

Lecture Notes in Computer Science 6234
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Marco Dorigo Mauro Birattari
Gianni A. Di Caro René Doursat
Andries P. Engelbrecht Dario Floreano
Luca Maria Gambardella Roderich Groß
Erol Şahin Hiroki Sayama
Thomas Stützle (Eds.)

Swarm Intelligence

7th International Conference, ANTS 2010
Brussels, Belgium, September 8-10, 2010
Proceedings

13

Volume Editors

Marco Dorigo, E-mail: mdorigo@ulb.ac.be
Mauro Birattari, E-mail: mbiro@ulb.ac.be
Gianni A. Di Caro, E-mail: gianni@idsia.ch
René Doursat, E-mail: rene.doursat@polytechnique.edu
Andries P. Engelbrecht, E-mail: engel@cs.up.ac.za
Dario Floreano, E-mail: dario.floreano@epfl.ch
Luca Maria Gambardella, E-mail: luca@idsia.ch
Roderich Groß, E-mail: r.gross@sheffield.ac.uk
Erol Şahin, E-mail: erol@ceng.metu.edu.tr
Hiroki Sayama, E-mail: sayama@binghamton.edu
Thomas Stützle, E-mail: stuetzle@ulb.ac.be

Library of Congress Control Number: 2010933078

CR Subject Classification (1998): I.2, F.1, F.2, H.4, C.2, H.3

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-642-15460-3 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-15460-7 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2010
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper 06/3180

Preface

These proceedings contain the papers presented at ANTS 2010, the 7th Inter-
national Conference on Swarm Intelligence, organized by IRIDIA, CoDE, Uni-
versité Libre de Bruxelles, Brussels, Belgium, during September 8–10, 2010. The
ANTS series started in 1998 with the First International Workshop on Ant
Colony Optimization (ANTS 1998), which attracted more than 50 participants.
Since then ANTS, which is held bi-annually, has gradually become an interna-
tional forum for researchers in the wider field of swarm intelligence. In the past
(since 2004), this development has been acknowledged by the inclusion of the
term “Swarm Intelligence” (next to “Ant Colony Optimization”) in the conference
title. This year’s ANTS conference was officially devoted to the field of swarm
intelligence as a whole, without any bias towards specific research directions. As
a result, the title of the conference was changed to “The International Confer-
ence on Swarm Intelligence.” This name change is already in place this year, and
future ANTS conferences will continue to use the new title.

This volume contains the best papers selected out of 99 submissions. Of these,
28 were accepted as full-length papers, while 27 were accepted as short papers.
This corresponds to an overall acceptance rate of 56%. Also included in this
volume are 14 extended abstracts.

Of the full-length papers, 15 were selected for oral presentation at the con-
ference. All other contributions, including short papers and extended abstracts,
were presented in the form of poster presentations. Following the conference, the
journal Swarm Intelligence will publish extended versions of some of the best
papers presented at the conference.

The conference featured three distinguished plenary talks: “Locating and
Tracking Multiple Optima Using Particle Swarm Optimization” by Andries
Engelbrecht, “Emergent Coordination in Fish Schools and Human Crowds” by
Guy Theraulaz, and “Self-Reconfigurable Robots, Digital Hormones, and Swarm
Morphallaxis” by Wei-Mei Shen. A special session, jointly organized by René
Doursat and Hiroki Sayama, focused on recent developments in the area of mor-
phogenetic engineering. A workshop organized by Dario Floreano provided op-
portunities to discuss research challenges related to the EU project Swarmanoid.

We take this opportunity to thank the large number of people that were
involved in making this conference a success. We express our gratitude to the
authors who contributed their work, to the members of the International Pro-
gramme Committee, to the additional referees for their qualified and detailed re-
views, and to the people at IRIDIA for helping with organizational matters. We
thank the keynote speakers for their inspiring talks. Finally, we thank our spon-
sors: AntOptima, the Belgian Fund for Scientific Research-FNRS, the European
Coordinating Committee for Artificial Intelligence, the French Community of
Belgium, the IEEE Computational Intelligence Society, and Wolfram Research.

VI Preface

We hope the reader will find this volume useful both as a reference to current
research in swarm intelligence and as a starting point for future work.

July 2010 Marco Dorigo
Mauro Birattari

Gianni A. Di Caro
René Doursat

Andries P. Engelbrecht
Dario Floreano

Luca Maria Gambardella
Roderich Groß

Erol Şahin
Hiroki Sayama

Thomas Stützle

Organization

ANTS 2010 was organized by IRIDIA, CoDE, Université Libre de Bruxelles,
Belgium.

General Chair

Marco Dorigo Université Libre de Bruxelles, Belgium

Technical Program Chairs

Gianni A. Di Caro IDSIA, USI-SUPSI, Switzerland
Andries P. Engelbrecht University of Pretoria, South Africa
Luca Maria Gambardella IDSIA, USI-SUPSI, Switzerland
Erol Şahin Middle East Technical University, Turkey

Chairs of the Special Session on Morphogenetic
Engineering

René Doursat ISC-PIF, France
Hiroki Sayama Binghamton University, NY, USA

Chair of the Co-located Workshop on Swarmanoid

Dario Floreano EPFL, Switzerland

Publication Chair

Roderich Groß The University of Sheffield, UK

Organization Chairs

Mauro Birattari Université Libre de Bruxelles, Belgium
Thomas Stützle Université Libre de Bruxelles, Belgium

Publicity Chair

Xiaodong Li RMIT University, Australia

VIII Organization

Local Arrangements

Manuele Brambilla Université Libre de Bruxelles, Belgium

Program Committee

Andy Adamatzky University of the West of England, UK
Paul Andrews University of York, UK
Daniel Angus University of Queensland, Australia
Tucker Balch Georgia Institute of Technology, GA, USA
Julio R. Banga CSIC, Spain
Wolfgang Banzhaf Memorial University of Newfoundland, Canada
Jacob Beal BBN Technologies, MA, USA
Gerardo Beni University of California, CA, USA
Cyrille Bertelle Université de Havre, France
Tim Blackwell Goldsmiths, University of London, UK
Christian Blum Universitat Politècnica de Catalunya, Spain
Vivek Borkar Tata Institute of Fundamental Research, India
Fernando Buarque Universidade de Pernambuco, Brazil
Supiya Charoensiriwath NECTEC, Thailand
Marco Chiarandini University of Southern Denmark, Denmark
Anders L. Christensen Instituto Universitario de Lisboa, Portugal
Maurice Clerc University of Essex, UK
Leandro Coelho Pontifícia Universidade Católica do Paraná, Brazil
Carlos Coello Coello CINVESTAV-IPN, Mexico
Oscar Cordón European Centre for Soft Computing, Spain
Swagatam Das Jadavpur University, India
Prithviraj Raj Dasgupta University of Nebraska, NE, USA
Kusum Deep Indian Institute of Technology Roorkee, India
Karl Doerner Universität Wien & Salzburg Research, Austria
Hai-Bin Duan Beihang University, China
Frederick Ducatelle IDSIA, USI-SUPSI, Switzerland
Mohammed El-Abd University of Waterloo, Canada
Susana Esquivel Universidad Nacional de San Luis, Argentina
Nazim Fatès INRIA, France
Juan L. Fernández-Martínez Universidad de Oviedo, Spain
Jonathan Fieldsend Exeter University, UK
Simon Garnier Princeton University, NJ, USA
Veysel Gazi Ekonomi ve Teknoloji Universitesi, Turkey
Marde Greeff University of Pretoria, South Africa
Julie Greensmith University of Nottingham, UK
Frédéric Guinand Université du Havre, France
Walter Gutjahr Universität Wien, Austria
Saman Halgamuge Melbourne School of Engineering, Australia

Organization IX

Julia Handl University of Manchester, UK
Emma Hart Edinburgh Napier University, UK
Richard Hartl Universität Wien, Austria
Poul Heegaard NTNU, Norway
Tim Hendtlass Swinburne University of Technology, Australia
Holger Hoos University of British Columbia, Canada
Ani Hsieh Drexel University, PA, USA
Thomas Jansen University College Cork, Ireland
Mark Jelasity Szegedi Tudomanyegyete, Hungary
Yaochu Jin University of Surrey, UK
Alexander John Universität zu Köln, Germany
Krishnanand Kaipa University of Vermont, VT, USA
James Kennedy Bureau of Labor Statistics, DC, USA
Serge Kernbach Universität Stuttgart, Germany
Joshua Knowles University of Manchester, UK
Oliver Korb Cambridge Crystallographic Data Centre, UK
Pietro Liò University of Cambridge, UK
Manuel López-Ibáñez Université Libre de Bruxelles, Belgium
Katherine Malan University of Pretoria, South Africa
Vittorio Maniezzo Università di Bologna, Italy
Alcherio Martinoli EPFL, Switzerland
Ronaldo Menezes Florida Institute of Technology, FL, USA
Daniel Merkle University of Southern Denmark, Denmark
Bernd Meyer Monash University, Australia
Olivier Michel Université Paris XII, France
Martin Middendorf Universität Leipzig, Germany
Chilukuri Mohan Syracuse University, NY, USA
Francesco Mondada EPFL, Switzerland
Nicolas Monmarché Université de Tours, France
Sara Montagna Università di Bologna, Italy
Roberto Montemanni IDSIA, USI-SUPSI, Switzerland
Marco A. Montes De Oca Université Libre de Bruxelles, Belgium
Sanaz Mostaghim Karlsruher Institut für Technologie, Germany
Frank Neumann Max-Planck-Institut für Informatik, Germany
Giuseppe Nicosia Università di Catania, Italy
Fernando Nino National University of Colombia, Colombia
Ann Nowé Vrije Universiteit Brussel, Belgium
Mahamed Omran Gulf University for Science and Technology,

Kuwait
Lisa Osadciw Syracuse University, NY, USA
Ender Özcan University of Nottingham, UK
Lynne E. Parker University of Tennessee, TN, USA
Rafael Stubs Parpinelli Universidade do Estado de Santa Catarina, Brazil
Kostantinos Parsopoulos University of Ioannina, Greece

X Organization

Van Dyke Parunak NewVectors division of TTGSI, MI, USA
Paola Pellegrini Università degli Studi di Trieste, Italy
Gilbert Peterson Air Force Institute of Technology, OH, USA
Jim Pugh EPFL, Switzerland
Marc Reimann University of Warwick, UK
Aristides Requicha University of Southern California, CA, USA
Andrea Roli Università di Bologna, Italy
Biswanath Samanta Villanova University, PA, USA
Michael Sampels Université Libre de Bruxelles, Belgium
Thomas Schmickl Karl-Franzens-Universität Graz, Austria
Giovanni Sebastiani IAC “M. Picone”, Italy
Kevin Seppi Brigham Young University, UT, USA
Christine Solnon Université Claude Bernard, France
William M. Spears University of Wyoming, WY, USA
Antoine Spicher Université Paris XII, France
Thomas Stibor Technische Universität München, Germany
Kasper Støy University of Southern Denmark, Denmark
Ponnuthurai Suganthan Nanyang Technological University, Singapore
El-Ghazali Talbi Université de Lille, France
Guy Theraulaz Université Paul Sabatier, France
Jon Timmis University of York, UK
Kohji Tomita AIST, Japan
Ioan Cristian Trelea AgroParisTech, France
Vito Trianni ISTC-CNR, Italy
Elio Tuci ISTC-CNR, Italy
Ali Emre Turgut Université Libre de Bruxelles, Belgium
Supiya Ujjin University College London, UK
Richard T. Vaughan Simon Fraser University, Canada
Kalyan Veeramachaneni Syracuse University, NY, USA
Ganesh K. Venayahamoorthy Missouri University of Science and Technology,

MO, USA
Mario Ventresca University of Waterloo, Canada
Michael Vrahatis University of Patras, Greece
Justin Werfel New England Complex Systems Inst., MA, USA
Alan F.T. Winfield University of the West of England, UK
Carsten Witt Technical University of Denmark, Denmark
Jun Zhang Sun Yat-sen University, China

Additional Referees

Stefano Benedettini
Arne Brutschy
Chris Fawcett
Frank Hutter
Nithin Mathews
Sara Mitri

Stefano Nolfi
Rehan O’Grady
Andres Perez-Uribe
Carlo Pinciroli
Onur Soysal
Valerio Sperati

James Styles
Markus Waibel
Steffen Wischmann
Xiao-Feng Xie

Organization XI

Sponsoring Institutions

AntOptima, Lugano, Switzerland
http://www.antoptima.com

Belgian Fund for Scientific Research–FNRS
http://www.fnrs.be

European Coordinating Committee for Artificial Intelligence
http://www.eccai.org

French Community of Belgium (through the research project META-X)
http://www.cfwb.be

IEEE Computational Intelligence Society (as a technical co-sponsor)
http://www.ieee-cis.org

Wolfram Research
http://www.wolfram.com/

Table of Contents

A Graph-Based Developmental Swarm Representation and
Algorithm . 1

Sebastian von Mammen, David Phillips, Timothy Davison, and
Christian Jacob

A Modified Particle Swarm Optimization Algorithm for the Best Low
Multilinear Rank Approximation of Higher-Order Tensors 13

Pierre B. Borckmans, Mariya Ishteva, and Pierre-Antoine Absil

A Robotic Validation of the Attractive Field Model: An
Inter-disciplinary Model of Self-regulatory Social Systems 24

Md. Omar Faruque Sarker and Torbjørn S. Dahl

A Thermodynamic Approach to the Analysis of Multi-robot
Cooperative Localization under Independent Errors 36

Yotam Elor and Alfred M. Bruckstein

An Alternative ACOR Algorithm for Continuous Optimization
Problems . 48

Guillermo Leguizamón and Carlos A. Coello Coello

An Efficient Optimization Method for Revealing Local Optima of
Projection Pursuit Indices . 60

Souad Larabi Marie-Sainte, Alain Berro, and Anne Ruiz-Gazen

Ant Colony Optimisation for Ligand Docking . 72
Oliver Korb and Jason Cole

Antbots: A Feasible Visual Emulation of Pheromone Trails for Swarm
Robots . 84

Ralf Mayet, Jonathan Roberz, Thomas Schmickl, and
Karl Crailsheim

Automatic Configuration of Multi-Objective ACO Algorithms 95
Manuel López-Ibáñez and Thomas Stützle

Autonomous Morphogenesis in Self-assembling Robots Using IR-Based
Sensing and Local Communications . 107

Wenguo Liu and Alan F.T. Winfield

Autonomous Multi-agent Cycle Based Patrolling . 119
Yotam Elor and Alfred M. Bruckstein

Biologically Realistic Primitives for Engineered Morphogenesis 131
Justin Werfel

XIV Table of Contents

Evaluating the Robustness of Activator-Inhibitor Models for Cluster
Head Computation . 143

Lidia Yamamoto and Daniele Miorandi

Evolution of Self-organised Path Formation in a Swarm of Robots 155
Valerio Sperati, Vito Trianni, and Stefano Nolfi

Extensions to the Ant-Miner Classification Rule Discovery Algorithm . . . 167
Khalid M. Salama and Ashraf M. Abdelbar

Functional Blueprints: An Approach to Modularity in Grown
Systems . 179

Jacob Beal

Heterogeneous Particle Swarm Optimization . 191
Andries P. Engelbrecht

Modern Continuous Optimization Algorithms for Tuning Real and
Integer Algorithm Parameters . 203

Zhi Yuan, Marco A. Montes de Oca, Mauro Birattari, and
Thomas Stützle

Multi-agent Deployment on a Ring Graph . 215
Yotam Elor and Alfred M. Bruckstein

Multi-Swarm Optimization for Dynamic Combinatorial Problems:
A Case Study on Dynamic Vehicle Routing Problem 227

Mostepha Redouane Khouadjia, Enrique Alba, Laetitia Jourdan, and
El-Ghazali Talbi

Off-line vs. On-line Tuning: A Study on MAX–MIN Ant System for
the TSP . 239

Paola Pellegrini, Thomas Stützle, and Mauro Birattari

Opinion Dynamics for Decentralized Decision-Making in a Robot
Swarm . 251

Marco A. Montes de Oca, Eliseo Ferrante, Nithin Mathews,
Mauro Birattari, and Marco Dorigo

Positional Communication and Private Information in Honeybee
Foraging Models . 263

Peter Bailis, Radhika Nagpal, and Justin Werfel

Rank Based Particle Swarm Optimization . 275
Affan Khan, Muhammad Sadeequllah, Riaz-ul-Hasnain, and
Azzam-ul-Asar

Self-organized Task Partitioning in a Swarm of Robots 287
Marco Frison, Nam-Luc Tran, Nadir Baiboun, Arne Brutschy,
Giovanni Pini, Andrea Roli, Marco Dorigo, and Mauro Birattari

Table of Contents XV

Slime Mold Inspired Path Formation Protocol for Wireless Sensor
Networks . 299

Ke Li, Kyle Thomas, Claudio Torres, Louis Rossi, and
Chien-Chung Shen

Solving the Multi-dimensional Multi-choice Knapsack Problem with
the Help of Ants . 312

Shahrear Iqbal, Md. Faizul Bari, and M. Sohel Rahman

Theoretical Properties of Two ACO Approaches for the Traveling
Salesman Problem . 324

Timo Kötzing, Frank Neumann, Heiko Röglin, and Carsten Witt

Short Papers

A Cooperative Network Game Efficiently Solved via an Ant Colony
Optimization Approach . 336

Pablo Romero, Franco Robledo, Pablo Rodŕıguez-Bocca,
Daŕıo Padula, and Maŕıa Elisa Bertinat

A Deterministic Metaheuristic Approach Using “Logistic Ants” for
Combinatorial Optimization . 344

Rodolphe Charrier, Christine Bourjot, and François Charpillet

A Model Based Ant Colony Design for the Protein Engineering
Problem . 352

Matteo Borrotti, Davide De Lucrezia, Giovanni Minervini, and
Irene Poli

ACOPHY: A Simple and General Ant Colony Optimization Approach
for Phylogenetic Tree Reconstruction . 360

Huy Q. Dinh, Bui Quang Minh, Hoang Xuan Huan, and
Arndt von Haeseler

ACS Searching for D4t-Hadamard Matrices . 368
Vı́ctor Álvarez, José Andrés Armario, Maŕıa Dolores Frau,
Félix Gudiel, Belén Güemes, Elena Mart́ın, and Amparo Osuna

Ant Based Semi-supervised Classification . 376
Anindya Halder, Susmita Ghosh, and Ashish Ghosh

Automatic Generation of Optimised Working Time Models in Personnel
Planning . 384

Volker Nissen and Maik Günther

Bee-Sensor: A Step Towards Meta-Routing Strategies in Hybrid Ad
Hoc Networks . 392

Israr Ullah, Muhammad Saleem, and Muddassar Farooq

XVI Table of Contents

Cooperation in a Heterogeneous Robot Swarm through Spatially
Targeted Communication . 400

Nithin Mathews, Anders Lyhne Christensen, Rehan O’Grady, and
Marco Dorigo

Early-Stage Diagnosis of Endogenous Diseases by Swarms of Nanobots:
An Applicative Scenario . 408

Paolo Amato, Massimo Masserini, Giancarlo Mauri, and
Gianfranco Cerofolini

EDA-PSO: A Hybrid Paradigm Combining Estimation of Distribution
Algorithms and Particle Swarm Optimization . 416

Endika Bengoetxea and Pedro Larrañaga

Emergent Flocking with Low-End Swarm Robots . 424
Christoph Moeslinger, Thomas Schmickl, and Karl Crailsheim

Exploiting Loose Horizontal Coupling in Evolutionary Swarm
Robotics . 432

Jennifer Owen, Susan Stepney, Jonathan Timmis, and
Alan F.T. Winfield

Formal Verification of Probabilistic Swarm Behaviours 440
Savas Konur, Clare Dixon, and Michael Fisher

Inverse Modeling in Geoenvironmental Engineering Using a Novel
Particle Swarm Optimization Algorithm . 448

Tadikonda Venkata Bharat and Jitendra Sharma

Mobile Stigmergic Markers for Navigation in a Heterogeneous Robotic
Swarm . 456

Frederick Ducatelle, Gianni A. Di Caro, Alexander Förster, and
Luca Gambardella

Motif Finding Using Ant Colony Optimization . 464
Salim Bouamama, Abdellah Boukerram, and Amer F. Al-Badarneh

Multiple Ant Colony System for Substructure Discovery 472
Oscar Cordón, Arnaud Quirin, and Roćıo Romero-Zaliz

Opportunistic Ant-Based Path Management for Wireless Mesh
Networks . 480

Laurent Paquereau and Bjarne E. Helvik

Parallel Ant Colony Optimization Algorithm on a Multi-core
Processor . 488

Shigeyoshi Tsutsui and Noriyuki Fujimoto

Table of Contents XVII

Particle Swarm Optimization in High Dimensional Spaces 496
Juan L. Fernández-Mart́ınez, Tapan Mukerji, and
Esperanza Garćıa-Gonzalo

Particle Swarm Optimization of Bollinger Bands . 504
Matthew Butler and Dimitar Kazakov

Protein Structure Prediction in Lattice Models with Particle Swarm
Optimization . 512

Andrei Băutu and Henri Luchian

Short and Robust Communication Paths in Dynamic Wireless
Networks . 520

Yoann Pigné and Frédéric Guinand

The ACO Encoding . 528
Alberto Moraglio, Fernando E.B. Otero, and Colin G. Johnson

The Complexity of Grid Coverage by Swarm Robotics 536
Yaniv Altshuler and Alfred M. Bruckstein

The Design of an Active Structural Vibration Reduction System Using
a Modified Particle Swarm Optimization . 544

Adam Schmidt

Extended Abstracts

Ant Colony Extended: Search in Solution Spaces with a Countably
Infinite Number of Solutions . 552

Jose B. Escario, Juan F. Jimenez, and Jose M. Giron-Sierra

Automatic Parameter Configuration of Particle Swarm Optimization
by Classification of Function Features . 554

Tjorben Bogon, Georgios Poursanidis, Andreas D. Lattner, and
Ingo J. Timm

Constructing Low-Cost Swarm Robots That March in Column
Formation . 556

Asuki Kouno, Shigeru Takano, and Einoshin Suzuki

Coordinating Heterogeneous Swarms through Minimal Communication
among Homogeneous Sub-swarms . 558

Carlo Pinciroli, Rehan O’Grady, Anders Lyhne Christensen, and
Marco Dorigo

Effect of Particle Initialization on the Performance of Particle Swarm
Niching Algorithms . 560

Isabella Schoeman and Andries P. Engelbrecht

XVIII Table of Contents

Energy Efficient Swarm Deployment for Search in Unknown
Environments . 562

Timothy Stirling and Dario Floreano

Genetic Encoding of Robot Metamorphosis: How to Evolve a Glider
with a Genetic Regulatory Network . 564

Anne C. van Rossum

How Ant Systems Can Help in Management of pH for Industrial
Wastewater Discharges . 566

Marta Verdaguer, Jordi Giró, Narćıs Clara, and Manel Poch

Hybrid Metaheuristic Combining Ant Colony Optimization and
H -Method . 568

Leonid Hulianytskyi and Sergii Sirenko

Increasing Individual Density Reduces Extra-variance in Swarm
Intelligence . 570

Ryusuke Fujisawa, Shigeto Dobata, and Fumitoshi Matsuno

“Look out!”: Socially-Mediated Obstacle Avoidance in Collective
Transport . 572

Eliseo Ferrante, Manuele Brambilla, Mauro Birattari, and
Marco Dorigo

On Possible Connections between Ant Algorithms and Random Matrix
Theory . 574

Carlo Mastroianni

Soft Variable Fixing in Path Relinking: An Application to ACO
Codes . 576

Antonio Bolufé Röhler, Marco A. Boschetti, and Vittorio Maniezzo

Training Randomly Connected, Recurrent Artificial Neural Networks
Using PSO . 578

Vytautas Jancauskas

Author Index . 581

A Graph-Based Developmental Swarm
Representation and Algorithm

Sebastian von Mammen1, David Phillips1,
Timothy Davison1, and Christian Jacob1,2

1 Dept. of Computer Science, University of Calgary, Canada
s.vonmammen@ucalgary.ca

2 Dept. of Biochemistry and Molecular Biology, University of Calgary, Canada

Abstract. Modelling natural processes requires the implementation of
an expressive representation of the involved entities and their inter-
actions. We present swarm graph grammars (SGGs) as a bio-inspired
modelling framework that integrates aspects of formal grammars, graph-
based representation and multi-agent simulation. In SGGs, the substitu-
tion of subgraphs that represent locally defined agent interactions drive
the computational process of the simulation. The generative character
of formal grammars is translated into an agent’s metabolic interactions,
i.e. creating or removing agents from the system. Utilizing graphs to
describe interactions and relationships between pairs or sets of agents
offers an easily accessible way of modelling biological phenomena. Prop-
erty graphs emerge through the application of local interaction rules; we
use these graphs to capture various aspects of the interaction dynamics
at any given step of a simulation.

1 Introduction

We are interested in modelling complex biological systems at various levels of
scale, i.e. from the biomolecular level [33] to cells [13] to systems [15], etc. Dif-
ferent levels of resolution often require different computational techniques, such
as differential equation solvers to compute physics or fluid dynamics, or en-
gines that execute high-level agent behaviours that implement rich interaction
policies and complex strategies [39]. Independent of the specific computational
approaches that drive the simulation processes, they all rely on state changes,
the principle of digital computation. Furthermore, a system’s state determines
the introduced changes, probabilistically or deterministically. This idea is em-
phasized in numerous computational representations such as Markov chains [1]
or cellular automata [38]. The state of a system is generally understood as the
states of all its subsystems including their interrelations. Consequently, states
and relations are interchangeable terms that provide the condition for change,
or the antecedent for a consequent in a simple If-then rule. A set of probabilistic
rules (like in Markov chain systems) works well to represent the activities of
decentralized, self-organizing swarm agents [3,4,5,15,14], including swarm-based
developmental systems [25,24].

M. Dorigo et al. (Eds.): ANTS 2010, LNCS 6234, pp. 1–12, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

2 S. von Mammen et al.

Rule-based swarm systems seem to be a good fit to capture biological models.
However, there are several hurdles that make it hard to deploy swarm models
in fields outside of computer science. (1) The predicates and actions that drive
the simulations—e.g. the detection of a chemical signal or the deposition of a
particle—depend on the modelling domains and are usually re-implemented for
different experiments. Still, many of these operations can be abstracted, para-
metrically adjusted and reused in different contexts. The integration of these
operations into a rule-based formalism also makes it possible to utilize func-
tionality from various computational engines such as physics engines or general
differential equation solvers within one modelling framework. (2) Depending on
the degree of specificity of a rule’s condition and its associated actions, a the-
oretically simple interaction can result in an over-complicated representation.
A graphical description of the predicates and the associated actions can amend
this issue. (3) As swarm simulations often exhibit complex behaviours, little
details—for example the order of execution and the discretization steps in a
simulation—can greatly influence the outcome. Therefore, we think it is crucial
to design models based on a unified algorithmic scheme.

We have devised swarm graph grammars (SGGs) to alleviate some of the
challenges discussed above. SGGs provide a graphical, rule-based description
language to specify swarm agents and a generalized algorithmic framework for
the simulation of complex systems. Fundamental operations such as creation
or deletion of programmatic objects, as provided by formal grammars, are part
of the SGG syntax. Through SGGs we can capture (metabolic) functions at
multiple biological scales, i.e. the processes of secretion and diffusion [37], or
consumption/removal and production/construction [20], respectively. As a con-
sequence of the graph-based syntax, SGGs capture the simulation in a global
graph at each computational step. Thereby, the continuous re-shaping of an in-
teraction topology of a dynamic system is traced and interdependencies that
emerge over the course of a simulation are graphically represented.

The remainder of this paper is organized as follows. In Section 2, immediately
relevant work in the respective areas of research is presented. Section 3 details
swarm graph grammars (SGGs) and their constituents, i.e. swarm individuals,
graph grammatical rules, and a general SGG algorithm. Section 4 shows how
the SGG formalism is applied in a step by step manner to retrace a simple boid
simulation, wasp nest construction, and directed cell growth and proliferation.
We conclude with a summary and an outlook on possible future work.

2 Related Work

Cellular automata (CAs) can be considered the first computational develop-
mental models [28]. CAs revolve around state-based interactions of individuals
given a fixed interaction topology. However, in the emerging discipline of compu-
tational developmental systems, the focus shifted towards constructive expres-
siveness and thus overshadowed the idea of individual-based modelling. In this
section, we briefly review the emergence of CDMs and demonstrate their reunion
with agent-based modelling.

A Graph-Based Developmental Swarm Representation and Algorithm 3

2.1 Complex CDMs

Giavitto et al. summarize several approaches to computational developmental
models [10]. The most simple ones are considered to be dynamical systems with
sets of state variables determining their global states. Structured dynamical sys-
tems are more complex; they are dynamic systems that can be divided into
subsystems. Finally, there are dynamical systems with dynamical structures, ab-
breviated as (DS)2-systems, for instance a “developing multi-cellular organism”
[12]. In addition, Giavitto et al. describe developmental models as tuples of
topology and formalism. L-systems [22], for instance, describe how individual
elements of sequences are substituted in parallel. Group-based data fields (GBF)
[34], on the other hand, operate on sets of units that are connected with a ho-
mogeneous, fixed topology not unlike cellular automata [28]. Map L-systems [2],
similar to random boolean networks (RBNs) [16], promote combinatorial topolo-
gies on the interacting, or growing, data structures. There are also formalisms
that explicitly integrate the topology of the modelled systems, such as membrane
computing (MC), or P systems [29]. P systems draw their inspiration from mem-
brane structures of cells, neural cells and tissues. In a more generalized fashion,
graph grammars [9] are a means to integrate topological information into any
kind of developmental model. Examples are multiscale tree graphs (MTGs) and
the modèle géneral de simulation (MGS) that represent changes of topological
collections of units by transformation paths on a symbolic notation [11].

2.2 Graph-Based CDMs

Kniemeyer et al. have developed relational growth grammars (RGGs) which
promise, like MGS, to be a universally applicable representation of CDMs [19].
They use RGGs as extensions of parametric L-systems with object-oriented,
rule-based, procedural features. In fact, modelling CDMs by graph grammars,
like in RGGs, allows for the expression of all developmental data structures
commonly used in the computational sciences: multisets, strings, axial trees,
and relational structures (edge-labeled directed graphs). Graph grammar-based
CDMs can therefore be considered as a universal modelling language, able to
simulate standard L-systems, artificial chemistries and ecological systems alike.
Kniemeyer et al. successfully applied the RGG model to grow multi-scale mod-
els of plants integrating their structure and function [18], and, recently, to grow
architectural models [17]. They also suggested that RGGs could support agent-
based modelling—by interpreting nodes as agents, edges as inter-agent relations,
and by driving their interactions through sub-graph substitutions [21].

Almost 20 years before Kniemeyer presented RGGs, Culik et al. had extended
L-systems with the means to describe plants through graph structures and their
growth through graph grammatical substitutions, which were later on referred
to as graph L-systems [6]. Shortly afterwards, Nagl investigated the relationship
between graph grammars and graph L-systems, concluding that graph gram-
mars can be reduced to graph L-systems and vice versa [27]: identical graphs
can be achieved by either sequential graph grammar productions or by parallel

4 S. von Mammen et al.

subgraph substitutions as realized in graph L-systems. About another decade
later, Lindenmayer argued that relying on maps instead of graphs bears many
advantages, e.g. a clear method for mapping between the abstract representation
and the natural, growing structures and better performance due to the avoidance
of transformations of the representations [23].

Recently, Tomita et al. have presented graph rewriting automata [36], in which
lattice-based CAs evolve into complex networks through the application of pro-
duction rules that change local connectivities. Sayama et al. went one step further
and considered the local states of a CA to inform the development of generative
network automata (GNA) [32].

2.3 Swarm-Based CDMs

Developmental systems can be simulated by means of agent-based, decentralized
models that incorporate diffusion of molecular signals paired with particular
protein or cell behaviours [31]. A generic formalism for agent-based models was
provided by Denzinger et al. [7,8] in which an agent is represented as a quadruple
Ag = (Sit, Act,Dat, fAg). An agent Ag can find itself in any of the situations
expressed in Sit. It can perform the actions described by the set Act. Its internal
data areas, i.e. local variables or memory cells, are determined by the set of
possible valuesDat. Based on the perceived situation and its internal data values,
the agent determines the next action through a decision function fAg : Sit ×
Dat → Act. This representation is very expressive and follows the descriptive
methodology of many natural sciences in which the principle of local cause and
effect leads to associated emergent phenomena of interest.

Based on these ideas, we have introduced swarm grammars (SGs) that merged
L-systems with an agent-based modelling approach [24]. In swarm grammars, de-
centralized swarm agents, or individuals, have the ability to perceive and act in
accordance with Denzinger et al.’s agent definition. In particular, SG individ-
uals can react to their local environment, differentiate, reproduce, and create
structures by depositing construction elements. Albeit the fact that SGs merge
several instrumental biological concepts of developmental, non-linear interaction
systems, they do not provide a unified, easy-to-use representation and algorithm
that allows for systematic deployment in other scientific disciplines (as discussed
in Section 1).

3 Swarm Graph Grammars

We present swarm graph grammars as a unified modelling and simulation frame-
work for swarm-based systems that addresses the challenges outlined in Section
1, and provides a unified, graphical, rule-based modelling language for swarm in-
dividuals and a generalized simulation algorithm. The graphical description ren-
ders model dynamics more tangible and translates local interactions into global,
continuously changing interaction networks. We believe that investigations into
the development of these networks, in turn, could reveal quantifiable measures

A Graph-Based Developmental Swarm Representation and Algorithm 5

about emergent global phenomena. We address Lindenmayer’s concerns about
the inefficiency of graph-based CDMs by a minimalist subgraph matching pro-
cedure that only considers star networks of depth 1 around the corresponding,
active reference agent.

3.1 Representation
predicateX

predicate Z
(>6)

p = 0.3

Δt = 4
predicateY

predicateX

actionJ
actionK

initialize

Fig. 1. An SGG rule that queries the refer-
ence node itself, other individuals and sets
of interaction candidates, to interact with
them, delete some and to initialize a new
node

An SGG agent’s behaviour is de-
scribed by a set of rules (Figure 1).
Each rule tests a set of predicates
(solid edges on the left-hand side)
and executes a set of actions (dashed
edges on the right-hand side) in re-
spect to the acting agent itself (ref-
erence node) or other agents. Nodes
represent individual agents or sets of
agents. In Figure 1, the acting agent
is displayed as an orange node with a black border. Other agents or agent groups
are depicted as grey nodes. The application of the rule is associated with a fre-
quency and a probability. Sets of predicates can attempt to identify an arbitrary
number of agents. The relative location, i.e. the two-dimensional coordinates, of
the node on the left-hand side of the rule is matched with its appearance on the
right-hand side of the rule. If a node does not reappear on the right-hand side,
it implies that its corresponding agent has been removed. If a node appears at a
location that is unoccupied on the left-hand side, a new node is created. Figure
1 shows an example rule: It is applied with a probability of p = 0.3 at every
fourth time step (Δt = 4). One (arbitrarily chosen) node that fulfills predicateX
and predicateY is affected by actionJ and actionK. Also note that a new node is
created and is initialized in this rule for which no reference had existed before.
In case there are at least 6 nodes that fulfill predicateZ, they will all be removed.

3.2 Algorithm

A swarm graph grammar SGG = (I, Ξ,Gpredicate,Gaction, P) is a quintuple,
where I describes a set of individuals relying on rules and properties as ex-
plained in the previous section. At the beginning of the simulation, a set Ξ of
axioms, in the form of initialization algorithms, is executed by (1) selecting and
expressing individuals from I, and (2) by assigning initial states to the newly
created individuals. For a homogeneous swarm of nest-constructing wasps1, for
instance, I only has to comprise a single agent description. Having created a
sufficient number of wasp agents, the axioms would assign contextual informa-
tion such as an initial location to the individuals. In the main loop of the swarm
graph grammar algorithm (Algorithm 1) two graphs Gpredicate ∈ Gpredicate and
Gaction ∈ Gaction are subsequently created that merge the triggered predicates

1 See Section 4.2 for details.

6 S. von Mammen et al.

and corresponding actions of the individuals’ local rules. Gpredicate represents the
set of possible graphs of individuals interconnected through predicates. Gaction

hosts all possible action graphs. Chains of relations among sets of swarm in-
dividuals create semantic topologies for global graph structures that describe
the situational context or activity in the SGG system. Executing the actions of
Gaction yields the next simulation state after a policy P is applied to resolve pos-
sibly arising computational conflicts2. Thus, the alternating update of the graph
instances Gpredicate and Gaction based on the swarm individuals’ behaviours
drives the SGG simulation (Figure 2).

Algorithm 1. Swarm Graph Grammar: Main Loop
Require: Gpredicate, optional: P
Ensure: alternating computation of Gpredicate and Gaction

repeat
compute predicative graph Gpredicate

compute action graph Gaction based on Gpredicate

apply order policy P to Gaction

execute ordered actions of Gaction

until simulation is terminated

(a) (b)

(c)(d)

Gpredicate Gaction

step
0
1
2
...

Fig. 2. Subsequent computation of (a) Gpredicate and (b) Gaction yield (c) the next
simulation state. The grey arrows from (a) to (c) relate nodes to their contextual
impact. (d) The simulation process is shown as a computation pipeline.

4 Swarm Graph Grammars in Action

In this section we present three computational models realized with the SGG
framework. We retrace (1) a simple boids simulation [30], (2) the stigmergic
construction behaviour of the Chartergus wasp [35], and (3) cell proliferation
induced by a set of growth factors.
2 The implementation of an efficient conflict policy P is often difficult and its execution

can be computationally expensive.

A Graph-Based Developmental Swarm Representation and Algorithm 7

4.1 Boids

In order to specify a standard boid flocking simulation [30], we use a swarm
graph grammar SGGboid = (Iboid, Ξboid,Gboid

predicate,Gboid
action, Pboid). The sole in-

dividual iboid ∈ Iboid contains several weights for flocking urges, parameters to
determine a field of perception, as well as boundaries for the maximal flight ac-
celeration maxaccel and velocity maxvel. Ξboid generates a homogeneous set of
swarm individuals that are initialized with a random position −→p and velocity
−→v . As no interaction conflicts arise, the policy P is empty.

Boids rely on two behavioural rules shown in Figure 3. The movement rule
continuously updates a swarm individual’s position in accordance with its ve-
locity. The acceleration rule, substitutes the predicate sees(u, v) with the action
accelerate(u, v).

move

p = 1.0

Δt = 1

movement

acceleratesees p = 1.0

Δt = 1

(>0)

acceleration

Fig. 3. Two rules to de-
scribe a boid agent’s inter-
action behaviour

The predicate considers the reference node’s lo-
cation, orientation and perceptional field to select a
set of interaction partners in accordance with their
respective locations. The action also considers the
difference between u’s and v’s states, including their
locations and velocities, and accelerates u accord-
ingly. For example, u accelerates towards v’s loca-
tion and it aligns its flight direction. In the example
displayed in Figure 4, the boid agents form a clus-
ter over time which is also reflected by increasingly
connected interaction graphs.

t = 1933

t = 5676
Gpredicate Gaction Agent World

Fig. 4. Two sets of graphs Gpredicate, Gaction and a visualization of the agent space
show a clustering process in a SGG-driven boid simulation. The boid renderings—
triangles oriented towards their velocity with a conic field of perception—partially
overlap due to their strong alignment urge.

8 S. von Mammen et al.

occupied
(=0)

Comb*

Comb2

around
p = 1.0

Δt = 1

Comb2

(>0) place
below

occupied
(=0)

Comb*

(=9)

Comb*

around

Comb2

p = 1.0

Δt = 1

(=0)

Comb1

place below

occupied
(=0)

Comb*

(=1)

Comb1

below

Comb*

p = 1.0

Δt = 1

(=1)

Comb2

place

(a) floor extension (c) floor template (d) floor initiation

Fig. 5. SGG rules that retrace the construction behaviour by the Chartergus wasp as
described in [35]

t = 366 t = 968 t = 1091

Fig. 6. Agent space and the corresponding interaction graphs of a wasp-inspired con-
struction process (grey dashed arrows indicate actions, orange ones predicates). At
t = 366 a floor template is constructed (rule (c) in Fig. 5). At t = 968 the construction
of a new floor is started (rule (d) in Fig. 5). At t = 1091 two floor extensions are
performed by different wasp agents triggered by the same subset of combs.

4.2 Stigmergic Construction

Theraulaz et al. have translated the nest construction processes of Chartergus
wasps into individual behavioural rules [35]. The rules in Figure 5 closely retrace
this behaviour3. The predicates around, below and occupied test the immediate
surroundings of the wasp to trigger comb construction in the remaining rules.
Hereby, previously deposited combs of two different types (Comb1, Comb2, or
Comb∗ for both) trigger the next placement actions. In addition, a movement
rule as seen in Figure 3 moves an individual unconditionally to a random loca-
tion in the simulation space. Figure 6 shows the development in agent space and

3 The lattice-based matrix representation provided in [35] was translated into predi-
cates that test the corresponding spatial relationships.

A Graph-Based Developmental Swarm Representation and Algorithm 9

correlates the activating (red) and the constructed combs (green). The rule de-
ployment is shown in a series of interaction graphs Ginteraction = Gpredicate ∪
Gaction.

4.3 Swarm Development

Signalling factors determine the rate of cell proliferation which influence specific
morphological developments [26]. The rules in Figure 7 configure cells which
grow until they reach maturity (predicates not mature and mature). Mature
cells that are close to a Growth Factor increase their internal mitogen concen-
tration which in turn instigates proliferation (modelled as reset of the acting
cell and initialization of a second cell).

not mature

p = 1.0

Δt = 1 grow
Growth
Factor

close to p = 1.0

Δt = 1

(>0)

mature
produce
mitogen

initialize

mitogen

p = 1.0

Δt = 1 reset

grow mature proliferate

Fig. 7. Three rules to describe a simple developmental process model

t = 177 t = 385 t = 695

t = 1287 t = 1754 typical interaction graph
(here for t = 500)

Fig. 8. The proliferation of mature cells (blue: not mature; red: mature) is dependent
on the proximity to growth factors (green). At any time of the simulation, large numbers
of agents are informed by growth factors leading to typically dense but homogeneous
interaction graphs.

10 S. von Mammen et al.

Figure 8 shows screenshots of the simulation. Tissue cells within the vicin-
ity of a signalling molecule start proliferating. Collision resolution through an
embedded physics engine allows the cells to assemble4. The emerging protuber-
ance is slanted to the right in accordance to the initial distribution of signalling
molecules. However, it is surprisingly symmetrical still, which could result from
a lack of simulated cell polarization.

5 Summary and Future Work

Swarm graph grammars are a modelling and simulation framework that provides
a universal graph-based representation for swarm-based developmental systems.
Besides metabolic operations, i.e. the creation or removal of agents, the semantics
of agent relations are not part of the framework. The agents’ abilities have to
be implemented in the form of predicates and actions. The agents’ rule sets
(behaviours) drive the simulation processes and they are immediately reflected
in the interaction graph of a simulation. As examples, we used SGGs to simulate
boid flocking, stigmergic wasp nest construction, and growth and proliferation
in cellular morphological processes.

We are currently working on several aspects to improve and harness the uti-
lization of swarm graph grammars. The application of the framework has led
to many refinements in respect to the formalism and the algorithm. However,
in order to render modelling with SGGs accessible, especially to non computer
scientists, we need to collect feedback from interdisciplinary modellers about the
shortcomings of the representation, e.g. regarding its visualization, terminology
and logic. In this paper, we have touched upon matching local agent rules with
a simulation’s emerging interaction graphs. We deem this a very promising ap-
proach to analyze emergent phenomena in simulations on the one hand, and to
create complex interaction processes with dynamic interaction topologies on the
other hand. Accordingly, systematic investigations have to be started. We are
also working on a slight modification of the SGG framework so that nodes can
encapsulate children and thereby computational or spatial hierarchies can be
built. This would allow for hierarchical modelling as in P systems [29].

Acknowledgements. Support for this research was provided by the Under-
graduate Medical Eduction program of the University of Calgary. We would like
to thank Jörg Denzinger for his invaluable advice on multi-agent systems and
Heather Jamniczky for her feedback on biological developmental systems.

References

1. Allen, L.J.S.: An Introduction to Stochastic Processes with Applications to Biology.
Pearson Education, Upper Saddle River (2003)

2. de Boer, M.J.M., de Does, M.: The relationship between cell division pattern
and global shape of young fern gametophytes. I. A model study. Botanical
Gazette 151(4), 423–434 (1990)

4 In the given experiment we rely on the Bullet physics engine, http://bulletphysics.org

A Graph-Based Developmental Swarm Representation and Algorithm 11

3. Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence: From Natural to
Artificial Systems. Santa Fe Institute Studies in the Sciences of Complexity. Oxford
University Press, New York (1999)

4. Burleigh, I., Suen, G., Jacob, C.: Dna in action! a 3D swarm-based model of a gene
regulatory system. In: ACAL 2003, First Australian Conference on Artificial Life,
Canberra, Australia (2003)

5. Camazine, S., Deneubourg, J.L., Franks, N.R., Sneyd, J., Theraulaz, G., Bonabeau,
E.: Self-Organization in Biological Systems. Princeton Studies in Complexity.
Princeton University Press, Princeton (2003)

6. Culik, K., Lindenmayer, A.: Parallel graph generating and graph recurrence sys-
tems for multicellular development. International Journal of General Systems 3(1),
53–66 (1976)

7. Denzinger, J., Kordt, M.: Evolutionary on-line learning of cooperative behavior
with situation-action-pairs. In: ICMAS, pp. 103–110. IEEE Computer Society, Los
Alamitos (2000)

8. Denzinger, J., Winder, C.: Combining coaching and learning to create cooperative
character behavior. In: CIG. IEEE, Los Alamitos (2005)

9. Ehrig, H., Kreowski, H.J., Montanari, U., Rosenberg, G. (eds.): Handbook of Graph
Grammars and Computing by Fraph Transformation, Concurrency, Parallelism,
and Distribution, vol. 3. World Scientific Publishing, Singapore (1999)

10. Giavitto, J.L., Godin, C., Michel, O., Prusinkiewicz, P.: Computational Models for
Integrative and Developmental Biology. In: Modelling and Simulation of biological
processes in the context of genomics, Hermes, pp. 12–17 (July 2002)

11. Giavitto, J.L., Michel, O.: Data structure as topological spaces. Unconventional
Models of Computation, 137–150 (2002)

12. Giavitto, J.L., Michel, O.: Modeling the topological organization of cellular pro-
cesses. Biosystems 70(2), 149–163 (2003)

13. Jacob, C., Burleigh, I.: Biomolecular swarms: An agent-based model of the lactose
operon. Natural Computing 3(4), 361–376 (2004)

14. Jacob, C., Hushlak, G., Boyd, J., Nuytten, P., Sayles, M., Pilat, M.: Swarmart:
Interactive art from swarm intelligence. Leonardo 40(3) (2007)

15. Jacob, C., Steil, S., Bergmann, K.: The swarming body: Simulating the decentral-
ized defenses of immunity. In: Bersini, H., Carneiro, J. (eds.) ICARIS 2006. LNCS,
vol. 4163, pp. 52–65. Springer, Heidelberg (2006)

16. Kauffman, S.: At Home in the Universe: The Search for the Laws of Self-
Organization and Complexity. Oxford University Press, Oxford (1995)

17. Kniemeyer, O., Barczik, G., Hemmerling, R., Kurth, W.: Relational Growth Gram-
mars – A Parallel Graph Transformation Approach with Applications in Biology
and Architecture. In: Schürr, A., Nagl, M., Zündorf, A. (eds.) AGTIVE 2007.
LNCS, vol. 5088, pp. 152–167. Springer, Heidelberg (2008)

18. Kniemeyer, O., Buck-Sorlin, G., Kurth, W.: Groimp as a platform for functional-
structural modelling of plants. In: Vos, J., Marcelis, L.F.M., de Visser, P.H.B.,
Struik, P.C., Evers, J.B. (eds.) Functional-Structural Plant Modelling in Crop Pro-
duction, pp. 43–52. Springer, Heidelberg (March 2006)

19. Kniemeyer, O., Buck-Sorlin, G.H., Kurth, W.: A graph grammar approach to ar-
tificial life. Artificial Life 10(4), 413–431 (2004)

20. Kumar, S., Bentley, P. (eds.): On Growth, Form and Computers. Elsevier Academic
Press, London (2003)

12 S. von Mammen et al.

21. Kurth, W., Buck-Sorlin, G., Kniemeyer, O.: Relationale wachstumsgrammatiken:
Ein formalismus zur spezifikation multiskalierter Struktur-Funktions-Modelle von
pflanzen. In: Modellierung pflanzlicher Systeme aus historischer und aktueller
Sicht. Landwirtschaft, vol. 7, pp. 36–45. Landesamtes für Verbraucherschutz, Land-
wirtschaft und Flurneuordnung, Brandenburg (2006)

22. Lindenmayer, A.: Developmental systems without cellular interactions, their lan-
guages and grammars. Journal of Theoretical Biology 30(3), 455–484 (1971)

23. Lindenmayer, A.: An introduction to parallel map generating systems. Graph-
Grammars and Their Application to Computer Science, 27–40 (1987)

24. von Mammen, S., Jacob, C.: The evolution of swarm grammars: Growing trees,
crafting art and bottom-up design. IEEE Computational Intelligence Maga-
zine 4(3), 10–19 (2009)

25. von Mammen, S., Jacob, C., Kókai, G.: Evolving swarms that build 3D structures.
In: IEEE Congress on Evolutionary Computation, CEC 2005, pp. 1434–1441. IEEE
Press, Edinburgh (2005)

26. Megason, S.G., McMahon, A.P.: A mitogen gradient of dorsal midline wnts orga-
nizes growth in the CNS. Development 129, 2087–2098 (2002)

27. Nagl, M.: On the relation between graph grammars and graph L-systems. Funda-
mentals of Computation Theory, 142–151 (1977)

28. von Neumann, J., Burks, A.W.: Theory of self-reproducing automata. University
of Illinois Press, Urbana (1966)

29. Paun, G., Rozenberg, G.: A guide to membrane computing. Theoretical Computer
Science 287(1), 73–100 (2002)

30. Reynolds, C.W.: Flocks, herds, and schools: A distributed behavioral model. Com-
puter Graphics 21(4), 25–34 (1987)

31. Salazar-Ciudad, I.: Tooth Morphogenesis in vivo, in vitro, and in silico. Current
Topics in Developmental Biology 81, 341–371 (2008)

32. Sayama, H., Laramee, C.: Generative network automata: A generalized framework
for modeling adaptive network dynamics using graph rewritings. Adaptive Net-
works, 311–332 (2009)

33. Schlick, T.: Molecular Modeling and Simulation: an interdisciplinary guide. Inter-
disciplinary Applied Mathematics, vol. 21. Springer, New York (2002)

34. Spicher, A., Michel, O., Giavitto, J.L.: A topological framework for the specification
and the simulation of discrete dynamical systems. Cellular Automata, 238–247
(2004)

35. Theraulaz, G., Bonabeau, E.: Modelling the collective building of complex architec-
tures in social insects with lattice swarms. Journal of Theoretical Biology 177(4),
381–400 (1995)

36. Tomita, K., Kurokawa, H., Murata, S.: Graph-rewriting automata as a natural
extension of cellular automata. Adaptive Networks, 291–309 (2009)

37. Walker, D.C., Southgate, J.: The virtual cell–a candidate co-ordinator for ’middle-
out’ modelling of biological systems. Briefings in Bioinformatics 10(4), 450–461
(2009)

38. Wolfram, S.: A new kind of science. Wolfram Media Inc., Champaign (2002)
39. Wooldridge, M.: An Introduction to MultiAgent Systems. John Wiley and Sons,

Chichester (2002)

A Modified Particle Swarm Optimization
Algorithm for the Best Low Multilinear Rank

Approximation of Higher-Order Tensors

Pierre B. Borckmans, Mariya Ishteva, and Pierre-Antoine Absil

Department of Mathematical Engineering,
Université catholique de Louvain, Louvain-la-Neuve, Belgium

http://www.inma.ucl.ac.be/~absil/

Abstract. The multilinear rank of a tensor is one of the possible gener-
alizations for the concept of matrix rank. In this paper, we are interested
in finding the best low multilinear rank approximation of a given ten-
sor. This problem has been formulated as an optimization problem over
the Grassmann manifold [14] and it has been shown that the objec-
tive function presents multiple minima [15]. In order to investigate the
landscape of this cost function, we propose an adaptation of the Parti-
cle Swarm Optimization algorithm (PSO). The Guaranteed Convergence
PSO, proposed by van den Bergh in [23], is modified, including a gradi-
ent component, so as to search for optimal solutions over the Grassmann
manifold. The operations involved in the PSO algorithm are redefined
using concepts of differential geometry. We present some preliminary nu-
merical experiments and we discuss the ability of the proposed method
to address the multimodal aspects of the studied problem.

Keywords: Multi-Linear Rank, Higher-Order Tensors, Particle Swarm
Optimization, Grassmann Manifold, Global Optimization.

1 Introduction

Although the generalization of matrices to higher-order tensors is quite natu-
ral, the concept of matrix rank cannot be extended in a straightforward way.
However, there are some propositions to define the rank for tensors, in an effort
to maintain some properties found in the matrix theory. A particular choice,
explained in section 2.1, is the multilinear rank, which is a direct generalization
of the row and column ranks for matrices [12,13].

The problem we investigate in this paper is to find the best low multilinear
rank approximation of a given tensor. This problem, presented in section 2.2,
is a natural extension of the low rank matrix approximation problem. Amongst
the many motivations behind these problems, one can cite data compression,
dimensionality reduction and independent component analysis (ICA) in domains
as various as statistics [20], signal processing [3] and image processing [24].

In the matrix case, it is known that the best approximation is given by the
truncated singular value decomposition (SVD). The generalization of this con-
cept for higher-order tensors is called the higher-order SVD (HOSVD) [6], or
more generally Tucker decomposition [21,22]. However, taking truncated ver-
sions of these decompositions no longer leads to optimal approximations for

M. Dorigo et al. (Eds.): ANTS 2010, LNCS 6234, pp. 13–23, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

http://www.inma.ucl.ac.be/~absil/

14 P.B. Borckmans, M. Ishteva, and P.-A. Absil

tensors. That being said, the search for low rank tensor approximation can be
formulated as an optimization problem on a particular search space, namely the
Grassmann manifold, as explained in section 2.4.

This optimization problem has been studied before, notably in [7,18,17], and
has been shown to present multiple local minima. In [15], the authors show that
there can be many of these local minima but that the differences in terms of the
cost function can be very small. What really differs are the subspaces spanned
by the projection matrices corresponding to different solutions. These differences
may have important consequences for applications and motivate the need to
investigate the landscape of the objective function, without getting trapped in
the first local minima. In order to perform this investigation, one needs to design
global optimization methods on the Grassmann manifold. Some methods dealing
with such search spaces are available in the literature. The global aspect of these
methods rely either on a stochastic component or on a population framework.
In [19] for example, the authors propose a stochastic gradient algorithm. In [9]
Dreisigmeyer et al. define a canvas to develop direct-search optimization method
on Riemannian manifolds, such as the Nelder-Mead algorithm and the lower-
triangular mesh adaptive direct search (LTMADS) algorithm [4].

This paper presents preliminary results towards applying swarm intelligence
techniques to efficiently explore the landscape of the objective function appear-
ing in the low multilinear rank approximation problem. In this proof-of-concept
paper, we concentrate on the most basic Particle Swarm Optimization (PSO) al-
gorithms, extend them to tackle the tensor low rank approximation cost function
defined on a Cartesian product of Grassmann manifolds, and report on numeri-
cal experiments that illustrate the applicability of the obtained algorithms. More
specifically, we start from the Guaranteed Convergence PSO (GCPSO), as pre-
sented by van den Bergh et al. in [23], and modify it so as to search for optimal
solutions over the Grassmann manifold. A gradient component is also included
in the method to improve its convergence rate.

In future work, we will investigate methods that improve the exploration-
exploitation balance, such as velocity-based reinitialization and niching tech-
niques, and report on comparisons with other optimization methods.

The paper is organized as follows. Section 2 reviews the best low multilin-
ear rank approximation of tensors, its formulation on the Grassmann manifold,
and the issue of local minima. Section 3 presents how GCPSO is adapted to
the Grassmann manifold, using concepts of differential geometry, and introduces
a gradient component in the algorithm. Finally, section 4 presents numerical
results and discusses the ability of the proposed method to deal with the multi-
modal aspects of the best low multilinear rank approximation problem.

2 Low Multilinear Rank Approximation Problem

2.1 Tensor Generalities

Before diving into the problem we want to address, we give here some general
concepts and definitions about tensors that will be necessary in the following.

PSO for Low Rank Tensor Approximation 15

An Nth-order real tensor A is a N -way array of real numbers; a first-order
tensor is thus a vector, a second-order tensor is a matrix, a third-order tensor
is a 3D-array. In the following, we will focus on third-order tensors, for clarity,
but extension to higher-order tensors is mainly technical. The mode-n rank of
A, n = 1, . . . , N , denoted by rankn(A), is the number of linearly independent
mode-n vectors, also called fibers, i.e. the vectors obtained by varying the n-
th index of A while fixing the others. This concept is an extension of the row
and column ranks of a matrix, with the important difference that the different
mode-n ranks are generally not the same. The multilinear rank of an Nth-order
tensor A is then the N -tuple of its mode-n ranks.

The matrix representations A(n), n = 1, 2, 3, of a third-order tensor A, also
called flattenings or unfoldings of A, are obtained by concatenating the mode-n
vectors of A in a specific order, given by:(

A(1)
)
i1,(i2−1)I3+i3

=
(
A(2)

)
i2,(i3−1)I1+i1

=
(
A(3)

)
i3,(i1−1)I2+i2

= ai1i2i3 . (1)

Note that it results from this definition that rankn(A) = rank(A(n)).

2.2 Problem Statement

Finding the best low multilinear rank of a tensor A ∈ R
I1×I2×I3 consists in find-

ing another tensor Â ∈ R
I1×I2×I3 with mode-n ranks bounded by pre-specified

R1, R2, R3 respectively, with Ri ≤ Ii, that is as close as possible to A. This can
be expressed by the following optimization problem:

min
Â∈RI1×I2×I3

‖A − Â‖2

s.t. rank1(Â) ≤ R1, rank2(Â) ≤ R2, rank3(Â) ≤ R3.

(2)

It has been shown in [7,18,17] that this problem is equivalent to the problem of
maximizing the function

ḡ : St(R1, I1) × St(R2, I2) × St(R3, I3) → R,

(U, V,W) �→ ‖UTA(1)(V ⊗W)‖2 = ‖V TA(2)(W ⊗ U)‖2

= ‖WTA(3)(U ⊗ V)‖2,

(3)

where St(p, n) stands for the set of column-wise orthonormal (n × p)-matrices,
i.e. the Stiefel manifold, and ⊗ is the Kronecker product.

This function ḡ can be seen as a natural generalization of the matrix case
where the best rank-R approximation Â of a matrix A ∈ R

I1×I2 is given by
maximizing ‖UTAV ‖, with U ∈ R

I1×R and V ∈ R
I2×R being column-wise or-

thogonal matrices (see [8]). In fact, in this case, the best solution is known to
be given by the truncated SVD. For higher-order tensors, this notion can be
extended to HOSVD [6,21,22], but it no longer leads to optimal solutions. Nev-
ertheless, the truncated HOSVD is often used as a good starting point for opti-
mization algorithms, even though it has been shown that this does not always
imply convergence to the global optimum [15].

16 P.B. Borckmans, M. Ishteva, and P.-A. Absil

2.3 Local Minima

In [15], the authors show that the best low multilinear rank approximation prob-
lem (2) presents local non-global minima. This is a major difference with the ma-
trix case where the problem is uni-modal. The authors considered tensors with
low multilinear rank, perturbed by a small amount of additive noise. For such
test tensors, the local algorithms proposed in [14] converge to a small amount
of different minima. After increasing the noise level, the tensors become less
structured and more local minima are found. This behavior is related to the
distribution of the mode-n singular values (the singular values of the matrices
A(n)). When the noise level is low, there is a gap between the singular values,
whereas when the noise level increases, the gap becomes small or non-existent.
In this case, the best low multilinear rank approximation becomes a difficult
problem since we are looking for a structure that is not present: there are many
equally good, or equally bad, solutions.

Concerning the values of the cost function at the different local minima, they
seem to be similar [15]. This means that in applications where the multilinear
rank approximation is merely used as a compression tool for memory savings,
using a local optimizer such as the ones proposed in [14] is efficient and reliable.

On the other hand, the subspaces spanned by two matrices U1 and U2 cor-
responding to two different local optima in (3) are very different and the same
holds for V and W [15]. In applications where these subspaces are important,
such as dimensionality reduction, this observation may be important to consider.
A last remark made in [15] is that the global optimum is not necessarily the de-
sired one. The authors show that when a tensor with low multilinear rank is
affected by noise, the subspaces corresponding to the global optimum are not al-
ways the closest to the subspaces corresponding to the original noise-free tensor,
especially for high noise levels.

All of these remarks motivate the need to develop methods that are able to
investigate the landscape of the objective function (3) in a global perspective.
In [14], the author suggests that local algorithms can be run several times, from
different initial conditions, in order to discover the different local optima. In this
paper, we propose a more sophisticated, population-based method, in the per-
spective that one run of such a global method with a given number of individuals
would discover the different optima more efficiently than the same amount of
runs of a local optimizer, thanks to collaboration between individuals.

2.4 The Grassmann Manifold G(p, n)

The cost function ḡ defined in (3) has an important invariance property. For any
set of orthogonal matrices Q(i) ∈ ORi , i = 1, 2, 3, one can show that:

ḡ(U, V,W) = ḡ(UQ(1), V Q(2),WQ(3)). (4)

This means that we are not looking for the exact elements of U , V and W , but
for the subspaces that their columns span. Consequently, the optimal solutions
of ḡ are not isolated since for every triplet (U, V,W), there is a whole equivalence

PSO for Low Rank Tensor Approximation 17

class of triplets leading to the same cost. For PSO methods, this is a source of
difficulty since particles may converge to minima that are structurally identical
(they yield the same cost) while being far apart from each other in the (U, V,W)
space. One way of getting rid of this redundancy is to work conceptually on a
smaller-dimensional search space by making use of the Grassmann manifold.

The Grassmann manifold G(p, n) is the set of all p-planes in R
n. It can be

thought of as the quotient manifold M = St(p, n)/Op (see e.g. [10]). A point
in G(p, n) thus represents a whole equivalence class of matrices spanning the
same p-dimensional subspace. In practice, we will represent a point in G(p, n)
by choosing an arbitrary member in St(p, n) of its equivalence class.

3 Particle Swarm Optimization

In this section, we propose to develop an optimization algorithm based on PSO
for the best low multilinear rank approximation problem. In order to do so, we
need to adapt PSO to the cost function (3), defined on a Cartesian product of
three Grassmann manifolds. This section recalls the basic PSO and GCPSO al-
gorithm formulations, then presents the adaptation of their different components
to the Grassmann manifold. Finally the algorithm for the Cartesian product is
detailed.

3.1 PSO in R
n

First introduced in 1995 by Eberhart and Kennedy [16], PSO is a stochastic
population-based algorithm. Particles are points evolving in the search space, fol-
lowing simple rules, mimicking the behaviour of social groups. Points are initial-
ized randomly in R

n and the driving force of the optimization process is given by
the following update equations (iterated over k), for each particle (indexed by i):

vi(k + 1) = w(k)vi(k)︸ ︷︷ ︸
inertia

+ cαi(k) (yi(k) − xi(k))︸ ︷︷ ︸
nostalgia

+ sβi(k) (ŷ(k) − xi(k))︸ ︷︷ ︸
social

(5)

xi(k + 1) = xi(k) + vi(k + 1) , (6)

where x denotes position, v denotes velocity, y is the personal best position
so far, ŷ is the global best position discovered by the swarm so far; w is inertia
coefficient (usually dynamic), c and s are adjustable coefficients, and α and β are
random components. As can be seen, the behaviour of each particle is dictated
by velocity increments composed of three simple components: inertia, cognitition
(nostalgic behaviour) and social behaviour. At the end of each iteration, yi and
ŷ are updated.

3.2 GCPSO and Gradient

The basic PSO algorithm introduced in the previous section does not present any
guarantee about the convergence to a minimum, not even a local one. Actually,

18 P.B. Borckmans, M. Ishteva, and P.-A. Absil

the only thing that is guaranteed is that all the particles converge to a point
on the line joining their best position and the global best position. In order
to ensure convergence to a stationary point, van den Bergh et al. proposed in
[23] a slight variation of the original PSO, called Guaranteed Convergence PSO,
avoiding stagnation of the particles. In this model, all the particles follow the
velocity update equation (5) except for the best particle at current iteration k,
denoted by the index i = τ , which follows the velocity equation

vτ (k + 1) = ŷ(k) − xτ (k)︸ ︷︷ ︸
reset

+w(k)vτ (k)︸ ︷︷ ︸
inertia

+ ρ(k)(1 − 2γ(k))︸ ︷︷ ︸
sampling

, (7)

where γ is a random vector uniformly distributed over [0, 1]. This last equation
forces the best particle to randomly reset its position in a ball around the current
best position. The radius of this ball, ρ(k), is increased when a better position is
sampled and it is reduced when the sampling fails, therefore ensuring convergence
to a local minimum. For more in-depth information about PSO, GCPSO and
other variants, the reader is referred to [11].

When the gradient of the objective function is available, the sampling term
in (7) can be advantageously replaced by a term involving the gradient:

vτ (k + 1) = ŷ(k) − xτ (k)︸ ︷︷ ︸
reset

+w(k)vτ (k)︸ ︷︷ ︸
inertia

− δ(k)∇f(xτ (k))︸ ︷︷ ︸
descent

, (8)

where δ(k) controls how much use of the gradient is made over time. The idea
there is that the whole swarm is moving through the search space using mutual
interactions, while the best individual refines its position in the best way that
is locally possible, i.e. along its steepest descent direction. This strategy has
the advantage of preserving the exploration quality of PSO while improving the
exploitation of potential optima that are found along the way.

3.3 Adapting GCPSO to the Grassmann Manifold G(p, n)

In its original form, PSO is described for particles in R
n: x ∈ R

n, y ∈ R
n and

the operations involved in the update equations (+,−,.) are the usual vectorial
addition, subtraction and scaling. In order to adapt standard PSO to the Grass-
mannian search space, one must redefine x, v and the operations mentioned
above.

A point x on the Grassmann manifold G(p, n) is represented by a matrix
X ∈ St(p, n) and likewise for y and ŷ. The velocity v is now an element of
TxG(p, n), the tangent space to G(p, n) centered at x, represented by a matrix
in HX :=

{
Ẋ ∈ R

n×p : XT Ẋ = 0
}
; see [2, §3.6.2] for details. In the following,

we will abuse notation and write X ∈ G(p, n) for an element of St(p, n) meant
to represent an element of G(p, n), and Ẋ ∈ TXG(p, n) for an element of HX

meant to represent an element of TXG(p, n).
In order to rewrite the velocity and position update equations (5)–(6), one

needs to be able to compute a geodesic starting at a given point with a given

PSO for Low Rank Tensor Approximation 19

initial velocity, and to compute the initial velocity of a geodesic linking two
points. The exponential map and the logarithmic map are the respective tools
to address these questions (see e.g. [1]). We consider the geodesics induced by
the (essentially) unique rotation-invariant metric on G(p, n).

The geodesic starting at a point X ∈ G(p, n) with velocity Ẋ ∈ TXG(p, n) is
given by (see [1, §3.7]):

γ(t) = ExpX(tẊ) := XV cos(tΘ) + Usin(tΘ) , (9)

where Ẋ = UΘV T is a thin SVD.
The initial velocity Ẋ ∈ TXG(p, n) of the geodesic linking two points X and

Y on G(p, n) is given by (see [1, §3.8]):

Ẋ = LogX(Y) := Uatan(Σ)V T , (10)

where U , V and Σ are given by the thin SVD of Π⊥
XY (XTY)−1 (where Π⊥

X :=
I −XXT is the orthogonal projection onto HX):

UΣV T = Π⊥
XY
(
XTY

)−1
. (11)

Using relations (9) and (10), the velocity and position update equations (5)–(6)
can now be rewritten as follows:

Ẋi(k + 1) = w(k) d
dt ExpXi(k−1)

(
tẊi(k)

)∣∣∣
t=1

+ cαi(k)LogXi(k)Yi(k)

+ sβi(k)LogXi(k)Ŷ (k)

(12)

Xi(k + 1) = ExpXi(k)Ẋi(k + 1). (13)

Equation (7) for GCPSO involves three terms. The first two terms are similar
to the ones in equation (5) and can therefore be adapted in the same way. To
adapt the last term (sampling), one needs to be able to generate a displacement
in TXG(p, n), the tangent space at X , so as to generate a random matrix Y ∈
G(p, n) in a ball of radius ρ around X ∈ G(p, n). This displacement Z can
be computed as Z = UΣV T where U , Σ and V are chosen as follows: draw
R ∈ R

n×p and W ∈ R
p×p from the normal distribution, (s1, . . . , sp) from the

uniform distribution on [0, 1] and compute:

U = qf(Q)
Q = Π⊥

X (R)
Σ =

⎡⎢⎣σ1
. . .

σp

⎤⎥⎦
σi = ρ(k)(1 − 2si)

V = qf(W) (14)

where qf returns the Q-factor of the QR decomposition of its matrix argument.
Equation (7) can thus finally be rewritten as follows:

Ẋτ (k + 1) = LogXτ (k)Ŷ (k) + w(k)
d
dt

ExpXτ (k−1) (tVτ (k))
∣∣∣
t=1

+ UΣρ(k)V
T .

(15)

20 P.B. Borckmans, M. Ishteva, and P.-A. Absil

Finally, equation (8) can be rewritten in the following way:

Ẋτ (k + 1)=LogXτ (k)Ŷ (k)+w(k)
d
dt

ExpXτ (k−1) (tVτ (k))
∣∣∣
t=1

− δ(k)∇f(Xτ (k)).

(16)

3.4 PSO in G(R1, I1) × G(R2, I2) × G(R3, I3)

The previous section showed how PSO and GCPSO can be adapted to the Grass-
mann manifold. For the purpose of optimizing ḡ (3), the search space is actually
a Cross product of three Grassmann manifolds, G(R1, I1)×G(R2, I2)×G(R3, I3)
and we endow this search space with the standard product metric. The particles
are thus elements described as follows:

{(U, V,W) : U ∈ G(R1, I1), V ∈ G(R2, I2),W ∈ G(R3, I3)} .

The formulas for the exponential and the logarithm generalize component-wise
as follows:

Exp(U,V,W)

(
U̇ , V̇ , Ẇ

)
=
(
ExpU U̇ ,ExpV V̇ ,ExpW Ẇ

)
, (17)

Log(Ua,Va,Wa) (Ub, Vb,Wb) =
(
LogUa

Ub,LogVa
Vb,LogWa

Wb

)
. (18)

Equations (12)-(16) can now be adapted to the search space using (17)-(18).
Using equations (12)-(18), we finally propose the following algorithm:

Data: Tensor A, Multilinear rank (R1, R2, R3)
Draw initial points (Ui(0), Vi(0),Wi(0)), ∀i, from the normal distribution
and taking the Q-factor;
Set null initial velocities (U̇i(0), V̇i(0), Ẇi(0));
while k < max iter do

Update personal bests
(
Y U

i (k), Y V
i (k), Y W

i (k)
)
, ∀i;

Update global best
(
Ŷ U (k), Ŷ V (k), Ŷ W (k)

)
and τ ;

∀i
= τ , compute
(
U̇i(k), V̇i(k), Ẇi(k)

)
using (12);

if k ≤ iter GCPSO then

Compute
(
U̇τ (k), V̇τ (k), Ẇτ (k)

)
using (15) (sampling);

else

Compute
(
U̇τ (k), V̇τ (k), Ẇτ (k)

)
using (16) (gradient);

end
Compute (Ui(k), Vi(k),Wi(k)) using (13);
Update ρ(k) or δ(k);

end
return ḡ (Uτ (k), Vτ (k),Wτ (k))

Algorithm 1. GCPSO with gradient adapted to the best low multilinear
rank tensor approximation problem

PSO for Low Rank Tensor Approximation 21

4 Numerical Results

In this section, we present some preliminary numerical experiments that illus-
trate the ability of the proposed algorithm to find the global optimum of the
cost function ḡ. We build a set of test tensors as follows:

– we choose dimensions (I1, I2, I3), the multilinear rank R = (R1, R2, R3) and
noise levels σi

– we build a set of tensors Ai with multilinear rank R, perturbed with additive
noise controlled by σi, using

Ãi = Ti/‖Ti‖ + σi ∗ Ei/‖Ei‖, Ai = Ãi/‖Ãi‖, (19)

where Ti is obtained as a product of a (R1, R2, R3)-tensor Bi and three
column-wise orthonormal matrices with matching dimensions (to reach an
(I1, I2, I3)-tensor). The elements of Bi, Ei and the three matrices are drawn
from a normal distribution with zero mean and unit standard deviation. The
Q-factor of the QR decomposition is then taken for the matrices.

For each tensor of this set, we perform 100 runs of a local optimizer, namely the
higher order orthogonal iteration (HOOI) [7,17], with randomly-selected initial
conditions, in order to get a putative global optimum (U∗, V∗,W∗). Then, we run
the proposed algorithm 1, and we declare success if the best objective value ḡ�

found by the algorithm falls within ε = 10−8 of ḡ(U∗, V∗,W∗).
The parameters for PSO were chosen as follows:

– population size = 10, c = 0.5, s = 0.5, max iter = 1000,
iter GCPSO = 400;

– w(k) linearly decreasing from 0.9 to 0.4;
– ρ(k) doubling when 3 consecutive successes, halving when 5 consecutive fail-

ures;
– δ(k) linearly decreasing from 1 to 0.

The following table shows the rate of success (a rate of 1 means that success was
always observed) for the cases (I1, I2, I3) = (10, 10, 10), (R1, R2, R3) = (2, 2, 2)
and (I1, I2, I3) = (10, 12, 15), (R1, R2, R3) = (2, 3, 4), evaluated over 10 runs of
algorithm 1.

σ 1 2 3 5 10
case 1 success rate 1 1 .9 .4 0
case 2 success rate 1 1 .8 .3 .1

We see that algorithm 1 is very successful when the noise level is low, even
though local non-global optima are already present in the objective function.
We also see that when the noise level becomes very high, the landscape of the
objective function becomes so intricate that the performance of the proposed
algorithm degrades.

22 P.B. Borckmans, M. Ishteva, and P.-A. Absil

5 Conclusion

We have introduced an adaptation of the GCPSO algorithm, including a gradi-
ent component, for the best low multilinear rank approximation problem. The
proposed algorithm shows capacities to discover global optima, often without
getting trapped in suboptimal solutions.

In future work, we will explore the niching capabilities of the PSO algorithm,
as presented e.g. in [25,5]. These variations improve the ability of PSO to discover
different local minima and could be used in this application to investigate the
landscape of the objective function in a more informative way.

Further investigation of the problem might also involve other optimization
techniques such as evolutionary algorithms and memetic algorithms. A com-
parison with such existing population-based algorithms might give more insight
about the difficulty of the considered problem.

Acknowledgments. This paper presents research results of the Belgian Net-
work DYSCO (Dynamical Systems, Control, and Optimization), funded by the
Interuniversity Attraction Poles Programme, initiated by the Belgian State, Sci-
ence Policy Office. The scientific responsibility rests with its authors. This work
is supported by a FRIA (Fonds pour la formation à la Recherche dans l’Industrie
et dans l’Agriculture) fellowship and by “Communauté française de Belgique -
Actions de Recherche Concertées”.

References

1. Absil, P.A., Mahony, R., Sepulchre, R.: Riemannian geometry of Grassmann man-
ifolds with a view on algorithmic computation. Acta Appl. Math. 80(2), 199–220
(2004)

2. Absil, P.A., Mahony, R., Sepulchre, R.: Optimization Algorithms on Matrix Man-
ifolds. Princeton University Press, Princeton (2008)

3. Acar, E., Bingol, C.A., Bingol, H., Bro, R., Yener, B.: Multiway analysis of epilepsy
tensors. In: ISMB 2007 Conference Proceedings, Bioinformatics, vol. 23(13), pp.
i10–i18 (2007)

4. Audet, C., Dennis Jr., J.E.: Mesh adaptive direct search algorithms for constrained
optimization. SIAM J. on Optimization 17(1), 188–217 (2006)

5. Brits, R., Engelbrecht, A., van den Bergh, F.: A niching particle swarm optimizer.
In: Proceedings of the 4th Asia-Pacific Conference on Simulated Evolution and
Learning (SEAL 2002), vol. 2, pp. 692–696 (2002)

6. De Lathauwer, L., De Moor, B., Vandewalle, J.: A multilinear singular value de-
composition. SIAM J. Matrix Anal. Appl. 21(4), 1253–1278 (2000)

7. De Lathauwer, L., De Moor, B., Vandewalle, J.: On the best rank-1 and rank-
(R1, R2, . . . , RN) approximation of higher-order tensors. SIAM J. Matrix Anal.
Appl. 21(4), 1324–1342 (2000)

8. De Lathauwer, L., Vandewalle, J.: Dimensionality reduction in higher-order signal
processing and rank-(R1, R2, . . . , RN) reduction in multilinear algebra. Linear Al-
gebra Appl. 391, 31–55 (November 2004), Special Issue on Linear Algebra in Signal
and Image Processing

PSO for Low Rank Tensor Approximation 23

9. Dreisigmeyer, D.W.: Direct search algorithms over Riemannian manifolds (Decem-
ber 2006) (optimization Online 2007-08-1742)

10. Edelman, A., Arias, T.A., Smith, S.T.: The geometry of algorithms with orthogo-
nality constraints. SIAM J. Matrix Anal. Appl. 20(2), 303–353 (1998)

11. Engelbrecht, A.P.: Fundamentals of Computational Swarm Intelligence. John Wi-
ley & Sons, Chichester (2006)

12. Hitchcock, F.L.: The expression of a tensor or a polyadic as a sum of products.
Journal of Mathematical Physics 6(1), 164–189 (1927)

13. Hitchcock, F.L.: Multiple invariants and generalized rank of a p-way matrix or
tensor. Journal of Mathematical Physics 7(1), 39–79 (1927)

14. Ishteva, M.: Numerical methods for the best low multilinear rank approxima-
tion of higher-order tensors. Ph.D. thesis, Department of Electrical Engineering,
Katholieke Universiteit Leuven (December 2009)

15. Ishteva, M., Absil, P.-A., Van Huffel, S., De Lathauwer, L.: Tucker compression
and local optima. Chemometr. Intell. Lab. Syst. (2010),
doi:10.1016/j.chemolab.2010.06.006

16. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of IEEE
International Conference on Neural Networks, vol. 4, pp. 1942–1948 (1995),
http://dx.doi.org/10.1109/ICNN.1995.488968

17. Kroonenberg, P.M.: Applied Multiway Data Analysis. Wiley, Chichester (2008)
18. Kroonenberg, P.M., de Leeuw, J.: Principal component analysis of three-mode

data by means of alternating least squares algorithms. Psychometrika 45(1), 69–97
(1980)

19. Liu, X., Srivastava, A., Gallivan, K.: Optimal linear representations of images for
object recognition. IEEE Pattern Anal. and Mach. Intell. 26(5), 662–666 (2004),
http://dx.doi.org/10.1109/TPAMI.2004.1273986

20. McCullagh, P.: Tensor Methods in Statistics. Chapman and Hall, London (1987)
21. Tucker, L.R.: The extension of factor analysis to three-dimensional matrices. In:

Gulliksen, H., Frederiksen, N. (eds.) Contributions to mathematical psychology,
pp. 109–127. Holt, Rinehart & Winston (1964)

22. Tucker, L.R.: Some mathematical notes on three-mode factor analysis. Psychome-
trika 31, 279–311 (1966)

23. van den Bergh, F., Engelbrecht, A.P.: A new locally convergent particle swarm
optimiser. In: Proceedings of the IEEE International Conference on Systems, Man
and Cybernetics. pp. 96–101 (2002)

24. Vasilescu, M.A.O., Terzopoulos, D.: Multilinear subspace analysis for image en-
sembles. In: Proc. Computer Vision and Pattern Recognition Conf. (CVPR 2003),
Madison, WI, vol. 2, pp. 93–99 (2003)

25. Zhang, J., Zhang, J.R., Li, K.: A sequential niching technique for particle swarm op-
timization. In: Huang, D.-S., Zhang, X.-P., Huang, G.-B. (eds.) ICIC 2005. LNCS,
vol. 3644, pp. 390–399. Springer, Heidelberg (2005)

http://dx.doi.org/10.1109/ICNN.1995.488968
http://dx.doi.org/10.1109/TPAMI.2004.1273986

A Robotic Validation of the Attractive Field
Model: An Inter-disciplinary Model of

Self-regulatory Social Systems

Md. Omar Faruque Sarker and Torbjørn S. Dahl

Robotic Intelligence Lab, University of Wales, Newport, UK
{Mdomarfaruque.Sarker,Torbjorn.Dahl}@newport.ac.uk

Abstract. Division of labour in multi-robot systems or multi-robot task
allocation (MRTA) is a challenging research issue. We propose to solve
this MRTA problem using a set of previously published generic rules for
division of labour derived from the observation of ant, human and robotic
social systems. These bottom-up rules describe the phenomenon of self-
regulated division of labour in terms of attractive fields between robots
and tasks. The concrete form of these rules, the attractive filed model,
avoids the strong dependence on local interactions found in many existing
approaches to MRTA. We present experimental results that constitute a
first validation of attractive filed model as a mechanism for MRTA and
as a multi-disciplinary model of self-organisation in social systems. Our
experiments used 16 e-puck robots in a 2m x 2m area.

1 Introduction

Scientific studies show that a large number of animal as well as human social
systems grow, evolve and generally continue functioning well by the virtue of
their individual self-regulatory mechanism of division of labour (DOL) [2]. This
has been accomplished without any central authority or any explicit planning
and coordinating element. Indirect communication such as stigmergy is instead
used to exchange information among individuals. In robotics, multi-robot task
allocation (MRTA) is a common research challenge [4]. It is generally identified
as the problem of assigning tasks to appropriate robots at appropriate times
considering the potential changes in the environment and/or the performance
of the robots. MRTA is an optimal assignment problem that has been shown
to be NP-hard, so optimal solutions can not be expected for large problems [8].
In addition to the inherent complexity of MRTA, the problem is also commonly
restricted to avoid central planners or coordinators for task assignments. The
robots are also commonly limited to local sensing, communication and interac-
tion [5] where no single robot has complete knowledge of the past, present or
future actions of other robots or a complete view of the world state.

Traditionally MRTA solutions are broadly divided into two major categories:
1) Predefined and 2) Bio-inspired self-organized task-allocation [9]. Early re-
search on predefined task-allocation was dominated by intentional coordination,

M. Dorigo et al. (Eds.): ANTS 2010, LNCS 6234, pp. 24–35, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Robotic Validation of the Attractive Field Model 25

use of dynamic role assignment [8] and market-based bidding approach [3]. Un-
der these approaches, robots use direct task-allocation method to communicate
and to negotiate tasks. These approaches are intuitive, comparatively straight-
forward to design and implement and can be analysed formally. However, these
approaches typically works well only when the number of robots are small (≤ 10).

The self-organized task-allocation, on the other hand, relies on the emergence
of group behaviours, e.g., emergent cooperation [5], adaptive mechanisms such
as adaptation rules [6]. These approaches typically handle systems with local
sensing, local interactions and typically little or no explicit communications or
negotiations among robots. self-organized systems are more scalable and robust
due to their inherent parallelism and redundancy. However, in these systems,
solutions are unintuitive and thus difficult to design, analyse formally and im-
plement practically [4,5]. The solutions found by these systems are typically
sub-optimal and, as emergence is a result of interactions among robots and their
environment, it is also difficult to predict exact behaviours of robots and overall
system performance.

The current challenges in self-organized task allocation approaches have mo-
tivated us to look for a suitable alternative. In nature we find that task alloca-
tion in animal or insect societies can be governed by non-centralized rules and
that they are self-regulating and self-stabilizing [2]. As a part of a collaborative
project, we have studied the behaviours of ants, humans and robots and, from
a set of generic rules of self-regulation, we have developed the attractive field
model (AFM). This has become a common formal model of division of labour in
social systems [1]. In this paper, we present an application of AFM in a robotic
system. Section 2 presents AFM with its generic and robotic interpretations.
It also presents an application of AFM in a manufacturing shop-floor scenario.
Section 3 introduces our implementation of MRTA. Section 4 presents the de-
sign of our experiments including specific parameters and observables. Section 5
discusses our experimental results and section 6 draws conclusions.

2 The Attractive Field Model

2.1 Generic Interpretation

AFM provides an abstract framework for self-regulatory DOL in social systems
[1]. In order to achieve self-regulation, it proposes four generic rules: continuous
flow of information, concurrency, learning and forgetting, all of them will be
explained later. In terms of networks, the model is a bipartite network, meaning
that there are two different types of nodes. One set of nodes describes the sources
of the attractive fields and the other set describes the agents. Links only exist
between different types of nodes and they encode the flow of information so that,
even if there is no direct link between two agents, their interaction is taken into
account in the information flow. The strength of the field depends on the distance
between the task and the agent. This relationship is represented using weighted
links. In addition, there is a permanent field that represents the no-task option.

26 M.O.F. Sarker and T.S. Dahl

The model can be mapped to a network as shown in Fig. 1. The correspondence
is given below:

1. Source nodes (o) are tasks that can be divided between a number of agents.
2. Agent nodes (x) are robots.
3. The attractive fields correspond to stimuli to perform a task, and these are

encoded in a system-wide continuous flow of information. These are given
by the black solid lines.

4. When an agent performs a task, the link is of a different sort, and this is
denoted in the figure by a dashed line. Agents linked to a source by a red
line are the robots currently doing that task.

5. The field of ignoring the information (w) corresponds to the stimulus to
random walk, i.e. the no-task option, and this is denoted by the dotted lines
in the graph.

6. Each of the links is weighted. The value of this weight describes the strength
of the stimulus that the agent experiences. In a spatial representation of
the model, it is easy to see that the strength of the field depends on the
physical distance of the agent to the source. In addition, the strength can
be increased through sensitisation of the agent via experience or learning.
Similarly, when the task is not done for some time, this strength can be
gradually attenuated, which can be treated as forgetting. This distance is
not depicted in the network, it is represented through the weights of the
links . In the figure of the network, the nodes have an arbitrary place. Note
that even though the distance is physical in this case, the distance in the
model applied to other systems, needs not to be physical, it can represent
the accessibility to the information, the time the information takes to reach
the receiver, etc.

In summary, looking at the network, we see that each of the agents is connected
to each of the fields. This means that even if an agent is currently involved in a
task, the probability that it stops doing it in order to pursue a different task, or
to random walk, is always non-zero. The weighted links express the probability
of an agent to be attracted to each of the fields, considered as concurrency.

2.2 Robotic Interpretation

Now let us interpret this model within the context of our MRS. Let us consider
a manufacturing shop floor scenario where N number of mobile robots are re-
quired to attend to M number of shop tasks spread over a fixed area A. Let
these tasks be represented by a set of small rectangular boxes resembling to
manufacturing machines. Let R be the set of robots r1, r2, ..., rn and J the set of
tasks t1, t2, ..., tm. Each task tj has an associated task-urgency φj indicating its
relative importance over time. If a robot attends a task tj in the xth time-step,
the value of φj will decrease by an amount ΔΦINC in the (x+1)th time-step. On
the other hand, if a task has not been served by any robot in the xth time-step,
φj will increase by another amount, ΔΦDEC , in (x+1)th time-step. In order to
complete a task t1, a robot ri needs to be within a fixed boundary Dj1 of t1.

Robotic Validation of the Attractive Field Model 27

O: Tasks X:Robots
W: No-Task Option

XX

X

O

O

O

X X

O
X

X

X
X

W

Attractive Field (Stimulus)

O

O

O

Performance of a task

Fig. 1. Attractive Filed Model (AFM)

R1

R3

R2

TaskServer

Task1

Task2

TaskInfo Signal
RobotStatus Signal

Strong Attraction

Weak Attraction

Fig. 2. A centralized communication
scheme

If a robot completes a task tj it gets sensitised to it and this will increase the
robot’s likelihood of selecting that task in the future. We call this variable the
affinity of a robot ri to task tj its sensitization ki

j . If a robot does not do a task
tj for some time, it forgets about tj and kj is decreased.

According to AFM, all robots will establish attractive fields to all tasks due
to the presence of a system-wide continuous flow of information. The strength
of these attractive fields will vary according to the distances between robots and
tasks, task-urgencies and corresponding sensitizations of robots. This is encoded
in Eq. 1.

Si
j = tanh{ ki

j

dij + δ
φj} (1) P i

j =
Si

j∑
j Si

j

(2)

Eq. 1 states that the stimuli of a robot ri to a particular task tj , Si
j , depends

on ri’s spatial distance to tj (dij), level of sensitization to j (ki
j), and perceived

urgency of that task (φj). We use a very small constant value δ to avoid division
by zero for the special case when a robot has reached a task. Since Si

j is a prob-
ability function, it is chosen as a tanh in order to keep the values between 0 and
1. The probability of selecting each task has been determined by a probabilistic
method outlined in Eq. 2. AFM suggests that concurrency of a self-regulatory
system can be maintained by specifying at least two task options: doing a task
and not doing a task. In robots, the latter can be be treated as random walking.
So in any time-step a robot will choose from M+1 tasks. Let Ta be the allocated
time to accomplish a task. If a robot can enter inside the task boundary within
Ta time it waits there until Ta elapsed. Otherwise it will select a different task.

2.3 A Manufacturing Shop-Floor Interpretation

By extending the robotic interpretation of AFM, we can present a manufacturing
shop-floor scenario where each task represents a manufacturing machine. These
machines are capable of producing goods from raw materials, but they also
require constant maintenance works for stable operations. Let Wj be a finite

28 M.O.F. Sarker and T.S. Dahl

Production-
Maintenance Mode

Maintenance-Only
 Mode

Production completion time
(End of production)

Pending maintenance
 work-load

No maintenance-
work pending

Initial production work-load

Start of production

Production and accumulated-
maintenance work-load

Fig. 3. Manufacturing shop-floor production and maintenance cycles

number of material parts that can be loaded into a machine j in the beginning
of its production process and in each time-step, ωj units of material parts can
be processed (ωj � Wj). So let Ωp

j be the initial production workload of j
which is simply: Wj/ωj unit. We assume that all machines are identical. In
each time step, each machine always requires a minimum threshold number of
robots, called hereafter as minimum robots per machine (μ), to meet its constant
maintenance work-load, Ωm

j unit. However, if μ or more robots are present in a
machine for production purpose, we assume that, no extra robot is required to do
its maintenance work separately. These robots, along with their production jobs,
can do necessary maintenance works concurrently. For the sake of simplicity, in
this paper we consider μ = 1.

Now let us fit the above production and maintenance work-loads and task per-
formance of robots into a unit task-urgency scale. Let us divide our manufactur-
ing operation into two subsequent stages: 1) production and maintenance mode
(PMM), and 2) maintenance only mode (MOM). Initially a machine starts working
in PMM and does production and maintenance works concurrently. When there
is no production work left, it then enters into MOM. Fig. 3 illustrates this for a
single machine. Under both modes, let αj be the amount of workload occurs in a
unit time-step if no robot serves a task and it corresponds to a fixed task-urgency
ΔφINC . On the other hand, let us assume that in each time-step, a robot, i, can
decrease a constant workload βi by doing some maintenance work along with do-
ing any available production work. This corresponds to a negative task urgency:
−ΔφDEC . So, at the beginning of production process, task-urgency, occurred in a
machine due to its production work-loads, can be encoded by Eq. 3.

ΦPMM
j,INIT = Ωp

j ×ΔφINC + φm0
j (3)

Robotic Validation of the Attractive Field Model 29

Here φm0
j represents the task-urgency due to any initial maintenance work-load

of j. Now if no robot attends to serve a machine, at each time-step a constant
maintenance workload of αm

j will be added to j and that will increase its task-
urgency by ΔφINC . So, if k time steps passes without any production work being
done, task urgency at kth time-step will follow Eq. 4.

ΦPMM
j,k = ΦPMM

j,INIT + k ×ΔφINC (4)

However, if a robot attends to a machine and does some production works from it,
there would be no extra maintenance work as we assumed that μ = 1. Rather, the
task-urgency on this machine will decrease by ΔφDEC amount. If νk robots work
on a machine simultaneously at time-step k, this decrease will be: νk ×ΔφDEC .
So in such cases, task-urgency in (k + 1)th time-step can be represented by:

ΦPMM
j,k+1 = ΦPMM

j,k − νk ×ΔφDEC (5)

At a particular machine j, once ΦPMM
j,k reaches to zero, we can say that there

is no more production work left and this time-step k can give us the production
completion time of j, TPMM

j . Average production time-steps of a shop-floor with
M machines can be calculated by the following simple equation.

TPMM
avg =

1
M

M∑
j=1

TPMM
j (6)

TPMM
avg can be compared with the minimum number of time-steps necessary to

finish production works, TPMM
min . This can only happen in an ideal case where all

robots work for production without any random walking or failure. We can get
TPMM

min from the total amount of work load and maximum possible inputs from
all robots. If there are M machines and N robots, each machine has ΦPMM

INIT task-
urgency, and at each time-step, robots can decrease N × ΔφDEC task-urgencies,
then the theoretical TPMM

min can be found from the following Eq. 7.

TPMM
min =

M × ΦPMM
INIT

N ×ΔφDEC
(7) ζPMM

avg =
TPMM

avg − TPMM
min

TPMM
min

(8)

Thus we can define ζPMM
avg , average production completion delay (APCD) by

following Eq. 8: When a machine enters into MOM, only μ robots are required
to do its maintenance works in each time step. So, in such cases, if no robot
serves a machine, the growth of task-urgency will follow Eq. 4. However, if νk

robots are serving this machine at a particular time-step kth , task-urgency at
(k + 1)th time-step can be represented by:

ΦMOM
j,k+1 = ΦMOM

j,k − (νk − μ) ×ΔφDEC (9)

By considering μ = 1 Eq. 9 will reduces to Eq. 5. Here, ΦMOM
j,k+1 will correspond to

the pending maintenance work-load (PMW) of a particular machine at a given

30 M.O.F. Sarker and T.S. Dahl

time. This happens due to the random task switching of robots with a no-task
option (random-walking). Interestingly, PMW will indicate the robustness of this
system since higher PMW value will indicate the delay in attending maintenance
works by robots. We can find the average PMW (APMW) per machine per time-
step, χMOM

j (Eq. 10) and average PMW for all machines per time-step, χMOM
avg

(Eq. 11).

χMOM
j =

1
K

K∑
k=1

ΦMOM
j,k (10) χMOM

avg =
1
M

M∑
j=1

χMOM
j (11)

3 Implementation

3.1 Design of Our Communication System

As shown in Fig. 2, in this model there exists a centralized TaskServer that
is responsible for disseminating task information to robots. The contents of
task information can be physical locations of tasks, their urgencies and so on.
TaskServer delivers this information by emitting TaskInfo signals periodically.
For example, in a wireless network it can be a message broadcast. Task-Server
has another interface for catching feedback signals from robots. The RobotStatus
signal can be used to inform TaskServer about a robot’s current task id, its de-
vice status and so on. TaskServer uses this information to update relevant part
of task information such as, task-urgency. This up-to-date information is sent in
next TaskInfo signal.

3.2 Our Current Implementation

The major components of our implementation are a multi-robot tracking system,
robot controller clients and a centralized task-server. In order to track all robots

Experiment Arena

client
2

client
N

client
1

GigE Camera

Task Location

E-puck robot
(SwisTrack marker on top)

SwisTrack Multi-robot
ID-Pose Tracker

 Server PCExperiment Arena

SignalListener SignalEmitter

DeviceController

TaskSelector

RobotPose

TaskInfo

Robot
Status

Task
Server

Robot Controller Client

Bluetooth radio link

Fig. 4. Hardware and software setup

Robotic Validation of the Attractive Field Model 31

in real-time, we have used SwisTrack [7], a state of the art open-source, multi-
agent tracking system, with a 16-megapixel overhead GigE camera. This set-up
gives us the position, heading and id of each of the robots by processing the
image frames at about 1 FPS. The interaction of the hardware and software
of our system is illustrated in Fig. 4. For inter-process communication (IPC),
we have used D-Bus technology1. We have developed an IPC component for
SwisTrack that can broadcast id and pose of all robots in real-time over our
server’s D-Bus interface.

Apart from SwisTrack, we have implemented two major software modules:
TaskServer and Robot Controller Client (RCC). They are developed in Python
with its state of the art Multiprocessing2 module. This python module sim-
plifies our need to manage data sharing and synchronization among different
sub-processes. As shown in Fig. 4, RCC consists of four sub-processes. SignalLis-
tener and SignalEmitter, interface with SwisTrack D-Bus Server and TaskServer
respectively. TaskSelector implements AFM algorithms for task selection . De-
viceController moves a robot to a target task. Bluetooth radio link is used as a
communication medium between a RCC and a corresponding e-puck robot.

4 Experiment Design

In this section, we have described the design of parameters and observables of our
experiments within the context of our manufacturing shop-floor scenario. These
experiments are designed to validate AFM by testing the presence of division of
labour, e.g. task specialization, dynamic task-switching or plasticity.

4.1 Parameters

Table 1 lists a set of essential parameters of our experiments. The initial values
of task urgencies correspond to 100 units of production work-load without any
maintenance work-load as outlined in Eq. 3. For task-urgency values, we choose
a limit of 0 and 1, where 0 means no urgency and 1 means maximum urgency.
Same applies to sensitisation as well, where 0 means no sensitisation and 1 means
maximum sensitisation. The following relationships are maintained for selecting
task-urgency and sensitization parameters.

ΔφINC =
ΔφDEC × N

2 × M
(12)

ΔkDEC =
ΔkINC

M − 1
(13)

Eq. 12 establishes the fact that task urgency will increase at a higher rate than
that of its decrease. As we do not like to keep a task left unattended for a long
time we choose a higher rate of increase of task urgency. This difference is set on
the basis of our assumption that at least half of the expected number of robots
1 http://dbus.freedesktop.org/doc/dbus-specification.html
2 http://docs.python.org/library/multiprocessing.html

32 M.O.F. Sarker and T.S. Dahl

Table 1. Experimental parameters

Parameter Value
Initial production work-load/machine (Ωp

j) 100 unit
Task urgency increase rate (ΔφINC) 0.005
Task urgency decrease rate (ΔφDEC) 0.0025
Initial sensitization (KINIT) 0.1
Sensitization increase rate (ΔkINC) 0.03
Sensitization decrease rate (ΔkDEC) 0.01

(ratio of number of robots to tasks) would be available to work on a task. So
they would produce similar types of increase and decrease behaviours in task
urgencies. Eq. 13 suggests that the learning will happen much faster than the
forgetting. The difference in these two rates is based on the fact that faster
leaning gives a robot more chances to select a task in next time-step and thus it
becomes more specialized on it. Task-Server updates task-info messages in the
interval of 5s and robots stick on to a particular task for a maximum of 10s.

4.2 Observables

We have defined a set of observables to evaluate our implementation. The first
two observables, the changes in task-urgencies and the changes in active worker
ratios, can give us an overall view of plasticity of division labour. Our third
observable is to find the changes in robot task specialization which is also an
important measure of division of labour. Our last measurement is the communi-
cation load which is specific to this particular implementation and corresponds
to the continuous flow of information. Within the context of our manufactur-
ing shop-floor scenario, we measure the average production completion delay
(APCD) and average pending maintenance work (APMW) as the metrics of
manufacturing shop-floor performance.

5 Results and Discussions

Our AFM validation experiments were conducted with 16 robots, 4 tasks in
an arena of 4 m2 for about 40 minutes and averaged them over five iterations.
Fig. 5 shows the dynamic changes in task urgencies in one iteration. In order to
describe our system’s dynamic behaviour holistically, we analyse the changes in
task urgencies over time. Let φj,q be the urgency of a task j at qth time-step
and φj,q+1 be the task urgency of (q+ 1)th time-step. We can calculate the sum
of changes in urgencies of all tasks at (q + 1)th time-step:

ΔΦj,q+1 =
M∑

j=1

(φj,q+1 − φj,q) (14)

Robotic Validation of the Attractive Field Model 33

Fig. 5. Dynamic task-urgency changes Fig. 6. Shop-floor workload history

Fig. 7. Task server’s task-info broadcasts Fig. 8. Self-organized task-allocation

Fig. 9. Task specialization on Task3 Fig. 10. Changes in sensitizations

34 M.O.F. Sarker and T.S. Dahl

From Fig. 6 we can see that initially the sum of changes of task urgencies are
towards negative direction. This implies that tasks are being served by a high
number of robots. Fig. 8 shows that in production stage, when work-load is high,
many robots are active in tasks and this ratio varies according to task urgency
changes. Fig. 9 gives us the task specialization of five robots on Task3 in a
particular run of our experiment. This shows us how our robots can specialize
(learn) and de-specialize (forget) tasks over time. The de-specialization of tasks
is calculated similar to Eq. 14. We have calculated the absolute sum of changes
in sensitizations of all robots by the following equation.

ΔKj,q+1 =
M∑

j=1

|(kj,q+1 − kj,q)| (15)

This values ofΔK are plotted in Fig. 10. It shows that the overall rate of learning
decreases and forgetting increases over time. It is a consequence of the gradually
increased task specialization of robots and reduced task-urgencies over time. Fig.
7 presents the frequency of signalling task information by TaskServer. Since the
duration of each time step is 50s long and TaskServer emits signal in every 2.5s,
there is an average of 20 signals in each time-step.

Within our manufacturing shop-floor scenario, we have got average production
completion time 165 time-steps (825s) where sample size is (5 x 4) = 20 tasks, SD
= 72 time-steps (360s). According to Eq. 7, our theoretical minimum production
completion time is 50 time-steps (250s) assuming the non-stop task performance
of all 16 robots with an initial task urgency of 0.5 for all 4 tasks and task urgency
decrease rate ΔΦDEC = 0.0025 per robot per time-step. Hence, Eq. 8 gives us
APCD, ζ = 2.3 which means that our system has taken 2.3 times more time
(575s) than the estimated minimum time. Besides, from the average 315 time-
steps (1575s) maintenance activity of our robots per experiment run, we have got
APMW, χ = 0.012756 which corresponds to the pending work of 3 time-steps
(15s) with sample-size = 20 tasks, SD = 13 time-steps (65s), where ΔΦINC =
0.005 per task per time-step. This tells us the robust task performance of our
robots which can return to an abandoned task within a minute or so.

6 Conclusion and Future Work

In this paper we have validated an inter-disciplinary generic model of self-
regulated division of labour or multi-robot task allocation by incorporating it
in our multi-robot system under a manufacturing shop-floor scenario. A central-
ized communication system has been instantiated to realize this model. We have
evaluated various aspects of this model, such as the ability to meet dynamic
task demands, individual robot’s task specializations, system-wide communica-
tion loads and flexibility in concurrent task completions. A set of metrics has
been proposed to observe the division of labour in this system. From our ex-
perimental results, we have found that our attractive filed model can meet the
requirements of dynamic division of labour by the virtue of its self-regulatory

Robotic Validation of the Attractive Field Model 35

behaviours. In the future, we plan to extend this work using various local peer-
to-peer communication models in a multi-robot system having about 40 e-puck
robots.

Acknowledgements. This research has been funded by the Engineering and
Physical Sciences Research Council (EPSRC), UK, grant reference EP/
E061915/1.

References

1. Arcaute, E., Christensen, K., Sendova-Franks, A., Dahl, T., Espinosa, A., Jensen,
H.J.: Division of labour in ant colonies in terms of attractive fields. In: Ecol. Complex
(2008)

2. Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm intelligence: from natural to arti-
ficial systems. Oxford University Press, Oxford (1999)

3. Dias, M.B., Zlot, R.M., Kalra, N., Stentz, A.: Market-based multirobot coordination:
A survey and analysis. Proceedings of the IEEE 94, 1257–1270 (2006)

4. Gerkey, B.P., Mataric, M.J.: A formal analysis and taxonomy of task allocation in
multi-robot systems. The International Journal of Robotics Research 23, 939 (2004)

5. Lerman, K., Jones, C., Galstyan, A., Mataric, M.J.: Analysis of dynamic task allo-
cation in multi-robot systems. The International Journal of Robotics Research 25,
225 (2006)

6. Liu, W., Winfield, A.F.T., Sa, J., Chen, J., Dou, L.: Towards energy optimization:
Emergent task allocation in a swarm of foraging robots. Adaptive Behavior 15(3),
289–305 (2007)

7. Lochmatter, T., Roduit, P., Cianci, C., Correll, N., Jacot, J., Martinoli, A.:
Swistrack-a flexible open source tracking software for multi-agent systems. In:
IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2008,
pp. 4004–4010 (2008)

8. Parker, L.E.: Distributed intelligence: Overview of the field and its application in
multi-robot systems. Journal of Physical Agents, special issue on multi-robot sys-
tems 2(2), 5–14 (2008)

9. Shen, W., Norrie, D.H., Barthes, J.P.: Multi-agent systems for concurrent intelligent
design and manufacturing. Taylor & Francis, London (2001)

A Thermodynamic Approach to the Analysis of
Multi-robot Cooperative Localization

under Independent Errors

Yotam Elor and Alfred M. Bruckstein

Faculty of Computer Science and the Goldstein UAV and Satellite Center, Israel
{yotame,freddy}@cs.technion.ac.il

Abstract. We propose a new approach to the simultaneous cooperative
localization of a group of robots capable of sensing their own motion on
the plane and the relative position of nearby robots. In the last decade,
the use of distributed optimal Kalman filters (KF) to solve this problem
have been studied extensively. In this paper, we propose to use a sub-
optimal Kalman filter (denoted by EA). EA requires significantly less
computation and communication resources then KF. Furthermore, in
some cases, EA provides better localization.

In this paper EA is analyzed in a soft “thermodynamic” fashion i.e.
relaxing assumptions are used during the analysis. The goal is not to
derive hard lower or upper bounds but rather to characterize the robots
expected behavior. In particular, to predict the expected localization
error. The predictions were validated using simulations. We believe that
this kind of analysis can be beneficial in many other cases.

1 Introduction

Localization is the task of estimating the robot location. It has been identified
as one of the key problems in robotics. The localization problem can be roughly
divided into two variants: In the first variant the robots can estimate their loca-
tion by sensing their surroundings and comparing it with knowledge they have
regarding the environment (e.g. a map). While in the second variant, the robots
have no such capabilities. Instead, every robot knows its initial location and
updates its location estimation based on odometry readings.

There is a vast body of literature discussing the first variant where the main
challenge is to incorporate the large quantity of data gathered by the robot (or
robots) into a consisted world view. The means to gather data are the exterocep-
tive sensors which surveys the world and the proprioceptive sensors (odometry)
which monitor the robot itself e.g. GPS, compass, wheel encoders, etc. This
paper’s focus is on the second variant, the reader interested in the more gen-
eral scenario is referred to the book by Borenstein et al. [1] and the survey of
Thrun [12].

In the second variant of the localization problem it is assumed that,
initially, every robot knows its location and uses odometry in order to track

M. Dorigo et al. (Eds.): ANTS 2010, LNCS 6234, pp. 36–47, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Multi-robot Cooperative Localization under Independent Errors 37

it (dead-reckoning). However, due to noisy sensor readings, in time, the esti-
mation diverges from the robot real location. When a group of robots perform
localization, the localization error can be reduced by sharing information be-
tween them. In order to do so, several exteroceptive capabilities are needed i.e.
every robot is required to be able to sense the relative location of nearby robots
and to communicate with them.

We denote the cooperative localization algorithm proposed in this is paper by
“Error Averaging” (EA). In EA, every robot moves in the area while maintaining
an estimate of its location using its odometry. Whenever two robots are within
sensing and communication range, they average their location estimations. In
case the two robots’ localization errors are uncorrelated, such an averaging will
result in reducing the error of both robots. In this work, a large group of iden-
tical robots performing EA is considered. It is natural to apply thermodynamic
approach when considering such a large and homogeneous group. This paper’s
goal is to characterize the behavior of the robots. In particular, we are interested
in predicting the expected localization error. The goal is not to derive hard lower
or upper bounds but rather to apply relaxing assumptions during the analysis
in order to predict the expected behavior.

A very simple “independent error” model (IEM) is considered. In IEM, the
odometry errors are independent of the state of the robot. The localization error
is accumulated as a two-dimension Gaussian. Furthermore, the errors added at
different times are statistically independent. This model is relevant, for example,
when considering a small flying platform in an indoor environment (no wind). In
this case, the odometry errors are due to small air currents which are independent
of the flying platform actions.

Due to space limitations, some details are ommited from this paper, they can
be found in our readily available TR [2].

2 Model

The notations of [11] are adopted when possible. A group of M identical in-
dependent robots is considered. The robots move in a flat environment of size
A. Every robot can communicate with its neighbors up to a constant limited
distance V . The robots have sensors which enable them to detect nearby robots
and sense their relative location (up to distance V). In order to keep the model
simple, it is assumed that these sensors are error free i.e. the robots are able to
sense the relative location of each other accurately. Extending our formulation
to include noisy exteroceptive sensors is straightforward.

Two robots “meet” when the distance between them is at most V i.e. they
can sense each other and communicate. Upon meeting, the robots average their
location estimations hence reducing the localization error. So the frequency of
meetings strongly effect the localization quality. Roughly speaking, the higher
the frequency of meetings the lower the localization error. The frequency of
meetings is determined by the movement pattern of the robots which in turn
is application dependent. In this work it is assumed that the robots perform

38 Y. Elor and A.M. Bruckstein

the following random walk: All robots travel at constant speed and the heading
of every robot is generally fixed. However, upon hitting an obstacle, the robot
randomize a new heading.

Discrete time is considered i.e. t = 0, 1, 2.... There are M robots modeled as
points on the plane. The location of robot ri in respect to a fixed reference frame
is denoted by the vector Xi (t) = [xi (t) , yi (t) , φi (t)]T where xi (t), yi (t) are the
robot’s coordinates and φi (t) is the robot’s heading. Let v0 be the (constant)
robot speed and ωi (t) its angular velocity at time t. The robot coordinates are
updated in the normal way i.e.,

Xi (t+ 1) = Xi (t) +

⎡⎣ cos (φi (t)) 0
sin (φi (t)) 0

0 1

⎤⎦[v0
ωi (t)

]
(1)

The location estimation of robot ri at time t is denoted by

X̂i (t) =
[
x̂i (t) , ŷi (t) , φ̂i (t)

]T
. Initially X̂ (0) = X (0). The estimation error is

given by the vector X̃ = X̂ −X =
[
x̃i (t) , ỹi (t) , φ̃i (t)

]T
.

z ∼ N
(
0, σ2

)
implies that z is a random variable distributed normally in

one-dimension with zero mean and variance of σ2. For practical reasons we are
interested in the expected error i.e. the expected distance between the robot
location to where the robot thinks it is. The expected error for robot ri is the
expected value of ei =

√
x̃2

i (t) + ỹ2
i (t) and is denoted by E [ei]. In case x̃i ∼

N
(
0, σ2

)
and ỹi ∼ N

(
0, σ2

)
, E [ei] =

√
π
2σ

2.
In IEM, the localization errors added at each time step are independent of

the robot state. It is assumed that the errors are distributed normally i.e.,

X̂i (t+ 1) = X̂i (t) +

⎡⎣cos (φi (t)) 0
sin (φi (t)) 0

0 1

⎤⎦[v0
ωi (t)

]
+

⎡⎣Ni,x (t)
Ni,y (t)

0

⎤⎦ (2)

Where Ni,x (t) ∼ N
(
0, σ2

0
)

(Ni,y (t) ∼ N
(
0, σ2

0
)
) is the noise added to x̂i (ŷi)

at time t and σ0 is a constant. The errors are independent i.e. for any i
= j
or a
= b (where a, b ∈ {x, y}) or t1
= t2: Ni,a (t1) and Nj,b (t2) are statistically
independent. Equation 2 can be written in the following manner

X̂i (t) = Xi (t) +
t−1∑
t′=0

[
Ni,x (t′) Ni,y (t′) 0

]T (3)

Hence, X̃i ∼
[
N
(
0, t · σ2

0
)
N
(
0, t · σ2

0
)

0
]T . So when no localization correction

mechanisms are applied, the variance of the localization error grows linearly in
time.

3 Average Free Path

In this section we will investigate the “average free path” i.e. the average distance
traveled by a robot between meetings. Fix a robot r. Let pr be the probability of r

Multi-robot Cooperative Localization under Independent Errors 39

v da

r(t− 1)

v

Vt−1 Vt

r(t)

(a)

d

V1

θ

(b)

0 10 20 30 40 50
0

0.02

0.04

0.06

0.08

0.1

0.12

δ

50 robots
100 robots
150 robots

(c) The histogram of δ

Fig. 1. Deriving and measuring pr

meeting any other robot at time t. Denote by r (t) the position of robot r at time
t. Let Vt−1 be the circle of radius V around r (t− 1) and Vt - the circle around
r (t), see Figure 1a. So robot r meets robot r′ at time t if and only if r′ (t) ∈ Vt

and r′ (t− 1) /∈ Vt−1. Note that in case r′ (t) ∈ Vt and r′ (t− 1) ∈ Vt−1 the
distance between r and r′ at time t is less than V . However, in this case, further
exchange of information between the robots will not improve their localization
(as shown in Section 4). So it is not considered as a meeting.

To derive the probability that there is a robot r′ such as r′ (t) ∈ Vt and
r′ (t− 1) /∈ Vt−1, let

pr′ =
∫
Vt

Pr [r′ (t) ∈ da] · Pr [r′ (t− 1) /∈ Vt−1 | r′ (t) ∈ da] da (4)

Assuming the robots are distributed uniformly over the area, Pr [r′ (t) ∈ da] =
da/A. In case r′ (t) ∈ da, it is assumed that r′ (t− 1) is distributed uniformly over
the circle of radius v0 (the step length) with a center at r′ (t). So Pr[r′ (t− 1) /∈
Vt−1 | r′ (t) ∈ da] equals the part of this circle which is not inside V0 (the bold arc
in Figure 1a). Let Δx = xr′ (t)−xr (t), Δy = yr′ (t)−yr (t). We face the problem

of calculating the intersection of two circles at distance d =
√

(Δx+ v0)
2 +Δy2,

see Figure 1b. θ is given by:

θ =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
2asin

(√
4d2V 2−(d2−v2

0+V 2)2

2dv0

)
if r′ (t) /∈ Vt−1

2π − 2asin

(√
4d2V 2−(d2−v2

0+V 2)2

2dv0

)
if r′ (t) ∈ Vt−1

.

So Pr [r′ (t− 1) /∈ Vt−1 | r′ (t) ∈ da] = 2π−θ
2π and finally pr′ =

∫
Vt

2π−θ
2πA da. pr′

can be calculated numerically. The probability that robot r meets any other
robot at time t is given by pr = 1 − (1 − pr′)n−1.

Let δ be the time elapsed between two successive meetings of a specific robot
with any other robot i.e. δ is the “free time” between meetings. δ is distributed

40 Y. Elor and A.M. Bruckstein

geometrically with a mean of 1/pr, i.e. Pr [δ = k] = pr (1 − pr)
k−1. pr can not

be measured experimentally. Instead, the distribution of δ was measured. The
histogram of δ for three group sizes is presented in Figure 1c, where the solid
lines are the theoretical predictions and the dots are the simulation results. In
those three runs the environment was a torus of size 100 × 100, V = 3 and
v0 = 1. Every line in the figure is a result of a single run of 5000 time steps. The
experiments show that the estimation of δ (hence pr) is very accurate.

4 The Covariance Matrix

In IEM, the components of Xi are independent so they can be analyzed sep-
arately. Hence only x component will be analyzed. The results apply to y as
well. Let Px (t) be the covariance matrix of the localization errors of x at
time t. Where the components of Px (t) are denoted by σi,j (t) and given by
σij (t) = Cov [x̃i (t) , x̃j (t)].

We would like to examine the evolution of Px in time. Considering a group
of robots performing EA, Px (t) can be derived from Px (t− 1) in two stages.
In the first - an error is added and in the second - meetings between robots are
accounted for. The error addition stage is given by Px (t−) = Px (t− 1)+ IM ·σ2

0
where IM is the unit matrix of size M . To account for meetings, consider all pairs
of robots which met at time t. Every meeting is considered separately1. Let ri, rj
be two robots who have met at time t. The meeting process is described for robot
ri; rj follows the same procedure in parallel. Upon meeting, ri asks rj “what is
your estimation of my location?”. rj replies with x̂j (t−)+(xi (t) − xj (t)). Then,
ri sets its location estimation to the average of its previous estimation and the
coordinates received from rj , i.e.

x̂i (t) =
x̂i (t−) + (x̂j (t−) + xi (t) − xj (t))

2
(5)

x̃i (t) =
x̃i (t−) + x̃j (t−)

2
∼ N

(
0,
σ2

i (t−) + σ2
j (t−) + 2σij (t−)

4

)
(6)

To gain insight of Equation 6, observe two limit cases. In case σ2
i (t−) = σ2

j (t−)
and x̃i (t−), x̃j (t−) are independent (i.e. σij (t−) = 0), σ2

i (t) = σ2
i (t−) /2 i.e.

the variance was halved. In case σ2
i (t−) = σ2

j (t−) and x̃i (t−), x̃j (t−) are fully
correlated (i.e. σij (t−) = σ2

i (t−)), σ2
i (t) = σ2

i (t−) i.e. the localization was not
improved. Note that after the update x̃i (t) = x̃j (t) so x̃1 (t) and x̃2 (t) are fully
correlated and another averaging of their location estimations will not reduce
the error. To conclude, after a meeting between ri and rj

σ2
i (t) = σ2

j (t) = σij (t) =
σ2

i (t−) + σ2
j (t−) + 2σij (t−)

4
(7)

1 In case robot r have met two robots in the same time cycle. It is assumed that r
first average its localization with one of them and afterward - with the other.

Multi-robot Cooperative Localization under Independent Errors 41

Note that other elements of Px must be updated as well. Consider any robot rk
(k
= i, j),

σik (t) = E [x̃i (t) x̃k (t)] = E

[
x̃i (t) + x̃j (t)

2
x̃k (t)

]
=
σik (t−) + σjk (t−)

2
(8)

So σik (t) equals the average of σik (t−) and σjk (t−). Note that the total sum of
Px does not change as a result of meetings so

E [Px (t)] = M · σ2
0 · t/M2 =

σ2
0

M
· t (9)

So EA does not reduce the total amount of noise in Px. Nevertheless, EA spreads
the error from the main diagonal of Px to the rest of the matrix. Since the robots’
localization error is proportional only to the values of the main diagonal of Px,
spreading the error is desired.

The evolution of Px, when the robots follow EA, can be described as follows.
Initially: Px = 0. Then, as the robots move, the values on the main diagonal of
Px starts growing. Due to meetings between robots, error from the main diagonal
spread to the rest of Px. Finally, a semi-steady state is achieved in which the rate
of removing error from the main diagonal (almost) equals the rate of adding error
to it. The analysis purpose is to predict the characteristics of such a semi-steady
state. This is achieved by assuming that Px comprises only two values: σ2

diag (t)
and σ2

cov (t). It is assumed that for any i, σ2
i (t) = σ2

diag (t) and for any i
= j,
σij (t) = σ2

cov (t). The two latter assumptions are clearly false (Px comprises
many values). However, when considering a large group of homogeneous robots,
it is a reasonable approximation to assume that the localization uncertainties
related to most robots (the values of the main diagonal of Px) are about the
same. In the same spirit, it is reasonable to assume that the covariances between
most robots are about the same.

By neglecting the main diagonal contribution to E [Px], σ2
cov (t) can be ap-

proximated by

σ2
cov (t) E [Px (t)] =

σ2
0

M
· t (10)

Consider any robot ri. Let pr be the probability that ri meets another robot at
time t. In case ri does not meet another robot at time t,

σ2
i (t+ 1) = σ2

i (t) + σ2
0 (11)

In case ri meets rj at time t,

σ2
i (t+ 1) = σ2

i (t)+σ2
j (t)+2σ2

0+2σij(t)
4 (12)

Using σ2
i σ2

j σ2
diag, σij σcov and Equations 11 and 12 we get

σ2
diag (t+ 1) = pr

σ2
diag (t) + σ2

0 + σ2
cov (t)

2
+ (1 − pr)

(
σ2

diag (t) + σ2
0
)

(13)

42 Y. Elor and A.M. Bruckstein

Equations 10 and 13 form a set of two difference equations. The fixed point
solution for this set is given by

σ2
cov (t) = σ2

0
M · t σ2

diag (t) 2σ2
0

pr
+ σ2

0
M · t (14)

So the components of Px not on the main diagonal grows linearly in time at
a rate of σ2

0/M . The values on the main diagonal grow with the same rate.
However, there is a constant gap of about 2σ2

0/pr between the values on main
diagonal and the rest of the covariance matrix. This constant component is a
result of the time the odometry errors require to average over the robots. Note
that the error remains unbounded.

4.1 Using a Landmark

Consider a landmark placed in a fixed point in the environment. The robots
know the exact coordinates of the landmark and every robot that is within the
landmark sensing range updates its localization accordingly. As a consequence,
every time a robot sense the landmark, it’s localization error is zeroed. Fur-
thermore, since its new localization is uncorrelated with the other robots, the
covariance of the robot with all other robots is also reduced to zero. Note that
any robot can be used as a landmark. It just needs to stay put and report its
coordinates to every robot in its communication range. By applying a formalism
similar to the one used in the case without a beacon we get,

σ2
cov σ2

0
2Mpl

σ2
diag 2σ2

0
pr

+ σ2
cov (15)

where pl is the probability of sensing the landmark and is derived similarly to
pr. The full process of deriving the equations above is given in our TR [2]. It is
important to note that a single landmark is sufficient to make the localization
error bounded.

5 Discussion and Simulations

Simulations were used in order to validate the analytical results. In all figures,
the solid lines are the theoretical estimations and the error bars (or markers)
represent the simulation results. When presenting σ2

diag, the average of the main
diagonal of Px is presented with its standard deviation. When σ2

cov is presented,
the average of Px without the main diagonal is presented.

The values of σ2
cov, σ2

diag for a single run on a torus are presented in Figure
2a where M = 100, A = 1002, V = 3, v0 = 1 and σ2

0 = 0.01. The experiments
show that the estimations of σ2

diag and σ2
cov are very accurate. The mean error

was found to be very noisy for a single run. Hence the average of the mean error
over 50 runs is presented in Figure 2b. The average is less noisy and it can be
observed that the mean error is predicted well. The values of σ2

cov, σ2
diag for a

single run on a torus with a landmark are presented in Figure 2c. The average

Multi-robot Cooperative Localization under Independent Errors 43

500 1000 1500 2000
0

0.1

0.2

0.3

0.4

0.5

0.6

t

σ2

(a) The lower line is σ2
cov and the

upper is σ2
diag

0 5000 10000
0

0.5

1

1.5

t

E
[e

]

(b) Average of the mean error over
50 runs

2000 4000 6000 8000 10000
0

0.1

0.2

0.3

0.4

0.5

t

σ2

(c) The lower line is σ2
cov and the

upper is σ2
diag

0 5000 10000
0

0.2

0.4

0.6

0.8

1

t

E
[e

]

(d) Average of the mean error over
50 runs

Fig. 2. (2a) σ2
cov, σ2

diag for a single run on a torus and (2b) E [e] averaged over 50 runs.
(2c) σ2

cov, σ2
diag for a single run on a torus with a landmark and (2d) E [e] averaged

over 50 runs.

of the mean error over 50 runs is presented in Figure 2d. The simulation results
agree with the analysis.

The simulations have shown that the approximations are accurate when the
environment is a torus. Simulation results in environments that include obstacles
can be found in our TR [2]. For environments with obstacles, σ2

cov and the growth
rate of σ2

diag are predicted well but the constant gap between σ2
cov and σ2

diag is
higher then expected. Recall that this gap is the result of the time required
to average the error over the robots and is given by 2σ2

0/pr. On the torus, the
robots travel freely hence at every time step there is a probability of pr to meet
a “fresh” robot i.e. a robot such as the localization covariance with it is σ2

cov.
On the contrary, in environment with obstacles (e.g. the environement is divided
into “rooms”), there is a high probability to meet a “dirty” robot i.e. a robot with
high shared covariance due to a recent meeting. Meeting a “fresh” robot reduces
the localization error much more efficiently that meeting a “dirty” one. Putting
it another way, for environments with obstacles, pr is lower than given in Section
3 hence the gap is larger.

44 Y. Elor and A.M. Bruckstein

6 Previous Work

About ten years ago, Sanderson [11] have proposed a cooperative localization
mechanism almost similar to EA. In his work, an optimal Kalman filter (KF)
is used in the localization process i.e. when two robots exchange location in-
formation, they perform a weighted average based on their localization quality.
The robot with the more precise localization (lower σ value) is given a higher
weight. In order to calculate the weights, the meeting robots need to know their
covariance. Hence, Sanderson have proposed a central (non-distributed) correc-
tion mechanism. He have also presented a distributed algorithm for the fully
symmetric case: homogeneous group and a complete relative position measure-
ment graph (RPMG) i.e. at every time step all robots meet all robots. In EA,
a suboptimal Kalman filter is applied i.e. the weights of both robots are equal.
Hence the robots are not required to maintain the covariance matrix.

Roumeliotis and colleagues [9] have presented a distributed version of KF in
which the computation required to maintain the covariance matrix is distributed
between the robots. However, every meeting between two robots implies an up-
date of 2M components of the covariance matrix. Furthermore, all robots must
be aware of every update of the covariance matrix. In the distributed KF of
Roumeliotis et al., every meeting implies a computation complexity of Θ

(
M2
)

and communication between all robots, so their algorithm does not scale well.
In order solve that problem, Mourikis and Roumeliotis have proposed to reduce
the computation and communicating loads by lowering the frequency of rela-
tive observations [6]. Martinelli have proposed to use hierarchical structure of
Kalman filters [5] i.e. the robots are divided into groups, relative observations
and corrections are performed within each group, inter-group corrections are
performed only between the group leaders hence reducing the computation and
communication complexity. On the contrary, in EA, the computation complexity
implied by a meeting is Θ (1) and the only communication required is between
the two meeting robots.

In order to compare between KF and EA, a centralized version of KF was
implemented. In KF, when two robots ri, rj meet, ri updates its localization to be
x̂i (t)=αx̂i

(
t−
)
+(1−α)

(
x̂j

(
t−
)

+ xi (t) − xj (t)
)
, where α =

σ2
j (t−)−σij(t−)

σ2
i (t−)+σ2

j(t−)−2σij(t−)
is chosen such as to minimize x̃i (t) (compare with Equation 5 in which α = 1

2).
Observe Figure 3 for experimental comparison between KF and EA. Result

on a torus without a landmark are presented in Figure 3a. At the beginning of
the process, until t = 500, KF performs better then EA due to its faster error
dispersion rate. However, KF causes the covariance matrix to include more en-
ergy then EA (observe the two bottom lines in the figure). Hence, KF reduce
the constant component of the localization error but increase the slope of the
time dependent component. So, in time, EA outperforms KF. This can be ex-
plained as follows. Consider a meeting between two robots ri and rj . Assume
that the localization of ri is better then the localization of rj i.e. σ2

i < σ2
j . So

when applying KF, the weight given to ri is higher. The robots are homogeneous,
so σ2

i < σ2
j implies that ri have met more robots prior to its meeting with rj .

Multi-robot Cooperative Localization under Independent Errors 45

0 1000 2000 3000
0

0.1

0.2

0.3

0.4

0.5

t

σ2

KF
EA

(a) Torus without a landmark

0 1000 2000 3000
0

0.1

0.2

0.3

0.4

0.5

t

σ2

KF
EA

(b) Torus with a landmark

Fig. 3. Comparison between EA (blue squares) and KF (red dots) under IEM. The
bottom lines correspond to the mean value of the covariance matrix (E [Px]) and the
upper - the mean value of the main diagonal of Px.

Hence ri shares more covariance with other robots. Upon meeting, these high
covariances will be copied to rj due to ri’s high weight thus contributing to the
overall value of the covariance matrix.

Experimental comparison on a torus with a landmark are presented in Figure
3b. The results were averaged over 50 runs where M = 100, V = 3, v0 = 1
and σ2

0 = 0.01. When the environment include a landmark, KF outperforms
EA due to its faster error dispersing rate. KF is able to transfer the quality
localization from the landmark to the robots more efficiently. Since meetings
with the landmark continuously remove energy from the covariance matrix, the
bad side effect of KF is negligible.

Roumeliotis and Rekleitis were the first to analyze the performance of KF [10].
They have considered homogeneous robots with complete RPMG. Later, Mourikis
and Roumeliotis have extended the analysis to include heterogeneous groups and
general RPMG [7]. Mourikis and Roumeliotis have analyzed KF assuming a fixed
RPMG i.e. every robot average its location with a fixed set of other robots2.
By fixing the RPMG, they have been able to obtain an exact analysis of the
localization process. In this work, the RPMG is not fixed hence approximations
must be used.

The model used by Mourikis and Roumeliotis is more suitable to ground
robots then IEM. In their model, every robot sense its orientation using a com-
pass and updates its localization based on the distance and direction traveled.
The localization errors result from the wheel encoders and compass noises. So
the localization errors added at each time step are independent but are effected
by the robot state (heading, speed). We intend to apply our formalizm on more
realistic models like the one considered in [7] in the future. Even though the
model of Mourikis and Roumeliotis is more general then IEM, the analysis of
both models produce similar results. The main similarities are:

2 They have also considered changes of the RPMG but their results discuss the system
state after stabilization.

46 Y. Elor and A.M. Bruckstein

– The error comprises a time dependent term and a constant term. The time
dependent term is monotonically increasing (in time) and is dependent solely
on the number of robots and the quality of the odometry. In particular, it
is not dependent on the RPMG. Observe Equation 14. The time dependent
part is dependent of σ2

0 (odometry noise) and M but is independent of pr (a
characteristic of the RPMG).

– When a single robot (or more) have access to absolute position measurement,
the error of all robots become bounded. In our work, this happens when a
landmark is introduced.

With resemblance to KF, Fox et al. have proposed to average the location esti-
mations between robots [3]. In their work, every robot estimate its location using
Monte Carlo localization [13] i.e. every robot maintains a cloud of points in space
with a probability attached to every point. The robot location estimation is the
probability function implied by the cloud. When two robots sense each other,
their clouds are averaged.

Kurazume and colleagues [4] have proposed a strategy based on “portable
landmarks”. In this scheme, every time a robot moves, other robots are holding
still while following the robot movement with their sensors. The viewing robots
supply the moving one with a localization better then given by its own odometry.
Later, several other works were carried out using this scheme, see [8]. Since
this strategy is not solely odometry based, it is more resilient to correlation
between odometry errors. On the downside, when applying this scheme, the
robots’ movements are limited. Where in EA, no special movement pattern is
required, the robots are free to go wherever the task they perform requires.

7 Conclusion

We have presented the error averaging (EA) localization scheme inspired by
the optimal Kalman filter (KF) proposed by Sanderson [11] and Roumeliotis et
al. [9]. The idea behind EA is simple: Whenever two robots meet, they average
their location estimations. EA requires considerably less communication and
computation then KF. Furthermore, EA produce better results when no absolute
localization information is available to the robots.

In case the robots have no access to absolute localization information, EA’s
localization error is composed of two components. A constant component and a
monotonically increasing time dependent component. The constant component
result from the time the error require to propagate between the robots and is
a function of the odometry quality and the frequency of meetings. The time
dependent component results from the error accumulated by the robots and is a
function of the odometry quality and the number of robots i.e. it is independent
of the frequency of meetings. In case some robots have access to absolute local-
ization (e.g. a landmark), the localization errors of all robots become bounded.

Simulations showed that the analysis is accurate on the torus. When the
environment includes obstacles, the time dependent component is predicted well
but the constant is not. This is because pr, the probability of meeting, was

Multi-robot Cooperative Localization under Independent Errors 47

derived for the torus. When the environment comprises obstacles, the effective
pr is lower then calculated hence the constant component is larger.

In this paper we have used a soft “thermodynamic” analysis i.e. relaxing as-
sumptions were used. The analysis goal was not to derive hard lower or upper
bounds but rather to characterize the robots expected behavior. In particular, to
predict the expected localization error. We believe that this kind of soft analysis
can be beneficial in many other cases.

Acknowledgments. This research was supported by the Technion Goldstein
UAV and Satellite Center and by the European Community’s FP7-FET program,
SMALL project.

References

1. Borenstein, J., Everett, H.R., Feng, L.: Navigating Mobile Robots: Systems and
Techniques. A. K. Peters, Ltd., Natick (1996)

2. Elor, Y., Bruckstein, A.M.: A thermodynamic approach to the analysis of multi-
robot cooperative localization under independent errors. Tech. rep., Technion (Mar
2010) (under revision for ANTS 2010)

3. Fox, D., Burgard, W., Kruppa, H., Thrun, S.: A probabilistic approach to collab-
orative multi-robot localization. Autonomous Robots 8(3), 325–344 (2000)

4. Kurazume, R., Nagata, S., Hirose, S.: Cooperative positioning with multiple robots.
In: Proc. of the IEEE Int. Conf. on Robotics and Automation, vol. 2 (1994)

5. Martinelli, A.: Improving the precision on multi robot localization by using a series
of filters hierarchically distributed. In: Proc. IEEE/RSJ Int. Conf. on Intel. Robots
and Systems, San Diego, CA, USA (October 2007)

6. Mourikis, A., Roumeliotis, S.: Optimal sensing strategies for mobile robot forma-
tions: Resource-constrained localization. In: Robotics: Science and Systems, Mas-
sachusetts Institute of Technology, Cambridge, Massachusetts, USA (June 2005)

7. Mourikis, A., Roumeliotis, S.: Performance analysis of multirobot cooperative lo-
calization. IEEE Trans. on Robotics 22(4), 666–681 (2006)

8. Rekleitis, I., Dudek, G., Milios, E.: Multi-robot collaboration for robust explo-
ration. Annals of Math and Artificial Intel. 31(1), 7–40 (2001)

9. Roumeliotis, S., Bekey, G.: Distributed multirobot localization. IEEE Trans. on
Robotics and Automation 18(5), 781–795 (2002)

10. Roumeliotis, S.I., Rekleitis, I.M.: Propagation of uncertainty in cooperative multi-
robot localization: Analysis and experimental results. Auton. Robots 17(1) (2004)

11. Sanderson., A.C.: A distributed algorithm for cooperative navigation among mul-
tiple mobile robots. Advanced Robotics 12, 335–349 (1997)

12. Thrun, S.: Robotic mapping: a survey. In: Exploring Artificial Intel. in the New
Millenium, pp. 1–35. Morgan Kaufmann Publishers Inc., San Francisco (2003)

13. Thrun, S., Fox, D., Burgard, W., Dellaert, F.: Robust monte carlo localization for
mobile robots. Artificial Intelligence 128(1-2), 99–141 (2001)

An Alternative ACOR Algorithm for
Continuous Optimization Problems

Guillermo Leguizamón1,� and Carlos A. Coello Coello2,��

1 UMI LAFMIA 3175 CNRS, CINVESTAV-IPN
Departmento de Computación, México D.F., México

legui@unsl.edu.ar
2 CINVESTAV-IPN (Evolutionary Computation Group)
Departamento de Computación, México D.F., México

ccoello@cs.cinvestav.mx

Abstract. The Ant Colony Optimization (ACO) metaheuristic embod-
ies a large set of algorithms which have been successfully applied to a wide
range of optimization problems. Although ACO practitioners have a long
tradition in solving combinatorial optimization problems, many other re-
searchers have recently developed a variety of ACO algorithms for dealing
with continuous optimization problems. One of these algorithms is the
so-called ACOR, which is one of the most relevant ACO algorithms cur-
rently available for continuous optimization problems. Although ACOR

has been found to be successful, to the authors’ best knowledge its use in
high-dimensionality problems (i.e., with many decision variables) has not
been documented yet. Such problems are important, because they tend
to appear in real-world applications and because in them, diversity loss
becomes a critical issue. In this paper, we propose an alternative ACOR

algorithm (DACOR) which could be more appropriate for large scale un-
constrained continuous optimization problems. We report the results of
an experimental study by considering a recently proposed test suite. In
addition, the parameters setting of the algorithms involved in the exper-
imental study are tuned using an ad hoc tool. Our results indicate that
our proposed DACOR is able to improve both, the quality of the results
and the computational time required to achieve them.

1 Introduction

Several extensions of the Ant Colony Optimization (ACO) metaheuristic [4,5] for
solving continuous problems currently exist. The first ACO extension designed
to operate on continuous search spaces was introduced by Bilchev et al. [3].
After that, several others were introduced (see [13,11,6,7,12,14,9,8]). The version
adopted for our study is the one originally proposed by Socha [15]) and further
extended by Socha & Dorigo [16].
� On leave of absence from LIDIC - Universidad Nacional de San Luis, San Luis,

Argentina.
�� The second author is also affiliated to the UMI LAFMIA 3175 CNRS at

CINVESTAV-IPN.

M. Dorigo et al. (Eds.): ANTS 2010, LNCS 6234, pp. 48–59, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

An Alternative ACOR Algorithm for Continuous Optimization Problems 49

In this work, we propose an alternative ACOR algorithm for solving large di-
mensional continuous optimization problems. This study has a recent antecedent
(see [10]) in which it was detected that ACOR [16] had some limitations when
dealing with large dimensional problems. Its main problem was a quick loss of
diversity, which had a clear negative impact on the quality of the results achieved
by the algorithm. In order to deal with such problem, a simple diversity main-
tenance mechanism was introduced. Here, we propose a mechanism different to
the one adopted in [10], which aims to avoid the loss of diversity by using an
alternative mechanism to select the kernels that produce new samples on the
search space.

Our experimental study includes a recently proposed test suite of continuous
optimization problems which are useful to assess the capacity of an algorithm to
deal with large dimensional problems. For determining the parameters setting
to be used in the experimental study, we used an automatic tool that approx-
imates a prediction model based on a set of observations (outputs of the real
algorithm) for specific design points. Such a proposal intends to be the first step
towards improving the ACO metaheuristic in order to achieve a design of a more
advanced ACO algorithm which is competitive with respect to other state-of-
the-art metaheuristic algorithms used for continuous optimization problems.

The remainder of this paper is organized in the following way: Section 2 briefly
describes the original version of the ACOR algorithm and Section 3 presents the
alternative ACOR algorithm (called DACOR). The section about the experimen-
tal study (Section 4) involves three important subsections: Section 4.1 describes
the set of test problems adopted; Section 4.2 presents the results of a prelimi-
nary study of ACOR and DACOR on the test suite by using an ad hoc tool to
tune some selected parameters of the algorithms, and Section 4.3 shows a com-
parative analysis of the obtained results from algorithms ACOR and DACOR.
Finally, in Section 5 we discuss the main achievements of the experimental study.
In addition, some lines of future research are also considered.

2 The ACOR Algorithm

The ACOR algorithm was designed with the aim of obtaining a set of probability
density functions (PDFs). Each PDF is obtained from the search experience and
is used to incrementally build a solution x ∈ R

n considering in turn each compo-
nent xj (∀j = 1 . . .n). To approximate a multimodal PDF, Socha & Dorigo [16]
proposed a Gaussian kernel which is defined as a weighted sum of several one-
dimensional Gaussian functions gij(x) as follows:

Gj(x) =
k∑

i=1

ωigij(x) =
k∑

i=1

ωi
1

σij

√
2π
e
− (x−μij)2

2(σij)2 (1)

where j ∈ {1, . . . , n} identifies the number of dimension, i.e., ACOR uses as many
Gaussian kernel PDFs as the number of dimensions of the problem. In addition,
Gj is parameterized with three vectors: ω, the vector of weights associated with

50 G. Leguizamón and C.A. Coello Coello

the individual Gaussian functions; μj , the vector of means; and σj , the vector
of standard deviations. All these vectors have cardinality k, which constitutes
the number of Gaussian functions involved.

In ACOR, a solution archive called T is used to keep track of a number of
solutions. The cardinality of archive T is k, that is, the number of kernels that
conform the Gaussian kernel. For each solution xi ∈ R

n, ACOR maintains the
corresponding values of each problem dimension, i.e., xi1, . . . , xin, and the value
of the objective function f(xi) which are stored satisfying that f(x1) ≤ . . . ≤
f(xi) ≤ . . . f(xk). On the other hand, the vector of weights ω should satisfy that
ω1 ≥ . . . ≥ ωl ≥ . . . ≥ ωk. The solutions in T are, therefore, used to dynamically
generate probability density functions involved in the Gaussian kernels. More
specifically, in order to obtain the Gaussian kernel Gj , the three parameters ω,
μj , and σj need to be calculated. Thus, for each Gj , the values of the j-th
variable of the k solutions in T become part of the elements of vector μj , that
is, μj = (μ1j , . . . , μkj) = (x1j , . . . , xkj). On the other hand, each component of
the deviation vector σj = (σ1j , . . . , σkj) is obtained as:

σij = ξ

k∑
e=1

|xej − xij |
k − 1

(2)

where i ∈ {1, . . . , k} is the kernel number with respect to which the deviation is
calculated and ξ > 0 which is the same for all dimensions, has an effect similar
to that of the pheromone evaporation rate in ACO. Thus, the higher the value
of ξ, the lower the convergence speed of the algorithm.

The pheromone update is achieved by considering a set A1 of size Na which
maintains the newly generated solutions regarding equation (1). The new T (in
the next algorithm iteration) is obtained as T (t + 1) = FIRSTk(Rank(T (t) ⊕
A(t))), i.e., the old solutions in the archive T plus the set of newly created
solutions A are ranked and then, the first k best k solutions are selected. In
other words, the old solutions compete against the newly generated ones to
conform the updated T which maintains its cardinality (k) through the whole
search process.

3 The Proposed Alternative ACOR Algorithm (DACOR)

The proposed alternative ACOR algorithm is straightforward. The main objec-
tive is to keep the diversity as long as possible in order to explore more regions
of the search space before converging to a possible local optimum from which is
usually impossible to escape unless some mechanism is implemented to improve
the diversity in the population. Our proposed algorithm, called DACOR (‘D’
stands for Diversity) is designed following the same basic principle of ACOR,
i.e., from a set of k kernels, a new set of Na solutions is generated via the mul-
timodal kernels (see equation (1)). However, DACOR always generates Na = k
new solutions by considering an alternative approach to select the kernels. More
1 Set A represents the set of ants according to Socha & Dorigo [16].

An Alternative ACOR Algorithm for Continuous Optimization Problems 51

x

y

1

2

3

4

5

4′

Fig. 1. A possible LHS distribution for k = 5 on a hypothetical search space of di-
mension n = 2. The center point in the circle represents the current kernel (number 4)
from which a new point is generated by considering the remaining 5 − 1 kernels.

precisely, DACOR starts from an initial population of k kernels distributed evenly
on the whole problem search space. In our case, we have adopted Latin Hyper-
cube Sampling (LHS) under which the search space is divided into k intervals.
Figure 1 shows a possible LHS distribution of k = 5 kernels on a hypothetical
search space of dimension n = 2.

To generate the new set of solutions A(t) from the actual set of kernels T (t),
DACOR considers two different ways of selecting the kernel from T (t) to pro-
duce the corresponding solution in A(t). The first one is as follows: when gen-
erating solution i in A(t), the selected kernel from T (t) is the number i, i.e.,
the solution generated at position i in A(t) will be obtained through a Gaussian
distribution with μ = xi and a deviation σ determined by the remaining set
{1, . . . , i−1, i+1, . . . , k} of k−1 kernels in T (t). The newer solution is included
in A(t) only if its corresponding objective value is improved with respect to
kernel i in T (t); otherwise, the old kernel is copied to A(t) as the new solution
generated. In this way, the algorithm behaves as a local explorer around each
kernel.

The second approach to generate a solution is by considering the current
best kernel in T (t) to generate a particular solution in A(t). Thus, the algo-
rithm globally exploits the best solution in the current population T (t), i.e., the
solution generated at position i in A(t) will be obtained through a Gaussian
distribution with μ = xibest

and a deviation σ determined by the remaining set
{1, . . . , ibest −1, ibest +1, . . . , k} of k−1 kernels in T (t). The newer solution is in-
cluded in A(t) only if its corresponding objective value is improved with respect
to kernel i in T (t); otherwise, the old kernel is copied to A(t) as the new solution
generated.

To choice between the two ways of constructing A(t) is determined by a pa-
rameter q as expressed in equation (3). It should be noticed that parameter q
in DACOR is different from parameter q in ACOR. In our DACOR algorithm, q
determines the way of obtaining some element in A(t) whereas in ACOR, this
parameter determines the relative weight of the ranked kernels. In addition, it
also important to note that our DACOR algorithm does not need to sort, at each
iteration, the set of kernels as required in ACOR. Parameter ξ is used in DACOR

in the same way as in ACOR.

52 G. Leguizamón and C.A. Coello Coello

Algorithm 1. Outline of DACOR algorithm
1: Init LHS(T);
2: Get s(σ);
3: for t ∈ 1 : tmax do
4: A = BuildSolsNew(T , σ);
5: T = Sel Best one to one(T ,A);
6: Get s(σ);
7: end for

Aij =
{

gen xj(Tij , σi
j), q > rand(0, 1) (exploration);

gen xj(Tibj , σib
j), otherwise (exploitation).

where i = 1, . . . , Na (recall that Na = k) and j = 1, . . . , n,
and

ib is the index to the best current solution in T (t).

(3)

Algorithm 1 outlines the main components of DACOR. Init LHS() gives the
initial set of k kernels through LHS; BuildSolsNew() is in charge of generating
A(t) by following the procedure explained before, i.e., either by using a local or a
global mechanism. Sel Best one to one() selects in a one-to-one correspondence
the best solutions between A(t) and T (t); and Get s() obtains the new deviation
vectors according to the new populations of kernels recently generated T (t+ 1).

4 Experimental Study

In this section, we present the experimental study that includes: a) a short
description of the test suite adopted to assess the performance of the ACOR

and DACOR algorithms; b) a preliminary study to determine an appropriate
parameters setting of the algorithms (for that sake, we have used an automatic
tool proposed by Bartz-Beielstein [1] called SPOT [2] (Sequential Parameter
Optimization Tool); and c) a comparison between ACOR and DACOR for the
adopted test suite by considering n ∈ {30, 50, 100, 200, 500} dimensions for each
of the six problems. All the experiments, except for those corresponding to the
preliminary study, were run on a PC having an Intel Pentium (R) 4 processor,
running at 3.00Gz, and with 1Gb of RAM. The ACOR and DACOR algorithms
were implemented in the C programming language.

4.1 The Adopted Test Suite

We selected 6 problems from the benchmark functions prepared for the “Special
Session and Competition on Large Scale Global Optimization” at the 2008 IEEE
Congress on Evolutionary Computation (CEC’08) [17]. The problems represent
a set of scalable functions for high-dimensional optimization. See Table 1 for a
description of these problems and their corresponding optimum values. Particu-
larly, the objective of this special session was to bring to the research community

An Alternative ACOR Algorithm for Continuous Optimization Problems 53

Table 1. Test suite proposed by Tang et al. [17]

Benchmark Problems Search Range f(x∗)
f1(x) =

∑n
j=1 zj + f bias1, z = x − o [-100,100] -450

o = (o1, o2, . . . , on); the shifted global optimum
f2(x) = maxj{|zj |, 1 ≤ j ≤ n} + f bias2, z = x − o [-100,100] -450
o = (o1, o2, . . . , on); the shifted global optimum
f3(x) =

∑n−1
j=1 (100 · (z2

j − zj)2 + (zj − 1)2) + f bias3, [-100,100] 390
z = x − o + 1; o = (o1, o2, . . . , on); the shifted global optimum
f4(x) =

∑n
j=1(z

2
j − 10 · cos(2πzj) + 10) + f bias4, z = x − o [-5,5] -330

o = (o1, o2, . . . , on); the shifted global optimum

f5(x) =
∑n

j=1

z2
j

4000
−∏n

j=1 cos(zj√
j
) + 1 + f bias5, z = x − o [-600,600] -180

o = (o1, o2, . . . , on); the shifted global optimum

f6(x) = −20 exp(−0.2
√

1
n

∑n
j=1 z2

j) [-32,32] -140
− exp(1

n

∑n
j=1 cos(2πzj)) + 20 + f bias6),

z = x − o; o = (o1, o2, . . . , on); the shifted global optimum

newer and more challenging problems to assess current nature-inspired optimiza-
tion algorithms as well as other, novel optimization algorithms.

4.2 Parameters Settings for ACOR and DACOR

In order to conduct the preliminary study and establish the most appropriate
parameters setting for our proposed approach, it was necessary the integration
of the algorithms ACOR and DACOR (implemented in C) with SPOT (imple-
mented in MATLAB) through the compiler MEX. After tuning the correspond-
ing parameters, all the algorithms ran as standalone processes in the usual way.

As an optimization algorithm, SPOT includes several specific parameters that
must be provided when applied to a particular algorithm. In our case, we used
the default parameters setting for this tool (e.g., the sampling procedure applied
is the Latin Hypercube Sampling where the number of design points is set to
16 by default). Additionally, SPOT needs to run the algorithm (either ACOR

or DACOR) to fit a model based on a sample of observations; accordingly, some
fixed parameters (not included in the algorithm’s design, explained below) of the
respective algorithm under study need to be provided. For example: the problem
dimension (n = 100 was the chosen setting), the maximum number of iterations
(was set to tmax = 1000), and the number of kernels and ants (they were set
respectively to k = 50 and Na = 50). It should be noticed that for DACOR,
Na is always set as k (i.e., Na = k). In addition, the setting for the number of
dimensions and maximum number of iterations, was only used to calibrate the
selected parameters (q and ξ) as explained next. For the comparative study (see
Section 4.3) the respective settings for these parameters are different (except for
k and Na).

The definition of the Problem Design (XP regarding the terminology taken
from [1]) for both algorithms includes function F which is expressed as:

54 G. Leguizamón and C.A. Coello Coello

F (x, n) =
6∑

i=1

(fi(x, n) − f∗
i)/f∗

i (4)

where fi represents one of the six functions from the test suite studied (presented
in Table 1), n is the problem’s dimensionality (all these functions are scalable),
and f∗

i represents the optimal value for function i (it must be noticed that for
any dimension n, the optimal values remain the same). Thus, F expresses the
summation of the percentage error over the six functions. In this way, we apply
SPOT as considering only one problem in the process of tuning the corresponding
algorithms’ parameters.

We first define the Algorithm Design for DACOR (see [1]) as XDACOR
, the

region determined by parameters q and ξ as follows: 0 ≤ q ≤ 1 and 0 ≤ ξ ≤ 1.
After the initial application of SPOT to calibrate these parameters, we observed
that the regions determined by q ∈ (0.5, 1] and ξ ∈ [0, 0.5) can be eliminated from
the experimental study due to the poor performance of the algorithm for such
parameter values. Accordingly, we redefined XDACOR

as the region determined
by 0 ≤ q ≤ 0.5 and 0.5 ≤ ξ ≤ 1. The best parameters setting for DACOR was:
q = 0.1172 and ξ = 0.6063. Figure 2 shows the output from SPOT for the regions
considered of the algorithm’s design (XDACOR

) with respect to parameters q
and ξ. On the left, we can observe the response surface of the predicted values
(PV) of function F for DACOR. On the right, we show the corresponding surface
of the Mean Square Error (MSE).

Similarly, for ACOR, XACOR
was determined by considering the region 0 ≤

q ≤ 0.5 and 0.5 ≤ ξ ≤ 1 from which SPOT reported q = 0.0103 and ξ = 0.8257
as the best corresponding parameters for the ACOR algorithm.

Finally, it must be remarked that for both algorithms (ACOR and DACOR),
the initial population of kernels was obtained from input files previously gener-
ated by using the MATLAB function lhsdesign.

0
0.2

0.4
0.6

0.8

0.50.60.70.80.91
−2

0

2

4

6

8

10

x 10
5

qξ

P
V

0
0.1

0.2
0.3

0.4
0.5

0.4

0.6

0.8

1
0

1

2

3

4

x 10
10

qξ

M
S
E

Fig. 2. Regions of the algorithm’s design (XDACOR
) with respect to parameters q and

ξ. (Left)- response surface of the predicted values (PV) of function F for DACOR and
(Right)- the corresponding surface of the Mean Square Error (MSE).

An Alternative ACOR Algorithm for Continuous Optimization Problems 55

4.3 Performance of ACOR and DACOR on the Selected Problems

This section presents a comparative study of ACOR and DACOR on the six
problems presented in Section 4.1. The parameters settings for these algorithms
are as follows. For both algorithms, k = Na = 50, tmax was set respectively to
6000, 10000, 14000, 20000, 40000, and 100000 when running the algorithms with
problems of dimensions n = 30, n = 50, n = 70, n = 100, n = 200, and n = 500.
These values for tmax were selected considering the criteria followed in [17].
Particularly, we considered twice the maximum number of function evaluations
(FES) proposed for dimension n = 100. Accordingly, we obtained the corre-
sponding tmax values proportionally for each dimension studied. Under these
parameters settings, both algorithms ran for the same number of function eval-
uations for each of the problems and dimensions considered. With respect to
the remaining parameters (i.e., q and ξ), the used values were those reported by
SPOT which are, for DACOR, q = 0.1172 and ξ = 0.6063; whereas for ACOR,
are q = 0.0103 and ξ = 0.8257. Both algorithms were run considering 25 random
seeds for each combination of problem, dimension, and parameters setting.

The results are shown in all the figures displayed in the Appendix. We adopted
boxplots to show the distribution of the results expressed as the percentage of
the error with respect to the optimum values. We divided the presentation of
the results based on the problem’s dimension. On the one hand, Figures 3 and 4
show respectively the results for dimensions n = 30, 50 and n = 70, 100. On the
other hand, and because of the large differences found in the percentage error for
the larger dimensions considered in this work (n = 200 and n = 500), we split
the presentation in three figures for: i) problems 1,2,4, and 5 with n = 200, 500
(Figure 5); ii) problems 3 and 6 with n = 200 (Figure 6); and iii) problems 3 and
6 with n = 500 (Figure 7). The x-axis in each figure indicates the problem num-
ber whereas the corresponding super-index represents the corresponding applied
algorithm (a stands for ACOR and d stands for DACOR). The non-parametric
Mann-Whitney-Wilcoxon test at a level of 5% of confidence was applied to assess

0

0.1

0.2

0.3

0.4

0.5

1a 1d 2a 2d 3a 3d 4a 4d 5a 5d 6a 6d

(a) Dimension n = 30

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1a 1d 2a 2d 3a 3d 4a 4d 5a 5d 6a 6d

(b) Dimension n = 50

Fig. 3. Percentage error for the six benchmark problems with dimension n ∈ {30, 50}

56 G. Leguizamón and C.A. Coello Coello

0

0.5

1

1.5

2

1a 1d 2a 2d 3a 3d 4a 4d 5a 5d 6a 6d

(a) Dimension n = 70

0

0.5

1

1.5

2

2.5

3

1a 1d 2a 2d 3a 3d 4a 4d 5a 5d 6a 6d

(b) Dimension n = 100

Fig. 4. Percentage error for the six benchmark problems with dimension n ∈ {70, 100}

0

5

10

15

20

1a 1d 2a 2d 4a 4d 5a 5d

(a) Dimension n = 200

0

5

10

15

20

1a 1d 2a 2d 4a 4d 5a 5d

(b) Dimension n = 500

Fig. 5. Percentage error for problems 1, 2, 4, and 5 with dimension n ∈ {200, 500}

the significance on the differences on the corresponding medians of DACOR with
respect to ACOR. Thus, a p-value < 0.05 indicates that based on the median
values DACOR outperforms ACOR. It is worth mentioning that the statistical
test was applied considering, for each dimension, a sample of 25 × 6 points (i.e.,
all the percentage error values for each problem and run were collected as one
sample). The p-values are respectively 4.0459e − 007, 3.7094e − 0051, 0.0083,
0.0117, and 2.6185e − 005 for dimensions 30, 50, 70, 100, 200, and 500. From
this statistical point of view, DACOR outperforms ACOR for all problems and
dimensions considered. More precisely, when taking into account the shape and
location of the boxplots for all dimensions and considering one problem in turn,
we can observe a similar behavior of both algorithms. On the one hand, the
algorithms scale fairly well with larger dimensions for problems 1, 2, and 5. Also
for these problems, it can be seen that both algorithms preformed robustly and
achieved high quality results (mainly for dimensions n ∈ {30, 50, 70, 100}). How-
ever, DACOR found the best results for these problems with all the dimensions

An Alternative ACOR Algorithm for Continuous Optimization Problems 57

x 10

0

2

6

6

8

4

10

3a 3d

(a) Dimension n = 200, problem 3

0.1

0.02

0.04

0.06

0.08

0.12

0.14

6a 6d

(b) Dimension n = 200, problem 6

Fig. 6. Percentage error for problems 3 and 6 with dimension n = 200

x 10

0

1

2

3

5

6

7

7

4

3a 3d

(a) Dimension n = 500, problem 3

0.1

0.05

0.06

0.07

0.08

0.09

0.11

0.12

0.14

0.13

0.15

6a 6d

(b) Dimension n = 500, problem 6

Fig. 7. Percentage error for problems 3 and 6 with dimension n = 500

tested. When increasing the problems’ dimensionality for problems 1,2, and 5
(i.e., n = 200 and n = 500) we found a less robust behavior and results of
lower quality for algorithm ACOR. On the other hand, problems 3, 4, and 6
represent a challenge for both algorithms. It can be clearly observed that there
was a large increase in the percentage error as the problem dimensionality in-
creased. Although both algorithms have difficulties to solve and scale on these
three problems, the behavior of DACOR is superior to that of ACOR. Finally,
is it worth remarking that DACOR needed less CPU time to complete the same
number of function evaluations than the ACOR algorithm. Indeed, our proposed
approach required about 25% less CPU time, on average, than ACOR , for all
the problems and dimensions tested in our study. This can be explained based
on the fact that our proposed DACOR algorithm does not include the sorting
procedure used by the original ACOR to produce, at each iteration, a ranked set
of kernels. In DACOR, it is only necessary to maintain an index to the current
best kernel (ibest in equation (3)).

58 G. Leguizamón and C.A. Coello Coello

5 Discussion and Conclusions

In this work we presented DACOR, an alternative to the ACOR algorithm for
dealing with large dimensional continuous problems. The achieved results show
the potential of our proposed DACOR algorithm to solve large scale optimiza-
tion problems. Our results lead us to think about other possible modifications,
including more sophisticated mechanisms to control the intensification and the
diversification during the search. This could strengthen the position of the ACO
metaheuristic with respect to state-of-the-art algorithms in current use for large
dimensional continuous optimization problems (e.g., differential evolution and
evolution strategies). Our future work will include the incorporation of a mecha-
nism to better control the region of local exploration as well as to automatically
decide between a global and a local exploration based on the diversity observed in
the current population of kernels. Improved versions of DACOR should certainly
be compared with some state-of-the-art metaheuristics for continuous optimiza-
tion problems. Additionally, it is important to acquire more experience in the
use of tools (either SPOT or some other approach) to appropriately set the main
parameters of the future version of the algorithms to be studied.

Acknowledgements. The first author acknowledges the support from the
UMI-LAFMIA 3175 CNRS at CINVESTAV-IPN and from the Universidad Na-
cional de San Luis, Argentina. The second author gratefully acknowledges sup-
port from CONACyT project no 103570.

References

1. Bartz-Beielstein, T.: Experimental Research in Evolutionary Computation: The
New Experimentalism. Natural Computing Series. Springer, New York (2006)

2. Bartz-Beielstein, T., Preuss, M.: Spot, sequential parameter optimization tool,
http://www.gm.fh-koeln.de/campus/personen/lehrende/

thomas.bartz-beielstein/00489/
3. Bilchev, G., Parmee, I.: The Ant Colony Metaphor for Searching Continuous Design

Spaces. In: Fogarty, T.C. (ed.) Evolutionary Computing. AISB Workshop, pp. 25–
39. Springer, Sheffield (April 1995)

4. Corne, D., Dorigo, M., Glover, F. (eds.): New Ideas in Optimization. McGraw-Hill
International, London (1999)

5. Dorigo, M., Stützle, T.: Ant Colony Optimization. MIT Press, Cambridge (2004)
6. Dréo, J., Siarry, P.: A New Ant Colony Algorithm Using the Heterarchical Concept

Aimed at Optimization of Multiminima Continuous Functions. In: Dorigo, M., Di
Caro, G.A., Sampels, M. (eds.) Ant Algorithms 2002. LNCS, vol. 2463, pp. 216–
221. Springer, Heidelberg (2002)

7. Dréo, J., Siarry, P.: Continuous Interacting Ant Colony Algorithm Based on Dense
Heterarchy. Future Generation Comp. Syst. 20(5), 841–856 (2004)

8. Hu, X., Zhang, J., Li, Y.: Orthogonal methods based ant colony search for solving
continuous optimization problems. J. Comput. Sci. Technol. 23(1), 2–18 (2008)

9. Kong, M., Tian, P.: A direct application of ant colony optimization to function op-
timization problem in continuous domain. In: Dorigo, M., Gambardella, L.M., Bi-
rattari, M., Martinoli, A., Poli, R., Stützle, T. (eds.) ANTS 2006. LNCS, vol. 4150,
pp. 324–331. Springer, Heidelberg (2006)

http://www.gm.fh-koeln.de/campus/personen/lehrende/thomas.bartz-beielstein/00489/
http://www.gm.fh-koeln.de/campus/personen/lehrende/thomas.bartz-beielstein/00489/

An Alternative ACOR Algorithm for Continuous Optimization Problems 59

10. Leguizamón, G., Coello Coello, C.A.: A Study of the Scalability of ACOR

for Continuous Optimization Problems. Tech. Rep. EVOCINV-01-2010, Evolu-
tionary Computation Group at CINVESTAV, Departamento de Computación,
CINVESTAV-IPN, México (February 2010)

11. Ling, C., Jie, S., Ling, Q., Hongjian, C.: A Method for Solving Optimization Prob-
lems in Continuous Space Using Ant Colony Algorithm. In: Dorigo, M., Di Caro,
G.A., Sampels, M. (eds.) ANTS 2002. LNCS, vol. 2463, pp. 288–289. Springer,
Heidelberg (2002)

12. Ling Chen, J., Shen, L.Q., Chen, H.: An improved ant colony algorithm in con-
tinuous optimization. Journal of Systems Science and Systems Engineering 12(2),
224–235 (2003)

13. Monmarché, N., Venturini, G., Slimane, M.: On how pachycondyla apicalis ants
suggest a new search algoritm. Future Generation Computer Systems 16, 937–946
(2000)

14. Pourtakdoust, S., Nobahari, H.: An Extension of Ant Colony Systems to Continuos
Optimization Problems. In: Dorigo, M., Birattari, M., Blum, C., Gambardella,
L.M., Mondada, F., Stützle, T. (eds.) ANTS 2004. LNCS, vol. 3172, pp. 294–301.
Springer, Heidelberg (2004)

15. Socha, K.: ACO for continuos and mixed-variable optimization. In: Dorigo, M.,
Birattari, M., Blum, C., Gambardella, L.M., Mondada, F., Stützle, T. (eds.) ANTS
2004. LNCS, vol. 3172, pp. 25–36. Springer, Heidelberg (2004)

16. Socha, K., Dorigo, M.: Ant colony optimization for continuous domains. European
Journal of Operational Research 185(3), 1155–1173 (2008)

17. Tang, K., Yao, X., Suganthan, P.N., MacNish, C., Chen, Y.P., Chen, C.M., Yang,
Z.: Benchmark Functions for the CEC 2008 Special Session and Competition on
Large Scale Global Optimization. Tech. rep., Nature Inspired Computation and
Applications Laboratory, USTC, China (2007)

An Efficient Optimization Method for Revealing
Local Optima of Projection Pursuit Indices

Souad Larabi Marie-Sainte1, Alain Berro1, and Anne Ruiz-Gazen2

1 IRIT-UT1, UMR 5505, CNRS
Université Toulouse 1 - Capitole, Toulouse, France

{souad.larabi,alain.berro}@irit.fr
2 Toulouse School of Economics (GREMAQ)

Université Toulouse 1 - Capitole, Toulouse, France
ruiz@cict.fr

Abstract. In order to summarize and represent graphically multidimen-
sional data in statistics, projection pursuit methods look for projection
axes which reveal structures, such as possible groups or outliers, by op-
timizing a function called projection index. To determine these possible
interesting structures, it is necessary to choose an optimization method
capable to find not only the global optimum of the projection index but
also the local optima susceptible to reveal these structures. For this pur-
pose, we suggest a metaheuristic which does not ask for many parameters
to settle and which provokes premature convergence to local optima. This
method called Tribes is a hybrid Particle Swarm Optimization method
(PSO) based on a stochastic optimization technique developed in [2].
The computation is fast even for big volumes of data so that the use
of the method in the field of projection pursuit fulfills the statistician
expectations.

1 Introduction

Exploratory projection pursuit techniques aim to reveal visually an interesting
structure hidden within multivariate data ([9], [10], [1]). This family of statisti-
cal methods consists in detecting interesting linear projections by optimizing a
predetermined function called projection index that measures in some sense the
“interestingness” of a projection.

The projection pursuit is based on two important elements: the projection
index and the optimization algorithm. The literature exposes several projection
indices and optimization methods. These methods are global optimization meth-
ods such as the gradient’s method [10], the ascent’s method ([7], [13], [14], [15]),
the quasi-Newton’s method ([7], [15]) and some modified version of Newton’s
method [14]. Several projections of the data may reveal interesting structures.
So, in order to obtain different local optima, the aforementioned algorithms work
in the following way. They look for a global optimum of the projection index and
when a solution is found, it is removed from the space of solutions for instance by
projecting the data in the orthogonal space of the global solution. Then, the in-
dex is optimized again in order to find other solutions. Several projections (local

M. Dorigo et al. (Eds.): ANTS 2010, LNCS 6234, pp. 60–71, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Tribes for EPP 61

optima) in the initial search space may not be detected when we consider the suc-
cessive orthogonal spaces. Furthermore, the optimization methods quoted above
require the calculation of the gradient and may ask for a meticulous choice of an
initial point (initial solution). Our objective is not only to find the global opti-
mum of the index but also the local optima to reveal these possible interesting
structures. We also wish to suggest to the statistician an algorithm without pa-
rameter tuning and which enough explores the space to find various local optima
of the index without considering orthogonal spaces. Furthermore, the problem
of the optimization of these projection indices is complex and expensive in com-
puting time and the solutions proposed to maximize (minimize) these indices
are not always convincing. Therefore, the projections pursuit methods are little
used and absent from the well known statistical softwares (except Matlab [12] or
quasi-clones, like SciLab and Octave, and GGobi [5]). Our purpose is to propose
powerful and fast algorithm allowing the detection of several local optima.

The Particle Swarm optimization (PSO) and Tribes are metaheuristics that ap-
peared recently. They differ from the other evolutionary methods (typically, the
genetic algorithms) and are based on the notion of cooperation between agents
(particles). The information exchanged between particles gets to resolve difficult
problems. These techniques present some interesting peculiarities, among others,
the notion of efficiency due to the collaboration rather than the competition. Fur-
thermore, the fact that these methods converge early to local optima is an inter-
esting feature in order to find new potentially interesting projections. In a first
work, we used the PSO and the genetic algorithms to optimize certain projection
indices and both optimization methods have proven their efficiency but they need
parameters to be tuned. Note that PSO is also used for Projection Pursuit in [16]
in the context of regression.

Contrary to PSO, Tribes is presented as a black box, because it possesses
no parameter to settle and it easily exhibits satisfactory performances. In this
technique, particles are divided into several tribes or groups of variable size.
Tribes method presents the risk of a too fast convergence, which can be translated
by the fact that it finds local optima. To remedy this problem, Clerc ([3], [4])
proposed a new version of Tribes. As far as our objective is not only to find
the global optimum but also several potential local optima, we prefer to apply
the native version. Tribes was never used in the field of projections pursuit.
Its application in this article shows that it can lead to better results than the
classical PSO as shown in the previous work.

In this paper, we present a comparison of the Tribes technique with the clas-
sical PSO version applied to the exploratory projections pursuit to optimize
one-dimensional projection index. We focus on the search of clusters among any
other interesting structure such as outliers. In section 2, we introduce briefly the
problem of projection pursuit and the two projection indices we focus on. Section
3 presents the technique of particle swarm optimization briefly and the technique
of Tribes in more detail. The last section is dedicated to the comparison of these
two techniques on some small data sets.

62 S. Larabi Marie-Sainte, A. Berro, and A. Ruiz-Gazen

2 Exploratory Projection Pursuit

The Exploratory Projection Pursuit (EPP) techniques consist in the search for
hidden aspects within a big volume of data [8]. The objective of these exploratory
techniques is to look for low (one, two or three) dimensional projections that
provide the most revealing views of the full-dimensional data. The search for such
projections requires the definition of a numerical index I(a) for every projection
a. The intent of this index is to capture nonlinear structures present in the
distribution of the projected data. This function is defined so that the interesting
projections correspond to the global optimum and to the local optima of this
function.

Principal components analysis (PCA) is a familiar exploratory technique of
this kind, it is a projection pursuit method where the index of interestingness
represents the variance of the projected data. Its efficiency has been relativized
[10] because certain important projections may not appear in the principal sub-
spaces, even if their dimension is small. Furthermore, the maximization of this
index (the variance) can be solved by using the spectral decomposition so that
PCA does not need any optimization algorithm.

As in many situations of data analysis, we consider N individuals character-
ized by P variables. To every individual corresponds a vector Xi in IRP (i =
1, · · · , N) which is assimilated to a matrix column, the transposed of these vec-
tors leads to a matrix X with dimension N ×P . Unfortunately, it is not possible
to visualize points in P -dimensional space if P is upper to 3. However, it is pos-
sible to project a P -dimensional set of points onto a one-dimensional line. The
projection is a linear function of IRP towards IR of N observations X1, · · · , XN

such as z = Xa. The P -vector a defines a linear transformation and the N
column-vector z corresponds to the projected data coordinates. The problem
consists in determining a projection a. As usual in EPP, we suppose that the
data are spherical (by transforming the data accordingly), such that the mean
vector E(Xi) = 0 and the covariance matrix V (Xi) = IP where IP denote the
identity P -dimensional matrix. By considering spherical data, PP is going be-
yond the first and second moments of the data which are already taken into
account in standard analysis such as Principal Components analysis.

There are many possible projection indices, the present paper focus on a
one dimensional polynomial-based index named the Friedman index [7] and a
moment-based index called the kurtosis index [14]. We limit ourselves to a brief
definition of these two indices.

2.1 The Friedman Index

This index is based on the Legendre polynomials [7]. It measures the departure
between the density of the projected data and the normal density which is as-
sumed to correspond to a non-interesting projection. The formula is given as
follows:

IF
h (a) =

h∑
j=1

2j + 1
2

[
1
N

N∑
i=1

Lj{2Φ(Xi) − 1}
]2

(1)

Tribes for EPP 63

where Φ is the univariate standard normal distribution. The recursive definition
of the Legendre polynomials is given by:

L0(r) = 1, L1(r) = r, L2(r) = 1
2 (3r2 − 1),

Lj(r) = 1
j (2j − 1)rLj−1(r) − (j − 1)Lj−2(r) pour j ≥ 3 (2)

The choice of the value of h depends on the data dimension P and the sample
size N . In the present article h is fixed to 3 according to the recommendations
given in [7] and [15].

2.2 The Kurtosis Index

This index is based on the fourth moment of the projected data distribution
[14]. It is the kurtosis coefficient of the projected data. The directions are chosen
by minimizing and maximizing this coefficient. The minimization of the kurtosis
coefficient implies the maximization of the “bimodality” of the projections, that
leads to the determination of clusters, whereas its maximization leads to the
detection of outliers [14]. The index is defined as follows:

Ik(a) =
N∑

i=1

(aTXi)4 (3)

3 Bio-inspired Algorithms

The optimization algorithm is an important choice in the projection pursuit
problem. It consists in finding the directions which maximize (or minimize) the
projection index I. This section presents the PSO and Tribes which are bio-
inspired algorithms. In other words, there are iterative stochastic methods for
global optimization which are inspired by the theory of the biological popula-
tions evolution. One of the interests to study these approaches is to develop an
algorithm with powerful ability to find out the global and the local optima of
the optimization problem. These methods develop a set of solutions with the
purpose to find the best results.

3.1 Particle Swarm Optimization (PSO)

The PSO algorithm is an optimization metaheuristic method, invented by
Eberhart and Kennedy in 1995 [11]. This method incorporates concepts that
lead particles to converge gradually to a local optimum. The PSO algorithm
is initialized with a swarm of random candidate solutions, called particles. All
the particles have fitness values which are evaluated by the fitness function to
be optimized, and are assigned a randomized velocity at the beginning of opti-
mization and are iteratively moved through the problem’s searching space. Each
particle tries to improve its performance according to its own experience and the
experience of its environment.

64 S. Larabi Marie-Sainte, A. Berro, and A. Ruiz-Gazen

If Xm(t) represents the position of the particle m to the iteration t, then its
velocity at iteration t+ 1 is defined by:

Vm(t+ 1) = w ∗ Vm(t) + r1 ∗ (X∗
m −Xm(t)) + r2 ∗ (X∗ −Xm(t)) (4)

where Vm(t) is the velocity at the preceding iteration, w is the inertia weight
employed to adjust the influence of the previous particle velocities on the opti-
mization process.X∗

m is the best historical position ever obtained bym,X∗ is the
best particle ever obtained during the algorithm, r1 and r2 are fixed parameters.
We define the new position of the particle m as follows:

Xm(t+ 1) = Xm(t) + Vm(t+ 1) (5)

In our work, the projection index represents the fitness function and the vector
of projection defines a particle. In the first work, we used the classic version of
the PSO with a modification of the notion of neighborhood in order to adapt
the method to EPP. So, the practical application of the algorithm involves using
X∗

l being the best particle in the neighborhood instead of X∗.

3.2 Tribes

Tribes is a hybrid PSO method based on a technique of stochastic optimization
developed in [2] (see also [4]). This technique is a competitive algorithm which
allows to find quickly local optima by investigating simultaneously several regions
of the search space, generally local optima, before making a global decision.

In Tribes, particles are divided into several tribes, a metaphor for different
sized groups of particles moving about in an unknown environment, looking
for a “good” place. Each particle is evaluated by the fitness function (the pro-
jection pursuit index I). In each tribe, information links build a completely
connected graph. Between tribes, links are looser, but the whole graph is still
connected. This graph forms a structure able to diffuse and exploit informa-
tion. This structure must be automatically generated and updated by means of
creation, evolution and deletion of particles and tribes. Moving strategies of a
particle, which indicate how a particle must modify its position, are based on
“hyperspherical” probability distributions, which may be with or without noise,
or independent Gaussian. The choice of these strategies is made depending on
the short term history of the particle. This structuring will automatically in-
duce the same purpose, namely explore several promising areas simultaneously,
usually around local optima. In this part, we are going to define some notions
allowing to understand the mechanism of this technique and give an algorithm
describing its complete progress. Let us note that a particle is always defined as
being a vector of projection.

The algorithm begins with one particle in a single tribe. Then it consists in
creating and deleting particles and tribes. Along iterations, the position of the
particles (value of the projection vector) is updated according to some strategies
of displacement. Each time a tribe is created, links between particles are defined
in order to make possible the transfer of information between tribes (in particular

Tribes for EPP 65

x: is the best position memorized by the particle during its course
p: is the best position memorized by the best particle of the generating tribe
g: is the best position memorized by the best particle of the swarm
nb_iteration: the number of current iteration
Max_iteration: The maximum number of iterations
L: the total number of information links
nb_iteration = 0; L = 0;

1. Create a first tribe formed of a single free particle
2. Estimate its fitness (the projection index)
3. Calculate x = p = g
4. nb_iteration + +
5. Create the second tribe, from the first tribe,

consisted of a couple of free and stuffy particles
6. L = 1

for nb_iteration = 1 to Max_iteration do
Estimate fitness of every particle
Calculate x, p, g for each particle
Determine the quality of every particle and every tribe
if Number of tribes < 3 and Both tribes do not improve their performance
then

Create the third tribe, from the first two tribes,
formed of two pairs of free and stuffy particles
L + +

else
if nb_iteration = L

2
then

/* Do an adaptation */
Create a new tribe
Remove the worst monotribe of the swarm
Remove the worst particle of each "good" tribe
L + +

end if
end if

end for

Algorithm 1. The Tribes algorithm

the best position of the particles in each tribe). Creating and deleting particles
and tribes rely on measures of quality.

A particle is characterized by four possible qualities. It is labeled “good” if
it has just improved its best performance (fitness value), “neutral” otherwise.
A particle having the least good performance within its tribe is said “worse”, it
is said “excellent” if its two last variations of performance (between successive
iterations) are improvements.

The tribes themselves also receive the labels “good” or “bad”, depending on
the number of good particles in the tribe. A tribe containing T particles is itself
“good” only if U() ≤ G/T , where G is the number of good particles in a tribe

66 S. Larabi Marie-Sainte, A. Berro, and A. Ruiz-Gazen

and U() is drawn from a standard uniform distribution. Otherwise the tribe is
“bad”. Good tribes, because they are doing well and presumably do not need as
many particles, will remove one of their particles and only the worst of them,
i.e. the particle with the highest value of I, if we assume that the projection
index I is the function being minimized. When this occurs, any external links
to the particle are re-assigned to the best performer in the tribe, i.e. the particle
with the lowest value of I. In the case of a monoparticle tribe, the tribe itself
is removed only if we are certain to keep in contact with all the tribes, i.e. all
external links to the particle are reassigned to the external best particles. Bad
tribes, on the other hand, presumably need more information, so each creates
two new particles outside of its tribe and forms a link between the new particles
and the best particle within the tribe. The set of all new particles created by all
the bad tribes during one adaptation step forms a new tribe.

