflowed. Our type system also has another two types T1g
and Ty, which respectively represents for untrusted and may-overflow.

untrusted and Tyt v, =, )
may-overflow v (assignment)
Ll

trusted and 'y 7, I'v,iz, v=y®

V2 (arith-ops)
may-overflow I'=vi(s,ve,VvT)

untrusted and
non-overflowed

. %k —
Lhv:z v=n (store operation)
I'E*v:z tpv=itpvvrt
trusted and WV v =y (load operation)
non-overflowed v, :( NV pY v tp_v,)
@ (L))

Fig. 3. (a)Our type system, (b)type inference rules in our system

If a variable with type Ty is assigned to a variable which expects type T,
there is a type conflict, which means there is a potential I0O2BO. Due to the
characteristics of IO2BO vulnerabilities, other type casting are allowed.

Type Initialization. Our type system is different from embeded type system
of the C/C++ programming language. So, when applying our type system on
programs, we must assign each variable with a type. It is impossible to assign
each variable with a type manually. We just assign variables at key points with
specific types. For example, if a variable is read from program input (called
sources), then type T1p will be assigned to it. If a variable is used in memory
allocation (called sinks), it will be assigned with type Tqo. Then, following type
inference rules are used to decide the remainder variables’ types.

Type Inference. FigureBl(b) shows our type inference rules.
Assignment Statement. The right-hand side variable’s type will be directly as-
signed to the left-hand side variable.

Arithmetic Operation. Overflow could only occurs in addition, subtraction, mul-
tiplication or left shift operation. So, the listed rule for arithmetic operation
covers only these four kinds of operations. The result’s type is joined by the



78 C. Zhang et al.

two operands’ types and Ty;. It means that, the result may overflow, and is
untrusted if any one of its operand is untrusted.

Store Operation. Type inference rule for memory store operation is a little com-
plex. In order to make a conservative analysis, for each pointer variable v, we
record an additional type information ¢p v, which represents the possible Type
of those memory chunks Pointed by v. If variable v; with type 7 is stored into a
memory pointed by v, the target memory will be assigned with type 7, and the
memory’s type information will be joined into tp v.

Load Operation. If variable vy is loaded from memory pointed by vy, it may have
a type same as any memory pointed by v;. Besides, if pointer v; alias to pointers
in set V (denoted as v; ~ V), then variable vy’s type may also be same as any
memory pointed by any pointer v in V. Thus, variable vs’s type is the upper
bounds of tp v; and tp v for each pointer v in V.

Misc. Remaining operations’ type inference rules are straightforward. Thus they
are not listed here.

Type Analysis Process. For each application to be analyzed, a configuration
file which defines sources (i.e. functions which read input) and sinks (i.e. memory
allocation functions) is manually provided. This configuration file is read in and
used to initialize our type system. Then, a dataflow analysis applying our type
inference rules is made. As explained above, type T is expected at sinks. If the
type inferred from the dataflow analysis is Ty, there is a type conflict, i.e. there
is a potential I02BO vulnerability.

3.2 Locate Vulnerable Arithmetic Operations and Patch

After the type analysis, some candidate IO2BO vulnerabilities are generated.
The type analysis is conservative, and thus it is sound (i.e. there is no false neg-
atives). However, this type analysis is path-insensitive, thus there may be many
infeasible paths which are reported as I0O2BO vulnerabilities. Besides, the alias
analysis in LLVM we used is conservative, it may also introduce additional false
positives. Leaving all these candidate vulnerabilities for programmers to validate
is terrible. In this section, we introduce an automatic fixing mechanism which
can reduce false positives and protect programs against I0O2BO vulnerabilities.

First, our approach identifies those related vulnerable arithmetic operations
(i.e. overflow occurs here will further triggers the IO2BO vulnerability). Then,
for each vulnerable arithmetic operation, statements for checking overflow at
runtime are automatically inserted after it.

To locate vulnerable arithmetic operations, a backward analysis is made for
each candidate I0O2BO vulnerability. Variables at each vulnerable sink are fo-
cused. Techniques like backward slicing [42] are then used to find other variables
which may affect the focused variable. If a variable found by slicing is with type
T1 and the corresponding statement is an arithmetic operation, this statement
is thought as a vulnerable arithmetic operation. Finally, statements for checking
overflow at runtime are inserted after those vulnerable arithmetic operations.



IntPatch: Automatically Fix I02BO Vulnerability at Compile-Time 79
As argued in Sect. 2.1 integer overflows in the context of I02BO are usually

vulnerable. Thus, integer overflows caught by this fixing mechanism at runtime
are real vulnerabilities, i.e. this fixing mechanism can reduce false positives.

4 Implementation

In this section, we present the implementation of our system. We implement
our system as a tool IntPatch based on LLVM. Figure @ shows the structure of
IntPatch.

IntPatch

! |
! . |
.c file | Type Potential Locate and |
| Analysis T102BO vul. Patch |
__
L I
.cpp file LLVM frontend LLVM IR LLVM backend binary
1lvm—-gce .be file 11c executables
__

Fig. 4. Structure of IntPatch

IntPatch first makes an classic dataflow analysis to analyze each variable’s
type and identify potential IO2BO vulnerabilities. Then, for each potential vul-
nerability, it makes a slicing to find the vulnerable arithmetic operations. Finally,
check statements are inserted after those vulnerable operations to catch runtime
bugs.

4.1 LLVM

LLVM [36l37] is a compiler infrastructure which supports effective optimization
and analysis at compile time, link-time, run-time and offline. IntPatch utilizes
some useful features or interfaces provided by LLVM.

For example, LLVM provides us an easy-to-use CFG which facilitates iterat-
ing over whole program. All memory accesses are explicitly using load and store
instructions in LLVM. Thus, our type inference rule for load and store operation
is easy to be applied. LLVM’s intermediate representation (IR) is in SSA (Static
Single Assignment [32]) form and thus facilitates our dataflow analysis. In addi-
tion, LLVM provides some intrinsic instructions for catching integer overflows.
LLVM also provides some classic alias analysis pass for us to use, which helps
us a lot when we make type analysis.

4.2 Type Analysis

IntPatch uses a type analysis to identify potential IO2BO vulnerability. In
LLVM, all kinds of instructions and operands are instances of class 11vm: : Value.



80 C. Zhang et al.

A value which represents an instruction could be used as another instruction’s
operand. That is to say, a value representing an instruction also represents the
result of the instruction, thus can be thought as a variable.

We maintain a map from such variables to types. Because LLVM’s IR is in
SSA form, each variable has only one definition point. Thus, the type information
of any variable won’t change.

A predefined file which annotates what are sources and sinks is read in to
initialize the mapping relationship between variables and types. Then we use
classic dataflow analysis method [24] to analyze each variable’s type. Type in-
ference rules are applied on each instruction. At each basic block’s entry, there
may be some phi-nodes [32], which are introduced by SSA. For each of these
phi-nodes, such as v = ¢(v1, va, ..., v,), we join types of variable vy, va, ..., v,
together and assign it to variable v.

When the dataflow analysis analyzes variables at sinks, we do a type check
here. If variables at sinks are with type T1; according to the analysis’s result,
there is a type conflict, and thus a potential IO2BO vulnerability exists.

This type analysis process is implemented as a pass in LLVM and its result
can be used by other passes. Because our analysis is interprocedural, our analysis
pass is an instance of 11vm: :ModulePass and needs to be invocated at link-time.

4.3 Locate Vulnerable Arithmetic Operations and Patch

The type analysis can identify potential IO2BO vulnerabilities. Our remainder
task is to fix I02BO vulnerabilities automatically. Fixing should be complete, i.e.
if a bug is caught at runtime, it should be a real bug. In other word, a mechanism
is needed to reduce false positive rates. Otherwise, users will complain about the
program’s quality.

We implement another analysis pass to identify those vulnerable arithmetic
operations. This analysis uses classic slicing method [42] to find related variables.
If the related variable’s type is Tq; and the variable (i.e. instruction) is an
arithmetic operation, a check statement is inserted after that instruction. We
use intrinsic instructions provided by LLVM such as 11vm.sadd.with.overflow
to check integer overflow. If an overflow occurs, we redirect the control flow to a
predefined function. By default, this function blocks the program and waits for
user debugging. This function can also be specified by programmers.

Using these two analysis pass, IntPatch is able to automatically identify and
fix IO2BO vulnerabilities over full programs with a reasonable false positive rate.

4.4 Another Compiler Interface

However, in some situations, programmers still want to fix IO2BO vulnerabili-
ties manually. In order to shield programmers from the tedious and error-prone
fixing work, IntPatch also provides an easy-to-use interface. With this interface,
programmers can specify what expressions to be monitored and what actions
will be taken when overflow occurs in these expressions.



IntPatch: Automatically Fix IO2BO Vulnerability at Compile-Time 81

This interface, named I0check(int exp, void (*£)()), is implemented as
an API. Programmers pass the expression to be monitored into the first argu-
ment, and pass the overflow handler function into the second argument. The
second argument is default set to NULL, which means we will use a handler
predefined in IntPatch.

In order to support this API, we need to make a few modifications to the
original analysis. In the type analysis process, we just treat the first argument of
function I0check () as sinks. And in the slicing process, we just need to change
the inserted overflow handler function to the handler specified by programmers.
Besides, we provide an library for function IOcheck() which does nothing in
fact. This library will be linked by LLVM.

5 Evaluation

We evaluate IntPatch with several real-world open-source applications, including
libtiff [14], ming [I5], faad2 [11], dillo [§], gstreamer [12] and so on. The evaluation
was performed on an Intel Core2 2.40GHz machine with 2GB memory and Linux
2.6.27.25 kernel.

