
Chapter 4 The DLS Model and Its Application

The model of Dynamics of Land System (DLS) is a collection of programs
that simulates pattern changes in land uses by conducting scenario analysis
of the area of land use change. Results reveal the driving mechanisms of
land use change and simulate the balance between supply and demand of
land at the pixel level (Deng et al., 2008). The model analyzes causes of the
dynamics of land use patterns, simulates the process of land use changes,
and assists land use planning and land management decisions (Deng et al.,
2010a). The DLS model can export a macroscopic pattern changes map of
land uses at high spatial and temporal resolution by estimating the effects
of driving factors of spatial pattern changes, formulating land use conversion
rules and scenarios of land use change and simulating dynamic spatiotemporal
processes of land use changes. Driving factors include natural environmental
conditions, socioeconomic factors and land use management policies, all of
which are closely linked to pattern changes in land uses (Lambin et al., 2001;
Lambin et al., 2003; Haberl et al., 2004; Burgi et al., 2004; Aguiar et al.,
2007; Turner II et al., 2007; Veldkamp and Verburg, 2004; Verburg, 2006).

4.1 Principles and Function Modules of the DLS Model

The DLS model is theoretically based on restrictions of the distribution of
land use types. The model dynamically simulates the macroscopic pattern
changes in land uses by classifying the driving factors that influence this
pattern (Deng et al., 2008). The simulation spatially allocates the area change
in land use and is based on spatial statistics, predicting the probabilities of
different land use types and incorporating the probability of distribution of
different land use types at the pixel level.

4.1.1 Fundamental Definition

Simulating the macroscopic pattern changes in land uses involves simulat-
ing the spatiotemporal processes of changing area and the distributions of
regional land use types. This is done by quantitatively measuring flow and
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stock in the conversion processes of various land use types (Turner II, 1997;
Veldkamp and Lambin, 2001; Burgi and Turner, 2002). To realize this goal,
it is necessary to first understand the target and features of the simulated
dynamics of the land use pattern.

Simulating the macroscopic pattern changes in land uses is targeted at
the human-modified land system, which is closely related to land use. The
land system is an open, complex system consisting of two subsystems, the
geographic environment and human activities, inside which are certain struc-
tures and functions (Verburg et al., 2002; Wang et al., 2010). At the core of
simulated land use pattern changes are interactions among the natural envi-
ronment, human society and area of land use change. Accordingly, to produce
a macroscopic simulation of a land use pattern, it is necessary to explore new
approaches to simulate the dynamics of land system spatial distribution,
temporal processes, change in organization, bulk effect and complementary
synergies (Veldkamp and Verburg, 2004; Liu et al., 2005).

Changes in the area of regional land use types are closely related to other
factors at different scales in the land system. The relationship between them
generally includes features such as mechanisms, feedbacks, complexities and
systematizations, which are specifically represented as follows.

(i) Natural controlling factors, represented by terrain, climate, soil and
vegetation, play a dominant role in changing the regional land use pattern
in the long-term and in controlling the direction and degree of change in the
regional land use pattern. (ii) Socioeconomic driving factors, including pop-
ulation change, economic development, technical progress and institutional
changes, interact with the area of land use change and play a decisive role
in the pattern changes in regional land uses in the short-term. (iii) Various
nonlinear relationships exist between natural controlling factors and socioe-
conomic factors, which often conceal the real reasons for the pattern changes
in land uses.

Many limitations still exist in current research on simulating the pattern
changes in land uses. Systematic analysis and expression of mechanisms of
pattern changes in land uses are difficult to conduct (Dai et al., 2005; Pon-
tius et al., 2007). Pattern changes in land uses are closely related to land
use decisions, and therefore, simulating pattern changes in land uses needs
to comprehensively consider factors such as socioeconomic development, cul-
tural traditions, natural conditions and historic trends in pattern changes in
land uses to improve the reliability and accuracy of simulation results.