An adaptation is the realization of a deletion and/or a creation of particles, as
described above. It occurs once at the beginning of the algorithm and then peri-
odically as it progresses in order to propagate the information between particles.
If, after adaptation, the number of links in the swarm is L, then adaptation will
occur again after L/2 swarm iterations.

A particle adopts a strategy of movement according to its recent past and
which looks like a local search. Three possibilities of variation of a particle’s
performance exist: deterioration (-), status quo (=) and improvement (+). The
confinement of the particle in the search space is realized in the same way as in
PSO but without velocity. Because the history of a particle includes two varia-
tions of performance, we find 9 possibilities of variation grouped in 3 strategies
of movement according to the recommendations of Clerc [2]. The strategies are
the pivot if the history of performance is (−−) or (= −) or (− =) or (==),
the disturbed pivot if the history is (+ =) or (−+) or (+−) and the local by
independent gaussian if the history is (= +) or (++).
Pivot strategy: the new position of the particle is chosen at random accord-
ing to an isotropic distribution centred on the pivot, for example a gaussian
distribution.

xd ← C2 ∗ alea(Hp) + C3 ∗ alea(Hg) (6)
with p the best position memorized by the particle in the course of movement,
g the best position stored by the best particle of the swarm, Hp, Hg two hy-
perspheres centred on p and g respectively and of the same radius equal to the
distance ||g − p||, C2 = I(p)

I(p)+I(g) , C3 = I(g)
I(p)+I(g) and I the projection index.

Disturbed Pivot strategy: it is the same strategy as the previous one but with
a noise. When we determine the new position, we modify it again according to
a random gaussian noise. This noise will be very low if the performance of the
particle is good. For every dimension of the space, we have:⎧⎪⎪⎨⎪⎪⎩

σ =
I(p) − I(g)
I(p) + I(g)

bd = Nd((0, σ)
xd = (1 + bd)xd

(7)

Tribes for EPP 67

Local by independent gaussian strategies: the idea is to look for locally
and only around the best position g known by the best particle. So, for every
dimension d of the space, a coordinate close to the coordinate gd of g is chosen
at random according to a Normal law

xd ← gd + Nd(0, |gd − xd|) (8)

After the first iteration, if the situation does not improve, two particles will
be generated, forming a second tribe. One of its two particles, called free, is
generated anywhere in the search space according to a uniform distribution in
the whole space and the other, said stuffy, is uniformly generated in a D-sphere
of center g and of radius ||g−x||, where g is the best position stored by the best
particle of the swarm and x is the best position memorized by the best particle
of the generating tribe. The idea of this generation is to intensify the search in
a region which seems already interesting. At the next iteration, if neither of the
two tribes improves its situation, each of the two tribes will generate another
couple of new particles simultaneously, forming a new tribe of four particles, and
the process will continue as described in the following algorithm. We note that
as the number of links increases, the importance of the number of iterations
between the two adaptations increases. Between two adaptations, the swarm
then has more and more chances to find a solution.

The Tribes method is very useful in the resolution of the PP problem. This
technique is efficient in most of the cases and allows the statistician to gain time
by avoiding the tuning stage of the metaheuristic. Indeed, the statistician has to
supply only the stopping time criterion and the objective function. Furthermore,
[4] and [3] indicate that because the parameters are not assigned to their optimal
values, the method converges early, resulting in being local optima on certain
problems. Tribes is thus a very promising tool for the determination of several
local optima which can reveal potentially interesting projections.

4 Application

Clustering is a set of statistical methods that separate data into classes (clus-
ters) but, it is not clear how to assert that a data set contains well defined
clusters. Our objective is to detect the presence of potential clusters in multidi-
mensional data by using exploratory projections pursuit methods. We consider
the two projection indices defined in section 2. In the present section, we give
some results of the PSO and Tribes optimization methods applied to four data
sets and demonstrate the interest to apply Tribes for the determination of the
local optima of projection pursuit indices. The algorithms of these methods are
implemented in language Java.

At first, we specify the number of particles for the PSO and the number of
iterations for the PSO and Tribes. As it was recommended by Clerc [2], the PSO
needs no more than 50 particles for small data sets. As regards to the number
of iterations, we fixed it to 100 for the simulated and olive oil data for both
methods. This value has been obtained by carrying out some preliminary runs

68 S. Larabi Marie-Sainte, A. Berro, and A. Ruiz-Gazen

on each data set and checking the convergence of the indices to local optima.
We ran 100 times each optimization algorithm on the different data sets and we
present below some of the obtained results. In order to summarize the results
in an efficient way, we draw the ranked values of the indices to each of the one
hundred local optima with the projection vector corresponding to the best value
of the index.

We present plots of the ranked values of the projection indices for the data sets
using PSO and Tribes. We note that the number of launches can be increased
during the exploration of big volumes of data. We also plot some histograms
of the distributions of the projected data associated with local optima of the
different indexes in order to visualize possible structure(s).

4.1 Simulated Data

We generated three data sets of N = 1000 observations and P = 5 variables. The
observations are distributed according to various mixtures of standard normal
distribution indicated as follows:

Normal2 contains two clusters of 500 observations with gaussian distribution
N5(μi, I5) with i = 1, 2 where μ1 = (0, ..., 0)T and μ2 = (10, 0, ..., 0)T are 5-
dimensional vectors.

Normal4 contains four clusters of 250 observations with gaussian distribution
N5(μi, I5) with i = 1, ..., 4 where μ1 = (0, ..., 0)T , μ2 = (10, 0, ..., 0)T , μ3 =
(0, 10, 0, 0, 0)T , μ4 = (0, 0, 10, 0, 0)T are 5-dimensional vectors.

Normal10 contains ten clusters of 100 observations with gaussian distribution
N5(μi, I5) with i = 1, ..., 10 where μ1 = (0, ..., 0)T , μ2 = (10, 0, ..., 0)T , μ3 =
(0, 10, ..., 0)T , μ4 = (0, 0, 10, 0, 0)T , μ5 = (0, ..., 0, 10)T , μ6 = −μ1, μ7 = −μ2,
μ8 = −μ3, μ9 = −μ4, μ10 = −μ5 are 5-dimensional vectors and I5 is the identity
matrix.

The purpose of this example is to show the efficiency of the Tribes method in the
detection of local optima which correspond to projections revealing the clusters
structures of the data sets. On figure 1 we plot the 100 ranked values of the
minimum kurtosis index for the simulated data with PSO (right curves) and
Tribes (left curves). While the PSO method leads to small variability of the
projection index values for the one hundred launches, Tribes supplies different
local optima as soon as the interesting structure is complex and cannot be vi-
sualized on one dimension (Normal4 or Normal10). For the first two plots at
the top, we tested the first data set Normal2 which contains two clusters. There
is an unique interesting structure associated with an optimum index detected
by the two methods. Both plots at the middle correspond to the data Normal4
which contain four clusters. We don’t give the plots of the projections of the
data but the structure in four clusters is detected by looking at the projections
associated with the local optima corresponding to the three landings of Tribes.
On the contrary, the PSO method does not allow to detect the four clusters.

Tribes for EPP 69

Fig. 1. Simulated data: Plots of the ranked values of the kurtosis index for the Normal2
(top curves), the Normal4 (middle curves) and the Normal10 (bottom curves) with PSO
(right curves) and Tribes (left curves)

The index values associated to the last data set Normal10, which contains 10
clusters, are represented in the last two plots below. We notice that Tribes pro-
poses several different local optima (see the landings) which represent various
interesting projections. For these particular examples, the Friedman index gives
the same results as the kurtosis index using both optimization methods.

4.2 Olive Data

The file consists in the percentage composition of P = 8 fatty acids found in the
lipid fraction of N = 572 Italian olive oils. The 572 samples come from three
different Italian regions subdivided themselves into nine areas. This data set
has been analyzed by several authors in the context of exploratory multivariate
analysis (see [6] and [1]). The structure of the data set is quite complex with
nine clusters which have different shapes in an eight-dimensional space. Due to
the large number of classes, discovering all of them by using one-dimensional
EPP is challenging but the results we obtain clearly highlight a complex groups
structure since several groups are detected by processing the data with the two
proposed indices using Tribes.

As for the simulated examples, the plots (not given in the present paper)
of the 100 ranked values of the minimum kurtosis index give different results

70 S. Larabi Marie-Sainte, A. Berro, and A. Ruiz-Gazen

Fig. 2. Olive data: histogram corresponding to the global optimum (left figure) and a
local optimum (right figure) for the minimum kurtosis index using Tribes

according to the optimization method. For PSO, it seems that there is only one
potential interesting projection while we visualize at least two local minima for
the kurtosis and the Friedman index with Tribes. In figure 2 we visualize two
interesting projections corresponding to different local optima of the kurtosis
index using Tribes method. On these two plots the data are split in two parts
which correspond to different regions for the oils (see the clusters defined by the
nine areas below the histograms). For the same method, the Friedman index
gives different projections which separate other areas. As mentioned above, PSO
yields a single interesting structure by optimizing any of both indices.

As illustrated in these small examples, EPP with the Tribes algorithm is a
powerful tool for discovering clusters structures if present in the data. It would
be interesting to test the proposed method on higher multidimensional datasets.
Once EPP has revealed the presence of clusters, the data analyst may perform
some clustering algorithm in order to define precisely the clusters.

5 Conclusion

In this paper, we used two metaheuristics (PSO and Tribes) to optimize two
projection indices. We showed the performance of these methods using multi-
dimensional data sets for the detection of groups. The important result of our
study is the performance and the efficiency of Tribes method for projection pur-
suit. By using several simulations, we can easily obtain several local optima of
the projection index susceptible to reveal interesting structures.

The difference between PSO and Tribes is that Tribes requires no parame-
ter to settle. The statistician has only to define the objective function and the
stopping criterion. A study of this method was led by [4] and [3] who found
that Tribes converges very quickly to a local optimum which is not generally the
global optimum. This characteristic, which the authors [4] and [3] consider as a
drawback, motivates our choice and serves perfectly our objective.

Both Friedman and Kurtosis projection indices give good results on the con-
sidered examples. Concerning the computing time, we noticed that the kurtosis
index is faster than the Friedman index. Although the evaluation number of
the objective function is not the same for both methods (because the number
of particles in the method Tribes is variable), we observed that Tribes is faster

Tribes for EPP 71

than PSO. For the small-size data sets we consider, the time is unimportant for
both methods and both indices but for very large data sets the kurtosis index
together with the Tribes algorithm are recommended.

References

1. Caussinus, H., Ruiz-Gazen, A.: Exploratory projection pursuit. In: Govaert, G.
(ed.) Data Analysis, Digital Signal and Image Processing, pp. 67–92. Wiley, Chich-
ester (2009)

2. Clerc, M.: Particle swarm optimization. In: International Scientific and Technical
Encyclopaedia. Wiley, Hoboken (2006)

3. Clerc, M., Cooren, Y., Siarry, P.: Optimisation par essaim particulaire améliorée
par hybridation avec un algorithme à estimation de distribution. Journées doctor-
ales MACS 5(1), 21–27 (2008)

4. Cooren, Y., Clerc, M., Siarry, P.: Performance evaluation of TRIBES, an adaptive
particle swarm optimization algorithm. Swarm Intelligence 3, 149–178 (2009)

5. Cook, D., Swayne, D.F.: Interactive and Dynamic Graphics for Data Analysis.
Springer, New York (2007)

6. Cook, D., Caragea, D., Honavar, H.: Visualization in classification problems. In:
Antoch, J. (ed.) Computational Statistics (COMPSTAT), pp. 799–806. Springer,
Berlin (2004)

7. Friedman, J.H.: Exploratory Projection Pursuit. J. Amer. Statist. Assoc. 82(1),
249–266 (1987)

8. Friedman, J.H., Tukey, J.W.: A Projection Pursuit Algorithm for Exploratory Data
Analysis. IEEE Trans. Comput. C-23, 881–889 (1974)

9. Huber, P.J.: Projection pursuit. The Annals of Statistics 13(2), 435–475 (1985)
10. Jones, M.C., Sibson, R.: What is projection pursuit? (with discussion). J. Roy.

Statist. Soc. A. 150, 1–36 (1987)
11. Kennedy, J., Eberhart, R.C.: Swarm Intelligence. Yuhui Shi. Morgan Kaufmann

Publishers, San Francisco (1995)
12. Martinez, W., Martinez, A.: Computational statistics handbook with Matlab. CRC

Press, Taylor and Francis Group (2001)
13. Nason, G.P.: Three-Dimensional Projection Pursuit. J. Roy. Statist. Soc. C 44,

411–430 (1995)
14. Peña, D., Prieto, F.: Cluster Identification using projections. J. Amer. Statist.

Assoc. 96(456), 1433–1445 (2001)
15. Sun, J.: Some Practical aspects of exploratory Projection Pursuit. SIAM J. Sci.

Comput. 14(1), 68–80 (1993)
16. Wu, J., Zhou, J., Gao, Y.: Support Vector Regression Based on Particle Swarm

Optimization and Projection Pursuit Technology for Rainfall Forecasting. In: Int.
Conf. on Computational Intelligence and Security, vol. 1, pp. 227–233 (2009)

Ant Colony Optimisation for Ligand Docking

Oliver Korb and Jason Cole

Cambridge Crystallographic Data Centre, Cambridge, UK
{korb,cole}@ccdc.cam.ac.uk

Abstract. In this work we propose a hybrid ant colony optimisation
algorithm as an alternative search engine in the GOLD protein-ligand
docking framework [4]. The approach treats the placement of a ligand
molecule in the protein’s binding site as a discrete assignment problem
and a geometric point fitting procedure generates protein-ligand com-
plex conformations from this representation. As in PLANTS [5,6], we
combine this approach with a local search in the continuous search space
of the objective function. Continuous solutions are finally reassigned to
approximate solutions of the discrete assignment problem resulting in
a high-performing optimisation approach. We discuss certain aspects of
the hybridisation strategy including the integration of heuristic informa-
tion into the search process and compare the performance to the genetic
algorithm currently used in GOLD.

Keywords: ant colony optimisation, hybridisation, protein-ligand dock-
ing, heuristic information.

1 Introduction

Predicting protein-ligand complexes using computational methods is nowadays
an integral part of structure-based drug design projects in pharmaceutical com-
panies. Docking software such as GOLD, Glide or AutoDock are well-established
approaches for predicting the conformation of small molecules in the binding site
of a protein structure and for giving a crude estimate of the binding affinity [7].
Within the drug discovery process, these techniques are usually applied in either
the screening stage, i.e. the identification of potential drug candidates, or the lead
optimisation stage, where a specific molecular scaffold is structurally optimised.
Almost all docking approaches treat the generation of protein-ligand complex
conformations as an optimisation problem, where the variables to be optimised
are given by the ligand’s translational, rotational and torsional degrees of free-
dom and sometimes also by degrees of freedom in the protein. A so-called scoring
function is used as the objective function in the optimisation problem and guides
the sampling process for the generation of feasible complex conformations. The
generated complex conformation can be compared to an experimentally deter-
mined structure in order to assess the accuracy of the prediction, if available.
A common measure is the root mean square deviation (rmsd) of the ligand co-
ordinates between the predicted and the experimentally determined structure.

M. Dorigo et al. (Eds.): ANTS 2010, LNCS 6234, pp. 72–83, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Ant Colony Optimisation for Ligand Docking 73

Fig. 1. Illustration of the fitting point based solution construction. A ligand confor-
mation is constructed from the internal torsion angles (small arrows) and placed into
the binding site using the assignment highlighted by solid (hydrophobic) and dashed
(hydrogen bond) arrows. Circles mark unassigned atoms. The approach proposed in
this work may additionally apply a continuous local optimisation step and remap the
solution to the discrete assignment space.

Usually, an rmsd lower than 2 Å is considered to be a successful prediction. In
a virtual screening experiment, hundreds up to millions of small molecules are
docked and the optimised scoring function value is used to create a ranking of
these compounds. In this context, the score is interpreted as the protein-ligand
binding affinity and the top percentage of the ranked compounds is then tested
experimentally for biological activity. Because large amounts of small molecules
may need to be docked in a virtual screening experiment, the search time spent
per ligand is critical. Besides the scoring function used, search time and therefore
the optimisation performance have a direct impact on the final outcome of a vir-
tual screening experiment. Thus, efficient and reliable optimisation approaches
are needed.

1.1 Motivation

GOLD (Genetic Optimisation for Ligand Docking) is one of the most successful
and widely used docking programs. An operator-based genetic algorithm (GA)
is used for sampling favourable protein-ligand complex conformations guided
by one of several scoring functions available. GOLD uses an island model and
applies a niching technique to maintain a degree of diversity within the popu-
lations. The number of GA operations, as well as the mutation, crossover and
migration probabilities are determined automatically by a heuristic that is based
on the ligand structure to be docked and the polarity of the protein binding site.
GOLD uses a unique fitting point based model to attempt to create solutions
that contain chemically plausible protein-ligand interactions from the outset and
during the docking process (see Figure 1).

Assignment of Fitting Points and Conformation Generation. Hydrogen bond-
ing sites are used to assign fitting points from the ligand to the protein. For

74 O. Korb and J. Cole

each donor point in the ligand, an acceptor point is assigned at random. The
acceptor point is either a suitable lone pair site on the protein or a ’dummy’
site. Dummy sites indicate that a given donor should not be used in initially
calculating the rotation and translation matrix for placing the ligand into the
binding site. A similar approach to assignment is also used for acceptor points
in the ligand to donor points in the protein, and for hydrophobic points in the
ligand to hydrophobic points in the protein. Part of the GOLD chromosome en-
codes discrete torsion angles for all rotatable bonds in the ligand and the protein
structure. Prior to placing the ligand into the binding site, the conformations of
both the protein and the ligand are constructed from those values.

Ligand Placement and Scoring. Using the assigned pairs of points, ‘Procrustes
rotation’ [1] is used to generate a transformation that maps the conformation
into the binding site such that the fitting points overlap to the best degree.
Following this initial step, the transformation is recalculated only using point
pairs that lie within 2 Å of each other after the first rotation. This secondary step
makes the algorithm focus on optimising the better interactions in the binding
site. Finally, the generated protein-ligand complex is scored using one of several
scoring functions.

After the GA has terminated, the best solution found is locally optimised
using the Nelder Mead Simplex algorithm [8,10]. As stated above, GOLD can
use different scoring functions for the optimisation process. The approach was
initially designed for use with GoldScore, a force-field based scoring function.
The fitting points were tailored to match favourable hydrogen bond geometries
of this scoring function and, consequently, it is possible that the approach does
not perform as well with other scoring functions. While a continuous local min-
imisation step is applied to the final GA solution, we were interested in designing
a new algorithm applying a local minimisation step throughout the whole search
process to overcome ligand placement restrictions imposed by the set of discrete
fitting points. Our decision to use ant colony optimisation (ACO) [2] is based
on the following reasoning. Firstly, as demonstrated for the ACO-based docking
approach PLANTS [5,6], the combination of a discrete ACO algorithm with a
continuous local search operator can be highly beneficial. Secondly, we were also
interested in the integration of heuristic information into the search process. In
this respect, ACO algorithms offer a unique way of directly biasing the solution
construction step towards solutions exhibiting certain characteristics.

2 Materials and Methods

2.1 Problem Representation

For the proposed approach, we use two different problem representations in tan-
dem. The discrete representation used for the ACO algorithm determines the lig-
and translation and orientation by defining an assignment of ligand fitting points
to protein fitting points as described before, while the internal ligand and protein
conformation are encoded by selecting the respective torsion angles. The contin-
uous representation uses the 6 rigid-body degrees of freedom for the definition of

Ant Colony Optimisation for Ligand Docking 75

Fig. 2. Problem representations. The upper part shows the discrete representation as
an assignment problem, while the lower part illustrates the continuous representation
used in the local optimisation algorithm. In both cases, the ligand’s orientation is
determined by the degrees of freedom highlighted by a grey background.

the ligand translation and orientation. This representation is suitable to be used
by a continuous local minimisation procedure.

Discrete. An illustration of the discrete problem representation can be found in
the upper part of Figure 2. The problem dimension is given by n = nLD +nLA +
nLF + nLR + nPR, where nLD is the number of ligand donors, nLA the number
of ligand acceptors, nLF the number of ligand hydrophobic fittings points, nLR

the number of ligand rotatable bonds and nPR the number of protein rotatable
bonds. The ligand’s orientation is defined by the assignment of ligand donors,
acceptors, and hydrophobic atoms to the protein fitting points. Each of the
assignment vectors ai has ni entries, where i ∈ {1, · · · , n}, and a specific entry
aij ∈ {0, 1} is one if variable i is assigned to entry j or zero otherwise. For a ligand
donor vector LDi, the number of vector entries corresponds to ni = nPA + 1,
where nPA is the number of protein acceptors. The vector is extended by one
additional entry to allow the donor to be left unassigned (marked as ‘DU’ in
Figure 2). Similarly, for a ligand acceptor vector LAi and a ligand fitting point
vector LF i the number of vector entries correspond to ni = nPD + 1 and ni =
nPF +1, respectively, where nPD and nPF are the number of protein donors and
protein hydrophobic fitting points, respectively. For a ligand or protein torsion
angle vector, i.e. LRi and PRi, the number of vector entries corresponds to
ni = 256, following the 8 bit encoding used in the chromosome of the GA.
In a valid assignment for each column vector ai, exactly one entry j has to
be one, i.e. ∀n

i=1
∑ni

j=1 aij = 1. In the ACO approach presented in this work,
each assignment entry aij has an associated pheromone intensity τij ∈ R, i.e.
a desirability of choosing this value in the solution construction process. For

76 O. Korb and J. Cole

entries of a ligand donor or acceptor vector, additionally an a priori desirability
ηij ∈ R may be assigned as will be explained later.

Continuous. The continuous representation is illustrated in the lower part of
Figure 2. In contrast to the discrete encoding, the ligand orientation is defined
by 6 floating point values, i.e. 3 for the ligand’s translation and 3 for the rotation.
Torsion angles in the protein and the ligand are also represented as single floating
point values. Hence, in the continuous case the problem dimension is n = 6 +
nLR + nPR.

The scoring functions in GOLD return positive values for favourable solu-
tions and, hence, the presented approach models the problem as a maximisation
problem. Throughout the rest of this paper, we will denote the assignment of a
solution s by sa , the protein-ligand complex conformation by sc and the objec-
tive function value by sf .

2.2 Algorithm

In general, the ACO algorithm (see Algorithm 1) follows the latest PLANTS
version [6], but using the problem representation of GOLD described above.

Initialisation and Number of Iterations. Before each docking run, the fitness
function, the heuristic information and pheromone distribution are initialised.
For each ligand the algorithm is executed for a certain number of iterations,

iterations = autoscale · (100 + 25 · lrb + 5 · lha), (1)

algorithm 1. GOLDACO

InitialiseParametersAndPheromones()
for i = 1 to iterations do

for j = 1 to m do
saj ← CreatePheromoneBasedAssignment()
s
a, c
j ← PerformProcrustesRotation(saj)

s
f
j ← EvaluateObjectiveFunction(scj)

end for
sib ← GetIterationBestSolution()
if useLocalSearch then

s
c,f
ib ← LocalSearch(scib)

if remapContinuousSolution then
saib ← RemapSolution(scib)

end if
end if

UpdatePheromones(saib, s
f
ib)

if diversificationCriteriaMet then
ApplySearchDiversification()

end if
end for
return best solution found

Ant Colony Optimisation for Ligand Docking 77

where autoscale is a scaling factor and lrb and lha correspond to the number
of ligand rotatable bonds and heavy atoms, respectively. Consequently, more
search time is spent on large and flexible ligands than on small and rigid ones.

Solution Construction. For each of the m artificial ants in the colony, an assign-
ment sa is constructed taking heuristic information and the already deposited
pheromone into account. The probability for value j being assigned to variable
i is given by

pij =
τα
ij · ηβ

ij∑ni

l=1 τ
α
il · ηβ

il

, (2)

where τij is the pheromone intensity for this value and ηij is the heuristic infor-
mation. Solution construction is biased towards ligand assignments that exhibit
strong polar interactions (see Figure 4). The value of η for a specific donor /
acceptor pair is given by the GoldScore hydrogen bond energy. We set η = 1.0
for the choice of not assigning a ligand donor or acceptor. The influence of the
pheromone and heuristic information is scaled by parameters α and β, respec-
tively. As will be shown later, we examined the effect of varying β, but set α = 1
for all experiments. Each fitting point is used (at most) once in each solution,
thus avoiding duplicate assignments. When a complete assignment has been con-
structed, the geometric fitting procedure calculates a ligand placement sc and
the objective function value is evaluated. Note that the solution construction
process is repeated until a valid structure is found.

Local Search and Remapping. If local search is used, the Nelder Mead simplex
algorithm [8] locally optimises the ligand conformation of the iteration-best so-
lution, scib, resulting in a new conformation scib and a new objective function

value sfib. We follow the implementation described in [10]. The initial continuous
representation is created by converting the discrete protein and ligand angles
to a floating point representation. The values for translational and rotational
degrees of freedom are set relative to the transformation matrix that resulted
from the geometric fitting procedure. The offset values for the construction of
the initial simplex are set to 2 Å for translational degrees of freedom and 60◦

for rotational and torsional degrees of freedom. The first solution of the initial
simplex is given by the original one, all other ones by adding the specific offset
values to the original solution. For example, the second solution is obtained by
adding 2 Å to the TX component of the original solution. The simplex algorithm
is terminated if either a maximum of 1500 simplex iterations is reached or the
fractional range between the worst and best solution solution of the simplex is
lower than 0.001 [10]. If the option for remapping the continuous solution to
the discrete assignment space is activated, the following procedure is executed,
which updates the iteration-best assignment saib. Protein and ligand torsion an-
gles are discretised to their nearest 8 bit representation. For ligand acceptor and
donor atoms the nearest protein donor and protein acceptor fitting points are
located, respectively. If, for a specific atom, no fitting point is located within
1.5 Å, the atom remains unassigned. A similar procedure is used for the ligand’s

78 O. Korb and J. Cole

hydrophobic atoms. The nearest protein fitting point within 0.2 Å is assigned
and the ligand atom remains unassigned if no such point is found.

Pheromone Update. First, the lower and upper pheromone limits τmin and τmax
are recalculated. While a single value for τmax is used as proposed in the original
publication of MMAS [11], τmini

needs to be calculated per variable i as the
number of values ni for each pheromone vector differs. We set pbest, the probabil-
ity of reconstructing the best solution assuming that the colony has converged,
to a value of 0.5, refer to PLANTS [5] for details. In each iteration, already
deposited pheromone evaporates and the iteration-best solution sib updates the
pheromone distribution according to

τij(t+ 1) = (1 − ρ)τij(t) + Iij(sib, t)Δτ(sib, t), (3)

where

Δτ(s, t) =
{
sf + 20.0 if sf > −20.0

0 otherwise
(4)

In this equation, ρ is the evaporation rate and Iij is an indicator function re-
turning 1 if value j is used for variable i in an assignment sa . Note that the
iteration-best solution must have a fitness better than -20 units to be allowed
to update the pheromone distribution. Worse solutions make no contribution.
Additionally, if more than 5 iteration-best solutions are worse than the best
solution since the last search diversification, sdb, solution sdb also updates the
pheromone distribution in proportion to its fitness sfdb. Finally, all pheromone
values are adjusted according to the lower and upper pheromone limits.

Search Diversification. We use a similar search diversification schedule as de-
scribed for PLANTS. If the fitness values of 10 iteration-best solutions differ by
less than 0.02 · |sfgb|, where sgb is the global best solution found, a search diversi-
fication is carried out. This can either be a proportional pheromone smoothing
with a smoothing factor of 0.5 or a restart of the algorithm. In general, the di-
versification schedule consists of 3 pheromone smoothings followed by a restart.

Finally, when the algorithm terminates after a fixed number of iterations, the
best solution found is returned. An illustration of the steps carried out in one
iteration of the approach can be found in Figure 1.

2.3 Parameter Optimisation and Validation

The approach has been trained on 10 protein-ligand complexes from the CCDC /
Astex data set [9] (Protein Data Bank codes 1a4q, 1atl, 1c5c, 1mmq, 1mrg, 1ppc,
1tnl, 1xie, 2cpp and 4dfr) covering a wide range from small and rigid to large
and flexible ligands. We tested the values 10, 25, 50 and 100 for the number
of ants, 0.05, 0.1, 0.2 and 0.3 for evaporation rate ρ, 0.25, 0.5 and 1.0 for the
scaling parameter autoscale, 0, 1, 2 and 5 for parameter β and investigated
the effect of turning the simplex optimisation and the solution remapping on
and off. Solution remapping was only considered if the simplex optimisation
was turned on. In total, this resulted in 576 unique parameter settings, which

Ant Colony Optimisation for Ligand Docking 79

Fig. 4. Problematic example for the incorporation of heuristic information (Protein
Data Bank code 2cpp). For further explanations see the text.

were used to dock the training set. Each experiment was repeated 50 times and
average docking times and fitness values were recorded. For each complex, the
spherical binding site definition as given in the CCDC/Astex data set [9] was
used. The final parameter settings were tested on the independent Astex diverse
test set [3] containing 85 high-quality protein-ligand complexes. For each of these
complexes, the binding site was defined by all protein atoms within 6 Å from any
ligand heavy atom as given in the crystal structure conformation. For the GA,
standard settings were used, i.e. the parameter values for cross-over, mutation
and migration operators were set automatically in dependence of the protein-
ligand complex and the value of autoscale specified. Per experiment, the GA
was allowed to perform at most 10 runs and early termination was switched
on. Hence, if the rmsd of the 3 top-ranked solutions is within 1.5 Å to each
other, the search is terminated. We used scoring function CHEMPLP [6] and all
experiments were carried out on an Intel Xeon CPU E5420, 2.50 GHz.

3 Results and Discussion

Parameter Optimisation. The results obtained for the parameter optimisation
process are presented in Figure 3. In all plots, the x-axis reports the average
search time (in seconds), while the y-axis reports the average fitness or success
rate over 50 independent experiments.

We will first discuss the effect of parameter autoscale as well as the use of local
search and the solution remapping step (see Figure 3a). The dashed polygon sep-
arates parameter configurations not using local search (inside) from those using
the simplex optimisation step. Likewise, the dashed line, separates parameter

80 O. Korb and J. Cole

(a) (b)

 40

 45

 50

 55

 60

 65

 70

 75

 0 2 4 6 8 10 12 14 16

fit
ne

ss
 /

a.
u.

time / s

ants 10
ants 25

ants 50
ants 100

(c) (d)

 40

 45

 50

 55

 60

 65

 70

 75

 0 2 4 6 8 10 12 14 16

fit
ne

ss
 /

a.
u.

time / s

rho 0.05
rho 0.1

rho 0.2
rho 0.3

 40

 45

 50

 55

 60

 65

 70

 75

 0 2 4 6 8 10 12 14 16

fit
ne

ss
 /

a.
u.

time / s

beta 0
beta 1

beta 2
beta 5

(e) (f)

 70

 72

 74

 76

 78

 80

 82

 84

 0 5 10 15 20 25 30

fit
ne

ss
 /

a.
u.

time / s

GA
ACO ants = 25, rho = 0.05
ACO ants = 25, rho = 0.10

 60

 65

 70

 75

 80

 85

 90

 95

 100

 0 5 10 15 20 25 30

su
cc

es
s

ra
te

 /
%

time / s

GA
ACO ants = 25, rho = 0.05
ACO ants = 25, rho = 0.10

Fig. 3. Results obtained for the parameter optimisation (a-d) and the docking experi-
ments (e-f). In each plot the x-axis reports the average docking time per complex, while
the average fitness values reached is shown on the y-axis, except for (f) in which case
the average success rate is presented (all results averaged over 50 independent runs).
In (a) the dashed line separates configurations using the remapping technique (above)
from configurations not using it (below). All parameter configurations contained in the
dashed polygon use no simplex optimisation. In (e) and (f) additionally the standard
deviations are plotted. For further explanations see the text.

Ant Colony Optimisation for Ligand Docking 81

configurations using the solution remapping technique (above) from those that
don’t (below). This results in the three different algorithmic variants (A) local
search deactivated, (B) local search activated / remapping deactivated and (C)
local search activated / remapping activated. As expected, variant (A) using the
ACO approach performs worse than variants (B) and (C) using the additional
local search step. Interestingly, the worst parameter configuration for variant (B)
reaches approximately the same average solution quality as the best-performing
setting for (A) in less than a third of the search time. Algorithm variant (B)
essentially learns favourable starting positions for the local search as the assign-
ment of the iteration-best solution, saib, before the execution of the local search is
used to update the pheromone distribution. However the amount of pheromone
updated is proportional to the solution quality obtained after application of
the local search, sfib. Finally, activating the remapping of the locally optimised
solution to a discrete assignment and using this to update the pheromone dis-
tribution, i.e. variant (C), again improves the average solution quality compared
to variant (B). With respect to parameter autoscale scaling the number of itera-
tions, a clear separation of clusters for the three settings studied can be observed
for algorithm variants (B) and (C), while for (A) there is a strong dependency
on the number of ants used. As expected, a higher solution quality is obtained
for higher settings of autoscale, however at the cost of an increased search time.
According to Figure 3b, the sub-clusters for each setting of autoscale correspond
to the different settings for the number of ants in the cases of (B) and (C).
Again, search time and solution quality increase with the colony size. In the case
of variant (A), a lower setting of autoscale combined with a larger number of
ants may find higher quality solutions in a shorter time. The influence of evap-
oration factor ρ is shown in Figure 3c. Approach (A) generally favours higher
evaporation rates, i.e. values of ρ = 0.3 and ρ = 0.2 seem to perform best. In
contrast, when using local search like in the variants (B) and (C) exploration
seems to become more important and values of ρ = 0.05 and ρ = 0.1 are among
the best-performing settings. Finally, we also investigated the effect of different
settings for parameter β scaling the influence of the heuristic information. As can
be observed in Figure 3d, for approach (A) lower settings of β seem to be more
favoured, especially for very quick search settings. This behaviour can be ex-
plained by the composition of the training set. Protein-ligand complex 2cpp was
included for the purpose of limiting the influence of the heuristic information.
The crystal structure of this complex is visualised in Figure 4. In the solution
construction process, the ligand acceptor atom (marked with a dashed circle) can
in principle be assigned to the receptor’s hydroxyl donor of the tyrosine (residue
TYR96), the iron atom in the porphyrin system (right side) or it can be left
unassigned. The probabilities of each being selected in the first iteration of the
solution construction process are shown as a function of β. The heuristic infor-
mation for the three choices are η = 2 for selecting the hydroxyl donor, η = 10
for selecting the iron atom and η = 1 for not assigning the acceptor at all. Note
that in the crystal structure the ligand acceptor forms a hydrogen bond to the
hydroxyl of the tyrosine and not the iron atom which contradicts the heuristic

82 O. Korb and J. Cole

information. However, the objective function is able to predict this complex cor-
rectly, i.e. the global maximum is similar to the crystal structure. If β is zero, the
selection probabilities for all three choices are 1

3 , while the construction process
is highly biased towards the construction of solutions using the iron atom (the
selection probability increases from 1

3 to 0.77 and 0.95, for β = 0, 1 and 2, re-
spectively). Thus, for high values of β nearly all of the constructed solutions will
use the iron atom assignment and quick search settings will possibly not sample
the correct ligand pose. For longer search settings, higher values for β become
more beneficial again as the probability of generating an assignment which may
be suboptimal according to the heuristic information increases. In general, algo-
rithm variants (B) and (C) seem to favour settings of β = 2 independent of the
search time. The standard settings we derive from these observations are to use
algorithm variant (C), m = 25 ants, an evaporation rate of ρ = 0.05 or ρ = 0.1
and a setting of β = 2. These settings were finally tested in independent docking
experiments and compared to the GA available in GOLD.

Docking. Both the new ACO-based approach presented in this work and GOLD’s
GA have been used to dock the 85 protein-ligand complexes of the Astex diverse
set [3]. We ran both methods for 20 different settings of parameter autoscale
starting from autoscale = 0.1 using a step-size of Δ = 0.1. Figures 3e and 3f
plot the average fitness and success rate on the y-axis against the average search
time needed per ligand on the x-axis averaged over 50 independent runs. As
can be observed in Figure 3e, the new approach exhibits a superior optimisation
performance, reaching on average much higher fitness values at shorter search
times compared to the GA. Even for very long search times, the GA is not
capable of reaching the same average solution quality. As expected, a higher
evaporation rate of ρ = 0.1 is favourable for faster search settings, while the
differences in performance are negligible for longer search settings. The average
pose prediction success rates, i.e. reproducing the top-ranked solution within
an rmsd of 2 Å compared to the experimentally observed ligand structure, are
presented in Figure 3f. The ACO-based approach still outperforms the GA with
average success rates of up to 85%, but the differences are less pronounced. This
can be explained by the fact that although the GA may not necessarily find
optimal solutions with respect to the fitness value, it still produces geometrically
and chemically feasible ligand placements.

4 Conclusions and Future Work

In this work, we have presented an efficient hybrid ant colony optimisation ap-
proach to the protein-ligand docking problem. The new approach benefits from
a combination of the discrete fitting point based representation as used by the
GA in GOLD with a continuous local optimisation procedure. Additionally, we
demonstrated the successful integration of heuristic information into the solu-
tion construction process. Docking experiments confirmed the high performance
of the new approach, which was able to find, on average, higher fitness values
at much shorter search times compared to the GA as currently implemented in

Ant Colony Optimisation for Ligand Docking 83

GOLD. While we only biased the hydrogen bond assignment in the pheromone-
based solution construction process in this work, we will also try to incorporate
heuristic information for non-hydrogen bonding atoms in future research efforts.
We plan to use data from either precomputed scoring function grids or inter-
action databases like SuperStar [12] to bias the placement of ligand atoms to
appropriate regions of the receptor. Ultimately, we will also investigate possibil-
ities of integrating these algorithmic improvements into the GA.

Acknowledgments. The authors thank Drs Simon Bowden and Colin Groom
for a careful reading of the manuscript. O.K. was funded through a fellow-
ship within the Postdoc-Programme of the German Academic Exchange Service
(DAAD).

References

1. Digby, G.N., Kempton, R.A.: Multivariate Analysis of Ecological Communities,
pp. 112–115. Chapman and Hall, London (1987)

2. Dorigo, M., Stützle, T.: Ant Colony Optimization. MIT Press, Cambridge (2004)
3. Hartshorn, M.J., Verdonk, M.L., Chessari, G., Brewerton, S.C., Mooij, W.T.M.,

Mortenson, P.N., Murray, C.W.: Diverse, high-quality test set for the validation of
protein-ligand docking performance. J. Med. Chem. 50(4), 726–741 (2007)

4. Jones, G., Willett, P., Glen, R.C.: Molecular Recognition of Receptor Sites Using
a Genetic Algorithm with a Description of Desolvation. J. Mol. Biol. 245, 43–53
(1995)

5. Korb, O., Stützle, T., Exner, T.E.: An ant colony optimization approach to flexible
protein-ligand docking. Swarm Intelligence 1(2), 115–134 (2007)

6. Korb, O., Stützle, T., Exner, T.E.: Empirical Scoring Functions for Advanced
Protein-Ligand Docking with PLANTS. J. Chem. Inf. Model. 49, 84–96 (2009)

7. Moitessier, N., Englebienne, P., Lee, D., Lawandi, J., Corbeil, C.R.: Towards the
development of universal, fast and highly accurate docking/scoring methods: a long
way to go. British Journal of Pharmacology 153(S1), S7–S26 (2008)

8. Nelder, J.A., Mead, R.: A simplex method for function minimization. Computer
Journal 7, 308–313 (1965)

9. Nissink, J.W.M., Murray, C., Hartshorn, M., Verdonk, M.L., Cole, J.C., Taylor, R.:
A new test set for validating predictions of protein-ligand interaction. PROTEINS:
Structure, Function, and Genetics 49(4), 457–471 (2002)

10. Press, W.H., Flannery, B.P., Teukolsky, S.A., Vetterling, W.T.: Numerical Recipes
in C: The Art of Scientific Computing. Cambridge University Press, Cambridge
(1992)

11. Stützle, T., Hoos, H.H.: MAX–MIN Ant System. Future Generation Computer
Systems 16(8), 889–914 (2000)

12. Verdonk, M.L., Cole, J.C., Watson, P., Gillet, V., Willett, P.: Superstar: improved
knowledge-based interaction fields for protein binding sites. J. Mol. Biol. 307(3),
841–859 (2001)

Antbots: A Feasible Visual Emulation of
Pheromone Trails for Swarm Robots

Ralf Mayet, Jonathan Roberz, Thomas Schmickl, and Karl Crailsheim

Karl-Franzens University Graz, Artificial Life Lab of the Department of Zoology,
Graz, Austria

ralf.mayet@uni-graz.at, jonathan.roberz@rwth-aachen.de,
thomas.schmickl@uni-graz.at

Abstract. In this paper we present an experimental setup to model
the pheromone trail based foraging behaviour of ants using a special
phosphorescent glowing paint. We have built two custom addons for the
e-puck robot that allow for trail laying and following on the glowing
floor, as well as a way for the robots to mimic the ants capability of
using polarization patterns as a means of navigation. Using simulations
we show that our approach allows for efficient pathfinding between nest
and potential food sources. Experimental results show that our trail and
sun compass add-on boards are accurate enough to allow a single robot
to lay and follow a trail repeatedly.

Keywords: swarm robotics, ant foraging, pheromone trails, biomimicry.

1 Introduction

Ants have the ability to find the shortest possible path between food sources and
their nest collectively by laying pheromone trails on the ground [1,14]. These
pheromones have shown to be involved specifically in the recruitment and nav-
igation of ants between food sources and the nest. The foraging behaviour has
long been of particular interest not only in the field of biology, but also in swarm
robotics [4]. These kinds of collective abilities can be applied to real-life problems
such as traffic, route-planing or the travelling salesman problem as well [5].

The collective behaviour of social insects and stigmergy-based communication
remain to have a strong influence on the field of collective robotics. There have
been several approaches to model the pheromone-based trail laying and trail
following behaviour of ants in experimental settings using robots.

By means of chemical sensors and alcohol-depositing robots [10]. This is a very
realistic imitation of the pheromone-based trails of ants. However, the chemical
sensors used in this setup and the combination of robotics and substances such
as alcohol have been shown to be very unreliable and not very practical.

Drawing lines onto the floor using pen and paper [12]. In this scenario each
robot is equipped with a pen, with which it is able to draw solid thin lines onto
the ground. Although a decay of these trails is archieved by using a special kind
of disappearing ink, the trails layed by these robots remain thin in comparison

M. Dorigo et al. (Eds.): ANTS 2010, LNCS 6234, pp. 84–94, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

A Feasible Visual Emulation of Pheromone Trails for Swarm Robots 85

to the robots. This does not provide a close analogy to the biologically inspired
behaviour of ants.

Laying trails of heat [9]. This method promises an extremely flexible way to
model the foraging behaviour of ants by laying trails of residual heat onto normal
surfaces such as carpets or tiles. One problem is that the electrical generation
of heat is not possible even on bigger mobile robots because of constraints in
battery power. The researchers stored heat in the form of paraffin wax to lay
trails instead. This presents an additional difficulty for experimental use and
dynamically adjusting the strength of the trail is not possible.

Using robot-tracking and a projector setup, in which each robot is able to
lay trails by being tracked using a camera suspended above the arena [7]. A
computer superimposes ‘virtual pheromones’ by projecting them onto the arena
floor. This system does not present a fully autonomous way for the robots to lay
and follow trails, and a a central unit, an external computer, is needed. However,
this system provides a very flexible way to modify parameters of the pheromones,
such as decay and diffusion.

Emitting ultraviolet light onto a phosphorescent paint, and thus laying lumi-
nous green trails on the arena floor. This method of modelling ant trails has
been published for use in an artistical context [2]. In this setup, the arena floor
is coated with a special phosphorescent glow-paint that glows in the dark for
several minutes after being stimulated by an external UV light source. By at-
taching UV-LEDs to the mobile robots, they can leave glowing trails on the
ground. The idea is that because of the constant decay in brightness, the green
glow that eminates from the floor can be seen as an analogy to the evaporating
pheromones ants utilize in their trail following.

In this paper we extend and improve on the idea of using glow-paint to mimic
ant trails. It presents a completely autonomous way for the robots to lay trails.
Using specially developed sensors and actuators allows us to combine the glowing
floor and robots in a unique and reliable way.

2 Materials and Methods

2.1 Base Robot: E-Puck

The e-puck robot [3] (see Fig. 2), was developed at the EPFL in Switzerland.
It utilizes a Microchip dsPIC microcontroller at its core, and has two stepper
motors for actuation. Several red and green LEDs placed in and around the
casing of the robot can be used to quickly display what state the robot is in
at a particular time. The e-puck features a number of different sensors, most
important for our experiments are eight proximity sensors and a color CMOS
camera. The proximity sensors are infrared receivers and transmitters placed
around the body. They allow the measurement of distance between the robot
and obstacles. Additionally they can differentiate between obstacles like walls
and other robots by means of active and passive sensing. The camera on the
e-puck has a theoretical resolution of 640×480 pixels, but only a part of this

86 R. Mayet et al.

frame can be grabbed at runtime with a high enough framerate (40×40 pixel
color image at approx. 4 frames per second).

2.2 Glow-Paint Floor

The synthetic raisin paint used to coat the arena floor contains small grains
of phosphorescent material that react instantly to ultraviolet light and glow
in the dark with a characteristic decay time T , as the intensity decreases like
I(t) = I0 exp(−t/T). In our experiments we have used the onboard camera tilted
downwards for trail detection and trail following. Figure 1 presents intensity
measurements over time for the onboard e-puck camera from the point of view
of the robot. Figure 2 shows the robots’ field of vision on the floor. The line-
following algorithm is based on a line-following Braitenberg vehicle.

0 1 2 3 4 5 6 7

120

110

100

90

80

70

time in minutes (t)

ca
m

er
a i

nt
en

sit
y

va
lu

es

Fig. 1. Intensity measurements from the onboard e-puck camera over the course of
approx. 7 minutes for the green color channel, directly polled from the robot, while
standing still and the camera is pointed at one spot on the coated floor. Ambient light
was at complete darkness. Before the dashed line (t = 0 to t ≈ .5) the floor is being
exposed to direct UV-LED light, explaining the irregular peaks, and is at its maximum
glowing capacity shortly thereafter at t ≈ .6. This curve combines the characteristic
decay of the phosphorescent paint and the camera’s response curve.

2.3 Nest, Food and an Artificial Sun as a Navigational Aid

Analogous to nest and food sources in ant foraging, we have chosen LED light
sources with different colors for our experiments. The robots can distinguish
between the objects by comparing the different color channels of the camera.
The nest has been chosen to be red, and food sources are blue. Each one is made
of transparent plastic covers with LEDs underneath.

Ants derive directional information from polarization patterns to navigate
back to their nest from food sources [8]. This behaviour has been described for
the desert ant Cataglyphis fortis in great detail [6]. To emulate this ability we
have chosen a red light source positioned in a corner above the arena. Figure 3
shows a diagram of our experimental setup.

A Feasible Visual Emulation of Pheromone Trails for Swarm Robots 87

left

right

middle

distance

Fig. 2. Left: Diagram showing how far and how wide the field of view of the camera is
on the floor. Dashed lines represent the sectors used for the line following algorithm: The
robot calculates the brightness of the green color channel for each of the three sectors.
When the leftmost sector is the brightest it turns right and vice versa. If the middle
sector is the brightest it moves straight ahead. Distance from robot is approximately
4.5 centimeters. Right: e-puck robot equipped with our trail-laying (front) and sun
compass extension board (top).

Food (blue)

Nest (red)

Sun (red)

Fig. 3. This diagram shows the experimental setup used in our experiments. Depicted
are the artificial sun suspended above the arena, the nest and a foodsource.

Each robot can detect from which direction this emulated sunlight is coming
from using a specially designed ‘sun compass’ add-on board (see Fig. 2 right).
In our experiments the nest has been placed in the same corner as this artificial
sun, so the robots simply have to drive towards it to find their nest.

2.4 Add-on Boards: Trail-Laying and Sun Compass Extension

To utilize the experimental setup described above, the e-puck base robot needed
several extensions (see Fig. 2). A special circuit board was added to provide
the robot with five UV-LEDs pointed directly to the floor. The add-on uses a
dedicated ATMega8 MCU [13] for independent control over brightness for each
LED using pulse-width modulation. This board is attached on the back of the

88 R. Mayet et al.

robot for a minimum distance of LEDs to the floor and thus the maximum
amount of energy reaching the floor.

An additional board featuring six photodiodes that measure light intensity
(red wavelengths in particular) is attached to the analog-digital comparer of the
MCU. It is located on top of the robot and the sensors point upwards. Three
small rectangular sheets of copper have been added to allow the ‘artificial sun’
to cast shadows on the sensors that don’t point towards the light (see Fig. 2
right). By calculating which sensor has the highest value the robot is then able
to face the artificial sun and readjust its direction during its trip to the nest, if
necessary.

2.5 Simulation Using Netlogo

In order to explore parameters and the efficiency of our experiment, we have
built a simulator (see Fig. 4) using the multi-agent programmable modeling
environment NetLogo [11], developed at the Northwestern University in Illinois.
In NetLogo agents are the equivalent of robots, and the arena is made up of
tiles, so called patches.

Fig. 4. Screenshot of a simulation run. The nest (orange) is located on the bottom
left, a foodsource (blue) in the top right. Agents are either red (searching for food)
or green (searching for the nest, marked with arrows here) depending on their state.
Green trails show the pheromone paths between food and nest.

A Feasible Visual Emulation of Pheromone Trails for Swarm Robots 89

To resemble our experimental setup as closely as possible, we have programmed
the eight proximity sensors of the e-puck robot into the simulation. These sensors
have been implemented actively and passively in order to be able to differentiate
between walls and other agents and to allow for a sufficient approximation of the
obstacle avoidance of real robots. Our sun compass sensor was also implemented
in the simulator by calculating where the nest is in relation to the agent. The re-
sulting angle is categorized into six different general directions to approximate the
sun compass. The agents leave a predefined amount of virtual pheromones on the
patch they are currently on. The simulator then computes different shades of green
in order to visualize the amount of pheromone on each patch for every time step.
Nest (bottom-left) and foodsource (top-right) are orange and blue circles respec-
tively. The camera, used for trail-following, is emulated by reading out pheromone
levels (shades of green) in front of the individual agent at three different angles.

In contrast to most other ant trail multi-agent simulations, ours models the
actual sensoral attributes of the e-puck robots, and actual properties of the
glowing floor. The obstacle avoidance algorithm employed in the simulation is
based on and closely resembles the actual e-puck behaviour. This is crucial in
order to be able to tell from the simulational results how efficiently multiple
robots should be able to complete the path finding task.

2.6 Control Program

The algorithm used in both the simulations and experiments has two basic states.
The robot is either searching for food, or searching for the nest. The two states
have several subtasks that are ordered by priority and executed in that order.
For example, only if a robot can distinguish a light trail in front of it, will it try
following it.

The two states and their tasks are as follows:

1. Search for food sources (not laying trails, UV-LEDs turned off)
(a) If the camera registers food (blue), the individual turns 180◦ and switches

to state 2.
(b) Basic obstacle avoidance, only registers walls or other non-robot objects.
(c) If the camera registers a green trail (distinguished by contrast in relation

to the different camera sectors), follow it. If the sun compass registers
that the robot is heading directly to the nest turn 180◦ .

(d) Correlated random walk.
2. Search for the nest (laying trails, UV-LEDs turned on)

(a) If the camera registers the nest (red), the individual turns 180◦ and
switches back to state 1.

(b) Basic obstacle avoidance, registers non-robots as well as robots and
avoids them.

(c) If the camera registers a green trail (contrast) follow it. If the sun com-
pass registers that the nest is directly behind the individual, turn 180◦ .

(d) Follow the sun compass and constantly adjust the trajectory so that the
frontmost sensor has the highest value.

90 R. Mayet et al.

3 Results

In order to investigate the attributes and capabilities of our approach, we have
run several simulations. They show how a robot swarm of up to twelve robots
can achieve better efficiency in finding food and carrying it back to the nest
using trails equivalent to the ones on the glowing floor. To measure the accuracy
in line-following and of the sun compass on an actual robot, we have carried out
test trials using a single robot.

3.1 Foraging Efficiency in Simulation

To measure the efficiency of the setup we count how many times a virtual agent
has travelled from food to nest, i.e. how many times it has ‘delivered’ a unit
of food to the nest. Each time an agent completes this task, a global counter
variable is increased by one. We have conducted each run with and without
pheromone trails and three times in repetition each to eliminate errors. The
test runs were run for 2000 time steps. The arena size was fixed at 200×180
patches, while one agent is 7 patches in diameter. The decay properties of the
arena floor were set to be consistent with a real-world scenario (see Figure 1).
In Figure 4 the layout of the simulated arena can be seen. Figure 5 shows the
results of the simulation for 4, 6, 8 and 12 agents in a fixed-size arena. Solid lines
indicate efficiency of pheromone-aided robot swarms and dashed lines are from
simulation runs without pheromones.

In all of the simulation runs the efficiency is greatly enhanced when utilizing
pheromone trails. When four agents where in the arena, pheromone aided robots
delivered 8 units, versus only 3 in the test run without pheromones. Six agents
archieved 10 with, and 2 without pheromones, eight agents brought 22 vs. 6 and
twelve agents 23 vs. 8 units to the nest. This shows that even with a very dense
population robots, and the many resulting collisions, a great improvement of
efficiency can be archieved using the phosphorescent trails.

3.2 Experiments with the e-Puck Robot Add-Ons

To test our sensor boards, we have conducted the following experiments each
with three repetitions and a varying distance between foodsource and nest: The
e-puck robot is placed in the middle of the arena and pointed towards the food
source. When switched on, it drives straight ahead until its camera recognizes
the blue foodsource. It then turns 180◦ and uses its sun compass sensor to nav-
igate back to the nest. When it has reached the nest it turns 180◦ and tries
to follow its own trail back to the foodsource. This process is repeated for the
duration of the experiment. By measuring how often the robot looses the trail
we can determine the reliabilty and the limits (in length of trail) of our line-
following approach. Note that three components are being evaluated in this pro-
cess: The camera (for trail-detection), the UV-LED extension (for trail-laying)
and the glow-paint floor (how long the trail lasts). In each of our experiments the
sun compass always found a nearly straight path back to the nest (see Fig. 6).

A Feasible Visual Emulation of Pheromone Trails for Swarm Robots 91

Fig. 5. Efficiency measurements for 4 different simulation runs. Top-left shows 4 robots,
top-right 6, bottom-left 8, bottom-right 12. Solid lines are with pheromones turned on,
dashed lines represent runs without pheromones. The plots show the sum of units of
food delivered to the nest. The efficiency of the agents that could utilize the pheromone
trails is greatly increased.

Table 1. Results of experiments carried out with a single robot with varied distances
between nest and food

arena size distance food to nest food delivered track lost time on trail
1m×1m 1.3m 21 units 2 times 82%
1.5m×1.5m 1.6m 10 units 6 times 67%
2m×2m 2.3m 3 units 4 times 49%

We varied the distance of food to the nest for each experiment and repeated them
three times each for 15 minutes. Table 1 shows the test results numerically.

With a distance of 1.3 meters from food to nest and a 1m×1m arena, the robot
lost track of its trail two times on average. It returned from the foodsource to
the nest 21 times and spent 82 percent of the time on the track otherwiese doing
a correlated random walk in search of food or using its sun compass to find
the nest. Overall line-following reliability was sufficient to keep the glowing trail
stable at all times.

Next, the distance was increased to 1.6 meters. The robot lost its trail 6 times
on average and brought ten units of food to the nest. It was on the track 67
percent of the time. While the robot lost track of his trail more often, he still
succeded in keeping one central trail glowing throughout the experiment.

When the distance was 2.3 meters, most of the time the robot lost its trail
halfway to the foodsource, which resulted in inefficient search of the arena using

92 R. Mayet et al.

Fig. 6. Left: Photograph showing the trail laid by the robot in a 1m×1m arena and
a distance of 1.3m between food (top-right) and nest (bottom-left). The robot is on
its way back from the food source pointing towards the nest and is following its own
line. Right: Same setup in a 1.5m×1.5m arena. Distance between food and nest is 1.6
meters. The robot has lost its track about halfway to the nest and is laying a new one
beside the ‘old’ one.

the correlated random walk. In this case the decay of the phosphorescent floor
is too high. Overall it managed to bring back 3 units of food and laid three
separate trails on the ground.

4 Discussion and Outlook

In this paper we have introduced an experimental setup to model the foraging
behaviour of ants using robots. We have developed solutions to combine a phos-
phorescent arena floor and robots to lay and follow glowing trails. Additionally
we have introduced a novel sensor to mimic the ants capability of using polar-
ization patterns to derive directional information and to navigate back to their
nest. Using simulations we have shown that the use of these phosphorescent
trails leads to an efficiency increase in collecting units of food and to aid path
finding between a food source and the nest. Experimental results show that our
newly developed sensors are realiable enough for the robot to navigate to the
two spots reliably.

In the future we plan on conducting experiments with more than one robot,
in order to transfer the presented simulation into real life. Figure 7 shows a
contrived photograph of how this could look like. Collision avoidance between
robots is not reliable enough at the moment and needs further investigation.

Our sun compass has proven itself to be very reliable in finding the nest. In
combination with the artificial sun, it presents a very cost-effective solution to
get directional information inside of a robot arena.

We will explore the capabilities of our sun compass in more detail and in-
troduce more complex behaviours that utilize it, such as remembering the path
travelled to the foodsource by the heading in relationship to the sun, also imitat-
ing the ants capability to remember their travelled path [6]. In such a scenario
the sun could be moved before and during the experiment to show how, just like

A Feasible Visual Emulation of Pheromone Trails for Swarm Robots 93

Fig. 7. Contrived photograph of how the glowing floor and our sensors should be used in
the future. Two robots leave the nest to search for food, the remaining robots navigate
to and from the nest around an obstacle.

in real life, individuals alter their paths accordingly, and steadily adapting to
the new position.

Additionally, we will introduce obstacles and multiple food sources in order
to explore how the robots optimize the paths in between. The robots could also
adopt a tandem behaviour so that they lead each other on pheromone paths to
optimize speed and to minimize collisions.

Acknowledgements. This work is supported by the following grants: EU-IST-
FET ‘SYMBRION’, no. 216342; EU-ICT ‘REPLICATOR’, no. 216240; EU-IST
FET ‘I-SWARM’, no. 507006; FWF (Austrian Science Fund), no. P19478-B16.

References

1. Beckers, R., Deneubourg, J., Goss, S.: Trail laying behaviour during food recruit-
ment in the ant lasius niger (l.). Insectes Sociaux 39(1), 59–72 (1992)

2. Blow, M.: ‘stigmergy’: Biologically-inspired robotic art. In: Proceedings of the Sym-
posium on Robotics, Mechatronics and Animatronics in the Creative and Enter-
tainment Industries and Arts, pp. 1–8 (2005)

3. Bonani, M., Raemy, X., Pugh, J., Mondana, F., Cianci, C., Klaptocz, A., Magnenat,
S., Zufferey, J.C., Floreano, D., Martinoli, A.: The e-puck, a robot designed for
education in engineering. In: Proc. of the 9th Conference on Autnomous Robot
Systems and Competitions, vol. 1, pp. 59–65 (2009)

4. Camazine, S., Deneubourg, J.L., Franks, N.R., Sneyd, J., Theraulaz, G., Bonabeau,
E.: Self-organization in biological systems. Princeton University Press, Princeton
(2001)

94 R. Mayet et al.

5. Dorigo, M., Bonabeau, E., Theraulaz, G.: Ant algorithms and stigmergy. Future
Generation Computer Systems 16(9), 851–871 (2000)

6. Fent, K.: Polarized skylight orientation in the desert ant cataglyphis. Journal of
Comparative Physiology A: Neuroethology 158(2), 145–150 (1986)

7. Garnier, S., Tache, F., Combe, M., Grimal, A., Theraulaz, G.: Alice in pheromone
land: An experimental setup for the study of ant-like robots. In: Swarm Intelligence
Symposium, SIS 2007, pp. 37–44. IEEE, Los Alamitos (2007)

8. Müller, M., Wehner, R.: Path integration in desert ants, cataglyphis fortis. Pro-
ceedings of the National Academy of Sciences 85, 5287–5290 (1988)

9. Russell, R.: Heat trails as short-lived navigational markers for mobile robots. In:
Proceedings of 1997 IEEE International Conference on Robotics and Automation,
vol. 4, pp. 3534–3539 (1997)

10. Russell, R.A.: Ant trails – an example for robots to follow? In: Proceedings of 1999
IEEE International Conference on Robotics and Automation, vol. 4, pp. 2698–2703
(1999)

11. Sklar, E.: Netlogo, a multi-agent simulation environment. Artificial Life 13(3), 303–
311 (2007)

12. Svennebring, J., Koenig, S.: Building terrain-covering ant robots: A feasibility
study. Autonomous Robots 16(3), 313–332 (2004)

13. Turley, J.: Atmel avr brings risc to 8-bit world. Microprocessor Report 11(9) (1997)
14. Wilson, E.O.: Chemical communication in the social insects. Science 149(3688),

1064 (1965)

Automatic Configuration of Multi-Objective
ACO Algorithms

Manuel López-Ibáñez and Thomas Stützle

IRIDIA, CoDE, Université Libre de Bruxelles, Brussels, Belgium
{manuel.lopez-ibanez,stuetzle}@ulb.ac.be

Abstract. In the last few years a significant number of ant colony op-
timization (ACO) algorithms have been proposed for tackling multi-
objective optimization problems. In this paper, we propose a software
framework that allows to instantiate the most prominent multi-objective
ACO (MOACO) algorithms. More importantly, the flexibility of this
MOACO framework allows the application of automatic algorithm con-
figuration techniques. The experimental results presented in this pa-
per show that such an automatic configuration of MOACO algorithms
is highly desirable, given that our automatically configured algorithms
clearly outperform the best performing MOACO algorithms that have
been proposed in the literature. As far as we are aware, this paper is
also the first to apply automatic algorithm configuration techniques to
multi-objective stochastic local search algorithms.

1 Introduction

The growing interest on solving optimization problems with respect to multiple,
conflicting objectives has led researchers to propose extensions of well-known
metaheuristics to tackle them. So far, evolutionary algorithms have received
most of the research effort. However, there are also several proposals for ap-
plying the ant colony optimization (ACO) metaheuristic [7] to multi-objective
combinatorial optimization problems (MCOPs). The majority of these multi-
objective ACO (MOACO) algorithms deal with Pareto optimality, that is, they
do not make a priori assumptions about the decision maker’s preferences.

There are a number of design questions when extending ACO algorithms to
MCOPs. First, the meaning of the pheromone information associated to a solu-
tion component is unclear in the multi-objective context, because the objective
function is multi-dimensional and not scalar, and the output of the algorithm
is a nondominated set of solutions and not a single solution. Some MOACO
algorithms use several pheromone matrices, each of them associated to a dif-
ferent objective [5,1,10]. If multiple pheromone or heuristic matrices are used,
they are aggregated during the solution construction by means of weights [5,10].
However, there are strong differences among MOACO algorithms in the way
this aggregation takes place and how many different weights are used. Finally,
a further design question is which ants are selected for depositing pheromone.
Existing MOACO algorithms select some (or all) nondominated solutions [10],

M. Dorigo et al. (Eds.): ANTS 2010, LNCS 6234, pp. 95–106, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

96 M. López-Ibáñez and T. Stützle

or they select the best solutions with respect to the objective associated to the
pheromone matrix that is updated [5,1].

In previous work, we examined alternative design choices of a MOACO algo-
rithm for the bi-objective TSP (bTSP) [16]. Later, we extended this formulation
in order to replicate the design of several existing MOACO algorithms from the
literature [15]. Our examination of algorithmic components concludes that there
are many similarities among the algorithms proposed in the literature. In addi-
tion, our empirical results show that, for the bTSP, some algorithmic components
achieve clearly superior results in comparison to others.

In this paper, we combine the results of our previous work into an algorithmic
framework that may be configured appropriately to reproduce existing MOACO
algorithms, and more importantly, it may be configured combining ideas from
diverse MOACO algorithms. Thus, this framework facilitates the application of
automatic algorithm configuration techniques to configure multi-objective algo-
rithms. However, previous works that aim to produce high performing algorithms
by combining a flexible software framework and an automatic tuning tool have
dealt so far only with single-objective optimization problems [11]. To the best of
our knowledge, there is no previous work on the automatic configuration of sto-
chastic local search (SLS) algorithms for multi-objective optimization problems
in terms of Pareto-optimality. Thus, this paper is the first application of such
automatic configuration techniques to multi-objective algorithms. We tackle this
challenge in a pragmatic way, using unary quality measures, which assign a scalar
value to a nondominated set according to some reference criterion, as the opti-
mization goal of an automatic configuration tool. In particular, we configure the
proposed framework by applying Iterated F-Race (I/F-Race) [4] using both the
hypervolume and the epsilon measures [21].

In summary, the main contributions of this paper are that (i) for the first time,
we automatically configure MOACO algorithms using unary quality measures,
a flexible framework for MOACO algorithms, and a high-performing automatic
configuration tool; and that (ii) we show that the configurations found automat-
ically are better than configurations implementing several MOACO algorithms
proposed in the literature.

2 Experimental Studies on MOACO Algorithms

The available MOACO algorithms differ in a wide diversity of design choices.
However, few authors experimentally justify their design choices or compare
them to alternatives. Iredi et al. [10] investigated several design alternatives for
a multi-colony approach. López-Ibáñez et al. [12] compared different design op-
tions for MOACO algorithms on the bi-objective quadratic assignment problem
(bQAP). Alaya et al. [1] compared the performance of four MOACO variants for
the multi-objective knapsack problem. The review by Garćıa-Mart́ınez et al. [8]
classifies existing MOACO algorithms according to the usage of one or several
pheromone (or heuristic) matrices, and provides a comparison of some of the
original algorithms using the bTSP as a case study. The algorithms they tested

Automatic Configuration of Multi-Objective ACO Algorithms 97

differ substantially with respect to underlying ACO parameters, e.g., some of
them are based on the classical Ant System, whereas others build upon the
typically better performing MAX -MIN (MMAS) and Ant Colony System
(ACS). Therefore, one cannot conclude from the quality of the achieved results
on the impact that specific design decisions of each MOACO algorithm have
on MOACO performance. In recent research, we first studied alternative design
choices for extending ACO algorithms to MCOPs [16] in a systematic manner by
keeping other design choices fixed. The design choices studied comprise also those
that have been proposed in previous MOACO algorithms. Next, we examined
the particular combinations of design choices that define existing MOACO algo-
rithms, keeping other factors, such as the underlying ACO algorithm, fixed [15].
The results of these studies showed important differences between various design
choices.

3 A Configurable MOACO Framework

Based on our previous work, we identified particular design choices that are
clearly superior to others for our case study, the bTSP. At the same time, we
realized that some combinations of design choices are promising, but there is no
corresponding MOACO algorithm in the literature. Therefore, the next logical
step is to propose a configurable MOACO framework that allows us to instantiate
several existing algorithms, and variants that have never been proposed before.

We propose the MOACO framework described in Algorithm 1. The frame-
work allows the use of multiple colonies (N col), where each colony constructs
solutions independently of others according to its own pheromone information.
The colonies cooperate in two ways: (1) by exchanging solutions for updating
the pheromone information, and (2) by using a common archive of nondomi-
nated solutions for detecting dominated ones. This multi-colony architecture is
inspired by the proposal of Iredi et al. [10], which we found more flexible and
consistent than other definitions of “colony” [15]. Within each colony, a number
of ants construct solutions from the pheromone and heuristic information of their
own colony. This pheromone information may be represented either as a single
matrix or as multiple matrices that must be aggregated somehow (Aggregation).
The same applies to the heuristic information. There are several forms of ag-
gregation, and all of them require the use of a weight. The sequence of weights
is determined by the procedure NextWeight. Once there is a unique pheromone
and heuristic matrix, a solution is constructed (ConstructSolution), possibly im-
proved by a local search (WeightedLocalSearch) and added to a common archive
Sglobal. Once all ants from all colonies have finished constructing solutions, pro-
cedure MultiColonyUpdate distributes these solutions among the colonies. From
the solutions assigned to each colony, procedure Selection decides which ones
will be used for updating the pheromone information (UpdatePheromones). The
MOACO algorithm continues until a certain number of iterations or a time limit
is reached.

Table 1 describes the configurable settings of the proposed framework. Some
settings are only significant for certain values of other settings. For example, the

98 M. López-Ibáñez and T. Stützle

Algorithm 1. MO-ACO framework
1: while not stopping criteria met do
2: for each colony c ∈ {1, . . . , Ncol} do
3: for each ant k ∈ {1, . . . , Na} do
4: λ := NextWeight(Λ, k, iteration)

5: τ :=

{
Aggregation(λ, {τ 1, . . . , τd}) if multiple [τ]
τ if single [τ]

6: η :=

{
Aggregation(λ, {η1, . . . , ηd}) if multiple [η]
η if single [η]

7: s := ConstructSolutiond(τ, η)
8: s := WeightedLocalSearch(s, λ) // Optional
9: Sglobal := Sglobal ∪ {s}

10: end for
11: end for
12: for each colony c ∈ {1, . . . , Ncol} do
13: Sc := MultiColonyUpdate(Sglobal)
14: Supd

c := Selection(Sc)
15: UpdatePheromones(Supd

c , Nupd)
16: end for
17: end while
18: Output: P bf

possible settings of MultiColonyUpdate only make a difference when N col > 1,
otherwise all solutions are assigned to the single colony. Both settings, origin
and region, were originally proposed by Iredi et al. [10]. Update by origin as-
signs each solution from Sglobal to its original colony, whereas update by region
divides Sglobal in equal parts among the colonies in such a way that each colony
roughly corresponds to one region of the objective space. The alternatives for
the Selection component are:

Nondominated solutions. The solutions used for updating the pheromone
information are the nondominated solutions in Supd

c . When there are more
nondominated solutions than Nupd, we apply the truncation mechanism of
SPEA2 [20] to select only Nupd solutions. It is possible to combine this
Selection method and multiple pheromone matrices [10], however, in the case
of the bTSP and with Δτ = 1, this would result in updating both matrices
with the same value, so we do not empirically explore this combination.

Best-of-objective. Selects from the current Supd
c , the Nupd best solutions with

respect to each objective. In the case of multiple pheromone matrices, each
pheromone matrix is updated using the Nupd solutions associated to the
corresponding objective. Otherwise, the d ·Nupd solutions update the single
pheromone matrix.

Best-of-objective-per-weight. We keep a list for each weight λ and each ob-
jective of the Nupd best solutions for each objective generated using λ. In
the particular case of λ = 0, we only keep one list for the first objective,

Automatic Configuration of Multi-Objective ACO Algorithms 99

Table 1. Algorithmic components of the proposed MOACO framework

Component Domain Description

Ncol
N

+ Number of colonies

MultiColonyUpdate { origin, region } How solutions are assigned to colonies for update [10]

Nupd
N

+ Max. number of solutions that update each [τ] matrix

Selection

⎧⎪⎨⎪⎩
nondominated solutions,
Best-of-objective,
Best-of-objective-per-weight

Which solutions are selected for updating the pheromone
matrices

|Λ| N
+ Number of weights per colony

NextWeight

{
one weight per iteration,

all weights per iteration
How weights are used at each iteration

[τ] { single, multiple } Number of pheromone matrices

[η] { single, multiple } Number of heuristic matrices

Aggregation

⎧⎪⎨⎪⎩
weighted sum,

weighted product,
random

How weights are used to aggregate different matrices

and we do the same for λ = 1 and the second objective. When using mul-
tiple pheromone matrices, each matrix is updated using only solutions from
lists associated to the same objective. This update method is used by the
existing mACO-1 and mACO-2 algorithms [1]. It is not clear how this ap-
proach should be extended to multiple colonies, since then solutions may be
exchanged among colonies with different weights.

The set of weights (Λ) is finite and equally distributed in the interval [0, 1].
If there are multiple colonies, Λ is partitioned among the colonies. The options
tested for NextWeight are either that all ants in one colony use the same weight at
a certain iteration (one-weight-per-iteration), or that all weights are used at each
iteration (all-weights-per-iteration). In the case of one-weight-per-iteration, the
weight used by each colony in successive iterations follows an ordered sequence
of the elements of Λ, and the order is reversed when the last weight in the
sequence is reached. In the case of all-weights-per-iteration, when the number of
ants Na is larger than the number of weights |Λ|, then several ants will use the
same weight. The aggregation of the pheromone matrices is computed once per
weight per iteration.

Lastly, our framework includes three options for Aggregation:

Weighted sum. The two pheromone (or heuristic) matrices are aggregated by
a weighted sum: (1 − λ)τ1

ij + λτ2
ij .

Weighted product. The two pheromone (or heuristic) matrices are aggregated
by a weighted product: (τ1

ij)
(1−λ) · (τ2

ij)
λ

Random. At each construction step, an ant selects the first of the two phero-
mone matrices if U(0, 1) < 1−λ, where U(0, 1) is a uniform random number,
otherwise it selects the other matrix.

100 M. López-Ibáñez and T. Stützle

Table 2. Taxonomy of MOACO algorithms as instantiations of the proposed framework
(d is the number of objectives, Na is the number of ants)

Algorithm [τ] [η] Aggregation |Λ| Selection

MOAQ [17,8] 1 d – d (Λ = {0, 1} if d = 2) nondominated solutions
P-ACO [5] d d weighted sum Na Best-of-objective
MACS [2] 1 d weighted product Na nondominated solutions
BicriterionAnt [10] d d weighted product Na nondominated solutions
COMPETants [6] d d weighted sum d + 1 (Λ = {0, 0.5, 1}) Best-of-objective
mACO-1 [1] d d random (τ)/w. sum (η) d + 1 (Λ = {0, 0.5, 1}) Best-of-objective-per-weight
mACO-2 [1] d d weighted sum d + 1 (Λ = {0, 0.5, 1}) Best-of-objective-per-weight
mACO-3 [1] 1 1 – – nondominated solutions
mACO-4 [1] d 1 random (τ) 1 (Λ = {0.5}) Best-of-objective

Our previous work [15] has examined the design of several multi-objective
ACO algorithms from the literature. This previous study has informed the de-
sign of the proposed framework. As a result, the framework is flexible enough to
allow us to replicate those MOACO algorithms. We provide in Table 2 the con-
figuration of algorithmic components necessary to instantiate several well-known
MOACO algorithms.

4 Automatic Configuration of MOACO Framework

Instead of using a trial-and-error approach to identify good instantiations of the
proposed MOACO framework, we follow the work of KhudaBukhsh et al. [11]
(and earlier work discussed in that paper) in the sense that we use an efficiently
implemented, flexible software framework together with an automated algorithm
configuration tool for obtaining very high-performing algorithmic variants. How-
ever, this is the first time that such an approach is applied in a multi-objective
context.

Specifically, we automatically configure our MOACO framework using a new
implementation of Iterated F-race (I/F-Race) [4] as the automatic configura-
tion method. As the evaluation criteria used by I/F-Race, we tested two unary
measures for evaluating the output of multi-objective algorithms, namely, the
hypervolume and the (additive) epsilon measure [21]. The hypervolume is the
volume of the objective space weakly dominated by a nondominated set and
bounded by a reference point that is strictly dominated by all known points.
The larger the hypervolume, the better is the corresponding nondominated set.
The additive epsilon measure provides the minimum value that must be sub-
tracted from all objectives of a nondominated set so that it weakly dominates
a reference set. This reference set is usually the nondominated set of all known
solutions. A smaller epsilon measure is preferable.

Each run of I/F-Race uses a maximum budget of 1 000 experiments and it
is repeated five times, for each quality measure, to assess the variability of the
automatic configuration process. As training instances, we generated 36 bTSP
Random Uniform Euclidean instances for each of n = {100, 200, 300} nodes (108

Automatic Configuration of Multi-Objective ACO Algorithms 101

instances in total). Each experiment, that is, each run of the MOACO framework
on each instance, is stopped after n CPU-seconds. We provide to I/F-Race appro-
priate domains of the MOACO framework components. In particular, we use the
domains described in Table 1 for the categorical components, with the restric-
tions described in the text for the Selection component. For the remaining com-
ponents, we use the following domains: N col = {1, 2, 3, 5, 10}, |Λ| = {2, 6, 12, 24},
Nupd = {1, 2, 5, 10}. We use MMAS and its default parameter settings for the
TSP [18] as the underlying ACO algorithm with some exceptions. We use 24
ants per colony, which is a value close to the one used in the MOACO literature
for the bTSP [8] and it allows us to divide the ants exactly among several values
of |Λ|. We also use Δτ = 1 for the amount of pheromone deposited by an ant,
and the evaporation rate is set to ρ = 0.05. As for the optional local search, we
use a 2-opt algorithm that exploits candidate lists of length 20. More details on
the local search are given in our previous work [16].

We perform runs of I/F-Race with and without local search. The rationale
for separating both analyses is that, on the one side, it is clear that MOACO
algorithms with local search by far outperform those without local search for
the bTSP [16]; on the other side, given the large amount of work on MOACO
algorithms without the usage of local search [8], it is interesting to examine
whether the automated configuration of the MOACO framework may obtain
competitive results in comparison to those algorithms.

We have implemented the MOACO framework in C using ACOTSP (http://
www.aco-metaheuristic.org/aco-code) as the underlying ACO package, and
compiled it with gcc, version 3.4. All experiments reported in the following are
carried out on AMD Opteron 2216 dual-core 2.4 GHz processors with 2 MB L2-
Cache under Rocks Cluster GNU/Linux. The implementation is sequential and
experiments run on a single core.

The results of the automatic configuration with respect to hypervolume and
epsilon measures are very similar. In particular, the configurations obtained when
maximizing the hypervolume are very consistent. In all five runs of I/F-Race,
the best configuration uses multiple colonies (varying among three, five and
ten colonies), selection by best-of-objective, one weight per iteration, multiple
pheromone and heuristic matrices, and aggregation by weighted product. The
differences are in the multi-colony update, I/F-Race chooses three times update
by region, and two times by origin; in the number of solutions used for update,
which varies among Nupd = {1, 2, 5, 10}; and in the number of weights, which
varies among |Λ| = {2, 6, 12}. The results of I/F-Race when optimizing for the
epsilon measure are more varied. The settings that were common to all five runs
are multiple colonies (either five or ten), multiple heuristic matrices, and aggrega-
tion by weighted product. One run of I/F-Race chose the use of nondominated
solutions for the Selection component; surprisingly this was selected together
with Nupd = 1, which effectively means that the chosen solution would be the
best for one of the objectives. That same configuration uses a single pheromone
matrix and multiple heuristic matrices. The other four runs of I/F-Race with
epsilon measure follow the results obtained with the hypervolume measure and

http://www.aco-metaheuristic.org/aco-code
http://www.aco-metaheuristic.org/aco-code

102 M. López-Ibáñez and T. Stützle

produce configurations using selection by best-of-objective and multiple phero-
mone matrices. For the other parameters, the automatically configured settings
vary among Nupd = {1, 2, 5, 10} and |Λ| = {6, 12, 24}.

We repeat the automatic configuration with 2-opt local search enabled. In this
case, the resulting configurations are even more varied. This probably indicates
that once local search is enabled, the particular settings of the other parameters
are less important. Focusing on the common settings, all resulting configurations
use multiple colonies (nine times ten colonies, and once five colonies). Moreover,
in most configurations found using the hypervolume measure there are multiple
pheromone and heuristic matrices and Selection uses best-of-objective, whereas
in those found using the epsilon measure is more common the use of a single
pheromone matrix and Selection uses nondominated solutions.

5 Comparison with Existing MOACO Algorithms

We now compare the automatically configured MOACO algorithms with the
results obtained by existing MOACO algorithms from the literature. A recent
comparison of MOACO algorithms for the bTSP identified BicriterionAnt as the
best-performing overall [15], so we will use this algorithm for comparison.

First, we choose the best automatically configured MOACO algorithm by
performing 15 runs of each configuration returned by I/F-Race on each of the 108
tuning instances. From these results, we choose the configuration (AutoMOACO)
with the largest mean hypervolume and smallest mean epsilon measure. In this
case, both measures agree on the best configuration: ten colonies, multi-colony
update by origin, selection of best-of-objective, one-weight-per-iteration,Nupd =
2, |Λ| = 12, aggregation by weighted product, and multiple pheromone and
heuristic matrices.

We compare BicriterionAnt and AutoMOACO on three instances (kroAB100,
kroAB200, and euclidAB300), different from the ones used for tuning, and taken
from Luis Paquete’s webpage (http://eden.dei.uc.pt/~paquete/tsp). As be-
fore, we perform 15 runs of each algorithm on each test instance and each run
has a time limit of n seconds. For the comparison, instead of relying on the
same quality measures used for tuning, we examine the differences between the
algorithms’ empirical attainment functions (EAFs) [13,14]. The EAF estimates
from several independent runs the probability of a multi-objective algorithm
obtaining or dominating a certain point in the objective space [9]. A plot of
the EAF differences between two algorithms gives on each side the differences in
favour of either algorithm. Larger differences are indicated in darker color. Large
differences indicate one algorithm has a higher probability of dominating a cer-
tain region of the objective space than the other algorithm. Figure 1 gives two
of such plots, comparing BicriterionAnt and AutoMOACO on the two largest
test instances. In all plots, there are only differences in favor of AutoMOACO
(dark points occur only on the right plots), which indicates that AutoMOACO
completely outperforms BicriterionAnt.

In a second comparison, we consider the MOACO variants with local search.
We repeat the same procedure described above for choosing the best configuration

http://eden.dei.uc.pt/~paquete/tsp

Automatic Configuration of Multi-Objective ACO Algorithms 103

Fig. 1. The plots show the differences between the EAF of BicriterionAnt vs. Auto-
MOACO on instances kroAB200 (top) and euclidAB300 (bottom). The magnitude of
the differences is encoded in grey-scale.

from the ten runs of I/F-Race (five runs with each quality measure), that is, we
perform 15 independent runs of each configuration on the 108 tuning instances,
and choose the configuration with the best mean value of the quality measures.
Both measures again agree on the best automatically configured MOACO using
local search (AutoMOACO+ls): ten colonies, multi-colony update by region, one-
weight-per-iteration selection of nondominated solutions,Nupd = 1, |Λ| = 12 and
a single pheromone matrix.

We compare AutoMOACO+ls, on the three test instances mentioned above,
to the algorithm suggested by our earlier studies on MOACO components [16].
Based on that paper, we select a configuration with weighted sum aggregation
(given that weighted product aggregation was not studied there), one colony,
multiple pheromone and heuristic matrices, and one weight per iteration. Al-
though it is difficult to appreciate the EAF differences in the graphical plots,
as illustrated by Fig. 2, the differences are strongly in favor of AutoMOACO+ls

104 M. López-Ibáñez and T. Stützle

Fig. 2. The plot shows the differences between the EAFs of two MOACO algorithms
using local search: best configuration from the literature [16] vs. AutoMOACO+ls. The
instance is euclidAB300. The magnitude of the differences is encoded in grey-scale.

and there are only small differences in favor of the literature-best version in
very few points of the objective space. To confirm these differences, we apply a
non-parametric Wilcoxon rank-sum test on the hypervolume values obtained by
AutoMOACO+ls and the literature-best version. The test rejects the hypothe-
sis that both algorithms reach similar hypervolume at a significant level of 0.05.
Since AutoMOACO+ls obtains a lower mean hypervolume than the literature-
best version, we conclude that there is a statistically significant difference in
favor of AutoMOACO+ls. We repeat this procedure for each instance and for
each quality measure (hypervolume and epsilon). In all cases the statistical tests
are in favor of AutoMOACO+ls, which confirms that AutoMOACO+ls outper-
forms the best MOACO algorithm with local search from the literature in these
bTSP instances.

6 Conclusions

In this paper, we propose a flexible, configurable ACO framework for multi-
objective problems in terms of Pareto optimality. This framework is the result
of our review and synthesis effort of different MOACO algorithms from the liter-
ature. The framework may be configured to instantiate those existing algorithms,
and others never examined before in the literature. We demonstrate the poten-
tial of this approach by automatically configuring our framework for the bTSP
and comparing it with a state-of-the-art MOACO algorithm for this problem.

We automatically configure our MOACO framework by applying I/F-Race
using unary quality measures to evaluate the nondominated sets returned by
multi-objective optimization algorithms. We repeated the automatic configura-
tion with two different unary measures, the hypervolume and the epsilon mea-
sure, and we found that there are some small differences in the quality of the

Automatic Configuration of Multi-Objective ACO Algorithms 105

algorithmic configurations obtained. Although it may be possible to use both
measures at the same time, such approach would require defining a consensus
method in case both measures contradict each other. The proposed approach
is simple, pragmatic and effective. However, further work is underway to inves-
tigate the use of different unary and binary measures, and how to adequately
combine several quality measures at the same time.

The result of the automatic configuration is a MOACO algorithm that mixes
features from existing algorithms and is able to outperform them in the bTSP.
This result is a further confirmation that automatic configuration of a flexible
framework may surpass human-designed algorithms [11]. The main contribution
of this paper, however, is not the fine-tuned algorithm, but rather the MOACO
framework itself and the method proposed here for automatically fine-tuning
it. First, the proposed framework can be applied to any problem for which the
reviewed MOACO algorithms have been applied so far. Second, the proposed
configuration method may be used to fine-tune the framework to the particular
problem and, possibly, improve over existing results. Moreover, the proposed
configuration method can be applied to any multi-objective optimization algo-
rithm, which so far are either not fine-tuned at all or by trial-and-error. Future
work would extend the MOACO framework to include more diverse algorithmic
components, and incorporate ideas from multi-objective evolutionary algorithms.

Acknowledgments. This work was supported by the META-X project, an Ac-

tion de Recherche Concertée funded by the Scientific Research Directorate of the
French Community of Belgium. Thomas Stützle acknowledges support from the Bel-
gian F.R.S.-FNRS, of which he is a Research Associate. The authors also acknowledge
support from the FRFC project “Méthodes de recherche hybrides pour la résolution de

problèmes complexes”.

References

1. Alaya, I., Solnon, C., Ghédira, K.: Ant colony optimization for multi-objective opti-
mization problems. In: 19th IEEE International Conference on Tools with Artificial
Intelligence (ICTAI 2007), vol. 1, pp. 450–457. IEEE Computer Society Press, Los
Alamitos (2007)

2. Barán, B., Schaerer, M.: A multiobjective ant colony system for vehicle routing
problem with time windows. In: Proceedings of the Twenty first IASTED Interna-
tional Conference on Applied Informatics, Insbruck, Austria, pp. 97–102 (2003)

3. Bartz-Beielstein, T., Chiarandini, M., Paquete, L., Preuß, M. (eds.): Experimental
Methods for the Analysis of Optimization Algorithms. Springer, Heidelberg (2010)

4. Birattari, M., Yuan, Z., Balaprakash, P., Stützle, T.: F-race and iterated F-race:
An overview. In: Bartz-Beielstein, et al [3] (to appear)

5. Doerner, K.F., Gutjahr, W.J., Hartl, R.F., Strauss, C., Stummer, C.: Pareto ant
colony optimization: A metaheuristic approach to multiobjective portfolio selec-
tion. Annals of Operations Research 131, 79–99 (2004)

6. Doerner, K.F., Hartl, R.F., Reimann, M.: Are CompetAnts more competent for
problem solving? The case of a multiple objective transportation problem. Central
European Journal for Operations Research and Economics 11(2), 115–141 (2003)

106 M. López-Ibáñez and T. Stützle

7. Dorigo, M., Stützle, T.: Ant Colony Optimization. MIT Press, Cambridge (2004)
8. Garćıa-Mart́ınez, C., Cordón, O., Herrera, F.: A taxonomy and an empirical analy-

sis of multiple objective ant colony optimization algorithms for the bi-criteria TSP.
European Journal of Operational Research 180(1), 116–148 (2007)

9. Grunert da Fonseca, V., Fonseca, C.M., Hall, A.O.: Inferential performance assess-
ment of stochastic optimisers and the attainment function. In: Zitzler, et al [19],
pp. 213–225

10. Iredi, S., Merkle, D., Middendorf, M.: Bi-criterion optimization with multi colony
ant algorithms. In: Zitzler, et al [19], pp. 359–372

11. KhudaBukhsh, A.R., Xu, L., Hoos, H.H., Leyton-Brown, K.: SATenstein: Automat-
ically building local search SAT solvers from components. In: Proc. of the Twenty-
First International Joint Conference on Artificial Intelligence (IJCAI 2009), pp.
517–524 (2009)

12. López-Ibáñez, M., Paquete, L., Stützle, T.: On the design of ACO for the biob-
jective quadratic assignment problem. In: Dorigo, M., Birattari, M., Blum, C.,
Gambardella, L.M., Mondada, F., Stützle, T. (eds.) ANTS 2004. LNCS, vol. 3172,
pp. 214–225. Springer, Heidelberg (2004)

13. López-Ibáñez, M., Paquete, L., Stützle, T.: Hybrid population-based algorithms for
the bi-objective quadratic assignment problem. Journal of Mathematical Modelling
and Algorithms 5(1), 111–137 (2006)

14. López-Ibáñez, M., Paquete, L., Stützle, T.: Exploratory analysis of stochastic local
search algorithms in biobjective optimization. In: Bartz-Beielstein, et al [3], 209–
233

15. López-Ibáñez, M., Stützle, T.: The impact of design choices of multi-objective ant
colony optimization algorithms on performance: An experimental study on the
biobjective TSP. In: GECCO 2010, pp. 71–78. ACM Press, New York (2010)

16. López-Ibáñez, M., Stützle, T.: An analysis of algorithmic components for multiob-
jective ant colony optimization: A case study on the biobjective TSP. In: Collet,
P., Legrand, P. (eds.) EA 2009. LNCS, vol. 5975, pp. 134–145. Springer, Heidelberg
(2010)

17. Mariano, C.E., Morales, E.: MOAQ: An Ant-Q algorithm for multiple objective
optimization problems. In: Banzhaf, W., Daida, J., Eiben, A.E., Garzon, M.H.,
Honavar, V., Jakiela, M., Smith, R.E. (eds.) Proceedings of the Genetic and Evo-
lutionary Computation Conference (GECCO 1999), vol. 1, pp. 894–901. Morgan
Kaufmann Publishers, San Francisco (1999)

18. Stützle, T., Hoos, H.H.: MAX -MIN . Future Generation Computer Sys-
tems 16(8), 889–914 (2000)

19. Zitzler, E., Deb, K., Thiele, L., Coello, C.A., Corne, D. (eds.): EMO 2001. LNCS,
vol. 1993. Springer, Heidelberg (2001)

20. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the strength Pareto evo-
lutionary algorithm for multiobjective optimization. In: Giannakoglou, K., et al.
(eds.) Proceedings of EUROGEN 2001, International Center for Numerical Meth-
ods in Engineering (CIMNE), pp. 95–100 (2002)

21. Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., Grunert da Fonseca, V.:
Performance assessment of multiobjective optimizers: an analysis and review. IEEE
Transactions on Evolutionary Computation 7(2), 117–132 (2003)

Autonomous Morphogenesis in Self-assembling
Robots Using IR-Based Sensing and

Local Communications

Wenguo Liu and Alan F.T. Winfield

Bristol Robotics Laboratory, University of the West of England, Bristol, UK
Wenguo.Liu@brl.ac.uk, Alan.Winfield@uwe.ac.uk

Abstract. This paper presents a simple decentralised morphology con-
trol mechanism for a swarm of self-assembling robots. Each robot in the
system is fully autonomous and controlled using a behaviour-based ap-
proach with only infrared-based local sensing and communications. A
graph-based recruitment strategy is proposed to guide the growth of 2D
planar organisms, and local communications are used to self-organise the
behaviours of robots during the morphogenesis process. The effectiveness
of the approach has been verified, in simulation, for a diverse set of target
structures.

1 Introduction

The EU-funded project SYMBRION (http://www.symbrion.eu) is aiming to
develop a super-large-scale swarm of robots which is able to autonomously as-
semble to form 3D symbiotic organisms to perform complex tasks. The idea is
to combine the advantages of swarm and self-reconfigurable robotics systems to
investigate and develop novel principles of evolution and adaptation for robotic
organisms from bio-inspired and evolutionary perspectives [5]. Unlike modular
self-reconfigurable robotic systems such as PolyBot G3 [13], CONRO [8], M-
TRAN III [7] and SuperBot [9], in SYMBRION individual robots are indepen-
dently mobile and will be able to autonomously aggregate and dock with each
other. The robots will initially form a 2D planar organism. Once the robots in
the 2D planar organism have assumed the correct functionality, according to
their position in the organism, the organism will lift itself from 2D planar con-
figuration to 3D configuration and, with respect to locomotion, will function as
a macroscopic whole. The aggregated organism will also be able to disassemble
and reassemble into different morphologies to fit the requirements of the task.

The morphologies of the organism that the robots can self-assemble into must
be constrained by the specific hardware design of the individual robots. With
only limited sensory capabilities, it is a challenge to coordinate the behaviours of
a large number of robots in a decentralised manner in order that the robots can
form some desired structures. Various morphology control mechanisms have been
proposed for controlling different modular robotic systems in recent years. Støy
[11] has evaluated a gradient-based approach to control the self-reconfiguration

M. Dorigo et al. (Eds.): ANTS 2010, LNCS 6234, pp. 107–118, 2010.
� Springer-Verlag Berlin Heidelberg 2010

108 W. Liu and A.F.T. Winfield

of cubic units in simulation, where the desired configuration is grown from an
initial seed module and guided by the gradient in the system using local commu-
nication. Guo et al [3] proposed a distributed gene regulatory network (GRN)
based algorithm for multi-robot construction, in which the global shape infor-
mation is embedded into the GRN dynamics directly and the local interaction
among the robots is represented by the diffusion terms; they showed, in sim-
ulation, that different pre-defined simple shapes can be formed. Also tested in
simulation, Grushin and Reggia [2] developed an automated rule generation pro-
cedure that allows structures to successfully self-assemble in an environment with
constrained, continuous motion. Shen et al. [10] applied a bio-inspired hormone-
based control mechanism for the CONRO robots to coordinate motions and
perform reconfiguration. The hormone is used to trigger different actions in dif-
ferent modules and is modelled as special messages transferred among these
modules via limited local communication. Apart from controlling the morpholo-
gies of lattice type or chain type robots, Christensen et al. have proposed a simple
language, SWARMMORPH-script, for arbitrary morphology generation for self-
assembling robots [1], where each robot is fully autonomous. The morphologies
are pre-specified as sets of rules stored in scripts which can be communicated and
subsequently executed on the newly connected robot. Their morphology control
algorithm has been demonstrated using a group of s-bot robots in a 2D environ-
ment. This study also needs to consider the morphology control problem for a
swarm of autonomous mobile robots. However, this paper focuses on how spe-
cific structures can be formed based on the existing sensing and communication
capabilities of the SYMBRION robot.

2 SYMBRION Robots and Their Docking Sensors

Figure 1(a) shows the first generation of a SYMBRION robot. It has a cubic
shape sized 8cm x 8cm x 8cm. The robot can move omnidirectionally in a 2D
planar environment using two screwdrive type wheels, and bend 90 degrees along
the common axis of two opposite docking units using a hinge drive, which is in
parallel with the wheel axis. A rich set of sensors are proposed to be installed in
the robot for environmental perception, locomotion and internal state monitoring
purposes, see [4] for a full list. Four mechanical docking units, one on each vertical
side, are installed on the robot to allow stable physical connections between
robots. In addition, electrical contacts next to the docking units can be coupled
automatically to provide inter-robot communication and power sharing busses
between two connected robots. The docking units can handle misalignment in
horizontal and vertical directions as well as rotation within certain ranges.

To achieve autonomous docking in a 2D planar environment, specific infrared
(IR)-based sensing – including proximity detection and docking alignment de-
tection – and local communications circuits have been developed for the SYM-
BRION robot, see [6]. Each robot is endowed with 8 proximity sensors, 8 docking
alignment sensors and 4 channel local communications for autonomous docking,
the maximum detection range for each function is about 15cm, 25cm and 150cm

Autonomous Morphogenesis in Self-assembling Robots 109

(a)

TCRT1010 TCRT1010TSML1020

TSML1020TSML1020

TSOP36236

(b)

Fig. 1. a) The first generation prototype of a SYMBRION robot and, b) the placement
of the IR sensors on each vertical side PCB

respectively. These sensors have the same placement on each side PCB of the
robot, as shown in Figure 1(b). More specifically, two IR sensors (TCRT1010)
have been placed symmetrically above and on either side of the docking unit
(marked with a circle); one IR LED (TSML1020) is placed directly above the
docking unit, while the other two LEDS are located on either side of the dock-
ing unit. These LEDs are used to emit different frequency signals for obstacle
detection, docking alignment and communication. The IR sensors work for both
obstacle detection and docking alignment detection. As for communications,
one IR remote control receiver (TSOP36236) is placed next to the IR LED on
each side PCB. Note that the 4 channels of local communication can work si-
multaneously. By default they are all in “listening” mode; whenever one robot is
broadcasting messages, another robot within range will receive the message with
one or two adjacent channels, which provide the robot with an approximation
of the direction of the signalling robot.

3 Robot Controller Design

Consider one scenario for a swarm of SYMBRION robots: initially some robots
are randomly deployed in the environment to perform a specified task, for ex-
ample, searching for a power socket at a certain height that cannot be reached
by a single robot. In this phase all robots must rely on their own sensing and
computation and are in so-called Swarm Mode. The robot that senses the power
socket first will become the seed robot and hence initiate the process of self-
assembly for an organism that might be able to reach the power socket. All
robots will have the same knowledge about what kind of structures they can
self-assemble into, however, the actual structure to be instantiated must be cho-
sen by the seed robot. The seed robot then changes its state to Organism Mode

110 W. Liu and A.F.T. Winfield

and broadcasts signals to recruit other robots for docking. It will send a message
to the next robot that successfully docks with it, containing the identity of the
structure that is being assembled. The same process is repeated by the newly
docked robot until the specified structure is formed. Thereafter, the robots in the
organism must determine collectively whether the current structure is suitable
for the task, e.g. to reach the power socket, or not. If not, a new shape must
be selected; all or some of the robots must disconnect from the organism and a
new cycle of self-assembly started until the organism can achieve its goal. Note
that questions such as how the seed robot chooses the best organism shape and
how the organism determines whether or not it can achieve its goal are beyond
the scope of this paper. A behaviour-based approach is adopted for the design
of the morphogenesis controller as described in the following sections.

3.1 A Finite State Machine

Figure 2 shows the finite state machine (FSM) for the morphogenesis con-
troller. Depending on the physical connection status of the robot, the 7 states
in the FSM can be categorised into two blocks as marked with dashed lines in
Figure 2 – Swarm Mode and Organism Mode. Switching between these two modes
occurs whenever a robot either docks with or undocks from another robot in the
organism. For the robots in Organism Mode, the default state is InOrganism;
this may change to state Recruitment or Disassembly during the self-assembly
process and transitions are determined by the morphogenesis strategy applied
by robots. Once robots are in state Recruitment, they will flash one of their IR
LEDs – the docking beacon – to attract other robots in Swarm Mode to dock.
For the robots in Swarm Mode, when a docking beacon is sensed they will move

LocateBeacon

Flocking

Alignment Docking

InOrganism RecruitmentDisassembly

1 2

3 4

5

6

7 8

9

10

Swarm Mode

Organism Mode

Fig. 2. Robot finite state machine (FSM) for autonomous morphogenesis controller.
Conditions causing state transitions: 1 – docking message received; 2 – collision, or no
docking message received; 3 – docking beacon signals detected; 4 – aligned and ready
to dock; 5 – disassembly required; 6 – undocking completed; 7 – expelling message
received, or docking signals lost; 8 – docking completed; 9 – recruitment required; 10
– recruitment completed.

Autonomous Morphogenesis in Self-assembling Robots 111

towards it and try to dock to the recruiting robot accordingly; here transitions
from one state to another are triggered by the combination of IR sensing and
communication. Note that Flocking is a place holder for all other swarm mode
behaviours, not associated with self-assembly or disassembly.

3.2 Local Communication

Local communication is used to self-organise the behaviour of the robots and
resolve competition when self-assembly is in progress. Some simple communica-
tion protocols are implemented here, with consideration to the capability of the
robots’ IR communications. Five fixed message tokens, each of 1-Byte length,
are broadcast by the robots when communication is required, as follows:

MSG-Recruitment is to indicate that a recruitment process has started. The
message is broadcast and repeated by the robots in state Recruitment. It is
used by other robots to locate the direction of a recruitment robot in longer
range with less accuracy.

MSG-InRange is transmitted by the robot in state LocateBeacon when it de-
tects beacon signals (transmitted by one of the IR LEDs of a recruitment
robot). The message is used to inform the recruitment robot to stop trans-
mitting MSG-Recruitment messages.

MSG-Expelling is broadcast by the robot in state Alignment to expel other
competitors in order to make more room for docking alignment and thus
reduce interference.

MSG-DockingReady is sent by the robot in state Docking when its dock-
ing unit is fully in position to the recruitment robot. It is used to inform
the recruitment robot to stop emitting beacon signals and start to lock the
docking units.

MSG-NewRobotAttached is initially transmitted by the recruitment robot
when a new robot is docked. The message is then propagated by every docked
neighbour robot in the organism. It is used to trigger the transitions between
states InOrganism, Disassembly and Recruitment along with the morphogen-
esis strategies explained later.

MSG-UnDocked is sent by the robot in state Disassembly when the undocking
procedure is fully completed. The robot which was previously docked will
receive this message.

Apart from these fixed content message tokens, the robot in state Recruitment
also needs to send a message to the newly docked robot which includes the
current number of robots in the organism and the information of the structure the
robots are trying to grow. This message is essential to the implementation of the
recruitment strategies discussed later. Note that when transmitting messages,
only one or two specific communication channels are used. Since the IR signals
may be occluded and have a certain transmission angle and range, the number
of candidate receivers is limited, as we would expect.

112 W. Liu and A.F.T. Winfield

3.3 Behaviours

The behaviours of each state of the FSM are defined as follows:

InOrganism Robot remains static in the organism while monitoring the 4 com-
munication channels. When a MSG-NewRobotAttached message is re-
ceived from one of the channels, it checks whether it needs to switch to
state Recruitment or Disassembly following certain rules. Then it sends the
MSG-NewRobotAttached messages to other docked neighbour robots,
excluding the one it received the message from.

Recruitment Robot chooses one side, based on the recruitment strategy, from
which to emit beacon signals and MSG-Recruitment messages at the
same time. Once it detects a MSG-InRange message, it stops trans-
mitting MSG-Recruitment to avoid attracting too many robots. The
robot performs a mechanism docking lock when the MSG-DockingReady
message is received. It then moves to state InOrganism and send MSG-
NewRobotDocked messages to all connected robots.

Disassembling Robot executes an action sequence to undock from the organ-
ism if only one of its docking units is connected. It then sends a MSG-
UnDocked message to the robot previously connected and moves to state
Flocking. If more than one docking units are connected, it continues to wait.

Flocking Robot wanders in the environment and searches for docking beacons.
It avoids obstacles and other robots. When MSG-Recruitment messages
are received it moves to state LocateBeacon.

LocateBeacon Robot approximately locates the beacon using 4 IR commu-
nication channels and moves in the direction of the beacon signals. If no
MSG-Recruitment messages are received, or obstacles are detected, it
transfers back to state Flocking. If beacon signals are detected, it sends a
MSG-InRange message and then moves to state Alignment.

Alignment Robot adjusts its headings and tries to minimise the misalignment
of two docking units. It transmits MSG-Expelling messages repeatedly to
expel competitors. However, if it detects MSG-Expelling messages from
other robots, it exits to state Flocking. Once two docking units are aligned
and close enough (based on readings from the beacon detection sensors
and proximity sensors), it transmits a MSG-DockingReady message and
moves to state Docking.

Docking Robot performs a mechanical docking procedure to physically connect
to the organism. It moves to state InOrganism upon completion.

4 Recruitment Strategies

Although all robots in the swarm have common knowledge of the structures of
the organism that they may construct, to grow a specific shape from one seed
robot the right strategy is required. In other words, the robots in the partially
assembled organism must determine the location and the timing at which a new
robot needs to be recruited and connected. As IR signals are used for recruitment

Autonomous Morphogenesis in Self-assembling Robots 113

0

front

left right

back

0

parent

lchild mchild rchild

Fig. 3. A robot and its graphical node counterpart. The hinge joint is on the left-right
axis.

and docking alignment, interference may arise if more than one light source are
actively emitting IR signals for this purpose, at the same time. To overcome this
problem, a simple solution – although perhaps not the most efficient one – is to
allow only one of the robots in the organism to transmit docking beacon signals
and recruitment messages, i.e. to be in state Recruitment, at any one time. Since
a SYMBRION robot has four docking faces, it is also important to know onto
which face a new robot must dock. These problems are referred to as recruitment
strategies in this paper.

Before we can address the recruitment strategy a common representation of
the pre-defined organism structures, to be stored on each robot, must be defined.
During an autonomous docking process a recruitment robot is normally static
while emitting the docking beacon signals. Although each robot has four side
docking mechanisms named front, left, back and right, the locomotion capability
of a single robot dictates that robots will use their front side only to dock onto
the recruiting robot. Therefore, for any connection between two docking units
in the organism, one and only one front side docking unit must be present. If
each robot in the organism is treated as a node in a tree data structure where
the “parent”, “lchild”, “mchild” and “rchild” of the node represent the front,
left, back and right side of a robot respectively, as shown in Figure 3, then
the whole organism in a 2D planar environment can be represented as a tree
data structure in which each edge denotes a physical docked connection between
two robots. Figure 4(b)(c) show two organisms and their corresponding tree
data structure representations. Note that each robot in the organism has been
identified with a unique ID number. Although these two organisms have very
similar 2D structures, because of the orientation of the hinge driver of the robots
(marked with two line segments from the left and right sides of a robot in Figure
4), they have different 3D locomotion capabilities. Clearly, the start point for
self-assembly of an organism, i.e. the seed robot, cannot be arbitrarily chosen.
It must be the root node of its corresponding tree representation. The order in
which robots attach to the organism can be retrieved by a pre-order walk of
its tree representation. Assume the children of a node are visited in the order
“mchild – lchild – rchild”, then for organism 1 shown in Figure 4(b), the robots
can be recruited to the organism in the order of list {0, 1, 2, 3, 4, 5, 6, 7, 10,
11, 9, 8}, named sortedNodeList, where the first robot, No. 0, will act as a seed
robot. Other robots in the list are recruited by their parent node one by one. The
order that the robots move into the Recruitment state is in fact the order of the

114 W. Liu and A.F.T. Winfield

parent nodes of each node in the pre-order walk node list, i.e. {0, 1, 2, 3, 2, 5, 6,
7, 10, 7, 9} for organism 1. The recruitment side of each recruitment robot can
also be easily retrieved from the tree representation. If we introduce an ordered
pair “(Robot-ID, Recruitment-Side)”, then to grow organism 1, the order that
the robots move to state Recruitment and their corresponding recruitment sides
can be expressed as list {(0, 0), (1, 0), (2, 0), (3, 0), (2, 2), (5, 0), (6, 0), (7,
1), (10, 0), (7, 2), (9, 0)}, named recruitmentNodeList, where number 0, 1, 2 in
the second element of each pair denote the Back, Left and Right side of a robot
respectively. Similarly, for organism 2, sortedNodeList = {2, 5, 6, 7, 10, 11, 9, 8,
3, 4, 1, 0}, and recruitmentNodeList = {(2, 0), (5, 0), (6, 0), (7, 1), (10, 0), (7,
2), (9, 0), (2, 1), (3, 0), (2, 2), (1, 0)}.

Together with the local communication protocols, a pair of sortedNodeList
and recruitmentNodeList, stored in each robot, give sufficient information for
the swarm to self-assemble to a specific 2D organism. Take organism 2 as an
example, the recruitment strategies are described as follows: the seed robot
first retrieves its ID from the sortedNodeList and the recruitment side from the

0

1

2

3

4

5 6 7

8

9

10

11

0

1

2

3

4

5

6

7

8

910

11

(a) Organism 1

0

1

2

3

4

5 6 7

8

9

10

11

0

1

2

3

4

5

6

7

11

10 9

8

(b) Organism 2

Fig. 4. Graphical representation of organism structures

Autonomous Morphogenesis in Self-assembling Robots 115

recruitmentNodeList, where ID = 2, side = 0 (Back). It then starts to emit MSG-
recruitment messages and docking beacon signals to recruit other robots. When
a new robot is docked to its Back side, it sends a message to this robot with
the index of the organism and how many robots are in the organism; here index
is 2 (corresponding to organism 2) and the number of robots in the organism
is 2. The newly docked robot then retrieves its ID from the corresponding re-
cruitmentNodeList, here 5 as it knows it is the second robot in the organism.
These two robots then move to state InOrganism, where they compare their IDs
with the ID of the second pair element in the recruitmentNodeList. Since it is
“(5, 0)”, the robot in the organism with ID “5” moves into state Recruitment
with side 0 (Back) to attract another robot. Similarly, the newly docked robot
will receive the index of the organism and the current number of robots in the
organism from robot “5”, it is then assigned an ID of “6”. Meanwhile, robot “5”
will transmit a MSG-NewRobotDocked message via its Front side. Robot
“2” receives this message and will increment its internal variable numRobotsI-
nOrganism by 1, now 3. Next, robot “6” in state InOrganism will be matched as
the recruiting robot from the recruitmentNodeList. The process continues until
all robots’ numRobotsInOrganism is equal to the size of the sortedNodeList.

5 Results and Discussion

At the time of writing the SYMBRION robot is still under development and not
enough real robot platforms are available for testing the morphogenesis approach
presented in this paper. Thus a simulated model of the SYMBRION robot has
been implemented in the popular simulation tool Stage [12]. As shown in Figure
5(a), the robot model in Stage has the same size as the SYMBRION robot.
For each robot in Stage, the IR-based sensing and communications approach
described in [6] is accurately simulated and calibrated with data measured from
real sensors. Each robot can move in the arena using two differentially driven
wheels (not shown in Figure 5(a)). Four simplified docking units on each vertical
face of the robot simulate mechanical docking. As the morphogenesis approach
discussed in the paper takes place exclusively in a 2D environment, neither the
hinge driver of the robot nor the physics needs to be simulated.

Simulation experiments are carried out within an 8m x 8m bounded arena.
40 robots are deployed, each running the same controller described in previous
sections. Figure 5(b)-(e) show screenshots from the Stage simulation in which
the robots are self-assembling into a complex 2D shape with 4-way and 3-way
joints, and right angles. To trigger the start of the morphogenesis process a large
box acting as a “power socket”, emitting IR signals which can be detected by the
docking sensors of a robot, is placed in the arena. The first robot that finds the
box becomes the seed robot and docks with the box. It then chooses, at random,
one organism shape from its set of pre-defined structures and executes the re-
cruitment strategy described above to recruit other robots and hence initiate the
new structure. To further test the controller, once the organism has completely
formed (Fig. 5(d)), all robots in the organism are switched to state Disassembly.

116 W. Liu and A.F.T. Winfield

(a) robot model (b) 45m 41s 700msec (c) 1h 18m 24s 500msec

(d) 1h 32m 47s 500msec (e) 1h 33m 01s 500msec

Fig. 5. Screenshots from simulation, the first robot is attached to the large box at time
42m 52s 600msec. The organism is completed at time 1h 32m 30s 600msec.

(a) a simple shape (b) a six leg structure with
tail

(c) a four leg ‘H’ structure

Fig. 6. A selection of different 2D planar structures formed in simulation

Figure 5(e) shows that the organism has started disassembling. Clearly, unlike
the recruitment process, disassembling can start from more than one point in
the organism. After all robots are disconnected from the organism, the “power
socket” starts to transmit IR signals again and the cycle is repeated. Each time,
the seed robot randomly chooses a pre-defined organism and starts the recruit-
ment procedure. Figure 6 shows some different 2D structures the robots have

Autonomous Morphogenesis in Self-assembling Robots 117

constructed within one single simulation run. As the IDs of the robots in the
organism are dynamically allocated when they dock, the particular robots that
make up the organism vary each cycle. Thus the same robot may play different
roles, depending on its position, in different organisms.

6 Conclusions and Future Work

This paper has presented a simple self-organised morphology control mecha-
nism for a group of self-assembling robots. Each robot operates in one of two
modes: Swarm Mode or Organism Mode, and acts accordingly following the rules
of a common behaviour-based controller. The autonomous morphogenesis ap-
proach is completely decentralised and self-organised with local IR-based robot-
robot communications. The 2D planar organism structures are represented with
ID-based tree structures. Two node lists (arrays), sortedNodeList and recruit-
mentNodeList are generated by a pre-order walk through the corresponding tree
representation. Together with the local communication protocols these two node
lists, stored in each robot, give sufficient information for the swarm to self-
assemble into a specific 2D organism. Each robot is dynamically allocated an ID
when it has docked with the developing organism

The proposed morphology control mechanism has been demonstrated using
the simulation tool Stage. A simulated robot has been modelled with the same
sensing and communication capabilities for docking and recruitment as those
of the real SYMBRION robot. Simulation shows that these robots can success-
fully self-assemble into the specified organism structure. Given the hardware
constraints, in a 2D environment, the shapes can be any of those defined in tree
structures with fewer than 3 children and no cycles. When very simple disas-
sembly strategies are applied, re-shaping between different organisms can also
be achieved using the same controller framework. To improve the energy effi-
ciency of the re-shaping procedure, more complex disassembly strategies need to
be investigated in future work. Moreover, as only one robot at a time is allowed
to dock during the recruitment process, the efficiency of the algorithm could
be further improved by allowing parallel docking. Note also that at the time of
writing the algorithm is not fault tolerant and there are many ways in which
faults might disrupt the self-assembly process including, for instance, mechani-
cal failure of the docking mechanism or failure of the power or communications
busses across the docking mechanism. With real hardware operating over ex-
tended periods and multiple robots the probability of such faults is likely to be
high. Thus planned work also includes extending the morphogenesis algorithm
so that if faults are detected during self-assembly, the process modifies itself to
compensate for those faults.

Acknowledgments. The SYMBRION project is funded by the European Com-
mission within the work programme Future and Emergent Technologies Proac-
tive under grant agreement no. 216342.

118 W. Liu and A.F.T. Winfield

References

1. Christensen, A., O’Grady, R., Dorigo, M.: Swarmorph-script: a language for ar-
bitrary morphology generation in self-assembling robots. Swarm Intelligence 2(2),
143–165 (2008)

2. Grushin, A., Reggia, J.A.: Automated design of distributed control rules for the
self-assembly of pre-specified artificial structures. Robotics and Autonomous Sys-
tems 56(4), 334–359 (2008)

3. Guo, H., Meng, Y., Jin, Y.: A cellular mechanism for multi-robot construction via
evolutionary multi-objective optimization of a gene regulatory network. Biosys-
tems 98(3), 193–203 (2009)

4. Kernbach, S., Meister, E., Scholz, O., Humza, R., Liedke, J., Ricotti, L., Jemai,
J., Havlik, J., Liu, W.: Evolutionary robotics: The next-generation-platform for
on-line and on-board artificial evolution. In: Proc. IEEE Congress on Evolutionary
Computation, Trondheim, Norway, pp. 1079–1086 (May 2009)

5. Levi, P., Kernbach, S. (eds.): Symbiotic Multi-Robot Organisms: Reliability,
Adaptability, Evolution. Springer, Heidelberg (2010)

6. Liu, W., Winfield, A.: Implementation of an IR approach for autonomous dock-
ing in a self-configurable robotics system. In: Proc. Towards Autonomous Robotic
Systems, Londonderry, UK, pp. 251–258 (September 2009)

7. Murata, S., Kakomura, K., Kurokawa, H.: Toward a scalable modular robotic sys-
tem. IEEE Robotics Automation Magazine 14(4), 56–63 (2007)

8. Rubenstein, M., Payne, K., Will, P., Shen, W.M.: Docking among independent
and autonomous CONRO self-reconfigurable robots. In: Proc. IEEE International
Conference on Robotics and Automation, vol. 3, pp. 2877–2882 (May 2004)

9. Salemi, B., Moll, M., Shen, W.M.: SUPERBOT: A deployable, multi-functional,
and modular self-reconfigurable robotic system. In: Proc. Int. Conf. on Intelligent
Robots and Systems, Beijing, China, pp. 3636–3641 (October 2006)

10. Shen, W.M., Salemi, B., Will, P.: Hormone-inspired adaptive communication and
distributed control for CONRO self-reconfigurable robots. IEEE Transactions on
Robotics and Automation 18(5), 700–712 (2002)

11. Støy, K.: Using cellular automata and gradients to control self-reconfiguration.
Robotics and Autonomous Systems 54, 135–141 (2006)

12. Vaughan, R.: Massively multi-robot simulation in stage. Swarm Intelligence 2(2-4),
189–208 (2008)

13. Yim, M., Zhang, Y., Roufas, K., Duff, D., Eldershaw, C.: Connecting and discon-
necting for chain self-reconfiguration with Polybot. IEEE/ASME Transactions on
Mechatronics 7(4), 442–451 (2002)

Autonomous Multi-agent Cycle Based Patrolling

Yotam Elor and Alfred M. Bruckstein

Faculty of Computer Science and the Goldstein UAV and Satellite Center, Israel
{yotame,freddy}@cs.technion.ac.il

Abstract. We introduce a novel multi-agent patrolling strategy. By
assumption, the swarm of agents performing the task consists of very
low capability ant-like agents. The agents have little memory, they can
not communicate and their sensing abilities are local. Furthermore, the
agents do not possess any knowledge regarding the graph or the swarm
size. However, the agents may mark the graph vertices with pheromone
stamps which can later be sensed. These markings are used as a primitive
form of distributed memory and communication. The proposed strategy
is a bundle of two algorithms. A single agent (the “leader”) is responsible
of finding a short cycle which covers the graph, and this is achieved us-
ing a “cycle finding” algorithm. All other agents follow that cycle while
maintaining even gaps between them using a “spreading algorithm”. We
prove that the algorithms converge within a finite expected time. Af-
ter convergence, the maximum time lag between two successive visits to
any vertex using the proposed strategy is at most 4 k

k−1
lmax
lmin

times the
optimal, where the optimal time is bounded from below by n·lmin

k
, and

where lmax (lmin) is the longest (shortest) edge in the graph and k is the
swarm size.

The “cycle finding” algorithm is robust i.e. in case the graph changes,
the leader autonomously finds a new patrolling route. The “spreading
algorithm” is scalable and robust. In case the patrolling cycle or the
number of agents change during run (e.g. as a result of an agent break
down) the agents autonomously redeploy uniformly over the patrolling
cycle.

1 Introduction and Related Work

The purpose of patrolling is to visit every point in the area as often as possible.
It is convenient to model the area being patrolled as an undirected graph. In
this model, time is discrete and will be measured in cycles. Using the undirected
graph model we can loosely define the patrolling task as continuously visiting all
the vertices of a graph. The idleness of a vertex is defined as the time since the
last visit to this vertex by an agent. In this work we shall use the worst idleness
evaluation criterion, as defined in [11,2].

Ant-like agents having limited capabilities are considered. The agents are
assumed to have little memory (O (log2 n) bits, where n is an upper bound on
the graph size), the agents have local sensing abilities and no communication is
allowed between them. We also assume that the agents do not possess any global

M. Dorigo et al. (Eds.): ANTS 2010, LNCS 6234, pp. 119–130, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

120 Y. Elor and A.M. Bruckstein

information e.g. the size of the graph, its structure, and the number of agents
are unknown. However, the agents can mark nodes with time stamps which can
be read by other agents later. The markings used are very simple, including only
three time stamps per vertex.

We propose a cycle based patrolling strategy i.e. all agents will follow a single
cycle which covers the graph. The patrolling task is divided into two sub-tasks.
The first sub-task is to find a good patrolling cycle and the second is to deploy the
agents uniformly over it. A uniform spread is desired because the worst idleness
is minimized when the time gaps between the agents following the cycle are equal.
In order to find a good patrolling cycle it is proposed to use a single agent, the
“leader”, following one of the cycle finding algorithms described in Section 3. The
leader’s responsibilities are to find a good patrolling cycle, maintain the cycle
and mark it so other agents will be able to follow it. All other agents follow the
cycle while maintaining even gaps between them.

The advantage of the proposed patrolling strategy over previously suggested
cycle based algorithms [5,13,3] is its robustness to agent failures and environment
changes. In case the graph changes and the patrolling cycle is broken, the leader
autonomously finds a new patrolling cycle. In case the patrolling cycle, or the
swarm size changes during run, the agents autonomously rearrange in a new
uniform formation. It is important to note that the algorithms presented in
[5,13,3] are not distributed. On the other hand, the time required to find a
patrolling cycle and to spread the agents over it is longer and the patrol quality
might be poorer compared to the non-distributed algorithms.

Both the cycle finding algorithm and the deployment algorithm can be used
separately. For example, the cycle finding algorithm can be used as a single agent
patrolling strategy or as a heuristic to find Hamilton cycles in graphs, see the
work of Wagner et al. [15]. Assuming a patrolling cycle was marked on the graph
in advance (for example, using a TSP approximation algorithm) or in case of a
patrol around a close perimeter [1], the deployment algorithms proposed in this
work can be used.

Due to space limitations, the proofs are omitted from this paper, they can be
found in our readily available TR [6].

2 Previous Work

Chevaleyre et al. argued that the optimal single agent patrolling strategy is to fol-
low the shortest TSP circuit [4]. Elmaliach et al. proposed a non-distributed algo-
rithm which finds the shortest Hamilton cycle in weighted grids [5]. This cycle may
then be used to patrol the graph. In order to spread the agents uniformly over the
cycle, they have proposed a non-distributed algorithm which calculates the fastest
way to spread the agents uniformly starting from any given formation. Both algo-
rithms require to know the graph in advance and the spreading algorithm requires
to know all agents location. Another approach is to divide the graph between the
agents and to let each agent patrol only the sub-graph assigned to it. In a previous
work we have proposed such a distributed algorithm inspired by physical gas filled

Autonomous Multi-agent Cycle Based Patrolling 121

balloons [8]. When direct communication is allowed a "vertex-market" approach
can be employed [2,12].

The scenario where the agents can sense the idleness of all the vertices of
the graph, led to several heuristic approaches [11,2]. Two different assumptions
were made: either each agent can sense only the vertices’ idleness relative to it’s
own visits or each agent sense the vertices’ idleness with respect to all agents.
Note that in the second case the idleness of the vertices serves as an implicit
communication channel. A distributed sensing variation is to choose the vertex
with the highest idleness from the adjacent vertices, inspired by ants foraging
in an environment using pheromone gradient [16].

Some recent papers have focused on different evaluation criteria [13,1]. As-
suming an intruder model the evaluation criterion used is, roughly speaking, the
ability to stop the intruder. The main theme of these patrolling strategies is to
use probabilistic algorithms in order to avoid static patrolling patterns which
could, in an adversarial scenario, be exploited by intruders. However, stopping
intruders is only one aspect of patrolling. For applications such as cleaning,
maintenance, surveillance or guarding against weak intruders, the worst idleness
criterion remains very important.

3 Finding Good Patrolling Routes

In this section we consider the first sub-task i.e. finding a good patrolling cycle.
Denote the number of vertices in the graph by n. For brevity, it is first assumed
that the graph is unweighted. The weighted case is discussed in Section 3.3. Three
single-agent algorithms are presented. The first algorithm (PVAW) is designed
to patrol Hamiltonian graphs. By executing the proposed algorithm, the agent
finds a Hamilton cycle in the graph. This cycle is the shortest among all cycles
hence yielding an optimal patrol. The second algorithm (PVAW2) aims to patrol
graphs whose square is Hamiltonian. Using the algorithm, the agent finds a cycle
of length at most 2n. The third algorithm (PVAW3) is designed for general
graphs. An agent following PVAW3 will find a cycle of length at most 4n.

3.1 Hamiltonian Graphs

The proposed algorithms are based on the Vertex-Ant-Walk algorithm [16]. VAW
is a simple patrolling procedure in which at every time cycle the agent takes a
step to the neighbor vertex with the highest idleness. An agent performing VAW
will eventually follow a cycle which covers the graph. However, this end-cycle is
not necessarily simple thus not optimal. It was shown by Wagner et al. [15] that
a Hamilton cycle is a possible end-cycle of the VAW process. However, VAW some-
times converges to non-Hamiltonian end-cycles (see Figure 7 in [16]). The
Probabilistic-VAW (PVAW) algorithm is proposed as an expansion of VAW. An
agent performing PVAW acts most of the time according to VAW. However, using
only the time stamps, the agent knows when the cycle it follows is not Hamiltonian
so the agent performs random steps in order to find a better end-cycle.

122 Y. Elor and A.M. Bruckstein

Algorithm 1. PVAW
/* the agent is on vertex u */
if PrevDiff �= 1 and x ≤ p then1

go to a random neighbor of u2
else3

go to the neighbor of u with the lowest σ value (brake ties randomly)4

/* the agent is on vertex v */
PrevDiff ← σ(v) − σmem5
σmem ← σ(v)6
σ(v) ← t7
t ← t + 18

An informal description of PVAW is the following: During the patrol, using
only the time stamps, the agent knows if the current vertex and the previously
visited vertex were visited consecutively and in the same order at the previous
times they were visited. If its true, the agent performs the regular VAW i.e. goes
to the neighboring vertex with the lowest time stamp. Otherwise, with a small
probability p the agent goes to a random neighbor, or takes a regular VAW step
with probability 1 − p. When the agent follows a Hamilton cycle, the vertices
are always visited in the same order so the agent continues to follow the cycle
indefinitely. When the agent is not following a Hamilton cycle, there will be
infinitely many events of a small probability to change the agent route. Hence
the agent will eventually change its route.

PVAW is presented here as Algorithm 1. σ (·) are the time stamps on the
vertices; 0 < p < 1 is a constant parameter; x is a random variable chosen
uniformly in [0, 1]; σmem and PrevDiff are variables in the agent’s memory.
In the algorithm as presented, the time stamps are unbounded. In practice, the
time can be calculated modulo N (where N is a bound on the graph size) or
alternately, the algorithm can be implemented using pheromone decay.

Due to space limitations the proof of Theorem 1 is omitted. It can be found
in our TR [6]. Roughly speaking, Theorem 1 is proved by showing that (1) from
any system state there is positive probability that the agent will find a Hamilton
cycle within a finite time; and (2) once a Hamiltonian cycle was found, the agent
will continue to follow it.

Theorem 1. An agent performing PVAW on a Hamiltonian graph G will even-
tually patrol the graph using a Hamilton cycle.

3.2 Non-Hamiltonian Graphs

In this section PVAW is expanded to address graphs which are not Hamiltonian.
We first present the algorithm PVAW2 which is an extension of PVAW designed
to patrol graphs whose square is Hamiltonian. We denote by G2 (the square of
G) the graph on the vertices of G in which two vertices are adjacent if and only
if they have distance of at most 2 in G. Note that many of the graphs being

Autonomous Multi-agent Cycle Based Patrolling 123

patrolled are two-connected1 and “the square of every two-connected graph is
Hamiltonian” [10]. Consider an agent who can sense its surrounding to a distance
of two edges (instead of one) and can travel two edges in a single time step (again,
instead of one). Such an agent performing PVAW on G, while choosing its next
step from a 2-neighborhood2, is practically performing PVAW on G2. Since G2

is Hamiltonian, the resulting end-cycle is Hamiltonian.
In the patrolling problem it is usually assumed that an agent can travel only

one edge per time cycle. So we consider a more reasonable agent model in which
the agent can sense to a distance of two edges, but can travel only a single edge
per time cycle. This agent can execute PVAW2 (presented as Algorithm 3 in
[6]). PVAW2 is identical to PVAW but in lines 2 and 4 the next vertex is chosen
out of a 2-neighborhood. Note that t in PVAW2 does not comply with real time
because moving from vertex to vertex might take one or two time cycles. The
proof of Theorem 2 is based on Theorem 1.

Theorem 2. For any graph G such as G2 is Hamiltonian, an agent performing
PVAW2 on G will eventually patrol the graph using a cycle of length at most 2n.

PVAW3 is an extension of PVAW designed to patrol any graph. Consider an
agent who can sense its surrounding to a distance of 4 edges. Such an agent can
perform PVAW on G4. Since the square of any graph is two-connected (see [6])
then the square of the square of any graph (G4) is Hamiltonian. So an agent
following PVAW3 will find a cycle of length at most 4n. The pseudo code of
PVAW3 with the convergence proof can be found in our TR [6].

3.3 Weighted Graphs

Assume that the graph being patrolled is weighted i.e. every edge has a weight
(or length) which is the amount of time required to traverse it. The algorithms
PVAW, PVAW2 and PVAW3 can be used to find patrolling cycles in weighted
graphs by simply ignoring edge weights. However, for weighted graphs, the qual-
ity of the patrolling cycles found is poorer. Let lmax (lmin) be the length of
the longest (shortest) edge in the graph. Let OPT be the length of the shortest
cycle which covers the graph. Clearly, OPT ≥ n · lmin. The length of the cycle
found by PVAW, for example, is n edges. Hence its length is at most n · lmax.
So PVAW finds a cycle of length at most lmax

lmin
OPT . Similarly, PVAW2 finds a

cycle of length at most 2 lmax

lmin
OPT and PVAW3 - 4 lmax

lmin
OPT . Heuristics can be

used in order to obtain shorter cycles.

3.4 Discussion and Simulations

Before performing simulations, the value of p (the random step probability) must
be set. p should be small enough to allow VAW to stabilize. On the other hand,
1 A graph G is two connected iff for every vertex v ∈ G, G\v is connected.
2 The d-neighborhood of vertex u include all the vertices of distance d or less from u.

124 Y. Elor and A.M. Bruckstein

200 400 600 800 1000
0

0.5

1

1.5

2

2.5

3
x 10

7

n

A
vg

 C
on

ve
rg

en
ce

 ti
m

e

exp results
Polynomial fit

200 400 600 800

10
4

10
6

n

A
vg

 C
on

ve
rg

en
ce

 ti
m

e

exp results
Polynomial fit

Fig. 1. Convergence time of PVAW3 on random trees (left) and grids (right). Note
that the right graph y-axis is logarithmic.

choosing p too small will increase the convergence time because escaping from
non-Hamilton end-cycles will take a long time. In our experiments p = 1/n was
used.

PVAW3 is the most general of the algorithms described, it can be used to
find a patrolling cycle on any graph, so the experiments were focused on it. The
experiments were done over unweighted grids and unweighted random trees.
A random tree is created by first constructing n vertices and then randomly
connecting vertices belong to different components until a single component
remains. We have performed experiments with graph size varying from 20 to
1000 vertices. The convergence time of every experiment setup was averaged
over 500 runs.

The average time to find a patrolling cycle in a random tree was found to
be about 0.04 · n3, see Figure 1. The convergence time for grids was found to
be exponential, about en/100, see Figure 1. Because grids are denser than trees,
they contain more Hamilton cycles and more ways to improve the agent route
so we have expected (wrongly) that convergence will be faster on grids. Which
graph characteristics effect the convergence rate is currently unknown. We leave
that as future work.

4 Swarm Deployment

In this section we consider the second sub-task which is spreading the agents
uniformly over the previously found cycle. Algorithm 2 which aims to spread the
agents uniformly over a ring is presented. A swarm of agents following Algorithm
2 on a ring will reach a uniform formation within a finite expected time. After
reaching the uniform formation, the agents will patrol the ring as efficiently as
possible.

A group of k agents on an oriented weighted ring is considered. Every edge
e has an integer weight we which represents the number of time cycles required
to traverse the edge. Let m be the total length of the ring, i.e. m �

∑
we.

Autonomous Multi-agent Cycle Based Patrolling 125

The notations are adopted from [9]. Without losing generality, assume that the
agents patrol the ring clockwise. Whenever we fix an agent a, let a1 (a−1) be
the agent who is the clockwise (counter-clockwise) neighbor of a. Similarly a2
is the clockwise neighbor of a1 and so on. Let d (a, b) be the distance between
agents a and b defined as the sum edge weights on the clockwise path from a to
b. In case agents a or b are in the middle of an edge, only the relevant part of
the edge is taken into account. Note that d (a, b) + d (b, a) = m. The following
definitions are very convenient. For agent a,

d−1 (a) � d (a−1, a) , d1 (a) � d (a, a1) , d2 (a) � d (a1, a2) (1)

A synchronous model which is very close to the model of Suzuki et al. [14] is
considered. In the synchronous model the agents are operating in rounds. In
every round, every agent sense the environment and takes an action. As opposed
to the model by Suzuki et al. it is assumed that in every round the agents have
slightly different timing phase so they never work simultaneously. In particular,
upon sensing neighboring vertices, every agent can sense all time stamps that
were made earlier.

In scenarios where agents can sense the location of other agents directly, it is
realistic to assume that the agents’ sensing range is limited. We have shown in a
related work [9] that if the agents’ sensing range is shorter than �n/k�, the agents
can not spread uniformly over the ring. The distance estimation mechanism
described here is intrinsically not range limited so it enables the agents to spread
over rings of any size.

We have considered a very close task in [7]. As in the current scenario, in [7]
the agents are required to minimize the worst idleness of a ring graph. In [7],
it is assumed that every agent can measure the distance to its clockwise and
counter-clockwise neighbors (d1 and d−1). In the current scenario the agents’
sensing abilities are poorer, every agent can estimate the distance to the two
agents preceding him (d1 and d2). To be clear, the sensing model is different in
two ways. First, instead of addressing d−1 and d1, every agent addresses d1 and
d2. Second, instead of measuring distances, the agents can only estimate them
using time stamps. The distance estimation mechanism will be described later.

An agent can move clockwise or counter-clockwise on the cycle hence changing
the agents formation. For example, if agent a takes a clockwise step while all
other agents hold position, d−1 (a) is increased and d1 (a) is decreased by one
edge. All other inter-agent distances remain unchanged. So every agent is limited
to moving vertices between d−1 and d1. In the deployment algorithm in [7], every
agent tries to balance d−1 and d1 by moving vertices between them. In the current
scenario d−1 is unknown to the agents so instead every agent tries to balance
d1 and d2. Unfortunately, the agents are limited to manipulate only d−1 and d1.
This limitation hardens the task because the agents can not effect d2 and, even
worse, a side effect of changing d1 is changing d−1. Agents are forced to change
d−1 without being able to sense it. For example, an agent can move vertices from
d−1 to d1 even though d−1 is smaller than d1 hence making the deployment less
balanced. That is the main reason the task considered here is harder and the
algorithms are less efficient when compared to ones discussed in [7] .

126 Y. Elor and A.M. Bruckstein

When an agent is occupying a vertex, it estimates the distances d1 and d2
in the following manner. Denote agent a’s estimation of d1 (a) by δ1 (a), and of
d2 (a) by δ2 (a). In our algorithms, every vertex is marked by two time stamps
τ1 and τ2 which are the times of the last visit and the second to last visit to
the vertex respectively. These markings are maintained by the agents. Consider
agent a occupying the vertex u at time t, the distances are estimated by:

δ1 (a) � t− τ1 (u) δ2 (a) � τ1 (u) − τ2 (u) (2)

where t is current time. As shown in [6], δ1 is an upper bound on d1 and δ1 + δ2
is an upper bound on d1 + d2. Unfortunately, δ2 might be smaller or larger than
d2. Note that the agents are estimating distances only when occupying vertices
so δ1 (a) and δ2 (a) are undefined when agent a is not on a vertex.

For the analysis purpose, δ1 and δ2 are defined for all vertices (and not only for
vertices which are occupied by agents). δ2 definition, given in Equation 2, holds
for unoccupied vertices. Consider vertex u which may be occupied or unoccupied
at time t. Let d (a, u) be the length of the clockwise path from agent a to vertex
u and let Δ (u) = t + mina {d (a, u)} where t is current time. Intuitively, Δ (u)
is the next time vertex u will be visited by an agent assuming the next agent
to visit vertex u will advance without stopping. Let δ1 (u) = Δ (u) − τ1 (u). It is
important to note that in case there is an agent on vertex u then Δ (u) = t and
the definition given in Equation 2 holds. We emphasize again that the quantities
δ1 (u) and δ2 (u) are defined for all vertices for the analysis purpose. In practice,
δ1 (u) and δ2 (u) are known only to the agent currently occupying vertex u.

Let φ = maxu∈G,i∈{1,2} {δi (u)}. The idleness of any vertex u is bounded from
above by δ1 (u). Hence the worst idleness is bounded by φ.

4.1 The Deployment Algorithm

The following spreading algorithm is proposed (compare with Algorithm 3 in
[7]). Every agent follows the ring clockwise while trying to balance δ1 and δ2.
Recall that the agent can not change δ2. However, it can enlarge δ1 by staying
a time cycle in its current location. Formally, if δ1 ≥ δ2 the agent continues to
move clockwise. In case δ1 < δ2 there is a probability (f (δ1, δ2)) that the agent
will stop for a time cycle hence enlarging δ1 (and possibly d1) by one edge. A
pseudo code of the algorithm is presented as Algorithm 2. We prove that for
every function f (δ1, δ2) fulfilling the conditions in Definition 1 the swarm will
eventually patrol the ring efficiently i.e. the worst idleness will be �m/k�.

Definition 1. The conditions on f (δ1, δ2) that guarantee convergence are:

1. For δ1 < δ2, 0 < f (δ1, δ2).
2. For δ1 = δ2 − 1, f (δ1, δ2) < 1.

Note that for δ1 = δ2 − 1, 0 < f (δ1, δ2) < 1 hence the randomness is a necessity.
In the algorithm, as presented in Algorithm 2, the agents share a common

notion of time. However, the agents only address the time difference between two
consecutive visits to the same vertex. Hence instead of a common time notion

Autonomous Multi-agent Cycle Based Patrolling 127

Algorithm 2. Deployment (weighted ring), x is a random variable taken
uniformly from [0, 1], t is current time
δ1 ← t − τ1; δ2 ← τ1 − τ21

p ←
{

f (δ1, δ2) ifδ1 < δ2

0 else2

if x > p then3
τ2 ← τ1; τ1 ← t4
Go to the next vertex on the ring (might take more than one time cycle).5

the agents can use unsynchronized clocks at the vertices or measure pheromone
decay.

Due to space limitations, the proof of Theorem 3 is omitted. It can be found
in [6]. The Theorem is proved by showing that (1) φ is non-increasing; and (2)
from any system state such as φ >

⌈
m
k

⌉
, there is a positive probability that φ

will decrease within a finite time.

Theorem 3. Consider a swarm of k agents following Algorithm 2 on a weighted
ring of size m. The agents will reach a formation in which φ = �m/k� within a
finite expected time.

4.2 Simulations

The simulations were conducted over unweighted rings of varying size and with
varying number of agents. f (δ1, δ2) was of the form

f (δ1, δ2) =

⎧⎨⎩
1 if δ1 < δ2 − 1
c if δ1 = δ2 − 1
0 else

(3)

with c = 1/n. Before starting the algorithm, all agents were placed on a single
vertex and for all vertices τ1 and τ2 were set to zero. So initially φ = n. Let T (x)
be the time in which the swarm achieve φ = x. All results were averaged over
500 runs.
T
(⌈

n
k

⌉
+ k

2

)
, T
(⌈

n
k

⌉
+ 1
)

and T
(⌈

n
k

⌉)
for a swarm of 10 agents spreading

over rings of size 98−112 vertices are displayed in Figure 2. Observe that T
(⌈

n
k

⌉)
is very sensitive to the value of (n)modk. In case (n)modk = 0, T

(⌈
n
k

⌉)
is very

high compared to any other value of (n)modk. On the contrary, T
(⌈

n
k

⌉
+ 1
)

is not sensitive to (n)modk and is much smaller than T
(⌈

n
k

⌉)
. A typical run

of the algorithm with 10 agents on a ring of size 100 (i.e. (n)modk = 0) is
presented in Figure 2. In a typical run, φ decreases very rapidly until reaching
φ =

⌈
n
k

⌉
+ k

2 . φ =
⌈

n
k

⌉
+ 1 is achieved shortly after and φ =

⌈
n
k

⌉
is achieved

much later. Because the patrolling quality is almost optimal when φ =
⌈

n
k

⌉
+ 1

and T
(⌈

n
k

⌉
+ 1
)

is not sensitive to small changes in n, we focus our experiments
on T

(⌈
n
k

⌉
+ 1
)
.

128 Y. Elor and A.M. Bruckstein

100 105 110
0

2

4

6

8

10
x 10

4

n

av
g

tim
e

φ = n/k + k/2
φ = n/k + 1
φ = n/k

2 4 6

x 10
4

0

20

40

60

80

100

time

φ

φ=n/k+k/2

φ=n/k+1 φ=n/k

Fig. 2. (left) T
(⌈

n
k

⌉
+ k

2

)
, T
(⌈

n
k

⌉
+ 1
)

and T
(⌈

n
k

⌉)
for a swarm of 10 agents spreading

over rings of size 98− 112 vertices. (right) A typical run of 10 agents on a 100 vertices
ring.

0 500 1000
0

1

2

3

4

5

6

7
x 10

5

n

A
vg

 ti
m

e

5 agents
10 agents
15 agents

0 500 1000
0

1

2

3

4

5

6

7
x 10

5

n

A
vg

 ti
m

e

5 agents
10 agents
15 agents

Fig. 3. (left) Average time to achieve φ =
⌈

n
k

⌉
+ k

2
. (right) Average time to achieve

φ =
⌈

n
k

⌉
+ 1.

T
(⌈

n
k

⌉
+ k

2

)
and T

(⌈
n
k

⌉
+ 1
)

are presented in Figure 3. T
(⌈

n
k

⌉
+ k

2

)
is not

dependent on the number of agents and is found to be about 1
2 ·n2. T

(⌈
n
k

⌉
+ 1
)

is
effected by the number of agents. The larger the swarm, the larger T

(⌈
n
k

⌉
+ 1
)
.

Nevertheless, for any swarm size T
(⌈

n
k

⌉
+ 1
)

was found to be Θ
(
n2
)
.

5 Bundling the Algorithms

In the two previous sections we have shown how to find a good patrolling cycle
and how to deploy agents over a ring. In this section we bundle the two algo-
rithms to create the multi agent patrolling strategy. When following the proposed
strategy, there is one agent acting as leader. All other agents (denoted as the
“herd”) follow the cycle marked by the leader. All agents start the algorithm at
the same time, meaning that the agents of the herd will try to spread uniformly

Autonomous Multi-agent Cycle Based Patrolling 129

before the leader have found a cycle. Clearly, they will fail. Nevertheless, after a
stable cycle was reached, the herd will spread uniformly over it.

It is assumed that all agents have the same sensing abilities as the leader.
For example, if the leader execute PVAW2 then all agents can sense to a dis-
tance of two edges. For this case, it was shown in [6] that the agents can follow
the patrolling cycle marked by the leader. Thus we simplify the problem from
spreading over a non-simple cycle to spreading over an oriented weighted ring.

For generality, we assume the leader executes PVAW3. Considering Hamilto-
nian or 2-connected graphs, similar results can be obtained for PVAW or PVAW2
respectively. When applying the proposed patrolling strategy, the leader will find
a patrolling cycle of length at most 4n · lmax within a finite expected time. Af-
ter the leader has found a stable cycle, the herd, following Algorithm 2, will
spread uniformly over it. After stabilization, the worst idleness obtained by the
k − 1 agents of the herd is at most �4n · lmax/ (k − 1)�. Hence the worst idle-
ness of our proposed strategy is at most 4 lmax

lmin

k
k−1 ·OPTwi where OPTwi is the

worst idleness of the optimal strategy, where we have used the trivial bound of
OPTwi ≥ n·lmin

k .
In case some of the agents of the herd break down, the remaining active agents

autonomously rearrange in a new uniform formation. In case the leader breaks
down, one of the herd agents should be called upon to replace it. The agents of
the herd can notice that there is no leader around because the σ stamps get old.
However, a special attention is required in order to avoid situations with two or
more leaders in swarm. For example, a distributed leader election algorithm can
be used. We leave the issue of robustness to leader breakdowns as a future work.

6 Conclusion

In this paper we have presented a patrolling strategy composed of a bundle of
two algorithms. The leader agent is responsible of finding and marking a good
patrolling cycle. All other agents (the herd) follow that cycle while maintaining
even gaps between them. The worst idleness achieved by a swarm of k agents
following our strategy is at most 4 k

k−1
lmax

lmin
times the optimal.

In practice, the leader might require exponential time to find a good patrolling
cycle. So PVAW algorithms are useful in case we know convergence will be fast (if
for example, the graph being patrolled is tree-like) or in case fast convergence is
not essential. On the contrary, the deployment algorithm is efficient. An almost-
optimal spread was achieved within O

(
n2
)

time cycles in all scenarios. The
deployment algorithm can be used with other “cycle building” algorithm e.g.
some form of DFS or a non-distributed TSP approximation algorithm.

A novel pheromone based distance estimation mechanism was presented which
is intrinsically not range limited.

Acknowledgments. This research was supported by the Technion Goldstein
UAV and Satellite Center and by the European Community’s FP7-FET program,
SMALL project.

130 Y. Elor and A.M. Bruckstein

References

1. Agmon, N., Kraus, S., Kaminka, G.A.: Multi-robot perimeter patrol in adversarial
settings. In: IEEE Int. Conf. on Robotics and Automation, pp. 2339–2345 (2008)

2. Almeida, A., Ramalho, G., Santana, H., Tedesco, P.A., Menezes, T., Corruble, V.,
Chevaleyre, Y.: Recent advances on multi-agent patrolling. In: Bazzan, A.L.C.,
Labidi, S. (eds.) SBIA 2004. LNCS (LNAI), vol. 3171, pp. 126–138. Springer,
Heidelberg (2004)

3. Basilico, N., Gatti, N., Amigoni, F.: Developing a deterministic patrolling strategy
for security agents. In: IEEE/WIC/ACM Int. Joint Conf. on Web Intel. and Intel.
Agent Technologies, vol. 2, pp. 565–572 (2009)

4. Chevaleyre, Y., Sempe, F., Ramalho, G.: A theoretical analysis of multi-agent
patrolling strategies. In: AAMAS, pp. 1524–1525. IEEE Computer Society, Wash-
ington (2004)

5. Elmaliach, Y., Agmon, N., Kaminka, G.A.: Multi-robot area patrol under frequency
constraints. In: IEEE Int. Conf. on Robotics and Automation, pp. 385–390 (2007)

6. Elor, Y., Bruckstein, A.M.: Autonomous multi-agent cycle based patrolling. Tech.
rep., Computer Science Department, Technion Haifa, Israel (September 2009)

7. Elor, Y., Bruckstein, A.M.: Multi-agent deployment and patrolling on a ring graph.
Tech. rep., Computer Science Department, Technion Haifa, Israel (September 2009)

8. Elor, Y., Bruckstein, A.M.: Multi-agent graph patrolling and partitioning. In:
IEEE/WIC/ACM Int. Joint Conf. on Web Intel. and Intel. Agent Technologies,
pp. 52–57 (2009)

9. Elor, Y., Bruckstein, A.M.: Multi-agent deployment on a ring graph. In: Ants 2010:
Seventh International Conference on Swarm Intelligence (to appear, 2010)

10. Fleischner, H.: The square of every two-connected graph is hamiltonian. Journal
of Combinatorial Theory 16(1) (1974)

11. Machado, A., Ramalho, G., Zucker, J.D., Drogoul, A.: Multi-agent patrolling: An
empirical analysis of alternative architectures. In: Sichman, J.S., Bousquet, F.,
Davidsson, P. (eds.) MABS 2002. LNCS (LNAI), vol. 2581, pp. 155–170. Springer,
Heidelberg (2003)

12. Menezes, T., Tedesco, P., Ramalho, G.: Negotiator agents for the patrolling task.
In: Sichman, J.S., Coelho, H., Rezende, S.O. (eds.) IBERAMIA 2006 and SBIA
2006. LNCS (LNAI), vol. 4140, pp. 48–57. Springer, Heidelberg (2006)

13. Sak, T., Wainer, J., Goldenstein, S.K.: Probabilistic multiagent patrolling. In: Za-
verucha, G., da Costa, A.L. (eds.) SBIA 2008. LNCS (LNAI), vol. 5249, pp. 124–
133. Springer, Heidelberg (2008)

14. Suzuki, I., Yamashita, M.: Distributed anonymous mobile robots: Formation of
geometric patterns. SIAM Journal on Computing 28(4), 1347–1363 (1999)

15. Wagner, I.A., Bruckstein, A.M.: Hamiltonian(t) - An Ant-Inspired Heuristic for
Recognizing Hamiltonian Graphs. In: Proceedings of the 1999 Congress on Evolu-
tionary Computation (1999)

16. Wagner, I.A., Lindenbaum, M., Bruckstein, A.M.: Efficiently searching a graph
by a smell-oriented vertex process. An. of Math and Art. Intel. 24(1-4), 211–223
(1998)

Biologically Realistic Primitives
for Engineered Morphogenesis

Justin Werfel

Wyss Institute for Biologically Inspired Engineering
Harvard University, Cambridge, USA
justin.werfel@wyss.harvard.edu

Abstract. Finding ways to engineer morphogenesis in biological sys-
tems, to direct the development of a multicellular organism according to
desired specifications, will require both high-level understanding of or-
ganizing principles in such systems and low-level understanding of how
basic tools can be reliably implemented in real cells. Past work has as-
sumed low-level capabilities appropriate to computing agents but not
necessarily to biology. Here I discuss potential ways of implementing
low-level primitives based on capabilities for which evidence exists in
biological systems, with the goal of developing a basis for engineering
developmental processes that will be realizable in wetware. I focus on
the use of biologically realistic morphogen gradients to produce struc-
tures of desired size, provide positional information, and trigger genetic
cascades that lead to the growth of more complex structures.

1 Introduction

Morphogenesis, the process of development from a single cell to a complex mul-
ticellular organism, is one of the great examples of robust collective behavior.
The growth and differentiation of genetically identical cells, reliably resulting in
a given high-level structure, is the phenomenon that drives the field of develop-
mental biology. Moving from science toward engineering, the field of synthetic
biology seeks to find ways to program cells to make them exhibit desired be-
haviors. While synthetic biology has so far focused on ensembles of unicellular
organisms, its ultimate goal will encompass multicellular organisms, enabling
us to grow plants and animals of desired morphology by specifying a genetic
program.

Achieving this goal will require programming principles for agents with the
unique characteristics of biological cells. Existing studies on the engineering of
bioinspired structure-forming systems [1, 2, 8, 13, 16, 18] draw important ideas
from principles known to operate in biological systems, but often make assump-
tions about the systems they consider that may be unrealistic for living cells or
difficult to achieve.

This paper uses an agent-based cell model to consider certain primitives that
are known to operate in natural developmental systems and likely to be criti-
cal to engineered ones, and seeks to develop principles for their implementation

M. Dorigo et al. (Eds.): ANTS 2010, LNCS 6234, pp. 131–142, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

132 J. Werfel

Fig. 1. Snapshots during the growth of a rounded structure with a narrow projection,
grown using the model and approach for engineered morphogenesis described here

that may realistically be achievable by synthetic biologists in the near future.
These primitives include tissue growth limited to desired dimensions, the estab-
lishment of coordinate systems, and the demarcation of well-defined domains of
the embryo. In this work I focus on morphogenesis in two-dimensional sheets
of cells (Fig. 1), as in epithelial tissues, though the model is intrinsically three-
dimensional.

Section 2 discusses related work. Section 3 lays out the assumptions made
about cell capabilities. Section 4 describes the agent-based model used to eval-
uate the approach. Section 5 discusses the primitives addressed here. Section 6
concludes.

2 Related Work

Studies of morphogenesis in natural systems have identified key principles that
underlie organismal development [9, 11, 17]. Substances called morphogens direct
cell growth and differentiation, triggering different behaviors depending on their
concentration. Some morphogens are produced by cells in genetic cascades as
the developmental process unfolds, while others are deposited in the egg by
the mother before fertilization. Gradients of morphogen concentration, spatially
distributed across an embryo or subregion, are the basic tools used to establish
locations and directions. Small concentration differences can be amplified to
produce stripes and other sharply demarcated expression regions.

Past work specifically concerned with engineering developmental processes [1,
2, 13] has relied on several of these principles. Nagpal [13] describes programming
methods for a flat sheet of cells to coordinate folding into any user-specified shape,
using axioms from origami. Cells are randomly distributed on the sheet and do not
change arrangement or number. Doursat [1, 2] demonstrates methods by which a
small initial set of cells can grow into a complicated planar structure with con-
trollable shape and differentiation pattern. These studies have abstracted cells
into computational units capable of simple calculations, with morphogen gradi-
ents implemented using integer counters, and broadcast messages used to signal
completion of developmental stages. While such capabilities are eminently suit-
able for engineered computing systems, they may be problematic for biological
cells, and attempts to implement such systems in synthetic biology will have to
rely on capabilities available to real cells.

Other studies that have addressedproblems of structure formation in engineered
distributed systems generally make additional domain-specific assumptions that

Biologically Realistic Primitives for Engineered Morphogenesis 133

make application tobiological cells difficult.Modular robots [18] and collective con-
struction [16] generally require very precise alignment of structural elements, often
on a discrete lattice. Programmed self-assembly [8] and collective construction [16]
typically use rigid structural units that cannot be rearranged within an assembly
once in place. By contrast, cells are variable in size and deformable; they may come
together in arbitrary ways, rearrange their configuration at both large and small
scales throughout morphogenesis, and produce new units deep within a structure.

An alternative perspective for creating developmental systems with desired
characteristics is given by work in evolutionary computation [4, 5]. Such work
takes the approach of automated exploration of large search spaces, rather than
being concerned with tools and principles for use by human designers.

3 Assumptions

I assume that cells possess the following basic capabilities, based on published
studies of biological systems:

1. Measure the local concentration of a morphogen, and respond according to
whether the concentration falls above or below some threshold [3, 11]. Re-
sponses can be to produce a new morphogen and/or to enable cell growth.
Multiple thresholds of response may exist for a single morphogen [3, 7, 17]
(e.g., through multiple types of receptors with different affinities), so that
the same morphogen may, for instance, evoke one response at high con-
centrations, a different response at low concentrations, and no response in
between.

2. Measure and respond to the local slope of a morphogen gradient, i.e., the
direction of greatest change and the magnitude of that change [11, 15]. Re-
sponses can be to produce a new morphogen, to enable cell growth, and/or
to affect the orientation of the cleavage plane during division.

3. Determine whether any other cell borders it in a given direction [6, 12].

I further assume that the sources that result in production of some morphogens
can be deposited in the egg by the mother, and remain localized as the embryo
grows [11]. Finally, I assume that production, diffusion and degradation of mor-
phogens happens quickly compared to growth and movement of cells. This last
assumption can be relaxed to some extent, though I do not explore doing so in
detail in this work.

4 Model

Here I describe the agent-based simulation model used to test the approaches
to be described in §5. Cells are modeled as three-dimensional entities normally
confined to a two-dimensional sheet, as with epithelial tissue. Future work will
consider deformations of the sheet.

The model keeps track of each cell’s position (real-valued 3D coordinates)
and volume, and the amounts of the various morphogens within that volume.

134 J. Werfel

Cells act like deformable, adhesive spheres on an adhesive substrate. Each cell
experiences a spring-like force (repulsive at short distances, attractive at longer
ones) from each of its neighbors and the substrate, governing its movement in
space.

Neighbors can be determined by Voronoi calculation or other methods. For
computational efficiency, this model determines which cells border on which
others at each time step using a discretized volumetric representation (details
omitted for space reasons).

Once neighbors have been identified, forces can be calculated. Pairs of neigh-
boring cells exert opposing forces of magnitude k(r−r0) on each other along the
line connecting their centers, where k = 1 is a spring constant, r is the distance
between the two cell centers, and r0 is the “rest distance” based on the sizes of
the two cells (if the cells have volumes V1 and V2, r0 = 3

√
3V1/4π + 3

√
3V2/4π).

Similarly, the substrate exerts a force on cells that neighbor it, acting as a vir-
tual cell with location directly below the other’s center. Each cell’s position at
each time step is updated by an amount proportional to the net force on it, with
proportionality constant 1, which gives qualitatively realistic movement without
simulating the complete physics of the system. Cell vertical positions are limited
to [0, 0.2] to forbid passing through or losing contact with the substrate.

The level mic of morphogen i in cell c changes according to synthesis, diffu-
sion/transport [10], and degradation:

Δmic

Δt
=
∑

j

sijfij(mjc) +Di

∑
d∈Nc

(ρid − ρic) −
∑
j �=i

dijmicmjc − dimic (1)

where sij is the rate at which morphogen j leads to the synthesis of morphogen i;
f is a function that may be, e.g., linear to reflect a constant rate of synthesis, or
sigmoidal to reflect cooperative binding (unless otherwise specified, f(x) = x);
Di is the rate of transfer of morphogen between neighboring cells with different
concentrations; Nc is the set of neighbors of cell c; ρic is the concentration of
morphogen i in cell c (if Vc is the volume of cell c, ρic = mic/Vc); dij is the rate
at which morphogen j leads to the degradation of morphogen i; and di is the
intrinsic degradation rate of morphogen i.

The gradient of a morphogen at a cell’s location is estimated based on the
concentration of the morphogen there and at each of the cell’s neighbors: ∇ic =∑

d∈Nc

ρid−ρic

|rcd| r̂cd, where rcd is the vector from cell c to cell d.
The presence of a morphogen may determine cell growth, as described further

in §5. If a cell undergoes growth in a given time step, its volume increases by
G = 0.05 cubic units. If the volume reaches twice its initial value, the cell
commits to division: no further growth occurs for τ = 30 time steps, at the end
of which division occurs. A new cell is instantaneously created; both daughter
cells have half the volume and half the morphogen levels (therefore the same
morphogen concentrations) as the mother, and locations equal to that of the
mother plus small opposite offsets along a direction which may be affected by
one or more morphogen gradients, as described further in §5.

Biologically Realistic Primitives for Engineered Morphogenesis 135

Simulations are initialized with one cell of volume 1.5 cubic units, with mater-
nally deposited morphogen sources already present as specified in §5. Maternal-
effect morphogen sources stay closely localized within an embryo [11], and here
are taken to remain entirely with one of the two daughters (the one closer to the
edge of the embryo) when a cell divides.

Simulations are written in C and visualized using POV-Ray.

5 Primitives

In this section I discuss how tissue growth to limited dimensions can be achieved,
using morphogen gradients along one (§5.1) or two (§5.2) axes. I also outline how
these gradients can be used to provide position references for cells in an embryo
(§5.3), and how genetic cascades can trigger downstream events to produce more
complex structures (§5.4).

5.1 Constrained Growth Using Morphogen Gradients

One critical ability in a developmental system is for a structure to grow out
to a given size and then stop growing. Doursat [1, 2] accomplishes this with
explicit integer hop counts and broadcast signals. Here I explore how it might
be achieved with more realistic consideration of morphogen gradients.

I consider two distinct approaches that involve different spatial concentration
profiles, one roughly exponential, the other linear. The primary advantage of
the first is that it requires only one morphogen. The primary advantage of the
second is that growth to a desired size may be accomplished in logarithmic time
rather than linear.

Exponential gradient. A morphogen with a single source, spreading by diffu-
sion and degrading everywhere, will generate an exponentially decaying concen-
tration profile. The length scale is given by the square root of the ratio of the
diffusion constant to the decay constant [9]—here,

√
Di/di.

First consider growth starting from a single cell (growth of structures later in
morphogenesis will be considered in §5.4). A maternally deposited morphogen
source leads to production of a morphogen gradient. Using bicoid in Drosophila
as a motivating example [11, 14], I consider a morphogen M1 whose production
is confined to the anterior pole of the embryo and whose product diffuses poste-
riorward (Fig. 2A). Production of M1 occurs at rate 0.05 in the initial cell, and
in the more anterior daughter cell each time a cell producing M1 divides, with no
production of M1 elsewhere. (Formally, the mother deposits a morphogen source
M−1 at level m−1 = 1, which is neither produced nor degraded by the embryo,
which remains confined to the anterior pole, and which results in the production
of M1 with rate s1,−1 = 0.05.) Diffusion of M1 occurs at rate D1 = 0.002, decay
at rate d1 = 0.001 everywhere.1

1 These values, and others throughout this paper, are somewhat arbitrarily chosen.
Exact parameter choices will affect the exact dimensions of the developing embryo
and time course of development, but the qualitative behavior of the developmental
process is not sensitive to careful parameter tuning.

136 J. Werfel

BA

Fig. 2. Maternally deposited morphogen sources can lead to the production of a mor-
phogen gradient, which can be used to regulate growth. A: A source M−1 (green) at
one end, producing a morphogen M1 that degrades at constant rate everywhere, results
in an exponentially decreasing M1 concentration profile (stem plot). B: A source M−1

(green) at one end producing a diffusible morphogen M1 that does not degrade on its
own, and another source M−2 (red) at the other end producing a nondiffusible mor-
phogen M2 that degrades M1, results in a linear M1 gradient. With these two sources
alone, the slope is independent of distance between the two (so that the concentration
at the left end is proportional to that distance); adding a small M2 source to the site
of the M1 source limits the M1 concentration there, resulting in a fixed concentration
at the left end and a slope inversely proportional to length.

A cell can grow if both (1) the concentration ρ1 is high enough and (2) there
is no neighboring cell in the “downhill” direction of the concentration gradient.
The second condition limits growth to a layer of cells along the posterior edge
of the embryo. When division occurs, the cleavage plane is oriented to have its
normal vector aligned with the gradient [15].

The final length of the embryo is affected by the concentration threshold at
which growth occurs (Fig. 3A) as well as by the diffusion and decay constants
D1 and d1. The set of possible final lengths will depend on the ability of cells to
resolve differences in concentration levels; in particular, the maximum possible
final length will depend on the lowest concentration detectable by a cell. Longer
structures will require changing the length scale of the gradient via D1 and d1,
and not merely reducing the threshold for growth.

Because growth is confined to a “leading edge” of cell division, the time re-
quired to produce a structure of a given length scales linearly with that length
(Fig. 3B). The next section considers a mechanism allowing all cells to divide in
parallel, resulting in much faster growth.

Linear gradient. A morphogen produced only at one source and degraded only
at one sink will generate a linear concentration profile between the source and
sink [9, 17].

A maternally deposited morphogen source M−1 confined to the anterior end
of the embryo as in the previous section acts as the source for M1, and a second
morphogen M2 produced by a maternally deposited morphogen source M−2

Biologically Realistic Primitives for Engineered Morphogenesis 137

500 1000 1500 2000 2500
10

15

20

25

30

35

40

45

50

55

Time

Le
ng

th

10
−10

10
−5

15

20

25

30

35

40

45

50

Threshold

Le
ng

th

A B

Fig. 3. Length control with an exponential morphogen gradient. A: The length of
the embryo can be consistently controlled by setting the morphogen concentration
threshold at which growth occurs. The relationship is logarithmic (in this example,
dividing the threshold by about 1.7 gives an increase in length of one cell). Averages
are over 10 independent trials. B: The time required to grow to a given final length is
linearly proportional to that length. Each point represents an independent trial.

confined to the posterior end acts as the sink (Fig. 2B). M1 is produced at rate
s1,−1 = 0.02 and M2 at rate s2,−2 = 0.01. The only effect of M2 is to degrade
M1, at rate d12 = 0.05. M1 does not degrade appreciably on its own (d1 = 0),
and M2 is not transferred to cells where it is not produced (D2 = 0). M1 diffuses
with rate D1 = 0.01; M2 degrades with rate d2 = 0.001.

With these two maternal deposits M−1 and M−2, a linear M1 gradient of
constant slope will develop between the ends of the embryo; the level m1 at
the anterior end will be proportional to the distance between the source and
sink. Thus cells at the anterior end can monitor the length of the structure,
in a way much like a discrete hop count, and respond in a desired way when
the concentration exceeds some threshold. This capability provides a potentially
useful tool.

One way to make growth stop when the tissue has reached a desired length,
then, is for high levels of m1 to trigger production of an additional, fast-diffusing
morphogen that shuts off growth. This approach requires an extra morphogen,
however, and potentially a lag while it diffuses during which growth continues
asymmetrically at the end away from the source. A more elegant alternative is
to add a second deposit of M−2 confined to the anterior end, at half the level of
that at the posterior end. The level of M1 at the anterior end is then dominated
by local synthesis and degradation, resulting in a fixed concentration at that site
approximately independent of embryo length, and a linear gradient whose slope
is inversely proportional to length.

We then specify that a cell can grow if the slope of the M1 gradient exceeds
a given threshold; the choice of threshold, and the values of the synthesis and
degradation constants, will determine the final length of the structure. All cells

138 J. Werfel

10
−2

10
1

10
2

Threshold

Le
ng

th

150 200 250 300 350 400 450

10
1

10
2

Time

Le
ng

th

A B

Fig. 4. Length control with a linear morphogen gradient. A: The length of the embryo
can be controlled by setting the threshold for slope of the morphogen gradient at which
growth occurs. The relationship is geometric (halving the threshold doubles the length
of the embryo). Averages are over 10 independent trials. B: The time required to grow
to a given final length is proportional to the logarithm of that length. Each point
represents an independent trial.

in the embryo can simultaneously contribute to its growth, so that the time
required to produce a structure of a given length scales logarithmically with
that length (Fig. 4B).

Controlling width via orientation of cell division. When a cell divides,
the cell cleavage plane can be influenced by the direction of the gradient [15].
Aligning the plane of division entirely with the gradient leads to growth of the
embryo along a straight line; adding a random component to the orientation of
the plane results in growth of a wider structure (Fig. 5).

Because the morphogen gradient provides only a local direction reference and
not a global one for the developing embryo, stochasticity in the orientation of the
cleavage plane can lead to deformation of the overall structure. Fig. 6 shows an

B CA

Fig. 5. The extent to which the cleavage plane in cell division aligns with a morphogen
gradient affects the width of the resulting structure. A: Division aligned completely
with gradient. B: Normal vector to plane of division chosen to be 80% aligned with
gradient, 20% randomly oriented. Embryo has grown in a curve as in Fig. 6. C: Division
randomly oriented. Examples use a linear morphogen gradient with threshold 0.01.

Biologically Realistic Primitives for Engineered Morphogenesis 139

15

20

25

15

20

25

30

35

0

0.05

0.1

Fig. 6. Embryo grown with a linear morphogen gradient, threshold 0.02, and plane
of division chosen to be 80% aligned with gradient, 20% randomly aligned. The plot
shows the location of each cell in the x-y plane, and the morphogen concentration ρ1

on the z-axis.

example where an embryo has grown in an overall curved shape, using a linear
gradient as described above. Although the shape of the embryo can change in
this way from trial to trial, its intrinsic size remains reasonably consistent: the
length of the embryo was found to vary by less than 15% (20 ± 3) in 9 trials,
where length was measured along the shortest cell-to-cell path from source to
sink (found using A* search).

5.2 Multiple Gradients

Multiple independent morphogen gradients can be present in an embryo at the
same time, and direct different aspects of its growth. For instance, anteroposte-
rior and dorsoventral axes can be simultaneously established by separate orthog-
onal gradients, as is the case in Drosophila [11]. Two such gradients can allow
growth to desired dimensions in both directions.

Fig. 7A shows an example of an embryo grown in this way, using two linear
morphogen gradients. A single cell is initialized with four maternal sources: M−1
and M−2 forming one axis exactly as in the case described above, and an anal-
ogous pair M−3 and M−4 forming another axis. These sources become confined
to individual cells as the embryo grows, as in the single-gradient case discussed
above. Each cell evaluates the slope of the two gradients independently, and has
separate growth thresholds for each, with growth occurring if either threshold is
exceeded. When division occurs, the cleavage plane is chosen along one of the
two gradients at random, with greater probability for steeper gradients.

5.3 Position Information

Morphogen gradients provide critical positional information in a developing em-
bryo, allowing cells to undergo differentiation and other key events according to

140 J. Werfel

8
10

12
14

16

8

10

12

14

16

0

0.05

0.1

810121416

8

10

12

14

16

0

0.05

0.1A B C

Fig. 7. Growth using two independent morphogen gradients. A: An embryo that de-
veloped with separate linear gradients as described in the text. B: Concentration ρ1

of one morphogen (source at right, sink at left). C: Concentration ρ3 of the other key
morphogen (source at back, sink at front).

their location [11, 17]. Fig. 7B and C shows how two separate morphogen gra-
dients can serve as cues to establish a two-dimensional coordinate system: the
concentration of each gradient carries information about a cell’s position along
the corresponding axis.

Either exponential or linear gradients can be used in principle for this posi-
tion information. A cell’s ability to localize itself will depend on its ability to
resolve differences in concentration, and, when in the presence of noise, on the
slope of the morphogen gradient. The profile of an exponential gradient, with its
relatively steep drop near the source and shallow slope over most of its length,
makes it likely to be less useful than a linear gradient in most situations: with
a shallower slope, a given error in estimating the concentration will result in a
greater position error.

5.4 Cascading Effects

With position information available, cells can differentiate by expressing addi-
tional morphogens based on their location in an embryo. Fig. 8 shows an exam-
ple, where cells in the embryo of Fig. 7 can express five additional morphogens
M5 · · ·M9 depending on the concentrations ρ1 and ρ3. Choosing fi1 and fi3 in
Eq. 1 to be sigmoidal functions for i ∈ {5 · · · 9} allows expression regions to be
sharply defined. M5 is expressed where ρ3 is high, M6 where ρ3 is low; M7 is
expressed for low ρ1, M8 for intermediate ρ1, and M9 for high ρ1 (details omitted
for space constraints).

These morphogens can have additional downstream effects. For instance, we
can build on the program that results in the embryo of Fig. 8, adding a mor-
phogen M10 produced where expression levels of M6 and M9 are high (purple
cells in the figure). Cells for which levels of M5 and M7 are high (red in the
figure) respond to M10 by growing if ρ10 exceeds a given threshold and there is
no neighboring cell in the downhill direction of the M10 gradient. In this way we
establish a secondary growth process governed by a morphogen with an expo-
nential concentration profile. The morphogen source is produced by the embryo
itself rather than maternally deposited factors, and only a subset of cells respond

Biologically Realistic Primitives for Engineered Morphogenesis 141

Fig. 8. Expression of downstream morphogens in the embryo of Fig. 7. M5 ex-
pression is high in the red/orange/yellow regions and low elsewhere; M6 is high in
green/blue/purple regions; M7 is high in red/green regions; M8 is high in orange/blue
regions; M9 is high in yellow/purple regions.

with growth, leading to a narrow “arm” growing out from the main body of the
embryo. The resulting structure is the one shown in Fig. 1.

6 Conclusion

In this paper I have demonstrated approaches to implementing primitives im-
portant for engineered morphogenesis, in ways realistically achievable by real
biological systems. While actual realization of these primitives in a synthetic
biological system remains far from easy, my hope is that the principles discussed
here will help point the way toward engineered morphogenetic systems becoming
a reality.

Future work will investigate the control of timing issues in genetic cascades,
to explore ways of ensuring that events reliably occur in sequence without using
explicit global timing signals; and in a likely related effort, exploring ways of in-
corporating feedback cycles into genetic cascades rather than using strictly feed-
forward networks. I also intend to better characterize the mapping between the
choice of parameter values and the dimensions of the resulting structure, to allow
prediction of structure characteristics from parameters without relying on sim-
ulation, and conversely to guide choices of parameter values in order to produce
particular desired structures. This last feature will be critical for the eventual
goal of global-to-local compilation, the ability to start from a high-level descrip-
tion of a specific user-defined organism and automatically generate a genetic
program guaranteed to make a cell develop into that organism. Global-to-local
compilation has been achieved in certain related domains [13, 16] but remains
a challenge for general morphogenetic systems. Another near-term direction for
future work is to extend the model to allow three-dimensional deformation of an
epithelial sheet, to begin to incorporate gastrulation and other three-dimensional
processes in real morphogenesis into the repertoire of tools available to synthetic
systems.

142 J. Werfel

References

1. Doursat, R.: Organically grown architectures: Creating decentralized, autonomous
systems by embryomorphic engineering. In: Würtz, R.P. (ed.) Organic Computing,
pp. 167–200. Springer, Heidelberg (2008)

2. Doursat, R.: Facilitating evolutionary innovation by developmental modularity and
variability. In: Generative & Developmental Systems Workshop at 18th Genetic &
Evolutionary Computation Conference, Montreal, Canada (July 2009)

3. Dyson, S., Gurdon, J.B.: The interpretation of position in a morphogen gradient
as revealed by occupancy of activin receptors. Cell 93, 557–568 (1998)

4. Eggenberger, P.: Evolving morphologies of simulated 3d organisms based on dif-
ferential gene expression. In: Husbands, P., Harvey, I. (eds.) Proc. 4th European
Conference on Artificial Life (1997)

5. Federici, D., Downing, K.: Evolution and development of a multicellular organ-
ism: Scalability, resilience, and neutral complexification. Artificial Life 12, 381–409
(2006)

6. Gilcrease, M.Z.: Integrin signaling in epithelial cells. Cancer Lett. 247, 1–25 (2007)
7. Jiang, J., Levine, M.: Binding affinities and cooperative interactions with bHLH

activators delimit threshold responses to the dorsal gradient morphogen. Cell 72,
741–752 (1993)

8. Klavins, E., Ghrist, R., Lipsky, D.: A grammatical approach to self-organizing
robotic systems. IEEE Trans. Autom. Control 51(6), 949–962 (2006)

9. Lander, A.D.: Morpheus unbound: Reimagining the morphogen gradient. Cell 128,
245–256 (2007)

10. Lander, A.D., Nie, Q., Wan, F.Y.M.: Do morphogen gradients arise by diffusion?
Developmental Cell 2, 785–796 (2002)

11. Lawrence, P.A.: The Making of a Fly. Blackwell Science Ltd., Malden (1992)
12. Martz, E., Steinberg, M.S.: The role of cell-cell contact in “contact” inhibition of

cell division: A review and new evidence. J. Cell. Physiol. 79, 189–210 (1971)
13. Nagpal, R.: Programmable Self-Assembly: Constructing Global Shape Using

Biologically-Inspired Local Interactions and Origami Mathematics. Ph.D. thesis,
Massachusetts Institute of Technology (2001)

14. Spirov, A., Fahmy, K., Schneider, M., Frei, E., Noll, M., Baumgartner, S.: For-
mation of the bicoid morphogen gradient: an mRNA gradient dictates the protein
gradient. Develoment 136, 605–614 (2009)

15. Strutt, D.: Organ shape: Controlling oriented cell division. Current Biology 15,
R758–R759 (2005)

16. Werfel, J.: Anthills Built to Order: Automating Construction with Artificial
Swarms. Ph.D. thesis, Massachusetts Institute of Technology (2006)

17. Wolpert, L.: Positional information and the spatial pattern of cellular differentia-
tion. J. Theol. Biol. 25(1), 1–47 (1969)

18. Yim, M., Shen, W.M., Salemi, B., Rus, D., Moll, M., Lipson, H., Klavins, E.,
Chirikjian, G.S.: Modular self-reconfigurable robot systems. IEEE Robotics & Au-
tomation Magazine, 2–11 (March 2007)

Evaluating the Robustness of Activator-Inhibitor
Models for Cluster Head Computation

Lidia Yamamoto1 and Daniele Miorandi2

1 Data Mining and Theoretical Bioinformatics Team (FDBT)
Image Sciences, Computer Sciences and Remote Sensing Laboratory (LSIIT)

University of Strasbourg, France
lidia.yamamoto@unistra.fr

2 Pervasive Team, CREATE-NET, Trento, Italy
daniele.miorandi@create-net.org

Abstract. Activator-inhibitor models have been widely used to explain
several morphogenetic processes. They have also been used to engineer al-
gorithms for computer graphics, distributed systems and networks. These
models are known to be robust to perturbations such as the removal of
peaks of chemicals. However little has been reported about their actual
quantitative performance under such disruptions.

In this paper we experimentally evaluate the robustness of two well-
known activator-inhibitor models in the presence of attacks that remove
existing activator peaks. We focus on spot patterns used as distributed
models for cluster head computation, and on their potential implementa-
tion in chemical computing. For this purpose we derive the corresponding
chemical reactions, and simulate the system deterministically.

Our results show that there is a trade-off between both models. The
chemical form of the first one, the Gierer-Meinhardt model, is slow to
recover due to the depletion of a required catalyst. The second one,
the Activator-Substrate model, recovers more quickly but is also more
dynamic as peaks may slowly move. We discuss the implications of these
findings when engineering algorithms based on morphogenetic models.

1 Introduction

An activator-inhibitor model is a special case of a reaction-diffusion system where
two chemicals interact in an antagonistic way, resulting in Turing patterns in
space [20], such as spots and stripes on the skin of animals (e.g. leopard, zebra).

Activator-inhibitor models are recurrent components in morphogenesis. They
offer an abstract model to explain many different morphogenetic phenomena,
including the regular spacing of cactus thorns and bird feathers, shape regen-
eration after damage, the production of sequences of repeated elements such as
insect body segments, the assembly of photoreceptor cells in insect eyes, and the
positioning of leaves in growing plants [4,15,16,6,13]. They have also been used as
inspiration for algorithms to produce textures and landscapes in computer graph-
ics, and for autonomous, decentralized, distributed coordination algorithms, for

M. Dorigo et al. (Eds.): ANTS 2010, LNCS 6234, pp. 143–154, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

144 L. Yamamoto and D. Miorandi

instance in amorphous computing [1], wireless and sensor networks [10,17,14],
and autonomous surveillance systems [21,12].