5.1 Check Density

We first measure how many checks IntPatch inserts into programs. Table[lshows,
for each benchmark program, the number of total instructions in the program (in
LLVM IR form), the number of arithmetic operations in the program, and the
number of checks inserted by the IntPatch. Then the checking ratio is calculated,
i.e. (number of checks)/(number of arithmetic operations).

Table 1. Number of checks inserted

application # inst # arith-ops # checks ratio

libtiff-3.8.2 781212 20739 1751 8.44%
faad2-2.7 37993 1189 150 12.6%
ming-0.4.2 35901 1375 241 17.5%
dillo-2.0 641574 8053 345 4.28%
gstreamer-0.8.5 2060335 10683 1067 9.98%

Results show that, there are lots of arithmetic operations (about one tenth)
which may affect memory allocations. In fact, this ratio is a little bit higher than
that in regular applications, because most of the test suites are image-related
applications which needs to allocate a lot of memory. Compared to results in
[28] and [25], the checking ratio is very low.

5.2 Performance Overhead

In this section, we present the performance overhead of IntPatch. Our experi-
ments show that the overhead is quite low, on average about 1%. Table 2l shows



82 C. Zhang et al.

Table 2. Performance of IntPatch

application original (s) patched (s) overhead
ming-0.4.2 236.143 239.549 1.44%
libtiff-3.8.2 127.571 129.123 1.01%
dillo-2.0 3.762 3.805 1.14%
faad2-2.7 361.163 364.478 0.91%

the overhead of applications patched by IntPatch relative to the uninstrumented
versions (both compiled with the same options).

We test ming, a library for generating Macromedia Flash files (.swf), with
benchmark PNGSuite [19]. PngSuite is a test-suite containing 157 different PNG
format images for PNG applications. These PNG files are converted into flash
files using ming and the consumed time is recorded.

For dillo, we test its CSS rendering speed using a CSS benchmark devised
by nontroppo [3]. Libtiff is tested with a pack of TIFF format files distributed
together with it. These tiff files are compressed to JPEG format files using libtiff
and the consumed time is recorded. For faad2, we use it to decode 100 MPEG-4
format videos randomly downloaded from Mp4Point [I6].

5.3 False Positives and False Negatives

As mentioned above, our type analysis is conservative, and thus our analysis is
sound (i.e. no false negatives). In other words, any vulnerability that satisfies
I02BO’s features will be caught by the type analysis.

In order to evaluate the false positive rate of IntPatch, we test these ap-
plications instrumented by IntPatch with normal and malicious inputs. Each
application is fed with normal inputs described in Sect. and with 2 ~ 3
malicious inputs (e.g. crafted image files). Results show that all normal inputs
don’t trigger the runtime check and while malicious inputs both trigger the
check. That is to say, no false positives exist. However, the test is not sufficient
and the the code coverage rate is low, and thus IntPatch may still has false
positives.

In fact, our type analysis and slicing analysis are path-insensitive, infeasible
paths may bring false positives to IntPatch. The conservative alias analysis in
LLVM we used also brings some false positives.

In addition, integer overflow checks (called sanitization routine) inserted by
programmers will also lead to false positives. That is because the sanitization
routine will untaint the variable, but our type analysis process hasn’t considered
this semantic effection on the type propagation. On the other hand, sanitization
routines are at semantic level and hard to be detected. One possible solution is
that programmers give up customized sanitization routines and use the interface
I0check() provided by IntPatch only.



IntPatch: Automatically Fix IO2BO Vulnerability at Compile-Time 83

5.4 Zero-Day Bugs

The type analysis pass in IntPatch has generated many candidate I0O2BO vul-
nerabilities. Of course, there are many false positives. With manual validation,
we can identify real vulnerabilities. During our unfinished time-consuming val-
idation process, we discover 21 new 102BO vulnerabilities in 6 applications, as
shown in Table Bl

Table 3. Zero-Day Bugs detected by IntPatch

application  swftools Inkscape gnash ming faad2 libtiff
version 0.9.0 0.46 0.8.5 042 2.7 3.8.2

# bugs 2 4 5 3 3 4

For example, we found a vulnerability in function readPNG in ming-0.4.2.
Value png.height is read from an input PNG file. This value then multiplies a
constant without any checks. The result of the multiplication is further used in
function malloc. Finally, data from the input PNG file is read into the allocated
memory. It is a typical IO2BO vulnerability.

We have submitted some of these zero-day vulnerabilities to security service
provider such as Secunia [2I] and oCert [I8]. Some of the submissions, such as
the vulnerability in libtiff (CVE-2009-2347), have been confirmed. Corresponding
patches from vendors has been released or are in progress. Considering that other
vulnerabilities are still in the process of being submitted or fixed, we do not want
to provide further detailed information here.

5.5 Limitation

Our work is based on LLVM, which is still in development stage. So certain
applications might have troubles being compiled with LLVM. Furthermore our
analysis pass is time-consuming. These drawbacks limit the domain of IntPatch’s
applications.

In our implementation, IntPatch depends heavily on alias analysis. However,
alias analysis is a well-known problem in static analysis. Its accuracy and per-
formance will affect IntPatch’s results.

Programmers’ sanitization routines are not encouraged as mentioned above.
This limitation is not friendly to programmers.

6 Related Work

Many efforts have been made on integer overflow vulnerabilities. Followings are
some representative works.



84 C. Zhang et al.

Shuo Chen et al. presented a FSM-based method [29] and uses finite state
machines (FSM) to identify integer overflows. Experts summarize a finite state
machine representing the integer overflow vulnerability first. Then a tool is used
to check whether there are integer overflow vulnerabilities. It needs a lot of
expert’s effort and the FSM for distinct applications may be different. Thus, it
is not a general solution.

Ramkumar Chinchani et al. [31] describe each arithmetic operation formally
and then utilize architecture characteristics to check each arithmetic operation
and catch integer overflow at runtime [3I]. This method doesn’t pay much at-
tention on distinguishing benign and unexpected overflows, thus there are lots
of false positives.

The sub-typing method presented by Brumley et al. [25] formalizes the se-
mantics for safe integer operations in C. Overflow checks are inserted after each
arithmetic operations to capture runtime overflows. It protects against many
kinds of integer errors, including signedness error, interger overflow/underflow
or truncation error. They implement a prototype called RICH and found several
zero-day bugs too. However, benign and unexpected overflows are not distin-
guished either.

The method presented by Ceesay [28] utilizes type qualifiers theory [33] and
a tool CQUAL [34] to detect type conflicts. Their work is implemented in the
preprocessing step. They extend traditional type system with new type quali-
fier trusted similar to embeded type qualifier const. Then a type analysis is
made and find all type conflicts. Each type conflict is reported as a potential
vulnerability.

Both of these methods treat all kinds of integer overflow vulnerabilities, and
suffer from the indistinguishability between benign overflows and unexpected
overflows. Thus, their false positive rates are high.

Our paper focus on the most typical integer overflow vulnerability and tries
to present a sound solution. Our type system is more complex and effective than
Ceesay’s. The final result shows that our method is effective.

7 Conclusion

This paper surveys many 102BO vulnerabilities, and presents a framework to
model and automatically fix this kind of vulnerability. A prototype tool IntPatch
is implemented based on LLVM. Experiments show that IntPatch is powerful and
lightweight and can effectively defend against IO2BO vulnerabilities. Twenty-one
zero-day vulnerabilities are found as a byproduct.

References

1. Carnegie Mellon University’s Computer Emergency Response Team,
http://www.cert.org/advisories/
2. Common vulnerabilities and exposures, http://cve.mitre.org


http://www.cert.org/advisories/
http://cve.mitre.org

10.
11.
12.
13.
14.
15.

16.

17.
18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

IntPatch: Automatically Fix IO2BO Vulnerability at Compile-Time 85

Cssbench: a css benchmark devised by nontroppo,
http://www.howtocreate.co.uk/csstest.html

. CUPS: a standards-based, open source printing system developed by Apple Inc.,

http://www.cups.org/

Cups’ erroneous patch, http://www. cups.org/str.php?L2974

CUPS Vulnerability,

http://cve.mitre.org/cgi-bin/cvename. cgi?name=CVE-2008-1722

Cwe-680: To2bo vulnerabilities,
http://cwe.mitre.org/data/definitions/680.html

Dillo: a lightweight browser, http://www.dillo.org

Discussion between programmers and gcc developers,
http://gcc.gnu.org/bugzilla/show_bug.cgi?id=30475#c2

Draft of the c99 standard with corrigenda tcl, tc2, and tc3 included,
http://www.open-std.org/jtcl/sc22/WG1l4/www/docs/n1256.pdf

FAAD2: A MPEG-4 and MPEG-2 AAC Decoder,
http://www.audiocoding.com/faad2.html

GStreamer: a framework for streaming media applications,
http://gstreamer.freedesktop.org/

Intel 64 and ia-32 architectures software developer’s manuals,
http://www.intel.com/products/processor/manuals/

libtiff: TIFF Library and Utilities, http://www.libtiff.org/

Ming: a library for generating Macromedia Flash files, http://www.libming.org/
Mp4point: a source for free mp4 / mpeg-4 video movie clips,
http://www.mp4point.com/

National vulnerability database, http://nvd.nist.gov/

oCERT: Open Source Computer Emergency Response Team,
http://www.ocert.org/

Pngsuite: The ”official” test-suite for png applications like viewers, converters and
editors, http://www.schaik.com/pngsuite/

Python interpreter suffers from gcc’s behavior,
http://bugs.python.org/issuel608

Secunia: a Danish computer security service provider,

http://secunia.com/

Vupen: a company providing security intelligence,
http://www.vupen.com/english/

Ahmad, D.: The rising threat of vulnerabilities due to integer errors. IEEE Security
and Privacy 1(4), 77-82 (2003)

Aho, A.V., Lam, M.S., Sethi, R., Ullman, J.D.: Compilers: Princiles, Techniques,
and Tools, 2nd edn. Addison-Wesley, Reading (2006)