4.1.2 Features of the DLS Model

Recent research has made progress in the analysis of driving forces behind
pattern changes in land uses with economic models and empirical statistical
methods (Liu, 2002; Veldkamp and Verburg, 2004; Li et al., 2005; Liu et
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al., 2005). Shi et al. (2000) analyzed natural and human factors driving land
use change in Shenzhen with regression analysis; Chen et al. (2000) built a
multiple regression model of land use change using a multi-scale statistical
method. Researchers at the Institute of Agricultural Resource and Planning,
Chinese Academy of Agricultural Sciences cooperated with scholars at Wa-
geningen University, the Netherlands, to build a model of land use change in
China with assistance from a geographic information system (GIS). This was
a good attempt at creating a comprehensive evaluation model of land use
change (Verburg et al., 2000). Simulations of pattern changes in land uses
have focused on regional and microscopic aspects; however, in-depth research
has involved the utility of using the models mentioned above with these two
aspects, but many limitations still exist.

Conventional models capable of simulating the macroscopic pattern
changes in land uses are limited to simulation of only one or several land
use types (Ge and Dai, 2005); however, the DLS model differs from these
models because it comprehensively simulates the spatiotemporal pattern of
all kinds of land use types at the regional scale. It has solved the problem of
discriminating between endogenous and exogenous driving factors of land use
changes. In addition, the DLS model quantitatively analyzes the effects of dif-
ferent driving factors by building a spatially-explicit statistical model of the
distribution of land use types and driving factors at the pixel level, and it sees
the pattern changes in land uses as a dynamic spatiotemporal process. Also,
different scenarios of changing area of regional land use types are designed
in the DLS model based on comprehensive measurements of factors such as
features of regional socioeconomic development, cultural traditions, natural
conditions and history of land use. Thus, the DLS model has improved the
scientific and rational nature of predicted and estimated results.

4.1.3 Framework of the DLS Model

The DLS model fully considers the links among related models of nature,
ecology and economy. It also extracts decision-making reference information
used in land use planning, environmental planning and management of nat-
ural resources by designing different scenarios of changing regional land use
area. Users of the DLS model can input nonlinear demand change, differ-
ent conversion rules and driving factors at different pattern changes in land
uses to simulate and analyze the complex changes in regional land use pat-
terns. The DLS model also considers the influence of macroscopic factors
such as topography, environment, trade and institutional arrangement and
land management policies to more accurately simulate possible scenarios of
pattern changes in land uses.

The DLS model presumes that land use pattern change is influenced by
both historic pattern changes in land uses and driving factors within the
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pixel and neighboring pixels. Decisions of land use planners have important
influence on the pattern changes in land uses, especially at the regional level
(Fig. 4.1).

Fig. 4.1 Modeling framework of the DLS model.

In addition, the DLS model considers regional restrictions on the distri-
bution of land use types. For example, the model sets regions where it is
impossible for a certain land use type to appear as restricted regions and
removes these regions so that they are not input into the model. Moreover,
the input parameters and exogenous variables may change with time due
to influences from conversion rules of regional land use types and nonlinear
demand change. Therefore, it is still necessary to consider uncertainties of
simulation results in the DLS model.

4.1.4 Application

The DLS model effectively simulates spatiotemporal pattern changes in land
uses. Regarding data integration, the DLS model represents various land use
types in a grid format, which spatially expresses the characteristics of the
distribution of regional land use types with a high resolution. The DLS model
takes information from the basic grid unit as observed data and performs a
spatiotemporal simulation of the pattern changes in land uses at the pixel
level.

The DLS model fully considers the complexity of the driving mecha-
nisms of pattern changes. It reveals dynamic spatiotemporal rules of land
use changes by considering regional restrictions on changing land use area
based on a comprehensive analysis of factors that influence land use changes.
Researches have indicated that as an auxiliary tool to analyze changes in re-
gional land use area, natural environmental effects of these changes, land use
planning and land management decision-making, the DLS model has truly re-
alized the dynamic simulation of pattern changes in land uses with scenarios
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of changing land use area at the regional scale. It also analyzes mechanisms
driving the distribution of land use types at the grid scale (Deng et al., 2008;
Deng et al., 2010b).

4.1.5 Function Modules of the DLS Model

The DLS model is based on quantitative analysis of land use pattern changes
at the pixel level, interactions among driving factors and spatiotemporal dis-
tribution of land use pattern change. It simulates the pattern changes in
regional land uses by analyzing the driving forces of land distribution at
the grid scale and allocation of changing land use areas. Analyzing both the
driving forces behind land distribution and the spatial allocation of land use
change is the most important component of the DLS model (Deng et al.,
2008).