It has been pointed out that activator-inhibitor models are robust to per-
turbations in the resulting patterns [15]. For instance, removing an activator
peak results in this peak being regenerated or another peak being formed at
a nearby place. However little has been reported about the actual quantitative
performance of activator-inhibitor models under perturbations.

In this paper we experimentally evaluate the robustness of two well-known
activator-inhibitor models in the presence of attacks that remove existing ac-
tivator peaks. The first model is the well-known Gierer-Meinhardt Activator-
Inhibitor Model and the second one is the Activator-Depleted Substrate Model.
Both models are extensively described in [15,13].

We focus on spot patterns (as opposed to stripes). Spots can be used to
place differentiated functions at activator peaks, such as cluster heads in ad hoc
and sensor networks [22,11,19]. Cluster heads can serve a variety of functions,
such as aggregating information from nearby sensor nodes, or saving energy by
switching off redundant nodes. The activator-inhibitor system used in this way
can be regarded as a distributed algorithm that solves an instance of a cluster
head election problem.

Instead of the traditional approach of directly integrating the reaction-
diffusion equations provided, we derive the corresponding equations from chem-
ical reactions using the law of mass action. The goal of this method is to ensure
compatibility with a potential chemical implementation, either in an artificial
chemistry [8,7], or in natural chemical computing such as reaction-diffusion pro-
cessors [2]. For this purpose, we reverse engineer both models from the equations
back to the chemical reactions, and then simulate the resulting system determin-
istically by integrating the new set of equations obtained.

Our results show that the chemical derivation of the first model, the Gierer-
Meinhardt model, seems not so robust as expected, since peaks of activator do
not easily recover due to the depletion of a required catalyst. This catalyst does
not appear in the original equations, but is necessary to achieve the desired
inhibition effect. The second model evaluated, the Activator-Substrate model, is
much faster at recovering from perturbations on activator peaks. On the other
hand, it is also more dynamic, and peaks tend to change location sometimes.
Therefore, there is a trade-off between both systems. We discuss the implications
of these findings for engineering algorithms based on morphogenetic mechanisms.

2 Chemical Kinetics and Reaction-Diffusion Systems

The Law of Mass Action states that, in a well-stirred reactor, the average speed
(or rate) of a chemical reaction is proportional to the product of the concentra-
tions of its reactants [3].

The concentration dynamics of all molecules in the system can be described
by a system of ordinary differential equations (ODE), where each equation de-
scribes the change in concentration of one particular molecular species. This
ODE system can be expressed in matrix notation as follows:

Activator-Inhibitor Models for Cluster Head Computation 145

dc

dt
= Mv (1)

where dc/dt is the vector of differential equations for each of the species Ci (with
concentration ci), in the system; M is the stoichiometric matrix of the system;
and v is a vector of rates for each reaction. The rates may follow the law of mass
action as well as other laws such as enzyme and Hill kinetics.

A reaction-diffusion system is a chemical reaction system in which substances
not only react but may also diffuse in space. It is expressed by a system of
partial differential equations (PDE) describing the change in concentrations of
substances caused by both reaction and diffusion effects combined:

∂c
∂t

= f(c) +D∇2c (2)

The vector c now refers to the concentration level ci of each chemical Ci at
position (x, y) in space. The reaction term f(c) describes the reaction kinetics
(like in Eq. (1), but now expressed for each point in space). The diffusion term
D∇2c tells how fast each chemical substance will diffuse in space.D is a diagonal
matrix containing the diffusion coefficients, and ∇2 is the Laplacian operator.

3 Activator-Inhibitor Models

Activation-inhibition models describe situations in which two competing pro-
cesses take place over space and time. The first one (short-range activation)
tends to self-enhance the process within the local neighbourhood. A competing
force (long-range inhibition), weaker but with a longer spatial range, tends to
decrease the activation effect in the surrounding space. Under certain conditions,
the interaction between short-range activation and long-range inhibition can lead
to the formation of asymmetric spatial patterns, such as spots and stripes resem-
bling those found on the skin of animals. Alan Turing [20] was the first to present
a mathematical model of morphogenesis based on reaction-diffusion dynamics,
including activator-inhibitor dynamics.

In chemistry, activators and inhibitors are molecules that may diffuse over
space. Activators trigger autocatalytic reactions that increase their own con-
centration (self-enhancement), but such effect has limited spatial range. On the
other hand, activators also trigger inhibitory reactions that cause their own con-
centrations to decrease. Such a “negative impact” process has a reduced intensity
when compared to self-enhancement, but has much larger spatial range.

Numerous alternative activator-inhibitor models are available in literature
[4,20,15,16,13]. They all achieve similar short-range activation and long-range
inhibition effects, but differ in the chemicals needed, the way they interact, and
the characteristics of the resulting patterns. In this paper we focus on two of these
models: The Gierer-Meinhardt Activator-Inhibitor Model, and the Activator-
Depleted Substrate Model, both from [15]. We describe them below.

146 L. Yamamoto and D. Miorandi

3.1 The Gierer-Meinhardt Activator-Inhibitor Model

One of the most widely used activator-inhibitor model is named after Gierer and
Meinhardt [15], and is described by the following reaction-diffusion equations:

∂a

∂t
=
σa2

h
− μaa+ ρa +Da∇2a (3)

∂h

∂t
= σa2 − μhh+ ρh +Dh∇2h (4)

In this model, a represents the concentration of a short–range autocatalytic
substance (activator A) and h the concentration of is its long-range antagonist
H , the inhibitor.

The concentration a tends to self-enhance (growth proportional to σa2), but
such growth is slowed down by the inhibitor by a factor 1/h. The inhibitor is
produced by the molecular collision of two activator molecules, and this reaction
contributes to its growth by a factor of σa2. Further, both activator and inhibitor
concentrations decay proportionally to their respective values. The constants μa

and μh describe the rates at which each substance decays. The terms ρa and ρh

represent a constant inflow of substances A and H respectively. Molecules can
move across nearby cells following the concentration gradient, hence the diffusion
terms Da∇2a and Dh∇2h, where Da and Dh are constant diffusion coefficients.

An important condition for the formation of asymmetric patterns in this
model is Dh � Da (the inhibitor diffuses much faster than the activator). An-
other condition is that μh > μa (the inhibitor drains more quickly than the
activator). A full mathematical description of the necessary and sufficient con-
ditions for pattern formation in activator-inhibitor systems can be found in [16].

Figure 1 (left) illustrates the typical pattern formation process resulting from
this activator-inhibitor model: starting from a homogeneous mix of chemicals
that is slightly perturbed, the system progressively self-organizes into spot pat-
terns, where the spots are regions of high activator concentration.

This model is widespread in literature [4,20,15,16,13], but little has been dis-
cussed about its actual chemical implementation, either in natural or artificial
chemistries. This is important if one would like to engineer reaction-diffusion

Gierer-Meinhardt Activator-Inhibitor Activator-Depleted Substrate Model

t = 900 s t = 3000 s t = 900 s t = 3000 s

Fig. 1. Typical patterns resulting from the two activator-inhibitor models studied

Activator-Inhibitor Models for Cluster Head Computation 147

systems using reaction-diffusion computers [2], or by evolving the corresponding
chemical reaction graphs [5].

What set of chemical reactions can lead to equations (3) and (4)? Especially,
the term 1/h in Eq. (3) does not seem to stem directly from mass action kinet-
ics, neither from other well-known kinetic laws such as enzyme kinetics or Hill
kinetics. In [4] it has been pointed out that the term 1/h comes from the effect
of a third substance, a catalyst C, which is assumed to be in steady state.

Whereas an ODE system can be directly constructed from a system of chem-
ical reactions, currently there is no firm and generic method to do the reverse
operation, i.e. to derive the corresponding chemical reactions from a given ODE.
We have reverse-engineered equations (3) and (4) using the catalyst hint from
[4], and obtained the following result:

2A σ−→ 2A+H (5)

A
μa−−→ ∅ (6)

H
μh−−→ ∅ (7)

∅ ρa−→ A (8)

∅ ρh−→ H (9)

C + 2A k1−→ C + 3A (10)

C +H
k2−→ H (11)

C
μc−→ ∅ (12)

∅ ρc−→ C (13)

Note that the first five reactions (5)-(9) stem directly from equations (3) and (4),
while the other reactions (10)-(13) involve a “hidden” chemical C. C acts as a
catalyst in the production of the activator A, however the inhibitor H consumes
C, and it is the depletion of C through H that causes the inhibitory effect on A.
This can be shown via the following analysis. We start by deriving the differential
equations corresponding to the full set of reactions (5)-(13), using the Law of
Mass Action:

da

dt
= k1ca

2 − μaa+ ρa (14)

dh

dt
= σa2 − μhh+ ρh (15)

dc

dt
= −k2ch− μcc+ ρc (16)

Eq. (15) corresponds directly to the reaction part of Eq. (4), so we do not need
to look at it further. Now we focus on how to obtain the reaction part of Eq.
(3) from Eqs. (14) and (16). For simplification we assume that μc = 0, so that
the inhibitor is the only responsible for a depletion of C. At steady state, the
concentration of C stays stable, thus:

dc

dt
= −k2ch+ ρc = 0 ⇒ c =

ρc

k2h
(17)

Substituting Eq. (17) in (14) we obtain:

da

dt
=
k1ρca

2

k2h
− μaa+ ρa (18)

148 L. Yamamoto and D. Miorandi

Fig. 2. Concentration levels of activator (left), inhibitor (center), and catalyst (right)
for the Activator-Inhibitor pattern on Figure 1 (left) at t = 3000s

By setting σ = k1ρc/k2 we obtain the reaction part of Eq. (3) as needed. Note
therefore that Eq. (3) is only accurate when the system is in steady state. Per-
turbations may cause the catalyst concentrations to fluctuate, and therefore the
approximation in Eq. (3) becomes a poor modelling of the system’s dynamic
behavior in these cases. This might partly account for the performance issues
uncovered in our simulation experiments reported in Section 5.

Figure 2 shows the concentrations of activator, inhibitor and catalyst at the
end of the simulation that generated Fig. 1 (left). We can see how the activator
and inhibitor peaks coincide, the inhibitor peaks being more modest, while the
catalyst valleys correspond to regions of high activator concentration.

3.2 Activator-Depleted Substrate Model

Several variations over the basic activator-inhibitor model have been proposed
in the mathematical biology literature [9,15,16], some encompassing a larger
number of equations, representing situations in which more complex interactions
among molecules take place.

An interesting alternative approach in our context is the activator-depleted
substrate model [15], or activator-substrate for short. Instead of modelling the
explicit presence of a molecular species able to slow down the activation process,
the activator-substrate model achieves a similar antagonistic effect through the
depletion of a substrate S, which gets consumed during the production of the
activator A. The resulting reaction-diffusion equations read:

∂a

∂t
= σasa

2 − μaa+ ρa +Da∇2a (19)

∂s

∂t
= −σssa

2 − μss+ ρs +Ds∇2s (20)

The substrate S gets consumed during the autocatalytic production of activator
A. Both activator and substrate are produced everywhere at constant rate ρa

and ρs respectively, and decay at rate μa (resp. μs). Figure 1 (right) shows the
typical pattern formation process using this model. Note that, in contrast to the
previous model, here spots slowly change, and sometimes grow and divide, i.e.

Activator-Inhibitor Models for Cluster Head Computation 149

they can replicate. This behavior has been thoroughly studied in the Gray-Scott
model [18], which is a special case of activator-substrate model.

Note that if it was not for the possibility to have different σ values for A and S
(σa and σs), then it would have been straightforward to derive the corresponding
chemical reactions. In order to allow for different σa and σs, we have come up
with the following solution:

S + 2A σa−→ 3A (21)

S + 2A ks−→ 2A (22)

∅ ρa−→ A (23)

∅ ρs−→ S (24)

A
μa−−→ ∅ (25)

S
μs−→ ∅ (26)

where ks = σs − σa. With this we obtain the reaction part of Eqs. (19) and
(20) from the law of mass action. Reactions (21) and (22) imply that, when
two molecules of A and one of S react together, one extra molecule of A may
be formed in some cases (reaction (21)), while in others (reaction (22)) the
substrate molecule will simply be lost or degraded into something that can not
be used by the system. So the second reaction can be seen as a kind of “error”
or inefficiency in the process of autocatalysis of A, which can be nevertheless
exploited to construct useful patterns.

Fig. 3. Concentration levels of activator (left) and substrate (right) for the Activator-
Substrate pattern on Figure 1 (right) at t = 3000s

Figure 3 shows the concentrations of activator and substrate at the end of
the simulation that generated Fig. 1 (right). The substrate valleys correspond to
regions of high activator concentration. Note the wider and smoother activator
peaks when compared to Fig. 2.

4 Experimental Setup

We compare the two models described in the previous section: the original
Gierer-Meinhardt model (henceforth referred to as simply “activator-inhibitor”),
and the Activator-Depleted Substrate model (referred to as simply “activator-
substrate”). We simulate a chemical implementation of both reaction-diffusion
systems, according to their corresponding chemical reactions (5)-(13) and (21)-
(26). This is in contrast to the traditional approach of integrating equations (3),
(4), (19) and (20) directly.

150 L. Yamamoto and D. Miorandi

Table 1. Parameters used in the experiments

Activator-Inhibitor
σ = 0.02 μa = 0.01 ρa = 0
k1 = 0.01 μh = 0.02 ρh = 0
k2 = 0.1 μc = 0.1 ρc = 0.1

Da = 0.005 Dh = 0.2

Activator-Substrate
σa = 0.01 μa = 0.01 ρa = 0
σs = 0.02 μs = 0 ρs = 0.02

Da = 0.008 Ds = 0.2 ks = 0.01

We specify the chemical reactions, together with their rates, in a text format
such as “A + 2 B --> C , k=0.1”. Each line expresses a chemical reaction.
The lines are then parsed, and the corresponding stoichiometric matrices are
constructed, together with their reactant and product multisets. This informa-
tion is then used to drive a generic integrator (based on the simple explicit Euler
method) automatically, according to equations (1) and (2). This system is intu-
itive and versatile, and can simulate any kind of reaction-diffusion system with
little effort. Besides ensuring chemical compatibility, another interest of such
system is to make sure that the formula and behavior obtained stem directly
from the chemical reactions, without hidden assumptions or simplifications. The
visualization is performed with the help of the Breve simulator1.

The parameters of the activator-inhibitor and activator-substrate models can
be found in Table 1. Except for the extra coefficients ki, all other constants are
set to the same values as [13].

We choose the diffusion coefficients Da for the activator such that the average
number of peaks obtained, and their average spacing, is approximately the same
in both models, such that they can be compared.

We simulate both systems on a regular grid of 32x32 cells, using an integration
timestep of dt = 0.1. Two scenarios are tested for each model: with and without
perturbation. In the scenario without perturbation, the simulation runs without
interference until it finishes at 10K simulation seconds. In the perturbed sce-
nario, at t = 4000s, after the system has reached a stable pattern, perturbation
events are are introduced every 1000 seconds. Each perturbation event happens
as follows: 50% of the existing peaks are selected at random for disruption. If se-
lected, a peak loses 90% of its activator concentration, and the same percentage
is removed from the Moore neighborhood (8 surrounding cells) around the peak.
This simulates severe disruptions, such those caused by mechanically removing
chemicals, or by damaging patches of processors in amorphous computers.

A peak is a point with maximum activator concentration, i.e. the local con-
centration at location (x, y) is higher than all the concentrations on the Von
Neumann neighborhood (north-south-east-west cells) around the peak. Moreover
the concentration at the peak must be above a threshold for it to be considered
as a cluster head. In this evaluation study we consider only the peaks elected
as cluster heads, therefore we use the terms peak and cluster head interchange-
ably. The peak concentration threshold is amin = 3.0 for the activator-inhibitor
model, and amin = 2.0 for the activator substrate model.

1 www.spiderland.org

Activator-Inhibitor Models for Cluster Head Computation 151

Gierer-Meinhardt Activator-Inhibitor Activator-Depleted Substrate Model

t = 20 s t = 5000 s t = 20 s t = 5000 s

Fig. 4. Cluster head election example

Figure 4 shows an example of the process of electing activator peaks as cluster
heads using the algorithm. At the beginning of the simulation (t = 20s) there
are only very low peaks (represented by the light shaded spots) which are not
elected because they are below the threshold. At t = 5000 seconds we can clearly
see the elected peaks, indicated by brown spots in the first model, and red spots
in the second. The blue spots indicate catalyst and substrate peaks which play
no function as cluster heads.

5 Results

The performance of each algorithm is measured by the average distance between
nearest peaks, the total number of elected peaks, and the number of cells that
are served by a peak. The average distance tells the average spacing among
peaks, and the number of cells that are served measures the number of cells
that are located at a distance shorter than a threshold of the nearest peak,
i.e. they can receive a service from this peak, such as the aggregation of some
sensor information. We calculate the average distance between nearest peaks by
looking at the four nearest peaks of each peak, and calculating the average of
this distance for all peaks.

Figure 5 shows the average distance between nearest peaks (errorbars indicate
the standard deviation). We can see that the distance remains stable when there
are no disruptions. Under perturbations, the activator-inhibitor model is less
stable, presenting bigger fluctuations than the activator-substrate model. Note
however, that while the distance in the activator-inhibitor model remains totally
constant in the absence of perturbations, in the activator-substrate model this
distance fluctuates slightly, even in the absence of perturbations. This indicates
that peaks are constantly moving a bit, as the underlying spots merge, grow
and divide. This can be more easily seen in Figure 6 which shows the number
of peaks elected as cluster heads. Indeed, this behavior can be easily observed
when watching an animation of the activator-substrate system.

Figure 7 shows the number of cells that are at a distance bigger than dmax =
10 cells, such that they do not receive service from any nearby peak. Here we can

152 L. Yamamoto and D. Miorandi

 0

 5

 10

 15

 20

 25

 0 2 4 6 8 10

di
st

an
ce

time (x 1000 simulated seconds)

Activator-Inhibitor, no perturbation

 0

 5

 10

 15

 20

 25

 0 2 4 6 8 10

di
st

an
ce

time (x 1000 simulated seconds)

Activator-Inhibitor, perturbed

 0

 5

 10

 15

 20

 25

 0 2 4 6 8 10

di
st

an
ce

time (x 1000 simulated seconds)

Activator-Substrate, no perturbation

 0

 5

 10

 15

 20

 25

 0 2 4 6 8 10

di
st

an
ce

time (x 1000 simulated seconds)

Activator-Substrate, perturbed

Fig. 5. Average distance between nearest peaks

 4
 6
 8

 10
 12
 14
 16
 18
 20
 22

 0 2 4 6 8 10

nu
m

be
r

of
 p

ea
ks

time (x 1000 simulated seconds)

Activator-Inhibitor

no perturbation
perturbed

 4
 6
 8

 10
 12
 14
 16
 18
 20
 22

 0 2 4 6 8 10

nu
m

be
r

of
 p

ea
ks

time (x 1000 simulated seconds)

Activator-Substrate

no perturbation
perturbed

Fig. 6. Number of peaks elected as cluster heads

 0

 5

 10

 15

 20

 25

 0 2 4 6 8 10

%
 n

on
-s

er
ve

d

time (x 1000 simulated seconds)

Activator-Inhibitor

 0

 5

 10

 15

 20

 25

 0 2 4 6 8 10

%
 n

on
-s

er
ve

d

time (x 1000 simulated seconds)

Activator-Substrate

Fig. 7. Percentage of non-served cells in both models, under perturbation

Activator-Inhibitor Models for Cluster Head Computation 153

clearly see that, under perturbation, the activator-inhibitor model leaves a larger
number of cells without service than the activator-substrate model, although the
average peak spacing (according to Fig. 5) is similar in both cases.

Note that, because it involves less chemicals and less reactions, the activator-
substrate model is faster to compute: the simulations of the activator-inhibitor
model take about 30% longer.

6 Conclusions

Activation-inhibition models have been used as models of distributed computa-
tion, to solve coordination problems such as the placement of cluster heads and
the formation of content delivery highways. However, their parametrization is
not simple, and performance trade-offs have to be faced.

The results reported in this paper can serve as guidelines in the design of
robust algorithms based on spot patterns obtained via activation-inhibition. Two
variants were evaluated, one based on an inhibitor that consumes a catalyst
necessary for the activator to grow, and another one based on the depletion of
a substrate also needed for activator growth.

Our results show that there is a trade-off between the stability but poten-
tially slow response to perturbations in the activator-inhibitor model, and on
the other hand, the fast response to perturbations at the cost of slowly “mov-
ing peaks” in the activator-substrate model. Therefore the first model is more
appropriate in situations where, once the pattern is formed, it is not supposed
to change often. While the latter is useful in more dynamic situations where
frequent changes are expected, and the system should constantly react to them
by quickly reconfiguring itself to a new valid configuration.

One might ask whether our results could be mere artifacts of our particular
chemical implementations of both models. There might be other solutions lead-
ing to sets of reactions that do not suffer from the catalyst depletion problem
found in our chemical solution for the Gierer-Meinhardt model. And there might
be other solutions to the activator-substrate, or other parameter ranges where
the peaks are more static. Nevertheless, we believe that our results are fairly
representative of the general characteristics of both models.

As future work, a stochastic simulation of the system in larger and irregular
amorphous topologies is necessary. Moreover, it would be useful to evaluate other
reaction-diffusion approaches and their robustness when used as an engineering
tool. It would also be interesting to study their behavior and performance in
combination with other morphogenetic mechanisms. Another interesting topic
for future work is to investigate the automatic evolution of reaction networks
leading to the desired patterns.

Acknowledgments. This work was supported by the European Union through
the BIONETS Project EU-IST-FET-SAC-FP6-027748, www.bionets.eu. It was
performed when the first author was with the University of Basel, Switzerland.
The authors would like to thank David Lowe (University of Technology Sydney,
Australia) for the enticing discussions that motivated this work.

154 L. Yamamoto and D. Miorandi

References

1. Abelson, H., et al.: Amorphous computing. Communications of the ACM 43 (2000)
2. Adamatzky, A., Costello, B.D.L., Asai, T.: Reaction-Diffusion Computers. Elsevier

Science Inc., New York (2005)
3. Atkins, P., de Paula, J.: Physical Chemistry. Oxford University Press, Oxford

(2002)
4. Bar-Yam, Y.: Dynamics of Complex Systems. Westview Press (2003)
5. Deckard, A., Sauro, H.M.: Preliminary Studies on the In Silico Evolution of Bio-

chemical Networks. ChemBioChem 5(10), 1423–1431 (2004)
6. Deutsch, A., Dormann, S.: Cellular automaton modeling of biological pattern for-

mation: characterization, applications, and analysis. Birkhäuser, Basel (2005)
7. Dittrich, P.: Chemical Computing. In: Banâtre, J.-P., Fradet, P., Giavitto, J.-L.,

Michel, O. (eds.) UPP 2004. LNCS, vol. 3566, pp. 19–32. Springer, Heidelberg
(2005)

8. Dittrich, P., Ziegler, J., Banzhaf, W.: Artificial Chemistries – A Review. Artificial
Life 7(3), 225–275 (2001)

9. Dormann, S.: Pattern Formation in Cellular Automaton Models. Ph.D. thesis,
University of Osnabrück, Dept. of Mathematics/Computer Science (2000)

10. Durvy, M., Thiran, P.: Reaction-diffusion based transmission patterns for ad hoc
networks. In: INFOCOM, pp. 2195–2205 (2005)

11. Erciyes, K., et al.: Graph theoretic clustering algorithms in mobile ad hoc networks
and wireless sensor networks. Appl. Comput. Math. 6, 162–180 (2007)

12. Hyodo, K., Wakamiya, N., Murata, M.: Reaction-diffusion based autonomous con-
trol of camera sensor networks. In: Proc. Bionetics, Budapest, Hungary (2007)

13. Koch, A.J., Meinhardt, H.: Biological pattern formation: from basic mechanisms
to complex structures. Reviews of Modern Physics 66(4) (1994)

14. Lowe, D., Miorandi, D., Gomez, K.: Activation-inhibition-based data highways for
wireless sensor networks. In: Proc. Bionetics. ICST, Avignon (2009)

15. Meinhardt, H.: Models of biological pattern formation. Academic Press, London
(1982)

16. Murray, J.D.: Mathematical Biology: Spatial models and biomedical applications.
Mathematical Biology, vol. 2. Springer, Heidelberg (2003)

17. Neglia, G., Reina, G.: Evaluating activator-inhibitor mechanisms for sensors coor-
dination. In: Proc. Bionetics. ICST, Budapest (2007)

18. Pearson, J.E.: Complex patterns in a simple system. Science 261(5118), 189–192
(1993)

19. Soro, S., Heinzelman, W.B.: Cluster Head Election Techniques for Coverage Preser-
vation in Wireless Sensor Networks. Ad Hoc Networks 7, 955–972 (2009)

20. Turing, A.M.: The chemical basis of morphogenesis. Philosophical Transactions of
the Royal Society of London B 327, 37–72 (1952)

21. Yoshida, A., Aoki, K., Araki, S.: Cooperative control based on reaction-diffusion
equation for surveillance system. In: Khosla, R., Howlett, R.J., Jain, L.C. (eds.)
KES 2005. LNCS (LNAI), vol. 3683, pp. 533–539. Springer, Heidelberg (2005)

22. Yu, J.Y., Chong, P.H.J.: A survey of clustering schemes for mobile ad hoc networks.
IEEE Communications Surveys and Tutorials 7, 32–48 (2005)

Evolution of Self-organised Path Formation
in a Swarm of Robots

Valerio Sperati, Vito Trianni, and Stefano Nolfi

Istituto di Scienze e Tecnologie della Cognizione,
Consiglio Nazionale delle Ricerche, Rome, Italy

{valerio.sperati,vito.trianni,stefano.nolfi}@istc.cnr.it

Abstract. We present a set of experiments in which a robotic swarm
manages to collectively explore the environment, forming a path to nav-
igate between two target areas, which are too distant to be perceived by
an agent at the same time. Robots within the path continuously move
back and forth between the two locations, exploiting visual interactions
with their neighbours. The global group behaviour is obtained through
an evolutionary process and presents emergent properties like robustness,
path optimisation and scalability, which recall ants trail formation.

1 Introduction

Exploration and navigation in unknown environments represent basic activities
for most animal species, and efficient strategies can make the difference between
death and survival. For this reason, Nature presents a wide range of possibilities,
each particularly adapted to the task to be accomplished and to the sensory-
motor and cognitive abilities of the species under observation. In primates, as
well as in other animals, navigation abilities are usually linked to mental repre-
sentations of the environment, referred to as “cognitive maps”. For instance, it
has been found that specific neurons of the rodents hippocampus (called “place
cells”) have a high firing rate in correspondence of specific locations in the envi-
ronment [15]. Neural representations seem to characterise also the behaviour of
insects. A map-like organisation of spatial memory has been proposed for hon-
eybees, which are able to retrieve the navigation path on the basis of learned
landmarks around the hive [12]. A similar strategy is employed also by the desert
ants of the genus Cataglyphis, which however couple the landmark-base strategy
with their skylight (polarization) compass and path integrator (ants integrate
over time the path covered through a sort of vector summation) that allow them
to return to the nest following a straight line [21]. Ant species that forage in
groups rely on a collective strategy for exploration and navigation, exploiting
the well known mechanism of pheromone trail formation: when moving from a
foraging patch to the nest, ants lay a blend of pheromones that can be exploited
by other ants to reach the same patch. Thanks to this strategy, ants can ef-
ficiently navigate in the environment and optimise the path between nest and
food [7,2].

M. Dorigo et al. (Eds.): ANTS 2010, LNCS 6234, pp. 155–166, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

156 V. Sperati, V. Trianni, and S. Nolfi

In Robotics too, much attention has been paid to the navigation and explo-
ration problems, and several different strategies have been proposed. Map-based
navigation exploits probabilistic approaches to solve the so called simultane-
ous localisation and mapping (SLAM) problem [18,1], as well as biologically
inspired ones [4,9,6]. Similarly, landmark-based navigation and path integration
have been exploited, often with a close look at biology [23,8,10,20]. For what
concerns collective strategies inspired to the ants trails, however, research has to
confront with the complex problem of finding an alternative to the pheromones,
given that chemical substances are difficult to exploit in a robotic setup. Instead
of chemicals, the most common approach is to rely on communication and mes-
sage passing among robots, which therefore simulate pheromone attributes on a
communication network [17]. Other approaches exploit the robots themselves as
markers for the trail: marker robots remain static and signal a path between two
locations in the environment, while explorer robots exploit this path to efficiently
navigate [3,22,16,14].

In this paper, we study the abilities of a robotic swarm to explore an environ-
ment and coordinately navigate between two target areas by exploiting a simple
form of visual communication. We start from two basic assumptions about the
usage of communication signals. On the one hand, communication can be ex-
ploited to signal the position of a target zone to the other robots, therefore
facilitating the exploration task. For this purpose, robots are provided with a
red LED positioned on their back, which has the same colour of the target area
and therefore elicits the same effect of the visual perception of a target area [11].
On the other hand, communication can be used to coordinate the movements of
the robots in the environment, therefore supporting the navigation task. For this
purpose, robots are provided with a blue LED on their front, which can signal
their position and heading to other robots.

By exploiting evolutionary robotics techniques [13,5], we study the emergence
of behavioural and communication strategies. Evolutionary robotics is particu-
larly useful to synthesise self-organising collective behaviours, characterised by
properties such as robustness, flexibility and scalability [19]. We analyse the sys-
tem trying to identify the relevant properties of the evolved behaviours for what
concerns both the individual rules followed by the robots, and the communi-
cation signals exploited. Despite not explicitly required by the fitness function,
the evolved behaviour presents features that are similar to the trail formation
in ants: robots form a trail between the target areas and robustly maintain it,
also optimising the shape towards the shortest path (see Sec. 3). Moreover, we
analyse the generalisation and scalability property of the collective behaviour,
by testing it in different environmental conditions and with larger swarms (see
Sec. 4). Discussions are reported in Sec. 5.

2 Experimental Setup

The experimental scenario involves a swarm of wheeled robots, whose behaviours
have been evolved for the ability to navigate back and forth as quickly as possible

Evolution of Self-organised Path Formation in a Swarm of Robots 157

between two target areas, located within an arena surrounded by walls (Fig. 1).
Since target areas can be perceived only from a short distance, the robots should
be able to find them by exploring the environment. Moreover, in order to quickly
navigate from one target area to the other without relying on time-consuming
exploratory behaviours, the robots should be able to preserve, in some way, some
information concerning the location of previously visited areas. Since the robots
are rewarded on the basis of the efficiency with which each individual is able to
accomplish the task (see eq. (3)), the evolutionary process might potentially lead
to the development of non-cooperative solutions in which the fact to be part of a
swarm does not provide any advantage. However, as we will see, the evolutionary
process rather leads to strategies in which the robots coordinate and cooperate
to find the target areas. In particular, the problem of preserving a trace of the
position of previously visited areas is solved by generating and maintaining a
dynamic path that connects the two target areas, which allows the individuals
of the swarm to efficiently navigate between them. In this section, we detail the
experimental setup and the evolutionary algorithm used.

2.1 The Robots and the Environment

Ten simulated robots are placed in a rectangular arena (height H = 250 cm;
width variable within the intervalW ∈ [250, 290] cm). The target areas consist in
two circles painted in grey (diameter d = 32 cm). A target area can be perceived
from distance by the robot thanks to a red LED placed over its centre. This
red LED is indistinguishable from the one provided to the robots (see below).

72°

35 cm

Fig. 1. The experimental setup. On the left, a snapshot of the simulated environment
is shown. Ten robots randomly positioned in the environment are represented as small
circles. The grey disks represent the circular target areas with a red LED in the cen-
tre. The distance between the area centres is D = 70 cm, while the arrows indicate
which is their maximum displacement, when D = 150 cm. In the centre, we show a
schematic representation of the robot’s vision sensors, indicating the sectors and the
perceptual range.The blue and red LED position is indicated as a white and a gray dot,
respectively. On the right, the architecture of the robots’ neural controller is shown.

158 V. Sperati, V. Trianni, and S. Nolfi

The two areas are positioned symmetrically with respect to the centre of the
arena at a fixed distance D (see Fig. 1). Each robot is provided with two motors
that control two wheels, providing a differential drive motion (maximum speed:
vmax = 8.2 cm/s). Moreover each robot is provided with a blue LED on the
front and a red LED on the rear of its body. Both can be switched on and off
by the robot controller. Additionally, a robot is provided with: (i) 8 infrared
sensors uniformly distributed around the robot body, used to detect obstacles
or other robots up to a distance of about 2.5 cm; (ii) 1 ground sensor located
under the front of the robot, used to detect whether the robot is placed over a
target area or not; and (iii) 4 vision sensors, used to detect the presence of red or
blue LEDs (2 sensors for each colour). The vision sensors return a binary value
about the presence or absence of LEDs in two 72◦ sectors of the image that cover
the front-left and front-right area of the robot. Both red and blue LEDs can be
detected up to a distance of 35 cm (see Fig. 1).

2.2 The Controller and the Evolutionary Algorithm

Each robot is controlled by a feed-forward neural network (see Fig. 1) with 13
sensory neurons (8 infrared, 1 ground, 4 vision sensors), 3 internal leaky inte-
grators neurons and 4 motor neurons (2 wheels, 1 blue LED and 1 red LED).
Connections weights, biases and time constants of the leaky integrators are ge-
netically encoded parameters subject to artificial evolution [13,5]. The free pa-
rameters of the robot’s neural controller are encoded in a binary genotype, using
8 bits for each real number. The connection weights and biases can vary in the
range [−5, 5], while the time constants vary in [0, 1]. Evolution works on a popu-
lation of 100 randomly generated genotypes. After evaluation of the fitness, the
20 best genotypes survive in the next generation (elitism), and reproduce by
generating four copies of their genes with a 3% mutation probability of flipping
each bit. The evolutionary process lasts 500 generations.

In order to evaluate the fitness, a genotype is translated intoN identical neural
controllers which are downloaded onto N identical robots (i.e., the group is
homogeneous). Each group of robots is tested for 15 trials, each lasting 6000 time-
steps (one time-step corresponds to 100 ms). Regarding the fitness computation,
the trial is split into two periods, Tadd and Teff: the latter lasts 5400 time-steps
and is the actual period during which the fitness is estimated. The former lasts
600 time-steps, and is the time dedicated to the exploration of the environment
and to the initial coordination of the robots. At the beginning of each trial
the positions and the orientations of the robots are randomly initialised, while
the target areas are positioned systematically choosing a value in D ∈ Dset =
{70, 90, 110, 130, 150} cm (see Fig. 1). The performance F of the group during a
trial is obtained evaluating how often and how quickly each robot in the group
moves from one area to the other. For this purpose, each robot i cumulates a
reward f every time it enters in a target area different from the one previously
visited. This reward is computed according to the energy ei saved in moving
from one target area to the other.

Evolution of Self-organised Path Formation in a Swarm of Robots 159

fi(t) = fi(t− 1) +
{
ei(t) if robot enters a new target area
0 otherwise (1)

where fi(t) is the reward cumulated at time t, and ei(t) is the energy saved.
Equation (1) states that when a robot enters in a target area different from the
one previously visited, it stores the current energy load ei(t) as reward. At the
same time, the energy level is reset to a quantity proportional to the distance
between the target areas. Otherwise, the robot consumes its energy while moving,
proportionally to its speed:

ei(t) =
{

1 + Eab if robot enters a new target area
ei(t− 1) − δi(t) otherwise (2)

where Eab is the energy that a robot would consume to move in a straight line
between the two target areas, and δi(t) is the energy consumed in a single time-
step, proportional to the wheels speed1. With an optimal behaviour (moving
straight between the two areas), a robot would store a quantity ei(t) = 1 each
time it enters a new target area, independently from the distance between the
two. The performance of the robot is computed at the end T of the trial, and is
normalised according to the maximum performance that can be achieved by a
robot behaving optimally:

f i = fi(T)/fmax, fmax = vmax · Teff/Dab (3)

where Dab = D− d is the minimum distance that must be covered between two
target areas. Finally, the fitness of the group F in a trial is computed as the
average across the group:

F =
N∑

i=1

fi (4)

The final fitness of the genotype is the average of F over 15 different trials.

3 Obtained Results and Behavioural Analysis

The evolutionary process has been replicated 10 times—hereafter, evolutionary
runs—starting from randomly generated populations. At the end of each evolu-
tionary run, we selected a single genotype to be analysed thoroughly. To do so,
we evaluated the performance of the best genotype of the last 100 generations,
and we selected the one showing the highest average over 500 trials as the repre-
sentative of each evolutionary run. The results are shown in Fig. 2. A qualitative
analysis of the evolved behaviours reveals that 6 evolutionary runs out of 10
result in a good collective exploration and navigation behaviour (runs number
3, 1, 6, 4, 7 and 0). Two runs (number 5 and 9) produced sub-optimal strategies,

1 This is in [0.0, 0.0025], which means a robot wastes at most 1 unit of energy in 400
time-steps, if moving at maximum speed.

160 V. Sperati, V. Trianni, and S. Nolfi

3 1 6 4 7 0 5 9 8 2

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

evolutionary run

fit
ne

ss

Fig. 2. Performance of the best evolved individual for each evolutionary run. Each
boxplot corresponds to the performance obtained in 500 trials. Boxes represent the
inter-quartile range of the data, while the horizontal lines inside the boxes mark the
median values. The whiskers extend to the most extreme data points within 1.5 times
the inter-quartile range from the box. Circles mark the outliers. The symbol � indicates
the average performance.

and two others (number 8 and 2) resulted in unsatisfactory behaviours both
at the individual and collective level. Given that the successful runs produced
qualitatively similar behaviours, in the following we describe the one of the best
genotype, corresponding to the evolutionary run number 3 (see Fig. 2).2

The sequence displayed in Fig. 3(a) shows how a typical trial unfolds in time3.
Initially, robots move independently and explore the environment. In doing so,
they signal their position and heading to other robots keeping the front blue LED
switched on, while the red LED is used only in certain conditions (see below).
The visual interactions mediated by these signals allow the group to converge
to a coherent motion between the two target areas. Eventually, the robots form
two rows moving from one target to the other in opposite directions (see the
last frame in Fig. 3(a)). We refer to this structured spatio-temporal pattern
formed by the robots as dynamic chain. The term dynamic well illustrates two
interesting features of this structure. Firstly, each robot in the chain is not static,
but moves continuously along it, swinging between the target areas as requested
by the fitness function. Secondly, the chain connecting the two targets adapts
its shape according to the current distance D between areas: it adapts the chain
direction by choosing the shortest path between the two areas, and adapts the
inter-robot distance to fit all robots in the chain (see Fig. 3(b)).

This collective behaviour is the result of simple rules followed by each individ-
ual robot and encoded in the neural controller. When a robot has no objects in
its perceptual field, it moves counterclockwise in large circles, the front blue LED

2 In this case the best genotype belongs to the 475th generation.
3 See http://laral.istc.cnr.it/esm/sperati-etal-ANTS2010/ for videos

Evolution of Self-organised Path Formation in a Swarm of Robots 161

(a)

D=70 D=90 D=110 D=130 D=150

(b)

Fig. 3. (a) Temporal sequence recorded in a generic successful trial (D = 110 cm),
showing the formation of the dynamic chain. (b) From left to right, each snapshot
displays the final configuration achieved by the swarm, at the end of 5 different standard
trials where the target areas are positioned according to the distance values in Dset.

always switched on. When a target area is in sight, a robot approaches it in a
straight line and makes a u-turn when it reaches the grey circle. When two robots
encounter, they avoid each other by always dodging to the right, exploiting the
blue visual signal emitted by the robots. This constitutes the basic mechanism
for the formation of the dynamic chain: in fact, a robot does not necessarily fol-
low the robot in front moving in the same direction, but rather keeps on its left
the robots coming in the opposite direction. It is clear that a minimal number of
robots is necessary to support this behaviour, because a dynamic chain is stable
as long as there are robots moving in opposite directions. In order to aggregate
all robots in the chain formation, the red signal is exploited. In fact, the red sig-
nal mimics the colour of the target area, and in general induces an approaching
behaviour. The red LED is switched on in two conditions. On the one hand, a
robot flashes while moving towards a target area. In this case, the signal allows
nearby robots to react by approaching the target area themselves, even though
they do not directly perceive it. On the other hand, robots signal while avoiding
each other. In this case, the function of the signal appears linked also to the
enhancement of the stability of the dynamic chain. Although the identification
of the exact roles played by the red and blue signals needs further analysis that
we plan to carry on in future research, these observations clearly indicate that
communication plays a crucial role for the formation of the dynamic chain and
more generally for the ability of the robots to coordinate and cooperate.

This brief qualitative analysis suggests the following considerations. First of
all, the formation of the chain is the outcome of a self-organising process that
results solely from the robot-robot interactions. We observed that the dynamic
chain forms rather abruptly out of a disordered group motion. We believe that

162 V. Sperati, V. Trianni, and S. Nolfi

this may correspond to a phase transition that depends mainly on the density
of robots between the two target areas. In other words, when enough robots are
attracted in this area thanks to the visual communication, the chain forms. A
second important remark concerns the function of the dynamic chain, which is
exploited by the robots to maintain the right heading toward the target areas
when they are not in sight. From this point of view, the group behaviour com-
pensates for the limited sensory range of the robots, which collectively discover
and preserve information concerning the direction of the two areas, thanks to
the exploitation of the communication signals.

To better evaluate the performance of the group, we tested the collective
behaviour systematically varying the distance between the target areas D ∈
Dset. The obtained results are presented in Fig. 4(a). Here the performance of the
group is compared to the performance of a single individual evolved in a control
experiment.4 First of all, we notice that the group always outperforms the single
individual. This confirms that a coordinated behaviour has been evolved, which
goes beyond the capability of the individual robot. Looking at the performance
of the group, it is possible to notice that the behaviour seems adapted mostly
for an intermediate distance, in which it scores the highest average performance.
With larger distances, the performance across different trials is more changing.
This suggests that the group may be able to coordinate in some cases, and in
others is not. We ascribe this variability to the limited duration of the trial,
hypothesising that in some cases robots do not have enough time to coordinate
and form a dynamic chain. To test this hypothesis, we performed an identical
test, but now increasing the duration of the initial coordination period (Tadd =
18600, Teff = 5400 time-steps). The results plotted in Fig. 4(b) confirm that for
all distances the group attains a good score, which is also very stable across
different trials. Moreover, the results indicate that the group behaves better for
large distances. In fact, with short distances, the dynamic chain is overcrowded
and robots interfere with each other, therefore obtaining a lower performance.
In this conditions, a smaller group behaves better (data not shown). Finally we
note how, when D = 150, the performance of the individual continue to be very
low, despite the extended time. This means that a robot alone is not capable to
face all the D values, while the swarm is.

4 Generalisation Abilities

In the previous section, we have described the features of the evolved behaviour,
and observed how the system always converges to a dynamic path formation if
enough time is granted for coordination. In this section, we test the ability of the
system to generalise to different conditions never met during the evolutionary op-
timisation. In particular, we want to understand whether robots are able to form
4 We explicitly evolved a neural controller for a single robot confronted with the same

task, with identical evolutionary conditions. We performed 30 evolutionary runs,
each one lasting 1000 generations, and selected the best genotype with the same
procedure described above.

Evolution of Self-organised Path Formation in a Swarm of Robots 163

70 90 110 130 150

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

N=10
N=1

distance D

fit
ne

ss

(a)

70 90 110 130 150

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

N=10
N=1

distance D

fit
ne

ss

(b)

Fig. 4. (a) Performance test with varying distance D ∈ Dset. Performance is computed
for groups of N = 10 robots, and for a single robot evolved for the same task in a
control experiment (N = 1). (b) The same test performed with a longer initial period
Tadd = 18600, during which performance is not computed.

a path with larger distances and with larger groups. We test the performance of
the group in 16 new conditions, obtained coupling 4 groups (N ∈ {20, 30, 40, 50})
with 4 distances (D ∈ {200, 250, 300, 350} cm). These tests have been performed
in a larger arena (fixed height H = 350 cm, variable width W ∈ [350, 390] cm),
and in longer trials (Tadd = 36600). The quantitative results are shown in Fig. 5.
We can immediately notice that, when the number of robots is sufficiently large,
the swarm is successful also when the distance between the two target areas
is much wider compared to the conditions experienced during the evolutionary
process. With distance D = 200 cm, groups with 20 robots perform best, while
larger groups are less efficient. Groups of 30 robots have a fairly good perfor-
mance, which however presents a large variability. With distance D = 250 cm it
is possible to notice a similar pattern. However, this time N = 30 is the optimal
group size. Finally, for D = 300 cm and D = 350 cm, the size N = 40 performs
best, with a larger variability in the latter case, in which also N = 50 presents
a fairly good performance in many trials.

This analysis confirms our expectations: the larger the distance between the
target areas, the larger the number of robots required to form a stable chain.
In fact, as mentioned above, the dynamic chain is maintained as long as there
are constantly robots moving in opposite directions uniformly distributed along
the path, which implies larger groups for larger distances. The analysis also
confirms that a minimum number of robots is necessary to form a path over a
certain distance. Similarly, large groups suffer overcrowding when the distance
D is too short, as there is no space available to distribute all the robots along
the path. However, the dynamic chain can adapt to a wide range of distances.
For instance, groups of 30 robots present good performance up to D = 300 cm,
and only with larger distances the performance systematically drops.

164 V. Sperati, V. Trianni, and S. Nolfi

200 250 300 350

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6 N=20

N=30
N=40
N=50

distance D

fit
ne

ss

Fig. 5. Generalisation ability for groups of increasing size N and for increasing distance
D. Each boxplot corresponds to the performance obtained in 500 trials (Teff = 5400,
Tadd = 36600).

5 Discussion and Conclusions

In this paper we reported a series of experiments in which the behaviour of a
swarm of robots has been evolved for the ability to navigate back and forth
between two target areas which can only be perceived locally. The analysis of
the obtained results indicates that the robots solve the problem by exploring the
environment and by forming a dynamic chain constituted by two rows of robots
moving from one target to the other in opposite directions. The dynamic chain
emerges rather abruptly from the robot-robot interactions mediated by light
signals, and afterwards adapts by converging toward a configuration that corre-
sponds to the shortest path and that is characterised by a rather uniform dis-
tribution of distances between the robots. The analysis of the evolved behaviour
demonstrates how it generalises to situations in which the distance between the
two target areas is much wider compared to the conditions experienced during
the evolutionary process provided that the number of robots forming the swarm
is sufficiently large. Similarly to pheromone trails in ants, dynamic chains allow
the swarm to efficiently navigate between the two target areas. Indeed, in both
cases the stability of the structure is a result of a sustained flux of individuals
that support it, in one case by pheromone laying, in the other by coloured sig-
nals. Another common feature is the ability to identify the shortest path between
two locations. Even though we only performed tests in an obstacle-free arena,
we observed that dynamic chains may initially form in curved paths (especially
with large groups), which slowly straighten until the shortest route is taken. In
future work, we plan to analyse in more detail the evolved behaviour, in order to
better understand the properties of the dynamic chain and its relationship with
similar behaviours observed in Nature.

In future work, we plan to test the evolved behaviour in hardware exploit-
ing the foot-bot robotic platform developed within the European project Swar-
manoid (grant IST-022888, see http://www.swarmanoid.org). Within this

http://www.swarmanoid.org

Evolution of Self-organised Path Formation in a Swarm of Robots 165

project, we also aim at testing coordinated behaviours among groups of het-
erogeneous robots. In particular, we plan to exploit the eye-bot robotic platform
to work as ’smart’ target areas. The eye-bot is in fact an aerial robot with
the ability to attach to the ceiling, from which it can monitor the environment
and detect relevant areas. Foot-bots can perceive an eye-bot only when they
are approximately underneath it, thanks to a camera pointing upward. As a
consequence, eye-bots could be exploited by the foot-bots as target areas, and
dynamic chains can be formed between them, creating for instance a delivery
line from a target to a goal location, which is known by the eye-bots thanks to
their privileged viewpoint. Moreover, eye-bots can move in the environment and
exploit the robustness of the dynamic chain to purposely modify its length or
its shape. Finally, we will investigate how to form more complex dynamic chains
that can trace the shortest path between more than two eye-bots or target areas.

Acknowledgements. The authors wish to thank Onofrio Gigliotta, Tomassino
Ferrauto and Gianluca Massera for the fruitful discussions and their help. This
work was supported by the Swarmanoid project, funded by Future and Emerging
Technologies programme (IST-FET), of the European Commission, under grant
IST-022888.

References

1. Bailey, T., Durrant-Whyte, H.: Simultaneous localization and mapping: part II.
IEEE Robotics & Automation Magazine 13(3), 108–117 (2006)

2. Detrain, C., Denebourg, J.: Collective decision and foraging patterns in ants and
honeybees. Advances in Insect Physiology 35, 123–173 (2009)

3. Drogoul, A., Ferber, J.: From Tom Thumb to the Dockers: some experiments with
foraging robots. In: From Animals to Animats 2, Second International Conference
on Simulation of Adaptive Behavior (SAB-92), pp. 451–459. MIT Press, Cambridge
(1993)

4. Filliat, D., Meyer, J.: Map-based navigation in mobile robots - I. A review of
localization strategies. Journal of Cognitive Systems Research 4, 243–282 (2003)

5. Floreano, D., Husband, P., Nolfi, S.: Evolutionary robotics. In: Siciliano, B., Ous-
sama, K. (eds.) Handbook of Robotics, pp. 1423–1451. Springer, Berlin (2008)

6. Gigliotta, O., Nolfi, S.: On the coupling between agent internal and
agent/environmental dynamics: Development of spatial representations in evolv-
ing autonomous robots. Adaptive Behavior 16, 148–165 (2008)

7. Goss, A., Aron, S., Denebourg, J., Pasteels, J.: Self-organized shortcuts in the
argentine ant. Naturwissenschaften 76(12), 579–581 (1989)

8. Gutiérrez, Á., Campo, A., Santos, F.C., Pinciroli, C., Dorigo, M.: Social odometry
in populations of autonomous robots. In: Dorigo, M., Birattari, M., Blum, C.,
Clerc, M., Stützle, T., Winfield, A.F.T. (eds.) ANTS 2008. LNCS, vol. 5217, pp.
371–378. Springer, Heidelberg (2008)

9. Hafner, V.V.: Cognitive maps in rats and robots. Adaptive Behavior 13, 87–96
(2005)

10. Lambrinos, D., Kobayashi, H., Pfeifer, R., Maris, M., Labhart, T., Wehner, R.:
An autonomous agent navigating with a polarized light compass. Adaptive Behav-
ior 6(1), 131–161 (1997)

166 V. Sperati, V. Trianni, and S. Nolfi

11. Maynard-Smith, J., Harper, D.G.: Animal Signals. Oxford University Press, Oxford
(2003)

12. Menzel, R., Greggers, U., Smith, A., Berger, S., Brandt, R., Brunke, S., Bundrock,
G., Hülse, S., Plümpe, T., Schaupp, F., Schüttler, E., Stach, S., Stindt, J., Stoll-
hoff, N., Watzl, S.: Honey bees navigate according to a map-like spatial memory.
Proceedings of the National Academy of Sciences of the United States of Amer-
ica 102(8), 3040–3045 (2005)

13. Nolfi, S., Floreano, D.: Evolutionary Robotics: The Biology, Intelligence, and Tech-
nology of Self-Organizing Machines. MIT Press/Bradford Books, Cambridge (2000)

14. Nouyan, S., Campo, A., Dorigo, M.: Path formation in a robot swarm. Swarm
Intelligence 2(1), 1–23 (2007)

15. O’Keefe, J., Nadel, L.: The Hippocampus as a Cognitive Map. Oxford University
Press, Oxford (1978)

16. Ostergaard, E., Sukhatme, G., Matarić, M.: Emergent bucket brigading: a sim-
ple mechanisms for improving performance in multi-robot constrained-space for-
aging tasks. In: Proceedings of the Fifth International Conference on Autonomous
Agents, pp. 2219–2223 (2001)

17. Payton, D., Daily, M., Estkowski, R., Howard, M., Lee, C.: Pheromone robotics.
Autonomous Robots 11(3), 319–324 (2001)

18. Thrun, S.: Robotic mapping: a survey. In: Gerhard Lakemeyer, G., Nebel, B. (eds.)
Exploring artificial intelligence in the new millennium, pp. 1–35. Morgan Kaufmann
Publishers Inc., San Francisco (2003)

19. Trianni, V., Nolfi, S., Dorigo, M.: Evolution, self-organisation and swarm robotics.
In: Blum, C., Merkle, D. (eds.) Swarm Intelligence. Introduction and Applications.
Natural Computing Series, pp. 163–192. Springer, Berlin (2008)

20. Vickerstaff, R.J., Di Paolo, E.A.: Evolving neural models of path integration. Jour-
nal of Experimental Biology 208, 3349–3366 (2005)

21. Wehner, R.: Desert ant navigation: how miniature brains solve complex tasks. Jour-
nal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral
Physiology 189(8), 579–588 (2003)

22. Werger, B., Matarić, M.: Robotic food chains: Externalization of state and program
for minimal-agent foraging. In: From Animals to Animats 4, Fourth International
Conference on Simulation of Adaptive Behavior (SAB 1996), pp. 625–634. MIT
Press, Cambridge (1996)

23. Zeil, J., Boeddeker, N., Stürzl, W.: Visual homing in insects and robots. In: Flo-
reano, D., Zufferey, J.C., Srinivasan, M., Ellington, C. (eds.) Flying Insects and
Robots, pp. 87–100. Springer, Berlin (2009)

Extensions to the Ant-Miner Classification Rule
Discovery Algorithm

Khalid M. Salama and Ashraf M. Abdelbar

Computer Science & Engineering Department
American University in Cairo, Egypt

{khalid.magdy,abdelbar}@aucegypt.edu

Abstract. Ant-Miner is an ant-based algorithm for the discovery of
classification rules. This paper proposes four extensions to Ant-Miner:
1) we allow the use of a logical negation operator in the antecedents of
constructed rules; 2) we use stubborn ants, an ACO-variation in which
an ant is allowed to take into consideration its own personal past history;
3) we use multiple types of pheromone, one for each permitted rule class,
i.e. an ant would first select the rule class and then deposit the corre-
sponding type of pheromone; 4) we allow each ant to have its own value
of the α and β parameters, which in a sense means that each ant has its
own individual personality. Empirical results show improvements in the
algorithm’s performance in terms of the simplicity of the generated rule
set, the number of trials, and the predictive accuracy.

Keywords: Ant Colony Optimization (ACO), Data Mining, Classifica-
tion, Stubborn Ants, Ants with Personality.

1 Introduction

Classification is a data mining task in which the aim is to discover, from labeled
cases, a model that can be used to predict the class of unlabeled cases [4]. Ant-
Miner is an ACO algorithm, proposed by Parpinelli et al. [9], that discovers
classification rules of the form:

IF <Term-1> AND <Term-2> AND . . .<Term-n> THEN <Class>,

where each term is of the form <attribute = value>, and the consequent of a
rule is the predicted class. In this paper, we propose a number of extensions
to the Ant-Miner algorithm, and then empirically evaluate each of these, both
individually and in combination with the others.

In section 2, we present a brief description of the original Ant-Miner algorithm,
followed by a brief review of related work in Section 3. We then present each
of our proposed extensions in Sections 4 through 7. Section 4 describes the use
of a logical negation operator in the construction of rule antecedents. Section
5 proposes the use of stubborn ants, where an ant is influenced by its own
rule construction history. In section 6 we introduce the multi-pheromone ant
system, in which an ant selects the rule class first and then drops different

M. Dorigo et al. (Eds.): ANTS 2010, LNCS 6234, pp. 167–178, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

168 K.M. Salama and A.M. Abdelbar

pheromone types for each selected class. Finally, in Section 7, we explore the
idea of using different values for α and β for each ant. Sections 8 and 9 discuss
our experimental methodology and results, respectively, and some final remarks
are presented in Section 10.

2 Ant-Miner Algorithm

The proposed modifications presented in this paper are based on the original
Ant-Miner algorithm introduced in [9]. The following is a brief description of the
algorithm; for a more detailed discussion, the reader is referred to [9]. Ant-Miner
discovers an ordered list of classification rules. As an ACO-based algorithm, the
decision components in the construction graph of Ant-Miner are the available
attribute values, by which a rule’s antecedent terms can be constructed. The
algorithm consists of two nested loops: the outer loop where a single rule in each
iteration is added to the discovered rule list, and the inner loop where an ant
in each iteration constructs a rule as follows. Each ant in the colony attempts
to construct a rule’s antecedents by selecting terms probabilistically accord-
ing to a heuristic function involving information gain [10] and the pheromone
amount for this term, until all the attributes have been used, or until adding
any other term to the set of antecedents would make the rule coverage less
than min cases per rule. The rule consequent is then chosen by determining
the class value with maximum occurrence in the cases matching the rule an-
tecedents. A pruning process is carried out on the rule to increase the rule
quality. Then, the ant updates the pheromone level by depositing pheromone on
the selected terms in proportion to the quality of the rule. This is done in order
to increase the probability that the following ants will select the terms involved
in the rule. The pheromone values for all terms are normalized to simulate evap-
oration. After several iterations of the inner loop, the best rule constructed is
added to the list of discovered rules, and the training cases matched by that
rule are removed from the training set. This course of action is considered an
iteration of the outer loop and is repeated until the number of training examples
remaining in the training set becomes less than or equal to the value deter-
mined by the max uncovered cases parameter. Both min cases per rule and
max uncovered cases are user-specified thresholds.

2.1 Pheromone Initialization and Update

At the beginning of each outer loop, the pheromone is initialized for each term
with the same value given by the function:

τij (t = 0) =
1∑a

r=1 br
(1)

where a is the total number of attributes, i is the index of an attribute, j is the
index of a value in the domain of attribute i, and br is the number of values in
the domain of attribute r.

Extensions to the Ant-Miner Classification Rule Discovery Algorithm 169

After an ant constructs a rule, the rule quality is evaluated and the pheromone
amount is increased for the terms belonging to the rule according to its quality.
This is calculated as follows:

Q =
TP

TP + FN
· TN

TN + FP
(2)

where TP (true positives) is the number of cases covered by the rule and have the
class predicted by the rule, FP (false positives) is the number of cases covered
by the rule and have a class different from the class predicted by the rule, FN
(false negatives) is the number of cases that are not covered by the rule but have
the class predicted by the rule, TN (true negatives) is the number of cases that
are not covered by the rule and do not have the class predicted by the rule.

2.2 Term Selection

The term is selected probabilistically according to two components. The first is
ηij , which is the value of a problem-dependent heuristic function – information
gain [10] is used in Ant-Miner – for termij . The second is τij , which is the
amount of pheromone on termij . The higher the value of ηij is, the better for
classification the termij is, thus leading to a higher probability of being selected.
The same applies for τij . The following is the term selection formula:

Pij =
ηij · τij (t)∑a

r=1
∑br

s=1 (ηrs · τrs (t))
(3)

where Pij is the probability of selecting termij , a is the total number of at-
tributes, and br is the number of values in the domain of the rth attribute.

3 Related Work

A. Chan and A. Freitas [2] have proposed a new rule pruning procedure for
Ant-Miner that led to the discovery of simpler (shorter) rules and improved the
computational time in datasets with a large number of attributes. AntMiner2
and AntMiner3 have been introduced in [5] and [6] respectively by B. Liu ,
H. A. Abbass, and B. McKay which employ a density-based heuristic function
for calculating the heuristic value for a term, as well as presenting a new state
transition approach respectively. A pseudorandom proportional transition rule
was used by Z. Wang in [13]. J. Smaldon, and A. Freitas [11] introduced the
idea of selecting rule consequent class before rule construction - this idea is the
inspiration of multi-pheromone ant system modification described in section 7
- and producing an unordered rule set. D. Martens [7] has introduced a new
ACO-based classification algorithm, named AntMiner+. It makes a distinction
between nominal and ordinal attributes. Instead of creating a pair (attribute =
value) for each value of an ordinal attribute, AntMiner+ creates two types of
bounds that represent the interval of values to be chosen by the ants. Moreover,

170 K.M. Salama and A.M. Abdelbar

it employs different pheromone initialization and update procedures based on
the MAX -MIN Ant System [3]. In addition, edges in the construction graph
are considered the decision components. The idea of selecting rule class before
constructing rule antecedent is also used in his paper. F. Otero, A. Freitas, and
C. G. Johnson [8] introduced a version of Ant-Miner that copes with continuous
attributes named cAnt-Miner.

4 Using Logical Negation Operator in Rule Antecedents

In the original and various versions of Ant-Miner, the construction graph consists
of nodes representing attribute values of the problem domain. The set of nodes
(N) in the construction graph is:

N =
n⋃

i=1

vij , j ∈ {1, 2, . . . , l}

where i is the ith attribute, n is the number of attributes and vij is the jth

permitted value of the ith attribute. Thus the constructed rule antecedents will
be in the form of:

IF < Ai = Vij > AND < Ak = Vkl > AND . . .

To allow using the logical negation operators in the antecedents of constructed
rules, the values and their negation per attribute will be added to the construc-
tion graph. The set of nodes (N) in the construction graph will be:

N =
n⋃

i=1

vij ∪
n⋃

i=1

vij , j ∈ {1, 2, . . . , l}

Thus, the available decision components in the construction graph allow con-
structing rule antecedents in the form of:

IF < Ai = Vij > AND < Ak NOT = Vkl > AND . . .

Negation values are added for the attribute that has more than two values in its
domain. Pheromone is updated regularly on these terms and a heuristic value
is calculated for the negation attribute values in the same way as it is calcu-
lated for regular attribute values. An example of a generated rule using logical
negation operator is: “IF <price = low> AND <condition NOT = bad> THEN
<Class=Buy>”.

Although using negative attributes doubles the size of the construction graph,
it enables the construction of rules that have greater coverage of the training
cases. Consequently, a lower number of rules is produced which improves the
comprehensibility of the output. Moreover, a reduced number of iterations are
needed to reach the threshold of the number of cases to be covered. Results also
show that it has a better performance in terms of accuracy in addition to the
reduced number of iterations and the simpler (smaller) rule set.

Extensions to the Ant-Miner Classification Rule Discovery Algorithm 171

5 Using Stubborn Ants

Stubborn ants were introduced in 2008 in [1]. The idea is to promote search
diversity by having each ant be influenced by its own history of constructing
solutions in addition to the pheromone trails left by other ants. Basically, each
ant does several trials in the execution of the algorithm. Each antt memorizes the
best solution R+

t that it has constructed during its own trials. If termij belongs
to the antecedents of rule R+

t , then termij will have an amplified probability of
being selected by antt, with the degree of amplification depending on the quality
of the solution R+

t . The probability that a term will be added to the current rule
is given by the following formula:

Pij(t) =
Vij∑a

r=1
∑br

s=1 (Vrs)
(4)

where Vij = (ηij · τij (t))+(ηij · τij (t))·Q(R+
t) if termij belongs to antt history’s

best rule R+
t , otherwise Vij = ηij · τij (t), and Q(R+

t) represents the quality of
the current ant’s best history rule R+

t .
Stubborn ants add individuality to each ant, which promotes exploration and

diversity. Results (see Section 9) show an increase in rule accuracy when using
stubborn ants as well as a decrease in the average number of trials needed to
construct a rule. Note that the size of the colony affects the behavior of the
stubborn ants; as the number of the ants decreases, the stubbornness effect is
more applied, given that the total number of trials per iteration is fixed.

6 Multi-Pheromone Ant System

In the original Ant-Miner, the consequent of a rule is chosen after its antecedents
are selected by determining the class value with maximum occurrence in the cases
matching the rule premises. The idea of selecting the rule consequent prior to
rule construction was introduced in different flavors. A. Frietas in [11] introduced
an algorithm that tries to construct rules for each class independently: an extra
For-Each (class value) loop is added as an outer loop for the original algorithm.
The consequent of the rule is known by the ant during rule construction and does
not change. An ant tries to choose terms that will produce the rule predicting
the class value in the current iteration of the For-Each loop with an optimum
level of accuracy. This approach generates better rules in comparison with the
original Ant-Miner where a term is chosen for a rule in order to decrease entropy
in the class distribution of cases matching the rule under construction. However,
the entire execution (with the complete training set) is repeated separately for
each class value until the number of positive examples (belonging to the current
class) remaining in the dataset that have not been covered by the discovered
rules is less than or equal to max uncovered cases. Moreover, the number of
the generated rules by this version is increased. For a more detailed description
of the algorithm, refer to [11].

172 K.M. Salama and A.M. Abdelbar

D. Martens introduced the same idea in Ant-Miner+ [7]. An extra vertex
group is added at the start in the construction graph containing class values
to allow the selection of class first. This is similar to considering the class as
another variable. Rules with different classes can be constructed in the same
iteration. Different heuristic values are applied according to the selected class in
order to chose the term that is relevant to the prediction of the selected class.
However, the pheromone is shared by all ants constructing rules with different
consequents. In other words, any ant is influenced by the pheromone dropped by
any other ant constructing similar or different labeled rules. This can negatively
affect the quality of the constructed rules, as the terms that lead to constructing
a good rule with class Cx as a consequent do not necessarily lead to constructing
a good rule with Cy as a consequent for a classification rule.

Unlike the version of Ant-Miner in [11], our proposed multi-pheromone Ant-
Miner system executes the course of operations only once during the entire train-
ing process. Ants in the multi-pheromone system can construct rules with dif-
ferent consequent classes in the same iteration simultaneously. Nonetheless, the
ant is only influenced by the ants that have constructed rules with the same
consequent, using a multiple types of pheromone system.

First, an ant probabilistically selects the rule consequent prior to antecedents
based on pheromone information as described below. Then, it tries to chose
terms that are relevant to predicting this class. The rule is then evaluated and
the pheromone is updated. But, unlike the version of Ant-Miner in [7], the ant
drops different kinds of pheromone as many as the permitted classes. The next
ant is only influenced by the amount of the pheromone deposited for the class
for which it is trying to construct a rule. In this case, pheromone is not shared
amongst ants constructing rules for different classes. This allows choosing terms
that are only relevant to the selected class.

The idea of multi-pheromone Ant-Miner is that each class has a different
pheromone to be deposited on the terms in the construction graph. In essence,
we are replacing the traditional two-dimensional pheromone structure (attribute,
value) by a new three-dimensional pheromone structure (attribute, value, class).
During rule construction, the rule class is already set and an ant is only influenced
by the amount of pheromone in the pheromone array element dedicated to its
rule class. Similarly in pheromone update, an ant deposits pheromone in the
array element dedicated to the current rule class in each node belonging to the
trial. Class values are also represented in nodes in the construction graph, and
pheromone can be deposited on them. This pheromone affects the probability of
selecting the rule class for subsequent ants. The pheromone is initialized in the
node of class values as follows:

τc =
freq(c)

|TrainingSet| (5)

where freq(c) is the number of instances labeled with class c, and |TrainingSet|
is the size of the training set. In pheromone update, the pheromone level increases
in the node of the constructed rule class according to the quality of the rule, as
follows:

Extensions to the Ant-Miner Classification Rule Discovery Algorithm 173

τcr (t) = τcr (t− 1) + τcr (t− 1) ·Qr (6)

where cr is the class of the current constructed rule, and Qr is quality of the
rule. The problem dependent heuristic function chosen is the Laplace-corrected
confidence for each term as in [11], given by:

ηij,k =
|termij , k| + 1

|termij |+ no of classes
(7)

where ηij,k is the heuristic for termij given that class k is selected, |termij , k|
is the number of training cases having termij and the current selected class k,
|termij | is the number of training cases having termij and no of classes is the
number of values in the class attribute’s domain. The probability of selecting
termij given that class k is chosen is calculated as follows:

Pij,k =
ηij,k · τijk (t)∑a

r=1
∑br

s=1 (ηrs,k · τrs,k (t))
(8)

The rule generated via multi-pheromone system is evaluated, to update the
pheromone levels, by a function that balances between the support and the
confidence of the rule, as follows:

Q(Rt) = Confidence(Rt) + Support(Rt) (9)

where Confidence(Rt) = TP
|Matches| represents the ratio of the number of cases

that match rule Rt’s premises and are labeled by its class to the total number
of cases that match Rt’s premises, and Support(Rt) = TP

|TrainingSet| represents
the ratio of the number of cases that match Rt’s premises and are labeled by
its class to the total number of cases in the training set. This function finds a
middle ground between the coverage of the rule and its classification accuracy.

After the best iteration rule is selected, all cases covered by this rule are
removed from the training set and the pheromone is initialized but only in
the pheromone array element dedicated for the class of this rule. Leaving the
pheromone in the array element of other classes tends not to waste the wisdom
that has been collected by the ants in the previous trials for the rest of the
classes, leading to faster convergence in the next iterations. Multi-pheromone
Ant-Miner system tends to generate better rules (see Section 9 for results) in
terms of accuracy with a smaller number of iterations and generates a smaller
(simpler) rule set.

7 Ants with Personality

Ants with personality were proposed in the future work section of [1]. In typical
ACO systems, the probabilistic transition function is calculated as follows:

Pi =
ηα

i · τβ
i (t)∑a

r=1

(
ηα

r · τβ
r (t)

) (10)

174 K.M. Salama and A.M. Abdelbar

The exponents α and β are used to adjust the relative emphases of the pheromone
and heuristic information terms, respectively. In the original ant-miner, α equals
β equals to 1.0, for all ants.

In ant with personality [1], the idea is to increase search diversity by giving
each ant its own values of the α and β parameters, different from those of the
rest of the colony. In our experimental results, we use values of α and β drawn
from a random number generator using a Gaussian distribution with a mean
of 2 and a standard deviation (σ) that ranges from 0 to 1. Note that a higher
standard deviation value would introduce a higher range of diversity between
ant behavior in selecting a term. However, this could also increase the number
of trials needed in each iteration to converge on a rule.

8 Experimental Methodology

The performance of Ant-Miner with the proposed modifications was evaluated
using four public-domain datasets from the UCI (University of California at
Irvine) dataset repository [12].

The main characteristics of the datasets are shown in Table 1. The new ver-
sion of Ant-Miner does not deal directly with continuous attributes, therefore,
the chosen datasets include only categorical attributes in order to avoid the
interference of the quality of the discretization method on the experiment.

Table 1. Description of Datasets Used in Experimental Results

Dataset # of cases # of attributes # of classes

Car Evaluation 1,728 6 4
Tic-Tac-Toe 958 9 2
Mushrooms 8,124 22 2
Nursery 12,960 8 5

Ten-fold cross validation was used to split the dataset into a training set and
testing set with ratio of 90% and 10% respectively. Each pair of training and
testing data was used for experimenting with each combination of modifications
(original, using negative attributes, using stubborn ants and multi-pheromone)
and the average was taken. The experiment ran 10 times per each pair and the
average of averages was taken. Thus, the total number of runs for each dataset
is 100 (10 pairs, each tested 10 times). the number of rules generated (which
represents the comprehensibility of the output), the average number of trials
per iteration (number of ant trials needed to converge) and the accuracy of the
generated rules were recorded to evaluate the quality of the experiment.

For ants with personality, the algorithm has been executed on the four datasets
with different values for the standard deviation parameter (σ). Each value of
standard deviation is tried 10 times for each training/testing pair taken from
each dataset.

Extensions to the Ant-Miner Classification Rule Discovery Algorithm 175

The source code for our extended version of Ant-Miner, including all four ex-
tensions presented in this paper is available at the following address:
http://www.aucegypt.edu/faculty/abdelbar/ant-miner-extended.zip

Table 2 shows the algorithm parameter settings used in the experiments for
testing the original version as well as the various proposed extensions of the
Ant-Miner.

Table 2. Algorithm Parameters Used in Experiments

Parameter Value

Number of ants 5
max uncovered cases 5%
Number of trials per ant 300
Number of trials to test converge (no rules converg) 10
Number of global iterations 30

9 Experimental Results

The following are the results produced by applying the new modifications on
the chosen datasets. Results for each dataset are presented in a separate table.
Each table contains experimental results for applying each modification individ-
ually and in combination with others. The results for ants with personality are
presented in a separate table which contains the results for each dataset using
different values of standard deviation σ.

As shown in Table 3, using logical negation reduced the average number of
rules generated by the algorithm. Stubborn ants improved the average accuracy
of the generated rules and reduced the average number of trials per iteration.
Multi-pheromone system improved the average accuracy with most the scenarios
compared to the original version. Using Multi-pheromone with stubborn ants and
logical negation produced the best average accuracy with a reduced number of
rules and a smaller number of trials per iteration.

In the Tic-Tac-Toe dataset (Table 4), the class attribute has two values. Multi-
pheromone did not improve the accuracy of the generated rules. However, it
produced a smaller rule set. Using logical negation reduced the average number of

Table 3. Experimental Results for the Car Evaluation Dataset

Original Multi-Pheromone

Rules Trials/Iter Accuracy # Rules Trials/Iter Accuracy

None 8.9 87 75.7 % 6.1 154 77.3 %
Negation 5.9 105 78.0 % 3.7 169 76.9 %
Stubborn Ants 8.6 68 77.6 % 5.6 91 78.7 %
Neg. & Stub. 6.2 84 79.1 % 4.8 114 80.3%

176 K.M. Salama and A.M. Abdelbar

Table 4. Experimental Results for the Tic-Tac-Toe Dataset

Original Multi-Pheromone

Rules Trials/Iter Accuracy # Rules Trials/Iter Accuracy

None 6.6 89 70.1 % 5.8 148 69.9 %
Negation 5.3 120 70.6 % 3.1 109 70.8 %
Stubborn Ants 6.9 59 71.5 % 5.9 83 70.3 %
Neg. & Stub. 4.9 97 72.7% 3.2 99 71.8 %

generated rules. Stubborn ants enhanced the average accuracy of the rules. Using
logical negation with stubborn ants in the original version produced the best
average accuracy while using multi-pheromone with logical negation produced
the least number of rules.

The Mushrooms dataset (Table 5) has a two-valued class attribute, as in Tic-
Tac-Toe. However, multi-pheromone system produced better results in terms of
average accuracy. Stubborn ants performed well in enhancing the average accu-
racy of the generated rules. Using logical negation produced the least number of
rules with a low number of trials, but the average accuracy of the rules declined.
Multi-pheromone with stubborn ants produced the best average accuracy with
an appropriate number of generated rules.

Experiments on the Nursery dataset (Table 6) have shown similar results to
the Mushrooms dataset. Using logical negation reduced the number of generated
rules, but came with a negative effect on the accuracy. Stubborn ants improved

Table 5. Experimental Results for the Mushrooms Dataset

Original Multi-Pheromone

Rules Trials/Iter Accuracy # Rules Trials/Iter Accuracy

None 6.0 41 91.0 % 4.3 132 91.3 %
Negation 4.4 59 88.5 % 3.8 277 89.6 %
Stubborn Ants 6.5 38 92.6 % 4.7 87 93.3%
Neg. & Stub. 4.9 39 90.2 % 3.5 139 91.7 %

Table 6. Experimental Results for the Nursery Dataset

Original Multi-Pheromone

Rules Trials/Iter Accuracy # Rules Trials/Iter Accuracy

None 9.0 115 78.4 % 7.3 215 79.1 %
Negation 6.2 110 76.4 % 4.2 253 75.1 %
Stubborn Ants 9.1 95 79.2 % 6.6 147 80.5%
Neg. & Stub. 5.7 90 76.0 % 5.1 237 77.6 %

Extensions to the Ant-Miner Classification Rule Discovery Algorithm 177

Table 7. Experimental Results for Ants with Personality

Car Evaluation Nursery Tic-Tac-Toe Mushrooms

σ = 0.5 σ = 1.0 σ = 0.5 σ = 1.0 σ = 0.5 σ = 1.0 σ = 0.5 σ = 1.0

Avg. Accuracy 76.2% 77.6% 80.3% 81.0 % 71.6% 72.8 % 92.8% 91.7%
Avg. Trials/Iter. 156 302 230 879 198 634 167 538
Avg. # Rules 9 8.8 9.2 9.1 6.7 6.7 6 6

the average accuracy of the generated rules, especially when used with multi-
pheromone system, as this combination produced the best average accuracy.

As for ants with personality, Table 7 indicates that the average number of rules
did not change significantly when using different values of standard deviation
for all datasets. However, the average accuracy and the number of trials have
different results for each value of standard deviation. Setting σ = 0.5 produced
better average accuracy compared to the original version of Ant-Miner but with
higher trials per iteration. A standard deviation of 1.0 produced an even better
average accuracy, but the number of trials per iteration also increased.

In summary, experimental results indicate that using logical negation tends
to produce a lower number of rules. However, since the number of nodes in the
construction graph increases, the number of trials per iteration increases. Us-
ing logical negation does not sacrifice the accuracy of the generated rules. On
the other hand, using stubborn ants enhances the classification accuracy of the
rules. Multi-pheromone increases rule quality in terms of accuracy. Furthermore,
it produces a smaller rule set because of the evaluation function that balances
between a rule’s classification accuracy and its coverage. As for ants with per-
sonality, using σ = 1.0 produces better results in terms of accuracy than using
σ = 0.5. Nonetheless, the algorithm needs less trials using σ = 0.5. Note that
a standard deviation of 0.5 produces better results in terms of generated rules
accuracy compared to the original version of Ant-Miner.

10 Concluding Remarks

This paper has proposed four extensions to the Ant-Miner classification rule
discovery algorithm. Experimental results on four popular datasets indicate that
these extensions are promising and worthy of further exploration.

In the future, we would like to explore using a weight coefficient for stubborn-
ness when using stubborn ants, which may start at a small value and increase
gradually over time. When using ants with personality, we would like to explore
gradually decreasing over time the value of the standard deviation of the Gaus-
sian distribution function used to generate the individual α’s and β’s. Another
research direction is to enhance the pheromone update procedure by reward-
ing a rule whose quality is higher than a certain threshold by depositing more
pheromone and penalizing a low-quality rule by removing pheromone from its
terms in the construction graph.

178 K.M. Salama and A.M. Abdelbar

References

1. Abdelbar, A.M.: Stubborn ants. In: Proceedings IEEE Swarm Intelligence Sympo-
sium, pp. 1–5 (2008)

2. Chan, A., Freitas, A.: A new classification-rule pruning procedure for an ant colony
algorithm. In: Talbi, E.-G., Liardet, P., Collet, P., Lutton, E., Schoenauer, M. (eds.)
EA 2005. LNCS, vol. 3871, pp. 25–36. Springer, Heidelberg (2006)

3. Dorigo, M., Colorni, A., Maniezzo, V.: The Ant System: Optimization by a colony
of cooperating agents. IEEE Transactions on Systems, Man, and Cybernetics-Part
B 26, 29–41 (1996)

4. Jaiwei, H., Kamber, M.: Data Mining: Concepts and Techniques. Morgan Kauf-
mann, San Francisco (2006)

5. Liu, B., Abbass, H.A., McKay, B.: Density-based heuristic for rule discovery with
ant-miner. In: Proc. 6th Australasia-Japan Joint Workshop on Intell. Evol. Syst.,
pp. 180–184 (2002)

6. Liu, B., Abbass, H.A., McKay, B.: Classification rule discovery with ant colony
optimization. In: Proc. IEEE/WIC Int. Conf. Intell. Agent Technol., pp. 83–88
(2003)

7. Martens, D., Backer, M.D., Haesen, R., Vanthienen, J., Snoeck, M., Baesens, B.:
Classification with ant colony optimization. IEEE Transactions on Evolutionary
Computation 11, 651–665 (2007)

8. Otero, F., Freitas, A., Johnson, C.G.: cAnt-Miner: An ant colony classification
algorithm to cope with continuous attributes. In: Dorigo, M., Birattari, M., Blum,
C., Clerc, M., Stützle, T., Winfield, A.F.T. (eds.) ANTS 2008. LNCS, vol. 5217,
pp. 48–59. Springer, Heidelberg (2008)

9. Parpinelli, R.S., Lopes, H.S., Freitas, A.: Data mining with an ant colony opti-
mization algorithm. IEEE Transactions on Evolutionary Computation 6, 321–332
(2002)

10. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann, San Fran-
cisco (1993)

11. Smaldon, J., Freitas, A.: A new version of the Ant-Miner algorithm discovering
unordered rule sets. In: Proceedings Genetic and Evolutionary Computation Con-
ference (GECCO), pp. 43–50 (2006)

12. UCI Repository of Machine Learning Databases,
http://www.ics.uci.edu/~mlearn/MLRepository.html (Retrieved July 2009)

13. Wang, Z., Feng, B.: Classification Rule Mining with an Improved Ant Colony
Algorithm. In: Webb, G.I., Yu, X. (eds.) AI 2004. LNCS (LNAI), vol. 3339, pp.
357–367. Springer, Heidelberg (2004)

http://www.ics.uci.edu/~mlearn/MLRepository.html

Functional Blueprints: An Approach to
Modularity in Grown Systems

Jacob Beal

BBN Technologies, Cambridge, MA, USA
jakebeal@bbn.com

Abstract. The engineering of grown systems poses fundamentally dif-
ferent system integration challenges than ordinary engineering of static
designs. On the one hand, a grown system must be capable of surviving
not only in its final form, but at every intermediate stage, despite the
fact that its subsystems may grow unevenly or be subject to different
scaling laws. On the other hand, the ability to grow offers much greater
potential for adaptation, either to changes in the environment or to in-
ternal stresses developed as the system grows. I observe that the ability
of subsystems to tolerate stress can be used to transform incremental
adaptation into the dynamic discovery of viable growth trajectories for
the system as a whole. Using this observation, I propose an engineer-
ing approach based on functional blueprints, under which a system is
specified in terms of desired performance and means of incrementally
correcting deficiencies. I demonstrate this approach by applying it to
integrate simplified models of tissue growth and vascularization, then
further demonstrate how the composed system may itself be modulated
for use as a component in a more complex design.

1 Introduction

One of the most remarkable facts about animals is that they are not generally
injured by their own growth. An animal is composed of many tightly integrated
systems, all interlocking in multiple ways. For example, bones fit together in
joints that permit a useful range of motion, muscles attach to the bones in a
pattern that allows them to work together effectively to move the body, the
circulatory system delivers oxygen and nutrients to every portion of the bones
and muscles via an intricate network of vessels, and their waste products are
carried away for removal by the kidneys. As the animal grows, from an embryo
to a mature adult, all of these systems are constantly adapting in order to remain
integrated and fully functional.

This is not generally the case for our current engineered systems. Many ar-
tifacts, such as cars and airplanes, have no real capacity for growth at all. In
engineered systems that do grow, the growth is often accompanied by signifi-
cant degradation of function as the existing balance of systems is disrupted and
painstakingly reintegrated. Adding an extension to a house means months of
dust, being unable to use existing rooms, and electrical and plumbing disrup-
tions. Expanding the road networks of a growing city requires years of detours

M. Dorigo et al. (Eds.): ANTS 2010, LNCS 6234, pp. 179–190, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

180 J. Beal

and traffic disruptions, not to mention economic disruption for businesses nearby
the construction. Upgrading the software of a computer often requires a reboot
and leaves a trail of incompatibilities and ongoing headaches. Beyond the obvi-
ous differences in mechanical and material properties, we simply do not know
how to describe our designs in a way that allows for disruption-free growth.
We may thus be led to consider languages for adaptable design, both to better
understand animal development and also to improve engineered systems. This
is particularly pressing given the rapid progress occurring in synthetic biology
(e.g. engineered pattern formation [2] and standardized DNA assembly proto-
cols [13]), where the systematic engineering of DNA programs promises to soon
allow us to created engineered objects that are literally grown from living cells.

One particularly elegant example of growth and adaptivity in biological sys-
tems is the vascular system [4]. Under normal conditions, sufficient oxygen dif-
fuses through the walls of capillaries into the surrounding tissue. When cells are
not receiving enough oxygen, however, they become stressed and emit a chem-
ical signal that causes nearby capillaries to leak. The vascular system also has
an elegant program for regulating its capacity. When a capillary leaks often, a
new capillary begins to grow out of the leaky area, increasing the available blood
supply to the oxygen-starved region. Blood vessels are elastic, and when they
are frequently stretched, the cells divide, increasing the capacity of the vessel;
likewise, when frequently contracted, cells die and shrink the vessel. Thus, the
vascular system incrementally grows and shrinks to match the demand of the
tissues it serves, branching into under-served regions and adjusting the size of
vessels to match the flow through them.

In this paper, I propose an engineering approach of functional blueprints in-
spired by this and other similar adaptive biological systems. If each system is
capable of operating under minor stress and of incrementally adjusting to de-
crease stress, then feedback between components should allow all the subsystems
comprising a natural or engineered system to maintain a tight integration as the
system grows, even if the relationship and relative sizes of subsystems are chang-
ing. Functional blueprints attempt to capture this by specifying a system in terms
of desired performance and means of incrementally correcting deficiencies.

In the remainder of those paper, I first discuss how stress tolerance can enable
integrated growth, then formalize this idea with a definition for a functional
blueprint. I next demonstrate the functional blueprint approach by applying
it to integrate simplified models of cell density maintenance and vascularization
produce synchronized tissue growth, then finally show how the composed system
may itself be modulated for use as a component in a more complex design.

1.1 Related Work

Morphogenesis in natural systems has been a subject of intensive study. In recent
years, deciphering of genetic mechanisms controlling development, such as how
the hox gene complex produces the overall body plan of animals, has lead to a
synthesis of evolution and development (EvoDevo) [5], and theories of how the
adaptivity of organisms to body plan variations may facilitate evolution [8].

Functional Blueprints: An Approach to Modularity in Grown Systems 181

Inspiration from natural systems has led to investigation of how growable pat-
terns might be programmed, generally focusing on the establishment of shape,
with less attention to integration of function. Doursat, for example, has de-
veloped a hox-gene based network model for artificial evolution of animal-like
systems [7]. Similarly, the development of structure in growing plants has long
been modeled at a high level by term-rewriting systems [12], which the MGS lan-
guage extends into a general model of structure development through topological
rewriting [14]. Other notable approaches include Coore’s Growing Point Lan-
guage [6], which uses a botanical metaphor to create topological structure and
Nagpal’s Origami Shape Language [11], which creates geometric forms through
folding. Most similar to this work is Werfel’s work on distributed construction,
which has been extended to use functional constraints to generate adaptive struc-
ture in response to environmental stimuli [15].

The problems of integration addressed in this paper are also related to control
theory. Standard control theory, however, has difficulty addressing systems with
large numbers of non-linearly interacting parts, which are typical of growing sys-
tems. A notable exception may be viability theory [1], a branch of mathematical
theory which is intended to address such concerns.

2 Stress Tolerance Enables Integrated Growth

The basic insight enabling this new approach is as follows: a stress-tolerant sys-
tem can exploit its tolerance to navigate dynamically through the space of viable
designs. This is rather foreign to the typical engineering approach to failure toler-
ance. Usually, an engineer designing a system treats its ability to tolerate failures
like guard rails on a highway: important for safety, changing terrible outcomes
into merely bad, but never touched under normal circumstances. Alternately,
though, we can treat the system’s robustness as a guide, the way that a blind
person, might use a guard rail to follow the twists and turns of the road.

Under this alternate view, stress within the system becomes the coordinating
signal by which independently developing subsystems are integrated. When the
system is far from the edge of its viability envelope, it can develop freely. When
it comes near the edge, however, and its viability begins to be impaired, then
the growth of the subsystems driving it to non-viability is slowed or stopped
temporarily. Other subsystems, triggered to act by the increased stress, adjust
to bring the system as a whole back within the viability envelope. The driving
subsystems are then re-enabled, and the cycle of growth and correction begins
again.

Critically, this is only possible if the system is able to determine the direction
of stress, and if stress caused by one system can be relieved by adjustment of
another. For example, if a beam has become the wrong length due to the change
of structure around it, the beam will experience tensile stress if it is too short and
compressive stress if it is too long. If only the magnitude of error is measured,
then the beam cannot know whether it should grow or shrink to reduce stress,
but if the direction of the stress is measured then the appropriate corrective
measure becomes obvious.

182 J. Beal

Driving Attribute

mature

initial

Se
co

nd
ar

y
A

tt
ri

bu
te

Fig. 1. In this abstract example, a growing system with two attributes uses stress tol-
erance to navigate through a complex viability envelope (blue). When unconstrained,
the system grows its driving attribute (horizontal arrows). When the system’s viability
begins to be impaired (faint blue), it relieves that stress by adjusting its secondary at-
tribute (vertical arrows). By repeatedly switching between driving growth and relieving
stress, the system is able to navigate a complex viability envelope.

For example, consider an abstract system with two attributes, whose combi-
nation is viable only in the complex envelope shown in Figure 1. The horizontal
attribute drives system growth, increasing whenever the system is clearly viable
(horizontal arrows). When the system’s viability begins to be impaired (faint
blue), the secondary attribute adjusts to correct (vertical arrows). Given some
hysteresis in the switch between driving and correction, the switch in modes need
only occur a finite number of times. By repeatedly switching between driving
growth and relieving stress, a system may navigate a complex viability envelope.

Thus we see that it is possible to use systemic stress as a signal to coordinate
the growth of independently developing subsystems. This will not, of course,
work for all possible such viability spaces: if the viability space includes a “dead
end” that the driving attribute can push into, then it cannot be successfully
navigated without additional guidance. For many systems, however, such as
those where the coordination problem is rooted in the difference of scaling laws,
(e.g. bone length (linear) vs. muscle cross-section (square) vs. lung capacity
(cubic)), the viability space is guaranteed to be navigable. Note also that when
stress is localized, the process of correction can be localized as well, allowing
navigation to be parallelized when systems are not directly affecting one another.
For example, different sets of developing muscles can be sore at the same time.

3 Functional Blueprints

Having made the observation that stress tolerance can allow a system to dynam-
ically discover trajectories through its viability space, we can now take the next
step and propose an engineering framework for predictably constructing such
systems. Let us thus define a functional blueprint for some system X to consist
of four elements:

Functional Blueprints: An Approach to Modularity in Grown Systems 183

1. A system behavior that degrades gracefully across some range of viability.
Formally, if CX is a manifold of possible configurations of system X , then
it must be possible to establish a concave viability function vX mapping
CX → [0,∞) such that for any configuration cX , only viable configurations
have vX(cX) > 0,1 and for any such configuration there exists a ball B ∈ CX

centered on cX such that vX(B) > 0.
2. A stress metric quantifying the degree and direction of stress on the system.

Formally, let the stress metric sX be a vector field on CX such that sX is
the gradient of some legal viability function for CX .

3. An incremental program that relieves stress through growth (or possibly
shrinking). Formally, let this be a parametrized map iX,ε,d : CX → CX that
shifts a configuration by ε distance in the direction d.

4. A program to construct an initial minimal system. This initial minimal sys-
tem, which we label X0, must be viable (vX(X0) > 0).

Graceful degradation of system behavior asserts that the core functionality of
the system must not have a sharp transition between viable and non-viable. The
stress metric and incremental program combine to shift a degraded system’s
configuration back toward viability. Finally, the minimal system makes sure there
is some viable place to start.

To transfer these properties to a composite system, it is necessary only to
ensure that the subsystems are coupled such that the side effects of subsystems
on one another are incremental. Formally, the action of each subsystem X ’s
incremental program on each other subsystem Y forms a continuous map, πX,Y .
Given such a coupling of functional blueprints, it is always the case that it
is possible to adjust any given subsystem by some small increment without
knocking any other subsystem out of its range of viability. This can be proved
by construction:

Theorem 1. Consider a system S, for which every subsystem has a functional
blueprint, and let X and Y be subsystems of S. For any given configuration cS, if
vX(cX) > 0, then there exists a δ > 0 such that c′S = iY,ε,d(cS) has vX(c′X) > 0
for every d and ε ≤ δ.

Proof. By graceful degradation, we know that there exists a ball B centered
on cX such that every point b ∈ B also has vX(b) > 0. By the continuity of
the coupling map πX,Y , we know that the preimage of π−1

X,Y (B) is an open set.
Being an open set, the preimage must contain some ball B′ of radius δ around the
configuration cY . By the definition of an incremental program, any configuration
c′S accessible via subsystem Y ’s incremental program iY,ε,d(cS) is within the ball
B′ for ε ≤ δ. Since B′ is a subset of π−1

X,Y (B), c′X must be within B and must
therefore have vX(c′X) > 0. ��
A simple growing composite system, such as the one illustrated in Figure 1, can
thus be constructed simply by taking the composite stress to be the maximum
1 Note that not all viable configurations need have vX(cX) > 0: the point is for the

viability function to serve as a conservative guide for system growth, not to capture
the precise boundary at which the system fails.

184 J. Beal

(a)

0 0.1 0.2 0.3 0.4 0.5
0

500

1000

1500

2000

2500

Growth rate

of

 c
el

ls

Unregulated density maintenance behavior

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
ra

ct
io

n
of

 c
el

ls
 li

vi
ng

(b)

Fig. 2. Density maintenance and growth: (a) shows an expanding sheet of cells, where
blue cells are reproducing and green are dying. (b) shows system behavior with respect
to the growth rate parameter pd. At low pd, the number of cells after 200s of growth
(blue) is small, but at high pd the fraction of cells surviving (red) begins to drop.

stress of any subsystem and executing the incremental program of the maxi-
mally stressed subsystem. The system can then be navigated toward a desired
mature form by driving any subsystem or collection of subsystems whenever the
composite stress is low enough.

4 Example Application: Tissue Growth

Having proposed a framework for the design of grown systems, let us now demon-
strate its feasibility by developing a simplified model of tissue growth, in which
the growth of a sheet of cells is synchronized with the growth of the blood vessels
that supply them with oxygen. This example system should not be regarded as
a serious model of tissue growth, but as a cartoon to demonstrate the feasibility
of the engineering approach under discussion.

This simplified model consists of two subsystems, each specified with a func-
tional blueprint. The cell density subsystem attempts to keep cells packed at
a moderate density via motion, reproduction, and apoptosis. A consequence of
this density maintenance is tissue growth at an approximately constant rate of
expansion: cells at the surface of the tissue generally have a low average density,
since there are no cells to one side of them, so unless they are regulated other-
wise, they will tend to reproduce. The vascularization subsystem, on the other
hand, attempts to ensure that no cell is too distant from a network conveying
oxygenated blood outward from a source.2 These two systems are linked together
by adding a regulatory input to the cell density subsystem, such that cells will
not attempt to reproduce if they are oxygen-starved. The resulting composite
2 In this simplified system, venous return is not modeled, but could be implemented

using a complementary mechanism.

Functional Blueprints: An Approach to Modularity in Grown Systems 185

(a)

0 0.01 0.02 0.03 0.04 0.05
0

200

400

600

800

1000

1200

1400

1600

1800

2000

Growth rate

of

 c
el

ls

Unregulated vascularization behavior

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

F
ra

ct
io

n
of

 v
es

se
l c

el
ls

(b)

Fig. 3. Vascularization: (a) shows an expanding network (green dots, blue lines) ex-
panding the area of oxygenation (red). The area of a dot is proportionally to the size of
the network descending from it. (b) shows system behavior with respect to the growth
rate parameter pv. At low pv, the oxygenated area (blue solid line) expands slowly, but
at high pv a large fraction of cells (red dashed line) are incorporated into vessels.

system produces smoothly synchronized tissue growth, and can be modulated
to produce shaped tissue by external regulation of either subsystem.

These models are developed and simulated using the Proto spatial comput-
ing language [3], a functional language that allows the programmer to specify
aggregate behaviors using scalable geometric descriptions. Aggregate behavior
descriptions are then compiled into a program to execute on each cell (every cell
is given the same program) and an interaction protocol by which cells cooperate
to approximate the desired aggregate behavior. Details of Proto can be found
in [3] in the MIT Proto distribution [10].

4.1 Cell Density

In this simplified model, the base structure and expansion of a sheet of cells is
produced by a system that attempts to keep cells packed at a moderate density.
We can implement such a system as follows:

(def cell-density (grow shrink p_d)

(let ((packing (num-nbrs)))

(clone (and grow (and (< packing 8) (< (rnd 0 1) p_d)))))

(die (or (and (> packing 15) (< (rnd 0 1) p_d))

(and shrink (< (rnd 0 1) p_d)))))))

(disperse 0.6))

Here the desired system behavior is to maintain a moderate spacing between
cells, which exhibits graceful degradation if the cells have some tolerance for
overcrowding or underpopulation. The system is thus stressed when there are
too many neighbors (here defined as more than 15), too few neighbors (here

186 J. Beal

Fig. 4. Synchronized growth of a tissue: growth from cell density maintenance is en-
abled only for cells served by vascularization

defined as less than 8), or if the neighbors aren’t at a desired separation (here
defined as 0.6 communication radii).

The incremental program relieves stress in a straightforward manner: when
there are too many neighbors, the cell apoptoses (dies) with probability pd,
and when there are too few neighbors, the cell reproduces with probability pd

(the grow enabling input and shrink forcing input allows these actions to be
modulated by an enclosing system). When the neighbors are not at a desired
separation, they move towards it using spring forces:

(def disperse (packing)

(* (/ 1 (int-hood 1))

(int-hood (* (let ((dr (- (nbr-range) packing)))

(mux (< dr 0) dr (* 0.1 dr)))

(normalize (nbr-vec))))))

in which attractive forces are weaker than repulsive forces such that the far-
ther neighbors do not exert too much influence and collapse the diameter of
communicating clusters.

Note that since cells at the surface of the sheet have an expected density half
that of cells in the interior of the sheet, their density will be considered too low
(except in temporary high-density pockets) and they will reproduce. This has
the desirable consequence of continually expanding the sheet of cells such that
the edge moves outward at an expected constant rate.

Figure 2 shows this cell density system in experiments where the growth pa-
rameter pd ranges from 0.01 to 0.5. For each parameter value, 10 trials were run,
beginning with 10 cells distributed in a volume 10 units square and continuing
for 200 simulated seconds. As the growth rate pd rises, the final number of cells
in the system (blue solid line) rises sharply, but the fraction of cells that die
rises as well (red dashed line shows surviving cells). An intermediate level in the
range 0.1 to 0.3 appears to offer the best trade-off, with graceful degradation as
the parameter moves away from that level.

Functional Blueprints: An Approach to Modularity in Grown Systems 187

0 0.1 0.2 0.3 0.4 0.5
0

500

1000

1500

2000

2500

Growth rate

of

 c
el

ls

Tissue growth vs. density maintenance rate

Regulated
Unregulated

(a)

0 0.01 0.02 0.03 0.04 0.05
0

200

400

600

800

1000

1200

1400

1600

1800

2000

Growth rate

of

 c
el

ls

Tissue growth vs. vascularization rate

Regulated
Unregulated

(b)

Fig. 5. Linking density maintenance and vascularization results in synchronized tissue
growth, with either subsystem able the regulate the behavior of the composite system

4.2 Vascularization

Oxygen delivery by a vascular system requires that there be a capillary vessel
relatively close to every cell. When this is not the case, the cell becomes stressed
by lack of sufficient oxygen—a graceful degradation situation since the cell does
not die. The simple vascularization system here measures stress by distance to
the nearest vessel:

(def vascularize (source service-range p_v)

(rep (tup vessel served parent)

(tup source source (if source (mid) -1))

(mux source

(tup 1 1 -1)

(let ((service (< (gradient vessel) service-range))

(server (gradcast vessel (mid)))

(children (sum-hood (= (mid) (nbr parent))))

(total-children (tree-children parent)))

;; adjust radius, for visualization

(radius-set (mux vessel (* 0.5 (sqrt (+ 1 total-children))) 2))

;; grow/shrink vessel network

(mux vessel

(mux (or (muxand

(any-hood (and (= (nbr (mid)) parent)

(> (nbr children) (mux (nbr source) 6 3))))

(not (any-hood (< (nbr total-children) total-children))))

(not (any-hood (and (nbr vessel) (= (nbr (mid)) parent)))))

(tup 0 1 -1) ; vessel is discarded

(tup 1 1 parent)) ; vessels stay fixed

(mux (muxand (muxand (any-hood (nbr vessel))

(dilate (not served) service-range))

(< (rnd 0 1) p_v)))

(tup 1 1 server)

(tup 0 service -1)))))))

188 J. Beal

(a) (b)

Fig. 6. The tissue growth system can be modulated to produce complex patterns, such
as the letter “F”, by modulating growth of either the cell density (a) or vascularization
subsystems (b). In both cases shown, the letter grows from a seed near its center.

Every cell tracks whether it is part of a vessel and, if not, whether it has service
from a vessel within the service-range, In the beginning, only the source cell(s)
are part of a vessel. Later, the incremental program adds or removes cells from
vessels to incrementally adjust the network. Cells join a vessel at a growth rate
pv when adjacent to a vessel and in range of an unserved cell. Vessel cells undif-
ferentiate when they lose their connection to the source or when too many other
vessel cells share the same junction.

Figure 3 shows the vascularization system in experiments where the growth
parameter pv ranges from 0.001 to 0.05. For each parameter value, 10 trials were
run, where the network is grown for 200 simulated seconds from a seed point in
the middle of a network of 2000 devices and devices are distributed on a square
300 by 300 units with a vascularization service range of 50 units. The higher the
growth rate pv, the faster that vascularization proceeds and therefore the larger
an area that is served (blue solid line). The faster that vascularization proceeds,
however, the more redundancy in the system, as reflected by the fraction of cells
designated as vessels (red dashed line).

4.3 Composite Behavior

These two subsystems can be linked together into a simplified model of tissue
growth by the simple expedient of enabling growth in the cell density system
only for those cells served by vascularization:

(def tissue (src pd pv)

(let ((v (vascularize src 50 pv)))

(if (not src) (mov (cell-density (2nd v) 0 pd)) (tup 0 0 0))

(drawvasc v)))

Functional Blueprints: An Approach to Modularity in Grown Systems 189

(a) (b)

Fig. 7. A functional blueprint separates the result of modulated tissue growth from the
details of its execution, as shown by equivalent constructions of the letter “F” when
grown from a seed in the lower right (a), upper left (b) or center (Figure 6(a))

Having implementing these two subsystems using functional blueprints, this sim-
ple coupling suffices for them to regulate one another into synchronized growth.

Figure 5 compares regulated behavior (blue line) with unregulated subsystems
(red dashes), showing a smooth shift in regulatory dominance of the coupled
system as pd and pv are varied. For each set of parameter values, 10 trials
were run, beginning with 10 cells distributed in a volume 10 units square and
continuing for 200 simulated seconds. In Figure 5(a), pd is varied from 0.01 to
0.5 as above, while pv is held constant at 0.02. At low values of pd, growth
from density maintenance dominates, but as pd rises, cells spread outward faster
and their growth begins to be checked by the rate of vascularization instead. In
Figure 5(b), pv is varied from 0.001 to 0.05 as above, while pd is held constant at
0.1. At low values of pv, vascularization is the limiting factor, but by pv = 0.02
the limiting factory has shifted to the rate of growth from density maintenance.

This composite system may itself be viewed in terms of a functional blueprint,
as these results illustrate, where both density and vascularization are being main-
tained in the face of stress, and the failure of either checks the other’s progress.
Moreover, just as the cell density subsystem was modulated to form a grow-
ing tissue, so may the tissue be modulated to grow complex shapes. This can
be done by modulating either the cell density subsystem or the vascularization
subsystem. For example, Figure 6 shows the result of constructing a letter “F”
through regulating cell density (Figure 6(a)) and through regulating vascular-
ization (Figure 6(b)).3 Moreover, the functional blueprint separates the result of
modulated tissue growth from the details of its execution, as illustrated by the
equivalent constructions in Figure 6(a) and Figure 7.

3 For simplicity in this demonstration, the “F” bounds are set by external localization,
though it could be self-organized with variety methods (see [7], [9]).

190 J. Beal

5 Contributions

We have demonstrated that a functional blueprint approach can be used to cre-
ate grown system that are dynamically integrated, smoothly transfer regulatory
control across regimes, and can be interconnected to form composite systems
with the same properties. While this is early work, the simplicity of creating
and integrating the models discussed in this paper indicates good potential for
further development. The decoupling of ultimate structure from developmental
program might lead to more adaptivity in engineered systems as well as stronger
biological models for evolvability and phenotypic adaptation.

References

1. Aubin, J.P.: Viability theory. Birkhäuser, Basel (1991)
2. Basu, S., Gerchman, Y., Collins, C.H., Arnold, F.H., Weiss, R.: A synthetic multi-

cellular systems for programmed pattern formation. Nature 434, 1130–1134 (2005)
3. Beal, J., Bachrach, J.: Infrastructure for engineered emergence in sensor/actuator

networks. IEEE Intelligent Systems 21(2), 10–19 (2006)
4. Carmeliet, P.: Angiogenesis in health and disease. Nat. Med. 9(6), 653–660 (2003)
5. Carroll, S.B.: Endless Forms Most Beautiful: The New Science of Evo Devo and

the Making of the Animal Kingdom. W. W. Norton & Company (2005)
6. Coore, D.: Botanical Computing: A Developmental Approach to Generating Inter

connect Topologies on an Amorphous Computer. Ph.D. thesis, MIT (1999)
7. Doursat, R.: The growing canvas of biological development: Multiscale pattern gen-

eration on an expanding lattice of gene regulatory networks. InterJournal: Complex
Systems 1809 (2006)

8. Kirschner, M.W., Norton, J.C.: The Plausibility of Life: Resolving Darwin’s
Dilemma. Yale University Press, New Haven and London (2005)

9. Kondacs, A.: Biologically-inspired self-assembly of 2d shapes, using global-to-local
compilation. In: 18th Int. Joint Conf. on Artificial Intelligence, pp. 633–638 (2003)

10. MIT Proto. Software available at http://stpg.csail.mit.edu/proto.html (Re-
trieved March 14, 2010)

11. Nagpal, R.: Programmable Self-Assembly: Constructing Global Shape using
Biologically-inspired Local Interactions and Origami Mathematics. Ph.D. thesis,
MIT (2001)

12. Prusinkiewicz, P., Lindenmayer, A.: The Algorithmic Beauty of Plants. Springer,
New York (1990)

13. Shetty, R.P., Endy, D., Thomas, F., Knight, J.: Engineering biobrick vectors from
biobrick parts. Journal of Biological Engineering 2(5) (2008)

14. Spicher, A., Michel, O.: Declarative modeling of a neurulation-like process. BioSys-
tems 87(2-3), 281–288 (2006)

15. Werfel, J., Ingber, D.E., Nagpal, R.: Collective construction of environmentally-
adaptive structures. In: 2007 IEEE/RSJ Int. Conf. on Intelligent Robots and Sys-
tems, pp. 2345–2352 (2007)

http://stpg.csail.mit.edu/proto.html

Heterogeneous Particle Swarm Optimization

Andries P. Engelbrecht

Department of Computer Science, University of Pretoria, South Africa
engel@cs.up.ac.za

Abstract. Particles in the standard particle swarm optimization (PSO)
algorithms, and most of its modifications, follow the same behaviours.
That is, particles implement the same velocity and position update rules.
This means that particles exhibit the same search characteristics. A het-
erogeneous PSO (HPSO) is proposed in this paper, where particles are
allowed to follow different search behaviours selected from a behaviour
pool, thereby efficiently addressing the exploration–exploitation trade-
off problem. A preliminary empirical analysis is provided to show that
much can be gained by using heterogeneous swarms.

1 Introduction

Particle swarm optimization (PSO) [3,8] is a stochastic, population-based op-
timization method. PSO algorithms maintain a swarm of candidate solutions,
called particles. Each particle adjusts its position in search space by adding to
its current position a step size, called the velocity. Step sizes are computed based
on how far a particle is from the best position that the particle found during
the search process, and how far the particle is from the best solution found by
its neighborhood. The standard PSO and most of its modifications [4] make
use of homogeneous swarms where all of the particles follow exactly the same
behaviour. That is, particles implement the same velocity and position update
rules. The effect is that particles have the same exploration and/or exploitation
characteristics.

A very important aspect of optimization is the ability of an optimization algo-
rithm to balance exploration and exploitation. Initially, the algorithm should fo-
cus on exploration, while preferring exploitation as the search process converges
on an optimum. It is however difficult to determine at which point should the algo-
rithm switch from an explorative behaviour to an exploitative behaviour. It may
therefor be of an advantage to rather use heterogeneous swarms, where particles
are allowed to implement different velocity and position update rules. By allowing
particles to implement different update rules, a swarm may consist of explorative
particles as well as exploitative particles. The optimization algorithm therefor has
the ability to explore and exploit throughout the search process.

This paper proposes a heterogeneous PSO (HPSO), where particles in a swarm
will be allocated different search behaviours by randomly selecting velocity and
position update rules from a behaviour pool. The formal concept of heteroge-
neous swarms was introduced by Engelbrecht in [5], where the model investigated

M. Dorigo et al. (Eds.): ANTS 2010, LNCS 6234, pp. 191–202, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

192 A.P. Engelbrecht

in this paper has been proposed. However, the idea of heterogenous swarms is not
new. Examples of existing approaches where particles are allowed to implement
different behaviours include, amongst others,

– The division of labor PSO [16], where particles are allowed to switch to a
local search near the end of the search process.

– The life-cycle PSO [9], where particles follow a life-cycle, changing from a
PSO particle, to a genetic algorithm individual, to a stochastic hill-climber.
At any time, individuals may follow different behaviours.

– The predator-prey PSO [13], where the swarm contains predator and prey
particles. Predator particles are attracted only to the global best position,
thereby exploiting. Prey particles implement the standard PSO velocity up-
date rule, but with an additional term added to repel prey particles from
the position of predator particles.

– The guaranteed convergence PSO [15], where the global best particle follows
a different, exploitative search behaviour than all the other particles.

– The NichePSO [2], developed to locate multiple solutions. A main swarm
of particles is used, where particles implement a cognitive-only velocity up-
date. Sub-swarms are formed around optima, with particles following the
guaranteed convergence PSO.

– The charged PSO [1], where some particles have a charge and others not.
Non-charged particles implement the standard velocity update rule, while
charged particles add an additional repelling force to the velocity update
rule.

Recentmodels thatnake use of a more generic concept of heterogeneous behaviours
include the heterogeneous cooperative algorithms developed by Olorunda and En-
gelbrecht [11], the heterogeneous PSO algorithms of Montes de Oca et al [10],
and the adaptive heterogeneous PSO proposed by Spanevello and Montes de
Oca [14]. The heterogeneous cooperative algorithm allows sub-swarms in a co-
operative coevolutionary model to implement different meta-heuristic algorithms
exhibiting different search behaviours. Montes de Oca et al considered different
levels of heterogeneity, using the term update-rule heterogeneity to mean PSO
algorithms where particles use different position and velocity update rules. In
their work, ony two different update rules were used. Spanevello and Montes de
Oca proposed that behaviours change during the optimization process.

The HPSO proposed in this paper differ from the above PSO algorithms, in
that behaviours are randomly assigned from a pool of behaviours. Two strategies
are proposed, one where the randomly selected behaviours remain static, and
the other where behaviours change at each iteration by randomly selecting new
behaviours from the behaviour pool. A preliminary empirical analysis is provided
to show that the proposed HPSO has potential.

The rest of the paper is organized as follows: Section 2 discusses a few ho-
mogeneous PSO algorithms which differ only in the implemented position and
velocity update rules. The HPSO is presented in Section 3, while some empirical
results are provided in Section 4.

Heterogeneous Particle Swarm Optimization 193

2 Homogeneous Particle Swarm Optimizers

This section provides a very compact overview of homogeneous PSO algorithms
which will be used by the HPSO proposed in Section 3. PSO models are included
that differ in their exploration and exploitation behaviours. Please note that this
is not an extensive review of homogeneous PSO algorithms.

2.1 Traditional Position and Veclosity Updates

The traditional PSO particle velocity and position updates, assuming a star
neighborhood topology, are given as follows [3,8]:

vij(t+ 1) = wvij(t) + c1r1j(t)(yij(t) − xij(t)) + c2r2j(t)(ŷj(t) − xij(t)) (1)

xij(t+ 1) = xij(t) + vij(t+ 1) (2)

where xij(t), yij(t) and ŷj(t) refer respectively to particle i’s position, personal
best position, and global best position in dimension j at time step t. The con-
stants c1 and c2 are the acceleration coefficients, and r1j(t), r2j(t) ∼ U(0, 1). In
the above, w is the inertia weight.

Equation (1) result in particles with a balance in exploration and exploitation
depending on the values of the parameters, w, c1 and c2. For the purposes of
this paper, c1 is initially set to a value larger than c2. Over time, c1 is linearly
decreased, while c2 is linearly increased [12]. This will focus on exploration during
the initial search steps, moving towards more exploitation as the number of
iterations increases.

2.2 Cognitive-Only Model

The cognitive-only velocity update [6] removes the social component from equa-
tion (1), to result in

vij(t+ 1) = wvij(t) + c1r1j(t)(yij(t) − xij(t)) (3)

The same position update as in equation (2) is used. The cognitive-only model
results in more exploration, due to the fact that each particle becomes a hill-
climber.

2.3 Social-Only Model

The social-only velocity update [6] removes the cognitive component from equa-
tion (1), to result in

vij(t+ 1) = wvij(t) + c2r2j(t)(ŷj(t) − xij(t)) (4)

The same position update as in equation (2) is used. The cognitive-only model
results in faster exploitation, as the entire swarm is one stochastic hill-climber.

194 A.P. Engelbrecht

2.4 Barebones PSO

Kennedy [7] developed the barebones PSO, where the velocity update is replaced
with

vij(t+ 1) ∼ N

(
yij(t) + ŷj(t)

2
, σ

)
(5)

where σ = |yij(t) − ŷj(t)|. The position update changes to

xij(t+ 1) = vij(t+ 1) (6)

Note that the velocity no longer serves as a step size, but is the actual new
position of the particle, sampled from the above Gaussian distribution. The
barebones PSO facilitates initial exploration, due to large deviations (initially,
personal best positions will be far from the global best position). As the number
of iterations increases, the deviation approaches zero, focussing on exploitation
of the average of the personal best and global best positions.

2.5 Modified Barebones PSO

Kennedy [7] modified the barebones velocity equation to improve its exploration
abilities. The new velocity update is

vij(t+ 1) =

{
yij(t) if U(0, 1) < 0.5
N
(

yij(t)+ŷj(t)
2 , σ

)
otherwise (7)

Exploration is increased during the initial stages of the search process by focusing
50% of the time on personal best positions. Recall that personal best positions
will initially differ significantly due to uniform random initialization of particles.
As the process converges, the focus will move to exploitation, as all personal
best positions will converge towards the global best position.

3 Heterogeneous Particle Swarm Optimization

The HPSO proposed in this paper selects random behaviours for particles from
a pool of behaviours. Each behaviour consists of a pair containing a position
update and a velocity update. For the purposes of this paper, the pool of be-
haviours include the five models summarized above in Section 2. Two different
HPSO models are proposed, namely

– The static HPSO (sHPSO), where behaviours are randomly assigned to
particles during initialization. The assigned behaviours do not change during
the search process.

– The dynamic HPSO (dHPSO), where paricle behaviours can randomly
change during the search process. For the purposes of this paper, a par-
ticle randomly selects new behaviours from the behaviour pool when the
particle fails to improve its personal best position over a window of recent

Heterogeneous Particle Swarm Optimization 195

iterations. If the personal best position does not change, it may indicate early
stagnation, which can be addressed by assigning a new search behaviour to
the particle.

The only changes to the algorithm flow of the standard PSO are therefor a
step to initialize the behaviours of particles, and for the dynamic HPSO, to
assign new behaviours for particles that stagnate. More elaborate schemes to
trigger reinitialization of behaviours can be implemented. However, as this is a
preliminary study, additional mechanisms will be explored in future research.

4 Empirical Results

This section provides preliminary results to indicate that the HPSO model shows
potential to be further explored. For the purposes of this paper, the two het-
erogeneous models were compared with the homogeneous models summarized
in Section 2, in order to determine if any gain can be achieved with a hetero-
geneous model of these behaviours. Each algorithm is tested on the following
functions:

– Ackley: f(x) = −20e−0.2
√

1
n

∑n
j=1 x2

j − e
1
n

∑n
j=1 cos(2πxj) + 20+ e, where xj ∈

[−30, 30].

– Quadric: f(x) =
∑n

l=1

(∑l
j=1 xj

)2
, where xj ∈ [−100, 100].

– Rastrigin: f(x)=10n+v
∑n

j=1

(
x2

j − 10 cos(2πxj)
)
, where xj ∈ [−5.12, 5.12].

– Rosenbrock: f(x)=
∑n−1

j=1

(
100(xj+1 − x2

j)2 + (xj − 1)2
)
, where xj ∈ [−30, 30].

– Salomon: f(x)= v−cos(2π
∑n

j=1 x2
j)+0.1

√∑n
j=1 x2

j+1, where xj ∈ [−600, 600].

– Griewank: f(x)=1+ 1
4000

∑n
j=1 x

2
j −
∏n

j=1 cos
(

xj√
j

)
, where xj ∈ [−600, 600].

This results in two unimodal (Quadric and Rosenbrock) and four multimodal
(Ackley, Rastrigin, Salomon, Griewank) functions. Note that Rosenbrock, Grie-
wank, and Salomon are not separable.

The functions were used in 10, 30, 50, and 100 dimensions. Each algorithm
was executed on each function for 30 independent runs of 1000 iterations. Swarm
sizes of 50 particles were used. The inertia weight was set to w = 0.72 for all the
velocity update rules. For the velocity update rule in equation (1), c1 started at
2.5, linearly reduced to 0.5; c2 started at 0.5, linearly increased to 2.5. For all
other velocity updates, c1 = c2 = 2.5.

All algorithms were implemented using CIlib (http://www.cilib.net).
Tables 1 and 2 present the fitness of the best solution found at the end of

the 1000 iterations, averaged over the 30 simulations, together with standard
deviations. Table 3 summarizes these results by ranking the algorithms based on
average best fitness. Figure 1 illustrates the performance of the algorithms over
time for all functions in 50 dimensions, and figure 2 illustrates the scalability of
all algortihms.

196 A.P. Engelbrecht

Table 1. Comparative results, showing average best solutions found for Ackley,
Quadric, Rastrigin

Ackley Quadric Rastrigin
Algorithm 10 Dimensions

Standard PSO 2.25E+00±9.09E-01 2.17E+01±3.61E+01 1.67E+01±7.46E+00
Social PSO 3.27E+00±1.37E+00 6.92E+01±9.11E+01 1.85E+01±8.32E+00
Cognitive PSO 1.95E+01±4.24E-01 1.48E+04±3.56E+03 1.19E+02±9.88E+00
Barebones PSO 4.23E-15±9.01E-16 6.33E-19±1.71E-18 5.34E+00±3.14E+00
Modified Barebones 3.40E-15±0.00E+00 1.01E-07±1.90E-07 6.63E-02±2.52E-01
Static HPSO 3.99E-15±0.00E+00 1.34E-11±3.44E-11 1.47E+00±2.59E+00
Dynamic HPSO 4.44E-16±0.00E+00 2.07E-08±6.96E-08 2.02E+00±2.09E+00

30 Dimensions

Standard PSO 8.71E+00±9.52E-01 2.78E+03±1.20E+03 1.28E+02±2.81E+01
Social PSO 9.95E+00±1.49E+00 5.13E+03±2.32E+03 1.08E+02±2.08E+01
Cognitive PSO 2.04E+01±2.47E-01 1.28E+05±4.15E+04 4.32E+02±2.79E+01
Barebones PSO 2.05E-08±2.94E-08 8.55E+02±5.23E+02 6.02E+01±1.44E+01
Modified Barebones 4.10E-07±2.80E-07 7.10E+03±4.42E+03 1.51E+01±5.67E+00
Static HPSO 1.20E+00±7.79E-01 8.71E+00±1.66E+01 1.75E+01±2.85E+01
Dynamic HPSO 1.08E-10±1.64E-10 3.65E-01±1.03E+00 1.62E+00±6.35E+00

50 Dimensions

Standard PSO 1.01E+01±9.32E-01 9.89E+03±4.97E+03 2.81E+02±4.58E+01
Social PSO 1.17E+01±1.00E+00 1.34E+04±4.55E+03 2.82E+02±4.03E+01
Cognitive PSO 2.06E+01±1.12E-01 3.47E+05±1.03E+05 7.67E+02±4.12E+01
Barebones PSO 1.14E-01±3.57E-01 2.79E+04±1.05E+04 1.46E+02±2.43E+01
Modified Barebones 1.23E-02±5.18E-03 8.19E+04±3.63E+04 7.84E+01±3.77E+01
Static HPSO 2.87E+00±4.55E+00 1.29E+03±2.13E+03 4.47E+01±7.08E+01
Dynamic HPSO 4.65E-09±1.19E-08 2.47E+01±8.48E+01 6.64E-02±3.635E-01

100 Dimensions

Standard PSO 1.22E+01±8.25E-01 4.06E+04±1.45E+04 6.72E+02±5.14E+01
Social PSO 1.32E+01±7.83E-01 6.15E+04±2.53E+04 7.21E+02±6.61E+01
Cognitive PSO 2.08E+01±7.39E-02 1.42E+06±5.19E+05 1.62E+03±4.10E+01
Barebones PSO 1.20E+01±9.30E-01 2.70E+05±1.00E+05 1.30E+03±3.61E+02
Modified Barebones 9.38E+00±2.29E+00 5.77E+05±2.15E+05 5.81E+02±1.30E+02
Static HPSO 2.87E+00±4.55E+00 2.41E+04±3.87E+04 1.24E+02±1.93E+02
Dynamic HPSO 1.60E-07±7.13E-07 1.28E+01±2.28E+03 1.78E-12±5.69E-12

Figure 1 shows that dHPSO provided the best fitness for 50 dimensions over
all of the functions. This is confirmed in Table 3, which shows an average rank of
1 for dHPSO over all functions. This observation of dHPSO’s best performance
is also for 100 dimensions. For 30 dimensions, dHPSO has the best rank of
1.5, due to 3 functions (Rastrigin, Rosenbrock, Griewank) where dHPSO was
the second best performer (after sHPSO and the modified barebones PSO).
For 10 dimensions dHPSO has the second best rank of 2.17 after the modified
barebones PSO which obtained a rank of 2. The average rank over all dimensions
for each function show that dHPSO has the best rank for all but one function
(Rosenbrock), where sHPSO has the best rank. When considering the overall
rank, as the average rank over all functions and all dimensions, the HPSO models
performed best, with dHPSO having a rank of 1.42 followed by sHPSO with a

Heterogeneous Particle Swarm Optimization 197

Table 2. Comparative results, showing average best solutions found for Rosenbrock,
Salomon, Griewank

Rosenbrock Salomon Griewank
Algorithm 10 Dimensions

Standard PSO 7.39E+01±1.25E+02 2.01E+00±1.41E+00 3.33E-01±2.52E-01
Social PSO 2.16E+03±7.69E+03 3.09E+00±1.79E+00 4.40E-01±2.46E-01
Cognitive PSO 2.81E+07±1.58E+07 7.21E+01±8.22E+00 1.24E+02±3.28E+01
Barebones PSO 9.09E+00±1.72E+01 1.30E-01±4.66E-02 7.48E-02±4.25E-02
Modified Barebones 4.82E+00±6.19E+00 9.99E-02±1.12E-07 1.43E-02±1.55E-02
Static HPSO 1.89E+00±9.15E+00 1.47E-01±5.07E-02 7.82E-02±4.68E-02
Dynamic HPSO 4.91E+00±3.12E+00 4.99E-02±5.08E-02 5.59E-02±4.38E-02

30 Dimensions

Standard PSO 1.52E+05±9.99E+04 2.47E+01±4.09E+00 1.18E+01±3.73E+00
Social PSO 2.11E+05±1.43E+05 2.75E+01±4.40E+00 1.49E+01±4.21E+00
Cognitive PSO 2.28E+08±3.88E+07 1.55E+02±7.61E+00 5.79E+02±5.99E+01
Barebones PSO 7.19E+01±1.02E+02 4.13E-01±7.30E-02 8.12E-03±8.12E-03
Modified Barebones 8.83E+01±4.45E+01 4.02E-01±5.90E-02 7.52E-04±2.27E-03
Static HPSO 1.49E+01±3.89E+01 4.20E-01±8.86E-02 4.07E-02±1.29E-01
Dynamic HPSO 2.64E+01±4.15E-01 7.67E-02±4.28E-02 3.04E-03±7.17E-03

50 Dimensions

Standard PSO 6.52E+05±2.60E+05 4.08E+01±4.44E+00 3.67E+01±8.50E+00
Social PSO 1.21E+06±5.08E+05 4.63E+01±4.73E+00 4.50E+01±8.82E+00
Cognitive PSO 4.92E+08±5.55E+07 2.09E+02±7.78E+00 1.08E+03±8.55E+01
Barebones PSO 1.90E+06±1.04E+07 1.97E+00±4.60E-01 1.27E-02±1.93E-02
Modified Barebones 4.01E+02±3.03E+02 2.13E+00±3.66E-01 1.26E-02±1.39E-02
Static HPSO 5.25E+01±1.36E+02 1.31E+00±1.42E+00 1.54E-01±5.57E-01
Dynamic HPSO 4.67E+01±3.94E-01 7.33E-02±4.48E-02 6.65E-04±2.50E-03

100 Dimensions

Standard PSO 3.76E+06±2.21E+06 7.34E+01±5.53E+00 1.17E+02±2.85E+01
Social PSO 5.74E+06±1.69E+06 8.08E+01±6.65E+00 1.48E+02±1.68E+01
Cognitive PSO 1.13E+09±8.88E+07 3.11E+02±7.79E+00 2.39E+03±1.27E+02
Barebones PSO 1.15E+09±7.57E+07 2.97E+02±5.43E+01 2.18E+03±5.90E+02
Modified Barebones 4.71E+08±3.56E+08 4.38E+02±9.12E+00 4.39E+01±3.43E+01
Static HPSO 3.38E+03±7.70E+03 1.86E+01±7.94E+00 3.61E+00±4.08E+00
Dynamic HPSO 9.87E+01±5.92E+00 7.99E-02±4.04E-02 1.43E-07±7.84E-07

rank of 2.92. This is a clear illustration that, on average, the HPSO models,
specifically the dHPSO, performed better than the homogenous models used
within the HPSO models.

Figure 2 shows that the HPSO algorithms were by far the most scalable. In
rank order from best scalable to worst scalable (ranks are given in parentheses):
dHPSO (1), sHPSO (1.8), modified barebones PSO (3.5), standard gbest PSO
(4.2), barebones PSO (5), social-only PSO (5.3), and cognitive-only (6.8). Im-
portant to note is that dHPSO was not significantly affected by an increase in
dimensions, whereas sHPSO showed a small deterioration in performance com-
pared to the other PSO algorithms. Note that, in general, the homogeneous PSO
algorithms’ performance deteriorate significantly as the number of dimensions
increases.

198 A.P. Engelbrecht

Table 3. Performance Ranks for All Experiments; Ack (Ackley), Quad (Quadric), Ras
(Rastrigin), Ros (Rosenbrock), Sal (Salomon), Grie (Griewank)

Ack Quad Ras Ros Sal Grie Average
Algorithm 10 Dimensions

Standard PSO 5 5 5 5 5 5 5
Social PSO 6 6 6 6 6 6 6
Cognitive PSO 7 7 7 7 7 7 7
Barebones PSO 4 1 4 4 3 3 3.17
Modified Barebones 2 4 1 2 2 1 2
Static HPSO 3 2 2 1 4 4 2.67
Dynamic HPSO 1 3 3 3 1 2 2.17

30 Dimensions

Standard PSO 5 4 4 5 5 5 4.67
Social PSO 6 5 3 6 6 6 5.33
Cognitive PSO 7 7 6 7 7 7 6.83
Barebones PSO 2 3 7 3 3 3 3.5
Modified Barebones 3 6 1 4 2 1 2.83
Static HPSO 4 2 5 1 4 4 3.33
Dynamic HPSO 1 1 2 2 1 2 1.5

50 Dimensions

Standard PSO 5 3 3 4 5 5 4.17
Social PSO 6 4 4 5 6 6 5.17
Cognitive PSO 7 7 6 7 7 7 6.83
Barebones PSO 3 5 2 6 3 3 3.67
Modified Barebones 2 6 7 3 4 2 4
Static HPSO 4 2 5 2 2 4 3.17
Dynamic HPSO 1 1 1 1 1 1 1

100 Dimensions

Standard PSO 5 3 3 3 3 4 3.5
Social PSO 6 4 4 4 4 5 4.5
Cognitive PSO 7 7 2 5 6 7 5.67
Barebones PSO 4 5 6 6 5 6 5.33
Modified Barebones 3 6 7 7 7 3 5.5
Static HPSO 2 2 5 2 2 2 2.5
Dynamic HPSO 1 1 1 1 1 1 1

Average over all Dimensions

Standard PSO 5 3.75 3.75 4.25 4.5 4.75 4.33
Social PSO 6 4.75 4.25 5.25 5.5 5.75 5.25
Cognitive PSO 7 7 5.25 6.5 6.75 7 6.58
Barebones PSO 3.25 3.5 4.75 4.75 3.5 3.75 3.92
Modified Barebones 2.5 5.5 4 4 3.75 1.75 3.58
Static HPSO 3.25 2 4.25 1.5 3 3.5 2.92
Dynamic HPSO 1 1.5 1.75 1.75 1 1.5 1.42

Heterogeneous Particle Swarm Optimization 199

 1e-10

 1e-08

 1e-06

 0.0001

 0.01

 1

 100

 0 100 200 300 400 500 600 700 800 900 1000

lo
g

(A
v
e

ra
g

e
 F

it
n

e
s
s
)

Iterations

Standard
Social

Cognitive
Barebones

Modified Barebones
static HPSO

dynamic HPSO

(a) Ackley

 10

 100

 1000

 10000

 100000

 1e+06

 0 100 200 300 400 500 600 700 800 900 1000

lo
g

(A
v
e

ra
g

e
 F

it
n

e
s
s
)

Iterations

Standard
Social

Cognitive
Barebones

Modified Barebones
static HPSO

dynamic HPSO

(b) Quadric

 0.01

 0.1

 1

 10

 100

 1000

 0 100 200 300 400 500 600 700 800 900 1000

lo
g

(A
v
e

ra
g

e
 F

it
n

e
s
s
)

Iterations

Standard
Social

Cognitive
Barebones

Modified Barebones
static HPSO

dynamic HPSO

(c) Rastrigin

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 0 100 200 300 400 500 600 700 800 900 1000

lo
g

(A
v
e

ra
g

e
 F

it
n

e
s
s
)

Iterations

Standard
Social

Cognitive
Barebones

Modified Barebones
static HPSO

dynamic HPSO

(d) Rosenbrock

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0 100 200 300 400 500 600 700 800 900 1000

lo
g

(A
v
e

ra
g

e
 F

it
n

e
s
s
)

Iterations

Standard
Social

Cognitive
Barebones

Modified Barebones
static HPSO

dynamic HPSO

(e) Griewank

 0.01

 0.1

 1

 10

 100

 1000

 0 100 200 300 400 500 600 700 800 900 1000

lo
g

(A
v
e

ra
g

e
 F

it
n

e
s
s
)

Iterations

Standard
Social

Cognitive
Barebones

Modified Barebones
static HPSO

dynamic HPSO

(f) Salomon

Fig. 1. Accuracy Profile for All Functions in 50 Dimensions

200 A.P. Engelbrecht

-2

 1

 4

 7

 10

 13

 16

 19

 22

 10 20 30 40 50 60 70 80 90 100

A
v
e
ra

g
e
 F

it
n
e
s
s

Dimensions

Standard
Social

Cognitive
Barebones

Modified Barebones
Static HPSO

Dynamic HPSO

(a) Ackley

 0

 40000

 80000

 120000

 160000

 200000

 240000

 280000

 320000

 360000

 400000

 10 20 30 40 50 60 70 80 90 100
A

v
e
ra

g
e
 F

it
n
e
s
s

Dimensions

Standard
Social

Cognitive
Barebones

Modified Barebones
Static HPSO

Dynamic HPSO

(b) Quadric

-100

 100

 300

 500

 700

 900

 1100

 1300

 1500

 1700

 10 20 30 40 50 60 70 80 90 100

A
v
e
ra

g
e
 F

it
n
e
s
s

Dimensions

Standard
Social

Cognitive
Barebones

Modified Barebones
Static HPSO

Dynamic HPSO

(c) Rastrigin

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 10 20 30 40 50 60 70 80 90 100

A
v
e
ra

g
e
 F

it
n
e
s
s

Dimensions

Standard
Social

Cognitive
Barebones

Modified Barebones
Static HPSO

Dynamic HPSO

(d) Rosenbrock

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 10 20 30 40 50 60 70 80 90 100

A
v
e
ra

g
e
 F

it
n
e
s
s

Dimensions

Standard
Social

Cognitive
Barebones

Modified Barebones
Static HPSO

Dynamic HPSO

(e) Griewank

 0

 50

 100

 150

 200

 250

 300

 350

 10 20 30 40 50 60 70 80 90 100

A
v
e
ra

g
e
 F

it
n
e
s
s

Dimensions

Standard
Social

Cognitive
Barebones

Modified Barebones
Static HPSO

Dynamic HPSO

(f) Salomon

Fig. 2. Algorithm Scalability

Heterogeneous Particle Swarm Optimization 201

5 Conclusions

This paper proposed a heterogeneous PSO (HPSO), where the particles of the
swarm implements different behaviours in terms of the particle position and ve-
locity updates. Two versions of the HPSO were proposed, the one static, where
behaviours do not change, and a dynamic version where a particle may change
its behaviour during the search process if it can not improve its personal best
position. Both versions initialize particle behaviours by randomly selecting be-
haviours from a behaviour pool. When a particle in the dynamic HPSO has to
change its behaviour, a new behaviour is randomly selected from the pool of
behaviours.

For the purposes of this preliminary study, five different behaviours were in-
cluded in the behaviour pool. These behaviours differ in the degree of exploration
and exploitation, and how exploration is balanced with exploitation.

The empirical results have shown that the dynamic HPSO significantly out-
performed the other two approaches in terms of the quality of the optima found
and in terms of scalability. The static HPSO was the second best performer.
This indicates that the HPSO has potential to be further explored. Future re-
search will develop different models for behaviour change and will investigate
other mechanisms to trigger a behaviour change.

References

1. Blackwell, T., Bentley, P.: Dynamic Search with Charged Swarms. In: Proceedings
of the Genetic and Evolutionary Computation Conference, pp. 19–26 (2002)

2. Brits, R., Engelbrecht, A., van den Bergh, F.: A Niching Particle Swarm Optimizer.
In: Proceedings of the Fourth Asia-Pacific Conference on Simulated Evolution and
Learning, pp. 692–696 (2002)

3. Eberhart, R., Kennedy, J.: A New Optimizer using Particle Swarm Theory. In:
Proceedings of the Sixth International Symposium on Micromachine and Human
Science, pp. 39–43 (1995)

4. Engelbrecht, A.: Fundamentals of Computational Swarm Intelligence. Wiley &
Sons, Chichester (2007)

5. Engelbrecht, A.: CIlib: A Component-based Framework for Plug-and-Simulate.
In: International Conference on Hybrid Computational Intelligence Systems,
Barcelona, Spain (2008) (Invites Talk)

6. Kennedy, J.: The Particle Swarm: Social Adaptation of Knowledge. In: Proceedings
of the IEEE International Conference on Evolutionary Computation, pp. 303–308
(1997)

7. Kennedy, J.: Bare Bones Particle Swarms. In: Proceedings of the IEEE Swarm
Intelligence Symposium, pp. 80–87 (2003)

8. Kennedy, J., Eberhart, R.: Particle Swarm Optimization. In: Proceedings of the
IEEE International Joint Conference on Neural Networks, pp. 1942–1948 (1995)

9. Krink, T., vberg, M.L.: The Life Cycle Model: Combining Particle Swarm Opti-
misation, Genetic Algorithms and Hill Climbers. In: Guervós, J.J.M., Adamidis,
P.A., Beyer, H.-G., Fernández-Villacañas, J.-L., Schwefel, H.-P. (eds.) PPSN 2002.
LNCS, vol. 2439, pp. 621–630. Springer, Heidelberg (2002)

202 A.P. Engelbrecht

10. de Oca, M.M., Pena, J., Stuetzle, T., Pinciroli, C., Dorigo, M.: Heterogeneous
Particle Swarm Optimizers. In: Proceedings of the IEEE Congress on Evolutionary
Computation, pp. 689–709 (2009)

11. Olorunda, O., Engelbrecht, A.: An Analysis of Heterogeneous Cooperative Algo-
rithms. In: Proceedings of the IEEE Congress on Evolutionary Computation, pp.
1562–1569 (2009)

12. Ratnaweera, A., Halgamuge, S., Watson, H.: Particle Swarm Optimiser with Time
Varying Acceleration Coefficients. In: Proceedings of the International Conference
on Soft Computing and Intelligent Systems, pp. 240–255 (2002)

13. Silva, A., Neves, A., Costa, E.: An Empirical Comparison of Particle Swarm and
Predator Prey Optimisation. In: O’Neill, M., Sutcliffe, R.F.E., Ryan, C., Eaton, M.,
Griffith, N.J.L. (eds.) AICS 2002. LNCS (LNAI), vol. 2464, pp. 103–110. Springer,
Heidelberg (2002)

14. Spanevello, P., de Oca, M.M.: Experiments on Adaptive Heterogeneous PSO Al-
gorithms. In: Proceedings of the Doctoral Symposium on Engineering Stochastic
Local Search Algorithms, pp. 36–40 (2009)

15. van den Bergh, F., Engelbrecht, A.: A New Locally Convergent Particle Swarm
Optimizer. In: Proceedings of the IEEE International Conference on Systems, Man,
and Cybernetics, pp. 96–101 (2002)

16. Vesterstrøm, J., Riget, J., Krink, T.: Division of Labor in Particle Swarm Opti-
mization. In: Proceedings of the IEEE Congress on Evolutionary Computation, pp.
1570–1575. IEEE Press, Los Alamitos (2002)

Modern Continuous Optimization Algorithms for
Tuning Real and Integer Algorithm Parameters

Zhi Yuan, Marco A. Montes de Oca, Mauro Birattari, and Thomas Stützle

IRIDIA, CoDE, Université Libre de Bruxelles, Brussels, Belgium
{zyuan,mmontes,mbiro,stuetzle}@ulb.ac.be

Abstract. To obtain peak performance from optimization algorithms,
it is required to set appropriately their parameters. Frequently, algorithm
parameters can take values from the set of real numbers, or from a large
integer set. To tune this kind of parameters, it is interesting to apply
state-of-the-art continuous optimization algorithms instead of using a
tedious, and error-prone, hands-on approach. In this paper, we study
the performance of several continuous optimization algorithms for the
algorithm parameter tuning task. As case studies, we use a number of
optimization algorithms from the swarm intelligence literature.

1 Introduction

Assigning appropriate values to the parameters of optimization algorithms is
a task that frequently arises as part of the solution of application problems.
This task has traditionally been tackled by software solution architects, who
have knowledge about the application problem, but who do not necessarily have
knowledge about the specific optimization algorithms employed. When optimiza-
tion algorithm designers are involved, they have to learn many details about the
application problem before suggesting a set of parameter values that they believe
will provide good results. In any case, a significant amount of human effort is
devoted to the solution of the parameter tuning problem [1].

Tackling algorithmically the parameter tuning problem [6] is of practical rele-
vance because it offers the possibility of freeing software architects and designers
from this time-consuming task. This can be done by casting the parameter tuning
problem as an optimization problem, where the goal is to find parameter set-
tings that optimize some performance statistics (e.g., the average performance)
on typical instances of the application problem. Common performance measures
are the solution quality reached after a specific computation time limit, or the
computation time necessary for finding a solution of a specific quality level. A
number of algorithms have been proposed for this task over the years. Several
of these efforts focused on finding good values to numerical parameters, which
resulted in methods such as CALIBRA [1], REVAC [16], SPO [5] and SPO+ [12].
Methods for setting numerical as well as categorical parameters (e.g., the type
of local search in a memetic algorithm) have also been proposed. Examples are
F-Race and iterated F-Race [7,8], ParamILS [13], genetic programming [17,10],
and gender-based genetic algorithms [2].

M. Dorigo et al. (Eds.): ANTS 2010, LNCS 6234, pp. 203–214, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

204 Z. Yuan et al.

While the above-mentioned methods have proved their potential, we believe
that more effective configuration algorithms can be developed if the numerical
part of the general algorithm configuration problem is treated as a stochastic
continuous optimization problem. In this paper, we investigate the effectiveness
of modern continuous optimization techniques for tackling the problem of setting
numerical parameters of optimization algorithms. In particular, we tackle param-
eter tuning tasks that involve continuous parameters, such as the pheromone
evaporation rate in an ant colony optimization (ACO) algorithm, and integer
parameters, such as the population size in evolutionary algorithms. We treat in-
teger parameters as “quasi-continuous”, that is, we assume that the real-valued
numbers given by continuous optimization techniques can be rounded to the
nearest integer. This is a reasonable approach when the domain of the integer
parameter is large.

The scale of the tuning tasks considered in this paper is small. We tackle prob-
lems with two to six numerical parameters. The reasons for limiting the num-
ber of parameters are the following. First, assuming that the parameter tuning
problem is part of a larger algorithm configuration problem with the values of
categorical parameters fixed, we would like to explore the effectiveness of modern
continuous optimization techniques as sub-solvers for exploring the search space
of the remaining numerical parameters. The categorical parameters, which are
typical for many configuration tasks, would then be handled by another solver
at a higher level. The goal would be to explore the domains of the continuous or
quasi-continuous parameters using as few evaluations as possible. Second, there
are several parameter tuning tasks that involve continuous or quasi-continuous
parameters only. For example, if an algorithm is going to be used for tackling a
new class of problem instances, or on a new application situation, it would be
better to first tune the algorithm’s continuous or quasi-continuous parameters
before proceeding with the re-design of the algorithm.

This article is structured as follows. In the next section, we give an overview
of the algorithms we chose as candidate tuning algorithms. In Section 3, we
introduce the experimental setup and the benchmark domains on which we tested
these algorithms. Results are described in Section 4 and we conclude in Section 5.

2 Tuning Algorithms

For the parameter tuning task, we selected state-of-the-art black-box continuous
optimization algorithms developed in the mathematical programming and in the
evolutionary computation communities. Since these algorithms were not explic-
itly designed for tackling stochastic problems, we enhanced them in order to let
them handle noise. As a baseline for comparison, we included uniform random
and iterated random sampling in our experiments.

2.1 Basic Algorithms

Uniform Random and Iterated Random Sampling (URS & IRS). The
results obtained with URS and IRS are used as a baseline for evaluation. URS

A Study on Tuning Real and Integer Algorithm Parameters 205

explores the space of possible parameter settings uniformly at random. The
obvious drawback of this approach is its inability to focus the search on promising
regions of the search space. The method we refer to as IRS is the sampling part
of Iterated F-Race as described in [8]. In IRS, the steps of solution generation,
selection and refinement are executed iteratively. The solution generation step
involves sampling from Gaussian distributions centered at promising solutions
and with standard deviations that vary over time in order to search around the
best-so-far solutions.

Bound Optimization by Quadratic Approximation (BOBYQA). BOBY-
QA [20] is a derivative-free optimization algorithm based on the trust region
paradigm. It is an extension of the NEWUOA [19] algorithm that is able to deal
with bound constraints. At each iteration, BOBYQA computes and minimizes
a quadratic model that interpolates m automatically-generated points in the
current trust region. Then, either the best-so-far solution, or the trust region
radius is updated. The recommended number of points to compute the quadratic
model is m = 2d + 1 [20], where d is the dimensionality of the search space.
NEWUOA, and by extension BOBYQA, is considered to be a state-of-the-art
continuous optimization technique [4]. The initial and final trust region radii, as
well as a maximum number of function evaluations before termination are its
parameters.

Mesh Adaptive Direct Search (MADS). In MADS [3], a number of trial
points lying on a mesh are generated and evaluated around the best-so-far solu-
tion at every iteration. If a new better solution is found, the next iteration begins
with a possibly coarser mesh. If a better solution is not found after this first step,
trial points from a refined mesh are generated and evaluated. In this second step,
MADS differs from the generalized pattern search class of algorithms [26] in that
MADS allows a more flexible exploration of this refined mesh by allowing the
sampling of points at different distances from the best-so-far solution. When a
new best solution is found, the algorithm iterates.

Covariance Matrix Adaptation Evolution Strategy (CMA-ES). In CMA-
ES [11], candidate solutions are sampled at each iteration from a multivariate
Gaussian distribution. The main characteristic of CMA-ES is that the parame-
ters of this distribution are adapted as the optimization process progresses. The
mean of the sampling distribution is centered at a linear combination of the cur-
rent “parent” population. The covariance matrix is updated using information
from the trajectory the best solutions have followed so far. The aim of this trans-
formation is to increase the chances of sampling improving solutions. CMA-ES
is considered to be a state-of-the-art evolutionary algorithm [4].

2.2 Enhancing Noise Tolerance

The problem of tuning the parameters of an optimization algorithm can be
seen as a stochastic optimization problem. The sources of stochasticity are the
randomized nature of the algorithm itself and the “sampling” of the problem
instances. We enhanced the algorithms described above with mechanisms for

206 Z. Yuan et al.

better estimating the real difference between two or more candidate solutions.
These mechanisms are described below.

Repeated Evaluation. The simplest approach to deal with noise in the eval-
uation of an objective function is to evaluate it more than once and return the
average evaluation as the closest estimate of the true value. We denote by nr the
number of times the objective function evaluation is repeated. The advantages
of this approach are its simplicity and the confidence that can be associated
with the estimate as a function of nr. We tried this approach with all methods
using different values for nr. The main disadvantage of this technique is that it
is blind to the actual quality of the solutions being re-evaluated, and thus many
function evaluations can be wasted.

F-Race. It is a technique aimed at making a more efficient use of computational
power than repeated evaluation in the presence of noise. Given a set of candidate
solutions and a noisy objective function, the goal of F-Race is to discard those
solutions for which sufficient statistical evidence against them has been gathered.
The elimination process continues until one solution remains, or the maximum
number of evaluations is reached. The elimination mechanism of F-Race is in-
dependent of the composition of the initial set of candidate solutions. It is thus
possible to integrate it with any method that needs to select the best solutions
from a given set. For this reason, F-Race is used with URS, IRS, MADS, and
CMA-ES. F-Race is not used with BOBYQA because this algorithm generates
one single trial point per iteration and does not need to select the best out of a
set. More information about F-Race can be found in [7,8].

3 Benchmark Tuning Problems

We compare the performance of the continuous optimization algorithms de-
scribed in Section 2 on six benchmark (parameter) tuning problems. Each tuning
problem consists of a parameterized algorithm to be tuned, and an optimization
problem to which this algorithm is applied. The six tuning problems are origi-
nated from three classes of case studies with three underlying algorithms to be
tuned. Two of them are swarm intelligence algorithms, ACO and particle swarm
optimization (PSO), while the other differential evolution (DE) is an evolution-
ary algorithm. ACO is used to tackle a combinatorial optimization problem.
PSO and DE are used to tackle a continuous optimization problem. The three
case studies are the following.

MAX–MIN . Ant System - Traveling Salesman Problem
(MMASTSP). MAX–MIN Ant System (MMAS) [24] is one of the
most successful ACO [9] algorithms and we consider here the following parame-
ters. The weight of the pheromone information α and the heuristic information
β, the pheromone evaporation rate ρ, and the number of ants m. Moreover,
in MMAS, the ratio γ between the maximum and minimum pheromone trail
values is also of importance. Here, we tackle the well-known traveling salesman
problem (TSP). For MMASTSP, an extra parameter is nn, which gives the

A Study on Tuning Real and Integer Algorithm Parameters 207

Table 1. Range and default value of each parameter considered for tuning MMASTSP
with 2, 4, and 6 parameters

MMASTSP-2 MMASTSP-4 MMASTSP-6

param. range def. param. range def. param. range def.
α [0.0, 5.0] 1.0 ρ [0.0, 1.00] 0.5 γ [0.01, 5.00] 2.0
β [0.0, 10.0] 2.0 m [1, 1200] 25 nn [5, 100] 25

Table 2. Range and default value of each parameter considered for tuning DE with 3
parameters (left) and PSO with 2 and 5 parameters (right)

DE-3

param. range def.
N [4, 1000] 1000
xo [0.0, 1.0] 0.9
s [0.0, 1.0] 0.8

PSO-2 PSO-5

param. range def. param. range def.
χ [0.0, 1.0] 0.729 N [4, 1000] 30
φ1 [0.0, 4.0] 2.05 p [0.0, 1.0] 1

φ2 [0.0, 4.0] 2.05

number of nearest neighbors considered in the solution construction. No local
search is applied. We extract three tuning problems from MMASTSP with 2, 4,
and 6 parameters, namely MMASTSP-2 (with α and β), MMASTSP-4 (plus m
and ρ), and MMASTSP-6 (plus γ and nn). This is done by fixing the unused
parameters to their default values (see Table 1). For the default values we follow
the ACOTSP software [23].

We used the DIMACS instance generator [14] to create Euclidean TSP in-
stances with 750 nodes, where the nodes are uniformly distributed in a square
of side length 10 000. 1000 such instances are generated for the tuning process,
and 300 for the testing process.

Differential Evolution - Rastrigin Function. DE [22] is a population-based,
stochastic continuous optimization method that generates new candidate solu-
tions by exploiting the spatial distribution of existing ones. In the so-called
DE/rand/S/bin variant (the most common version is the one with S = 1) [25],
there are S + 2 parameters to set: the population size N , the crossover proba-
bility xo, and the value of the scaling factor s. In this variant, the population
size must be at least equal to 2S + 2. We refer the reader to the left columns of
Table 2 for the parameter ranges and the default values used in our experiments,
and to [22,25] for more information about DE and its parameters. The default
parameter settings for DE were those suggested in [21].

The experiments are carried out on problems derived from the Rastrigin func-
tion, each of which has different fitness distance correlation (FDC) [15]. The Rast-
rigin function, whose n-dimensional formulation is nA+

∑n
i=1 (x2

i −A cos(ωxi)),
can be thought of as a parabola with a superimposed sinusoidal wave with an am-
plitude and frequency controlled by parametersA and ω respectively. By changing
the values of A and ω, one can obtain a whole family of problems. In our exper-
iments, we set ω = 2π, and we vary the amplitude A to obtain functions with

208 Z. Yuan et al.

different FDCs. This was done by sampling the values of A from a normal distri-
bution with mean equal to 10.60171 and standard deviation equal to 2.75. These
values approximately map to a normally distributed FDC with mean equal to 0.7
and standard deviation equal to 0.1. The FDC was estimated using 104 uniformly
distributed random samples over the search range. Other settings are the search
range and the dimensionality, n, of the problem, which we set to [−5.12, 5.12]n

and n = 100, respectively.

Particle Swarm Optimization - Rastrigin Function. We use a PSO [18]
algorithm with two and five parameters. In the first case, the two parameters
are the so-called constriction factor χ and a value assigned to both acceleration
coefficients φ1. In the second case, the free parameters are the population size
N , the constriction factor χ, the value of each acceleration coefficient, φ1 and φ2,
and a probability p of connecting any two particles in the population topology.
For more information about PSO and its parameters, we refer the reader to [18].
More details about the parameters used in our experiments are listed in the
right two columns of Table 2. For the default value of the parameters in PSO
we follow [18]. We tackle the same family of Rastrigin functions as in the DE
experiments, and generate 1000 instances for the tuning process and 1000 for
the testing process.

4 Experiments

4.1 Experimental Setup

For each of the six benchmark tuning problems, 10 trials were run. Each trial
is the execution of the tuning process together with a subsequent testing
process. In the testing process, the final parameter setting returned by the tun-
ing process is evaluated on a set of test instances. For the purpose of reducing
experimental variance, in each trial of the tuning process, we use a fixed random
order of the tuning instances, and each instance is evaluated with a common ran-
dom seed. The comparison of sampling algorithms is done across six benchmark
tuning problems using the pairwise Wilcoxon signed rank test with blocking on
each instance and Holm’s adjustment for multiple test correction.

For each sampling algorithm, four levels of nr, that is, the number of times
the optimization algorithm being tuned is executed with the same parameter
settings, are considered: 5, 10, 20, 40. We also consider for each tuning problem
four different tuning budgets, that is, the maximum number of times that the tar-
get algorithm can be run during the tuning process. Let d be the dimensionality
of the tuning problem, that is, the number of parameters to be tuned. The first
and minimum level of the tuning budget is chosen to be B1 = 40 · (2d+ 2), e.g.
B1 = 240 when d = 2. The setting of B1 is chosen in this way since BOBYQA
needs at least 2n+ 1 points to make the first quadratic interpolation, and this
setting guarantees that BOBYQA with nr = 40 can make at least one quadratic
interpolation guess. The rest of the three levels of tuning budgets double the
previous level respectively, that is, Bi = 2i−1 ·B1, i = 2, 3, 4.

A Study on Tuning Real and Integer Algorithm Parameters 209

In our experiments, all parameters are tuned with a 2 significant digits pre-
cision. This was done by rounding each sampled value. This choice was made
because we observed during experimentation that the lower the number of sig-
nificant digits, the higher the performance of the tuned parameters. In each trial,
the historical evaluation results are stored in an archive list, so that if the same
algorithm configuration is sampled twice, the results on the evaluated instances
will be read from the archive list without re-evaluating.

4.2 Settings of the Sampling Algorithms

In our experiments, the sampling algorithms, which generate the trial configura-
tions, that is, algorithms such as CMA-ES, MADS and BOBYQA, are extended
by a restart mechanism that is triggered whenever stagnation behavior is de-
tected. Stagnation can be detected when the search coarseness of the mesh or
the trust region radius drop to a very low level; for example, less than the degree
of the significant digit. Each restart best solution is stored, and in the post-
execution phase the best across all restart best solutions is selected by F-Race.
The tuning budget reserved for the post-execution F-Race is determined by a
factor μpost times the number of restart best solutions. The factor μpost in the re-
peated evaluation experiments is determined by μpost = max{5, (20−nr)}, where
nr is the number of repeated evaluations. Also in the post-execution F-Race, we
start the Friedman test for discarding candidates from the max{10, nr}-th in-
stance, instead of five as in the normal F-Race setting to make the selection
more conservative. Based on our experiments, the hybrid with F-Race is indeed
better performing than its counterpart, and the advantage becomes statistically
significant in the case of low nr value (nr = 5).

For the execution of each sampling algorithm, the default settings are adopted
in our experiments, except CMA-ES. Due to the small number of sampled points,
we modify CMA-ES by applying a uniform random sampling in the first iteration,
where the best point will serve as a starting point for CMA-ES. This modification
results in significant improvements for most of the case studies, especially when
the number of sampled points is small.

We first study the setting of nr for all sampling algorithms. The statistical
results unanimously show that for each sampling algorithm, the smaller the value
of nr, the better performance is obtained, that is, nr = 5 is the best setting.
Furthermore, all pairwise comparisons show statistically significant differences.

We consider also use of F-Race during the execution of the sampling algo-
rithms instead of the fixed number of repeated evaluations. For IRS and URS,
we adopted the iterated F-Race and random sampling F-Race from [8]. For
MADS/F-Race we have adopted the algorithm of [27] by allowing the budget
for each F-Race to be 10 times the number of candidate configurations. CMA-
ES uses a (μ, λ)-ES, that is, μ elite configurations are used to generate λ new
candidate configurations of the next iteration. Therefore, for CMAES/F-Race the
iteration best configurations are stored, and the best configuration will be se-
lected in a post-execution from the set of iteration best configurations by F-Race.

210 Z. Yuan et al.

The post-execution F-Race is performed in the same way described above as for
restart best configurations, except that we set μpost = 10.

Given that a setting of nr = 5 resulted in best performance, we directly
compared the algorithms using this setting to the variants that were using F-
Race for the selection of the best candidates. Pursuing the same analysis, we
found that for two algorithms, IRS and URS, the versions with F-Race perform
substantially better than the fixed sample size of nr = 5, while on CMA-ES and
MADS the setting nr = 5 perform slightly, but statistically significantly better
than the F-Race variants. Note that for MADS/F-Race the observation here
contradicts the conclusions in [27]; a reason may be that here a restart version
of MADS is used, while in [27] restarts are not considered.

Given this overall result for the comparison between the variants with F-Race
and nr = 5 and the fact that BOBYQA is applied only with a fixed sample size,
in the following analysis we focus on the case of nr = 5 only.

4.3 Comparisons of Continuous Optimization Algorithms

Here, we compare the performance of the five continuous optimization algorithms
for the setting of nr = 5. Figure 1 shows the average costs of each of the five
continuous optimization algorithms across four different tuning budgets. Each
of the six plots shows the results for one tuning problem.

The main conclusions we obtain from this analysis is the following. For very
small dimensional tuning problems with two and three parameters to be tuned,
BOBYQA is the best performing algorithm. This is the case for the case stud-
ies MMASTSP2, PSO2, and DE3. However, BOBYQA’s performance degrades
very rapidly as the problem dimensionality increases. In PSO5, for example, it
even performs worse than URS. The performance of CMA-ES is relatively ro-
bust across the various dimensionalities of the tuning problems and across the
budget levels tested. The average ranking of CMA-ES among five algorithms is
2.29, substantially better than IRS and MADS (tied as 2.83). Finally, all the
continuous optimization algorithms tested clearly outperformed URS in almost
all tuning problems. (The same also holds if URS is combined with F-Race.)

Most of the differences that can be observed in Figure 1 are actually statis-
tically significant. In Table 3 we indicate for each tuning problem and for each
level of the tuning budget the ranking of the algorithms (from best to worst).
All differences between consecutive pairs of algorithms are statistically signifi-
cant except those where two algorithms are connected by a line (above or below
the identifiers). Finally, Figure 2 shows the average ranking of the five algorithms
grouped by the dimensionality of the tuning problem averaged across all budget
levels. This figure confirms the observation that BOBYQA is the best for low
dimensional tasks while CMA-ES shows rather robust performance.

4.4 Comparison between the Tuned and Default Configurations

We finally compared the results obtained with the tuned parameter configura-
tions with those obtained with the default parameter configurations. Please refer

A Study on Tuning Real and Integer Algorithm Parameters 211

500 1000 1500

22
60

00
00

22
70

00
00

22
80

00
00

Problem: MMASTSP2

Configuration budget

O
bj

ec
tiv

e
fu

nc
tio

n
va

lu
e

CMAES
MADS
IRS

URS
BOBYQA

500 1000 1500 2000 2500 3000

22
40

00
00

22
45

00
00

22
50

00
00

Problem: MMASTSP4

Configuration budget

O
bj

ec
tiv

e
fu

nc
tio

n
va

lu
e

CMAES
MADS
IRS

URS
BOBYQA

1000 2000 3000 400022
35

00
00

22
45

00
00

22
55

00
00

Problem: MMASTSP6

Configuration budget

O
bj

ec
tiv

e
fu

nc
tio

n
va

lu
e

CMAES
MADS
IRS

URS
BOBYQA

500 1000 1500

34
0

36
0

38
0

40
0

Problem: PSO2

Configuration budget

O
bj

ec
tiv

e
fu

nc
tio

n
va

lu
e

CMAES
MADS
IRS

URS
BOBYQA

500 1000 1500 2000 2500 3000 3500

18
0

20
0

22
0

24
0

26
0

Problem: PSO5

Configuration budget

O
bj

ec
tiv

e
fu

nc
tio

n
va

lu
e

CMAES
MADS
IRS

URS
BOBYQA

500 1000 1500 2000 2500

0
10

20
30

40
50

60

Problem: DE3

Configuration budget

O
bj

ec
tiv

e
fu

nc
tio

n
va

lu
e

CMAES
MADS
IRS

URS
BOBYQA

Fig. 1. The comparisons of different algorithms with nr = 5 on the six tuning problems

to Table 1 and 2 for the default parameter settings of the three case studies. The
tuned parameter configurations strongly outperform the default configurations
in all cases. Throughout the experiments, the default parameter configuration
is only comparable with the tuned configuration in PSO2 with the lowest level
budget (240). In the case study of MMASTSP, the tuned configurations improve,
on average, over the default configuration by more than 10%. In the PSO case
study, the tuned parameters improve, on average, over the default configuration
by more than 30% in the PSO-2, and by more than 50% in PSO-5. The strongest
improvement by tuning is observed in the case study of DE. The average cost
obtained by the default configuration is 2168, which is one order of magnitude
worse than the costs obtained by the worst tuned configurations using the small-
est tuning budget. In fact, almost all tuning algorithms can find configurations

212 Z. Yuan et al.

Table 3. Algorithms (using nr = 5) are ordered according to the ranking (form best to
worst) for each tuning problem and for each budget level. The abbreviations used are
B for BOBYQA, C for CMA-ES, I for IRS, M for MADS, and R for URS. The budget
is from B1 (low) to B4 (high). In the ordering, an overline or an underline indicates
that between these algorithms no statistically significant differences were observed.

budget MMAS-2 MMAS-4 MMAS-6 DE-3 PSO-2 PSO-5
B1 B I C M R M C I B R C I M B R C B I R M B I C R M I C M R B
B2 B C I M R M C I B R C I M B R B M I C R B I C M R I C M R B
B3 B C I M R B M C I R C M B I R B C M I R B M I C R M C I R B
B4 B C M I R B M I C R C M B I R B M C I R B C M I R I M C R B

2 3 4 5 6

1
2

3
4

5

Average rank of algorithms across dimensionality

Dimensionality

A
ve

ra
ge

 r
an

k
of

 a
lg

or
ith

m

CMAES
MADS
IRS
URS
BOBYQA

Fig. 2. The average rank of the sampling algorithms across dimensionalities of the
tuning problems

that give results close to the optimal value 0. Furthermore, by the default param-
eter configuration, DE gives worse results than PSO (2168 vs. 589). However, the
tuned DE performs much better than the tuned PSO (0.64 vs. 177). On the one
side this shows that DE is very sensitive to its parameter settings. On the other
side, this also proves that the algorithm tuning procedure can exploit the full
potential of the algorithm, and should be applied before algorithm comparisons.
These results confirm the practical importance of automated algorithm tuning
in deriving high-performing algorithms.

5 Conclusions

In this paper, we compare the performance of three modern state-of-the-art
continuous optimization algorithms, CMA-ES, BOBYQA and MADS, together

A Study on Tuning Real and Integer Algorithm Parameters 213

with the population-based URS and IRS, for the automatic tuning of numerical
parameters. Two swarm intelligence algorithms, an ACO algorithm applied to
the TSP and a PSO algorithm are considered as case studies, together with a DE
algorithm. The sampling algorithms are improved by a restart mechanism, and
CMA-ES is hybridized with a uniform random sampling in the first iteration.

The experiments show that, among the five continuous optimization algo-
rithms, BOBYQA performs the best in low dimensional problems with two or
three parameter to be set, but that it performs poorly on the case studies with
more parameters to be set. CMA-ES appears to be a rather robust algorithm
across all dimensionalities. In future work, we want to integrate continuous opti-
mization algorithms with configuration methods that work on categorical param-
eters. In fact, considering a hybrid solver, where iteratively continuous tuning
tasks arise that are then tackled by effective algorithms specialized to such prob-
lems, may be an interesting way to go to improve the performance of automated
configuration algorithms also on more complex configuration tasks.

Acknowledgments. We thank Michael J. D. Powell for providing the Fortran
code of BOBYQA. This work was supported by the META-X project, an Action
de Recherche Concertée funded by the Scientific Research Directorate of the
French Community of Belgium. Zhi Yuan, Mauro Birattari, and Thomas Stützle
acknowledge support from the Belgian F.R.S.-FNRS.

References

1. Adenso-Dı́az, B., Laguna, M.: Fine-tuning of algorithms using fractional experi-
mental designs and local search. Operations Research 54(1), 99–114 (2006)

2. Ansotegui Gil, C., Sellmann, M., Tierney, K.: A gender-based genetic algorithm
for the automatic configuration of solvers. In: Gent, I.P. (ed.) CP 2009. LNCS,
vol. 5732, pp. 142–157. Springer, Heidelberg (2009)

3. Audet, C., Dennis, J.E., Mesh, J.: adaptive direct search algorithms for constrained
optimization. SIAM Journal on Optimization 17(1), 188–217 (2006)

4. Auger, A., Hansen, N., Zerpa, J.M.P., Ros, R., Schoenauer, M.: Experimental com-
parisons of derivative free optimization algorithms. In: SEA 2009. LNCS, vol. 5526,
pp. 3–15. Springer, Heidelberg (2009)

5. Bartz-Beielstein, T.: Experimental Research in Evolutionary Computation–The
New Experimentalism. Springer, Berlin (2006)

6. Birattari, M.: The Problem of Tuning Metaheuristics as seen from a Machine Learn-
ing Perspective. Ph.D. thesis, Université Libre de Bruxelles (2004)

7. Birattari, M.: Tuning Metaheuristics: A machine learning perspective. Springer,
Berlin (2009)

8. Birattari, M., Yuan, Z., Balaprakash, P., Stützle, T.: F-Race and iterated F-Race:
An overview. In: Bartz-Beielstein, T., et al. (eds.) Experimental Methods for the
Analysis of Optimization Algorithms, pp. 311–336. Springer, Berlin (2009)

9. Dorigo, M., Stützle, T.: Ant Colony Optimization. MIT Press, Cambridge (2004)
10. Fukunaga, A.S.: Automated discovery of local search heuristics for satisfiability

testing. Evolutionary Computation 16(1), 31–61 (2008)

214 Z. Yuan et al.

11. Hansen, N.: The CMA evolution strategy: a comparing review. In: Lozano, J., et
al. (eds.) Towards a new evolutionary computation, pp. 75–102. Springer, Berlin
(2006)

12. Hutter, F., Hoos, H.H., Leyton-Brown, K., Murphy, K.P.: An experimental inves-
tigation of model-based parameter optimisation: SPO and beyond. In: Proc. of
GECCO 2009, pp. 271–278. ACM press, New York (2009)

13. Hutter, F., Hoos, H.H., Leyton-Brown, K., Stützle, T.: ParamILS: An automatic
algorithm configuration framework. Journal of Artificial Intelligence Research 36,
267–306 (2009)

14. Johnson, D.S., McGeoch, L.A., Rego, C., Glover, F.: 8th DIMACS implementation
challenge, http://www.research.att.com/~dsj/chtsp/

15. Jones, T., Forrest, S.: Fitness distance correlation as a measure of problem difficulty
for genetic algorithms. In: Proc. of 6th Int. Conf. on Genetic Algorithms, pp. 184–
192. Morgan Kaufmann, San Francisco (1995)

16. Nannen, V., Eiben, A.E.: Relevance estimation and value calibration of evolution-
ary algorithm parameters. In: Proc. of IJCAI 2007, pp. 975–980 (2007)

17. Oltean, M.: Evolving evolutionary algorithms using linear genetic programming.
Evolutionary Computation 13(3), 387–410 (2005)

18. Poli, R., Kennedy, J., Blackwell, T.: Particle swarm optimization. An overview.
Swarm Intelligence 1(1), 33–57 (2007)

19. Powell, M.J.D.: The NEWUOA software for unconstrained optimization. In: Large-
Scale Nonlinear Optimization, Nonconvex Optimization and Its Applications,
vol. 83, pp. 255–297. Springer, Berlin (2006)

20. Powell, M.J.D.: The BOBYQA algorithm for bound constrained optimization with-
out derivatives. Tech. Rep. NA2009/06, Department of Applied Mathematics and
Theoretical Physics, University of Cambridge (2009)

21. Storn, R.: Differential evolution homepage,
http://www.icsi.berkeley.edu/~storn/code.html#prac

22. Storn, R., Price, K.: Differential evolution – a simple and efficient heuristic for
global optimization over continuous spaces. Journal of Global Optimization 11(4),
341–359 (1997)

23. Stützle, T.: Software ACOTSP,
http://iridia.ulb.ac.be/~mdorigo/ACO/aco-code/public-software.html

24. Stützle, T., Hoos, H.: MAX–MIN . Ant System. Future Generation Computer
Systems 16(8), 889–914 (2000)

25. Ting, C.K., Huang, C.H.: Varying number of difference vectors in differential evo-
lution. In: Proc. of CEC 2009, pp. 1351–1358. IEEE Press, Piscataway (2009)

26. Torczon, V.: On the convergence of pattern search algorithms. SIAM Journal on
Optimization 7(1), 1–25 (1997)

27. Yuan, Z., Stützle, T., Birattari, M.: MADS/F-race: mesh adaptive direct search
meets F-race. In: Ali, M., et al. (eds.) Trends in Applied Intelligent Systems. LNCS,
vol. 6096, pp. 41–50. Springer, Heidelberg (2010)

http://www.research.att.com/~dsj/chtsp/
http://www.icsi.berkeley.edu/~storn/code.html#prac
http://iridia.ulb.ac.be/~mdorigo/ACO/aco-code/public-software.html

Multi-agent Deployment on a Ring Graph

Yotam Elor and Alfred M. Bruckstein

Faculty of Computer Science and the Goldstein UAV and Satellite Center, Israel
{yotame,freddy}@cs.technion.ac.il

Abstract. We consider two variants of the task of spreading a swarm
of agents uniformly on a ring graph. Ant-like oblivious agents having
limited capabilities are considered. The agents are assumed to have little
memory, they all execute the same algorithm and no direct communi-
cation is allowed between them. Furthermore, the agents do not possess
any global information. In particular, the size of the ring (n) and the
number of agents in the swarm (k) are unknown to them. The agents
are assumed to operate on an unweighted ring graph. Every agent can
measure the distance to his two neighbors on the ring, up to a limited
range of V edges.

The first task considered, is uniformly spread dynamical (i.e. in mo-
tion) deployment on the ring. We show that if either the ring is unori-
ented, or the visibility range is less than 	n/k
, this is an impossible
mission for the agents. Then, for an oriented ring and V ≥ �n/k, we
propose an algorithm which achieves the deployment task within the op-
timal time. The second task discussed, called quiescent spread, requires
the agents to spread uniformly over the ring and stop moving. We prove
that under our model in which every agent can measure the distance only
to his two neighbors, this task is impossible. Subsequently, we propose
an algorithm which achieves quiescent and almost uniform spread.

The algorithms we present are scalable and robust. In case the envi-
ronment (the size of the ring) or the number of agents changes during
the run, the swarm adapts and re-deploys without requiring any outside
interference.

1 Introduction

In this paper we consider multi-agent formation problems on a ring graph. The
ring consists of n nodes and the number of agents will be denoted by k. Ant-like
agents having limited capabilities are considered. The agents are assumed to
be memoryless, all of them execute the same algorithm and no communication
is allowed between them. The agents are uniform (or indistinguishable) in the
sense that they have no identifiers hence can not be distinguished and they all
follow the same algorithm. We also assume that the agents do not possess any
global information e.g. the size of the ring (n) and the size of their swarm (k)
are unknown to the agents. The agents operate on an unweighted ring graph.
Every agent can measure the distance to his two neighbors on the ring up to a
limited “visibility” range of V edges: if two adjacent agents are farther than V

M. Dorigo et al. (Eds.): ANTS 2010, LNCS 6234, pp. 215–226, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

216 Y. Elor and A.M. Bruckstein

edges apart, they can not measure the distance between them. However, in this
case, they know that the distance is larger than V .

We consider oblivious algorithms. An algorithm is oblivious if the action per-
formed by an agent is dependent solely on the system state at the time the
action is taken. In particular, each agent’s current action is not dependent on
past system states and on the agent’s memory.

The algorithms we propose are scalable and robust, in the sense that if the
environment (the size of the ring) or the number of agents change during the
run, the swarm adapts and re-form without requiring any outside interference.

A question that naturally arises is the joint timing or synchronicity of the
agents’ operations in the environment. We use two synchronicity models by
Suzuki et al.[9]. In the semi-synchronous model (SSM) the agents operate in
cycles. In every cycle only a subset of the agents are active. It is guaranteed
that in an infinite run, every agent will become active infinitely many times.
In a time cycle, every active agent sense the environment and takes an action,
either traversing an edge or staying in place. In this model, traversing an edge
is assumed instantaneous. The synchronous model (SM) is similar to SSM but
in every cycle all agents are active. It is important to distinguish SSM from
CORDA[12]. In SSM (and SM) the look-compute-move cycle is atomic while in
CORDA a finite (but unbounded) time may pass between sensing (the “look”
phase) and acting (the “move” phase). Hence, in CORDA, the agents may take
an action (move) according to an outdated information.

All the impossibility results presented in this paper are proved under SM.
Since SM is a particular instance of SSM, the proofs hold for SSM as well.
Furthermore, SM is also a particular instance of CORDA so our impossibility
results hold for CORDA. All the algorithms we shall present work under both
SM and SSM. Time bounds for SSM are presented in terms of rounds as defined
below. Under SM, every time cycle is a round. So if algorithm A converges within
t rounds under SSM then it converges within t time cycles under SM.

Definition 1. A round is a time period in which every agent was active at least
once.

The tasks considered in this paper are two variants of the task of spreading
a group of agents uniformly on a ring graph. Assuming the graph contains n
vertices and the swarm is composed of k ≤ n agents, the most uniform spread
possible is when the distance between any two adjacent agents is either �n/k�
or �n/k�.

Since the agents are indistinguishable and memoryless (i.e. are oblivious), a
complete system description is given by the agents location. Formally, a system
configuration is a vector of length k specifying the agents location.

Definition 2. The agents form a balanced configuration if the distance between
any two adjacent agents is either �n/k� or �n/k�.
The first task we consider is forming and maintaining balanced configurations
i.e. the agents are required to form a balanced configuration and to stay in a
balanced configuration. The agents may move and change configurations as long

Multi-agent Deployment on a Ring Graph 217

as they maintain balanced configurations. We denote the task of forming and
maintaining a balanced configuration by uniform spread.

We first show that in the case of unoriented ring i.e. the agents do not apriori
agree on an orientation of the ring, no deterministic oblivious algorithm can
consistently achieve uniform spread. Then, considering an oriented ring, we show
that if the agent’s visibility range (V) is strictly less than �n/k�, no oblivious
algorithm can achieve uniform spread. Algorithm 1 presented in Section 4.2 is
then prove to achieve uniform spread for V ≥ �n/k�, therefore the analysis
covers all possible values for V for the oriented ring. In case V ≥ �n/k�, a
swarm of agents running Algorithm 1 will achieve uniform spread within O (n)
time cycles under SM and O (n) rounds under SSM. In case all agents start from
the same vertex, uniform spread can not be achieved faster than Ω (n), hence
the algorithm convergence time is optimal.

The second task we consider is quiescent uniform spread i.e. the agents are
required to form a balanced configuration and stop moving. Stopping is of impor-
tance since moving consumes energy. We show that under our oblivious model
in which every agent can sense only the distance to his two neighbors, forming a
quiescent balanced configuration is impossible. Hence we introduce Algorithm 2
under which the agents form quiescent, but “semi-balanced” configurations.

Definition 3. The agents form a semi-balanced configuration if the distance
between any two adjacent agents is at least n

k − k
2 and at most n

k + k
2 .

In case n/k � k, a semi-balanced configuration is (almost) balanced. Algorithm
2 achieves quiescent semi-balanced configurations within O (n) rounds (or time
cycles). In case all agents start from the same vertex, a semi-balanced config-
uration can not be formed faster than Ω (n). Hence the convergence time of
Algorithm 2 is optimal. We note that Algorithm 2 requires slightly larger visi-
bility range, that is V ≥ n

k + k
2 .

Consider several agents on the same vertex. Since the agents are indistin-
guishable, the symmetry between them can not be broken and they can not be
separated. We bypass this symmetry breaking problem by assuming distinct ini-
tial locations i.e. it is assumed that when the algorithm is initialized there are
no two agents occupying the same vertex. Note that under the algorithms we
present, if initially the agents were all at distinct vertices then there will never
be two agents on the same vertex.

Due to space limitations, the proofs of the lemmas and some of the theorems
are omitted here, they can be found in our readily available TR[6].

2 Related Work

If instead of a ring graph we consider the environment a continuous circle on the
plane, we obtain a continuous space variant of our problem. The uniform circle
formation problem is an instance of the general pattern formation problem, in
which the agents are required to form a specific geometric constellation on the
plane[9]. In one instance of the uniform circle formation problem, the agents are

218 Y. Elor and A.M. Bruckstein

required to uniformly spread over some circle on the plane, and the circle is not
predetermined. The circle formation task may be divided into two sub-tasks: in
the first sub-task the agents are required to form a non-uniform circle and, in
the second, to spread uniformly over that circle.

Sugihara and Suzuki[13] suggested a heuristic algorithm for the limited visi-
bility case. Later, Suzuki and Yamashita[14] proposed a non-oblivious algorithm
in which the agents had the capability to remember past system states. Defago
and Souissi[4] suggested the agreed upon circle to be the smallest circle enclosing
all agents. Their algorithm requires full visibility, i.e. every agent sees all other
agents and can perform global calculations. In their solution the agents converge
toward uniform cycle and does not form it. Later, Chatzigiannakis et al.[2] sim-
plified the algorithm proposed by Defago by modifying the model. Katreniak[10]
solved the problem of forming a bi-angular circle. Dieudonne et al.[5] presented
an algorithm which forms a uniform cycle starting from bi-angular circle for any
number of agents but 4. Recently, Flocchini et al.[7] considered ε-approximate
solutions. They proved that exact solution is impossible if the ring is not ori-
ented. A different but related problem is spreading the agents uniformly over a
line segment, see [15,11,3,1].

To the best of our knowledge, we are the first to consider the discrete case of
the problem of balanced deployment on a ring environment (i.e. spreading over
a ring graph) under limited visibility. Furthermore, in previous work regarding
uniform spread over a continuous ring (or a line) the agent speed was unlimited
i.e. the maximum step size an agent could take in a single time cycle was un-
bounded so the time bounds previously achieved were proportional only to the
number of agents. In our work, we limit the agent speed to one edge per time
cycle so the time bounds achieved are relative to the ring size as well.