Brumley, D., Chiueh, T.c, Johnson, R., Lin, H., Song, D.: Rich: Automatically
protecting against integer-based vulnerabilities. In: Proceedings of the 14th Annual
Network and Distributed System Security Symposium (NDSS 2007) (2007)
Cadar, C., Dunbar, D., Engler, D.: Klee: Unassisted and automatic generation
of high-coverage tests for complex systems programs. In: USENIX Symposium on
Operating Systems Design and Implementation (OSDI 2008), San Diego, CA, USA
(2008)

Cadar, C., Ganesh, V., Pawlowski, P.M., Dill, D.L., Engler, D.R.: Exe: automati-
cally generating inputs of death. In: Proceedings of the 13th ACM Conference on
Computer and Communications Security, CCS 2006 (2006)


http://www.howtocreate.co.uk/csstest.html
http://www.cups.org/
http://www.cups.org/str.php?L2974
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-1722
http://cwe.mitre.org/data/definitions/680.html
http://www.dillo.org
http://gcc.gnu.org/bugzilla/show_bug.cgi?id=30475#c2
http://www.open-std.org/jtc1/sc22/WG14/www/docs/n1256.pdf
http://www.audiocoding.com/faad2.html
http://gstreamer.freedesktop.org/
http://www.intel.com/products/processor/manuals/
http://www.libtiff.org/
http://www.libming.org/
http://www.mp4point.com/
http://nvd.nist.gov/
http://www.ocert.org/
http://www.schaik.com/pngsuite/
http://bugs.python.org/issue1608
http://secunia.com/
http://www.vupen.com/english/

86

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.
41.

42.

C. Zhang et al.

Ceesay, E., Zhou, J., Gertz, M., Levitt, K., Bishop, M.: Using type qualifiers to
analyze untrusted integers and detecting security flaws in ¢ programs. Detection
of Intrusions and Malware & Vulnerability Assessment (2006)

Chen, S., Kalbarczyk, Z., Xu, J., Iyer, R.K.: A data-driven finite state machine
model for analyzing security vulnerabilities. In: IEEE International Conference on
Dependable Systems and Networks, pp. 605-614 (2003)

Chen, S., Xu, J., Sezer, E.C., Gauriar, P., Iyer, R.K.: Non-control-data attacks
are realistic threats. In: Proceedings of the 14th Conference on USENIX Security
Symposium, p. 12 (2005)

Chinchani, R., Iyer, A., Jayaraman, B., Upadhyaya, S.: Archerr: Runtime environ-
ment driven program safety. In: 9th European Symposium on Research in Com-
puter Security, Sophia Antipolis (2004)

Cytron, R., Ferrante, J., Rosen, B.K., Wegman, M.N., Zadeck, F.K.: Efficiently
computing static single assignment form and the control dependence graph (1991)
Foster, J.S., Fahndrich, M., Aiken, A.: A theory of type qualifiers. In: PLDI 1999:
Proceedings of the ACM SIGPLAN 1999 Conference on Programming Language
Design and Implementation, pp. 192-203. ACM, New York (1999)

Foster, J.S., Terauchi, T., Aiken, A.: Flow-sensitive type qualifiers. In: PLDI 2002:
Proceedings of the ACM SIGPLAN 2002 Conference on Programming Language
Design and Implementation, Berlin, Germany, pp. 1-12 (2002)

Godefroid, P., Klarlund, N., Sen, K.: Dart: directed automated random testing. In:
PLDI 2005: Proceedings of the 2005 ACM SIGPLAN Conference on Programming
Language Design and Implementation, pp. 213-223 (2005)

Lattner, C.: LLVM: An Infrastructure for Multi-Stage Optimization. Master’s the-
sis, Computer Science Dept., University of Illinois at Urbana-Champaign, Urbana,
IL (December 2002), http://1lvm.cs.uiuc.edu

Lattner, C., Adve, V.: LLVM: A Compilation Framework for Lifelong Program
Analysis & Transformation. In: Proceedings of the 2004 International Symposium
on Code Generation and Optimization (CGO 2004), Palo Alto, California (March
2004)

Molnar, D., Li, X.C., Wagner, D.A.: Dynamic test generation to find integer bugs
in x86 binary linux programs. In: Proceedings of the 18th USENIX Security Sym-
posium (2009)

Sen, K., Marinov, D., Agha, G.: Cute: a concolic unit testing engine for c. In:
ESEC/FSE-13: Proceedings of the 10th European Software Engineering Conference
Held Jointly with 13th ACM SIGSOFT International Symposium on Foundations
of Software Engineering, pp. 263-272 (2005)

Sotirov, A.: Heap feng shui in javascript. In: Proceedings of Blackhat Europe (2007)
Wang, T., Wei, T., Lin, Z., Zou, W.: IntScope: Automatically Detecting Integer
Overflow Vulnerability in X86 Binary Using Symbolic Execution. In: Proceedings
of the 16th Annual Network and Distributed System Security Symposium, San
Diego, CA (February 2009)

Weiser, M.: Program slicing. In: Proceedings of the 5th International Conference
on Software Engineering (1981)


http://llvm.cs.uiuc.edu

A Theory of Runtime Enforcement, with Results

Jay Ligatti and Srikar Reddy

University of South Florida
Department of Computer Science and Engineering
{ligatti,sreddy4}@cse.usf.edu

Abstract. This paper presents a theory of runtime enforcement based
on mechanism models called MRAs (Mandatory Results Automata).
MRASs can monitor and transform security-relevant actions and their
results. Because previous work could not model monitors transforming
results, MRAs capture realistic behaviors outside the scope of previous
models. MR As also have a simple but realistic operational semantics that
makes it straightforward to define concrete MRAs. Moreover, the defi-
nitions of policies and enforcement with MRAs are significantly simpler
and more expressive than those of previous models. Putting all these
features together, we argue that MRAs make good general models of
runtime mechanisms, upon which a theory of runtime enforcement can
be based. We develop some enforceability theory by characterizing the
policies MRAs can and cannot enforce.

Keywords: Security models, enforceability theory.

1 Introduction

Runtime enforcement mechanisms work by monitoring untrusted applications,
to ensure that those applications obey desired policies. Runtime mechanisms,
which are often called runtime/security /program monitors, are quite popular
and can be seen in operating systems, web browsers, spam filters, intrusion-
detection systems, firewalls, access-control systems, stack inspection, etc. Despite
their popularity and some initial efforts at modeling monitors formally, we lack
satisfactory models of monitors in general, which prevents us from developing
an accurate and effective theory of runtime enforcement.

1.1 Related Work

It has been difficult to model runtime mechanisms generally. Most models
(e.g., [TOUIRITTIOURITIE]) are based on truncation automata [I6/12], which can
only respond to policy violations by immediately halting the application being
monitored (i.e., the target application). This constraint simplifies analyses but
sacrifices generality. For example, real runtime mechanisms often enforce policies
that require the mechanisms to perform “remedial” actions, like popping up a
window to confirm dangerous events with the user before they occur (to con-
firm a web-browser connection with a third-party site, to warn the user before

D. Gritzalis, B. Preneel, and M. Theoharidou (Eds.): ESORICS 2010, LNCS 6345, pp. 87 2010.
© Springer-Verlag Berlin Heidelberg 2010



88 J. Ligatti and S. Reddy

downloading executable email attachments, etc). Although real mechanisms can
perform these remedial actions, models based on truncation automata cannot—
at the point where the target attempts to perform a dangerous action, truncation
automata must immediately halt the target.

To address the limitations of truncation automata, in earlier work we pro-
posed edit automata, models of monitors that can respond to dangerous actions
by quietly suppressing them or by inserting other actions [I2]. By inserting
and suppressing actions, edit automata capture the practical ability of runtime
mechanisms to transform invalid executions into valid executions, rather than
the ability of truncation automata to only recognize and halt invalid executions.
Edit automata have served as the basis for additional studies of runtime enforce-
ment (e.g., [TOI7/4]).

Unfortunately, while truncation automata are too limited to serve as gen-
eral models of runtime mechanisms, edit automata are too powerful. The edit-
automata model assumes monitors can predetermine the results of all actions
without executing them, which enables edit automata to safely suppress any
action. However, this assumption that monitors can predetermine the result
of any action is impractical because the results of many actions are uncom-
putable, nondeterministic, and/or cannot tractably be predicted by a monitor
(e.g., actions that return data in a network buffer, the cloud cover as read by a
weather sensor, or spontaneous user input). Put another way, the edit-automata
model assumes monitors can buffer—without executing—an unbounded number
of target-application actions, but such buffering is impractical because appli-
cations typically require results for actions before producing new actions. For
example, the echo program x=input(); output(x) cannot produce its second
action until receiving a result, which is unpredictable, for the first. Because the
echo program invokes an action that edit automata cannot suppress (due to its
result being unpredictable), this simple program, and any others whose actions
may not return predictable results, are outside the edit-automata model.

1.2 Contributions

This paper presents a theory of runtime enforcement based on mechanism mod-
els called MRAs (Mandatory Results Automata). Their name alludes to the
requirement that, unlike edit automata, MRAs are obligated to return a result
to the target application before seeing the next action it wishes to execute. In
the MRA model, results of actions may or may not be predeterminable.
Conceptually, we wish to secure a system organized as in Figure [Ih, with
an application producing actions, and for every action produced, the underlying
executing system (e.g., an operating system, virtual machine, or CPU) returning
a result to the target application. Results may be exceptions or void or unit
values, so all actions can be considered to produce results. For simplicity, this
paper assumes all actions are synchronous; after the application produces an
action a, it cannot produce another action until receiving a result for a. In
contrast, the edit-automata model can be viewed as one in which all actions



A Theory of Runtime Enforcement, with Results 89

(a) actions (b)
actions valid actions
Untrusted Executing Untrusted Security Executing
Application System Application Monitor System
\_/ valid results results
results

Fig.1. In (a), an untrusted application executes actions on a system and receives
results for those actions. In (b), a security monitor interposes on, and enforces the
validity of, the actions executed and the results returned.

are fully asynchronous (because edit automata can buffer, without executing, an
unbounded number of actions).