Mechanism analysis of the DLS model aims to estimate the statistical
relationship between the pattern changes in land uses and its driving factors.
Theoretically, mechanistic analysis provides a reaction function of each land
use type. Corresponding weights are given to all driving factors according to
principles that can be assumed to be fixed for a short period, but driving
factors change over time. With the reaction function determined, reasons for
differences between simulated and observed distribution of land use types can
be summarized as follows: values of some driving factors have changed, such
as population growth or temperature; competition exists among different land
use types; and restrictions occur between local historic conditions and current
demand. Driving factors behind land use patterns can be analyzed with the
explanatory linear model of land use pattern (ELMLUP) and explanatory
nonlinear model of land use pattern (ENMLUP) built at the pixel level. The
two models can be used to research restrictions on the distribution of land
use types at the pixel level with different backgrounds and goals, and they
can be used flexibly to reveal in-depth driving mechanisms of pattern changes
in land uses at the pixel level.

4.1.6 Explanatory Linear Model of Land Use Pattern

Linear regression is the model most commonly used in researching the driving
mechanisms of land use patterns as it explores driving factors at wide ranges
and with high spatial resolution (Verburg et al., 2002; Zhang et al., 2003). The
explanatory linear model of land use patterns at the pixel level, or ELMLUP,
is introduced in this chapter.

4.1.6.1 Model Hypothesis

The ELMLUP contains a demanding and a distribution module. The target
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variable of the ELMLUP is the proportion of the area of land use type
k(k = 1, 2, · · ·, M) in grid i(i = 1, 2, · · ·, n) at time t abbreviated as Qkt

i .
The explanatory variable of the model is a covariant vector of driving factors
composed of a series of natural environmental conditions and socioeconomic
factors that are tightly related to the pattern changes in land uses (with a
significance level of 5%).

Xt
i = (xt

i1, xt
i2, · · · , xt

il, · · · , xt
iL)T (4.1)

To measure the impact of spatially autocorrelated land use types, several
variables, including Q̂kt

i and X̂t
i , are defined in the ELMLUP. Let Q̂kt

i =∑
j �=i wk

ijQ
kt
i , where wij is the spatial weight function of the impact of grid j

on grid i. The definition of X̂t
i is similar to that of Q̂kt

i , which is the weighted
average of Xt

i . According to the first law of geography, the spatial weight
function is usually defined as the reciprocal of the distance between grid j
and grid i.

W k
ij =

{
1/Dij

0
(4.2)

where Dij can be the Euclidean distance, the absolute distance, or the
Minkowski distance (Tobler, 1970).

4.1.6.2 Model Inference

Spatial autocorrelation

The quantitative relationship between Q̂kt
i and X̂t

i is developed through the
following multiple linear regression model.

Q̂kt
i = ak

0 + akX̂t
i (4.3)

where ak = (ak
1 , ak

2 , · · · , ak
L) is the coefficient matrix of X̂t

i , and ak
0 is a

constant term. Regarding grid i at time t, the result reg(Q̂kt
i ) estimated by

the model is naturally employed to reflect the average proportion of area of
land use type k under natural and socioeconomic conditions X̂t

i .
Apparently, reg(Q̂kt

i ) does not equate with deviation of the actual ob-
served value real(Q̂kt

i ). If the demanding area of land use type k changes
in the demanding module, the relative stability of Land use pattern will be
broken. Therefore, we can hypothesize that a certain relationship exists be-
tween the land pattern change and the value difference between reg(Q̂kt

i )
and real(Q̂kt

i ): when estimated value, reg(Q̂kt
i ), is smaller than the observed

value, real(Q̂kt
i ), the area proportion of land use type k will increase; when

estimated value, reg(Q̂kt
i ), is larger than the observed value, real(Q̂kt

i ), the
area proportion of land use type k will decrease.

When the demanding module of the ELMLUP requires the area propor-
tion of land use type k to change to DEMANDk(t+1) at time t + 1 in grid
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i, the area proportion of land use type k will vary.