3 Preliminaries

Denote the set of agents by A where |A| = k. Whenever we fix an agent a, let
a+1 (a−1) be the clockwise (counter-clockwise) neighbor of agent a on the ring
graph. Similarly a+2 will denote the clockwise neighbor of a+1 and so on. A step
taken by an agent clockwise is a “forward step” and a counter-clockwise step is
a “backward step”. Let d (a, b) be the distance between agents a and b, defined
as the number of edges on the clockwise path from a to b. Note that d (a, b) +
d (b, a) = n. d−1 (a) is the distance between a−1 and a; d+1 (a) is the distance
between a and a+1. The set A[a, b) ⊆ A includes, by definition, all the agents
between a and b including a but not including b. Note that A[a, b)+A[b, a) = A.
An illustration of these notations can be found in Figure 1.

Recall that V is the agents’ visibility range. If d (a, a+1) ≤ V then agents a
and a+1 can measure d (a, a+1). If d (a, a+1) > V the agents can not sense each
other and will use d (a, a+1) = ∞. We shall further assume that every agent can
measure only the distance to his two neighbors an can not “see beyond them”
e.g. even in the case where d (a, a+2) ≤ V , agent a can not measure the distance
to a+2.

Multi-agent Deployment on a Ring Graph 219

a−1 = ak−1

agent a

agent a2
a1 = a−k+1

d−1(a) = d(a−1, a) = 2

d1(a) = d(a, a1)

= 4

Fig. 1. Notations

Throughout the paper mathematical operations on agent indices are modulo
k. When we explicitly add t to the indices of a quantity we refer to the value of
that quantity at time t, e.g. d (a, b; t) is the distance between agents a and b at
time t.

4 Uniform Spread

4.1 Impossibility Results

For the case of unoriented rings i.e. when the agents have no access to a com-
mon orientation of the ring, uniform spread can not be achieved by a uniform
deterministic algorithm. This holds even if the the agents have memory, global
knowledge and unlimited sensing abilities. Like many other impossibility results
in distributed systems, the swarm can not achieve uniform spread simply be-
cause the agents are unable to break symmetry. Our impossibility result is the
discrete variant of a similar result by Flocchini et al [7]. The result we obtain
is stronger since it holds under both SM and SSM where the continuous space
result holds only for the SSM.

Theorem 1. There is no uniform deterministic algorithm that achieves uniform
spread on unoriented rings.

Proof. We will prove the theorem under SM. Consider the case of an even number
of agents k and a ring of size n = m · k where m ≥ 2 is an integer. Fix an agent
a, and consider a configuration C (l) defined as follows: for every i such that
0 ≤ i ≤ k/2 − 1,

d+1 (a2i) = d−1 (a2i+1) = 2l+ 1
d−1 (a2i) = d+1 (a2i−1) = 2 (m− l) − 1

where l is an integer such that 0 ≤ l ≤ m. Note that configuration C (l) is not
balanced for any l.

220 Y. Elor and A.M. Bruckstein

Let Aeven be the group of agents a+2i where 0 ≤ i ≤ k/2 − 1 and Aodd -
the agents a+2i+1. All agents of the set Aeven sense the same world view. All
agents of the set Aodd sense the same view. Furthermore, the view of the agents
of Aodd is a “mirror image” of the view of the agents of Aeven e.g. d+1 (resp.
d−1) of any agent of Aeven equals d−1 (resp. d+1) of any agent of Aodd. Because
the algorithm is uniform and deterministic, when an agent of Aeven takes a
clockwise step, all other agents of Aeven take a clockwise step and all agents of
Aodd take a counter-clockwise step. The resulting configuration will again be a
C (l)-type configuration (with a different l value) hence not balanced. This shows
that there are always “initial” unbalanced class of configurations from which the
agents applying a uniform deterministic algorithm will never escape.

In contrast to the result above, on oriented rings, uniform spread is possible.
We shall also ask: “what is the minimal visibility range that enables uniform
spread?”. Theorem 2 below states that uniform spread is impossible if the agent’s
sensing range is strictly less than �n/k�. Algorithm 1, presented in section 4.2,
converges to a balanced configuration for V ≥ �n/k� so the question is completely
settled (the convergence proof for V ≥ �n/k� can be found in Appendix B of
our TR[6]).

Theorem 2. On an oriented ring, if the sensing range of the agents is strictly
smaller than �n/k�, no uniform deterministic algorithm can achieve uniform
spread.

Proof. We shall again prove the theorem under SM. Consider k ≥ 3 agents
a+1...a+k on a ring of size n = m · k − 1 where m ≥ 2 is an integer. Let the
sensing range of the agents (V) be strictly smaller than �n/k�. Consider the
non balanced configuration in which d (a+1, a+2) = n − �n/k� (k − 1) > �n/k�,
all other distances between adjacent agents being �n/k�. Here all the gaps are
strictly greater than V so the agents can not sense each other. For every agent
d−1 = d+1 = ∞. Since the algorithm is oblivious, all agents will take the same
actions, hence forth the configuration will remain unchanged.

4.2 Uniform Spread on Oriented Ring

In order to bypass the impossibility result regarding unoriented rings we discuss
oriented rings i.e. we assume that the agents agree on a common orientation of
the ring (alternately, in order to break symmetry, one could consider probabilistic
algorithms or use a different synchronicity model, see e.g. [8]). The uniform
spread algorithm we propose is very simple. Every agent tries to balance the
two distances to its nearest neighbor ahead (d+1) and behind (d−1). In order to
break symmetry, we do not allow the agents to take forward steps. If d−1 > d+1
the agent takes a backward step hence decreasing d−1 and increasing d+1. If
d+1 > d−1 the agent will not move while other agents will act toward balancing
the system.

The proposed algorithm is presented as Algorithm 1. A similar algorithm for
the continuous space problem can be found in section 5.1 of [7]. The algorithm

Multi-agent Deployment on a Ring Graph 221

Algorithm 1. Uniform Spread
if d−1 > d+1 then1

Take a step backward.2

correctness and time complexity are discussed below. We show that the algo-
rithm converges to a balanced configuration in O (n) rounds if V ≥ �n/k�. In
case all agents start from the same vertex, a balanced configuration can not be
achieved faster than Ω (n) so the algorithm convergence time is optimal.

The functions f , g are defined by

f (x) � x · �n/k�
g (x) � x · �n/k�

We show in Lemma 1 that f (j − i) and g (j − i) are respectively an upper and
lower bound on the distance between any two agents a+i, a+j in a balanced
configuration.

Lemma 1. In a balanced configuration for every two agents a+i, a+j

g (j − i) ≤ d (a+i, a+j) ≤ f (j − i)

For any two agents a+i, a+j let

u (a+i, a+j) � d (a+i, a+j) − f (j − i)

l (a+i, a+j) � g (j − i) − d (a+i, a+j)

In case u (a+i, a+j) > 0, the agents a+i, a+j are too far apart. So the distance
d (a+i, a+j) must be reduced by at least u (a+i, a+j) edges before the configu-
ration is balanced. Since forward steps are not allowed, a+j must take at least
u (a+i, a+j) backward steps in order to reach a balanced configuration. Similarly,
in case l (a+i, a+j) > 0, the agents are too close so the distance d (a+i, a+j) must
be increased by a+i.

Define the upper and lower loads on agent a by

u (a) � max
j

{u (a+j , a)}

l (a) � max
j

{l (a, a+j)}

Intuitively, before forming a balanced configuration, agent a must take at least
max {u (a) , l (a)} steps. Next, two technical lemmas regarding the upper and
lower loads are presented.

Lemma 2. Let a−i be the agent such that u (a−i, a) = u (a) and let a+j be the
agent such that l (a, a+j) = l (a) then

222 Y. Elor and A.M. Bruckstein

1. d+1 (a−i) ≥ �n/k�.
2. d−1 (a−i) ≤ d+1 (a−i).
3. d (aj−1, a+j) ≤ �n/k�.
4. d+1 (a+j) ≥ d−1 (a+j).

Lemma 3. There is an agent a for which u (a) = 0 and there is an agent b for
which l (b) = 0.

For every agent a let u0 (a) be the agent such that u (u0 (a)) = 0 and the cardi-
nality of the set A [a, u0 (a)) is minimal. In case u (a) = 0 then u0 (a) = a and
|A [a, u0 (a))| = 0. Similarly, let l0 (a) be the agent such that l (l0 (a)) = 0 and
the cardinality of the set A [a, l0 (a)) is minimal. Such agents exist by Lemma 3.
Define the upper and lower potentials of agent a by

vu (a) � 2u (a) + |A [a, u0 (a))|
vl (a) � 2l (a) + |A [a, l0 (a))|

The system upper and lower potentials are given by

Vu � max
a∈A

{vu (a)}

Vl � max
a∈A

{vl (a)}

By Lemma 1, the potential of a balanced configuration is zero. On the other
hand, if Vu = Vl = 0 then the system is in a balanced configuration. We show in
the next lemma that the upper and lower potentials of an agent do not increase.

Lemma 4. Fix an agent a. Then u (a), vu (a), l (a) and vl (a) are non-increasing
under SSM model.

Recall that a round is a time period in which every agent was active at least
once. The next two lemmas show that in every round both the upper and lower
system potentials decrease. All the claims stated so far hold for any V . The next
two lemmas hold for V ≥ �n/k� and V ≥ �n/k� respectively.

Lemma 5. If Vu (t1) > 0, V ≥ �n/k�, and between times t1 and t2 all the agents
were active at least once, Vu (t2) < Vu (t1).

Lemma 6. If Vl (t1) > 0, V ≥ �n/k�, and between times t1 and t2 all the agents
were active at least once, Vl (t2) < Vl (t1).

In order to bound the convergence time, the potential of the initial configuration
is bounded in the next lemma. The proof is concluded in Theorem 4.

Lemma 7. For any configuration, Vu ≤ 2n+ k and Vl ≤ 2n+ k.

Theorem 3. A swarm of agents following Algorithm 1 with V ≥ �n/k� will
form a balanced configuration within 2n+ k rounds under SSM and 2n+ k time
cycles under SM.

Multi-agent Deployment on a Ring Graph 223

5 Quiescent Uniform Spread

5.1 Impossibility Result

The next theorem proves that achieving quiescent balanced configuration is im-
possible under our oblivious model in which every agent can sense only the
distance to his two neighbors. The result holds for any V . The impossibility
result does not hold under a stronger model in which every agent can sense all
agents in his visibility range. This stronger model is beyond the scope of this
paper and will be analyzed elsewhere.

Theorem 4. If every agent can sense the distance to only his two neighbors on
the ring, there is no oblivious deterministic algorithm that achieves quiescent
uniform spread.

Proof. Assume toward contradiction that a swarm of agents following an obliv-
ious algorithm A form a quiescent balanced configuration. Fix the swarm size
(k) and consider a ring of n vertices where n/k is an integer. There is a sin-
gle balanced configuration in which for every agent d+1 = d−1 = n/k. So
in this configuration, all agents are quiescent. Consider a ring of n vertices
where n/k is a fraction. In every balanced configuration there is an agent a
such that d+1 (a) = �n/k�, d−1 (a) = �n/k� and there is an agent b such that
d+1 (b) = �n/k�, d−1 (b) = �n/k�. Since one of the balanced configuration must
be quiescent, agents a and b do not move. Algorithm A is oblivious so all agents
run the same algorithm. We conclude that every agent such that |d+1 − d−1| ≤ 1
does not move under algorithm A.

To construct the counter example fix k ≥ 4 and let n = m · k + 4 where m is
a positive integer. Assume the following initial configuration:

d (a+1, a+2) = m+ 1
d (a+2, a+3) = m+ 2
d (a+3, a+4) = m+ 1

and all other distances equal m. For every agent |d+1 − d−1| ≤ 1 so all agents
do not move and the configuration remains unchanged indefinitely. However, the
configuration is not balanced, a contradiction.

5.2 Quiescent Semi-stable Configuration

In the previous section we have shown that forming a quiescent balanced config-
uration is impossible. The impossibility result is based on the observation that
under any algorithm, every agent for which |d+1 − d−1| ≤ 1 must not move.
Based on that observation we present Algorithm 2 in which every agent is qui-
escent as long as

d−1 − d+1 ≤ 1 (1)

224 Y. Elor and A.M. Bruckstein

Algorithm 2. Quiescent Stable Configuration
if d−1 > d+1 + 1 then1

Take a step backward.2

We show in Lemma 8 that when Equation 1 holds for all agents, they form a
semi-balanced configuration (recall Definition 3 from section 1). The algorithm
requires a slightly larger visibility range i.e. V ≥ n

k + k
2 . Note that in case

n/k � k, a semi-balanced configuration is (almost) balanced. The algorithm
correctness and time complexity are discussed below.

Lemma 8. If Equation 1 holds for all agents then the agents form a semi-
balanced configuration.

The convergence proof of Algorithm 2 resembles the proof of Algorithm 1. The
proof is based on potential functions which are similar to the ones used in the
proof of Algorithm 1.

The function h (i, d) is defined by

h (i, d) � i · d+
i∑

j=1

j = i · d+
i (i+ 1)

2

For every agent a let

s (a−i, a) � d (a−i, a) − h (i, d+1 (a))
s (a) � max

i
{s (a−i, a)}

The intuition behind the definition of s is the following: if s (a) ≤ 0 then Equation
1 holds for agent a. Therefore, by Lemma 8, if for all agents s = 0 then they
form a semi-balanced configuration. Define the potentials of an agent and of a
system respectively via:

vs (a) �
{

2 · s (a) + d+1 (a) s (a) > 0
0 else

Vs � max
a∈A

{vs (a)}

When Vs = 0, the agents form a semi-balanced configuration. The next few
lemmas and theorem show that Vs will be zeroed within 3n rounds. We first
present two technical lemmas regarding s and vs.

Lemma 9. Let a−i be an agent such that s (a) = s (a−i, a) then

1. d+1 (a−i) ≥ h (i, d+1 (a)) − h (i− 1, d+1 (a)).
2. d−1 (a−i) ≤ d+1 (a−i) + 1.

Multi-agent Deployment on a Ring Graph 225

Lemma 10. Let a be an agent such that V (s) = vs (a) > 0 then,

1. d−1 (a) ≥ d+1 (a) + 2.
2. d−1 (a+1) ≤ d+1 (a+1) + 1.
3. d+1 (a) ≤ n

k + k
2 .

The next two lemmas show that Vs decreases with time. To be exact, every
round, the system potential decreases by at least one.
Lemma 11. If vs (a; t) < Vs (t) then vs (a; t+ 1) < Vs (t) under SSM.

Lemma 12. If Vs (t1) > 0, V ≥ n
k + k

2 , and between times t1 and t2 all the
agents were active at least once, Vs (t2) < Vs (t1).

The next lemma and theorem complete the proof in the following manner: the
potential of the initial configuration is bounded by 3n and in every round the
potential decreases. Therefore within 3n rounds Vs ≤ 0 and the agents reach a
quiescent semi-balanced configuration.
Lemma 13. For any configuration Vs ≤ 3n.

Theorem 5. A group of k agents following Algorithm 2 where V ≥ n
k + k

2 will
form a quiescent semi-balanced configuration within 3n rounds under SSM and
3n time cycles under SM.

6 Conclusion

In this paper we have considered two variants of the problem of spreading a
swarm of agents uniformly on a ring graph. In the first variant the agents are
required to “dynamically” spread uniformly over the ring. We have shown that
if the ring is unoriented or the sensing range of the agents is strictly less than
�n/k�, this task is impossible. Considering an oriented ring and V ≥ �n/k�,
we have proposed an algorithm which achieves the task within optimal time.
In the second variant, the agents are required to spread over the ring and stop
once a balanced configuration is reached (quiescent spread). We have shown
that under our model in which every agent can measure the distance only to his
two neighbors, achieving this task is impossible. As a partial solution, we have
proposed an algorithm which achieves quiescent and “almost uniform” spread.

Some interesting open issues that remain to be answered are:

– In continuous space systems, the agent’s speed is limited. Can our algorithms
induce ε-approximate[7] algorithms for the limited speed continuous space
case? If so, the time bounds achieved shall be with respect to the ring size,
agent speed and the number of agents as opposed to state of the art bounds
which consider the number of agents only.

– In case every agent can measure the distance to all agents in his visibility
range, what is the minimal visibility range that enables a quiescent balanced
configuration? Which algorithms achieve that?

– Under our model in which every agent can sense the distance to his two
neighbors only, can the agents achieve a more uniform quiescent spread than
the semi-balanced configuration we have presented? Perhaps a random algo-
rithm can achieve better results on average?

226 Y. Elor and A.M. Bruckstein

Acknowledgments. This research was supported by the Technion Goldstein
UAV and Satellite Center and by the European Community’s FP7-FET program,
SMALL project.

References

1. Carli, R., Bullo, F.: Quantized coordination algorithms for rendezvous and deploy-
ment. Sicon (2009)

2. Chatzigiannakis, I., Markou, M., Nikoletseas, S.E.: Distributed circle formation for
anonymous oblivious robots. In: Ribeiro, C.C., Martins, S.L. (eds.) WEA 2004.
LNCS, vol. 3059, pp. 159–174. Springer, Heidelberg (2004)

3. Cohen, R., Peleg, D.: Local spreading algorithms for autonomous robot systems.
SIROCCO 2006 399(1-2), 71–82 (2008); Structural Information and Communica-
tion Complexity (SIROCCO 2006)

4. Defago, X., Souissi, S.: Non-uniform circle formation algorithm for oblivious mobile
robots with convergence toward uniformity. Theoretical Computer Science 396(1-
3), 97–112 (2008)

5. Dieudonne, Y., Labbani-Igbida, O., Petit, F.: Circle formation of weak mobile
robots. ACM Trans. Auton. Adapt. Syst. 3(4), 1–20 (2008)

6. Elor, Y., Bruckstein, A.M.: Multi-agent deployment and patrolling on a ring graph.
Tech. rep., Computer Science Department. Technion Haifa, Israel (September
2009),
http://www.cs.technion.ac.il/users/wwwb/cgi-bin/tr-info.cgi/2009/CIS/

CIS-2009-16

7. Flocchini, P., Prencipe, G., Santoro, N.: Self-deployment of mobile sensors on a
ring. Theor. Comput. Sci. 402, 67–80 (2008)

8. Gordon, N., Elor, Y., Bruckstein, A.M.: Gathering multiple robotic agents with
crude distance sensing capabilities. In: Dorigo, M., Birattari, M., Blum, C., Clerc,
M., Stützle, T., Winfield, A.F.T. (eds.) ANTS 2008. LNCS, vol. 5217, pp. 72–83.
Springer, Heidelberg (2008)

9. Hideki, Y., Oasa, A., Suzuki, I.: Formation and agreement problems for syn-
chronous mobile robots with limited visibility. In: Proceedings of the 1995 IEEE
International Symposium on Intelligent Control, pp. 453–460 (August 1995)

10. Katreniak, B.: Biangular Circle Formation by Asynchronous Mobile Robots. In:
Pelc, A., Raynal, M. (eds.) SIROCCO 2005. LNCS, vol. 3499, pp. 185–199.
Springer, Heidelberg (2005)

11. Martinez, S., Bullo, F., Corts, J., Frazzoli, E.: On synchronous robotic networks-
part ii: Time complexity of rendezvous and deployment algorithms. IEEE Trans-
actions on Automatic Control 52(12), 2214–2226 (2007)

12. Prencipe, G.: Instantaneous actions vs. full asynchronicity: Controlling and coordi-
nating a set of autonomous mobile robots. In: Restivo, A., Ronchi Della Rocca, S.,
Roversi, L. (eds.) ICTCS 2001. LNCS, vol. 2202, pp. 154–171. Springer, Heidelberg
(2001)

13. Sugihara, K., Suzuki, I.: Distributed algorithms for formation of geometric patterns
with many mobile robots. Journal of Robotic Systems 13(3), 127–139 (1996)

14. Suzuki, I., Yamashita, M.: Distributed anonymous mobile robots: Formation of
geometric patterns. SIAM Journal on Computing 28(4), 1347–1363 (1999)

15. Wagner, I.A., Bruckstein, A.M.: Row straightening via local interactions. Circuits,
Systems, and Signal Processing 16(3), 287–305 (1997)

http://www.cs.technion.ac.il/users/wwwb/cgi-bin/tr-info.cgi/2009/CIS/CIS-2009-16
http://www.cs.technion.ac.il/users/wwwb/cgi-bin/tr-info.cgi/2009/CIS/CIS-2009-16

Multi-Swarm Optimization for Dynamic
Combinatorial Problems: A Case Study on

Dynamic Vehicle Routing Problem

Mostepha Redouane Khouadjia1, Enrique Alba2,
Laetitia Jourdan1, and El-Ghazali Talbi1

1 National Institute for Research in Computer Science and
Control (INRIA) Lille, France

2 Departamento de Lenguajes y Ciencias de la Computación, Universidad de Málaga,
E.T.S. Ingenieŕıa Informática, Campus de Teatinos, Málaga, Spain

mostepha-redouane.khouadjia@inria.fr, eat@lcc.uma.es,
laetitia.jourdan@inria.fr, talbi@lifl.fr

Abstract. Many combinatorial real-world problems are mostly dynamic.
They are dynamic in the sense that the global optimum location and its
value change over the time, in contrast to static problems. The task of
the optimization algorithm is to track this shifting optimum. Particle
Swarm Optimization (PSO) has been previously used to solve continu-
ous dynamic optimization problems, whereas only a few works have been
proposed for combinatorial ones. One of the most interesting dynamic
problems is the Dynamic Vehicle Routing Problem (DVRP). This paper
presents a Multi-Adaptive Particle Swarm Optimization (MAPSO) for
solving the Vehicle Routing Problem with Dynamic Requests (VRPDR).
In this approach the population of particles is split into a set of interact-
ing swarms. Such a multi-swarm helps to maintain population diversity
and good tracking is achieved. The effectiveness of this approach is tested
on a well-known set of benchmarks, and compared to other metaheuris-
tics from literature. The experimental results show that our multi-swarm
optimizer significantly outperforms single solution and population based
metaheuristics on this problem.

1 Introduction

While most of the optimization problems discussed in the scientific literature
are static, many real-world problems change over time, i.e. they are dynamic.
In those cases, the optimization algorithm has to track a moving optimum as
closely as possible. In dynamic continuous problems, it has been argued that
the Particle Swarm Optimization (PSO) is potentially well-suited to track the
shifting optimum [6,14,5]. PSO needs to be adapted for optimal results on dy-
namic optimization problems. In this paper we propose two adaptation levels.
The first level is given by the Adaptive Particle Swarm Optimization (APSO)
algorithm which provides an adaptive approach based on explicit memory. This

M. Dorigo et al. (Eds.): ANTS 2010, LNCS 6234, pp. 227–238, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

228 M.R. Khouadjia et al.

memory stores the gathered information during the previous searches. The sec-
ond level of adaptation is given by the Multi-swarm APSO (MAPSO) approach
through better population diversity. Thanks to recent advances in information
and communication technologies (geographic information systems (GIS), global
positioning systems, (GPS), traffic flow sensors,...), which are able to reduce
costs and improve transport services, we can now timely generate routes as soon
as new event occurs. Thus, Dynamic Vehicle Routing Problem (DVRP) is getting
increasing importance this last decade. The dynamism is expressed in this prob-
lem by the changes that happen in a repeated manner (at each new customer
demand). We can suggest that the DVRP landscape is similar to a multidi-
mensional landscape consisting of several peaks (optima), where the height, the
width and the position of each peak is altered every time a change in the envi-
ronment occurs. So, the multi-swarm approach is justified in this kind of fitness
landscape.

We present in this paper a multi-swarm approach for solving the Vehicle
Routing Problem with Dynamic Requests (VRPDR). An effective representa-
tion for particles and for this problem is provided. To the best of our knowledge,
this is the first PSO implementation for this particular version of DVRP. It
is tested using data sets introduced in [13], and compared to other well-known
metaheuristics. The remainder of this paper is organized as follows: Section 2 dis-
cusses several multi-population approaches for dynamic optimization problems.
In Section 3 a formal presentation of the problem is given. Section 4 describes
the proposed MAPSO approach. Section 5 provides experimental analysis. Con-
clusion and future work are given in Section 6.

2 Multi-population Approaches for Dynamic
Optimization Problems

Different multi-population approaches exist for dynamic environments. In the
area of Evolutionary Algorithms (EAs), Oppacher and Wineberg in [17] pro-
pose a Shifting Balance Genetic Algorithm (SBGA) that consists in dividing
the EA population into one main population and a number of smaller colony
subpopulations. The task of the main population is to exploit the best optimum
found, while the colony populations are forced to explore the different areas of
the fitness landscape. A repulsion mechanism is introduced whenever a colony
population gets too close to the core population thus driving the colonies far
from the core population. Periodically, the colonies update the core population
by sending some emigrant solutions. One of the most promising approaches over
the last decade is the Self-Organizing Scouts (SOS) proposed by Branke [8]. Op-
posite to SBGA, the goal here is to have a number of subpopulations (scouts)
watching over the best local optima, and one single population which explores
the fitness landscape. When a local optimum is discovered, a part of the pop-
ulation is split off and remains close to this optimum for further exploration.
The remainder of the population continues the search for new local optima that
can appear when the environment changes. Also, Ursem proposes in [22] the

MAPSO for the Dynamic Vehicle Routing Problem 229

Multinational Genetic Algorithm (MGA) which structures the population into
subpopulations using a procedure called hill-valley detection. For two points in
the search space, a random sample on the line between these two end points is
evaluated. The valley is detected if the fitness of the sample is lower than the
fitness of the two end points. This method is used to determine if an individual
is not located on the same peak with the rest of its population, and hence it
should migrate to a different population. The procedure can also lead to the
merging of two populations if it finds that they are situated on the same peak.

The Multi-population approach was used also to enhance metaheuristics for
diversity. One of the most popular algorithm used in this sense is the Particle
Swarm Optimization (PSO). A Multi-population Charged PSO (MCPSO) is pro-
posed in [4], inspired by atomic analogy. Repulsion mechanism is used between
charged and neutral subpopulations. Its aim is to avoid the convergence of the
population around the same local optima. The idea is to place a swarm on each
local optimum in a multi-modal environment. Whilst the neutral subswarms con-
tinue to optimize, the surrounding charged particles maintain enough diversity
to track dynamic changes in location of the covered peaks. This approach was
extended by the authors to quantum model then introducing Multi-Quantum
Swarm (MQS). The multi-swarm model has also been analysed by Parrott and
Li [18]. There, the number and the size of swarms are adjusted dynamically by
a speciation and crowding mechanisms for finding several optima in multimodal
landscapes, also preventing overcrowding at peaks. In [5], Blackwell et al. reused
the MQS with exclusion between swarms, and an additional anti-convergence
mechanism which reinitializes the worst swarm once it has converged. Inspired
by multi-swarm approach, we investigate in Section 4 whether a multi-population
metaheuristic might also be beneficial in dynamic vehicle routing environments.
The aim is to place different swarms on the search space to counterbalance the
diversity loss of population.

3 Problem Description

A general description of the Vehicle Routing Problem is first given in order to
introduce the Vehicle Routing Problem with Dynamic Requests (VRPDR).

3.1 The Static Vehicle Routing Problem

The static Vehicle Routing Problem (VRP) [10] is a well-known NP-hard com-
binatorial optimization problem which is encountered frequently in distribu-
tion logistics and transportation systems. It consists in designing routes for
a fleet of capacitated vehicles that are to service a set of geographically dis-
persed points (customers, stores, cities,...) at the least cost (distance, time,
number of vehicles,...). The VRP can be modelled mathematically using an
undirected graph G = (C,E), where C = {c0, c1, ..., cn} is the vertex set, and
E = {(ci, cj)|ci, cj ∈ C, i < j} is the edge set. A set of m homogeneous vehicles,
each with capacity Q, originate from a single depot represented by the vertex

230 M.R. Khouadjia et al.

c0. The vehicles must service all the customers represented by the set C. The
quantity of goods qi requested by each customer ci is associated with the corre-
sponding vertex. The goal is to find a feasible set of routes with the minimum
total traveled distance. The solution is said feasible if each node is visited exactly
once (i.e, it is included into exactly one tour), each tour starts and ends at the
depot (c0), and the sum of the quantities associated with the vertices contained
in it never exceeds the corresponding vehicle capacity Q. More formally, the
problem can be described as follows:

Minimize
n∑

i=1

n∑
j=1

dij

m∑
k=1

xk
ij (1)

Where:
n: number of vertices,
m: number of vehicles,
dij : cost or distance between the vertex ci and the vertex cj ,

and

xk
ij =

{
1, if (ci, cj) is covered by the vehicle k
0, otherwise (2)

3.2 The Dynamic Vehicle Routing Problem

The Dynamic Vehicle Routing Problem (DVRP) [19] is strongly related to the
static VRP. It can be described as a VRP in which information about the prob-
lem can change during the optimization process, contrary to the static VRP in
which customers are known prior to the planning routes. The changing infor-
mation involves several factors such as traveling time, traffic incidents, arrival
of new customer demands, etc. In the Vehicle Routing Problem with Dynamic
Requests (VRPDR), customer orders are revealed incrementally over time, al-
though some orders may be known in advance at the beginning of the route
design. The new requests lead to the reconfiguration of the current established
plan in order to include these requests. We investigate here, the model introduced
by Kilby et al. [13] and further refined by Montemanni et al. [16]. The proposed
model makes a partition of the working day into time slices, and solves a partial
problem at each time slice. In [13], Kilby adapts classical VRP benchmarks for
this dynamic context. He studies the effect of the degree of dynamism on the
solution quality.The proposed algorithm for the construction of routes is the ba-
sic insert and improvement algorithm. Besides, Montemanni et al. [16] propose
a solving strategy based on the Ant Colony System paradigm. Meanwhile, Han-
shar et al. [11] solve the problem with Genetic Algorithms and Tabu Search. A
basic example of a VRPDR scenario is shown in Figure 1. In the example, two
uncapacitated vehicles must service both advance (known) and dynamic request
customers. Advance requests are represented with white nodes, while those that
are dynamic are depicted by black nodes. The solid lines represent the two routes
that the dispatcher has planned before the vehicles leave the depot, while the
new route segments are indicated by dotted lines.

MAPSO for the Dynamic Vehicle Routing Problem 231

Fig. 1. Illustrating the Dynamic Vehicle Routing Problem

4 Multi-Adaptive Particle Swarm Optimization

In this section we present our Multi-Adaptive Particle Swarm Optimization
(MAPSO) beginning by the canonical PSO and followed by the APSO approach
and the dedicated APSO-DVRP. At the end, a multi-swarm model for APSO is
given.

4.1 Particle Swarm Optimization

The Particle Swarm Optimization (PSO) algorithm was proposed by Kennedy
and Eberhart [12]. It is a population based technique inspired by models of social
swarm and flock behavior. A particle is defined by its position −→xi , the position
of its personal best solution found so far −→pi , and its velocity −→vi . Furthermore,
each particle knows the best position found so far by the global swarm −→pg . The
algorithm proceeds iteratively, updating first all velocities, and then all particle
positions as follows:

−→v i = ω−→v i + ϕ1 × r1(−→p i − −→x i) + ϕ2 × r2(−→p g − −→x i) (3)

−→x i = −→x i + −→v i (4)

The Equation (3) is used to calculate the i-th particle’s new velocity by tak-
ing into account three terms: the particle’s previous velocity, the distance be-
tween the particle’s best and current position, and finally, the distance between
swarm’s best position and the i-th particle’s current position. Then, the i-th
particle moves towards a new position according to the Equation (4). The role
of the inertia weight ω is to regulate the moving velocity of the particles. The
parameters ϕ1, ϕ2 control the relative attraction of the personal best and global
best found solutions. Finally, r1, r2 are random variables drawn with uniform
probability from [0, 1].

4.2 Adaptive Particle Swarm Optimization

Some papers produced in the area of dynamic optimization deal with the non-
stationary feature by regarding each change as the arrival of a new optimization

232 M.R. Khouadjia et al.

problem that has to be solved from scratch [3]. However this simple approach
is impractical in some problems like DVRP, because solving a problem from
scratch without reusing information from the past is meaningless, due to the
fact that vehicles are already on routes and are servicing customers. Better so-
lutions could be achieved by using an optimization algorithm that is capable
of reusing the information gained in the past. Many authors have addressed
the issue of transferring information from the old environment to the new one
by enhancing the algorithms [7,23]. Usually, the approaches are enhanced with
some sort of memory that might allow to store good solutions and reuse them
later as necessary. This memory may be provided implicitly by using redundant
representations, or explicitly by introducing an extra memory and formulating
strategies to store in and retrieve solutions from that memory. The latter alter-
native seems to be more promising. In PSO this explicit memory is intrinsic to
the algorithm, since each particle is defined by its current position and its best
position so far. In order to have a better response to environment changes, we
propose an Adaptive Particle Swarm Optimization (APSO). The adaptability of
the algorithm consists in using the information gathered previously on the search
space. When the environment changes, this mechanism allows the algorithm to
restart the search from the best solutions found during the previous searches.
Several memory schemes can be used [23]. The policy used in our approach con-
sists at each change of environment, instead of blindly replacing all the −→pi by
their corresponding −→xi at the initialization step, we found that it was worthwile
to see the fitness of the −→pi . If this latter is better than the current position of
the particle then we replace the current position by the best one. This method
allows to give better response to the dynamic environment.

4.3 Adaptive Particle Swarm for Solving Dynamic Vehicle Routing
Problem

Particle Representation: Usually in the literature, authors propose an indi-
rect real number coding for the particles as in [1]. Each dimension should be
rounded to the closest integer number and sorted. It operates with difficulty and
consumes much CPU time during the decoding step. Meanwhile, if the position
presents an infeasible solution, it is very difficult to repair.

In our approach, we propose a simple discrete representation which expresses
the route of vehicles over the n customers to serve. We set up a dedicated solution
encoding for the DVRP problem. The representation allows the insertion of
dynamic customers in the already planned routes. Since the customer requests
arrive along the time, it is necessary to have some kind of knowledge about
the state of each customer (served/not served) and his processing time (i.e., the
time in which he is served). On the other side, we keep some information about
each vehicle. This information is related to its current position in the service
area, its remaining capacity, its traveled distance, and its status (committed/not
committed). The representation of each route R is a permutation of n customers,
starting and ending at the depot (c0 = cn+1) as follows:

MAPSO for the Dynamic Vehicle Routing Problem 233

R : (c0, c1, c2, ..., ci, ..., cn, cn+1) (5)

For each customer ci, we assign the following information:

– (xi, yi): Coordinates of the the customer ci.
– si: Boolean variable which indicates if the customer ci has been already

served or not.
– ti: Processing time of the customer ci.

Furthermore, for each route R served by the vehicle vj we keep these information:

– (xj , yj): Coordinates of the vehicle vj .
– capj : Remaining capacity of the vehicle vj .
– distj : Distance traveled by the vehicle vj .
– commitj : Boolean variable which indicates if the vehicle vj is committed to

serve customers or not.

The initial population of APSO is obtained by generating a random permutation
of customers who were left over from the previous working day. At each time
slice, the new customers are inserted into the routes. The velocity vector −→v i of
the particle is initialized for each new dimension by a random number between
[1,m], where m is the number of the planned vehicle routes. The normalization
of particle’s velocity in index sequence allows to have feasible solutions. For each
dimension of position vector −→xi , if the customer is served, we can not change
neither the tour nor the position of this latter in the already established vehicle
routes. The updating process is very similar to the ejection chain method that
has been applied successfully to vehicle routing [20]. It consists in generating a
compound sequence of interrelated simple moves between routes, leading from
one solution to another. The customers move from their route and inserted into
another one according to the cheapest cost insertion (i.e., the position which
minimizes the cost of the insertion into the route).

Hybridizing APSO-DVRP: The hybridization scheme used here consists in
a low-level teamwork hybrid (LTH). In [21], Talbi describes this class of hybrids
as algorithms in which a given metaheuristic is embedded into another one. We
have used the 2-Opt [15] heuristic as a local search for APSO. The 2-Opt heuris-
tic is applied in APSO after the move of particles. A naive exploration of the
neighborhood of a solution s is a complete evaluation of the objective function
for every candidate neighbor s′ of N(s). For more efficiency, our local search
is designed in a manner in which we can avoid the whole route evaluation. A
way to evaluate the set of candidates is the evaluation �(s,m) of the objec-
tive function, where s is the current solution and m is the applied move. This
incremental evaluation consists in evaluating only the transformation �(s,m)
applied to a solution s rather than the complete evaluation of the neighbor solu-
tion f(s′) = f(s⊕m). This is an important issue in terms of efficiency and must
be taken into account in the design of high-achieving metaheuristics especially
in dynamic optimization context [21].

234 M.R. Khouadjia et al.

4.4 Multi-Swarm Optimizer

Due to diversity loss and linear collapse [6], the swarm can converge quickly.
The particles will be close to the global best attractor and the swarm will be
shrinking at a rate determined by the inertia weight and by the local environment
at the optimum. If the optimum shifts within the collapsing swarm, then re-
optimization will be efficient. However, if the optimum shift is significantly far
from the swarm, the low velocities of the particles will inhibit tracking, and the
swarm can even oscillate around a false attractor and far from the true optimum
(linear collapse). One of the approaches to delay the effect of diversity loss is
a multi-swarm, with the aim of maintaining a multitude of swarms on different
peaks [4]. We propose here a Multi-population version of APSO (MAPSO). The
underlying idea is to place an APSO swarm on each local optimum of the DVRP
fitness landscape. These swarms will maintain hopefully enough diversity to track
dynamic changes in location of the covered peaks, and exchange information
about each peak when change occurs in environment. To track the optimum in
such an environment, the algorithm has to be able to follow a moving peak, and
to jump to another peak when the peak heights change in a way that makes
a previously non-optimal peak the lowest peak (minimization). In the DVRP
fitness landscape, the lowest peak is the solution of feasible set of routes with
the minimum total traveled distance. In designing a parallel cooperative model
for any metaheuristic, the same questions need to be answered [2,21]:

– The exchange decision criterion: The exchange of information between
the swarms is decided in a periodic way. In this work, a periodic exchange
occurs in each algorithm after a fixed number of evaluations.

– The exchange topology: The communication exchange topology indicates
for each APSO swarm its neighbor(s) regarding the exchange of information,
that is, the source/destination algorithm(s) of the information. The ring
topology is used in our approach.

– The exchanged information: This parameter specifies the information
to be exchanged between the metaheuristics. It contains elite particles (i.e.,
with best personal positions) that have been previously found. The number
of solutions to exchange is given by a percentage of the population.

– The integration policy: The integration policy deals with the usage of
the received information. For our algorithm, an elitist replacement strategy
is applied to integrate the received k particles by replacing the k worst parti-
cles of the local swarm if the incoming ones are better than them. Since the
heterogeneous nature of the parallel environment (communication latency,
performance of nodes), at a given moment of the optimization process, the
subpopulations can be in different steps of the problem evolution. The mi-
gration process may involve a situation in which the immigrants could be
found in host population that evolves either ahead or behind their base pop-
ulation. Each particle is labelled before its sending by the current time step
(evolution step) of the problem on which it deals. Three cases may arise dur-
ing the migration of particles towards a host population. The policy adopted
for each case is as follows:

MAPSO for the Dynamic Vehicle Routing Problem 235

• If the immigrant particle is coming from a population working on the
same partial problem as the host population: integrate the particle with-
out any measure into the local population.

• If the immigrant particle is coming from a population working on a
partial problem which is advanced in time than the host population:
keep the particle in a waiting queue until the local problem reaches the
evolution step of particle’s problem, and integrate this latter into the
population.

• If the immigrant particle is coming from a population working on a par-
tial problem which is behind the host population: evolve the particle to
the current evolution state of the local partial problem before integrating
it into the population.

5 Experimental Analysis

The results achieved by our algorithm are presented in this section. The MAPSO
algorithm has been implemented on ParadisEO framework 1 dedicated to design
of metaheuristics, and the experiments were carried out using the Grid’50002 ex-
perimental testbed. In order to compare our algorithms with the reported results
of other approaches on DVRP [11], a number of parameters need to be set in the
benchmarks. To standardize the benchmarks3, Montemanni et al. [16] fixed some
benchmark parameters that can affect the final travel distances. The first is nts,
the number of time slices in the optimization process. This parameter subdivided
the day T into discrete time periods Ts, in which optimization is carried out on
each one. Montemanni et al. [16] found that setting the parameter to nts = 25
yielded the best tradeoff between the objective value and computational cost.
Secondly, the cutoff time Tco was set to 0.5. This means that the orders which
arrive after the half of the working day (0.5 × T) are postponed to the following
day. Finally, the advanced commitment time Tac was set to 0. This parameter
has been considered to give the drivers an appropriate reaction time after hav-
ing been committed to the new orders. The algorithm parameters used for our
approach are summarised in the Table 1. For each instance, 30 independent runs
of our algorithm have been considered. The choice to set the stopping criterion
of the algorithm as the number of evaluations carried out on the population
allows to standardize the comparison protocol between different metaheuristics.
However, the other works use CPU time [16,11]. This latter is highly dependent
on hardware, and not a suitable stop condition for this comparison.

5.1 Numerical Results

A comparison of the solutions quality in term of minimizing travel distances is
done between our hybrid MAPSO2−Opt, and several algorithms proposed pre-
viously in literature as: Ant System (AS) [16], Genetic Algorithm (GA2−Opt),
1 http://paradiseo.gforge.inria.fr
2 https://www.grid5000.fr
3 http://www.fernuni-hagen.de/WINF/inhalte/benchmark data.htm

236 M.R. Khouadjia et al.

Table 1. Algorithm parameters for MAPSO metaheuristic

Parameter type Default value Range
Number of swarms 8 −

Population size per swarm 100 −
Migration topology directional ring −
Migration frequency 1000 evaluations −

Migration size 5% population size −
Inertia weight (ω) 1 −

ϕ1 0.75 0.5-1.0
ϕ2 0.5 0.5-1.0

Stopping criterion 5000 evals per Ts 25×5000=125000 evals per T

Table 2. Numerical results obtained by MAPSO2−Opt compared to AS, and the hy-
brids GA2−Opt and TS2−Opt

Metaheuristics
Instances MAPSO2−Opt AS [16] GA2−Opt [11] TS2−Opt [11]

Best Average Best Average Best Average Best Average
c50 571.34 610.67 631.30 681.86 570.89 593.42 603.57 627.90
c75 931.59 965.53 1009.36 1042.39 981.57 1013.45 981.51 1013.82
c100 953.79 973.01 973.26 1066.16 961.10 987.59 997.15 1047.60
c100b 866.42 882.39 944.23 1023.60 881.92 900.94 891.42 932.14
c120 1223.49 1295.79 1416.45 1525.15 1303.59 1390.58 1331.22 1468.12
c150 1300.43 1357.71 1345.73 1455.50 1348.88 1386.93 1318.22 1401.06
c199 1595.97 1646.37 1771.04 1844.82 1654.51 1758.51 1750.09 1783.43
f71 287.51 296.76 311.18 358.69 301.79 309.94 280.23 306.33
f134 15150.5 16193 15135.51 16083.56 15528.81 15986.84 15717.90 16582.04
tai75a 1794.38 1849.37 1843.08 1945.20 1782.91 1856.66 1778.52 1883.47
tai75b 1396.42 1426.67 1535.43 1704.06 1464.56 1527.77 1461.37 1587.72
tai75c 1483.1 1518.65 1574.98 1653.58 1440.54 1501.91 1406.27 1527.72
tai75d 1391.99 1413.83 1472.35 1529.00 1399.83 1422.27 1430.83 1453.56
tai100a 2178.86 2214.61 2375.92 2428.38 2232.71 2295.61 2208.85 2310.37
tai100b 2140.57 2218.58 2283.97 2347.90 2147.70 2215.93 2219.28 2330.52
tai100c 1490.4 1550.63 1562.30 1655.91 1541.28 1622.66 1515.10 1604.18
tai100d 1838.75 1928.69 2008.13 2060.72 1834.60 1912.43 1881.91 2026.76
tai150a 3273.24 3389.97 3644.78 3840.18 3328.85 3501.83 3488.02 3598.69
tai150b 2861.91 2956.84 3166.88 3327.47 2933.40 3115.39 3109.23 3215.32
tai150c 2512.01 2671.35 2811.48 3016.14 2612.68 2743.55 2666.28 2913.67
tai150d 2861.46 2989.24 3058.87 3203.75 2950.61 3045.16 2950.83 3111.43
Total 48104.13 50349.66 50876.23 53794.02 49202.73 51089.37 49987.8 52725.85

and Tabu Search (TS2−Opt), both proposed in [11]. Table 2 gives the obtained
results of the algorithms and they are compared. The best and the average dis-
tances of the different algorithms are reported. Bolded entries indicate where
the best solutions were obtained. We can see that the hybrid MAPSO is able
to provide the higher quality solutions. MAPSO2−Opt outperforms the rest and
gives 15 new (unseen) best results for the VRPDR instances. It provides also
the shortest average traveled distance over the 21 instances. For the average
performance metric, our algorithm outperforms the other metaheuristics on 16
instances, while GA2−Opt has the best value for 5 instances. None of the other
algorithms has obtained a best value for this metric.

The improvement provided by our algorithm on average ranges between 3.51%
and 9.75% compared to the tested metaheuristics. MAPSO2−Opt is similar to the
other metaheuristics in 6 instances. The average of the relative error for the best
results is 1.56%.

MAPSO for the Dynamic Vehicle Routing Problem 237

5.2 Performance Assessment

In order to be able to compare our results accurately, we have also performed
statistical analysis for a pairwise comparison of methods. For each comparison,
the Wilcoxon signed rank test [9] shows that the differences among medians
were statistically significant between MAPSO2−Opt and the other algorithms
(p-value < 0.05) at the 95% confidence level. In consequence, our algorithm per-
forms better than all the other metaheuristics.

6 Conclusion and Future Work

We have presented a Multi-Adaptive Particle Swarm Optimization (MAPSO)
approach for solving the Vehicle Routing Problem with Dynamic Requests (VR-
PDR). This approach has been tested on several instances of DVRP benchmarks.
The experimental results show that MAPSO is able to find high quality solu-
tions compared to other metaheuristics, and introduces new best solutions. The
obtained results demonstrate the efficiency of our metaheuristic to solve this
problem. For future work, we want to measure the adaptation process of our
approach by using different features as accuracy of the obtained solutions and
stability of the search process in a dynamic environment.

Acknowledgements. Authors acknowledge funds from the Associated Teams
Program of the French National Institute for Research in Computer Science and
Control (INRIA)(http://www.inria.fr).

References

1. Ai, T.J., Kachitvichyanukul, V.: A particle swarm optimization for the vehicle
routing problem with simultaneous pickup and delivery. Comput. Oper. Res. 36(5),
1693–1702 (2009)

2. Alba, E.: Parallel metaheuristics: a New Class of Algorithms. Wiley Interscience,
Hoboken (2005)

3. Bent, R., Van Hentenryck, P.: Online Stochastic and Robust Optimization. In:
Maher, M.J. (ed.) ASIAN 2004. LNCS, vol. 3321, p. 286. Springer, Heidelberg
(2004)

4. Blackwell, T., Branke, J.: Multi-swarm Optimization in Dynamic Environments. In:
Raidl, G.R., Cagnoni, S., Branke, J., Corne, D.W., Drechsler, R., Jin, Y., Johnson,
C.G., Machado, P., Marchiori, E., Rothlauf, F., Smith, G.D., Squillero, G. (eds.)
EvoWorkshops 2004. LNCS, vol. 3005, pp. 489–500. Springer, Heidelberg (2004)

5. Blackwell, T., Branke, J.: Multiswarms, exclusion, and anti-convergence in dy-
namic environments. IEEE transactions on evolutionary computation 10(4), 459–
472 (2006)

6. Blackwell, T.: Particle swarm optimization in dynamic environments. In: Evo-
lutionary Computation in Dynamic and Uncertain Environments, pp. 29–49.
Springer, Berlin (2007)

7. Branke, J.: Memory enhanced evolutionary algorithms for changing optimization
problems. In: Proceedings of the IEEE Congress on Evolutionary Computation,
vol. 3, pp. 1875–1882. IEEE Press, Washington (1999)

http://www.inria.fr

238 M.R. Khouadjia et al.

8. Branke, J.: Evolutionary Optimization in Dynamic Environments. Kluwer Aca-
demic Publishers, Norwell (2001)

9. Conover, W.: Practical nonparametric statistics. Wiley, New York (1999)
10. Dantzig, G., Ramser, J.: The truck dispatching problem. Operations Research,

Management Sciences 6(1), 80–91 (1959)
11. Hanshar, F., Ombuki-Berman, B.: Dynamic vehicle routing using genetic algo-

rithms. Applied Intelligence 27, 89–99 (2007)
12. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of IEEE

international conference on neural networks, vol. 4, pp. 1942–1948. IEEE Service
Center, Piscataway (1995)

13. Kilby, P., Prosser, P., Shaw, P.: Dynamic VRPs: A study of scenarios. In: APES-
06-1998, University of Strathclyde, U.K (1998)

14. Li, X., Branke, J., Blackwell, T.: Particle swarm with speciation and adaptation in a
dynamic environment. In: GECCO 2006: Proceedings of the 8th annual conference
on Genetic and Evolutionary Computation, pp. 51–58. ACM, New York (2006)

15. Lin, S.: Computer solutions of the traveling salesman problem. Bell System Com-
puter Journal 44, 2245–2269 (1965)

16. Montemanni, R., Gambardella, L., Rizzoli, A., Donati, A.: A new algorithm for a
dynamic vehicle routing problem based on ant colony system. Journal of Combi-
natorial Optimization 10, 327–343 (2005)

17. Oppacher, F., Wineberg, M.: The shifting balance genetic algorithm: Improving the
GA in a dynamic environment. In: Proceedings of the Genetic and Evolutionary
Computation Conference, vol. 1, pp. 504–510 (1999)

18. Parrott, D., Li, X.: A particle swarm model for tracking multiple peaks in a dy-
namic environment using speciation. In: Congress on Evolutionary Computation
(CEC 2004), vol. 1 (2004)

19. Psaraftis, H.: Dynamic vehicle routing: status and prospects. Annals of Opertations
Reasearch 61, 143–164 (1995)

20. Rego, C.: Node-ejection chains for the vehicle routing problem: Sequential and
parallel algorithms. Parallel Computing 27(3), 201–222 (2001)

21. Talbi, E.: Metaheuristics: from design to implementation. Wiley, Chichester (2009)
22. Ursem, R.: Multinational GAs: Multimodal optimization techniques in dynamic

environments. In: Proceedings of the Genetic and Evolutionary Computation Con-
ference, pp. 19–26. Morgan Kaufmann, San Francisco (2000)

23. Yang, S.: Explicit memory schemes for evolutionary algorithms in dynamic environ-
ments. In: Evolutionary Computation in Dynamic and Uncertain Environments,
pp. 3–28. Springer, Berlin (2007)

Off-line vs. On-line Tuning: A Study on
MAX–MIN Ant System for the TSP

Paola Pellegrini1, Thomas Stützle2, and Mauro Birattari2

1 Dipartimento di Matematica Applicata
Università Ca’ Foscari Venezia, Venezia, Italia

paolap@pellegrini.it
2 IRIDIA, CoDE, Université Libre de Bruxelles, Brussels, Belgium

{stuetzle,mbiro}@ulb.ac.be

Abstract. Stochastic local search algorithms require finding an appro-
priate setting of their parameters in order to reach high performance.
The parameter tuning approaches that have been proposed in the litera-
ture for this task can be classified into two families: on-line and off-line
tuning. In this paper, we compare the results we achieved with these
two approaches. In particular, we report the results of an experimental
study based on a prominent ant colony optimization algorithm, MAX–
MIN Ant System, for the traveling salesman problem. We observe the
performance of on-line parameter tuning for different parameter adapta-
tion schemes and for different numbers of parameters to be tuned. Our
results indicate that, under the experimental conditions chosen here, off-
line tuned parameter settings are preferable.

1 Introduction

The performance of stochastic local search (SLS) algorithms [15], depends on the
appropriate setting of numerical and categorical parameters [7]. Methods that
find good parameter settings in an automatic way have recently received strong
attention by the research community [4,9,7,10,16,19]. A main contribution of
those methods is to alleviate algorithm designers from the tedious and error-
prone task of hands-on parameter adaptation.

The available approaches for automated parameter tuning can be classified
into either off-line or on-line approaches. Off-line approaches exploit the knowl-
edge gained in an a priori tuning phase, where parameter values are optimized
based on a training set of instances. The algorithm is then deployed in a produc-
tion phase with the selected parameter setting. Off-line approaches are typically
black-box and they do not require any modification of the algorithm at hand.
Examples of off-line approaches are F-Race [9], Iterated F-Race [3], CALIBRA
[1] and ParamILS [16]. The main cost of off-line tuning is due to the use of
resources in the a priori experimental phase.

This cost is avoided in on-line tuning approaches, which adapt the parameter
values while solving an instance. An advantage of on-line tuning approaches is

M. Dorigo et al. (Eds.): ANTS 2010, LNCS 6234, pp. 239–250, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

240 P. Pellegrini, T. Stützle, and M. Birattari

that they may adjust the parameter values to the characteristics of the particu-
lar instance that is being tackled. Hence, intuitively, on-line tuning approaches
should benefit relative to off-line tuning when the instance class being tackled
is more heterogeneous. In order to adjust the value of the parameters, on-line
approaches often use either some search-based mechanism or a mechanism that
is based on feedback from the search process. A particularly successful class
of on-line algorithms are reactive search approaches as exemplified by reactive
tabu search [4]. These approaches typically adapt very few key parameters of
an algorithm and require substantial insight into algorithm behavior for their
development. On-line parameter adaptation has also received a strong interest
in the evolutionary computation community [19], where often general-purpose
parameter adaptation schemes are studied.

In this paper, we compare the performance of off-line and on-line parameter
tuning schemes on an ant colony optimization (ACO) algorithm. In particular,
we study the application of MAX–MIN Ant System (MMAS) [24] to the trav-
eling salesman problem (TSP). Our experimental setup is based on the initial
conjectures that (i) for homogeneous instance sets off-line tuning should result
in excellent performance; (ii) the higher is the number of parameters adapted
the worse should get the performance of on-line tuned algorithms; and (iii) for
heterogeneous instance sets on-line tuning should have an advantage over off-line.

As an off-line tuning method we use F-Race [5] on the set of candidate con-
figurations we considered. The on-line tuning approaches are given the same set
of candidate configurations and we test 5 on-line approaches. Each of the on-line
approaches is tested for various numbers of parameters that are to be adapted
online. Our results indicate that, in the setting considered, even if we knew a
priori for all the possible subsets of parameters of equal cardinality the subset
that results in the best performance, off-line tuning would remain the method
of choice. In particular, in our example we can show that, when using off-line
tuned parameters as initial values in on-line tuning, the performance of the latter
worsens as the number of parameters to be adjusted increases.

2 MAX–MIN Ant System

MMAS [24] is one of the most prominent ACO algorithms. It extends ant sys-
tem [12] by a more aggressive pheromone update, the usage of upper and lower
bounds on the range of possible pheromone trails, and few other details. For
the experiments, we use the MMAS implementation provided by the ACOTSP
software [23]. In the experiments, we use as a local search the 2-opt algorithm.
We refer the reader to the ACOTSP code and the original paper [24] for any
detail on the characteristics of the algorithm. We shortly describe here the six
parameters that we consider for tuning. The parameters include α and β, which
weight the influence of the pheromone trail strength and the heuristic informa-
tion, respectively, on the probability of choosing a specific edge in the solution
construction; m, the number of ants in the colony; and ρ, which represents the
pheromone evaporation rate. Here, ants use the pseudo-random proportional

Off-line vs. On-line Tuning: A Study on MMAS for the TSP 241

action-choice rule of Ant Colony System [11], where with a probability q0 an ant
chooses deterministically, when being at a city i, the next city j as the one for
which the product τα

ij · ηβ
ij is maximal, where τij and ηij are the pheromone trail

strength and the heuristic information, respectively. With a probability 1 − q0
the next city is chosen probabilistically as usual in MMAS. A further parameter
n indicates how many cities are considered as candidates for the next city.

3 Approaches for Off-line and On-line Tuning

For observing the impact of different tuning procedures on the performance of
the algorithm, we consider one off-line and five on-line approaches.

For off-line tuning we apply F-Race [7,9]. F-Race takes as input a set of
algorithm configurations and a sequence of instances. During the execution of
F-Race, at each step, all configurations are run on one additional instance. After
each step, configurations are discarded as they appear to be suboptimal on the
basis of the available information. Thanks to this progressive elimination, F-Race
uses all the available resources for focusing on the most promising configurations.
For more details on F-Race we refer to [7].

The first on-line approaches tested follow the self-adaptive approach [13], that
is, the determination of the parameter values is integrated into the algorithm’s
search process. This is done by associating pheromone trails to each possible
value of a parameter and by using the ants’ construction mechanism to choose
which parameter value to adopt. After the solution construction, the pheromone
update rule is applied to the trail associated to both parameter values and solu-
tion components. Various authors have proposed variants of such a self-adaptive
approach [20,22,14,18]. The existing approaches differ mainly in two aspects: pa-
rameters can be associated either to each single ant or to the colony as a whole;
and, parameters can be considered either independent from one another or as
interdependent. In our study, parameters are treated as interdependent.

Typically, the self-adaptive approaches manage parameters at the ant-level,
i.e., each ant selects its own parameter setting [20,22,14]. However, if each ant
uses a different parameter setting, the speed-up techniques used in the ACOTSP
code (essentially pre-computations of values required in the solution construc-
tion) cannot be used, leading to high computation time. Therefore we consider
also the case in which parameters are managed at the colony-level, i.e., one pa-
rameter setting is fixed for all ants at the beginning of each iteration [18]. In
this framework, we analyze three variants of the adaptive algorithm, that differ
for the parameter values on which pheromone is deposited after the colony has
completed its activity. In all cases, pheromone is deposited on the edges con-
necting the parameter values used in one specific iteration. In the first case, the
parameter settings that receive reinforcement are either the ones of the current
iteration or those used for generating the best-so-far solution. In the second case,
the parameter settings reinforced are the ones for which the best solution was
generated across all previous 25 iterations. In the third case, the parameter set-
tings reinforced are the ones for which the best average solution cost was found

242 P. Pellegrini, T. Stützle, and M. Birattari

across all previous 25 iterations. When the adaptation is made at the colony-
level, all six parameters described in Section 2 can be adapted (q0, β, ρ,m, α, n).
When it is done at the ant-level, the on-line tuning can be applied only to the
parameters involved in the solution construction (q0, β, α, n).

The second on-line tuning mechanism we examine uses a search-based proce-
dure for selecting the best values of parameters in the run of the algorithm [2].
The ant colony is split in groups of equal size; a parameter setting in the neigh-
borhood of the incumbent one is assigned to each of them. The neighborhood
of the current configuration is defined by all possible combinations that are ob-
tained by increasing or decreasing the value of one parameter and keeping fixed
all others. The configuration that corresponds to the best solution generated is
used as the center of the neighborhood for the next iteration. Being parameters
associated to groups of ants, the speed-up procedures used in the ACOTSP code
cannot be fully exploited. With this mechanism, the four parameters involved in
solution construction are adapted, that is, α, β, n, q0.

All the five on-line tuning procedures have been implemented for the exper-
imental analysis. For the sake of brevity we consider in the following only one
of the self-adaptive approaches, the one that gives the best results. The whole
analysis is available in [21].

4 Experimental Setup

We present an experimental analysis aiming at comparing the performance of
off-line and on-line tuning under different experimental conditions. We consider
four versions of MMAS for the TSP, depending on the tuning procedure used:

– literature (L): parameter values are set as suggested in the literature [12].
These settings are highlighted in Table 1. This set of experiments is run as
a baseline comparison;

– off-line (OFF): F-Race determines the values of the six parameters, which
are then maintained fixed throughout all runs;

– self-adaptive on-line (SA): the self-adaptive mechanism at colony-level is
used, starting from the parameter setting suggested in the literature [12];

– off-line + self-adaptive on-line (OFF+SA): the self-adaptive mechanism at
colony-level is used, starting from the parameter setting returned by F-Race.

The same analysis has been done with the other adaptation schemes.
When an on-line approach is used, we solve each instance adapting alterna-

tively one, two, ... , six parameters. In this way, we study how results change
if the number of parameters adapted increases. Moreover, for each number of
parameters adapted, we register the performance of the algorithm for all the
possible combinations of parameters. In the rest of the paper, the name of all
versions that include on-line tuning are followed by a number between parenthe-
sis indicating how many parameters are adapted. The adaptation schemes are
added on top of the ACOTSP software [23].

Off-line vs. On-line Tuning: A Study on MMAS for the TSP 243

Table 1. Values that can be chosen for each parameter. The values reported in bold
type are the ones suggested in the literature [12]. They are the values used in L setting.

parameter values parameter values
α 0.5, 1, 1.5, 2, 3 β 1, 2, 3, 5, 10
ρ 0.1, 0.2, 0.3, 0.5, 0.7 6 q0 0.0, 0.25, 0.5, 0.75, 0.9
m 5, 10, 25, 50, 100 n 10, 20, 40, 60, 80

Table 2. Sets of instances considered. U(a, b) indicates that for each instance of a set a
number was randomly drawn between a and b. F-Race selection indicates the parameter
settings selected by F-Race for a computation time limit of 10 CPU seconds.

set number of nodes spatial distribution F-Race selection
α β ρ q0 m n

1 2000 uniform 1 5 0.75 0.5 25 20
2 2000 clustered 2 1 0.25 0.75 25 40
3 2000 uniform and clustered 1 1 0.25 0.9 25 20
4 U(1000, 2000) uniform 1 5 0.75 0.25 50 20
5 U(1000, 2000) clustered 2 2 0.25 0.75 50 40
6 U(1000, 2000) uniform and clustered 1 1 0.25 0.9 50 20

For a fair comparison between off-line and on-line tuning, the same set of
parameter values are available to the two approaches, that is, at each step the
approaches can choose among a common set of parameter values. The possible
values (used in this order in the self-adaptation scheme) are shown in Table 1.

We consider six sets of instances, all generated using portgen, the instance
generator adopted in the 8th DIMACS Challenge on the TSP [17]. They differ
in the number of cities included and in their spatial distribution, for details we
refer to Table 2, where also the parameter values chosen by F-Race are indicated.
We created these sets for having various levels of heterogeneity. The instance sets
range from homogeneous sets where all instances are of a same size and a same
spatial distribution of the nodes (either uniformly at random or clustered) to
increasingly heterogeneous ones where the instances differ either in their size or
also in the spatial distribution of the nodes; the most heterogeneous set is set 6.

For each set of instances, a separate run of F-Race is performed using 1000
training instances. The instances used for the tuning and the experimental phase
are randomly selected, and the two sets are disjoint. All combinations of the
values reported in Table 1 are considered as candidate settings. Hence, a total
of 15,625 configurations is tested, on a maximum total number of runs equal
to 156,250. The computation time available for each run is equal to the one
considered in the experiments.

We executed experiments with two different termination criteria, 10 and 60
CPU seconds as measured on Xeon E5410 quad core 2.33GHz processors with
2x6 MB L2-Cache and 8 GB RAM, running under the Linux Rocks Cluster
Distribution. The code is compiled with gcc, version 3.4. In 10 CPU seconds. In
this environment, the ACOTSP code generates about 2 500-3 000 solutions for
instances of set 1. The results presented in Section 5 depict the percentage error
with respect to the optimal solution for 44 new test instances of each set. We
performed one run on each instance for each parameter configuration [6,8].

244 P. Pellegrini, T. Stützle, and M. Birattari

0 2 4 6 8 10

L

OFF

SA(1)

SA(2)

SA(3)

SA(4)

SA(5)

SA(6)

OFF+SA(1)

OFF+SA(2)

OFF+SA(3)

OFF+SA(4)

OFF+SA(5)

OFF+SA(6)

(a) Set 1

0 2 4 6 8 10

L

OFF

SA(1)

SA(2)

SA(3)

SA(4)

SA(5)

SA(6)

OFF+SA(1)

OFF+SA(2)

OFF+SA(3)

OFF+SA(4)

OFF+SA(5)

OFF+SA(6)

(b) Set 3

0 2 4 6 8 10

L

OFF

SA(1)

SA(2)

SA(3)

SA(4)

SA(5)

SA(6)

OFF+SA(1)

OFF+SA(2)

OFF+SA(3)

OFF+SA(4)

OFF+SA(5)

OFF+SA(6)

(c) Set 6

Fig. 1. Results simulating no a priori knowledge on parameter importance
for on-line tuning. Runs of 10 seconds. The horizontal axis represents the percentage
error. The different versions tested are listed on the vertical one.

We analyzed the performance of each on-line version also considering as stop-
ping criterion the construction of as many solutions as the off-line version. The
results achieved are not qualitatively different from the ones obtained consid-
ering time as stopping criterion. In the following we show that on-line tuning
is not convenient in the setting considered. This result is not due to the time
overhead implied by adaptation, but due to the nature of the adaptation itself.

5 Experimental Results

The results for all sets of instances described in Section 4 and all the adaptation
schemes described in Section 3 are reported in [21]. Due to the limited space
available, we focus here on the results of the self-adaptation mechanism at colony-
level for sets 1, 3, and 6: 2000 uniformly distributed nodes, 2000 nodes either
clustered or uniformly distributed, and a random number of nodes between 1000
and 2000 either clustered or uniformly distributed. The on-line tuning approach
shown here achieves the best results: the qualitative conclusions that can be
drawn are very similar for all the adaptation schemes. We compare the two
tuning approaches simulating different levels of knowledge on which are the
most relevant parameters to be tuned on-line.

Experiment 1: no a priori knowledge on parameter importance for
on-line tuning. If no a priori knowledge on parameter importance for on-line
tuning is available, we use the average computed across all possible combina-
tions for each number of parameters tuned as an indication of the expected
performance level. These aggregate results are presented in Figure 1, where the
boxplots summarize the average results in terms of percentage error.

The performance of OFF is the best for all sets of instances considered. The
difference with respect to the literature version and to all self-adaptive on-line

Off-line vs. On-line Tuning: A Study on MMAS for the TSP 245

ones is always statistically significant at the 95% confidence level, according to
the Wilcoxon rank-sum test. The only exception is represented by OFF+SA(1)
on set 2. Interestingly, the literature version (L) appears to be the worst for
all sets. The reason is probably that the default literature settings have been
developed for situations where the computation time available is rather large;
this conjecture is confirmed in Experiment 4 on long run times.

Depending on whether L or OFF settings are used as initial parameter values,
different behavior of the on-line parameter adaptation schemes can be observed.
In the first case (results labeled SA in the plots), the on-line parameter adap-
tation schemes help to improve the reached solutions quality, the best being to
adapt three or four parameters. Clearly, on-line tuning has some potential to im-
prove upon fixed initial parameter values if these are not chosen appropriately.
The result is very different in the second case, when starting from OFF param-
eter settings (results labeled OFF+SA in the plots). In this case, on-line tuning
clearly worsens the final solution quality in a quite regular fashion. Interestingly,
the more parameters are adapted, the worse is the final average solution quality
reached. Remarkably, this conclusion remains the same for different levels of the
heterogeneity of the instance sets.

Experiment 2: perfect a posteriori knowledge on parameter impor-
tance for on-line tuning. Here we simulate the case in which the algorithm
designer knows exactly which are the most important parameters to be tuned.
This is done by considering the a posteriori best configuration for each cardinal-
ity of the subsets of parameters to be tuned. In other words, for each possible
subset of one, two, ... , six parameters that are adapted on-line, we select the
subset that results in the lowest average cost. Such a choice introduces a bias
in favor of the on-line tuned versions, but, as shown below, the off-line version
remains preferable. Hence, this does not invalidate the main conclusions of the
analysis. The results of this best-case analysis are reported in Figure 2.

Interestingly, the off-line tuned version performs significantly better than most
of the other versions but OFF+SA(2) for set 2. Hence, even for the most het-
erogeneous class of instances, set 6, OFF is performing better than the on-line
tuned version. L is always significantly worse than all the other versions.

The quality of the final results, as a function of the number of parameters
adapted, follows the same trend observed in Figure 1. It also confirms that a
good starting point for the on-line tuning, as given by OFF, is preferable over a
poor performing starting point, as given by L in this case.

Experiment 3: realistic a priori knowledge on parameter importance
for on-line tuning. For understanding to which extent the best a posteriori
configurations are those that one would actually test if she wished to adapt a
given number of parameters, we asked six researchers and practitioners in the
field of ACO to indicate their potential selection of the subset of parameters to
be tuned on-line. The aggregated results are reported in Figure 3. We represent
the average percentage error over the combinations of parameters suggested.

Obviously, OFF is the best performing version, given that it was already the
best in the previous two experiments. For what SA is concerned, the results are

246 P. Pellegrini, T. Stützle, and M. Birattari

0 2 4 6 8 10

L

OFF

SA(1)

SA(2)

SA(3)

SA(4)

SA(5)

SA(6)

OFF+SA(1)

OFF+SA(2)

OFF+SA(3)

OFF+SA(4)

OFF+SA(5)

OFF+SA(6)

(a) Set 1

0 2 4 6 8 10

L

OFF

SA(1)

SA(2)

SA(3)

SA(4)

SA(5)

SA(6)

OFF+SA(1)

OFF+SA(2)

OFF+SA(3)

OFF+SA(4)

OFF+SA(5)

OFF+SA(6)

(b) Set 3

0 2 4 6 8 10

L

OFF

SA(1)

SA(2)

SA(3)

SA(4)

SA(5)

SA(6)

OFF+SA(1)

OFF+SA(2)

OFF+SA(3)

OFF+SA(4)

OFF+SA(5)

OFF+SA(6)

(c) Set 6

Fig. 2. Results simulating perfect a posteriori knowledge on parameter im-
portance for on-line tuning. Runs of 10 seconds. The horizontal axis represents the
percentage error. The different versions tested are listed on the vertical one.

close to the ones observed when considering the average over all combinations.
In particular, the variance of the distribution of the percentage error is quite low,
and the quality of the solution is comparable to the one achieved by the literature
version. When we consider OFF+SA, the results of the survey lead to solutions
that are in between the average and the a posteriori best configuration. Let us
remark that the difference between these two representations of the results is in
this case quite moderate. Thus, if a well performing initial parameter setting is
used, the intuition on the set of parameters that is convenient to be adapted can
be expected to lead close to the best possible results.

Experiment 4: long runs. In this experiment, we examine the impact of the
termination condition on the results. In particular, we executed the same set of
experiments on the instances of set 1 for a maximum CPU time of 60 seconds
(instead of the previously used 10 seconds). The rationale of these experiments is
to give the on-line tuning mechanism a longer time to adjust parameters. Figure
4 reports the results achieved using the three cases of no a priori information,
perfect a posteriori information, and realistic a priori information, which have
been examined in the previous three experiments.

The conclusions that can be drawn are very much in line with those for the
shorter computational time: Off-line tuning allows MMAS to achieve the best
performance with respect to all the other versions. The differences are statisti-
cally significant (checked using the Wilcoxon rank-sum test). A major improve-
ment is experienced by the literature version: as we expected, longer runs allow
the parameter setting suggested in [12] to achieve good results.

The relative performance of the on-line tuned versions with respect to OFF
and L slightly improves. When considering the effect of on-line tuning averaged
across all subsets of parameters that are adapted, the effect of different cardi-
nalities of these subsets reflects quite closely the above observations: we cannot

Off-line vs. On-line Tuning: A Study on MMAS for the TSP 247

0 2 4 6 8 10

L

OFF

SA(1)

SA(2)

SA(3)

SA(4)

SA(5)

SA(6)

OFF+SA(1)

OFF+SA(2)

OFF+SA(3)

OFF+SA(4)

OFF+SA(5)

OFF+SA(6)

(a) Set 1

0 2 4 6 8 10

L

OFF

SA(1)

SA(2)

SA(3)

SA(4)

SA(5)

SA(6)

OFF+SA(1)

OFF+SA(2)

OFF+SA(3)

OFF+SA(4)

OFF+SA(5)

OFF+SA(6)

(b) Set 3

0 2 4 6 8 10

L

OFF

SA(1)

SA(2)

SA(3)

SA(4)

SA(5)

SA(6)

OFF+SA(1)

OFF+SA(2)

OFF+SA(3)

OFF+SA(4)

OFF+SA(5)

OFF+SA(6)

(c) Set 6

Fig. 3. Results simulating realistic a priori knowledge on parameter impor-
tance for on-line tuning. Runs of 10 seconds. The horizontal axis represents the
percentage error. The different versions tested are listed on the vertical one.

0 2 4 6 8 10

L

OFF

SA(1)

SA(2)

SA(3)

SA(4)

SA(5)

SA(6)

OFF+SA(1)

OFF+SA(2)

OFF+SA(3)

OFF+SA(4)

OFF+SA(5)

OFF+SA(6)

(a) no a priori knowl-
edge

0 2 4 6 8 10

L

OFF

SA(1)

SA(2)

SA(3)

SA(4)

SA(5)

SA(6)

OFF+SA(1)

OFF+SA(2)

OFF+SA(3)

OFF+SA(4)

OFF+SA(5)

OFF+SA(6)

(b) perfect a posteriori
knowledge

0 2 4 6 8 10

L

OFF

SA(1)

SA(2)

SA(3)

SA(4)

SA(5)

SA(6)

OFF+SA(1)

OFF+SA(2)

OFF+SA(3)

OFF+SA(4)

OFF+SA(5)

OFF+SA(6)

(c) realistic a priori
knowledge

Fig. 4. Results in long runs. Runs of 60 seconds. Instances of set 1. The horizontal
axis represents the percentage error. The different versions tested are listed on the
vertical one.

identify a clear trend for SA, while for OFF+SA we note that the results get
worse as the number of parameters that are adapted on-line increases. If we sup-
pose perfect a posteriori information, the behavior of SA and OFF+SA is much
improved (Figure 4(b)). The results are always significantly worse than OFF,
while in some cases they become comparable to L: we have not observed any
statistically significant difference between L and SA(1), SA(4) and OFF+SA(4);
the difference is significant in favor L in all other cases.

Observing the results of the survey, representing realistic a priori knowledge,
(Figure 4(c)), we can notice that the performance of the selected configurations

248 P. Pellegrini, T. Stützle, and M. Birattari

in some cases are even worse than the overall average (Figure 4(a)). This hap-
pens for SA(2), SA(3), SA(4), OFF+SA(4), and OFF+SA(5). This observation
strengthens the claim that tuning on-line just one or two parameters, instead
of a large number, is the most convenient choice: Not only we can expect the
approach to achieve quite good results (in some cases not worse than off-line
tuning), but also we can assume that our intuition allows us to choose the pa-
rameters to adapt so that the potential of the tuning is actually exploited.

Summary of results. From the results just described we can conclude that:

– off-line tuning performs better than on-line tuning under all the experimental
conditions tested;

– it is preferable to apply on-line tuning to few parameters than to many;
– if the initial parameter setting is a well-behaving configuration, our intuition

on the most important parameters to adapt allows to exploit the on-line
tuning more efficiently than if the setting suggested in the literature is used
as starting configuration.

The heterogeneity of the class of TSP instances tackled does not appear to have
a strong impact on the relative performance of the different versions.

6 Conclusions

In this paper we have compared the results achieved by MAX–MIN Ant System
when its parameters are tuned off-line and when they are tuned on-line.

We have proposed an experimental analysis based on one off-line tuning and
five on-line tuning procedures. We have considered MAX–MIN Ant System for
the TSP, and we have solved instances of six sets, differing in the heterogeneity of
the instances included. Within this setting we have tested three main conjectures
on the quality of the results achievable by tuning parameters off-line vs. on-line:
two of them have been confirmed by the experimental evidence, while one has
actually been contradicted. In particular, (i) as expected, for homogeneous in-
stance sets off-line tuning has resulted in excellent performance; (ii) as expected,
the higher the number of parameters adapted the worse the performance of on-
line tuned algorithms; and (iii) contrarily to what expected, for heterogeneous
instance sets on-line tuning has not had an advantage over off-line: also on these
instances off-line tuning has resulted in excellent performance. In this paper we
have reported the results achieved by the best one, while the complete analysis
is shown in [21]. The conclusions that can be drawn are equivalent regardless
the specific approach considered.

These conclusions need to be tested on other combinatorial optimization prob-
lems. The merits of on-line tuning, for example, may emerge if the instances to
be tackled are extremely different from each other, as it is the case for some
scheduling problems. Further research will be performed in this direction.

In the cases in which on-line tuning may be advantageous, the results reported
suggest that the implementation of a hybrid between the off-line and on-line

Off-line vs. On-line Tuning: A Study on MMAS for the TSP 249

approach may be very promising: parameters may be first tuned off-line, and
then one or two of them may be adapted while solving each instance. In this
way, high quality solutions may be found. Thanks to a social experiment, we
could observe that researchers’ intuition on the most important parameters to
tune on-line allows to get better results if an optimized parameter setting is used
for starting the adaptation, rather than if the default setting is used.

A further possible direction of future research consists in using an off-line
tuning approach for setting the value of the meta-parameters that drive the
adaptation in on-line tuning. Examples of such meta-parameters are the number
of iterations used in the self-adaptation scheme with multiple-colony comparison,
or the number of neighbor-configurations in the search-based adaptation.

Acknowledgments. This work was supported by the META-X project, an
Action de Recherche Concertée funded by the Scientific Research Directorate
of the French Community of Belgium. Mauro Birattari and Thomas Stützle
acknowledge support from the Belgian F.R.S.-FNRS, of which they are Research
Associates. The authors thank the colleagues that answered the survey described
in the paper.

References

1. Adenso-Dı́az, B., Laguna, M.: Fine-tuning of algorithms using fractional experi-
mental designs and local search. Operations Research 54(1), 99–114 (2006)

2. Anghinolfi, D., Boccalatte, A., Paolucci, M., Vecchiola, C.: Performance evaluation
of an adaptive ant colony optimization applied to single machine scheduling. In: Li,
X., Kirley, M., Zhang, M., Green, D., Ciesielski, V., Abbass, H.A., Michalewicz, Z.,
Hendtlass, T., Deb, K., Tan, K.C., Branke, J., Shi, Y. (eds.) SEAL 2008. LNCS,
vol. 5361, pp. 411–420. Springer, Heidelberg (2008)

3. Balaprakash, P., Birattari, M., Stützle, T.: Improvement strategies for the F-race
algorithm: Sampling design and iterative refinement. In: Bartz-Beielstein, T., et al.
(eds.) HM 2007. LNCS, vol. 4771, pp. 108–122. Springer, Heidelberg (2007)

4. Battiti, R., Brunato, M., Mascia, F.: Reactive Search and Intelligent Optimization.
Operations Research/Computer Science Interfaces, vol. 45. Springer, Berlin (2008)

5. Birattari, M.: Race. R package (2003), http://cran.r-project.org
6. Birattari, M.: On the estimation of the expected performance of a metaheuris-

tic on a class of instances. How many instances, how many runs? Tech. Rep.
TR/IRIDIA/2004-01, IRIDIA, Université Libre de Bruxelles, Brussels, Belgium
(2004)

7. Birattari, M.: Tuning Metaheuristics: A Machine Learning Perspective. Springer,
Berlin (2009)

8. Birattari, M., Dorigo, M.: How to assess and report the performance of a stochastic
algorithm on a benchmark problem: Mean or best result on a number of runs?
Optimization Letters 1(3), 309–311 (2007)

9. Birattari, M., Stützle, T., Paquete, L., Varrentrapp, K.: A racing algorithm for
configuring metaheuristics. In: Langdon, W., et al. (eds.) GECCO 2002, pp. 11–
18. Morgan Kaufmann Publishers, San Francisco (2002)

10. Coy, S., Golden, B., Runger, G., Wasil, E.: Using experimental design to find
effective parameter settings for heuristics. Journal of Heuristics 7(1), 77–97 (2001)

http://cran.r-project.org

250 P. Pellegrini, T. Stützle, and M. Birattari

11. Dorigo, M., Gambardella, L.M.: Ant Colony System: A cooperative learning ap-
proach to the traveling salesman problem. IEEE Transactions on Evolutionary
Computation 1(1), 53–66 (1997)

12. Dorigo, M., Stützle, T.: Ant Colony Optimization. MIT Press, Cambridge (2004)
13. Eiben, A.E., Michalewicz, Z., Schoenauer, M., Smith, J.E.: Parameter control in

evolutionary algorithms. In: [19], pp. 19–46
14. Förster, M., Bickel, B., Hardung, B., Kókai, G.: Self-adaptive ant colony optimi-

sation applied to function allocation in vehicle networks. In: GECCO 2007, pp.
1991–1998. ACM Press, New York (2007)

15. Hoos, H.H., Stützle, T.: Stochastic Local Search—Foundations and Applications.
Morgan Kaufmann Publishers, San Francisco (2005)

16. Hutter, F., Hoos, H.H., Leyton-Brown, K., Stützle, T.: ParamILS: An automatic
algorithm configuration framework. Journal of Artificial Intelligence Research 36,
267–306 (2009)

17. Johnson, D., McGeoch, L., Rego, C., Glover, F.: 8th DIMACS implementation
challenge (2001), http://www.research.att.com/~dsj/chtsp/

18. Khichane, M., Albert, P., Solnon, C.: A reactive framework for ant colony opti-
mization. In: Stützle, T. (ed.) LION 3. LNCS, vol. 5851, pp. 119–133. Springer,
Heidelberg (2009)

19. Lobo, F., Lima, C.F., Michalewicz, Z.: Parameter Setting in Evolutionary Algo-
rithms. Springer, Berlin (2007)

20. Martens, D., Backer, M.D., Haesen, R., Vanthienen, J., Snoeck, M., Baesens, B.:
Classification with ant colony optimization. IEEE Transactions on Evolutionary
Computation 11(5), 651–665 (2007)

21. Pellegrini, P., Stützle, T., Birattari, M.: Companion of off-line and on-line tuning:
a study on MAX–MIN Ant System for TSP (2010) IRIDIA Supplementary page,
http://iridia.ulb.ac.be/supp/IridiaSupp2010-008/

22. Randall, M.: Near Parameter Free Ant Colony Optimisation. In: Dorigo, M., Birat-
tari, M., Blum, C., Gambardella, L.M., Mondada, F., Stützle, T. (eds.) ANTS 2004.
LNCS, vol. 3172, pp. 374–381. Springer, Heidelberg (2004)

23. Stützle, T.: ACOTSP: A software package of various ant colony optimization al-
gorithms applied to the symmetric traveling salesman problem (2002),
http://www.aco-metaheuristic.org/aco-code

24. Stützle, T., Hoos, H.H.: MAX–MIN ant system. Future Generation Computer
Systems 16(8), 889–914 (2000)

http://www.research.att.com/~dsj/chtsp/
http://iridia.ulb.ac.be/supp/IridiaSupp2010-008/
http://www.aco-metaheuristic.org/aco-code

Opinion Dynamics for Decentralized
Decision-Making in a Robot Swarm

Marco A. Montes de Oca, Eliseo Ferrante, Nithin Mathews,
Mauro Birattari, and Marco Dorigo

IRIDIA, CoDE, Université Libre de Bruxelles, Brussels, Belgium
{mmontes,eferrant,nmathews,mbiro,mdorigo}@ulb.ac.be

Abstract. In this paper, we study how an opinion dynamics model can
be the core of a collective decision-making mechanism for swarm robotics.
Our main result is that when opinions represent action choices, the opin-
ion associated with the action that is the fastest to execute spreads in the
population. Moreover, the spread of the best choice happens even when
only a minority is initially advocating for it. The key elements involved
in this process are consensus building and positive feedback. A foraging
task that involves collective transport is used to illustrate the potential
of the proposed approach.

1 Introduction

Large groups of animals can exhibit behavioral patterns that resemble the ones
observed in physical systems that are composed of many simple entities [4,3].
This observation has led to the development of opinion dynamics models, which
are used to study large-scale social, economic, and natural phenomena that in-
volve many interacting agents [3].

In this paper, we study how an opinion dynamics model can be the core of a
collective decision-making mechanism for swarm robotics. The opinion dynamics
model used in our work, originally proposed by Krapivsky and Redner [8], allows
a large population of agents to reach consensus on one of two alternatives. We
are interested in situations where opinions represent actions that take time to
perform. Our goal is to determine if, and under which conditions, the action
selected by the swarm is the one that takes less time on average to perform. Such
outcome would be useful in swarm robotics applications in which the number
of times a particular action is selected is correlated with the amount of work
performed, thus maximizing the productivity of a robot swarm.

In Krapivsky and Redner’s model the majority rule is repeatedly applied on
teams of three agents. With the majority rule, team members adopt the opinion
shared by the majority of the team members. In addition to the majority rule,
we also use the expert rule, through which team members adopt the opinion of
a single agent, called the expert, which is selected according to some problem-
specific criterion. As these rules are at the opposite ends of the spectrum of all
weighted majority rules [1], our study allows us to have an intuition of the results
that would be obtained if a weighted majority rule was used.

M. Dorigo et al. (Eds.): ANTS 2010, LNCS 6234, pp. 251–262, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

252 M.A. Montes de Oca et al.

The main result of our study is that the dynamics of the system makes the
swarm select with high probability the action that is the fastest to execute. When
using the expert rule, the fastest-to-execute action is selected by the swarm even
when only a minority of the robots is initially in favor of it. The potential of the
proposed approach as a decentralized decision-making mechanism for swarms of
robots is illustrated through a foraging task that involves collective transport.
As a result of the application of the proposed approach, the swarm of robots is
able to select the shortest path without requiring the robots to measure path-
travel times or to rely on pheromone-like information. Other applications where
it is desired to select automatically the choice that increases the efficiency of a
system composed of many interacting agents could benefit from the use of the
mechanism presented in this paper.

The rest of the paper is structured as follows. In Section 2, we describe re-
lated work in the area of decentralized decision-making in swarms of robots. In
Section 3, we describe the model and the decision rules used. In Section 4, we
describe the task and the experimental setup used to evaluate the effectiveness
of the proposed approach. Results are presented in Section 5. Conclusions and
future work are given in Section 6.

2 Related Work

Many decentralized decision-making mechanisms have been inspired by the be-
havior of insects. For example, the pheromone-laying and pheromone-following
behavior of some ant species [7] has inspired many works. Most of them have
focused on the simulation of pheromones through the use of chemical sub-
stances [16], by projecting images on the ground [18], by deploying RFID tags [9],
or by using robots as message-relay devices or as beacons so as to form robot
chains [19,14,11,12]. Recently, pheromones have been simulated by signals sent
by robots that belong to a swarm different from the one engaged in the foraging
task [5]. These mechanisms have some important disadvantages. For example,
designing sensors for detecting chemicals reliably is a very difficult task. Using
robots as beacons requires the development of complex controllers to allow an
individual robot to play different roles both within and outside a robot chain.
Using RFID tags requires the modification of the environment prior to the de-
ployment of the swarm, which is impossible in some cases. Projected pheromones
can be impractical because a central computer is needed. In contrast to all these
works, our system does not require the explicit simulation of pheromones.

Other behaviors of insects have also been a source of inspiration. For exam-
ple, trophallaxis, which is the insect-to-insect exchange of food, has been the
inspiration for a distributed mechanism to create a gradient in the environment
to help robots navigate [17]. The aggregation behavior exhibited by cockroaches
has been the source of inspiration for a site-selection mechanism with robots [6].
The best-of-N selection mechanism proposed by Parker and Zhang [13] has been
inspired by the nest-selection mechanism used by some species of ants. To the
best of our knowledge, this last work is the most similar to ours. In both of them,

Opinion Dynamics for Decentralized Decision-Making in a Robot Swarm 253

a collective decision is the result of the competition between alternatives. The
main difference, however, lies in the consensus building mechanism. In Parker
and Zhang’s approach, robots need to know whether there is a sufficient number
of robots in favor of one alternative before committing to it. Robots do that
through a quorum test that depends on a parameter that the designer needs to
set before deployment. This is a critical issue because the first alternative that is
identified as dominant through the quorum test will be the alternative chosen by
the swarm. In our work, the collective decision is the result of self-organization.

Another work related to ours is the one of Wessnitzer and Melhuish [20]. In
their work, robots have to chase and immobilize two “prey.” Robots capture one
prey after the other. To select which prey to immobilize, robots apply the local
majority rule to break the symmetry of the decision problem and to make the
population agree on one choice only. Our work goes a step further by considering
the effects of implicit time costs in the robots’ actions.

3 Opinion Dynamics and Decentralized Decision-Making

In this section, we describe the model and the decision rules used in our study.
We also explain how this model becomes the core of a decentralized decision-
making mechanism when opinions represent actions that take time to perform.

3.1 Opinion Dynamics Model and Decision Rules

We use the opinion dynamics model proposed by Krapivsky and Redner [8].
It operates on a population of N agents, each of which can be in one of two
possible states, called opinions. The system evolves as follows: A team of three
agents is picked at random without replacement from the population. Then, the
individual opinions of the team members are aggregated and transformed into
a team opinion by a decision rule. After this, all team members adjust their
individual opinions to match the resulting team opinion. The team members are
put back in the population and a new team is picked. The process is repeated
until all agents share the same opinion.

We use two decision rules: the majority rule (the one studied in [8]), and the
expert rule. When the majority rule is used, all team members will assume the
opinion that at least two team members share. With the expert rule, agents
will assume the opinion of a single agent, called the expert (See Section 4.2 for
information on the criterion used to choose which agent plays this role). Figure 1
shows an example of the application of the majority and of the expert rules.

3.2 Opinion Dynamics, Actions, and Robots

The opinion dynamics model described above can be used as the basis of a
decentralized decision-making mechanism in a swarm of robots. Three elements
need to be taken into account to do it: (i) opinions need to be interpreted as
actions that robots execute, (ii) actions take time to perform, and (iii) robots can

254 M.A. Montes de Oca et al.

×

(a) Majority rule (b) Expert rule

Fig. 1. Example application of the majority and the expert rules on a team of three
agents with different opinions (represented by different color shades). Figure (a) shows
the outcome of the majority rule: the team adopts the opinion of the majority. Figure
(b) shows the outcome of the expert rule: the team adopts the opinion of the expert
(marked with a × symbol).

operate in parallel. These elements are modeled through a parallel version of the
opinion dynamics model described in Section 3.1. Instead of picking at random
one team of three agents, we pick k teams without replacement. Then, each
team selects an opinion according to a decision rule and its members adopt that
opinion. The actions associated with the adopted opinions are then executed.
The execution time associated with an action is not necessarily the same from
one execution to another due to unexpected events during execution (e.g., an
obstacle may have to be avoided, or a robot skids while trying to move). When
a team finishes executing an action, its members become available again to form
another team. The new team cannot have as members robots that are at that
moment executing an action. The process continues until the swarm reaches
consensus, the time allocated for the task is over, or the demand for the task
ceases to exist. Figure 2 shows an example of the process just described.

4 Evaluation Scenario and Setup

In this section, we describe the task, the simulation environment, and the ex-
perimental setup used to evaluate the effectiveness of the proposed approach.

4.1 The Task

We chose a foraging task that involves collective transport as an example of the
kind of applications the proposed approach could be used for. The environment
consists of a storage room and two resource rooms in which there are objects of
interest. There are two kinds of robots: robots that can manipulate the objects
of interest but that cannot move by themselves, and robots that cannot ma-
nipulate the objects of interest but that can move autonomously and carry the
manipulator robots. The task is to collect as many objects of interest as possible
within some time limit from the two resource rooms, and deposit them in the
storage room. To accomplish the task, the robots that can move autonomously

Opinion Dynamics for Decentralized Decision-Making in a Robot Swarm 255

Fig. 2. Example of the dynamics induced by the majority rule on a population of 8
agents with 2 teams of 3 agents each. The opinion represented in black is associated
with action A, while the opinion represented in light color is associated with action
B. Action A is faster to execute than action B, on average. This system evolves as
follows. First, in point (a), two teams are formed at random and the majority rule is
applied on each one of them. Each team then executes the selected action. In point
(b), a team finishes. In point (c) a new team is formed from the set of free agents
(busy agents are not considered when the selection occurs). The time it takes to form a
team is represented by the distance between points (b) and (c). After the application of
the majority rule in (c), the team performs the agreed action (action A, in this case).
In point (d), the other team finishes and a new team is formed (point (e)). Again,
the majority rule is applied once more to decide which action to perform (action A,
again). The process continues until the population reaches consensus (point (f)). In this
example, the population changes from a heterogeneous opinion state to a homogeneous
one that corresponds to the fastest-to-execute action.

must form small teams to carry the manipulator robots. These teams of robots
go back and forth between the storage and resource rooms. It is in general de-
sirable to go to the closest resource room in order to maximize the number of
collected objects in a given amount of time. The path that leads to the closest
resource room is a priori unknown to the robots. Figure 3(a) shows a picture of
the complete envisioned scenario.

In the complete scenario, the choice that robots face is whether to turn left or
right to go to a resource room. To focus only on the decision-making aspect of

256 M.A. Montes de Oca et al.

(a) Complete scenario (b) Simplified scenario

Fig. 3. Test task. Figure (a) shows a complete view of the scenario. A swarm of robots
must collect as many objects as possible within some time limit from the two resource
rooms. Figure (b) shows a simplified version of the scenario. Robots must choose be-
tween making the left or right tour. The simplified scenario allows us to concentrate
on the decision-making aspect of the task. See text for more information.

the task and not on other technicalities, such as object manipulation, collective
obstacle avoidance, or self-assembly, we use a simplified version of the scenario
described above, which is shown in Figure 3(b). Instead of a storage room there
is an assembly-disassembly area where the mobile robots attach to and detach
from the manipulator robots. Navigation is possible thanks to visual aids similar
to the ones used in [12]. In this simplified scenario, the choice faced by the
robots is simply to either turn left or right. These choices represent the robots’
opinions on which the decision-making mechanism will operate. The execution
of a chosen action starts with the formation of a team of robots, it continues
with the navigation around the big obstacle in the chosen direction, and finishes
once a complete lap is made.

4.2 Setup

All the experiments reported in this paper were performed in simulation. The
simulator that we used [15] was developed for the SWARMANOID project.1

This simulator uses the Open Dynamics Engine library2 to simulate accurately
physical interactions with the environment and between robots. The robot mod-
els are based on the physical and electronic design of the actual SWARMANOID
robots (currently under development). The mobile robot model is based on the
Foot-bot, and the manipulator robot model is based on the Hand-bot [2].

We ran simulations with different swarm sizes (N ∈ {8, 16, 32, 64}), different
initial opinion biases (according to a parameter p ∈ {0.05, 0.1, . . . , 0.95}, which is
the probability of a robot’s initial opinion to advocate for the left path), different

1 http://www.swarmanoid.org/
2 http://www.ode.org/

http://www.swarmanoid.org/
http://www.ode.org/

Opinion Dynamics for Decentralized Decision-Making in a Robot Swarm 257

numbers of teams (k ∈ {2, 4, 8, 16}), and different action-execution time ratios
(r ∈ {1, 2, 4}). The action-execution time ratio is defined as r = lright/lleft,
where lleft, and lright are the length of the left and right paths, respectively. The
reference length, lleft, was adjusted so that no collisions between teams of robots
occurred. This was done by making the length of the left path much greater
than the total length that results from lining up the k teams used in a given
experiment. Teams had 3 robots each. A simulation was run until the swarm
achieved consensus. 100 trials were run for each combination of parameters.

An extra parameter of the system is the criterion used to select the expert
when applying the local expert rule. In our experiments, that criterion is the
absolute number of completed laps (no distinction between paths is made), that
is, the most “experienced” robot is selected as the expert. The study of other
criteria to select the expert is left for future work.

5 Results

We are interested in two aspects of the system: (i) the probability with which the
swarm selects the fastest-to-execute action as a function of the initial opinion
bias, and (ii) the number of team formations needed to reach consensus on one
of the alternative choices as a function of the initial opinion biases and of the
swarm size. For both aspects, we evaluate the effects of different numbers of
teams, k, and of different action-execution time ratios, r.

5.1 Probability of Selecting the Fastest-to-Execute Action

Figure 4 shows the estimated probability of selecting the left path, that is, the
fastest-to-execute action, as a function of the initial opinion bias in a swarm of
N = 64 robots.3 We estimate this probability by dividing the number trials the
system reached consensus on the left path by the total number of trials.

There is a nonlinear relationship between the initial opinion bias and the final
probability with which the swarm chooses an alternative. In all cases, there is
a critical bias pc such that if p < pc the swarm will choose one opinion, and
if p > pc the swarm will choose the other opinion. In the case where r = 1,
that is, when there is no difference between the alternative choices, the critical
initial bias is p = 0.5. When r > 1, pc < 0.5 for both decision rules. With the
majority rule, the higher the action-execution time ratio, the lower the critical
bias. Furthermore, the critical bias decreases as the number of teams active in
the environment increases (the critical bias is lower when k = 16 than when
k = 4). With the expert rule, the critical bias is, in general, lower than with the
majority rule; however, the actual value depends more strongly on the number
of teams than on the action-execution time ratio.

From a practical point of view, a small critical bias is desirable because it
means that the action that is fastest to execute will be selected by the whole
swarm even when only a minority of the agents is initially in favor of it. In this
3 We refer the reader to [10] for the complete set of results.

258 M.A. Montes de Oca et al.

p

P
ro

ba
bi

lit
y

of
 s

el
ec

tin
g

le
ft

pa
th

r = 1
r = 2
r = 4

0.0 0.25 0.5 0.75 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(a) Majority rule: N = 64, k = 4

p

P
ro

ba
bi

lit
y

of
 s

el
ec

tin
g

le
ft

pa
th

r = 1
r = 2
r = 4

0.0 0.25 0.5 0.75 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(b) Expert rule: N = 64, k = 4

p

P
ro

ba
bi

lit
y

of
 s

el
ec

tin
g

le
ft

pa
th

r = 1
r = 2
r = 4

0.0 0.25 0.5 0.75 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(c) Majority rule: N = 64, k = 16

p

P
ro

ba
bi

lit
y

of
 s

el
ec

tin
g

le
ft

pa
th

r = 1
r = 2
r = 4

0.0 0.25 0.5 0.75 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(d) Expert rule: N = 64, k = 16

Fig. 4. Probability of selecting the fastest-to-execute action as a function of the initial
opinion bias in a swarm of 64 robots with 4 and 16 teams. Figures (a) and (c) show the
results obtained with the majority rule. Figures (b) and (d) show the results obtained
with the expert rule. Error bars indicate the confidence interval at a 95% level.

sense, the expert rule is the best suited for this purpose because it can spread
more easily the opinion of the minority. For example, see Figure 4(d), when
r > 1. In this case, the swarm of 64 robots chooses the left path with probability
0.8 when just 13 robots (20% of the swarm) initially choose it.

Small swarms (N < 32 with k < 8) have greater difficulties than large swarms
in detecting differences in the average action-execution times (results shown
in [10]). This may be due to the rapid opinion fluctuations that are amplified
by the system. For instance, in an 8-robot swarm, one robot represents the
12.5% support for one or another opinion. Consensus is reached, but the chosen
alternative is random.

5.2 Number of Team Formations Needed to Reach Consensus

The number of team formations needed to reach consensus (NTFC) depends
on the initial opinion bias (see Figure 5). In all cases, the maximum NTFC is
reached when the initial opinion bias is equal to the critical bias (see Section 5.1).

Opinion Dynamics for Decentralized Decision-Making in a Robot Swarm 259

p

N
um

be
r

of
 te

am
 fo

rm
at

io
ns

r = 1
r = 2
r = 4

0.0 0.25 0.5 0.75 1.0

0
10

0
20

0
30

0
40

0

(a) Majority rule: N = 64, k = 4

p

N
um

be
r

of
 te

am
 fo

rm
at

io
ns

r = 1
r = 2
r = 4

0.0 0.25 0.5 0.75 1.0

0
10

0
20

0
30

0
40

0

(b) Expert rule: N = 64, k = 4

p

N
um

be
r

of
 te

am
 fo

rm
at

io
ns

r = 1
r = 2
r = 4

0.0 0.25 0.5 0.75 1.0

0
10

0
20

0
30

0
40

0

(c) Majority rule: N = 64, k = 16

p

N
um

be
r

of
 te

am
 fo

rm
at

io
ns

r = 1
r = 2
r = 4

0.0 0.25 0.5 0.75 1.0

0
10

0
20

0
30

0
40

0

(d) Expert rule: N = 64, k = 16

Fig. 5. Number of team formations needed to reach consensus as a function of the
initial opinion bias. These results correspond to the case where N = 64. Figures (a)
and (c) show the results obtained with the majority rule. Figures (b) and (d) show the
results obtained with the expert rule. Error bars indicate the confidence interval at a
95% level.

The NTFC using either the majority rule, or the expert rule, depends on the
number of teams that are active in the environment (k) and the action-execution
time ratio (r). With the majority rule, the NTFC increases as k and r increase.
With the expert rule, the NTFC decreases as k and r increase. In conclusion,
with the expert rule the opinion associated with the fastest action is spread
more rapidly than with the majority rule, especially in the presence of large
action-execution time ratios.

In case there is no a priori information about the quality of the alternatives the
robots must choose from, the most reasonable strategy to initialize the system is
to have a balanced initial opinion bias, that is, p = 0.5. Under that circumstance,
one may ask what would be the NTFC as a function of the swarm size. The
answer is shown in Figure 6. Not surprisingly, the NTFC increases with the
swarm size in all cases. With the majority rule, there appears to be no significant
difference in the NTFC if the number of active teams in the environment changes.

260 M.A. Montes de Oca et al.

Swarm size

N
um

be
r

of
 te

am
 fo

rm
at

io
ns

r = 1
r = 2
r = 4

8 16 32 64

0
50

10
0

15
0

20
0

25
0

30
0

35
0

(a) Majority rule: p = 0.5, k = 2

Swarm size

N
um

be
r

of
 te

am
 fo

rm
at

io
ns

r = 1
r = 2
r = 4

8 16 32 64

0
50

10
0

15
0

20
0

25
0

30
0

35
0

(b) Expert rule: p = 0.5, k = 2

Swarm size

N
um

be
r

of
 te

am
 fo

rm
at

io
ns

r = 1
r = 2
r = 4

16 32 64

0
50

10
0

15
0

20
0

25
0

30
0

35
0

(c) Majority rule: p = 0.5, k = 4

Swarm size

N
um

be
r

of
 te

am
 fo

rm
at

io
ns

r = 1
r = 2
r = 4

16 32 64

0
50

10
0

15
0

20
0

25
0

30
0

35
0

(d) Expert rule: p = 0.5, k = 4

Fig. 6. Number of team formations needed to reach consensus as a function of the
swarm size. These results correspond to the case where p = 0.5. Figures (a) and (c)
show the results obtained with the majority rule. Figure (b) and (d) show the results
obtained with the expert rule. Error bars indicate the confidence interval at a 95%
level.

With the expert rule, however, if more teams are deployed and the swarm size
increases, the NTFC decreases.

6 Conclusions and Future Work

We presented a decentralized decision-making mechanism for swarm robotics
systems whose main elements are: (i) a consensus-building mechanism based on
an opinion dynamics model, and (ii) actions that take different average time
to execute. The consensus-building mechanism can be used with any weighted
majority rule. In this paper, we explored the two extremes: the simple majority
rule and the expert rule. We showed how the dynamics of the system allows
the swarm to choose with a high probability the action that is the fastest to
execute. With the expert rule, the fastest-to-execute action is selected by the
whole swarm even when only a minority of the agents is initially in favor of it.

Opinion Dynamics for Decentralized Decision-Making in a Robot Swarm 261

The difference in the execution time of the alternative actions induces a pos-
itive feedback process that is ultimately the responsible for the swarm’s final
choice. This phenomenon has parallels with the decision-making mechanism ex-
ploited by ants [7]. However, in our system agents influence each other by forming
teams instead of doing it via pheromones.

From a practical point of view, forming small teams allows the number of
messages between robots to be kept to a minimum. As a consequence, the system
is able to scale up to many robots (in fact, the more robots, the better the system
performs) without having to deal with interference or bandwidth problems.

Besides porting the system to real robots, future work includes extending the
mechanism to sequential, adaptive and multi-choice decision-making. A first step
in this direction will be to switch to a multidimensional probabilistic represen-
tation of a robot’s opinion.

Acknowledgments. This work was partially supported by the SWARMANOID
project, funded by the Future and Emerging Technologies programme (IST-
FET) of the European Commission, under grant IST-022888, and by the VIR-
TUAL SWARMANOID project funded by the Fund for Scientific Research
F.R.S.-FNRS of Belgium’s French Community. The information provided is the
sole responsibility of the authors and does not reflect the European Commission’s
opinion. The European Commission is not responsible for any use that might be
made of data appearing in this publication. M. Dorigo and M. Birattari acknowl-
edge support from the F.R.S.-FNRS of Belgium’s French Community, of which
they are a research director and a research associate, respectively. We thank A.
Brutschy and C. Pinciroli for their useful advice.

References

1. Berend, D., Chernyavsky, Y.: Ranking of decision rules with random power distri-
bution. Mathematical and Computer Modelling 48(9-10), 1326–1334 (2008)

2. Bonani, M., Magnenat, S., Rétornaz, P., Mondada, F.: The hand-bot, a robot
design for simultaneous climbing and manipulation. In: Xie, M., Xiong, Y., Xiong,
C., Liu, H., Hu, Z. (eds.) ICIRA 2009. LNCS, vol. 5928, pp. 11–22. Springer,
Heidelberg (2009)

3. Castellano, C., Fortunato, S., Loreto, V.: Statistical physics of social dynamics.
Reviews of Modern Physics 81(2), 591–646 (2009)

4. Chakrabarti, B., Chakraborti, A., Chatterjee, A. (eds.): Econophysics and socio-
physics: Trends and perspectives. Wiley-VCH, Wienheim (2006)

5. Ducatelle, F., Di Caro, G., Gambardella, L.M.: Cooperative self-organization in
a heterogeneous swarm robotic system. In: Proceedings of the Genetic and Evo-
lutionary Computation Conference (GECCO 2010), pp. 87–94. ACM Press, New
York (2010)

6. Garnier, S., Gautrais, J., Asadpour, M., Jost, C., Theraulaz, G.: Self-organized
aggregation triggers collective decision making in a group of cockroach-like robots.
Adaptive Behavior 17(2), 109–133 (2009)

7. Goss, S., Aron, S., Deneubourg, J.L., Pasteels, J.M.: Self-organized shortcuts in
the argentine ant. Naturwissenschaften 76(12), 579–581 (1989)

262 M.A. Montes de Oca et al.

8. Krapivsky, P.L., Redner, S.: Dynamics of majority rule in two-state interacting
spin systems. Physical Review Letters 90(23), 238701.1–238701.4 (2003)

9. Mamei, M., Zambonelli, F.: Physical deployment of digital pheromones through
RFID technology. In: Proceedings of the International Joint Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS 2005), pp. 1353–1354. ACM
Press, New York (2005)

10. Montes de Oca, M.A., Ferrante, E., Mathews, N., Birattari, M., Dorigo, M.: Opin-
ion dynamics for decentralized decision-making in a robot swarm: Complete data
(2010), Supplementary information page at
http://iridia.ulb.ac.be/supp/IridiaSupp2010-004/

11. Nouyan, S., Campo, A., Dorigo, M.: Path formation in a robot swarm: Self-
organized strategies to find your way home. Swarm Intelligence 2(1), 1–23 (2008)

12. Nouyan, S., Groß, R., Bonani, M., Mondada, F., Dorigo, M.: Teamwork in self-
organized robot colonies. IEEE Transactions on Evolutionary Computation 13(4),
695–711 (2009)

13. Parker, C.A.C., Zhang, H.: Cooperative decision-making in decentralized multiple-
robot systems: The best-of-N problem. IEEE/ASME Transactions on Mechatron-
ics 14(2), 240–251 (2009)

14. Payton, D., Daily, M., Estowski, R., Howard, M., Lee, C.: Pheromone robotics.
Autonomous Robots 11(3), 319–324 (2001)

15. Pinciroli, C.: Object Retrieval by a Swarm of Ground Based Robots Driven by
Aerial Robots. Mémoire de DEA, Université Libre de Bruxelles, Bruxelles, Belgium
(2007)

16. Russell, R.A.: Ant trails – An example for robots to follow? In: Proceedings of the
IEEE International Conference on Robotics and Automation (ICRA 1999), pp.
2968–2703. IEEE Press, Piscataway (1999)

17. Schmickl, T., Crailsheim, K.: Trophallaxis within a robotic swarm: Bio-inspired
communication among robots in a swarm. Autonomous Robots 17(2), 109–133
(2009)

18. Sugawara, K., Kazama, T., Watanabe, T.: Foraging behavior of interacting robots
with virtual pheromone. In: Proceedings of the IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS 2004), pp. 3074–3079. IEEE Press,
Piscataway (2004)

19. Werger, B., Matarić, M.: Robotic “food” chains: Externalization of state and pro-
gram for minimal-agent foraging. In: Proceedings of the International Conference
on Simulation of Adaptive Behavior: From Animals to Animats (SAB 1996), pp.
625–634. MIT Press, Cambridge (1996)

20. Wessnitzer, J., Melhuish, C.: Collective decision-making and behaviour transi-
tions in distributed ad hoc wireless networks of mobile robots: Target-hunting. In:
Banzhaf, W., Ziegler, J., Christaller, T., Dittrich, P., Kim, J.T. (eds.) ECAL 2003.
LNCS (LNAI), vol. 2801, pp. 893–902. Springer, Heidelberg (2003)

http://iridia.ulb.ac.be/supp/IridiaSupp2010-004/

Positional Communication and Private
Information in Honeybee Foraging Models

Peter Bailis1, Radhika Nagpal2,3, and Justin Werfel3

1 Harvard College,
Harvard University, Cambridge, MA, USA

pbailis@eecs.harvard.edu
2 School of Engineering and Applied Sciences,

Harvard University, Cambridge, MA, USA
rad@eecs.harvard.edu

3 Wyss Institute for Biologically Inspired Engineering,
Harvard University, Boston, MA, USA
justin.werfel@wyss.harvard.edu

Abstract. Honeybees coordinate foraging efforts across vast areas
through a complex system of advertising and recruitment. One mech-
anism for coordination is the waggle dance, a movement pattern which
carries positional information about food sources. However, recent ev-
idence suggests that recruited foragers may not use the dance’s posi-
tional information to the degree that has traditionally been believed. We
model bee colony foraging to investigate the value of sharing food source
position information in different environments. We find that in several
environments, relying solely on private information about previously en-
countered food sources is more efficient than sharing information. Relying
on private information leads to a greater diversity of forage sites and can
decrease over-harvesting of sources. This is beneficial in environments
with small quantities of nectar per flower, but may be detrimental in
nectar-rich environments. Efficiency depends on both the environment
and a balance between exploiting high-quality food sources and oversub-
scribing them.

1 Introduction

Honeybee colonies are well-known for their ability to coordinate foraging over
large areas and efficiently allocate labor among food sources. The predominant
model for honeybee communication dictates that bees use a complex movement
pattern known as the waggle dance to communicate positional information to
unemployed foragers who then proceed to the indicated food source [10], [11].
However, it has recently been suggested that bees may instead rely primarily on
private information and use publicly shared information only as a backup [8].
According to recent work, waggle-dancing may act primarily as a trigger that
directs bees to forage previously known areas instead of following the dancer’s
positional cues about a food source.

M. Dorigo et al. (Eds.): ANTS 2010, LNCS 6234, pp. 263–274, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

264 P. Bailis, R. Nagpal, and J. Werfel

We explore the role of private information in bee colony foraging and compare
the relative efficiency of foraging in the traditional model of dance communica-
tion and in a model in which bees rely solely on their own internal positional
information from past experience. We examine each model across several flower
densities, distributions, qualities, and nectar quantities in order to determine
when communicating positional information is advantageous.

We show that the benefit of sharing position information is highly dependent
on the environment in which a colony operates and that relying solely on private
information is more efficient than sharing information in several environments.
Relying on private information results in a greater number of active forage sites.
With small amounts of nectar per flower, this is beneficial as it decreases the
risk of quickly exhausting food sources, resulting in fewer wasted foraging trips.
Sharing positional information allows the colony to concentrate effort on foraging
desirable and energy-efficient food sources at the risk of oversubscribing and
quickly depleting them. With nectar-plentiful flowers, the risk of over-harvesting
decreases and it becomes beneficial to concentrate foraging efforts.

In Section 2 we discuss related studies and previous models. In Section 3 we
present our model and the two communication strategies we consider. Section 4
presents results and analysis. Section 5 concludes.

2 Related Work

Colony foraging behavior has been studied extensively, from bee foraging ranges
[2] to the distribution of foragers and scouts [10], [16]. A system of advertise-
ment and forager recruitment allows the colony to adjust forager allocation and
respond to environmental changes [11]. Bees returning to the hive with food per-
form a waggle dance, a figure-eight vibration pattern carrying specific positional
information [5], the duration of which is proportional to the source’s quality [13].
The traditional understanding of the dance is that unemployed bees interpret it
as explicit positional directions to a particular forage site [10].

Recent work has suggested that unemployed bees may not make full use of the
position information contained in the waggle dance. An alternative hypothesis
is that bees use the dance as a cue to return to previously discovered, privately
known food sources [3], [8]. In one study, 93% of waggle dance recruits returned
to internally remembered food sources rather than the source designated by
dancers [7]. These findings are opposed to the traditional understanding of bee
behavior, yet the extent to which bees rely on internal information and the
relative benefits of sharing information are still in question [4], [14].

Prior work has studied the efficiency of the waggle dance in particular envi-
ronments and communication models, but has not considered the potential role
of private bee memory. Dornhaus et al. considered the role of recruitment and
colony size within simulation and found that communication conferred the great-
est benefit in worlds with few food sources arranged in scarce patches [6]. Beekman
and Lew further explored the role of communication and found that communica-
tion allows colonies to efficiently exploit the most profitable food sources. The au-
thors considered several communication models, including a model where recruits

Positional Communication and Private Information in Honeybee Foraging? 265

searched for new food sources instead of following dance information [1], but re-
cruits did not use any private information about previously known food sources.
In our work, we focus on the recent discussions regarding the role of private infor-
mation in bee forager allocation.

3 Model of Colony Foraging

We constructed an agent-based model that reflects current knowledge of bee
foraging in nature.

3.1 World

We model a continuous world with discrete timesteps. The world is 12 km by
12 km with a hive at the center, corresponding to a 6 km radius of foraging
activity [2], and bees cannot travel beyond its boundaries. Each timestep in our
world corresponds to approximately 3.5 seconds of real time.

3.2 Flowers

Flowers represent food sources, and each has a predetermined quantity of nectar
that can support a fixed number of forager trips before being exhausted. Nectar
qualities are variable: flowers can contain either low-quality nectar (1 unit per
trip) or high-quality nectar (4 units per trip), reflecting the proportions of sugar
concentrations found in different flowers [6]. Because we model a short time-
frame on the order of days, we do not simulate flower death.

We model two possibilities for flower distribution: evenly scattered and clus-
tered (Fig. 1). In scattered worlds, food sources are randomly placed, similar
to Dornhaus et al. [6]. In clustered worlds, food sources are distributed among
a number of randomly placed clusters, and each flower is placed at a distance
normally distributed (μ = 0, σ =72 meters) from the cluster center, similar to
Beekman and Lew [1]. Each cluster is of one particular quality, and we proba-
bilistically add additional clusters at a predetermined rate in order to simulate
a dynamic environment. We begin with six clusters in our world and end with
approximately 10.5 clusters at the end of 100 hours.

Given a flower f distance Df from the hive with nectar quality Nf and Dmax,
the maximum distance from the hive, we define the overall flower quality Q(f):

Q(f) =
Dmax −Df

Dmax
∗Nf (1)

This equation closely resembles a proposed metric for assessing flower desirabil-
ity, (expected energy obtained - cost of trip)/(time of trip) [12], and prioritizes
high-quality flowers closer to the hive, optimizing trip energy cost compared to
the expected nectar yield. Under this model, a low-quality flower at distance n
will be valued equivalently to a high-quality flower at distance 4n.

266 P. Bailis, R. Nagpal, and J. Werfel

Fig. 1. Representative food distributions. Each world contains 100 flowers (+) and the
hive (hexagon). Flowers are not drawn to scale.

3.3 Bees and Movement

We model foraging bees as simple agents. Bees can fly at a speed of 25 km/h
in any direction and can detect and harvest nectar from flowers within a radius
of 24 m [6]. Bees remember one flower location at a time and harvest nectar
from one flower per trip from the hive. A bee can travel up to 6 km before it
must return to the hive to replenish its energy stores. In the hive, bees deposit
collected nectar.

We model the inaccuracies of bee flight directly instead of artificially causing
flower location efforts to fail as in prior work [1] using two mechanisms: actuation
error and perception error. At each timestep, the bee calculates its desired tra-
jectory based on a goal position and the position at which it currently believes
it is located. Because bee flight is imperfect, its actual trajectory is the desired
trajectory plus a small perturbation, the actuation error. Sensory feedback lets
the bee update its estimate of its position based on the actual rather than de-
sired trajectory. However, sensing is imperfect, so the bee’s position estimate
is updated by the actual trajectory plus another perturbation, the perception
error. For our simulations, we used independent perception and actuation errors
randomly chosen between -3% and 3% per bee per timestep which were applied
to the magnitude and angle of the movement vectors. To model familiarity with
areas closer to the hive, when returning bees are within a short distance from
the hive (120 m), their perceived position is updated to accurately reflect their
actual position.

3.4 Bee Roles

Bees have one of three roles: scout, forager, or unemployed, similar to roles con-
sidered in related work [1], [6], [15].

A scout searches for new flowers by flying away from the hive and moving
randomly throughout the world according to a Lévy flight pattern, a random
walk with step length l distributed according to an inverse power law P (l) ∝ l−2

such that l ∈ [24 m, 6 km] that is believed to closely approximate bee flight
in nature [9] (Fig. 2). At each timestep, a scout surveys its surroundings and

Positional Communication and Private Information in Honeybee Foraging? 267

Fig. 2. Bee movement (Lévy flight) in single and multiple scouting trips from the hive

remembers the highest quality flower it has observed according to Equation 1.
Upon depleting its energy, the scout returns to the hive, where it replenishes its
energy supply and becomes a forager.

A forager is aware of a flower’s position and repeatedly flies to it, collects
nectar, and delivers the nectar to the hive. Because a bee’s perceived position is
not necessarily the same as its actual position, the coordinates it remembers may
not reflect the flower’s actual position in the world. When a forager perceives
it has reached its remembered coordinates, it attempts to locate and harvest
a flower. If none are in the vicinity whether due to positional error or flower
depletion, the forager begins Lévy flight and searches for a new flower which
it will then collect nectar from and subsequently remember according to its
perceived position. Once the forager collects nectar or runs out of energy, it must
return to the hive. Therefore, foragers who reach their known flower position but
do not find a flower become similar to scouts, but upon finding nectar they collect
it and return (Fig. 3).

An unemployed forager has no known flower and must either wait to be re-
cruited or become a scout. At each timestep, with a small probability (.1%), it
becomes a scout and searches for a food source [3], [15].

3.5 Flower Quality, Foraging, and Recruitment

Upon returning to the hive with a known flower location, a bee has three choices:
forget about the known flower, continue to forage from the flower, or continue
to forage from the flower after attempting to recruit additional foragers.

In order to adapt to changing environments and different conditions, bees
maintain dynamic thresholds that determine whether a bee should remember
or forget about a current food source as well as whether a bee should advertise
the flower using the waggle dance [11], [12]. While the threshold for abandon-
ing a source is a function of the individual flower, the threshold for dancing
is complicated and depends on colony-wide metrics like the ability to find a
food-storer bee [15]; because we do not model these features of the colony, we
use individually-tuned threshold mechanisms for both which quickly converge at

268 P. Bailis, R. Nagpal, and J. Werfel

Fig. 3. Movement of a single bee making foraging trips to and from a cluster of flowers.
After one successful trip, the bee returns to the patch and, because the nearby flowers
are depleted (due to other bees foraging as well), the forager begins Lévy flight in
search of a new flower (traveling to the right corner), eventually returning to the hive.
Note that even though the forager believes it has returned to the same position each
trip, the actual positions at which it arrives are slightly different due to movement
error, as seen in the close-up.

the colony level in practice. Each bee has a harvest threshold, th, and a dance
threshold, td, with the invariant that th ≤ td. Each time a bee returns to the hive
with a known flower, it assesses the quality relative to its thresholds in order to
determine the appropriate action. The chosen action also affects the thresholds,
creating a dynamic feedback mechanism.

Given a flower f with quality q = Q(f), we have three possibilities:
q < th: The flower quality is poor relative to the flowers the bee has recently

encountered. The bee becomes unemployed, but lowers its standards for foraging:

th ← th − th − q

2
(2)

th < q < td: The flower quality is better than others that the bee has recently
encountered, but not of sufficient quality to merit advertising to other bees.
The bee remembers the flower and continues to harvest it. The bee raises its
standards for harvesting and lowers its standards for advertising.

td ← td −max(.1,
td − q

2
), th ← min(th +max(.1,

q − th
2

), td) (3)

q > td: The flower quality is higher than the flowers that the bee has recently
encountered. The bee remembers the flower, advertises it to other bees, and
continues to harvest it. The bee raises its standards for advertising:

td ← td +
q − td

2
(4)

In order to model a scout’s willingness to find new food sources, scouts halve
both of their thresholds upon leaving the hive.

Positional Communication and Private Information in Honeybee Foraging? 269

3.6 Hypothetical Communication Models

Bees advertise flowers by “dancing” inside the colony. Given a flower f of quality
q = Q(f), if a bee decides to advertise f , it will do so for c ∗ q timesteps. In our
model, c = 5. A bee can recruit exactly one other bee per timestep as only a
limited number of bees can physically observe a waggle dance at a given time.
Recruits are chosen randomly from the pool of unemployed bees [12].

We consider two possible communication models for recruitment:

– Model SharePosition. In this traditional position-sharing model, recruits
become active foragers at the advertised position. Because the flower coordi-
nates are specified according to the dancer’s perceived location from when it
found the flower, the recruit may not find it due to actuation and perception
errors of both the dancer and the recruit or because of flower depletion.

– Model PrivatePosition. In this private-information model, recruits ig-
nore the positional information a dancer provides and begin to forage at
their previously known flower position, or, if they have none, they become
scouts. This model deemphasizes the role of positional information in for-
aging coordination and instead focuses on private information [8]. In this
model, dancing reactivates unemployed foragers instead of providing direc-
tion regarding where to forage.

These two models represent the accepted understanding of bee communication
as well as new theories about bee communication, respectively.

4 Results

We evaluated the relative efficiency of the communication models in several
distinct environments within a custom simulator, varying flower generation rates,
flower distributions, and flower nectar quantities (Fig. 4). For each configuration,
we simulated 96 hours of foraging with a colony of 500 bees. We do not consider
different colony sizes, but consistent with prior work [6], colony size did not
significantly impact our results.

Relative foraging efficiency (nectar gathered per unit of energy expended)
depended greatly on the environment; in several cases PrivatePosition outper-
formed SharePosition (up to 40%), but, in others, SharePosition was more ef-
ficient (up to 35%). At low flower generation rates, PrivatePosition performed
better in scattered worlds than in clustered worlds, but, at high flower gen-
eration rates, it performed better in clustered worlds. PrivatePosition’s relative
performance was better in homogeneous worlds than in heterogeneous worlds. In
general, as nectar quantity increased such that a given flower could support more
repeated trips, the relative efficiency of PrivatePosition decreased. Similarly, as
flower generation rates increased, PrivatePosition became less effective.

The food distribution influenced the usefulness of information sharing. In
scattered worlds, bees were likely to find flowers independently, especially at

270 P. Bailis, R. Nagpal, and J. Werfel

Fig. 4. Relative efficiency of PrivatePosition compared to SharePosition. Efficiency is
defined as the ratio of nectar retrieved to energy expended. Each data point repre-
sents 100 trials in separate, randomly-generated environments matching the specified
configuration. Error bars show the standard error on the mean.

moderate to high flower generation rates; sharing did not confer a serious ad-
vantage because flower locations were not geographically correlated. In clustered
worlds, however, once a bee found a cluster, it effectively found many flowers,
and sharing information allowed bees to find clumps faster than if they searched
independently. With heterogeneous nectar qualities, however, sharing informa-
tion about food sources became more valuable as coordination allowed the colony
to concentrate on both nearby flowers and higher quality nectar.

PrivatePosition was aware of a greater number of food sources on average than
SharePosition, which had several consequences for efficiency. We examined the
average number of food sources the colony exploited at any given time (Fig. 5),
and found that PrivatePosition foraged up to 114% more flowers in scattered
worlds and 25% more clusters in clustered worlds. As the number of known
food sources decreased, each was visited by a greater number of foragers and
was depleted more quickly. Once depletion occurred, foragers needed to find a

Positional Communication and Private Information in Honeybee Foraging? 271

Fig. 5. Average number of clusters or flowers known to actively foraging bees at each
timestep, expressed as a ratio of PrivatePosition to SharePosition with flower nectar
quantity limited to 20 trips. If a bee knew of a food source, had visited it, and the
source was not depleted, then the colony was considered aware of the food source. The
clustered worlds contained 10 randomly placed flower clusters and we counted a flower
as belonging to a cluster if the flower was within 480 m of the cluster center. If a flower
was located within multiple cluster radii, we counted the flower as belonging to each
cluster. Each data point represents the average of 30 trials, and error bars show the
standard error on the mean.

replacement flower, which, depending on the environment, could be an energy-
intensive process. In scattered worlds, adding additional flowers made it easier
to find a replacement. In clustered worlds, however, adding more flowers only
increased the amount of food at existing cluster locations and did not contribute
additional geographic diversity to the food distribution. This partly explains the
noise in the cluster scenarios: placing flowers at a cluster had similar effects to
placing a single large, high-capacity flower. As long as some flowers remained in
a cluster, foragers could likely find a replacement, but, if a cluster was entirely
depleted, finding another food source nearby was unlikely. Because flowers were
constantly generated, subsequent returns to a depleted cluster would possibly
yield some nectar, which is advantageous for PrivatePosition, however at low
rates of generation this resulted in many wasted trips.

SharePosition favored foraging from better food sources and quickly depleting
them, while PrivatePosition favored foraging from many possibly inferior sources
and had more successful forager trips. We examined the number of foraging trips
that did not result in nectar harvesting (Fig. 6), and SharePosition consistently
had a higher proportion of unsuccessful trips. SharePosition was more effective
with high flower nectar quantities than with low flower nectar quantities, but
was still less successful overall than PrivatePosition. In worlds with few flowers,
the two models were almost equivalent because food sources were hard to find
and easy to deplete. Even though recruits in SharePosition received position
information, they were less successful than in PrivatePosition; SharePosition
foragers did not find their food sources as often as PrivatePosition foragers did.

272 P. Bailis, R. Nagpal, and J. Werfel

Fig. 6. Unsuccessful foraging trips as a fraction of the total number of foraging trips in
PrivatePosition compared to SharePosition across multiple environments. A trip was
unsuccessful if a forager returns to the hive without food. Each data point represents
100 different simulated worlds, and error bars show the standard error on the mean.

PrivatePosition’s relative foraging success was due to SharePosition’s over-
subscription of the more favorable food sources. At low flower nectar quanti-
ties, SharePosition’s concentration of foraging efforts resulted in rapid source
depletion, wasted trips, and difficulty finding new flowers. In scattered, homo-
geneous worlds, for example, in PrivatePosition, the colony harvested from a
wide range of food sources, while in SharePosition, the colony harvested from
food sources only within a close radius of the hive, decreasing flight time but
increasing its proportion of unsuccessful trips. Increasing flower nectar quan-
tity reduced the risk of oversubscribing any particular food source and sup-
ported greater forager concentration. With higher nectar quantities, SharePosi-
tion still had fewer successful trips, but each successful trip was more valuable
(due to trip speed or nectar quality), resulting in a higher overall efficiency
(Fig. 4). Similarly, with one trip-worth of nectar per flower, there would be no
benefit to sharing information (except due to geographic flower locality), but
with infinite nectar per flower, sharing information would greatly benefit the
colony.

The colony must balance the tradeoff between focusing on fewer, more desir-
able food sources and oversubscribing them. While sharing information about
flowers in SharePosition resulted in higher nectar quantities, if a food source was
quickly depleted by foragers, the benefit of sharing information decreased due
to wasted energy and forager effort. Efficiency largely depended on whether, by
recruiting additional foragers to a food source, the colony wasted energy upon
source depletion that could have been avoided by spreading out the foragers
among other sources instead. As flowers supported more foragers, the colony
could concentrate on better food sources without the risk of quick depletion,
and the benefit of sharing information increased.

Positional Communication and Private Information in Honeybee Foraging? 273

We summarize several of the important factors in determining model success:

– When the nectar quantity per food source increases, the importance of har-
vesting from a variety of food sources decreases as depletion slows. The
benefit of sharing information about high-quality food sources increases.

– Exploiting a variety of food sources is useful when they are easily depleted,
but, as food sources become easier to find, oversubscribing is less harmful as
foragers are more likely to find replacement flowers.

– In heterogeneous environments, exploiting the most profitable food sources
may outweigh the cost of over-harvesting, so position sharing is more benefi-
cial. In homogeneous worlds, this effect is lessened as the difference between
the best and worst sources is smaller.

– In environments with many flowers located closely together (as in clustered
worlds), the importance of exploiting a variety of food sources decreases
compared to environments with scattered food sources; it is easier to find
another flower nearby once a targeted flower becomes depleted. However,
once a cluster is depleted, it may be difficult to find a new food source.

5 Conclusion

In evaluating the benefit of communicating positional information in bee for-
aging, one must consider a variety of factors: flower quality, quantity, capacity,
and distribution. Our results show that, under appropriate conditions, relying
on internal information can be more efficient than sharing information. This
supports recent studies about private information that run contrary to the tra-
ditional interpretation of information sharing in honeybees. It is plausible that
this behavior occurs naturally as a response to particular environment types,
particularly when food source diversity is important.

In this work, we have provided evidence for the efficiency of relying on private
information within a bee foraging model in several environments and explained
factors for each model’s success. Our results have consequences not only for
biologists but for system designers who are faced with decisions about commu-
nication and task allocation in a particular environment. Depending on environ-
mental characteristics, the additional costs of incorporating a communication
system may outweigh the benefit of doing so if one can instead rely on inter-
nal agent memory. While field biologists have not yet conclusively determined
the importance of sharing positional information in honeybee foraging, we have
shown that in some environments relying solely on private information may be
more efficient than sharing position information.

Source code and Traces. All source code and traces are available at http://
eecs.harvard.edu/~pbailis/beesim/.

Acknowledgements. The authors would like to thank Peter Lifland for his
assistance with early simulation and modeling. This work was supported in part
by NSF Expeditions Grant IIS-926148 and the Wyss Institute for Biologically
Inspired Engineering.

http://
eecs.harvard.edu/~pbailis/beesim/

274 P. Bailis, R. Nagpal, and J. Werfel

References

1. Beekman, M., Lew, J.B.: Foraging in honeybees–when does it pay to dance? Be-
havioral Ecology 19(2), 255–261 (2008)

2. Beekman, M., Ratnieks, F.L.W.: Long-range foraging by the honey-bee. Apis mel-
lifera L. Functional Ecology 14, 490–496 (2000)

3. Biesmeijer, J.C., Seeley, T.: The use of waggle dance information by honey bees
throughout their foraging careers. Behavioral Ecology and Sociobiology 59, 133–
142 (2005)

4. Brockmann, A., Sen Sarma, M.: Honeybee dance language: is it overrated? Trends
in Ecology and Evolution 24, 583 (2009)

5. Dornhaus, A., Chittka, L.: Why do honey bees dance? Behavioral Ecology and
Sociobiology 55, 395–401 (2004)

6. Dornhaus, A., Klügl, F., Oechslein, C., Puppe, F., Chittka, L.: Benefits of recruit-
ment in honey bees: effects of ecology and colony size in an individual-based model.
Behavioral Ecology 17(3), 336–344 (2006)

7. Grüter, C., Balbuena, M., Farina, M.: Information conflicts created by the waggle
dance. Proceedings of the Royal Society Biological Sciences 275, 1327 (2008)

8. Grüter, C., Farina, W.: The honeybee waggle dance: can we follow the steps?
Trends in Ecology and Evolution 24, 242–247 (2009)

9. Reynolds, A.: Cooperative random Lévy flight searches and the flight patterns of
honeybees. Physics letters A 354, 384–388 (2006)

10. Seeley, T.: Division of labor between scouts and recruits in honeybee foraging.
Behavioral Ecology and Sociobiology 12, 253–259 (1983)

11. Seeley, T.: Honey bee foragers as sensory units of their colonies. Behavioral Ecology
and Sociobiology 34, 51–62 (1994)

12. Seeley, T.: The Wisdom of the Hive: The Social Physiology of Honey Bee Colonies.
Harvard University Press, Cambridge (1996)

13. Seeley, T., Mikheyev, A.: Dancing bees tune both duration and rate of waggle-
run production in relation to nectar-source profitability. Journal of Comparative
Physiology A 186, 813–819 (2000)

14. Shermin, G., Visscher, P.: Honeybee colonies achieve fitness through dancing. Na-
ture 419, 920–922 (2002)

15. de Vries, H., Biesmeijer, J.C.: Modelling collective foraging by means of individual
behaviour rules in honey-bees. Behavioral Ecology and Sociobiology 44, 109–124
(1998)

16. Waddington, K., Holden, L.: Optimal foraging: on flower selection by bees. The
American Naturalist 114 (1979)

Rank Based Particle Swarm Optimization

Affan Khan1, Muhammad Sadeequllah2,
Riaz-ul-Hasnain3, and Azzam-ul-Asar3

1 Dept of Computer Science, University of Peshawar, N.W.F.P, Pakistan
2 Institute of Information Technology,

Kohat University of Science & Technology, N.W.F.P, Pakistan
3 Dept of Electrical & Electronics Engineering,

University of Engineering & Technology, Peshawar, N.W.F.P, Pakistan
{khanaffan,sadeeqkhan,sriazh}@yahoo.com

Abstract. Population members of the classical PSO quickly converge
onto a smaller region of the objective function landscape, which helps to
refine the discovered optimum, but the searching ability of the algorithm
collapses. This paper proposes modification to the way information flows
between the global best particle and the rest of the particles to resist
particles clustering. Particles are ranked according to their fitness value
such that each rank is single particle and a particle learns only from
the particle one rank above. Global best particle learns only from its
own experience. The proposed version of PSO is named as RPSO and
experiments on test bed functions show not only RPSO particles resisted
clustering but stability has also been observed in RPSO results. The
downside of RPSO was its slow rate of convergence, which was improved
by nominating certain particles from the whole population as diggers
with learning topology of the classical PSO. This version was named
RPSO-D and experiments were conducted to show its superiority over
the classical PSO, both in terms of stability and rate of convergence.

1 Introduction

Stochastic component is used in stochastic algorithms to introduce and maintain
diversity, which helps these algorithms to maintain global search ability. If an
algorithm heavily relies for its results on stochastic component, high variations
could be found in its outcomes for the same problem. It is highly desirable that
a stochastic optimization algorithm should have both high rate of convergence
and it should consistently find good results. This latter property is also known
as stability of the algorithm, and is rarely given any attention by the research
community. Particle Swarm Optimization PSO [1,2] is one such population based
stochastic algorithm in which much has been done about convergence speed, but
very little is found in the literature about stability. Some facts which are known
about PSO and contribute to instability in PSO results are the followings.

1. Relative distances between particles tend to decrease over time and particles
start clustering.

M. Dorigo et al. (Eds.): ANTS 2010, LNCS 6234, pp. 275–286, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

276 A. Khan et al.

2. Since there is zero clustering at the time of initialization, population diversity
is at maximum and its global searching capability is the highest, which decays
with time as soon as cluster forming begins.

3. When particles cluster, PSO turns into excellent digger. If all particles are
in the same basin, PSO starts behaving like local search, its global diversity
and search capability is lost. At the best, even if they get out of the current
basin, they will be too slow to find another basin of a better optimum.

4. In contrary to evolutionary algorithms, where members are allowed to fly
in any direction, PSO particles are allowed to fly only in those directions
which are, from experience, considered good. Hence, PSO has better digging
capability at the cost of global search ability.

5. A phenomenon, known as stagnation [3], can occur when all particles catch
up position of the global best particle. At this point, all particles stop moving
and algorithm shows no improvement. This can be premature convergence as
it does not even guarantee that algorithm has converged on a local minimum.

What contributes to these features of PSO is the clustering. Clustering is formed
due to the way information flows in PSO [4]. Best trend prevails quickly and
hostages the whole swarm to follow it. This makes PSO unstable and highly
dependent upon initial positions. In order to maintain a modest diversity, If
information dissemination is decelerated, it will not only make PSO stable but
it will also improve its searching ability.

Clustering process in PSO is relatively slow in lbest model than gbest. In
gbest model, all particles learn from a single particle, called the global best, and
hence, a single center of gravity and more quick is the clustering. In lbest model,
a particle learns from the best particle of its group, called the local best. Hence,
more the groups more will be the gravity centers, high population diversity
and slow clustering. This is because information flow from the global best to
the global worst particle is slow. It has also been observed that gbest model
posses high rate of convergence than lbest and is more suitable on uni-modal
functions[10]. While lbest results in better optima on multi-modal functions.

To retain population diversity, researchers have experimented with lbest model.
Even though population partitioning in original lbest is pure index based, a dif-
ferent partitioning scheme based on spatial location of particles was proposed by
Suganthan [5]. During each iteration of the algorithm, a distance from each par-
ticle to every other particle in the swarm is computed and the largest distance
between any two points is denoted by dmax . A particle neighborhood is decided
by computing

∥∥∥xcur−xa

dmax

∥∥∥ for each particle, where xcur is the current particle and
xa is any other particle. xcur and xa are considered neighbors if the calculated
distance ratio is below some threshold value. This threshold value is very small in
the start (i.e. lbest model) to encourage large number of groups to search different
areas of the search space. Threshold value is gradually increased to 1 (i.e. become
gbest) to leverage digging capability of the PSO.

In a different effort, Kennedy experimented with lbest model by defining dif-
ferent topologies based on connections among particles [6]. Three topologies
named ring, wheel and star were considered. Ring topology is the original lbest

Rank Based Particle Swarm Optimization 277

with l = 1, where l is the neighborhood size, and with varying number of ran-
domly interchanged connections. In wheel topology, all particles are connected
with a single hub particle and no direct connection between them. Star topology
is the original gbest. Since information spread in ring and wheel topologies was
slower than star topology, these algorithms were robust in face of multiple local
minima. Star topology, due to faster spread of information, showed high rate of
convergence on unimodal functions.

Based on human social interaction studies, which indicate that people follow
collective belief of a group rather than individuals, Kennedy presented another
lbest version, which is mix of both ring topology and spatial neighborhood,
called social stereotyping [7]. K-means clustering algorithm was used to assign
clusters to particles, provided number of clusters were decided beforehand. Be-
sides clustering, neighborhood was decided for particles based on the original
ring topology. Centroid of the cluster containing particle i is denoted by C(i)
and computed according to (1).

C(i) =
1

|Cl|
∑
a∈l

a . (1)

Where, |Cl| is the number of elements in cluster l. Neighborhood best particle,
denoted by yg, is selected according to (2).

yg ∈ Ni | f(yg) ≤ f(yb) ∀ yb ∈ Ni . (2)

Centroid of the cluster that contain neighborhood best particle g is denoted by
|C(g)| . Based on these definitions the following three variants of lbest velocity
update equation were experimented.

vi,j = wvi,j + c1r1,j

(
C(i)j − xi,j

)
+ c2r2,j (ŷi,j − xi,j) . (3)

vi,j = wvi,j + c1r1,j (yi,j − xi,j) + c2r2,j

(
C(g)j − xi,j

)
. (4)

vi,j = wvi,j + c1r1,j

(
C(i)j − xi,j

)
+ c2r2,j

(
C(g)j − xi,j

)
. (5)

Even though, because of clustering overheads, these algorithms were slower than
original lbest, Kennedy reported that (3) performs better that original lbest on
some problems. Equation (4) and (5) performed worse, suggesting that particles
should not emulate centroids of remote clusters.

The idea of subpopulation has also been applied in PSO [8], which was origi-
nally applied in evolutionary algorithms, e.g. GA [9]. The idea is to use multiple
distinct subpopulations searching different regions of the search space and, from
time to time, exchange members between subpopulations. In PSO, each subpop-
ulation has its own global best particle and arithmetic crossover operator was
applied. When selecting parents for crossover, there is a small probability that
one of the parents might be selected from a different subpopulation. Results
regarding the method indicate that no performance improvement was recorded.

278 A. Khan et al.

All these algorithms were intended to maintain a modest diversity in PSO
population, but these methods either show insignificant improvement or improve-
ment shown, if any, does not worth the overheads incurred. Only ring topology
is prominent in that it shows good results with almost no overheads. Even in the
ring topology, information propagation from the global best to the whole swarm
is faster because information spreads both in clockwise as well as anticlockwise
directions. This paper proposes a new algorithm, which could be called string
topology, in which information propagation from the global best to the global
worst is the slowest. Based on the fitness value of particles, the notion of single
particle ranks is used. All particles are sorted according to their fitness, with
global best on the first rank and global worst on the last. Each particle learns
only from the particle one rank above, while global best learns only from its own
experience. This approach is named RPSO and experiments indicate that it is
highly stable in face of both single and multiple local minima. To bring better
digging capability of gbest model in RPSO, a variant named RPSO-D is also
presented where a fraction of the swarm is nominated as diggers which follow
the learning topology of gbest model.

This paper is organized in the following manner. Section 2 gives background
knowledge on PSO. In sect. 3, the proposed algorithm is presented. To show
strengths of the proposed algorithm, results are computed in sect. 4.

2 Particle Swarm Optimization (PSO)

Proposed by Kennedy and Eberhart [1,2], Particle Swarm Optimization (PSO)
is a population based stochastic optimization algorithm inspired from the so-
cial behavior of certain organisms, e.g. flock of birds and schooling of fish. Each
member of the population is a potential solution, which flies with velocity v in
n−dimensional hyperspace. If s is the size of the swarm, then for each particle i:
xi is the current position of the particle, vi is the current velocity of the particle
and yi is the personal best position of the particle. The personal best position yi

is the position that this particle has visited which yielded the high fitness value.
In minimization context, a position yielding smaller function value is regarded
high fitness. Update rule for yi is given by (6).

yi(t+ 1) =
{
yi(t) if f(xi(t+ 1)) ≥ f(yi(t))
xi(t+ 1) if f(xi(t+ 1)) < f(yi(t)) .

(6)

The particles follow three principles, as described by Kennedy:

i. Evaluating:- learning through self experience
ii. Comparing:-learning through comparative study
iii. Imitating:- learning through adapting the best trend

Each particle makes its own decisions and is influenced by its neighbors as well.
As soon as a particle finds the best solution, it starts influencing its neighbors.
This process converges all particles to an optimal point similar to cultural trends
in human society. Interaction with the neighborhood is represented by ŷ, which

Rank Based Particle Swarm Optimization 279

is the best position discovered by any particle in the neighborhood. Velocity and
position update equations for jth dimension of any particle i, at iteration t+ 1,
are represented by (7) and (8) respectively.

vi,j(t+ 1) = vi,j(t) + c1r1,j(t)(yi,j(t) − xi,j(t)) + c2r2,j(t)(ŷi,j(t) − xi,j(t)) . (7)

xi(t+ 1) = xi(t) + vi(t+ 1) . (8)

r1r2 ∈ U(0, 1) are independent random sequences which are scaled by constant
0 < c1,c2 ≤ 2. These constant are known as acceleration coefficients, and they
constraint the maximum distance covered by any particle in a single iteration.
The original PSO algorithm is written in Fig. 1.

Based on the neighborhood size, from which ŷ is selected, two models of PSO
gbest and lbest are used. In gbest, a single neighborhood is defined, which is the
whole swarm. ŷ is called the global best as it is the best position discovered by
any particle in the whole swarm.

ŷ(t) ∈ {y1(t), y2(t), · · · , ys(t)} |f(ŷ(t)) =
min{f(y1(t)), f(y2(t)), · · · , f(ys(t))} .

(9)

In lbest model, overlapping neighborhoods of radius l are defined and ŷ is called
the local best or neighborhood best. There is no relationship among the particles
in the same neighborhood, the selection is pure index based which wraps around
the population size s. Equation (10) and (11) define ith neighborhood of size l,
denoted by Ni, and local best particle ŷ respectively.

Ni = {yi−l(t), yi−l+1(t), · · · , yi−1(t), yi(t), yi+1(t), · · · , yi+l−1(t), yi+l(t)} . (10)

ŷ(t+ 1) ∈ Ni|f(ŷi(t+ 1)) = min{f(a)}, ∀a ∈ Ni . (11)

lbest models maintains multiple gravity centers, which helps PSO to avoid pre-
mature convergence and the algorithm become much robust in face of multiple
optima. However, gbest model shows faster convergence on unimodal functions.
In lbest, when l = s, lbest becomes gbest.

Create and initialize an n-dimensional PSO: S
repeat:

for each particle i ∈ [1, · · · , s]:
if f(S.xi) < f(S.yi)

then S.yi = S.xi

if f(S.yi) < f(S.ŷ)
then S.ŷ = S.yi

end for
Perform PSO updates on S using (7)(8)

until stopping condition is true

Fig. 1. PSO algorithm

280 A. Khan et al.

3 The Proposed Particle Swarm Optimizer

3.1 Rank Based Particle Swarm Optimizer (RPSO)

To bring stability in PSO, information sharing among particles is strictly re-
stricted by introducing the concept of ranks. According to their fitness, all par-
ticles are arranged in a line such that particle with best fitness value is at the
front and particle with least fitness value is at the tail. Each particle represents a
unique rank with best particle having rank 1 and least best at nth rank, assum-
ing n is the swarm size. Any particle with rank r learns only from the particle
with rank r − 1, and best fit particle learns only from its own experiences (i.e.
its social learning is disabled and only its cognitive component is utilized). PSO
with this topology has been named here as Rank based Particle Swarm Opti-
mizer (RPSO) and is graphically illustrated in Fig. 2.

The topology of RPSO halts the noise to propagate through the swarm,
as attraction from a suboptimal might affect the leading particles quickly, but
its impact will reduce as it reaches the tail. This is because of the fact that
information exchange among particles has been decelerated by traveling down
from particle to particle to reach the tail. This helps PSO to maintain a modest
diversity longer than the classical PSO, and could be observed in Fig. 3.

Another phenomenon seen in gbest PSO is frequent switching of the global
best particle, which speeds up as particles start clustering. This forces swarm to
keep changing directions and the effective work done by particles is negligible.
The topology of RPSO also remedies this problem such that only few particles
lead the swarm. This fact could be better understood in Fig. 4, which clearly
shows that, in conventional PSO, the number of times a particle has been se-
lected as global best is somehow uniform. On other hand, in RPSO, only few
particles have very high frequency of being selected as global best while most
of the particles have never been selected at all. RPSO update equation and its
algorithm is given by (12) and Fig. 5 respectively.

Even though, as shown by results in this paper, ranks based PSO preserves pop-
ulation diversity and provides stable convergence, however, when the swarm lands
into basin of the optimum, where strong local search is required, RPSO becomes
much slower than conventional PSO. Slow digging ability near the optimum makes

Fig. 2. Information flow in RPSO

Rank Based Particle Swarm Optimization 281

Fig. 3. Diversity in population—Rastrigin

Fig. 4. Frequency of each particle as Global Best

RPSO impractical on functions with deep local optima. This problem could be al-
leviated if some particles in the swarm are assigned the duty of digging, which is
discussed in the next subsection.

vi,j(t+1) = vi,j(t)+c1r1,j(t){yi,j(t)−xi,j(t)}+c2r2,j(t){ŷr−1(t)−xi,j(t)} (12)

3.2 RPSO with Diggers (RPSO-D)

PSO turns into excellent digger when it dives into the basin of optimum. RPSO
lacks this ability because it resists clustering. To bring digging capability of the
conventional PSO into RPSO, a small number of particles, denoted by λ, are
declared as diggers. Diggers follow the topology of gbest model and learn from
the global best particle. If p is the swarm size then 0 ≤ λ ≤ p, and the remaining
p − λ particles, if λ < p, follow RPSO topology. RPSO with diggers has been
named here as RPSO-D. With λ = p, RPSO-D becomes the classical gbest PSO
and with λ = 0, RPSO-D become RPSO. Figure 6 is the graphical illustration
and Fig. 7 is the algorithm of RPSO-D.

282 A. Khan et al.

Create and initialize n-dimensional PSO: S
Create and initialize rank list l consisting all particles
repeat:

for each particle p ∈ [1, · · · , s]:
if f(p.x) < f(p.y)

then p.y = p.x
Perform updates on p using (12)(8)
update-rank(l, p)

end for
until stopping condition is true

update-rank(l, p)
for each i ∈ l

if i <> p and f(i) > f(p)
then insert(p, i, l)

end for

insert function will insert p
before i in list l

Fig. 5. RPSO algorithm

Fig. 6. Information flow in RPSO-D

Create and initialize an n-dimensional PSO: S
Create and initialize rank list l containing ranked particles
Label remaining particle in S as diggers
repeat:

for each particle p ∈ [1, · · · , s]:
if f(p.x) < f(p.y)

then p.y = p.x
if is-digger(p) = true

Perform update on p using (7)(8)
else

Perform update on p using (12)(8)
end for

until stopping condition is true

Fig. 7. RPSO-D algorithm

Empirical analysis of diggers reveals that the overall behavior of RPSO-D is
stable and it resists clustering, but its convergence rate is slow. On the other
hand, PSO is unstable and rely heavily on the initial positions of particles in
the search space. If number of diggers are increased in RPSO-D, it impedes
convergence, but instability also creeps-in back. Hence, it is important to decide
what ratio of diggers in population will be a better compromise.

Rank Based Particle Swarm Optimization 283

Table 1. Diggers comparison in RPSO-D

Function λ Min Max Avg Variance

Sphere
5 0 1.17E-236 3.38E-238 0
3 1.47E-225 3.81E-212 7.84E-214 0
0 9.47E-278 1.72E-175 2.54E-177 0

Rosenbrock
5 1.357E-21 5.5551705 0.7233408 2.3244047
3 3.57E-15 1.66E+01 9.06E-01 5.0017239
0 1.37E-07 13.90299 0.731362 3.8809401

Rastrigin
5 0.9949591 30.84366 8.825905 34.657233
3 1.9899181 37.092145 9.0990844 35.905747
0 0.9949591 32.580239 9.6545678 41.686936

Griewank
5 0 0.05176 0.0049733 8.406E-05
3 0.00E+00 2.71E-02 4.82E-03 4.931E-05
0 0 0.0221857 0.0033577 3.514E-05

Table 1 presents results of RPSO-D applied on different synthetic library
functions. Population size is 20 particles, each one of 20 dimensions, and 10
kilo iterations has been performed, in which minimum, maximum, average and
variance in error have been displayed. For a test function, error is the difference
between the final fitness value obtained and its global minimum. The λ column
represents number of diggers in the population. Results for Rosenbrock indicate
that error obtained is the smallest for 5 diggers, then for 3 and lastly for 0 diggers.
This shows that more diggers has found better optimum but at the same time
it has also increased variance in the errors obtained. On Rastrigin function, it
has also found better minimum but, in the same way, at the cost of increased
variance, even though its average error is still low.

The above results indicate that large value of λ helps in finding better optima
but it also bring instability in behavior of RPSO-D. Small value of λ keeps
RPSO-D more consistent but more iterations are require to find a better optima.
Moreover, at small value of λ, RPSO-D resists clustering and is less susceptible
to be traped in local minima.

Dynamic Value of lambda. It is obvious from the above discussion that, in
start of the algorithm, more searching is required and λ should be very small
to allow RPSO-D to maintain diversity and avoid clustering. When algorithm
reaches into the basin of a better optimum then digging capability is required
and λ should be increased to support it. Hence, it is desirable to start RPSO-D
with small λ and keep it increasing as the algorithm converges onto an opti-
mum. Equation (13) models a linear relationship between λ and the number of
iterations.

λ = population× i

max epoch
. (13)

In (13), i represents the ith iteration, maxepoch is the total number of iterations
and population is the population size.

284 A. Khan et al.

4 Experimental Results

This section compares RPSO and RPSO-D for stability and anti-clustering ca-
pabilities against the classical PSO model. This comparison also applies to all
variants of PSO which preserve information dissemination topology of PSO. The
following functions have been used as test functions.

Spherical: It is a simple uni-modal function with its global minimum located at
x∗ = 0, with f(x∗) = 0. This function has no interaction between its variables.

f1(x) =
n∑

i=1

x2
i (14)

Rosenbrock: A uni-modal function, with significant interaction between some
of the variables. Its global minimum is located at x∗ = (1, 1, · · · , 1), f(x∗) = 0.

f2(x) =

n
2∑

i=1

(100(x2i − x2
2i−1)

2 + (1 − x2i−1)2) (15)

Griewank:A multi-modal function with significant interaction between its vari-
ables caused by the product term. The global minimiser, x∗ = 0, yields a function
value of f(x∗) = 0.

f3(x) =
1

400

∑
i=1

nx2
i −

n∏
i=1

cos(
xi√
i
) + 1 (16)

Rastrigin:A multi-modal version of the spherical function, characterized by
deep local minima arranged as sinusoidal bumps. The global minimum is f(x∗) =
0, where x∗ = 0. The variables of this function are independent.

f4(x) =
n∑

i=1

(x2
i − 10 cos(2πxi) + 10) (17)

Experiments have been conducted for 10, 20, 30 and 40 dimensions, population
size = 20, c1, c2 = 1.49618, k = 0.729844, x ∈ [−100, 100] , errorthreshold = 0,
epochs = 10, 000 and velocity clipping applied. Variance has been calculated for
PSO, RPSO and RPSO-D with 3 diggers. To test better the empirical behavior
of the algorithm against the above configuration, each value presented in both
Table 2 and Table 3 is the average 100 runs. Total variance shown in these
tables is the aggregate variance of a specific algorithm for all of the four test
functions and on all four dimensions. Improvement against PSO is calculated
using (18) and (19) for RPSO and RPSO-D respectively. Table 2 shows that, in
comparison with PSO, variance in RPSO has been reduced to 84 percent. Table
3 shows improvement in variance of RPSO-D with respect to PSO is 92 percent.

PSO −RPSO

PSO +RPSO
× 100 (18)

PSO −RPSOD

PSO +RPSOD
× 100 (19)

Rank Based Particle Swarm Optimization 285

Table 2. Variance in Error between PSO and RPSO

Dim 5 10 20 40
Algorithm PSO RPSO PSO RPSO PSO RPSO PSO RPSO
Griewank 0.00054 1.4E-05 0.00208 9.6E-05 0.00089 3.5E-05 0.00086 4E-05
Sphere2d 0 0 0 0 0 0 5.4E-10 9E-162
Rosenbrock 3.2136 0.15451 2.86199 0.15893 5.62532 3.88094 807.446 590.281
Rastrigin 0.61706 0.0099 11.4249 0.19159 213.775 41.6869 20667.4 1208.52

Total Variance RPSO 1844.88 PSO 21712.4 %Improvement 84.337

Table 3. Variance in Error between PSO and RPSO-D

Dim 5 10 20 40
Algorithm PSO RPSO-D PSO RPSO-D PSO RPSO-D PSO RPSO
Griewank 0.00158 2.84E-05 0.00131 8.8E-05 0.00042 4.9E-05 0.00097 7.7E-05
Sphere2d 0 0 0 0 0 0 7E-149 7E-189
Rosenbrock 2.49721 4.39E-26 2.84296 0.61767 135.945 5.00172 192.585 142.461
Rastrigin 2.10148 0.019599 42.4373 0.62186 452.966 35.9057 24175.5 761.755

Total Variance RPSO-D 946.382 PSO 25006.9 %Improvement 92.707

4.1 GBest Behaviour in RPSO-D

As mensioned in sect. 3, the probability of a particle being selected as GBest
in RPSO is not uniform. Which means only few particles get the chances to be
selected as GBest, which results in stable trajectory of particles. This fact can
be observed in Table 4. Results in Table 4 are calculated to show minimum,
maximum and average variance in the frequency of each particle of RPSO-D
being selected as GBest. The population size 20, dimensions 40 and number of
diggers were 3. It can be observed that PSO has extremely low variance on all
test functions compared to RPSO-D.

Table 4. Variance in the GBest frequency of PSO and RPSO-D

Function Algorithm Min Max Average

Griewank
RPSO-D 1560.4 43556.6 6185.6
PSO 54.0 302.7 131.3

Rastrigin
RPSO-D 2715.4 1494718.5 113461.6
PSO 47.2 302.6 124.9

Rosenbrock
PSO-D 10608.7 555855.3 136438.1
PSO 643.8 130190.8 24492.3

Sphere
RPSO-D 39057.5 113022.4 72869.2
PSO 281.1 1720.7 787.4

286 A. Khan et al.

5 Conclusion

In classical PSO, all particles follow a single trend and often show premature
convergence on the GBest particle. This phenomenon is termed as clustering,
which not only inhibits the algorithm to find a better solution but also pro-
duce highly variable results on a similar problem. The latter is also algorithm
instability. To alleviate these problems, a rank based information dissemination
topology has been proposed and particle swarm with this topology was named
as Rank based Particle Swarm Optimizer. Empirical analysis proved RPSO is
clustering resistant and highly stable.

Clustering helps PSO into finding better optimum when it reaches into the
basin of a better optimum. RPSO was found to lack this ability. It was proposed
to nominate some particles in RPSO to follow the topology of GBest PSO.
The modified RPSO was named as RPSO-D. Experimental results shown that
RPSO-D was both clustering resistant as well as capable to quickly refine the
optima.

References

1. Kennedy, J., Eberhart, R.C.: Particle Swarm Optimization. In: IEEE Int. Conf. on
Neural Networks, Perth, Australia, vol. IV, pp. 1942–1948 (1995)

2. Eberhart, R.C., Kennedy, J.: A new optimizer using particle swarm.theory. In:
6th Int. Symp. on Micro Machine and Human Science, Nagoya, Japan, pp. 39–43
(1995)

3. Maurice, C.: Stagnation Analysis in Particle Swarm Optimization or What Hap-
pens When Nothing Happens. Technical Report CSM-460, Department of Com-
puter Science, University of Essex (2006) ISSN: 1744-8050

4. van den Bergh, F., Engelbrecht, A.P.: A New Locally Convergent Parti-cle Swarm
Optimiser. In: IEEE Conf. on Systems, Man and Cybernetics, Hammamet, Tunisia,
vol. 3, pp. 96–101 (2002)

5. Suganthan, P.N.: Particle Swarm Optimizer with Neighborhood Operator. In:
IEEE CEC 1999, Washington DC, USA, pp. 1958–1961 (1999)

6. Kennedy, J.: Small Worlds and Mega-Minds: Effects of Neighborhood Topology
on Particle Swarm Performance. In: IEEE CEC 1999, Washington DC, USA, pp.
1931–1938 (1999)

7. Kennedy, J.: Stereotyping: Improving Particle Swarm Performance with Cluster
Analysis. In: IEEE CEC 2000, San Diego, USA, pp. 1507–1512 (2000)

8. Lvbgerg, M., Rasmussen, T.K., Krink, T.: Hybrid Particle Swarm Optimizer with
Breeding and Subpopulations. In: GECCO 2001, San Francisco, USA (2001)

9. Spears, W.M.: Simple Subpopulation Schemes. In: 1994 Evolutionary Programming
Conf. pp. 296–307 (1994)

10. Eberhart, R.C., Simpson, P., Dobbins, R.: Computational Intelligence PC Tools,
ch. 6, pp. 212–226. Academic Press Profesional, London (1996)

Self-organized Task Partitioning
in a Swarm of Robots

Marco Frison1,2, Nam-Luc Tran1, Nadir Baiboun1,3, Arne Brutschy1,
Giovanni Pini1, Andrea Roli1,2, Marco Dorigo1, and Mauro Birattari1

1 IRIDIA, CoDE, Université Libre de Bruxelles, Brussels, Belgium
2 Universitá di Bologna, Bologna, Italy

3 ECAM, Institut Supérieur Industriel, Brussels, Belgium
mfrison85@gmail.com, nadir ecam@hotmail.com,

{namltran,arne.brutschy,gpini,mdorigo,mbiro}@ulb.ac.be,
andrea.roli@unibo.it

Abstract. In this work, we propose a method for self-organized adap-
tive task partitioning in a swarm of robots. Task partitioning refers to
the decomposition of a task into less complex subtasks, which can then
be tackled separately. Task partitioning can be observed in many species
of social animals, where it provides several benefits for the group. Self-
organized task partitioning in artificial swarm systems is currently not
widely studied, although it has clear advantages in large groups. We pro-
pose a fully decentralized adaptive method that allows a swarm of robots
to autonomously decide whether to partition a task into two sequential
subtasks or not. The method is tested on a simulated foraging problem.
We study the method’s performance in two different environments. In
one environment the performance of the system is optimal when the for-
aging task is partitioned, in the other case when it is not. We show that
by employing the method proposed in this paper, a swarm of autonomous
robots can reach optimal performance in both environments.

1 Introduction

Many animal species are able to partition complex tasks into simpler subtasks.
The act of dividing a task into simpler subtasks that can be tackled by different
workers is usually referred to as task partitioning [15].

Although task partitioning may have associated costs, for example because of
work transfer between subtasks, there are many situations in which partitioning
is advantageous. Benefits of task partitioning include, for example, a reduction of
interference between individuals, an improved exploitation of the heterogeneity
of the individuals, and an improved transport efficiency [9].

Humans widely exploit the advantages of task partitioning in everyday activ-
ities. Through centuries, humans have developed complex social rules to achieve
cooperation. These include planning, roles and work-flows. Ancient romans real-
ized the importance of partitioning and they codified it in their military principle
divide et impera (also known as divide and conquer), which became an axiom in
many political [17] and sociological theories [10].

M. Dorigo et al. (Eds.): ANTS 2010, LNCS 6234, pp. 287–298, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

288 M. Frison et al.

Examples of task partitioning can also be observed in social insects. A widely
studied case is the foraging task in ants and bees. In foraging, a group of in-
dividuals has to collect and transport material to their nest. Foraging involves
many different phases and partitioning can occur simultaneously in many of
them. Typical phases where task partitioning can occur are the exploration of
the environment and the preparation of raw materials [15]. Examples of task
partitioning are the harvesting of leaves by the leaf-cutter ants [9], the exca-
vation of nest chambers in Pogomomyrmex, and the fungus garden removal in
Atta [18].

Also in swarm robotics there are situations in which it is convenient to par-
tition a task into subtasks. Advantages include increased performance at group
level, stimulated specialization, and parallel task execution. In most of the cases,
task partitioning is done a priori and the focus is on the problem of allocating
individuals to subtasks in a way that maximizes efficiency. However, in many
cases, task partitioning cannot be done a priori because the relevant information
on the environment is not available. We consider self-organized task partitioning
as a suitable approach in these cases.

In this work, we focus on the case in which a task is partitioned into subtasks
that are sequentially interdependent. We propose a simple method, based on
individuals’ perception and decisions, that allows a swarm of autonomous robots
to decide whether to partition a foraging task into subtasks. We test the method
with a swarm of simulated robots in two different environmental conditions.

The rest of the paper is organized as follows. In Section 2 we describe the prob-
lem and we review related works. In Section 3 we propose an adaptive method
that we tested with simulated robots. In Section 4 we provide a description of
the experimental framework we consider. In Section 5 we report and discuss the
results. Finally, in Section 6 we summarize the contribution of this work and
present some directions for future research.

2 Problem Description and Related Works

We study a swarm of robots that has to autonomously decide whether to parti-
tion a task into subtasks. Our focus is on situations in which a task is partitioned
into sequential subtasks: the subtasks have to be executed in a certain sequence,
in order to complete the global task once [5].

In these cases, we can identify tasks interfaces where one task ends and an-
other begins. Through tasks interfaces, individuals working on one of the sub-
tasks can interact, either directly or indirectly, with individuals working on other
subtasks.

An example of sequential task partitioning, observable in nature, is the forag-
ing activity in Atta leaf cutting ants. The sequential interdependency between
tasks stems from the fact that each leaf has to be cut from a tree before it can
be transported to the nest. Each individual can choose whether to perform both
the cutting and transporting subtasks, or to specialize in one subtask only.

Hart at al. [9] described the strategy employed by Atta ants: some individuals
work on the tree, cutting and dropping leaves to the ground, while the rest of

Self-organized Task Partitioning in a Swarm of Robots 289

the swarm gathers and transports these leaves to the nest. Here the advantage of
partitioning comes from the fact that the energy cost to climb the tree has to be
paid only once by those individuals working as leaf cutters. Disadvantages come
from the fact that energy has to be spent to search for leaves on the ground.
The task interface can be identified, in this case, as the area where the leaves
land. Such areas are usually referred to as caches, and facilitate indirect transfer
of material between individuals. Anderson and Ratnieks described how foragers
of different ant species partition the leaf transport task by using caches [4].

Partitioning along foraging trails using direct transfer of material between
individuals can be observed in other ant species and in other social insects. In
the case of direct transfer, the benefit of partitioning can come from the fact that
material weight can be matched with the strength of the transporter [2]. Akre
et al. observed task partitioning within Vespula nectar foraging [1]. Anderson
and Ratnieks studied partitioned foraging in honeybees species, showing that
the larger the swarm, the higher the performance [3].

Robotic swarms often face situations similar to those of their natural coun-
terparts. However, despite its importance, few works have been devoted to task
partitioning in swarm robotics. Notable exceptions are the works of Fontan and
Matarić as well as Shell and Matarić on bucket-brigading [8,16]. In these works,
robots have to gather objects in an environment. Each robot operates in a lim-
ited area and drops the object it carries when it reaches the boundaries of its
working area. This process leads to objects being passed across working areas
until they reach the nest. Lein and Vaughan proposed an extension to this work,
in which the size of the robots’ working areas is adapted dynamically [11]. Pini
et al. showed that the loss of performance due to interference, can be reduced by
partitioning the global task into subtasks [14]. To the best of our knowledge, self-
organized task partitioning in terms of adaptive task decomposition has never
been investigated.

3 The Method

The method we propose allows a swarm of robots to adaptively decide whether
to partition a task into sequential subtasks or not. A decision is made by each
individual: In case a robot decides to employ task partitioning, it works only
on one of the subtasks. In case a robot decides not to employ task partitioning,
it performs the whole sequence of subtasks. The method is fully distributed
and does not require explicit communication between individuals. The swarm
organizes in a way that maximizes the overall efficiency of the group, regardless
of the specific environment. Efficiency is defined as the throughput of the system.

In the method proposed, each individual infers whether task partitioning is
advantageous or not on the basis of its waiting time at tasks interfaces. We define
the probability p that a robot has to employ task partitioning as:

p = 1 − 1
1 + e−θ(w(k)) , (1)

290 M. Frison et al.

with θ being:

θ
(
w(k)

)
=
w(k)
s

− d , (2)

and w(k) being the weighted average waiting time at task interfaces after k
visits, which is calculated as follows:

w(k) = (1 − α)w(k − 1) + αwM . (3)

In Equation 2, s and d are a scale and a delay factor, respectively. In Equation 3,
α ∈ (0, 1], is a weight factor that influences the responsiveness to changes: higher
values lead to a readily responsive behavior. The value of these parameters can
be determined empirically. The variable wM is the measured waiting time at
task interface and ranges in [0, wMAX). The upper limit wMAX ensures that
robots eventually renounce to employ task partitioning when their waiting time
becomes too high. Each time a robot completes a subtask, it decides whether to
employ task partitioning for the next task execution, or not.

4 Experimental Setup

The purpose of the experiments described in this section is to show the validity
of the method described in Section 3. To illustrate the approach we have chosen
a foraging problem as a testbed. It is a canonical choice in collective robotics as
it is easy to model and its applications are numerous [7].

In the experiments, the global task can be described as harvesting objects from
a single source and storing them in the nest. The global task can be partitioned
into two subtasks, referred to as harvesting and storing, respectively. Partitioning
enables the subdivision of the environment into two areas, linked by a task
interface as defined in Section 2. The task interface is represented by a cache
that can be used by the robots to exchange objects. As the cache has a limited
capacity, robots that decide to use it may have to wait. The waiting time is
defined as the delay between the moment when a robot decides to use the cache,
either for picking up or dropping objects, and the moment when this effectively
becomes possible. It is also possible to avoid the cache by using a separate
corridor, which links directly the source and the nest.

Each robot has to autonomously decide whether to partition the foraging
task, by using the cache; or not to partition it, by using the corridor. The swarm
can also employ a mixed strategy in which some individuals use the cache and
others use the corridor. Robots have no notion of the global performance of the
swarm. In no case explicit communication is used. Figure 1 shows a simplified
state diagram that represents the behavior of each individual.

4.1 Simulation Tools

All the results presented in the paper are obtained using the ARGoS simulation
framework [13]. ARGoS is a discrete-time, physics-based simulation environment
that allows one to simulate experiments at different levels of detail. For the

Self-organized Task Partitioning in a Swarm of Robots 291

Drop in

cache

Harvest

from source

Pick up

from cache

Store in

nest

1 − pd

1 − pp

pd

pp

Fig. 1. Simplified state machine representing the behavior of each individual. Prob-
abilities pd and pp are both defined using Equation 1 as described in Section 3. The
variable pd represents the probability of using the cache to drop an object. The variable
pp represents the probability of picking up an object from the cache. The states Avoid
obstacles and Navigate have been omitted for clarity.

experiments presented in this paper, it is sufficient to simulate kinematics in a
bi-dimensional space. A common control interface provides transparent access
to real and simulated hardware, allowing the same controller to run also on the
real robots without modifications.

The robots we use in this research are the e-pucks1. The e-puck has been
designed with the purpose of being both a research and an educational tool for
universities [12]. ARGoS simulates the whole set of sensors and actuators of the
e-puck. In our experiments we use the wheel actuators, the 8 IR sensors for light
and proximity detection, the VGA camera, and the ground sensors.

4.2 Harvesting Abstraction

As the e-pucks are not capable of grasping objects, we developed a device to
simulate this process [6]. Figure 2 shows a schematic representation of the device,
called an array2. It consists of a variable number of slots, named booths. Each
booth is equipped with two RGB LEDs that can be detected by the robots
through their color camera. A light barrier can detect the presence of a robot
within each booth. Reactions to this event, such as changes in LEDs color, are
programmable.

In the experiments presented in the paper, a green booth, either in the source
or in the cache, means that an object is available there. Analogously, a blue
booth means that an object can be dropped there. By using this abstraction,
when a robot enters a booth in which the LEDs are lit up in green, we consider
that the robot picks up an object from that booth. When a robot enters a booth
in which the LEDs are lit up in blue, we consider that the robot drops an object

1 http://www.e-puck.org/
2 The array is under development and a working prototype is currently available.

http://www.e-puck.org/

292 M. Frison et al.

Fig. 2. Schematics of an array of booths with four booths on each side. The light bar-
riers, represented by black semicircles, detect when a robot enters in the corresponding
booth. LEDs, used to signal available pick up or drop sites, are represented by blank
semicircles.

in that booth. In both cases, when the booth perceives the presence of the robot,
it reacts by turning the LEDs red, until the robot has left. Once the robot has
left, the booths behave in a different way, depending whether they are source,
nest or cache booths. In the case of the source, the booth turns green, to signal
the availability of a new object to harvest. In the case of the nest, the booth turns
blue, to signal that the corresponding store spot is available again. In case of the
cache, if the robot leaves after picking up an object, the booth, previously green,
turns off and the corresponding booth on the other side turns blue signaling
that the spot is now available again for dropping an object. Conversely, if the
robot leaves after dropping an object, the booth, previously blue, turns off and
the corresponding booth on the other side turns green signaling that an object
is available for being picked up. This simple logic allows us to simulate object
transfer through the cache, as well as harvest from the source and store in the
nest.

4.3 Environments

We run the experiments in two different environments, named short-corridor
environment and long-corridor environment (see Figures 3a and 3b).

In both the environments, the nest array is located on the right-hand side,
while the source array is located on the left-hand side of a rectangular arena.
Both the nest and the source arrays have four booths, all on one side. The
cache array is located between the nest and the source and has three booths on
each side. Therefore, the cache has a limited capacity, which is determined by
the number of booths on each side. Different ground colors allow the robots to
recognize on which side of the cache they are.

Although the cache array cannot be crossed by robots, a corridor links the
two areas and allows the robots to harvest/store objects without using the cache

Self-organized Task Partitioning in a Swarm of Robots 293

Fig. 3. Representation of the a) short-corridor and the b) long-corridor environments
used in the experiments. Nest and source arrays have both four booths on one side.
The cache array has three booths for each side. Different ground colors help the robots
to distinguish between different parts of the environment and to navigate through the
corridor that connects the two areas. The light source, used as landmark for navigating
in the corridor, is marked with “L”.

array (i.e., without partitioning the foraging task). A light source and two colored
trails help the robots to navigate through the corridor. Both the environments
are 1.6 m wide, but they differ in the corridor’s length: in the short-corridor
environment the corridor is 1.5 m long, while in the long-corridor environment it
is 3.5 m long. Both the use of the cache and the use of the corridor entail costs.
The cache can be seen as a shortcut between source and nest: robots cannot cross
the cache, but its use can make material transfer faster. However, the cache can
also become a bottleneck as the decision of using it can lead to delays if it is
busy when dropping objects, or empty when picking them up. The decision of
using the corridor imposes a cost due to the time spent traveling through it.
Thus, the transfer cost varies with cache and group size while the travel cost
varies with corridor length. As we keep the size of the cache array constant
in our experiments, the corridor length determines the relative cost between
partitioning and not partitioning. In the long-corridor environment, the use of
the cache is expected to be preferable. On the other hand, in the short-corridor
environment, the cost imposed by the corridor length is low and should lead to
the decision not to use the cache.

294 M. Frison et al.

4.4 Experimental Settings

We run two different sets of experiments: in a first set of experiments we are
interested in assessing the performance of the adaptive method that we propose,
while in the second set of experiments we aim at evaluating its scalability. In the
first set of experiments the robotic swarm is composed of twelve e-pucks, each
controlled by the same finite state machine depicted in Figure 1. In both the
environments, we compare the adaptive method described in Section 3 to two
strategies which always partition (pd = pp = 1) or never partition (pd = pp = 0).
These are used as reference strategies for evaluating both the performance of
the proposed method and its capability of adapting to different environmental
conditions. The values of the parameters have been determined empirically and
fixed to s = 20, d = 5, α = 0.75, wMAX = 15 s. The duration of each experi-
mental run is 150 simulated minutes. For each experimental condition we run 30
repetitions, varying the seed of the random numbers generator. At the beginning
of each experiment the robots are randomly positioned in the right side of the
environment, where the nest array is located. As the average waiting time w(k)
is initially equal to zero, all the robots start with probabilities pd = pp ≈ 1: from
Equations 1 and 2, with d = 5; when θ

(
w(k)

)
= 0, p = 0.993.

In the second set of experiments we compare the adaptive method to the
reference strategies in the short-corridor environment. In this case the size of
the swarm varies in the interval [4, 60]. For each condition we run 10 randomly
seeded experiments. The remaining parameters of the experiment are the same
as described for the first set of experiments.

5 Results and Discussion

As we keep the capacity of the cache array constant, it is the length of the cor-
ridor that determines which behavior maximizes the throughput of the system.
Partitioning allows the robots to avoid the corridor but, in order to exploit ef-
ficiently the cache, the swarm has to organize and to work on both of its sides.
Additionally, as pointed out in Section 4, the robots might have to wait in order
to use the cache.

In the short-corridor environment, the cost of using the cache is higher than
the cost of using the corridor. In this case the robots should decide for a non-
partitioning strategy, without exchanging objects at the cache. Conversely, in the
long-corridor environment the time required to travel along the corridor is high,
and partitioning the task by using the cache is expected to be more efficient.

The graphs in Figure 4 show the average throughput of a swarm of twelve
robots in the two environments. Throughput is measured as the number of ob-
jects retrieved per minute. The adaptive method is compared with the two ref-
erence strategies in which the robots never/always use the cache. As expected,
each of these reference strategies performs well only in one environment: the
strategy that never uses the cache performs better in the short-corridor envi-
ronment, while the strategy that always use the cache performs better in the

Self-organized Task Partitioning in a Swarm of Robots 295

0 50 100 150

0.
8

1.
0

1.
2

1.
4

1.
6

1.
8

T
hr

ou
gh

pu
t (

ob
je

ct
s/

m
in

ut
es

)

Long−corridor environment

●

●

●

●
●

●
●

● ● ● ● ● ● ● ● ● ●

●

●

●
●

●

Time (minutes)

●

Strategies

never partition (pd = pp = 0)
always partition (pd = pp = 1)

adaptive (s = 20, d = 5, α = 0.75)

0 50 100 150

0.
8

1.
0

1.
2

1.
4

1.
6

1.
8

T
hr

ou
gh

pu
t (

ob
je

ct
s/

m
in

ut
es

)

Short−corridor environment

0 50 100 150

●

●

●

●

● ●
● ● ● ● ● ● ● ● ● ● ● ●

●

●

●
● ●

Time (minutes)

●

Strategies

never partition (pd = pp = 0)
always partition (pd = pp = 1)

adaptive (s = 20, d = 5, α = 0.75)

Fig. 4. Average throughput in the short-corridor (top) and long-corridor (bottom) en-
vironment for different strategies. Time is given in simulated minutes. Throughput is
measured as objects retrieved per minute. Parameters for the adaptive behavior are
set to s = 20, d = 5, α = 0.75, wMAX = 15 s. Parameter values have been obtained em-
pirically. Each experiment has been repeated 30 times, varying the seed of the random
number generator. The bars around the single data points represent the confidence
interval of 95% on the observed mean.

long-corridor environment. On the other hand, the adaptive method we propose
shows good performance in both environments.