Figure [Ib shows how we think of a monitor securing the system of Figure [Th.
In Figure [Ib, the monitor interposes on and transforms actions and results to
ensure that the actions actually executed, and the results actually returned to
the application, are valid (i.e., satisfy the desired policy). The monitor may or
may not be inlined into the target application.

The ability of MRAs to transform results of actions is novel among general
runtime-enforcement models, as far as we are aware. Yet this ability is cru-
cial for enforcing many security policies, such as privacy, access-control, and
information-flow policies, which may require (trusted) mechanisms to sanitize
the results of actions before (untrusted) applications access those results. For
example, policies may require that system files get hidden when user-level appli-
cations retrieve directory listings, that email messages flagged by spam filters do
not get returned to clients, or that applications cannot infer secret data based
on the results they receive. Because existing frameworks do not model monitors
transforming results of actions, one cannot use existing models to specify or
reason about enforcing such result-sanitization policies.

The semantics of MRAs enables simple and flexible definitions of policies
and enforcement—significantly simpler and more flexible than those of previous
work. In particular, the definition of executions presented here allows policies
to make arbitrary requirements on how monitors must transform actions and
results. Consequently, this paper’s definition of enforcement does not need an
explicit notion of transparency, which previous work has considered essential
for enforcement [7J9)T2]. Transparency constrains mechanisms, forcing them to
permit already-valid actions to be executed. The MRA model enables policies
to specify strictly more and finer-grained constraints than transparency, thus
freeing the definition of enforcement from having to hardcode a transparency
requirement.

After defining MRAs and the precise circumstances under which they can be
said to enforce policies, this paper briefly characterizes the sets of policies MR As
can enforce soundly, completely, and precisely.



90 J. Ligatti and S. Reddy

Summary of Contributions. This paper develops a theory of runtime enforce-
ment, in which monitors may transform both actions and results. It contributes:

— A simple but general model of runtime mechanisms called MRAs. MRAs ap-
pear to be the first general model of runtime mechanisms that can transform
results and enforce result-sanitization policies.

— Definitions of policies and enforcement that, because they can reason about
how monitors transform actions and results, are significantly simpler and
more expressive than existing definitions.

— A brief analysis of the policies MRAs can enforce soundly, completely, and
precisely.

2 Background Definitions and Notation

This section briefly lays out some basic definitions of, and notation for specifying,
systems and traces. The definitions and notation presented here are extended
versions of definitions and notation in previous work (extended to include results
of actions) [2II6I12].

We define a system abstractly, in terms of (1) the actions it can execute
to perform computation and (2) the possible results of those actions. The sys-
tem’s interface determines its action set; for example, if the executing system
is an operating system then actions would be system calls; if the executing
system is a virtual machine then actions would be virtual-machine-code instruc-
tions (e.g., bytecode, including calls to API libraries integrated with the virtual
machine); and if the executing system is machine hardware then the actions
would be machine-code instructions. We use the metavariable A to represent
the (nonempty, possibly countably infinite) set of actions on a system and R
(disjoint from A) to represent the (nonempty, possibly countably infinite) set of
results. An event is either an action or a result, and we use E to denote the set
of events on a system; £ = AU R.

An execution or trace is a possibly infinite sequence of events; it is the sequence
of events that occur during a run of a monitored application and executing
system. Adopting a monitor-centric view of Figure[Ib, executions include events
related to the monitor (1) inputting an action from the target, (2) outputting
an action to the executing system, (3) inputting a result from the executing
system, and (4) outputting a result to the target. To be explicit about exactly
how a monitor is behaving, we subscript every event in an execution with ¢ or o
to indicate whether the monitor has input or output that event. When writing
executions, we separate events by semicolons. For example, an execution could
be:

shutdown; ; popupConfirm ; OK;; shutdown,

This execution represents the sequence of events in which an application at-
tempts to execute a shutdown action (so that action gets input to the monitor),
to which the monitor responds by outputting a window-popup action that, when
executed (e.g., by an operating system), confirms the shutdown with the user.



A Theory of Runtime Enforcement, with Results 91

The user OKs the shutdown, so an OK result gets input to the monitor, allowing
the monitor to then output the shutdown action after all. This example illus-
trates the alternating input-output nature of monitors that arises from their role
as event transformers [12].

The set of all well-formed, finite-length executions on a system with event
set F is E*; the set of all well-formed, infinite-length executions is E“; and
E> = E* U E“. The special symbol - refers to the empty execution, that is, an
execution in which no events occur. In general, we use - to refer to an absence
of events; at times we use - to denote the absence of a single action or result.
The metavariable e ranges over events, a over actions, r over results, x over
executions, and X over sets of executions (i.e., subsets of E°°). Sometimes it will
also be convenient to use « to refer to a “potential action”, that is, either - or an
action. Similarly, p ranges over {-}UR. The notation z;z’ denotes concatenation
of two executions x and z’, the result of which must be a well-formed execution
(in E). Finally, when z is a finite prefix of 2’ we write x < a’.

3 Mandatory Results Automata

We model monitors that behave as in Figure [[b as MRAs.

3.1 Definition of MRAs

An MRA M is a tuple (E,Q,qo,d), where E is the event set over which M
operates, () is the finite or countably infinite set of possible states of M, qq
is M’s initial state, and 0 is a (deterministic) transition function of the form
0 :Q x E— @ x E, which takes M’s current state and an event being input to
M (either an action the target is attempting to execute or a result the underlying
system has produced) and returns a new state for M and an event to be output
from M (either an action to be executed on the underlying system or a result to
be returned to the target). In contrast to earlier work [12], we do not require §
to be decidable; ¢ may not halt on some inputs. This ability of MRAs to diverge
accurately models the abilities of real runtime mechanisms.

(a7} [0 %)
We call a configuration of MRA M, where ¢ is M’s current state, «;
Po Pi

is either - or the action being input to M (by the target program), v, is either -
or the action being output by M (to the executing system), p; is either - or the
result being input to M (by the executing system), and p, is either - or the result
being output by M (to the target program). Because MRAs process events one
at a time, at most one of «;, ay, p;, and p, will ever be nonempty. Our notation
for writing configurations mimics the graphic representation of monitors’ inputs
and outputs in Figure [Ib.

q

a
We do not bother writing dots in configurations, so

a
q‘ is the same as

.
The starting configuration of an MRA is ‘qo‘ because the monitor begins exe-

cuting in its initial state with no events yet input or output.



92 J. Ligatti and S. Reddy

nestr _a “ (Input-Action) nects =T (Input-Result)
21 i
o r
8(q,a) = (¢, d (q,r) = (¢,
(0,0) = ( /) (Output-Act-for-Act) (0,7) = (g’ a) (Output-Act-for-Res)
’ q‘ <2 lg'[" ‘q =
6 9 = /7 6 qa T)= q/7 T/
(g,0) = (d",7) (Output-Res-for-Act) (@) =( ) (Output-Res-for-Res)
q‘ - | ‘q - |

Fig. 2. Single-step semantics of mandatory results automata

We define the operational semantics of MRAs with a labeled single-step judg-
ment whose form is C —=,; C’. This judgment indicates that MRA M takes
a single step from configuration C' to configuration C’ while extending the cur-
rent trace by event e (which will be tagged as either an input or output event).
Because M will always be clear from context, we henceforth omit it from the
judgment.

The definition of MRAS’ single-step semantics appears in Figure 2l Six infer-
ence rules define all possible MRA transitions:

1. Input-Action enables the MRA to receive a new input action from the target
(nexty is the next action generated by the target). Because p ranges over
{-} UR, the MRA can receive a new input action when in its initial config-

uration ’q()’ or when in a configuration of the form ’q’ in which case the

MRA has most recently returned a result r to the target so it is ready for
another input action).

2. Output-Act-for-Act enables the MRA, immediately after inputting action a,
to output a possibly different action a’.

3. Output-Res-for-Act enables the MRA, immediately after inputting action a,
to return a result r for a to the target.

4. Input-Result enables the MRA to receive a new input result r for its most
recent output action a (nexts is the next result generated by the system).

5. Output-Act-for-Res enables the MRA, immediately after inputting result r,
to output another action a.

6. Output-Res-for-Res enables the MRA, immediately after inputting result r,
to return a possibly different result r’ to the target for the action it most
recently tried to execute.

Although many alternatives exist for defining MRAs’ semantics (e.g., process
calculi and other deductive systems, some of which can be compressed into
four inference rules), we carefully selected the rules in Figure Pl based on their



A Theory of Runtime Enforcement, with Results 93

simplicity—not just in the rules themselves but also in the transition functions
of MRAs that step according to those rules.
Several observations about the operational semantics:

— MRASs can “accept” an input action a by outputting it (with Output-Act-
for-Act), receiving a result r for a (with Input-Result), and then returning r
to the application (with Output-Res-for-Res).

— MRASs can “halt” an application by outputting an action like exit, if the
underlying system can execute such an action, or by entering an infinite loop
in its transition function to block additional inputs and outputs from being
made.

— MRAS are indeed obligated to return results to applications before inputting
new actions. No transitions allow an MRA to input another action until it
has discharged the last by returning a result for it.