Q̂
k(t+1)
i = real(Q̂kt

i ) + [reg(Q̂kt
i )− real(Q̂kt

i )] · Fi (4.4)

where Q̂
k(t+1)
i is the area proportion of land use type k in grid i at time t+1;

Fi is the changing coefficient of the area of the land use type regulated by
the general demanding equation:

DEMANDk(t+1) =
n∑

i=1

{real(Q̂kt
i ) + [reg(Q̂kt

i )− real(Q̂kt
i )] · Fi} (4.5)

An iteration adjustment is then needed until the proportion of the area
of the land use type k increases to DEMANDk(t+1).

Conversely, if the demanding area of land uses type decreases, the trends
for the changes in the land uses types will be dissimilar.

ELMLUP

In the same way, the quantitative relationship between Q̂kt
i and X̂t

i is devel-
oped through the following regression equation:

Qkt
i = bk

0 + bkXt
i (4.6)

where bk = (bk
1 , bk

2 , · · · , bk
L) is the regression coefficient matrix of Xt

i , and bk
0

is a constant term. reg(Q̂kt
i ) is the area proportion of land use type k at time

t, estimated by the multiple linear regression model; real(Q̂kt
i ) is the actual

observed value of the area proportion of land use type k at time t. When the
demanding module requires the proportion of the area of land use type k to
change to DEMANDk(t+1) at time t + 1 in grid i, the area proportion of
land use type k will vary correspondingly.

Q
k(t+1)
i = real(Qkt

i ) + [reg(Qkt
i )− real(Qkt

i )] · F ′
i ·Rkt

i (4.7)

where the definition of F ′ is similar to that of Fi; Rkt
i is the influence function

that stands for the influence of the spatial autocorrelation factors on grid i
that change with Q̂kt

i . If the change in area of land use type k in grids near
grid i is frequent, there will be correspondingly great changes in Qkt

i and Rkt
i

due to spatial autocorrelation.
By contrast, if land use type k in grids near grid i are relatively steady,

the change in Qkt
i would be correspondingly little. This is the explanatory

model for land use patterns in linear form, or the ELMLUP, which considers
the effect of spatial autocorrelation.

4.1.6.3 Model Estimation

Many approaches exist to estimate the coefficient of the two multiple linear
regression functions in ELMLUP. In this chapter, we introduce one of the
most commonly used methods, the least squares method.
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The least squares method produces a line that has the minimum sum of
the deviations squared (least square error) from a given set of data (Gao et
al., 2005). For the two multiple linear regression functions in the ELMLUP,
the minimum sums of the deviations squared are respectively defined by the
following two equations:

Q̂(ak
0 , ak) =

n∑
i=1

[real(Q̂kt
i )− reg(Q̂kt

i )]2 =
n∑

i=1

[real(Q̂kt
i )− (ak

0 + akX̂t
i )]

2

(4.8)

Q(bk
0 , bk) =

n∑
i=1

[real(Qkt
i )− reg(Qkt

i )]2 =
n∑

i=1

[real(Qkt
i )− (bk

0 + bkX̂t
i )]

2

(4.9)

4.1.6.4 Model Test

It is still unknown whether linear relationships exist between the change in
land use pattern and the natural and socioeconomic factors after the regres-
sion coefficient of the multiple linear functions is obtained in the ELMLUP.
Therefore, a significance test is needed for the estimated multiple linear re-
gression function. Here, we introduce the approach of using variance analysis
to test the significance of the regression function. In this approach, the total
variance is decomposed into two parts.

n∑
i=1

(Qkt
i − Q̄kt)2 =

n∑
i=1

[Qkt
i − reg(Qkt

i )]2 +
n∑

i=1

[reg(Qkt
i )− Q̄kt]2

= ESS + MSS (4.10)

where Q̄kt is the average of Qkt
i ; ESS is the sum of variance of regression

function; MSS is the sum of variances of the errors. Then, a new statistic is
defined as follows:

F =
MSS/f

ESS/g
=

MMS

EMS
(4.11)

where statistic F has a distribution of F (f, g), and f and g are the degrees
of freedom of the regression function and error, respectively.

By calculating statistic F and the significance probability, we can judge
the significance of the multiple regression function. If the value of the sig-
nificance probability is relatively small, or smaller than the significance level
(for instance 0.01), we can conclude that the regression function accurately
simulates the relationships between land use patterns and their driving fac-
tors.