Concerning the long-corridor environment, we assumed that the best strategy
was to always use the cache and to avoid the corridor. However, Figure 4(bottom)
shows that the adaptive method proposed improves over this fixed strategy. To
better understand this behavior, we empirically determined the fixed-probability
strategy yielding the highest throughput for each environment. This analysis
revealed that the best strategy in the long-corridor environment is to use the
cache with a probability around 80%. In the short corridor environment a non-
partitioning strategy is preferable.

Table 1 reports the average throughput obtained at the end of the run for
each strategy in each environment. The results reported in the table show that

296 M. Frison et al.

Table 1. Average throughput at the end of the experiment for a swarm of 12 robots.
Results are reported for different partitioning strategies in the short-corridor and long-
corridor environments. The values in parenthesis indicate the 95% confidence interval
on the value of the mean.

Never partition Always partition Fixed (pd, pp = 0.8) Adaptive

Short-corridor 1.81 (±0.012) 1.57 (±0.015) 1.67 (±0.016) 1.79 (±0.017)
Long-corridor 1.22 (±0.006) 1.36 (±0.015) 1.40 (±0.013) 1.43 (±0.017)

0 10 20 30 40 50 60

1.
0

1.
5

2.
0

2.
5

Swarm size

F
in

al
 th

ro
ug

hp
ut

 (
ob

je
ct

s/
m

in
ut

es
)

●

●

●

●

●

●

●

●
●

●
●

● ● ● ● ●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

Strategies

never partition (pd = pp = 0)
always partition (pd = pp = 1)

adaptive (s = 20, d = 5, α = 0.75)

Fig. 5. Impact of the swarm size in the short-corridor environment. The value of the
throughput, measured as number of objects retrieved per minute, is the average value
reached by the swarm at the end of the experiment. Each experimental run lasts 150
simulated minutes. For each experimental condition we run 10 repetitions, varying the
seed of the random number generator.

fixed-probability strategies perform well only in one of the two environments.
Our adaptive method, on the other hand, reaches good performance in both the
short-corridor and the long-corridor environment. These results confirm that
the method we propose allows a swarm of robots to take a decision concerning
whether to partition a task into sequential subtasks or not.

The graph in Figure 5 shows the results of the second set of experiments, in
which we focus on scalability. In this case we compare different strategies for
different swarm sizes in the short-corridor environment. As discussed previously,
in the short-corridor environment the optimal strategy is to always use the cor-
ridor. It can be observed that for small swarm sizes this strategy performs well.
However, the performance of this strategy drops drastically when the number of
robots increases. The reason for this degradation is the increasing interference
between the robots, which increases the cost of using the corridor. The parti-
tioned strategy does not suffer from steep drops of performance. However, the
throughput is considerably lower for smaller group sizes, as the waiting time at
the cache becomes dominant. The adaptive method performs well across all the
studied swarm sizes, finding a good balance between the robots that use the
cache and those that use the corridor.

Self-organized Task Partitioning in a Swarm of Robots 297

6 Conclusions

In this research we investigated the self-organized task partitioning problem
in a swarm of robots. In particular we have proposed an adaptive method to
tackle the task partitioning problem with a simple strategy based on individual’s
perception of each subtask performance. In the method proposed, the subtask
performance is estimated by each robot by measuring its waiting time at task
interfaces. Results show that the adaptive method we propose reaches the best
performance in the two environments we considered, employing task partitioning
only in those cases in which the benefits of partitioning overcome its costs. The
study of the impact of the group size reveals that the method scales well with the
swarm size. Future work will concern the study of self-organized task partitioning
in multi-foraging problems in environments with several caches. In addition, we
are interested in studying the application of the method proposed to cases in
which partitioning happens through direct material transfer.

Acknowledgements. This work was partially supported by the virtual
Swarmanoid project funded by the Fund for Scientific Research F.R.S.–FNRS
of Belgium’s French Community. Marco Dorigo and Mauro Birattari acknowl-
edge support from the F.R.S.–FNRS, of which they are a research director
and a research associate, respectively. Marco Frison acknowledges support from
“Seconda Facolt di Ingegneria”, Alma Mater Studiorum, Università di Bologna.
Andrea Roli acknowledges support from the “Brains (Back) to Brussels” 2009
programme, founded by IRSIB – Institut d’encouragement de la Recherche Sci-
entifique et de l’Innovation de Bruxelles.

References

1. Akre, R.D., Garnett, W.B., MacDonald, J.F., Greene, A., Landolt, P.: Behavior and
colony development of Vespula pensylvanica and Vespula atropilosa (hymenoptera:
Vespidae). Journal of the Kansas Entomological Society 49, 63–84 (1976)

2. Anderson, C., Jadin, J.L.V.: The adaptive benefit of leaf transfer in Atta colombica.
Insectes Sociaux 48, 404–405 (2001)

3. Anderson, C., Ratnieks, F.L.W.: Task Partitioning in Insect Societies. I. Effect
of colony size on queueing delay and colony ergonomic efficiency. The American
naturalist 154(5), 521–535 (1999)

4. Anderson, C., Ratnieks, F.L.W.: Task partitioning in insect societies: novel situa-
tions. Insectes Sociaux 47, 198–199 (2000)

5. Brutschy, A.: Task allocation in swarm robotics. Towards a method for self-
organized allocation to complex tasks. Tech. Rep. TR/IRIDIA/2009-007, IRIDIA,
Université Libre de Bruxelles, Brussels, Belgium (2009)

6. Brutschy, A., Pini, G., Baiboun, N., Decugnière, A., Birattari, M.: The
IRIDIA TAM: A device for task abstraction for the e-puck robot. Tech. Rep.
TR/IRIDIA/2010-015, IRIDIA, Université Libre de Bruxelles, Brussels, Belgium
(2010)

7. Dorigo, M., Sahin, E.: Guest editorial. Special issue: Swarm robotics. Autonomous
Robots 17(2-3), 111–113 (2004)

298 M. Frison et al.

8. Fontan, M.S., Matarić, M.J.: A study of territoriality: The role of critical mass in
adaptive task division. In: From Animals to Animats 4: Proceedings of the Fourth
International Conference of Simulation of Adaptive Behavior, pp. 553–561. MIT
Press, Cambridge (1996)

9. Hart, A.G., Anderson, C., Ratnieks, F.L.W.: Task partitioning in leafcutting ants.
Acta Ethologica 5, 1–11 (2002)

10. Kant, E.: Perpetual Peace: A Philosophical Sketch. Hackett Publishing Company,
Indianapolis (1795)

11. Lein, A., Vaughan, R.: Adaptive multi-robot bucket brigade foraging. In: Bullock,
S., Noble, J., Watson, R., Bedau, M.A. (eds.) Artificial Life XI: Proceedings of
the Eleventh International Conference on the Simulation and Synthesis of Living
Systems, pp. 337–342. MIT Press, Cambridge (2008)

12. Mondada, F., Bonani, M., Raemy, X., Pugh, J., Cianci, C., Klaptocz, A., Magnenat,
S., Zufferey, J.C., Floreano, D., Martinoli, A.: The e-puck, a robot designed for
education in engineering. In: Proceedings of the 9th Conference on Autonomous
Robot Systems and Competitions, Portugal, pp. 59–65, IPCB: Instituto Politècnico
de Castelo Branco (2009)

13. Pinciroli, C.: Object retrieval by a swarm of ground based robots driven by aerial
robots. Tech. Rep. TR/IRIDIA/2007-025, IRIDIA, Université Libre de Bruxelles,
Brussels, Belgium (2007)

14. Pini, G., Brutschy, A., Birattari, M., Dorigo, M.: Interference reduction through
task partitioning in a robotic swarm. In: Filipe, J., Andrade-Cetto, J., Ferrier, J.L.
(eds.) Sixth International Conference on Informatics in Control, Automation and
Robotics – ICINCO 2009, pp. 52–59. INSTICC Press, Setbal (2009)

15. Ratnieks, F.L.W., Anderson, C.: Task partitioning in insect societies. Insectes So-
ciaux 46(2), 95–108 (1999)

16. Shell, D.J., Matarić, M.J.: On foraging strategies for large-scale multi-robot sys-
tems. In: Proceedings of the 19th IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS), pp. 2717–2723 (2006)

17. Traiano, B.: La Bilancia Politica di Tutte le Opere di Traiano Boccalini, Part 2-3.
Kessinger Publishing, Whitefish, Montana, USA (1678)

18. Wagner, D., Brown, M.J.F., Broun, P., Cuevas, W., Moses, L.E., Chao, D.L., Gor-
don, D.M.: Task-related differences in the cuticular hydrocarbon composition of
harvester ants. Pogonomyrmex barbatus. J. Chem. Ecol. 24, 2021–2037 (1998)

Slime Mold Inspired Path Formation Protocol
for Wireless Sensor Networks�

Ke Li1, Kyle Thomas2, Claudio Torres3, Louis Rossi3, and Chien-Chung Shen1

1 Computer & Info. Sciences
2 Chemical Engineering
3 Mathematical Sciences

University of Delaware, Newark, DE, USA
{kli,cshen}@cis.udel.edu, kcthomas@udel.edu, {torres,rossi}@math.udel.edu

Abstract. Many biological systems are composed of unreliable compo-
nents which self-organize efficiently into systems that can tackle complex
problems.One such example is the true slimemoldPhysarum polycephalum
which is an amoeba-like organism that seeks food sources and efficiently
distributes nutrients throughout its cell body. The distribution of nutri-
ents is accomplished by a self-assembled resource distribution network of
small tubeswith varyingdiameter which can evolve with changing environ-
mental conditions without any global control. In this paper, we use a phe-
nomenological model for the tube evolution in slime mold and map it to a
path formation protocol for wireless sensor networks. By selecting certain
evolution parameters in the protocol, the network may evolve toward single
paths connecting data sources to a data sink. In other parameter regimes,
the protocol may evolve toward multiple redundant paths. We present de-
tailed analysis of a small model network. A thorough understanding of the
simple network leads to design insights into appropriate parameter selec-
tion. We also validate the design via simulation of large-scale realistic wire-
less sensor networks using the QualNet network simulator.

1 Introduction

One fundamental design issue in wireless sensor networks (WSNs) is, given an
arbitrary deployment of sensor nodes, how to connect the source nodes to the
sinks so that data collected by the source nodes flow efficiently and reliably to the
sinks. To facilitate such data transfer, a path formation protocol becomes essen-
tial that will determine multi-hop routes between source nodes and sink nodes.
We avoid strategies that rely upon global coordination and optimization because
such approaches will not scale well in large networks or networks where nodes
are added or deleted dynamically, or where connections form or break easily. To
seek sound solutions that rely upon local interactions, we borrow mechanisms
from similar problems in the natural world and adapt them to suit the challenges
of sensor networks. The natural world is full of resource distribution networks
� Preliminary work of the paper appeared as a 2-page poster in the 3rd IEEE Int.

Conf. on Self-Adaptive and Self-Organizing Systems (SASO 2009).

M. Dorigo et al. (Eds.): ANTS 2010, LNCS 6234, pp. 299–311, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

300 K. Li et al.

such as circulatory, respiratory and nervous systems in animals that are elegant
solutions to very specific and complex problems. We draw our inspiration from
true slime mold Physarum polycephalum, a biological system that has properties
more aligned with the requirements of sensor networks. In particular, the dy-
namics of Physarum polycephalum constructs resource distribution networks in
response to environmental conditions. This is distinct from circulatory systems
which are hard-wired for a particular physiology.

Slime mold Physarum polycephalum is a multinuclear, single-celled organism
that has properties making it ideal for the study of resource distribution net-
works [1]. While the organism is a single cell, slime mold can grow to tens of
centimeters in size so that it can be studied and manipulated with modest lab-
oratory facilities. The presence of nutrients in the cell body triggers a sequence
of chemical reactions leading to oscillations along the cell body [5]. Tubes self-
assemble which are perpendicular to the oscillatory waves to create networks
linking nutrient sources throughout the cell body. There are two key mecha-
nisms in the slime mold life cycle that transfer readily to WSNs. First, during
the growth cycle, the slime mold will explore its immediate surroundings with
pseudopodia via chemotaxis to discover new food sources. We have applied this
mechanism successfully to WSNs in a previous work treating data sources and
sinks as singular potentials [2]. In this current work, we exploit the second key
mechanism which is the temporal evolution of existing routes through nonlinear
feedback to efficiently distribute nutrients throughout the organism. In slime
mold, it can be shown experimentally that the diameters of tubes carrying large
fluxes of nutrients grow to expand their capacity, and tubes that are not used
decline and can disappear entirely.In the context of WSNs, the diameter of a
tube may be used to denote the Quality of Service (QoS) of a wireless channel.

To evaluate the merits of path formation, we focus on three metrics that di-
rectly measure the network performance: expected hop count, fault tolerance,
and node degree distribution. The expected hop count denotes the efficiency of
data flow in a network by measuring the expected number of nodes a data packet
must traverse to reach the sink. We compute the expectation because the proto-
col may construct topologies with multiple disjoint routes. The fault tolerance is
a gross indicator of network robustness measured by the probability that a node
failure will disconnect at least one source from the network. Finally, we measure
the node degree distribution for the network as an indicator of connectivity.

This paper is structured as follows. In Section 2, we describe the model of
Tero et al. for solutions of Physarum polycephalum to mazes and map it to the
path formation problems of WSNs. In Section 3, we describe the path formation
protocol based on the slime mold model. In Section 4, we verify our model by
independently computing all possible stationary states and their stability on a
very small network. In Section 5, we perform large scale simulations and measure
the protocol performance with quantitative metrics of expected hop count, fault
tolerance, and node degree distribution as functions of network parameters.

Slime Mold Inspired Path Formation Protocol for Wireless Sensor Networks 301

2 A Phenomenological Model for Slime Mold

We base our path formation protocol for WSNs on the phenomenological model
proposed by Tero et al. for tube evolution in Physarum polycephalum to repro-
duce the slime mold maze solving experiments [3,6]. In recent article on appli-
cations of their slime-inspired algorithm, Tero et al. independently acknowledge
the suitability of this type of model for sensor networks [7]. The model captures
the evolution of tube capacities in an existing network through a dynamical sys-
tem as follows. The original model consists of a set of nodes representing either
a food source or a junction in the maze connected by a set of edges. Along each
edge, the flow of nutrients from node i to node j is represented as qij , which
is directional and qij = −qji. Flow through the network is driven by a pres-
sure at each node pi. The cross-sectional size of each tube is represented by Dij

(Dij = Dji). At each node, a Kirchhoff law is required to enforce conservation
of nutrient flux at each junction. All above variables evolve in time as follows:

qij =
Dij

Lij
(pi − pj), (1a)∑

j∈Ni

qij =mi, (1b)

dDij

dt
=f (|qij |) − rDij , (1c)

where Lij is the length of the tube, Ni represents the set of neighbors for node
i, mi is the amount of nutrient flux into the network from i, f(x) is either an
exponential or sigmoidal function describing the rate of growth of the tube size
in response to nutrient flow rate, and r is a tube size linear decay rate. The
system (1) contains a continuity equation (Kirchhoff Law) (1b) balancing the
flow out of a node with the source value. In Tero et al. [6], nutrient sources were
designated to be mi = 1 at the entrance or mi = −1 at the exit to drive flow
through a maze. At junctions within the maze, mi = 0.

We use the Tero model as a foundation for the path formation protocol for
WSNs. While the distinction of identical nutrient sources as either mi = +1 or
mi = −1 in the slime mold seems arbitrary, this aspect of algorithm maps well to
WSNs which have sensors that are data sources and sinks that represent highly
capable nodes collecting source data. The set Ni of neighbors denotes the set of
nodes within the transmission radius of node i. Thus, there is a communication
link between node i and all members of Ni. In the proposed protocol, we assume
symmetric links with all identical transmission radii. While the tube length Lij

could be a useful tuning parameter mappable to special restrictions on network
connections, we do not pursue these issues in this paper and simply assume equal
Lij ’s throughout the network. We represent f(x) as sigmoid function slightly
differently from Tero et al. as

f(x) = rDmax
a|x|μ

1 + a|x|μ , (2)

302 K. Li et al.

Δ t
sync

Δ t
sync

Δ t
sync

Δ t
sync

Δ t
sync

Δ t
sync

Δ t
sync

Δ t
sync

Δ t
sync

Solve ODE

Solve for p

1

t=0

Solve ODE

Solve for p

Send p , D

Node 1 time

t=0

Sen
d

p
 ,

 D

2 2

Real time

Node 2 time

1

2

Send p , D
1

Sen
d

p
 ,

 D

12

21 21

12

Fig. 1. Schematic diagram of local computation followed by synchronization of protocol
variables. Nodes 1 and 2 perform computations independently within a fixed cycle of
Δtsync, and share information afterward.

where Dmax specifies the upper limit on Dij ’s. The exponent μ plays a critical
role in the behavior of this model, which will be discussed later. The parameter a
describes the shape of the sigmoid and has little impact on network performance.
Without loss of generality, we simply select all Lij ’s, r, Dmax, and a to be 1
when calculating numerical solutions to the model as well as simulating the
path formation protocol.

Like ant colony optimization (ACO), the slime mold model includes dynamic
positive and negative feedback mechanisms (1c). The key distinction is that the
model permits nearly simultaneous coordination through flow continuity (1a,1b),
which provides both the advantage that more information is available, and the
disadvantage that the pressure equation must be solved iteratively as will be
discussed in Section 3.2. The solution to this system may be used to move data
from sources to data sink(s) in WSNs following a multi-path routing scheme. The
outward fluxes from a node i guide how packets are routed through the network.
If we denote Oi to be the subset of k ∈ Ni such that qik > 0, Oi then represents
the next-hop neighbors of node i on a route toward the sink. We define the ratio

wij =
qij∑

k∈Oi
qik

. (3)

If node i has C data packets to send, Cwij packets (rounding as necessary) would
be sent to node j for each j ∈ Oi. While the wij ’s do not necessarily represent
probabilities, we could pose a stochastic routing protocol by routing each packet
arriving at node i to node j with probability wij .

3 Protocol Description

Although model (1) is globally coupled via the pressure field, the inspired path
formation protocol solves the model in a distributed manner. Each node i main-
tains its local states of own pressure pi, perceived neighbor pressures pj’s, and

Slime Mold Inspired Path Formation Protocol for Wireless Sensor Networks 303

tube size Dij ’s for all j ∈ Ni. We initialize pressures uniformly as 1.0 (except for
the sink as 0), withDij ’s randomly selected between 0 andDmax. Each node then
performs local computations in a fixed cycle of Δtsync, solving model (1b,1c) for
pressure and link diameters. At the end of each Δtsync cycle, a node broadcasts
its latest computing results to neighbors, which allows globally coupled infor-
mation to propagate across the network. Meanwhile, each node keeps updating
perceived neighbor pressures to be used in future local computation. The loop of
local computation followed by states synchronization at fixed interval of Δtsync
is demonstrated in Figure 1. Notice that the localized path formation protocol
solves model (1) cooperatively among neighboring nodes and in real time with-
out explicit clock synchronization across the network. All that is required is that
clocks run forward at approximately the same rate in every node.

3.1 Local Data Structures

Each node i locally maintains a node type (nodeType i), a net flux (netFlux i), a
pressure value (pi), and a neighbor table (nTabi). The value of nodeType i could
be SINK, SOURCE, or OTHER (as potential relays). The netFlux i specifies the
pure flux mi flowing out of node i into the network, which is positive at any data
source, negative at the data sink, and zero at any other node. The pressure value
of each node other than the sink starts with 1.0 and evolves based on model (1),
while the sink’s pressure remains 0 at all time. The neighbor table entry nTabi(j)
corresponds to the 1-hop neighbor j of node i, with the form of 〈pj , Dij , qij , Lij〉.
The neighbor table keeps track of local dynamics of the evolving system and thus
forms the basis for solving model (1).

3.2 Local Computation

Between synchronizations of pressures and link diameters with neighbors, each
node i performs local computation in R rounds to solve model (1) for pressure pi,
neighbor link flux qij ’s, and diameter Dij ’s, based on the following mathematical
methods.

To solve for pi locally, we substitute the flow model (1a) into the pressure
equation (1b):

pi ←
mi +

∑
j∈Ni

Dij

Lij
pj∑

j∈Ni

Dij

Lij

. (4)

Similar to the Jacobi algorithm for solving diagonally dominant linear systems,
the above method of solving Kirchhoff law (1b) in terms of pressure is translation
invariant, meaning that one can take a pressure solution and add the same
constant to all pressures to obtain another solution. Therefore, we fix the pressure
to be 0 at the sink node which does not satisfy Kirchhoff’s law. Conservation
of flux is already imposed and fixing the pressure at the sink node guarantees a
unique pressure solution. With (1b) satisfied at all nodes except for the sink, we

304 K. Li et al.

then numerically solve the evolution equation for Dij iteratively using the first
order implicit scheme proposed by Tero:

Dn+1
ij =

Dn
ij +Δtf(|qn

ij |)
1 +Δtr

, (5)

where the fluxes qij are determined from the solved pressures pi, Δt is the
duration of one discrete time step (or iteration), and Dn

ij is the value of Dij at
the nth iteration.

Each round of the local computation works as follows. First, every node i ex-
cept for the sink calculates its pressure pi by solving the linear equation (Kirch-
hoff’s law), given neighbors’ pj ’s and Dij ’s based on (4), while the sink remains
zero pressure as the minimum pressure level. Next, for each of its neighbor j,
node i determines the corresponding flux qij with the freshly calculated pi. Then
it solves the adaptive system (1c) for Dij based on (5) in S iterations, with each
iteration’s result based on the previous one and fed into the next. Since each
iteration signifies Δt time, the total time for R rounds of S iterations is thus
T = R× S ×Δt before the next synchronization. We require that Δtsync ≥ T .

3.3 Synchronization

Before each cycle of local computation, every node i shares its pressure pi and
synchronizes Dij ’s with neighbors by broadcasting a one-hop synchronization
(Sync) packet. The Sync packet contains the sender’s id and current pressure,
together with the latest neighbor-diameter table, including the total number of
entries (#entries) followed by each entry 〈nj , Did,nj 〉. In particular,Did,nj repre-
sents the diameter of link to its neighbor nj , retrieved from the sender’s neighbor
table. The initial synchronization also serves as a hello packet for neighbor dis-
covery, whose neighbor-diameter table is empty with #entries == 0.

Upon receiving a Sync packet, each node tries to synchronize its neighbor
table in terms of neighbor pressure and link diameter based on information from
the packet. In case of the first time to hear from sender j, node i will insert
in its neighbor table a new entry for j. Specifically, Dij in the new entry is
either assigned as the corresponding Dji from the packet’s neighbor-diameter
table if it exists, or otherwise initialized as a random value rand(i + j) within
[0, Dmax]. Notice that the latter case applies when receiving the initial batch of
Sync packets which also serve for neighbor discovery, and the random diameter
uniquely dependent on (i+j) ensures that Dij = Dji at the start. In case sender
j already exists in node i’s neighbor table, pj is updated and Dij synchronized
as the mean of itself and Dji from the packet.

3.4 Issue of Asymmetric Neighborhood

Due to unreliability of wireless communications, synchronization packets may
get lost or corrupted. This is annoying when lost packets assist in neighbor
discovery, which could cause “asymmetric neighborhood”, e.g., node i can hear
(sometimes) from node j thus recording j in its neighbor table and counting pj

Slime Mold Inspired Path Formation Protocol for Wireless Sensor Networks 305

q(0.40,0.40)

n2
p(1.69,1.69)

D(0.31,0.31)
n3

p(1.03,1.03)

q(0.20,0.20)
D(0.31,0.31)

n4
p(1.69,1.69)

D(0.47,0.47)
q(0.80,0.80)
D(0.47,0.47)

D(0.38,0.38)

q(0.80,0.80)

n1
p(0.00,0.00)

q(0.20,0.20)

D(0.50,0.50)

D(0.00,0.00)
q(0.00,0.00)

p(2.00,2.00)

p(0.00,0.00)

n4n3

n1

q(0.00,0.00)
D(0.00,0.00)

q(0.00,0.00)
D(0.00,0.00)

q(1.00,1.00) q(1.00,1.00)
D(0.50,0.50)

p(0.22,1.24)p(2.00,2.00)

n2

(a) (b)

Fig. 2. Comparison between steady states from numerical solutions (left value) and
QualNet simulations (right value) on the 4-node network under different μ values. (a)
μ = 0.5, (b) μ = 2.

andDij during its local computations, while node j could not receive successfully
from i thus never taking i as its neighbor. This problem is aggravated when node
i decides through local computation to send majority of its outgoing flux to its
seeming neighbor j, while node j is ignorant of the large flux from node i,
which could potentially disrupt the global flow continuity (1b) and render the
protocol unable to converge. Asymmetric neighborhood becomes widespread as
the number of nodes within transmission range increases which causes severer
channel contentions.

Although packet loss may be mitigated via MAC layer schemes like random
jitters, it could never be eliminated as long as the channel is unreliable. We
take an alternative approach to contain the bad effect of packet loss so as to
prevent the asymmetric neighborhood, by introducing the neighborhood thresh-
old (neighThresh). Every node tracks the number of Sync packets sent out
(#pktSent), as well as received from each neighbor (#pktRcvdt) recorded within
each neighbor entry of its neighbor table. During local computation, nodes only
consider “true” neighbors that satisfy:

#pktRcvd > #pktSent × neighThresh (6)

where neighThresh ∈ [0, 1], and needs to be carefully selected. In practice, the
neighborhood threshold is usually chosen within [0.5, 1] — The more contentions
or worse channel quality, the bigger the threshold used. The basic rationale of
this approach is the assumption that the channel quality between two nodes is
roughly symmetric when both nodes transmit using the same power within a
short time period.

4 Validation with Stability Analysis

4.1 Validation

To validate the path formation protocol, we systematically studied the stationary
solutions of the dynamical system (1) on a 4-node small network, and compared

306 K. Li et al.

exact numerical solutions with results from distributed calculations in realistic
QualNet [4] simulations. Details on calculating exact solutions are discussed in
Section 4.2.

The 4-node network consists of one sink n1, two sources n2 and n4 each
with 1 unit of flux to be sent to the sink, and one potential relay n3, with
network layout shown in Figure 2. By numerically solving the model, we found
9 steady states for μ = 0.5 (demonstrated in Figure 3 inside ovals), and 6 for
μ = 2.We ran QualNet simulations under same set of parameters with different
random seeds. For μ = 0.5, all trials converged to the same single steady state
shown in Figure 2(a), the reason of which will be discussed in Section 4.2. For
μ = 2, different steady states were found by simulations. Figure 2 compares
one corresponding steady state between the solution of numerical method and
QualNet simulation for each μ value. We find that the exact numerical solutions
and the realistic QualNet simulation results agree on Dij ’s and qij ’s. So do they
on almost all pressure p values except for node n3 when μ = 2, in which state
both sources n2 and n4 send all fluxes directly to the sink n1 without passing
through n3. Therefore n3 has the “freedom” of choosing any positive value as
pressure, since it will not be used for relay. This “freedom” doesn’t impact the
protocol because it only happens when the flux through the node is zero. From
the mathematical point of view, this case corresponds to the existence of a
nontrivial, homogeneous solution when we solve (1a) and (1b) for the pressure.

4.2 Linear Stability Analysis

To understand the stability of solutions to model (1), we analyze solutions to
the nonlinear system of equation F(Dij) = f (|qij |) − rDij = 0 when setting
dDij

dt = 0 in (1). The stationary solution to F(Dij) = 0 is defined as an im-
plicit nonlinear system, where the implicit part (qij) is obtained by solving a
nested linear system for pressure values using system (1). After calculating so-
lutions to F(Dij) = 0, we then compute the Jacobian matrix

[
∂Fij

∂Dkl

]
evaluated

at the stationary point of interest. The eigenvalues and eigenvectors of each so-
lution determine the stability of the system. If all eigenvalues are negative, the

Fig. 3. Stability diagram for the 4-node network with μ = 0.5. The topology of each of
these 9 steady solutions is shown inside the oval, with solid lines indicating links with
Dij �= 0 and dotted lines for links with Dij = 0. Each pair of arrows represents the
growth of a small positive and negative amplitude perturbation along an eigenvector.

Slime Mold Inspired Path Formation Protocol for Wireless Sensor Networks 307

solution is a stable steady state. Otherwise when there are any positive eigenval-
ues, the solution is unstable, which will evolve to a different steady state, with
the linear evolution described by the eigenvector corresponding to the positive
eigenvalue.

The complete understanding of small problems gives us useful insights into
how parameter values affect the behavior of the whole network. In particular,
the parameter μ dominates the evolution of links in the network. Generally
speaking, for μ = 2 (in general μ > 1) all single route solutions with positive
Dij values are stable. On the other hand, for μ = 0.5 (in general μ < 1) only the
solution where all links are used is stable, which corresponds to the single steady
state reached by QualNet simulations. Since there are both stable and unstable
numerical solutions when μ = 0.5, we also built the stability diagram over all 9
solutions shown in Figure 3, where the perturbations were computed using the
eigenvectors related to the positives eigenvalues. We find that for μ = 0.5 the
initialization does not affect the final stable state at all, which should always
be the all-link solution illustrated by Figure 2(a). This mathematical analysis
also explains why all QualNet simulations converged to this stable solution when
μ = 0.5. Finally, these general properties transfer to larger networks.

5 QualNet Simulation

We performed QualNet simulations on 100 and 300-node networks with one
sink and varying numbers of sources. All nodes were random distributed over a
terrain of size 1000×1000 m2. Each node in the network was equipped with a
radio transceiver capable of transmitting signals up to approximately 80 meters.
The underlying wireless channel had a data rate of 2 Mbps, using the two-ray
path loss model without fading. IEEE 802.11 DCF was used as the MAC layer
protocol, and IP as the network layer on top of which our protocol ran. No
application traffic was employed since the sole purpose was to connect source
nodes to the data sink. The neighborhood threshold is 0.8 to avoid neighborhood
asymmetry. For each cycle of local computation, the number of round R = 10,
iteration S = 1, and Δtsync = 0.01 sec. The following three quantitative metrics
are designed to measure qualities of resulting network connectivity under μ = 0.5
and μ = 2 with different portions of sources:

– Expected hop count: indicates the efficiency of the connectivity in terms
of hop count distance between a source and the sink. The smaller the hop
count, the higher the efficiency. Let W = [wij]

T be the Markov transition
matrix with wij defined in Equation (3). Let el be a unit vector consisting
of all zeros except at element l. Then Wel is a vector whose jth element
denotes the probability of a data packet starting from node l and arriving
at node j in one hop. Similarly, W kel is a vector of probabilities for k hops.
Therefore, the expected hop count from source node l to sink node s is

E(l, s) =
∞∑

k=1

kW kel. (7)

308 K. Li et al.

Table 1. Fault tolerance of a 300-node network with 1 sink and varying numbers of
sources

source 10% 20% 30% 40% 50%
μ 0.5 2 0.5 2 0.5 2 0.5 2 0.5 2
1-fault 1 .9851 .9916 .9874 .9856 .9761 .9832 .9609 .9799 .9530
2-fault .9998 .9700 .9826 .9739 .9709 .9616 .9659 .9222 .9595 .9070

– Fault tolerance: indicates the robustness of the connectivity. We define the
x-fault tolerance to be the probability that removing x relay nodes will not
yet result in any source being disconnected from the sink. The higher the
probability, the better the robustness.

– Degree distribution: defines P (d) as the probability of a node in the
network having a degree of d. The presence of a small number of high degree
nodes may indicate a greater dependence on a few “gateway nodes” for
network connectivity.

Figure 4 shows snapshots of steady state connectivity under μ = 0.5 and μ = 2
over a 100-node randomly generated network with one data sink and three data
sources. Figure 5 depicts a 300-node network with one data sink and thirty
data sources. The width and color of a link signify the value of corresponding
flow qij . The arrow of the link shows the direction of the flow. We find that
the network with μ < 1 (e.g., μ = 0.5) evolves towards multi-route robust
connectivity, whereas the network with μ > 1 (e.g., μ = 2) evolves into single-
route efficient topology. This verifies that the exponent μ is a critical parameter

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) (b)

Fig. 4. Steady states obtained by QualNet for a 100-node network, including 1 sink
(the star near the center) and 3 sources (the bold circles) with link color and width
signifying the flux value under (a) μ = 0.5 and (b) μ = 2

Slime Mold Inspired Path Formation Protocol for Wireless Sensor Networks 309

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1

2

3

4

5

6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1

2

3

4

5

6

(a) (b)

Fig. 5. Steady states obtained by QualNet for a 300-node network, including 1 sink
(the star near the center) and 30 sources under (a) μ = 0.5 and (b) μ = 2

0 5 10 15 20
μ=0.5

0

5

10

15

20

μ=
2

10% sources
20% sources
30% sources
40% sources
50% sources

Expected hop count

Fig. 6. Expected hop count for a 300-node network with 1 sink and 10% to 50% sources.
Each point corresponds to two expected number of hops between one of the sources
and the sink, with x-coordinate for μ = 0.5 and y-coordinate for μ = 2.

for balancing efficiency and robustness by determining whether a single route or
multiple routes are created between sources and the sink.

Figure 6 reflects the efficiency of connectivity for a 300-node network with one
sink and 10% to 50% of sources, with each data point signifying two expected
hop counts between one source and the sink defined in (7) for μ = 0.5 (x-
coordinate) and μ = 2 (y-coordinate). Although all points spread close to the
diagonal, many lie below the diagonal towards the x-axis of μ = 0.5, implying
that the robustness provided by μ = 0.5 comes at the cost of increased hop
counts. Linear regression of the data shows that μ = 0.5 requires approximately

310 K. Li et al.

1 2 3 4 5 6 7 8 9 10 11
0

0.1

0.2

0.3

0.4

0.5

Node Degree (d)

P
(d

)

μ = 0.5
μ = 2

1 2 3 4 5 6 7 8 9 10 11
0

0.1

0.2

0.3

0.4

Node Degree (d)

P
(d

)

μ = 0.5
μ = 2

1 2 3 4 5 6 7 8 9 10 11
0

0.1

0.2

0.3

0.4

Node Degree (d)

P
(d

)

μ = 0.5
μ = 2

(a) (b) (c)

Fig. 7. Distribution of node degree for (a) 10%, (b) 30%, and (c) 50% sources on a
300-node network with 1 sink

10% more hops than μ = 2. Table 1 presents the 1 and 2-fault tolerances for the
same networks, showing that μ = 0.5 achieves better robustness against node
failure than μ = 2, and that the network becomes less fault tolerant with more
sources added. Figure 7 presents the distribution of node degree. As we would
expect, μ = 0.5 leads to a higher proportion of high degree nodes in a multi-route
connectivity, whereas μ = 2 leads to a greater proportion of low degree nodes in
a single-route topology. The distinction blurs as more sources join the network.

6 Conclusion

In this paper, we design a slime mold inspired, self-organizing path formation
protocol for WSNs. The localized protocol is effective in iteratively solving the
underlying mathematical model which is globally coupled through the pressure
field. The critical parameter μ controls whether single (μ > 1) or multi-route
(μ < 1) connections emerge. We validate the protocol through linear stability
analysis on a small model network, as well as via simulations on large realistic
WSNs with one sink and varying numbers of sources. Future work will focus
on extending the protocol to deal with real network traffic, exploring Lij as a
measure of link quality, and modifying the biologically inspired model to address
WSNs with coordinated routing to multiple sinks.

Acknowledgements. This work is supported in part by National Science Foun-
dation under grants CCF-0726556 and CNS-0347460.

References

1. Ben-Jacob, E., Cohen, I.: Cooperative organization of bacterial colonies: From geno-
type to morphotype. Annual Review of Microbiology 52, 779–806 (1998)

2. Li, K., Thomas, K., Rossi, L.F., Shen, C.C.: Slime-mold inspired protocol for
wireless sensor networks. In: Proc. of the 2nd IEEE International Conference on
Self-Adaptive and Self-Organizing Systems (SASO), pp. 319–328. IEEE Press, Los
Alamitos (2008)

Slime Mold Inspired Path Formation Protocol for Wireless Sensor Networks 311

3. Nakagaki, T., Yamada, H., Toth, A.: Maze-solving by an amoeboid organism. Na-
ture 407(6803), 470–470 (2000)

4. Scalable Network Technologies, Inc.: QualNet Simulator,
http://www.scalable-networks.com

5. Stewart, P.A.: The organization of movement in slime mold plasmodia. In: Primitive
Motile Systems in Cell Biology, pp. 69–78. Academic Press, London (1964)

6. Tero, A., Kobayashi, R., Nakagaki, T.: A mathematical model for adaptive transport
network in path finding by true slime mold. J. Theor. Biol. 244, 553–564 (2007)

7. Tero, A., Takagi, S., Saigusa, T., Ito, K., Bebber, B.P., Fricker, M.D., Yumiki, K.,
Kobayashi, R., Nakagaki, T.: Rules for biologically inspired adaptive network design.
Science 327, 439–442 (2010)

http://www.scalable-networks.com

Solving the Multi-dimensional Multi-choice
Knapsack Problem with the Help of Ants

Shahrear Iqbal, Md. Faizul Bari, and M. Sohel Rahman

A�EDA Group
Department of Computer Science and Engineering

Bangladesh University of Engineering and Technology
Dhaka-1000, Bangladesh

{shahreariqbal,faizulbari,msrahman}@cse.buet.ac.bd

Abstract. In this paper, we have proposed two novel algorithms based
on Ant Colony Optimization (ACO) for finding near-optimal solutions
for the Multi-dimensional Multi-choice Knapsack Problem (MMKP).
MMKP is a discrete optimization problem, which is a variant of the
classical 0-1 Knapsack Problem and is also an NP-hard problem. Due
to its high computational complexity, exact solutions of MMKP are
not suitable for most real-time decision-making applications e.g. QoS
and Admission Control for Adaptive Multimedia Systems, Service Level
Agreement (SLA) etc. Although ACO algorithms are known to have
scalability and slow convergence issues, here we have augmented the tra-
ditional ACO algorithm with a unique random local search, which not
only produces near-optimal solutions but also greatly enhances conver-
gence speed. A comparative analysis with other state-of-the-art heuristic
algorithms based on public MMKP dataset shows that, in all cases our
approaches outperform others. We have also shown that our algorithms
find near optimal (within 3% of the optimal value) solutions within mil-
liseconds, which makes our approach very attractive for large scale real
time systems.

1 Introduction

The classical 0–1 Knapsack Problem (KP) is to pick up items for a knapsack
to maximize the total profit, satisfying the constraint that, the total resource
required does not exceed the resource constraint R of the knapsack. This prob-
lem and its variants are used in many resource management applications such as
cargo loading, industrial production, menu planning, and resource allocation in
multimedia servers [16]. The Multi-dimensional Multiple-choice Knapsack Prob-
lem (MMKP) is a variant of the classical 0–1 KP. Here we have n groups of
items. Group i has �i items. Each item of the group has a particular value
and it requires m resources. The objective of the MMKP is to pick exactly one
item from each group for maximum total value of the collected items, subject
to m resource constraints of the knapsack. In mathematical notation, let vij

and −→rij = (rij1, rij2, . . . , rijm) be the value (profit) and required resource

M. Dorigo et al. (Eds.): ANTS 2010, LNCS 6234, pp. 312–323, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Solving the MMKP with the Help of Ants 313

vector of the object oij , i.e., j-th item of the i-th group. Also assume that
−→
R = (R1, R2, . . . , Rm) be the resource bound of the knapsack. Now, the
problem is to

maximize

n∑
i = 1

�i∑
j = 1

xijvij (objective function),

subject to

n∑
i = 1

�i∑
j = 1

xijrijk ≤ Rk (resource constraints)

where k = 1, 2, . . . , m, xij ∈ {0, 1} are the picking variables, and for all
i ∈ 1 to n,

∑li
j=1 xij = 1.

Fig 1 illustrates an MMKP. We have to pick exactly one item from each group.
Each item has two resources, r1 and r2. Clearly we must satisfy

∑
(r1 of picked

items) ≤ 17 and
∑

(r2 of picked items) ≤ 15 and maximize the total value of the
picked items. Notably, it may happen that no set of items satisfying the resource
constraints exists implying that no solution will be found.

In this paper, we have described two new algorithms for solving MMKPs.
These algorithms are based on Ant Colony Optimization (ACO), which is a
recently developed, population-based stochastic meta-heuristic [5,6]. ACO has
been successfully applied to solve several NP-hard combinatorial optimization
problems [4,21], such as traveling salesman problem [7,6], vehicle routing prob-
lem [9], and quadratic assignment problem [10,18].

This meta-heuristic belongs to the class of problem-solving strategies derived
from nature. The ACO algorithm is basically a multi-agent system where low
level interactions among the agents (i.e., artificial ants) result in a complex be-
havior of the whole ant colony. The basic idea of ACO is to model the problem
under consideration as a searching problem, where a minimum cost path in a
graph is searched; the artificial ants are employed to search for good paths. The
pheromone trails are a kind of distributed information which is modified by the

Fig. 1. Multi-dimensional Multiple-choice Knapsack Problem (figure borrowed
from [1])

314 S. Iqbal, M.F. Bari, and M.S. Rahman

ants to reflect their experience accumulated during the problem solving. This
substance influences the choices they make: the larger the amount of pheromone
is on a particular path, the larger is the probability that an ant would select the
path. Additionally these pheromone trails progressively decrease by evaporation.
Intuitively, this indirect stigmergetic communication mean aims at giving infor-
mation about the quality of path components in order to attract ants, in the
following iterations, towards the corresponding areas of the search space.

MMKP has received significant amount of attention in the literature mostly
motivated by capital budgeting, multimedia applications etc. There exist a num-
ber of heuristics in the literature for solving MMKP. Khan [16] proposed an al-
gorithm named HEU, using the idea of aggregate resource consumption. In [15],
a modified version of HEU named M-HEU was presented, which provides so-
lutions with total value on average equal to 96% of the optimum. In [1] the
authors presented a convex hull based heuristic called C-HEU, which is very
fast and achieves optimality between 88% and 98%. Hifi et al. [12] proposed a
guided local search-based heuristic and later improved upon it to achieve a “re-
active” local search-based (RLS) algorithm [11]. Hernndez and Dimopoulos [20]
also proposed a new heuristic for MMKP.

For solving MMKP with ACO, the most important design choice lies in de-
ciding which component of the problem should be regarded as the pheromone
depositing component. Here we have laid pheromone trails on each object se-
lected in a solution. Essentially, the idea is to increase the desirability of each
object selected in a feasible solution: during the constructing of a new solution,
these objects will be more likely to be selected. The contributions of this paper
are as follows.

We present two novel ACO based algorithms for solving MMKP. Both of
these algorithms produce comparable results with the current state-of-the-art
heuristic algorithms. To the best of our knowledge, this work is the first attempt
to solve MMKP using ACO. An interesting aspect of our algorithm is the in-
troduction of a novel and unique random local search algorithm for improving
the solutions generated by the ant colony. This process, coupled with the nat-
ural behavior of the artificial ants produces near-optimal solutions and greatly
enhances convergence speed of the ant colony.

The rest of the paper is organized as follows. Section 2 gives a brief description
of ACO algorithms for solving the multi-dimensional knapsack problem (MKP),
a related variant of KP. We present our main contribution in Section 3, where we
describe our algorithms for solving MMKPs. Section 4 presents the experimental
results along with an insightful discussion on the experimental results. Finally
we briefly conclude in Section 5.

2 ACO and Multi-dimensional KP

As has already been mentioned we did not find any ACO based algorithm to
solve MMKP in the literature. However there exist a number of ACO based
solution for a more restricted variant of KP, namely MKP [17,8,2]. In MKP

Solving the MMKP with the Help of Ants 315

resources have multiple dimensions as in MMKP; however there is no concept
of group in MKP. As a result, MKP can be thought of as a restricted version of
MMKP, which has all objects in a single group. The algorithms of [17,8,2] differ in
deciding which component of the problem should be regarded as the pheromone
depositing component and in the mechanisms of pheromone updating:

1. Pheromone Trails on Each Object: The first way is to lay pheromone
trails on each object belonging to the current solution set [17]: the amount
of pheromone represents the preference of the object.

2. Pheromone Trails on Each Pair: In this case, pheromone trails are laid
on each pair (oi, oj) of successively selected objects of the solution set [8]:
the idea is to increase the desirability of choosing object oj when the last
selected object is oi.

3. Pheromone Trails on All Pair: The third one is to lay pheromone trails
on all pairs of different objects of the solution set [2]. Here, the idea is to
increase the desirability of choosing simultaneously two objects of S.

4. Pheromone Diffusion Model: The forth approach follows the same princi-
ple as the first one. Additionally it uses a pheromone diffusion scheme where
pheromone trails are laid on objects that tend to occur together in previous
solutions [14].

These approaches also differ in the way local heuristic information is defined.
We are particularly interested in the dynamic local heuristic information used
by [2,17,14] as defined below. Let Sk be the set of the selected objects at the
k-th Iteration. For each candidate object j, the heuristic information ηSk

(j) is
given as follows:

ηSk
(j) =

vj∑m
i = 1 rij/dSk

(i)
(1)

where,

dSk
(i) = Ri −

∑
t ∈ Sk

rit (2)

Since Sk will be changed from step to step, the heuristic information is dynamic.
we will be using a variation of above heuristic.

3 Description of the Proposed Algorithm

We have proposed two variation of the ACO algorithm for solving MMKPs
namely AntMMKP-Random and AntMMKP-TopDb. Both of the algo-
rithm select groups randomly but the latter maintains a list of top k best so-
lutions in order to direct the ants to a better area of the search space. They
particularly follow the MIN-MAX Ant System [22], where explicit lower and
upper bounds on pheromone values are imposed i.e. τmin < τ < τmax, and all
pheromone trails are initialized to τmax. Below we describe these two algorithms
in greater details.

316 S. Iqbal, M.F. Bari, and M.S. Rahman

3.1 Variation 1: AntMMKP-Random

This algorithm is described in Algorithm 1. At each cycle of this algorithm, k
ants are used to build individual solutions. Each ant constructs a solution in
a step by step manner. At first a group from the set of candidate groups is
selected at random. All objects that violate resource constraints, are removed
from this group. Then, the object with the highest probability (according to
equation 5 below) is added to the solution. The probability of an object being
selected depends on the amount of pheromone deposited on the object so far
and its local heuristic value. The candidategroups data structure maintains a
list of feasible candidate groups which can be considered next. After each ant
has constructed a solution, the best solution of that iteration is identified and
a random local search procedure and a random item swap procedure is applied
to improve it. Then pheromone trail is updated according to the best solution.
The algorithm stops either when an ant has found an optimal solution (when
the optimal bound is known), or when a maximum number of cycles has been
performed.

Algorithm 1. Algorithm AntMMKP-Random
Initialize pheromone trails to τmax

repeat
Solution Sglobalbest ⇐ ∅
for each ant k in 1 . . . nants do

Solution Siterbest ⇐ ∅
candidategroups ⇐ all the groups
while candidategroups �= ∅ do

Cg ⇐ Randomly select a group from candidategroups
Candidates ⇐ {oi ∈ objects in Cg that do not violate resource constraints}
update local heuristic values
Choose an object oi ∈ Candidates with probability PSk

(oi)
Sk ⇐ {Sk ∪ oi}
remove Cg from candidategroups

end while
if profit(Sk) > profit(Siterbest) then

Siterbest ⇐ Sk

end if
end for
Siterbest ⇐ RandomLocalSearch(Sk)
Siterbest ⇐ RandomItemSwap(Sk)
if profit(Sglobalbest) < profit(Siterbest) then

Sglobalbest ⇐ Siterbest

end if
Update pheromone trails w.r.t Siterbest

if pheromone value is lower than τmin then
set pheromone ⇐ τmin

end if
if pheromone value is greater than τmax then

set pheromone ⇐ τmax

end if
until maximum number of ycles reached or optimal solution found

Pheromone Trails. To solve MMKPs with ACO, the key point is to decide
which components of the constructed solutions should be rewarded, and how to
exploit these rewards when constructing new solutions. A solution of a MMKP
is a set of selected objects S = {oij |xoij = 1} (i.e., an object oij is selected if

Solving the MMKP with the Help of Ants 317

the corresponding decision variable xij has been set to 1). Given a constructed
solution S = {oi1j1 , . . . , oinjn}, pheromone trails are laid on each objects selected
in S. So pheromone trail τij will be associated with object oij .

Pheromone Updating. Once each ant has constructed a solution, pheromone
trails laying on the solution objects are updated according to the ACO meta-
heuristic. First, all amounts are decreased in order to simulate evaporation. This
is done by multiplying the quantity of pheromone laying on each object by a
pheromone persistence rate (1 − ρ) such that 0 ≤ ρ ≤ 1.

Then, pheromone is increased for all the objects in the best solution of the
iteration. More precisely, let Siterbest be the best solution constructed during
the current cycle. Then the quantity of pheromone increased for each object
is determined by the function G(Siterbest) = Q.profit(Siterbest), where Q =

1∑
n
j=1 Pj

and profit(Siterbest) =
∑

oij∈Siterbest
vij .

Algorithm 2. Algorithm for Random Local Search
procedure RandomLocalSearch(S)
Input: a solution Sk

Output: an improved solution Sk or input if no improvemnt found

for a prespecified number of times do
Cg ⇐ Randomly select a group
for each object oi ∈ Cg other than the one in Sk do

Stmp ⇐ include oi removing the object selected in Cg

if Stmp not violates any resource constraints then
if profit(Sk) < profit(Stmp) then

Sk ⇐ Stmp

end if
end if

end for
end for

return Sk

Heuristic Information. The heuristic factor ηSk
(Oij) also depends on the

whole set Sk of selected objects. Let cSk
(l) =

∑
Oij∈Sk

rijl be the consumed
quantity of the resource l when the ant k has selected the set of objects Sk. And
let dSk

(l) = Rl − cSk
(l) be the remaining capacity of the resource l. We define

the following ratio:

hSk
(Oij) =

m∑
l = 1

rijl/dSk
(l) (3)

which represents the tightness of the object Oij on the constraints l relatively to
the constructed solution Sk. Thus, the lower this ratio is, the more the object is
profitable. We integrate the profit of the object in this ratio to obtain a pseudo-
utility factor. We can now define the heuristic factor formula as follows:

ηSk
(Oij) =

vij

hSk
(Oij)

(4)

318 S. Iqbal, M.F. Bari, and M.S. Rahman

Constructing a Solution. When constructing a solution, an ant starts with an
empty knapsack. At the k-th construction step (k ≥ 1), an ant randomly selects
a group and remove all the bad Candidates that violates resource constraints. It
then updates the local heuristic information of the remaining candidate objects
of the group and selects an object according to the following probability equation:

ρSk(Oij) =
[τSk

(Oij)]α.[ηSk
(Oij)]β∑

Oij∈Candidates[τSk
(Oij)]α.[ηSk

(Oij)]β
(5)

Here Candidates are all items from the currently selected group which do not
violate any resource constraints. The construction process stops when exactly
one item is chosen from each group.

Algorithm 3. Algorithm for Random Item Swap
procedure RandomItemSwap(S)
Input: a solution Sk

Output: an improved solution Sk or input if no improvemnt found

for a prespecified number of times do
for j = 1 to NUMBER-OF-ITEM-TO-FLIP do

Cg ⇐ Randomly select a group
Oi ⇐ Randomely select an item from Cg

Stmp ⇐ include oi removing the object selected in Cg

end for
if Stmp not violates any resource constraints then

if profit(Sk) < profit(Stmp) then
Sk ⇐ Stmp

end if
end if

end for
return Sk

Random Local Search. Random Local search described in Algorithm 2 is an
exhaustive search within a group to improve the solution. It replaces current
selected object of a group with every other object that do not violate resource
constraints and checks if it is a better solution. The total procedure is repeated
a number of times, each time for a random group.

Random Item Swap. Random Item Swap described in Algorithm 3 is an
extended version of the random local search. In this case at a time, a specified
number (> 1) of objects are swapped with other random objects from the same
group without checking the resource constraints, then it checks if it is a valid
solution and if it improves the solution.

3.2 Variation 2: AntMMKP-topdatabase

In this variation (Algorithm 4), the only difference from AntMMKP-Random
is that, it maintains a database of top k solutions. After each iteration a small
amount of pheromone is deposited in the pheromone trails of the objects belong-
ing to the top k solutions. The motivation behind this strategy is to ensure quick
convergence on good solutions and to explore better areas more thoroughly.

Solving the MMKP with the Help of Ants 319

Algorithm 4. Algorithm AntMMKP-TopDb
Initialize pheromone trails to τmax

topkdb ⇐ ∅ {data structure that holds topmost k solutions}
repeat

Solution Sglobalbest ⇐ ∅
for each ant k in 1 . . . nants do

Solution Siterbest ⇐ ∅
candidategroups ⇐ all the groups
while candidategroups �= ∅ do

Cg ⇐ Randomly select a group from candidategroups
Candidates ⇐ {oi ∈ objects in Cg that do not violate resource constraints}
update local heuristic values
Choose an object oi ∈ Candidates with probability PSk

(oi)
Sk ⇐ {Sk ∪ oi}
remove Cg from candidategroups

end while
if profit(Sk) > profit(Siterbest) then

Siterbest ⇐ Sk

end if
end for
Siterbest ⇐ RandomLocalSearch(Sk)
Siterbest ⇐ RandomItemSwap(Sk)
if profit(Sglobalbest) < profit(Siterbest) then

Sglobalbest ⇐ Siterbest

end if
update top database
Update pheromone trails w.r.t Siterbest

Update pheromone trails w.r.t topdatabase
if pheromone value is lower than τmin then

set pheromone ⇐ τmin

end if
if pheromone value is greater than τmax then

set pheromone ⇐ τmax

end if
until maximum number of cycles reached or optimal solution found

Table 1. Solution Quality Comparison

Problem File Exact MOSER HEU CPCCP RLS FLTS FanTabu CCFT Ant-R Ant-T

I01 173 - 154 159 161 158 169 173 173 173

I02 364 294 354 312 354 351 354 352 364 364

I03 1602 1127 1518 1407 1496 1445 1557 1518 1598 1600

I04 3597 2906 3297 3322 3435 3350 3473 3419 3562 3563

I05 3905.7 1068.3 3894.5 3889.9 3847.3 3905.7 3905.7 3905.7 3905.7 3905.7

I06 4799.3 1999.5 4788.2 4723.1 4680.6 4793.2 4799.3 4799.3 4799.3 4799.3

I07 24587 20833 - 23237 23828 23547 23691 23739 24170 24158

I08 36877 31643 34338 35403 35685 35487 35684 35698 36211 36246

I09 49167 - - 47154 47574 47107 47202 47491 48204 48207

I10 61437 - - 58990 59361 59108 58964 59549 60285 60300

I11 73773 - - 70685 71565 70549 70555 71651 72240 72179

I12 86071 - - 82754 83314 82114 81833 83358 84282 84251

I13 98429 - - 94465 95076 91551 94168 94874 96343 96307

320 S. Iqbal, M.F. Bari, and M.S. Rahman

4 Experimental Results

In this section, we assess the performance of the two algorithms, and compare
them to other heuristic algorithms available in the literature. The datasets we
used are the benchmark data of MMKPs from OR-library [3]. The algorithms
were coded in java and run on a PC with intel core 2 duo 2.8 Ghz CPU, 2GB
memory running Windows XP. The parameters are set as follows: nants = 50
(i.e., the number of ants is set to 50), α = 1, β = 5, ρ = 0.01 , k = 10 (for
AntMMKP-TopDb), τmin = 0.01 and τmax = 6 times the amount each ant
deposits if it selects an item. For random item swap we used four flip and run
1000 times, also in random local search the loop runs n ∗ 5 times, where n is the
number of groups.

Table 1 gives the comparison results of the performance of different algo-
rithms including our two algorithms, namely, AntMMKP-Random (Ant-R) and
AntMMKP-TopDb (Ant-T). For each instance, Table 1 reports the best so-
lution found by MOSER [19], HEU [16], CPCCP [12], RLS [11], FLTS [13],
FanTabu [13], CCFT [13] along with the exact solution reported in the data files
and the best solutions of Ant-R and Ant-T found in 1000 runs. The results of the
other algorithms were borrowed from [13]. Our algorithms clearly outperform all
others on each file. Notably, for datasets I01, I02, I05 and I06 they found the
exact solution.

If we compare the performance of the two algorithms, we see that Ant-T
outperforms Ant-R for smaller data files. This clearly justifies our reasoning
to maintain the database of top k solutions. The insight here is that where
exploration area is comparatively small, thoroughly exploring better areas can
give better solutions. But for large instances (file I10 and onward) the exploration
area is much larger. So letting the ant colony explore more area rather than to
converge to the better area so far seems preferable.

Figure 2 gives the time comparison of the two algorithms we developed. It
reports the average time (milliseconds, over 20 runs) taken by each of our algo-
rithm to reach within 3% of the known optimal solution for each of the instance
file. Considering the solution quality, each of the algorithms run quite fast. Both
of the algorithms give result before 1.5 seconds to reach within 3% of the optimal
solution for data file I13 which is quite a large instance of MMKP consisting of
400 groups each having 10 objects and with number of resource dimension being
10. So our algorithms are attractive for large scale real time problems.

The random local search procedure presented in this paper improves the solu-
tion quality greatly in each iteration. In Figure 3 we have run three variation of
Ant-R on instance file I07 with 100 groups, 10 items per group having resource
dimension 10. At first we run the algorithm without the random local search.
Then, we use a local search that we have developed earlier which tries to find
a better object replacing the current selected object from all the groups in a
order (not random). Finally the algorithm was executed with our random local
search. Figure 3 clearly shows that both versions of the local search strategy
are quite good for improving the solution, random local search being the bet-
ter. From this comparison we can understand that the order of the selection of

Solving the MMKP with the Help of Ants 321

Fig. 2. Time comparison between Ant-R and Ant-T to reach within 3% of the optimal
solution

Fig. 3. Performance enhancement with our random local search

group while generating partial solution is very important to find good solutions
for MMKP.

5 Conclusions

This paper is a first attempt to solve MMKPs using ant colony optimization.
Here, we have proposed two new ACO algorithms for solving MMKPs along
with a novel random local search strategy for performance improvement. We
have presented simulation results, evaluating both runtime and solution quality
of the proposed algorithms, and compared the solution quality of our algorithms
with other existing state-of-the-art algorithms. From these simulation results it
is clear that, our algorithms are the best in terms of solution quality and can
also provide very fast near optimal solutions. The random local search seems to
have provided the boost needed for providing such good quality solutions.

322 S. Iqbal, M.F. Bari, and M.S. Rahman

Acknowledgments. This research work was carried out as part of the M.sc.
Engg. thesis of Shahrear Iqbal in the Department of Computer Science and
Engneering, Bangladesh University of Engineering and Technology.

References

1. Akbar, M.M., Rahman, M.S., Kaykobad, M., Manning, E.G., Shoja, G.C.: Solving
the multidimensional multiple-choice knapsack problem by constructing convex
hulls. Comput. Oper. Res. 33(5), 1259–1273 (2006)

2. Alaya, I., Solnon, C., Ghèdira, K.: Ant algorithm for the multi-dimensional knap-
sack problem. In: International Conference on Bioinspired Optimization Methods
and their Applications (BIOMA 2004), pp. 63–72 (2004)

3. Beasley, J.: OR-Library: Distributing test problems by electronic mail. The Journal
of the Operational Research Society 41(11), 1069–1072 (1990)

4. Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm intelligence: From natural to
artificial systems. J. Artificial Societies and Social Simulation 4(1) (2001)

5. Dorigo, M., Di Caro, G.: The ant colony optimization meta-heuristic: New ideas
in optimization. McGraw-Hill Ltd., UK (1999)

6. Dorigo, M., Di Caro, G., Gambardella, L.M.: Ant algorithms for discrete optimiza-
tion. Artificial Life 5(2), 137–172 (1999)

7. Dorigo, M., Gambardella, L.M.: Ant colony system: a cooperative learning ap-
proach to the traveling salesman problem. IEEE Trans. Evolutionary Computa-
tion 1(1), 53–66 (1997)

8. Fidanova, S.: Aco algorithm for mkp using different heuristic information. In: Di-
mov, I.T., Lirkov, I., Margenov, S., Zlatev, Z. (eds.) NMA 2002. LNCS, vol. 2542,
pp. 438–444. Springer, Heidelberg (2003)

9. Gambardella, L.M., Taillard, É., Agazzi, G.: Macs-vrptw: A multiple colony system
for vehicle routing problems with time windows. In: New Ideas in Optimization,
pp. 63–76. McGraw-Hill, New York (1999)

10. Gambardella, L.M., Taillard, É., Dorigo, M.: Ant colonies for the quadratic assign-
ment problem. Journal of the Operational Research Society 50, 167–176 (1999)

11. Hifi, M., Michrafy, M., Sbihi, A.: A reactive local search-based algorithm for the
multiple-choice multi-dimensional knapsack problem. Comput. Optim. Appl. 33(2-
3), 271–285 (2006)

12. Hifi, M., Michrafy, M., Sbihi, A.: Heuristic algorithms for the multiple-choice mul-
tidimensional knapsack problem. Journal of the Operational Research Society 55,
1323–1332 (2004)

13. Hiremath, C.: New heuristic and metaheuristic approaches applied to the multiple-
choice multidimensional knapsack problem. Ph.D. thesis, Wright State University
(2008)

14. Ji, J., Huang, Z., Liu, C., Liu, X., Zhong, N.: An Ant Colony Optimization Algo-
rithm for Solving the Multidimensional Knapsack Problems. In: Proceedings of the
2007 IEEE/WIC/ACM International Conference on Intelligent Agent Technology,
pp. 10–16. IEEE Computer Society, Los Alamitos (2007)

15. Khan, S., Li, K.F., Manning, E.G., Akbar, M.M.: Solving the knapsack problem
for adaptive multimedia systems. Studia Informatica Universalis 2, 157–178 (2003)

16. Khan, S.: Quality Adaptation in a Multisession Multimedia System: Model, Al-
gorithms and Architecture. Ph.D. thesis, Department of Electrical and Computer
Engineering, University of Victoria, ph.D. Dissertation (1998)

Solving the MMKP with the Help of Ants 323

17. Leguizamon, G., Michalewicz, Z.: A new version of ant system for subset problems.
In: Proceedings of the 1999 Congress on Evolutionary Computation, CEC 1999,
vol. 2 (1999)

18. Maniezzo, V., Colorni, A.: The ant system applied to the quadratic assignment
problem. IEEE Trans. on Knowl. and Data Eng. 11(5), 769–778 (1999)

19. Moser, M., Jokanovic, D., Shiratori, N.: An algorithm for the multidimensional
multiple-choice knapsack problem. IEICE transactions on fundamentals of elec-
tronics, communications and computer sciences 80(3), 582–589 (1997)

20. Parra-Hernandez, R., Dimopoulos, N.J.: A new heuristic for solving the multichoice
multidimensional knapsack problem. IEEE Transactions on Systems, Man, and
Cybernetics, Part A 35(5), 708–717 (2005)

21. Parsons, S.: Ant colony optimization by marco dorigo and thomas stützle. Knowl-
edge Eng. Review 20(1), 92–93 (2005)

22. Stützle, T., Hoos, H.H.: Max–min ant system. Future Generation Computer Sys-
tems 16, 889–914 (2000)

Theoretical Properties of Two ACO Approaches
for the Traveling Salesman Problem

Timo Kötzing1, Frank Neumann1, Heiko Röglin2, and Carsten Witt3

1 Algorithms and Complexity, Max-Planck-Institut für Informatik,
Saarbrücken, Germany
fne@mpi-inf.mpg.de

2 Department of Quantitative Economics, Maastricht University, The Netherlands
3 DTU Informatics, Technical University of Denmark, Kgs. Lyngby, Denmark

Abstract. Ant colony optimization (ACO) has been widely used for dif-
ferent combinatorial optimization problems. In this paper, we investigate
ACO algorithms with respect to their runtime behavior for the traveling
salesperson (TSP) problem. We present a new construction graph and
show that it has a stronger local property than the given input graph
which is often used for constructing solutions. Later on, we investigate
ACO algorithms for both construction graphs on random instances and
show that they achieve a good approximation in expected polynomial
time.

1 Introduction

Stochastic search algorithms such as evolutionary algorithms (EAs) [3] and ant
colony optimization (ACO) [2] are robust problem solvers that have found a
wide range of applications in various problem domains. In contrast to many
successful application of this kind of algorithms, the theoretical understanding
lags far behind their practical success. Therefore, it is highly desirable to increase
the theoretical understanding of these algorithms.

The goal of this paper is to contribute to the theoretical understanding of
stochastic search algorithms by rigorous runtime analyses. Such studies have
been successfully applied for evolutionary algorithms and have highly increased
the theoretical foundation of this kind of algorithms. In the case of ACO algo-
rithms the theoretical analyses of their runtime behavior has been started only
recently [9,5,8,6]. We increase the theoretical understanding of ACO algorithms
by investigating their runtime behavior on the well-known traveling salesperson
(TSP) problem. For ACO the TSP problem is the first problem where this kind
of algorithms has been applied. Therefore, it seems to be natural to study the
behavior of ACO algorithms for the TSP problem from a theoretical point of
view in a rigorous manner.

ACO algorithms are inspired by the behavior of ants to search for a shortest
path between their nest and a common source of food. It has been observed
that ants find such a path very quickly by using indirect communication via
pheromones. This observed behavior is put into an algorithmic framework by

M. Dorigo et al. (Eds.): ANTS 2010, LNCS 6234, pp. 324–335, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Theoretical Properties of Two ACO Approaches for the TSP 325

considering artificial ants that construct solutions for a given problem by carrying
out random walks on a so-called construction graph. The random walk (and the
resulting solution) depends on pheromone values that are values on the edges of
the construction graph. The probability of traversing a certain edge depends on
its pheromone value.

One widely used construction procedure for tackling the TSP has already
been analyzed in [11]. It constructs a tour in an ordered manner, where the
iteratively chosen edges form a path at all times. In this paper, we give new
runtime bounds for ACO algorithms using this construction procedure. On the
other hand, we propose a new construction procedure, where, in each iteration,
an arbitrary edge not creating a cycle or a vertex of degree 3 may be added to
extend the partial tour. We analyze both construction methods and point out
their differences.

Our analysis of these two ACO variants goes as follows. We first examine the
locality of changes made, i.e., how many edges of the current-best solution are
also in the newly sampled tour, and how many are exchanged for other edges.
We then use these results as upper bounds on the time until certain desired local
changes are made to derive upper bounds on the optimization time.

In particular, we show the following results:

– The ordered edge insertion algorithm exchanges an expected number of
Ω(log(n)) many edges (Theorem 1) while the arbitrary edge insertion ex-
changes only an expected constant number of edges (Theorem 4).

– Arbitrary edge insertion has a probability of Θ(1/n2) for any specific ex-
change of two edges (Corollary 1), while ordered edge insertion has one of
Θ(1/n3) [11].

– The simple TSP-instance analyzed in [11] is optimized by arbitrary edge
insertion in an expected number of O(n3 log(n)) steps (Theorem 5), while
the best known bound for ordered edge insertion is O(n6) ([11]).

– Both construction graphs lead in expected polynomial time to a good ap-
proximation on random instances.

The rest of the paper is organized as follows. In Section 2, we introduce the
problem and the algorithms that are subject to investigations. We investigate
the number of edge exchanges for large pheromone updates in Section 3 and
prove runtime bounds for certain classes of instances in Section 4. Finally, we
finish with some concluding remarks.

2 Problem and Algorithms

In this paper, we consider the symmetric Traveling Salesperson Problem (TSP).
We are given a complete undirected graph G = (V,E) and a weight function
w : E → �+ that assigns positive weights to the edges. The goal is to find a
tour of minimum weight that visits every vertex exactly once and returns to the
start vertex afterwards. We analyze an ACO algorithm called MMAS∗ (Min-Max
Ant System – see Algorithm 1), already used in different theoretical studies [8,11].

326 T. Kötzing et al.

MMAS∗ works iteratively, creating one new candidate solution x in each iteration,
and keeping track of the best-so-far solution x∗. A new candidate solution for a
target graphG is constructed by an artificial ant that performs a random walk on
an underlying graph, called the construction graph, step by step choosing compo-
nents of a new candidate solution. In this paper, we use edges of the given input as
the components that influence this random walk. In each step of its random walk
on the construction graph, we want the ant to choose an edge e in G with a prob-
ability based on pheromone value τ(e).1 We use a procedure construct based on
the pheromones τ as given in Algorithm 2. In this paper, we consider two different
approaches of constructing new solutions by specifying the neighborhood function
N of Algorithm 2 in Sections 2.1 and 2.2.

Algorithm 1. The algorithm MMAS∗

function MMAS∗ on G = (V, E) is1

τ (e) ← 1/|V |, for all e ∈ E;2

x∗ ← construct(τ);3

update(τ, x∗);4

while true do5

x ← construct(τ);6

if f(x) > f(x∗) then7

x∗ ← x;8

τ ← update(τ, x∗);9

Algorithm 2. The algorithm construct

function construct based on τ is1

for k = 0 to n − 2 do2

R ←∑
y∈N(e1,...,ek) τ (y);3

Choose one neighbor ek+1 of ek where the probability of selection of any4

fixed y ∈ N(e1, . . . , ek) is τ(y)
R

;

Let en be the (unique) edge completing the tour;5

return (e1, . . . , en);6

For each edge e ∈ E, the pheromones are kept within upper and lower bounds
τmax and τmin, respectively. The pheromone values change after each iteration
of MMAS∗ according to a procedure update and an evaporation factor ρ: For a
tour x, let E(x) be the set of edges used in x; for each edge e, the pheromone
values are updated such that the new pheromone values τ ′ = update(τ, x) are
such that

τ ′(e) =

{
min {(1 − ρ) · τ(e) + ρ, τmax} , if e ∈ E(x);
max {(1 − ρ) · τ(e), τmin} , otherwise.

1 Note that, in this paper, we are not concerned with the use of heuristic information.

Theoretical Properties of Two ACO Approaches for the TSP 327

Here, ρ, 0 ≤ ρ ≤ 1, is the evaporation factor which determines the strength of
an update. As in [11], we use τmin = 1/n2 and τmax = 1 − 1/n throughout this
paper, where n is the number of nodes of the input graph; further, initial values
for pheromones are 1/n. If in an iteration of MMAS∗ the pheromone values are
such that, for exactly the edges of the best-so-far tour the pheromone values
are at τmax and all others are at τmin, we call the pheromones saturated at that
iteration.

To measure the runtime of MMAS∗, it is common to consider the number of
constructed solutions. Often we investigate the expected number of constructed
solutions until an optimal tour or a good approximation of an optimal tour is
obtained.

2.1 The Input Graph as Construction Graph

To specify the construction graph, we need to introduce the neighorhood func-
tion N in Algorithm 2. The most common way of constructing a tour for TSP
problem is to use the input graph as construction graph. A tour is constructed
by having an ant start at some vertex, visit all vertices by moving to a neighbor
of the current vertex, and finally coming back to the start vertex. We model this
behavior with a neighbor set as follows. For each sequence σ of chosen edges, let
U(σ) be the set of unvisited nodes and l(σ) the most recently visited node (or,
if σ is empty, some distinguished node); let

NOrd(σ) = {{l(σ), u} | u ∈ U(σ)}.

This set has the advantage of being easily computable and of size linear in the
number of edges needed to complete the tour. We will discuss drawbacks of
this neighborhood set later. We will refer to MMAS∗ using this neighborhood
as MMAS∗

Ord (“Ord” is mnemonic for the “ordered” way in which edges are
inserted into the new tour).

2.2 An Edge-Based Construction Graph

Alternatively, we can let the ant choose to add any edge to the set of edges
chosen so far, as long as no cycle and no vertex are created. This is modeled by
a neighbor set as follows. For each sequence σ of chosen edges, let V (σ) be the
set of previously chosen edges and

NArb(σ) = (E \ V (σ)) \{
e′ ∈ E

∣∣ (V, {e′1, . . . , e′k, e′}) contains a cycle or a vertex of degree ≥ 3
}
.

This set has a size quadratic in the number of edges required to complete the
tour. We will refer to MMAS∗ using this neighborhood as MMAS∗

Arb (“Arb”
is mnemonic for the “arbitrary” way in which edges are inserted into the new
tour).

328 T. Kötzing et al.

3 Number of Edge Exchanges

In this section, we consider the expected number of edges that a newly con-
structed solution x differs from the best-so-far solution x∗ if the pheromone
values are saturated. In this case, the solution x∗ can often be reproduced with
constant probability and it is desirable that x∗ and x only differ by a small
(constant) number of edges. In such a situation, ACO algorithms are able to
carry out improving steps by sampling solutions in their local neighborhood. In
particular, for a tour t, we are interested in tours t′ such that t and t′ differ by
exchanging 2 or 3 edges, called a 2-Opt or a 3-Opt neighbor, respectively.

3.1 The Behavior of MMAS∗
Ord

In the following we examine MMAS∗
Ord. We show that the expected number of

edges where x∗ and x differ is Ω(logn). Thus, the MMAS∗
Ord does not have the

desired local property.
In the proof of the claimed result, we consider the following random process

which captures the situation after an ant has left the high pheromone path for
the first time. Let W be a walk on a sequence of t vertices. W starts at a random
vertex, and will go to the just previous or following vertex in the sequence with
equal probability, if both are available and unvisited. If only one is available and
unvisited, W will go to this one. If none are available and unvisited, the walk
will jump uniformly at random to an unvisited vertex. The walk ends as soon as
all vertices are visited.

Lemma 1. For each t, let Xt be the random variable denoting number of jumps
made by the walk W on a path of t vertices. Then we have ∀t ≥ 3 : E(Xt) ≥
1
6 ln(t).

Proof. We start by giving a recursive definition of Xt. Clearly, X1 = 0 and X2 =
0. Let t ≥ 3. The walk can start with uniform probability in any vertex, and will
not jump if the first or last vertex has been chosen. Otherwise, with equal probabil-
ity, the walk will start up or down. After visiting all nodes in the chosen direction,
the walk will jump once, and then perform a walk according to Xi, where i is the
number of unvisited nodes just before the jump. Thus, we get, for all t ≥ 3,

E(Xt) =
1
t

t−1∑
i=2

(
1
2
(1 + E(Xi−1)) +

1
2
(1 + E(Xt−i)))

=
t− 2
t

+
1
t
(
1
2

t−1∑
i=2

E(Xi−1) +
1
2

t−1∑
i=2

E(Xt−i))

=
t− 2
t

+
1
t

t−2∑
i=1

E(Xi) =
t− 2
t

+
1
t

t−2∑
i=3

E(Xi)

The claim is true for t = 3. We show the remainder of the claim of the lemma
by induction on t. Let t ≥ 4 and for all i, 3 ≤ i < t, E(Xi) ≥ 1

6 ln(i). Using
t ≥ 3, we have (t− 2)/t ≥ 1/3. Thus, also using the induction hypothesis,

Theoretical Properties of Two ACO Approaches for the TSP 329

E(Xt) ≥ 1
3

+
1
t

t−2∑
i=3

1
6

ln(i)

=
1
3

+
1
t

1
6

ln(
t−2∏
i=3

i) =
1
3

+
1
t

1
6

ln((t− 2)!/2) ≥ 1
6

ln(t).

��
Next we will give a lower bound on the expected number of edge exchanges
which MMAS∗

Ord will make when saturated.

Theorem 1. If in an iteration of MMAS∗
Ord the pheromone values are saturated,

then, in the next iteration of MMAS∗
Ord, the newly constructed tour will exchange

an expected number of Ω(log(n)) of edges.

Proof. It is easy to see that an ant leaves the path corresponding the currently
best solution x∗ with probability Ω(1) after having visited at most n/2 vertices.
After the ant has left the path it performs on the remaining r ≥ n/2 vertices as
a walk similar to W on a path of length r. In fact, with constant probability, the
ant will never leave the path again unless necessary, so that we get the result by
applying Lemma 1. ��
However, constructing new solutions with few exchanged edges is still somewhat
likely. In [11] it is shown that the probability for a particular 2-Opt step is
Ω(1/n3). Taking a closer look at the analysis presented in this paper a match-
ing upper bound on this probability can be extracted. In summary, we get the
following result.

Theorem 2 ([11]). Let t be a tour found by MMAS∗
Ord and let t′ be a tour

which is a 2-Opt neighbor of t. Suppose that the pheromone values are saturated.
Then MMAS∗

Ord constructs t′ in the next iteration of with probability Θ(1/n3).

3.2 The Behavior of MMAS∗
Arb

In this section we examine the expected number of edge exchanges of MMAS∗
Arb.

In Theorem 4 we show that the expected number of edges where x∗ and x differ
is Θ(1). Thus, the MMAS∗

Arb does have the desired local property.

Theorem 3. Let k be fixed. If in an iteration of MMAS∗
Arb the pheromone values

are such that, for exactly the edges of the best-so-far tour the pheromone values
are at τmax and all others are at τmin, then, in the next iteration of MMAS∗

Arb

with probability Θ(1), the newly constructed tour will choose k new edges and
otherwise rechoose edges of the best-so-far tour as long as any are admissible.

Proof. We call an edge with pheromone level τmax a “high” edge, the others are
“low” edges. Let P be the set of all high edges (the edges of the best-so-far tour).
We consider an iteration of MMAS∗

Arb. We analyze the situation where, out of

330 T. Kötzing et al.

the n edges to be chosen to create a new tour, there are still i edges left to be
chosen. In this situation, the edges chosen so far partition the graph into exactly
i components. For each two components, there are between 1 and 4 edges to
connect them (each component is a path with at most 2 endpoints, only the
endpoints can be chosen for connecting with another component); thus, there
are between

(
i
2

)
and min

(
4
(

i
2

)
,
(
n
2

))
edges left to be chosen. Further, when there

are i edges left to be chosen for the tour, at most k of which are low edges, there
are between i and i+ k high edges and between

(
i
2

)
− (i+ k) and min(4

(
i
2

)
,
(
n
2

)
)

low edges left to choose from.
For a fixed k-element subset M of {1, . . . , n}, and any choice of edges at

positions M , we use the union bound to analyze the probability to rechoose as
many other high edges as possible in all the other postions. This probability is
lower bounded by

1 −
n∑

i=1

min
(

4
(
i

2

)
,

(
n

2

))
τmin · 1

iτmax

= 1 − τmin

τmax

⎛⎝n/2∑
i=1

4
(
i

2

)
· 1
i

+
n∑

i=n/2+1

(
n

2

)
· 1
i

⎞⎠ ≥ 1
4
> 0.

For each k-element subset M of {1, . . . , n}, the probability of choosing a low
edge on all positions of M , and choosing a high edge on all other positions is
lower bounded by

1
4

∏
i∈M

((
i

2

)
− (i+ k)

)
τmin/((i+ k)τmax + n2τmin)

≥ τk
min

4

∏
i∈M

(
i2 − i

2
− (i+ k)

)
/(i+ k + 1) ≥ τk

min

4

∏
i∈M

(
i

2k + 4
− 2
)

.

Let ci,k = i/(2k + 4) − 2. Note that, for any set M with |M | ≤ k, we have∑n
i=1,i�∈M ci,k = Θ(n2). Now we have that the probability of choosing low edges

on any k positions is lower bounded by

τk
min

4

∑
M⊆{1,...,n}

|M|=k

∏
i∈M

ci,k

=
1

4k!n2k

n∑
i1=1

⎛⎝ n∑
i2=1,i2 �∈{i1}

⎛⎝. . .

⎛⎝ n∑
ik=1,ik �∈{i1,...,ik−1}

k∏
j=1

cij ,k

⎞⎠⎞⎠⎞⎠
=

1
4k!n2k

(
n∑

i1=1

ci1,k

)⎛⎝ n∑
i2=1,i2 �∈{i1}

ci2,k

⎞⎠ . . .

⎛⎝ n∑
ik=1,ik �∈{i1,...,ik−1}

cik,k

⎞⎠
= Θ(1).

��

Theoretical Properties of Two ACO Approaches for the TSP 331

As a corollary to the proof just above, we get the following.

Theorem 4. If in an iteration of MMAS∗
Arb the pheromone values are such

that, for exactly the edges of the best-so-far tour the pheromone values are at
τmax and all others are at τmin, then, in the next iteration of MMAS∗

Arb, the
newly constructed tour will exchange an expected number of O(1) of edges.

As a further corollary to Theorem 3, we get the following.

Corollary 1. Let t be a tour found by MMAS∗
Arb and let t′ be a tour which is a

2-Opt neighbor of t. Suppose that the pheromone values are such that for exactly
the edges of t the pheromone values are at τmax and all others are at τmin. Then
MMAS∗

Arb constructs t′ in the next iteration with probability Θ(1/n2).

Proof. The tour t has Θ(n2) many 2-Opt neighbors. By Theorem 3, MMAS∗
Arb

will construct, with constant probability, a tour that exchanges one edge and
otherwise rechooses edges of t as long as possible. This new tour is a 2-Opt
neighbor of t. As all 2-Opt neighbors of t are constructed equiprobably (thanks
to the symmetry of the construction procedure), we obtain the desired result. ��

4 Runtime Bounds

4.1 A Simple Instance

An initial runtime analysis of ACO algorithms for the TSP problem has been
carried out by Zhou in [11]. In that paper, the author investigates how ACO
algorithms can obtain optimal solutions for some simple instances. The basic
ideas behind these analyses is that ACO algorithms are able to imitate 2-Opt
and 3-Opt operations.

A simple instance called G1 in [11] consists of a single optimum, namely a
Hamiltonian cycle where all edges have cost 1 (called light edges), while all
remaining edges get a large weight of n (called heavy edges). The author shows
that MMAS∗

Ord for arbitrary ρ > 0 obtains an optimal solution forG1 in expected
time O(n6 + (1/ρ)n logn). The proof idea is as follows: As long as an optimal
solution has not been obtained, there is always a 2-Opt or 3-Opt operation that
leads to a better tour. Having derived a bound of Ω(1/n5) for the probability
of performing an improving 2- or 3-Opt step, the result follows since at most n
improvements are possible and O(log n/ρ) is the so-called freezing time, i. e., the
time to bring all pheromone values to upper or lower bounds.

In this section, we prove a bound of O(n3 logn+ (n logn)/ρ) on the expected
optimization time of MMAS∗

Arb for the instance G1. This bound is considerably
better than the O(n6) proved before in [11] for MMAS∗

Ord. At the same time,
the analysis is much simpler and saves unnecessary case distinctions.

The following lemma concentrates on a single improvement. Following the
notation in [11], let Ak, k ≤ n, denote the set of all tours of total weight n−k+kn,
i. e., the set of all tours consisting of exactly n− k light and k heavy edges.

332 T. Kötzing et al.

Lemma 2. Let α = 1 and β = 0, τmin = 1/n2 and τmax = 1 − 1/n. Denote
by Xt the best-so-far tour sequence produced by MMAS∗

Arb on TSP instance G1
until iteration t > 0 and assume that Xt is saturated. Then the probability of
an improvement, given 1 ≤ k ≤ n heavy edges in Xt, satisfies sk = P (Xt+1 ∈
Ak−1 ∪ . . . ∪A0 | Xt ∈ Ak) = Ω(k/n3).

Proof. Consider an arbitrary light edge e = {u, v} /∈ T outside the best-so-far
tour. Each vertex of G1 is incident to 2 light edges, so both u and v are incident
to exactly one light edge different from e. Since e /∈ T , this implies the existence
of two different heavy edges e0, e1 ∈ T on the tour such that e0 is incident on u
and e1 incident on v. Let e′0, e

′
1 ∈ T with e′0
= e0 and e′1
= e1 be the other two

edges on the tour that are incident to u and v, respectively. The aim is to form a
new tour containing e and still e′0 and e′1 but no longer e0 and e1. Note that the
set of edges (T ∪ {e}) \ {e0, e1} has cardinality n− 1 but might contain a cycle.
If that is the case, there must be a heavy edge e2 ∈ T from the old tour on that
cycle (since there is a unique cycle of light edges in G1). Then we additionally
demand that the new tour does not contain e2. Since the undesired edges e0, e1
and possibly e2 are heavy and e is a light edge outside the previous tour, any
tour being a superset of (T ∪{e})\{e0, e1, e2} is an improvement compared to T .

For 1 ≤ j ≤ n/4, we consider the following intersection of events, denoted by
Me(j) and prove that Prob(Me(j)) = Ω(1/n4); later, a union over different j
and e is taken to get an improved bound.

1. the first j − 1 steps of the construction procedure choose edges from T ∗ :=
T \ {e0, e1, e2} and the j-th step chooses e,

2. e′0 is chosen before e0 and e′1 before e1,
3. all steps except the first one choose from T ∗ as long as this set contains

applicable edges.

Note that e0 and e1 are no longer applicable once {e, e′0, e′1} is a subset of the
new tour.

For the first subevent, assume that the first i < j steps have already chosen
exclusively from T ∗. Then there n−i edges from T and n−i−3 edges from T ∗ left.
Finally, there are at most n2/2 edges outside T . Using that Xt is saturated, the
probability of choosing another edge from T ∗ is then at least (n−i−3)τmax

(n−i)τmax+n2τmin/2 ≥
n−i−3
n−i+1 (assuming n ≥ 2). Altogether, the probability of only choosing from T ∗

in the first j − 1 steps is at least
∏j−2

i=0
n−i−3
n−i+1 ≥

(
3n/4−1
3n/4+3

)n/4−1
= Ω(1) since

j ≤ n/4. The probability of choosing e in the j-th step is at least at least
τmin/n = 1/n3 since the total amount of pheromone in the system is at most n.
Altogether, the first subevent has probability Ω(1/n4).

The second subevent has probability at least (1/2)2 = 1/4 since all applicable
edges in T are chosen with the same probability (using that Xt is saturated).

For the third subevent, we study a step of the construction procedure where
there are i applicable edges from T left and all edges chosen so far are from T ∪
{e}. Now we need a more precise bound on the number of applicable outside T .
Taking out k ≥ 1 edges from T breaks the tour into k connected components,

Theoretical Properties of Two ACO Approaches for the TSP 333

each of which has at most two vertices of degree less than 2. Since e /∈ T has
been chosen, at most two edges from T are excluded from our consideration.
Altogether, the number of connected components in the considered step of the
construction procedure is at most i + 2, which means that there are at most(2(i+2)

2

)
≤ 2(i+2)2 ≤ 18i2 edges outside T applicable. The probability of neither

choosing e2 nor an edge outside T in this situation is at least iτmax
(i+1)τmax+18i2τmin

.
Hence, given the second subevent, the probability of the third subevent is at

least

n−1∏
i=1

i · τmax

(i+ 1)τmax + 18i2τmin
=

n−1∏
i=1

(
i

i+ 1
· (i+ 1) · τmax

(i+ 1)τmax + 18i2τmin

)

≥ 1
n

n−1∏
i=1

i+ 1
(i+ 1) + 18(i+ 1)2/(τmax · n2)

≥ 1
n

(
n∏

i=1

1 + 18i/(τmax · n2)

)−1

≥ 1
n

(
1 +

18
n− 1

)−n

= Ω(1/n),

altogether, the intersection Me(j) of the three subevents happens with proba-
bility Ω(1/n4).

Finally, consider the union Me :=
⋃

j≤n/4Me(j), which refers to including e
in any of the first n/4 steps. Since the Me(j) are disjoint for different j, we
obtain Prob(Me) = (n/4) · Ω(1/n4) = Ω(1/n3). Similarly, for all light edges
e /∈ T (of which there are k), the events Me are disjoint (as a different new edge
is picked in the first step). Thus, the probability of an improvement is Ω(k/n3)
as desired. ��

Theorem 5. Let α = 1 and β = 0, τmin = 1/n2 and τmax = 1 − 1/n. Then the
expected optimization time of MMAS∗

Arb on G1 is O(n3 logn+ n(logn)/ρ).

Proof. Using Lemma 2 and the bound O(log n/ρ) on the freezing time, the wait-
ing time until a best-so-far solution with k heavy edges is improved is bounded by
O((log n)/ρ)+sk = O((log n)/ρ+n3/k). Summing up, we obtain a total expected
optimization time of O(n(log n)/ρ)+

∑n
k=1(1/sk) = O(n3 logn+n(logn)/ρ). ��

4.2 Random Instances

The 2-Opt heuristic, which starts with an arbitrary tour and performs 2-Opt
steps until a local optimum is reached, is known to perform well in practice
in terms of running time and approximation ratio [7]. In contrast to this, it
has been shown to have exponential running time in the worst case [4] and
it has been shown that there are instances with local optima whose approxi-
mation ratio is Ω(log n/log logn) [1]. To explain this discrepancy between the-
ory and practice, 2-Opt has been analyzed in a more realistic model of ran-
dom instances reminiscent of smoothed analyis [10]. In this model, n points are
placed independently at random in the d-dimensional Euclidean space, where
each point vi (i = 1, 2, . . . , n) is chosen according to its own probability density

334 T. Kötzing et al.

fi : [0, 1]d → [0, φ], for some parameter φ ≥ 1. It is assumed that these densities
are chosen by an adversary, and hence, by adjusting the parameter φ, one can in-
terpolate between worst and average case: If φ = 1, there is only one valid choice
for the densities and every point is chosen uniformly at random from the unit
hypercube. The larger φ is, the more concentrated can the probability mass be
and the closer is the analysis to a worst-case analysis. We analyze the expected
running time and approximation ratio of MMAS∗

Arb and MMAS∗
Ord on random

instances. For this, we have to take a closer look into the results from [4] which
bound the expected number of 2-Opt steps until a good approximation has been
achieved. We show the following theorem.

Theorem 6. For ρ = 1, MMAS∗
Arb finds in time O(n6+2/3 ·φ3) with probability

1 − o(1) a solution with approximation ratio O(d
√
φ).

Proof. As we have argued in Corollary 1, if all edges are saturated and there is
an improving 2-Opt step possible, then this step is performed with probability
at least Ω(1/n2). From [4] we know that from any state, the expected number
of 2-Opt steps until a tour is reached that is locally optimal for 2-Opt is at
most O(n4+1/3 · log(nφ) ·φ8/3) even if in between other changes are made to the
tour that do not increase its length. Hence, using Markov’s inequality we can
conclude that MMAS∗

Arb has reached a local optimum after O(n6+2/3 ·φ3) steps
with probability 1 − o(1).

From [4], we also know that every locally optimal tour has an expected ap-
proximation ratio of O(d

√
φ). Implicitly, the proof of this result also contains a

tail bound showing that with probability 1 − o(1) every local optimum achieves
an approximation ratio of O(d

√
φ). The theorem follows by combining the previ-

ous observations and taking into account that for our choice of ρ all edges are
saturated after the first iteration of MMAS∗

Arb. ��
Taking into account that a specific 2-Opt operation in MMAS∗

Ord happens with
probability of Ω(1/n3) in the next step, we get the following results.

Theorem 7. For ρ = 1, MMAS∗
Ord finds in time O(n7+2/3 ·φ3) with probability

1 − o(1) a solution with approximation ratio O(d
√
φ).

5 Conclusions

Our theoretical results show that the usual construction procedure leads to so-
lutions that are in expectation far away from the currently best one in terms of
edge exchanges even if the pheromone values have touched their corresponding
bounds. Due to this, we have examined a new construction graph with a stronger
locality. On the other hand, this construction procedure has a high probability of
carrying out a specific 2-opt operation which is important for successful stochas-
tic search algorithms for the TSP problem. Afterwards, we have shown that both
algorithms perform well on random instances if the pheromone update is high.

Theoretical Properties of Two ACO Approaches for the TSP 335

Acknowledgments. Timo Kötzing and Frank Neumann as well as Carsten Witt
were supported by the Deutsche Forschungsgemeinschaft (DFG) under grants
NE 1182/5-1 and WI 3552/1-1, respectively. Heiko Röglin was supported by a Veni
grant from the Netherlands Organisation for Scientific Research (NWO).

References

1. Chandra, B., Karloff, H.J., Tovey, C.A.: New results on the old k-Opt algorithm
for the traveling salesman problem. SIAM J. Comput. 28(6), 1998–2029 (1999)

2. Dorigo, M., Stützle, T.: Ant Colony Optimization. MIT Press, Cambrigde (2004)
3. Eiben, A., Smith, J.: Introduction to Evolutionary Computing, 2nd edn. Springer,

Berlin (2007)
4. Englert, M., Röglin, H., Vöcking, B.: Worst case and probabilistic analysis of the

2-opt algorithm for the tsp: extended abstract. In: Bansal, N., Pruhs, K., Stein, C.
(eds.) SODA, pp. 1295–1304. SIAM, Philadelphia (2007)

5. Gutjahr, W.J., Sebastiani, G.: Runtime analysis of ant colony optimization with
best-so-far reinforcement. Methodology and Computing in Applied Probability 10,
409–433 (2008)

6. Horoba, C., Sudholt, D.: Running time analysis of ACO systems for shortest
path problems. In: Stützle, T., Birattari, M., Hoos, H.H. (eds.) SLS 2009. LNCS,
vol. 5752, pp. 76–91. Springer, Heidelberg (2009)

7. Johnson, D.S., McGeoch, L.A.: The traveling salesman problem: A case study in
local optimization. In: Aarts, E.H.L., Lenstra, J.K. (eds.) Local Search in Combi-
natorial Optimization. Wiley, Chichester (1997)

8. Neumann, F., Sudholt, D., Witt, C.: Analysis of different MMAS ACO algorithms
on unimodal functions and plateaus. Swarm Intelligence 3(1), 35–68 (2009)

9. Neumann, F., Witt, C.: Runtime analysis of a simple ant colony optimization
algorithm. Algorithmica 54(2), 243–255 (2009)

10. Spielman, D.A., Teng, S.H.: Smoothed analysis of algorithms: Why the simplex
algorithm usually takes polynomial time. J. ACM 51(3), 385–463 (2004)

11. Zhou, Y.: Runtime analysis of an ant colony optimization algorithm for TSP in-
stances. IEEE Transactions on Evolutionary Computation 13(5), 1083–1092 (2009)

A Cooperative Network Game Efficiently Solved
via an Ant Colony Optimization Approach

Pablo Romero, Franco Robledo, Pablo Rodŕıguez-Bocca,
Daŕıo Padula, and Maŕıa Elisa Bertinat

Facultad de Ingenieŕıa, Universidad de la República, Uruguay
promero@fing.edu.uy

Abstract. In this paper, a Cooperative Network Game (CNG) is in-
troduced. In this game, all players have the same goal: display a video
content in real time, with no cuts and low buffering time. Inspired in
cooperation and symmetry, all players should apply the same strategy,
resulting in a fair play. For each strategy we shall define a score, and the
search of the best one characterizes a Combinatorial Optimization Prob-
lem (COP). In this research we show that this search can be translated
into a suitable Assymmetric Traveling Salesman Problem (ATSP). An
Ant Colony Optimization (ACO) approach is defined, obtaining highly
competitive solutions for the CNG. Finally, we play the game in a real
context, using a new strategy in a Peer-to-Peer (P2P) platform, obtain-
ing better results than previous strategies.

Keywords: COP, ATSP, ACO, P2P.

1 General Network Game

1.1 Definition

Consider a static network with M > 1 players and one server S who has an
object, which all players are interested in. The server S cuts the object into very
small pieces and, in each time slot, chooses at random only one player to send
it. All players have a container that can allocate N pieces maximum, and every
piece advance one position of the container in each time slot (the server always
uses position 1 of the container, for only one benefited player). Each player can
consult another in order to obtain a piece.

The consult works as explained next. Suppose that Player A consults Player
B. Then chooses a permutation π of the natural subset {1, . . . , N−1}, and checks
if he has the piece at position π(1). If not, checks B’s container at position π(1).
If B has that piece, sends to A a copy of that piece, and the consult is successful.
Otherwise, A repeats the procedure checking the container at position π(2) and
so on. Every consult finishes in a success (if the consulting player gets one piece)
or in a fail (if after cheking the whole container, A does not get a piece). Players
are awarded when they can fill position N of the container as many times as
possible, but having at the same time the lowest number of pieces in the whole
container. This will be mathematically defined next.

M. Dorigo et al. (Eds.): ANTS 2010, LNCS 6234, pp. 336–343, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

A Cooperative Network Game Efficiently Solved via an ACO Approach 337

Each player x ∈ {1, . . . ,M} chooses a permutation πx. Be px(i) the proba-
bility of filling position i of the container for Player x when the game is played
unlimited in time (it is assumed that the number of pieces of the object is very
large in relation with the container size N). Then, each player x is encouraged
to choose a permutation in order to get the continuity px(N) as high as possible
and the expected number of pieces or buffering time L =

∑N
i=1 px(i) as low as

possible (see [12] for an alternative explanation in a network context).

2 Instructions for the CNG

The Cooperative Network Game (CNG) is a particular case of the General Net-
work Game previously defined, and looks for a fair identical strategy (permu-
tation) for all players. There is a Planner that can choose one permutation for
each player. Given that he wants to have a fair and cooperative solution, he shall
choose only one permutation π, which governs the consult between all players.
In a stationary state, the probability of filling position i is the same for each
player, named pi. In [12] it is proved that the vector pi complies that:

pi+1 = pi + (1 − pi)pisi, ∀i ∈ {1, . . . , N − 1} , (1)

where si is the strategic function that depends on π. Specifically, for a given
permutation π the strategic function si and the vector pi comply the following
Non-Linear System [3]:

(NLS(π))
{
p1 = 1

M , pi+1 = pi + (1 − pi)pisi ∀i ∈ {1, . . . , N − 1};
sπ1 = 1 − 1

M , sπi+1 = sπi + pπi − pπi+1 ∀i ∈ {1, . . . , N − 2}.

The Non-Linear System NLS(π) can be approximately solved for every partic-
ular π with the Newton-Raphson method, with quadratic convergence.

2.1 Score for the CNG

So far, we have not defined the objective for the CNG. There is a tradeoff between
the continuity pN and the buffering time L =

∑N
i=1 pi, given that the vector p is

monotonous increasing. The following analytical result will determine the score
of the game:

Proposition 1. Be Xπ the random variable that counts the number of steps in
a consult, needed to obtain a piece with the permutation strategy π. Then, its
expected number is: E(Xπ) = M

M−1

∑N−1
i=1 πi

(
pi+1 − pi

)
.

Proof. See [3] for a detailed proof.

Thus, E(Xπ) is a linear combination of the jumps pi+1 − pi. Moreover, it is
monotonically increasing with the continuity pN . Assuming that the whole con-
sult is not longer than a time slot, it is convenient to maximize E(Xπ), which
defines the score for the CNG:

338 P. Romero et al.

Definition 1. The score for the CNG for a permutation strategy π is the ex-
pected number of steps E(Xπ).

Be P the space of all permutations of the natural subset {1, . . . , N − 1}. Conse-
quently, in order to find the best strategy for the CNG, the next Combinatorial
Optimization Problem (COP) must be solved:

(COP)
{

maxπ∈P E(Xπ)
s.t. pi complies with NLS(π).

3 Ideal Approach for the CNG

Lemma 1. Imperfect Continuity: pi < 1, ∀i ∈ {1, . . . , N}, π ∈ P

Proof. We know that p1 = 1
M < 1. Suppose now that ph < 1 for some h ∈

{1, . . . , N − 1}. Then ph+1 = ph + (1 − ph)phsh < ph + (1 − ph) = 1.

Lemma 2. Ascendent Occupation: pi < pi+1, ∀i ∈ {1, . . . , N−1}, ∀π ∈ P .

Proof. Trivial: by induction over the set {1, . . . , N − 1}.

Lemma 3. Descendent Composed: sπi is strictly decreasing with i.

Proof. Using Lemma 2: sπi+1 = sπi + pπi − pπi+1 < sπi .

Proposition 2. “Approximation Strategy Property” (ASP):
Be x = (x1, . . . , xN−1) an injective real-valued sequence. Then, there exists π ∈
P that follows the vector x in the next sense: If xi > xj then si > sj , ∀i, j ∈
{1, . . . , N −1}, where s is the strategic function associated with the permutation π.

Proof. For every injective real-valued sequence x there exists a permutation of
indices π such that xπ1 > xπ2 > . . . > xπN−1 . Using the Desendent Composed’s
Lemma, the strategic function s complies that sπ1 > sπ2 > . . . > sπN−1 . The
result follows comparing the two previous inequalities.

The ASP permits to design a strategy whose occupation of the container is
similar to a desired one. The ideal strategic function for a desired vector p can
easily be obtained with (1):

sideali =
pi+1 − pi

(1 − pi)pi
, ∀i ∈ {1, . . . , N − 1} . (2)

We can approximate sideal via the ASP. The Follower System is illustrated in
Fig. 1. Some ideal inputs were introduced into the Follower System. Here, we
summarize the main experience (it is suggested to see [2]). This ideal approach
does not reflect the behavior of chosen inputs. Rather, it is like a dirty mir-
ror. However, the experience gained with chosen inputs permits to outstand a
particular Subfamily of strategies defined next.

A Cooperative Network Game Efficiently Solved via an ACO Approach 339

 p ASP sideal NLS p*
1 2 3 4

Fig. 1. Follower System: receives a desired probability of occupation p and returns a
feasible occupation p∗, close to that occupation of the input. It permits to obtain the
strategy π in Step 3, that achieves p∗.

Definition 2. Subfamily of Strategies Sub(I, J)
For each pair of naturals (I, J) : I + J < N , we will call Sub(I, J) to the
subfamily of strategies that can be expressed in the next way:

π(i) = N − i, i = 1, . . . , I, π(I + j) = j, j = 1, . . . , J ;

π(I + J + k) =
⌊
N + J − I

2

⌋
+
⌈
k

2

⌉
(−1)k+1, k = 1, . . . , N − I − J − 1 .

4 Feasible Approach Based on Ant Workers

From now on, we will attend the CNG trying to find the best strategy, on
the lights of the score defined in the COP of Subsection 2.1. Considering high
containers (e.g. N > 15) an exhaustive search for the best permutation results
computationally prohibitive. In this section we will translate the COP into a
suitable Assymmetric Traveling Salesman Problem (ATSP). This last is solved
heuristically following an Ant Colony Optimization (ACO) approach, which is
inspired in the way ants find the shortest path between their nests and their
food [1]. The reader can find a deep analysis of this nature-inspired metaheuristic
in [7,9,5,8].

Proposition 3. “Translation of the Problem”: An N−clique permits to obtain
a bijection between a directed cycle that visits all its nodes and a permutation of
{1, . . . , N − 1}.

Proof. Take any directed cycle C = {vN , v1, v2, . . . , vN−1, vN}.
Then, π(i) = vi, i = 1, . . . , N − 1 is clearly bijective.

Definition 3. The function d(π, π∗) (where π and π∗ are permutations) counts
the minimum number of swaps of elements to transform π into π∗.

Proposition 4. (P, d) is a metric space, being P the space of permutations.

A Local Search can be defined substituting a permutation π with its best neigh-
bor (which is at distance 1 from π). All these tools are used to define an ACO-
based Algorithm, which finds high competitive strategies for the CNG:

340 P. Romero et al.

Main Algorithm | Function: ApplyACO
1: d(E) = Edges(ants) |1: Quality = Greedy
2: τ(E) = Pheromones(Sub(I,J)) |2: FOR i = 1 TO ants
3: π = ApplyACO(d,τ,iter,α,β,ρ) |3: π(i) = CycleACO(τ,Distances,α,β)
4: π_out = LocalSearch(π) |4: τ = NewPheromones(ρ,τ,Q,Q_max)
5: RETURN π_out |5: RETURN MostVisitedCycle(π(1),..,π(ants))
--
Function: Edges | Function: Pheromones
1: Distances = 1 | 1: τ = 1
2: Quality = Greedy | 2: Quality = Greedy
3: FOR i = 1 TO ants DO | 3: FOR EACH π ∈ Sub(I,J)
4: π(i) = VisitCycle(Distances) | 4: Q = Quality(π)
5: Distances = UpdateCost(π(1),...π(i)) | 5: τ = UpdateCost(π(1),..,π)
--

In the first stage of the Main Algorithm (Line 1), a non-negative assymmet-
ric cost for each edge is initialized, with a learning mechanism based on ant
exploration. The second block (Line 2) prepares the ACO application, via an
initialization of the pheromones, which will permit to track cycles with high
quality. The third block (Line 3) is the ACO application itself, which returns a
strategy π. Finally, a local improvement is realized considering a typical local
search.

The Function Edges translates the COP into an ATSP. To start, the cost of
all edges are initialized to 1, and the Greedy strategy (πi = N − i) is considered
as a reference score. Then, each ant chooses probabilistically the next node to
visit without making cycles. In the Function V isitCycle, ants choose the next
step according with the next probabilities:

p(xj+1) =
Distances(xj, xj+1)−1∑

i∈NoCycleDistances(xj, xi)−1 . (3)

So, shorter tours are preferable. Line 5 updatesDistances. Function UpdateCost
finds the best strategy so far. Then, all edges in π(i) are updated according with
its score: Distance(edge(j) ∈ π(i)) = 10(N − j)× Qmax

Qπ(i)
, where Qmax is the best

score obtained so far, and edge(j) is the edge visited in order j in the cycle π(i).
There is an additional factor N − j, that avoids revisiting a cycle many times.

The pheromones for the immediate ACO application are initialized according
with the experience obtained from the subfamilySub(I, J). FunctionPheromones
follows the same structure of Edges. The main difference between them is the
deterministic cycles used in Pheromones, exploiting the high quality that pro-
vides the SubFamily Sub(I, J) (see [2] for more details of the quality of Sub(I, J)).
FunctionApplyACO goes in parallel with a traditional ACO implementation, but
each ant constructs one strategy. As a consequence, the exploration mechanism
is slightly different. In Line 3, each ant makes a biased walk according with the
probabilities:

p(xj+1) =
τ(xj , xj+1)αDistances(xj , xj+1)−β∑
i∈NoCycle τ(xj , i)αDistances(xj , i)−β

, (4)

where xj is step j of the cycle, and α and β are the classical priority to pheromones
and costs respectively. The updating of pheromones runs similar to classical im-
plementations, based on an evaporation factor ρ : 0 ≤ ρ ≤ 1:

A Cooperative Network Game Efficiently Solved via an ACO Approach 341

τ(xj , xj+1) = (1 − ρ)τ(xj , xj+1) + ρ× 10(N − j)Q
Qmax

, (5)

where the factor 10(N−j)provides a similarity ofmagnitudes betweenpheromones
and distances. LocalSearch chooses the best permutation among those which are
at distance one from the output permutation of Function ApplyACO.

Theorem 1. Be N the buffer size and T (N) the average time for evaluating the
quality E(Xπ). If we assume that the number of ants and the maximum number
of iterations have order O(N), then the average total time for running the Main
Algorithm is O(N3T (N)).

Proof. LocalSearch dominates in computational effort, being CN−1
2 the number

of neighbors for a given permutation. If the number of iterations is linear with
N , the computational time for running LocalSearch is O(N3T (N)).

5 Numerical Results

5.1 Comparison with Historical Strategies

There is an important reason to play the CNG: it is closely related with the
delivery of live streaming contents in P2P networks. Basically, the players are
now peers (computers) and the container is the storing capacity for each peer.
Moreover, if the object to share is video, pN is now the continuity of repro-
duction, and L is the buffering time. In P2P networks, two historical strategies
for cooperation are the Rarest First πi = i and Greedy πi = N − i [12]. The
former works properly in downloading, but not in streaming. The adaptation
of ACO’s parameters is based on [10], and then tuned in accordance with our
particular problem. Our final implementation used the Main Algorithm with
α = 0.4, β = 1.5, ρ = 0.5 and 100 ants, for the common-network parameters
N = 40 and M = 100. Fig. 2 shows that the obtained permutation achieves an
excellent continuity and at the same time a latency comparable with the one
reached by Greedy.

The obtained permutation was applied into a real platform named GoalBit,
which is the first open-source P2P network that widely offers live video streaming

Strategies Continuity Latency

Rarest First 0.9571 21.0011

Greedy 0.9020 4.1094

Main Algorithm 0.9998 7.9821
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25 30 35 40

P
ro

ba
bi

lit
y

of
 O

cu
pa

tio
n

Buffer Index

Rarest First
Greedy
Permutation

Fig. 2. Comparison between different strategies

342 P. Romero et al.

to final Internet users [4,11]. GoalBit mantains the BitTorrents philosophy [6]
considering the tit-for-tat strategy with optimistic unchoking, extending the suc-
cess in the peer selection process. The clear weakness of BitTorrent for streaming
applications is its peer selection strategy: Rarest First. The analysis realized in
this paper shows its unacceptable latencies.

5.2 Results

Three strategies were considered to analyze their performance: Rarest First,
Greedy and the Subfamily member Sub(16, 1). The parameters I = 16 and
J = 1 were tuned via an exhaustive search among all strategies π ∈ Sub(I, J).
The test case considers N = 40 and 45 peers (players) entering the network.
Fig. 3 shows for each strategy and each peer, the initial buffering time, number
of re-bufferings and mean buffering time, respectively. The Rarest First strategy
has unacceptable start-up latencies for streaming purposes. On the other hand,
the new permutation presents lower start-up latencies than Greedy for most of
the peers. The interruption of the video signal is clearly higher for the Greedy
strategy. Rarest First trades off latency for reduced cuts, but as seen before,
has latencies in the order of minutes. Only four peers experimented longer cuts
when our permutation strategy was applied. However the performance of the
permutation strategy was higher in the rest of the peers, with respect to classical
strategies.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 5 10 15 20 25 30 35 40 45

B
u

ff
e

ri
n

g
 t

im
e

Peer

Permutation
Rarest First
Greedy

 0

 1

 2

 3

 4

 5

 6

 0 5 10 15 20 25 30 35 40 45 50

N
u

m
b

e
rs

 o
f

c
u

ts

Peer

Permutation
Rarest First
Greedy

 0

 100

 200

 300

 400

 500

 600

 0 5 10 15 20 25 30 35 40 45 50

A
v
e

ra
g

e
 t

im
e

 o
f

c
u

ts

Peer

Permutation
Rarest First
Greedy

Fig. 3. Buffering time, Numbers of cuts and Average time of cuts when applying dif-
ferent strategies in GoalBit

6 Conclusions

An in-depth analysis for the CNG was presented, from both an ideal and feasible
approaches. Although the ideal approach fails, it gives an insight for the design
of competitive strategies. Feasible strategies were found via an Ant-Worker Al-
gorithm, named the Main Algorithm. It translates an optimization problem into
an assymmetric TSP, naturally explored via ACO. A Local Search phase finally
improves ACO’s output. The Main Algorithm was developed and tested with

A Cooperative Network Game Efficiently Solved via an ACO Approach 343

common-network values of players and capacity (M = 100 and N = 40). The-
oretically, it returned a strategy which achieves excellent continuity (very close
to 1) and a reasonably low buffering time. Finally, the interest of playing the
CNG could be verified when strategies were applied into a real P2P platform
named GoalBit. A Subfamily member showed important advantages with respect
to classical strategies. From both, theoretical and practical focuses, the results
were highly competitive with respect to Greedy and Rarest First strategies.

References

1. Beckers, R., Deneubourg, J., Goss, S.: Trails and U-turns in the selection of the
shortest path by the ant lasius niger. Journal of Theoretical Biology 159, 397–415
(1992)

2. Bertinat, M.E., Vera, D.D., Padula, D., Robledo, F., Rodŕıguez-Bocca, P., Romero,
P.: Systematic procedure for improving continuity and latency on a p2p stream-
ing protocol. To appear in Proceedings of IEEE Latin-American Conference on
Communications (LatinCom 2009). IEEE, Los Alamitos (2009)

3. Bertinat, M.E., Vera, D.D., Padula, D., Robledo, F., Rodŕıguez-Bocca, P., Romero,
P., Rubino, G.: A cop for cooperation in a p2p streaming protocol. To appear
in Proceedings of International Conference in Ultra Modern Telecommunications
(ICUMT 2009). IEEE, Los Alamitos (2009)

4. Bertinat, M.E., Vera, D.D., Padula, D., Robledo, F., Rodŕıguez-Bocca, P., Romero,
P., Rubino, G.: Goalbit: The first free and open source peer-to-peer streaming net-
work. To appear in Proceedings of the 5th international IFIP/ACM Latin American
conference on Networking, pp. 49–59. ACM, New York (2009)

5. Blum, C.: Ant colony optimization: Introduction and recent trends. Physics of life
Reviews 2, 353–373 (2005)

6. Cohen, B.: Incentives build robustness in bittorrent, vol. 1, pp. 1–5 (May 2003),
www.bramcohen.com

7. Dorigo, M., Birattari, M., Stützle, T.: Artificial ants as a computational intelligence
technique. Tech. Rep. 23, Institut de Recherches Interdisciplinaires, Université Li-
bre de Bruxelles (September 2006)

8. Dorigo, M., Gambardella, L.M.: Ant colony system: A cooperative learning ap-
proach to the traveling salesman problem. IEEE Transactions on Evolutionary
Computation 1(1), 53–66 (1997)

9. Dorigo, M., Stützle, T.: Ant Colony Optimization. MIT Press, Cambridge (2004)
10. Duan, H., Ma, G., Liu, S.: Experimental study of the adjustable parameters in

basic ant colony optimization algorithm. IEEE Congress on Evolutionary Compu-
tation 1(1), 149–156 (2007)

11. GoalBit - The First Free and Open Source Peer-to-Peer Streaming Network (2008),
http://goalbit.sf.net/

12. Zhou, Y., Chiu, D.M., Lui, J.: A Simple Model for Analyzing P2P Streaming Pro-
tocols. In: Proceeding of the IEEE International Conference on Network Protocols
(ICNP 2007), Beijing, China, pp. 226–235 (October 2007)

www.bramcohen.com
http://goalbit.sf.net/

A Deterministic Metaheuristic Approach Using
“Logistic Ants” for Combinatorial Optimization

Rodolphe Charrier, Christine Bourjot, and François Charpillet

LORIA, Campus Scientifique,
Vandoeuvre-lès-Nancy, France
rodolphe.charrier@loria.fr

Abstract. Ant algorithms are usually derived from a stochastic mod-
eling based on some specific probability laws. We consider in this paper
a full deterministic model of “logistic ants” which uses chaotic maps to
govern the behavior of the artificial ants. We illustrate and test this ap-
proach on a TSP instance, and compare the results with the original
Ant System algorithm. This change of paradigm —deterministic versus
stochastic— implies a novel view of the internal mechanisms involved
during the searching and optimizing process of ants.

Keywords: Metaheuristics, Chaotic Map, Optimization, Swarm Intel-
ligence, Ant Algorithm.

1 Introduction

Ant algorithms constitute a family of stochastic models mainly based on the
following probability function used by artificial ants as a decision function:

pij =
(τij)α(ηij)β∑

l∈Ni
(τil)α(ηil)β

(1)

where τij denotes the amount of pheromone on the edge (i, j) linking node i
to node j, and ηij denotes an extra heuristics adapted to the problem1, and
Ni is the set of other existing edges from node i. The exponents α and β are
greater or equal to 1, but commonly equals 2 to get the best performances. This
probability law derives from the law found by Deneubourg to fit statistically with
the experimental data of the famous “double bridge experiment” [4] involving
only two edges. This stochastic decision enables a colony of agents (artificial ants)
to find or approximate good solutions for many hard optimisation problems [5].

This paper focuses on the stochastic foundations of the ant algorithm model-
ing: more precisely our concern is with the existence of an alternative determin-
istic model which would exhibit the dynamical aspects of the involved processes.
Some works have been published in this way of modeling, by requiring the hy-
pothesis of chaotic dynamics in ant behaviors [2,6].

1 The inverse of the edge distance in the TSP case.

M. Dorigo et al. (Eds.): ANTS 2010, LNCS 6234, pp. 344–351, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

A Deterministic Metaheuristic Approach Using “Logistic Ants” 345

In the same way, we propose the deterministic model of “logistic ants” in this
paper. This model is inspired by some theoretical studies on iterated nonlinear
maps, namely logistic maps or quadratic maps, which are well known to produce
chaotic time series [3]. This feature is needed for simulating stochastic behav-
iors. The main advantage of this approach lies in the possibility of controlling
the chaotic properties of the iterated map through a single parameter in our
case. We deal therefore with the deterministic chaos theory, to “replace” the
probability theory. This field provides tools like bifurcation diagrams to monitor
the processes. The presentation of the logistic ant model constitutes the first
section of this paper.

The logistic ant model has been already applied on the binary bridge experi-
ment and has proved to simulate the symmetry breaking of the problem. It has
moreover produced the same shape of data series as the experimental ones [1].
But it has never been applied to optimization problems, contrary to ant algo-
rithms. We intend therefore to validate our approach by comparing the logistic
ant model to the “Ant System” algorithm [5] —one of the first ant algorithm
instance in the family— on a Travelling Salesman Problem (TSP) benchmark
with 48 nodes. The objective is at this stage to prove that the concept is rele-
vant for optimization, not to deal with a hard TSP. This constitutes the second
section of this paper. The results we get are encouraging and our last section is
dedicated to discuss these results.

2 The Logistic Ant Model for TSP

This section is devoted to the design of the logistic ant system. In fact this system
is a reactive multi-agent system (MAS) composed of an environment plus many
(logistic) agents. The agents interact through the environment by a pheromone
field, that’s why we call them “ants”. However, the difference of logistic agents
compared to stochastic ants lies in the decision process of logistic ants which is
governed by a deterministic logistic map, in contrary to the stochastic law (1).

2.1 Metaheuristic Principles of Ant Algorithms

Let us specify this in the case of a TSP problem where the objective is to find the
shortest Hamiltonian cycle in a weighted graph2. The generic considered graph
is denoted G = (V,E) where V is the set of |V | = n vertices and E the set of
edges. In our case the graph is symmetric and has n(n−1)

2 edges.
Before describing the different parts of the logistic ant system, let us recall

some rooting principles of ant algorithms. We use the same global metaheuristic
method using a pheromone field to perform optimization on a symmetric TSP,
that is:

– N ants forming a colony are involved at the same time on a given TSP,
– the algorithm proceeds in a global loop composed of global steps,

2 We will only consider symmetric TSP in this paper.

346 R. Charrier, C. Bourjot, and F. Charpillet

– during a global step, each ant achieves individually an hamiltonian cycle
from a random initial position and marks it by an amount of pheromone,

– each global step ends with a pheromone reinforcement of the best cycle,
when all ants have finished their cycle.

In this paper, the elementary discrete time step t corresponds to the process time
needed to achieve a “local loop”, that is a loop where all ants in the colony has
moved into a new vertex. A global step lasts therefore T = n−1 time steps for all
ants to cover an Hamiltonian cycle in parallel. We keep the naming of local loop
relative to the vertex and global loop relative to the graph, to distinguish the
different levels of schedulling in the algorithm. The global loop lasts until a fixed
limit of time steps is reached: this is the criterion to stop the algorithm in this
study. The best optimization performance among the colony is then recorded.

2.2 The Environment Design

We use the concept of environment of the MAS paradigm to include all the data
related to the graph problem. In this way, our MAS environment is composed
of a basic geometric space denoted E and many fields on it. E corresponds here
to the 2D discrete space N

∗
n × N

∗
n where N

∗
n = {1, · · · , n} and n is the number

of vertices in the considered graph.

The Notion of Field. The field concept is the means we use to structure the
data in the environment and to describe dynamically all the processes within
the logistic ant system. A field is defined as a mapping between the geometric
space E and the real set. It may also be seen as a data layer of the environment,
but remains mathematically a function. We distinguish the fields notably by the
origine of their data: an endogenous field comprises data produced by agents,
whereas an exogenous field comprises external data, set by the problem. On the
other hand a field can be dependent on time or not. In all the following, (k, l)
denotes a pair of coordinates in the space E.

Main Fields. The environment is composed of the following main fields:

– The adjacency field A corresponds simply to the connectivity matrix of the
graph and is an exogenous field.

– The weight field stores the exogenous data relative to the given distances
in the graph. Here we use a formula to transform all distances into the
interval [0, 1]. In this way, we intend to have a generic design, scale-free and
independent of the units used:

W(k, l) =
min(i,j)∈E d(i, j)

d(k, l)
(2)

where d(i, j) gives the distance of the edge (i, j).
– The pheromone field T t is dynamically build by the ant colony. It is there-

fore a cumulative endogenous field: The pheromone field is initialized to 0.
It is characterized by a cumulative updating process and an evaporation
coefficient ρ.

A Deterministic Metaheuristic Approach Using “Logistic Ants” 347

Other Fields. Other fields are needed in our environment modeling:

– A field of visited vertices and edges denoted by Ht
i stores, for an ant i at

each time t during a global step of the algorithm, the taboo list of edges and
nodes already visited by the ant.

– A field of ordered edges Ot maintains a list of edges related to each node of
the graph, ordered by the amount of pheromone. This field is needed because
of the determinitic nature of the choosing decision process of logistic ants
(cf section 2.4).

– A field of influence: the pheromone field is a dynamical field, and it has to
be updated after each ant has achieved a hamiltonian cycle. That is why we
involve also an “influence” pheromone field denoted T̃ , which is a temporary
field for the global update of the pheromone field.

2.3 Design of the Logistic Ant

Rooting Principles

Internal state definition of the logistic ant. Let us describe now the internal
behavior of the logistic ant. The logistic ant i is a reactive agent with the internal
state st

i = 〈xt
i, a

t
i〉 at time step t:

– xi ∈ [0, 1] is the decision variable of the agent,
– ai ∈ [0, 1] is the internal control variable of the agent which governs its type

of dynamics.

The interpretation of the internal variables becomes clear within the decision
function of the agent, which is a conjugate form of the logistic map:

f(x, a) = 1 − a(2 x− 1)2 (3)

Here, both x and a belong to the interval [0, 1]: x is the main variable and a
the control parameter of the map. When the a value is set, one can iterate this
function according to the recurrence xt+1 = f(xt, a). Numerical studies on this
recurrence for many iterations (about hundreds) lead to three type of results:
a fixed point or a periodic cycle or chaotic (aperiodic) series. The asymptotic
dynamical properties of this map are summed up in the bifurcation diagram (1).
Parametric control for exploration and exploitation. The basic idea of the algo-
rithm consists in using the dynamical properties of the logistic map by modifying
dynamically the a value as the algorithm runs and in respect to the optimisation
objective. Chaos occurs within the right part of the diagram (1) which may corre-
spond to the exploration phase, whereas fixed points occur in the left part which
may correspond to the exploitation phase. This modulation of a is achieved by
the perception and action functions/operators. Our algorithm at the local level
of ants will lead from an exploration phase to an exploitation phase, that is from
a high a-value (a 1) to a low a-value (a 0).

348 R. Charrier, C. Bourjot, and F. Charpillet

Fig. 1. Bifurcation diagram of the iterated map xt+1 = 1−a(2 xt −1)2 with 500 loops

2.4 Inside the Logistic Ant

The internal processing of a logistic ant follows a sensorimotor scheduling —
typical of a cybernetics approach—, that is a perception-decision-action process.
This scheduling is achieved during an elementary time step of the algorithm, in
parallel by each ant of the colony.

The Perception Process. Let us consider an ant i on a given vertex k of the
graph, let Vk denote the set of all vertices connected with vertex k and not yet
visited (not belonging thus to the taboo list). The perception operator acts on
the pheromone field according to the formula:

Pi(k) = maxl∈Vk
{T (k, l)} (4)

This perception returns simply the maximum amount of pheromone from a given
vertex.

The Decision Process. The decision process performs the transition of the
internal state of the logistic ant. For an ant i, it is formalized as a dynamical
system between two time steps t and t+ 1:⎧⎪⎪⎨⎪⎪⎩

at+1
i =

1
1 + eα (P t

i (k)−τ0)

xt+1
i = f(xt

i, a
t+1
i)

(5)

The updating of ai regulates the adaptation behavior of ants by means of a
sigmoid function which fixes the envelop of the decreasing variation of the control
variable in function of perceptions.

The Action Process. After updating the decision variable, the logistic ant
effects local actions:

A Deterministic Metaheuristic Approach Using “Logistic Ants” 349

– Choose an edge among the ordered edges list (through the field O) from the
current vertex in proportion to the value of the decision variable x and move
on the choosen vertex, denoted l∗.

– Update the set of visited edges and vertices, that is the field H.
– Update the influence pheromone field by the following formula:

T̃ t+1
i (k, l∗) = xt+1

i W(k, l∗) (6)

2.5 Reaction of the Environment

The environment reactions occur once at the end of each time step when the N
ant local loop are made up, once at the end of each global step to reinforce the
best cycle.

The reaction process at each time step consists in the updating of the field
O, the field Hi for each ant, and the global pheromone field according to:

T t+1 = T t +
N∑

i=1

T̃i (7)

At the level of a global step, the reaction consists in the reinforcement of the
pheromone field for the best cycle among the colony. Let Li denote the distance
of the cycle for an ant i and Gmin denote an inferior bound of the minimal
distance of a cycle defined by the sum of minimal distances from all edges. The
amount of pheromone �τ ∈ [0, 1] for reinforcing the best cycle is given by:

�τ =
Gmin

mini{Li}
(8)

This formula is independent of the distance units used and does not depend on
any parameter. The updating of the pheromone field according to the evapora-
tion coefficient ρ is then very similar as the Ant system algorithm. Finally the
reaction process resets the ordered edges field, the visited edges field, and the
influence pheromone field to their initial values.

3 Simulation and Results of the Logistic Ant Algorithm

Simulations have been performed on 20000 elementary time steps on the “att48”
TSP instance from the TSPLIB library for wich the optimal cycle equals 10628.
Different ant number N and evaporation coefficient ρ ∈ {0, 0.01, 0.02, · · · , 0.1}
have been tested. We have compared the best results between the classical Ant
System algorithm and our logistic ant algorithm on 5 runs for each initial con-
figuration. The comparison of the best results is given in table 1. The sigmoid
function used by logistic ants has been fixed to the following parameter: α = 0, 04
and τ0 = 30, 0. In terms of computation time, the running time of the logistic
ant algorithm is in average twice the runnig time of the Ant System algorithm
with the same implementation conditions. Both algorithms failed in finding the
optimal solution in the limited laps of time. Some points have to be mentioned:

350 R. Charrier, C. Bourjot, and F. Charpillet

Table 1. Comparison of best results between the “Ant System” (AS) algorithm and
the Logistic Ant algorithm (LA). Each cell gives a pair (ρbest, Lbest).

Number of agents 10 20 30 40
AS (0.0, 11028) (0.06, 10845) (0.06, 10847) (0.08, 10777)
LA (0.01, 11074) (0.0, 11049) (0.02, 10894) (0.01, 11026)

– best results are very close between both algorithms,
– the AS algorithm converges very fast towards good solutions, whereas it

takes more time for the LA algorithm to find good solutions,
– the increase of the ant number has low impact on the results in the AS case,

whereas it speeds up the convergence in the LA case,
– the evaporation coefficient has to be near 0.1 to give the best results in the

AS case, whereas much lower values are needed in the LA case.

4 Discussion and Interpretation of the Logistic Ant
Algorithm

We consider that the performances of the logistic ant system are convincing
to carry on this model for optimization. We foresee some advantages of this
approach:

– the deterministic nature of the logistic ant model enables to make clear the
underlying mechanisms involved in the ant colony. We have shown indeed
that the pheromone field modifies the internal control variable of agents
and impacts its future decisions through the nonlinear logistic map. The
pheromone field reveals to be both a control field in dynamical terms and a
decision field.

– This model constitutes therefore a metaheuristic approach, because of the
genericity of the convergence principle: the convergence profile is given for
each ant by the bifurcation diagram of the logistic map. This convergence
principle is an abstract one and can be adapted to many types of optimization
functions.

– The logistic ant model may be linked with approaches involving biological
chaos as it is mentionned in the introduction of this paper.

The main drawback we may see in this model lies in the theoretical impossi-
bility to prove at the present time the asymptotic convergence to the optimal
solution, instead of the ant colony algorithm family. By contrast the convergence
process may be known within each ant through the generic bifurcation diagram
of the logistic map and according to the variation of the ant control variable.
But it does not lead to know the convergence process at the global level. We
intend to compensate for this drawback by keeping several chaotic agents in the
environment to maintain an exploring level.

A Deterministic Metaheuristic Approach Using “Logistic Ants” 351

5 Conclusion

We have shown in this paper a way to build a full deterministic model of ant
algorithm by means of logistic maps as decision functions. The results obtained
by our “logistic ants” reveal to be comparable to the Ant System algorithm on
the same TSP instance. The main advantage of this deterministic model lies
in the mechanism principles it involves: the optimization process results from
an internal parametric control of ants on the logistic map through the field
of pheromone. An other interesting aspects of the model lies in the systemic
formalization using a field-based environment and a sensori-motor loop in ants,
which is generic and independent of the implementation on computers. It enables
therefore to be applied to many types of problems. Our assumption is finally that
the logistic ant model may be linked with realistic biological chaotic phenomena.

References

1. Charrier, R., Bourjot, C., Charpillet, F.: A nonlinear multi-agent system designed for
swarm intelligence: The logistic MAS. In: International Conference on Self-Adaptive
and Self-Organizing Systems, SASO 2007, Boston (2007)

2. Cole, B.J.: Is animal behaviour chaotic? Evidence from the activity of ants. Pro-
ceedings of the Royal Society: Biological Sciences 244(1311), 253–259 (1991)

3. Collet, P., Eckmann, J.P.: Iterated Maps on the Interval as Dynamical System.
Birkhäuser, Basel (1980)

4. Deneubourg, J., Aron, S., Goss, S., Pasteels, J.: The self-organizing exploratory
pattern of the Argentine ant. Insect Behavior 3, 159–168 (1990)

5. Dorigo, M., Stützle, T.: Ant Colony Optimization. The MIT Press, Cambridge
(2004)

6. Miramontes, O., Solé, R.V., Goodwin, B.C.: Neural networks as sources of chaotic
motor activity in ants and how complexity develops at the social scale. International
Journal of Bifurcation and Chaos 11(6), 1655–1664 (2001)

A Model Based Ant Colony Design
for the Protein Engineering Problem

Matteo Borrotti1,2, Davide De Lucrezia2,
Giovanni Minervini2, and Irene Poli2,3

1 Department of Statistics, University of Bologna, Bologna, Italy
matteo.borrotti@unibo.it

2 European Centre for Living Technology, University of Venice, Venice, Italy
{gminervini,davide.delucrezia}@ecltech.org

3 Department of Statistics, University of Venice, Venice, Italy
irenpoli@unive.it

Abstract. In many experimental setting, we are concerned with finding
the optimal experimental design, i.e. the configuration of predictive vari-
ables corresponding to an optimal value of the response. However, the
high dimensionality of the search space, the vast number of variables and
the economical constrains limit the ability of classical techniques to reach
the optimum of a function. In this paper, we investigate the combination
of statistical modeling and optimization algorithms to better explore the
combinatorial search space and increase the performance of classical ap-
proaches. To this end, we propose a Model based Ant Colony Design
(MACD) based on statistical modelling and Ant Colony Optimization.
We apply the novel technique to a simulative case study related to Syn-
thetic Biology.

Keywords: Evolutionary Optimization, Design of Experiments, Predic-
tive Model, Ant Colony Optmization, Synthetic Proteins.

1 Introduction

In recent years, discrete optimization of experiments concerning high dimen-
sional systems has become a crucial topic in many experimental fields. Biological
systems represent a typical example as they involve a highly hierarchical organi-
zation with a large number of variables. When planning an experiment, one diffi-
culty is the complex structure of interactions that needs to be considered in order
to achieve an optimal value of the response. We propose a novel methodology
combining the strength of two methodologies: Design of Experiments (DoE)[5]
and Ant Colony Optimization [4]. The former deals with statistical modeling
and fitting the relationship between the response and design variables, while the
second is an efficient optimization strategy suitable in high demensionality. The
resulting procedure, called Model based Ant Colony Design (MACD), improves
upon the limits of the individual techniques enabling us to deal with the huge
experimental space of the possible solutions.

M. Dorigo et al. (Eds.): ANTS 2010, LNCS 6234, pp. 352–359, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

A Model Based Ant Colony Design for the Protein Engineering Problem 353

We propose a simulation setup for assessing the performance of our method.
Our aim is to apply the procedure to the Protein Engineering and Design (PED)
problem, which involves multi-dimensional experimental space. One important
aim of PED is to find modified proteins with novel properties. In paricular we de-
velop new synthetic proteins concerning a huge discrete sequence space. MACD
is employed on a simulation set up reflecting the nature of the experimental
space and it is tested against different optimization algorithms. Our numerical
results show that the method is fast and involves limited experimental runs.

2 The Methodological Approach

Let A be a discrete set of experimental inputs, where the cardinality of A is
|A| = n. Our goal is to choose an m − uple (m � n) of experimental condi-
tions from A (with possible duplicates). The selected m − uple must optimize
the underlying objective. The MACD is tested and compared with different op-
timization algorithms using difference istances that simulate the features of the
real problem.

2.1 Model Based Ant Colony Design (MACD)

Ant Colony Optimization (ACO)[4] is one of the best bio-inspired algorithms for
discrete optimization. Within the ACO metaheuristc framework one of the cur-
rently best performing version is the MAX − MIN Ant System (MMAS)[6].
We implement the MMAS and hybrid versions of the algorithm based on two
different local search techniques: Iterative Improvement Algorithm and Simu-
lated Annealing (SA)[3]. Finally, we implement the MACD. The novelty of our
procedure is boosting of the best hybrid version of the ACO algorithm by a pre-
dictive statistical model. As a consequence, the resulting algorithm searches the
design space more exhaustively. The following steps summarize our procedure:

1. Randomly generate and evaluate an initial population (e.g. 100) ofm−uples;
2. Estimate a predictive statistical model based on the population of the avail-

able m−uples. Here, we use a linear regression model with binary predictive
variables, which is estimated from data by the least squares method. This
model does not include interactions between variables;

3. Select a new set of 100 m−uples by the solution construction process imple-
mented in the MMAS. For this purpose, we create a graph where each node
represents a specific domain. A solution is a path with length 4 composed of
4 objects connected by arches;

4. Identify the best predicted m − uple and use it to start a local search by
the Simulated Annealing (400 iterations). Make a prediction of the response
value using the fitted statistical model;

5. If the predictive response value of the new solution is larger than the one
selected in Step 4, the new solution replaces the old one in the population
obtained at Step 2;

6. The pheromone matrices are updated using the Iteration-Best Ant;

354 M. Borrotti et al.

7. Repeat steps from 3 to 6 until the stop criterion is satisfied. In our case, we
stop after 100 iterations. When the stop criterion is satisfied, the last set of
m − uples proposed by the approach is chosen as the new set of candidate
solutions to be tested;

8. The new set of candidate solutions is evaluated and included in the set of
the m− uples that have been already evaluated;

9. Repeat the steps from 2 to 8 for a fixed number of experiment generations.
In our specific case, such a number is set to be 10.

The procedure describe above improves upon existing methods in two main
directions:

1. Thanks to the statistical model, we can simulate the problem and move in
the search space as many times as we want, improving the solutions step by
step;

2. The iterated refinement of the predictive model provides the optimization
algorithm with predictive capability of the model resulting in an increased
accuracy during the optimization process.

2.2 The Protein Engineering Problem

One of the aims of Synthetic Biology is designing novel biological components
(i.e. proteins, metabolic and regulatory networks) for medical, industrial and
environmental applications. Particularly, proteins are important biological el-
ements as they are ubiquitous in nature and they are responsible for major
part of the biological tasks (i.e. catalysis, capability to enhance chemical reac-
tions within a cell). A protein Pi is a sequence of monomers, called amino-acids,
joined together to form a complex string. Each protein may differ in length,
amino acid composition and sequence and is characterized by a well defined
three-dimensional structure which in turn defines its function.

Starting from non-natural random sequences, we have designed a library of
95 random subsequences, called domains, each composed of 50 amino acids. The
amino acid frequency used to generate random domains reflects the composition
of natural proteins. Random domains are combinatorially assembled to generate
full-length random proteins of 200 amino acids (4 domains per protein) to be
subsequently screened for catalytic function. Thus, each individual protein can be
considered as a string composed of 4 domains chosen among the 95 polymers with
replacement. Accordingly, all possible permutations (with possible repetitions)
of 95 elements in 4 positions are 954, approx 8.1 × 107, which represents the
number of theoretically different full-length random proteins to be screened. The
experimental evaluation of such a huge number is beyond technical reach since
expression, purification and assessment of a protein may take from a few days
to weeks. The main challenge is to develop effective methodologies to identify
the best domains in the proper positions (a selection and ordering optimization
problem) to construct functional proteins.

In order to be experimentally tested, candidate proteins should respect the
following biological restrictions: (i) the number of cysteine residues should be at

A Model Based Ant Colony Design for the Protein Engineering Problem 355

most 9 and different from 5 and 7, since proteins with these features are hard
to express and purify. (ii) The percentage of coil should not be larger than 70%
otherwise proteins will hardly fold into stable tertiary structure. We implement
these constrains in Step 3 (search phase) of the method described in the previous
section.

3 Simulation Setting

In this section, we test the performance of four algorithms on simulated experi-
ments. Particularly, we consider two different experiment generating processes in
order to asses the quality of candidate solutions and test their performance. The
following four approaches are applied to 100 independent simulated experiments:

– MAX − MIN Ant System (MMAS), with colony size of 100 ants and evap-
oration factor 0.80;

– MAX − MIN Ant System with Iterative Improvement Local Search (Local-
MMAS), with colony size of 100 ants and evaporation factor 0.80;

– MAX − MIN Ant System with Simulated Annealing (SA-MMAS), with
colony size of 100 ants and evaporation factor 0.80;

– Model Based Ant Colony Design (see description in section 2.1).

The evaporation factor is too strong, in the first three algorithms, because the
algorithms must reach good solutions in a few iterations. A preliminary study
about optimal parameters configuration showed that the chosen values are the
most performing.

3.1 The Data Generating Models (DGM)

As a benchmark functions to generate experiment evaluations, we choose the
two functions described belove.

Polynomial regression model (PRM). This structure is described by a polyno-
mial regression model with 380 main effects (i.e. the effects of one of the i, with
i = 1, . . . , 95, domains in each j, with j = 1, . . . , 4, different positions) and 18
interactions between pairs of variables and 12 interactions among triplets. The
interactions between pairs of variables and triples are obtained considering the
3 best domains for each positions and combining them in pairs and triplets.
This model represents a protein fitness landscape dominated by strong inter-
actions (i.e. epistasis) which occurs when the effect of one mutation depends
on the presence of another [2]. This kind of fitness landscapes is characterized
by ruggedness and local optima, the resulting simulative Polynomial regression
model being formalized as follows:

y =
95∑

i=1

4∑
j=1

βijxij + α1x2,1x95,2 + α2x2,1x49,3 + α3x2,1x95,4 + α4x95,2x49,3

+ α5x95,2x95,4 + α6x49,3x95,4 + α7x1,1x93,2 + α8x1,1x48,3 + α9x2,1x94,4

356 M. Borrotti et al.

+ α10x93,2x48,3 + α11x93,2x94,4 + α12x48,3x94,4 + α13x3,1x94,2 + α14x3,1x50,3

+ α15x3,1x1,4 + α16x94,2x50,3 + α17x94,2x1,4 + α18x50,3x1,4 + δ1x2,1x95,2x49,3

+ δ2x2,1x95,2x95,4 + δ3x2,1x49,3x95,4 + δ4x95,2x49,3x95,4 + δ5x1,1x93,2x48,3

+ δ6x1,1x93,2x94,4 + δ7x93,2x48,3x94,4 + δ8x1,1x48,3x94,4 + δ9x3,1x94,2x50,3

+ δ10x3,1x94,2x1,4 + δ11x94,2x50,3x1,4 + δ12x3,1x50,3x1,4 (1)

where the coefficients βij (where i = 1, . . . , 95 and j = 1, . . . , 4) are:

βi1 equally spaces in [30, . . . ,−30];
βi2 equally spaces in [−20, . . . , 20];
βi3 equal to a parabolic function −10z2 + z + 30 with z in [−10, . . . , 10];
βi4 equal to a parabolic function 10z2 + z − 30 with z in [−10, . . . , 10];
α, δ both positive and negative coefficients of interactions among pairs and

triplets of the three best xi for each j.

Furthermore, since each xij represents a specific domain in a particular position
then xij is equal to 1 if the domain is in the considered sequence otherwise it
is 0. The optimal solution is x = (1, 95, 49, 95) with the response value equal to
184.961.
Polynomial sparse regression model (PSRM). This second formal structure to
generate data represents the situation where some elements for each position
j, in the protein sequence, highly influence the response of the system and the
others are close to 0. This model closely represents an experimental protein
fitness landscape where the major part of the protein sequences do not posses
any function (zero fitness) whereas rare functional proteins are tightly clustered
together [1]. The resulting simulative model is:

y =
95∑

i=1

4∑
j=1

βijxij + α1x54,1x7,2 + α2x54,1x63,3 + α3x54,1x16,4 + α4x7,2x63,3

+ α5x7,2x16,4 + α6x63,3x16,4 + α7x48,1x17,2 + α8x48,1x91,3 + α9x48,1x76,4

+ α10x17,2x91,3 + α11x17,2x76,4 + α12x91,3x76,4 + α13x12,1x20,2 + α14x12,1x84,3

+ α15x12,1x47,4 + α16x20,2x84,3 + α17x20,2x47,4 + α18x84,3x47,4 + δ1x54,1x7,2x63,3

+ δ2x54,1x7,2x16,4 + δ3x54,1x63,3x16,4 + δ4x7,2x63,3x16,4 + δ5x48,1x17,2x91,3

+ δ6x48,1x17,2x76,4 + δ7x17,2x91,3x76,4 + δ8x48,1x91,3x76,4 + δ9x12,1x20,2x84,3

+ δ10x12,1x20,2x47,4 + δ11x20,2x84,3x47,4 + δ12x12,1x84,3x47,4 (2)

As before, xij is equal to 1 when the domain is in the considered sequence and in
a specific position, otherwise it is 0. In this case the elements that influence the
response are randomly selected with uniform probability and their coefficients
are drawn from a normal distribution N(35, 10). The optimal solution is x =
(54, 7, 63, 16) with the response value equal to 232.426.

3.2 Results

Preliminary studies demostrated that the Local-MMAS could not reach better
solutions than the other approaches considered. Thus, we decided to use the

A Model Based Ant Colony Design for the Protein Engineering Problem 357

MACD with the more performing version of the MMAS, the SA-MMAS. It
is important to highlight that the function evaluations used by the local search
are counted when the number of function evaluations are determined.

In Fig.1, we show function evaluations and their response values. We report
the first 1000 evaluations. After the 500 experiment evaluations, the MACD has
a larger probability to find good solutions than the other two algorithms. In the

Empirical Run Length Distribution

Number of Function Evaluations

R
e
s
p
o
n
s
e
 v

a
lu

e
s

MMAS

SA-MMAS

MACD

opt

1 100 200 300 400 500 600 700 800 900

0
5
0

1
0
0

1
5
0

2
0
0

(a)

Average Response Distribution of the Proposed Approaches

Optimization Procedures

R
e
s
p
o
n
s
e
 V

a
lu

e
s

opt

MMAS SA-MMAS MACD

0
5
0

1
0
0

1
5
0

2
0
0

(b)

Fig. 1. Performance comparison between the MACD, the MMAS and the SA-
MMAS. The candidate solutions are evaluated with the PRM. (a) shows the Em-
pirical Run Length Distribution and (b) the Average Distribution through boxplot
representation.

Empirical Run Length Distribution

Number of Function Evaluations

R
e
s
p
o
n
s
e
 v

a
lu

e
s

MMAS

SA-MMAS

MACD

opt

1 100 200 300 400 500 600 700 800 900

0
5
0

1
0
0

1
5
0

2
0
0

2
5
0

(a)

Average Response Distribution of the Proposed Approaches

Optimization Procedures

R
e
s
p
o
n
s
e
 V

a
lu

e
s

opt

MMAS SA-MMAS MACD

0
5
0

1
0
0

1
5
0

2
0
0

2
5
0

(b)

Fig. 2. Performance comparison between the MACD, the MMAS and the SA-
MMAS. The candidate solutions are evaluated with the PSRM. (a) shows the Em-
pirical Run Length Distribution and (b) the Average Distribution through boxplot
representation.

358 M. Borrotti et al.

Average Response Distribution of each Function Evaluation

Number of Function Evaluations

R
e
s
p
o
n
s
e
 V

a
lu

e
s

opt

1 100 200 300 400 500 600 700 800 900 1000

0
5
0

1
0
0

1
5
0

2
0
0

2
5
0

Fig. 3. Average Fitness Distribution of the MACD among the 1000 function evalua-
tions. The candidate solutions are evaluated with the PSRM.

first function evaluations, our approach cannot reach good results due to the
limited amount of data available at that point. However, after 400 experiment
evaluations the predictive model starts to be more reliable. The performance of
the MACD appears more evident for the PRSM, as one can see in Fig.2.

Fig.3 shows that the MACD is able to reach the optimum of the PSRM after
only 200 function evaluations. The MACD outperforms the other approaches,
which instead ignore the information provided by the predictive statistical model.
In conclusion, the analysis of the performance of MACD shows that such a novel
approach reaches good solutions using only a few iterations in both case studies.

4 Conclusion

The novel algorithm derived in this work can be effectively employed for optimiz-
ing an experimental design by a relative small number of experiment evaluations.
In the simulation set-up considered here, the MACD reaches good solutions by
only 1000 evaluations. Most notably, in the case of PSRM, the MACD achieves
the optimal solution within 200 function evaluations.

The simulated landscapes have been designed to reflect concrete experimental
problems encountered in the design and optimization of proteins, so that these
results can be translated to an experimental setting with reasonable confidence.
The two functions describe in Section 3.1 provide insights on the behaviour of
the method in rugged experimental response surface with possible many local
optima.

Within this framework, the proposed approach may be deployed to aid the
search of novel proteins with a significant reduction of resources and time. In-
deed, traditional methods routinely screen from 10.000 to 100.000 protein can-
didates before identifying robust leads. Instead, the application of our approach

A Model Based Ant Colony Design for the Protein Engineering Problem 359

may dramatically reduce the number of screening required to identify promising
candidates. In addition, our algorithm provides an insight on the contribution
of individual domains to the overall fitness.

In conclusion these results suggest that the integration of advanced statistical
techniques with optimization algorithms may be profitably employed in opti-
mization of experimental design with a large experimental space which is typical
in biological experimental field.

Acknowledgements. Support from DICE (Designing Informative Combinato-
rial Experiments) project found by Fondazione di Venezia. We wish to thanks
also Matteo Borrotti’s PhD supervisor, Professor Alessandra Giovagnoli, Uni-
versity of Bologna. Furthermore we acknowledge ECLT (European Centre for
Living Technology) group and we are grateful to Thomas Stützle and Mauro
Birattari for providing useful comments on this work. We also wish to thanks
the anonymous referees for the remarks and suggestions for improvements.

References

1. Aita, T., Iwakura, M., Husimi, Y.: A cross-section of the fitness landscape of dihy-
drofolate reductase. Protein Eng. 14(9), 633–638 (2001)

2. Bershtein, S., Segal, M., Bekerman, R., Tokuriki, N., Tawfik, D.S.: Robustness-
epistasis link shapes the fitness landscape of a randomly drifting protein. Na-
ture 444(7121), 929–932 (2006)

3. Blum, C., Roli, A.: Metaheuristics in combinatorial optimization: Overview and
conceptual comparison. ACM Comput. Surv. 35(3), 268–308 (2003)

4. Dorigo, M., Stützle, T.: Ant Colony Optimization. Bradford Book (2004)
5. Montgomery, D.C.: Design and Analysis of Experiments. John Wiley & Sons, Chich-

ester (2006)
6. Stützle, T., Hoos, H.H.: MAX −MIN ant system. Future Gener. Comput.

Syst. 16(9), 889–914 (2000)

ACOPHY: A Simple and General Ant
Colony Optimization Approach for
Phylogenetic Tree Reconstruction

Huy Q. Dinh1,2,�, Bui Quang Minh1,�,
Hoang Xuan Huan3, and Arndt von Haeseler1

1 Center for Integrative Bioinformatics, Vienna, Max F. Perutz Laboratories,
University of Vienna, Medical University of Vienna,
University of Veterinary Medicine Vienna, Austria

2 Gregor Mendel Institute of Molecular Plant Biology,
Austrian Academy of Sciences, Vienna, Austria

3 Faculty of Information Technology, College of Technology, Hanoi, Vietnam
huy.dinh@gmi.oeaw.ac.at, minh.bui@univie.ac.at, huanhx@vnu.edu.vn,

arndt.von.haeseler@univie.ac.at

Abstract. We introduce ACOPHY, a novel framework to apply Ant
Colony Optimization (ACO) for phylogenetic reconstruction. ACOPHY
overcomes a main drawback of other attempts to reconstruct phylogenies
by defining a compact ACO graph that is nicely coupled with the tree
space. The proposed graph allows the ants to walk globally through the
tree space. Thus, ACOPHY can be generally applied to all well-known
optimality criteria in phylogenetics. We compared ACOPHY with the
traditional phylogenetic method PHYLIP and obtained slightly better
results. This is promising since our current implementation of ACOPHY
is still at the proof of concept stage. We list a number of points where
ACOPHY can be improved. Once the improvements are integrated, we
hope for competitive performance against other recent phylogenetic in-
ference methods.

Keywords: Phylogenetic reconstruction, ant colony optimization.

1 Introduction

Phylogenetic reconstruction is one of the main problems in biology [6]. In phy-
logenetic trees, contemporary organisms are located at the leaves of the tree,
whereas the internal nodes represent extinct common ancestors. The topology
of the tree depicts the evolutionary relationships between the organisms. The
branch length reflects the amount of evolutionary divergence between the ances-
tor and its descendant. With the advent of molecular biology and DNA sequenc-
ing technologies, phylogenetic trees are nowadays often inferred from sequence
data. The input data constitute a so-called multiple sequence alignment (MSA).

� These authors contributed equally to the work.

M. Dorigo et al. (Eds.): ANTS 2010, LNCS 6234, pp. 360–367, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

ACOPHY: Ant Colony Optimization for phylogenetics 361

It suffices to say that an MSA is a two-dimensional matrix of size n×m where
n is the number of species and m is the alignment length. In MSA, columns are
also called sites. All phylogenetic reconstruction approaches try to reconstruct
a tree that explains the variation observed in the MSA.

For such data, phylogenetic reconstruction can be formulated as a combina-
torial optimization problem. Phylogenetic methods are categorized according to
the objective function they optimize: maximum parsimony (MP), maximum like-
lihood (ML), and minimum evolution (ME) [6]. The first two methodologies are
character-based, that is to say trees are inferred directly from the MSA. Under
MP, we want to find the tree(s) T that minimize the total tree length L(T), the
minimal number of character changes along T required to explain the observed
differences in the alignment. For a given tree T , L(T) can be efficiently com-
puted by the Fitch’s algorithm [8]. The third category is called distance-based,
i.e., trees are constructed from pairwise distances derived from the sequences
of the MSA. For all objective criteria, finding the best trees was proven NP-
complete [9]. This is mainly due to the exponential growth of the number of tree
topologies with regards to the number of leaves [4].

Therefore, a variety of heuristics have been introduced to address this com-
putationally difficult problem. The simple greedy algorithm is perhaps among
the most widely used. These techniques have been implemented in a num-
ber of phylogenetic programs including PHYLIP, PHYML [7,10]. Greedy algo-
rithms, however, are easily trapped into local optima (chapter 4, [6]). Therefore,
global optimization heuristics have been proposed. These include iterated local
search (IQPNNI [20]), simulated annealing (RAxML-SA [18]), genetic algorithm
(MetaPIGA [13]), and tabu search (LEAPHY [21]).

Ant colony optimization (ACO [5]) is a recent heuristic framework inspired by
the behaviors of real ant colonies. Recently, ACO has been applied exclusively
for distance-based methods [1,15,3]. However, distance-based methods have the
disadvantage of losing sequence information and requiring a reliable estimate
of the distances. To the best of our knowledge there exist no character-based
methods using ACO.

Here, we introduce ACOPHY, a novel ACO framework for phylogenetic re-
construction to overcome the drawback of previous works. ACOPHY can be
used for character-based and distance-based objective functions. To this end, we
define a compact graph structure allowing the ants to walk globally through the
tree space. In the following, we present the ACOPHY and a proof of concept
implementation of ACOPHY using MP. We perform a comparison of ACOPHY
with the widely-used PHYLIP method using simulated data. Finally, we discuss
future extensions of the proposed method.

2 ACOPHY

As defining a suitable graph structure is the most challenging task for applying
ACO, we first propose the ACO graph that is nicely coupled with the tree
space. We then follow the ACO tradition to define heuristic information, solution
construction, pheromone update, and finally the overall ACOPHY algorithm.

362 H.Q. Dinh et al.

2.1 Construction Graph

We define the ACO graph G (Fig. 1) consisting of (n− 2)2 nodes, where n is the
number of species. Nodes correspond to points on the plane that are arranged
in n− 2 layers. The first layer has the single point with the coordinate of (1, 0).
We call it the nest of the ants. The second layer contains three points (2, 1),
(2, 0), and (2,−1). In general, layer i contains all points (i, ai), where ai are
integer numbers and |ai| < i. Hence, the last layer contains 2n− 5 points. The
nodes on the last layer are called food sources. The ants always walk on G from
the nest to the food sources through consecutive layers. Hence, G is a weighted
directed acyclic graph including arcs (or edges) that go from all nodes in layer i
to all other nodes in layer i+ 1 with i = 1, 2, . . . , n− 3. The weights on the arcs
correspond to the pheromone trails.

The defined graph G is related to the phylogenetic reconstruction as follows.
We denote the set of n species as X = {∗, 0, 1, . . . , n− 2}. The path, on which an
ant travels from the nest to the food sources, contains n−2 nodes (1, a1), . . . , (n−
2, an−2). This path corresponds to an integer vector (a1, a2, . . . , an−2), where ai <
|i| for i = 1, . . . , n−2. This vector can be uniquely translated into an unrooted bi-
furcating tree containing the n species by the so-called Bandelt-Dress code [2] (see
Fig. 1 for an example). Thus we have established an one-to-one correspondence

* 1 5

(1,0)−>(2,1)−>(3,−1)−>(4,0)−>(5,2)

Tree structure with code

 (*, 0, 1, −1, 0, 2)

1

2

3

4

−1

−2

−3

−4

*

3

−3

0 4 5

−5

2

1

−4

−1 −2

Fig. 1. The ACOPHY graph (on the left-hand side) for n = 7. The graph contains
52 nodes arranged inside a symmetric triangle. The arrows indicate the traveling path
of an ant from the nest point (1, 0) to one of the food sources. The y-coordinates of
the ant visiting nodes form the 5-element vector (∗, 0, 1,−1, 0, 2). This vector can be
decoded into the 7-species tree depicted on the right-hand side.

ACOPHY: Ant Colony Optimization for phylogenetics 363

between the ant traveling paths and the trees. Algorithms for translating the inte-
ger vectors into trees and vice versa were given in [2]. We refrain from detailing the
algorithms but note that it works by stepwise addition. Firstly, a single initial sub-
tree of 3 leaves {∗, 0, 1} is drawn where ∗ denotes the virtual root. Subsequently at
each step i (2 ≤ i ≤ n− 2), the species i will be added into the current sub-tree at
the edge from the node ai towards to the root. This is repeated until species n− 2
is inserted.

Finally, it is easy to see that the number of paths from the nest to the food
sources is t(n) = 1 · 3 · . . . · (2n − 5). This is exactly the number of unrooted
bifurcating trees for n species [4]. Therefore, our graph G allows the ants to walk
globally through the tree space within a compact structure of just O(n2) nodes
and O(n3) arcs1.

2.2 Pheromone Trail and Heuristic Information

For each arc (i, ai) → (i + 1, ai+1) we associate a pheromone trail τ [(i, ai) →
(i + 1, ai+1)]. The heuristic information is defined in a more complex way as
follows. Assuming that the ant is currently staying on layer i and the path,
that this ant has traveled so far, is coded as the vector (a1, a2, . . . , ai). It now
continues to layer i + 1 by finding an integer value ai+1, where |ai+1| < i +
1. On the other hand, the vector (a1, a2, . . . , ai+1) corresponds to a sub-tree
containing species {∗, 0, 1, . . . , i+1}. Under MP, one can efficiently compute this
sub-tree length given i + 1 sequences by the Fitch’s algorithm [8]. We denote
it by L(a1, a2, . . . , ai+1). The heuristic information can be intuitively defined as
1/L(a1, a2, . . . , ai+1).

2.3 Solution Construction and Pheromone Update

For solution construction the ant at layer i with the current path (a1, a2, . . . , ai)
will select (i+ 1, ai+1) as the next node with the probability

p(ai+1|a1, . . . , ai) =
τ [(i, ai) → (i+ 1, ai+1)]α/L(a1, . . . , ai+1)β∑
|x|<i+1 τ [(i, ai) → (i+ 1, x)]α/L(a1, . . . , ai, x)β

, (1)

whereα and β are two parameters determining the relative influence of pheromone
trail and heuristic information, respectively.

For pheromone update we apply the MAX-MIN ant system [19]. Firstly, all
pheromone trails evaporate with a factor of ρ ∈ [0, 1]:

τ [arcs] ← ρτ [arcs], ∀arcs ∈ G. (2)

Then, we identify the best ant that found the best tree among the nants running
ants. We now deposit an amount of pheromone along the path (a∗1, . . . , a

∗
n−2) of

the best ant by

τ [arcs] ← τ [arcs] + (1 − ρ)/L(a∗1, . . . , a
∗
n−2), ∀arcs ∈ (a∗1, . . . , a

∗
n−2). (3)

1 The exact number of arcs is (n − 3)[2
3
(n − 2)(2n − 5) − 1]

364 H.Q. Dinh et al.

2.4 The Overall ACOPHY Algorithm

Taking together we proceed as follows.

1. Initialize parameters and pheromone trails on all arcs to τmax.
2. Initialize the best tree reconstructed by the greedy stepwise addition [6].
3. Iterate the following steps tACO times:

(a) Let nants ants simultaneously walk on the graph from the nest to the
food sources with the decision rule in section 2.3.

(b) Update the pheromone trails following as described in section 2.3.
(c) Apply the nearest neighbor interchange (NNI) [6] to improve the current

best ant every, say, 100 iterations.
(d) Update the global best tree if the current best ant shows a better score.

This procedure follows the ACO scheme except that we apply the tree rear-
rangement by NNI in step 2(c). Since NNI is a type of local search inside the
tree space, NNI can be regarded as an extended local search with respect to the
ACOPHY graph. NNI is simple but was shown very effective in practice [10].

3 Performance Study

3.1 Data Simulation

As a proof of concept, we implemented ACOPHY under the MP principle
(source codes are available upon request). The ACOPHY parameters are shown
in Table 1. To study its performance we compared ACOPHY with a classical
parsimony method in the PHYLIP package, the dnapars program [7]. We could
not obtain other ACO implementations for phylogenetics [1,15,3].

The accuracy of both methods is assessed by simulated data following a stan-
dard scheme in phylogenetics [10,20]. We generated 100 random true trees with
30 taxa (small datasets) and 100 taxa (large datasets) under the Yule-Harding
distribution [11]. The branch lengths were drawn from an exponential distribu-
tion with mean values of 0.1. We then used Seq-Gen [16] to evolve sequences

Table 1. The parameter setup for ACOPHY

Parameter Value Description
tACO 10,000 number of ACOPHY iterations
nants 25 number of ants used in ACOPHY
τmin 1/2la lower bound of pheromone trail
τmax 1/l upper bound of pheromone trail
α 1 relative influence of pheromone trail
β 2 relative influence of heuristic information
ρ 0.9 pheromone evaporation factor

a l is the score of the parsimony tree constructed by the greedy
stepwise addition algorithm.

ACOPHY: Ant Colony Optimization for phylogenetics 365

0
5

10
15

20
25

30
35

R
ob

in
so

n−
Fo

ul
ds

 D
is

ta
nc

e

ACOPHY

ACOPHY

ACOPHY

ACOPHY

30 taxa
500 sites

100 taxa
1000 sites

100 taxa
500 sites

30 taxa
1000 sites

PHYLIP

PHYLIP

PHYLIP

PHYLIP

Fig. 2. Box-plots of the 100 Robinson-Foulds distances between the trees inferred by
PHYLIP / ACOPHY and the simulated true trees for four test instances

along the trees according to the Juke-Cantor model [12]. We repeated this pro-
cedure for short alignments (500 sites) and long alignments (1000 sites).

We then ran ACOPHY 10 times on each alignment to account for the stochas-
tic behavior of ACOPHY. The tree with the best score found in the 10 runs is
considered as the final ACOPHY tree. For each alignment, we ran PHYLIP only
once since it implemented a deterministic algorithm with the option of fixed
input order of sequences.

We assessed the accuracy of ACOPHY and PHYLIP by two quantities. The
first quantity is the number of times that the methods recovered the original
true trees. The second is the Robinson-Foulds (RF) distance [17] between the
inferred trees and the true trees, i.e., the number of branches that appear in one
tree but not the other. Hence the smaller the RF distance was, the better the
corresponding method performed.

3.2 Results

For (small, short)-datasets, PHYLIP and ACOPHY returned 17 and 19 correct
trees, respectively. For (small, long)-datasets, these numbers are 19 and 22, re-
spectively. Hence, ACOPHY slightly outperformed PHYLIP. For large datasets,
both PHYLIP and ACOPHY were not able to recover any true trees.

Therefore, we computed the RF distances and depicted the RF distribution
by box-plots (Fig. 2). From Fig. 2 it is clear that both methods performed
comparable though ACOPHY showed a better median in two instances (small
long and large short alignments). The increase in RF distances for large datasets
compared to small datasets is mainly due to difficulties in reconstructing large

366 H.Q. Dinh et al.

trees [20]. The MP scores found by both methods are significantly correlated
with the Pearson correlation coefficient ∼ 1. In particular for large long MSA
ACOPHY reconstructed 13 trees having the MP score of 0.01 − 0.42% smaller
than those of PHYLIP. However, for 7 cases PHYLIP achieved better MP scores
of 0.006 − 0.01%.

Next, we evaluate the consistency of ACOPHY using the 10 runs for each
dataset. We observed that for the small datasets, all 10 runs returned the same
tree. However, for 42 large long and 67 large short datasets ACOPHY found trees
with highly different scores in the 10 runs. Hence, ACOPHY had difficulties in
convergence that might be attributed to the insufficient number of iterations
tACO or not enough phylogenetic information.

The running time of ACOPHY for large long alignments was roughly 2 hours
per run on average, whereas PHYLIP needed only 10 minutes. This is expected
because ACO-based methods are much slower than greedy algorithms. It is also
because our code was currently not optimized.

4 Discussions

We have introduced the novel ACOPHY method using the ACO meta-heuristics
for phylogenetic reconstruction. The core component of ACOPHY is the compact
ACO graph. However, it is still qualified as a general graph that allows us to apply
all optimality criteria. Despite the proof of concept implementation, ACOPHY
was shown to perform as good as the well-known phylogenetic method PHYLIP.

ACOPHY can be further improved. Firstly, one can test different ACOPHY pa-
rameters instead of the default setting (Table 1). Secondly, we note that the cur-
rent implementation of the Fitch’s algorithm and the NNI search are inefficient.
A better NNI strategy [10] can accelerate the method substantially, thus allowing
us to apply NNI more frequently. Thirdly, the MAX-MIN ant system allows to
re-initialize the pheromone trails if no better tree is found after a given number
of iterations. Such feature can be easily integrated into ACOPHY to avoid 10 in-
dependent runs. More generally, one can incorporate a probabilistic stopping rule
[20] to determine the required number of further iterations on-the-fly.

As mentioned, ACOPHY can be extended to ML and ME criteria. For ML,
the computation becomes much more expensive. Therefore, parallel computing
can be applied to speed up the computation [14]. Moreover, ACOPHY is be-
ing developed under a general-purpose phylogenetic library allowing to easily
“plug-in” new heuristics. This framework will help us to integrate the aforemen-
tioned improvements and achieve a competitive performance with other recent
phylogenetic methods.

Acknowledgments. B.Q.M., H.Q.D. and A.v.H. thank the Wiener Wissen-
schafts-, Forschungs- und Technologiefonds for financial support. H.Q.D. also
thanks the support from Gregor Mendel Intitute, Vienna. We thank Anne Kupc-
zok for critical reading of the manuscript.

ACOPHY: Ant Colony Optimization for phylogenetics 367

References

1. Ando, S., Iba, H.: Ant algorithm for construction of evolutionary tree. In: Evolu-
tionary Computation, vol. 2, pp. 1552–1557. IEEE Press, Los Alamitos (2002)

2. Bandelt, H.J., Dress, A.: Reconstructing the shape of a tree from observed dissim-
ilarity data. Adv. Appl. Math. 7, 309–343 (1986)

3. Catanzaro, D., Pesenti, R., Milinkovitch, M.: An ant colony optimization algorithm
for phylogenetic estimation under the minimum evolution principle. BMC Evol.
Biol. 7 (2007)

4. Cavalli-Sforza, L.L., Edwards, A.W.F.: Phylogenetic analysis: Models and estima-
tion procedures. Amer. J. Human. Genet. 19, 233–257 (1967)

5. Dorigo, M., Stuetzle, T.: Ant Colony Optimization. The MIT Press, Cambridge
(2004)

6. Felsenstein, J.: Infering Phylogenies. Sinauer Associates, Sunderland (2004)
7. Felsenstein, J.: PHYLIP – Phylogeny Inference Package (version 3.2). Cladistics 5,

164–166 (1989)
8. Fitch, W.M.: Toward defining the course of evolution: Minimum change for a spe-

cific tree topology. Syst. Zool. 20, 406–416 (1971)
9. Foulds, L.R., Graham, R.L.: The Steiner problem in phylogeny is NP-complete.

Adv. Appl. Math. 3, 43–49 (1982)
10. Guindon, S., Gascuel, O.: A simple, fast, and accurate algorithm to estimate large

phylogenies by maximum likelihood. Syst. Biol. 52, 696–704 (2003)
11. Harding, E.F.: The probabilities of rooted tree-shapes generated by random bifur-

cation. Adv. Appl. Prob. 3, 44–77 (1971)
12. Jukes, T.H., Cantor, C.R.: Evolution of protein molecules. In: Munro, H.N. (ed.)

Mammalian Protein Metabolism, vol. 3, pp. 21–123. Academic Press, New York
(1969)

13. Lemmon, A.R., Milinkovitch, M.C.: The metapopulation genetic algorithm: An
efficient solution for the problem of large phylogeny estimation. Proc. Natl. Acad.
Sci. USA 99, 10516–10521 (2002)

14. Minh, B.Q., Vinh, L.S., von Haeseler, A., Schmidt, H.A.: pIQPNNI: Parallel recon-
struction of large maximum likelihood phylogenies. Bioinformatics 21, 3794–3796
(2005)

15. Perretto, M., Lopes, H.S.: Reconstruction of phylogenetic trees using the ant colony
optimization paradigm. Genet. Mol. Res. 4, 581–589 (2005)

16. Rambaut, A., Grassly, N.C.: Seq-Gen: An application for the Monte Carlo simula-
tion of DNA sequence evolution along phylogenetic trees. Comput. Appl. Biosci. 13,
235–238 (1997)

17. Robinson, D.F., Foulds, L.R.: Comparison of phylogenetic trees. Math. Biosci. 53,
131–147 (1981)

18. Stamatakis, A.P.: An efficient program for phylogenetic inference using simulated
annealing. In: Online Proceedings of the 4th IEEE International Workshop on High
Performance Computational Biology, Denver (2005)

19. Stuetzle, T., Hoos, H.: Max-min ant system. Future Gener. Comp. Sy. 16, 889–914
(2000)

20. Vinh, L.S., von Haeseler, A.: IQPNNI: Moving fast through tree space and stopping
in time. Mol. Biol. Evol. 21, 1565–1571 (2004)

21. Whelan, S.: New approaches to phylogenetic tree search and their application to
large numbers of protein alignments. Syst. Biol. 56, 727–740 (2007)

ACS Searching for D4t-Hadamard Matrices

Vı́ctor Álvarez, José Andrés Armario, Maŕıa Dolores Frau, Félix Gudiel,
Belén Güemes, Elena Mart́ın, and Amparo Osuna

University of Sevilla, Sevilla, Spain
{valvarez,armario,mdfrau,gudiel,bguemes,emartin,aosuna}@us.es

Abstract. An Ant Colony System (ACS) looking for cocyclic Hadamard
matrices over dihedral groups D4t is described. The underlying weighted
graph consists of the rooted trees described in [1], whose vertices are
certain subsets of coboundaries. A branch of these trees defines a D4t-
Hadamard matrix if and only if two conditions hold: (i) Ii = i − 1 and,
(ii) ci = t, for every 2 ≤ i ≤ t, where Ii and ci denote the number of i-
paths and i-intersections (see [3] for details) related to the coboundaries
defining the branch. The pheromone and heuristic values of our ACS are
defined in such a way that condition (i) is always satisfied, and condition
(ii) is closely to be satisfied.

Keywords: Cocyclic Hadamard matrix, ant colony system, i-path,
i-intersection.

1 Introduction

Hadamard matrices are square matrices with entries ±1 such that their rows are
pairwise orthogonal. It is easy to prove that the size of Hadamard matrices must
be 1, 2 or a multiple of 4. Nevertheless, it is an open question whether Hadamard
matrices exist for every size 4t. This is known as the Hadamard Conjecture.
Recommended references on Hadamard matrices and their applications are [10]
and more recently [12].

Actually, constructing Hadamard matrices is a difficult problem of optimiza-
tion. That being so, different heuristics have been proposed to look for Hadamard
matrices (see [2,6,5] for instance), but they all seem to run in exponential time
O(2t).

One of the most promising techniques for solving the Hadamard Conjecture
is the cocyclic approach [12], since both the search space and the time required
for testing the Hadamard character of a matrix are significantly improved in this
framework [12,1]. Among others, dihedral groups D4t seem to provide a large
amount of cocyclic Hadamard matrices (see [12] or [4], for instance). This is the
reason for which we will focus on this family of groups. In the sequel, for short,
cocyclic matrices over D4t will be simply denoted as D4t-matrices.

Experimental results in [1] suggest that one might restrict to look for D4t-
Hadamard matrices satisfying the central distribution. (this notion will be ex-
plained in detail in Section 2).

M. Dorigo et al. (Eds.): ANTS 2010, LNCS 6234, pp. 368–375, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

ACS Searching for D4t-Hadamard Matrices 369

Our aim here is to use the ideas of ant colony optimization (in the sequel, ACO
for brevity) in order to design an ant colony system looking for D4t-Hadamard
matrices satisfying the central distribution.

We organize the paper as follows. Notations and previous results are intro-
duced in Section 2. Section 3 is devoted to the description of our ACS. Last
section is devoted to examples and conclusions.

2 Describing the Rooted Trees

In what follows, we will adopt the notations and results introduced in [1], which
we describe now.

Consider the dihedral group D4t, given by the presentation

< a, b|a2t = b2 = (ab)2 = 1 >

and ordering g1 = 1 = a0 < . . . < g2t = a2t−1 < g2t+1 = b < . . . < g4t = a2t−1b.
A 2-cocycle over D4t consists in a map f : D4t ×D4t → {1,−1} such that

f(gi, gj)f(gigj , gk) = f(gj , gk)f(gi, gjgk), ∀ gi, gj, gk ∈ D4t.

A cocyclic matrix over D4t (in the sequel, D4t-matrix) consists in a matrix
Mf = (f(gi, gj)), f being a 2-cocycle over D4t.

A basis for 2-cocycles over D4t is given by B = {∂a, . . . , ∂a2t−3b, β1, β2, γ},
where ∂g denotes the elementary coboundary related to the element g, that is

∂g(gi, gj) = δg(gi)δg(gj)δg(gigj) for δg(gi) =
{

−1, g = gi

1, g
= gi

β1(aibl, ajbk) = (−1)ij , β2(aibl, ajbk) = (−1)lk and

γ(aibl, ajbk) =

⎧⎨⎩
−1, l = 0 and i+ j ≥ 2
−1, l = 1 and i < j

1, otherwise

We will consider only D4t-matrices of the type Mf = M∂i1
. . .M∂iw

· R, in
terms of some coboundary matrices M∂ij

and the matrix R = Mβ2Mγ . There
is computational evidence that most of D4t-Hadamard matrices are of this type
(see [9,3] for instance).

Furthermore, the cocyclic Hadamard test (which asserts that a cocyclic matrix
is Hadamard if and only if the summation of each row but the first is zero, [13])
runs four times faster for this type of D4t-matrices, since it suffices to check
whether the summation of rows from 2 to t are zero. For clarity in the exposition,
from now on, the rows whose summation is zero are simply termed Hadamard
rows.

In [3] the Hadamard character of a cocyclic matrix is described in an equivalent
way, in terms of generalized coboundary matrices, i-walks and intersections. We
reproduce now these notions.

370 V. Álvarez et al.

The generalized coboundary matrix M̄∂j related to a elementary coboundary
∂j consists in negating the jth-row of the matrix M∂j . Note that negating a row
of a matrix does not change its Hadamard character. As it is pointed out in [3],
every generalized coboundary matrix M̄∂j contains exactly two negative entries
in each row s
= 1, which are located at positions (s, i) and (s, e), for ge = g−1

s gi.
We will work with generalized coboundary matrices from now on.

A set {M̄∂ij
: 1 ≤ j ≤ w} of generalized coboundary matrices defines an

i-walk if these matrices may be ordered in a sequence (M̄l1 , . . . , M̄lw) so that
consecutive matrices share exactly one negative entry at the ith-row. Such a
walk is called an i-path if the initial and final matrices do not share a common
−1, and an i-cycle otherwise. As it is pointed out in [3], every set of generalized
coboundary matrices may be uniquely partitioned into disjoint maximal i-walks.
It is clear that every maximal i-path contributes two negative occurrences at the
ith-row.

An i-intersection is a position in which R and M̄∂i1
. . . M̄∂iw

share a common
−1 in the ith-row.

From the definitions above, a characterization of Hadamard rows (conse-
quently, of Hadamard matrices) may be easily described in terms of the number
ci of i-paths and the number Ii of i-intersections.

Proposition 1. [3] The ith row of a D4t-matrix M = M∂i1
. . .M∂iw

·Mβ2 ·Mγ

is Hadamard if and only if

ci − Ii = t− i+ 1, 2 ≤ i ≤ t. (1)

It should be desirable to know the way in which coboundaries combine to form
i-paths and i-intersections. These questions have already been answered.

On one hand, as it is described in [3], for 2 ≤ i ≤ t, a maximal i-walk
consists of a maximal subset in (M∂1 , . . . ,M∂2t) or (M∂2t+1 , . . . ,M∂4t) formed
from matrices (. . . ,Mj,Mk, . . .) such that j ± (i− 1) ≡ k mod 2t.

On the other hand, in [[1], Lemma 3, p.208], a complete distribution of the
coboundaries in B which produce an intersection at a given row is described in
a table, so that coboundaries which produce the same negative occurrence at a
row are displayed vertically in the same column. For clarity in the reading, we
note the generalized coboundary M̄∂i simply by i:

row coboundaries

2 2t 2t + 1

3 2t-1
2t

2
2t + 1 2t+2

4 ≤ k ≤ t 2t-k+2
2t − k + 3

2
. . .
. . .

2t − 1
k − 2

2t

k-1

2t + 1

4t-k+2
2t + 2

4t − k + 1
. . .
. . .

2t + k − 3
4t − 2

2t + k − 2 2t+k-1

Notice that the boxed coboundary matrices do not produce any intersection at
the precedent rows. Furthermore, M̄∂t , M̄∂t+1 , M̄∂3t and M̄∂3t+1 do not produce
any intersection at all.

ACS Searching for D4t-Hadamard Matrices 371

Though formally there are many distributions (c2, I2), . . . , (ct, It) satisfying
the Hadamard test (1), in [1] there is computational evidence that the distribu-
tion (ci, Ii) = (t, i − 1) provides a large density of D4t-Hadamard matrices, for
2 ≤ t ≤ 5. This is termed the central distribution, and is expected to provide
many D4t-Hadamard matrices for larger values of t as well. The tables in [1]
support this idea.

As it was already described in [1], the search space in the central distribution
(ci, Ii) = (t, i− 1), 2 ≤ i ≤ t, may be represented as a forest of two rooted trees
of depth t − 1. Each level of the tree is identified to the correspondent row of
the cocyclic matrix at which intersections are being counted, so that the roots
of the trees are located at level 2 (corresponding to the intersections created at
the second row of the cocyclic matrix).

This way the level i contains those coboundaries which must be added to the
father configuration in order to get the desired i− 1 intersections at the ith-row,
for 2 ≤ i ≤ t.

The root of the first tree is ∂2t, whereas the root of the second tree is ∂2t+1,
since these are the only coboundaries which may give an intersection at the
second row.

As soon as one of these coboundaries is used, the other one is forbidden, since
otherwise a second intersection would be introduced at the second row.

Now one must add some coboundaries to get two intersections at the third
row. Notice that one and just one of {∂2t, ∂2t+1} is already used, whereas the
other is forbidden.

Successively, in order to construct the nodes at level k, one must add some of
the correspondent boxed coboundaries of the table, since the remaining cobound-
aries are either used or forbidden.

Some pictures representing these forests for 2 ≤ t ≤ 4 are included in [1].
Summing up, if we assume that we are looking for D4t-Hadamard matrices

satisfying the central distribution, two conditions must hold:

Ii = i− 1 (2)

ci = t (3)

Condition (2) means that one should find a branch in the trees above reaching
the bottom level, t. But just a few of these branches define a D4t-Hadamard
matrix. Attending to condition (3), among all branches reaching the level t,
one should select only those which inherits a subset of coboundaries such that
eventually combined with some of the matrices M̄∂t , M̄∂t+1 , M̄∂3t and M̄∂3t+1 do
produce exactly t i-walks, 2 ≤ i ≤ t.