— MRASs can avoid or postpone executing dangerous actions while allowing
the target to continue executing (with Output-Res-for-Act). For example,
an MRA could avoid executing a dangerous port-open input action by out-
putting an error-code or exception result in response. Alternatively, the MRA
could quietly postpone executing the port-open action by immediately out-
putting a void result and then observing how the target uses the port; if
the target uses the port securely then the MRA could output the original
port-open action followed by the secure port-use action(s) (with Output-Act-
for-Act and Output-Act-for-Res). By postponing (i.e., buffering) dangerous
actions until they are known to be secure, MRAs can operate as edit au-
tomata; however, such buffering is only possible when the valid results of
buffered actions are predictable (such as void results of some port-open
actions).

— We make no assumptions about whether and how the executing system gen-
erates results for actions; the executing system may produce results nonde-
terministically or through uncomputable means (e.g., by reading a weather
sensor or spontaneous keyboard input). This design captures the reality that
monitors can only determine the results of many actions (e.g., readFile, or
getUserInput) by having the system actually execute those actions. Hence,
the Input-Result transition, and the single-step relation for MRAs in general,
may be nondeterministic. Similarly, MRAs have no knowledge of whether
and how the target generates actions, so the Input-Action transition may be
nondeterministic as well.

These observations, and the semantics of MRAs in general, match our under-
standing of how real program monitors behave. For example, in the Polymer
enforcement system [3], policies can make insertion suggestions to output arbi-
trary actions in response to an input action, can make exception or replacement
suggestions to output an arbitrary result for the most recent input action, can
monitor results of actions, and must return a result for the most recent input
action before inputting another. PSLang and LoPSiL policies, and aspects in
many languages (e.g., AspectJ), behave similarly [7/T4UT0].



94 J. Ligatti and S. Reddy

Limitations. Nonetheless, because MR As are models, some gaps do exist between
the possible behaviors of MRAs and what real monitors can do in practice. MRAs
share two standard limitations with other general runtime-enforcement mod-
els: (1) MRAs can interpose on and make decisions about all security-relevant
actions and results, but in practice some events may be imperceptible to the
monitor (e.g., monitoring every “clock-tick” action is possible in our model but
impractical); this is a problem of complete mediation [I5], and (2) by executing
transition functions, MRAs may delay the processing of time-sensitive events,
which prevents MRAs from enforcing some time-sensitive policies (this issue
is inherent in runtime monitoring). Besides these standard limitations, MRAs
have another: for simplicity in this paper, MRAs treat all actions as synchronous
(i-e., they finish processing, and return a result for, one input action before in-
putting another). This limitation prevents MRAs from effectively monitoring ap-
plications whose correctness depends on some security-relevant action(s) being
asynchronous. However, as mentioned in Section [[2] the edit-automata model
already provides a semantics for monitoring asynchronous actions.

3.2 Example MRAs

We next consider a couple example MRAs exhibiting simple, everyday sorts of
behaviors found in practical monitors. The behaviors are so simple that they may
seem trivial; nonetheless, the behaviors are outside existing runtime-enforcement
models because they involve monitors acting on unpredictable results of actions
(something neither truncation nor edit automata can do).

Example 1: Spam-Filtering MRA. This MRA M sanitizes the results of
getMessages actions to filter out spam emails. M’s state consists of a boolean
flag indicating whether M is in the process of obtaining email messages; M
begins in state 0. M’s transition function § is:

, e itg=0ande etMessages
(0,e) ifg=0and e #g g

5(g,e) = (1,e) if ¢ =0 and e =getMessages
(0, filter(e)) ifg=1

That is, M outputs its inputs verbatim and does not change its state as long
as it does not input a getMessages action. When M does input getMessages,
it sets its boolean flag and allows getMessages to execute. If M then inputs a
result r for getMessages, it outputs the spam-filtered version of r and returns
to its initial state. With similar techniques, M could sanitize results in other
ways (e.g., to remove system files from directory listings).

Example 2: Dangerous-Action-Confirming MRA. Our second example
MRA pops up a window to confirm a dangerous action d with the user before
allowing d to execute. We assume d has a default return value r, which must be
returned when the user decides not to allow d to execute (r would typically be a



A Theory of Runtime Enforcement, with Results 95

null pointer or a value indicating an exception). We also assume a popupConfirm
action that works like a JOptionPane.showConfirmDialog method in Java, re-
turning either an OK or cancel result. M uses a boolean flag, again initially set
to 0, for its state, and the following transition function.

(0,e) ifg=0ande#d
(1,popupConfirm) ifg=0ande=d

(0,7) if ¢ =1 and e =cancel

(0,d) ifg=1and e=0K

3(g,e) =

This function works as expected: M outputs non-d input events verbatim. Once
M inputs a d action, it outputs a popupConfirm action and waits for a result.
If the user cancels the execution of d, M outputs result r; otherwise it outputs
action d.

Summary: Because of the simplicity in MRASs’ operational semantics, and in
concrete MRA transition functions, plus the fact that MRA behaviors match
our understanding of the essential behaviors of real runtime monitors, we believe
MRAs serve as a good basis for developing a theory of runtime enforcement.

3.3 Generalizing the Operational Semantics

Before we can formally define what it means for an MRA to enforce a policy, we
need to generalize the single-step semantics to account for multiple steps. First,
we define the (finite) multi-step relation, with judgment form C' —%5* C’, in the
standard way as the reflexive, transitive closure of the single-step relation. The
trace above the arrow in the multi-step judgment gets built by concatenating, in
order, every event labeled in the single-step judgments. Hence, C' ——* C’ means
that the MRA builds execution x while transitioning, using any finite number
of single steps, from configuration C' to configuration C’.

We also define a judgment M|}z to mean that MRA M, when its input events
match the sequence of input events in x, in total produces the possibly infinite-
length trace x. To define M|}z formally, there are two cases to consider: First,
when 2 € E¥, M|z iff for all prefixes 2’ of x, there exists an M-configuration

C such that Cy = (where Cj is M’s initial configuration). Second, when

x € E*, M|z iff there exists an M-configuration C' such that (1) Cy —+* C' and
(2) if « ends with an input event then M never transitions from C' (otherwise,
2 would not be the entire trace produced on z’s input events).

4 MRA-Based Enforcement
This section defines what it means for an MRA to enforce a policy.

4.1 Policies and Properties

A policy is a predicate on sets of executions [I6]; a set of executions X C
E* satisfies policy P iff P(X). Some policies are also properties. Policy P



96 J. Ligatti and S. Reddy

is a property iff there exists a predicate P over E*® such that VX C E™ :
(P(X ) = VzeX: P(m)) There is a one-to-one correspondence between a

property P and its predicate P, so the rest of the paper uses P unambiguously
to refer to both.

Intuitively, policies can determine whether a set of target executions is valid
based on the executions’ relationships with one another, but properties cannot
take such inter-execution relationships into account. It is sometimes possible
for runtime mechanisms to enforce nonproperty policies: a monitor could refer
to earlier traces (e.g., saved in files) when deciding how to transform the cur-
rent execution, or it could monitor multiple executions of a program concurrently
[6]. For simplicity, though, this paper analyzes only the properties MRAs can en-
force; we assume monitors make decisions about a single execution at a
time.

There are two important differences between this paper’s definition of poli-
cies and the definitions in previous models. The differences arise from the way
executions are modeled here: instead of modeling executions as just the actions
a monitor outputs, the MRA model also includes (1) output results, and (2)
all input events, in executions. Because policies here may take output results
into account, they can specify constraints on which results may be returned
to targets; policies here may require results to be sanitized. For example, the
spam-filtering MRA from Section enforces a policy requiring all results of
getMessages actions to be filtered (this policy is a property because it is sat-
isfied iff every execution in a set X has exactly zero spam-containing results of
getMessages actions).

Moreover, because policies in the MRA model can take input events
into account, policies here can require arbitrary relationships to hold
between input and output events. For example, a property P could be
dissatisfied by execution shutdown; (i.e., =P(shutdown;)) but be satisfied by
shutdown, ; popupConfirm,. To enforce this P, an MRA may have no choice but
to output popupConfirm upon inputting a shutdown action. Policies in previous
models (e.g., truncation and edit automata) could not specify such relationships
between input and output events because the policies were predicates over output
executions only. The only relationship allowed between input and output events
in previous models was transparency, which was hardcoded into the definition
of enforcement [9T2] and required monitors to output valid inputs unchanged.
Transparency can be encoded in policies in the MRA model (by defining policies
to be satisfied only by executions in which valid inputs get output unchanged),
but policies here are strictly more expressive than transparency be-
cause they can specify arbitrary input-output relationships. For example, the
popup-confirmation policy above specifies a relationship that is outside the scope
of transparency (because there is no requirement for shutdown to be output
unchanged).



A Theory of Runtime Enforcement, with Results 97

4.2 Enforcement

We define enforcement in terms of standard principles of soundness and com-
pleteness. MRA M is sound with respect to property P when M only produces
traces satisfying P M is complete with respect to P when it produces all traces
satisfying P and M is precise with respect to P when it is sound and complete
with respect to p.

Definition 1. On a system with event set E, MRA M :

— soundly enforces P iff Ve € B (M{x) = P(x)),
— completely enforces P iff Vo € E® : (P(z) = (M{z)), and
— precisely enforces P iff Vo € E® : (Mllz) <= P(x)).

Definition [ is significantly simpler and more flexible than definitions of enforce-
ment in related work, because it (1) does not hardcode transparency require-
ments, and (2) defines complete and precise, in addition to sound, enforcement.

For an example of MRA enforcement, we reconsider the dangerous-action-
confirming MRA M of Section (recall that M pops up a window to get
user confirmation before executing action d; if the user cancels execution of d,
a result r gets returned to the target in place of executing d). Let us use e;; e,
as shorthand for any two-event sequence in which a non-d event is input and
then immediately output. Then M precisely enforces a property P satisfied by
exactly those well-formed executions matching the pattern:

(ei; €0 | di;popupConfirm (cancel;;r, | 0K;;d,))™ (d;; popupConfirm )?