4.1.7 Explanatory Nonlinear Model of Land Use Pattern

The driving force analysis model for land use patterns in nonlinear form is



4.1 Principles and Function Modules of the DLS Model 137

built based on land use area percentage grid data.

4.1.7.1 Grid Area Percentage Data

Percentage data were first proposed by Ferrers (1866) and is becoming in-
creasingly important in statistical analysis. It is usually expressed as the
following vector set:

S =

{
(s1, s2, · · · , sm)T ∈ Rm

∣∣∣∣
m∑

i=1

si = 1, 0 < si < 1

}
(4.12)

si = Si

/ m∑
j=1

Sj (4.13)

where si is the ith element of the percentage data, and Si is the original
observed value of si, or the area of cultivated land and the area of developed
land.

Area percentage data are derived from grid data at a certain grid pixel
scale. Area percentage data are constrained by two restriction conditions as
follows:

m∑
i=1

si = 1, 0 < si < 1 (4.14)

m∑
i=1

Si = Ω (4.15)

where Ω is constant and represents the area of the grid pixel.
Three main problems must be solved before regression analysis can be

conducted using area percentage data. One problem is that the range of
values of area percentage data should be located in the interior (between 0
and 1). However, one or several elements usually exist that have values equal
to zero. Another problem is that the existence of perfect multicollinearity
among variables of area percentage data indicates that the ordinary least
squares method is invalid. The final problem is that the regression model
must account for the restriction conditions, Eqs. (4.14) and (4.15). We have
designed a scheme to overcome these three problems using methods of zero
suppression handling and symmetric log-ratio transformation.

Theoretically, it is impossible for the area of some land use types to equal
zero if areas are counted at a high enough resolution, that is, areas of some
types of land use categories are too small to be detected (Bacon-Shone, 2003).
Thus, if the area of one land use category is equal to zero, the area of this type
of land use category is assigned a minimal value. Consequently, the sample
vector is in the following form

(
s′1, s′2, · · · , s′p

)T ∈ [0, 1]p (4.16)
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where s′j is the area proportion of the jth land use category in the total
area of grid pixels. If s′j = 0, it is assigned a new minimal value s′j = ε and

yi = s′j

/
p∑

i=1

s′i. The grid area percentage data are then obtained for land use

categories:

Y =

⎧⎨
⎩(y1, y2, · · · , yp)

T ∈ Rp

∣∣∣∣
p∑

j=1

yj = 1, 0 < yj < 1

⎫⎬
⎭ (4.17)

where yj is the area proportion of the jth land use category in the total area
of grid pixels.

Symmetric log-ratio transformation is conducted after the grid percentage
data are treated to stretch the values of area percentage data from (0, 1) to
(−∞, +∞) (4.18).

Z = (z1, z2, · · · , zp)
T

, zj = ln

⎛
⎝yj

/ p
√√√√ p∏

i=1

yi

⎞
⎠ , j = 1, 2, · · · , p

(4.18)
where zj ∈ (−∞, +∞). Let sj = zj − zp, j = 1, 2, · · ·, p− 1, and through the
inverse transformation we can get Eq. (4.19).

yj =
esj

1 +
p−1∑
i=1

esi

, yp =
1

1 +
p−1∑
i=1

esi

, j = 1, 2, · · · , p− 1 (4.19)

Symmetric log-ratio transformation not only solves the essential zero
problem and the problem of constrained total land area, but also linearizes
the non-linear relationships between land use patterns and their driving fac-
tors. In addition, the transformation retains the symmetry of the original
percentage data, and the newly generated variables can be used directly to
explore characteristics of the percentage data, making estimation results eas-
ily explainable (Paustian et al., 1997; Wang et al., 2008).

4.1.7.2 Partial Least Squares Analysis

Multicollinearity among variables in regression analysis is a problem that
must be addressed, as is analysis of driving mechanisms of land use pattern
changes. Since its discovery in the 1930s by Frisch (1934), multicollinearity
has received increasing attention. Multicollinearity among independent vari-
ables always causes deviations of regression estimates, preventing accurate
and robust estimations of the coefficients. Without exception, analysis of
driving mechanisms of land use patterns faces the same problem. Wold et al.
(1983) proposed partial least squares (PLS) regression to tackle the problem.
This approach, based on factor analysis, maximizes the covariance between
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the predicted matrix and the independent matrix composed of factors in the
reductive space.