3 Defining the ACS

Sometimes solving an optimization problem is so difficult, that one restricts
oneself to obtain not necessarily a global optimum but just a local one. Heuristic
procedures are concerned with this purpose. A special kind of heuristics are

372 V. Álvarez et al.

those emulating natural behaviours, such as evolutionary algorithms (inspired
by biological evolution, see [11]) and ant colony optimization (simulating the
pheromone model of ants, see [8]).

Although some heuristics (in terms of image restoration [6] or even evolu-
tionary computation [2,5]) have already been used for constructing Hadamard
matrices, as far as we know ant colony optimization has not been used for this
purpose yet. This is our concern here. We are going to define an ant colony
system (in the sequel, ACS [7]).

To this end, we need to define a weighted graph G modeling the problem, as
well as the values τij , ηij , φ, ρ, τ0, q0, α, β and the function Δij proper of ACSs.

The underlying graph G modeling our optimization problem consists of the
rooted trees T1 and T2 described in the Section 2.

A D4t-matrix Mf satisfies the central distribution if and only if the conditions
(2) and (3) are satisfied.

As it was noted before, condition (2) means that the coboundaries generating
f define a branch in one of our rooted trees, ending at the bottom level, t.

Unfortunately, there is no such geometric translation for condition (3).
For instance, the rooted trees associated to the case t = 5 consists of 84

branches each, all of them ending at the bottom level, 5. This means that the
subsets of coboundaries associated to each of these branches satisfy the condi-
tion (2). Unfortunately, only 14 of these 84 branches give raise to D4t-Hadamard
matrices, since only 14 of the corresponding subsets of coboundaries (eventu-
ally combined with some of {∂5, ∂6, ∂15, ∂16}) satisfy the condition (3). These
branches are listed in the table below (the subsets of added ∂i are listed in
brackets).

Branches from T1

(10)(9)(3, 13, 18)(14)[16]
(10)(9)(3, 13, 18)(17)[15]

(10)(9)(3, 13, 18)(4, 7, 14)[5, 6, 16]
(10)(9)(3, 13, 18)(4, 7, 17)[5, 6, 15]

(10)(12)(8)(17)[5, 16]
(10)(12)(8)(4, 7, 14)[15, 16]
(10)(12)(13)(4, 7, 14)[6, 16]

(10)(12)(3, 8, 13)(4)[15]
(10)(12)(3, 8, 13)(4)[5, 6, 16]

(10)(12)(3, 8, 18)(17)[]
(10)(2, 9, 12)(8)(14)[5, 6, 15, 16]
(10)(2, 9, 12)(8)(4, 7, 17)[5, 16]

(10)(2, 9, 12)(13)(4)[16]
(10)(2, 9, 12)(13)(4)[5, 6, 15]

(10)(2, 9, 12)(18)(4, 7, 17)[5, 6]
(10)(2, 9, 12)(3, 8, 13)(14)[6, 16]

Branches from T2

(11)(2)(3)(4, 14, 17)[6, 15]
(11)(2)(13)(7)[6, 16]

(11)(2)(13)(4, 14, 17)[5, 6]
(11)(2)(3, 13, 18)(17)[5]

(11)(2)(3, 13, 18)(17)[6, 15, 16]
(11)(2)(8, 13, 18)(7)[]

(11)(9)(8)(7, 14, 17)[5, 15]
(11)(9)(13)(4)[5, 16]

(11)(9)(13)(4, 7, 17)[5, 6]
(11)(9)(3, 13, 18)(4)[]

(11)(9)(8, 13, 18)(17)[6]
(11)(9)(8, 13, 18)(17)[5, 15, 16]

(11)(12)(3, 8, 18)(4)[6]
(11)(12)(3, 8, 18)(7)[5]

(11)(12)(3, 8, 18)(4, 14, 17)[6, 15, 16]
(11)(12)(3, 8, 18)(7, 14, 17)[5, 15, 16]

ACS Searching for D4t-Hadamard Matrices 373

Condition (3) is not satisfied by the remainder branches. This means that
given such a branch, for every possible subset of {∂5, ∂6, ∂15, ∂16}, there exists
a row i such that ci
= t = 5. For instance, the tables below show the values
ci when the set of coboundaries defining the branch (10)(9)(3, 8, 13)(17) are
combined with the subset indicated.

Added ∂i c2 c3 c4 c5

4 5 5 4
[5] 5 5 5 4
[6] 5 5 4 4
[15] 5 4 6 5
[16] 4 6 5 5

Added ∂i c2 c3 c4 c5

[5, 6] 5 5 4 4
[5, 15] 6 4 6 5
[5, 16] 5 6 5 5
[6, 15] 6 4 5 5
[6, 16] 5 6 4 5
[15, 16] 4 5 6 6

Added ∂i c2 c3 c4 c5

[5, 6, 15] 6 4 5 5
[5, 6, 16] 5 6 4 5
[5, 15, 16] 5 5 6 6
[6, 15, 16] 5 5 5 6

[5, 6, 15, 16] 5 5 5 6

Now we are in conditions to define the values τij and ηij .
The heuristic value ηij is defined attending to condition (3), so that ηij =

1
l∑

k=2
|t− ck|

, where l indicates the level of vertex vj . This way, the nearer the

path is to the central distribution (t, . . . , t), the higher ηij is.
Initially, τij = τ0 = 0.25. We define Δij = τij + 3φ

ρ |τij − τ0|, so that the
pheromone values are updated for the set of edges belonging to the largest path
among the ants’ traversals by means of the formula τij = (1 − ρ)τij + ρΔτij =
τij + 3φ|τij − τ0|. Thus, although the local pheromone update has taken place
before, the final value of τij is greater or equal than its initial value, excepting the
value of the last edge of the path, which is settled to 0. Consequently, this edge
will never be used again. This is not a source of difficulties for the algorithm,
since our graph consists of trees, and hence there is no edge going further.

We set α = 0.75 and β = 0.25, so that the relative importance of pheromone
versus heuristic information is settled accordingly to our purposes, since we need
to get a branch reaching the bottom level t.

The evaporation rate is ρ = 0.5, the pheromone decay coefficient is φ = 0.5,
the probability of choosing the ”best” edge is q0 = 0.75. These values have been
fixed experimentally.

Every iteration, the ants looks for good paths. For paths reaching at least
level t− 1, a local search is performed. This procedure consists in an exhaustive
search from the vertex of the branch located at level t−1, combining with the 16
subsets of {∂t, ∂t+1, ∂3t, ∂3t+1}. No matter the result of the search is, the weight
of the edge arriving to the level t−1 is settled to 0, since now there is no chance
to get not traversed paths from it. Whenever a D4t-Hadamard matrix is found
while performing the local search, it is added to a list hadmat.

The algorithm stops as soon as a the list hadmat is not empty.
We include now a pseudo-code for our ACS.

374 V. Álvarez et al.

Algorithm 1. ACS searching for D4t-Hadamard matrices.

Input: an integer t
Output: a list hadmat of D4t-Hadamard matrices.

hadmat← ∅
while hadmat is empty {

for i from 1 to m do {
travi ← traversal of ant i
if travi reaches level t− 1 then local search(travi)
set to 0 the weight of the last edge of travi

}
actualize the weight of the edges of the best traversal

}
hadmat

In the following section we include some executions and final comments.

4 Examples

All the calculations of this section have been worked out in Mathematica 4.0,
running on a Pentium IV 2.400 Mhz DIMM DDR266 512 MB.

We have fixed m = 5, so that every iteration 5 traversals are performed.
For every 3 ≤ t ≤ 8, we have performed 10 trials looking for D4t-Hadamard

matrices. The table below shows the fewest, largest and average number of
iterations required, the best, worst and average time required and the mini-
mum, maximum and average number of D4t-Hadamard matrices found in these
calculations.

t Fewest Largest Av.Iter. Best Worst Av.Time min max Av.
3 1 1 1 0.02′′ 0.11′′ 0.08′′ 10 10 10
4 1 1 1 0.48′′ 0.66′′ 0.59′′ 14 22 19.6
5 1 1 1 1.56′′ 2.34′′ 1.86′′ 2 4 3
6 1 1 1 1.01′′ 7.43′′ 3.59′′ 1 4 2.5
7 2 14 6.1 21.013′′ 3′18′′ 1′20′′ 1 2 1.1
8 1 2 1.2 1.93′′ 36.31′′ 15.41′′ 1 2 1.1

For values t ≥ 9, the algorithm does not find a D4t-Hadamard matrix in rea-
sonable time (more than 100 iterations are required). Nevertheless, the traversals
reach the bottom level t most of times. Unfortunately, the subsets of cobound-
aries do not produce the required number of i-paths, for some row i. The table
below shows how many of 500 traversals for t = 9 have ended at the correspond-

ing level, as well as the amount of traversals for which the difference
t∑

i=2
|t− ci|

is the indicated.

ACS Searching for D4t-Hadamard Matrices 375

Level
t∑

i=2
|t− ci|

6 7 8 14 12 11 10 9 8 7 6 5 4 3 2 1
10 15 475 1 5 9 14 39 106 122 61 52 66 17 7 1

Consequently, most of the traversals (475 from 500) satisfy the condition (2).
This means that the definition of the pheromone values τij is fine.

On the other hand, the condition (3) is never satisfied. This fact suggests that
the formula for the heuristic values ηij should be redefined somehow. We will
deal with this problem in a near future.

Acknowledgments. All authors are partially supported by the research projects
FQM–296 and P07-FQM-02980 from Junta de Andalućıa and MTM2008-06578
from Ministerio de Ciencia e Innovación (Spain).

References

1. Álvarez, V., Armario, J.A., Frau, M.D., Gudiel, F., Osuna, A.: Rooted trees search-
ing for cocyclic Hadamard matrices over D4t. In: Bras-Amorós, M., Høholdt, T.
(eds.) AAECC-18. LNCS, vol. 5527, pp. 204–214. Springer, Heidelberg (2009)

2. Álvarez, V., Armario, J.A., Frau, M.D., Real, P.: A genetic algorithm for cocyclic
Hadamard matrices. In: Fossorier, M.P.C., Imai, H., Lin, S., Poli, A. (eds.) AAECC
16. LNCS, vol. 3857, pp. 144–153. Springer, Heidelberg (2006)

3. Álvarez, V., Armario, J.A., Frau, M.D., Real, P.: A system of equations for de-
scribing cocyclic Hadamard matrices. J. of Comb. Des. 16(4), 276–290 (2008)

4. Álvarez, V., Armario, J.A., Frau, M.D., Real, P.: The homological reduction method
for computing cocyclic Hadamard matrices. J. Symb. Comput. 44, 558–570 (2009)

5. Álvarez, V., Frau, M.D., Osuna, A.: A genetic algorithm with guided reproduc-
tion for constructing cocyclic Hadamard matrices. In: ICANNGA 2009. LNCS,
vol. 5495, pp. 150–160. Springer, Heidelberg (2009)

6. Baliga, A., Chua, J.: Self-dual codes using image resoration techniques. In: Bozta,
S., Sphparlinski, I.E. (eds.) AAECC 14. LNCS, vol. 2227, pp. 46–56. Springer,
Heidelberg (2001)

7. Dorigo,M.,Gambardella,L.M.:AntColonySystem:Acooperative learning approach
to the traveling salesman problem. IEEE Trans. on Evol. Comp. 1(1), 53–66 (1997)

8. Dorigo, M., Stützle, T.: Ant colony optimization. The MIT Press, Cambridge
(2004)

9. Flannery, D.L.: Cocyclic Hadamard matrices and Hadamard groups are equivalent.
J. Algebra 192, 749–779 (1997)

10. Hedayat, A., Wallis, W.D.: Hadamard Matrices and Their Applications. Ann.
Stat. 6, 1184–1238 (1978)

11. Holland, J.H.: Adaptation in natural and artificial systems. University of Michigan
Press, Ann Arbor (1975)

12. Horadam, K.J.: Hadamard matrices and their applications. Princeton University
Press, Princeton (2006)

13. Horadam, K.J., de Launey, W.: Generation of cocyclic Hadamard matrices. In:
Computational algebra and number theory (Sydney, 1992). Math. Appl, vol. 325,
pp. 279–290. Kluwer Acad. Publ., Dordrecht (1995)

Ant Based Semi-supervised Classification

Anindya Halder1, Susmita Ghosh2, and Ashish Ghosh1

1 Center for Soft Computing Research, Indian Statistical Institute, Kolkata, India
{anindya t,ash}@isical.ac.in

2 Dept. of Computer Science & Engg., Jadavpur University, Kolkata, India
susmitaghoshju@gmail.com

Abstract. Semi-supervised classification methods make use of the large
amounts of relatively inexpensive available unlabeled data along with the
small amount of labeled data to improve the accuracy of the classifica-
tion. This article presents a novel ‘self-training’ based semi-supervised
classification algorithm using the property of aggregation pheromone
found in natural behavior of real ants. The proposed algorithm is evalu-
ated with real life benchmark data sets in terms of classification accuracy.
Also the method is compared with two conventional supervised classifi-
cation methods and two recent semi-supervised classification techniques.
Experimental results show the potentiality of the proposed algorithm.

1 Introduction

Traditional machine learning methods for pattern classification require sufficient
number of labeled data to assign an unlabeled pattern to a certain class ac-
cording to its characteristics. However labeled patterns are often difficult, costly,
and/or time consuming to obtain, as they require the efforts of experienced hu-
man annotators. Whereas unlabeled data relatively easy to get. Semi-supervised
learning (classification) [5] methods make use of the large amount of available un-
labeled data, along with the labeled data, to improve the classification accuracy.
As semi-supervised classification requires less human intervention and produces
better results, it is of great interest to the machine learning researchers in recent
years.

A variety of semi-supervised learning methods are developed; they can be
broadly categorized as follows, self-training [17,20], co-training [4], transductive
support vector machines [1,6,7], graph-based methods [2,3], and Expectation
Maximization with generative mixture models [15] etc.

In this article, a novel semi-supervised algorithm is proposed based on ag-
gregation pheromone density which is inspired by the natural behavior of real
ants and other social insects. The social insects’ behaviors such as finding the
best food source, building of optimal nest structure, brooding, protecting the
larva, guarding etc. show intelligent behavior on the swarm level. Ant Colony
Optimization (ACO) [8] and Aggregation Pheromone Systems (APS) [19] are
computational algorithms modeled on the behavior of ant colonies. ACO [8] al-
gorithms are designed to emulate ants’ behavior of laying pheromone on the

M. Dorigo et al. (Eds.): ANTS 2010, LNCS 6234, pp. 376–383, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Ant Based Semi-supervised Classification 377

ground while moving to solve optimization problems. Pheromone is a type of
chemical emitted by an organism to communicate between members of the same
species. Pheromone, which is responsible for clumping or clustering behavior
in a species and brings individuals into closer proximity, is termed as aggrega-
tion pheromone. Thus, aggregation pheromone causes individuals to aggregate
around good positions which in turn produces more pheromone to attract indi-
viduals of the same species. In APS [19], a variant of ACO, this behavior of ants
is used to solve real parameter optimization problems.

Though a large number of techniques exists for ant based unsupervised clas-
sification (i.e clustering) in the literature [11], only few attempts (antminer and
it’s different variants) [13] have been made for (supervised) classification. But
no ant colony based semi-supervised classification is present in the literature as
to the best of our knowledge.

As mentioned earlier Aggregation Pheromone Systems [19] is used for con-
tinuous function optimization where aggregation pheromone density is defined
by a function in the search space. Inspired by the aggregation pheromone sys-
tem found in ants and other similar agents, in earlier work, attempts are made
for solving clustering [9] and classification [10] with encouraging results. Moti-
vated form the earlier research, in this article a novel ant based semi-supervised
classification algorithm using aggregation pheromone has been proposed.

The rest of the paper is organized as follows. Section 2 describes the detail
descriptions of the proposed ant based semi-supervised classification method
using aggregation pheromone system. Details of the experiments and analysis of
results are provided in Section 3, and finally conclusions are drawn in Section 4.

2 Proposed Methodology: Aggregation Pheromone
Density Based Semi-Supervised Classification(APSSC)

Consider a data set D with m classes and at least some small number of labelled
data patterns from each class which, by our assumption, forms m homogeneous
groups/colonies of ants in the training/lebelled set L. Also there are (relatively
large) |U | number of unlabeled data patterns in the unlabeled set U . Let xu

1 , xu
2

, xu
3 , . . . , xu

|U| be the unlabeled data points represented as unlabeled ants au
1 ,

au
2 , au

3 , . . . , au
|U| respectively.

Consider, x li
1 , x li

2 , x li
3 , . . . , x li

|CO
i |, as the given training data patterns in the

ith original training class CO
i . These patterns are considered as a population of

|CO
i | number of ants represented as ali

1 , ali
2 , ali

3 , . . . , ali
|CO

i | respectively. Hence,

an ant ali
j represents the jth training data pattern x li

j ∈ CO
i .

Initially at iteration t = 0 when no unlabeled pattern is added (latter demon-
strated) to any of the original training class, then ith total training class/colony
CT

i is the same as the ith original training class/colony CO
i .

Each labeled pattern ant emits pheromone at its neighborhood. The intensity
of pheromone emitted by the kth individual labeled ant alj

k ∈ CT
j located at x lj

k

decreases with its distance from x lj
k . Thus the pheromone intensity at a point

378 A. Halder, S. Ghosh, and A. Ghosh

closer to x lj
k is more than those at other points that are farther from it. To

achieve this, the pheromone intensity emitted by ant alj
k ∈ CT

j is modeled by a
Gaussian distribution. Hence effect of the emitted pheromone density on the ith

unlabeled ant au
i (located at xu

i) at iteration (t + 1) due to kth ant alj
k ∈ CT

j

located at x lj
k is given by the following equation:

Δτ t+1(xlj
k ,x

u
i) = exp−d(xlj

k
,xu

i
)
2

2δ2 (1)

where, δ denotes the spread of Gaussian function and d(xj ,x) is the Euclidean
distance between x lj

k and xu
i .

The average effect of the emitted (aggregated) pheromone density on the ith

unlabeled ant au
i due to jth total training colony CT

j at iteration (t+1) is given
by

Δτ t+1
ij =

1
|CT

j |
∑

x
lj
k ∈CT

j

Δτ t+1(xlj
k ,x

u
i); ∀ i, j. (2)

Then pheromone density τ t+1
ij due to jth colony CT

j on the ith unlabeled (pat-
tern) ant at iteration (t+ 1) is updated according to the following equation.

τ t+1
ij = ρτ t

ij +Δτ t+1
ij ∀ i, j (3)

where ρ is the evaporation constant.
After pheromone density is updated the membership of each unlabeled ant

au
i for approching/belonging to each colony (class) CT

j is computed as follows.

μt+1
ij =

τ t+1
ij

m∑
k=1

τ t+1
ik

∀ i, j. (4)

Once the membership of all the unlabeled ants are determined, they are evaluated
to be temporarily added to the taring set for the next iteration. The evaluation
is done as follows. If the maximum membership value max

j
(μt+1

ij) (among all

class/colony) of any unlabeled ant au
i is greater than a predefined threshold value

MT then that unlabeled ant au
i is temporarily added (for the next iteration) to

the taring set k (colony) for which membership is highest. This is represented
by the following equations.

if max
j

(μt+1
ij) > MT then

CT
k = CO

k ∪ xu
i ; where, k = arg max

j
(μt+1

ij) (5)

Note that addition of the ant to the colony k is done temporarily for the next
iteration, and in subsequent iterations depending on the current membership
values it will be added to the appropriate colony or may not be included in any

Ant Based Semi-supervised Classification 379

colony. Hence in each iteration (re)assignment of the unlabeled ants occur and
the algorithm stops when there is no (re)assignment. This is done by computing
the colony centers and if the corresponding colony centers in two successive iter-
ations are equal then we can say that there is no (re)partition. At that time we
can say that colony formation by the unlabeled ants is over and the unlabeled
ants are stabilized. This means either they have joined any colony with sufficient
confidence (greater than MT), or (rest) have not joined any colony (with suffi-
cient confidence). The unlabeled ants which have joined in any colony are now
considered as the training points, and thus the size of the training set increases
with the help of unlabeled points.

After the colony formation (by the unlabeled pattern), the patterns are tested
as follows. If the test pattern ant at at xt appears in the system, the average
aggregation pheromone density (at the location of that new ant at) by the colony
CT

i is given by (as in equation 2)

Δτ ti =
1

|CT
i |

∑
xj∈CT

i

exp− d(xj ,xt)2

2δ2 . (6)

The test ant at will move towards a colony for which the average aggregation
pheromone density (at the location of the test ant) is higher than that of other
colonies. Hence finally the said ant will join the colony governed by the following
equation.

ColonyLabel(xt) = arg max
i

(Δτ ti). (7)

Thus each of the test ant will join a colony and the corresponding label of the
colony will be the class label of that test pattern (ant). The proposed semi-
supervised aggregation pheromone density based classification (APSSC) algo-
rithm is given below (Algorithm 1).

3 Experimental Evaluation

3.1 Data Sets

For the purpose of our study, we used a number of artificially generated data,and
real life data sets. Among them only five typical real life data sets are reported
in this article. Four among them are from the UCI repository[14], and Telugu
Vowel data is from [16]. To test the classification accuracy, five percent of data
is taken out randomly from a data set to form the initial training set and the
rest is considered as the unlabeled set. The process is repeated 10 times. The
reported results are obtained considering the unlabeled data as the test set. A
summery about the data sets is given in Table 1.

3.2 Methods Compared

The proposed method is compared with two traditional classifier multi layer
perceptron (MLP) [12], and Support Vector Machine (SVM) [18] and also with

380 A. Halder, S. Ghosh, and A. Ghosh

Algorithm 1. Aggregation Pheromone density based Semi-Supervised Classifi-
cation (APSSC)
1: begin self training()
2: Initialize: Iteration counter t ← 0; τ 0

ij ← 0, ∀ i, j.
3: repeat
4: for each unlabeled ant au

i located at xu
i do

5: for each total training colony CT
j do

6: Calculate the average aggregation pheromone density Δτ t+1
ij on the ith

unlabeled ant au
i due to all ants in total training colony CT

j at iteration
(t + 1) using equation (2).

7: Update pheromone density τ t+1
ij due to jth colony CT

j on the ith unlabeled
(pattern) ant at interaction (t + 1) by equation (3).

8: end for
9: for each total training colony CT

j do
10: Compute the membership μt+1

ij of each unlabeled ant au
i for ap-

proching/belonging to the each colony (class) CT
j at interaction (t + 1)

using equation (4).
11: end for
12: if max

j
(μt+1

ij) > MT then

13: Add the unlabeled ant au
i to the appropriate training colony using equation

(5).
14: else
15: Do not add the unlabeled ant au

i to any training colony.
16: end if
17: end for
18: t ← t + 1.
19: until < StoppingCriteria >
20: end self training
21: begin testing()
22: for each test ant at located at xt do
23: for each colony CT

i do
24: Calculate the average aggregation pheromone density at location xt due to

all ants in colony CT
i using equation (6).

25: end for
26: Compute the ColonyLabel(xt) of the ant at by equation (7). // Ties are broken

arbitrarily.
27: end for
28: end testing

Table 1. Summery of the data sets used for the experiments

Data set Classes Dimensions Pattern Labeled pattern

Telugu vowel 6 3 871 5%
Balance Scale 3 4 625 5%

Sonar 2 60 208 5%
WBC 2 9 683 5%

Ionosphere 2 34 351 5%

Ant Based Semi-supervised Classification 381

two semi-supervised techniques, namely semi-supervised classification by low
density separation (LDS) [6], and concave-convex procedure for transductive
support vector machine (CCCP-TSVM) [7]. Note that compared methods have
number of parameters. We have experimantally adjusted the parameters such
the classification accuracy is optimum.

3.3 Role of the Parameters

The proposed method has three parameters namely δ, ρ , and MT.
Here δ is the spread of the Gaussian. For the optimal performance of the

proposed method, we have experimented with wide range of δ for each data set.
The δ value, for which the best result in terms of classification accuracy occurs,
is reported in Table 2 and that selected δ value is put in Table 3. Note that for
a wide range of δ, values of the performance measure is observed to be fixed at
nearly constant value or varies a little.

To see the effect of the evaporation coefficient ρ, we varied the value of the ρ
and experimentally fix the value of the ρ. With larger values of ρ, system uses
information of the pheromone density of the past cycles more than with the
smaller values of ρ. In general performance is found to be almost constant or
varies a little in the range [0.7-0.98].

MT indicates degree of confidence of an unlabeled pattern (for belonging to a
certain class) we want to allow to temporarily add the unlabeled pattern in the
training set. More is the value of the MT, more confidence unlabeled pattern will
be added to the training set, but no of pattern added to the taring set will be less.
We have varied the value of the MT in the range [0.4, 0.99] and experimentally
set the value for optimum performance of the classifiers. In general large value
(> 0.7) is observed to work fine.

The selected parameters are shown in Table 3 for each data set.

Table 2. Summery of the experimental results in terms of percentage accuracy

Methods Telugu Vowel Balance Scale Sonar WBC Ionosphere

MLP 70.49638 81.3131 59.54546 92.78891 79.69972
SVM 65.71342 76.54858 55.5556 95.146379 77.5736
LDS 73.7933292 85.5219 62.8509299 96.8146048 91.2455193

CCCP-TSVM 78.80682 86.4926 65.735 97.8146048 93.524
APSSC 81.74 87.987239 67.66708 97.07289 89.24026

3.4 Experimental Results and Analysis

The average results for 10 simulation runs of all the algorithms are reported in
Table 2. As mentioned before, the proposed APSSC algorithm has three param-
eters, and the experimentally determined values of the parameters are put in
Table 3.

382 A. Halder, S. Ghosh, and A. Ghosh

Table 3. Summery of the selected parameter values of APSSC method

Methods Telugu Vowel Balance Scale Sonar WBC Ionosphere

δ 11.8 0.3 0.43 3.2 0.04
ρ 0.7 0.7 0.76 0.7 0.7

MT 0.8 0.85 0.9 0.85 0.95

For real life data sets, proposed APSSC observed to perform better in terms
of classification accuracy in three cases namely Telugu Vowel, Balance Scale and
Sonar data. For all other cases the performances of APSSC is quite close to that
of the best one.

Note that all the semi-supervised classifiers clearly dominate the supervised
classifiers (MLP and SVM). Though the percentage of training sample in both
the cases (supervised and semi-supervised) is the same, the use of the unlabeled
patterns really helps to gain the accuracy in semi supervised case.

Execution time is the least for CCCP-TSVM for most of the data sets. How-
ever, the execution time of the proposed algorithm is moderate.

4 Conclusions

This article presents a novel semi-supervised classification algorithm based on
the property of the aggregation pheromone found in natural behavior of real
ants. The performances of the proposed method is compared with two super-
vised (MLP and SVM) and two semi-supervised classification (LDS and CCCP-
TSVM) techniques. Experiments were carried out with different kinds data sets.
Experimental results justify the potentiality of the proposed APSSC algorithm
in terms of classification accuracy with moderate execution time.

Future work of the proposed method may be directed towards solving real
world problem for classification and also to adaptive determination of the
parameters.

Acknowledgements. Support of the Department of Science and Technology,
Govt. of India to the Center for Soft Computing Research (CSCR) through its
IRHPA scheme is thankfully acknowledged by Mr. Anindya Halder, Research
Scholar, CSCR, Indian Statistical Institute, Kolkata, India.

References

1. Bennett, K.P., Demiriz, A.: Semi-supervised support vector machines. In: Advances
in Neural Information Processing Systems, pp. 368–374. MIT Press, Cambridge
(1998)

2. Blum, A., Chawla, S.: Learning from labeled and unlabeled data using graph min-
cuts. In: Proc. 18th Intl. Conf. on Machine Learning, pp. 19–26. Morgan Kaufmann,
San Francisco (2001)

Ant Based Semi-supervised Classification 383

3. Blum, A., Lafferty, J., Rwebangira, M.R., Reddy, R.: Semi-supervised learning
using randomized mincuts. In: Proc. of the 21st Intl. Conf. on Machine Learning,
pp. 97–104 (2004)

4. Blum, A., Mitchell, T.: Combining labeled and unlabeled data with co-training. In:
Proceedings of the eleventh annual conference on Computational learning theory,
pp. 92–100. Morgan Kaufmann Publishers, San Francisco (1998)

5. Chapelle, O., Schölkopf, B., Zien, A.: Semi-Supervised Learning, Adaptive Com-
putation and Machine Learning. The MIT Press, Cambridge (2006)

6. Chapelle, O., Zien, A.: Semi-supervised classification by low density separation. In:
Proc. of the 10th Intl. Workshop on Artificial Intelligence and Statistics, pp. 57–64
(2005)

7. Collobert, R., Sinz, F., Weston, J., Bottou, L., Joachims, T.: Large scale transduc-
tive svms. Journal of Machine Learning Research 7, 1687–1712 (2006)

8. Dorigo, M., Stützle, T.: Ant Colony Optimization. Prentice Hall of India Private
Limited, New Delhi (2005)

9. Ghosh, A., Halder, A., Kothari, M., Ghosh, S.: Aggregation pheromone density
based data clustering. Information Sciences 178(13), 2816–2831 (2008)

10. Halder, A., Ghosh, A., Ghosh, S.: Aggregation pheromone density based pattern
classification. Fundamenta Informaticae 92(4), 345–362 (2009)

11. Handl, J., Meyer, B.: Ant-based and swarm-based clustering. Swarm Intelligence 1,
95–113 (2007)

12. Haykin, S.: Neural Networks: A Comperehensive Foundation, 2nd edn. Prentice
Hall, Englewood Cliffs (1999)

13. Liu, B., Abbass, H.A., McKay, B.: Density-based heuristic for rule discovery with
ant-miner. In: Proc. of 6th Australasia-Japan Joint Workshop on Intelligence
Evololution System, Canberra, Australia, pp. 180–184 (2002)

14. Newman, D.J., Hettich, S., Blake, C.L., Merz, C.J.: UCI repository of machine
learning databases. University of California, Department of Information and Com-
puter Sciences, http://www.ics.uci.edu/~mlearn/MLRepository.html

15. Nigam, K., Mccallum, A.K., Thrun, S., Mitchell, T.: Text classification from labeled
and unlabeled documents using EM. Machine Learning 39(2-3), 103–134 (2000)

16. Pal, S.K., Majumder, D.D.: Fuzzy sets and decision making approaches in vowel
and speaker recognition. IEEE Transactions on Systems, Man, and Cybernetics 7,
625–629 (1977)

17. Rosenberg, C., Hebert, M., Schneiderman, H.: Semi-supervised self-training of ob-
ject detection models. In: Seventh IEEE Workshop on Applications of Computer
Vision, pp. 29–36 (2005)

18. Schölkopf, B., Smola, A.J.: Learning with Kernels: Support Vector Machines, Reg-
ularization, Optimization, and Beyond. MIT Press, Cambridge (2002)

19. Tsutsui, S.: Ant colony optimization for continuous domains with aggregation
pheromones metaphor. In: Proc. of the 5th Intl. Conf. on Recent Advances in
Soft Computing, United Kingdom, pp. 207–212 (December 2004)

20. Yarowsky, D.: Unsupervised word sense disambiguation rivaling supervised meth-
ods. In: Proc. of the 33rd Annual Meeting of the Association for Computational
Linguistics, pp. 189–196 (1995)

http://www.ics.uci.edu/~mlearn/MLRepository.html

Automatic Generation of Optimised Working
Time Models in Personnel Planning

Volker Nissen and Maik Günther

Technical University of Ilmenau, Chair of Information Systems in Services,
Ilmenau, Germany

volker.nissen@tu-ilmenau.de, maik.guenther@gmx.de

Abstract. Retail is traditionally labour-intensive. Demand-oriented
workforce management has great significance due to the amount of com-
petition which enforces a strict cost management while keeping a good
service level. Thus, highly flexible working time models are of particular
importance. Our project addresses the question how to automatically
and simultaneously assign staff to workstations and generate optimised
working time models under constraints and on the basis of fluctuating
personnel demand. The planning is completed for an entire year in order
to assess adapted versions of the evolution strategy and particle swarm
optimisation. A commercial constructive method is used as benchmark.

Keywords: integrated personnel planning, metaheuristics.

1 Introduction

The ability to adapt personnel assignment to changing requirements is of crit-
ical importance in workforce management (WFM). An interesting option are
automatically generated flexible working time models that are based on demand
while respecting certain constraints. The targeted benefits are cost reduction
through improved utilisation of employee time, reduction of overtime and idle
time, a rise in employee motivation and, thus, an increase of turnover through
a higher level of service. The traditional approach to WFM in separate plan-
ning steps can be very inefficient. Therefore, an integrated design of working
time models and staff schedules is suggested in this paper. More specifically, we
adapt and compare the evolution strategy (ES) and particle swarm optimisation
(PSO) for this integrated planning task. A commercial constructive approach
is used as benchmark. While constructive approaches are generally popular in
personnel scheduling and rostering [3], the metaheuristics performed well in re-
lated scheduling problems from logistics [7]. The research goals we pursue are
twofold. First, we aim for good solutions to a meaningful practical application
that is relevant in industries such as logistics, retail and call centers. Second,
we want to contribute to the comparison of modern metaheuristics on problems
of realistic complexity. Section 2 highlights the real-world case, before related
work is presented in section 3. The subsequent sections introduce the solution
methods which are then applied and compared in section 7.

M. Dorigo et al. (Eds.): ANTS 2010, LNCS 6234, pp. 384–391, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Automatic Generation of Optimised Working Time Models 385

2 Description of the Real-World Problem from a Retailer

This practical case concerns personnel planning in the department for ladies’
wear at a department store. For current benchmarks and real data reference is
made to [5]. We assume a set of employees E = {1, . . . , E}, a set of workstations
W = {1, . . . ,W} and a discrete timeframe T with index t = 0, . . . , T − 1. Each
period t of the range has a length lt greater than zero.

lt > 0 ∀t ∈ T (1)

The assignment of an employee to a workstation is controlled using the binary
variable xewt.

xewt =
{

1 if employee e is assigned to workstation w at period t
0 otherwise (2)

The store is open Monday to Saturday from 10:00 to 20:00 and closed on Sunday
and holidays. The availability of the employees is determined using the binary
variable aet.

aet =
{

1 if employee e is available at period t
0 otherwise (3)

There are 15 employees, assigned to two workstations (till and sales), with all
employees trained for both stations. The personnel demand dwt is given in one-
hour intervals and is determined based on past data. A minimal and maximal
number of employees per workstation and period is set. The demand dwt of
employees per workstation and period cannot be negative.

dwt ≥ 0 ∀w ∈ W and ∀t ∈ T (4)

There are many factors influencing planning, such as regulations, employee avai-
lability and time sheets. Because of fluctuations in demand, sub-daily worksta-
tion changes are allowed. As a hard constraint, working time models must begin
and end on the hour. Also, sub-daily workstation changes are only possible on
the hour. Moreover, an employee e can only be associated with a workstation
w in the period t if he or she is actually present. Additionally, an employee can
only be designated to one workstation at a time.

W∑
w=1

xewt = aet ∀e ∈ E and ∀t ∈ T (5)

There are also soft constraints. Their violation is penalised with error points
that reflect the companies requirements as inquired through interviews. If a
discrepancy arises from the workstation staffing target dwt, error points Pd are
generated for the duration and size of the erroneous assignment.

Pd =
T−1∑
t=0

W∑
w=1

(cdn + cdo + cdu)lt

∣∣∣∣∣
(

E∑
e=1

xewt

)
− dwt

∣∣∣∣∣ ,

386 V. Nissen and M. Günther

with: (6)
cdo > 0 if w is overstaffed at t and dwt > 0, else cdo = 0
cdn > 0 if w is overstaffed at t and dwt = 0, else cdn = 0
cdu > 0 if w is understaffed at t and dwt > 0, else cdu = 0

Six employment contracts exist with a planned weekly working time between 10
and 40 hours. During weeks with bank holidays the planned working time se

is reduced by a proportional factor h. The effective weekly working time ie for
an employee should not exceed the contractually agreed number of hours. Each
minute in excess is punished with error points cw.

Pw = cw

52∑
week=1

E∑
e=1

(ie − se ∗ h), (7)

with cw = 0 if se ∗ h− ie ≥ 0, cw = 1 else.
The automatically generated working time models should not be shorter than

3 hours or longer than 9 hours. Any violation leads to error points ct per employee
and day. The sum of these error points for the planning horizon is Pt. Working
time models must not be split up during a working day, with violations leading
to error points cc per employee and day. The sum of these error points for the
planning horizon is Pc. For an optimal coverage of personnel demand sub-daily
workstation changes are required. However, to avoid an excessive number re of
rotations for any employee cr error points arise for such workstation changes.

Pr = cr

E∑
e=1

re (8)

Therefore, the objective function to be minimised becomes:

minP = Pd + Pw + Pt + Pc + Pr. (9)

Historical data is available for a complete calendar year, so that an entire year
(8.760 one hour time slots) can be planned ahead, resulting in a very complex
search space of 131.400 decision variables. In practice, also shorter planning
horizons (month) are employed. However, the full year plan helps the company
to better understand on a more strategic level how well it can cope with demand
using current staff.

A two-dimensional matrix of employees and time slots is applied to represent
a solution for PSO and ES. The meaning of the matrix elements is as follows:

– 0: Store is closed or employee is absent (holiday, training, illness).
– 1: Employee is assigned to workstation 1.
– 2: Employee is assigned to workstation 2.
– 3: Employee is generally available but not dispatched in staffing

Automatic Generation of Optimised Working Time Models 387

3 Related Work

Staff scheduling is a hard optimisation problem. Garey and Johnson [4] demon-
strate that even simple versions of staff scheduling problems are NP-complete.
Tien and Kamiyama [11] prove that practical staff scheduling is generally more
complex than the TSP which is itself NP-hard. Sauer and Schumann [10] suggest
a constructive approach specifically designed for retail. Unfortunately, it is not
able to consider more than one workstation or sub-daily workstation rotations.
Therefore, it cannot be applied to the practical case discussed here. Prüm [9] cre-
ates working time models parallel to assignment planning for problem instances
in retail. Again, only one workstation is present and sub-daily job rotations are
not included. The results indicate that problems of realistic size can not be suc-
cessfully solved with exact methods. Therefore, in the following sections we focus
on different heuristic approaches.

4 Constructive Method

As a benchmark, we use a commercial WFM software. (We cannot mention the
name for legal reasons.) This tool delivers an adequate constructive method,
capable of solving the problem. The software is in regular use at around 300
companies. All restrictions are supported and the error points associated with
soft constraints can be entered into the software. Unfortunately, no code was
available and no information was provided as to how the working time models are
generated. Thus, it must be considered a black box. However, we were supported
by the software manufacturer, so errors in software handling can be excluded.

5 Particle Swarm Optimisation

For our application, PSO [8] had to be adapted to the combinatorial domain.
The idea to abandon velocity was taken from Chu, Chen and Ho [2]. Following
suggestions in [6] on a similar scheduling problem, a gBest topology is applied,
where each particle is a neighbour of every other particle. The following pseu-
docode presents an overview of our PSO.

01: Initialise the Swarm
02: Evaluate the Particles of the Swarm
03: Determine pBest for each Particle and gBest
04: Loop
05: For i = 1 to Number of Particles
06: Calculate new Position // 4 Actions for Calculation
07: Repair the Particle
08: Evaluate the Particle
09: If f(new Position) ≤ f(pBest) then pBest = new Position // new pBest
10: If f(pBest) ≤ f(gBest) then gBest = pBest // new gBest
11: Next i
12: Until Criterion

388 V. Nissen and M. Günther

The swarm is initialized with valid solutions w.r.t. the hard constraints. pBest
represents the best position found so far by the particle while gBest is the best
position of all particles. In each iteration the new particle position is determined
by traversing all dimensions and executing one of the following actions with
predefined probability. The probability distribution was heuristically determined
in prior tests.

– No change (p1=9.98%): The workstation already assigned remains.
– Random workstation (p2=0.02%): A workstation is (uniformly) randomly

determined and assigned. Assignments respect employee availability.
– pBest workstation (p3=30%): The corresponding workstation is assigned

from pBest (individual component).
– gBest workstation (p4=60%): The corresponding workstation is assigned

from gBest (social component).

According to our tests, the behaviour of PSO is relatively insensitive to changes
of p1, p3, and p4, but very sensitive to p2. The optimal value for p2 depends on the
problem size (smaller probabilities for larger problems). Too much randomness is
destructive, but some is required to avoid premature convergence. Consequently,
we varied p2 in very small steps in pre-tests to arrive at the current suggestion.
The characteristics of PSO have not been changed with these modifications.
There are merely changes in the way to determine a new particle position, so
that the calculation of velocity is not needed. PSO and ES both terminate after
400,000 inspected solutions to allow for a fair comparison.

Preliminary tests showed that repairing the solutions created by PSO could
be beneficial. Our repair heuristic (not detailed here for reasons of space) cor-
rects violations of soft constraints in the following order, based on the observed
frequency of error occurrences: 1. Overstaffing 2. Understaffing 3. More than one
working time model per day 4. Violation of minimum length of a working time
model 5. Violation of maximum length of a working time model 6. Elemination
of unnecessary workstation rotations.

6 Evolution Strategy

The ES was originally developed by Rechenberg and Schwefel [1] and soon ap-
plied to continuous parameter optimisation problems. Mutation is the main
search operator employed in ES. Our application is of a combinatorial na-
ture, though, which requires some adaptation of the ES. The pseudocode below
presents an overview of the implemented ES.

The ES-population is initialized with valid solutions w.r.t the hard problem
constraints. Ten alternative recombination variants were evaluated in a pre-test.
The best performance was achieved with a rather simple form that is based
on the classical one-point crossover. The same crossover point is determined at
random for all employees (row) of a solution and the associated parts of the
parents are exchanged to create an offspring.

Automatic Generation of Optimised Working Time Models 389

01: Initialise the Population with μ Individuals
02: Repair the Population
03: Evaluate the μ Individuals
04: Loop
05: Recombination to generate λ Offspring
06: Mutate the λ Offspring
07: Repair the λ Offspring
08: Evaluate all repaired Individuals
09: Selection ((μ+λ) or (μ,λ))
10: Until Criterion

An offspring is mutated by picking an employee at random and changing the
workstation assignment for a time interval chosen at random. It must be ensured,
though, that valid assignments are made w.r.t. the hard problem constraints. The
number of employees selected for mutation follows a (0;σ)-normal distribution.
Results are rounded and converted to positive integer numbers. The mutation
stepsize sigma is controlled self-adaptively using a log-normal distribution and
intermediate recombination, following the standard scheme of ES [1].

After mutation, the same repair heuristic is applied to individuals to remove
constraint violations as in PSO. (μ,λ)-selection (comma-selection) as well as
(μ + λ)-selection (plus-selection) are used and different population sizes. The
best solution found during an experimental run is always stored and updated.
It represents the final solution of the run. Following suggestions in the literature
[1], the ratio μ/λ is set to 1/5 - 1/7 during the experiments.

7 Results and Discussion

All heuristics were tested on the retailer problem with the objective of minimising
error points under the given constraints. The implementation was done in C#
on a 2.66 GHz quad core PC with 4 GB RAM. Table 1 presents the results.
The runs using PSO and ES were repeated 30 times for each parameter set. One
calculation (10 minutes) is sufficient for the constructive method, because the
same result would be achieved each repetition. PSO and ES require roughly 6
hours for a single run with 400,000 fitness calculations. The constructive heuristic
can be regarded as a benchmark, since it is actually used in many companies
for staff planning. Even though it is capable of handling sub-daily workstation
rotations (which was explicitly activated), no switching takes place. Additionally,
the effective weekly working time of employees is frequently in excess of their
contracts. A high effort of replanning would be required to remove these errors.

ES and PSO both performed significantly better. The best mean results were
achieved with ES(1,5). The assignment plans generated with the ES(1,5) can
hardly be improved upon, even with highly complex manual changes. For this
reason, and because of the vast improvement over the commercial software, these
plans can be regarded as very usable. Generally, the comma selection performs
better than plus selection (for the same μ and λ). The comma strategy ’forgets’
the parent values after each generation, which allows for a temporary deteri-
oration of objective function values. This is helpful in escaping from a local

390 V. Nissen and M. Günther

Table 1. Results of the heuristics with various parameter settings (averaged over 30
runs each, apart from the constructive method). Best results are bold.

overstaff. too much
heuristic mean minimal std. job- understaff. in minutes weekly work.

error error dev. changes in minutes dwt > 0 time in min.
constructive method 84690.0 84690 - 0.0 1500.0 0.0 83190.0
PSO(20) 37117.9 14385 11808.9 389.9 834.0 20.0 35874.0
PSO(40) 40583.7 14446 12832.3 402.5 966.0 26.0 39189.2
PSO(200) 51879.5 27967 12578.4 463.9 1142.0 12.0 50261.6
ES(1,5) 8267.1 5924 1265.8 214.3 834.0 8.0 7210.8
ES(1+5) 47198.1 13720 20486.4 444.5 1870.0 28.0 44855.6
ES(10,50) 17528.5 8459 4094.2 247.3 1170.0 12.0 16099.2
ES(10+50) 49794.5 24609 26010.7 451.7 2022.0 24.0 47296.8
ES(30,200) 22222.7 13579 5780.6 283.9 1130.0 10.0 20798.8
ES(30+200) 39491.5 25706 14801.5 460.7 1720.0 12.0 37298.8

optimum. With regard to improving solutions, a tendency can be seen in the
comma selection toward smaller populations. This can also be observed in PSO,
where 20 particles perform best. Because of the uniform termination criterion
of 400,000 fitness calculations, a smaller population or swarm means more iter-
ation cycles. Many steps are required to arrive at a good plan. Thus, it seems
preferable to track changes for more iterations as compared to richer diversity
(through larger populations) of the solution space in each iteration. The effect
is not so clearly visible for the ES with plus selection. A plus strategy is more
easily trapped in a local optimum, which is particularly pronounced when the
population is small. So there are two opposite effects, resulting in an overall
medium performance of the plus strategy.

PSO(20) and ES(1,5) provided the best mean error results in their respective
groups. With 30 independent runs for each heuristic it is possible to test the
statistical significance of the performance difference. A Levene-test revealed the
heterogeneity of variances (test level 5%) between both groups (F = 53.17, p <
0.001). The corresponding t-test with a 95% confidence interval confirms the
better performance of ES(1,5) with a very high statistical significance (p < 0.001
for H0). The overall superiority of the ES (comma selection) over PSO is in
contrast to experiences reported in [7] for logistics. However, the solution space
of the logistics problem contained only 36,400 decision variables compared to
the 131,400 variables in the current retail application. Also, the working time
models were given beforehand which significantly reduced the complexity.

8 Conclusions

Our work focuses on the meaningful practical problem of simultaneously as-
signing staff to workstations and generating optimised working time models on
the basis of given demand. For a highly complex real-world application from
retailing, it was shown that modern metaheuristics significantly outperformed a
commercial constructive heuristic. The computational requirements of the meta-
heuristics are high. This is acceptable, though, since the task is not time-critical.

Automatic Generation of Optimised Working Time Models 391

Moreover, if the planning is performed for a month instead of an entire year the
computational effort would be reduced accordingly.

The evolution strategy was clearly superior over particle swarm optimisation.
Particularly the ES-solutions generated with comma selection and small popu-
lations appear excellent and very usable in practice, as was also confirmed by
the cooperating company. This success must be attributed to the operators of
the ES since the coding of PSO and ES were identical, just as the total number
of inspected solutions in each run. However, a joint consideraton of these results
with the outcome on a simpler real-world staff scheduling problem from logistics
as reported in [7] suggests a non-linear relation between the complexity of a
search space and the success of individual metaheuristics, even if the underlying
application problems are of the same general problem class. In practice it is dif-
ficult to estimate a priori which metaheuristic approach will be most successful
on a given practical application. A solution to this open research question would
obviously be of great practical value.

References

1. Beyer, H.G., Schwefel, H.P.: Evolution strategies - A comprehensive introduction.
Natural Computing 1(1), 3–52 (2002)

2. Chu, S.C., Chen, Y.T., Ho, J.H.: Timetable Scheduling Using Particle Swarm Opti-
mization. In: First International Conference on Innovative Computing, Information
and Control, vol. 3, pp. 324–327 (2006)

3. Ernst, A.T., Jiang, H., Krishnamoorthy, M., Owens, B., Sier, D.: An Annotated
Bibliography of Personnel Scheduling and Rostering. Annals of Operations Re-
search 127(1-4), 21–144 (2004)

4. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman & Co., New York (1979)

5. Günther, M.: Sub-daily staff scheduling data sets and benchmarks,
http://www.tu-ilmenau.de/fakww/2608+M54099f70862.0.html

6. Günther, M., Nissen, V.: A Comparison of Neighbourhood Topologies for Staff
Scheduling with Particle Swarm Optimisation. In: Mertsching, B., Hund, M., Aziz,
M.Z. (eds.) KI 2009. LNCS, vol. 5803, pp. 185–192. Springer, Heidelberg (2009)

7. Günther, M., Nissen, V.: Sub-Daily Staff Scheduling for a Logistics Service
Provider. In: KI – Künstliche Intelligenz, vol. 25 (2010) (accepted)

8. Kennedy, J., Eberhart, R.C.: Particle Swarm Optimization. In: Proc. of IEEE
International Conference on Neural Networks, pp. 1942–1948 (1995)

9. Prüm, H.: Entwicklung von Algorithmen zur Personaleinsatzplanung mittels ganz-
zahliger linearer Optimierung. Master’s thesis, FH Trier (28042006)

10. Sauer, J., Schumann, R.: Modelling and Solving Workforce Scheduling Problems.
In: PUK, pp. 93–101 (2007)

11. Tien, J.M., Kamiyama, A.: On Manpower Scheduling Algorithms. SIAM Re-
view 24(3), 275–287 (1982)

http://www.tu-ilmenau.de/fakww/2608+M54099f70862.0.html

Bee-Sensor: A Step Towards Meta-Routing
Strategies in Hybrid Ad Hoc Networks

Israr Ullah1, Muhammad Saleem2, and Muddassar Farooq1

1 Next Generation Intelligent Networks Research Center (nexGIN RC)
National University of Computer and Emerging Sciences (FAST-NUCES)

Islamabad, Pakistan
2 Center for Advanced Studies in Engineering (CASE), Islamabad, Pakistan

israrullahkk@yahoo.com, msaleem@case.edu.pk, muddassar.farooq@nu.edu.pk

Abstract. In next generation ad hoc networks, MANETs and WSNs
will cohesively integrate to provide a unified ad hoc framework. Such a
hybrid network – due to conflicting operational environments – presents
unique challenges for routing protocols. A recently proposed BeeSen-
sor protocol inherits relevant features from BeeAdHoc – a bee-inspired
protocol for mobile ad hoc networks. In this paper, we would first do
requirements engineering of protocols for hybrid networks and then en-
hance BeeSensor with relevant features to make it suitable for MANETs
and WSNs. Finally, we implement enhanced BeeSensor in famous ns-2
simulator and compare its performance with well known MANET pro-
tocols namely DSR, AODV and DSDV. The results of our experiments
show that BeeSensor – using our mobility model – delivers similar or bet-
ter performance compared with its competitors in low mobility scenarios.
But its performance relatively degrades in high mobility scenarios. To-
wards the end of the paper, we propose changes that can overcome these
shortcomings.

Keywords: MANETs, WSNs, meta-routing.

1 Introduction

Routing in both of types of ad hoc networks – Mobile Ad Hoc Networks (MANETs)
and Wireless Sensor Networks (WSNs) – is an active area of research. A number of
classical protocols – AODV [2], DSR [3] and DSDV [4] – and bio-inspired protocols
– AntHocNet [6], Termite [7] and BeeAdhoc [10] – are proposed in the literature
for MANETs. These protocols are eventually adapted to a WSN environment by
researchers with a special focus on energy efficiency and assuming static network.
In next generation ad hoc networks, MANETs and WSNs will cohesively integrate
to provide a unified ad hoc framework. Such a hybrid network – due to conflicting
operational environments – presents a unique challenge for routing protocols: de-
velop meta-routing strategies. To the best of our knowledge, little work is done
related to routing on hybrid ad hoc networks.

M. Dorigo et al. (Eds.): ANTS 2010, LNCS 6234, pp. 392–399, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Bee-Sensor: A Step Towards Meta-Routing Strategies 393

We follow our three step protocol engineering to systematically develop a
meta routing protocol for hybrid networks: (1) analyze an existing WSN pro-
tocol, BeeSensor, that has shown promising performance in WSN environment
as reported in [9], (2) port BeeSensor to ns-2 that is a well known MANET
simulator, and do pilot studies to monitor its performance in mobility scenar-
ios, and (3) enhance BeeSenor with relevant features so that its shortcomings
(identified in step 2) are rectified. Using this three step methodology, we develop
a meta routing strategy for hybrid networks by incorporating relevant features
of BeeSensor and BeeAdHoc: (1) on demand discovery of paths, (2) using fixed
length routing agents, (3) implementing source routing without the need to add
a header in front of a data packet, (4) using swarms to implicitly monitor validity
of wireless links, (5) exploiting paths having nodes with high energy reserves,
and (6) distributing loads on multiple paths.

Organization of the Paper: The rest of the paper is organized as follows.
We identify the major challenges in designing and developing a meta-routing
protocol for hybrid ad hoc networks in Section 2. A brief description of BeeSensor
protocol is presented in Section 3. The empirical evaluation framework used for
the performance analysis of BeeSensor in MANET environment is described in
Section 4. The simulation results are discussed in Section 5. The modifications
to the design of BeeSensor protocol are listed in Section 6. Finally, we conclude
the paper with an outlook to our future research.

2 Challenges in the Design of a Meta-Routing Protocol

The most important challenge in developing a meta-routing protocol for hybrid
networks is that it must satisfy a number of conflicting requirements: (1) it
must be able to cater for mobility without compromising packet delivery and
delay bounds, (2) it must be able to detect path failures without the need to
monitor the wireless links in a proactive manner, (3) efficient route discovery in
large scale networks and timely updates of the routes (low convergence time).
Currently, MANETs protocols quickly adapt routes to the continuously changing
topology by monitoring wireless links in a proactive manner. Moreover, it is
assumed that this control traffic will not cause congestion because the network is
lightly loaded. However, this assumption is void in WSNs where large number of
sensor nodes – with limited processing and battery – cannot periodically launch
these probe packets; otherwise, the network would become congested and critical
events would not be delivered to the sink node. To conclude, a protocol for hybrid
network must not have aggressive sampling of the paths to detect path failures.

Moreover, the idea of launching periodic discovery packets – as employed in
proactive protocols – is also infeasible because this results in large convergence
time that makes it difficult to adapt to rapidly changing network topology. Last
but not least, it results in large energy consumption as well. The challenge is: to
develop a protocol that uses relatively small number of control packets (agents)
but is able to adapt to changing topology and provides relatively high performance
with low energy consumption.

394 I. Ullah, M. Saleem, and M. Farooq

We now present the first step of our protocol engineering approach in which
we describe the key features of BeeSensor protocol that helps in understanding
its feasibility for hybrid ad hoc networks.

3 BeeSensor as a Meta-Routing Protocol

BeeSensor is a bee-inspired multipath routing protocol for ad hoc networks which
discovers routes in a reactive fashion. It is derived from BeeAdHoc protocol that
makes it inherently suitable for MANETs as well. The mapping of bee colony
concepts to BeeSensor is skipped here for brevity, but an interested reader is
referred to [1] and [8] for details. We now describe the architecture and working
of BeeSensor protocol.

3.1 Agent Model

Like BeeAdHoc, BeeSensor works with four types of agents: packers, scouts,
foragers and swarms. Packers collect data packets from the transport layer and
look for a suitable forager on the dance floor for its destinations. Scouts are
responsible for route discovery. Foragers are the main agents that transport
data packets from their sources to the respective destinations. Swarms are used to
explicitly transport foragers back to the source node, if they cannot be implicitly
piggy backed on the traffic from the destination towards the source (in case of
UDP, where no acks are sent back to the source node).

3.2 Working of BeeSensor Protocol

Route Discovery. In BeeSensor, routes are discovered in a reactive manner.
When a packet is received at the routing layer for an unknown destination, a
forward scout - carrying the data packet - is launched to discover a route to
the destination. Forward scouts propagate in the network using the stochastic
broadcast pattern after a certain threshold hop limit. At each intermediate node,
a reward value is computed using:

Reward =
MinNodeEnergy

Hops
. (1)

Forward scouts - on reaching the destination - travel back to the source as back-
ward scouts. Backward scouts use the reward values stored at the intermediate
nodes to select the next hop nodes leading to the source node. Generally, they
prefer paths with high rewards.

Recruitment of agents. Once a backward scout arrives at the source it is
guaranteed that a route, identified with a unique pathID (generated by the
destination), is available for data transport. The scouts are then forwarded to
the dance floor, where they mimic the process of recruiting agents by computing
a dance number as given below:

DNpid =
⌈ |(β − (Emax − Er

pid))|
γ

× α(e)
⌉
, (2)

Bee-Sensor: A Step Towards Meta-Routing Strategies 395

where Er
pid is the minimum remaining energy of the path (identified by a unique

ID i.e. pid) reported by the backward scout, Emax is the initial (maximum)
energy level, α(e) is a function of the number of events waiting in the cache and
β, γ are user defined constants. The Path’s quality is computed using:

Qpid =
DNpid ∗Min.Energypid

HopCountpid
. (3)

Equation (3) is then used to compute the probability of selecting a path:

Ppid =
Qpid ∗ 100∑k

i=1Qi

(4)

where k is the total number available paths for a specific destination, Qpid is the
path’s quality, and Ppid is the percentage relative probability for Pathpid. Equa-
tion (4) favors the shortest paths; however, in case if paths are of equal length,
the paths with high remaining energy is preferred. In Equation (3), DNpid is in-
cluded to ensure proportional use of all discovered routes resulting in depleting
battery of different sources at the same rate. After making these calculations,
an entry is made into the routing table.

Data Forwarding. Once the routes are discovered, foragers are selected prob-
abilistically - to ensure load balancing that maximizes the network lifetime - to
carry data packets from a source to a destination. At intermediate nodes, for-
agers are forwarded on the basis of their pathIDs. At destination, data is passed
to the upper layers and foragers wait for a specific interval of time so that the
destination node can piggy back them on the traffic from the destination to the
source. If it does not happen, a swarm agent is generated that explicitly carries
them to their source node. As a result, the source nodes always have foragers
that represent valid routes to the destination.

Handling Link failures. Unlike AODV and DSR, no explicit control packets
are used in BeeSensor for handling link failures. If no foragers are available for a
destination, and none of them comes back within a specified period of time, the
associated path is assumed to have become invalid (because of broken links) and
the corresponding entry is removed from the routing tables. In this case, a fresh
scouting process is initiated. In this way, link failures are implicitly detected
without the need of aggressively sampling the links through control packets.

4 Empirical Evaluation Framework

In the second step of our protocol engineering approach, we implement BeeSensor
in a well known simulator – ns-2 – and evaluate its performance in a mobility
scenario. The scenario consists of 50 nodes moving in a rectangular area of
1500× 300m2 with varying speed using Random Way-Point mobility modal. All
flows simulate peer to peer communication using UDP protocol at the transport
layer protocol. We assume CBR sources generating packets at a specified rate.

396 I. Ullah, M. Saleem, and M. Farooq

We use the default settings of ns-2 for the transmission range of a node, network’s
bandwidth and the battery model.

We compare the performance of BeeSensor with that of AODV, DSR and
DSDV using four different metrics. Packet delivery ratio is the ratio between
received and sent packets by all nodes. Latency is the difference (average) be-
tween a packet receiving and sending time. Normalized routing load is the ratio
between total number of control and delivered data packets. Energy efficiency is
the energy consumed per kilobyte data transportation. We collect the values of
these metrics by changing moving speed of nodes, the number of flows and the
size of packets. Each experiment is run for a duration of 1000 seconds and the
reported results are an average of 10 independent runs.

5 Discussion on Results

5.1 Packet Delivery Ratio

The packet delivery ratios of the protocols once we change speed and the number
of flows are shown in Figure 1. It is interesting to see that the packet delivery
ratio of all protocols is alarmingly low (40%) in most of the cases. This poor
performance is attributable to UDP that does not guarantee a reliable delivery
of packets. The DSR especially fails at high speeds and the reason for this is its
use of stale entries (route caches) that do not represent the latest topology of
the network (especially in high speed scenarios). Moreover, as we increase the
number of flows to 30, the packet delivery ratio of all protocols drop to 40%
because of congestion in the network.

5.2 Latency

The corresponding latency values are plotted in Figure 2 by varying the speed
and the number of flows. In most of the cases, BeeSensor achieves the lowest
latency among all protocols. The second important observation is that latency
increases because of network congestion (due to increased number of flows). The

Speed (m/sec)
1−5 1−10 1−15 1−20

P
ac

ke
t D

el
iv

er
y

R
at

io

0

10

20

30

40

50

60
AODV Bee−Sensor DSDV DSR

(a) PDR Vs. Speed (flows: 30)

No. of Flows
10 20 30 40

P
ac

ke
t D

el
iv

er
y

R
at

io

0

20

40

60

80

100
AODV Bee−Sensor DSDV DSR

(b) PDR Vs. Flows (speed: 5m/sec)

Fig. 1. Packet delivery ratio (PDR) against varying speed and the number of flows

Bee-Sensor: A Step Towards Meta-Routing Strategies 397

Speed (m/sec)
1−5 1−10 1−15 1−20

La
te

nc
y

(s
ec

)

0

1

2

3

4

5

6
AODV Bee−Sensor DSDV DSR

(a) Latency Vs. Speed (flows: 30)

No. of Flows
10 20 30 40

La
te

nc
y

(s
ec

)

0

1

2

3

4

5

6

AODV Bee−Sensor DSDV DSR

(b) Latency Vs. Flows (speed: 5m/sec)

Fig. 2. Latency against varying speed and the number of flows

Speed (m/sec)
1−5 1−10 1−15 1−20

N
or

m
al

iz
ed

 R
ou

tin
g

Lo
ad

0

0.5

1

1.5

2

2.5

3

3.5

4
AODV Bee−Sensor DSDV DSR

(a) NRL Vs. Speed (flows: 30)

No. of Flows
10 20 30 40

N
or

m
al

iz
ed

 R
ou

tin
g

Lo
ad

0

0.5

1

1.5

2

2.5

3
AODV Bee−Sensor DSDV DSR

(b) NRL Vs. Flows (speed: 5m/sec)

Fig. 3. Normalized routing load (NRL) against varying speed and the number of flows

reason is that queues on intermediate nodes build up and packets have to wait
longer in the queue before their transmission. The average delay of BeeSensor
remains unaffected with an increased in the packet size (the results are skipped
for the sake of brevity).

5.3 Normalized Routing Load

The normalized routing load for the protocols are shown in Figure 3. The nor-
malized routing load of BeeSensor is relatively small and comparable to DSDV
in all cases. AODV and DSR generate too much of control packets due to their
aggressive policy; as a result, they create instability in the network. On the other
hand, BeeSensor – though a reactive protocol like AODV and DSR – not only
reacts to the changes in the topology but also generates less traffic. The im-
portant reason is that stochastic flooding in BeeSensor is responsible for small
routing load. (AODV has the largest overhead cases). It is interesting that a
pure proactive protocol has a small overhead compared with reactive protocols.
The reason is that if the topologies change continuously under high load network
conditions, proactive discovery is not a bad option.

398 I. Ullah, M. Saleem, and M. Farooq

5.4 Energy Efficiency

Energy consumption is directly proportional to the number of transmissions in
the network. The same trend can be seen in Figure 4 which shows the energy-
efficiencies of the protocols. DSDV with lower routing load has better energy
efficiency. On the other hand, the energy consumption of AODV and DSR (as
expected) in high speed scenarios is relatively large. Energy efficiency is an im-
portant consideration in WSNs and hence a protocol is preferred if it optimally
uses the battery of sensor nodes.

Speed (m/sec)
1−5 1−10 1−15 1−20E

ne
rg

y
U

se
d

pe
r

K
B

 D
at

a
(m

J/
K

B
)

0

10

20

30

40

50

60

70

80
AODV Bee−Sensor DSDV DSR

(a) Energy Efficiency Vs. Speed (flows:
30)

No. of Flows
10 20 30 40E

ne
rg

y
U

se
d

pe
r

K
B

 D
at

a
(m

J/
K

B
)

0

5

10

15

20

25

30

35

40

45
AODV Bee−Sensor DSDV DSR

(b) Energy Efficiency Vs. Flows (speed:
5m/sec)

Fig. 4. Energy efficiency against varying speed and the number of flows

6 Modifications to Original Design of BeeSensor

In the previous section, we see that BeeSensor’s performance degrades in high
mobile scenarios. In this section, we propose changes (the step 3 of our protocol
engineering) to the design of BeeSensor which can improve its performance even
in high mobility scenarios:

1. The waiting time of foragers at the destination node results in slow sampling
of discovered paths. If the swarm size is made a function of speed (it decreases
with an increase in speed and vice versa), then BeeSensor can adapt its
response time with the network dynamics. This may lead to an increased
energy consumption, but we have to make this compromise.

2. BeeSensor can make use of the underlying MAC layer to determine the fre-
quency of link failures. If this frequency is high (high mobility case), the
timeout function of foragers can be adjusted to have smaller route expiry
times. More specifically, we can make the route expiry time a function
of network characteristics as observed by the local nodes. This can also
lead to a reduced response time improving its performance in high mobility
scenarios.

Bee-Sensor: A Step Towards Meta-Routing Strategies 399

7 Conclusions and Future Work

Meta-routing strategies will become an important paradigm for routing in next
generations networks (3G and 4G networks). In this paper, we address some
of the issues related to routing in hybrid ad hoc networks. We follow a three
step protocol engineering to adapt BeeSensor for both MANETs and WSNs.
In future, we intend to validate our proposed improvements in BeeSensor by
studying its performance in high mobility scenarios.

References

1. Farooq, M.: Bee-Inspired Protocol Engineering: from Nature to Networks. Natural
Computing Series. Springer, Heidelberg

2. Perkins, C.E., Royer, E.M.: Ad hoc on demand Distance Vector routing. In: 2nd
IEEE Workshop on Mobile Computing Systems and Applications (WMCSA 1999),
pp. 90–100 (1999)

3. Johnson, D., Maltz, D.A.: Dynamic source routing in ad hoc wireless networks. In:
Imielinski, T., Korth, H. (eds.) Mobile Computing. Kluwer Acad. Publ., Dordrecht
(1996)

4. Perkins, C.E., Bhagwat, P.: Highly dynamic Destination-Sequenced Distance-
Vector Routing (DSDV) for mobile computers. ACM Computer Communication
Review 24(4), 234–244 (1994)

5. Rajagopalan, S., Shen, C.: ANSI: A swarm intelligence-based unicast routing pro-
tocol for hybrid ad hoc networks. J. Syst. Archit. 52(8), 485–504 (2006)

6. Di Caro, G., et al.: AntHocNet: An adaptive nature-inspired algorithm for routing
in mobile ad hoc networks. Europ. Trans. on Telecommunications V16, 443–455
(2005)

7. Roth, M.H.: Termite: a Swarm Intelligent Routing Algorithm for Mobile Wireless
Ad-Hoc Networks. Doctoral Thesis. UMI Order Number: AAI3162791. Cornell
University (2005)

8. Saleem, M., Farooq, M.: BeeSensor: A bee-inspired power aware routing protocol
for wireless sensor networks. In: Giacobini, M. (ed.) EvoCOMNET 2007. LNCS,
vol. 4448, pp. 81–90. Springer, Heidelberg (2007)

9. Saleem, M., Farooq, M.: A framework for empirical evaluation of nature inspired
routing protocols for wireless sensor networks. In: IEEE CEC 2007, pp. 751–758
(2007)

10. Wedde, H.F., et al.: Beeadhoc: an energy efficient routing algorithm for mobile ad
hoc networks inspired by bee behavior. In: GECCO 2005, pp. 153–160 (2005)

Cooperation in a Heterogeneous Robot Swarm
through Spatially Targeted Communication

Nithin Mathews1, Anders Lyhne Christensen2,
Rehan O’Grady1, and Marco Dorigo1

1 IRIDIA, CoDE, Université Libre de Bruxelles, Brussels, Belgium
{nmathews,rogrady,mdorigo}@ulb.ac.be

2 Instituto de Telecomunicações, Lisbon, Portugal
anders.christensen@iscte.pt

Abstract. We consider a heterogeneous swarm robotic system com-
posed of wheeled and aerial robots called foot-bots and eye-bots, re-
spectively. The foot-bots are able to physically connect to one another
autonomously and thus form collective robotic entities. Eye-bots have
a privileged overview of the environment since they can fly and attach
to metal ceilings. In this paper, we show how the heterogeneous swarm
can benefit from cooperation. By using so-called spatially targeted com-
munication, the eye-bot is able to communicate with selected groups of
foot-bots and instruct them on how to overcome obstacles in their path
by forming morphologies appropriate to the obstacle encountered. We
conduct experiments in simulation to quantify separately the benefits of
cooperation and of spatially targeted communication.

1 Introduction

We use a heterogeneous swarm robotic system consisting of two types of robots:
foot-bots and eye-bots (see Fig. 1a and Fig. 1b). The foot-bots are capable of
autonomous self-assembly which means that they can make physical connections
with one another and form collective robotic entities. In this paper, we focus on
the task of navigating through an environment that contains a gap. Depending
on the width of the gap, the foot-bots may need to self-assemble into a collective
robotic entity to successfully overcome the gap.

In a previous study [10], a team of wheeled robots autonomously self-assembled
into different morphologies to solve different tasks, one of which was a gap crossing
task similar to the one considered in this paper. In that study, however, the solu-
tion to each task was preprogrammed. For example, the wheeled robots did not
have the sensory capabilities to estimate the width of a gap. Therefore, on encoun-
tering a gap, they would always self-assemble into a four robot line morphology
irrespective of the width of the gap. In this paper, we present an approach for co-
operation between aerial and wheeled robots that enables self-assembling robots
to adaptively generate appropriate morphologies to a priori unknown tasks.

In the task we consider, the heterogeneous swarm is located in an environment
consisting of a start zone, a target zone, and a gap that separates the two zones

M. Dorigo et al. (Eds.): ANTS 2010, LNCS 6234, pp. 400–407, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Cooperation in a Heterogeneous Robot Swarm 401

(a)

(b) (c)

Fig. 1. The heterogeneous swarm robotic system and the task considered in this study.
(a) The prototype of the eye-bot. (b) A CAD model of the foot-bot. Both robot types
are being developed at EPFL within the framework of the Swarmanoid project. More
information about the project is available at http://www.swarmanoid.org. (c) A de-
piction of the task considered. The dark strip represents the gap which separates the
arena into a start zone and a target zone. The circular object shown in the target zone
is the light source. An eye-bot and 10 foot-bots are visible in the start zone.

(see Fig. 1c). A light source perceivable by the foot-bots is located in the target
zone. At the start of each experiment, 10 foot-bots are placed at random positions
with random orientations within a square area of 2 m x 2 m in the start zone.
The foot-bots use their light sensors to detect and drive to the light source in
the target zone. They use the ground sensors to avoid falling into the gap. An
eye-bot is assumed to be attached to the ceiling in the start zone using its system
of magnets. It is able to perceive all the foot-bots in the start zone. The eye-bot
can estimate the width of the gap by using its pan-and-tilt camera and the on-
board image processing software. To reach the target zone, the foot-bots may
need to connect to each other to form a collective morphology, such as a line
morphology [2]. Note that the minimal length of such a line morphology (i.e.,
the number of foot-bots in the line) that guarantees a safe crossing of the gap
depends on the width of the gap. In this study, we vary the width of the gap
between 5 cm, 10 cm, 15 cm and 25 cm. These different gap widths require the
foot-bots to form a line morphology of 1, 2, 3 and 4 foot-bots respectively. The
task is considered to be completed when the final foot-bot of the line morphology
has crossed the gap and reached the target zone.

To enable cooperation in the heterogeneous swarm, we use a combination
of techniques developed in previous research. Firstly, the eye-bot establishes
spatially targeted communication [9] with a selected group of foot-bots. Secondly,
the eye-bot sends morphology growth instructions to these foot-bots in the form
of SWARMORPH-script [2] instructions. Both spatially targeted communication
and SWARMORPH-script have been successfully tested on real robotic hardware

402 N. Mathews et al.

in previous studies, see [9] and [2], respectively. Our approach does not require
any form of global information.

At the time of writing, the heterogeneous swarm robotic system is still under
development. We therefore use a custom physics-based simulator named AR-
GoS [13] to study separately the benefits of cooperation between the two robot
types and spatially targeted communication.

2 Related Work

Most previous studies on cooperation in heterogeneous systems have focused on
tightly-coupled heterogeneous teams, see for instance [12,18,4]. In these and other
similar multirobot systems, researchers have used communication and/or local-
ization modalities such as wireless ethernet [17], infrared [7] or ultrasound [15]. In
this study, we consider a heterogeneous swarm robotic system composed of nu-
merous wheeled and aerial robots, see for instance [14]. We use on-board LEDs
and cameras for communication between the foot-bots and the eye-bots. The
foot-bots can also communicate with each other using a communication system
based on infrared and radio [16].

Many researchers have designed and studied systems that can reconfigure
or self-assemble into physically connected structures [6]. To date, several hard-
ware architectures for self-propelled self-assembling robotic systems have been
proposed and implemented [3,5]. In this study, we use foot-bots which are self-
propelled, fully autonomous and can self-assemble. The performance benefits
of different self-assembly strategies for similar robots has been studied previ-
ously [11], however the study was conducted on a homogeneous system and mor-
phology control was not considered. For self-assembling and self-reconfigurable
systems, several different control approaches have been proposed [1,8]. In this
work, we use a language called SWARMORPH-script [2] that allows target mor-
phologies to be described as distributed control logic.

3 Methodology

We achieve cooperation using two mechanisms developed in previous research.
Firstly, the eye-bot establishes a spatially targeted communication [9] link with
a group of foot-bots that is appropriately located (i.e., near the gap) and has
an appropriate size (i.e., the precise number of foot-bots required to cross the
gap). Secondly, the eye-bot instructs these selected foot-bots to form the line
morphology (i.e., target morphology) that will allow them to cross the gap [2].

In [9], a LEDs and camera-based communication is used by a robot to first
narrow down the number of potential recipients of a broadcast message to a single
seed robot. This one-to-one communication link is then expanded to include the
closest neighbors of the seed robot such that a one-to-many commnication link of
a desired size can be created. Such a dedicated communication link enables the
eye-bot to ensure that subsequently broadcasted messages will only be processed

Cooperation in a Heterogeneous Robot Swarm 403

Fig. 2. Decomposition of control strategies into phases. Phases only involving foot-
bot are marked ‘F’, phases involving foot-bot eye-bot cooperation are marked ‘F.E’. i)
NCC: non-cooperative control, ii) CC-STC: cooperative control with spatially targeted
communication and iii) CC-RGS: cooperative control with random group selection. NB
‘Indiv. phototaxis’ = ‘Individual phototaxis’, ‘Coll. phototaxis’ = Collective phototaxis,
‘Est. spat. target. comm.’ = ‘Establishing Spatially Targeted Communication’.

by the selected group of foot-bots even though other foot-bots may also be able
to receive the messages.

We use such dedicated communication links to let the eye-bot send instruc-
tions to the foot-bots on how to self-assemble into the target morphology. These
instructions are sent in SWARMORPH-script [2]. SWARMORPH-script is a
language for distributed self-assembly and morphology control for autonomous
self-assembling robots. The eye-bot uses a protocol based on LEDs and camera
to send the SWARMORPH-script required to generate the target morphology.
Each foot-bot that receives such a SWARMORPH-script can execute this re-
ceived control logic. In this manner, the foot-bots do not need to have any a
priori knowledge about possible morphologies required or even possible tasks.

4 Experiments and Results

We ran simulation-based experiments using three different control strategies of
the heterogeneous swarm. For each combination of gap size and control strat-
egy, we ran 100 repetitions. By comparing the task completion times of the three
strategies, we first analyze the benefits of cooperation through spatially targeted
communication, and then isolate the benefits of spatially targeted communica-
tion. Videos of the experiments conducted are available online at:
http://iridia.ulb.ac.be/supp/IridiaSupp2010-007/.

4.1 The Three Control Strategies

The three strategies are presented in Fig. 2. The simplest strategy is NCC —
non-cooperative control. In this strategy, the foot-bots operate without cooper-
ating with the eye-bot. They initially move towards the light and form a four
robot line morphology when they encounter any gap (irrespective of the width

http://iridia.ulb.ac.be/supp/IridiaSupp2010-007/

404 N. Mathews et al.

●
●●●●
●●●●●

●

●

●

●

●

●

●

●
●
●
●

●●

●

●

●

●

●
●

●

●

●

5 cm 10 cm 15 cm 25 cm 5 cm

0
50

00
10

00
0

15
00

0

Gap width

Ta
sk

 c
om

pl
et

io
n

tim
e

Control Strategy

CC−STC
NCC

(a)

5 cm 10 cm 15 cm 25 cm
Gap width

P
ha

se
 c

om
pl

et
io

n
tim

e
0

10
00

20
00

30
00

40
00

Phase (Control Strategy)

Est. Spat. Targ. Communication (CC−STC)
Script Transmission (CC−STC)
Self−Assembly (CC−STC)
Self−Assembly (NCC)

(b)

5 cm 10 cm 15 cm 25 cm
Gap width

Ta
sk

 c
om

pl
et

io
n

tim
e

 (
gr

ou
p

se
le

ct
io

n
tim

e
om

itt
ed

)
0

10
00

20
00

30
00

40
00

50
00

60
00

Control Strategy

CC−STC
CC−RGS

(c)

Fig. 3. Results of the experiments showing task/phase completion times in simulation
steps. In Fig. 3b and 3c, the whiskers represent the standard deviation. (a) Box-
and-whisker plot comparing CC-STC and NCC for varying gap widths. (b) Bar-plot
showing a breakdown of the time spent in different phases of CC-STC and NCC. (c)
Completion times of CC-STC and CC-RGS minus the time taken to form the group.

of the gap). The foot-bots are pre-loaded with the SWARMORPH-script in-
structions to form the morphology and cross the gap by performing collective
phototaxis.

The methodology presented in this work is implemented in CC-STC — co-
operative control with spatially targeted communication. In this strategy, the
foot-bots initially move towards the light until the eye-bot initiates the process
to establish a spatially targeted communication link with the minimal number
of foot-bots required to form the target morphology. The communication link
is established with foot-bots that are favorably located (i.e., close to the gap)
to solve the task. Subsequently, a SWARMORPH-script is sent to these foot-
bots. Once the target morphology is generated, the foot-bots perform collective
phototaxis to cross the gap.

The final strategy is CC-RGS — cooperative control with random group
selection. This strategy allows us to isolate the performance benefits of spatially
targeted communication. The strategy is identical to the CC-STC strategy, ex-
cept that instead of selecting the foot-bots to form the target morphology on
the basis of their favorable location, the eye-bot randomly selects the minimal
number of foot-bots required to form the target morphology.

4.2 Benefits of Cooperation in the Heterogeneous Robot Swarm

We compare the task execution times of strategies NCC and CC-STC to analyze
the benefits of cooperation through spatially targeted communication. The re-
sults are shown in Fig. 3a. In the case of NCC, we have only plotted the results
of the narrowest gap (5 cm), as the task completion times between the various
gap widths did not prove to be significantly different for the NCC strategy.

According to the results in Fig. 3a, the median task completion times of
CC-STC are 507, 2590 and 4032 simulation steps for gaps of width 5, 10 and

Cooperation in a Heterogeneous Robot Swarm 405

15 cm, respectively. This means that CC-STC was 88%, 40% and 7% faster when
compared to the median task completion value of NCC (4340 simulation steps).
This is due to the fact that in CC-STC, the length of the line is optimal with
respect to the width of the gap. However, for the widest gap (25 cm), NCC
is shown to be faster than CC-STC. Intuitively, this could have been expected
given that both control strategies form a line of four robots close to the gap,
but in the case of CC-STC, instructions have to be first received from the eye-
bot before the self-assembly process can start and therefore requires more time.
Results also show that NCC has several outlier trials that take very long to
complete. This is because in the NCC strategy all foot-bots in the experiment
are allocated to construct the morphology and some non-connected foot-bots
can interfere (sometimes severely) with the collective phototaxis of the complete
morphology.

In Fig. 3b, a breakdown of the time spent in the different phases of each control
strategy is shown: (i) establishing spatially targeted communication (CC-STC),
(ii) transmitting the SWARMORPH-script (CC-STC) (iii) self-assembly (CC-
STC), (iv) self-assembly (NCC). The results show that with the increasing size of
the morphology, and therefore with the increasing length of the SWARMORPH-
script that has to be transmitted, the transmission time increases. However, this
communication overhead of CC-STC would become negligible if a communica-
tion modality with higher bandwidth (such as WiFi) was used. The results also
show that when a line of equal length is formed in both control strategies, as in
the case of 4 foot-bots, the self-assembly process of CC-STC requires on average
39% more time than that of NCC. This can be explained by the fact that in NCC
there are more robots attempting to connect to a connection-inviting foot-bot
which in turn leads to faster morphology formation. On the other hand, CC-
STC deals with the resources optimally by only allocating precisely the required
number of robots needed for the self-assembly process. The decision involving
this trade-off between faster morphology formation times and optimal resource
allocation may depend on the task and/or the priorities of the system.

4.3 Benefits of Spatially Targeted Communication

To isolate the benefits of spatially targeted communication, we compare the task
completion times of strategies CC-STC and CC-RGS. Note that both control
strategies select the seed foot-bot using the same technique. However, the selec-
tion of further foot-bots required in the target morphology is different. Therefore,
in order to maintain objectivity in the comparison, in this set of experiments
the time spent to select the non-seed foot-bots was omitted for both control
strategies. The results are plotted in Fig. 3c.

As the results show, CC-STC was on average faster than CC-RGS independent
of the width of the gap. This is because a morphology formed next to the gap
require less time to reach and cross the gap than a morphology formed at a
random place in the environment. We expect that this difference in terms of
task completion time would be even greater for larger start zones.

406 N. Mathews et al.

Additionally, we also studied the difference in completion times between CC-
STC and CC-RGS in the presence of obstacles: the foot-bots were placed in the
start zone within an area of 2 m x 2 m surrounded by walls on three sides to
adjoin the gap on the fourth side. We found that the presence of the walls had
no significant impact on the completion time of CC-STC in which the eye-bot
selects the seed and the group in favorable locations (i.e., always close to the gap
and away from the walls). For the CC-RGS control strategy, on the other hand,
the presence of walls had a significant negative impact on performance. When
the randomly selected seed (which initiates the morphology growth process)
happened to be located close to one of the walls, it could be difficult or even
impossible for other foot-bots to physically connect to the seed. As a result, the
task was not solved in our experiments with the CC-RGS control strategy in
13%, 29% and 34% of the experiments for the line morphology composed of 2
foot-bots, 3 foot-bots and 4 foot-bots, respectively.

5 Conclusions and Future Work

In this paper, we have demonstrated how aerial robots and wheeled robots can
cooperate to solve different instances of a gap crossing task in an adaptive man-
ner. Compared to a non-cooperative strategy, the cooperative strategy was shown
to be more efficient in terms of resource allocation as the aerial robot recruited
only the necessary robots based on the width of a gap. Furthermore, the coop-
erative strategy led to faster task completion times in the environment in which
fewer than four connected robots could cross the gap. We also demonstrated
the benefits of spatially target communication. When the aerial robot selected
wheeled robots based on their location and based on their mutual proximity to
each other, the time required to self-assemble and to cross the gap was lower
than when robots were randomly selected.

Our short-term goal is to repeat the experiments shown in this paper on real
robotic hardware. In ongoing research, we are investigating other cooperation
mechanisms between aerial and wheeled robots, in particular where the cooper-
ation is more bidirectional. In this study, the wheeled robots passively received
instructions from the aerial robots. In the future, wheeled robots on the ground
could ask an aerial robot to find additional robots for a given task, and multiple
aerial robots could allocate and share groups of wheeled robots dynamically.

Acknowledgements. This work was supported by the SWARMANOID project,
funded by the Future and Emerging Technologies programme (IST-FET) of the
European Commission, under grant IST-022888, and by the VIRTUAL SWAR-
MANOID project funded by the Fund for Scientific Research F.R.S.-FNRS of Bel-
gium’s French Community. The information provided is the sole responsibility of
the authors and does not reflect the European Commission’s opinion. The Eu-
ropean Commission is not responsible for any use that might be made of data
appear- ing in this publication. Marco Dorigo acknowledges support from the Bel-
gian F.R.S.-FNRS, of which he is research director.

Cooperation in a Heterogeneous Robot Swarm 407

References

1. Butler, Z., Kotay, K., Rus, D., Tomita, K.: Generic decentralized control for lattice-
based self-reconfigurable robots. Int. Jour. of Rob. Res. 23(9), 919–937 (2004)

2. Christensen, A.L., O’Grady, R., Dorigo, M.: SWARMORPH-script: A language for
arbitrary morphology generation in self-assembling robots. Swarm Intelligence 2(2-
4), 143–165 (2008)

3. Damoto, R., Kawakami, A., Hirose, S.: Study of super-mechano colony: concept
and basic experimental set-up. Adv. Robotics 15(4), 391–408 (2001)

4. Dias, M.B., Zlot, R., Kalra, N., Stentz, A.: Market-based multirobot coordination:
A survey and analysis. Proc. of the IEEE 94(7), 1257–1270 (2006)

5. Fukuda, T., Buss, M., Hosokai, H., Kawauchi, Y.: Cell structured robotic sys-
tem CEBOT: Control, planning and communication methods. Rob. and Auton.
Syst. 7(2-3), 239–248 (1991)

6. Groß, R., Dorigo, M.: Self-assembly at the macroscopic scale. Proc. of the
IEEE 96(9), 1490–1508 (2008)

7. Gutiérrez, A., Campo, A., Dorigo, M., Amor, D., Magdalena, L., Monasterio-
Huelin, F.: An open localization and local communication embodied sensor. Sen-
sors 8(11), 7545–7563 (2008)

8. Klavins, E., Ghrist, R., Lipsky, D.: A grammatical approach to self-organizing
robotic systems. IEEE Trans. on Autom. Cont. 51(6), 949–962 (2006)

9. Mathews, N., Christensen, A.L., Ferrante, E., O’Grady, R., Dorigo, M.: Establish-
ing spatially targeted communication in a heterogeneous robot swarm. In: 9th Int.
Conf. on Auton. Agents and Multiagent Syst. (AAMAS 2010), pp. 939–946. ACM,
New York (2010)

10. O’Grady, R., Christensen, A.L., Pinciroli, C., Dorigo, M.: Robots autonomously
self-assemble into dedicated morphologies to solve different tasks (extended ab-
stract). In: 9th Int. Conf. on Auton. Agents and Multiagent Syst. (AAMAS 2010),
pp. 1517–1518. ACM, New York (2010)

11. O’Grady, R., Groß, R., Christensen, A.L., Dorigo, M.: Self-assembly strategies in
a group of autonomous mobile robots. Auton. Robots 28(4), 439–455 (2010)

12. Parker, L.: ALLIANCE: an architecture for fault tolerant multirobot cooperation.
IEEE Trans. on Rob. and Autom. 14(2), 220–240 (1998)

13. Pinciroli, C.: The Swarmanoid Simulator. Tech. Rep. TR/IRIDIA/2007-025,
IRIDIA, Université Libre de Bruxelles, Brussels, Belgium (2007)

14. Pinciroli, C., O’Grady, R., Christensen, A.L., Dorigo, M.: Self-organised recruit-
ment in a heterogeneous swarm. In: 14th Int. Conf. on Adv. Rob. (ICAR 2009).
Proceedings on CD-ROM, paper ID 176, p. 8 (2009)

15. Rivard, F., Bisson, J., Michaud, F., Létourneau, D.: Ultrasonic relative positioning
for multi-robot systems. In: IEEE Int. Conf. on Rob. and Autom., pp. 323–328.
IEEE Press, Piscataway (2008)

16. Roberts, J.F., Stirling, T.S., Zufferey, J.C., Floreano, D.: 2.5d Infrared Range and
Bearing System for Collective Robotics. In: IEEE/RSJ Int. Conf. on Int. Rob. and
Syst. (IROS 2009). IEEE Press, Piscataway (2009)

17. Stentz, A.T., Kelly, A., Herman, H., Rander, P., Amidi, O., Mandelbaum, R.:
Integrated air/ground vehicle system for semi-autonomous off-road navigation. In:
AUVSI Unmanned Syst. Symp. (2002)

18. Sukhatme, G., Montgomery, J., Vaughan, R.: Experiments with aerial-ground
robots. In: Robot Teams: From Diversity to Polymorphism, pp. 345–367. AK Pe-
ters, Wellesley (2001)

Early-Stage Diagnosis of Endogenous Diseases by
Swarms of Nanobots: An Applicative Scenario

Paolo Amato1, Massimo Masserini2,
Giancarlo Mauri1, and Gianfranco Cerofolini3

1 DISCo, University of Milano–Bicocca, Milano, Italy
{paolo.amato,mauri}@disco.unimib.it

2 Department of Experimental Medicine, University of Milano–Bicocca, Milano, Italy
massimo.masserini@unimib.it

3 CNISM and Department of Materials Science,
University of Milano–Bicocca, Milano, Italy
gianfranco.cerofolini@mater.unimib.it

Abstract. The development of artificial devices (nanobots), working as
blood white cells but addressed to the recognition and eventually the de-
struction of endogenous pathological states, is an ambitious goal. Swarm
intelligence can be a key element to successfully tackle the challenges
posed by this goal. Here we describe an applicative scenario, based on
swarm of nanobots, by sketching the environment in which the nanobots
operate, the constraints related to their physical implementation, and
the tasks they have to tackle. In this scenario, we propose to use colli-
sions between nanorobots as a way of communication inside the swarm.

Keywords: Swarm Intelligence, Nanorobotics, Nanotechnology,
Fractals, Medicine.

1 Introduction

An ambitious long-term goal of medicine is to make analyses and deliver drugs
selectively at cell level [16,7]. The basic idea sustaining this goal is inspired
by the immune system. The immune system is a heterogeneous collection of
relatively homogeneous families of specialized cells spread throughout the entire
organism and devoted to the surveillance, recognition, and termination of hostile
guests. That the immune system is a fantastic machine for surveilling and fighting
against exogenous diseases is too well known to deserve discussion. However, it
is not perfect. A drawback of this system is the poor recognition of endogenous
pathological cells like those responsible for cancer or self-immune diseases. In
this context it should be interesting to develop artificial devices (nanorobots)
working as blood white cells although addressed to the recognition of endogenous
pathological states only.

A nanorobot (since now on nanobot) is any artificial machine with overall size
of the order of a few micrometers or less in all spatial directions, constituted by
nanoscopic components with individual dimensions in the interval 1−102 nm [14].

M. Dorigo et al. (Eds.): ANTS 2010, LNCS 6234, pp. 408–415, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Early-Stage Diagnosis of Endogenous Diseases by Swarms of Nanobots 409

A major challenge is the design of nanobots (i) addressed to monitoring in vivo
the health state of complex systems like homo sapiens sapiens; (ii) able to embed
sophisticated functions, like navigation, recognition, and data transmission; and
(iii) suitable for being manufactured by processes compatible with today and
likely tomorrow semiconductor industries.

A route to reach this goal has been described by the authors in [6] and popu-
larized in the website [5]. In tackling these challenges it is important to take into
account that, in view of their limited size, nanobots are necessarily devices with
very limited computational resources and that their interaction can only happen
locally. Although at first sight these facts seem to make the challenges really
daunting, from nature we have experiences of tiny living beings (like ants) with
very limited resources but nonetheless able to perform complex tasks. In other
words, swarm intelligence [1] seems to be a key tool for designing nanobot control
algorithms. In fact, ideas regarding swarm of micro- and nano-bots for medical
applications have already been presented in literature [11,13,14]. In this work
we want to stimulate the discussion on how swarm intelligence can be exploited
for the early-stage diagnosis of endogenous diseases, by sketching the environ-
ment in which the nanobots operate, the constraints related to their physical
implementation, and the tasks they have to tackle.

2 In vivo Monitoring at Circulatory-System Level

As far as the complete and continuous surveillance of the entire molecular pattern
of an organism seems beyond any current possibility, the first problem is the
identification of the appropriate surveillance level: genes, cells, or blood. Among
them, the level that seems to pose less technological issues is the blood one
[6]. Consequently we focus on the idea of injecting nanobots in the circulatory
system. The circulatory system can be described as a complex tree forming a
double canopy inside each organ. The root of this tree is the aorta and the
leaves are the capillaries. Since the capillaries feed the cells, every cell is within
a diffusion length from a capillary. The above argument implies that a nanobot
in a capillary could feel the metabolic pattern of the family of cells fed by the
capillary itself, thus surveying the cells contained within a diffusion length.

Fractal-tree model of the blood circulatory system. The design of an efficient
algorithm to control the swarm of nanobots requires an adequate model of the
circulatory system. Since the work of Mandelbrot, the fractal geometry of bi-
ological structures [10] has suggested that fractal methods could be used for
modeling the human circulatory system. In fact, in the recent years the struc-
ture of blood vessel in any part of human body has been described in fractal
terms. A fractal tree can be loosely defined as a trunk and a number of branches,
each one looking like the tree itself, thus creating a self-similar object. Often,
these appear strikingly similar to real trees. From the analysis in [8], it seems
that the tree structure is asymmetrical at the beginning (i.e., at aorta level),
becomes continuously more symmetrical with almost every branching level, and
ends up in full symmetry in capillary bed.

410 P. Amato et al.

Fig. 1. 3D geometry of fractal vascular
symmetrical tree

Fig. 2. Pictorial view of a nanobot enter-
ing a capillary in the vicinity of a neuron
(roughly on scale). Neuron image by Nico-
las Rougier.

Basic analysis of the fractal-tree model. In [6] it is estimated that there are
around 235 capillaries, that their diameter is 5µm, and that their length
is in the range 160 − 320 µm. A cross-validation of the above estimate can
be given by considering the tree model of the circulatory system. The relation
between blood vessels diameters at branching nodes is given by the equation
dΔ = dΔ

l + dΔ
r , where d is the diameter of the parent segment and dl, dr of

the children segments, and Δ is the diameter exponent [10,12]. For the sake of
simplicity, let’s suppose that the fractal tree is symmetric. By using as constant
diameter exponent Δ = 2.7 (the suggested value for human arterial blood vessel
[8]), the ratio between parent and children diameter is 0.77. Then by assuming as
starting point an aorta diameter d1 3.5 cm (corresponding to the considered
aorta cross section A1), after 35 branchings the diameter of the last capillaries
(the leaves of the tree) is 5µm; a result consistent with the one obtained with
the previous estimates. Figure 1 shows a symmetrical fractal tree (whose depth
is 9) with the above parameters. Also the formula for the rotation angle φ is
given in [12]; here φ π

5 .

3 Swarm of Nanobots for Surveilling the Organism

The surveillance system considered in this work is constituted by two parts: a
central unit, externally accessible but permanently resident in the organism (e.g.,
as an earring), and a swarm of nanobots. In Ref. [4] it was hypothesized that
each nanobot is a self-propelled machine, taking energy from the environment,
able to recognize and dock the target cell, to sense its membrane and neighbor-
hood, to recognize its health state, to store the information, to transfer it to the
central unit, and eventually (once allowed) to destroy the malignant cell. Today
a swarm so done (actually an auxiliary immune system) seems beyond current
possibilities; we now believe that something similar can be achieved by special-
izing the agents of the swarm to diagnosis (scouts) or to therapy (workers). A
roadmap for nanobot diagnostics can since now be defined; more difficult is to
imagine a general framework for the use of nanobots in therapy.

Early-Stage Diagnosis of Endogenous Diseases by Swarms of Nanobots 411

A scout is nothing but a circulating nanolaboratory for blood analysis in
situ. The swarm may in turn be formed by sub-swarms, each addressed to set
of metabolites characteristic of the target tissue. The population of the various
sub-swarms must be tuned to have an optimal surveillance of the organism. The
advantage of the scout swarm over conventional blood analysis is obvious: even a
non-invasive swarm of 106 scouts guarantees that each capillary is checked more
than ten times per month and the detection of a pathological marker localizes
its emission from a small number, on the mean 6 × 103, of cells. Moreover,
the concentration resulting from the release of a given amount of markers in a
capillary (of volume Ωn̄ = 2.5 − 5 × 10−7 cm3) is reduced after dilution in the
entire circulatory system (of volumeΩ = 5×103 cm3) by 10 orders of magnitude.
At the present stage of knowledge, the hypothesized swarm is certainly far from
being producible, but it is not an (irrational) dream because most of the critical
steps required for its preparation have already been established.

A nanobot can be endowed with a simple control system, however allowing it
to master its numerous and sophisticated functions (sensing, recognizing chemi-
cal patterns, controlling the motion, managing the power, and so on). A 100-kbit
circuitry is expectedly able to manage the information coming from a few (of the
order of 10) sensing regions, each specialized to the identification of a different
metabolite. Starting from the reasonable assumption that in the next 20 years
integrated circuits will attain a density on the scale of 1011 cm−2 and that the
nanobot will be fabricated employing the planar technology, hosting 105 devices
requires an area of 102 µm2. The nanobots need also to be equipped with sensors,
power supply and biomimetic coating (see [6] for more details). Moreover, the
nanobot controller has to be very simple; two possibilities are a finite-state ma-
chine or a subsumption architecture [2], based on a time-independent behavior
arbitration module .

A ellipsoidal disk, with major axis 2a of about 50 µm, minor axis 2b of 2.5 µm,
thickness h of 1 µm and suitably terminated, can move quite freely through the
entire circulatory system. Hence the idea of surveying the state of the organism
with swarms of such devices in the blood. Such a disk could host 105 bits (suitable
for hosting the needed circuitry), and could be produced via planar technology,
building the device on silicon-on-insulator (SOI) substrate, and removing the
substrate at the end of process. To avoid that in the blood stream the nanobot
undergoes rotation (that in arterioles, venules and capillaries might be harm-
ful) it must also be endowed with suitably designed hydrodynamic appendages.
When immersed in fluid in laminar flows, discs shaped with low aspect ratio are
known to undergo lateral drifts toward the vessel wall [9] and this phenomenon
can be exploited for their docking thereon. Assuming for a while that such a
chip (sketched in Fig. 2) can actually be built, it has shape and size allowing it
to explore the whole organism through the circulatory system. To have an idea
of the ‘invasiveness’ of the surveillance system, consider that the total number
of white blood cells in an adult human organism is typically 2.0 − 5.5 × 1010.

412 P. Amato et al.

Fig. 3. Exploiting the
cave-to-kite change of
conformation produced
by protonation to allow
the docking of nanobots
to cell membrane

Fig. 4. (a) A nanobot with appendages that allow the ad-
hesion to cell membrane and the formation of clusters. (b)
A cluster of two nanobots and the forces acting for its de-
composition. (c) The decomposition of the cluster is pos-
sible only along selected degrees of freedom. (d) Freezing
of the degrees of freedom allowing the decomposition of
adsorbed clusters.

Assuming that each nanobot has a mass of the order of 10−9 g, the mass of the
entire system should be of 3 × 10−4 g.1

4 Nanobot Task: Localization and Data Transmission

The first task of the scouts described in the previous section is to locate unhealthy
cells, and to report their positions to a central unit outside the body. Due to
the limited resources of the nanobots, direct wireless transmission of data to the
central unit is, at present, a seemingly insurmountable barrier [6]. This problem
could be solved by clustering enough nanobots around unhealthy cells. In fact, if
this cluster is sufficiently large, it can trivially be imaged via x-ray computerised
axial tomography (CAT). A more sophisticated application exploits the fact that
the cluster may become large enough to behave as an antenna, able to send an
electromagnetic pulse to the central units — the transmission of radiation in the
millimeter band would require the clustering of ∼ 10 nanobots only. A related
problem (data collection via a swarm) has been discussed in [17]. To accomplish
this task, the nanobots need to autonomously disperse in the capillary bed, take
chemical sensor reading, mark the region where a positive signal is detected, and
form a cluster in that region.

Diffusion. Assuming that the nanobot is transported by the blood at its ve-
locity, the time τ spent by the nanobot flowing along the capillary is around
0.3 − 0.6 s. We assume that this time is sufficiently long to allow sensing. Since
1 In this way the total area of the circulating nanobots should be of 0.3 − 0.6 cm2,

appreciably smaller that of ICs with giga-scale integration (GSI). Assuming the
existence of a mature technology for nanobot fabrication, the cost of the entire
system should thus be comparable with that of an IC with GSI complexity.

Early-Stage Diagnosis of Endogenous Diseases by Swarms of Nanobots 413

the total time required by blood to make a cycle is about 20 s, each nanobot
can explore approximately 1.3× 105 capillaries per month so that a collection of
3×104 nanobots should guarantee that each capillary is on average crossed once
per month. Assuming that each capillary must be sensed 10 times per month,
the number of the required nanobots is 3 × 105.

Region marking. For marking the region where a positive signal is detected,
the nanobot bottom can be terminated with quinoxaline cavitands, as shown in
Fig. 3. Due to the hydrophobic character in cave conformation (lhs of Fig. 3),
the termination will prevent the docking to epithelial cells. Imagine, however,
that once a marker molecule is detected the nanobot produces electrochemically
(via electrolysis of water) H+ ions and inject them at its bottom. Their capture
by the quinoxaline nitrogen atoms will cause the opening of the cavity in the
kite position (rhs of Fig. 3), due to the Coulomb repulsion strength among
positively charged nitrogen atoms [15]. The protonated nitrogen atoms will then
be attracted by the negatively charged sites of the cell membrane, forming the
glue for the attachment of the nanobot to a nearby cell forming the capillary
wall.

Clustering. The most complex subtask is the cluster formation. In swarm
robotics, spatial coordination between robots is often critical. When the robots
are macroscopic, usually this coordination is achieved via local relative position-
ing sensors which are based, for example, on ultrasound or infrared technologies.
Thus, by using these sensors, nearby robots can communicate and determine the
bearing, orientation, and range of their neighbors. In order to maintain a similar
communication scheme even between nanobots, Cavalcanti et al. [3] proposed
that each nanobot stores specific chemicals to be released for detection by other
nanobots. However, another scheme not requiring these chemicals and their re-
lated mechanism can be proposed by exploiting a property of the microscopic
world: the fact that collisions are not an issue. Of course, this is very different
from what happens for macroscopic robots, where collision avoidance is a major
issue to be taken into account. Vice versa, communication between nanobots
can happen through direct physical clashes. In the following the focus is on this
last approach which, to the best of our knowledge, has not been investigated
yet. For a swarm of 1.3 × 106 agents, a nanobot anchored to a capillary wall
will interact with another nanobot each 3 days on average, so that a cluster
of 10 nanobots, sufficiently large to inform the central unit, will be formed in
approximately one month. A nanobot able to tackle this task has terminations
binding selectively to cells and is endowed with two appendages able to bind
to one another via weak non covalent forces, and disallowed to do that within
the same nanobot by the robust constraints. See Fig. 4 (a). It can be hypothe-
sized that when two nanobots collide in liquid phase (say in blood), they remain
paired for a short time. Although this can lead to the random formation of a
cluster, it may easily be destroyed by the thermal reservoir, as shown in Fig. 4
(b) and (c). On the other side, clusters may be stabilized when they are formed
on the membrane of a cell, as shown in Fig. 4 (d), so that nanobots anchoring
on unhealthy cells become themselves sites for docking of other nanobots. This

414 P. Amato et al.

self-docking mechanism has also the advantage of accelerating the formation of
the cluster.

Self-docking. To illustrate this consider a square area of 30 × 30 (arbitrary
units), and that 50 nanobots are introduced in its lower left corner — at coor-
dinate (0,0), see figure 5. Suppose that the target molecule to be identified is
in position (20,20). The sensing happens trough direct contact, and we assume
that each nanobot can sense a molecule in a range of radius 1. At each time step
every nanobot chooses a random direction, and moves 3 units along it. When
a nanobot senses the target it stops moving (anchors to its position); now the
nanobot becomes itself a target and, since it is much larger than a molecule, it
can be sensed in a range of radius 2. Running this simulation 1000 times (with
60 time-steps each) shows that when the anchored nanobots are not used as new
target the cluster is on average of 2.78 nanobots, while if they are used as new
targets (i.e., new sites for docking) the cluster is on average of 9.91 nanobots.
Figure 5 shows the result of one of the simulations. This naive strategy for cluster

Fig. 5. Cluster (*) of nanobots (·) around the target (�). Left: without self docking.
Right: with self-docking.

formation seems to be effective only when the concentration of target molecules
is low. In fact, running the same simulation with 10 targets randomly distributed
in the area shows that on average only 3 of them are identified, because most
of the nanobots tends to cluster around a few targets. This means that to deal
with more realistic scenarios more subtle strategies are needed.

5 Conclusions

In this work we described a system, composed of a central unit and a swarm of
nanobots, for the early-stage diagnosis of endogenous diseases. A great advan-
tage of nanobots is the fact that they can check the markers of the pathologic
tissue in the vicinity of the region where they are generated. On one side, to
describe the environment in which the nanobots operate a fractal-tree model of
the blood circulatory system has been investigated. On the other side, to identify
the position of unhealthy cells it has been proposed to form clusters of nanobots.
In particular it has been shown that, for this task, direct physical contact can
be a way of communication between nanobots. This mechanism could be used

Early-Stage Diagnosis of Endogenous Diseases by Swarms of Nanobots 415

as basis for developing suitable swarm intelligence algorithms. At last, this work
is just the first step of a wider activity. The next steps include the further char-
acterization of the fractal-tree model, and the identification and simulation of
suitable swarm intelligence algorithms.

References

1. Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm intelligence: from natural to
artificial systems. Oxford University Press, Inc., New York (1999)

2. Brooks, R.: New approaches to robotics. Science 253, 1227–1232 (1991)
3. Cavalcanti, A., Hogg, T., Shirinzadeh, B., Liaw, H.: Nanorobot communication tech-

niques: A comprehensive tutorial. In: ICARCV, pp. 1–6. IEEE, Los Alamitos (2006)
4. Cerofolini, G.F.: Two routes to subcellular sensing. In: Korkin, A., Krstic, P.,

Wells, J. (eds.) Nano and Giga Challenges in Electronics, Photonics and Renewable
Energy (NGC 2009). Springer, Berlin (2010) (to be published)

5. Cerofolini, G.F., Amato, P.: Swarms of nanobots for in vivo diagnosis of endogenous
diseases (2010), http://asdn.net/asdn/life/nanorobots2.shtml

6. Cerofolini, G.F., Amato, P., Masserini, M., Mauri, G.: A surveillance system for
early-stage diagnosis of endogenous diseases by swarms of nanobots. Advanced
Science Letters 3 (2010) (to be published)

7. Freitas, R.: Pharmacytes: An ideal vehicle for targeted drug delivery. Journal of
Nanoscience and Nanotechnology 6, 2769–2775 (2006)

8. Gabrys, E., Rybaczuk, M., Kedzia, A.: Fractal models of circulatory system. Sym-
metrical and asymmetrical approach comparison. Chaos, Solitons & Fractals 24(3),
707–715 (2005)

9. Lee, S., Ferrari, M., Decuzzi, P.: Shaping nano-/micro-particles for enhanced vas-
cular interaction in laminar flows. Nanotechnology 20, 495101 (2009)

10. Mandelbrot, B.B.: The Fractal Geometry of Nature. W. H. Freedman and Co.,
New York (1983)

11. Martel, S., Mohammadi, M.: Using a swarm of self-propelled natural microrobots
in the form of flagellated bacteria to perform complex micro-assembly tasks. In:
Proc. of the 2010 IEEE Int. Conf. on Robotics and Automation (ICRA). IEEE,
Los Alamitos (2010)

12. Murray, C.D.: The physiological principle of minimum work applied to the angle
of branching of arteries. J. Gen. Physiol. 9(6), 835–841 (1926)

13. Nagy, Z., Harada, K., Flückiger, M., Susilo, E., Kaliakatsos, I.K., Menciassi, A.,
Hawkes, E., Abbott, J.J., Dario, P., Nelson, B.J.: Assembling reconfigurable en-
doluminal surgical systems: Opportunities and challenges. International Journal of
Biomechatronics and Biomedical Robotics 1(1), 3–16 (2009)

14. Requicha, A.A.G.: Nanorobots, NEMS, and nanoassembly. Proceedings of the
IEEE 91(11), 1922–1933 (2003)

15. Roncucci, P., Pirondini, L., Paderni, G., Massera, C., Dalcanale, E., Azov, V.,
Diederich, F.: Conformational behavior of pyrazine-bridged and mixed-bridged cav-
itands: A general model for solvent effects on thermal vase-kite switching. Chem.
Eur. J. 12, 4775–4784 (2006)

16. Service, R.F.: Nanotechnology takes aim at cancer. Science 310(5751), 1132–1134
(2005)

17. Winfield, A.F.T.: Distributed sensing and data collection via broken ad hoc wireless
connected networks of mobile robots. In: Parker, L.E., Bekey, G.A., Barhen, J.
(eds.) DARS, pp. 273–282. Springer, Heidelberg (2000)

http://asdn.net/asdn/life/nanorobots2.shtml

EDA-PSO: A Hybrid Paradigm Combining
Estimation of Distribution Algorithms and

Particle Swarm Optimization

Endika Bengoetxea1 and Pedro Larrañaga2

1 Intelligent Systems Group, University of the Basque Country, San Sebastian, Spain
endika@ehu.es

2 Departamento de Inteligencia Artificial, Universidad Politécnica de Madrid,
Madrid, Spain

pedro.larranaga@fi.upm.es

Abstract. Estimation of Distribution Algorithms (EDAs) is an evolu-
tionary computation optimization paradigm that relies the evolution of
each generation on calculating a probabilistic graphical model able to
reflect dependencies among variables out of the selected individuals of
the population. This showed to be able to improve results with GAs for
complex problems.

This paper presents a new hybrid approach combining EDAs and par-
ticle swarm optimization, with the aim to take advantage of EDAs capa-
bility to learn from the dependencies between variables while profiting
particle swarm’s optimization ability to keep a sense of ”direction” to-
wards the most promising areas of the search space. Experimental results
show the validity of this approach with widely known combinatorial op-
timization problems.

Keywords: Swarm intelligence, Estimation Distribution Algorithms,
Particle Swarm Optimization, Bayesian Networks.

1 Introduction and Motivation

Despite the popularity of Genetic Algorithms (GAs) [9] when applied to combi-
natorial optimization problems their behavior depends largely on the adequate
setting of parameters –crossing and mutation operators, probabilities of crossing
and mutation, size of the population, rate of generational reproduction...– and
GAs show a poor performance in some problems where the designed operators
of crossing and mutation do not guarantee that the building block hypothesis is
preserved.

Estimation of Distribution Algorithms (EDA) [16,13] were proposed in the
aim of making easier to predict the movements of the populations in the search
space as well as to avoid the need for so many parameters as in GAs. EDA are
population-based search algorithms based on probabilistic modeling of promising
solutions. It has been underlined that their higher execution time pays off when
optimization problems contain dependencies between variables which EDAs can

M. Dorigo et al. (Eds.): ANTS 2010, LNCS 6234, pp. 416–423, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

A Hybrid Paradigm Combining EDAs and Particle Swarm Optimization 417

learn on their learning step and propose the new generation of individuals ac-
cordingly [14,15]. Many papers in the literature improve performance focusing
on several aspects of EDAs such as adding local optimization to improve each
individual, the capability to learn more complex probabilistic graphical models
and hybridation of EDAs with other known paradigms.

On the other hand, other evolutionary computation techniques such as Ant
Colony Optimization (ACO) and Particle Swarm Optimization (PSO) focus the
search strategy on maintaining a set of entities –ants or particles– which are
able to keep a sense of historical memory. In the particular case of PSO [10,8], a
population of particles is kept moving around the search space at given velocities
that are adjusted stochastically according to the historical best position –gbest–
and the neighborhood best position –lbest. If we compare PSO and GAs, PSO
have fewer parameters to set and keeps memory capabilities since each particle
remembers its best value through gbest.

In EDAs this notion of memory is not explicitly applied since the newly gen-
erated population can be very different from the previous and the probabilistic
graphical model learned is based on the characteristics of the selected individu-
als of the current generation only. This lack of sense of memory in EDAs could
be a drawback for concrete optimization problems with local optima having a
similar fitness value. Here we propose to combine EDA’s capability of learning
dependencies between variables together with the memory or directional sense
of ACO and PSO, through a new hybrid approach between EDA-PSO.

Hybrid PSO systems are nowadays an active research trend [22]. Examples
include hybrids with GAs [7], cooperative approaches [4], self-organizing hierar-
chical techniques [19], and deflection, stretching and repulsion techniques [18].
Other approaches introduce into PSO techniques inspired in biology to prevent
the swarm from crowding too closely and to locate as many optimal solutions
as possible [5,17]. In the literature we can also find examples of combining PSO
and EDA algorithms, although hybridizing occurs either partially or it is only
applied as an improvement of PSO’s steps. In [23,21] discrete EDAs are success-
fully applied to learn a probability model out of the particle current position
each generation, in such a way that EDAs are applied to improve PSO in a
similar way as GA hybrid variants in [2,7]. Finally, [11] presents a paradigm
closer to a full hybrid: For every particle in the swarm two candidate particles
are generated, one applying PSO and another with EDA. Every iteration the
location to move a particle is determined using the PSO position update equa-
tion, and EDA-version particle is calculated by sampling a Gaussian distribution
from the kernel in all n dimensions of the problem. The fitness of both particles
is calculated, and the the fittest is selected for the next iteration.

Our proposal intends hybridizing beyond the [11] approach by building the
new population instantiating the probabilistic graphical model of EDA as well as
by maintaining a number P or particles that will create P new individuals each
generation. Our approach is presented to continuous domains, which generalises
discrete domain approaches. To our knowledge there is no such an approach in
the literature combining both paradigms. The outline of the article is as follows:

418 E. Bengoetxea and P. Larrañaga

Section 2 presents EDAs’ theoretical background, and Section 3 proposes our
hybrid approach EDA-PSO. Section 4 describes the experiments performed and
the results obtained, and Section 5 provides conclusions.

2 Estimation of Distribution Algorithms

EDAs [13] are non-deterministic, stochastic heuristic search strategies that form
part of the evolutionary computation approaches.The characteristic that most dif-
ferentiates EDAs from other evolutionary search strategies is that they evolve by
estimating the probability distribution of the fittest individuals and then sampling
the induced model. EDAs are capable to underlying interdependencies among the
encoded variables and to express them explicitly through the joint probability dis-
tribution associated with the individuals selected every generation.

More formally, let X = (X1, . . . , Xn) be a set of random variables, and let
xi be a value of Xi. Then, a probabilistic graphical model for X is a graphical
factorization of the joint generalized probability distribution, ρ(X = x) (or
simply ρ(x)). The model induced every generation in EDAs is expressed in the
form of a directed acyclic graph (DAG) describing conditional interdependencies
between the variables on X. If Pai represents the set of parent variables of
variable Xi in the probabilistic graphical model, the factorization of the joint
distribution could be written as ρ(x) = ρ(x1, . . . , xn) =

∏n
i=1 ρ(xi | pai).

EDAs are classified depending on the maximum number of dependencies
between variables that they consider, typically divided into three categories
[13]. The Univariate Marginal Distribution Algorithm for continuous domains
(UMDAc) is a representative example of univariate EDAs, where all variables
are considered to be independent. In the second category, we have EDAs that can
take into account bivariate conditional dependencies, where each variable can
have a maximum of one parent variable. An example for continuous domains
is the greedy algorithm called MIMIC (Mutual Information Maximization for
Input Clustering), MIMICc. The third category is multivariate EDAs, where
variables can have multiple parent variables. A representative of this category is
EGNA (Estimation of Gaussian Network Algorithm) [12].

3 Hybridation of Estimation of Distribution Algorithms
and Particle Swarm Optimization

The novelty of our approach consists on ensuring a full hybridation of both
techniques by merging the sub-populations generated by EDA and PSO to take
advantage of their respective advantages in optimization. Let consider that P is
the number of particles in the search process, and that R > P is the number
of individuals in the population, out of which each generation a total of N ≤ R
individuals will be selected to evolve to the next generation in EDAs. At the
same time, the population will be divided in P chunks of same size R/P , and
each chunk will be assigned to a different PSO particle for all the search process.

A Hybrid Paradigm Combining EDAs and Particle Swarm Optimization 419

Since the population in EDAs is ordered according to the individuals’ fitness
values, each particle will represent a different swarm from the fittest to the least
fit chunk of individuals. This configuration attempts to be a means to exit from
local optima in case of too quick convergence, particularly for problems in which
the fitness function is ambiguous (i.e there are different individuals with same
fitness) or the fitness difference between not equally promising individuals does
not sufficiently reflect it to guide the search process adequately.

The EDA-PSO approach will have the next steps:

1.-Initialization: Generate the first population D0 of R individuals.
2.-Selection & partition: Select a number N (N ≤ R) of individuals for

EDAs, and partition the population in R/P P chunks. Let’s call chunki

to the ith chunk, for i = 1, 2, · · ·P .
3.-EDA-Learning: Induce the n–dimensional probabilistic model of the N in-

dividuals.
4.-EDA-Simulation: Generate DEDA

l+1 of R−P new individuals by simulating
the probability distribution learned in the previous step.

5.-PSO-Position update: For each particle Pi i1 . . .P , update the gbesti and
lbesti values using chunki.

6.-PSO-Create population: Generate the portion DPSO
l of the new popula-

tion of P new individuals from the new position of each particle.
7.-Fusion of populations: Build the new population Dl+1 = DEDA

l+1 ∪DPSO
l+1 .

Steps 2 to 7 are repeated until a stopping condition is verified. The steps to
generate the two parts of the new full population Dl are different for DEDA

l and
DPSO

l . In the former the classical EDA approach is used, , while the P particles
are kept separated ensuring that each is assigned to each chunk, so that all
particles represent a different fitness category of individuals’ swarm. Under this
approach both PSO particles and EDA will take into account the individuals
generated by both paradigms for the next generation.

As regards the PSO side, our approach is defined in such a way that when the
search process is closer to the optimum the population should be more uniform
in each chunk. This approach complements the ongoing research on the provision
on PSO for the most adequate inertia weight in [6] and acceleration coefficients
to particles during the search [19,22], since in our EDA-PSO algorithm these are
regulated by means of the uniformity of the different population chunks.

We formulate this approach using the PSO’s canonical version and the clas-
sical EDA approach for continuous domains, although the random sampling
of uniform distributions is removed since the random component will be pro-
vided by the simulation of EDA’s probabilistic graphical model every genera-
tion. Thus, given the velocity vector Vi =

[
υ1

i , υ
2
i , . . . υ

n
i

]
and the position vector

POSi =
[
POS1

i , POS
2
i , . . .POS

n
i

]
, then each generation the velocity and posi-

tion of each particle will be updated according to the PSO standard formula.
Also, since EDAs usually include the best individual from Dl also in Dl+1, we

propose a different lbest and gbest notion regarding the canonical PSO, such that
gbesti will be the global best of chunki, and to consider lbesti as a combination
of the current individuals of chunki.

420 E. Bengoetxea and P. Larrañaga

4 Experiments

Experiments were carried out in order to measure both the behavior and per-
formance of EDA-PSO when applied to classical optimization problems. The
selected optimization problems are the ones proposed in [3] to compare evolution-
ary computation algorithms in continuous domains: Ackley [1], Griewangk [20],
and Sphere model. These functions have been chosen due to their very different
nature: the Sphere model does not contain any local optimum, Ackley presents
several local optima, and Griewangk has still many more local optima although
with smaller valleys :

1. Ackley: The fitness function of this minimization problem is defined as

F (x) = −20 · exp
(
−0.2

√
1
n ·
∑n

i=1 x
2
i

)
− exp

(1
n ·
∑n

i=1 cos(2πxi)
)

+ 20 +
exp(1). The problem is defined with −20 ≤ xi ≤ 30, i = 1, . . . , n.

2. Griewangk: The fitness function of this minimization problem is defined as
F (x) = 1+

∑n
i=1

x2
i

4000−
∏n

i=1 cos
(

xi√
i

)
, where the range of all the components

of the individual is −600 ≤ xi ≤ 600, i = 1, . . . , n.
3. Sphere model: This is a simple minimization problem defined for −600 ≤
xi ≤ 600, i = 1, . . . , n, with the fitness function F (x) =

∑n
i=1 x

2
i .

For all problems the optimum value is 0, which is obtained when the individual
has all its variables at 0.

For EDA-PSO the initial population was generated using random generation
based on a uniform distribution, and the following combination of settings where
tested for the different parameters: EDA type (UMDAc, MIMICc, EGNAee);
Problem size (n= 10, 30, 50); Number of particles (P=5, 10, 30, 50, 100); Pop-
ulation size (R=250); Selection size (N=100, 50). As regards the PSO part, the
values set were the standard ω = 0.7, c1 = 0.1 and c2 = 0.2. In EDA-PSO we
choose that the the best individual ofDl is also included in Dl+1, so that 249 new
individuals are generated per generation. The stopping criterion for all problems
was satisfied when the optimum solution was found (assuming this case to be
the case when the fittest individual has a fitness smaller than 10−6), or when a
maximum of 150 generations were reached.

Each algorithm and combination of parameters was run 20 times for each of
the optimization problems, and the main results per algorithm and optimization
problem are shown in Table 1. Due to lack of space, we show here the most
representative results, which resulted in N=50 for UMDAc and MIMICc, and
N = 100 for EGNAee.

The number of particles shows an important effect in the performance. In the
case of Ackley, EDA-PSO results do not improve the standard EDA, but in the
case of Griewangk and Sphere results are improved when P = 10, although they
are worse for P = 100. It must be noted that for EGNAee the values of R and
N are too low to allow the EDA to learn adequately the dependencies between
variables required to guide search adequately, and the table shows that in PSO
contributes to help the algorithm to improve; however, in Ackley its performance
is also very dependent on the number of particles P .

A Hybrid Paradigm Combining EDAs and Particle Swarm Optimization 421

Table 1. Mean results of each of the problems and algorithms. Here are cases of
N = 100 for EGNAee, and N = 50 for UMDAc and MIMICc. The Gen. column is the
mean generations and Eval. corresponds to the mean number of evaluations. In cases in
which not all executions converged, Gen. shows the convergence percentage and Eval.
is the mean fitness obtained out of all executions.

Ackley Griewangk Sphere
n = 30 n = 50 n = 30 n = 50 n = 30 n = 50

EDA Gen. Eval. Gen. Eval Gen. Eval Gen. Eval Gen. Eval Gen. Eval
UMDAc 42.9 86007 57.3 114193 26.1 52424 34.2 68616 24.8 49825 34 68216
MIMICc 42.9 86007 57.2 114592 25.9 52024 34.2 68616 24.4 49026 33.6 67416
EGNAee 70%* 0.72 0%* 2.9 28.8 57821 37.2 74613 27.2 54623 36.2 72614
EDA-PSO Gen. Eval. Gen. Eval Gen. Eval Gen. Eval Gen. Eval Gen. Eval
UMDAc & P = 10 42.8 86683 56.9 115151 25.3 51351 33.2 67301 24 48726 32.8 66493
MIMICc & P = 10 42.7 86481 56.8 114949 25.4 51553 33 66897 24 48726 32.6 66089
EGNAee & P = 10 90%* 0.6 0%* 1.8 28.2 57205 35.8 72550 26.9 54581 35.8 72550
UMDAc & P = 50 43 90607 57.2 120413 25 52825 32.6 68777 24 49466 32 67518
MIMICc & P = 50 42.8 90187 61 128389 24.7 52195 32.8 67938 23 48627 32 67518
EGNAee & P = 50 48.7 102571 0%* 1.8 27.7 58492 34.8 73395 26 54924 80%* -5E-5
UMDAc & P = 100 42.8 94567 57.1 126013 25 55425 32.6 72137 23.6 52346 32 71258
MIMICc & P = 100 42.6 94127 57.1 126013 25.3 56085 32.8 72577 23.7 52566 32.2 70818
EGNAee & P = 100 90%* 1.4 0%* 0.6 27.7 61362 34.8 76975 26 57624 80%* -1.2E05

This table also illustrates the complementarity of this hybrid EDA and PSO
approach for optimization problems of different complexity. When there are no
no local optima like in Sphere, the contribution of our hybrid approach does not
show all its potential. For the case of Ackley where local optima have bigger
valleys than in Griewangk, in all cases an increase of performance is shown with
EDA-PSO over EDA, although the choice P = 50 appears the best for EGNA
while UMDA performs better with P = 10. Finally, when having small local
optima such as in Griewangk EDA-PSO allows convergence in less generations
as well as a small reduction on the number of individuals evaluated to reach
converge. In order to check statistical significance between algorithms’ behavior
the non-parametric tests of Kruskal-Wallis and Mann-Whitney were applied. The
null hypothesis of the same distribution densities was tested between EDA and
all EDA-PSO executions obtaining p = 0.706 for the number of generations and
p < 0.001 for such of evaluations respectively. On the other hand, considering
the cases of EDA and EDA-PSO with P = 10 p < 0.001 was obtained both for
the number of generations and evaluations.

5 Conclusions and Future Work

This work demonstrates the validity of a new full hybrid EDA-PSO approach,
analysing its performance depending on the nature and complexity of the opti-
mization problem. Preliminary experimental results to compare the performance
of this new approach on typical optimization problems in continuous domains
have been shown, and they have been compared with such of continuous EDAs.
At the light of the results we can conclude that EDA-PSO has proved to be a
new paradigm capable of improving the results of continuous EDAs, where the

422 E. Bengoetxea and P. Larrañaga

number of particles have an important influence on the efficiency of the algorithm
and can contribute to better efficiency when set adequately.

There is a lot of space for improvement and future research by applying diverse
variants on how to hybridate EDA and PSO when updating each generation
lbesti which we are currently studying. Future work also is to be done with
other well known optimisation problems such as Schwefel or Griewangk, and
also other problems in which both EDA and PSO are known not to perform
efficiently (such as satisfactibility problems).

Acknowledgments. This work has been partially supported by the Saiotek
and Research Groups 2007-2012 (IT-242-07) programs (Basque Government),
TIN2008- 06815-C02-01 and Consolider Ingenio 2010 - CSD2007- 00018 projects
(Spanish Ministry of Science and Innovation) and COMBIOMED network in
computational biomedicine (Carlos III Health Institute).

References

1. Ackley, D.H.: A Connectionist Machine for Genetic Hillclimbing. Kluwer, Dor-
drecht (1987)

2. Angeline, P.: Using selection to improve particle swarm optimization. In: Proceed-
ings of the IEEE Congress on Evolutionary Computation, Anchorage AK, pp.
84–89 (1998)

3. Bengoetxea, E., Miquélez, T., Larrañaga, P., Lozano, J.A.: Experimental results in
function optimization with EDAs in continuous domain. In: Larrañaga, P., Lozano,
J.A. (eds.) Estimation of Distribution Algorithms. A New Tool for Evolutionary
Computation, pp. 181–194. Kluwer Academic Publishers, Dordrecht (2001)

4. van den Bergh, F., Engelbrecht, A.: A cooperative approach to particle swarm op-
timization. IEEE Transactions on Evolutionary Computation 8(3), 225–239 (2004)

5. Brits, R., Engelbrecht, A., van den Bergh, F.: Locating multiple optima using
particle swarm optimization. Applied Mathematics and Computation 189(2), 1859–
1883 (2007)

6. Chatterjee, A., Siarry, P.: Non linear inertia weight variation for dynamic adap-
tation in particle swarm optimization. Computers and Operations Research 33(3),
859–871 (2004)

7. Chen, Y., Peng, W., Jian, M.: Particle swarm optimization with recombination
and dynamic linkage discovery. IEEE Transactions on Systems, Man, and Cyber-
netics 37(6), 1460–1470 (2007)

8. Eberhart, R., Kennedy, J.: A new optimizer using particle swarm theory. In: Pro-
ceedings of the 6th IEEE Symposium MIcromachines and Human Science (MHS),
pp. 39–43 (1995)

9. Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learn-
ing. Addison-Wesley, Reading (1989)

10. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of the
IEEE Conference on Neural Networks (ICNN), vol. 4, pp. 1942–1948 (1995)

11. Kulkani, R., Venayagamoorthy, G.: An estimation of distribution improved par-
ticle swarm optimization algorithm. In: Proceedings of the Third International
Conference on Intelligent Sensors, Sensor Networks and Information (ISSNIP), pp.
539–544 (2007)

A Hybrid Paradigm Combining EDAs and Particle Swarm Optimization 423

12. Larrañaga, P., Etxeberria, R., Lozano, J.A., Peña, J.M.: Optimization in contin-
uous domains by learning and simulation of Gaussian networks. In: Proceedings
of the Workshop in Optimization by Building and Using Probabilistic Models. A
Workshop within the 2000 Genetic and Evolutionary Computation Conference,
GECCO 2000, Las Vegas, Nevada, USA, pp. 201–204 (2000)

13. Larrañaga, P., Lozano, J.A.: Estimation of Distribution Algorithms. In: A New Tool
for Evolutionary Computation. Kluwer Academic Publishers, Dordrecht (2001)

14. Lozano, J., Larrañaga, P., Inza, I., Bengoetxea, E.: Towards a New Evolutionary
Computation. In: Advances in Estimation of Distribution Algorithms. Springer,
Heidelberg (2006)

15. Miquélez, T., Bengoetxea, E., Mendiburu, A., Larrañaga, P.: Combining Bayesian
classifiers and estimation of distribution algorithms for optimization in continuous
domains. Connection Science 19(4), 297–319 (2007)

16. Mühlenbein, H., Paaß, G.: From recombination of genes to the estimation of dis-
tributions: I. Binary parameters. In: Ebeling, W., Rechenberg, I., Voigt, H.-M.,
Schwefel, H.-P. (eds.) PPSN 1996. LNCS, vol. 1141, pp. 178–187. Springer, Heidel-
berg (1996)

17. Parrott, D., Li, X.: Locating and tracking multiple dynamic optima by a parti-
cle swarm model using speciation. IEEE Transactions on Evolutionary Computa-
tion 10(4), 440–458 (2006)

18. Parsopoulos, K., Vrahatis, M.: On the computation of all global minimizers
through particle swarm optimization. IEEE Transactions on Evolutionary Com-
putation 8(3), 211–224 (2004)

19. Ratnaweera, A., Halgamuge, S., Watson, H.: Self-organizing hierarchical particle
swarm optimizer with time-varying acceleration coefficients. IEEE Transactions on
Evolutionary Computation 8(3), 240–255 (2004)

20. Törn, A., Z̆ilinskas, A. (eds.): Global Optimization. LNCS, vol. 350. Springer,
Heidelberg (1989)

21. Wang, J., Kuang, Z., Xu, X., Zhou, Y.: Discrete particle swarm optimization based
on estimation of distribution for polygonal approximation problems. Expert Sys-
tems with Applications 36(5), 9398–9408 (2009)

22. Zhan, Z.H., Zhang, J., Li, Y., Chung, H.H.: Adaptive particle swarm optimization.
IEEE Transactions on Systems, Man, and Cybernetics 39(6), 1362–1381 (2009)

23. Zhou, Y., Wang, J., Yin, J.: A discrete estimation of distribution particle swarm
optimization for combinatorial optimization problems. In: Proceedings of the Third
International Conference on Natural Computation (ICNC), vol. 4, pp. 80–84 (2007)

Emergent Flocking with Low-End Swarm Robots

Christoph Moeslinger, Thomas Schmickl, and Karl Crailsheim

University of Graz, Artificial Life Lab of the Department of Zoology, Graz, Austria
christoph.moeslinger@uni-graz.at

Abstract. This article analyses a flocking algorithm that was developed
specifically for small and simple swarm robots. It is similar to traditional
flocking algorithms for swarm robots, however it does not need commu-
nication nor global information. Its only requirements are at least 4 cir-
cumferential distance sensors which can have very limited range. This
is possible because our algorithm generates emergent alignment of flock
members. We show an analysis of our simulations and a short overview
of a real robot experiment.

Keywords: swarm robots, emergent behaviour, flocking.

1 Introduction

The phenomenon of flocks, herds and schools is a prime example of emergent
behaviour. The elegant movement of flocking birds or a fish school seems highly
coordinated, yet it is solely the result of the interactions within the swarm.
There have been lots of speculations as to why this complex behaviour might
have evolved. Most explanations state that it is advantageous for the individual
to be part of a flock to better avoid predators or to increase the foraging success.
However, there have been few quantitative investigations of the real animal be-
haviour because measurements of a moving, 3-dimensional swarm seem almost
impossible. Since the proposed advantages of flocking can only be achieved by
the swarm and not the individual, flocking can be described as being swarm-
intelligent [3]. Such swarm-intelligent behaviours are highly interesting and can,
for example, be used in the field of swarm robotics [5], where a high number
of rather simple robots should reach a goal collectively. Flocking algorithms for
autonomous agents have been introduced by Craig Reynolds [17] who tried to
emulate this behaviour for computer animations. His ‘boids’ display stunningly
natural group movements which are a result of these three simple behaviours:

– Collision Avoidance is a basic behaviour for embodied agents.
– Flock Centering makes boids stay close to their (nearby) flock mates.
– Matching of Velocity and Heading leads to a common direction of movement.

These standard flocking rules also apply to schools of fish and the effects of
different attraction and repulsion forces, group sizes and heterogeneity of the
groups have been investigated in [18]. Since the introduction of swarm robotics,

M. Dorigo et al. (Eds.): ANTS 2010, LNCS 6234, pp. 424–431, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Emergent Flocking with Low-End Swarm Robots 425

these behaviours have also been implemented numerous times in both simula-
tions of swarms and real robot swarms. However, all approaches presented for
the Matching of Velocity and Heading behaviour in real robot swarms included
either communication between the robots to exchange positions and headings
[11,23,7,1] or (dynamic) leaders [9]. Such communication requires special robotic
hardware (e.g. Bluetooth, a stable communication channel, a digital compass or
even a global positioning system). The implementations of the aforementioned
flocking algorithms are not very nature-like because they require communication
among the flock neighbors or even the whole swarm. This complexity renders
these algorithms unfeasible for a swarm of small and simple robots. The dif-
ference to real flocking behaviour is that in real swarms the animals can align
because they can identify the heading of each other. Robots usually do not have
the possibility to visually derive the heading of their flock mates from the body
form unless they use multiple on-board cameras and complex image recognition.
Another alignment method in animals is the use of a specialized lateral line
organ [14] which is present in most fish species, however an emulation of such
an organ for robots is very complicated. There are very few communication-less
approaches to robot flocking (e.g. [2,4]) who generated a flocking swarm by us-
ing an arena with a light beacon and making robots that are illuminated by
this beacon behave differently than the robots they cast a shadow on, which
results in a common movement towards the light beacon. Although this solution
is quite clever, its downside is that it requires a special arena setup. Another
communication-less algorithm was introduced by [15] who evolved controllers for
a group of 3 minimally equipped robots with a view to generate formation move-
ment. The simulated evolution could indeed produce controllers that allowed 3
robots to engage in different roles (leader or follower) depending on the position
in the small ‘flock’. However, the evolved controllers only work on a group size of
3 robots and it does not seem like this solution is applicable for bigger swarms.

For us, the requirements of traditional flocking algorithms are in conflict with
the concept of swarm robotics where the individual robot is usually small and
expected to have very limited abilities [19]. We are interested in working with
minimalistic swarm robots which are not capable of long range communication
and do not have global information like position and heading. These constraints
limit the potential of robot swarms and thus reaching a common goal, like form-
ing an aggregation, is not an easy task. In swarm robotics, such aggregated
swarms could be used for collective transport [22] or assembly [21,16]. Therefore
it is interesting to research the flocking potential of such minimalistic swarms.

We have shown in [13] that a swarm of such simple robots can flock without
communication, which means that the individual robot does not need to know
and communicate the exact positions and headings of its neighbours. Instead, our
approach is more nature-oriented and relies purely on the sensory perception of
the robots. A robot does not need information of all neighboring robots, but only
uses the estimated distance of the nearest neighbour in each of its sensor fields.
We discretized the robots’ sensor fields into different zones (similar to [10]) which
either lead to attraction to or repulsion from other robots. In this paper we will

426 C. Moeslinger, T. Schmickl, and K. Crailsheim

investigate the sizes of these zones to show that an asymmetric composition can
generate emergent alignment which negates the need for complex communication
or image recognition to achieve alignment and therefore flocking in small robot
swarms.

2 Material and Methods

2.1 Algorithm Requirements

Our flocking algorithm has minimal requirements, which means that it can be im-
plemented on simple and therefore very small swarm robots. The algorithm does
not require global information about positions or headings, memory, elaborate
robot-to-robot recognition or communication. It only needs at least 4 distance
sensors with circumferential vision. In swarm robotics, such distance sensors are
usually IR-sensors which are used for obstacle detection and collision avoidance.
The sensors can be used in active mode and passive mode. Active mode means
that the robot activates the IR-LED at the position of the IR-sensors and checks
for reflected light from obstacles. The range of this active IR-sensing is very lim-
ited, depending on the LED strength and on the reflecting surface. In passive
mode, the robot checks the sensor without emitting light and can thus detect
other IR-emitting sources like other robots. This mode of sensing can have a
longer range, depending on the light-emitting source. Other distance measuring
sensors, like ultrasonic sensors, can be used for our algorithm as well. In prelim-
inary tests we measured the maximum active and passive IR-sensing ranges of
two of our real swarm robot types [20,6] to use realistic constraints in our simu-
lations. In our case the maximum sensor ranges were 1 robot-diameter for active
obstacle sensing and about 5 robot-diameters for passive robot sensing. This
means that in our experiments each robot only has a very limited perception of
its surroundings.

2.2 Simulator

We conducted our experiments using a simulator (see Fig. 2B) developed in the
multi-agent programmable modeling environment NetLogo [24]. The simulations
are mainly used for a proof-of-concept and do not incorporate physical properties
like sensor or actuator characteristics. What we aim at with this work is to
demonstrate the usability of our algorithm. Therefore, we simulated a minimalist
4 sensors model (similar to the I-Swarm robot [19]). In our simulations we use a
wrapped arena, i.e. there are no boundaries that could hinder the flock. Other
simulation parameters are: robot speed (3 robot-diameters per second), sensor
measurements (60 per second), sensor errors (5%, random-normal), turn angle
(10 degrees), maximum active sensor range (1 robot-diameter), maximum passive
sensor range (5 robot-diameters).

Emergent Flocking with Low-End Swarm Robots 427

2.3 Flocking Algorithm

At first we define what aggregate or flock means in this paper: If two or more
robots are within the passive IR-sensor range of each other they are considered
as being connected, because they can react on each other. All robots that are
directly or indirectly connected (i.e. there are other connected robots in between)
are considered as being part of an aggregate. If the robots in this aggregate are
non-randomly aligned and the centre-of-mass of this aggregate moves in a general
direction we define that as a flock.

Our algorithm can be represented as a simple finite state machine. All robots
periodically emit IR-light from their distance sensors in order to be perceived by
other robots. They also poll their active and passive IR-sensors to measure their
distance to objects or other robots. In contrast to a camera, IR-sensing has the
constraint that a robot can only distinguish one robot per sensor. Since the IR-
sensors return the highest value, that means that the robot can only perceive the
nearest neighbor in each sensor field. The returned distances are checked against
various thresholds, depending on the direction of the IR-sensor. Please see [13] for
a depiction of the resulting zones. The 3 layers of our algorithm are as follows:

1. First, the sensor in front is polled actively. This is to check if there are close
obstacles in front. If the active sensor returns a distance value which means
that there is an obstacle in front that is closer than 1 robot-diameter, the robot
turns away from that obstacle. This layer leads to basic collision avoidance.

2. If there are no objects in the way, the passive sensors in front and at the
sides are polled. This is to check if other robots are too close. If the passive
sensor returns a low distance value, which means that there is another robot
in front that is closer than 1 robot-diameter, the robot turns away from that
other robot. This layer is the flock separation part of our flocking algorithm.

3. If there are no other robots in close range, the robot polls its passive sensors
at the side and rear positions. This is to check if there are other robots around
which are too far away. For every sensor that returns a certain distance value,
which means that another robot is inside the passive sensor range but too
far away, the robot adds up all resulting turns. For example, if another robot
is too far away on the left side of the robot and also another robot is too
far on the right side of the robot, the robot does not turn. This layer is the
flock cohesion part of our flocking algorithm.

In the end the robot always moves forward the predefined distance, leading to a
continuous movement.

3 Results

3.1 Threshold Analysis

Our simulations investigate the thresholds of the 4 sensor model to test our
hypothesis that asymmetric zones can lead to emergent alignment and thus
generate flocking. A parameter sweep was performed that changed the threshold

428 C. Moeslinger, T. Schmickl, and K. Crailsheim

for the attractive zones on the sides and the threshold for the attractive zone to
the rear. The minimal threshold for the zones on the sides was 1 robot-diameter
because at distances closer than this the robots turn away from each other.
The minimal threshold for the zone on the rear was 0 robot-diameters because
robots do not have repulsive zones in the rear. The maximum distance for all
thresholds was 5 robot-diameters which is the maximum passive sensor range
of our simulated robots. The thresholds were changed at 0.25 robot-diameter
intervals resulting in 21x17 = 357 threshold combinations per swarm size (5,
10 and 15 robots). Each robot swarm started aggregated in the middle of an
unbounded arena in a starting area whose size was correlated to the swarm
size. The robots’ positions inside that starting area and their headings were
randomized and 50 repetitions for each threshold combination were made. The
centre-of-mass (CoM) of the initially aggregated swarm was calculated and its
path logged as long as 80% of the whole swarm were part of the flock.

Fig. 1 shows the path length of the CoM of one exemplary robot swarm size
and a superimposed average path length for all swarm sizes after 60 simulated sec-
onds. The measured path length depends on the combinations of the side thresh-
olds (x-axis) and rear thresholds (y-axis) and also on the swarm size. The black
lines depict identical threshold values for the sides and rear zones. Ideal flocking
with instant alignment would result in a maximum CoM distance of 180 robot-
diameters. In these simulation runs we also measured the average global alignment
of the swarm during 60 seconds by adding the vectors of all flock members each
second. When normalized, the results showed almost identical values as the CoM
distance measurements, therefore they are not shown in this paper. Generally, side
or rear thresholds greater than 4 robot-diameters lead to incoherent swarms which
quickly disperse, resulting in minimal CoM path lengths (see dark areas in Fig. 1).
Smaller thresholds generally keep the swarm coherent and result in medium CoM
path lengths (see dark grey areas in Fig. 1). Only certain threshold combinations
where the rear threshold is greater (= further outside) than the threshold to the
sides lead to a relatively long CoM path length (see light grey areas in Fig. 1).
The influence of swarm size on the flocking ability is also quite visible, but not
shown in this paper. The larger the swarm gets, the worse is its mobility. Flocks
of 5 robots can move a distance which is up to 50% of the maximum CoM dis-
tance with certain threshold combinations (threshold sides: 1.25 robot-diameters;
threshold rear: 2.5 robot-diameters). Flocks of 10 robots can move up to 35% of the
maximum CoM distance (threshold sides: 1.75 robot-diameters; threshold rear: 3
robot-diameters) and flocks of 15 robots can move up to 29% of the maximum dis-
tance (threshold sides: 2 robot-diameters; threshold rear: 3.25 robot-diameters).
By superimposing (and averaging) the results from all three swarm sizes we found
out that the best threshold combination for small swarms is 2.25 robot-diameters
for the side threshold and 3 robot-diameters for the rear threshold.

3.2 Real Experiments

To attest the usability on real robots, we ported the algorithm to 3 e-puck
robots [6]. We emulated the minimalist 4-sensors model by combining 2 of the

Emergent Flocking with Low-End Swarm Robots 429

1 2 3 4 5
0

1

2

3

4

5

threshold sides [r-d]

th
re

sh
ol

d
re

ar
[r

-d
]

CoM distance
[robot-diameters]

0
5
10
15
20
25
30
35
40
45
50
55
60
65
70

10 robots

1 2 3 4 5
0

1

2

3

4

5

threshold sides [r-d]

th
re

sh
ol

d
re

ar
[r

-d
]

superimposed

Fig. 1. Results of a parameter sweep which tested the effects of different side and
rear threshold combinations on flock coherence and flock mobility. The path length of
the centre-of-mass of an initially randomly aggregated swarm is shown as a coloured
surface where brighter areas indicate longer path lengths and therefore better flocking
of the swarm. Black lines indicate identical threshold values for the side and rear zones.
Medians of 50 repetitions for each threshold combination for a swarm size of 10 robots
and superimposed results of 5, 10 and 15 robots for 60 seconds.

Fig. 2. A: 30 second exposure photo of a test run in a darkened arena in which 3
e-pucks utilised the minimalist flocking algorithm. Each e-puck had 1 green LED, the
trails are are visible because of the long exposure. B: Screenshot of a simulated flock of
10 robots (black triangles). The path of the centre-of-mass of the flock is indicated by
the grey line on the floor. One of the robots is shown with its sensor range and sensor
sectors. A short video of a simulation can be seen at [12].

430 C. Moeslinger, T. Schmickl, and K. Crailsheim

e-pucks 8 IR-sensors in each direction. Fig. 2A shows a short experiment where
the trail of each robot is visible. The small flock managed to stay coherent and
also cover a small distance inside the arena. Unfortunately the arena is rather
small, so the flock usually reaches a wall very quickly and the arrangement of the
flock changes. There are of course a lot of differences to the simulation, mainly
sensor characteristics and slower robot speed. Nevertheless we think that our
preliminary test runs look promising and we plan on improving the algorithm
for the e-pucks and try it with bigger swarms and heterogeneous swarms of
e-pucks and Jasmine robots [8].

4 Discussion

In this paper we have analysed a flocking algorithm for swarm robots that
works with minimal equipment. This was done by taking a more nature-like ap-
proach towards flocking which eliminated the need for communication between
the swarm robots. We used the robots’ IR-sensors equivalently to a very simple
visual perception of an animal and thereby allowed the robots to react on their
nearby flock mates. We simulated robots with a minimalist design of 4 distance
sensors with a very short passive sensor range of only 5 robot-diameters. Even
though flocking algorithms only work if they also have an alignment part we
did not explicitly implement such a mechanism. In our algorithm, this part is
an emergent property of the algorithm’s 3rd layer. We have shown that if the
rear distance threshold (delimiting the attractive zone in the rear) is chosen to
be more outward than the side thresholds (delimiting the attractive zones to the
sides) this leads to an improved movement of the flock. This improved movement
is the effect of the emergent alignment which happens when two robots approach
each other. One of these robots will be behind the other robot by chance and
due to them sensing each other in different zones the robot behind will turn
towards the robot in front. As in natural flocks there are no pre-defined leaders,
nevertheless will the robot that is in front ‘lead’ the robots behind it. If a flock
encounters other robots which join the flock, the arrangement of the flock can
change instantly and other robots can become the leaders. Our flocking algo-
rithm was also shown to work on real robots. For these experiments we used
unmodified, non-communicating e-pucks [6]. One advantage of this flocking al-
gorithm is the adaptability, which means that it can be used on different swarm
robot designs. It also allows for heterogeneous robot swarms under the condition
that the robots use the same distance-measuring method.

Acknowledgements. This work is supported by the following grants: EU-IST-
FET ‘SYMBRION’, no. 216342; EU-ICT ‘REPLICATOR’, no. 216240; EU-IST
FET ‘I-SWARM’, no. 507006; FWF (Austrian Science Fund), no. P19478-B16.

References

1. Balch, T., Hybinette, M.: Social potentials for scalable multi-robot formations,
vol. 1, pp. 73–80 (2000)

2. Baldassarre, G., Nolfi, S., Parisi, D.: Evolving mobile robots able to display collec-
tive behaviors. Artificial Life 9(3), 255–267 (2003)

Emergent Flocking with Low-End Swarm Robots 431

3. Beni, G., Wang, J.: Swarm intelligence. In: Proc. of the Seventh Annual Meeting
of the Robotics Society of Japan, pp. 425–428 (1989)

4. Bjerknes, J.D., Winfield, A., Melhuish, C.: An analysis of emergent taxis in a wire-
less connected swarm of mobile robots. In: IEEE Swarm Intelligence Symposium,
pp. 45–52. IEEE Press, Los Alamitos (2007)

5. Dudek, G., Jenkin, M., Milios, E., Wilkes, D.: A taxonomy for swarm robots. In:
Intelligent Robots and Systems 1993, vol. 1, pp. 315–325 (1993)

6. ePuck: e-puck desktop mobile robot - website (2009), http://www.e-puck.org/
7. Hayes, A.T., Dormiani-Tabatabaei, P.: Self-organized flocking with agent failure:

Off-line optimization and demonstration with real robots. In: Int. Conf. on Robotics
and Automation, pp. 3900–3905 (2002)

8. Jasmine: Swarm robot - project website (2010), http://www.swarmrobot.org/
9. Kelly, I.D., Keating, D.A.: Flocking by the fusion of sonar and active infrared

sensors on physical autonomous mobile robots. In: Proc. of the Third Int. Conf.
on Mechatronics and Machine Vision in Practice, vol. 1, pp. 1–4 (1996)

10. Kunz, H., Hemelrijk, C.: Artificial fish schools: Collective effects of school size,
body size, and body form. Artificial Life 9(3), 237–253 (2003)

11. Matarić, M.J.: Designing emergent behaviors: from local interactions to collective
intelligence. In: Proc. of the Second Int. Conf. on From Animals to Animats 2:
simulation of adaptive behavior, pp. 432–441 (1993)

12. Moeslinger, C.: Video link (2009),
http://zool33.uni-graz.at/artlife/flocking

13. Moeslinger, C., Schmickl, T., Crailsheim, K.: A minimalist flocking algorithm for
swarm robots. LNCS. Springer, Heidelberg (2010) (in press)

14. Partridge, B.L., Pitcher, T.J.: The sensory basis of fish schools: relative roles of
lateral line and vision. Journal of Comparative Physiology 135(4), 315–325 (1980)

15. Quinn, M.: Evolving controllers for a homogeneous system of physical robots: struc-
tured cooperation with minimal sensors. Royal Society of London Transactions
Series A 362(1811), 2321–2343 (2003)

16. REPLICATOR: Project website (2010), http://www.replicators.eu
17. Reynolds, C.W.: Flocks, herds, and schools. Computer Graphics 21(4), 25–34

(1987)
18. Romey, W.: Individual differences make a difference in the trajectories of simulated

schools of fish. Ecological Modelling 92(1), 65–77 (1996)
19. Seyfried, J., Szymanski, M., Bender, N., Estaña, R., Thiel, M., Wörn, H.:

The I-SWARM project: Intelligent small world autonomous robots for micro-
manipulation. In: Şahin, E., Spears, W.M. (eds.) Swarm Robotics Workshop: State-
of-the-art Survey, pp. 70–83. Springer, Heidelberg (2005)

20. Swarmrobot: Project website (2009),
http://www.swarmrobot.org/tiki-index.php

21. SYMBRION: Project website (2010), http://www.symbrion.eu
22. Trianni, V., Groß, R., Labella, T., Şahin, E., Dorigo, M.: Evolving aggregation be-

haviors in a swarm of robots. In: Banzhaf, W., Ziegler, J., Christaller, T., Dittrich,
P., Kim, J.T. (eds.) ECAL 2003. LNCS (LNAI), vol. 2801, pp. 865–874. Springer,
Heidelberg (2003)

23. Turgut, A., Çelikkanat, H., Gökçe, F., Şahin, E.: Self-organized flocking in mobile
robot swarms. Swarm Intelligence 2(2), 97–120 (2008)

24. Wilensky, U.: Netlogo. Center for Connected Learning and Computer-Based Mod-
eling, Northwestern University. Evanston, IL (1999)

http://www.e-puck.org/
http://www.swarmrobot.org/
http://zool33.uni-graz.at/artlife/flocking
http://www.replicators.eu
http://www.swarmrobot.org/tiki-index.php
http://www.symbrion.eu

Exploiting Loose Horizontal Coupling in
Evolutionary Swarm Robotics

Jennifer Owen1, Susan Stepney1,
Jonathan Timmis1,2, and Alan F.T. Winfield3

1 Department of Computer Science, University of York, York, UK
{jowen,susan,jtimmis}@cs.york.ac.uk

2 Department of Electronics, University of York, York, UK
3 Faculty of Environment and Technology, U.W.E., Bristol, UK

Alan.Winfield@uwe.ac.uk

Abstract. We describe a theory from Herbert Simon that links the
structure of complex systems to increased speed of evolution, and argue
the position that this theory can be beneficial to evolutionary swarm
robotic research. We propose a way of applying this theory to evolution-
ary swarm robotic systems by manually designing the robot to robot
communication mechanisms and keeping these constant, whilst evolving
the rest of the robots’ behaviours. This allows for robots to evolve in-
dependently of each other without breaking any inter-dependencies that
may exist between robots in the swarm. Finally we address potential crit-
icisms of our suggested approach, and outline a course of future research
in this area in order to verify our proposal.

1 Introduction

Here we propose a means of speeding up the evolution of swarm robotic systems
by considering the role of communication within complex systems.

The main obstacle to swarm robotics research is known as “the design prob-
lem”. This is the question of which behaviours we should engineer at the robot
level to produce a collective emergent behaviour at the swarm level. One pro-
posed solution [10] is to evolve the robot’s mapping between its sensor inputs and
its motor and actuator outputs. With this approach the designer does not have
to worry about what particular behaviours or rulesets should be incorporated
into the robot; these things are automatically created during artificial evolution.
By extending the evolution of a robot’s controller to a whole swarm of evolving
robots, we get the field of Evolutionary Swarm Robotics (ESR).

One of the main drawbacks of ESR is that measuring the fitness of a particular
swarm phenotype is very slow [4]. Measuring this fitness requires that the swarm
be run for long enough to build up a clear picture of how well it is functioning in
the world. A standard evolutionary algorithm uses tens or hundreds of candidate
solutions (here, swarm phenotypes) in the population at each generation, and
the algorithm is run for hundreds or thousands of generations [6]; consequently
many thousands of fitness function evaluations are made. If each takes several

M. Dorigo et al. (Eds.): ANTS 2010, LNCS 6234, pp. 432–439, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Exploiting Loose Horizontal Coupling in Evolutionary Swarm Robotics 433

minutes to evaluate, then a whole evolutionary algorithm will take hours to run,
which is likely to be longer than the battery life of the robots. Hence, the speed
of the fitness function evaluation and of swarm robot evolution in general is a
major hurdle for ESR.

2 Complex Systems and Evolution

Simon [9] argues that complexity in systems will lead to faster evolution than in
systems without complexity. He is referring to evolution in the Darwinian sense
of the gradual change of a species’ genome over multiple generations. However,
his argument is worded in general terms and can be applied to the formation of
non-biological complex systems. He uses an example of atoms forming molecules,
which are then used to form amino-acids, and then proteins. The gradual de-
velopment of structures with low complexity (atoms) to higher complexity (pro-
teins) is also be referred to as “evolution” by Simon. Consequently Simon’s
argument can apply to both biological and non-biological systems.

2.1 Complex Systems as Hierarchies

Simon [8, 9] observes that complex systems have “hierarchic structure”. He de-
fines a hierarchic structure as: “A system that is composed of interrelated sub-
systems, each of the latter being, in turn, hierarchic in structure until we reach
some lowest level of elementary subsystem.”

Take as an example the human body: at the highest level is the body itself;
within the body are organs that interact to keep the body alive; each organ is
made of interacting cells; cells are made of interacting molecules. In a complex
hierarchic structure, at each level the interacting components are subsystems
that are complex hierarchies too. Therefore each hierarchic complex system is a
system of systems.

Simon [8] further observes that a complex system not only has a hierarchic
structure, but also its functionality cannot be understood or recreated from ex-
amining its individual subsystems. On each hierarchic complexity level there are
interactions between the subsystems and it is from the subsystems and their
interactions that we get the higher level complex system. The subsystems them-
selves are the result of interactions between their own subsystems. From the
bottom up, at each successive complexity level, we gain some knowledge of be-
haviour that was not apparent from observing individuals at the level below.
Simon [8, 9] calls this “near-decomposability”; we now call it emergence.

2.2 Linking Complexity and Evolution

It has been argued that if a system is complex, it will evolve faster than if it is
not [5,8,9]. It is certainly true that complex systems are everywhere in nature—
take any cellular organism as an example—so there must be some reason that
these organisms have prospered whilst non-complex biological systems have not.

434 J. Owen et al.

Simon [9] examines this relationship between complexity and evolution in depth,
and suggests two major reasons why complexity speeds up evolution: stable
intermediate subsystems, and loose horizontal coupling.

Stable Intermediate Subsystems. The first observation made in [9], which is
also noted in [5,8], is that “complex systems will evolve from simple systems much
more rapidly if there are stable intermediate forms than if there are not” [8].
Stability in this context means that, despite external perturbation, a system is
independently able to maintain some internal state that allows it to continue
functioning within its natural environment [7]. In a complex system then, if
its subsystems have stability, it means they are able to repair and maintain
themselves, and are not as likely to degrade over time. Consequently, stable
subsystems are likely to be more prevalent, more available to come together to
form something new. Perhaps it is the case that evolution, by developing stable
building blocks, speeds the formation of complexity hierarchies, and not the
other way around.

Loose Horizontal Coupling. Simon’s second observation [9] on how com-
plexity speeds up evolution is to do with functional equivalence and “Loose
Horizontal Coupling”.

Within a complex system there is “vertical coupling” between levels, in that
higher levels are composed of the lower levels. There is also “horizontal cou-
pling”: communication and interactions between subsystems on the same hier-
archic level. If two subsystems on the same level interact with each other in
a fixed manner, then each is able to evolve independently of the other. These
changes may affect the higher level system, and this would direct the evolution.
For example, in the human body there is a digestive system and a circulatory
system. The digestive system breaks down food and puts it somewhere where it
can be absorbed into the bloodstream. If the circulatory system were to route
blood more efficiently, then, as long as it still absorbs food from the digestive
system, these changes would not affect the functionality of the digestive system.
Consequently the higher level system, the body, would be improved.

This relative independence of subsystems due to the fixed nature of their
interactions is what Simon calls “Loose Horizontal Coupling” (LHC).

Alphabets. Key to achieving LHC is fixing interaction via a limited “alpha-
bet” of components: “the flexibility of coupling among subsystems can be further
enhanced by limiting the variety of different kinds of components that are in-
corporated into the larger system” [9]. Simon uses the example of amino acids.
There are 20 types of amino acid, giving an alphabet of size 20 on this com-
plexity level. By repeating and combining parts of this alphabet we can create
“innumerable protein molecules” [9]. Amino acids are fixed; it is the proteins
constructed from them that evolve. An alphabet should be varied enough to be
capable of expressing anything, but flexible enough that meaning can be gained
from a composite structure of alphabet elements [9]. An alphabet can form the
fixed unit of “currency”, or information, exchanged between subsystems.

Exploiting Loose Horizontal Coupling in Evolutionary Swarm Robotics 435

Alphabets are key to LHC because they make it easier for systems to commu-
nicate with each other. With an alphabet to dictate what can be communicated,
there are fewer types of component to generate in order to pass information
between subsystems. There are fewer data types, but the order and structure
of the data is what conveys information. In our example of a digestive system
with a circulatory system, food is broken down into the message given to the
circulatory system. A low complexity level alphabet of amino acids can carry out
this communication. A whole range of amino acids are presented by the digestive
system; a particular type of protein however, is much more specific and our food
is less likely to contain it, so it is less useful for general communication.

In summary, alphabets can regulate the communication between subsystems.
They are well suited to this role because alphabet components are more prolific
and less specific, compared to things that are composed of the components.

3 Swarm Robots and Speedier Evolution

We have outlined Simon’s argument about how complexity in a system can
increase the speed of its evolution. A swarm robotic system is complex and
dynamic, incorporating feedback and interaction on many hierarchic levels. We
conjecture that the principles of stable hierarchic subsystems with loose
horizontal coupling can be applied to evolutionary swarm robotics,
resulting in faster evolution of the robot swarm. The question then arises
of how we apply these ideas to swarm robotics.

Addressing the idea of stable subsystems first, the robots in a swarm are
themselves stable. Viewing a robot as just a hardware platform for running its
controller, the robot will maintain its internal state of being a hardware plat-
form and will continue to do so until either hardware or the battery wears out,
or the robot is subjected to destructive external perturbations. The controller
within the robot may not be stable, and this could cause the robot to behave
erratically. Research has been done into evolutionary algorithms that modularise
parts of the genome for reuse, for example [3,2]. Depending on the ability of the
chosen evolutionary algorithm to select stable and useful parts of the genome for
modularisation and proliferation, stable subsystems within the robot controller
could be generated.

Applying loose horizontal coupling (LHC) to robot swarms is more of a chal-
lenge because there is so little previous research in this field, particular in the
context of evolutionary algorithms and swarm robotics.

Trianni [12] identifies three ways in which swarm robots communicate with
each other [12]: indirect communication or stigmergy, direct interaction where
robots physcially interact to communicate and direct communication where mes-
sages are passed between robots without them needing to physically interact.

We propose that LHC can be implemented by using a fixed means of com-
munication to dictate how the direct communication and interaction between
robots should take place. A small fixed alphabet should be used to compose the
messages that are conveyed between robots at the relevant subsystem level. This

436 J. Owen et al.

Fig. 1. LHC between two robots. The alphabet and the medium for communication
are both designed, and are fixed throughout the evolution of the swarm. Each robot’s
controller is evolved to map between the robot’s sensor inputs (including any received
messages) and its outputs. This gives us the robot’s behaviour and its interpretation
of the message. The message itself emerges from the structure of the combination of
several alphabet components and the interpretation that a robot gives to a message.

limits the freedom of the communication, but gives the messages enough flexi-
bility to express meaning in the way the alphabet has been combined. In this
manner the functional equivalence of each robot is maintained for as long as that
robot can generate and communicate the desired information. If this process is
unaffected by the swarm’s evolution then LHC will exist between robots, and
they can evolve independently of each other without causing other dependant
robots to break down. Figure 1 illustrates what we are proposing.

This approach places some restrictions on the freedom of the swarm evolution.
LHC is best used when the swarm is evolving in a decentralised way, which is to
say, each robot evolves independently with no global time step dictating when
to update their genome, using only local information to measure its fitness.
LHC in this situation ensures that the robots can evolve independently and still
understand each other. If the swarm is evolved centrally, using a global controller
to decide robot genomes or fitnesses, (as in [12, 13]) the principles can still be
applied but may be of less benefit.

When using LHC, the medium of communication and what alphabet to com-
municate must be decided a priori, so some manual design of the controller
is required to support these decisions. This potentially reduces the benefits of
evolving the controller as the programmer is still required to design some parts
of it. Despite this, it may still be simpler to have to design only the direct com-
munication and interactions, compared to designing the entire controller. Care
must therefore be taken when designing the LHC between robots, as the deci-
sions may end up locking the swarm into a behaviour that is less than optimal,
and it might never reach maximum fitness. However, over the time frame of a
swarm robot experiment we may be able to evolve only over a limited number of
generations, so by speeding up the evolution we will hopefully allow the swarm
to reach a higher fitness than would have been achievable without LHC. Whilst
this may potentially lock us into a lower overall fitness, the benefits should out-
weigh the costs and we would at least end up with a behaviour that is “good
enough”.

Exploiting Loose Horizontal Coupling in Evolutionary Swarm Robotics 437

4 Potential Criticisms

There are some criticisms that might be made when considering our proposal.
We address each of them in turn.

The paper from which we are drawing our ideas [9] was written nearly
40 years ago, and so ideas and definitions may be out of date. Simon’s
hypothesis about how complexity and evolution are linked is based on his under-
standing of a complex system, described in section 2.1. We have shown that the
relevant parts of this definition can be applied to swarm robotics in section 2.2.
It therefore follows that Simon’s hypothesis can be applied to swarm robotics.
Whether his view of complexity is right or not is unimportant. It is the structure
and interactions of the complex system that cause the rapid evolution, and we
have shown that these are present in swarm robotic systems.

LHC is already implicitly used in evolutionary swarm robotics. Some
researchers implicitly use LHC in their experiment. For example, Trianni et
al. [13] evolve a controller that performs coordinated movement in a swarm of
four robots. Before the experiment begins the robots are connected together by
the experimenters and they are able to communicate with each other only by
exerting a pull on the directly connected robot. The robots are free to evolve
the interpretation of this pull, but LHC is implicit in the experimental setup
because their means of communication with each other, and the alphabet used
to encode the information conveyed, remains fixed throughout the experiment.
The alphabet, in this case, consists of pulling forces exerted on the robot in
different directions and with different amounts of force.

Similarly, Trianni et al. [11] implicitly employ LHC. Each robot in the swarm
emits a continuous tone, and the group must evolve their controller to perform
swarm aggregation. The continuous tone is used as an “I am here” message
communicated between robots, which can be located by other robots using four
inbuilt microphones. The robots in this experiment must weight a neural network
connecting the microphones and proximity sensors to the motor outputs. In doing
so they interpret the signals they receive in order to aggregate together. The
direct interaction and direct communication has been explicitly pre-specified by
the experimenter.

In experiments where a solitary robot must learn to adapt to a static envi-
ronment, for example evolving obstacle avoidance behaviour [1], the interaction
between the sensed object and the data returned by the robot’s proximity sensors
is fairly consistent. Hence there is LHC between the robot and its environment
because the communication between the two is fixed and does not change over
the course of the experiment. In this case the LHC is implicit in the experiment
since the experimenter has not specified that the robot’s interactions are fixed.
LHC is instead just an artefact of how the robot observes its world.

In these examples the LHC is either implicit or unintentional. Although we
have not given a very thorough analysis of the field of evolutionary swarm
robotics, these examples are sufficient to show that LHC is already implicitly

438 J. Owen et al.

used in some current evolutionary robotics research. We suggest that the im-
plementation of LHC should be explicitly considered when conducting future
experiments. This is because it affects how the robots evolve, and helps us to
understand from what starting point we are evolving the swarm. We can also
assess how easy are we making things for the evolutionary algorithm, so that its
effectiveness can be assessed and compared to those of other experiments.

Is lack of LHC even a sensible alternative? Are there any circumstances
where not using LHC, even implicitly, makes sense?

In the example of [1], where obstacle avoidance behaviour is evolved, the
implicit LHC is due to the static environment causing consistent proximity data.
If the world were dynamic, the interaction between proximity sensors and objects
in the world would not be so consistent, because objects could be moving towards
or away from the robot. Consequently, for there to be no implicit LHC present,
the environment must be dynamic. But this is the case with swarm robots,
because having multiple agents in the environment causes motion and changes
to occur in the environment.

In the case of [11] LHC could be removed by stopping the continuous tone,
and leaving the robots to evolve the ability to know when to turn them on or
off. In [13] the LHC could be removed by separating the robots and leaving
them to connect together themselves, although this would completely change
the nature of the experiment, which was to measure whether the robots can
learn coordinated movement. Essentially in both cases the LHC is removed by
leaving the robot-to-robot communications to be completely evolved, and care
must be taken to make sure there is no implicit LHC in the experiment.

Not using LHC in the experiment is sensible if the aim is to evolve the robot
swarm from nothing, with no pre-established direct interaction and communica-
tion between robots. If evolving all this is not practical, or would fundamentally
change the nature of the experiment, then removing LHC completely is not a
sensible option. It depends on what goals you want to achieve.

5 Conclusion and Future Work

We have presented Simon’s idea of how stable subsystems with loose horizontal
coupling increase the speed of evolution [9]. The point we make in this paper is
that the presence of LHC and stable subsystems may be used speed up evolution
in swarm robotic systems by fixing the swarm’s methods of robot interaction and
communication. Not to use LHC might be desirable in some scenarios, but if the
ideas presented in this paper prove correct and LHC is used, whether implicitly
or explicitly, we should be aware of the fact and hence maximise its effectiveness.

Our next stage is to investigate Simon’s hypothesis using an evolutionary
robotic swarm. We will measure the rate of evolution in the case of a swarm
using LHC and compare it to the rate of evolution if the swarm were to not
use LHC. If we can show that Simon’s hypothesis is effective in speeding up the
evolution process in robotic systems then our work will help to present evolution

Exploiting Loose Horizontal Coupling in Evolutionary Swarm Robotics 439

as a more viable solution to the “design problem” of swarm robotics. It would
also help verify that Simon’s hypothesis is correct. This would have consequences
in the application of evolutionary algorithms more generally, because the same
principles could be applied to the evolution of other classes of solutions.

In this paper we have focused on the robot level of the swarm, and how
we could implement LHC. We have not yet considered the possibility of using
stable subsystems with LHC within the robot controller. If we could develop
stable modules within the controller and have these maintain their inputs and
outputs as part of their stability, then there is greater potential for speeding
up swarm evolution. This is, however, a far more complicated task and further
research is required in this area.

Acknowledgements. This work is part of the CoSMoS project, funded by
EPSRC grants EP/E053505/1 and EP/E049419/1.

References

1. Floreano, D., Mondada, F.: Automatic creation of an autonomous agent: ge-
netic evolution of a neural-network driven robot. In: From animals to animats
3, Brighton, UK, pp. 421–430. MIT Press, Cambridge (1994)

2. Forrest, S., Mitchell, M.: Relative building-block fitness and the building block
hypothesis. In: Proc. 2nd Workshop on Foundations of Genetic Algorithms, pp.
109–126. Morgan Kaufmann, San Francisco (1993)

3. Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learn-
ing. Addison-Wesley, Reading (1989)

4. Lund, H.H., Hallam, J.: Evolving sufficient robot controllers. In: 4th IEEE Int.
Conf. on Evolutionary Computation, pp. 495–499. IEEE Press, Los Alamitos (1997)

5. Maturana, H.R., Varela, F.J.: Autopoiesis and Cognition: the Realization of the
Living. D. Reidel (1980)

6. Mitchell, M.: An Introduction to Genetic Algorithms. MIT Press, Cambridge
(1996)

7. Pimm, S.L.: The complexity and stability of ecosystems. Nature 307(6), 321–326
(1984)

8. Simon, H.A.: The architecture of complexity. Proceedings of the American Philo-
sophical Society 106(6), 467–482 (1962)

9. Simon, H.A.: The organization of complex systems. In: Pattee, H.H. (ed.) Hierarchy
Theory, pp. 1–27. George Braziller (1973)

10. Trianni, V.: Evolutionary Swarm Robotics: Evolving Self-Organising Behaviours
in Groups of Autonomous Robots. Springer, Heidelberg (2008)

11. Trianni, V., Groß, R., Labella, T.H., Şahin, E., Dorigo, M.: Evolving aggregation
behaviors in a swarm of robots. In: Banzhaf, W., Ziegler, J., Christaller, T., Dit-
trich, P., Kim, J.T. (eds.) ECAL 2003. LNCS (LNAI), vol. 2801, pp. 865–874.
Springer, Heidelberg (2003)

12. Trianni, V., Labella, T.H., Dorigo, M.: Evolution of direct communication for a
swarm-bot performing hole avoidance. In: Dorigo, M., Birattari, M., Blum, C.,
Gambardella, L.M., Mondada, F., Stützle, T. (eds.) ANTS 2004. LNCS, vol. 3172,
pp. 131–132. Springer, Heidelberg (2004)

13. Trianni, V., Nolfi, S., Dorigo, M.: Hole avoidance: Experiments in coordinated mo-
tion on rough terrain. In: Proc. 8th Conference on Intelligent Autonomous Systems
(IAS8), pp. 29–36. IOS Press, Amsterdam (2004)

Formal Verification of Probabilistic
Swarm Behaviours

Savas Konur, Clare Dixon, and Michael Fisher

Department of Computer Science, University of Liverpool, Liverpool, UK
{Konur,CLDixon,MFisher}@liverpool.ac.uk

Abstract. Robot swarms provide a way for a number of simple robots
to work together to carry out a task. While swarms have been found to
be adaptable, fault-tolerant and widely applicable, designing individual
robot algorithms so as to ensure effective and correct swarm behaviour
is very difficult. In order to assess swarm effectiveness, either experi-
ments with real robots or computational simulations of the swarm are
usually carried out. However, neither of these involve a deep analysis of
all possible behaviours. In this paper we will utilise automated formal
verification techniques, involving an exhaustive mathematical analysis,
in order to assess whether our swarms will indeed behave as required.

1 Introduction

A robot swarm is a collection of simple, and often identical, robots which will
work together to achieve some task [1,2,12]. Whilst the behaviour of each indi-
vidual robot is fairly easy to understand, it is considerably harder to predict and
guarantee the emergent behaviours of the overall swarm. Consequently, it is very
difficult to design an individual robot control procedure that, when replicated
across all the robots, will guarantee the required swarm behaviour. In this paper
we will explore how such robot algorithms can be analysed in a more formal way
than simply by simulation or testing.

To exhibit our approach, we have chosen a scenario for which swarm algo-
rithms have already been designed, implemented and tested. Thus, we focus on
foraging robots, specifically those developed in [10,11]. The idea is that robots
have to search for, and retrieve, food items, bring them back to the ‘nest ’ and
then rest. In analysing swarm algorithms of this sort, it is particularly impor-
tant to see how system parameters affect the swarm behaviours in terms of, for
example, overall swarm energy or the ratio of searchers to resters within the
swarm. By such an analysis we can explore under what conditions the swarm
exhibits optimal behaviour.

Swarm analysis is usually carried out either by testing real robot implementa-
tions, or by computational simulations; see, for example, [7,11]. However, each of
these only examines a relatively small number of the possible swarm behaviours
and so, especially where swarms are to be deployed in safety (or business) criti-
cal areas, these approaches guarantee very little about actual swarm behaviours.

M. Dorigo et al. (Eds.): ANTS 2010, LNCS 6234, pp. 440–447, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Formal Verification of Probabilistic Swarm Behaviours 441

A general alternative to simulation and testing is to use formal verification, and
particularly the technique called model-checking [3]. Here a mathematical model
of all the possible behaviours of the system is constructed and then all execu-
tions through this model are assessed against a logical formula representing a
required property of the system. If there is any possible behaviour that violates
the required property, then this is highlighted.

While model checking techniques usually assess a temporal property, we will
use something more sophisticated. Since there is inherent uncertainty within
swarms, here we use a probabilistic model checker called Prism [6]. Thus, we use a
probabilistic model of the individual robots [10] and so we can potentially analyse
not just the temporal, but also the probabilistic, properties of the swarm. So, our
aim is to take an existing robot swarm algorithm, model it in our framework,
and then automatically analyse all possible runs through the system via the
Prism model checker. While we can verify properties of individual robots, we
are particularly concerned with global swarm behaviour. Thus, we will show that
we can not only re-create the simulation results from relevant papers [10], but
can also show that certain properties hold of all possible runs/configurations,
i.e. we can formally verify swarm behaviour. This extends beyond testing and
simulation of robot swarms to formal verification via probabilistic model checking
and provides the potential for much deeper analysis of swarm behaviours.

In Section 2 we introduce the foraging robot scenario and in Section 3 we
explain how it is to be modelled and verified. In Section 4 we present several
experiments based on this model. These are carried out using the Prism model
checker and comprise both simulation and verification activities. In Section 5,
we provide concluding remarks.

2 The Foraging Robot Scenario

The foraging robot scenario we consider follows that presented in [10]. Within a
fixed size arena, there are a number of foraging robots, i.e. they must search a
finite area and bring food items back to the nest. Food is placed randomly over
the arena and more may appear over time. The food items collected will increase
the energy of swarm, but searching for food items will use up energy and there
is no guarantee that robots will actually find any food. The behaviour of each
robot in the system is represented by the probabilistic state machine in Fig. 1,
with states: searching, where the robot is searching for food items; grabbing,
where the robot attempts to grab a food item it has found; depositing, where
the robot moves home with the food item; homing, where the robot moves
home without having found food; and resting, where the robot rests for a par-
ticular time interval. Associated with these states are both time-out conditions
and probability values: Ts: the maximum amount a time a robot can continue
searching; Tg: the maximum amount of time a robot can attempt grabbing; Td:
(Th/Tr) the average time spent depositing (homing/resting); γf : the probability
of finding a food item; γg: the probability of grabbing a food item; and γl: the
probability of ‘losing’ sight of a food item, e.g. due to robot interference. The

442 S. Konur, C. Dixon, and M. Fisher

DEPOSITING

GRABBING

HOMINGSEARCHING

RESTING

t ≥ Tg

t < Th

t < Tr

1− γf , t < Ts

γf , t < Ts

γl, t < Tg

1− γg − γl, t < Tg

γg, t < Tg

t < Tdt ≥ Tht ≥ Tr

t ≥ Ts

t ≥ Td

Fig. 1. Probabilistic Finite State Machine for a Single Foraging Robot [10]

probabilistic finite state machine in Fig. 1 is adapted from [10], the main differ-
ence being that we ignore avoidance in this initial investigation. All robots are
initially in the state searching. In each time step, robots move to the grabbing
state with probability γf (the chance of a robot finding food). Robots stay in
the searching state with probability 1− γf . If a robot cannot find food within
Ts time steps, it will move to the homing state. It is similar for the other states
and transitions.

3 Modelling and Verifying the Scenario

The essence of formal verification is to analyse a logical requirement (typically
within formal logic) against all possible behaviours of the system in question.
The fastest, and most widely used, approach is called model-checking [3]. Here,
a structure (such as a finite-state automaton) describing all possible system
behaviours is exhaustively (and automatically) checked against the required log-
ical properties. Thus, given that the state-machine in Fig. 1 is a probabilistic
model, we can analyse both probabilistic and temporal properties of such robots
using a probabilistic model checker, such as Prism [6]. Indeed, when we verify
properties of an individual probabilistic state-machine, our input to Prism is a
probabilistic model (technically a discrete-time Markov Chain) and a property
which can be represented in a number of probabilistic temporal logics, such as
PCTL [5]. PCTL can be used to represent quantities such as “the probability
a robot eventually reaches the nest”, “the probability that the energy in the
system is greater than E”, etc., as well as standard temporal properties. Us-
ing Prism, we can also compute the minimum or maximum probability over a

Formal Verification of Probabilistic Swarm Behaviours 443

range of possible configurations or parameters of a model, producing a form of
best/worst-case analysis.