This pattern exactly characterizes the executions M builds. M outputs its input
events verbatim until no additional inputs arrive or a d action is input. Once M
inputs a d action, it immediately outputs the popupConfirm action. Execution
stops at this point if the user never selects whether d should be allowed; the pat-
tern above therefore allows executions to optionally end with d;; popupConfirm,.
However, if M inputs a cancel or OK result for the popupConfirm action, it must
output the appropriate event in response (either r or d) and continue executing.
Note that this policy disallows executions from just ending with, for example,
an OK result being input to confirm a d action; the policy requires execution
to continue after the 0K input by allowing d to execute. The policy therefore
specifies a non-transparency relationship between input and output events (un-
related to outputting inputs unchanged), which cannot be expressed in previous
enforcement models.

4.3 Wanted: Auxiliary Predicates, Dead and Alive

Given a property P and a finite execution x, we often find it useful to know
whether x can be extended into a valid execution. We introduce two predicates
for this purpose: when x can be made valid by extending it with some sequence
of events, we say x is alive; otherwise, x is dead. Formally, alivep(r) <= (32’ €

E*: P(x;2')) and deadp(v) <= —alivep(x).



98 J. Ligatti and S. Reddy

Because P will always be clear from context, we omit it as a subscript in future
alive(x) and dead(x) judgments. Also, because properties in practice generally
have predicates P and alive that are decidable over finite-length inputs, and
because only considering such properties simplifies the theorems in Section [5]
this paper limits its scope to properties with predicates P(w) and alive(x) that
are decidable over finite x.

5 Analysis of MRA-Enforceable Policies

Theorems [TH3] characterize the properties MRAs can soundly, completely, and
precisely enforce. Although space limitations prevent us from getting into any
details, interested readers may consult our technical report [I3] for discussions
and proofs of the theorems.

Notation. The theorems use the notation 3(z’;e;) < z : F to mean that there
exists a prefix of x having the form z’; ¢; such that F' holds. Similarly, the nota-
tion V(x;e;) € E* : F' means that F is true for all well-formed finite executions
x;e;. We also use uniqueness quantification of the form J1e € F : F to mean
that there exists exactly one event e in E such that F is true. Finally, we assume
conjunction (A) binds more tightly than disjunction (V).

Theorem 1. Property Pona system with event set E can be soundly enforced
by some MRA M iff there exists recursively enumerable predicate R over E* such
that all the following are true.

1. R()

A R(x;eel)
e p. * . — “p. !/ . N ) ’ Yo
2. ¥(x;e;) € E*: ( R(z) V P(z;e;) V 3’ € E: </\ P(x;ei;e’o)>>

5. Vo € B2 (<P(r) = 3(ae0) S =R())

Theorem 2. Property P ona system with event set E can be completely
enforced by some MRA M iff:

/ : ool
Yase)) € B - ( Ve' € E : dead(x;e;;el) )

V —P(z;e;) A 31€ € E : alive(x;eq; el)

To learn which policies MRAs precisely enforce, we can intersect the policies
soundly enforceable with the policies completely enforceable, and then simplify
the result. Doing so produces Theorem [3l

Theorem 3. Property Pona system with event set E can be precisely enforced
by some MRA M iff all the following are true.



A Theory of Runtime Enforcement, with Results 99

1. P()
~P()
V P(z;e;) A Ve € E:dead(z;eq;el)
V —P(z;e;) A J1€/ € E: P(x;e:€))
A e’ € E : alive(z;e;;el)
3. Vx € E¥: (—P(az) = I(2';¢;) 2z —.P(g;’))

2. ¥Y(x;e;) € E*:

6 Conclusions

We have presented MR As as general models of runtime enforcement mechanisms.
MRASs do not suffer from the primary problems of previous models because they
(1) allow monitors to transform actions and results and (2) do not assume that
monitors can predetermine results of actions. MRAs are the first general models
of runtime enforcement we know of in which result-sanitization policies can be
reasoned about, and we have seen some examples of how MRAs with simple
transition functions can enforce result-sanitization, and other result-dependent,
policies. Also, the definitions of policies and enforcement with MRAs are sig-
nificantly simpler and more expressive than existing definitions because they
allow policies to require arbitrary (including non-transparency) relationships be-
tween input and output events. Finally, after defining MRAs and enforcement,
we have characterized the policies they soundly, completely, and precisely en-
force, so for example, security engineers should never waste effort attempting to
use MRA-style mechanisms to precisely enforce policies outside the set defined
by Theorem Bl

These contributions, and theories of runtime enforcement in general, are im-
portant because they:

— shape how we think about the roles and meanings of policies, mechanisms,
and enforcement,

— influence our decisions about how to specify policies and mechanisms (in-
cluding designs of policy-specification languages),

— enable us to reason about whether specific mechanisms enforce desired poli-
cies, and

— improve our understanding of which policies can and cannot be enforced at
runtime.

We hope that with continued research, enforceability theory will benefit the
security community in similar ways that computability theory has benefited the
broader computer-science community.

Acknowledgments

We are grateful for feedback from Lujo Bauer, Egor Dolzhenko, Frank Piessens,
and the anonymous reviewers. This research was supported by National Science
Foundation grants CNS-0716343 and CNS-0742736.



100 J. Ligatti and S. Reddy
References
1. Aktug, I., Dam, M., Gurov, D.: Provably correct runtime monitoring. In: Proceed-

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

ings of the 15th International Symposium on Formal Methods (May 2008)

. Alpern, B., Schneider, F.B.: Defining liveness. Information Processing Let-

ters 21(4), 181-185 (1985)

. Bauer, L., Ligatti, J., Walker, D.: Composing expressive runtime security policies.

ACM Transactions on Software Engineering and Methodology 18(3), 1-43 (2009)

. Beauquier, D., Cohen, J., Lanotte, R.: Security policies enforcement using finite

edit automata. Electron. Notes Theor. Comput. Sci. 229(3), 19-35 (2009)

. Dam, M., Jacobs, B., Lundblad, A., Piessens, F.: Security monitor inlining for mul-

tithreaded java. In: Proceedings of the European Conference on Object-Oriented
Programming (ECOOP) (July 2009)

. Devriese, D., Piessens, F.: Non-interference through secure multi-execution. In:

Proceedings of the IEEE Symposium on Security and Privacy, pp. 109-124 (May
2010)

. Erlingsson, U.: The Inlined Reference Monitor Approach to Security Policy En-

forcement. PhD thesis, Cornell University (January 2004)

. Fong, P.W.L.: Access control by tracking shallow execution history. In: Proceedings

of the IEEE Symposium on Security and Privacy (May 2004)

. Hamlen, K., Morrisett, G., Schneider, F.B.: Computability classes for enforcement

mechanisms. ACM Transactions on Progamming Languages and Systems 28(1),
175-205 (2006)

Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold, W.: An
overview of AspectJ. In: Knudsen, J.L. (ed.) ECOOP 2001. LNCS, vol. 2072,
p. 327. Springer, Heidelberg (2001)

Kim, M., Kannan, S., Lee, 1., Sokolsky, O., Viswantathan, M.: Computational
analysis of run-time monitoring—fundamentals of Java-MaC. Run-time Verifica-
tion (June 2002)

Ligatti, J., Bauer, L., Walker, D.: Run-time enforcement of nonsafety policies. ACM
Transactions on Information and System Security 12(3), 1-41 (2009)

Ligatti, J., Reddy, S.: A theory of runtime enforcement, with results. Tech-
nical Report USF-CSE-SS-102809, University of South Florida (June 2010),
http://www.cse.usf.edu/~1ligatti/papers/mra-tr.pdf

Ligatti, J., Rickey, B., Saigal, N.: LoPSiL: A location-based policy-specification
language. In: International ICST Conference on Security and Privacy in Mobile
Information and Communication Systems (MobiSec) (June 2009)

Saltzer, J., Schroeder, M.: The protection of information in computer systems.
Proceedings of the IEEE 63(9), 1278-1308 (1975)

Schneider, F.B.: Enforceable security policies. ACM Transactions on Information
and Systems Security 3(1), 30-50 (2000)

Talhi, C., Tawbi, N., Debbabi, M.: Execution monitoring enforcement under
memory-limitation constraints. Information and Computation 206(2-4), 158-184
(2008)

Viswanathan, M.: Foundations for the Run-time Analysis of Software Systems.
PhD thesis, University of Pennsylvania (2000)

Yu, D., Chander, A., Islam, N., Serikov, I.: Javascript instrumentation for browser
security. In: Proceedings of the Symposium on Principles of Programming Lan-
guages, pp. 237-249 (2007)


http://www.cse.usf.edu/~ligatti/papers/mra-tr.pdf

Enforcing Secure Object Initialization in Java

Laurent Hubert!, Thomas Jensen?, Vincent Monfort?, and David Pichardie?

! CNRS/IRISA, France
2 INRIA Rennes - Bretagne Atlantique/IRISA, France

Abstract. Sun and the CERT recommend for secure Java development
to not allow partially initialized objects to be accessed. The CERT consid-
ers the severity of the risks taken by not following this recommendation
as high. The solution currently used to enforce object initialization is
to implement a coding pattern proposed by Sun, which is not formally
checked. We propose a modular type system to formally specify the ini-
tialization policy of libraries or programs and a type checker to statically
check at load time that all loaded classes respect the policy. This allows
to prove the absence of bugs which have allowed some famous privilege
escalations in Java. Our experimental results show that our safe default
policy allows to prove 91% of classes of java.lang, java.security
and javax.security safe without any annotation and by adding 57
simple annotations we proved all classes but four safe. The type system
and its soundness theorem have been formalized and machine checked
using Coq.