However, in this paper we are particularly concerned with verifying the proper-
ties of swarms comprising large numbers of robots. Although Prism is generally
quite efficient, allowing us to analyse models with as many as 1010 states (see,
for example, [4]), a naive application of Prism to robot swarm verification may
generate many more states. For example, if we built a product state-machine
from multiple copies of the Fig. 1 state-machine then the size of the resulting
model would be huge. So, rather than representing each robot as a different
probabilistic state machine and then taking the product of all these machines to
generate the whole system, we use a counting abstraction approach. This is par-
ticularly useful if there are many identical, independent processes, as is the case
in a robot swarm, and allows us to abstract away from low-level probabilistic
details and so just consider global population behaviour.

The basic idea is as follows. Since we know that all the robots are modelled by
identical probabilistic state machines, then we actually model the whole system
by one state machine with exactly the searching, homing, etc, states we saw
in Fig. 1. However, to each of these states we add a counter which is used to
record how many robots are actually in that state at that moment. Thus, if
20 robots are searching then the counter in the searching state will be 20. By
examining Fig. 1 we can work out how many of these should move to grabbing,
how many should move to homing, and how many should remain in searching
at each step. Thus, in addition to the 5 states, each state is labelled with a set of
difference equations explaining how the numbers of robots associated with each
state evolve. It is important to note that we are abstracting away from local
probabilities and now considering a more global view.

Due to lack of space we do not show the (difference) equations defining how
the numbers of robots in each of the five key states changes over time. But we
remark that fractional values of numbers of robots are rounded to the nearest
whole number since we work with a discrete state space.

4 Experiments

In this section, we present the results from running Prism on our model with
different properties and parameters. We run them both in simulation mode,
whereby we generate a random run, and in verification mode, whereby we assess
all possible runs against a PCTL formula. The properties we check use PCTL
syntax, which comprises the usual operators from classical logic such as ∧ (and),
∨ (or) and ⇒ (implies), as well as probabilities for example P=1 (i.e. with prob-
ability 1) and temporal operators such as ϕ (ϕ holds at all present/future
moments) ♦ϕ (ϕ holds at some present/future moment), ϕU ψ (ϕ holds until
ψ holds).

Energy Calculation. Before discussing the experiments, we will explain how the
swarm energy is calculated. In a swarm, each robot consumes a certain amount
of energy at each time step. We assume that a robot consumes Es, Eg, Er

444 S. Konur, C. Dixon, and M. Fisher

and Eh units of energy at each step in searching, grabbing, resting and
homing, respectively, and each food-item delivers the swarm Ed units of energy
(we assume that Ed is net energy, i.e. it is the energy obtained from the food
carried minus the energy consumed in the depositing state; we also assume that
a robot can carry only one food-item.) The total swarm energy in the next time
instance, denoted by En(t+ 1), is calculated as follows:

En(t+ 1) = En(t) + EdN
Td

d (t) − EsNs(t) − EgNg(t) − ErNr(t) − EhNh(t)

where NTd

d (t) denotes the number of robots that have been in depositing for
Td time steps; Ns(t), Ng(t), Nr(t) and Nh(t) denotes the number of robots that
are in the searching,grabbing,resting and homing states, respectively, at
time t. It is important to note that in order to ensure that we have finitely many
states we discretise the energy values, and model En as discrete state variable.

4.1 Swarm Model with Resting Timeout

We will start our experiments with a model based on the state structure in
Fig. 1 and then will gradually enhance this to be more sophisticated. So, we
begin with experiments based on the basic model in which robots leave the
resting state after waiting for Tr time steps. The energy parameters used are
as follows: Ed = 250, Er = 2, Eh = 4, Es = Eg = 50, and En(0) = 2000 × 103

(the initial swarm energy at t = 0). We also take Ts = Tg = Th = Td = Tr = 50
seconds, and γl = 0.1, γg = 0.8. In the sequel, we take N as the total number
of robots. Fig. 2 compares the total energy of a swarm of 100 robots with the
different (but constant) γf (probability of finding food) values. As seen in Fig. 2,
if the probability of finding food is below 0.5, i.e. less food is available for the
swarm, then the total energy of the swarm decreases. If the probability of finding
food is greater than 0.5, i.e. more food is available, then the swarm gains energy.

In PRISM, we can test various runs (i.e. performing simulations as in Fig. 2);
but this does not guarantee that a property is true in all cases. Using the ver-
ification module of PRISM we can also verify whether a property holds for
all possible runs; or we can determine the actual probability of a property be-
ing true. Assume we want to determine the probability that “for an arbitrary
number of robots and food finding probability the swarm energy is equal to or
greater than the initial energy from a time point tA”. This implies that from a
time point tA the total energy of the swarm never goes below the initial energy.
We assume γf takes discrete steps with increments of 0.01 in the range [0, .., 1],
N = [100, .., 500], tA = 2000 and tmax = 10000. We can specify this property
in PCTL as follows: P=?((t < tA ∨ En ≥ E(0))U t = tmax). We verified this
formula using PRISM, and the probability returned is 0.59. This result validates
the simulation shown in Fig. 2. In Fig. 2, γf values remained constant throughout
the experiment. In Fig. 3 we use a variable γf value that decreases over time, i.e.
modelling the situation when food gradually becomes more scarce. So, γf is 1.0
at t = 0, and reduces by 0.1 in every 1000 seconds. Running some simulations,
we see that the total swarm energy initially increases, since the probability of

Formal Verification of Probabilistic Swarm Behaviours 445

Fig. 2. Total swarm energy vs. the (constant) probability of finding food (γf)

Fig. 3. Total swarm energy vs. the (decreasing) probability of finding food (γf)

finding food is high, i.e. there is much food available for the swarm. When the
probability of finding food decreases, i.e. food availability reduces, the energy
gain becomes equal to the energy spent by the swarm. After a while the energy
gained becomes less than the energy spent, since the food becomes scarce, and
therefore the total swarm energy decreases.

Again, rather than just running individual experiments, we can verify some
properties of all executions. For example, the following property states that “the
total energy never reduces below a certain value E (before timeout)”, specified
in PCTL as P=1 (Energy > E). We verified this formula in PRISM (assuming
E = 1900×103 and N = [100, .., 500]). This property can be useful to determine
a set of robots can achieve an important task within a certain period, since we
can be sure they will always have energy above a certain threshold value. We also
queried the following formula in PRISM: P=?(true U (En > E ∧ P=1♦(En >
E ∧ t = tmax))) assessing the probability that if the total energy exceeds E at
some time, then the energy level in the end will be above E. PRISM returned a
probability value of 0.31 for E = 3000×103, N = [100, .., 500] and tmax = 10000.

446 S. Konur, C. Dixon, and M. Fisher

This is an expected result because food becomes scarce as time passes, and so it
is likely that the energy level decreases.

4.2 Swarm Model without Resting Timeout

In Fig. 1, we assumed that if a robot moves to the resting state from homing
or depositing, it waits Tr time steps in resting. We now change this scenario
and assume that the robots do not wait in the resting state for a fixed amount
of time before moving to searching, but wait there depending on a probability
γs. This probability, in turn, depends on the number of robots in the depositing
and homing states. Namely, robots move from resting to searching states
with probability

γs =
λNTd

d (t) −NTh

h (t)
N

,

and stay in the resting state with probability 1 − γs. In the above, λ is the
energy gaining parameter, and NTd

d (t) (respectively NTh

h (t)) denotes the number
of robots that have been in depositing (respectively homing) for Td (respec-
tively Th) time steps. Intuitively, we can think of this new scenario as follows:
since each robot brings a food item in depositing state, if more robots move
to the depositing state and less robots move to the homing state, then more
robots will move to the searching state. As can be seen, γs is proportional to
the energy gaining parameter λ. That is, if we increase the value of λ, then more
robots will move to the searching state.

Using verification we can also establish several properties. For example, we
have checked the PCTL property P=? ((t > tA) ⇒ (Ns ≥ n)), specifying
the probability that the number of searching robots will never reduce below n
after tA seconds. The probability that PRISM returned is 0.99 for tA = 2000
and n = 10. We also assumed λ takes discrete steps with increments of 0.01 in
the range [0, .., 1.5] and N = [100, .., 200]. This result shows that the number of
searching robots is never below n for almost all time points from tA.

In addition to the scenarios above, we also considered a scenario where γg

depends on the number of robots searching. Thus, if a robot is in the grabbing
state, then it can grab a food with a probability γg = α/Ns, where α is a constant
and Ns is number of robots searching. Due to lack of space, we omit the formal
analysis of this scenario.

5 Conclusions

In this paper we have taken a probabilistic state transition system for foraging
swarm robots from [10] and used it as the basis for verification of global swarm
behaviour using the Prism model-checker. Rather than instantiating such a
transition system for each robot and performing local verification, we adopt
a macroscopic approach and represent the whole swarm using one transition
system calculating the number of robots in each state based on a combination of
the number of robots in the previous state and the probability that robots change

Formal Verification of Probabilistic Swarm Behaviours 447

state. This allows us to simulate and verify properties of the global foraging robot
scenario for a number of parameters. In particular we investigate the changes to
swarm energy relating to changing the probability of finding food and differing
resting timeouts. We also experimented with variable probabilities including the
probability of moving from resting to searching and the probability of grabbing.
Using this approach we can formally verify that certain behaviours will always
happen which cannot be done easily with either simulation or testing.

Foraging robots have been studied in a number of other papers, for exam-
ple [8,7,9,10,11]. The foraging robot scenario we use here is from [10] however
the main difference being that we ignore avoidance in this paper.

Acknowledgements. The authors would like to acknowledge the helpful com-
ments from the reviewers. This work was partially supported by EPSRC research
project EP/F033567.

References

1. Beni, G.: From Swarm Intelligence to Swarm Robotics. In: Şahin, E., Spears, W.M.
(eds.) SAB 2004. LNCS, vol. 3342, pp. 1–9. Springer, Heidelberg (2005)

2. Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence: From Natural to
Artificial Systems. J. Artificial Societies and Social Simulation 4(1) (2001)

3. Clarke, E., Grumberg, O., Peled, D.: Model Checking. MIT Press, Cambridge
(1999)

4. Duflot, M., Kwiatkowska, M., Norman, G., Parker, D.: A Formal Analysis of Blue-
tooth Device Discovery. Int. J. Software Tools Techn. Transfer 8(6), 621–632 (2006)

5. Hansson, H., Jonsson, B.: A Logic for Reasoning about Time and Reliability. For-
mal Aspects of Computing 6, 102–111 (1994)

6. Hinton, A., Kwiatkowska, M., Norman, G., Parker, D.: PRISM: A Tool for Auto-
matic Verification of Probabilistic Systems. In: Hermanns, H., Palsberg, J. (eds.)
TACAS 2006. LNCS, vol. 3920, pp. 441–444. Springer, Heidelberg (2006)

7. Labella, T.H., Dorigo, M., Deneubourg, J.L.: Efficiency and Task Allocation in
Prey Retrieval. In: Ijspeert, A.J., Murata, M., Wakamiya, N. (eds.) BioADIT 2004.
LNCS, vol. 3141, pp. 274–289. Springer, Heidelberg (2004)

8. Lerman, K., Galstyan, A.: Mathematical Model of Foraging in a Group of Robots:
Effect of Interference. Autonomous Robots 13(2), 127–141 (2002)

9. Lerman, K., Martinoli, A., Galstyan, A.: A Review of Probabilistic Macroscopic
Models for Swarm Robotic Systems. In: Şahin, E., Spears, W.M. (eds.) SAB 2004.
LNCS, vol. 3342, pp. 143–152. Springer, Heidelberg (2005)

10. Liu, W., Winfield, A., Sa, J.: Modelling Swarm Robotic Systems: A Study in Col-
lective Foraging. In: Proc. Towards Autonomous Robotic Systems (TAROS), pp.
25–32 (2007)

11. Liu, W., Winfield, A., Sa, J., Chen, J., Dou, L.: Strategies for Energy Optimisation
in a Swarm of Foraging Robots. In: Şahin, E., Spears, W.M., Winfield, A.F.T. (eds.)
SAB 2006 Ws 2007. LNCS, vol. 4433, pp. 14–26. Springer, Heidelberg (2007)

12. Sahin, E., Winfield, A.F.T.: Special Issue on Swarm Robotics. Swarm Intelli-
gence 2(2-4), 69–72 (2008)

Inverse Modeling in Geoenvironmental
Engineering Using a Novel Particle Swarm

Optimization Algorithm

Tadikonda Venkata Bharat and Jitendra Sharma

Department of Civil and Geological Engineering
University of Saskatchewan, Saskatoon, Canada

tvbharat@gmail.com

Abstract. Algorithms derived by mimicking the nature are extremely
useful for solving many real world problems in different engineering dis-
ciplines. Particle swarm optimization (PSO) especially has been greatly
acknowledged for its simplicity and efficiency in obtaining good solutions
for complex problems. However, premature convergence of the standard
PSO and many of its variants is a downside particularly for its applica-
tion to the inverse problems. This aspect encourages further research in
developing efficient algorithms for such problems. In this work, a novel
PSO algorithm is proposed by introducing fitness of a new location in the
search space into the standard PSO which enables to enhance the suc-
cess rate of the algorithm. The proposed algorithm uses center of mass
of the population to compare the fitness of global best particle in each
iteration. The proposed algorithm is applied to solve contaminant trans-
port inverse problem. The performance of different PSO algorithms is
compared on synthetic test data and it is shown that the proposed algo-
rithm outperforms its counterparts. Further, accurate design parameters
are estimated using the proposed inverse model from the experimental
data.

Keywords: particle swarm optimization, inverse model, contaminant
transport.

1 Introduction

Chemical contaminants are the main sources of soil and groundwater pollution.
To minimize such contamination, various barrier systems are engineered. As a
result, the importance of contaminant transport studies through various barrier
materials is widely recognized for the design of landfills and verticle barrier sys-
tems. Design of these systems require an accurate estimation of the transport
parameters through these containment systems. These design parameters are
estimated from the laboratory diffusion tests. The parameters are predicted by
matching the theoretical concentration profile with the experimentally observed
data of temporal or spatial variation of the concentration. In Geoenvironmental
engineering, this is commonly done using visual calibration techniques such as

M. Dorigo et al. (Eds.): ANTS 2010, LNCS 6234, pp. 448–455, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Inverse Modeling in Geoenvironmental Engineering Using PSO 449

Pollute [11]. A few studies also used the gradient-based optimization techniques
for solving this inverse problem [1]. The shortcomings of using the above tech-
niques for contaminant transport problems have been well documented in [4].
Recently, the PSO algorithm has been used for solving the aforementioned in-
verse problem [4] and for reconstructing the past contaminant source history [3].
Although PSO based solvers predict good solutions, often times they converge
prematurely to local solutions. Especially for the application to contaminant
transport problems, this is a major set-back as this causes not only improper
estimation of design parameters but also wastage of a huge computation (each
fitness calculation involves an expensive time marching numerical computations).
With this incentive, in this paper a new variant of PSO is presented to improve
the efficiency and success rate of the solver for parameter estimation. The pro-
posed version of PSO uses a new location in every iteration inspired from the
Big-Bang Big-Crunch (BBBC) optimization concept [6]. The modified PSO al-
gorithm uses fitness of center of mass of the swarm population in addition to
fitness of individual. The detrimental position update formula of global best par-
ticle in the standard PSO can be alleviated using this additional information in
the search space as the center of mass of the population changes randomly in
each iteration. This improves the population diversity and enables the swarm to
escape from the local optima.

2 Contaminant Transport Problem

2.1 Mathematical Formulation

Consider an engineered barrier system with contaminant cells (landfill), liner
system and the leachate collection system. The concentration at any time instant
in the contaminant cells (at the upper boundary) can be represented as

c(x = 0, t) = c0 +
nD

Hs

∫ t

0

(
∂c

∂x

) ∣∣∣∣x = 0 dt (1)

where Hs is the equivalent height of source reservoir, calculated as the volume
of source solution divided by the cross-sectional area of the liner sample per-
pendicular to the direction of diffusion, D is the effective diffusion coefficient,
c is the concentration of the solute in pore fluid at time t, spatial location x,
n is the soil porosity and c0 is the initial contaminant concentration. Similarly,
the concentration at any time instant at the lower boundary (leachate collection
layer) can be represented as:

c(x = L, t) = −nD
Hc

∫ t

0

(
∂c

∂x

) ∣∣∣∣x = L
dt (2)

where Hc is the equivalent height of the collector reservoir. The one-dimensional
governing diffusion equation through liner can be expressed as

∂c

∂t
=
nD

α

∂2c

∂x2 (3)

450 T.V. Bharat and J. Sharma

where α is the capacity factor represents capacity of the liner material to sorb
the contaminant. The initial condition in general encountered is

c(0 < x < L, t = 0) = 0 (4)

c(x = 0, t = 0) = c0 (5)

c(x = L, t = 0) = 0 (6)

Solute concentration at any spatial location and time instant c(x, t) can be ob-
tained by solving the (2) through (6) simultaneously.

2.2 Numerical Solution

Crank-Nicolson (C-N) numerical solution is used for the quick estimation of
theoretical concentrations at any given time step. The discretization procedure
of the aforementioned problem using C-N scheme is presented elsewhere [4]. The
numerical solution of the forward model estimates, the theoretical contaminant
concentration when the design transport parameters are known. However, the
laboratory contaminants transport experiments and the field monitoring systems
in the landfills yield the spatial or temporal concentration of contaminants. The
design transport parameters thus need to be determined from these observations
by inverse analysis. In the inverse analysis, rmse (7) is used as an objective
function for finding the best set of parameters.

rmse =

√√√√ L∑
i=1

(cin,anal(ti) − cin,num(ti; De, α))2 + (cout,anal(ti) − cout,num(ti; De, α))2

2nL

(7)

where cin,anal and cout,anal are the contaminant concentrations data obtained
from analytical solution and cin,num and cout,num are the concentrations data
obtained by numerical model at given values of ti, i = 1, 2, . . . , N theoretical
time. The forward model (simple explicit numerical procedure) was integrated
with standard PSO for the estimation of design parameters earlier [4]. However,
the success rate of the solver is not striking due to premature convergence of the
standard PSO algorithm. The detailed description of PSO algorithm is presented
in the next section.

3 PSO Algorithms

3.1 PSO Description

PSO is a class of derivative-free, population-based computational method which
was developed based on the social behaviors of animals [9]. In this method each
agent representing a potential solution moves in the search space and adaptively
updates its velocity and position according to its own flying experience and the

Inverse Modeling in Geoenvironmental Engineering Using PSO 451

flying experience of its neighbors, aiming at a better position for itself. The posi-
tion of ith particle and jth dimension is represented as −→xij = (xi1, xi2, . . . , xiD) .
The best position of the ith particle in its history that gives the best fitness value
is represented as −→pij = (pi1, pi2, . . . , piD). The best particle among all the par-
ticles in the whole population and in the entire history is represented by −→pgj =
(pg1, pi2, . . . , pgD). At each iteration step, the position vector of the ith particle
xij is updated by adding an increment vector called velocity vij as shown below

−→xij = −→xij + −→vij (8)

The velocity of each individual is updated with the best positions acquired for all
individuals over generations, and the best positions acquired by the respective
individuals over generations. Updating is executed by the following formula.

−→vij = χ (ω−→vij + φ1rand1()(−→pij −−→xij) + φ2rand2()(−→pgj −−→xij)) . (9)

where χ is called constriction coefficient and ω is the inertia weight introduced
by Shi and Eberhart [12] in order to improve the performance of the particle
swarm optimizer. φ1 and φ2 are two positive values called acceleration constants.
rand1() and rand2() are two independent random numbers that uniformly dis-
tribute between 0 and 1 and are used to stochastically vary the relative pull of −→pij

and −→pgj . The positions of respective individuals are updated by every generation,
and are expressed by (8).

Shortcomings of Standard PSO Algorithm and Its Variants. A large
number of theoretical studies [5] have shown that often times PSO converges
prematurely. Many of the particles waste computational effort in seeking to move
in the same direction (towards the local optimum already discovered), whereas
better results may be obtained if various particles explore other possible search
directions [10]. A number of population diversity mechanisms thus have been
proposed to improve the performance. The perturbed PSO algorithms are more
thriving to overcome premature convergence and successfully applied to solve
inverse problems [3]. However, the performance of these algorithms is highly
dependent on the perturbation coefficient which varies from problem to problem
[2]. Thus finding an optimum value of perturbation coefficient for a given problem
will not be practical in many situations.

3.2 Big-Bang Big-Crunch Algorithm

The Big Bang-Big Crunch (BBBC) optimization method [6] is built on, Big-Bang
phase: where candidate solutions are randomly distributed over the search space
and the Big-Crunch phase: where a contraction procedure calculates a center
of mass for the population. A detailed description of BBBC algorithm is given
elsewhere [6]. The advantage with this algorithm is that, it uses an additional
point on the search space based on the center of mass of the population. However,
this algorithm lacks exploration capabilities because of a weak position update
formula. Thus, a hybrid algorithm was proposed which uses the personal best

452 T.V. Bharat and J. Sharma

and global best positions of the agents to update the positions of the agents
[8]. However, due to exclusion of velocity term in the hybrid BBBC (HBBBC)
algorithm, it does not tap the full advantage of original PSO algorithm offered.
Thus, a new algorithm is presented which considers the centre of mass concept
of BBBC algorithm and position formula of standard PSO algorithm.

3.3 Proposed Algorithm

The pseudo-code of the proposed PSO algorithm can be summarized as follows:

1: Initialize the population by randomly distributing the agents on the search space
2: Calculate fitness of all agents (7)
3: Update the position of each agent using (8) and (9)
4: The path [s, nk] is a feasible path and destination dn can be reached
5: Find the center of mass of the whole population using the following equation,

xk
j (c) =

N∑
i

1
fiti

xk
ij

N∑
i

1
fiti

j = 1, 2

where xk
ij is the jth component of the ith solution generated in kth generation and

N is the population size.
6: Compute the fitness of the center of mass point
7: Compare the fitness of global best agent and center of mass point. Update the

global best value using the greedy selection mechanism
8: Return to Step 3.

4 Inverse Analysis

The goal of the present inverse model is to estimate a combination of mass trans-
port parameters that minimizes rmse (7)) between the experimentally measured
and theoretically computed concentration data.

4.1 Parameter Setting

PSO algorithms, in the developed solvers, are based on a population of 25 par-
ticles randomly distributed in the solution space. The maximum number of gen-
erations is set to 200 in each run. The best set of PSO variables is found by
empirical studies and used. It is observed that φ1 = φ2 = 0.5 is found to give
good performance when χ = 0.6 and a linearly varying inertia weight ω from 0.9
to 0.4 from the beginning to end of the search.

Inverse Modeling in Geoenvironmental Engineering Using PSO 453

4.2 Performance Assessment of Different Solvers

To validate performance of different inverse models based on SPSO, HBBBC and
PPSO algorithms, a synthetically generated test data is used. The test data of
contaminant concentration is obtained by solving the forward problem with the
assumed set of design parameters D = 1.523 × 10−5 and α = 34. The test data
with and without random noise is given as input to the solvers for finding the
true design parameters. The performance of all the developed solvers on synthetic
data is tested using 10 independent runs. Table 4.2 presents best values, worst
values, tolerance and success ratio obtained for each solver. The results indicate
that HBBBC and PPSO models achieve better success rate when compared
with SPSO model. Though the performance of HBBBC and PPSO models is
the same on synthetic data without noise, the superiority of PPSO model is
exhibited when the noise is introduced to the data. Thus, it appears that the
performance of the PPSO model is not influenced by the noise in the data which
is expected in the experiments. Thus, this model is more reliable in estimating
the accurate design parameters.

The movements of the particles for HBBBC and PPSO inverse models are
analyzed. In case of HBBBC model, the particles have quickly converged (in 100
iterations) to near global optimum solution (D = 1.168 × 10−5 and α = 45.063
) with a success ratio of 0.5. However, the PPSO algorithm continues to search
till the maximum iterations of 200 and converged to global optimum solution
(D = 1.43 × 10−5 and α = 34.805) with a success ratio of 0.7. It is believed
that due to the additional point (center of mass), the poptlation diversity has
improved. Further, due to the velocity term, the particles do not change their
directions abruptly and thus the proposed method is superior to HBBBC. In
order to determine the statistical significance of differences in the mean best
values by the HBBC and PPSO models, t-test is performed on test data with

Table 1. Performance of different solvers on synthetic test data

Algorithm Data Type Tolerance Success Ratio Best Solution Worst Solution

SPSO

Synthetic 10% 0.60 1.4377 × 10−5 1.12 × 10−5

(without 36.76 42.84
Noise) (rmse=0.0038) (rmse=0.01255)

Synthetic 15% 0.30 1.33 × 10−5 1.223 × 10−5

(5% Noise) 37.2999 141.999
(rmse = 0.0145) (rmse = 0.0293)

HBBBC

Synthetic 10% 0.80 1.525 × 10−5 1.2293 × 10−5

(without 34.0 42.89.23
Noise) (rmse=2.31 × 10−8) (rmse=0.00891)

Synthetic 15% 0.50 1.363 × 10−5 8.38 × 10−5

(5% Noise) 37.39679 63.0482
(rmse = 0.0143) (rmse = 0.01253)

PPSO

Synthetic 10% 0.80 1.528 × 10−5 1.2293 × 10−5

(without 34.0 42.89.23
Noise) (rmse=1.28 × 10−8) (rmse=7.776 × 10−3)

Synthetic 15% 0.70 1.4919 × 10−5 1.1678 × 10−5

(5% Noise) 37.39679 63.0482
(rmse = 0.001366) (rmse = 0.00275)

454 T.V. Bharat and J. Sharma

noise. The t-score value is 2.31 and the result showed that the mean best point
found by PPSO is significantly better.

4.3 Application to the Experimental Data

Laboratory data of [7] for diffusion and sorption of chloroform in clayey soil is
used to estimate the design parameters from PPSO model. The details of soil
properties and through-diffusion cell parameters used in the model are given
elsewhere [4]. The best solution obtained is De = 11.509 × 10−5 cm2/sec and
α = 12.3507. The theoretical profile representing the temporal variation of solute
concentration in the source and collector reservoir is obtained for the model
parameters estimated by the PPSO model. This is plotted in Fig. 1 along with
the experimental data and the published data based on visual calibration (dotted
lines) [4].

Fig. 1. The theoretical concentration data for the optimized design parameters ob-
tained from the proposed solver for chloroform experimental data

5 Concluding Remarks

In this paper inverse model based on a new variant of pso algorithm is intro-
duced for the parameter estimation of contaminant transport through contami-
nant barrier system. The location of the center of mass of the population is used
in the PSO algorithm. The developed solver thus tested on synthetic data and
compared with the solvers based on SPSO and HBBBC. The proposed model
outperforms it’s counterparts on synthetic data. Further, the model was suc-
cessfully used to estimate the design parameters with good accuracy from the
experimental data. Further work on improving the inverse model to enhance the
success rate is in progress.

Inverse Modeling in Geoenvironmental Engineering Using PSO 455

References

1. Bell, L.S.J., Binning, P.J., Kuczera, G., Kau, P.M.H.: Rigorous uncertainty assess-
ment in contaminant transport inverse modelling: a case study of fluoride diffusion
through clay liners. Journal of Contaminant Hydrology 57, 1–20 (2002)

2. Bharat, T.V.: A novel particle swarm optimizer with individual-level decision mak-
ing abilities. Advances in Engineering Software (submitted)

3. Bharat, T.V., Sivapullaiah, P.V., Allam, M.M.: Swarm intelligence based inverse
model for characterization of groundwater contaminant source. Electronic Journal
of Geotechnical Engineering 14(B) (2009)

4. Bharat, T.V., Sivapullaiah, P.V., Allam, M.M.: Swarm intelligence-based solver for
parameter estimation of laboratory through-diffusion transport of contaminants.
Computers and Geotechnics 36, 984–992 (2009)

5. Clerc, M., Kennedy, J.: The particle swarm-explosion, stability, and convergence
in a multidimensional complex space. IEEE Trans. Evolutionary Computation 6,
58–73 (2002)

6. Erol, O.K., Eksin, I.: A new optimization method: Big bang-big crunch. Advances
in Engineering Software 37, 106–111 (2006)

7. Barone, F.S., Rowe, R.K., Quigley, R.M.: A laboratory estimation of diffusion and
adsorption coefficients for several volatile organics in a natural clayey soil. Journal
of Contaminant Hydrology 10, 225–250 (1992)

8. Kaveh, A., Talatahari, S.: Optimal design of schwedler and ribbed domes via hybrid
big bang - big crunch algorithm. Journal of Constructional Steel Research 66(3),
412–419 (2010)

9. Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: Proceedings, IEEE
International conference on neural networks, Perth, Australia, pp. 1942–1948
(1995)

10. Peram, T., Veeramachaneni, K., Mohan, C.K.: Fitness-distance-ratio based particle
swarm optimization. In: Proc. Swarm Intelligence Symp., pp. 174–181 (2003)

11. Rowe, R.K., Booker, J.R.: Pollute v.6.3.6 - 1-D pollutant migration through a non-
homogeneous soil.1983, 1990, 1994, 1997, 1998. Distributed by GAEA Environ-
mental Engineering Ltd. (1998)

12. Shi, Y., Eberhart, R.C.: A modified particle swarm optimizer. In: Proceedings of
IEEE International conference on evolutionary computation, Piscataway, NJ, USA,
pp. 69–73 (1998)

Mobile Stigmergic Markers for Navigation
in a Heterogeneous Robotic Swarm

Frederick Ducatelle, Gianni A. Di Caro,
Alexander Förster, and Luca Gambardella

Dalle Molle Institute for Artificial Intelligence Studies (IDSIA), Lugano, Switzerland
{frederick,gianni,alexander,luca}@idsia.ch

Abstract. We study self-organized navigation in a heterogeneous robotic
swarm consisting of two types of robots: small wheeled robots, called foot-
bots, and flying robots that can attach to the ceiling, called eye-bots. The
task of foot-bots is to navigate back and forth between a source and a tar-
get location. The eye-bots are placed in a chain on the ceiling, connecting
source and target using infrared communication. Their task is to guide
foot-bots, by giving local directional instructions. The problem we ad-
dress is how the positions of eye-bots and the directional instructions they
give can be adapted, so that they indicate a path that is efficient for foot-
bot navigation, also in the presence of obstacles. We propose an approach
of mutual adaptation between foot-bots and eye-bots. Our solution is in-
spired by pheromone based navigation of ants, as eye-bots serve as mobile
stigmergic markers for foot-bot navigation.

1 Introduction

We study how a heterogeneous robotic swarm composed of two sub-swarms can
self-organize to solve a task. We are interested in mutual adaptation between
sub-swarms: how can the sub-swarms adapt their behavior to each other, so
that the swarm as a whole can solve the task. We focus on a navigation task, in
which each sub-swarm plays a distinct role: the robots of one sub-swarm need
to go back and forth between a source and a target location, while the robots of
the other sub-swarm give guidance in this navigation task.

For the first sub-swarm we use wheeled robots, called foot-bots (Fig. 1(a)), and
for the second flying robots that attach to the ceiling, called eye-bots (Fig. 1(b)).
Both robots are under development in project Swarmanoid (http://www.
swarmanoid.org). Communication between both robot types can happens
through visual signalling, as they are equipped with cameras and with a multi-
color LED ring around their body, while foot-bots also have a LED beacon on
top. Besides this, they also exchange wireless messages locally (up to 3 m) at
low bandwidth using an infrared range and bearing (IrRB) system. This system
also provides relative position information.

We deploy the robots in an indoor environment. We start from a situation
like the one in Fig. 1(c), where foot-bots are placed in the source location,
and eye-bots are attached to the ceiling, forming a connected path between

M. Dorigo et al. (Eds.): ANTS 2010, LNCS 6234, pp. 456–463, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

http://www.
swarmanoid.org

Mobile Stigmergic Markers for Navigation in a Robotic Swarm 457

(a)

(b) (c)

Fig. 1. (a) Example scenario, (b) Foot-bot (CAD draw), and (c) Eye-bot (prototype)

source and target (they can reach this formation using an algorithm like the one
of [9]). In this initial setup, eye-bots use infrared communication among them to
derive the shortest path between the two locations. They locally give directional
instructions to foot-bots passing below, so that these can follow this path. The
main problem is the presence of obstacles. If the environment contains obstacles
(e.g., cupboards or sofas), the connected path formed by communicating eye-bots
near the ceiling may pass over them. Such a path is difficult or impossible to
follow for foot-bots. We investigate how eye-bots can adapt their positions and
the directions they give to improve the navigability of the path they indicate.

We propose a distributed solution based on local adaptation between foot-
bots and eye-bots. Foot-bots move from eye-bot to eye-bot following directional
instructions received from the eye-bots they pass. Eye-bots, in turn, adapt their
position and their directional instructions based on the observation of foot-bots:
they move to locations where they see a lot of foot-bots, and adapt their instruc-
tions based on the directions where they see foot-bots come from. The former
attracts them to areas that are navigable for foot-bots. The latter makes them
indicate directions often followed by foot-bots. This way, eye-bots serve as mo-
bile stigmergic markers for foot-bot navigation. In this sense, their role is similar
to that of pheromone in ant-based navigation behavior.

2 Related Work

Swarm robotics research has mainly focused on homogeneous systems. Heteroge-
neous swarms have been considered only marginally, for applications like flock-
ing [5], task allocation [6], and recruitment [8]. We know of no work where swarms
of different robot types mutually adapt and jointly self-organize to solve a task.

In terms of the task, our work is related to research on self-organized path
finding between a source and a target based on the pheromone guided forag-
ing of ants in nature [4,10,11]. Various strategies have been used to implement

458 F. Ducatelle et al.

pheromone for the robots in the system, including light projections [10] and al-
cohol trails [4]. However, none of the existing work uses one swarm of robots
to function as pheromone for another swarm, in the form of mobile stigmergic
markers. From an application point of view, we point out the relation with work
on sensor network guided robot navigation [1,7]. None of this work considers on-
line adaptation of sensor node positions to improve navigation. Moreover, they
use communication links between nodes to find navigable paths for the robot:
they do not deal with the situation where obstacles block the way for the robot
but not for communication, which is central for us.

3 Self-organized Path Finding

3.1 General Description

We start from a situation as shown in Fig. 1(c). In the beginning, eye-bots
use network communication to derive the shortest route through the eye-bot
network to the source and target. Using the relative position information given
by the IrRB system, each eye-bot i derives from this routing information the
directions θs

i towards the source and θt
i towards the target. These directions are

broadcast locally. Foot-bots follow them, moving from eye-bot to eye-bot. When
they encounter an obstacle, they perform obstacle circumnavigation. They use
light signals to give information to eye-bots: to show where they are, which
direction they come from, and whether they are going towards target or source.

Eye-bot actions consist in moving their position and changing their directions
θs

i and θt
i (overriding the directions obtained from IrRB communication). Eye-

bots move in the direction of areas where they observe foot-bots. This way, they
are attracted to areas that are navigable for foot-bots and to paths that are often
used by foot-bots. They also move away from nearby eye-bots, which makes them
spread out and avoid collisions. Finally, they make reparatory moves when they
loose network connectivity with source or target, which ensures that foot-bots
can move between source and target while always staying within range of an
eye-bot. Eye-bots adapt their directions θs

i and θt
i based on the direction where

foot-bots going to respectively the target and the source are coming from: they
assume that the direction where most foot-bots going to the target come from is
a good indication of the direction to the source (and vice versa). Through their
adaptations to foot-bot behavior, eye-bots serve as mobile stigmergic markers for
foot-bot navigation, playing a role similar to that of pheromone in ant foraging.

3.2 Giving and Following Directional Instructions

Each eye-bot i switches on a red LED in front and a blue LED in the back, in
order to show a reference direction θ0i . At regular intervals, i broadcasts θs

i and
θt

i using the IrRB system. To get directions, a foot-bot j moves under i. It uses
its camera to define θ0i , and reads direction θs

i or θt
i from the received wireless

message. j interprets θs
i or θt

i relative to θ0i , and derives a travel direction θn
j .

Mobile Stigmergic Markers for Navigation in a Robotic Swarm 459

After obtaining a new direction θn
j , j turns into that direction, and moves

forward for a default distance, or until it arrives under a different eye-bot. If no
other eye-bot was reached, j uses its upward camera to define the direction to
the closest eye-bot, and moves there. If no eye-bot is seen, j starts a random
movement. If j meets an obstacle while following θn

j it executes an obstacle
circumnavigation behavior: it moves parallel to the obstacle, for as long as it
observes the direction it wanted to go in as blocked. j uses light signals to give
feedback to eye-bots. It switches on its LED beacon on top and one LED in
front, to show its location and the direction it is coming from, θf

j . The color of
the front LED indicates whether j is going to the source or the target.

3.3 Updating Eye-Bot Positions

Each eye-bot i adapts its position in three ways. The first is towards foot-bots.
The second is away from other eye-bots. The third is in the direction of lost
communication neighbors. The eye-bots indicating source and target never move.

When an eye-bot i observes a foot-bot j, it calculates the relative distance rij
and angle αij to j in i’s horizontal plane. We indicate by uij = (cos(αij), sin(αij))
the unit vector in the direction of j with respect to i’s frame of reference. Using
uij and rij , eye-bot i updates a two-dimensional vector pi, which it uses to direct
its movements. After observing j, pi is updated:

pi =

{
pi + (1 − rij)uij if rij < rf ,

pi + (1 − rf)uij otherwise.
(1)

In this equation, rf ∈ [0, 1] is a distance threshold, which produces smaller
updates for faraway foot-bots. Updating pi for each foot-bot observation, eye-
bot i calculates over time an aggregate of the directions in which it sees foot-bots.
If foot-bots are observed more in one direction than in others, pi grows in that
direction. Once the magnitude of pi reaches a threshold value cp, |pi| > cp, i
makes a small move in the direction of pi. Then, pi is re-initialized to (0, 0).

When i observes another eye-bot k nearby, it uses the IrRB system to derive
the distance rik and angle αik to k. uik = (cos(αik), sin(αik)) is i’s unit vector
in the direction of k. In this case, the same movement vector pi is updated:

pi + e(rik)uik, (2)

where e(rik) is a staircase function that scales uik according to how far eye-bot
k is: the closer k, the larger the scaling. This update makes pi grow when two
eye-bots get too close, so that they spread out and avoid collisions.

Finally, eye-bots also move to repair lost network connectivity (to retain a
connected path between source and target). Network connectivity is established
by running a routing algorithm in the eye-bot network (we use Bellman-Ford
routing [2]). Using the relative position information returned by the IrRB com-
munication system, the system derives the direction to the next hop on each
path. When routing fails to indicate a next hop, connectivity is assumed to be
lost. Then, eye-bots make a move towards the last known hop on the lost path.

460 F. Ducatelle et al.

 35

 40

 45

 50

 55

 60

 65

 70

 75

 80

 85

1 5 10 15 20

A
ve

ra
ge

 tr
av

el
 ti

m
e

(s
)

Number of foot-bots

Dynamic, detour
Static, detour

Static, best
Dynamic, steady state

(a) (b)

Fig. 2. Open space experiments: (a) start positions, (b) average travel time vs. number
of foot-bots. Error bars show one standard deviation.

3.4 Updating Eye-Bot Directions

Initial values for θs
i and θt

i are based on the directions to next hops indicated by
Bellman-Ford routing. Once an eye-bot starts observing foot-bots, it updates θs

i

and θt
i based on the directions where observed foot-bots come from.

Internally, eye-bot i represents the direction θs
i with a two-dimensional vector

vs
i , which points in the direction of θs

i and initially has size 1. At discrete time
intervals, i defines the set V t

i of foot-bots that are in view of its camera and that
are going towards the target (i.e., coming from the source). For each foot-bot
j ∈ V t

i , it observes the direction it is coming from, θf
j , based on j’s LED signals.

It calculates uf
j = (cos(df

j), sin(df
j)), the unit vector in direction θf

j . Then, if
|V t

i | > 0, it updates vs
i as in Eq. 3, and assigns the direction of vs

i to θs
i .

vs
i = avs

i + (1 − a)
∑
j∈V t

i

uf
j , where a ∈]0, 1[. (3)

4 Experimental Results

We investigate the behavior of the system through simulation tests using the
Swarmanoid simulator (see http://www.swarmanoid.org). All experiments last
3000 seconds. We carry out 30 independent runs for each setup.

4.1 Tests in an Uncluttered Environment: Shortest Path Behavior

We first investigate uncluttered environments. We use the setup of Fig. 2(a): eye-
bots start from a formation that makes a detour around the arena. Light and dark
arrows above eye-bots show the directions they indicate towards respectively
target and source. Results are shown in Fig. 2(b). We vary the number of foot-
bots, and report the average time needed for a foot-bot to travel between source

http://www.swarmanoid.org

Mobile Stigmergic Markers for Navigation in a Robotic Swarm 461

 0

 50

 100

 150

 200

 250

 300

1 5 10 15 20 25

A
ve

ra
ge

 tr
av

el
 ti

m
e

(s
)

Number of foot-bots

Dynamic
Static, best

Static

(a) (b)

Fig. 3. Cluttered environment experiments: (a) a snapshot after 280s, (b) average travel
time vs. number of foot-bots. Error bars show one standard deviation.

and target. We measured this time for the first 1000 s of simulation (“Dynamic,
detour”), and between 2000 s and 3000 s, when eye-bots have had time to adapt
their position (“Dynamic, steady state”). We compare to tests where eye-bots
do not adapt their position or direction: tests where they remain static in the
positions of Fig. 2(a) (“Static detour”), and tests where they are in a straight line
between source and target (“Static best”). Results show that with our algorithm,
foot-bot performance is close to that obtained over the straight path. In all cases,
performance decreases with the number of foot-bots, due to congestion.

The results of Fig. 2(b) are explained by the fact that in open spaces, our
algorithm lets eye-bots move to form straight paths. This is because eye-bots
tend to line up with neighbors that send foot-bots to it. An eye-bot that is
not lined up with its neighbors observes foot-bots more in one direction than
another, and moves in that direction. E.g., for the eye-bot in the top left in
Fig. 2(a), foot-bots enter its view on the right (coming from the source) or
at the bottom (coming from the target). The eye-bot observes more foot-bots
towards its bottom-right than towards its top-left. Its movement vector pi grows
towards the bottom-right, and eventually the eye-bot moves in that direction.

4.2 Experiments in a Cluttered Environment

We use the setup of Fig. 1(c). In the beginning, eye-bots indicate a straight
path between source and target. Foot-bots follow this path and use obstacle
circumnavigation (i.e, follow obstacle perimeters) when their way is blocked. Eye-
bots move to locations where they observe foot-bots, so they tend to take place
along obstacle edges. The directions indicated by eye-bots are adapted to the
main movement directions of foot-bots, so they do not point towards obstacles.
In the free space between obstacles, eye-bots form straight lines. Ultimately, a
path of line segments connecting obstacle corners emerges. This is observed in
Fig. 3(a) (the line segment above each foot-bot shows its movement direction).

We studied the effect of varying the number of foot-bots and measured the
average time needed to travel between source and destination. In Fig. 3(b), we

462 F. Ducatelle et al.

 0

 100

 200

 300

 400

 500

 600

 700

1 5 10 15 20

A
ve

ra
ge

 tr
av

el
 ti

m
e

(s
)

Number of foot-bots

Dynamic
Static

Static, best

(a) (b)

 40

 60

 80

 100

 120

 140

 160

 180

 0 1 2 3 4 5 6 7 8 9 10

A
ve

ra
ge

 tr
av

el
 ti

m
e

(s
)

Number of blocks

Dynamic
Static

(c) (d)

Fig. 4. Three walls experiments: (a) initial setup, (b) travel time vs. number of foot-
bots. Random obstacles: (c) 10 block example, (d) travel time vs. number of blocks.

show results for tests where eye-bots use our adaptive behavior (“Dynamic”),
remain static in the positions of Fig. 1(c) (“Static”), and remain static in a
pre-defined path efficient for foot-bots (“Static, best”). The plots show that the
dynamic approach significantly improves foot-bot navigation efficiency compared
to the initial placement, and obtains results close to those of the efficient path.

4.3 Experiments in More Complex Environments

We investigate more complex environments. A first one (Fig. 4(a)), has three
large obstacles, difficult to pass for foot-bots due to their size and orientation.
The results in Fig. 4(b) show that the performance of static eye-bots is a lot
worse than in the tests of Sect. 4.2, confirming that this scenario is more difficult.
Nevertheless, the dynamic approach gets a performance close to that of a pre-
defined efficient path. Next, we place obstacles randomly. These obstacles are
blocks of 1×1m2. We use 0 up to 10 blocks. Figure 4(c) shows a 10 block example.
Results for our approach and for static eye-bots in a straight path are shown in
Fig. 4(d). As the number of obstacles grows, the dynamic approach becomes more
advantageous. Standard deviations are not shown, because differences between
random scenarios lead to large variability (paired t-tests show that the dynamic
approach is better in each data point, with p-values in the order of 10−6).

Mobile Stigmergic Markers for Navigation in a Robotic Swarm 463

5 Conclusions and Future Work

We have investigated a self-organized behavior of a heterogeneous robotic swarm
involving mutual adaptations between the robots of two sub-swarms. We fo-
cused on a cooperative navigation task, and described a solution inspired by
pheromone-based navigation of ants, whereby the robots of one sub-swarm served
as mobile stigmergic markers for the other sub-swarm. In a number of experi-
ments, we have investigated the performance of our system and have shown it
can find efficient paths in a wide range of different scenarios. One of the main
limitations of the system is that the initial directions obtained from IrRB com-
munication put a constraint on the system’s performance. If the initial path leads
foot-bots to a location they cannot escape from using obstacle circumnavigation
(e.g., a complex concave obstacle), the system might not find a way out. One
solution is to let eye-bots explore different directions, and learn the best ones.
In related work, we have investigated this for static eye-bots [3]. In future work
we will consider this solution in combination with the mobility of the eye-bots.
Acknowledgments. This work was supported by the SWARMANOID project,
funded by the Future and Emerging Technologies programme (IST-FET) of the
European Commission under grant IST-022888. The information provided is the
sole responsibility of the authors and does not reflect the Commission’s opinion.
The Commission is not responsible for any use made of data appearing in this
publication.

References

1. Batalin, M., Sukhatme, G., Hattig, M.: Mobile robot navigation using a sensor
network. In: Proc. of the IEEE Int. Conf. on Robotics and Automation (2004)

2. Bertsekas, D., Gallager, R.: Data Networks. Prentice Hall, Englewood Cliffs (1992)
3. Ducatelle, F., Di Caro, G., Gambardella, L.: Cooperative stigmergic navigation in

a heterogeneous robotic swarm. In: Proceedings of SAB (2010)
4. Fujisawa, R., Dobata, S., Kubota, D., Imamura, H., Matsuno, F.: Dependency by

concentration of pheromone trail for multiple robots. In: Dorigo, M., Birattari,
M., Blum, C., Clerc, M., Stützle, T., Winfield, A.F.T. (eds.) ANTS 2008. LNCS,
vol. 5217, pp. 283–290. Springer, Heidelberg (2008)

5. Momen, S., Amavasai, B., Siddique, N.: Mixed species flocking for heterogeneous
robotic swarms. In: Proceedings of IEEE Eurocon (2007)

6. Momen, S., Sharkey, A.: An ant-like task allocation model for a swarm of hetero-
geneous robots. In: Proceedings of SIAAS (2009)

7. O’Hara, K., Balch, T.: Pervasive sensor-less networks for cooperative multi-robot
tasks. In: Proceedings of DARS (2004)

8. Pinciroli, C., O’Grady, R., Christensen, A., Dorigo, M.: Self-organised recruitment
in a heterogeneous swarm. In: Proceedings of ICAR (2009)

9. Stirling, T., Wischmann, S., Floreano, D.: Energy-efficient indoor search by swarms
of simulated flying robots without global information. In: Swarm Intelligence (2010)

10. Sugawara, K., Kazama, T., Watanabe, T.: Foraging behavior of interacting robots
with virtual pheromone. In: Proceedings of IROS (2004)

11. Vaughan, R., Støy, K., Sukhatme, G., Mataric, M.: Whistling in the dark: Co-
operative trail following in uncertain localization space. In: Proc. of Autonomous
Agents (2000)

Motif Finding Using Ant Colony Optimization

Salim Bouamama1, Abdellah Boukerram2, and Amer F. Al-Badarneh3

1 Department of Computer Science, University of M’sila, Algeria
bouamamas@gmail.com

2 Department of Computer Science, University of Sétif, Algeria
boukerram@hotmail.com

3 Jordan University of Science and Technology, Irbid, Jordan
amerb@just.edu.jo

Abstract. A challenging problem in molecular biology is the identifica-
tion of the specific binding sites of transcription factors in the promoter
regions of genes referred to as motifs. This paper presents an Ant Colony
Optimization approach that can be used to provide the motif finding
problem with promising solutions. The proposed approach incorporates
a modified form of the Gibbs sampling technique as a local heuristic op-
timization search step. Further, it searches both in the space of starting
positions as well as in the space of motif patterns so that it has more
chances to discover potential motifs. The approach has been implemented
and tested on some datasets including the Escherichia coli CRP protein
dataset. Its performance was compared with other recent proposed algo-
rithms for finding motifs such as MEME, MotifSampler, BioProspector,
and in particular Genetic Algorithms. Experimental results show that
our approach could achieve comparable or better performance in terms
of motif accuracy within a reasonable computational time.

Keywords: Bioinformatics, Ant Colony Optimization, Motif Finding,
Metaheuristics

1 Introduction

Finding the location of the common motif, shared by a set of DNA sequences, in
each sequence has became a fundamental problem in bioinformatics with impor-
tant applications in locating regulatory sites and drug target identification [14].
The motif finding problem has been formally considered as a difficult pattern
recognition problem. Most developed motif finding algorithms use either approx-
imate or heuristic techniques to obtain near optimal solutions at relatively low
computational cost. Some of them carry out the search in the space of possi-
ble starting positions, whereas others search in the space of all possible motifs
based on a given model. Recent researches covering most of the relevant tech-
niques and approaches for motif finding, as well as several of the benchmarks
algorithms included in this work can be found in [3,19].

Moreover, bio-inspired algorithms and other metaheuristics have been also
proposed. Examples of these algorithms include genetic algorithms [12,2,8], ge-
netic programming [15], and simulated annealing [9]. Although these methods

M. Dorigo et al. (Eds.): ANTS 2010, LNCS 6234, pp. 464–471, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Motif Finding Using Ant Colony Optimization 465

have been shown to generate acceptable results in terms of the quality of the solu-
tions found, the motif finding problem is still unsolved. One solution technique to
respond to this challenge is a swarm-based approach, a natural metaphor, called
Ant Colony Optimization (ACO) [5,4,17]. ACO is a population-based stochastic
search method inspired by the foraging behavior of ant colonies. This meta-
heuristic has been used successfully for computing the best-known solutions for
a wide range of combinatorial optimization problems (See [5] for more details).
In [11], an ACO algorithm was developed to find a set of better initial positions
for the Gibbs sampler (GS) [10] in order to improve its efficiently in term of time
computing time and score. However, it does not incorporate any form of heuris-
tic information. Moreover, a specific ant colony system was used for predicting
the MHC class II binders [7].

In this study, we present a new motif finding approach based on ant colony
optimization called MFACO that combines MAX -MIN Ant System [17], one
of the best performing variants of ACO metaheuristic, with a modified form of
the original GS playing the role of a local heuristic optimization step since most
ACO algorithms developed in literature incorporate a particular local optimizer
to improve the produced solutions. Unlike some other motif finding techniques,
MFACO searches both in the space of starting positions as well as in the space
of motif patterns. Due to this feature, it has more chances to find potential
motif patterns. Although our approach is also valid for protein sequences, we
apply it only to DNA sequences. The rest of the paper is organized as follows. In
Section 2, the motif finding problem is formally introduced. Section 3 presents the
main contribution of this paper. Section 4 describes the conducted experiments.
Finally, concluding remarks given in Section 5.

2 The Motif Finding Problem

A formal description of this problem can be viewed as follows. Given a set of
DNA sequences S = S1, S2, ..., SN of common length W 1. Find the promising
motif pattern X = x1x2...xi...xl of length l, xi ∈ {A, T,C,G} and the starting
locations of its occurrences on all sequences in S. The selection of a particular
motif pattern is based on a defined score function that measure the similarity
between the motif pattern and its occurrences. There are several methods for
scoring a motif pattern. Our proposed approach uses consensus score [6] and
information content [2,16] as score functions. To illustrate how to compute these
score functions, consider a candidate motif pattern that can be generated by
choosing a random position from each sequence. Then, the patterns starting at
these positions are aligned to form an N × l alignment matrix.

Therefore, the candidate motif pattern can be represented by a count-based
profile C where C(i, j) is the count of nucleotide i on the column j of the
alignment matrix and its corresponding consensus score (CSc) is defined as:

1 Just for the purpose of simplicity the set of sequences tested in our algorithm are
with the same length.

466 S. Bouamama, A. Boukerram, and A.F. Al-Badarneh

CSc =
l∑

j=1

(max
i∈{A,T,C,G}

(C(i, j)) (1)

The information content (IC) score function can be easily computed as follows:

IC =
l∑

j=1

∑
i∈{A,T,C,G}

Q(i, j) · log2
Q(i, j)
B0(i)

(2)

Where each element Q(i, j) indicates the frequency of the nucleotide i to be in
position j of the motif pattern and B0(i) denotes its background frequency, i.e.
the observed frequency of nucleotide i overall all sequences in the dataset.

3 The Proposed Approach (MFACO)

Our approach has the same general framework of an ACO algorithm. See [5] for
more details. In the next subsections, we detail each of the MFACO components.

3.1 Initialization

Choosing the appropriate graph representation for the problem to be solved is
of central importance to graph-based ACO metaheuristic. In our case, we use
a weighted directed graph G(V,E) with V being the set of nodes and E being
the set of edges. If the motif’s length is l then there are 4× l nodes arranged in
a grid of four rows and l columns. Each node in position (i, j), simply denoted
by node(i, j), is associated to nucleotide i to be in the jth position of the motif.
In addition, an edge ei(u, v) always exists between two nodes node(u, j) and
node(v, j + 1) where u, v ∈ {A, T,C,G} and (1 ≤ j ≤ l − 1).

In MFACO, two types of pheromone trails are modeled. First, a pheromone
trail τ1

i , i ∈ {A, T,C,G}, is associated with each node(i, 1). The value τ1
i encodes

the desirability of nucleotide i being at the first motif’s position. Second, a
pheromone trail τ j

uv, u, v ∈ {A, T,C,G}, is associated with each edge ej(u, v).
The value τ j

uv corresponds to the desirability of nucleotides u and v being at
motif’s position j and j + 1 respectively. Initially, the pheromone values are all
set to a constant value.

3.2 Solution Construction

MFACO consists of a number of iterations of solution construction. Each ant
incrementally builds its solution by traversing the graph to complete a tour
representing one candidate motif pattern. The probability P 1

i (t) of an ant selects
node(i, 1) as the first solution component, at iteration t, can be expressed as:

P 1
i (t) =

[
τ1
i (t)
]α [

η0
i

]β∑
u∈{A,T,C,G}

[τ1
u(t)]α [η0

u]β
(3)

Motif Finding Using Ant Colony Optimization 467

where η0
i is the heuristic information of node(i, 1) representing the frequency

of nucleotide i in the dataset, that is, η0
i = B0(i). Besides, an ant located at

node(u, j) chooses to go to node(v, j + 1) with a probability defined as:

P j
uv(t) =

[
τ j
uv(t)

]α [
ηn

v,j

]β∑
r∈{A,T,G,C}

[
τ j
ur(t)

]α [
ηn

r,j

]β (4)

where ηn
v,j is the heuristic information of edge ej(u, v) which is computed based

on the higher-order background model introduced in [18]. Using a background
model of order n means that, in addition to pheromone information, the ant’s
decision to add solution component (nucleotide) i in position j of the pattern
motif depends on the n previous visited nucleotides during the solution con-
struction. Doing so, the nth background model Bn is based on counting the
frequency of all nucleotide subsequences of length (n + 1) in the dataset. Let
x1x2 . . .xj−1xj be the partial motif pattern constructed by an ant and being at
node(u, v), i.e. xj = u. If j < n then ηn

v,j = P (xj+1 = v|xj−n+1 . . .xj−1xj), oth-
erwise ηn

v,j = B0(v). After each ant builds its solution and before the pheromone
update, the generated solution is improved by applying the GS technique that
plays the role of a local heuristic optimization step. It differs from the original
model in the following two aspects: (i) the sequence to be excluded from the
DNA sample is chosen in a round robin manner but not randomly; (ii) the new
starting position with the highest score is selected instead to be randomly chosen
with probability proportional to its calculated score. By these two modifications,
the stochastic behavior of GS is greatly reduced and it is to the ACO that the
task is shifted and preserved.

3.3 Pheromone Update

The values of pheromone trail τ1
i , at each iteration t, are updated according to:

τ1
i (t+ 1) = (1 − ρ) · τ1

i (t) +Δτ1,best
i (5)

where ρ (0 < ρ < 1) is the pheromone evaporation rate and Δτ1,best
i is the

amount of pheromone trail deposited on node(i, 1) given by

Δτ1,best
i = Q(i, 1) · CScbest/(N · l) (6)

where N is the number of sequences in the dataset and CScbest is the consensus
score of the best solution found either in the current iteration or so far by the
algorithm which is the case of MFACO. The pheromone trail τ j

uv on each edge
ej(u, v) is updated according to the following updating rule:

τ j
uv(t+ 1) = (1 − ρ) · τ j

uv(t) +Δτ j,best
uv (7)

where
Δτ j,best

uv = Qbest(u, j) ·Qbest(v, j + 1) · CScbest/(N · l) (8)
Similar to MAX -MIN Ant System [17], MFACO also limits the pheromone
values into an interval [τmin, τmax] with τmax = CScbest/((1 − ρ) · N · l) and
τmin = 0.

468 S. Bouamama, A. Boukerram, and A.F. Al-Badarneh

4 Computational Experiments

MFACO was implemented in Matlab R© version 6.5. It stops either when it reaches
a predetermined maximum number of iterations or when stagnation state [4]
occurs, that is, all ants keep generating the same motif pattern. Our experimental
results were obtained on a PC with Pentium R©IV (2.4 GHz) and 256 MB of
memory. The performance of the proposed algorithm is tested on the following
biological samples. Firstly, a collection of three datasets, that have been used as
benchmark data in [12] with 6, 9, 18 sequences respectively. Each sequence has
an equal length of 3001 nucleotides. Secondly, we have also used the sample of
experimentally confirmed E. coli CRP binding sites [16]. This dataset consists
of 18 sequences. Each sequence has a length of 105 nucleotides and contains at
least one CRP-binding site. The conserved motif was located in 23 binding sites
using the DNA Footprinting method (FP), with a motif length of 22.

The results generated by MFACO were compared with those obtained using
some recent algorithms previously described for finding potential motifs. The
algorithms include MotifSampler (MS) [18], BioProspector (BP) [13], MEME
[1], and Genetic Algorithms (GAs). We are mainly interested in GA-based ap-
proaches, such as FMGA [12] and MDGA [2], since our approach is also a pop-
ulation based approach that uses stochastic choices to guide its search. FMGA
searches in the space of motif patterns and uses consensus score as a similarity
measure, while MDGA was implemented using information content score func-
tion and searches in the space of starting positions.

First collection of datasets. For comparison reasons we use the same way
of presenting the results as in [12] and the effectiveness of such approach is mea-
sured with respect to the consensus score. The computational results for MEME,
MS, and BP are obtained by sending the three datasets to each approach’s web-
site to return the three best-found motifs. The motif length is set to l = 7 and
l = 13. After some preliminary experiments, we found that it is suitable to ini-
tialize MFACO using the following parameter settings: itmax = 50, n = 6, m = 8,
α = 2, β = 1, ρ = 0.15 and all pheromone trail values are initially set to one. Ta-
ble 1 through Table 6 list the best motif patterns discovered by the investigated
approaches in each dataset. In each table, the first column gives the names of
the approaches including ours. The second and third columns indicate the con-
sensus sequence and the consensus score(CSc) of the found motif respectively.
The column s = 0, s = 1, and s = 2 denotes the total number of sequences in
the dataset that completely match the corresponding motif (i.e., exact matching
without any mismatch), at most one mismatch, and at most two mismatches re-
spectively. Table 1 shows that all approaches were able to report one completely
matched motif (CSc = 42) of length l = 7. MS, MEME, and FMGA return only
two completely matched motifs from the three top ranked patterns. The three
best motif patterns found by BP represent the same completed matched motifs.
Otherwise, MFACO achieves better results than the other approaches since it
can find 18 completely matched motifs from the beginning. The use of a hash
matrix by MFACO facilitates the task of finding motifs that match all sequences

Motif Finding Using Ant Colony Optimization 469

especially when n is set to 6. From the rest of the tables we can see also that
the motif patterns with the highest accuracy are generally found by MFACO
while the others fail to discover them. We should also mention that MFACO can
find different potential motif patterns having the same consensus score as well
as those with multiple occurrences in a single sequence. Besides, it is clear that
the serial implementation of our approach takes more time but not at the cost
of an exhaustive search which has to scan the set of all 4l patterns for a motif
of length l. During our experiments, at most three runs for MFACO seems to
be sufficient to predict better motifs in most cases within an acceptable compu-
tational time. The average running time was about 15 seconds, 60 seconds, 30
seconds, 75 seconds, 95 seconds, and 200 seconds for the following tests (Dataset
1, l = 7), (Dataset 1, l = 13), (Dataset 2, l = 7), (Dataset 2, l = 13), (Dataset
3, l = 7), and (Dataset 3, l = 13) respectively.

E. Coli CRP Binding Sites. This dataset was used to test the performance
of MFACO compared to MDGA [2]. For doing so, we adjusted MFACO to work
with the information content score rather than the consensus score, which is
calculated according to Eq. (2). Each zero element of the frequency-based pro-
file Q(i, j) is set to (0.25/23) and B0(i) = 0.25 for each nucleotide i following
the same setting done in [16]. Table 7 summarizes the starting positions of mo-
tifs discovered in the CRP dataset using FP, GS, BP, and MDGA respectively.
A single sequence may contain two occurrences for the same motif. Additional
column ER follows each method shows the deviation of the predicted starting
positions from the exact starting positions. From the presented results shown in
Table 7, it is clear that all the three approaches (GS, BP, and MDGA) failed
to predict the exact starting positions identified by Footprinting. However, Ta-
ble 8 illustrates that MFACO is capable of finding the exact binding sites (i.e.,
BS3) and new binding sites BS1, BS2, and BS4 representing the same referenced
motif.

5 Conclusions

The motif finding problem is one of the challenging problems in molecular bi-
ology. The goal of this study was to investigate and adapt ACO for identify-
ing potential motifs in gene promoter regions. The proposed approach, called
MFACO, use a modified version of the Gibbs sampler playing the role of local
optimizer. Experimental results have shown that MFACO is able to generate
better potential motif patterns in term of prediction accuracy than other meth-
ods such as GAs, MEME, MS, and BP within a reasonable computation time.
Moreover, the proposed algorithm differs from other motif finding techniques by
searching both in the space of starting positions and in the space of motif pat-
terns. This combination significantly provides more chance to explore the search
space. MFACO commonly maintains its diversity until a near optimal solution
will be found and can be easily adapted to work with different score functions
such as consensus score and information content.

470 S. Bouamama, A. Boukerram, and A.F. Al-Badarneh

Table 1. Dataset 1, l = 7

Method Consensus CSc s = 1 s = 0
MFACO AAAAAAA 42 6/6 6/6

AGGAGGA 42 6/6 6/6
AAAAAAG 42 6/6 6/6
TAAAAAT 42 6/6 6/6

MS GCGGGCG 42 6/6 6/6
CGCCGCC 42 6/6 6/6
GGGGCGG 41 6/6 5/6

BP GCCGCCG 42 6/6 6/6
MEME AAAAAAA 42 6/6 6/6

TAAAAAT 42 6/6 6/6
AAATAAA 41 6/6 5/6

FMGA AAAAAAA 42 6/6 6/6
AGGAGGA 42 6/6 6/6

Table 2. Dataset 1, l = 13

Method Consensus CSc s=2 s=1
MFACO AAAAAAAAAAAGA 76 6/6 6/6

AAAAAAAAAAAAG 75 6/6 5/6
AAAAAAAAAAAGT 75 6/6 6/6
AAAAAGAAAAAGA 75 6/6 5/6

MS CGCCGCCGCCGCC 72 6/6 4/6
CCGCCGCCGCCGC 71 6/6 3/6
CGGCGGGCGGGGG 70 6/6 4/6

BP GCCGCCGCCGCCG 72 6/6 4/6
MEME AAAAAAAAAAAGA 76 6/6 6/6

GAGGCTGAGGCAG 71 5/6 4/6
AAAAAAAAAAAGA 76 6/6 6/6

FMGA AAAAAAAAAAAAA 73 6/6 4/6

Table 3. Dataset 2, l = 7

Method Consensus CSc s = 1 s = 0
MFACO CCCTCCT 63 9/9 9/9

CCCTCAG 62 9/9 8/9
GGGTTGG 62 9/9 8/9
GAGCAGG 62 9/9 8/9

MS CCCGGGC 61 9/9 7/9
CCGCGCC 60 9/9 6/9
CGGGCGC 59 9/9 5/9

BP GAGACGG 59 9/9 5/9
AGTAACT 58 9/9 4/9

MEME AAAAAAA 60 9/9 6/9
AGGAAGA 59 9/9 5/9
TTTTTTT 58 9/9 4/9

FMGA CCCTCCT 63 9/9 9/9
GGGCTGG 62 9/9 8/9

Table 4. Dataset 2, l = 13

Method Consensus CSc s=2 s=1
MFACO GCCGGCGGGCGCC 102 8/9 4/9

GCGGGCGGGCGCC 101 9/9 2/9
GCCGGCGGGCGGC 100 7/9 3/9
GCCGGAGGGCGCC 100 8/9 2/9

MS GGCCCCCGGGCGG 101 7/9 3/9
CCCCGCCCCCGGC 100 8/9 2/9
GGGGGCGCCGGGG 99 7/9 4/9

BP GGCCCCCGGGCGG 101 7/9 3/9
GGCCCGCGGGCGG 100 6/9 4/9
CGGCCCGGCGCGG 97 5/9 2/9

MEME GAAAGAGAAAGGG 99 6/9 4/9
GGGGAGGTGGAGT 96 5/9 1/9
TTTATTTTATTTT 95 5/9 2/9

FMGA GCGGGGCGCGGGG 101 6/9 4/9
GGCCGGGCGCGGG 100 6/9 5/9

Table 5. Dataset 3, l = 7

Method Consensus CSc s = 1 s = 0
MFACO GGGGCGG 123 18/18 15/18

CCCAGCT 123 18/18 15/18
CCAGCTG 123 18/18 15/18
CTGAGGC 123 18/18 15/18

MS GGCGGGG 123 18/18 15/18
GCGGGGC 121 18/18 13/18
GCGCGGG 119 18/18 11/18

BP CGCAGGC 115 18/18 7/18
CTGTGAT 115 18/18 7/18
CTTGAAC 114 18/18 6/18

MEME GTCTCTA 116 17/18 9/18
GGCTCAA 114 18/18 6/18
TTATCAG 105 13/18 2/18

FMGA GGTGAGG 122 18/18 14/18
AAAAAAA 119 18/18 11/18

Table 6. Dataset 3, l = 13

Method Consensus CSc s=2 s=1
MFACO GGGAGGCTGAGGC 205 16/18 6/18

CGGGAGGCGGAGG 204 15/18 7/18
GGAGGCTGAGGCA 202 12/18 7/18
CGGGAGGCGGGGG 201 15/18 7/18

MS CGGGGGGCGGAGG 196 12/18 4/18
GGGCCGGGCGCGG 195 13/18 3/18
GGGCCGGGCGGGG 195 11/18 4/18

BP GAAACTCCGTCTC 186 6/18 5/18
GCGAAACCCCGTC 186 7/18 4/18
GCGAAACTCCGTC 185 6/18 5/18

MEME AAAAAAAAAAAAA 194 11/18 4/18
FMGA GGGAGGCGGAGGC 201 13/18 9/18

AAAAAACAAAAAA 196 11/18 7/18

Table 7. Performance results achieved
by GS, BP, and MDGA in the CRP
dataset [2]

Seq. F P GS ER BP ER MDGA ER

1 17, 61 59 -2 63 2 62 1
2 17, 55 53 -2 57 2 56 1
3 76 74 -2 78 2 77 1
4 63 59 -4 65 2 64 1
5 50 11 -39 52 2 51 1
6 7, 60 5 -2 9 2 8 1
7 42 40 -2 26 -16 43 1
8 39 37 -2 41 2 40 1
9 9, 80 7 -2 11 2 10 1
10 14 12 -2 16 2 15 1
11 61 59 -2 63 2 62 1
12 41 47 6 43 2 42 1
13 48 46 -2 50 2 49 1
14 71 69 -2 73 2 72 1
15 17 15 -2 19 2 18 1
16 53 49 -4 55 2 54 1
17 1, 84 25 24 68 -16 56 -28
18 78 74 -4 80 2 77 1

Table 8. Performance results achieved by
MFACO in the CRP dataset

Seq. F P BS1 ER BS2 ER BS3 ER BS4 ER

1 17, 61 61 0 61 0 61 0 61 0
2 17, 55 55 0 55 0 55 0 55 0
3 76 76 0 76 0 76 0 76 0
4 63 63 0 63 0 63 0 63 0
5 50 50 0 50 0 50 0 50 0
6 7, 60 7 0 7 0 7 0 7 0
7 42 24 -18 42 0 42 0 42 0
8 39 39 0 39 0 39 0 20 -19
9 9, 80 9 0 9 0 9 0 9 0
10 14 14 0 14 0 14 0 14 0
11 61 61 0 61 0 61 0 61 0
12 41 41 0 41 0 41 0 41 0
13 48 48 0 48 0 48 0 48 0
14 71 71 0 71 0 71 0 71 0
15 17 17 0 17 0 17 0 17 0
16 53 53 0 53 0 53 0 53 0
17 1, 84 84 0 84 0 84 0 84 0
18 78 78 0 76 -2 78 0 76 -2

Motif Finding Using Ant Colony Optimization 471

References

1. Bailey, T.L., Elkan, C.: Fitting a mixture model by expectation maximization to
discover motifs in biopolymers. In: Proc. of the 2nd Int. Conf. on Intelligent Systems
for Molecular Biology, pp. 28–36. AAAI Press, Menlo Park (1994)

2. Che, D., Song, Y., Rasheed, K.: MDGA: Motif discovery using a genetic algo-
rithm. In: Proc. of the 2005 Conf. on Genetic and Evolutionary Computation
(GECCO 2005), pp. 447–452. ACM Press, Washington (2005)

3. Das, M., Dai, H.: A survey of the DNA motif finding algorithms. BMC Bioinfor-
matics 8(suppl.7), S21 (2007)

4. Dorigo, M., Maniezzo, V., Colorni, A.: The Ant System: Optimization by a colony
of cooperating agents. IEEE Transactions on Systems, Man, and Cybernetics -
Part B 26(1), 29–41 (1996)

5. Dorigo, M., Stützle, T.: Ant Colony Optimization. MIT Press, Cambridge (2004)
6. Jones, N.C., Pevzner, P.A.: An Introduction to Bioinformatics Algorithms. MIT

Press, Cambridge (2004)
7. Karpenko, O., Shi, J., Dai, Y.: Prediction of MHC class II binders using the ant

colony search strategy. Artificial Intelligence in Medicine 35(1), 147–156 (2005)
8. Kaya, M.: MOGAMOD: Multi-objective genetic algorithm for motif discovery. Ex-

pert Systems with Applications 36, 1039–1047 (2009)
9. Keith, J.M., Adams, P., Bryant, D., Kroese, D.P., Mitchelson, K.R., Cochran,

D., Lala, G.H.: A simulated annealing algorithm for finding consensus sequences.
Bioinformatics 18(11), 1494–1499 (2002)

10. Lawrence, C., Altschul, S., Boguski, M., Liu, J., Neuwald, A., Wootton, J.: A Gibbs
sampling strategy for multiple alignments. Science 262(5131), 208–214 (1993)

11. Liao, Y.J., Yang, C.B., Shiau, S.H.: Motif finding in biological sequences. In: Proc.
of 2003 Symposium on Digital Life and Internet Technologies, Tainan, Taiwan, pp.
89–98 (2003)

12. Liu, F.F., Tsai, J.J., Chen, R., Chen, S., Shih, S.: FMGA: Finding motifs by
genetic algorithm. In: IEEE 4th Symposium on Bioinformatics and Bioengineering
(BIBE 2004), pp. 459–466. IEEE Press, Los Alamitos (2004)

13. Liu, X., Brutlag, D.L., Liu, J.: BioProspector: Discovering conserved DNA motifs
in upstream regulatory regions of co-expressed genes. In: Pac. Symp. Biocomput.,
pp. 127–138 (2001)

14. Pevzner, P., Sze, S.: Combinatorial approaches to finding subtle signals in DNA
sequences. In: Proc. of the 8th Int. Conf. on Intelligent Systems for Molecular
Biology (ISMB 2000), pp. 269–278. AAAI Press, San Diego (2000)

15. Seehuus, R., Tveit, A., Edsberg, O.: Discovering biological motifs with genetic pro-
gramming. In: Proc. of the 2005 Conf. on Genetic and Evolutionary Computation
(GECCO 2005), pp. 401–408. ACM Press, Washington (2005)

16. Stormo, G.D., Hartzell, G.W.: Identifying protein-binding sites from unaligned
DNA fragments. Proc. Natl. Acad. Sci. 86(4), 1183–1187 (1989)

17. Stützle, T., Hoos, H.: MAX -MIN ant system. Future Generation Computer Sys-
tems 16, 889–914 (2000)

18. Thijs, G., Lescot, M., Marchal, K., Rombauts, S., Moor, B.D., Rouzé, P., Moreau,
Y.: A higher order background model improves the detection of regulatory elements
by Gibbs Sampling. Bioinformatics 17(12), 1113–1122 (2001)

19. Tompa, M., et al.: Assessing computational tools for the discovery of transcription
factor binding sites. Nature Biotechnology 23(1), 137–144 (2005)

Multiple Ant Colony System for
Substructure Discovery

Oscar Cordón1, Arnaud Quirin1, and Roćıo Romero-Zaliz2

1 European Centre for Soft Computing, Mieres (Asturias), Spain
{oscar.cordon,arnaud.quirin}@softcomputing.es

2 Dept. of Computer Science and Artificial Intelligence,
University of Granada, Granada, Spain

rocio@decsai.ugr.es

Abstract. A system based on the adaptation of the search principle
used in ant colony optimization (ACO) for multiobjective graph-based
data mining (GBDM) is introduced in this paper. Our multiobjective
ACO algorithm is designed to retrieve the best substructures in a graph
database by jointly considering two criteria, support and complexity.
The experimental comparison performed with a classical GBDM method
shows the good performance of the new proposal on three datasets.

1 Introduction

Graph-based data mining (GBDM) involves an effective and efficient manipula-
tion of relational graphs towards discovering important patterns [13]. It is now
an established area which allowed the solving of a significant number of prob-
lems such as analysis of micro-array data in bioinformatics, pattern discovery
in a large graph representing a social network, and analysis of transportation
networks, among many others [5]. Likewise, Pareto-based multiobjective search
strategies [2] have also gained much importance in data mining and machine
learning communities. That is due to the advantage for the user of retrieving a
Pareto set composed of multiple non-dominated solutions with a different trade-
off in the satisfaction of some conflicting learning problem objectives [11]. Nev-
ertheless, up to our knowledge, the idea of performing GBDM within a multiob-
jective optimization (MOO) framework, which seems to be a natural extension,
has not been widely explored in the specialized literature.

MOO basics are not described in this contribution due to a lack of space,
but the interested reader is referred to [2,6,3]. In short, MOO problems are
characterized by several conflicting objectives which have to be simultaneously
optimized [2]. The goal is to find a set of solutions, described by what is called
a decision vector, which are superior to all the reminder and equally preferable
among them, because an improvement in one objective/dimension will degrade
the solution in another one. Those solutions constitute the so-called Pareto-
optimal set or non-dominated solution set.

This contribution is aimed to bridge the latter gap by proposing a multiobjec-
tive ant colony optimization (MOACO) algorithm [9] to perform multiobjective

M. Dorigo et al. (Eds.): ANTS 2010, LNCS 6234, pp. 472–479, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Multiple Ant Colony System for Substructure Discovery 473

GBDM. This novel application of MOACO is however quite natural since, as de-
scribed in [8], mining a graph database can be modeled as a search in the lattice
of all possible subgraphs (also called substructures). Hence, considering the use
of an ACO algorithm to perform GBDM is a rather meaningful idea as these
family of metaheuristic approaches are based on building solutions to combina-
torial optimization problems by exploring a construction graph representing the
problem space. In this way, the graph database lattice itself becomes a natural
representation for the construction graph.

The method introduced in this paper is based on the classical multiple ant
colony system (MACS)1 [1], although any other MOACO algorithm could be
considered [9]. Our multiobjective graph mining algorithm, consequently named
multiple ant colony system for substructure discovery (MACSD), is expected to
optimize two conflicting goals (viz. support and complexity) during the evalua-
tion of the discovered subgraphs. In such a way, a Pareto set of non-dominated
and meaningful substructures extracted from a graph database can be found in
a single run.

The good performance of MACSD will be demonstrated when benchmarking
it against the classical Subdue GBDM method [4] in an experimental study
considering an artificial and two real-life datasets. Subdue [4] is one of the most
extended methods in the area of GBDM [13,8] for tasks as frequent substructure
discovery, graph compression and hierarchical clustering. It is based on a classical
beam search driven by an heuristic, the minimum description length (MDL)
principle.

The paper is organized as follows. Section 2 describes our novel methodology.
Section 3 shows the performance of the MACSD algorithm on the three datasets.
Finally, some conclusions are given in the Section 4.

2 Our Proposal: A Multiple Ant Colony System for
Substructure Discovery

In this section, we will describe the main components of our proposal, based
on the MACS algorithm. To do so, the first subsection is devoted to introduce
the problem representation, i.e., the mapping of the substructure mining task
to a combinatorial optimization problem representation that can be used by the
artificial ants to build solutions. The second subsection will review the generic
structure of our MACSD algorithm. It will also describe some specific issues
related to its customization to the introduced problem representation.

2.1 Problem Representation

The design decisions taken to represent the graph mining task in such a way it
can be tackled by any ACO algorithm are described below. We have followed
the standard nomenclature and refer the reader to Dorigo and Stützle’s book [7]
for more information.
1 Notice that, the term Multiple in MACS refers to the handling of multiple objectives

and not to the use of multiple ant colonies.

474 O. Cordón, A. Quirin, and R. Romero-Zaliz

Construction graph. As said, the ACO algorithm will take advantage of the fact
that substructure mining is based on exploring a graph (the lattice representing
all possible substructures). Hence, the construction graph traveled by the ants,
GC = (C,L), constitutes a representation of the substructure lattice G = (N,A).
The set of solution components C corresponds to the set of the database graph
arcsA. There is one node ij in the construction graph for each of the existing arcs
between every database graph node (i, j) (at most, |C| = n2). The connections
L fully link the components, i.e., |L| = |C|2. In this way, the construction graph
includes all the possible substructures of the original lattice, i.e. all substructures
have at least a support of 1. A feasible solution S generated by an ant when
traveling GC is a set of arcs (solution components) of any dimension composing
a connected substructure GS .

Constraints. The constraints enforce that a valid connected substructure in-
cluded of the substructure lattice is built. Hence, they will depend on the specific
kind of substructures which are to be extracted from the database (for exam-
ple, they will be different in case we are extracting subgraphs or subtrees). The
constraints are implicitly enforced through the solution construction process fol-
lowed by the ants by properly defining the feasible neighborhood Nk

i of an ant
k in node i at each construction step.

Objective functions. The multiobjective substructure discovery problem deals
with the maximization of the extracted substructures complexity and support.
The final aim is to uncover a non-dominated solution set composed of a variety of
substructures with different trade-offs between complexity and support, which is
not possible if only a single-objective algorithm such as Subdue [4] is considered.

Let S = (NS , AS) be a feasible substructure, with NS ⊆ N being its set of
nodes and AS ⊆ A being its set of arcs. We can mathematically formulate our
two objectives as follows:

f1(S) = Complexity(S) =
|NS | + |AS |

|NGmax | + |AGmax |
(1)

f2(S) = Support(S) =
#graphs in G including S

card(G)
(2)

with card(G) being the cardinal of the set of graphs G composing the data base
and Gmax corresponding to a graph in G having highest sum of nodes and edges.

Pheromone trails. The pheromone trails τij have to memorize the preference of
traveling to node ij in the construction graph, i.e., of adding arc (i, j) to the
substructure currently built by the ant. Hence, a pheromone trail is associated
to each construction graph node ij.

Heuristic information. This information is not considered in the current algo-
rithm version.

Multiple Ant Colony System for Substructure Discovery 475

Solution construction. Every ant produces a single solution to the problem which
corresponds to a specific extracted substructure. The final approximation set
PA built by MACSD will constitute a full solution to the problem since it will
provide the user with a non-dominated set of substructures with different trade-
offs between support and complexity.

To do so, each ant k starts by selecting an initial construction graph node
ij (i.e., an initial database graph arc (i, j)) as its first solution component sk

1 .
Instead of uniformly drawing that node, we consider it to be selected according
to the following probability distribution:

p(ij) =
τij∑

lm∈C τlm
(3)

Therefore, the most visited arcs by the ants in the previous stages of the search
are most likely to be selected as initial arcs for the exploration performed by the
new ants in the current iteration.

Let Sk
h = (sk

1 , . . . , s
k
h) be the partial solution (i.e., the partial substructure)

built by ant k after h construction steps. Its feasible neighborhood N(Sk
h) is

composed of every arc (i, j) (every construction graph node ij) such that:

1. (i, j) �∈ Sk
h .

2. Either i, j, or both of them are included in Sk
h , i.e., they are the head, the

tail, or the head and the tail of some arc included in Sk
h.

2.2 Customization of Multiple Ant Colony System for Substructure
Discovery

The MACS algorithm was first proposed for vehicle routing problems [1] as an
extension of the classical ant colony system (ACS) [7]. To design our MACSD
proposal, we have considered the original definition of MACS and have taken
some additional design decisions, which are described as follows.

External Pareto archive initialization and update. We consider an initial set of
random substructures of size up to SizeM nodes to constitute the initial Pareto
archive. The archive is updated after each single ant move and the dominated
solutions are removed during each update.

Modified solution construction process. We must deal with the problem of not
knowing the size of the optimal solutions in advance. To do so, in each iteration,
a fixed percentage γ of the ants in the colony will build their solutions from
scratch, and the remaining 1 − γ ants will randomly select one solution from
the current Pareto archive and will start their construction process from it. In
addition, at each step, we also decide when to stop the construction process of
each ant according to a probability distribution: pstopping(Sk) = stepk/SizeM,
with stepk being the number of construction steps taken by ant k in the current
iteration.

476 O. Cordón, A. Quirin, and R. Romero-Zaliz

Transition rule. MACSD uses a single pheromone trail matrix, τ . The following
expression is considered for the transition rule:

ij =
{

arg maxlm∈N(Sk) τlm, if q ≤ q0,

îj, otherwise.
(4)

pk
ij =

{
τij∑

lm∈N(Sk) τlm
, if lm ∈ N(Sk),

0, otherwise.
(5)

Pheromone trails update. Every time an ant travels to the node ij, it performs
the local pheromone update as follows: τij = (1 − ρ) · τij + ρ · τ0, where ρ is the
rate of pheromone evaporation.

In the original MACS algorithm, the initial value for the pheromone trails
τ0 is calculated from a set of heuristic solutions by taking their average costs,
f̂0 and f̂1, in each of the two objective functions, f1 and f2, and applying the
following expression: τ0 = 1/(f̂0 · f̂1). In our case, we have considered the use
of the set of non-dominated solutions composing the initial Pareto archive PA.
τ0 is then computed from the average values of the latter solutions in the two
optimization criteria, complexity and support, f̂1 and f̂2, respectively, by using
the previous MACS expression. Of course, the τ0 value is recomputed after each
Pareto archive update.

3 Experiments and Analysis of Results

In this section we analyze the behaviour of the MACSD algorithm by means
of various metrics proposed in the EMO literature [3]. Firstly, we describe the
datasets and the parameter values, then we report a comparison with Subdue.

3.1 Datasets

We have used three different application domains, an artificial dataset (shapes)
and two real-world datasets: visual science maps (scientograms) and web pages
(www), which are described as follows:

shapes. This dataset [4] consists of 100 randomly generated stacks of geometrical
objects and has a complexity of 500 nodes, 400 directed edges, and 6 unique
labels.

scientograms. This dataset [12] is comprised by 10 scientograms of the scientific
production of the USA for period 1996-2005 and has a complexity of 2762 nodes,
2769 undirected edges, and 293 unique labels.

www. This real web pages database [10] is available online on the Subdue web-
site2 and has a complexity of 832 nodes, 885 directed edges, and 511 unique
labels which include self-connection edges.
2 http://ailab.wsu.edu/Subdue/datasets/webdata.tar.gz

http://ailab.wsu.edu/Subdue/datasets/webdata.tar.gz

Multiple Ant Colony System for Substructure Discovery 477

3.2 Experiments

Subdue was run 3 times, each time using one of its three different criteria as a
goal (namely, complexity, support, and MDL). The results of these three runs
were joined in a single Pareto set approximation (only non-dominated solutions
are kept). We used the default parameters but the number of solutions to be
found was set to 33 for each run, in order to have a maximum of 100 generated
solutions. The MACSD algorithm was run 10 times, as a consequence of being
non-deterministic. Its parameter values are as follows: 3600s. of execution time,
10 ants, SizeM = 3, τ0 = 0.4, ρ = 0.2, q0 = 0.2, and γ = 0.8. For the shapes
dataset, we set up some specific parameters: 300s. of execution time, SizeM
= 5, and q0 = 0.5. Those parameter values were selected from a preliminary
experimentation.

The comparison between the two algorithms will be developed by consider-
ing three classical evolutionary MOO performance indicators (metrics) [6,3]: the
cardinality of the Pareto set approximation, the area (S) of the Pareto front
approximation, and the coverage (C) of the Pareto fronts obtained by each al-
gorithm over those obtained by the other.

3.3 Results

The results obtained in the application of our MACSD and the Subdue algorithm
to the three previously described datasets are analyzed as follows:

shapes. This dataset is small enough to be checked exhaustively: 31 non-
dominated substructures have to be found, corresponding to only 8 different
decision vectors. Subdue finds 16 of them (with 8 different decision vectors),
getting a S-metric value of 0.108. MACSD finds 21 of them for all its runs, also
obtaining the 8 possible decision vectors and the same S-metric value as Subdue.
The comparison between MACSD and Subdue showed that the fronts are equal
(the C-metric value is 0 in every case) but MACSD achieved a better diversity
of solutions.

scientograms. This real-life dataset is more complex than the shapes domain.
The S values for MACSD (0.206 in average on the 10 runs) are better than those
obtained by Subdue (0.177). The C values obtained when comparing MACSD
vs. Subdue (0.94 in all cases) are significantly greater than those obtained when
comparing Subdue vs. MACSD (0.361 in average), meaning that MACSD dom-
inates more solutions from Subdue than in the opposite comparison. Subdue
achieves a higher value of cardinality (35) than MACSD (10.8 in average) as a
consequence of its worst convergence to the optimal Pareto front.

Nevertheless, there are two solutions found by Subdue that MACSD did not
reach, corresponding to subgraphs with the smallest support and the largest
complexity values. The reason probably comes from the small number of ants
allocated to MACSD.

478 O. Cordón, A. Quirin, and R. Romero-Zaliz

www. This real-life dataset is as complex as scientograms and it also contains
loops over the same node. The S values for MACSD (0.00331 in all cases) are
better than that obtained by Subdue (0.00258). The C values achieved when
comparing MACSD vs. Subdue (0.875 in all cases) are much greater than those
obtained when comparing Subdue vs. MACSD (0.4 in all cases), meaning that
MACSD dominates more solutions from Subdue than in the opposite compari-
son. Again, Subdue gets a higher value of cardinality (8 vs. 5) due to its worst
convergence to the Pareto-optimal front. There is one solution found by Subdue
that MACSD cannot reach, probably for the same reason as before.

Finally, a graphical representation of the aggregated Pareto front approxima-
tions found for each dataset is shown in Fig. 1. Although we clearly identify the
said three solutions (two in scientograms and the other in www) generated by
Subdue which dominate their MACSD counterparts (see the left-most extent of
the Pareto fronts), MACSD extracted better Pareto fronts for both domains and
found bigger substructures than Subdue for the other extent where the largest
possible support value substructures are located.

●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
1

0.
2

0.
3

0.
4

Support

C
om

pl
ex

ity

● SUBDUE
MACSD

●

●

●

0.5 0.6 0.7 0.8 0.9 1.0

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

Support

C
om

pl
ex

ity

● SUBDUE
MACSD

●

●

0.6 0.7 0.8 0.9 1.0

0.
00

0
0.

00
1

0.
00

2
0.

00
3

0.
00

4

Support

C
om

pl
ex

ity

● SUBDUE
MACSD

Fig. 1. Graphical representations of the Pareto front approximations for the shapes,
scientograms, and www datasets (top left, top right, and bottom, respectively)

Multiple Ant Colony System for Substructure Discovery 479

4 Conclusion

In this paper, we have shown how the search principle used by ACO can be nat-
urally adapted to perform graph mining. Besides, it has been demonstrated that
its combination with a MOO design (e.g. MACS) in a MOACO-based GBDM
algorithm designed to retrieve the best substructures from a graph database by
jointly considering the support and the complexity can report an outstanding
performance. The proposed method, called MACSD, has outperformed the clas-
sical Subdue GBDM algorithm on three different datasets. As future works, we
plan to design a better heuristic information definition and to test more MOACO
schemes.

Acknowledgments. This work has been supported in part by the Spanish
Ministry of Science and Technology under project TIN2009-07727, including
EDRF fundings.

References

1. Barán, B., Schaerer, M.: A multiobjective ant colony system for vehicle routing
problem with time windows. In: IASTED Conf., Innsbruck, Austria, pp. 97–102
(2003)

2. Chankong, V., Haimes, Y.Y.: Multiobjective Decision Making Theory and Method-
ology. North-Holland, Amsterdam (1983)

3. Coello, C.A., Lamont, G.B., Veldhuizen, D.A.V.: Evolutionary Algorithms for Solv-
ing Multi-objective Problems. Springer, Berlin (2007)

4. Cook, D., Holder, L.: Graph-based data mining. IEEE Intelligent Systems 15, 32–41
(2000)

5. Cook, D., Holder, L. (eds.): Mining graph data. Wiley, London (2007)
6. Deb, K.: Multi-objective optimization using evolutionary algorithms. Wiley, Chich-

ester (2001)
7. Dorigo, M., Stützle, T.: Ant Colony Optimization. MIT Press, Cambridge (2004)
8. Fischer, I., Meinl, T.: Graph based molecular data mining - an overview. In: IEEE

Int. Conf. on Systems, Man and Cybernetics., vol. 76, pp. 4578–4582 (2004)
9. Garćıa Mart́ınez, C., Cordón, O., Herrera, F.: A taxonomy and an empirical analy-

sis of multiple objective ant colony optimization algorithms for the bi-criteria TSP.
European Journal of Operational Research 180(1), 116–148 (2007)

10. Gonzalez, J.: Empirical and Theoretical Analysis of Relational Concept Learn-
ing Using a Graph Based Representation. Ph.D. thesis, Department of Computer
Science & Engineering, University of Texas, Arlington, USA (2001)

11. Jin, Y., Sendhoff, B.: Pareto-based multi-objective machine learning: An overview
and case studies. IEEE Trans. Syst., Man, Cybern. C, Appl. Rev. 38, 397–415
(2008)

12. Quirin, A., Cordón, Ó., Vargas-Quesada, B., Moya-Anegon, F.: Graph-based data
mining: A new tool for the analysis and comparison of scientific domains repre-
sented as scientograms. Journal of Informertics 4(3), 291–312 (2010)

13. Washio, T., Motoda, H.: State of the art of graph-based data mining. SIGKDD
Explorations 5(1), 59–68 (2003)

Opportunistic Ant-Based Path Management
for Wireless Mesh Networks

Laurent Paquereau and Bjarne E. Helvik

Centre for Quantifiable Quality of Service in Communication Systems�,
Norwegian University of Science and Technology, Trondheim, Norway

{laurent.paquereau,bjarne}@q2s.ntnu.no

Abstract. This paper introduces opportunistic ant-based path manage-
ment for wireless mesh networks. The idea is to take advantage of the
broadcast nature of the wireless medium by deferring the selection of the
next-hop to the receivers of an ant. From an Ant Colony Optimization
(ACO) viewpoint, the main shift is that the probabilistic forwarding de-
cision rule is no longer executed locally at the transmitting node and
in the spatial domain, but in a distributed manner among the poten-
tial forwarders and in the time domain. Early simulation results indicate
that this approach improves the performance of the system in terms of
convergence time, ability to adapt to changes and overhead.

1 Introduction

Path management in dynamic telecommunication networks is one of the success-
ful applications of the Ant Colony Optimization (ACO) meta-heuristic [1,2]. In
this context, ants are control packets that are used to repeatedly sample paths
between source and destination pairs. Ants usually have a two-phase life cy-
cle. On its way to the destination, a forward ant incrementally builds a path
applying, at each node, a probabilistic forwarding decision rule based on the lo-
cal selection probabilities. The selection probabilities are derived from the local
pheromone trail values and, possibly, local heuristic values. Once it has reached
the destination, the ant turns around and backtracks. On the way back, the
backward ant deposits pheromones and triggers pheromone trail evaporation at
each node along the sampled path. For such a system, in addition to the num-
ber of iterations and the quality of the solution, which are typically used for
ACO systems, the time needed to adapt to changes and the overhead in terms
of number of packets are important performance metrics.

Ant-based path management systems were first developed for wired networks
and later also targeted multi-hop wireless networks, in particular Mobile Ad-hoc
NETworks (MANETs). However, MANETs do not lend themselves so well to the
application of ACO principles. ACO systems are intrinsically proactive, whereas
frequent topology changes caused by node mobility and limited bandwidth call
� “Centre of Excellence” appointed by The Research Council of Norway, funded by

the Research Council, NTNU, UNINETT and Telenor. http://www.q2s.ntnu.no.

M. Dorigo et al. (Eds.): ANTS 2010, LNCS 6234, pp. 480–487, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Opportunistic Ant-Based Path Management for Wireless Mesh Networks 481

for reactive strategies. Hence, most of the ACO systems proposed for path man-
agement in MANETs are intermediate between ACO systems and traditional
reactive MANET routing protocols. Most of the work so far has consisted in
combining elements from both worlds. Comparatively, little attention has been
given to how to adapt the ACO primitives to the specificities of wireless com-
munication. Indeed, their execution is often kept identical to what it is in the
original ant system developed for wired networks.

In this paper, ant-based path management is applied to Wireless Mesh Net-
works (WMNs). WMNs are multi-hop wireless networks composed of static and
grid-powered nodes that form a backhaul and provide Internet connectivity
through a limited number of gateways. The objective is not to bear the com-
parison with state-of-the-art protocols, but rather to study how the execution of
ACO primitives can be adapted to the specificities of wireless communication.
ACO systems such as AntNet [3] or AntHocNet [4] all apply the probabilistic
forwarding decision rule at the transmitting node. The decision rule is executed
in the spatial domain, meaning that the transmitter chooses one of its neighbours
and sends the ant to this neigbour. The approach presented here is to instead
use the selection probabilities to forward ants opportunistically. We refer to this
system as Opportunistic Ant System (OAS). Note that OAS is a generic ACO
system. The ideas presented here are not specific to a particular system.

Opportunistic forwarding is a recently proposed paradigm that tries to exploit
the broadcast nature of the wireless medium by deferring the selection of the
next-hop to the receivers [5,6]. Instead of unicasting a packet to an exclusive
next-hop, the transmitter broadcasts the packet and any node that receives the
packet becomes a potential forwarder. One of the key tasks of such a scheme is
the selection of the actual forwarder. To our knowledge, this approach has so far
only been applied to data packets. In this case, only the best forwarder should
then forward the packet further towards the destination. To do so, most of the
proposed solutions let the transmitter specify a list of forwarders, henceforth de-
noted candidate forwarders, with associated priorities. The selection of the best
forwarder is achieved in time by scheduling the transmission of the packet at each
candidate forwarder depending on its priority and cancelling it on overhearing
the transmission by a candidate forwarder with higher priority.

The rest of this paper is organized as follows. First, OAS is presented in
Section 2. Next, results of a preliminary evaluation are given in Section 3. Finally,
Section 4 summarizes the paper and lists future work.

2 Opportunistic Ant System

2.1 Opportunistic Forwarding of Ants

Forward Ants. OAS applies opportunistic forwarding to the transmission of
forward ants. This process is illustrated in Fig. 1. OAS operates hop-by-hop and
on a per-packet basis. Each ant contains a list of candidate forwarders with as-
sociated selection probabilities set by the transmitting node before broadcasting
the ant. In the example presented in Fig 1(a), the list of candidate forwarders

482 L. Paquereau and B.E. Helvik

S

A D

B

C F

E

(10)

(10) (10)

(9)(10)(11)

(8)

0.01

0.14

0.85

(a)

S B

A

C F

E

D
(10)(11)

(11) (11) (10)

(10) (8)

(b)

S

A D

EB

C F

(11) (10)

(10)(11)(11)

(11) (10)

(c)

Fig. 1. Opportunistic forwarding of forward ant 10. Gray nodes represent nodes pend-
ing to forward, labeled arrows packet transmissions to candidate forwarders with their
associated selection probability. The expected sequence number at each node is given
in parentheses.

specified by node S contains nodes A, B and C, and their probabilities are 0.85,
0.14 and 0.01, respectively. Only nodes in this list are allowed to forward the ant
further. At the reception of an ant, a candidate forwarder schedules the trans-
mission of the ant based on the selection probability specified for this node in
the ant. Unless it overhears the transmission of the ant by another candidate for-
warder, it transmits the ant. In Fig. 1(b), node A forwards the ant received from
node S. Node B overhears the transmission and cancels its forwarding timer. A
candidate forwarder that receives an ant participates to the forwarding process,
whether it forwards the ant itself or overhears the transmission.

A node participates only once in the forwarding process of a given ant. To
enforce this behaviour, each ant is assigned a sequence number and each node
keeps track of the next sequence number it expects. Two ants with the same
sequence number are referred to as sibling ants. Only the destination node does
not maintain a sequence number in order to accept sibling ants and allow for the
parallel exploration of several paths. A node increments its expected sequence
number on sending or overhearing the transmission of an ant. A node ignores
an ant with a sequence number lower than the sequence number it expects, or if
it is already pending to transmit a sibling ant and the sender is not listed as a
candidate forwarder. This is the case of nodes B and E in Fig. 1(c), respectively.

As in any ACO system, the forwarding decision is probabilistic. The novelty
is that the decision is executed in the time domain and in a distributed manner
among candidate forwarders. Upon reception of an ant from node v, a candidate
forwarder i draws a forwarding delay dtv ,vi from a negative exponential distri-
bution with rate ptv ,vi ·λ, where ptv ,vi denotes the selection probability of node i
specified by node v. λ is the intensity of the aggregated forwarding process if all
the candidate forwarders specified by v actually receives the ant. The value of λ
should be chosen depending on the underlying transmission technology to assure
an appropriate discrimination between the candidate forwarders. The probabil-
ity that node i forwards the ant first is equal to the selection probability of node i
at node v, i.e. ptv,vi. If all the candidate forwarders hear each others, ptv,vi is
then the probability that node i is the only node that forwards the ant. Hence,

Opportunistic Ant-Based Path Management for Wireless Mesh Networks 483

the traditional ACO probabilistic forwarding decision rule is achieved among the
candidate forwarders that actually received the ant. In the general case though,
all the candidate forwarders may not hear each other and the probability that
a given node forwards an ant depends on the actual topology and on the nodes
that received the ant.

Backward Ants. Backward ants are used to update pheromone trails along
the sampled paths. Therefore, a backward ant has to visit a given sequence of
nodes and cannot be forwarded opportunistically. In practice however, backward
ants are made similar to forward ants and are also broadcasted. Simply, the list
of candidate forwarders only contains the next node to visit along the sampled
path. In addition, since only one node may forward the ant, it is sent with no
delay. The reason for doing so is to cancel sibling ants possibly pending at nodes
around the sample path. This is particularly relevant in the neighbourhood of
the destination since nodes receiving the ant at the same time as the destination
would not be stopped otherwise. In the ideal case (no loss), no sibling ants should
still be pending at nodes around the sampled path otherwise.

2.2 Adaptive Pruning of Forwarding Nodes

The probability that a node i is not stopped and forwards the ant may be high
although the selection probability ptv,vi is low. For instance, in the example
shown in Fig. 1, the probability that node C forwards the ant received from
node S is equal to the probability that node B does not forward the ant first, that
is 0.86, although the selection probability of node C is only 0.01. This property is
undesirable for two reasons: (i) it may result in a significant overhead in terms of
number of sibling ants, and (ii) a low selection probability means a low intensity
for the forwarding process at node i and thus longer delays. Now, the selection
probability depends on the estimated goodness of using node i as a next-hop
towards the destination. Hence, to remedy this problem, a “low quality next-
hop” i is prevented from participating in the forwarding process by excluding it
from the list of candidate forwarders at node v.

Formally, the pruning of potential forwarders at node v can be written:

i ∈ Nv ⇔ ptv ,vi � ϕtv ,v (1)

where Nv ⊆ N ∗
v denotes the set of candidate forwarders, N ∗

v the set of all
potential forwarders, and ϕtv ,v is the forwarder pruning threshold.

ϕtv ,v = α
1

|N ∗
v |

(1 − Etv ,v), where Etv ,v =
−
∑

∀i∈N∗
v
ptv,vi log ptv,vi

log |N ∗
v |

. (2)

Etv ,v denotes the (normalized) entropy at node v and α ∈ (0, 1) is a control
parameter. Etv ,v is a convenient scale-free measure indicating how open the
search is at node v. The rationale behind this formula is to let node v self-
adjust the pruning threshold relatively to the uniform probability depending on
the local situation. α controls the trade-off between adaptivity/exploration and

484 L. Paquereau and B.E. Helvik

(e)

IDLE

(e)

PENDING

receive ant and
ant.state=forward and

ant.seq>e and isCandidate
or

ant.seq=e and not(overhearing)
or

ant.state=backward and ant.seq<e

receive ant and
ant.state=forward and

ant.seq�e and isCandidate

receive ant and
ant.state=forward and

ant.seq<e or not(isCandidate)
or

ant.state=backward

send pending ant
or

receive ant and
ant.state=forward and

ant.seq>e and not(isCandidate)
or

ant.seq=e and overhearing
or

ant.state=backward and ant.seq�e

Fig. 2. Node states and internal variables

overhead. A smaller α allows the system to better adapt by allowing the system
to explore alternative solutions at the cost of larger overhead. As a rule of thumb,
α should be chosen at least as small as 0.1 to avoid pruning potential forwarders
with a selection probability greater than an order of magnitude less than 1/|N ∗

v |.
Applying adaptive pruning of forwarding nodes in the case of the example

depicted in Fig. 1, pSC < ϕS = 0.02 so node C would not be allowed to forward
the ant received from node S.

2.3 Node States

Fig. 2 summarizes the different states of a node and the events leading to a change
of state. A node is either idle or pending to forward an ant. State transitions
are triggered by sending and receiving ants and depend on the sequence number
of the received ant compared to sequence number expected by the node. A
transition from the pending to the idle state always occurs on sending a forward
ant. No transition ever occurs on sending a backward ant.

3 Preliminary Evaluation

This section presents results of a preliminary simulation study of OAS. OCEAN,
an opportunistic version of the Cross-Entropy Ant System (CEAS) [7], is com-
pared to its unicast counterpart.

3.1 Settings

The topology used for the evaluation is a 7x5 grid WMN where each node hears
the transmissions from the eight nodes around. See Fig. 3 for an illustration.
The simulated scenario is as follows. Nodes 2 and 18 are gateways and node 15
generates ants to establish a path to a destination node d outside the WMN
through any of the gateways. The metric used is the number of hops in the

Opportunistic Ant-Based Path Management for Wireless Mesh Networks 485

transmission region
around node 15

1

22

28

0 2 3 4 5 6

7 8 9 10 11 12 13

14 15 16 17 18 19 20

21 23 24 25 26 27

29 30 31 32 33 34

d

gateway

gateway

source

Internet
destination

Fig. 3. 7x5 grid WMN

wireless network. From t = 0 s to t = 1500 s, the best path is via node 2. At
t = 1500 s, node 2 is taken down and the only remaining gateway is node 18.
Finally, at t = 4000 s, node 2 is restored.

Ants are generated at the rate of 1 per second, and 10% of the generated
ants are explorer ants. Explorer ants do not use the selection probabilities at
the transmitting node, but uniform probabilities. The purpose of these ants
is to allow the system to discover new paths and maintain sparse pheromone
trails on alternative paths providing roughly up-to-date information in case of a
change. Explorers ants are also used during the initialization phase; here, from
t = 10 s to t = 60 s. Finally, since explorer ants use uniform probabilities, no
potential forwarders are pruned. The remaining CEAS configuration parameters
are set as follows: β = 0.95 and ρ = 0.01. When adaptive pruning of forwarding
nodes is enabled, α is set to 0.1. Ants are never retransmitted and there is
no neighbourhood monitoring mechanism active. Unless otherwise specified, the
results presented below are averages over 30 replications and error bars indicate
95% confidence intervals.

3.2 Results

Results presented in Fig. 4–7 demonstrate that OAS improves the performance
of the system in terms of convergence time, ability to adapt to changes, and
overhead. The key features of OAS explaining these results are the following.

– Opportunistic ants may not traverse twice the same transmission region.
The size of the sample space is reduced and the feasible solutions are the
ones with the lowest costs (shortest ones). Opportunistic ants, in particular
explorer ants, sample shorter paths; see Fig. 6. Unicast ants sample longer
paths, hence relatively poor solutions get reinforced and the system converges
more slowly; see Fig. 5. In addition, the overhead, in particular of explorer
ants, is significantly reduced; see Fig. 7(b).

– The system is able to explore multiple paths simultaneously to adapt to
changes by self-regulating the number of sibling ants. In this example, when

486 L. Paquereau and B.E. Helvik

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 3000 4000 5000

ra
tio

 o
f g

en
er

at
ed

 to
 r

ec
ei

ve
d

an
ts

time

 2000 1000 0

CEAS unicast

OCEAN

Fig. 4. Ratio of received to generated ants

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1000 2000 3000 4000 5000

te
m

pe
ra

tu
re

time

CEAS unicast

OCEAN

Fig. 5. Temperature at the destination1

 0

 5

 10

 15

 20

 25

 30

 0 20 40 60 80 100 120 140

co
st

time

explorer ant
normal ant

(a) CEAS unicast

 0

 5

 10

 15

 20

 25

 30

 0 20 40 60 80 100 120 140

co
st

time

explorer ant
normal ant

(b) OCEAN

Fig. 6. Costs of the sampled paths (single run)

node 2 is restored, the ratio of received to generated ants temporarily in-
creases; see Fig. 4. More ants reach the destination and, hence, the system
converges faster; see Fig. 5. The same observation can also be made for
the initial convergence of the system, and this is also visible on Fig. 6(b).
Explorer ants do sample two paths, but also normal ants until the system
has converged. When the system has converged, adaptive pruning effectively
reduces the number of sibling ants; see Fig. 7(a).

– The system mitigates the impact of a failed transmission by allowing any
candidate forwarder to send the ant further. Immediately after node 2 is
down, the ratio of received to generated ants drops because normal ants still
follow the previous best path and get lost; see Fig. 4. Only explorer ants reach
the destination. In the unicast case, until t ∼ 2000 s, only explorer ants that
do not travel through node 1 reach the destination. In the opportunistic
case, as soon as alternative candidates are no longer pruned, normal ants
eventually reach the destination allowing the system to adapt much faster.

1 The temperature is a self-adjusting parameter of CEAS that controls the relative
weights given to solutions. It depends on all the costs of the sampled paths and
reflects the convergence of the system. See for instance [7] for further details.

Opportunistic Ant-Based Path Management for Wireless Mesh Networks 487

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0 200 400 600 800 1000 1200 1400

tr
an

sm
is

si
on

s

time

OCEAN (no pruning)

OCEAN

CEAS unicast

(a) Normal ants

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0 200 400 600 800 1000 1200 1400

tr
an

sm
is

si
on

s

time

CEAS unicast

OCEAN

(b) Explorer ants

Fig. 7. Cumulative number of transmissions

4 Summary and Future Work

This paper presents a novel approach to forwarding ants in WMNs taking ad-
vantage of the broadcast nature of the wireless medium and referred to as Op-
portunistic Ant System (OAS). OAS applies the ACO probabilistic forwarding
decision rule in the time domain and in a distributed manner among the receiv-
ing nodes instead of locally at the transmitting node and in the spatial domain.
A preliminary simulation study has given promising results. Compared to rely-
ing on unicast transmissions of ants, OAS exhibits better performance in terms
of convergence time, adaptivity and overhead.

Future work includes testing OAS on networks of different sizes and density,
studying the system when more than one source are active and comparing OAS
with traditional proactive approaches.

References

1. Dorigo, M., Di Caro, G., Gambardella, L.M.: Ant Algorithms for Discrete Optimiza-
tion. Artificial Life 5(2), 137–172 (1999)

2. Farooq, F., Di Caro, G.A.: Routing Protocols for Next-Generation Networks In-
spired by Collective Behaviors of Insect Societies: An Overview. In: Swarm Intelli-
gence, Natural Computing Series, pp. 101–160. Springer, Berlin (2008)

3. Di Caro, G., Dorigo, M.: AntNet: Distributed Stigmergetic Control for Communi-
cations Networks. Journal of Artificial Intelligence Research 9, 317–365 (1998)

4. Ducatelle, F.: Adaptive Routing in Ad Hoc Wireless Multi-hop Networks. PhD
thesis. University of Lugano, Switzerland (2007)

5. Liu, H., Zhang, B., Mouftah, H.T., Shen, X., Ma, J.: Opportunistic Routing for
Wireless Ad Hoc and Sensor Networks: Present and Future Directions. IEEE Com-
munications Magazine 48(2), 103–109 (2009)

6. Bruno, R., Nurchis, M.: Survey on diversity-based routing in wireless mesh networks:
Challenges and solutions. Computer Communications 33(3), 269–282 (2010)

7. Heegaard, P.E., Wittner, O.J.: Overhead Reduction in a Distributed Path Manage-
ment System. Computer Networks 54(6), 1019–1041 (2010)

Parallel Ant Colony Optimization Algorithm
on a Multi-core Processor

Shigeyoshi Tsutsui1 and Noriyuki Fujimoto2

1 Management Information, Hannan University, Matsubara, Osaka, Japan
tsutsui@hannan-u.ac.jp

2 Science, Osaka Prefecture University, Sakai, Osaka, Japan
fujimoto@mi.s.osakafu-u.ac.jp

Abstract. This paper proposes parallelization methods of ACO algo-
rithms on a computing platform with a multi-core processor aiming at
fast execution to find acceptable solutions. As an ACO algorithm, we
use the cunning Ant System and test on several sizes of TSP instances.
As the parallelization method, we use agent level parallelization in one
colony using Java thread programming. According to the synchroniza-
tion and exclusive control modes among threads, we propose three types
of parallel ACO algorithms. Among them, that which we call the rough
asynchronous parallel model shows the most promising results.

1 Introduction

Recently, microprocessor vendors supply processors which have multiple cores of
2, 4, or more, and PCs which use such processors are available at a reasonable
cost. They are normally configured with symmetric multi processing (SMP) ar-
chitecture. Since the main memory is shared among processors in SMP, parallel
processing can be performed efficiently with less communication overhead among
processors by using multi-thread programming.

In a previous paper, Tsutsui proposed a variant of the ACO algorithm called
the cunning Ant System (cAS) [7] and evaluated it using TSP. The results showed
that the cAS could be one of the most promising ACO algorithms. In this paper,
we describe the parallelization of cAS on a multi-core processor and discuss the
experimental results of the parallelized cAS when we apply the algorithms to
solving TSP, a typical NP -hard problem in permutation domains.

Many parallel ACO algorithms have been studied [2,3,4,6]. Brief summaries
can be found in [3,4]. In [6], parallel MMAS with k independent runs was studied.
The most commonly used approach to parallelization is to use an island model
where multiple colonies exchange information (i.e., solutions, pheromone matrix
values, or parameters) synchronously or asynchronously. In [2], it is reported
that the communication of the whole pheromone matrix leads to a decreased
solution quality as well as worse run-time. However the approach of exchanging
best-so-far solutions leads to good solution quality. In [3], a scheme in which
the whole pheromone matrix is shared with two colonies using symmetric multi
processing (SMP) is studied on TSP instances of hundreds to thousands. The
results showed no clear advantage of parallel ACO algorithms over sequential

M. Dorigo et al. (Eds.): ANTS 2010, LNCS 6234, pp. 488–495, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Parallel Ant Colony Optimization Algorithm on a Multi-core Processor 489

algorithms. In [4], parallel MMAS algorithms using MPI libraries with various
topologies have been intensively studied on TSP, and a clear advantage of parallel
algorithms is reported.

In many of the above-mentioned studies, attention is mainly focused on the
parallelization using multiple colonies. In contrast to these studies, in this study
parallelization is performed at the agent (or individual) level in one colony aiming
at speedup of the ACO algorithm on a computing platform with a multi-core
processor.

2 A Brief Overview of cAS [7]

In traditional ACO based algorithms, each ant generates a candidate solution
using the current pheromone densities. cAS exploits information from the ex-
isting solutions, which are stored in an archive. A part of each new candidate
solution (cunning ant, c-ant) is taken from one of the existing solutions (donor
ant, d-ant) in the archive, whereas the remainder of the new candidate solution
is generated probabilistically using the pheromone densities.

τ

τ

Fig. 1. c-ant and d-ant

Fig. 1 shows an example of generating a new so-
lution (c-ant). In this example, the c-ant borrows
part of the tour, 7 → 0 → 1 → 2 → 3, from the d-
ant directly. The c-ant constructs the remainder of
the tour for cities 4, 5, and 6 according to τij proba-
bilistically. The first position of the block (segment)
of nodes is chosen randomly with uniform distribu-
tion. Length of the segment, ls, (number of nodes)
is sampled from a probability distribution to ensure
that the average number of nodes present in the seg-
ment is γ × n where (γ ∈ (0, 1]) is a control param-
eter supplied by the user. The probability density
function used for determining the value of ls is,

f(ls) =

⎧⎨⎩
1−γ
nγ

(
1 − ls

n

) 1−2γ
γ for γ ∈ (0, 0.5]

γ
n(1−γ)

(
ls
n

) 2γ−1
1−γ for γ ∈ (0, 0.5].

(1)

In cAS, we use an elitist colony model. In this model we maintain an archive
consisting of m candidate solutions created in the past. The kth solution in the
archive at iteration t is denoted by sk,t (k ∈ {1, 2, · · · ,m}). At iteration t, a new
solution is generated for each position k of the archive using the current solution
in that position, sk,t as the donor. This candidate solution is then compared
with its donor with respect to the objective function, and the better of the two
is preserved at the kth position of the archive. Pheromone density τij(t) is up-
dated with sk,t(k ∈ {1, 2, · · ·,m}) and τij(t+ 1) is obtained as,

τij(t+ 1) = ρ · τij(t) +
m∑

k=1

Δτk
ij(t), (2)

Δτk
ij(t) = 1/C :

k,t if (i, j) ∈ sk,t, 0 : otherwise, (3)

490 S. Tsutsui and N. Fujimoto

1. t ← 0. Initialize by setting τij(t) ← C.
2. Generate new solutions sk,t in the archive (k ∈ {1, 2, · · ·, m})

2.1 if t = 0, then
2.1.1 c-antk is generated according to the pheromone density τij(t).
2.1.2 Improve c-antk by a local search (if we use a local search) and evaluate c-antk.
2.1.3 Set c-antk into archive as st,k.

2.2 otherwise (t �= 0)
2.2.1 c-antk is generated from d-antk (i.e., sk,t) and the pheromone density τij(t).
2.2.2 Improve c-antk by a local search (if we use a local search) and evaluate c-antk.
2.2.3 Compare c-antk and d-antk. If c-antk is better than d-antk, st,k is replaced by

c-antk, otherwise st,k remains unchanged in the archive.
3. Update pheromone trail τij(t) according to Eq. (2).
4. t ← t + 1.

5. If the termination criteria are met, terminate the algorithm. Otherwise, go to Step 2.

Fig. 2. Algorithm description of cAS

where the parameter ρ(0 ≤ ρ < 1) is the trail persistence (thus, 1 − ρ models
the evaporation), Δk

ij(t) is the amount of pheromone sk,t puts on the edge it
has used in its tour, and Ck,t is the functional value (tour length) of sk,t. In this
updating, we keep all pheromone densities within the interval [τmin, τmax] as in
MMAS [5]. The algorithm of cAS is summarized in Fig. 2.

3 Parallelization of cAS on a Multi-core Processor

τ

Fig. 3. Program configuration of par-
allel cAS

In this study, parallelization is performed
at the agent level in one colony. Opera-
tions for each agent are performed in par-
allel in one colony. In our study, a set of
operations for an agent is assigned to a
thread in Java. Usually, the number of
agents (m) may be larger than or equal to
the core number of the platform, we gen-
erate ncore threads, where ncore is number
of cores to be used. These threads execute
operations for m agents of the cAS.

Fig. 3 shows the program configuration
of the parallel cAS. The cAS Base main-
tains agents in its archive and controls the
entire flow of the algorithm. The Thread Manager manages threads and assigns
tasks to Cas Thread 1, Cas Thread 2, · · ·, and Cas Thread ncore. We imple-
mented three types of parallel models as described in the following.

Model 1: The synchronous parallel cAS (SP-cAS)
As shown in Fig. 4, Step 2 of Fig. 2 can be executed independently among
sk,t(k ∈ {1, 2, · · ·,m}). Steps 3 and 4 must be excecuted after termination of all
tasks in Step 2. In the synchronous parallel cAS (SP-cAS), Cas Base requests to
the Thread Manager to assign tasks in Step 2 of Fig. 2 to Cas Threads. Steps 3
and 4 are preformed by Cas Base sequentially.

Parallel Ant Colony Optimization Algorithm on a Multi-core Processor 491

τ

τ
←

Fig. 4. Synchronous parallel cAS (SP-cAS)

Model 2: The asynchronous parallel cAS (AP-cAS)
In the synchronous parallel cAS (SP-cAS), the pheromone density updating is
performed after the processing of Step 2 of Fig. 2 is completed, as in usual
ACO algorithms. It may cause some waiting time in Cas Threads when there
is no agent to be processed. The asynchronous parallel cAS (AP-cAS) is in-
tended to remove this waiting time. To attain this feature, Cas Base requests
the Thread Manager to control Cas Threads so that they execute all steps of
Fig. 2 except for Step 1. Note that the update of the iteration counter t in Step
4 applies to each agent (each agent has its own iteration counter), and Step 5
performs only checking whether an acceptable solution has been obtained or not.

Fig. 5 shows how AP-cAS is structured. Strictly following Eq. (2), update
procedure requires all archive members st,k for k = 1, 2, · · · ,m at the same time.
But this will undermine an asynchronous execution. To perform the pheromone
update asynchronously, we modified the pheromone density updating, as defined
in Eq. (2) as follows.

In a Cas Thread to which processing of agent k for k �= m is assigned,
the Cas Thread is arrowed only to increase τk

ij by Δk
ij for (i, j) ∈ sk,t in its

pheromone density updating. Only a Cas Thread to which processing of agent
m is assined is allowed to complete whole updating, i.e., in addition to increas-
ing τk

ij by Δm
ij for (i, j) ∈ sm,t, multiplying the τij by ρ, and check the max,

min of τij values. Although the above mentioned pheromone density updating
is not strictly equivalent to Eq. (2), we can say that it emulates the pheromone
updating process of Eq. (2) in an asynchronous processing mode.

Model 3: The rough asynchronous parallel cAS (RAP-cAS)
The rough asynchronous parallel cAS (RAP-cAS) is basically the same as AP-
cAS. The difference is only in the pheromone density updating methods. In AP-
cAS, the pheromone density updating is treated as a critical section. However,

492 S. Tsutsui and N. Fujimoto

τ

τ

Δ τ

ρ τ
← ← ← ←

Fig. 5. Asynchronous parallel cAS (AP-cAS)

this causes some waiting time in updating τij . In RAP-cAS, we do not treat
the pheromone density updating procedure as a critical section. We allow the
process run without any exclusive control accepting access conflict to τij . Please
note here, allowing access conflict to τij never causes any fatal troubles like in a
banking system.

4 Experimental Results and Analysis

4.1 Experimental Conditions and Test Instances

We used a machine which has one Intel R© CoreTM i7 965 (3.2 GHz) Processor,
and the OS was 32-bit Windows XP. Since the processor has 4 cores, we set
ncore to 4. The code was written in Java. We measured the performance by the
number of runs in which the algorithm succeeded in finding the optimal solution
(#OPT) and the average time to find optimal solutions in successful runs in
seconds (Tavg). 25 runs were performed in each experiment.

We used the following 3 classes of 9 instances; (1) small instances which are
solved by combining no local search i.e., berlin52, pr76, and st70, (2) instances
comprising hundreds of cities which are solved by combining 3-OPT, i.e., pcb442,
att532, and rat783, and (3) instances comprising thousands of cities which are
solved by combining Lin-Kernighan heuristics, i.e., pr2392, fl3795 and rl5934.
Here, we used Chained LK called Concorde TSP solver [1]. Concorde showed
good performance in our previous studies [7] on the cunning Ant System (cAS).

For Class (1) instances, population size was set to �2 × L/ncore� × ncore

Maximum number of solution constructions is set to 10,000×L. For Class (2)

Parallel Ant Colony Optimization Algorithm on a Multi-core Processor 493

instances, the population size is set to �(L/20/ncore)�×ncore. Maximum execu-
tion time in one run (Tmax) is set to 100, 200, and 300 in seconds for pcb442,
att532, and rat783, respectively. For Class (3) instances, the population size is
set to 4, the core count of the processor. Tmax is set to 240, 1500, and 3000 in
seconds for pr2392, fl3795 and rl5934, respectively.

Parameter γ is one of the most important parameters which affects the per-
formance of cAS [7]. In the runs of parallel cAS, we choose γ values of 0.3, 0.2,
and 0.4 for Class (1), Class (2), and Class (3), respectively.

4.2 Performance of Parallel cAS

Table 1 summarize the results. In all experiments, #OPT = 25 was obtained
though it is not written in the table. The Speedup indicates (Tavg of cAS)/(Tavg

of parallel cAS). Please note here that this value is not the ratio of computation
time in which the number of solution constructions reached a fixed value. Here we
conducted a two-sided t-test of Tavg between RAP-cAS and SP-cAS, and between
RAP-cAS and AP-cAS to show the statistical significance of the obtained results
and showed the results by the p-values. In the table, we also showed the two-sided
95% confidence interval (c-interval) of Tavg of each experiment.

On Class (1) instances, we can see that the values of Speedup range from 2.3 to
3.1. These values are relatively smaller than the expected values of 4. Comparing
parallelization methods we can see that the RAP-cAS always outperforms SP-
cAS and AP-cAS. On Class (2) instances, we can see again that the RAP-cAS
always outperforms SP-cAS and AP-cAS. On pcb442 and att532, super-linear
speedup values (bigger than ncore) are observed in RAP-cAS. This is possible
to occur from errors in statistics. Please recall that the Speedup is not the ratio
of computation time of which the number of solution constructions reached a
fixed value, but the ratio of time to obtain an optimal solution. As can be

Table 1. Results of parallel cAS

494 S. Tsutsui and N. Fujimoto

understood from the c-interval, Tavg includes some errors in statistics. On Class
(3) instances, RAP-cAS shows the best Speedup values except for pr2392. Again
on these two instances, a super-linear speedup is observed. On pr2392, AP-cAS
shows the best Speedup value, but differences among the three parallel cAS are
minor judging from p-value on this instance.

Table 2. Tthread values (msec)
Now, let us discuss two questions which

arise from the results in Table 1. One ques-
tion is why the Speedup values of Class (1)
instances are relatively smaller than those
of Classes (2) and (3). In Table 1, the
mean number of solution constructions to
find the optimum solution (MSC) is also
shown. For example these values in RAP-cAS
are 32,572.0, 21940.4, and 37.0 for berlin52
(Class (1)), pcb442 (Class (2)), and fl3795
(Class (3)), respectively. These values are equivalent to the number of activa-
tions of Cas Threads. If we calculate Tthread = (Tavg × ncore)/MSC Tthread

represents the mean time of Cas Thread’s run time in one activation. Table
2 shows Tthread values in parallel cAS. For Class (1) instances, Tthread values
are in the rage of [0.010, 0.013] milliseconds. In average, several executions of
Thread Manager are performed in one activation of Cas Thread. As a result, on
Class (1) instances, this overhead time becomes relatively large. On the other
hand, on Class (2) and (3), this overhead time becomes relatively small. This
fact can be the answer to the first question in the previous paragraph.

The other question is why a super-linear speedup often occurs in RAP-cAS
on Class (2) and (3) instances. As described before, this is possible to occur from
errors in statistics. In addition to this, we can consider another possibility. In
RAP-cAS, the pheromone update is performed without any exclusive execution
control. This means the pheromone update in RAP-cAS causes some perturba-
tions in τij values. These perturbations work in a good direction in finding the
solution (like mutations to the τij). Finally, we can see that RAP-cAS is the
most promising parallelization approach of the cAS, with a few exceptions. We
used cAS for ACO algorithms. But these parallelization methods are applicable
to other ACO algorithms in same manner.

5 Conclusions

In this paper we proposed parallelization methods for ACO algorithms on a
computing platform with a multi-core processor aiming at fast execution to
find acceptable solutions. As an ACO algorithm, we used cAS and tested on
several sizes of TSP instances. As the parallelization method, we use agent level
parallelization in one colony using Java thread programming. According to the
synchronization and exclusive control modes among threads, we propose three
types of parallel ACO algorithms. Among them, that which we call the rough
asynchronous parallel model shows the most promising results.

Parallel Ant Colony Optimization Algorithm on a Multi-core Processor 495

As a natural progression from this study, we propose the following direction
of further study: to test using machine with more cores; to use other parallel
environments such as clusters, and grid; to test many-core parallel computation
using GPU.

References

1. Applegate, D., et al.: ANSI C code as gzipped tar file, Concorde TSP solver (2006),
http://www.tsp.gatech.edu/concorde.html

2. Benkner, S., Doerner, K., Hartl, R., Kiechle, G., Lucka, M.: Communication strate-
gies for parallel cooperative ant colony optimization on clusters and grids. In: Don-
garra, J., Madsen, K., Waśniewski, J. (eds.) PARA 2004. LNCS, vol. 3732, pp. 3–12.
Springer, Heidelberg (2006)

3. Lv, Q., Xia, X., Qian, P.: A parallel aco approach based on one pheromone matrix.
In: Dorigo, M., Gambardella, L.M., Birattari, M., Martinoli, A., Poli, R., Stützle,
T. (eds.) ANTS 2006. LNCS, vol. 4150, pp. 332–339. Springer, Heidelberg (2006)

4. Manfrin, M., Birattari, M., Stützle, T., Dorigo, M.: Parallel ant colony optimization
for the traveling salesman problems. In: Dorigo, M., Gambardella, L.M., Birattari,
M., Martinoli, A., Poli, R., Stützle, T. (eds.) ANTS 2006. LNCS, vol. 4150, pp.
224–234. Springer, Heidelberg (2006)

5. Stützle, T., Hoos, H.: Max-min ant system. Future Generation Computer Sys-
tems 16(9), 889–914 (2000)

6. Stützle, T.: Parallelization strategies for ant colony optimization. In: Eiben, A.E.,
Bäck, T., Schoenauer, M., Schwefel, H.-P. (eds.) PPSN 1998. LNCS, vol. 1498, pp.
722–731. Springer, Heidelberg (1998)

7. Tsutsui, S.: cAS: Ant colony optimization with cunning ants. In: Ebeling, W.,
Rechenberg, I., Voigt, H.-M., Schwefel, H.-P. (eds.) PPSN 1996. LNCS, vol. 1141,
pp. 162–171. Springer, Heidelberg (1996)

http://www.tsp.gatech.edu/concorde.html

Particle Swarm Optimization
in High Dimensional Spaces

Juan L. Fernández-Mart́ınez1,2,3, Tapan Mukerji1,
and Esperanza Garćıa-Gonzalo3

1 Energy Resources Department, Stanford University, Palo Alto, California, USA
2 Department of Civil and Environmental Engineering,

University of California Berkeley, Berkeley, USA
3 Department of Mathematics, University of Oviedo, Oviedo, Spain

jlfm@uniovi.es, mukerji@stanford.edu, espe@uniovi.es

Abstract. Global optimization methods including Particle Swarm Op-
timization are usually used to solve optimization problems when the
number of parameters is small (hundreds). In the case of inverse prob-
lems the objective (or fitness) function used for sampling requires the
solution of multiple forward solves. In inverse problems, both a large
number of parameters, and very costly forward evaluations hamper the
use of global algorithms. In this paper we address the first problem,
showing that the sampling can be performed in a reduced model space.
We show the application of this idea to a history matching problem of a
synthetic oil reservoir. The reduction of the dimension is accomplished in
this case by Principal Component analysis on a set of scenarios that are
built based on prior information using stochastic simulation techniques.
The use of a reduced base helps to regularize the inverse problem and
to find a set of equivalent models that fit the data within a prescribed
tolerance, allowing uncertainty analysis around the minimum misfit so-
lution. This methodology can be used with other global optimization
algorithms. PSO has been chosen because its shows very interesting ex-
ploration/exploitation capabilities.

Keywords: PSO, model reduction techniques, inverse problems,
uncertainty.

1 Inverse Problems, Uncertainty and the Curse of
Dimensionality

Inverse problems can be written in discrete form as F(m) = d, where
m ∈ M ⊂ Rn are the model parameters, d ∈ Rs the discrete observed data,
and

F(m) = (f1(m), f2(m), . . . , fs(m))

is the vector field representing the forward operator and fj(m) is the scalar
field that accounts for the j-th data. Usually s < n, that is, the the inverse

M. Dorigo et al. (Eds.): ANTS 2010, LNCS 6234, pp. 496–503, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Particle Swarm Optimization in High Dimensional Spaces 497

problem has an underdetermined character. This makes the inverse problem very
ill posed, that is, no unique solution exist and/or the inverse problem is very
ill-conditioned. Ill-conditioning is an important issue when solving the inverse
problem as an optimization problem, because noise in data is amplified back to
the model parameters through the inverse forward operator, F−1.

Global optimization algorithms are a good alternative because they approach
the inverse problem as a sampling problem instead of looking for the inverse
operator. Also, they only need as prior information the search space of possible
solutions. Typically they use as cost (or objective) function the data prediction
misfit in a certain norm p : ‖F(m) − d‖p . It is possible to show analytically
that the topography of the cost function is that of a non-convex problem, that
is, there exists a family of equivalent models that fit equally the observed data
‖F(m) − d‖p < tol, that are located along flat elongated valleys. Global op-
timization algorithms can address the non-convexity of the cost function by
sampling the family of equivalent models. Local optimization methods are not
designed to approach this sampling problem, and they may even fail to find
a solution without regularization. These algorithms can handle very effectively
inverse problems having several thousands of parameters. The main drawback
of these methods is that they are highly dependent on the initial guess and the
quality of the prior information that is built in the regularization term to achieve
uniqueness and stability in the inverse solution. Furthermore they do not provide
any uncertainty measure around the solution of the inverse problem.

Particle swarm optimization (PSO) is a global stochastic search algorithm
used for optimization motivated by the social behavior of individuals in large
groups in nature [6]. Particle swarm optimization shows very impressive conver-
gence rates when compared in real applications to other global techniques and its
consistency can be related to the stability of particle trajectories through the use
of stochastic stability techniques [4]. Nevertheless, one of the main limitations
of global optimization algorithms (including PSO) is that they are only practi-
cal for inverse problems with small number of parameters (hundreds) and fast
forward evaluations. In this paper we do not address this second issue, but we
propose a simple methodology to perform sampling in high dimensional spaces
through the combined use of a family of particle swarm optimizers and model
reduction techniques. We show the application to reservoir parameter estimation
by matching production data from a synthetic oil field. This methodology allows
performing uncertainty analysis around the minimum misfit solution in order to
quantify risk.

2 PSO and Model Reduction Techniques

Monte Carlo techniques and global optimization methods become unfeasible for
high dimensional problems, although there are some attempts to deal with a
high number of variables and fast forward evaluations. The main reason for this
situation is that the base used to solve the inverse problem is the same as the one
that is used to perform accurate forward predictions. We propose to use global

498 J.L. Fernández-Mart́ınez, T. Mukerji, and E. Garćıa-Gonzalo

optimization algorithms (PSO in this case) in a reduced model space, that is,
to adopt a “more-informed” base in which we solve the inverse problem. The
use of model reduction techniques is based on the fact that the inverse model
parameters are not independent. Conversely, there exist correlations between
model parameters introduced by the physics of the forward problem F in order
to fit the observed data. We propose to take advantage of this fact to reduce the
number of parameters that are used to solve the identification problem.

To illustrate this idea let us consider an underdetermined linear inverse prob-
lem of the form G.m = d where G is the forward linear operator and s, n
stand respectively for the dimensions of the data and model spaces. The solu-
tion to this linear inverse problem is expanded as a linear combination of a set
of independent models, {v1,v2, . . . ,vq}:

m ∈ 〈v1,v2, . . . ,vq〉 =
q∑

k=1

αkvk.

Now the inverse problem consists in finding a model in a subspace of dimension
q, fulfilling:

GV α = d,⇒Gvi = bi ⇒ Bα = d.

This amounts to solving the linear system to find the weights α of the linear
combination. Although this linear system might still be ill-posed, the effect of
this methodology is to reduce the space of equivalent solutions. Additionally
depending on the values of s and q the linear system Bα = d might be over-
determined. This methodology can be easily generalized to nonlinear inverse
problems, because once the base is determined, the search is performed on the
α-space. The use of a reduced set of basis vectors that are consistent with our
prior knowledge allows to regularize the inverse problem and to reduce the space
of possible solutions.

In this case we show an application to reservoir engineering using the PCA
spatial base. Principal component analysis [7] is a well-known mathematical pro-
cedure that transforms a number of correlated variables into a smaller number
of uncorrelated variables called principal components. The resulting transfor-
mation is such that the first principal component accounts for as much of the
variability and each succeeding component accounts for as much of the remain-
ing variability as possible. Usually PCA is performed in the data space, but in
this case it is used to reduce the dimensionality of the model space based on
a priori samples obtained from conditional geostatistical realizations that have
been constrained to static data. Applied to our context, PCA consists in finding
an orthogonal base of the experimental covariance matrix estimated with these
prior geological models, and then selecting a subset of the most important eigen-
values and associated eigenvectors that are used as a reduced model space base.
This method has been extensively used in the literature in several fields, such us
weather prediction and operational oceanography, fluid dynamics, turbulence,
statistics, reservoir engineering, etc. Sometimes it is also known under other ter-
minologies such as Proper Orthogonal Decomposition or Orthogonal Empirical
bases.

Particle Swarm Optimization in High Dimensional Spaces 499

Let us imagine that we are able to generate an ensembleX = [m1,m2, . . . ,mq]
of plausible scenarios that are constrained using the prior information that is
at disposal. None of these scenarios obviously fit the observed data with the
prescribed tolerance tol. Random field simulations techniques can be used for
this purpose. The problem consists in finding a set of patterns {v1,v2, . . . ,vq}
that provide an accurate low dimensional representation of the original set with
q being much lower than the dimension of the model space. PCA does it by
diagonalizing the prior experimental covariance matrix

Cprior =
1
N

N∑
k=1

(mk − μ) (mk − μ)t

where μ = 1
N

N∑
k=1

mk is the experimental ensemble mean. This ensemble covari-

ance matrix is symmetric and semi-definite positive, hence, diagonalizable with
orthogonal eigenvectors vk, and real semi-definite positive eigenvalues. Eigenvec-
tors vk are called principal components. Eigenvalues can be ranged in decreasing
order, and we can select a certain number of them to match most of the variabil-
ity of the models. That is, the d first eigenvectors represent most of the variability
in the model ensemble. The centered character of the experimental covariance
is crucial to maintain consistency after reconstruction. Then, any model in the
reduced space is represented as a unique linear combination of the eigenmodels

m = μ+
q∑

k=1
akvk, where μ is the model experimental mean. The orthonormal

character of the vectors provides to this base a telescopic (nested) character;
that is, if we add the next eigenvector to the base, the vector will be expressed
in these two bases as follows:

m − μ =(a1, a2, . . . , aq){v1,v2,...,vq} = (a1, a2, . . . , aq, 0){v1,v2,...,vq,vq+1} .

This property allows an easy implementation of a multi-scale inversion approach
adding more eigenvectors to match higher frequencies to the model m as needed.
To determine which level of detail we have to consider is an important question
since all the finer scales might not be informed by the observed data, that is, they
might belong to the null space of our local linear forward operator. By truncating
the number of PCA terms that we use in the expansion we are setting these finer
scales of heterogeneity (high frequencies of the model) to zero avoiding also the
risk of over fitting the data. In other words, the use of a truncated PCA base
provides a kind of natural smoothing of the solution.

3 Application to the History Matching Problem

Numerical models and inverse problems are very much used in reservoir char-
acterization to improve oil production. Solving the history matching problem
provides to the reservoir engineers an update of the spatial distribution of physi-
cal reservoir properties that can be used in later stages for reservoir management.

500 J.L. Fernández-Mart́ınez, T. Mukerji, and E. Garćıa-Gonzalo

This problem has a very ill-posed character that increases with the noise level in
the production data and with the reservoir complexity, that is the number of pix-
els needed to describe the reservoir geometry. In this case F(m) is quite complex
and it is composed of multiple components: a reservoir flow simulator to predict
the production data (Stanford’s General Purpose Research Simulator-GPRS); a
wave propagation model and inversion (diffraction tomography) to reconstruct
the seismic velocities from the seismic traces measured at the boreholes; a geo-
statistical model to constrain the spatial structure of the reservoir, and finally a
rock physics model that takes into account the facies-specific relations between
porosity, permeability, saturations and elastic velocities [2]. The reservoir model
is composed of 4000 cells organized in ten layers of 20x20 pixels extracted from
the Stanford VI sand and shale synthetic reservoir [1].The ensemble of plausible
reservoirs (one thousand) were generated by multipoint geostatistical techniques
[8]. These realizations of the reservoir span what we think could be the variabil-
ity of our model space. All these models are conditioned to borehole static data
(facies measured at the wells).

To perform the inversion we used the cloud versions [5] of the different PSO
optimizers: PSO, CP-PSO and CC-PSO [4]. In this algorithm each particle of the
swarm has associated a different set of inertia and local and global acceleration
constants located close to the upper border of the second order stability region
of each optimizer, instead of the more common algorithm where every particle
has the same set of parameters. The cloud design allows the different swarm
members to find the sets of parameters that are better suited for solving each
inverse problem. In the cloud some of the particles will have a more exploratory
behavior while others will show a higher exploitative character. This feature
helps to avoid two main drawbacks of the PSO algorithm: the tuning of the
PSO parameters and the artificial clamping of the velocities. The cloud PSO

0 10 20 30 40 50 60 70
0

0.005

0.01

0.015

0.02

0.025

iterations

(A) Median convergence curves

R
el

at
iv

e
sq

ua
re

d
m

is
fit

0 10 20 30 40 50 60 70
0

0.005

0.01

0.015

0.02

0.025

iterations

R
el

at
iv

e
sq

ua
re

d
m

is
fit

(B) Median convergence curves with sequential inversion

PSO
CP−PSO
CP−PSO dt=0.8−1.0
CC−PSO

PSO
CP−PSO
CP−PSO dt=0.8−1.0
CC−PSO

Fig. 1. A) Stanford VI reservoir (5% of Gaussian noise). Median convergence curves
for different PSO versions with a swarm size of 20. B) Median convergence curves for
different PSO versions using multiscale inversion with a swarm of twenty particles and
ten and twenty PCA terms respectively.

Particle Swarm Optimization in High Dimensional Spaces 501

layer 1 true layer 1 iqr layer 1

layer 2 true layer 2 iqr layer 2

layer 3 true layer 3 iqr layer 3

layer 4 true layer 4 iqr layer 4

layer 5 true layer 5 iqr layer 5

layer 6 true layer 6 iqr layer 6

layer 7 true layer 7 iqr layer 7

layer 8 true layer 8 iqr layer 8

layer 9 true layer 9 iqr layer 9

layer 10 true layer 10 iqr layer 10

Fig. 2. Stanford VI reservoir (5% of Gaussian noise). Horizontal slices from the syn-
thetic reservoir showing the inverted solution, true model, and uncertainty on the model
parameters (inter-quartile range).

502 J.L. Fernández-Mart́ınez, T. Mukerji, and E. Garćıa-Gonzalo

algorithms have been tested on different benchmark functions obtaining very
successful results [5].

We are interested in analyzing how the PSO family members are able to opti-
mize the history matching problem using a small number of particles. In this case
we have used a swarm of 20 models over 75 iterations and the performance behav-
ior was averaged over 10 independent simulations. The observed data is affected
with 5% of Gaussian noise. In Figure 1a it can be observed that most of the fam-
ily members reach the low misfit region within approximately 30 iterations. This
allows us to perform posterior statistics even with a reduced number of forward
runs provided that we perform enough exploration. In Figure 1a, the CP-PSO ver-
sion is the member that gives the lower median curve when it is used in the lime
and sand modality, that is withΔt varying between 0.8 and 1.0 with iterations [3].
With Δt = 1 the CP-PSO version is very explorative and the error does not de-
crease with the iterations, that is, the algorithm is exploring the region of medium
misfits (0.01). The PSO and CC-PSO versions also perform well but they usually
converge for this particular data set to an area of higher misfits. Figure 1b shows
the median convergence curve for different family members obtained by multiscale
inversion with 10 and 20 PCA terms respectively using a swarm of 20 particles.
It can be observed that the convergence rate for all the PSO members gets very
similar. Thus, the multiscale inversion can be performed in a natural way in the re-
duced model space and at each stage we are able to explore different spatial scales,
adapting dynamically our model parameterization to the data resolution.

Finally our approach allows us to perform model uncertainty assessment based
on the samples that have been collected on the low misfit region. Figure 2 shows
for the ten layers of the Stanford VI synthetic reservoir the optimum facies model
found by CP-PSO in the presence of 5% of Gaussian noise compared to the true
model. We also show the uncertainty analysis deduced from the samples that
can be associated to this “optimum” facies model. Although the true model is
binary (sand and shale) the optimum facies model and the interquartile range
show a continuous color gradation due to the truncation adopted on the PCA
base. It can be observed that the inverted model approaches the true synthetic
model, and although they are different, the uncertainty measures in each pixel
computed in the region of square relative misfit lower than 0.010 serve to account
for the difference between these models. To perform posterior statistics we also
keep track of the median distance between the swarm and the global best. When
this distance is smaller than a certain percentage of the initial value (5% in this
case) this means that the swarm has collapsed towards the global best. Once
this happens we can either stop the algorithm, or continue iterating, but in the
posterior analysis we count all the particles in this collapsed swarm as one.

4 Conclusions

The combined use of high performance global algorithms such as Particle Swarm
Optimization and model reduction techniques allows us to address real world ap-
plications having thousand of parameters. The use of model reduction techniques

Particle Swarm Optimization in High Dimensional Spaces 503

is based on the fact that the inverse model parameters are not independent.
Conversely, there exist correlations between model parameters introduced by
the physics of the forward problem in order to fit the observed data. We propose
to take advantage of fact to reduce the number of parameters that are used to
solve the identification problem. The use of a reduced base helps to regularize
the inverse problem and allows us to perform model appraisal by sampling the
family of equivalent models that fit the observed data and are in accord with
the prior information that is at disposal. This methodology can be used with
other global optimization algorithms. PSO has been chosen because its shows
very interesting exploration/exploitation capabilities.

Acknowledgments. We acknowledge the funding coming from Stanford Cen-
ter for Reservoir Forecasting and Smart Fields Consortia. We also acknowl-
edge David Echeverŕıa (Stanford University) and Eduardo Santos (formerly at
Stanford University) for lending us the forward programs to solve the history
matching problem, and the Center for Computational Earth and Environmental
Science at Stanford University for providing the computational resources.

References

1. Castro, S.A., Caers, J., Mukerji, T.: The Stanford VI reservoir. Tech. Rep. 18th
Annual Report, Stanford Center for Reservoir Forecasting (SCRF). Stanford Uni-
versity, California, USA (May 2005)

2. Echeverŕıa, D., Mukerji, T.: A robust scheme for spatio-temporal inverse modeling
of oil reservoirs. In: Anderssen, R., Braddock, R., Newham, L. (eds.) 18th World
IMACS / MODSIM Congress, Cairns, Australia, pp. 4206–4212 (July 2009)

3. Fernández-Mart́ınez, J.L., Garćıa-Gonzalo, E.: The generalized PSO: a new door to
PSO evolution. Journal of Artificial Evolution and Applications 2008, 1–15 (2008)

4. Fernández-Mart́ınez, J.L., Garćıa-Gonzalo, E.: The PSO family: deduction, stochas-
tic analysis and comparison. Swarm Intelligence 3(4), 245–273 (2009)

5. Fernández-Mart́ınez, J.L., Garćıa-Gonzalo, E., Fernández-Muniz, Z., Mukerji, T.:
How to design a powerful family of particle swarm optimizers for inverse model-
ing. New trends on bio-inspired computation. In: Transactions of the Institute of
Measurement and Control (2010) (accepted for publication)

6. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings IEEE In-
ternational Conference on Neural Networks (ICNN 1995), Perth, WA, Australia,
vol. 4, pp. 1942–1948 (November-December 1995)

7. Pearson, K.: On lines and planes of closest fit to systems of points in space. Philo-
sophical Magazine 2(6), 559–572 (1901)

8. Strebelle, S.: Conditional simulation of complex geological structures using multiple-
point statistics. Mathematical Geology 34(1), 1–21 (2002)

Particle Swarm Optimization of Bollinger Bands

Matthew Butler and Dimitar Kazakov

Faculty of Computer Science, Artificial Intelligence Group, University of York, UK
{mbutler,kazakov}@cs.york.ac.uk

Abstract. The use of technical indicators to derive stock trading signals
is a foundation of financial technical analysis. Many of these indicators
have several parameters which creates a difficult optimization problem
given the highly non-linear and non-stationary nature of a financial time-
series. This study investigates a popular financial indicator, Bollinger
Bands, and the fine tuning of its parameters via particle swarm opti-
mization under 4 different fitness functions: profitability, Sharpe ratio,
Sortino ratio and accuracy. The experiment results show that the pa-
rameters optimized through PSO using the profitability fitness function
produced superior out-of-sample trading results which includes transac-
tion costs when compared to the default parameters.

Keywords: particle swarm optimization, Bollinger Bands, Sharpe ratio,
Sortino ratio and parameter optimization.

1 Introduction

Technical analysis is a popular technique for modeling the stock market for price
level and volatility estimation. Although these techniques can be very useful they
often have several parameters which have to be decided upon which greatly in-
fluence the effectiveness of the trading signals produced. One popular indicator
is Bollinger Bands (BB), as proposed by John Bollinger, which are considered
to be a channel indicator, where the bands create a channel around the price
movements which capture the majority of the fluctuations. In work conducted
by Lento et al. [2] the authors found that trading rules developed from BBs were
not profitable after transaction costs were accounted for and when generating
trading rules based on several indicators the models were more reliable when
BBs were excluded. The authors point out that there is a lack of attention from
academia in studying BBs and that there is no theoretical explanation for using
the traditional parameters settings. In Leung et al. [4] the authors compared the
trading rules of two channel indicators the BBs and Moving Average Envelopes
(MAE), the results indicated that the MAE tended to produce more profitable
trading rules in the short-term which is the preferred time-horizon for using tech-
nical trading rules. In Lento et al. [3] the authors conclude that BBs are unable
to produce profitable trading rules and that they consistently underperform rel-
ative to the buy-and-hold approach (a passive investment strategy which reflects
the performance of the market as a whole). These studies all have a similar ap-
proach where the size of the window to capture the information is varied and the

M. Dorigo et al. (Eds.): ANTS 2010, LNCS 6234, pp. 504–511, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Particle Swarm Optimization of Bollinger Bands 505

moving average is a simple moving average, as given in equation 1. These studies
also share the assumption that the bands for which the channels are constructed
are equal for the upper and lower limits. Given the recent empirical evidence that
BBs are not as effective as other technical indicators and that there are several
parameters for which no theoretical consideration is given it seems reasonable
that an advanced optimization technique such as particle swarm optimization
(PSO) may be appropriate to fine tune the settings. Other work [7] revealed that
there was not a global set of parameters for which BBs would perform optimally
for each stock and therefore promoting an active learning approach where the
parameters of the BBs can be arrived upon based on historical data and which
are optimized on some relevant fitness function. Once again PSO has particular
strengths for performing such an optimization approach.

2 Bollinger Bands

Bollinger Bands are a technical indicator, which creates a price channel around
a moving average as depicted in figure 2. These price channels can be used to
identify stocks which are overbought or oversold and therefore create trading
signals for buying or selling. The three main components of a BB are:

1. An N day moving average, which creates the middle band, equation 1,

SMAn(t) =
∑t

i=t−N+1 Pi

N
(1)

2. an upper band which, is k times above the standard deviation of the middle
band, and

3. a lower band, which is k times below the standard deviation of the middle
band.

The default settings for using BBs are a moving average window of 20 days and
a value of k equal to 2 for both the upper and lower bands. When the price of
the stock is trading above the upper band, it is considered to be overbought,
and conversely, an asset which is trading under the lower band is oversold. The
trading rules that can be generated from using this indicator are given by equa-
tions 2–3:

Buy : Pn(t− 1) < BBlow
n (t− 1)&Pn(t) > BBlow

n (t) (2)
Sell : Pn(t− 1) < BBup

n (t− 1)&Pn(t) > BBup
n (t) (3)

Essentially, the above rules state that a buy signal is initialized when the price
crosses the lower bound from below, and a sell signal when the price crosses the
upper bound from above. In both cases the trade is closed out when the price
crosses the middle band. As such, a trader will be taking long/short positions
in the market; a long/short position is a trading technique which profits from
increasing/declining asset prices.

506 M. Butler and D. Kazakov

Fig. 1. A depiction of 250 days of trading for the Dow Jones Industrial Average (a
market index in the USA), a 20-day moving average and the upper and lower Bollinger
bands with value of k =2

3 Particle Swarm Optimization

Particle Swarm Optimization (PSO) is an algorithm inspired from swarm in-
telligence commonly used in optimization tasks, which has had success with
searching complex solution spaces, similar to the abilities of genetic algorithms
(GA). PSO was chosen for this study as it has been shown to be as effective as
GAs when modeling technical trading rules, as in Lee et al. [1], yet it had a much
simpler implementation and arrived at a global optimum with fewer iterations.
For this study the PSO was searching for the optimal values for the parameters
displayed in table 1. What makes this study particular novel is that we are not
making the assumption that the upper and lower bands should be equal but are
allowing the PSO algorithm to search for the optimal bands independent of each
other. The default settings for the type of moving average (MA) is normally
a simple moving average (SMA), however it is suggested that an exponential
moving average (EMA) does perform better in some markets. For this imple-
mentation we are allowing the PSO to explore this solution space where both
SMA and EMA will be considered. Finally the size of the window used for calcu-
lating the moving average and the standard deviation have also been explored.
The PSO algorithm was implemented with particles containing 10 dimensions
with an overall swarm size of 100, the mapping of the 10-dimensional position
vector to the BB parameters is provided below in figure 2.

The type of MA to use was mapped using a wrapper function which evaluated
to a SMA if the particle had a value greater than or equal to 0.5 and mapped
to a EMA (equation 4) if the particle had a value less than 0.5.

EMAt = EMAt−1 + α ∗ (Pt − EMAt−1) (4)

where, α is determined by the equation α = 2/(N + 1) where N is the size of
the window and Pt is the value of the underlying financial asset at time t. Each

Particle Swarm Optimization of Bollinger Bands 507

Table 1. The parameters that the PSO algorithm optimized. MA stands for moving
average and the type of MA could be simple or exponential.

Symbol Description
N The size of the moving window for calculating the MA.
Ku The value for calculating the upper band.
Kl The value for calculating the lower band.
T The type of MA to use.

Fig. 2. The mapping of the 10-dimensional position vector to the BB parameters for
each particle in the swarm

experiment was performed with 50 iterations as the stopping criterion and each
particle velocity and its corresponding position in the 10-dimensional space was
updated with equations 5 and 6 respectively.

υi,j = ω ∗ υi,j + C1R1 ∗ (localbest i,j − xi,j) + C2R2 ∗ (globalbest j − xi,j) (5)

Here υi,j is the velocity of jth dimension of the ith particle, c1 and c2 determine
the influence on a particular particle by its optimal position previously visited
and the optimal position obtained by the swarm as a whole, r1 and r2 are
uniform random numbers between 0 and 1, and ω is an inertia term (see [6])
chosen between 0 and 1.

xi,j = xi,j + υi,j (6)

Here xi,j is the position of the jth dimension of the ith particle in the swarm. To
encourage exploration and limit the speed with which the swarm would converge,
a maximum velocity was chosen for each dimension dependent on its range of
feasible mappings. In table 2 the range and maximum velocity for each parameter
is displayed.

4 Fitness Functions

The overall goal of the experiment is to determine the optimal parameters for
maximizing profits, it would seem obvious that training the swarm with a fit-
ness function based on profit would be the most appropriate. However, other

508 M. Butler and D. Kazakov

Table 2. The range of feasible values for each parameter and its corresponding maxi-
mum velocity for navigating the solution space

Parameter Range Max Velocity
Upper Band {4,4} 0.75
Lower Band {4,4} 0.75

MA Type {0,1} 0.10
Window Size {0,500} 20

literature, Moody et al. [5], found that optimal performance was arrived at with
fitness functions which have a risk to reward payoff.

The four fitness functions are described below and each contains a component
for transaction costs. The profit fitness function rewarded particles which gen-
erated the highest level of profit after accounting for transaction costs without
any regard for how risky the trading model was. The fitness function, shown in
equation 7, is a sum over all trades (T) taken by the model:

fitnessi =
T∑

i=1

capitalt ∗
(P1,t − P0,t)

P0,t
− (τ ∗ capitalt) (7)

where fitnessi is the fitness of the ith particle in the swarm, τ represents the
transaction costs, and P0 and P1 are the entering and exiting price for the
underlying asset. The profit for each trade is the rate of return multiplied by
the capital invested minus the transaction cost which is also a function of the
amount of capital invested. The Sharpe and Sortino ratios are commonly used
metrics for evaluating how efficient a trading model is with the additional risk it
is exposed to. In both cases a higher value indicates a more efficient use of risk.
The Sharpe Ratio is shown in equation 8:

S =
E[R −Rf]√
var[R −Rf]

(8)

where R is the return on the asset and Rf is a risk-free rate and E is the expected
returns operator. The only difference in the above equation for the Sortino ratio
is the denominator: where the Sharpe uses all returns from the trading model,
the Sortino only considers negative returns, thus models are allowed to have a
higher variance, as long as the returns are positive. Using these equations to
derive the fitness function will allow for models which efficiently use risk to be
assigned higher fitness with the intention that these models will perform better in
the out-of-sample test periods. The fitness functions employed thus far are path
dependent and therefore can be sensitive to initial conditions. To help assess
the limitations of the prior approaches we introduce a fourth fitness function
(equation 9) that assesses how often the trading model produces a positive gain
in relation to the total number of positions it takes in the market.

fitnessi =
#returns > 0

#returns > 0 + #returns < 0
(9)

Particle Swarm Optimization of Bollinger Bands 509

5 Data Description and Experiment Design

The dataset contains daily market values for the DJIA spanning 20 years from
Jan 1990 to Dec 2009, where a split of 10 years for training and 5 years for test-
ing yielded 2 separate but not fully independent test periods for the index. The
four PSO models are trained separately on each of the datasets and then the
optimized parameters are tested on the 5 year out-of-sample data. For compari-
son’s sake the models are compared to a buy-and-hold approach and the default
settings for the BBs using an SMA and an EMA. The default settings for SMA
and EMA are a 20 day sliding window and a value of 2 for k. The transaction
costs are considered to be 0.5% of the capital invested and the risk-free rate (Rf)
is a constant 2%.

6 Experimental Results

The results from training are displayed in table 3; the cumulative returns are
based on a $100 initial investment.

Table 3. Training results for each model and time period

Return $ Return % # of trades
Model 90-99 95-04 90-99 95-04 90-99 95-04
Profit 101.17 105.26 0.011 0.052 44 42
Sharpe -3.54 4.62 -1.03 -0.953 42 42
Sortino -1.896 109.86 -1.01 0.098 44 48
Accuracy 22.29 32.84 -0.777 -0.671 44 44
EMA 52.62 58.63 -0.473 -0.413 112 94
SMA 30.00 43.22 -0.699 -0.567 166 164
Buy-Holds 409.12 280.91 - - - -

From the training results we can see that models created from any of the
BB parameter settings were inferior to the buy and hold approach. However
the PSO model utilizing the profitability fitness function (PSOprofit) was the
top performer amongst the BB models. The PSO models all produced a trading
activity of around 40 transactions; a manifestation of the 40 trade minimum
requirement that was imposed. Such a constraint was added because of the poor
performance of the models with the most profitable being those which traded
very little or not at all. The test results, reported in table 4, are more competitive
between the buy and hold approach and the BB trading models, where the buy
and hold approach was outperformed by PSOprofit between 2000 and 2004. In
the second testing period the buy and hold approach was the most profitable
but PSOprofit was a close second. The PSO models tended to trade less often
than with the default settings, reducing the burden of transaction costs.

510 M. Butler and D. Kazakov

Table 4. Testing results for each model and time period

Return $ Return % # of trades
Model 00-04 05-09 00-04 05-09 00-04 05-09
Profit 101.44 94.31 0.014 -0.056 16 18
Sharpe 87.37 89.94 -0.126 -0.100 20 20
Sortino 61.50 68.45 -0.384 -0.315 36 16
Accuracy 78.04 81.30 -0.219 -0.186 32 34
EMA 92.02 84.70 -0.079 -0.152 48 64
SMA 88.61 87.65 -0.113 -0.123 82 90
Buy-Holds 94.94 97.19 - - - -

7 Discussion

If the primary goal of using Bollinger bands is to maximize profit then it seems
obvious that a fitness function which optimizes on this metric would be the
most reasonable to implement. As discussed, there is supporting literature that
has found that using a risk-adjusted fitness function delivers superior out-of-
sample returns. In this study this conclusion is not consistent and though these
studies involve financial time-series with similar objectives (maximizing profits),
the actual task of the algorithms is different and therefore may require different
fitness functions. With regards to the Sharpe and Sortino ratios, they were unable
to promote movement of the swarm from unfit regions of the solution space
because of the calculations themselves. When all models are producing negative
returns the less fit particles are being chosen to lead the swarm. From equation
8 we see that if we have two models which produce the same negative return, the

Fig. 3. A plot of the DJIA over both sets of training and testing data. Arrow 1 signifies
the upward trend of the market during the first training phase and arrow 2 signifies
the sideways moving market in the first testing period.

Particle Swarm Optimization of Bollinger Bands 511

one which is more volatile and therefore less favorable will actually be ranked
higher. The accuracy fitness function was generally outperformed by the other
PSO methods, possibly from the lack of consideration for magnitude in the
returns when assigning fitness. Although the optimization was able to outperform
the default settings in the training and testing periods, it is apparent that when
the market is trending, the BBs are unable to capture the excess profits. In one
testing period a PSO model was able to outperform the buy and hold approach
but this was in the wake of a market contraction. In figure 3 we have a graph of
the DJIA over the training and testing periods.

8 Conclusions and Future Work

The main objective of this study was to investigate the short-comings of Bollinger
Bands as technical indicators and if a swarm intelligence approach to optimiz-
ing its parameters would assist its effectiveness. This included an analysis of 4
different fitness functions which are commonly used in financial modeling and a
comparison to the traditional use of the indicator and a market portfolio. The
results to date have shown that by fine-tuning the parameters over a training
period, with an appropriate fitness function, the particle swarm optimization al-
gorithm is able to find an optimal set of parameters and that depending on the
market environment is able to outperform a buy and hold approach. Future work
will include expanding the study to other market indices, as well as, changing
the fitness ranking of the Sharpe and Sortino ratios. Finally, some trading rules
such as stop losses could be imposed to cap how much a trade is able to lose
which could assist the accuracy fitness function as it would not be as susceptible
to large losses during fitness assignment.

References

1. Lee, J.S., Lee, S., Chang, S., Ahn, B.H.: A comparison of ga and pso for excess
return evaluation in stock markets. In: Mira, J., Álvarez, J.R. (eds.) IWINAC 2005,
Part II. LNCS, vol. 3562, pp. 221–230. Springer, Heidelberg (2005)

2. Lento, C., Gradojevic, N.: The profitability of technical trading rules: a combined
signal approach. Journal of Applied Business Research 23(1), 13–27 (2007)

3. Lento, C., Gradojevic, N., Wright, C.: Investment information content in Bollinger
Bands? Applied Financial Economics Letters 3(4), 263–267 (2007)

4. Leung, J., Chong, T.: An empirical comparison of moving average envelopes and
Bollinger Bands. Applied Economics Letters 10(6), 339–341 (2003)

5. Moody, J., Wu, L., Liao, Y., Saffell, M.: Performance functions and reinforcement
learning for trading systems and portfolios. Applied Financial Economics Letters 17,
441–470 (1998)

6. Shi, Y., Eberhart, R.: A modified particle swarm optimizer. In: Proceedings of the
1998 IEEE International Conference on Evolutionary Computation, IEEE World
Congress on Computional Intelligence, pp. 69–73 (1998)

7. Williams, O.: Empirical Optimization of Bollinger Bands for Profitability. Master’s
thesis, Simon Fraser University (2006)

Protein Structure Prediction in Lattice Models
with Particle Swarm Optimization

Andrei Băutu and Henri Luchian

Faculty of Computer Science, “Al. I. Cuza” University, Iasi, Romania
abautu@anmb.ro, hluchian@uaic.ro

Abstract. The protein structure prediction problem consists in finding
good computational algorithms for prediction of protein native states.
This paper applies the Particle Swarm Optimization (PSO) algorithm to
predict the tertiary structure of proteins in lattice models. We propose
a novel discrete PSO variant designed for lattice-based protein folding
models. We present three lattice based models and two folding encodings,
which are tested in different combinations on six proteins. The results
indicate that the new algorithm performs very efficient and finds very
good proteins conformations.

1 Introduction

The protein structure prediction (PSP) problem is part of the larger protein
folding problem and consists in finding good computational algorithms for pre-
dicting protein native states based on amino acid sequences. Current research
focuses on two main directions: prediction based on existing databases of pro-
tein foldings and similarities between proteins, and prediction using physics laws,
without derived knowledge [11]. Our research lays on the latter path.

This paper applies the Particle Swarm Optimization (PSO) algorithm to pre-
dict the tertiary structure of proteins in lattice models based on their primary
structure. We propose a novel approach, which uses a discrete PSO variant de-
signed for lattice-based protein folding models. Despite the simplicity of these
types of models, the protein folding problem is still very hard.

The following section briefly presents the terminology and goals of the PSP
problem. It also presents three frequently used lattice models. Section 3 briefly
describes the binary PSO algorithm. Section 4 presents an extension of the bi-
nary PSO to the PSP problem in lattice models and introduces a new discrete
PSO, Roulette PSO, which “boroughs” the roulette wheel selection of Genetic
Algorithms. Section 5 presents the experimental results obtained for six proteins
with various lattice models and folding encodings. The last section contains some
remarks about current status and future work directions.

2 Protein Structure Prediction Problem

Proteins are the most important molecules found in living cells because they
perform a vast range of indispensable roles: speeding up chemical reactions, reg-
ulating cell activity, protecting cells, transporting elements, etc. From a chemical

M. Dorigo et al. (Eds.): ANTS 2010, LNCS 6234, pp. 512–519, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Protein Structure Prediction in Lattice Models with PSO 513

point of view, they are organic compounds created from sequences of amino acids
(AAs). Each AA has a central α−carbon which is linked to three attachments
similar to all AAs and a residual attachment, which differentiates various AAs.
Ribosomes sequence AAs according to DNA instructions into the primary struc-
ture of the protein. To carry out its tasks, the protein evolves by linking AAs
with hydrogen bonds (the secondary structure), folding the resulting polypep-
tide chain into three-dimensional structures (the tertiary structure) and coupling
together multiple chains (the quaternary structure).

The tertiary structure of the protein is called the native state and repre-
sents the energetic ground state of the protein. Various simplified models for
the protein structure exist: the Toy model, the Functional Model Protein, the
Hydrophobic-Polar model, etc. Despite the simplicity of these models, the pro-
tein folding problem is still very hard. Designing efficient algorithms for the PSP
problem is an important research area of computational biology.

The full complexity of the folding processes that take place in proteins are
yet to be unveiled. Even if they were known, detailed all atom simulations of
such complex processes would not be possible in modern computers, so simpler
models were developed. The dominant driving force for protein folding is the
hydrophobic force [9]. With respect to this, AAs are hydrophobic or hydrophilic.
In water environments, hydrophobic AAs tend to cluster in order to minimize
contact with water, while hydrophilic AAs do not avoid contact with water.

Lattice models focus only on the general principles of the folding process. Sites
available for AAs are located in 2D square or 3D cubic lattices, the distances
between adjacent AAs are fixed and equal, and the bond angles can be ±90 or
180 degrees. The general energy function for folding in lattice models is

E =
∑
i<j

εaiaj δ(pi, pj) , (1)

where ai and aj denote the types of ith and jth AAs, which are located on the
lattice in sites pi and, respectively, pj . The εaiaj constants depend on the model
and they control the type of interaction between different types of AAs. The
values of the δ function depend on the folding and they control the contribution
of pair interactions to the total system energy.

The HP model focuses on short-range contacts of hydrophobic AAs. The en-
ergy of the folding decreases only for hydrophobic not-linked AAs which are
next to each other in the lattice. Therefore, the interaction constants in (1) are
εHH = −1, εPP = 0, εPH = 0, and εHP = 0. The attenuation function δ is 1 if
AAs i and j are not linked and occupy neighboring sites, and it is 0 otherwise:

δ(pi, pj) =
{

1, if |i− j| > 1 and ‖pi − pj‖1 = 1
0, otherwise , (2)

where ‖·‖1 denotes the Manhattan distance. The HP model is a focus of research
in computational biology and statistical physics [20].

The functional model protein (FMP) uses the same attenuation function as
HP, but it includes repulsive interactions. Hydrophobic not-linked AAs next to

514 A. Băutu and H. Luchian

each other decrease the system energy by 2 (εHH = −2). The other types of
interactions (i.e. H-P, P-H, P-P) increase the system energy by 1 (εPP = 1,
εPH = 1, and εHP = 1).

The HP and FMP models use the concept of Free Energy [10] to measure the
energy of foldings. They consider only interactions of AAs in neighbor sites of
the lattice. For the rest of AAs, it makes no distinction if they are located close
or far apart from each other. Therefore, the energy landscape for most proteins is
discrete, step-wise and with large plateaus. To address this problem, [5] defines a
Global Energy (GE) function which uses the distance between AAs, smoothing
the energy landscape. The GE model is a variant of the HP model, which uses
the inverse of the Euclidean distance (‖ · ‖2) as the attenuation function:

δ(pi, pj) = ‖pi − pj‖−1
2 . (3)

The PSP problem is NP-hard in many protein folding models (including the
simple HP model [6]).

3 Particle Swarm Optimization

PSO is a meta-heuristic based on the principles of swarm intelligence. It uses
a set of potential solutions (called particle swarm) to solve optimization prob-
lems. It was proposed for continuous optimization problems in [12] and later
adapted for binary [14] and discrete domains. The objective function describes
the optimization problem and defines the problem landscape in terms of solu-
tions quality. Particles fly in the problem landscape, searching for high quality
solutions. The particles communicate with each other in a collaborative search
effort. The driving force of PSO is the collective swarm intelligence, which proved
very successful in tackling various difficult problems [1].

The search process starts with a swarm of particles randomly scattered in the
search space. On each iteration, particles adjust their velocity v and position p
using information gathered by themselves or received from their neighbors. The
classical equation for velocity update combines individual and social learning
sources with the current state of the particle (v′ and p′):

v = ωv′ +R1(pp − p′) +R2(pg − p′) . (4)

The ω parameter controls the inertia of the particle. The pp and pg are the best
positions found by the particle and its neighbors. The R1 and R2 are random
Uniformly distributed variables that weight the learning sources. The ampli-
tude of the velocity vector is clamped by a vmax parameter, which prevents the
“explosion” of the swarm [7].

The position of each particle is updated based on the new velocity. In the
case of binary PSO, the position vector p ∈ {0, 1}n contains the responses of the
particle for the n binary queries of the problem. The probability that the particle
will answer 1 to a particular query i depends on the velocity of the particle in
that query plane (vi):

Protein Structure Prediction in Lattice Models with PSO 515

p =
{

1, if R3 < (1 + exp(−v))−1

0, otherwise , (5)

where R3 is a random Uniformly distributed variable in [0, 1).
Before the next iteration, the fitness of each particle is computed based on

the problem solution encoded in the position, pp and pg are updated, and the
best solution found so far is stored for presenting it as the algorithm output. For
more details on PSO we refer the reader to [8].

4 PSO for Protein Structure Prediction

Real-valued PSO was applied successfully on the PSP problem with various off-
lattice models, like the Toy model or HP model with ECEPP energy function
[17,18,22]. Although the search space is larger, the off-lattice models give PSO
more freedom to exploring it, more informative feedback, and provide a smooth
energy landscape. The successes of real-valued PSO for off-lattice protein folding
models are encouraging, proving once again the power of the particle swarm
paradigm.

Many types of optimization techniques provide good results on lattice models
[3,21,13,16]. In [2], a discrete PSO for PSP on lattice models is proposed. It
proves successful in finding low energy foldings for proteins with various sizes.
Compared to a genetic algorithm (GA), PSO performed better because it ignored
local minima foldings and identified more native states than the GA. This paper
continues that research, by testing the PSO algorithm on more lattice models.

4.1 Folding Representation

Encoding the folding of a protein in a lattice-based model can be done in many
ways. The common approach is to encode absolute or relative folding directions.
In absolute encoding, a folding code for each AA sets the next folding direction
in the context of a fix coordinate system. In relative encoding, a folding code for
each AA sets the next folding direction in the context of a coordinate system
relative to the last direction. For example, in the case of a 2D lattice, the absolute
folding instructions can be Up, Down, Left, Right and the relative ones can
be Left, Right, Ahead (see Fig. 1). Each of the two codings has advantages
and disadvantages: the relative encoding has less folding codes and instructions
(i.e. smaller search space); the absolute encoding is more stable to changes. [15]
recommends relative encodings for genetic algorithms, while [2] reports improved
performance for PSO with the absolute encoding.

4.2 Particle Search Space

The number of possible codes for each folding operation (m) depends on the
lattice (i.e. 2D or 3D) and the folding instruction set (i.e. absolute or relative).
The PSO particles need to be able to explore a search space that represents all
valid conformations. For example, when using the absolute encoding in a 2D

516 A. Băutu and H. Luchian

Fig. 1. Absolute (left) and relative (right) folding instructions on a 2D lattice

Fig. 2. Schematic representation of the decision process of RPSO

lattice, each element of the position vector should be able to hold 4 possible
values. Moreover, the particle must be able to swing directly between any of
these values, similar to the oscillations used by real-valued PSO particles to find
solutions for real-valued optimization problems [19].

The PSO algorithm from [2] assigns a different integer number for each folding
code, starting from 0, and use their base 2 representations in particle positions.
The representation mappings used for 2D lattice are down=00, up=01, left=10,
right=11 for absolute encoding, and ahead=00 or 01, left=10, right=11 for rel-
ative encoding. This simple representation permits the use of the binary PSO
without modifications. If the protein has n AAs, then the particle and velocity
vectors have �log2m�(n−1) components for absolute encoding and, respectively,
�log2m�(n − 2) components for relative encodings. The disadvantage of this
representation is that a folding code requires multiple independent stochastic
decisions (using (5)).

Inspired by binary PSO and roulette wheel selection of GAs, we designed
a PSO algorithm to address this disadvantage, called Roulette PSO (RPSO).
RPSO tracks independently the probability of each folding instruction to be
selected for a folding code. For each folding code, the corresponding velocity
component is a tuple of m real value elements. The ith element of this velocity
tuple encodes the probability that the ith folding instruction should be used for
this code. The position component is a tuple of m binary values with only one
bit set to 1 (and the rest are 0). If the ith element of the position is set to 1 then
the ith folding instruction is used in the code. The velocity is updated with (4)
meaning that a bad folding instruction yields from its selection probability in
favor of a good folding instruction. Instead of (5), the position is updated using
roulette wheel selection from GAs: the probability of each folding instruction is
computed from the velocity tuple; a random number R ∈ [0, 1) is produced; the

Protein Structure Prediction in Lattice Models with PSO 517

Table 1. Proteins used in experiments

Code Protein string Size (n) E∗

P1 3H 1P 1H 5P 1H 11 -2
P2 1H 1P 1H 2P 2H 1P 2H 1P 1H 1P 2H 2P 1H 1P 1H 20 -9
P3 2H 2P 1H 2P 1H 2P 1H 2P 1H 2P 1H 2P 1H 2P 2H 24 -9
P4 2P 1H 2P 2H 4P 2H 4P 2H 4P 2H 25 -8
P5 3P 2H 2P 2H 5P 7H 2P 2H 4P 2H 2P 1H 2P 36 -14
P6 P H 2P H P 3H P 2H P 5H 18 -9

position bit for the instruction with the smallest cumulative probability larger
than R is set to 1. This process is represented in Fig. 2 for a single folding code.

5 Experimental Results

We compared a set of experiments using proteins presented in Tab. 1. The first
column identifies the protein code referred in the following discussions. The
second column contains the protein HP string. The fourth column contains the
minimum energy of the protein in the HP model on 2D lattice [20,4].

For each protein, we tested the binary PSO from [2] and RPSO with absolute
and relative encodings on the lattice models presented in Sec. 2. For each ex-
perimental setup 15 independent runs were performed, with 100 iterations each.
The PSO algorithms used 300 particles connected in a star topology, learning
factors (R1 and R2) are randoms variables from U[0,1), ω = 1, and vmax = 5.

Figure 4 contains boxplots for the folding energies of each protein in the three
lattice models (due to its simplicity, all algorithms performed equally good on
protein P1, so it was excluded from the plot). The X-values denote the tested
algorithm variant: A-B = absolute encoding with binary PSO, A-R = abso-
lute encoding with RPSO, R-B = relative encoding with binary PSO, R-R =
relative encoding with RPSO. The statistics recorded during the runs indicate
that RPSO with absolute encoding (A-R) had the lowest energy mean in most
case. The next best option in many cases is binary PSO with absolute encoding
(A-B). The worst results were obtained by binary PSO with relative encoding
(R-B). None of the algorithms ever found the perfect folding for problem P5
in the HP model, but RPSO with absolute and relative encodings found highly
compact foldings (see Fig. 3) which are only 1 energy-unit away from the perfect
solution. RPSO requires 50% to 85% more run time than binary PSO on the

Fig. 3. Foldings examples for each protein found by the RPSO algorithm

518 A. Băutu and H. Luchian

Fig. 4. Boxplots of folding energies

same encodings. There is no significant difference in run times between the two
encodings. With respect to the iteration in which the solution was found, there
is no significant difference between A-R, A-B and R-R. However, R-B frequently
required more iterations to locate its solutions and they had higher energy.

6 Conclusions

This paper presents a new discrete PSO for the protein structure prediction
problem on lattice models. Experimental results are very encouraging as the
conformations obtained by the algorithm are comparable in quality with state-
of-the-art results. However, the perfect conformation of one of the proteins (P5)
eluded the algorithms’ search process proving that there is still room for im-
provement (e.g. hybridization with local search algorithms).

Acknowledgments. This paper is supported by the NatComp PN II-11-
028/2007 project.

References

1. Băutu, A., Băutu, E.: Particle Swarms in Statistical Physics, pp. 77–88. Intech
Publishing (2009)

2. Băutu, A., Luchian, H.: Protein structure prediction in the 2D HP model using
Particle Swarm Optimization. In: Proc. of 7th Int. Conf. on Numerical Methods
and Applications (to appear)

Protein Structure Prediction in Lattice Models with PSO 519

3. Beńıtez, C.M.V., Lopes, H.S.: A parallel genetic algorithm for protein folding pre-
diction using the 3D-HP side chain model. In: Proc. of CEC 2009, pp. 1297–1304.
IEEE Press, Piscataway (2009)

4. Bennett, A.J., Johnston, R.L., Turpin, E., He, J.Q.: Analysis of an immune algo-
rithm for protein structure prediction. Informatica (2008)

5. Berenboym, I., Avigal, M.: Genetic algorithms with local search optimization for
protein structure prediction problem. In: Proc. of the 10th annual Conf. on Genetic
and evolutionary computation, pp. 1097–1098. ACM, New York (2008)

6. Berger, B., Leighton, T.: Protein folding in the hydrophobic-hydrophilic (HP) is
NP-complete. In: Proc. of RECOMB 1998, pp. 30–39. ACM, New York (1998)

7. van den Bergh, F., Engelbrecht, A.: A study of particle swarm optimization particle
trajectories. Information Sciences 176(8), 937–971 (2006)

8. Clerc, M.: Particle Swarm Optimization. Hermes Science, London (2006)
9. Dill, K.A.: Dominant forces in protein folding. Biochemistry 29(31), 7133–7155

(1990)
10. Dill, K.A., Ozkan, S.B., Shell, M.S., Weikl, T.R.: The protein folding problem.