1 Introduction

The initialization of an information system is usually a critical phase where
essential defense mechanisms are being installed and a coherent state is being
set up. In object-oriented software, granting access to partially initialized objects
is consequently a delicate operation that should be avoided or at least closely
monitored. Indeed, the CERT recommendation for secure Java development [2]
clearly requires to not allow partially initialized objects to be accessed (guideline
OBJ04-J). The CERT has assessed the risk if this recommendation is not followed
and has considered the severity as high and the likelihood as probable. They
consider this recommendation as a first priority on a scale of three levels.

The Java language and the Java Byte Code Verifier (BCV) enforce some
properties on object initialization, e.g. about the order in which constructors of
an object may be executed, but they do not directly enforce the CERT recom-
mendation. Instead, Sun provides a guideline that enforces the recommendation.
Conversely, failing to apply this guidelines may silently lead to security breaches.
In fact, a famous attack [4] used a partially initialized class loader for privilege
elevation.

We propose a twofold solution: (i) a modular type system which allows to
express the initialization policy of a library or program, i.e. which methods may
access partially initialized objects and which may not; and (ii) a type checker,

D. Gritzalis, B. Preneel, and M. Theoharidou (Eds.): ESORICS 2010, LNCS 6345, pp. 101 2010.
© Springer-Verlag Berlin Heidelberg 2010



102 L. Hubert et al.

which can be integrated into the BCV, to statically check the program at load
time. To validate our approach, we have formalized our type system, machine
checked its soundness proof using the Coq proof assistant, and experimentally
validated our solution on a large number of classes from Sun’s Java Runtime
Environment (JRE).

Section [3] overviews object initialization in Java and its impacts on secu-
rity. Section [4] then informally presents our type system, which is then formally
described in Section Bl Section [@ finally presents the experimental results we
obtained on Sun’s JRE.

2 Related Work

Object initialization has been studied from different points of view. Freund and
Mitchell [7] have proposed a type system that formalizes and enforces the initial-
ization properties ensured by the BCV, which are not sufficient to ensure that no
partially initialized object is accessed. Unlike local variables, instance fields have
a default value (null, false or 0) which may be then replaced by the program.
The challenge is then to check that the default value has been replaced before
the first access to the field (e.g. to ensure that all field reads return a non-null
value). This is has been studied in its general form by Fahndrich and Xia [6],
and Qi and Myers [9]. Those works are focused on enforcing invariants on fields
and finely tracks the different fields of an object. They also try to follow the
objects after their construction to have more information on initialized fields.
This is an overkill in our context. Unkel and Lam studied another property of
object initialization: stationary fields [12]. A field may be stationary if all its
reads return the same value. There analysis also track fields of objects and not
the different initialization of an object. In contrast to our analysis, they stop to
track any object stored into the heap.

Other work have targeted the order in which methods are called. It has been
studied in the context of rare events (e.g. to detect anomaly, including intru-
sions). We refer the interested reader to the survey of Chandola et al. [3]. They
are mainly interested in the order in which methods are called but not about
the initialization status of arguments. While we guarantee that a method taking
a fully initialized receiver is called after its constructor, this policy cannot be
locally expressed with an order on method calls as the methods (constructors)
which needs to be called on a object to initialize it depends on the dynamic type
of the object.

3 Context Overview

Fig. [l is an extract of class ClassLoader of SUN’s JRE as it was before 1997.
The security policy which needs to be ensured is that resolveClass, a security
sensitive method, may be called only if the security check 1. 5 has succeeded.
To ensure this security property, this code relies on the properties enforced on
object initialization by the BCV.



Enforcing Secure Object Initialization in Java 103

1 public abstract class ClassLoader {

2 private ClassLoader parent;

3 protected ClassLoader() {

4 SecurityManager sm = System.getSecurityManager() ;
5 if (sm != null) {sm.checkCreateClassLoader();}

6 this.parent = ClassLoader.getSystemClassLoader () ;
7
8
9

}

protected final native void resolveClass(Class c);

}

Fig. 1. Extract of the ClassLoader of Sun’s JRE

Standard Java Object Construction. In Java, objects are initialized by
calling a class-specific constructor which is supposed to establish an invariant on
the newly created object. The BCV enforces two properties related to these con-
structors. These two properties are necessary but, as we shall see, not completely
sufficient to avoid security problems due to object initialization.

Property 1. Before accessing an object, (i) a constructor of its dynamic type has
been called and (ii) each constructor either calls another constructor of the same
class or a constructor of the super-class on the object under construction, except
for java.lang.0Object which has no super-class.

This implies that at least one constructor of C' and of each super-class of C' is
called: it is not possible to bypass a level of constructor. To deal with exceptional
behaviour during object construction, the BCV enforces another property — con-
cisely described in The Java Language Specification [8], Section 12.5, or implied
by the type system described in the JSR202 [1]).

Property 2. If one constructor finishes abruptly, then the whole construction of
the object finishes abruptly.

Thus, if the construction of an object finishes normally, then all constructors
called on this object have finished normally. Failure to implement this verification
properly led to a famous attack [4] in which it was exploited that if code such as
try {super();} catch(Throwable e){} in a constructor is not rejected by
the BCV, then malicious classes can create security-critical classes such as class
loaders.

Attack on the Class Loader and the Patch from Sun. However, even with
these two properties enforced, it is not guaranteed that uninitialized objects can-
not be used. In Fig. [l if the check fails, the method checkCreateClassLoader
throws an exception and therefore terminates the construction of the object,
but the garbage collector then call a finalize () method, which is an instance
method and has the object to be collected as receiver (cf. Section 12.6 of [g]).
An attacker could code another class that extends ClassLoader and has a
finalize () method. If run in a right-restricted context, e.g. an applet, the con-
structor of ClassLoader fails and the garbage collector then call the attacker’s



104 L. Hubert et al.

1 public abstract class ClassLoader {

2 private volatile boolean initialized;

3 private ClassLoader parent;

4 protected ClassLoader () {

5 SecurityManager sm = System.getSecurityManager() ;
6 if (sm != null) {sm.checkCreateClassLoader();}

7 this.parent = ClassLoader.getSystemClassLoader() ;
s this.initialized = true;}

9 private void check() {

10 if (!'initialized) {

11 throw new SecurityException

12 "ClassLoader object not initialized");}}

13 protected final void resolveClass(Class c) {

14 this.check();

15 this.resolveClassO(c);}

16 private native void resolveClassO(Class c);
17}

Fig. 2. Extract of the ClassLoader of Sun’s JRE

finalize method. The attacker can therefore call the resolveClass method
on it, bypassing the security check in the constructor and breaking the security
of Java.

The initialization policy enforced the BCV is in fact too weak: when a method
is called on an object, there is no guarantee that the construction of an object
has been successfully run. An ad-hoc solution to this problem is proposed by
SUN [II] in its Guideline 4-3 Defend against partially initialized instances of
non-final classes: adding a special Boolean field to each class for which the
developer wants to ensure it has been sufficiently initialized. This field, set to
false by default, should be private and should be set to true at the end of
the constructor. Then, every method that relies on the invariant established by
the constructor must test whether this field is set to true and fail otherwise. If
initialized is true, the construction of the object up to the initialization of
initialized has succeeded. Checking if initialized is true allows to ensure
that sensitive code is only executed on classes that have been initialized up to
the constructor of the current class. Fig. 2l shows the same extract as in Fig. [
but with the needed instrumentation (this is the current implementation as of
JRE 1.6.0 16).

Although there are some exceptions and some methods are designed to access
partially initialized objects (for example to initialize the object), most methods
should not access partially initialized objects. Following the remediation solution
proposed in the CERT’s recommendation or Sun’s guideline 4-3, a field should
be added to almost every class and most methods should start by checking
this field. This is resource consuming and error prone because it relies on the
programmer to keep track of what is the semantic invariant, without providing
the adequate automated software development tools. It may therefore lead not to



Enforcing Secure Object Initialization in Java 105

functional bugs but to security breaches, which are harder to detect. In spite of
being known since 1997, this pattern is not always correctly applied to all places
where it should be. This has lead to security breaches, see e.g., the Secunia
Advisory SA10056 [10].

4 The Right Way: A Type System

We propose a twofold solution: first, a way to specify the security policy which
is simple and modular, yet more expressive than a single Boolean field; second,
a modular type checker, which could be integrated into the BCV, to check that
the whole program respects the policy.

4.1 Specifying an Initialization Policy with Annotations

We rely on Java annotations and on one instruction to specify our initialization
policy. We herein give the grammar of the annotations we use.

V ANNOT ::= @Init | @Raw | @Raw(CLASS)
R ANNOT ::= @Pre (V ANNOT) | @Post (V ANNOT)

We introduce two main annotations: @Init, which specifies that a reference can
only point to a fully initialized object or the null constant, and @rRaw, which
specifies that a reference may point to a partially initialized object. A third
annotation, @Raw (CLASS), allows to precise that the object may be partially ini-
tialized but that all constructors up to and including the constructor of CLASS
must have been fully executed. E.g., when one checks that initialized contains
true in ClassLoader.resolveClass, one checks that the receiver has the type
@Raw (ClassLoader). The annotations produced by the v_aNNOT rule are used
for fields, method arguments and return values. In the Java language, instance
methods implicitly take another argument: a receiver — reachable through vari-
able this. We introduce a @Pre annotation to specify the type of the receiver at
the beginning of the method. Some methods, usually called from constructors,
are meant to initialize their receiver. We have therefore added the possibility to
express this by adding a @Post annotation for the type of the receiver at the
end of the method. These annotations take as argument an initialization level
produced by the rule v_ANNOT.

Fig. Bl shows an example of @Raw annotations. Class Ex1A has an instance
field £, a constructor and a getter getF. This getter requires the object to be
initialized at least up to Ex1A as it accesses a field initialized in its constructor.
The constructor of Ex1B uses this getter, but the object is not yet completely
initialized: it has the type Raw (Ex1a) as it has finished the constructor of Ex1a
but not yet the constructor Ex1B. If the getter had been annotated with @Init
it would not have been possible to use it in the constructor of Ex1B.

Another part of the security policy is the SetInit instruction, which mimics
the instruction this.initialized = true in Sun’s guideline. It is implicitly
put at the end of every constructor but it can be explicitly placed before. It



106 L. Hubert et al.

1 class Ex1A { 9 class Ex1B extends Ex1A({

2 private Object f; 10 Ex1IB () {

3 Ex1A (Object o) { 11 super () ;

4 securityManagerCheck() 12 ... = this.getF();
5 this.f = o;} 13 }

6 @Pre (@Raw (Ex1A)) 14 }

7 getF () {return this.f;}

8 }

Fig. 3. Motivations for Raw (CLASS) annotations

1 public C() {

2 ...

3 securityManagerCheck (); // perform dynamic security checks

4 SetInit; // declare the object initialized up C
5 Global.register (this); // the object is used with a method

6 } // that only accept Raw(C) parameters

Fig. 4. An Example with SetInit

declares that the current object has completed its initialization up to the current
class. Note that the object is not yet considered fully initialized as it might be
called as a parent constructor in a subclass. The instruction can be used, as in
Figll in a constructor after checking some properties and before calling some
other method.

Fig. Bl shows class ClassLoader with its policy specification. The policy en-
sured by the current implementation of Sun is slightly weaker: it does not ensure
that the receiver is fully initialized when invoking resolveClass but simply
checks that the constructor of ClassLoader has been fully run. On this exam-
ple, we can see that the constructor has the annotations @Pre (@Raw), mean-
ing that the receiver may be completely uninitialized at the beginning, and
@Post (@Raw (ClassLoader) ), meaning that, on normal return of the method,
at least one constructor for each parent class of ClassLoader and a constructor
of ClassLoader have been fully executed.

We define as default values the most precise type that may be use in each
context. This gives a safe by default policy and lowers the burden of annotating
a program.

— Fields, method parameters and return values are fully initialized objects
(written @Init).

— Constructors take a receivers uninitialized at the beginning (@Pre (@Raw))
and initialized up-to the current class at the end (written @Post (@Raw (C))
if in the class c).

— Other methods take a receiver fully initialized (ePre(@Init)).

— Except for constructors, method receivers have the same type at the end
as at beginning of the method (written @Post (a) if the method has the
annotation @bre(a)).



Enforcing Secure Object Initialization in Java 107

1 public abstract class ClassLoader {
2 @Init private ClassLoader parent;

3 @Pre(@Raw) @Post (@Raw(ClassLoader))

4 protected ClassLoader () {

5 SecurityManager sm = System.getSecurityManager() ;

6 if (sm != null) {sm.checkCreateClassLoader();}

7 this.parent = ClassLoader.getSystemClassLoader() ;

8 }

9 @Pre(@Init) @Post(@Init)

10 protected final native void resolveClass(@Init Class c);
11}

Fig. 5. Extract of the ClassLoader of Sun’s JRE

If we remove from Fig. [l the default annotations, we obtain the original code
in Fig. [l Tt shows that despite choosing the strictest (and safest) initialization
policy as default, the annotation burden can be kept low.

4.2 Checking the Initialization Policy

We have chosen static type checking for at least two reasons. Static type checking
allows for more performances (except for some rare cases), as the complexity of
static type checking is linear in the code size, whereas the complexity of dynamic
type checking is linear in the execution time. Static type checking also improves
reliability of the code: if a code passes the type checking, then the code is correct
with respect to its policy, whereas the dynamic type checking only ensures the
correction of a particular execution.

Reflection in Java allows to retrieve code from the network or to dynamically
generates code. Thus, the whole code may not be available before actually exe-
cuting the program. Instead, code is made available class by class, and checked
by the BCV at linking time, before the first execution of each method. As the
whole program is not available, the type checking must be modular: there must
be enough information in a method to decide if this method is correct and, if an
incorrect method is found, there must exist a safe procedure to end the program
(usually throwing an exception), i.e. it must not be too late.

To a have a modular type checker while keeping our security policy simple,
method parameters, respectively return values, need to be contra-variant, re-
spectively co-variant, i.e. the policy of the overriding methods needs to be at
least as general as the policy of the overridden method. Note that this is not
surprising: the same applies in the Java language (although Java imposes the
invariance of method parameters instead of the more general contra-variance),
and when a method call is found in a method, it allows to rely on the policy of
the resolved method (as all the method which may actually be called cannot be
known before the whole program is loaded).



108 L. Hubert et al.

x,y,r € Var f € Fieldl e€ Fxc i€ L=N
p € Prog ::= {classes € P(Class), main € Class,
fields € Field — Type, lookup € Class — Meth — Meth}
¢ € Class ::= {super € Class1, methods € P(Meth), init € Meth}
m € Meth ::= {instrs € Instr array, handler € £L — Fzc — L,
pre € Type, post € Type, argtype € Type, rettype € Type}
T € Type = Init | Raw(c) | Raw™
e € Expr z=null |z |e.f
ins € Instr i=x —e|z.f—y|xz—newc(y)|if (x) jmp |
super(y) | x «— r.m(y) | return = | SetInit

Fig. 6. Language Syntax

5 Formal Study of the Type System

The purpose of this work is to provide a type system that enforces at load time
an important security property. The semantic soundness of such mechanism is
hence crucial for the global security of the Java platform. In this section, we
formally define the type system and prove its soundness with respect to an
operational semantics. All the results of this section have been machine-checked
with the Coq proof assistant].

Syntax. Our language is a simple language in-between Java source and Java
bytecode. Our goal was to have a language close enough to the bytecode in
order to easily obtain, from the specification, a naive implementation at the
bytecode level while keeping a language easy to reason with. It is based on
the decompiled language from Demange et al. [5] that provides a stack-less
representation of Java bytecode programs. Fig. [0 shows the syntax of the
language. A program is a record that handles a set of classes, a main class,
a type annotation for each field and a lookup operator. This operator is used
do determine during a virtual call the method (p.lookup ¢ m) (if any) that
is the first overriding version of a method m in the ancestor classes of the
class ¢. A class is composed of a super class (if any), a set of method and a
special constructor method init. A method handles an array of instructions,
a handler function such that (m.handler i e) is the program point (if any) in
the method m where the control flows after an exception e has been thrown
at point 7. Each method handles also four initialization types for the initial
value of the variable this (m.pre), its final value (m.post), the type of its
formal parameteﬂg (m.argtype) and the type of its return value (m.rettype).
The only expressions are the null constant, local variables and field reads. For
this analysis, arithmetic needs not to be taken into account. We only manip-
ulate objects. The instructions are the assignment to a local variable or to a field,

! The development can be downloaded at
http://www.1irisa.fr/celtique/ext/rawtypes/
2 For the sake of simplicity, each method has a unique formal parameter arg.


http://www.irisa.fr/celtique/ext/rawtypes/

Enforcing Secure Object Initialization in Java 109

Excse n=el| L
L>1

(exception flag)
(location)
Vov o=1]null (value)
M= Var - V>3p (local variables)
O = Class x Class, x (Field - V) 3 o0 = [c, Cinit, O] (object)
H=L—-0,>0 (heap)
CS 3 cs = (m,i,l,p,7) :: cs | € (call stack)
(

S = Meth x L XM x H x CS x Ezc 3 st := (m,i,p,0,cS)e state)

Fig. 7. Semantic Domains

object creation (new)ﬁ, (non-deterministic) conditional jump, super constructor
call, virtual method call, return, and a special instruction that we introduce for
explicit object initialization: SetInit.

Semantic Domains. Fig.[[]shows the concrete domain used to model the pro-
gram states. The state is composed of the current method m, the current pro-
gram point ¢ in m (the index of the next instruction to be executed in m.instrs), a
function for local variables, a heap, a call stack and an exception flag. The heap
is a partial function which associates to a location an object [c, Cinit,0] Wwith
c its type, cin;t its current initialization level and o a map from field to value
(in the sequel o is sometimes confused with the object itself). An initialization
cinit € Class means that each constructors of ¢;,;; and its super-classes have
been called on the object and have returned without abrupt termination. The
exception flag is used to handle exceptions: a state (- ). with e € Fzxc is reached
after an exception e has been thrown. The execution then looks for a handler
in the current method and if necessary in the methods of the current call stack.
When equal to L, the flag is omitted (normal state). The call stack records the
program points of the pending calls together with their local environments and
the variable that will be assigned with the result of the call.

Initialization Types. We can distinguish three different kinds of initialization
types. Given a heap o we define a value type judgment h - v : 7 between values
and types with the following rules.

O(Z) = [Cdy'na Cinit s 0]
Ve cayn 2 Ne 2 = cine 2 o(l) = [e, ¢, 0]

obnull: T o F1: Rawt o F1: Raw(c) ot 1: Init

The relation < here denotes the reflexive transitive closure of the relation induced
by the super element of each class. Raw™ denotes a reference to an object which

3 Here, the same instruction allocates the object and calls the constructor. At bytecode
level this gives raise to two separated instructions in the program (allocation and
later constructor invocation) but the intermediate representation generator [5] on
which we rely is able to recover such construct.



110 L. Hubert et al.

m.instrsfi] = x < new c(y) x # this  Alloc(o,c,l,0') o'+ p(y) : c.init.argtype
(m, i, p, 0, cs) = {c.init, 0, [- — null][this — l][arg — p(y)],0’, (m, i, p, ) :: cs)

m.instrs[i] = SetInit ~m = c.init  p(this) =1  SetInit(o,c,l,0")
<mv i7 P, 0, CS> = <’)’)’L, Z+17 12 0’3 C'S>
me.instrs[i] = return x  p(this) =1  ((Vc, m # c.init) = o = o