Annual Review of Biophysics 37(1), 289–316 (2008)
11. Dill, K.A., Ozkan, S.B., Weikl, T.R., Chodera, J.D., Voelz, V.A.: The protein fold-

ing problem: when will it be solved? Current Opinion in Structural Biology 17(3),
342–346 (2007)

12. Eberhart, R., Kennedy, J.: A new optimizer using particle swarm theory. In: Proc.
of the Sixth Int. Symp. on Micro Machine and Human Science, pp. 39–43 (1995)

13. Kapsokalivas, L., Gan, X., Albrecht, A., Steinhöfel, K.: Population-based local
search for protein folding simulation in the MJ energy model and cubic lattices.
Computational Biology and Chemistry 33(4), 283–294 (2009)

14. Kennedy, J., Eberhart, R.C.: A discrete binary version of the particle swarm algo-
rithm. In: Proc. of the World Multiconf. on Systemics, Cybernetics and Informatics,
vol. 5, pp. 4104–4109. IEEE Press, Piscataway (1997)

15. Krasnogor, N., Hart, W.E., Smith, J., Pelta, D.A.: Protein structure prediction
with evolutionary algorithms. In: Proc. of the Genetic and Evo. Comp. Conf.,
vol. 2, pp. 1596–1601. Morgan Kaufmann, Orlando (1999)

16. Lin, C.J., Hsieh, M.H.: An efficient hybrid Taguchi-genetic algorithm for protein
folding simulation. Expert Systems with Applications 36(10), 12446–12453 (2009)

17. Liu, J., Wang, L., He, L., Shi, F.: Analysis of Toy Model for Protein Folding Based
on PSO Algorithm. In: Wang, L., Chen, K., S. Ong, Y. (eds.) ICNC 2005. LNCS,
vol. 3612, pp. 636–645. Springer, Heidelberg (2005)

18. Pérez-Hernández, L.G., Rodŕıguez-Vázquez, K., Garduno-Juárez, R.: Parallel PSO
applied to the protein folding problem. In: Proc. of the 11th Annual Conf. on
Genetic and evolutionary computation, pp. 1791–1792. ACM, New York (2009)

19. Poli, R., Kennedy, J., Blackwell, T.: Particle swarm optimization. Swarm Intelli-
gence 1, 33–57 (2007)

20. Santana, R., Larranaga, P., Lozano, J.A.: Protein folding in simplified models with
EDA. IEEE Transactions on Evolutionary Computation 12(4), 418–438 (2008)

21. Thachuk, C., Shmygelska, A., Hoos, H.: A replica exchange Monte Carlo algorithm
for protein folding in the HP model. BMC Bioinformatics 2008(1), 342 (2007)

22. Zhu, H., Pu, C., Lin, X., Gu, J., Zhang, S., Su, M.: Protein structure prediction
with EPSO in Toy model. In: Proc. of ICINIS 2009, pp. 673–676. IEEE Computer
Society, Washington (2009)

Short and Robust Communication Paths in
Dynamic Wireless Networks

Yoann Pigné1 and Frédéric Guinand2

1 SnT, University of Luxembourg, Luxembourg
yoann.pigne@uni.lu

2 LITIS, University of Le Havre, France
frederic.guinand@univ-lehavre.fr

Abstract. We consider the problem of finding and maintaining com-
munication paths in wireless mobile ad hoc networks (MANET). We
consider this problem as a bi-objective problem when trying to minimize
both the length of the constructed paths and the number link recon-
nections. We propose two centralized algorithms that help analyse the
problem from a dynamic graph point of view. These algorithms give
lower bounds for our proposed decentralized ant-based algorithm that
constructs and maintains such paths in a MANET.

1 Introduction

Mobile ad hoc networks (MANETs) define communication networks composed
of mobile devices or stations able to communicate together with wireless media.
When communicating in a peer-to-peer way, they do not rely on any infras-
tructure. The resulting communication network is decentralized. The volatility
and the mobility are two major characteristics of these networks. The mobility
comes with the nature of these stations that are usually small devices handheld
by their owner or embedded in mobile vehicles. The volatility illustrates the
idea that stations are not always turned on. They can be standing by and then
reactivate to reappear in their neighborhood.

Stations volatility is the results of poor capacity batteries while radio com-
munication need a lot of energy. As a result, energy saving is a key issue in the
design of applications dedicated to MANETs that have to be careful with com-
munication overheads. Two stations willing to communicate need to exchange
preliminary information to set up the link. This initialization is called here, for
seek of simplicity, ”synchronization”. Moreover, discovery times may also be
considered (for instance, the Service Discovery Protocol in Bluetooth may be
too slow for mobile networks). Synchronization processes need a lot of energy
achieve and the number of new communication links may be minimized.

MANETs as well as classical networks need communication services like data
routing. Yet, classical networks protocols for routing reveal to be useless in
infrastructure-less communication systems. MANETs need dedicated algorithms
for the routing of communication. A large panel of algorithms are proposed to

M. Dorigo et al. (Eds.): ANTS 2010, LNCS 6234, pp. 520–527, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Short and Robust Communication Paths in Dynamic Wireless Networks 521

perform routing in MANETs, taking into account different constraints such as
the overhead of transmitted data [6], the quality of the communication links [4]
or the geographical motion of the stations [5].

Here we address the problem of finding and maintaining communication paths
between couples of stations in a MANET. We consider the problem of extra
energy consumption that occurs when mobility and volatility force new syn-
chronization processes. Our purpose is to minimize the number of these new
synchronization processes by selecting communication paths that are less likely
to disconnect. Such selected paths are called robust paths. In this paper we focus
on a global analysis of this property in dynamic graphs with centralized algo-
rithms (Sect. 2). This analysis gives clues to manage paths in a decentralized
environment. Section 3 focuses on a decentralized ant-based approach that deals
with the MANET issues. Simulations results are shown Sect. 4.

2 Global Analysis

The aim of this paper is to study the possibilities of creating and maintaining
short and robust paths in mobile ad hoc networks. This global analysis aims at
giving lower bounds to compare with the decentralized algorithm. Simulated ad
hoc networks produce produce communication networks that can be considered
as dynamic graphs where stations are nodes and effective communication links
between stations are edges. These dynamic graphs are replayed and analyzed
centrally. We propose some measurement for the problems we consider. First the
length of paths is considered. Then for the robustness we suggest the renewal
rate measurement: Let s be a subset of edges and nodes in the dynamic graph.
s is said to be a structure. s is observed at to different dates—t1 and t2—during
the evolution of the dynamic graph. Let St1 be the structure s at time t1 and
St2 the same structure at time t2. Since the graph is a dynamic one, the set of
edges and nodes that constitute s may change between t1 and t2. The renewal
rate tr(St1 , St2) is the number C of changes (addition and removal of elements)
in s between t1 and t2 divided by the cardinality of St1 : RR(St1 , St2) = C

|St1 | .
We propose two centralized algorithms to produce lower bounds for the next

decentralized approach.

Shortest Paths Minimal Set (SPMS). At each step of a dynamic graph one com-
pute the minimal list of shortest paths between a given source and a destination.
From the first step i = 0 the set of shortest paths is computed and is said to
be the reference structure. Iteratively steps of the dynamic graph are applied.
For each step a new shortest path structure is computed. If a path exists in this
intersection structure then it becomes the new reference structure. The number
of shortest paths cannot be larger in the new reference structure than in the
older one since the new one is included in the old one. On the contrary, if the
intersection between the new structure and the reference structure does not have
a shortest path, then it means that the reference shortest path has been lost in
this new step (t). Anyway we know that this structure is valid until the step t−1
so it is stored as the good one until the step t − 1 and the number of shortest

522 Y. Pigné and F. Guinand

path structures in the solution set is increased by one. For this new step the new
shortest path structure becomes the new reference and the process can go one
with another step. At the end of this process, only the minimal set of shortest
path structures is stored.

Robust Structures Minimal Set (RSMS). The constraint of shortest path is re-
laxed and only the existence of a path between a pair of nodes is considered.
It is interesting in our case to look for the minimal set of paths that may link
two nodes during the evolution of the graph. The algorithm constructs with the
same behavior as above (algorithm SPMS) the minimal set of paths that link
two nodes in a dynamic graph. Since several paths may link the nodes at any
moment we consider structures that links them. We look for paths or structures
that last as long as possible without changing—robust structures.

RSMS does not have optimal renewal rate; however experiments show that it
is a good lower bound for the heuristic method presented next section.

Proposed algorithms give interesting measures for the deferred analysis of
communication networks. These algorithms give lower bounds for the two ob-
jectives that we consider—short and robust paths. For now, after this global
analysis, online constraints may be considered with a decentralized approach.

3 Ant-Based Construction and Maintaining of Robust
Paths

We now focus on applied constraints that lead to the conception of dedicated
and decentralized algorithms in the field of mobile ad hoc networks. We consider
networks where the mobility of stations may highly impact on the kind of service
that can be delivered. We choose a realistic simulation mobility that corresponds
to the mobility of pedestrians in an urban environment. Here, communication
devices are handheld devices that may usually be shut down, so we consider a
volatility model for the stations.

3.1 Description of the Model

The idea here is to design a decentralized algorithm that is able to handle the
changes in the environment. Natural ant colonies have the ability to construct
and maintain short path in changing environments. Even the loss of some ants
is supported. The number of entities needed here is a key issue. Several previous
works are related like AntNet [3] and Ant-Based Control (ABC) [8] in wired
networks, and more precisely AntHocNet [2], DAR (Distributed Ant Routing)
[7], or HOPNET [9] in wireless networks.

In this model, ants do not construct solutions to a given problem. They are
just influenced by pheromone tails when making journeys in a dynamic network
and also lay pheromone down the environment. On the wireless network field, the
environment is the set of stations and pheromone trails are updated in stations
local routing tables.

Short and Robust Communication Paths in Dynamic Wireless Networks 523

This algorithm uses the same local exploration formulas as defined in ACOs.
For an ant k located on node i of a graph at date t, the choice for a next node
j is made locally according the probability:

pk
ij(t) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
[τij(t)]α · [ηij]β∑

l∈nbs(i)\path(k)

[τil(t)]α · [ηil]β
if j ∈ nbs(i)\path(k)

0 else

(1)

where:

– τij(t) is the quantity of pheromone on edge (i, j) at step t;
– ηij is the visibility on edge (i, j)—explained below;
– nbs(i) is the set of neighboring nodes of i;
– path(k) is the list of nodes that constitute the path already done by ant k;
– neighbors(i)\path(k) is the set of neighbors of i deprived of the node that

are those node that are in the path of ant k;
– α and β are two parameters that relatively change the weight of pheromone

trails in comparison to the visibility.

The two local information that are able to lead ants in the graph are the
pheromone trails and the visibility. We want this information to be related to
the two objectives we consider—short and robust paths. Pheromone trails are
known to help ants construct short paths. The visibility is meant to be a local
estimation of the quality of the path being constructed. Here the visibility is
meant to give indications on the robustness of the paths being constructed. We
need a local estimation of this robustness that is a global measurement, like the
renewal rate (Sect. 2).

We propose to use a local heuristic based on the age of the edges to estimate
their robustness. Let the number of appearances be the number of times a given
edge appears in the dynamic graph. Let the overall age of this edge be the
sum of the ranges of time it exists in the dynamic graph. We call volatility
the ratio between the number of appearances of an edge and its overall age:
volatility = number of appearances

overall age .

3.2 Algorithm

Ants move in the graph according to two modes—a forward mode when looking
form the destination and a backward mode when the destination is reached. This
model is common to several algorithms just like DAR, ARA or AntHocNet.

Forward mode. The ant moves from node to node looking for the destination.
It stores the constructed path. Next node is chosen according to Eq. (1).

Backward mode. When an ant in forward mode reaches the destination node,
then it goes backward to the nest using the path created during the forward

524 Y. Pigné and F. Guinand

mode. It updates the pheromone trails. Similarly to ACOs the reinforcement of
pheromone trails is made proportionally to the length of the constructed path.

Evaporation. As defined in ACO, the parameter ρ rules the evaporation rate
of pheromone to be applied on each edge. With the constatnt Q, the quantity of
pheromone (τij) on edge (i, j) is: τij = (1 − ρ)(τij −Q) +Q = τij − ρ(τij −Q).

3.3 Memory of the Pheromone Trails

Similarly to the volatility measurement that is computed from the logging of the
appearances and disappearances of edges by nodes, the values of pheromone of
an edge may be stored even when an edge disappears. This memory allows to
give back to an edge its pheromone trail when it reappears. The idea is that if
an edge has a high quantity of pheromone then it may a good point to quickly
give it back its attractiveness when it reappears.

This heuristic may be discussed. A part of the simulations results are ded-
icated to the analysis of this mechanism and show its efficiency under some
hypothesis. Experiments show that this memory of pheromone trails reveals to
be very efficient for environments with high volatility.

4 Simulations and Results

We want to focus here on the simulation of realistic networks composed of hand-
held devices such as PDAs, cell phones or laptops that are able to communicate
with IEEE 802.11b radio chips. We consider urban environments such as mall
centers or streets or hallways. Tow different scenarios with different characteris-
tics are proposed.

The first scenario called ”hallway” is distinguished by a very high mobility
of the stations but with no volatility—the stations move fast and their radio
device is open. The environment is a hallway and the mobility is constrained by
this hallway such that stations may only move from one part of the hall to the
other in the two possible directions. The speed of the stations is correlated to
the speed of walking people. All the parameters that identify the scenario are
displayed Table 1.

The second scenario called ”volatility” highlights a weak mobility and a strong
volatility for its stations, as show parameter values in Table 1. Stations evolve
in an open environment with a Random Way Point [1] mobility model.

Simulations are based on a discrete time evolution by the simulator Mad-
hoc (litis.univ-lehavre.fr/~hogie/madhoc/). Videos of these simulations
are also available at litis.univ-lehavre.fr/~pigne/these/.

4.1 Multi-Objective Optimization

Two objectives are considered in this problem: paths lengths and renewal rate
of paths edges, both being minimized. Figure 1 gives a general overview of all
the results obtained with the algorithm for simulations with the ”volatility”

Short and Robust Communication Paths in Dynamic Wireless Networks 525

Table 1. Simulation parameters for scenarios ”hallway” and ”volatility”

scenario ”hallway” ”volatility”
Mobility two directions RWP
Environment closed (hallway) open
Area 500m long hallway 1km2

Stations 150 400
Station celerity 1.4 to 2m/s 0 to 1m/s
Volatility no volatility 40% of stations
Radio radius 20m 40m

0

5

10

15

20

25

30

35

40

45

40 60 80 100 120 140

– Horizontal line: average shortest path

on each pair of source destination

nodes.

– Vertical line: lower bound for the re-

newal rate given by the RSMS algo-

rithm (Sect. 2).

– ”+”: average value for the solutions

generated by the ant based approach.

– ”×”: average value for the solutions

generated by a random centralized

search algorithm.

Fig. 1. General solutions layout in the multi-objective solution space

scenario. Data here are average values for different parameter sets, 8 different
pairs of source and destination, and 10 different random seeds. Four values are
presented in the multi-objective space of solutions where x-axe gives the average
renewal rate of the edges of a path and the y-axe gives the length of a path.
The observation is that the produced results are less efficient than the random
search in terms of path length. However the average renewal rate of the edges of
the solutions generated by the ant-based approach is far more efficient than the
random method.

4.2 Parameters and Results

Metaheuristics are usually criticized for their important set of parameters to be
tuned. Our proposed model also suffers criticism; however dependencies between
parameters allow simplifications in the system. Relative importance parameters
α and β (Eq. (1)) are relative one on the other. α is set to 1 and the evolution of
β is observed. Then we consider ρ, the evaporation rate of the pheromone trails.
It may strongly impact the algorithm’s behavior changing the attractiveness of
the paths. Other parameters are tuned experimentally as shown in the table of
Fig. 2. This figure shows the results obtained by our proposed algorithm with the
simulation of the ”volatility” scenario. Each point on the figure is the average
value of the paths constructed by the algorithm when ran on the network with
8 different pairs of source/target nodes and 6 random seeds (48 different runs).
From one point to another only the values of the parameters β and ρ differ.

526 Y. Pigné and F. Guinand

Parameter Description Value

Q initial pheromone 1

ρ evaporation rate variable

nbAnts number of ants 40

k node jumps per step 100

α pheromone strength 1

β visibility strength variable

TTL ant max lifetime 100
21

22

23

24

25

26

27

28

29

30

31

55 60 65 70 75 80 85 90 95 100 10

A
ve

ra
ge

 p
at

h
le

ng
th

s
(n

um
be

r o
f h

op
)

Average renewal rate of paths edges (%)

Pareto Front

Fig. 2. Parameters and solutions for the ”Volatility” scenario

4.3 Analysis of the Pheromone Trail Memory Heuristic

The proposed heuristic is to use a memory to recall pheromone values on edges
that reappear after having disappeared. The hypothesis is that an edge with
a strongly loaded pheromone trail is probably an important edge that has to
get his attractiveness back as quickly as possible. In the ”volatility” scenario
edges that disappear have a high probability to reappear since the mobility
is low. In this case the heuristic seams appropriated. Figure 3(a) shows the
undeniable superiority of this approach. On the opposite the memory heuristic
is not appropriated to the ”hallway” scenario where edges that disappear have
nearly no chance to reappear. Figure 3(b) illustrates this.

21

22

23

24

25

26

27

28

29

30

31

55 60 65 70 75 80 85 90 95 100

A
ve

ra
ge

 p
at

h
le

ng
th

s
(n

um
be

r o
f h

op
) Without trail memory

With trail memory
Pareto front

Average renewal rate of paths edges (%)

(a) ”Volatility” scenario

24

26

28

30

32

34

36

38

40

20 30 40 50 60 70 80 90

Without trail memory

(b) ”Hallway” scenario

Fig. 3. Pheromone trail memory heuristic on the two scenarios

5 Conclusion

The purpose we were given here was to address the problem of finding and
maintaining robust and short communication paths in dynamic and decentral-
ized environments such as mobile ad hoc networks. This problem leads us to

Short and Robust Communication Paths in Dynamic Wireless Networks 527

consider the problem as a two objective problem. Swarm intelligence and espe-
cially ant-based approaches have shown efficiency in evolving and decentralized
environments. We proposed such an ant-based models that only depends on local
heuristics and is able to adapt to the changes in the environment.

A study of the problem with centralized algorithms has been performed and
allows identifying key issues in the problem. This analysis helped the formulation
and the evaluation of the decentralized ant based algorithm.

Two original propositions show up in this field. First the use of the local
volatility measurement of the edges allows—as shown by the simulations—to
lower the renewal rate of the paths edges constructed by the ants. This means
in terms of mobile wireless that the overhead communication needed to recon-
nect communication links is lowered. The second original proposition is that
a local heuristic computed by the stations of a mobile network leads to store
pheromone trails of communication links that disappear so as to give them back
there pheromone value if they ever reappear. This last heuristic shows it efficiency
when stations are volatile and communication links have chances to disappear
and then reappear.

References

1. Broch, J., Maltz, D.A., Johnson, D.B., Hu, Y.C., Jetcheva, J.: A performance com-
parison of multi-hop wireless ad hoc network routing protocols. In: MobiCom 1998,
pp. 85–97. ACM, New York (1998)

2. Di Caro, G., Ducatelle, F., Gambardella, L.M.: Anthocnet: an ant-based hybrid
routing algorithm for mobile ad hoc networks. In: Yao, X., Burke, E.K., Lozano,
J.A., Smith, J., Merelo-Guervós, J.J., Bullinaria, J.A., Rowe, J.E., Tiňo, P., Kabán,
A., Schwefel, H.-P. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 461–470. Springer,
Heidelberg (2004)

3. Di Caro, G., Dorigo, M.: Antnet: Distributed stigmergetic control for communica-
tions networks. Journal of Artificial Intelligence Research 9, 317–365 (1998)

4. Gaertner, G., ONuallain, E., Butterly, A., Singh, K., Cahill, V.: 802.11 Link Quality
and Its Prediction - An Experimental Study. In: Niemegeers, I.G.M.M., de Groot,
S.H. (eds.) PWC 2004. LNCS, vol. 3260, pp. 147–163. Springer, Heidelberg (2004)

5. Ko, Y.B., Vaidya, N.H.: Location-aided routing (lar) in mobile ad hoc networks. In:
MobiCom 1998: Proceedings of the 4th annual ACM/IEEE international conference
on Mobile computing and networking, pp. 66–75. ACM Press, New York (1998)

6. Perkins, C., Royer, E.: Ad-hoc on-demand distance vector routing. In:
WMCSA 1999: Proceedings of the Second IEEE Workshop on Mobile Computer
Systems and Applications, p. 90. IEEE Computer Society, Washington (1999)

7. Rosati, L., Berioli, M., Reali, G.: On ant routing algorithms in ad hoc networks with
critical connectivity. Ad Hoc Networks 6(6), 827–859 (2008)

8. Schoonderwoerd, R., Holland, O., Bruten, J., Rothkrantz, L.: Ant-based load bal-
ancing in telecommunications networks. Adaptive Behavior 5(2), 169 (1997)

9. Wang, J., Osagie, E., Thulasiraman, P., Thulasiram, R.K.: Hopnet: A hybrid ant
colony optimization routing algorithm for mobile ad hoc network. Ad Hoc Net-
works 7(4), 690–705 (2009)

The ACO Encoding

Alberto Moraglio, Fernando E.B. Otero, and Colin G. Johnson

School of Computing and Centre for Reasoning,
University of Kent, Canterbury, UK

{A.Moraglio,F.E.B.Otero,C.G.Johnson}@kent.ac.uk

Abstract. Ant Colony Optimization (ACO) differs substantially from
other meta-heuristics such as Evolutionary Algorithms (EA). Two of
its distinctive features are: (i) it is constructive rather than based on
iterative improvements, and (ii) it employs problem knowledge in the
construction process via the heuristic function, which is essential for
its success. In this paper, we introduce the ACO encoding, which is a
self-contained algorithmic component that can be readily used to make
available these two particular features of ACO to any search algorithm
for continuous spaces based on iterative improvements to solve combina-
torial optimization problems.

1 Introduction

Hybrid meta-heuristics that combine skilfully elements of two or more meta-
heuristics are often superior to the original meta-heuristics when considered in
isolation [2] as it is the case, for example, of Memetic Algorithms [6], which
combine Evolutionary Algorithms [1] with Local Search, and more recent in-
carnations of Ant Colony Optimization [4] which also embed Local Search as
a standard sub-component. The success of hybrid meta-heuristics is rooted in
the combination of the complementary strengths of their compounding meta-
heuristics [2].

Leaving aside the compelling ant foraging behavior metaphor that inspired
the original design of ACO, from an algorithmic point of view, Ant Colony
Optimization differs greatly from most meta-heuristics. Perhaps the two most
characterizing algorithmic features of ACO are: (i) it is constructive rather than
based on iterative improvements; and (ii) beside the feedback obtained by the
evaluation of complete solutions, common to all other meta-heuristics, the heuris-
tic function provides extra problem knowledge fed directly in the construction
process.

One weakness of ACO is that the pheromone update rules are not guaranteed
to find always the optimal pheromone levels that lead to the construction of the
best solution. This is because the update rules make small incremental changes
to the pheromone levels—which can be seen as a form of hill-climbing in the
pheromone space—that may lead the pheromone levels to converge to a point
which is only locally optimal. It would be interesting, therefore, to replace the
search done in the pheromone space by the update rules with more global types

M. Dorigo et al. (Eds.): ANTS 2010, LNCS 6234, pp. 528–535, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

The ACO Encoding 529

of search algorithms, such as Evolutionary Algorithms, which may be less prone
to get stuck in local optima.

Beside the standard hybridization of ACO with Local Search, there are a num-
ber of works on hybrid ACO algorithms, see for example [5,12,11]. In this paper,
rather than introducing one more hybrid ACO algorithm, we intend to present a
self-contained algorithmic component obtained by distilling a distinctive feature
of ACO behind its success—namely the use of heuristic information in the solu-
tion construction—in a way that it can be used as an off-the-shelf component in
any search algorithm for continuous spaces to solve combinatorial problems. The
new algorithmic component will be termed the ACO Encoding. This component
was derived derandomizing the ACO construction mechanism and interpreting
it as a decoding procedure for solutions of combinatorial problems represented
as real vectors formed by pheromone levels, as illustrated in the next section.
This component has advantages from two different perspectives: (i) it can be
seen as endowing (a de-randomized variant of) ACO with a more global search
in the pheromone space than that using the standard pheromone update rule,
and, at the same time, (ii) it feeds extra problem knowledge via the heuristic
function to the base search algorithm (e.g., an evolutionary algorithm) using the
ACO encoding, which normally does not have such knowledge at its disposal.

2 The ACO Encoding

Search algorithms are normally characterized by:

1. the search space S defining the set of candidate solutions to the problem at
hand P (i.e., the set of feasible solutions).

2. the underlying representation R of the candidate solutions (e.g., real vectors,
permutations, binary strings) on which the search operators O are acting on.

3. the search strategy A that the search algorithm employs to search the given
search space (e.g., local search, population-based search, annealing search).

Whereas perhaps ACO is not normally looked at this way, it is insightful to ask
what its search space, its solution representation and its search strategy are.

Let us consider a basic ACO without local search for a specific problem, e.g.,
TSP (i.e., P=TSP). The problem being addressed is clearly a combinatorial
problem. A standard solution representation for the TSP are permutations (i.e.,
R=permutations), which naturally encode the order of the cities to be visited by
the traveling salesperson (i.e., S=permutations (genotypes) encoding cities tours
(phenotypes)). As ACO constructs TSP solutions encoded using permutations, it
may be argued that the construction procedure employed by ACO corresponds
to the “ACO search operator” in the space of permutations (i.e., O=construction
procedure). However, this way of aligning ACO to the algorithmic framework
outlined above is partially unsatisfactory because there are no elements in ACO
that directly correspond to search operators acting on such a representation. As
a consequence, the search strategy A of ACO cannot be explicitly characterized
on the permutation space.

530 A. Moraglio, F.E.B. Otero, and C.G. Johnson

Let us now consider an alternative way of looking at ACO, attempting at
equating the search space of ACO with the set of all pheromone values. In
this case, TSP solutions are constructed using the information stored in the
pheromone values (i.e., S=pheromones vectors (genotypes) encoding cities tours
(phenotypes)). Importantly, the pheromone updates rule acting on pheromone
levels can be interpreted as search operators acting on such a representation (i.e.,
R=pheromones vectors and O=update rules). The solution construction can be
then interpreted as a growth function that maps pheromone levels (genotypes)
to permutations (intermediate phenotypes), which are in turn mapped to cities
tours (phenotypes). Interestingly, in ACO the growth function maps a continuous
space to a combinatorial space, hence ACO, seen in this way, searches a com-
binatorial space indirectly by searching a continuous space. Can the pheromone
space, therefore, be considered as the search space searched by ACO? The an-
swer is negative as an essential property of a solution representation is missing
when we consider the pheromone levels as representation. This is the ability of
the genotype to identify uniquely a phenotype. This is essential, as in lack of it,
it would not be possible to determine the fitness of the genotype unambiguously,
and as a consequence, the optimal genotype would not be well-defined.

If we are willing to allow for a change of the ACO solution construction pro-
cedure, we could indeed identify the pheromone space with the search space of
ACO. There are two aspects of the ACO solutions construction procedure that
are problematic when it is interpreted as a growth function: (i) normally, the ACO
construction procedure returns more than one solution (one for each ant on the
graph); and (ii) it is a probabilistic procedure which does not always construct
the same solutions from the same pheromone levels. The first issue can be sim-
ply solved by using always a single ant. The second issue can be solved by de-
randomizing the construction procedure. This can be done by placing the ant on
a fixed initial node (i.e., the nest) and by de-randomizing its decisions about which
node to go next by always choosing the alternative with highest probability, i.e. by
treating transition probabilities as priorities and returning deterministically only
the most probable solution. The priorities used in the de-randomized construc-
tion are obtained with the traditional ACO transition probability formula which
combines heuristic information and pheromone levels. Since the heuristic infor-
mation does not change in the course of the search, these priorities are uniquely
determined by the pheromone levels on the construction graph, and consequently,
given the same pheromone levels, the TSP tour built by the ant is unique. So, this
construction procedure is a well-defined growth function.

The above derandomized variation of ACO is a degenerate form of ACO,
which, as it is, does not perform any useful search. This is because it produces
deterministically a single solution from the current pheromone levels, and when
the pheromone update rule is applied, the pheromone values corresponding to
that solution are reinforced, hence, fixating the search to that single solution.
However, the interesting aspect of this derandomized variation of ACO is that it
forms a conceptual bridge between the traditional ACO and other types of meta-
heuristics as this algorithm can now be characterized in terms of search space,

The ACO Encoding 531

solution representation and search operators. Seen in this algorithmic framework,
the ACO representation of solutions (pheromone levels) together with the ACO
encoding (deterministic solution construction procedure) can be naturally decou-
pled from the specific ACO search (pheromone update rule). This, interestingly,
allows us to use the ACO encoding as a self-contained algorithmic component
in combination with any search algorithm for continuous optimization. So, for
example, we could use it in combination with a standard Evolutionary Algo-
rithm based on a real vector representation. Each real vector (individual in the
population) corresponds to a combination of pheromone levels. The fitness of
that individual would be the fitness of the solution constructed by the ant us-
ing those pheromone levels. Then, the evolutionary algorithm would proceed as
it normally does by selecting above average individuals, recombining and mu-
tating them with standard search operators, to produce the next population of
individuals.

The conceptual link between ACO and other meta-heuristics via the ACO En-
coding is interesting, as the same real values assume two quite distinct meanings
when they are understood in the two different contexts: as pheromone values in
an ACO construction graph, and as solution representation in the genotype of
an individual. Let us consider more closely this difference for the specific case of
TSP. For this problem, in the ACO practice, the pheromone is normally stored
on edges rather than on nodes of the construction graph, because its function
is understood being that of “modifier” of the heuristic information, which is
associated with the edges of the construction graph (since it is based on the
distance between the cities). On the other hand, if we look at pheromone values
as a solution representation for an EA, as a rule of thumb, we want to have
the most compact representation that can represent any TSP solution, because
larger spaces take normally more time to be searched. This would require to put
pheromone on the nodes of the construction graph, for a total of n pheromone
locations, rather than pheromone on edges which would amount to a total of n2

pheromone locations, hence giving rise to a much larger search space to search.
Note that putting pheromone on nodes is enough to represent any solution of
the TSP, as when the heuristic information is set to zero, the pheromone levels
on the nodes, in fact, specify the order of the cities to include in the salesper-
son tour by their ranks. This is known in the literature as the random-keys
encoding for permutations [8]. Therefore, there seems to be a very interesting
inter-play between heuristic information injected in the ACO Encoding and its
redundancy.

The idea of injecting heuristic information in the decoding procedure from
genotype to phenotype is not new in the ACO Encoding, as it has been used
before, for example, in encoding procedures for scheduling problems using the
genotypes to guide the choice of scheduling policies [7]. However, the ACO En-
coding makes it possible to use heuristic information in a much more standard-
ized way and for a much larger class of problems, borrowing from the large and
rapidly increasing library of previously solved problems using ACO.

532 A. Moraglio, F.E.B. Otero, and C.G. Johnson

3 Experiments and Discussion

Let us consider the ACO Encoding included as a component in a evolutionaryalgo-
rithm for real-vectors. The ACO Encoding raises a number of interesting questions.
In the previous section, we decoupled the ACO Encoding (solution representation
and construction) from the ACO search in pheromone space (pheromone update
rule). The first natural question is: given the same ACO Encoding of the problem
at hand, is the more global searchdone by an EAbetter than the searchdone by the
ACO pheromone update rule? A second interesting aspect of the ACO encoding is
that it allows the inclusion of heuristic information in the EA. So, a secondquestion
is: since the use of this information is essential in ACO to obtain good performance,
is the heuristic information of any help to the EA? A third question relates with
the dual interpretation of the real-vector as pheromone in a construction graph
and as genotype to represent a solution, as discussed in the previous section. So,
we ask which of the two following options is better: (i) locating pheromone on the
edges of the construction graph, which from an ACO perspective it is meaningful
for the TSP, or alternatively (ii) locating pheromone on the nodes of the construc-
tion graph, which makes sense from an EA perspective as it gives rise to a smaller
search space to search.

In the following, we present three sets of experiments using 10 TSP instances
from the TSPLIB to give preliminary answers to the above questions. As our
aim is to compare directly algorithmic components rather than reaching state-of-
the-art performances, we use the ACO Encoding with a very simple evolutionary
algorithm for real-vectors (a generational scheme with discrete uniform crossover,
creep mutation and tournament selection). Furthermore, we do not include local
search neither in ACO nor in the EA and, for fairness, we give the same number
of fitness evaluations (number of solutions constructed and evaluated) to each
of the algorithms in the comparison.

We have selected two well-known ACO algorithms, namely ant colony system
(ACS) [3] and MAX -MIN ant system (MMAS) [9,10]. For the ACO algo-
rithms, the following default parameter settings from the literature are used: β
= 2, α = 1, m = n (where m is the number of ants and n is the number of cities)
and ρ = 0.98 (where ρ is the evaporation rate). In the case of our EA using the
proposed ACO Encoding, we have used three variations: EA-ACO, EA-ACO-
b0 (EA-ACO without heuristic information) and EA-ACO-n (EA-ACO with
pheromone on the nodes). We have performed a systematic (but coarse) param-
eter tuning in order to determine a suitable combination of values, leaving α = 1
and β = 2 parameters fixed—the only exception is that in EA-ACO-b0, β is
set to 0 since it does not use heuristic information. For the remaining param-
eters, we have tested the following values: population size = {n · 10, n · 10},
crossover rate = {0.5, 1.0}, mutation rate = {1/n, 2/n} and tournament size
= {2, 4}. The values in bold represent the best combination of values out of the
16 possible combinations and the ones used in our experiments. Although the
parameter tuning did not show significant differences between the combinations
of values, the EA seems to be more sensitive to the tournament size parameter,
where the combinations using the smaller value 2 perform better than the ones

The ACO Encoding 533

Table 1. Computational results for symmetric (upper section) and asymmetric (lower
section) instances from the TSPLIB. The number following the instance name corre-
sponds to the number of cities. The column ‘opt ’ indicates the known optimal tour
length for each instance. A value in the remaining columns represents the average
tour length of the best tour found by the correspondent algorithm over 25 runs (av-
erage±standard deviation); the value closer to the optimal tour length is shown in
bold.

instance opt ACS MMAS EA-ACO EA-ACO-b0 EA-ACO-n

berlin52 7542 7868.9±192.7 7562.8±57.4 7849.8±68.7 9585.1±460.2 7886.0±31.6

eil51 426 468.5±11.8 428.7±1.6 430.6±4.1 504.8±13.3 439.9±2.9

kroA100 21282 28497.8±562.6 21492.8±145.2 21852.8±148.2 69800.5±2424.2 22306.5±131.0

st70 675 806.6±15.2 681.5±4.5 715.1±8.1 1206.9±48.6 712.9±11.6

br17 39 39.0±0.0 39.0±0.0 41.7±6.4 39.0±0.2 39.7±3.4

ft70 38673 45072.3±320.0 39586.2±331.2 39732.4±200.3 44474.2±689.3 39370.8±154.4

p43 5620 5630.9±1.3 5629.3±0.9 5652.6±6.8 5673.5±15.5 5638.5±6.4

ry48p 14422 16147.9±335.9 14598.3±70.6 14534.6±46.6 17252.4±631.5 14721.4±145.2

using the greater value 4. The stopping criteria for all algorithms was set to
14 · 104 fitness evaluations. Therefore, even though the algorithms use a differ-
ent number of ants (ACO algorithms) and population size (EA algorithms), the
comparison is based on the total number of candidate solutions evaluated, which
will be the same for all algorithms.

Table 1 presents the computational results. For each of the algorithms, we
report the average tour length of the best tour found in 25 independent runs of
the algorithms. The value closer to the optimal tour length is shown in bold in
Table 1. The results show that generally MMAS achieves the best performance.
The only exception are the ‘ft70’ and ‘ry48p’ asymmetric instances, where the
EA-ACO and EA-ACO-n achieve best performance. It is interesting to note
that EA-ACO and EA-ACO-n outperform ACS, except on ‘br17’, where ACS
found the optimal solution, and on ‘p43’. However, EA-ACO-b0 performs poorly
compared to the other algorithms, except for the ‘br17’ instance, where it out-
performs the other two EA variations. In terms of computational time, both
ACS and MMAS require on average 27 seconds to complete the 14 · 104 fitness
evaluations, EA-ACO-n is a factor of 2.6 slower than ACS and MMAS, while
EA-ACO and EA-ACO-n are a factor of 110 slower than ACS and MMAS.

Let us now consider the questions that were posed at the beginning of the sec-
tion in the light of the experimental results obtained. Given the same encoding,
is the EA search (EA-ACO) better than the ACO search (ACS and MMAS) by
means of the update rule? From the experiments, it seems that the EA search
reaches better solutions than the simple ACS, but it does not as well as the more
sophisticated MMAS. Note that one of the major differences between ACS and
MMAS is the ability of the latter to change adaptively the learning rate to
prevent getting stuck in local optima in the phenotype space. This seems to be
consistent with our initial hypothesis that the EA search is more global than

534 A. Moraglio, F.E.B. Otero, and C.G. Johnson

the simple search done by ACS. However, the adaptive search of MMAS seems
to be very effective. The EA used in this work is a very simple one. It would
be, therefore, interesting in future work to consider EA with an adaptive type of
mutation and compare it with MMAS. In terms of CPU time, the ACO systems
are much more efficient than the EA-ACO. The critical component seems to be
the crossover operator that takes quadratic time with respect with the number
of cities. However, this problem may be overcome by using a parameter set for
the EA that requires to apply crossover only a limited number of times.

A second question was about the impact of the heuristic information injected
in the EA using the ACO Encoding. From the experiments, it is evident that
the heuristic information in EA-ACO clearly allows it to outperform the same
algorithm when this information is not available (EA-ACO-b0). This is a very
interesting result as it shows that the ACO Encoding is indeed able to inject
heuristic information in a EA in a way that can be usefully employed to reach
better performance. More generally, the ACO Encoding may open up at the
possibility to inject heuristic information in any search algorithm operating on
a continuous representation and systematically boost its performance.

A third question we put forward was about whether it is better to locate
the pheromone on edges (as in EA-ACO) or on the nodes (as in EA-ACO-n). In
terms of efficiency, which is, CPU time needed, EA-ACO-n is much more efficient
than the EA-ACO, as the time required by the crossover operator is now linear
with the number of cities in a solution. In terms of performance, the pheromone
on edges seem to be more advantageous than the pheromone on nodes, but not of
much. This is interesting as it shows something very counter-intuitive from an EA
point-of-view: a heavily redundant representation corresponding to a much larger
than necessary search space to search seems to lead to a better performance
than a more compact one. It is also interesting to note that EA-ACO-n, which
incorporates heuristic information, is both superior to and much more efficient
than EA-ACO-b0, which has pheromone on edges and it does not incorporate
heuristic information. Therefore, EA-ACO-n seems to be an interesting trade-off
in terms of performance, efficiency and use of heuristic information.

Finally, we can consider the experimental results above as representing a test of
whether the effectiveness of ACO is due to the encoding/representation or to the
search algorithm. The results tentatively suggest that the encoding/representation
is at the core of the power of ACO, as replacing one search algorithm by another
does not compromise the effectiveness of the search. Naturally, more experimen-
tation across problem domains is needed to provide stronger support for this ar-
gument. This constitutes an important piece of future work.

4 Conclusions

This paper has introduced the ACO Encoding, an algorithmic component ob-
tained by decoupling the encoding used in ACO from the search component, so
that the encoding can be used with other search techniques. We have demon-
strated some basic experiments on TSP instances, consisting of combining this
encoding with a very simple EA search, showing a similar rate of success to a

The ACO Encoding 535

good ACO variant, and presented an analysis of these results. In future work, we
will use the ACO encoding with state-of-the-art algorithms for continuous op-
timization, such as differential evolution and self-adaptive evolution strategies,
in the attempt to reach top performance on hard combinatorial optimization
problems.

References

1. Bäck, T., Fogel, D.B., Michalewicz, T. (eds.): Evolutionary Computation 1: Basic
Algorithms and Operators. Institute of Physics Publishing (2000)

2. Blum, C., Blesa Aguilera, M.J., Roli, A., Sampels, M. (eds.): Hybrid Metaheuris-
tics: An Emerging Approach to Optimization. Springer, Heidelberg (2008)

3. Dorigo, M., Gambardella, L.: Ant colony system: a cooperative learning approach
to the traveling salesman problem. IEEE Transactions on Evolutionary Computa-
tion 1(1), 53–66 (1997)

4. Dorigo, M., Sützle, T.: Ant Colony Optimization. MIT Press, Cambridge (2004)
5. Lee, Z.J., Su, S.F., Chuang, C.C., Liu, K.H.: Genetic algorithm with ant colony op-

timization (ga-aco) for multiple sequence alignment. Applied Soft Computing 8(1),
55–78 (2008)

6. Moscato, P.: On evolution, search, optimization, genetic algorithms and martial
arts: Towards memetic algorithms. Tech. rep., Caltech Concurrent Computation
Program (1989)

7. Runwei Cheng, M.G., Tsujimura, Y.: A tutorial survey of job-shop scheduling
problems using genetic algorithmsi. representation. Computers and Industrial En-
gineering 30(4), 983–997 (1996)

8. Snydera, L.V., Daskin, M.S.: A random-key genetic algorithm for the generalized
traveling salesman problem. European Journal of Operational Research 171(1),
38–53 (2006)

9. Stützle, T., Hoos, H.: Improvements on the Ant System: Introducing MAX -MIN
ant system. In: Proc. Int. Conf. Artificial Neural Networks and Genetic Algorithms
(1997)

10. Stützle, T., Hoos, H.: MAX -MIN ant system. Future Generation Computer Sys-
tems 16(8), 889–914 (2000)

11. Wong, K.Y., See, P.C.: A hybrid ant colony optimization algorithm for solving
facility layout problems formulated as quadratic assignment problems. Engineering
Computations: Int. J. for Computer-Aided Engineering 27(1), 117–128 (2010)

12. Xiong, W., Wang, C.: A hybrid improved ant colony optimization and random
forests feature selection method for microarray data. In: International Conference
on Networked Computing and Advanced Information Management (2009)

The Complexity of Grid Coverage by
Swarm Robotics

Yaniv Altshuler1,2 and Alfred M. Bruckstein1

1 Computer Science Department, Technion, Haifa, Israel
{yanival,freddy}@cs.technion.ac.il

2 Deutsche Telekom Labs, Ben Gurion University, Beer Sheva, Israel

Abstract. In this paper we discuss the task of efficiently using ant-like
robotic agents for covering a connected region on the Z2 grid, whose shape
and size are unknown in advance, and which expands at a given rate. This
is done using myopic robots, with no ability to directly communicate with
each other, where each robot is equipped with only O(1) memory. We show
that regardless of the algorithm used, and the robots’ hardware and soft-
ware specifications, the minimal number of robots required in order to en-
able such coverage is Ω(

√
n) (where n is the initial size of the connected

region). In addition, we show that when the region expands at a sufficiently
slow rate, a team of Θ(

√
n) robots could cover it in at most O(n2 ln n) time.

Regarding the coverage of non-expanding regions in the grid, we improve
the current best known result of O(n2) by demonstrating an algorithm
of worse case completion time of O(1

k
n1.5 + n), and faster for shapes of

perimeter length which is shorter than O(n).

1 Introduction

In this paper we examine a problem in which a group of ant-like robotic agents
must cover an unknown region in the grid, that possibly expands over time. This
problem is also strongly related to the problem of distributed search after mobile
and evading target(s) [4,3] or the problems discussed under the names of “Lions
and Men” pursuits [6]. We analyze such issues using the results presented in [11,
1, 2], concerning the Cooperative Cleaners problem, a problem that assumes a
regular grid of connected ‘tiles’, part of which are ‘dirty’, the ‘dirty’ tiles forming
a connected region of the grid. On this dirty grid region several agents move, each
having the ability to ‘clean’ the place it is located in. In the dynamic variant of
this problem a deterministic evolution of the environment in assumed, simulating
a spreading contamination (or spreading fire).

First, we discuss the collaborative coverage of static grids. We demonstrate
that the best completion time known to date (O(n2), achievable for example
using the LRTA* search algorithm) can be improved to guarantee grid coverage
in O(1

kn
1.5 + n) time. Later, we discuss the coverage of expanding domains.

We show that using any conceivable algorithm, and using as sophisticated and
potent robotic agents as possible, the minimal number of robots below which
covering such a region is impossible equals Ω(

√
n). We then show that when

M. Dorigo et al. (Eds.): ANTS 2010, LNCS 6234, pp. 536–543, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

The Complexity of Grid Coverage by Swarm Robotics 537

the region expands sufficiently slow (specifically, every O(c0
γ1

) time steps, where
c0 is the circumference of the region and where γ1 is a geometric property of
the region, ranging between O(1) and O(lnn)), a group of Θ(

√
n) robots can

successfully cover the region. Furthermore, we demonstrate that in this case a
cover time of O(n2 lnn) is guaranteed.

2 Related Work

A search for analytic results concerning the completion time of ant-robots cover-
ing an area in the grid revealed only a handful of works. The main result in this
regard is that of [7], where a swarm of ant-like robots is used to repeatedly cover
an unknown area, using a real time search method called node counting, using
integer markers that are placed on the graph’s nodes. The cover time of teams
of ant robots that use node counting is shown in [8, 9] to be tk(n) = O(n

√
n),

when tk(n) denotes the cover time of a region of size n using k robots. Another
algorithm to be mentioned in this scope is LRTA*, whose multi-robotics vari-
ant is shown in [8] to guarantee cover time of undirected connected graphs in
polynomial time. Specifically, on grids it guarantee coverage in O(n2) time.

Vertex-Ant-Walk, a variant of the node counting algorithm presented in [12],
is shown to achieve a coverage time of O(nδG), where δG is the graph’s diameter,
implying a worse-case completion time of O(n2) in grids. This work is based on
a previous work in which a cover time of O(n2δG) was demonstrated [10].

An algorithm named Exploration as Graph Construction, providing a coverage
of degree bounded graphs in O(n2) time, can be found in [5]. Here a group of
limited ant robots explore an unknown graph using special “markers”.

We next show that the problem of collaborative coverage in static grids can
be completed in O(1

kn
1.5 + n) time and that collaborative coverage of dynamic

grids can be achieved in O(n2 lnn).

3 The Dynamic Cooperative Cleaners Problem

Following is a short summary of the Cooperative Cleaners problem, as appears
in [11] (static variant) and [1,2] (dynamic variant). Assuming a discrete time, let
the undirected graph G(V,E) denote a two dimensional integer grid Z2, whose
vertices (or “tiles”) have a binary property called ‘contamination’. Let contt(v)
state the contamination state of the tile v at time t, taking the values “on”
or “off ”. Let Ft be the contaminated sub-graph of G at time t, and let F0 be
simply connected. Let a group of k robots that can move on the grid G (moving
from a tile to its neighbor in one time step) be placed at time t0 on F0, at point
p0 ∈ Ft. Each robot is equipped with a sensor capable of telling the status of all
tiles in the digital sphere of diameter 7, which surrounds the robot. Each robot is
equipped with a memory of size O(1) bits. When a robot moves to a tile v, it has
the possibility of cleaning this tile (i.e. causing cont(v) to become off. The robots
do not have any prior knowledge of the shape or size of the sub-graph F0.Every
d time steps, the contamination spreads. That is, if t = nd for some positive

538 Y. Altshuler and A.M. Bruckstein

integer n, then ∀v ∈ Ft ∀u ∈ 4 −Neighbors(v) , contt+1(u) = on. The robots’
goal is to clean G by eliminating the contamination entirely. It is important to
note that no central control is allowed, no communication is allowed, and that
the system is fully decentralized.

A Survey of Previous Results. The cooperative cleaners problem was pre-
viously studied in [11, 1,2]. A cleaning algorithm called SWEEP was proposed
(used by a decentralized group of simple mobile robots, for exploring and clean-
ing an unknown “contaminated” sub-grid F , expanding every d time steps) and
its performance analyzed. The SWEEP algorithm is based in a constant traver-
sal of the contaminated region, preserving the connectivity of the region while
cleaning all non critical points — points which when cleaned disconnect the
contaminated region. Following are several results that we later use. Note that
cleaning a region is equivalent to covering it, as the number of uncovered tiles
is upper bounded by the number of remaining contaminated ones.

Result 1 (Cleaning a Non-expanding Contamination). The time it takes
for a group of K robots using the SWEEP algorithm to clean a region F of the
grid is at most:

tstatic � 8(|∂F0| − 1) · (W (F0) + k)
k

+ 2k

W (F) denotes the depth of the region F (the shortest path from some internal
point in F to its boundary, for the internal point whose shortest path is the
longest) and ∂F denotes the boundary of F , defined via ∂F = {v | v ∈ F ∧ 8−
Neighbors(v) ∩ (G \ F) �= ∅}.

Result 2 (Universal Lower Bound on Contaminated Area). Using any
cleaning algorithm, the area at time t of a contaminated region that expands
every d time steps can be recursively lower bounded, as follows:

St+d ≥ St − d · k +
⌊
2
√

2 · (St − d · k) − 1
⌋

Here St denotes the area of the contaminated region at time t (such that S0 = n).

Result 3 (Upper Bound on Cleaning Time for SWEEP on Expanding
Domains). For a group of k robot using the SWEEP algorithm to clean a
region F on the grid, that expands every d time steps, the time it takes the
robots to clean F is at most d multiplied by the minimal positive value of the
following two numbers:

(A4 −A1A3) ±
√

(A1A3 −A4)2 − 4A3(A2 −A1 −A1A4)
2A3

where:

A1 =
c0 + 2 − γ2

4
, A2 =

c0 + 2 + γ2

4
, A3 =

8 · γ2

d · k , A4 = γ1 −
γ2 · γ
d

,

The Complexity of Grid Coverage by Swarm Robotics 539

γ1 = ψ (1 +A2) − ψ (1 +A1) , γ2 =
√

(c0 + 2)2 − 8S0 + 8 ,

γ =
8(k +W (F0))

k
− d− 2k

|∂F0| − 1

Here c0 is the circumference of the initial region F0, and where ψ(x) is the
Digamma function — the logarithmic derivative of the Gamma function.

4 Grid Coverage — Analysis

We first present the cover time of a group of robots operating in non-expanding
domains, using the SWEEP algorithm.

Theorem 1. Given a connected region of S0 = n tiles and perimeter c0, then k
ant-like robots can cover it using O

(1
kS

1.5
0 + S0

)
time.

Proof. Since |∂F0| = Θ(c0), andW (F0) = O(
√
S0), recalling Result 1 we see that:

tk(n) = tstatic(k) = O

(
1
k

√
S0 · c0 + c0 + k

)
As c0 = O(S0) and as for practical reasons we assume that k < n this equals:

tk(n) = tstatic(k) = O

(
1
k
S1.5

0 + S0

)
We now examine the problem of covering expanding domains. The lower

bound for the number of robots required for completing is as follows.

Theorem 2. Given a region of size S0 ≥ 3 tiles, expanding every d time steps,
then a team of less than

√
S0
d robots cannot clean the region, regardless of the

algorithm used.

Proof. Recalling Result 2, and by assigning k =
√

S0
d we can see that:

ΔSt = St+d − St ≥
⌊
2
√

2 · (St −
√
S0) − 1

⌋
−
√
S0

For any S0 ≥ 3, we see that ΔS0 > 0. In addition, for every S0 ≥ 3 we can
see that dSt

dt > 0 for every t ≥ 0. Therefore, for every S0 ≥ 3 the size of the
region will be forever growing.

Corollary 1. Given a region of size S0 tiles, expanding every d time steps,
where d = O(1) w.r.t S0, then a team of less than Ω(

√
S0) robots cannot clean

the region, regardless of the algorithm used.

Theorem 3. Let F be a region of size S0 tiles, expanding every d time steps.
A team of k robots located at t = 0 on the same tile cannot clean F , regardless
of the algorithm used, if d2k < Ω(R(F)), where R(F) is the perimeter of the
bounding rectangle of F .

Proof. For every v ∈ F let l(v) denote the maximal distance between v and any
of the tiles of F , namely:

540 Y. Altshuler and A.M. Bruckstein

l(v) = max{d(v, u)|u ∈ F}
Let C(F) = l(vc) such that vc ∈ F is the tile with minimal value of l(v).

Let vs denote the tile the agents are located in at t = 0. Let vd ∈ F denote some
contaminated tile such that d(vs, vd) = l(vs). Regardless of the algorithm used by
the agents, until some agent reaches vd there will pass at least l(vs) time steps.
Let us assume w.l.o.g that vd is located to the right (or of the same horizontal
coordinate) and to the top (or of the same vertical coordinate) of vs. Then by
the time some agent is able to reach vd there exists an upper-right quarter of a
digital sphere of radius

⌊
l(vs)

d

⌋
+ 1, whose center is vd. The number of tiles in

such a quarter of digital sphere equals:

1
2

⌊
l(vs)
d

⌋2

+
3
2

⌊
l(vs)
d

⌋
+ 1 = Θ

(
l(vs)2

d2

)
It is obvious that the region cannot be cleaned until vd is cleaned. Let td denote

the time at which the first agent reaches vd. It is easy to see that td ≥ l(vs).
Therefore, at time td there are k agents that has to clean a region of at least
Θ(l(vs)2

d2) tiles, spreading every d time steps. Using Theorem 2 we know that k
agents cannot clean an expanding region of k =

√
S0
d tiles. Namely, at time td

the k agents could not clean the contaminated tiles if:

d2k < Ω (l(vs))

As l(vs) ≥ C(F) we know that k agents could not clean an expanding con-
taminated region where: d2k < Ω (C(F)). It is easy to see that for every region
F , if R(F) is the length of the perimeter of the bounding rectangle of F then
C(F) = Θ(R(F)).

Lemma 1. For every connected region of size S0 ≥ 3 and perimeter of length
c0:

1
2
c0 < γ2 < c0

Proof. let us assume by contradiction that (c0 + 2)2 ≤ (8S0 + 8), implying c0 ≤√
8S0 + 8 − 2. However, the minimal circumference of a region of size S0 is

achieved when the region is arranged as an 8-connected digital sphere, in which
c0 ≥ 4

√
S0 − 4, contradicting the assumption that c0 ≤

√
8S0 + 8− 2 for S0 > 5

and hence, γ2 ∈ R.
Let us assume by contradiction that γ2 <

1
2c0. This in turn implies:

c0 < −16
6

+

√
10

2
3
S0 − 8

8
9
< 3.266

√
S0 − 2

We know that c0 ≥ 4
√
S0 − 4, which contradicts the assumption that γ2 <

1
2c0

for every S0 ≥ 3. Let us assume by contradiction that γ2 > c0, implying that
c0 > 4S0 − 6.

The Complexity of Grid Coverage by Swarm Robotics 541

We know that c0 ≤ 2S0−2 (as c0 is maximized when the tiles are arranged in
the form of a straight line), contradicting the assumption that γ2 > c0 for every
S0 ≥ 3.

Lemma 2. For every connected region of size S0 ≥ 3 and perimeter of length
c0:

Ω(1) < γ1 < O(lnn)

Proof. Let us observe γ1: γ1 � ψ
(
1 + c0+2+γ2

4

)
− ψ

(
1 + c0+2−γ2

4

)
. From

Lemma 1 we can see that 1 <
(
1 + c0+2−γ2

4

)
< 1

4c0. Note that ψ(1) = −γ̂
where γ̂ is the Euler-Mascheroni constant which equals approximately 0.57721.
In addition, ψ(x) is monotonically increasing for every x > 0. As ψ(x) is upper
bounded by O(ln x) for large values of x, we see that:

−0.58 < ψ(1 +
c0 + 2 − γ2

4
) < O(lnn) (1)

From Lemma 1 we also see that 1 <
(
1 + c0+2+γ2

4

)
< 1.5

4 c0 meaning that:

ψ(1 +
c0 + 2 + γ2

4
) = Θ(lnn) (2)

Combining equations 1 and 2 the rest is implied.

Theorem 4. Result 3 returns a positive real number for the covering time of
a region of S0 tiles that expands every d time steps, when the number of robots
equals Θ(

√
S0) and d = Ω(c0

γ1
), where γ1 defined in Result 3 shifts from O(1) to

O(lnS0) as c0 grows from O(
√
S0) to O(S0).

Proof. In order for Result 3 to yield a real number all the following must hold:

d · k �= 0 , |∂F | > 1 , A3 �= 0 , (c0 + 2)2 > 8S0 − 8

(A1A3 −A4)2 ≥ 4A3(A2 −A1 −A1A4)

The first and second requirements hold for every non trivial scenario. The
third requirement is implied by the fourth. The fourth assumption is a direct
result of Lemma 1.

As for the last requirement, we ask that A2
1A

2
3 + A2

4 ≥ 4A2A3 − 4A1A3 −
2A1A3A4, which subsequently means that we must have:

γ2
2

d2k2

(
c20 + γ2

2 − c0γ2
)

+ γ2
1 + γ2

2γ2

d − γγ1γ2
d

≥ γ2

dk
·O
(
γ2 − c0γ1 + c0

γ2γ
d

−γ1 + γ1γ2 − γ2
2γ
d

)

Using Lemma 1 and Lemma 2 we should make sure that:

γ2
2

dk2 c
2
0 + γ2

1d+ γ2
2γ

2 − γγ1γ2 ≥ O

(
c0γ2γ1

k
+
c0γ

2
2γ

dk

)

542 Y. Altshuler and A.M. Bruckstein

Using W (F) = O(
√
S0) and Ω(

√
S0) = |∂F | = O(S0) and dividing by γ2

2
(which we know to be larger than zero), we can write the above as follows:

c20
dk2 +

k2 + d ln2 S0

c20
+ 1 ≥ O

(
lnS0

c0
+
k lnS0

c20
+

lnS0

k
+
c0
√
S0

dk2 +
c0
dk

+
1
d

)
As c0 ≥

√
S0 then c2

0
dk2 ≥ c0

√
S0

dk2 . In addition, 1 ≥ 1
d and also 1 ≥ ln S0

c0
and

1 ≥ ln S0
k . In order to have also 1 ≥ c0

dk we must have: d · k = Ω(c0)
In addition, we also require that the cleaning time μ is positive:

A4 +
√

(A1A3 −A4)2 − 4A3(A2 −A1 −A1A4) > A1A3

For this to hold we shall merely require that A2 − A1 − A1A4 ≤ 0 (as A3
is known to be positive). Assigning the values of A1, A2, A4, this translates to
c0 + c20

γ
d ≤ O(c0γ1).

Dividing by c0 we can now write c0 + c0
√

S0
k + k ≤ dO(γ1). As c0 is the

dominant element, we see that d = Ω
(

c0
γ1

)
. which subsequently implies that:

Ω(
√
S0) ≤ k ≤ O(c0). Therefore, we select the value of k such that k = Θ(

√
S0).

Theorem 5. The time it takes a group of k = Θ(
√
S0) robots using the

SWEEP algorithm to cover a connected region of size S0 tiles, that expands
every d = Ω(c0

γ1
) time steps (where γ1 is defined in Result 3), is upper bounded

by O
(
S2

0 lnS0
)
.

Proof. Recalling Result 1, as we want at least a single contamination spread we
assume 8(|∂F0|−1)·(W (F0)+k)

k + 2k ≥ d. Observing Result 3 we now see that:

tSUCCESS = d ·O
(
A1 +

|A4|
A3

+

√
A2

1 +
|A1A4| +A1 +A2

A3
+
A2

4

A2
3

)
≤

d ·O(c0 + γ2 + dk γ1
γ2

+ kγ +
√
k
√

c0+γ2
√

dγ1+γ2·γ√
γ2

+
√

kd
γ2

√
c0 + γ2)

Using the fact that γ2 = Θ(c0) (Lemma 1) we can rewrite this expression as:

d ·O(c0 + dk
γ1

c0
+ kγ +

√
k
√
dγ1 + c0γ +

√
kd) (3)

As W (F0) = O(
√
S0), we can now upper bound d as follows: d = O(

√
S0·c0
k +

c0 + k). Therefore, |γ| can now be written as |γ| = O(
√

S0
k +

√
S0 + k√

S0
+ 1).

Remembering that O(
√
S0) ≤ c0 ≤ O(S0) we can rewrite Equation 3 as follows:

d·O
(
c0 + dk γ1

c0
+ k

√
S0 + k2√

S0
+
√
kc0

(√
γ1 + 4

√
S0
√

γ1
k + 4

√
S0 +

√
k

4√S0

)
+
√
kd
)

which 2 can simplify to d ·O(c0 +k
√
S0 lnS0 + k2√

S0
+
√
c0 lnS0

√
S0 +

√
c0k

√
S0).

Assuming that k > O(lnS0) and as c0 = O(S0) we can now write:

O
(

S2.5
0
k

+ S2
0 ln S0 + S1.5

0 k lnS0 + k2
√

S0 ln S0 + k3√
S0

+ S2.25
0√

k
+ S1.75

0

√
k + S0.75

0 k1.5
)

The Complexity of Grid Coverage by Swarm Robotics 543

5 Conclusions

In this paper we have discussed the covering of a connected region on the grid
using collaborate ant-like robotics system. We have shown that for static regions
this can be done in O(1

k

√
n · c0 + c0 + k) time, equals O(1

kn
1.5 + n) time in

the worst case. In addition, we have shown that when a region expands in a
constant rate, a team of Θ(

√
n) robots can still be guaranteed to clean or cover

it, in O(n2 lnn) time.
In addition, we have shown that teams of less than Ω(

√
n) robots can never

cover a region that expands every O(1) time steps, regardless of their sensing
capabilities, communications and memory resources, or algorithm used. As to
regions that expand slower, two impossibility results were shown. First, a region
of n tiles that expands every d time steps cannot be covered by a group of k
agents if dk ≤ O(

√
n). Theorem 4 guarantees a coverage when dk = Ω(n1.5

ln n), or
even for dk = Ω(n)) (when the region’s perimeter c0 equals O(n)).

Second, a spreading region cannot be covered when d2k is smaller than the
order of the perimeter of the bounding rectangle of the region (which is O(n) in
the worse case and O(

√
n) for “round shapes”). Theorem 4 guarantees a coverage

when d2k = Ω(n2.5

ln2 n
), or for d2k = Ω(n1.5) (when c0 = O(n)).

References

1. Altshuler, Y., Bruckstein, A., Wagner, I.: Swarm robotics for a dynamic cleaning
problem. In: IEEE Swarm Intelligence Symposium, pp. 209–216 (2005)

2. Altshuler, Y., Wagner, I., Yanovski, V., Bruckstein, A.: Multi-agent cooperative
cleaning of expanding domains. The Int. J. of Robotics Res. (to appear, 2010)

3. Altshuler, Y., Yanovsky, V., Bruckstein, A., Wagner, I.: Efficient cooperative search
of smart targets using uav swarms. ROBOTICA 26, 551–557 (2008)

4. Borie, R., Tovey, C., Koenig, S.: Algorithms and complexity results for pursuit-
evasion problems. In: The Int. Joint Conf. on AI (IJCAI), pp. 59–66 (2009)

5. Dudek, G., Jenkin, M., Milios, E., Wilkes, D.: Robotic exploration as graph con-
struction. IEEE Transactions on Robotics and Automation 7, 859–865 (1991)

6. Isler, V., Kannan, S., Khanna, S.: Randomized pursuit-evasion with local visibility.
SIAM Journal of Discrete Mathematics 20, 26–41 (2006)

7. Koenig, S., Liu, Y.: Terrain coverage with ant robots: A simulation study. In: Proc.
of the 5th Int. Conf. on Autonomous agents, pp. 600–607 (2001)

8. Koenig, S., Szymanski, B., Liu, Y.: Efficient and inefficient ant coverage methods.
Annals of Mathematics and Artificial Intelligence 31, 41–76 (2001)

9. Szymanski, B., Koenig, S.: The complexity of node counting on undirected graphs.
Technical Report, CS Department, Rensselaer Polytechnic Institute (1998)

10. Thrun, S.B.: Efficient exploration in reinforcement learning — technical report
cmu-cs-92-102. Technical report, Carnegie Mellon University (1992)

11. Wagner, I., Altshuler, Y., Yanovski, V., Bruckstein, A.: Cooperative cleaners: A
study in ant robotics. The Int. J. of Robotics Res. 27(1), 127–151 (2008)

12. Wagner, I., Lindenbaum, M., Bruckstein, A.: Efficiently searching a graph by a
smell-oriented vertex process. Annals of Math. and AI 24, 211–223 (1998)

The Design of an Active Structural Vibration
Reduction System Using a Modified Particle

Swarm Optimization

Adam Schmidt

Institute of Control and Information Engineering, Poznan University of Technology,
Poznan, Poland

Adam.Schmidt@put.poznan.pl

Abstract. This paper presents the synthesis of an active control sys-
tem using a modified particle swarm optimization method. The system’s
controller design is analyzed as a minimalization of the building stories’
acceleration. The proposed fitness function is computationally efficient
and incorporates the constraints on the system’s stability and the maxi-
mum output of actuators. In order to handle the constraints the PSO was
modified to take into account the particles’ distance to the best and the
worst solutions. The performance of the obtained controller was tested
using historical earthquake records. The performed numerical simula-
tions proved that the designed controller is capable of efficient vibrations
reduction.

Keywords: active vibration reduction, particle swarm optimization.

1 Introduction

Nowadays, it is common to design and construct lightweight and cost-efficient
buildings. However, these light constructions tend to be susceptible to vibrations
caused either by human or by natural sources such as earthquakes. The concept
of the active control system[13], is one of the possible solutions to that problem.
Numerous methods have been used to design the controller for the active vibra-
tion reduction systems. A comprehensive survey of approaches based on both
the control theory as well as on the soft computing can be found in [6].

Over the last years, the Particle Swarm Optimization has been successfully
used in the controller design. In [8] and [2] the PSO has been used in the opti-
mization of the PI and PID controllers. Wang et al.[11] have applied the PSO to
find the control system’s poles resulting in a robust control system. In [10] the
PSO has been succesfully used to find the optimal feedback gain in the vehicle
navigation system controller.

This paper presents the design of the building active control system using a
modified PSO. The constrained controller design is formulated as an optimiza-
tion problem. The proposed fitness function minimizes the building’s structure
accelerations and incorporates the constraints on the system’s stability as well as

M. Dorigo et al. (Eds.): ANTS 2010, LNCS 6234, pp. 544–551, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

The Design of an Active Structural Vibration Reduction System 545

the requirements concerning maximum forces generated by actuators. In order to
adapt the PSO to the constrained optimization the unfeasible solutions are not
only attracted to the best solutions but also repeled from the worst solutions.
The effectiveness of the presented method is assessed on the model of a six-story
building under different earthquakes.

2 Structure Model

The building is modeled as a shear planar frame with actuators installed be-
tween some of its stories. It is assumed that the braces supporting actuators are
infinitely stiff. The motion equations of the system can be defined as:

Mq̈(t) + Cq̇(t) +Kq(t) = Eu(t) +M · 1N×1agr(t) (1)

where M , C, K and E stand for the mass, damping, stiffness and location
matrices. The q(t) is a vector of the stories displacements relative to the ground,
u(t) is a vector of the forces generated by the actuators and the agr(t) is the
acceleration of the ground.

The forces generated by the actuators are calculated according to the structure
displacements q(t) and velocities q̇(t). It is assumed, that all displacements and
velocities are measured, which means that:

u(t) = −G1q(t) −G2q̇(t) (2)

where G1 and G2 are the gain matrices of the control system feedback loop. The
Eqn. 1 can be rewritten as:

Mq̈(t) + (C + EG2)q̇(t) + (K + EG1)q(t) = M · 1N×1agr(t) (3)

The system’s model can be rephrased in the form of the state equations:

z(t) =
[
q(t) q̇(t)

]T (4)
ż(t) = Az(t) + Bagr(t) (5)

A =
[

0(N×N) 1(N×N)
−M−1(K + EG1) −M−1(C + EG2)

]
(6)

B =
[
01×N 11×N

]T (7)

3 Particle Swarm Optimization

The Particle Swarm Optimization (PSO) introduced by Kennedy and Eberhart[5]
is a population-based optimization technique inspired by social behaviour of ani-
mals e.g. birds flocking or fish schooling. Each particle in the swarm keeps a record
of its bestfitness achieved so far (alongwith the associated solutionPb)and thebest
fitness and corresponding solution achieved in the particle’s neighborhood - Lb. At

546 A. Schmidt

each iteration i of the PSO the velocities of the particles are changed (accelerated)
towards the Pb and the Lb and the particles are moved to new positions:

vj(i) = w · vj(i− 1) + c1 · r1 • (Pbj − pj(i− 1)) + c2 · r2 • (Lbj − pj(i− 1))(8)
pj(i) = pj(i− 1) + vj(i) (9)

where vj and pj are the velocity and the position of the j-th particle, w is the
inertia weight, c1 is the individuality constant and c2 is the sociality constant. In
the above equation r1 and r2 are uniformly distributed random vectors (U(0, 1))
and • stands for the element-wise multiplication.

The PSO in its canonical form[5] was designed to solve only unconstrained
optimization problems. The lack of intrinsic method for constraints handling
led to numerous modifications of the algorithm. Hu and Eberhart[4] proposed
initializing the particles only in the feasible positions and using only constraints-
abiding solutions as the local and global best positions. However, the necessity to
find feasible solutions before the optimization makes this approach unapplicable
to problems with complex constraints. Parsopoulos and Vrahatis[7] used a dy-
namic, problem dependent penalty function. The value of the penalty reflected
the degree of constrains violations facilitating particles’ movement towards the
feasible solutions.

He and Wang presented a co-evolutionary particle swarm optimization[3]
(COPSO) which concurrently optimizes the original objective function as well
as the penalty factors. The COPSO scheme uses an external swarm of size M ,
which particles represent penalty factors and M internal swarms solving the
original problem using the penalty factors defined by a corresponding external
swarm particle.

Sedlaczek and Eberhard noticed that for some problems using the penalty
function to handle the constraints would require infinite penalty factors to finds
the optimal solution. To avoid it they proposed the augmented lagrangian PSO
(ALPSO)[9]. The general Lagrange function is augmented by a penalty factors
punishing constraints violations which ensures that the solution of the original
problem is a minimum of the lagrangian. The particle swarm is used to minimize
the lagrangian with the lagrange multipliers and penalty factors updated every
k iterations.

The hybrid multi-swarm PSO proposed by Wang and Cai[12] combines the
idea of swarm divisions with the differential evolution (DE). At each iteration
the swarm is divided into N sub-swarms in a way that maximizes the diversity
of sub-swarms. Then each of them is updated according to the simplified rule of
Clerc and Kennedy[1]. After that the personal best of each particle is additionally
updated with the DE.

4 Proposed PSO Modification

The canonical PSO with a dynamic, problem dependent penalty function is
successful if either at least one of the initial particles’ position is feasible or if

The Design of an Active Structural Vibration Reduction System 547

any particle drawn to the currently best solutions stops at a feasible position.
However, if all particles start in unfeasible positions and their trajectories miss
the feasible regions the whole swarm will converge to an unfeasible solution
considered to be the best. This phenomena is especially inconvienient in case of
problems with complex constraints and relatively small feasible solutions space
which makes randomly spotting a feasible solution improbable.

A one possible solution to this problem is to not only attract unfeasible parti-
cles to the currently best solutions but also to repel them from the worst known
positions. As the penalty function rises proportionally to the degree of the con-
straints violation repulsing from the worst solution should direct the particles
towards the feasible solutions.

Each particle stores the worst fitness achieved so far along with a correspond-
ing position Pw and the worst fitness and position achieved in features neigh-
borhood (Lw). If the current position of a particle is unfeasible the velocity
components vP

j (i) and vL
j (i) repulsing from the Pw and Lw are calculated:

vP
j (i) = max(min(Pw j − pj(i− 1), R),−R)−R · sign(fP

j (i)) (10)

vL
j (i) = max(min(Lw j − pj(i− 1), R),−R) −R · sign(fL

j (i)) (11)

where R is the maximal range of the repulsion forces along each dimension.
The absolute values of the repulsion components are close to R near the worst
positions and linearly decrease to 0 as the difference between the current and
the worst positions increases. The velocity of the unfeasible particle is calculated
as:

vj(i) = c1 · r1 • (Pbj − pj(i− 1)) + c2 · r2 • (Lbj − pj(i− 1)) + (12)
c3 · r3 • vP

j (i) + c4 · r4 • vL
j (i) + w · vj(i− 1)

where c3 and c4 are parameters similar to c1 and c2 while r3 and r4 are vectors
analogous to r1 and r2. In the presented experiments the parameters of the
modified PSO were empirically selected as R = 100000 and c3 = c4 = 2.

4.1 Fitness Function

The optimization goal was to find the gain matrices G1 and G2 that would
minimize the accelerations of the building’s stories under the earthquake. Ad-
ditionally, the resulting model had to be stable and the generated forces had
to be lower than an assumed value (Fmax = 100kN). Those constraints were
incorporated into the fitness function:

fit(p) = fitacceleration(p) + a · fitstability(p) + b · fitforces(p) (13)

where a and b are the constraints coefficients.
The accelerations of the structure were analyzed in the frequency domain

under the simplifying assumption that the ground acceleration is a sinusoidal
signal. The following accelerations transfer function can be defined:

Hacc(jω) =
Q̈(jω)
Agr(jω)

= (M+
1
jω

(C+E ·G2)−
1
ω2 (K+E ·G1))−1M ·1N×1 (14)

548 A. Schmidt

The biggest (and thus the most dangerous for the structure) accelerations are
generated for the modal frequencies of the resulting system. Therefore, the fol-
lowing fitness function component was defined:

fitacceleration(p) = max
i,n

|Hn
acc(jωi)| (15)

where ωi is the i-th modal frequency of the closed-loop system and Hn
acc is the

acceleration transfer function of the n-th story.
The resulting system would be stable if the real parts of all the system’s poles

were smaller than 0. The fitness function stability component was calculated as:

fitstability(p) =
{

1 + max(�(ei)) − ρ if max(�(ei)) ≥ ρ
0 if max(�(ei)) < ρ

(16)

where ei is the i-th eigenvalue of the state matrix A and ρ is the maximal allowed
real part of the system’s poles.

It was assumed that the actuators should not saturate until the ground accel-
eration amplitude reached a certain value (Amax = 0.5 m

s2) at any of the system’s
modal frequencies. The following transfer function was defined:

Hforce(jω) =
U(jω)
Agr(jω)

= (−G1 − jG2ω)Hdisp(jω) (17)

The force component of the fitness function was calculated according to:

fitforce(p) =

⎧⎨⎩max
(|Hforce(jωi)|Amax

Fmax

)
if max

(|Hforce(jωi)|Amax

Fmax

)
> 1

0 if max
(|Hforce(jωi)|Amax

Fmax

)
≤ 1

(18)

The a parameter was set to 1000000 and the b was set to 1000. This ensured that
any solution resulting in an unstable system would have higher fitness function
value than any of the stable ones and that solutions violating the maximum force
limits would have worse fitness than those conforming to both constraints.

The proposed fitness function can be calculated without the time consum-
ing simulations which is an important advantage in any iterative optimization
algorithm.

5 Results

The proposed modified PSO was compared to the canonical PSO with a penalty
function. In both cases the optimization process was executed 100 times. The
convergence of the PSO was assumed if the best fitness value in the population
had not changed over iconv = 100 iterations and the best solution conformed to
both constraints.

The modified PSO algorithm converged to a feasible solution 96 times, where-
as only 5 runs of the canonical PSO were successful. The proposed algorithm
needed averagely 675 iterations to converge (median = 543). The the best result

The Design of an Active Structural Vibration Reduction System 549

2 4 6
0

0.1

0.2

El Centro

2 4 6
0

0.1

0.2
Hachinohe

2 4 6
0

0.2

0.4

0.6

Kobe

2 4 6

0.2

0.4

0.6

0.8

Northridge

Fig. 1. The maximum displacement of building stories (solid line - controlled, dotted
- uncontrolled

obtained by the modified PSO was equal to 1.1287, average fitness function of the
converged solutions was equal to 1.5449 with the standard deviation of 0.5184 .

The performance of the obtained controller was tested in numerical simula-
tions. Four different earthquake records were used: El Centro, Hachinohe, Kobe,
Northridge. The peak ground accelerations of these earthquakes were: 0.3188g,
0.2294g, 0.8337g, 0.8428g respectively.

The maximum displacement of the building stories is shown in the Figure 1.
The controler was able to reduce the maximal displacement of the upper (3 to
6) floors of the building significantly. It is especially important as those displace-
ments are the biggest and therefore the most dangerous to the structure.

The examples of the top story displacement of both controlled and uncon-
trolled building as well as the controller outputs (before saturation) are shown
in the Figure 2. In both cases the amplitude and the frequency of the oscillations
are greatly reduced. The vibrations in the controlled building are also dampened
to 0 faster.

It is worth noting that the controller’s outputs did not exceed the Fmax un-
der the El Centro earthquake which peak ground acceleration was lower than
the assumed Amax (Eqn. 18). In case of the Kobe earthquake the peak ground
acceleration was higher than the Amax which caused the actuators to saturate.

Additionally, the normed RMS of structure displacement and the normed
RMS fo the total structure acceleration were calculated for all the considered
earthquakes (Table 1):

DRMS =
maxi

√
1
T

∫ T

0 qc
i (t)2dt

maxi

√
1
T

∫ T

0 quc
i (t)2dt

(19)

ARMS =
maxi

√
1
T

∫ T

0 (q̈c
i (t) + agr(t))

2 dt

maxi

√
1
T

∫ T

0 (q̈uc
i (t) + agr(t))

2 dt
(20)

where i is the story number, T is the duration time of the earthquake, qc
i (t) and

q̈c
i (t) are the displacement and acceleration of the i-th story of the controlled

building and quc
i (t) and q̈uc

i (t) stand for the displacement and acceleration of

550 A. Schmidt

0 20 40

-0.2

0

0.2

time (s)

d
is

p
la

c
e
m

e
n
t
(m

) controlled

0 20 40
-100

0

100

time (s)

fo
rc

e
(k

N
)

actuator 1

0 20 40

-0.2

0

0.2

time (s)

d
is

p
la

c
e
m

e
n
t
(m

) uncontrolled

0 20 40
-100

0

100

time (s)

fo
rc

e
(k

N
)

actuator 2

0 20 40

-0.5

0

0.5

time (s)

d
is

p
la

c
e
m

e
n
t
(m

) controlled

0 20 40
-400

-200

0

200

400

time (s)
fo

rc
e

(k
N

)

actuator 1

0 20 40

-0.5

0

0.5

time (s)

d
is

p
la

c
e
m

e
n
t
(m

) uncontrolled

0 20 40
-500

0

500

time (s)

fo
rc

e
(k

N
)

actuator 2

Fig. 2. The displacement of the top floor and the controller output under the El Centro
(top) and Kobe (bottom) earthquakes

Table 1. The normalized RMS of building displacement

El Centro Hachinohe Kobe Northridge

DRMS 0.3188 0.4413 0.3267 0.5679
ARMS 0.3009 0.2457 0.3664 0.4638

the i-th story of the uncontrolled building. It is clearly visible that the vibration
control system was able to reduce the RMS of both stories’ displacements and
accelerations significantly.

6 Conclusions

The presented study shows that the swarm intelligence can be succesfully used
in the design of the active vibration reduction systems. The proposed modifica-
tions of the PSO algorithm facilitated finding feasible solutions under complex
constraints.

A novel, computationally efficient fitness function minimizing the building’s
stories accelerations and incorporating the control system constraints was de-
fined. The application of the Fourier transform allowed evaluating the solution
without the need for costly simulations.

The obtained controller was tested under different historical earthquake loads.
It achieved excellent results in the reduction of the maximum stories displace-
ments as well as the normalized RMS of the stories’ displacements and total
accelerations. Moreover, the obtained solutions conforms to the constraints de-
spite the assumed modelling simplifications.

The future research will focus on modifying the fitness function to take into
account the accelerations, velocities and displacements of the building stories

The Design of an Active Structural Vibration Reduction System 551

simultaneously. Additionaly, the number and positions of sensors and actuators
will be incorporated into the optimization scheme. Moreover, the proposed mod-
ification of the PSO algorithm will be applied to different engineering problems
and systematical study of the method’s parameters will be conducted.

References

1. Clerc, M., Kennedy, J.: The particle swarm - explosion, stability, and convergence
in a multidimensional complex space. IEEE Transactions on Evolutionary Compu-
tation 6(1), 58–73 (2002)

2. Gaing, Z.L.: A particle swarm optimization approach for optimum design of PID
controller in AVR system. IEEE Transaction on Energy Conversion 19(2), 384–391
(2004)

3. He, Q., Wang, L.: An effective co-evolutionary particle swarm optimization for
constrained engineering design problems. Engineering Applications of Artificial In-
telligence 20, 89–99 (2007)

4. Hu, X., Eberhart, R. C.: Solving constrained nonlinear optimization problems with
particle swarm optimization. In: Proceedings of the sixth world multiconference on
systemics, cybernetics and informatics 2002 (2002)

5. Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: IEEE International
Conference on Neural Networks, vol. 4, pp. 1942–1948 (1995)

6. Lewandowski, R.: A survey of modern methods of vibration reduction of building
structures. Vibrations in Physical Systems 22, 37–48 (2006)

7. Parsopoulos, K.E., Vrahatis, M.: Particle swarm method for constrained optimiza-
tion problems. In: Proceedings of the Euro-international symposium on computa-
tional intelligence (2002)

8. Qiao, W., Venayagamoorthy, G., Harley, R.: Design of optimal PI controllers for
doubly fed induction generators driven by wind turbines using particle swarm op-
timization. In: Proceedings of 2006 International Joint Conference on Neural Net-
works, pp. 1982–1987 (2006)

9. Sedlaczek, K., Eberhard, P.: Using augmented lagrangian particle swarm optimiza-
tion for constrained problems in engineering. Struct. Multidisc. Optim. 32, 277–286
(2006)

10. Sun, T.Y., Huang, C.S., Tsai, S.J.: Particle swarm optimizer based controller design
for vehicle navigation system. In: IEEE International Conference on Systems, Man
and Cybernetics, pp. 909–914 (2008)

11. Wang, J., Brackett, B., Harley, R.: Particle swarm-assisted state feedback control:
From pole selection to state estimation. In: 2009 American Control Conference,
pp. 1493–1498 (2009)

12. Wang, Y., Cai, Z.: A hybrid multi-swarm particle swarm optimization to solve
constrained optimization problems. Front. Comp. Sci. China 3(1), 38–52 (2009)

13. Yao, J.T.P.: Concept of structural control. ASCE J. Struct. Div. 98, 1567–1575
(1972)

Ant Colony Extended: Search in Solution Spaces
with a Countably Infinite Number of Solutions

Jose B. Escario, Juan F. Jimenez, and Jose M. Giron-Sierra

Arquitectura de Computadores y Automatica Dept.
Universidad Complutense, Madrid, Spain

jbescario@filos.ucm.es, {juan.jimenez,gironsi}@fis.ucm.es

Ant Colony Extended (ACE) is a new framework that allows to apply the ant
colony paradigm [1] to solve combinatorial optimization problems, in which the
values of each variable are taken from a finite set, and the set of possible solutions
is countably infinite.

Previously, we applied ACE to autonomous ship manoeuvre planning [2],
where the objective was to minimize the time of a manoeuvre. In this problem,
as in the TSP and others, the value of the cost function increases monotonically
as new elements are added to the solution sequence. We want to check the algo-
rithm for problems that do not exhibit this feature. For this purpose we select a
set of multi-modal functions to minimize with ACE: Griewank’s function (F2),
Shekel’s foxholes (F3), Michalewicz’ function (F4) and Langerman’s function
(F5). All functions are taken from [4].

These functions have many local minima, where algorithms may get stuck. We
select the Simple Genetic Algorithm (SGA), and Differential Evolution (DE) to
perform a comparison of local minima avoidance.

1 Harvester Ants: How to Set a Search Zone

We copy the strategy described by D. Gordon [3] on how harvesting ants set
their foraging areas. These areas are the places where ants gather food and they
change from day to day.

In order to reproduce this strategy we employ two kinds of ants: a)Foragers:
ants that follow the pheromone, b)Patrollers: ants in charge of the exploration
process.

Therefore, patrollers provide the search zones, while foragers select from the
available zones the most promising ones.

2 Results and Discussion

A number can be seen as an expression that is generated according to some gram-
mar. ACE can handle an expression optimization –a combinatorial optimization–
building the numbers digit to digit. For example the generation of number 100:
1 → 10 → 100.

To find the minimum of each function, we perform a batch of 1000 independent
executions. We measure success rates: number of optimal values found over the

M. Dorigo et al. (Eds.): ANTS 2010, LNCS 6234, pp. 552–553, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Search in Solution Spaces with a Countably Infinite Number of Solutions 553

Fig. 1. Comparison results for the set of functions in the case of 5 and 10 variables

number of executions, expressed as percentages. Figure 1 shows the results for
the cases of 5 and 10 variables, setting the limit for the number of function
evaluations to 400000 and 3000000 respectively.

The comparison with SGA suggests that both algorithms can get results while
the difficulty is moderate. When the difficulty increases it seems that ACE may
handle it better depending on the scenario. In comparison with DE, although
ACE has a worse performance, it has a better behaviour for F5. We should note
that DE is an algorithm designed for numerical continuous optimization.

The results prove that ACE is able to solve problems where the value of the
cost function does not increase monotonically as new elements are added to the
solution sequence.

References

1. Dorigo, M., Stützle, T.: Ant colony optimization. The MIT Press, Cambridge (2004)
2. Escario, J.B., Jimenez, J.F., Giron-Sierra, J.M.: Autonomous ship manoeuvring

planning based on the ant colony optimization algorithm. In: Proceedings of 8th
Conference on Manoeuvring and Control of Marine Craft, MCMC 2009 (2009)

3. Gordon, D.: Ants at work: how an insect society is organized. Free Press, New York
(1999)

4. Seront, G., Gambardella, L.: Results of the first international contest on evolution-
ary optimisation. In: Proceedings of 1st ICEO IEEE International Conference on
Evolutionary Computation, pp. 611–615 (1996)

Automatic Parameter Configuration
of Particle Swarm Optimization by
Classification of Function Features

Tjorben Bogon, Georgios Poursanidis, Andreas D. Lattner, and Ingo J. Timm

Information Systems and Simulation Institute of Computer Science and Mathematics,
Goethe University Frankfurt, Germany

{tbogon,lattner,timm}@cs.uni-frankfurt.de

Metaheuristics in stochastic local search are used in numerical optimization prob-
lems in high-dimensional spaces. A characteristic of these metaheuristics is the
configuration of the parameters. These parameters are essential for the optimiza-
tion behavior but depend on the objective function. In this paper we introduce a
new approach to automatic parameter configuration of Particle Swarm Optimiza-
tion (PSO) by classifying features of the objective function. This classification
utilizes a decision tree that is trained by 32 different function features. These
features result from the characteristics of the underlying function landscape and
of the PSO behavior. An efficient set of parameters influences the optimization
in speed and performance. In literature standard configurations are introduced
for different types of metaheuristics which perform a not optimal but an ade-
quate optimization behavior for most objective functions. PSO is an example for
the parameter configuration problem [2]. The swarm behavior depends mainly
on the chosen parameter and leads to solutions of different quality, i.e. bad pa-
rameter sets can lead to a disadvantageous balance between exploitation and
exploration. One problem by choosing the right parameter without knowledge
about the objective function is to describe the characteristics of the function
which are comparable to another function.

Similar to Leyton-Brown et al. [1] we create features to describe a function.
With these features we train a classification tree representing characteristics of
the fitness function landscape. These features are computed and combined with
the best found parameter set on the function to a training set (Figure 1). With
a trained classifier at hand we compute the features of the objective function
prior to the start of the optimization process. The model, which underlies the
decision tree, classifies the function and returns the specific parameter set that
is expected to perform better in the optimization process than the optimiza-
tion with standard parameter. The model determines the parameter set without
a priori knowledge about the functions if we have a well-trained classifier. In
our first experiments, which we understand as a proof of concept, we have se-
lected only a few functions which do not represent any specific types of function.
We want to show that our technique is able to identify functions based on the
provided features and thereby predict the specific parameter configuration. In
order to learn the classifier which suggests the parameter configuration, different
function features are computed.

M. Dorigo et al. (Eds.): ANTS 2010, LNCS 6234, pp. 554–555, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Automatic Parameter Configuration of Particle Swarm Optimization 555

We split our function features into three groups. Each group implies a dis-
tinct way of collecting information about the fitness topology of the objective
function. The group Random Probing describes features which are calculated
based on a random selection of fitness values and provides a general overview
of the fitness topology. Distance-based features are calculated for the group In-
cremental Probing. They reflect the distribution of surrounding fitness values of
some pivot elements. The third group of features utilizes the dynamics of PSO
to create features by using the changes of the global best fitness within a small
PSO instance. The features are scale independent, i.e., that scaling the objective
function by constants will not affect the feature values. These features are the
basis of our training instances for a C4.5 decision tree which is used as classifier.
Experimental trials verify that our decision tree classifies functions correctly into
classes that are associated to parameter sets for which the PSO performs a better
optimization compared to the standard configuration. In our implementation we
use WEKA’s J4.8 implementation. As training set we compute 300 independent
instances for each function. One instance consists of 32 function features. The
decision tree is created based upon the training data and evaluated by stratified
10-fold cross-validation. Upon the six distinct classes we evaluate the model re-
peatedly through cross validation. The validation indicates that the model has
a mean accuracy of 84.32 percent with a standard deviation of 0.29. Our ex-
periments demonstrated that we are able to classify different functions on basis
of a few fitness evaluations and get a parameter set which leads the PSO to a
significant better optimization performance.

Fig. 1. Feature computation and J4.8 decision tree learning

References

1. Leyton-Brown, K., Nudelman, E., Shoham, Y.: Learning the empirical hardness of
optimization problems: The case of combinatorial auctions. In: Van Hentenryck, P.
(ed.) CP 2002. LNCS, vol. 2470, pp. 91–100. Springer, Heidelberg (2002)

2. Shi, Y., Eberhart, R.C.: Parameter selection in particle swarm optimization. In:
Porto, V.W., Waagen, D. (eds.) EP 1998. LNCS, vol. 1447, pp. 591–600. Springer,
Heidelberg (1998)

Constructing Low-Cost Swarm Robots That
March in Column Formation

Asuki Kouno1, Shigeru Takano2, and Einoshin Suzuki1,2

1 Grad. School of Systems Life Sciences, Kyushu University, Fukuoka, Japan
asu00798@gmail.com, suzuki@inf.kyushu-u.ac.jp

2 Dept. Informatics, ISEE, Kyushu University, Fukuoka, Japan
takano@inf.kyushu-u.ac.jp

Formation control is an important research topic in swarm robotics, as it enables
each swarm robot to concentrate on its task by relying on others [1,2]. This paper
is a brief summary of our endeavor for constructing low-cost swarm robots that
march in column formation [4]. n = 5 swarm robots move in file, except the
leading one each follows another one and all of them avoid perimeters of an indoor
arena. We describe detailed settings of the control program for further studies.
Our work focuses on real robots and is thus considered to be complementary to
theoretical and simulation studies, cf. [3].

Each swarm robot [4] is sized approximately 19.0 cm (length) × 18.0 cm
(width) × 15.5 cm (height) and costs about 650 US dollars. It is equipped with
5 IR proximity sensors, 1 image sensor, 1 MPU, 2 DC motors, 2 caterpillars,
and 1 LED unit. The IR proximity sensor detects obstacles located from 5 cm
to 50 cm with precision 1-5 cm, though we assume it is 10 cm for safety. The
image sensor provides a color image of 20 pixels × 15 pixels due to the 8KB-size
RAM of the MPU, and is the reason of our use of the LED unit to indicate the
position of a swarm robot to its follower. The driving unit allows the robot to
move forward/backward at velocity 10cm/s - 16cm/s and make a left/right pivot
turn at 51◦/s - 90◦/s. The variations are mainly due to the low precision in its
fabrication. Neither communication device, e.g., WIFI, Zigbee, nor positioning
device, e.g., GPS, RFID, is used.

The control program [4], which makes no assumption on its environment,
enables a swarm robot to move basically forward by avoiding the perimeters if
it is the leading one or to follow the preceding swarm robot. It is a function of
PLED ×RIR × SIR →M , where PLED, RIR, SIR,M represent the position of the
preceding swarm robot, the maximum reading value of the IR proximity sensor,
the IR proximity sensor that returned the maximum reading value, and the kind
of motion, respectively. The preceding robot is indicated by the position of its
LED unit along the horizontal axis of the image. We use 2 parameters Jout, Jin
(0 < Jout < Jin < 19) to divide the axis into 5 bins (the 4 segmenting points
are Jout, Jin, 19 − Jin, 19 − Jout) so the domain of PLED is the 5 bins and a null
value. The nearer an obstacle is, the larger the reading value of the IR proximity
sensor is. We use 3 parameters Iavoid, Inear, Ifar (5 ≤ Iavoid ≤ Inear ≤ Ifar ≤ 50)
to divide the distance into at most 4 bins so the domain of RIR is the 4 bins.
The domains of SIR and M are the 5 IR proximity sensors and {move forward,
move backward, stop, left turn, right turn}, respectively.

M. Dorigo et al. (Eds.): ANTS 2010, LNCS 6234, pp. 556–557, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Constructing Low-Cost Swarm Robots That March in Column Formation 557

Table 1. Performances Frate, K of controllers with different values of parameters

P01 P02 P03 P04 P11 P12 P21 P22 P31 P32 P41 P42

Jout 3 3 3 3 2 2 1 1 4 4 5 5
Jin 6 6 6 6 5 5 3 3 7 7 8 8
Ifar 25 35 45 45 25 35 25 35 25 35 25 35
Inear 15 25 35 25 15 25 15 25 15 25 15 25
Iavoid 5 15 25 5 5 15 5 15 5 15 5 15
Frate 0.93 0.93 0.73 0.16 0.96 0.14 0.86 0.62 0.15 0.16 0.25 0.66
K 1.93 1.66 0.08 0.25 2.30 0.31 2.66 1.95 0.18 0.21 0.05 0.26

Let F (i, t) be the number of robots in the column formation at time t if
the robot i is the leading one or 0 otherwise and let Vi(t) be its velocity.
The performance of the swarm is evaluated in terms of the quality Frate ≡∑T

t=1
∑n−1

i=0 F (i, t)/(Tn − T) of the shape of a formation and its weighted ve-
locity K ≡

∑T
t=1
∑n−1

i=0 Vi(t)F (i, t)/
∑T

t=1
∑n−1

i=0 F (i, t) over time t = 1, 2, . . . , T .
The swarm robots moves in an indoor arena of size 240 cm × 170cm, surrounded
by walls and thermocol blocks and lighted by fluorescent lamps [4,5]. An over-
head camera and an external PC are used to generate the log file which con-
tains the sequence of their positions automatically [4,5]. The five robots are
covered with sheets of papers of different colors for identification. Noise due to
luminance diversity and the environment affects the sensors considerably and is
hard to model, making our task challenging and valuable. Table 1, which shows
the results of experiments (290 ≤ T ≤ 310), indicates that control programs
P01, P02, P11, P21 have superior performances. We quantitatively understand that
the swarm robots should neither located distant nor turn too frequently.

Acknowledgments. A part of this research was supported by Strategic Inter-
national Cooperative Program funded by Japan Science and Technology Agency.

References

1. Balch, T., Arkin, R.C.: Behavior-based Formation Control for Multi-robot Teams.
IEEE Trans. Robotics and Automation 14(6), 926–939 (1998)

2. Gazi, V., Fidan, B.: Coordination and Control of Multi-agent Dynamic Systems:
Models and Approaches. In: Şahin, E., Spears, W.M., Winfield, A.F.T. (eds.) SAB
2006. LNCS, vol. 4433, pp. 71–102. Springer, Heidelberg (2007)

3. Jakobi, N., Husbands, P., Harvey, I.: Noise and The Reality Gap: The Use of Sim-
ulation in Evolutionary Robotics. In: Morán, F., Merelo, J.J., Moreno, A., Chacon,
P. (eds.) ECAL 1995. LNCS, vol. 929, pp. 704–720. Springer, Heidelberg (1995)

4. Kouno, A.: Realization of Pursuing Actions by Non-communicative Swarm Robots
under Unknown Environment. Bachelor dissertation, Informatics Course, Dept.
Physics, Fac. Sci., Kyushu Univ., Fukuoka, Japan (March 2010) (in Japanese)

5. Suzuki, E., Hirai, H., Takano, S.: Toward a Novel Design of Swarm Robots Based
on the Dynamic Bayesian Network. In: Advances in Data Management. Springer
Studies in Computational Intelligence, vol. 223, pp. 299–310. Springer, Heidelberg
(2009)

Coordinating Heterogeneous Swarms
through Minimal Communication
among Homogeneous Sub-swarms

Carlo Pinciroli1, Rehan O’Grady1, Anders L. Christensen2, and Marco Dorigo1

1 IRIDIA, CoDE, Université Libre de Bruxelles, Brussels, Belgium
{cpinciro,rogrady,mdorigo}@ulb.ac.be

2 Instituto de Telecomunicações, Lisbon, Portugal
anders.christensen@iscte.pt

In swarm robotics, the agents are often assumed to be identical. In this abstract,
we argue that the cooperation between swarms of different kinds of robots can
enhance the capabilities of the robotic system—heterogeneous swarms marry the
robustness and parallelism of homogeneous swarms with efficient task speciali-
sation. A key issue in heterogeneous swarm systems is the potential complexity
of facilitating cooperation between the different robot types.

We propose an approach to heterogeneous system design that minimises the
complexity of heterogeneous interaction whilst preserving the benefits of spe-
cialisation. To mitigate this complexity, we restrict interactions between homo-
geneous sub-swarms to (very) simple forms of communication. This restriction
allows the system to be completely modular. At the top level, modules are global-
level behaviours executed by the heterogeneous robotic swarm. Each global-level
behaviour is obtained by decomposing the heterogeneous swarm into its homo-
geneous constituents, which, in turn, execute specific behaviours. In this way,
coordinated heterogeneous behaviours can be obtained through minimal inter-
sub-swarm communication, even when imprecise information is exchanged.

To demonstrate our approach, we consider a case study of a heterogeneous
robotic task in which a swarm of aerial robots (eye-bots) recruits groups from
a swarm of wheeled robots (foot-bots) and sends the groups to locations where
tasks need to be executed.

The experimental arena is depicted in Fig. 1. It is formed by four rooms
where the eye-bots discover tasks and coordinate their execution, performed by
the foot-bots. The foot-bots are initially deployed in the recruitment area, that
in our setup happens to be located in the centre of the environment. In the
recruitment area, eye-bots coordinate the formation of groups of foot-bots. As
explained in more detail in [1], the formation of the groups happens in parallel
and is completely deadlock-free even when the ground-based robots are fewer
than the total needed for all the tasks.

The recruitment area and the task rooms are connected by corridors. In the
corridors, further sets of eye-bots serve two purposes: (i) they work as message
relayers between the task rooms and the recruitment area and (ii) they guide
the groups of foot-bots to their destination using the assisted flocking algorithm
described in [2].

M. Dorigo et al. (Eds.): ANTS 2010, LNCS 6234, pp. 558–559, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Coordinating Heterogeneous Swarms through Minimal Communication 559

Fig. 1. The experimental arena. The large red blobs are the aerial robots (eye-bots).
The smaller blobs (some red, some green) are the ground-based robots (foot-bots).

Results show that the system provides flexibility and allows for the recruit-
ment and delivery of groups of robots in a highly dynamic application scenario.
Video footage of the experimental runs is available at
http://iridia.ulb.ac.be/supp/IridiaSupp2010-006/.

Future work will be devoted to testing the described system on the real robots
and to applying our minimal inter-swarm communication paradigm to other
complex open problems, such as collective structure building.

Acknowledgements. This research was carried out in the framework of Swar-
manoid, a project funded by the Future and Emerging Technologies programme
(IST-FET) of the European Commission under grant IST-022888. Marco Dorigo
acknowledges support from the Belgian F.R.S.-FNRS, of which he is a Research
Director. This study was supported by FCT grant PTDC/EEA-CRO/104658/2008.

References

1. Pinciroli, C., O’Grady, R., Christensen, A.L., Dorigo, M.: Self-organised recruitment
in a heterogeneous swarm. In: Prassel, E., et al. (eds.) The 14th International Con-
ference on Advanced Robotics (ICAR 2009). Proceedings on CD-ROM, paper ID
176, p. 8 (2009)

2. Pinciroli, C., O’Grady, R., Christensen, A.L., Dorigo, M.: Wisdom of swarms: A case
study in robot navigation. Tech. Rep. TR/IRIDIA/2010-008, IRIDIA, Université
Libre de Bruxelles, Brussels, Belgium (2010)

http://iridia.ulb.ac.be/supp/IridiaSupp2010-006/

Effect of Particle Initialization on the
Performance of Particle Swarm

Niching Algorithms

Isabella Schoeman and Andries P. Engelbrecht

Department of Computer Science, University of Pretoria, South Africa
engel@cs.up.ac.za

The vector-based PSO (VBPSO) [3,4,5] was developed to locate multiple solu-
tions to multi-modal optimization problems. Three versions of the VBPSO were
published, and shown to be very efficient in locating mutliple optima. This is
despite the fact that the VBPSO algorithms initialize particles using standard
pseudo random number generators. The main objective of this article is to show
that the perfomance of the VBPSO algorithms can be improved by initializing
particles using Sobol sequences [1,2].

Main objectives of niching algorithms are to identify candidate solutions and
to demarcate the portion of the search space – called a niche – where an opti-
mal solution may be found. The VBPSO algorithms use the vector dot product,
δi(t) = vpi(t) • vgi(t) between the cognitive component vpi(t) = yi(t) − xi(t)
and the social component vgi(t) = ŷ(t) − xi(t) to determine niche boundaries;
xi(t),yi(t) and ŷ(t) respectively refer to the position vector, personal best posi-
tion, and global best position of particle i at time step t.

If the dot product, δi(t), is positive, then the two vectors, vpi(t) and vgi(t),
point roughly in the same direction. This means that the personal best and
global best positions of a particle move in the same direction. All particles within
a certain niche radius and with positive dot products therefor form one niche. A
niche boundary is detected as soon as a negative dot product has been found. A
candidate niche is therefor located around the current global best position, ŷ(t).
For each particle a dot product, δi(t) amd a radius, ρi(t) as the distance between
the particle’s position, xi(t), and the global best position, ŷ(t) are computed. At
each iteration a dynamic niche radius, τ(t), is computed as the distance between
ŷ(t) and the nearest particle with δi(t) < 0 (indicating a niche boundary). All
particles with ρi(t) < τ(t) and δi(t) > 0 are grouped together with ŷ(t) to form a
sub-swarm around the candidate solution. These particles are removed from the
main swarm. New sub-swarms are created from the particles that remain in the
main swarm and particles within sub-swarms refine their respective candidate
solutions. In the case that a sub-swarm does not have at least three particles,
extra particles are created around the best solution, within the niche radius.

Another goal of niching algorithms is the process of maintaining niches. The
sequential VBPSO (sVBPSO) [3] refines niches in sub-swarms using the standard
velocity and position update equations. This may result in duplicate solutions
with multiple sub-swarm converging on the same solution. The parallel VBPSO
(pVBPSO) [4] merges sub-swarms that converge on the same solution, thereby

M. Dorigo et al. (Eds.): ANTS 2010, LNCS 6234, pp. 560–561, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Particle Swarm Niching Algorithms 561

eliminating duplicate solutions. The enhanced VBPSO (eVBPSO) [5] inhibits
the tendency of particles to move outside the bounds of a niche.

The performance of the three VBPSO algorithms were evaluated using a
pseudo-random number generator (PRNG) as well as Sobol sequences on the
following functions: Himmelblau, Rastrigin, Griewank, Ackley, Ursem F3 and
Six Hump Camel, all in two dimensions. PRNG outperformed Sobol sequences
only in the accuracy of the solutions obtained for the six hump camel func-
tion using pVBPSO. For all other functions, Sobol sequences either performed
significantly better than PRNG or the two initialization schemes had similar per-
formance for all performance criteria. The criteria included the average accuracy
of all solutions, the number of solutions obtained, and the success rate.

For all the algorithms, Sobol sequences outperformed PRNG for most of the
functions with respect to the success rate and the number of solutions found.
Sobol sequences were better using sVBPSO for the Himmelblau function (the
only function used to evaluate sVBPSO), and with reference to pVBPSO and
eVBPSO for all six functions. Therefor, Sobol sequences are more successfull at
locating more optima than using a PRNG. With reference to the accuracy of
the found solutions, it was predominatly the case that there is no significant
difference in performance. However, Sobol sequence did provide more accurate
solutions for two functions when pVBPSO was used and for one function when
eVBPSO was used. With respect to the number of function evaluations to reach
a 98% success rate, there was no significant difference in performance.

In summary, it benefits the performance of the VBPSO algorithms to initialize
particles using Sobol sequences instead of the system supplied RNG, specifically
with reference to the number of optima found.

References

1. Bratley, P., Fox, B.: Algorithm 659: Implementing Sobol’s Quasirandom Sequence
Generator. ACM Trans. on Math. Softw. 14, 88–100 (1988)

2. Joe, S., Kuo, F.: Remark on Algorithm 659: Implementing Sobol’s Quasirandom
Sequence Generator. ACM Trans. on Math. Softw. 29, 49–57 (2003)

3. Schoeman, I., Engelbrecht, A.: Using Vector Operations to Identify Niches for Par-
ticle Swarm Optimization. In: Proceedings of the IEEE Conference on Cybernetics
and Intelligent Systems, pp. 361–366 (2004)

4. Schoeman, I., Engelbrecht, A.: A Parallel Vector-Based Particle Swarm Optimiser.
In: Proceedings of the International Conference on Artificial Neural Networks and
Genetic Algorithms, pp. 268–271 (2005)

5. Schoeman, I., Engelbrecht, A.: Containing Particles Inside Niches when Optimising
using Multimodal Functions. In: Proceedings of SAICSIT, pp. 78–85 (2005)

Energy Efficient Swarm Deployment for Search
in Unknown Environments

Timothy Stirling and Dario Floreano

Laboratory of Intelligent Systems (LIS), Ecole Polytechnique Fédéral de Lausanne
(EPFL), Lausanne, Switzerland

tim.stirling@epfl.ch

This paper introduces three strategies to deploy a swarm of robots in unknown
environments for a search task, aiming to reduce the total swarm energy cost with
rapid operation for applications such as disaster mitigation. We are motivated
by current research on flying robot swarms [10].

A complex problem in swarm robotics is controlling deployment in unknown
environments. If robots deploy to unnecessary locations, energy is wasted. Con-
versely, if an area receives insufficient robots the task may be unachievable or
performance reduced. In work by Rybski et al. [9], increasing the number of
deployed robots increased performance by decreasing amounts until a peak was
reached, after which the returns diminished. Moreover, Rosenfeld et al. [8] noted
that after a peak in performance was reached, additional robots often decreased
performance due to spatial constraints and interference. Previous work in effi-
ciently coordinating multi-robot search relied upon building environment maps
[1,3,5], complex or CPU intensive coordination [11,3], centralised processing [1],
globalised coordination and negotiation [5,11] and/or high bandwidth communi-
cation [1,11]. Our aerial robots, however, need simple distributed swarm deploy-
ment strategies that have minimal communication and processing requirements
and do not require environment maps. They have severely limited flight auton-
omy (e.g. 10-15 minutes [7]). Additionally, rapid deployment is desirable but
often there is a trade-off between energy efficiency and time [4]. Furthermore,
time and energy were previously either examined in isolation, or only with mul-
tiobjective functions that mask details in the individual metrics [2].

We utilise our earlier work on aerial swarm search of unknown indoor en-
vironments [10]. Flying robots progressively build a dynamic sensor network
by perching on the ceiling to save energy [7]. Environments are systematically
searched with depth-first search (see the online video1). We compared three
swarm deployment strategies: 1) The simplest strategy requires no communica-
tion or additional sensing and computation is minimal. Robots deploy one at
a time with a fixed time interval between consecutive launches. 2) The second
strategy requires no additional sensing but minimal bandwidth communication,
either global, or local communication propagated through the robot network.
Flying robots emit a signal which is used to ensure only a single robot flies at a
time, preventing wasted locomotion [3]. 3) The third strategy requires no com-
munication but a sensor that can perceive the range to nearby robots is used
1 http://lis.epfl.ch/~stirling/videos/Swarm_Search.avi

M. Dorigo et al. (Eds.): ANTS 2010, LNCS 6234, pp. 562–563, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

http://lis.epfl.ch/~stirling/videos/Swarm_Search.avi

Energy Efficient Swarm Deployment for Search in Unknown Environments 563

to calculate the density of flying robots [6]. This density indicates robot conges-
tion and is used with threshold-based task allocation to control the number of
concurrently flying robots to reduce interference and wasted locomotion.

We have developed a complete energy model, validated on flying robots [7],
which has been used in a 3-D dynamics simulator. Preliminary results indicate
that all strategies reduce swarm energy consumption. Launching robots at spec-
ified periods permitted the trade-off between energy efficiency and rapid search.
Ensuring that only a single robot flies reduces energy costs but significantly slows
the search. Controlling the density of robots minimised energy consumption and
also achieved the fastest search time. This was due to the ability to dynami-
cally adapt to local environmental and robot congestion conditions. Future work
involves extensive simulation analysis and hardware testing.

Acknowledgements. This work is part of the “Swarmanoid Project”, a Future
Emerging Technologies (FET IST-022888) project funded by the EC.

References

1. Burgard, W., Moors, M., Stachniss, C., Schneider, F.: Coordinated multi-robot
exploration. IEEE Transactions on Robotics 21(3), 376–386 (2005)

2. Hayes, A.T.: How many robots? Group size and efficiency in collective search tasks.
In: Proceedings of the 6th Int. Symp. on Distributed Autonomous Robotic Systems,
DARS 2002, pp. 289–298 (2002)

3. Howard, A., Mataric, M.J., Sukhatme, G.S.: An incremental self-deployment algo-
rithm for mobile sensor networks. Autonomous Robots 13(2), 113–126 (2002)

4. Mei, Y., Lu, Y.H., Hu, Y., Lee, C.: Deployment of mobile robots with energy and
timing constraints. IEEE Transactions on Robotics 22(3), 507–522 (2006)

5. Meier, D., Stachniss, C., Burgard, W.: Cooperative exploration with multiple
robots using low bandwidth communication. In: Beyerer, J., Puente, F., Sommer,
K. (eds.) Informationsfusion in der Mess- und Sensortechnik, pp. 145–157 (2006)

6. Roberts, J., Stirling, T., Zufferey, J.C., Floreano, D.: 2.5D infrared range and bear-
ing system for collective robotics. In: Proceedings of the International Conference
on Intelligent Robots and Systems, pp. 3659–3664. IEEE, Piscataway (2009)

7. Roberts, J., Zufferey, J.C., Floreano, D.: Energy management for indoor hovering
robots. In: Proc. IROS 2008, pp. 1242–1247. IEEE, Piscataway (2008)

8. Rosenfeld, A., Kaminka, G.A., Kraus, S.: A Study of Scalability Properties in
Robotic Teams. In: Coordination of Large-Scale Multiagent Systems, Part 1, pp.
27–51. Springer, Berlin (2006)

9. Rybski, P., Larson, A., Lindahl, M., Gini, M.: Performance evaluation of multiple
robots in a search and retrieval task. In: Proceedings of the Workshop on Artificial
Intelligence and Manufacturing, pp. 153–160. AAAI Press, Menlo Park (1998)

10. Stirling, T., Wischmann, S., Floreano, D.: Energy-efficient indoor search by swarms
of simulated flying robots without global information. Swarm Intelligence 4(2),
117–143 (2010)

11. Zlot, R.M., Stentz, A., Dias, M.B., Thayer, S.: Multi-robot exploration controlled
by a market economy. In: IEEE International Conference on Robotics and Au-
tomation, vol. 3, pp. 3016–3023 (May 2002)

Genetic Encoding of Robot Metamorphosis:
How to Evolve a Glider with a
Genetic Regulatory Network

Anne C. van Rossum

Almende B.V., Rotterdam, The Netherlands
anne@almende.com

In REPLICATOR [2]1 powerful reconfigurable robots are designed and con-
structed. Reconfigurable robots can dock together and form robot organisms.
Robot organisms have the ability to morph from snakes into spiders, chairs,
swarms, wheels. The problem we are facing is: How to evolve self-organized robot
metamorphosis? The metamorphosis graph A = {S, T } is a tuple of S, the set
of all possible robot module configurations, and T the set of all transitions be-
tween those configurations. A configuration s ∈ S, s = {R,D} consists out of
R robots with D connections. If D = �, s denotes a swarm. A fitness func-
tion f for reciprocal metamorphosis defines a maximum for a specific cycle in
A. A metamorphic fitness function is used that defines maximum fitness for a
dynamic body form called a glider : a snake growing its head, and losing its tail
ag ∈ A. The evolutionary search process needs to find a self-organized solution
for a glider in A.

Gene Regulatory Networks for Metamorphosis

To evolve metamorphosis a transition is needed from a static DNA string to a
series of body configuration transitions. Estvez and Lipson call the genome a dy-
namical blueprint [1]. Quick et al. [3] demonstrated post-developmental dynamics
using a gene regulatory network (GRN). To implement metamorphosis on mod-
ular robots we will add differentiated multi-cellularity and three-dimensional
spatial encoding. Let the artificial genome be G. Transcription is defined as
tr : G tr−→ R. Each r ∈ R is an input-output device that takes as input a
certain protein pi ∈ P and as output another protein pk ∈ P . A genetic regu-
latory network N is a tuple {R,W}. W describes the wiring between the Rs.
The evolutionary process can be depicted as E = {N,M}, where M denotes
transitions (mutations) from one N to another. G is mapped via N to a robot
configuration by protein quantities that are translated into docking and undock-
ing events: d : p ∈ P

d−→ t ∈ T . A gene g = {pin, pout, plow, phigh, pδ}, say,
gexample = {4, 8, 38, 83, 17} is activated when protein with id 4 is between 38
and 83 (mole) entities, and increases the amount of protein 8 with 17 (mole)

1 An FP7 project “Robotic Evolutionary Self-Programming and Self-Assembling
Organisms”.

M. Dorigo et al. (Eds.): ANTS 2010, LNCS 6234, pp. 564–565, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Genetic Encoding of Robot Metamorphosis 565

elements. Each robot module contains a virtual 3D cellular grid. Each grid cell
runs the same GRN and its state is defined by the protein vector P cell. The
existence of a docking connection, say between Mi[cu,v,w] and Mj[cx,y,z] induces
cross-robot module diffusion. This is an epigenetic information stream (eco-devo
besides just evo-devo) needed for module differentiation.

Simulation of a Glider

The gene regulatory network for self-organised metamorphosis is implemented in
the Symbricator3D simulator.2 A glider can indeed be evolved. The simulation
to evolve a glider of 3 modules starting with an (evolved) snake of 8 modules re-
quires on average (10 runs) 100 generations.3 Larger gliders have not been found
in a reasonable time! Interesting are the constraints that allow us to actually
evolve this glider: 1.) Protein quantities are set to 50 (mole) entities. Random-
ization would decrease evolutionary convergence. 2.) A staged fitness function is
needed to reward not just ag ∈ A, but also as ∈ A: the formation of a snake to
guide the evolutionary search. 3.) An individual organism’s docking preferences
are matched against the glider pattern, rather than a swarm evolution in which
robot modules and organisms in all possible different states coexist.

This simulation shows that a gene regulatory network is expressive enough
to act as a dynamic blueprint for a morphing robot organism. Further studies
need to investigate the metamorphic landscape. This landscape might not have a
smooth fitness function (like covered distance or height with locomotion or block
climbing). The search for the proper mapping from a network of interacting genes
to a network of interacting robot modules appears to be non-trivial.

Acknowledgements. The “REPLICATOR” project is funded by the Euro-
pean Commission within the work programme “Cognitive Systems, Interaction,
Robotics” under the grant agreement no. 216240.

References

[1] Estévez, N., Lipson, H.: Dynamical blueprints: exploiting levels of system-
environment interaction. In: Proceedings of the 9th annual conference on Genetic
and evolutionary computation, p. 244. ACM, New York (2007)

[2] Kernbach, S., Hamann, H., Stradner, J., Thenius, R., Schmickl, T., van Rossum,
A.C., Sebag, M., Bredeche, N., Yao, Y., Baele, G., de Peer, Y.V., Timmis, J., Mohk-
tar, M., Tyrrell, A., Eiben, A.E., McKibbin, S.P., Liu, W., Winfield, A.F.T.: On
adaptive self-organization in artificial robot organisms. In: Proc. of the First IEEE
International Conference on Adaptive and Self-adaptive Systems and Applications
(IEEE ADAPTIVE 2009), Athens/Glyfada, Greece (2009)

[3] Quick, T., Nehaniv, C., Dautenhahn, K., Roberts, G.: Evolving embodied ge-
netic regulatory network-driven control systems. LNCS, pp. 266–277. Springer,
Heidelberg (2003)

2 The Symbricator3D simulator is built on top of the open-source Delta3D simulator.
3 A movie of an evolved glider can be seen on http://replicator.almende.com

http://replicator.almende.com

How Ant Systems Can Help in Management of
pH for Industrial Wastewater Discharges

Marta Verdaguer1, Jordi Giró1, Narćıs Clara1, and Manel Poch2

1 University of Girona, Catalonia, Spain
2 The Catalan Institute for Water Research, Catalonia, Spain
{marta.verdaguer,narcis.clara,manuel.poch}@udg.edu,

jordiii.giro@gmail.com

Many processes from chemical industries generate wastewater discharges with
acidic or alkaline character.These type of discharges often need a neutralization
process before their incorporation into the receiving media. This process is com-
plex: it presents many difficulties due to the none-linear response of pH value
to the addition of acids or bases. Moreover, it requires considering the variable
buffering capacity of system and the changes in loading characteristics [1,2].
The mixture of wastewater discharges usually has an unknown value of buffer
capacity and its pH value can not be calculated easily.

In this work we approach the pH management for a complex network system
of industrial wastewater discharges with an adaptation of ant system algorithm
[3,4]. Let us consider a system of n industries {Ii} with available volumes {vi}
in their retention tanks. Each industry can discharge in the same basin different
possible volumes N j

i with j ∈ {1, . . . , vi}. Wastewater discharges can present
different pHi values and different buffering capacities βi which value can be
calculated in a previous step. The value βi is assigned to 1 when the industrial
wastewater has not buffering capacity. Considering N as the available hydraulic
capacity for industrial wastewater discharges and B as the maximum expected
value of pH, the most favorable value of pH corresponds to the maximization of
the function Z defined by:

Z = − log

(n∑
i=1

(
vi∑

j=1

xj
iN

j
i)10−pHi

n∑
i=1

βi(
vi∑

j=1

xj
iN

j
i)

)
. (1)

Z is constrained by the restrictions
∑vi

j=1 x
j
i = 1,

∑n
i=1
∑vi

j=1 x
j
iN

j
i ≤ N and

Z ≤ B where xj
i are the decision variables with xj

i ∈ {0, 1} for any j = 1, . . . , vi.
The implemented ant system algorithm works with two-stage process[3]. The

first stage corresponds to the main phase in which the solutions are constructed.
The second phase is aimed to improve the constructed solutions. The process
has been applied to one scenario that comprises several industrial wastewater
discharges defined as follows: 76% of acid character, 20% of alkaline character and
4% of them near to neutrality. Moreover, 52% have components with buffering

M. Dorigo et al. (Eds.): ANTS 2010, LNCS 6234, pp. 566–567, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

How Ant Systems Can Help in Management of pH 567

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

5

0 50 100 150 200 250 300 350 400 450 500

Cycles

Z

with improvement

without improvement

Fig. 1. Evolution of the best solution with and without improvement

capacity and a 48% have not it. To solve the transition rule of the main phase
the following values for the testing parameters have been used: a = 2, 8; b = 2, 8;
α = 0.2, 0.5, 0.8, 1, 2, 3, 4 and β = 0.2, 0.5, 0.8, 1, 2, 3, 4. Each combination has
been made with ρ = 0.99, Q = 1000, 500 cycles and 10 algorithm repetitions
[5]. We have obtained the best average solution Z̄ = 4.654 with a = 2, b = 2,
α = 0.5 and β = 0.2. Figure 1 describes the evolution of the best solution with
improvement Z = 4.903 and without improvement Z = 4.117.

As future work we plan to perform a more complete evaluation of the results
with other algorithms related to ant system and with the simulation of other
real scenarios.

References

1. Adroer, M., Alsina, A., Aumatell, J., Poch, M.: Wastewater neutralization control
based on fuzzy logic: experimental results. Industrial and Engineering Chemistry
Research 38, 2709–2719 (1999)

2. Garrido, M., Adroer, M., Poch, M.: Wastewater neutralization control based in
fuzzy logic: simulation results. Industrial and Engineering Chemical Research 36,
1665–1674 (1997)

3. Dorigo, M., Stützle, T.: Ant colony optimization. MIT Press, Cambridge (2004)
4. Dorigo, M., Maniezzo, V., Colorni, A.: The Ant System: Optimization by a colony

of cooperating agents. IEEE Transactions on Systems, Man, and Cybernetics B 26,
29–41 (1996)

5. Nahas, N., Nourelfath, M.: Ant system for reliability optimization of a series system
with multiple-choice and budget constraints. Reliability Engineering and System
Safety 87, 1–12 (2005)

Hybrid Metaheuristic Combining Ant Colony
Optimization and H-Method

Leonid Hulianytskyi and Sergii Sirenko

V.M. Glushkov Institute of Cybernetics NAS Ukraine, Kyiv, Ukraine
leonhul.icyb@gmail.com, ssirenko@ieee.org

The paper presents a hybrid metaheuristic method ACO-H [4] for combinatorial
optimization problems that combines two population-based approaches – ant
colony optimization (ACO) and H -method. ACO is a multi-agent metaheuristic
that has been successfully applied to many difficult optimization problems [1]. H -
method is an extension of the discrete downhill simplex method [6] that applies
during the search process specially defined segments. Similar to H -method ideas
were introduced in the context of tabu search and now are known as path re-
linking [2].

Suggested hybrid metaheuristic is aimed to preserve good qualities both of
used basic approaches. H -method is able to exploit good solutions quickly, but
has a disadvantage of premature convergence. Randomized solution construction
performed in ACO can be used to reinitialize H -method population in a more
convenient manner than simple restart strategy. At the same time H -method can
serve as a sophisticated solution improver for the ACO algorithm.

In the ACO-H metaheuristic H -method is integrated into the ACO algorithm
and can be considered as a part of daemon actions, like widely used local search.
One of the hybridization features is that the H -method algorithm is not run in
each iteration of the ACO algorithm. There are special conditions determining
when to transfer the control from ACO to H -method.

ACO-H algorithm first initializes the ACO algorithm. Iteration of hybrid al-
gorithm starts with solution construction by ants. Then an optional pheromone
update is performed. After that a control transfer condition is checked. If it is
satisfied the iteration of ACO is interrupted and the H -method algorithm is
started. If not, execution of the ACO algorithm iteration is continued.

We suggest two modifications of the hybrid algorithm differing in the way
the search experience is transferred from ACO to H -method. First, solutions
constructed by ants on the last iteration can be directly used as an initial popu-
lation for H -method. In this case H -method is switched in the ACO-H algorithm
between two states – normal run and trial run. The trial run is characterized
by weaker H -method stopping criterion (it performs less number of iterations).
This protects H -method from performing long useless runs and enables ACO
part of the hybrid metaheuristic to explore the search space more efficient.

In the second modification initial population for the H -method algorithm is
formed by sampling solutions that are close (in a metric sense) to the ACO algo-
rithm current iteration-best solution. A number of oriented metric segments [6]
are drawn from the iteration-best solution. The minimal-value (maximal in case

M. Dorigo et al. (Eds.): ANTS 2010, LNCS 6234, pp. 568–569, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Hybrid Metaheuristic Combining ACO and H-Method 569

of maximization problem) solutions are chosen from the parts of the segments
that are distant enough (minimal closeness of the solutions is controlled by an
adaptive parameter) from the iteration-best solution. These solutions consti-
tute starting population for the H -method algorithm. Such sampling scheme
provides population of solutions that are located in some ”good” region of the
search space. Adaptive increase of the minimal distance between iteration-best
and sampled solutions enables ACO-H to leave basins of local optima attraction.

When the H -method algorithm converges, execution of the ACO algorithm
iteration is continued. If the H -method algorithm run was performed, then its
last iteration population is used to update pheromone values instead of solutions
generated by ants. Iteration of the hybrid algorithm ends with daemon actions,
if any. Suggested metaheuristic do not have any specific termination conditions,
so general stopping criteria such as execution time limit can be used.

Two developed modifications were implemented using MMAS [1] and H -
method algorithms and compared with independent basic algorithms results.
Experiments were performed on symmetric traveling salesman problem instances
from TSPLIB and on multidimensional assignment problem instances with
known unique optimum provided by generator suggested in [3].

The results of the experimental evaluation on TSP and MAP instances show
that suggested combining scheme can increase performance of the basic algo-
rithms, but suffers from the lack of scalability. Being the best performing on
TSP instances with less than 1000 cities, hybrid algorithms perform statistically
the same as independent MMAS on the larger problems. Developing adaptive
techniques for increased scalability or merging of two developed modifications is
necessary in order to overcome this disadvantage.

Another future direction of our work is studying other types of metaheuristics
hybridization [5].

Acknowledgements. We are grateful to the anonymous reviewers for their
helpful comments.

References

1. Dorigo, M., Stützle, T.: Ant Colony Optimization. MIT Press, Cambridge (2004)
2. Glover, F.: A template for scatter search and path relinking. In: Hao, J.K., Lutton,

E., Ronald, E.M.A., Schoenauer, M., Snyers, D. (eds.) AE 1997. LNCS, vol. 1363,
pp. 3–54. Springer, Heidelberg (1998)

3. Grundel, D.A., Pardalos, P.M.: Test problem generator for the multidimensional
assignment problem. Comput. Optim. Appl. 30(2), 133–146 (2005)

4. Hulianytskyi, L., Sirenko, S.: Combining ant colony optimization and H-method (in
russian). In: Markov, K., Ivanova., K., Mitov., I. (eds.) Decision Making and Business
Intelligence Strategies and Techniques, pp. 95–102. FOI ITHEA, Sofia (2008)

5. Hulianytskyi, L., Sirenko, S.: Cooperative model-based metaheuristics. To appear
in Electronic Notes in Discrete Mathematics (2010)

6. Hulianytskyi, L.: Deformation method in discrete optimization (in russian). Issled.
Oper. ASU 34(2), 30–33 (1989)

Increasing Individual Density Reduces
Extra-Variance in Swarm Intelligence

Ryusuke Fujisawa1, Shigeto Dobata2, and Fumitoshi Matsuno3

1 Department of Mechanical Engineering,
Hachinohe Institute of Technology, Aomori, Japan

swarm.ant@gmail.com
2 Department of Environmental Sciences and Technology,

Faculty of Agriculture, University of the Ryukyus, Okinawa, Japan
dobatan@gmail.com

3 Department of Mechanical Engineering and Science,
Graduate School of Engineering, Kyoto University, Kyoto, Japan

matsuno@me.kyoto-u.ac.jp

0 2 4 6 8 10

0
1

2
3

4
5

Density

V
ar

ia
nc

e
ra

tio

0 2 4 6 8 10

0
1

2
3

4
5

Fig. 1. The relationships between the in-
dividual density and the relative variance
of (LD+RI) frequencies; X axis is the in-
dividual density. Y axis is the ratio of the
variances.

Social organisms form a swarm and
forage preys, collectively and effec-
tively [1]. The swarm has to inhibit a
variance of foraging frequency for sur-
vival, which ensures stable and pre-
dictable income. In the previous study,
we focused on “trail pheromone” sys-
tem which enables robots to commu-
nicate one another [2]. In the present
study, we analysed statistically the
variance of the foraging behaviour of
the robot swarm, using repeated (48
trials) computer simulation. We set the
individual density as the parameter.
The density in Figures, X axis means
the number of individuals on the unit
field(180×180 [cm]). In the simulation,
we set 360×360[cm] as the field size.
When the individual density is low, the variance of the foraging behaviour is
larger than expected from the random behaviour(i.e., binomial distribution; Fig.
1). Horizontal lines in Fig. 1 mean expected one from the binomial distribution.
As the density goes high, the variance is reduced toward the expected value.

We further analysed the result by separating the foraging behaviour into “lay-
ing down” and “reinforcing” behaviours. The laying down (LD) is a behaviour by
which the robot find the prey individually, and the reinforcing (RI) is a behaviour
by which it follows the pheromone trail and reaches the prey. Both behaviours
are followed by the pheromone-laying behaviour. The observed pattern of vari-
ance reduction was different between laying down and reinforcing behaviours,
and the variance reduction of total behaviour was mainly determined by the
latter (Fig. 2).

M. Dorigo et al. (Eds.): ANTS 2010, LNCS 6234, pp. 570–571, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Increasing Individual Density Reduces Extra-Variance in Swarm Intelligence 571

0 2 4 6 8 10

0.
0

0.
5

1.
0

1.
5

2.
0

Density

LD
 V

ar
ia

nc
e

ra
tio

0 2 4 6 8 10

0.
0

0.
5

1.
0

1.
5

2.
0

0 2 4 6 8 10

0
1

2
3

4
5

Density

R
I V

ar
ia

nc
e

ra
tio

0 2 4 6 8 10

0
1

2
3

4
5

Fig. 2. The relationships between the individual density and the relative variance of
LD frequencies (left) and RI frequencies (right); X axis is the individual density. Y axis
is the ratio of the variances.

These results can be understood in the context of the stable existence of
pheromone trail on the field. Pheromone-communicating systems harbor two
sources of variance: one arises from the inevitable property of swarms (i.e., ran-
domness) and governs the variance of LD, and the other arises from the unstable
existence of the pheromone and governs the variance of RI. The larger group size
may be adaptive in reducing the uncertainty in the existence of trail pheromone,
which contributes to the reduction of the RI variance. The previous study [3]
ascribed the mechanism of variance reduction in group-living to the law of large
numbers, which holds true when the individual number is relatively small. Our
pheromone-communicating system suggests that the larger group size is adap-
tive in reducing the uncertainty in the existence of trail pheromone. Because the
underlying mechanism is based on the individual density, this can be applied
when the individual number is rather large.

References

1. Wilson, E.O.: Sociobiology: The new synthesis. Belknap Press of Harvard University
Press, Cambridge (1975)

2. Fujisawa, R., Dobata, S., Kubota, D., Imamura, H., Matsuno, F.: Dependency by
concentration of pheromone trail for multiple robots. In: Dorigo, M., Birattari,
M., Blum, C., Clerc, M., Stützle, T., Winfield, A.F.T. (eds.) ANTS 2008. LNCS,
vol. 5217, pp. 283–290. Springer, Heidelberg (2008)

3. Wenzel, J.W., Pickering, J.: Cooperative foraging, productivity, and the central limit
theorem. Proceedings of the National Academy of Sciences of the United States of
America 88, 36–38 (1991)

“Look out!”: Socially-Mediated Obstacle
Avoidance in Collective Transport

Eliseo Ferrante, Manuele Brambilla, Mauro Birattari, and Marco Dorigo

IRIDIA, CoDE, Université Libre de Bruxelles, Brussels, Belgium
{eferrant,mbrambil,mbiro,mdorigo}@ulb.ac.be

In collective transport, a group of robots has to cooperate in order to trans-
port an object. Collective transport is necessary when transporting the object
is hard or impossible for a single robot. The task is particularly difficult when
communication bandwidth is limited, there is no access to global information
or when using a decentralized approach. In these cases, an effective distributed
coordination among the robots is necessary.

In the task we studied, a group of robots have to transport an object to a
goal location, while avoiding obstacles along the way. The existing literature
considers only either collective transport to a goal location in obstacle-free en-
vironments [1,3] or collective transport in a random direction within a cluttered
environment [4].

In our study, three identical robots attach to an irregularly shaped object
and collectively transport it from an initial to a goal location. The study was
performed entirely in simulation. The robots we used are modeled after the
foot-bot robot, in development for the Swarmanoid project1. The environment
in which the robots move is an arena where a number of cuboid obstacles are
present, each with an arbitrary position and orientation. A light source, with
high intensity so that it can be perceived by all the robots, is placed in the
environment. The presence of obstacles and the need to move to a given goal
location create the need for handling conflicting individual decisions which can
be caused by the non uniform perception of the environment.

We implemented a behavior composed of two sub-behaviors: social mediation
and collective transport. The social mediation behavior is used to obtain a head-
ing direction, mediated through all the transporting robots, to be used for the
collective transport behavior. This heading direction has to take into account,
at a given time, the presence or absence of obstacles and the goal direction.
Once this socially mediated heading direction is obtained, it is used by the col-
lective transport behavior to perform collective transport by setting the correct
actuators’ output.

The idea behind the social mediation behavior is the following. A robot’s in-
ternal state can assume two different values: Ssocial or Sstubborn . When a robot
possesses the information about the goal direction or when it perceives an obsta-
cle, its state is set to Sstubborn . In this state, the robot computes the correct angle
of motion (for example the angle for moving towards the goal while avoiding ob-
stacles) and sends this to its neighbors. When a robot is completely uninformed
1 http://www.swarmanoid.org

M. Dorigo et al. (Eds.): ANTS 2010, LNCS 6234, pp. 572–573, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

“Look out!”: Socially-Mediated Obstacle Avoidance in Collective Transport 573

(it does perceive neither the goal nor the obstacles), its state is set to Ssocial . In
this state, the robot acts as a repeater, that is, it computes the average of the
messages received by its neighbors, denoted with θS , and sends this value to its
neighbors. The main idea is that the opinion of the stubborn robots can diffuse
in the entire group thanks to the social inviduals. A motion control rule is then
used to achieve motion, which uses θS as target direction to be followed.

We performed experiments in an arena where an obstacle is positioned at the
center. We varied the angle α between the obstacle and the angle perpendicular
to the direction of motion. Eight different arenas with different α were used: 0,
±30◦, ±45◦, ±60◦, 90◦. For each arena we executed 100 runs. Results shows that
the more α tends to 0, the longer it takes to avoid the obstacle. In all the runs,
robots successfully reached the goal location.

We tested the proposed behavior also in another arena, in which obstacles
were located at random positions with random orientations. In this scenario, the
robots were able to reach the goal 96% of the time without collisions with the
obstacles.

A video showing a typical run for this set of experiments can be found in [2].

Acknowledgements. This work was supported by the SWARMANOID
project, funded by the Future and Emerging Technologies programme (IST-
FET) of the European Commission, under grant IST-022888, and by the VIR-
TUAL SWARMANOID project funded by the Fund for Scientific Research
F.R.S.-FNRS of Belgium’s French Community. The information provided is the
sole responsibility of the authors and does not reflect the European Commission’s
opinion. The European Commission is not responsible for any use that might
be made of data appearing in this publication. M. Dorigo and M. Birattari ac-
knowledge support from the F.R.S.-FNRS of Belgium’s French Community, of
which they are a research director and a research associate, respectively.

References

1. Campo, A., Nouyan, S., Birattari, M., Groß, R., Dorigo, M.: Negotiation of goal
direction for cooperative transport. In: Dorigo, M., Gambardella, L.M., Birattari,
M., Martinoli, A., Poli, R., Stützle, T. (eds.) ANTS 2006. LNCS, vol. 4150, pp.
191–202. Springer, Heidelberg (2006)

2. Ferrante, E., Brambilla, M., Birattari, M., Dorigo, M.: Look-out!: Socially mediated
obstacle avoidance in collective transport: Complete data (2010), Supplementary
information page at, http://iridia.ulb.ac.be/supp/IridiaSupp2010-005/

3. Groß, R., Dorigo, M.: Towards group transport by swarms of robots. International
Journal of Bio-Inspired Computation 1(1-2), 1–13 (2009)

4. Trianni, V., Dorigo, M.: Self-organisation and communication in groups of simulated
and physical robots. Biological Cybernetics 95, 213–231 (2006)

http://iridia.ulb.ac.be/supp/IridiaSupp2010-005/

On Possible Connections between Ant
Algorithms and Random Matrix Theory

Carlo Mastroianni

ICAR-CNR, Rende(CS), Italy
mastroianni@icar.cnr.it

This paper reports on a conjecture concerning the statistical behavior of Self-
Chord [1], a self-organizing P2P system in which the resource keys are dynami-
cally sorted with an ant algorithm. In Self-Chord (http://self-chord.icar.cnr.it),
peers are organized in a logical ring, as in Chord, and a hash function is used
to assign an index to every peer, and an access key to every resource. Contrary
to Chord though, the values of resource keys are decoupled from those of peer
indexes, and are dynamically sorted by ant-inspired agents through statistical
pick and drop operations. This allows Self-Chord to keep the Chord capacity for
serving discovery requests in logarithmic time, but leads to many further advan-
tages, among which the possibility of assigning a semantic meaning to keys, a
better load balancing among peers, and the efficient execution of range queries.

Figure 1 reports a sample snapshot of a Self-Chord network, in which peer
indexes and resource keys are defined over 6 and 3 bits, respectively. At the
interior of the ring, the figure specifies the indexes of the peers, whereas at the
exterior it reports, for every peer, some of the keys stored by the peer, and
the peer centroid. The latter is defined as the real value that minimizes the
average distance between itself and the keys stored by the peer. Both the values
of centroids and peer indexes are sorted in clockwise direction, but they are not
related to one another. Indeed, different approaches are used to sort them: the
peer indexes are sorted by Chord-like management operations, whereas the keys
are dynamically sorted by the operations of the Self-Chord agents.

Interestingly, it emerged that the statistical distribution of the peer centroids
is very similar to the distribution of the eigenvalues of random matrices taken
from the GUE, Gaussian Unitary Ensemble. These matrices are used to model
a wide class of complex dynamical systems, especially in the domain of nuclear
physics [3]. The GUE matrices are also the subject of the Montgomery-Odlyzko
law, which states that the distribution of the spacings between the non-trivial
zeros of the Riemann Zeta function is statistically identical to the spacings of
GUE eigenvalues. Figure 2 reports a comparison between the theoretical distri-
bution of GUE spacings and the distribution of centroid spacings in Self-Chord
networks with a number of peers Np equal to 2000, 5000 and 10000. The two
distributions are very similar, and the similarity increases with the size of the
network. This observation is also supported by several qualitative considerations
on the similarity between the behavior of Self-Chord centroids and that of the
energy levels of physical systems modeled by GUE matrices [2].

The Self-Chord algorithm is very similar to many ant-inspired sorting al-
gorithms (see the book on Swarm Intelligence authored by Bonabeau et al.).

M. Dorigo et al. (Eds.): ANTS 2010, LNCS 6234, pp. 574–575, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

On Possible Connections between Ant Algorithms 575

Fig. 1. Sample Self-Chord network. For each peer, its index, a number of stored keys
and the centroid are reported.

0

0.2

0.4

0.6

0.8

1

1.2

0 0.5 1 1.5 2 2.5 3 3.5 4

Pr
ob

ab
ili

ty
 d

en
si

ty

x

GUE eigenvalues
Centroids Np=2000
Centroids Np=5000

Centroids Np=10000

Fig. 2. Comparison between the distribution of spacings between consecutive centroids
in Self-Chord and the theoretical distribution of spacings between GUE eigenvalues

Therefore, it is plausible that this similarity, if confirmed, could apply to ant
algorithms in general, not only to Self-Chord. This would suggest the hypoth-
esis that the mathematical nature of ant algorithms is inherently connected to
random matrix theory and, more widely, to number theory. It is the opinion of
the author that this fascinating conjecture is worth being analyzed more deeply
and with more rigorous tests. More information can be found in [2].

References

1. Forestiero, A., Leonardi, E., Mastroianni, C., Meo, M.: Self-Chord: a bio-inspired
P2P framework for self-organizing distributed systems. IEEE/ACM Transactions
on Networking (2010)

2. Mastroianni, C.: A statistical analysis of Self-Chord: on possible connections between
ant algorithms and random matrix theory. Tech. Rep. RT-ICAR-CS-10-02, ICAR-
CNR, (May 2010), http://www.icar.cnr.it/tr/2010/02

3. Mehta, M.L.: Random Matrices. Academic Press Inc., Boston (1991)

http://www.icar.cnr.it/tr/2010/02

Soft Variable Fixing in Path Relinking:
An Application to ACO Codes

Antonio Bolufé Röhler2, Marco A. Boschetti1, and Vittorio Maniezzo1

1 University of Bologna, Bologna, Italy
2 University of Habana, Habana, Cuba

vittorio.maniezzo@unibo.it

Soft variable fixing has emerged as one of the main techniques that the area of
matheuristics can contribute to general metaheuristics. Recent years have in fact
witnessed a fruitful interplay of methods that were originally proposed as gen-
eral metaheuristcs with methods rooted in mathematic programming, which can
be applied alone or as hybrids for solving combinatorial optimization problems.
In this work, we show how one of the most effective matheuristics techniques,
namely soft variable fixing, can be hybridized with Ant Colony Optimization.
Specifically, we will combine a standard ACO code with a path relinking opera-
tor, implemented by means of soft variable fixing.

Soft Variable Fixing is an operation based on Local Branching. This last is a
technique originally introduced by Fischetti and Lodi [4], which works as follows.
Starting from a feasible reference solution x̄ of a mixed integer problem, the
objective is to derive an exact exploration of a suitable neighborhood, defined on
the binary representation of the reference solution. Following a positive integer
parameter k, a k-OPT neighborhood N(x̄, k) of x̄ is defined as the set of the
feasible solutions satisfying an additional local branching constraint. This is a
constraint that counts the number of variables which change their value, and
limits their number to be at most k. This permits to have the best solution
which differs from x̄ in at most k positions.

Soft variable fixing has a wider scope than local branching, as it does not need
to start with a full reference solution, but it can start with whichever subset of
variables one need to fix and implement the local branching strategy in such a
way as to ensure the feasibility of the optimized solutions.

The overall idea of our work is to let the ACO explore the search space, keeping
a pool of the best solutions encountered. Each time a new solution enters the
pool, path relinking is performed toward other pool solutions. Path relinking is
delegated to the use of a Mixed Integer Programming (MIP) solver. This can
be actually done in different ways [3], here we instantiate a local branching [4]
on a seed solution obtained by a combination of the decision variable values
of the solutions we are relinking. As opposed to similar approaches, we allow to
modify up to a bounded number of variables which are common to both endpoint
solutions, hence the ”softness” of the variable fixing.

The problem chosen for validating the hybrid ACO algorithm is the 2 Di-
mensional Strip Packing problem (2SP), which is a problem encountered when
cutting a set of rectangular pieces from a single rectangular strip, a stock sheet
of width W , minimizing the waste. This problem instance is defined by a list of

M. Dorigo et al. (Eds.): ANTS 2010, LNCS 6234, pp. 576–577, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Soft Variable Fixing in Path Relinking: An Application to ACO Codes 577

n rectangles, each having a width no greater than W . The rectangles must be
packed into the semi-infinite strip, with their sides parallel to the strip edges, so
that they do not overlap each other or the edges of the strip. the objective is to
minimize the length of the packing is minimized.

The main structure of the proposed solution is that of the ANTS implemen-
tation [5] of the ACO framework, with an extension maintaining a pool —P— of
the np best solutions found during search, to provide the basis for path relinking.

The elements to define for the 2SP-specific algorithm are solution represen-
tation, trail initialization, visibility computation, and the bound to use for trail
update. In our case the solutions, evolved by the ants, were 0-1 vectors which
concatenated variables representing the relative positions of the different pieces
(above/below, left/right). Given these, a LP solver takes hundredths of a second
to generate feasible coordinates for the pieces in the solution.

The bound was defined as the height reached after adding to the partial
solution an area equal to the sum of the areas of the still to be placed items.
This is not really a lower bound in the general case, but it is in our code given
the particular construction heuristic we use.

Visibility was then computed as a combination of area, perimeter and bound,
preferring the pieces with greater area, longer perimeter and yielding a lower
bound. Trails were initially null.

Path relinking is triggered each time a new solution enters (and possibly one
exits) pool P. The new solution is projected toward every other solution in P,
in turns. During each projection, only the binary variables are considered. The
subset of common ones is fixed and the problem is accordingly optimized. Soft
fixing is instantiated by allowing a suitable number of otherwise fixed variables
to be changed. The actual number derives from the computation of the number
of 0/1 variables that need to be changed in order to allow 1, 2 or 3 pieces to be
moved in the solution.

So far, we have implemented the above described procedure in c#, using
CoinMP [1] as a MIP solver. We run our tests on a standard benchmark from
the literature, using the test set originally proposed by Berkey and Wang [2]
for the 2-dimensional bin packing problem and setting the bin height to infinite.
Computational results are still preliminary but encouraging, and they prove that
this new methodology can effectively complement ant colony codes when applied
to combinatorial optimization problems.

References

1. Coinmp project page (2010), https://projects.coin-or.org/CoinMP
2. Berkey, J., Wang, P.: Two dimensional finite bin packing algorithms. J. Oper. Res.

Soc. 38, 423–429 (1987)
3. Boschetti, M., Maniezzo, V.: Combining exact methods and heuristics. In: Encyclo-

pedia of Operations Research and Management Science. Wiley, Chichester (2010)
(to appear)

4. Fischetti, M., Lodi, A.: Local branching. Math. Program. B 98, 23–47 (2003)
5. Maniezzo, V.: Exact and approximate nondeterministic tree-search procedures for

the quadratic assignment problem. INFORMS Journal on Computing 11(4), 358–
369 (1999)

https://projects.coin-or.org/CoinMP

Training Randomly Connected, Recurrent
Artificial Neural Networks Using PSO

Vytautas Jancauskas

Department of Computer Science, Faculty of Mathematics and Informatics,
Vilnius University, Vilnius, Lithuania
Vytautas.Jancauskas@mif.stud.vu.lt

The basic particle swarm algorithm was described by Kennedy and Eberhart
[4]. In this paper a modified method with time varying inertia coefficient [3] was
used where the inertia coefficient w goes linearly from wstart to wend.

An approximated gradient descent algorithm was implemented so that it
would be possible to compare the efficiency of particle swarm optimizer to a
method that is well understood. Say we have a function f : R

n �→ R and want
to find a minimum point x. Lets call initial solution x0. For i-th solution xi

we approximate gradient gi, where coordinate gij = (f(xiΔj) − f(xi))/δ Here,
vector xiΔj is xi with j-th coordinate set to xij + δ. We create new solution
xi+1 = xi − γ × gi and repeat the whole process over again. Coefficient γ is
called the learning rate and in this implementation goes from γstart to γend. Gra-
dient descent was chosen because it is the basis of most artificial neural network
(ANN) training methods.

The ANN that is proposed in this paper is randomly connected and recurrent.
Connections between individual computing units are established randomly with
probability p and no limitations are placed on them. There are input, output
and hidden units. Input units are initialized with the input vector during the
first iteration. Output units contain the output of the network after all the
calculations are done. And all units that don’t fall in one of those two categories
are called hidden. Suppose a network has nx input neurons, nh hidden neurons
and ny output neurons. Synaptic weight connecting units i and j is wij , wij �= 0
with probability p. Network works in iterations. During the first iteration we set
the activation value of each input neuron with an appropriate value in the input
vector. After a specified number of iterations output neurons contain the output
of the network. We define matrix W to contain all synaptic weights, where
wij connects i-th computing unit to j-th computing unit. We define function
f(x) = 1/(1 + e−2x) which operates on vectors. Then for the i-th iteration we
calculate the output as xi+1 = f(xi × W), where x0 is a vector in which the
first nx coordinates are set to the values in the input vector and the following
n− nx coordinates are set to 0.

It was shown how we can use this type of network for classification and time-
series prediction. In the first case we optimize a function that takes as input a
set of synaptic weights and computes squared error sum for a data set. And in
case of time-series prediction we set the inputs of the network with a moving
window over some time series and optimize the squared difference between actual

M. Dorigo et al. (Eds.): ANTS 2010, LNCS 6234, pp. 578–579, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Training Randomly Connected, Recurrent Artificial Neural Networks 579

network output and the data sample right after the window. That is we optimize
the function that tells us how well does our network predicts the next sample in
the time series. Both these applications were tested. Iris data set [6] was used
for classification and sun spot data [1], specifically [2], was used for time series
prediction. Also a method similar to the one used by Meissner et al. [5] was used
in an attempt to find a good set of swarm and network parameters to classify
the Iris data set. A set of parameters derived was iterations = 3, hidden units
= 2, initialization range = (-0.32, 0.32), vmax = 3.03, c1 = 1.54, c2 = 2.69,
wstart = 1.25 and wend = −0.16. For gradient descent parameters γstart = 0.01
and γend = 0.0001 , starting and ending values for learning rate, were chosen
after experimentaly verifying that they give good results.

Iters Hidden Conn Dim STrain SContr SMis GTrain GContr GMis

2 0 0.4 20 22.162 24.571 45.2 24.645 23.8 25.0
2 0 0.6 29 9.228 14.188 18.5 8.297 10.169 12.9
2 0 0.8 39 5.215 12.37 13.5 4.117 6.617 5.4
2 2 0.4 32 8.507 15.002 14.1 21.564 23.184 30.1
2 2 0.6 49 3.871 10.07 9.6 2.740 6.322 4.7
2 2 0.8 65 2.7 9.591 6.7 2.111 6.017 4.0

The meanings of abbreviations are: Iters - number of network iterations, Hidden
- number of hidden neurons, Conn - network connectivity, Dim - dimensionality of
the solution space, STrain - swarm training error, SContr - swarm control error,
SMis - misclassified samples in the control set when training with swarm, GTrain
- gradient descent training error, GContr - gradient descent control error, GMis -
misclassified samples in the control set when training with gradient descent.

It can be seen that we are able to use particle swarms to train neural networks
that aren’t well understood but which may have practical use. Gradient descent
seems to give better performance overall, however efficient gradient descent algo-
rithms are not known for most real argument function minimizationproblems. Fur-
ther changes to the network can be made to improve it, such as including activation
function shape in to the optimized function or automatic connection pruning.

References

1. http://www.ngdc.noaa.gov/stp/solar
2. ftp://ftp.ngdc.noaa.gov/STP/SOLAR%5FDATA/SUNSPOT%5FNUMBERS/

INTERNATIONAL/monthly/MONTHLY.PLT
3. Eberhart, R.C., Shi, Y.: Parameter selection in particle swarm optimization. In:

Porto, V.W., Waagen, D. (eds.) EP 1998. LNCS, vol. 1447, pp. 591–600. Springer,
Heidelberg (1998)

4. Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: Proceedings of IEEE
International Conference on Neural Networks, pp. 1942–1948 (1995)

5. Meissner, M., Schmuker, M., Schneider, G.: Optimized particle swarm optimization
(opso) and its application to artificial neural network training. BMC Bioinformat-
ics 7, 125 (2006)

6. Fisher, R.A.: Iris data set, http://archive.ics.uci.edu/ml/datasets/Iris

http://www.ngdc.noaa.gov/stp/solar
ftp://ftp.ngdc.noaa.gov/STP/SOLAR%5FDATA/SUNSPOT%5FNUMBERS/INTERNATIONAL/monthly/MONTHLY.PLT
ftp://ftp.ngdc.noaa.gov/STP/SOLAR%5FDATA/SUNSPOT%5FNUMBERS/INTERNATIONAL/monthly/MONTHLY.PLT
http://archive.ics.uci.edu/ml/datasets/Iris

Author Index

Abdelbar, Ashraf M. 167
Absil, Pierre-Antoine 13
Al-Badarneh, Amer F. 464
Alba, Enrique 227
Altshuler, Yaniv 536
Álvarez, Vı́ctor 368
Amato, Paolo 408
Armario, José Andrés 368
Azzam-ul-Asar, 275

Baiboun, Nadir 287
Bailis, Peter 263
Bari, Md. Faizul 312
Băutu, Andrei 512
Beal, Jacob 179
Bengoetxea, Endika 416
Berro, Alain 60
Bertinat, Maŕıa Elisa 336
Bharat, Tadikonda Venkata 448
Birattari, Mauro 203, 239,

251, 287, 572
Bogon, Tjorben 554
Borckmans, Pierre B. 13
Borrotti, Matteo 352
Boschetti, Marco A. 576
Bouamama, Salim 464
Boukerram, Abdellah 464
Bourjot, Christine 344
Brambilla, Manuele 572
Bruckstein, Alfred M. 36, 119,

215, 536
Brutschy, Arne 287
Butler, Matthew 504

Cerofolini, Gianfranco 408
Charpillet, François 344
Charrier, Rodolphe 344
Christensen, Anders Lyhne 400, 558
Clara, Narćıs 566
Coello Coello, Carlos A. 48
Cole, Jason 72
Cordón, Oscar 472
Crailsheim, Karl 84, 424

Dahl, Torbjørn S. 24
Davison, Timothy 1
De Lucrezia, Davide 352
Di Caro, Gianni A. 456
Dinh, Huy Q. 360
Dixon, Clare 440
Dobata, Shigeto 570
Dorigo, Marco 251, 287, 400,

558, 572
Ducatelle, Frederick 456

Elor, Yotam 36, 119, 215
Engelbrecht, Andries P. 191, 560
Escario, Jose B. 552

Farooq, Muddassar 392
Fernández-Mart́ınez, Juan L. 496
Ferrante, Eliseo 251, 572
Fisher, Michael 440
Floreano, Dario 562
Förster, Alexander 456
Frau, Maŕıa Dolores 368
Frison, Marco 287
Fujimoto, Noriyuki 488
Fujisawa, Ryusuke 570

Gambardella, Luca 456
Garćıa-Gonzalo, Esperanza 496
Ghosh, Ashish 376
Ghosh, Susmita 376
Giró, Jordi 566
Giron-Sierra, Jose M. 552
Gudiel, Félix 368
Güemes, Belén 368
Guinand, Frédéric 520
Günther, Maik 384

Halder, Anindya 376
Helvik, Bjarne E. 480
Huan, Hoang Xuan 360
Hulianytskyi, Leonid 568

Iqbal, Shahrear 312
Ishteva, Mariya 13

582 Author Index

Jacob, Christian 1
Jancauskas, Vytautas 578
Jimenez, Juan F. 552
Johnson, Colin G. 528
Jourdan, Laetitia 227

Kazakov, Dimitar 504
Khan, Affan 275
Khouadjia, Mostepha Redouane 227
Konur, Savas 440
Korb, Oliver 72
Kötzing, Timo 324
Kouno, Asuki 556

Larrañaga, Pedro 416
Lattner, Andreas D. 554
Leguizamón, Guillermo 48
Li, Ke 299
Liu, Wenguo 107
López-Ibáñez, Manuel 95
Luchian, Henri 512

Maniezzo, Vittorio 576
Marie-Sainte, Souad Larabi 60
Mart́ın, Elena 368
Masserini, Massimo 408
Mastroianni, Carlo 574
Mathews, Nithin 251, 400
Matsuno, Fumitoshi 570
Mauri, Giancarlo 408
Mayet, Ralf 84
Minervini, Giovanni 352
Minh, Bui Quang 360
Miorandi, Daniele 143
Moeslinger, Christoph 424
Montes de Oca, Marco A. 203, 251
Moraglio, Alberto 528
Mukerji, Tapan 496

Nagpal, Radhika 263
Neumann, Frank 324
Nissen, Volker 384
Nolfi, Stefano 155

O’Grady, Rehan 400, 558
Osuna, Amparo 368
Otero, Fernando E.B. 528
Owen, Jennifer 432

Padula, Daŕıo 336
Paquereau, Laurent 480
Pellegrini, Paola 239

Phillips, David 1
Pigné, Yoann 520
Pinciroli, Carlo 558
Pini, Giovanni 287
Poch, Manel 566
Poli, Irene 352
Poursanidis, Georgios 554

Quirin, Arnaud 472

Rahman, M. Sohel 312
Riaz-ul-Hasnain, 275
Roberz, Jonathan 84
Robledo, Franco 336
Rodŕıguez-Bocca, Pablo 336
Röglin, Heiko 324
Röhler, Antonio Bolufé 576
Roli, Andrea 287
Romero, Pablo 336
Romero-Zaliz, Roćıo 472
Rossi, Louis 299
Ruiz-Gazen, Anne 60

Sadeequllah, Muhammad 275
Salama, Khalid M. 167
Saleem, Muhammad 392
Sarker, Md. Omar Faruque 24
Schmickl, Thomas 84, 424
Schmidt, Adam 544
Schoeman, Isabella 560
Sharma, Jitendra 448
Shen, Chien-Chung 299
Sirenko, Sergii 568
Sperati, Valerio 155
Stepney, Susan 432
Stirling, Timothy 562
Stützle, Thomas 95, 203, 239
Suzuki, Einoshin 556

Takano, Shigeru 556
Talbi, El-Ghazali 227
Thomas, Kyle 299
Timm, Ingo J. 554
Timmis, Jonathan 432
Torres, Claudio 299
Tran, Nam-Luc 287
Trianni, Vito 155
Tsutsui, Shigeyoshi 488

Author Index 583

Ullah, Israr 392

van Rossum, Anne C. 564
Verdaguer, Marta 566
von Haeseler, Arndt 360
von Mammen, Sebastian 1

Werfel, Justin 131, 263
Winfield, Alan F.T. 107, 432
Witt, Carsten 324

Yamamoto, Lidia 143
Yuan, Zhi 203

	Title
	Preface
	Organization
	Table of Contents
	A Graph-Based Developmental Swarm Representation and Algorithm
	Introduction
	Related Work
	Complex CDMs
	Graph-Based CDMs
	Swarm-Based CDMs

	Swarm Graph Grammars
	Representation
	Algorithm

	Swarm Graph Grammars in Action
	Boids
	Stigmergic Construction
	Swarm Development

	Summary and Future Work
	References

	A Modified Particle Swarm OptimizationAlgorithm for the Best Low Multilinear Rank Approximation of Higher-Order Tensors
	Introduction
	Low Multilinear Rank Approximation Problem
	Tensor Generalities
	Problem Statement
	Local Minima
	The Grassmann Manifold G(p,n)

	Particle Swarm Optimization
	PSO in Rn
	GCPSO and Gradient
	Adapting GCPSO to the Grassmann Manifold G(p,n)
	PSO in G(R1,I1)G(R2,I2)G(R3,I3)

	Numerical Results
	Conclusion
	References

	A Robotic Validation of the Attractive FieldModel: An Inter-disciplinary Model of Self-regulatory Social Systems
	Introduction
	The Attractive Field Model
	Generic Interpretation
	Robotic Interpretation
	A Manufacturing Shop-Floor Interpretation

	Implementation
	Design of Our Communication System
	Our Current Implementation

	Experiment Design
	Parameters
	Observables

	Results and Discussions
	Conclusion and Future Work
	References

	A Thermodynamic Approach to the Analysis of Multi-robot Cooperative Localization under Independent Errors
	Introduction
	Model
	Average Free Path
	The Covariance Matrix
	Using a Landmark

	Discussion and Simulations
	Previous Work
	Conclusion
	References

	An Alternative ACOR Algorithm for Continuous Optimization Problems
	Introduction
	TheACO$_R$ Algorithm
	The Proposed Alternative ACO$_R$ Algorithm (DACO$_R$)
	Experimental Study
	The Adopted Test Suite
	Parameters Settings for ACO$_R$ and DACO$_R$
	Performance of ACO$_R$ and DACO$_R$ on the Selected Problems

	Discussion and Conclusions
	References

	An Efficient Optimization Method for Revealing Local Optima of Projection Pursuit Indices
	Introduction
	Exploratory Projection Pursuit
	The Friedman Index
	The Kurtosis Index

	Bio-inspired Algorithms
	Particle Swarm Optimization (PSO)
	Tribes

	Application
	Simulated Data
	Olive Data

	Conclusion
	References

	Ant Colony Optimisation for Ligand Docking
	Introduction
	Motivation

	Materials and Methods
	Problem Representation
	Algorithm
	Parameter Optimisation and Validation

	Results and Discussion
	Conclusions and Future Work
	References

	Antbots: A Feasible Visual Emulation of Pheromone Trails for Swarm Robots
	Introduction
	Materials and Methods
	Base Robot: E-Puck
	Glow-Paint Floor
	Nest, Food and an Artificial Sun as a Navigational Aid
	Add-on Boards: Trail-Laying and Sun Compass Extension
	Simulation Using Netlogo
	Control Program

	Results
	Foraging Efficiency in Simulation
	Experiments with the e-Puck Robot Add-Ons

	Discussion and Outlook
	References

	Automatic Configuration of Multi-Objective ACO Algorithms
	Introduction
	Experimental Studies on MOACO Algorithms
	A Configurable MOACO Framework
	Automatic Configuration of MOACO Framework
	Comparison with Existing MOACO Algorithms
	Conclusions
	References

	Autonomous Morphogenesis in Self-assembling Robots Using IR-Based Sensing and Local Communications
	Introduction
	SYMBRION Robots and Their Docking Sensors
	Robot Controller Design
	A Finite State Machine
	Local Communication
	Behaviours

	Recruitment Strategies
	Results and Discussion
	Conclusions and Future Work
	References

	Autonomous Multi-agent Cycle Based Patrolling
	Introduction and Related Work
	Previous Work
	Finding Good Patrolling Routes
	Hamiltonian Graphs
	Non-Hamiltonian Graphs
	Weighted Graphs
	Discussion and Simulations

	SwarmDeployment
	The Deployment Algorithm
	Simulations

	Bundling the Algorithms
	Conclusion
	References

	Biologically Realistic Primitives for Engineered Morphogenesis
	Introduction
	Related Work
	Assumptions
	Model
	Primitives
	Constrained Growth Using Morphogen Gradients
	Multiple Gradients
	Position Information
	Cascading Effects

	Conclusion
	References

	Evaluating the Robustness of Activator-Inhibitor Models for Cluster Head Computation
	Introduction
	Chemical Kinetics and Reaction-Diffusion Systems
	Activator-Inhibitor Models
	The Gierer-Meinhardt Activator-Inhibitor Model
	Activator-Depleted Substrate Model

	Experimental Setup
	Results
	Conclusions
	References

	Evolution of Self-organised Path Formationin a Swarm of Robots
	Introduction
	Experimental Setup
	The Robots and the Environment
	The Controller and the Evolutionary Algorithm

	Obtained Results and Behavioural Analysis
	Generalisation Abilities
	Discussion and Conclusions
	References

	Extensions to the Ant-Miner Classification RuleDiscovery Algorithm
	Introduction
	Ant-Miner Algorithm
	Pheromone Initialization and Update
	Term Selection

	Related Work
	Using Logical Negation Operator in Rule Antecedents
	Using Stubborn Ants
	Multi-Pheromone Ant System
	Ants with Personality
	Experimental Methodology
	Experimental Results
	Concluding Remarks
	References

	Functional Blueprints: An Approach to Modularity in Grown Systems
	Introduction
	Related Work

	Stress Tolerance Enables Integrated Growth
	Functional Blueprints
	Example Application: Tissue Growth
	Cell Density
	Vascularization
	Composite Behavior

	Contributions
	References

	Heterogeneous Particle Swarm Optimization
	Introduction
	Homogeneous Particle Swarm Optimizers
	Traditional Position and Veclosity Updates
	Cognitive-Only Model
	Social-Only Model
	Barebones PSO
	Modified Barebones PSO

	Heterogeneous Particle Swarm Optimization
	Empirical Results
	Conclusions
	References

	Modern Continuous Optimization Algorithms for Tuning Real and Integer Algorithm Parameters
	Introduction
	Tuning Algorithms
	Basic Algorithms
	Enhancing Noise Tolerance

	Benchmark Tuning Problems
	Experiments
	Experimental Setup
	Settings of the Sampling Algorithms
	Comparisons of Continuous Optimization Algorithms
	Comparison between the Tuned and Default Configurations

	Conclusions
	References

	Multi-agent Deployment on a Ring Graph
	Introduction
	Related Work
	Preliminaries
	Uniform Spread
	Impossibility Results
	Uniform Spread on Oriented Ring

	Quiescent Uniform Spread
	Impossibility Result
	Quiescent Semi-stable Configuration

	Conclusion
	References

	Multi-Swarm Optimization for Dynamic Combinatorial Problems: A Case Study on Dynamic Vehicle Routing Problem
	Introduction
	Multi-population Approaches for Dynamic Optimization Problems
	Problem Description
	The Static Vehicle Routing Problem
	The Dynamic Vehicle Routing Problem

	Multi-Adaptive Particle Swarm Optimization
	Particle Swarm Optimization
	Adaptive Particle Swarm Optimization
	Adaptive Particle Swarm for Solving Dynamic Vehicle Routing Problem
	Multi-Swarm Optimizer

	Experimental Analysis
	Numerical Results
	Performance Assessment

	Conclusion and Future Work
	References

	Off-line vs. On-line Tuning: A Study on $MAX–MIN$ Ant System for the TSP
	Introduction
	$MAX–MIN$ Ant System
	Approaches for Off-line and On-line Tuning
	Experimental Setup
	Experimental Results
	Conclusions
	References

	Opinion Dynamics for Decentralized Decision-Making in a Robot Swarm
	Introduction
	Related Work
	Opinion Dynamics and Decentralized Decision-Making
	Opinion Dynamics Model and Decision Rules
	Opinion Dynamics, Actions, and Robots

	Evaluation Scenario and Setup
	The Task
	Setup

	Results
	Probability of Selecting the Fastest-to-Execute Action
	Number of Team Formations Needed to Reach Consensus

	Conclusions and Future Work
	References

	Positional Communication and Private Information in Honeybee Foraging Mo
	Introduction
	Related Work
	Model of Colony Foraging
	World
	Flowers
	Bees and Movement
	Bee Roles
	Flower Quality, Foraging, and Recruitment
	Hypothetical Communication Models

	Results
	Conclusion
	References

	Rank Based Particle Swarm Optimization
	Introduction
	Particle Swarm Optimization (PSO)
	The Proposed Particle Swarm Optimizer
	Rank Based Particle Swarm Optimizer (RPSO)
	RPSO with Diggers (RPSO-D)

	Experimental Results
	GBest Behaviour in RPSO-D

	Conclusion
	References

	Self-organized Task Partitioning in a Swarm of Robots
	Introduction
	Problem Description and Related Works
	The Method
	Experimental Setup
	Simulation Tools
	Harvesting Abstraction
	Environments
	Experimental Settings

	Results and Discussion
	Conclusions
	References

	Slime Mold Inspired Path Formation Protocol for Wireless Sensor Networks
	Introduction
	A Phenomenological Model for Slime Mold
	Protocol Description
	Local Data Structures
	Local Computation
	Synchronization
	Issue of Asymmetric Neighborhood

	Validation with Stability Analysis
	Validation
	Linear Stability Analysis

	QualNet Simulation
	Conclusion
	References

	Solving the Multi-dimensional Multi-choice Knapsack Problem with the Help of Ants
	Introduction
	ACO and Multi-dimensional KP
	Description of the Proposed Algorithm
	Variation 1: AntMMKP-Random
	Variation 2: AntMMKP-topdatabase

	Experimental Results
	Conclusions
	References

	Theoretical Properties of Two ACO Approaches for the Traveling Salesman Problem
	Introduction
	Problem and Algorithms
	The Input Graph as Construction Graph
	An Edge-Based Construction Graph

	Number of Edge Exchanges
	The Behavior of MMAS*$_Ord$
	The Behavior of MMAS*$_Arb$

	Runtime Bounds
	A Simple Instance
	Random Instances

	Conclusions
	References

	Short Papers
	A Cooperative Network Game Efficiently Solved via an Ant Colony Optimization Approach
	General Network Game
	Definition

	Instructions for the CNG
	Score for the CNG

	Ideal Approach for the CNG
	Feasible Approach Based on Ant Workers
	Numerical Results
	Comparison with Historical Strategies
	Results

	Conclusions
	References

	A Deterministic Metaheuristic Approach Using“Logistic Ants” for Combinatorial Optimization
	Introduction
	The Logistic Ant Model for TSP
	Metaheuristic Principles of Ant Algorithms
	The Environment Design
	Design of the Logistic Ant
	Inside the Logistic Ant
	Reaction of the Environment

	Simulation and Results of the Logistic Ant Algorithm
	Discussion and Interpretation of the Logistic Ant Algorithm
	Conclusion
	References

	A Model Based Ant Colony Design for the Protein Engineering Problem
	Introduction
	The Methodological Approach
	Model Based Ant Colony Design (MACD)
	The Protein Engineering Problem

	Simulation Setting
	The Data Generating Models (DGM)
	Results

	Conclusion
	References

	ACOPHY: A Simple and General Ant Colony Optimization Approach for Phylogenetic Tree Reconstruction
	Introduction
	ACOPHY
	Construction Graph
	Pheromone Trail and Heuristic Information
	Solution Construction and Pheromone Update
	The Overall ACOPHY Algorithm

	Performance Study
	Data Simulation
	Results

	Discussions
	References

	ACS Searching for D$_4t$-Hadamard Matrices
	Introduction
	Describing the Rooted Trees
	Defining the ACS
	Examples
	References

	Ant Based Semi-supervised Classification
	Introduction
	Proposed Methodology: Aggregation Pheromone Density Based Semi-Supervised Classification(APSSC)
	Experimental Evaluation
	Data Sets
	Methods Compared
	Role of the Parameters
	Experimental Results and Analysis

	Conclusions
	References

	Automatic Generation of Optimised Working Time Models in Personnel Planning
	Introduction
	Description of the Real-World Problem from a Retailer
	Related Work
	Constructive Method
	Particle Swarm Optimisation
	Evolution Strategy
	Results and Discussion
	Conclusions
	References

	Bee-Sensor: A Step Towards Meta-Routing Strategies in Hybrid Ad Hoc Networks
	Introduction
	Challenges in the Design of a Meta-Routing Protocol
	BeeSensor as a Meta-Routing Protocol
	Agent Model
	Working of BeeSensor Protocol

	Empirical Evaluation Framework
	Discussion on Results
	Packet Delivery Ratio
	Latency
	Normalized Routing Load
	Energy Efficiency

	Modifications to Original Design of BeeSensor
	Conclusions and Future Work
	References

	Cooperation in a Heterogeneous Robot Swarm through Spatially Targeted Communication
	Introduction
	Related Work
	Methodology
	Experiments and Results
	The Three Control Strategies
	Benefits of Cooperation in the Heterogeneous Robot Swarm
	Benefits of Spatially Targeted Communication

	Conclusions and Future Work
	References

	Early-Stage Diagnosis of Endogenous Diseases by Swarms of Nanobots: An Applicative Scenario
	Introduction
	In vivo Monitoring at Circulatory-System Level
	Swarm of Nanobots for Surveilling the Organism
	Nanobot Task: Localization and Data Transmission
	Conclusions
	References

	EDA-PSO: A Hybrid Paradigm Combining Estimation of Distribution Algorithms and Particle Swarm Optimization
	Introduction and Motivation
	Estimation of Distribution Algorithms
	Hybridation of Estimation of Distribution Algorithms and Particle Swarm Optimization
	Experiments
	Conclusions and Future Work
	References

	Emergent Flocking with Low-End Swarm Robots
	Introduction
	Material and Methods
	Algorithm Requirements
	Simulator
	Flocking Algorithm

	Results
	Threshold Analysis
	Real Experiments

	Discussion
	References

	Exploiting Loose Horizontal Coupling in Evolutionary Swarm Robotics
	Introduction
	Complex Systems and Evolution
	Complex Systems as Hierarchies
	Linking Complexity and Evolution

	Swarm Robots and Speedier Evolution
	Potential Criticisms
	Conclusion and Future Work
	References

	Formal Verification of Probabilistic Swarm Behaviours
	Introduction
	The Foraging Robot Scenario
	Modelling and Verifying the Scenario
	Experiments
	Swarm Model with Resting Timeout
	Swarm Model without Resting Timeout

	Conclusions
	References

	Inverse Modeling in GeoenvironmentalEngineering Using a Novel Particle Swarm Optimization Algorithm
	Introduction
	Contaminant Transport Problem
	Mathematical Formulation
	Numerical Solution

	PSO Algorithms
	PSO Description
	Big-Bang Big-Crunch Algorithm
	Proposed Algorithm

	Inverse Analysis
	Parameter Setting
	Performance Assessment of Different Solvers
	Application to the Experimental Data

	Concluding Remarks
	References

	Mobile Stigmergic Markers for Navigation in a Heterogeneous Robotic Swarm
	Introduction
	Related Work
	Self-organized Path Finding
	General Description
	Giving and Following Directional Instructions
	Updating Eye-Bot Positions
	Updating Eye-Bot Directions

	Experimental Results
	Tests in an Uncluttered Environment: Shortest Path Behavior
	Experiments in a Cluttered Environment
	Experiments in More Complex Environments

	Conclusions and Future Work
	References

	Motif Finding Using Ant Colony Optimization
	Introduction
	The Motif Finding Problem
	The Proposed Approach (MFACO)
	Initialization
	Solution Construction
	Pheromone Update

	Computational Experiments
	Conclusions
	References

	Multiple Ant Colony System for Substructure Discovery
	Introduction
	Our Proposal: A Multiple Ant Colony System for Substructure Discovery
	Problem Representation
	Customization of Multiple Ant Colony System for Substructure Discovery

	Experiments and Analysis of Results
	Datasets
	Experiments
	Results

	Conclusion
	References

	Opportunistic Ant-Based Path Management for Wireless Mesh Networks
	Introduction
	Opportunistic Ant System
	Opportunistic Forwarding of Ants
	Adaptive Pruning of Forwarding Nodes
	Node States

	Preliminary Evaluation
	Settings
	Results

	Summary and Future Work
	References

	Parallel Ant Colony Optimization Algorithm on a Multi-core Processor
	Introduction
	A Brief Overview of cAS tsutsui-ppsn
	Parallelization of cAS on a Multi-core Processor
	Experimental Results and Analysis
	Experimental Conditions and Test Instances
	Performance of Parallel cAS

	Conclusions
	References

	Particle Swarm Optimization in High Dimensional Spaces
	Inverse Problems, Uncertainty and the Curse of Dimensionality
	PSO and Model Reduction Techniques
	Application to the History Matching Problem
	Conclusions
	References

	Particle Swarm Optimization of Bollinger Bands
	Introduction
	Bollinger Bands
	Particle Swarm Optimization
	Fitness Functions
	Data Description and Experiment Design
	Experimental Results
	Discussion
	Conclusions and Future Work
	References

	Protein Structure Prediction in Lattice Models with Particle Swarm Optimization
	Introduction
	Protein Structure Prediction Problem
	Particle Swarm Optimization
	PSO for Protein Structure Prediction
	Folding Representation
	Particle Search Space

	Experimental Results
	Conclusions
	References

	Short and Robust Communication Paths in Dynamic Wireless Networks
	Introduction
	Global Analysis
	Ant-Based Construction and Maintaining of Robust Paths
	Description of the Model
	Algorithm
	Memory of the Pheromone Trails

	Simulations and Results
	Multi-Objective Optimization
	Parameters and Results
	Analysis of the Pheromone Trail Memory Heuristic

	Conclusion
	References

	The ACO Encoding
	Introduction
	The ACO Encoding
	Experiments and Discussion
	Conclusions
	References

	The Complexity of Grid Coverage by Swarm Robotics
	Introduction
	Related Work
	The Dynamic Cooperative Cleaners Problem
	Grid Coverage — Analysis
	Conclusions
	References

	The Design of an Active Structural Vibration Reduction System Using a Modified Particle Swarm Optimization
	Introduction
	Structure Model
	Particle Swarm Optimization
	Proposed PSO Modification
	Fitness Function

	Results
	Conclusions
	References

	Extended Abstracts
	Ant Colony Extended: Search in Solution Spaces with a Countably Infinite Number of Solutions
	Harvester Ants: How to Set a Search Zone
	Results and Discussion
	References

	Automatic Parameter Configuration of Particle Swarm Optimization by Classification of Function Features
	References

	Constructing Low-Cost Swarm Robots That March in Column Formation
	References

	Coordinating Heterogeneous Swarms through Minimal Communication among Homogeneous Sub-swarms
	References

	Effect of Particle Initialization on the Performance of Particle Swarm Niching Algorithms
	References

	Energy Efficient Swarm Deployment for Search in Unknown Environments
	References

	Genetic Encoding of Robot Metamorphosis: How to Evolve a Glider with a Genetic Regulatory Network
	References

	How Ant Systems Can Help in Management of pH for Industrial Wastewater Discharges
	References

	Hybrid Metaheuristic Combining Ant Colony Optimization and H-Method
	References

	Increasing Individual Density Reduces Extra-Variance in Swarm Intelligence
	References

	“Look out!”: Socially-Mediated Obstacle Avoidance in Collective Transport
	References

	On Possible Connections between Ant Algorithms and Random Matrix Theory
	References

	Soft Variable Fixing in Path Relinking: An Application to ACO Codes
	References

	Training Randomly Connected, Recurrent Artificial Neural Networks Using PSO
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