Suppose X = (X1, X2, · · ·, Xq)T is the independent vector variable, and
Z = (Z1, Z2, · · ·, Zq)T is the dependent vector variable. The standardized
observed data matrixes of the dependent and independent vector variables
after log-ratio transformation are respectively as follows:

Z0 =

⎡
⎢⎢⎢⎢⎢⎣

z11 · · · z1p

z21 · · · z2p

...
...

zn1 · · · znp

⎤
⎥⎥⎥⎥⎥⎦ , X0 =

⎡
⎢⎢⎢⎢⎢⎣

x11 · · · x1q

x21 · · · x2q

...
...

xn1 · · · xnq

⎤
⎥⎥⎥⎥⎥⎦ (4.20)

The first pair of PLS components

The first pair of components is defined as U1 and V1, where U1 is a linear
combination of the independent vector variable X :

U1 = ω11X1 + · · ·+ ω1qXq = ωT
1 X (4.21)

and V1 is a linear combination of the independent vector variable Z:

V1 = υ11Z1 + · · ·+ υ1pZp = υT
1 Z (4.22)

The score-vector of the first pair of components U1 and V1 can be calcu-
lated and denoted as u1 and v1, respectively.

u1 = X0ω1 =

⎡
⎢⎢⎢⎢⎢⎣

x11 · · · x1q

x21 · · · x2q

...
...

xn1 · · · xnq

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

ω11

ω12

...

ω1q

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

u11

u21

...

un1

⎤
⎥⎥⎥⎥⎥⎦ (4.23)

ν1 = Z0υ1 =

⎡
⎢⎢⎢⎢⎢⎣

z11 · · · z1p

z21 · · · z2p

...
...

zn1 · · · znp

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

υ11

υ12

...

υ1p

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

ν11

ν21

...

νn1

⎤
⎥⎥⎥⎥⎥⎦ (4.24)

The covariance of the first pair of components U1 and V1 can be calculated
by the inner-product of the score-vectors u1 and ν1. Thus the constrained
extremum problem, Eq. (4.25), is used to calculate the unit vectors ω1 and υ1,
which satisfy the qualification that: (i) the first pair of PLS components U1

and V1 extracts as much information from the standard observed data matrix
as possible; and (ii) the covariate between U1 and V1 receives a maximum
value. {

max {〈u1, v1〉} = max
{
ωT

1 XT
0 Z0υ1

}
ωT

1 ω1 = ‖ω1‖2 = 1, υT
1 υ1 = ‖υ1‖2 = 1

(4.25)
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The constrained extremum problem is solved by calculating the eigen-
value and its corresponding eigenvector of the matrix Q = XT

0 Z0Z
T
0 X0. The

eigenvector of maximum eigenvalue (ωT
1 XT

0 Z0υ1)2 is the solution of vector
ω1. Vector υ1 is calculated using Eq. (4.26).

υ1 =
1

ωT
1 XT

0 Z0υ1
ZT

0 X0ω1 (4.26)

Regression equations based on the first pair of PLS components

Suppose the regression model with independent variable U1 and dependent
variables X0 and Z0 is defined as follows:{

X0 = u1α
T
1 + S1

Z0 = u1β
T
1 + T1

(4.27)

where u1 is the nth dimension score vector of U1; αT
1 = (α11, α12, · · ·, α1q),

and βT
1 = (β11, β12, · · ·, β1q) are the parameter vectors of the regression

model; S1 and T1 are the residual matrices. Therefore, the least squares esti-
mates of the regression coefficient vectors α1 and β1 are calculated according
to Eq. (4.28). {

αT
1 =

(
uT

1 u1

)−1
uT

1 X0

βT
1 =

(
uT

1 u1

)−1
uT

1 Z0

(4.28)

Final regression equation

Let X ′
0 = u1α

T
1 and Z ′

0 = u1β
T
1 , then the residual matrices are illustrated

as S1 = X0 −X ′
0 and T1 = Z0 − Z ′

0. Replacing the standard observed data
matrices X0 and Z0 with S1 and T1, respectively, and repeating the above
mathematical operation, the weights of the second pair of PLS components,
S2 and T2, are obtained:

ω2 = (ω21, · · · , ω2q)
T

, υ2 = (υ21, · · · , υ2p)
T (4.29)

Then, v2 = T1υ2 and u2 = S1ω2 are the score vectors of the second pair of
components S2 and T2, respectively, and can be calculated. The load capacity
of the second pair of PLS components can be calculated with Eq. (4.30).{

αT
2 =

(
uT

2 u2

)−1
uT

2 S1

βT
2 =

(
uT

2 u2

)−1
uT

2 T1

(4.30)

The generic form of the area percentage data model can then be written as
Eq. (4.31) {

X0 = u1α
T
1 + u2α

T
2 + S2

Z0 = u1β
T
1 + u2β

T
2 + T2

(4.31)
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Suppose the rank of data matrix n× q of X0 is r, which satisfies r � min(n−
1, q). The r components and the standardized observation data matrices X0

and Z0, can be obtained and further disassembled as shown in Eq. (4.32).{
X0 = u1α

T
1 + · · ·+ urα

T
r + Sr

Z0 = u1β
T
1 + · · ·+ urβ

T
r + Tr

(4.32)

Given that X∗
i (i = 1, 2, · · ·, q) and Z∗

j (j = 1, 2, · · ·, p) are the standardized
variables, the values of Uk and Z∗

j can easily be obtained according to Eqs.
(4.33) and (4.34).

Uk = ωk1X
∗
1 + · · ·+ ωkqX

∗
q , k = 1, · · · , r (4.33)

Z∗
j = β1jU1 + β2jU2 + · · ·+ βrjUr , j = 1, · · · , p (4.34)

After substituting Eq. (4.33) into Eq. (4.34), the PLS regression equation,
Eq. (4.35), is obtained.

Ẑ∗
j = a∗

j1X
∗
1 + · · ·+ a∗

jqX
∗
q , j = 1, · · · , p (4.35)

The PLS regression model of original variables, which are included in Eq.
(4.36), can be generated by replacing the standardized variables X∗

i and Z∗
j

with the original variables Xi and Zj in Eq. (4.34).

Ẑj = aj0 + aj1X1 + · · ·+ ajqXq , j = 1, · · · , p (4.36)

The PLS regression model can also be verified to follow restriction condi-
tions, Eqs. (4.14) and (4.15), and Eq. (4.37) should always hold for any
i = 0, 1, 2, · · ·, q

p∑
j

aji = 0 (4.37)

Determining of the number of PLS components

Generally, it is not always necessary to obtain all PLS components, which
is time consuming when establishing the PLS regression model. The first
several PLS components are always enough to explain the regression model.
Approaches including leave-one-out, batch-wise cross-validation, split-sample
cross-validation and random sample cross-validation are widely used to as-
certain the number of obtained components. These methods differ from each
other in cross-validation datasets.

The leave-one-out approach leaves ith (i = 1, 2, · · ·, n) observations as the
validation data, and the remaining n − 1 observations are used to build the
PLS regression model.

The batch-wise cross-validation approach follows the same strategy as the
leave-one-out approach, except that it uses a sequence of j ordinal observa-
tions as the validation dataset. When j = 1, the batch-wise cross-validation
approach is retrogressed to the leave-one-out approach.
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The split-sample cross-validation approach follows the same strategy as
the batch-wise cross-validation approach, except that it does not strictly
require the observation to be set in an ordinal sequence but is separated by
a certain span in the original observation sequence.

In the random sample cross-validation approach, the validation data are
randomly chosen.

The estimation result z′j(i)(k)(i ∈ I) of observation Zj(j = 1, 2, · · ·, p)
can be obtained when the cross-validation dataset I ⊂ is included in the
PLS regression equation with k components. Regarding I, after repeating
the above operations, the predictive residual error sum of square of the jth
independent variable Zj(j = 1, 2, · · ·, p) can be calculated using Eq. (4.38)
when the kth components have been extracted.

PRESSj (k) =
∑

I⊂{1,··· ,n}

∑
i∈I

(
zij − ẑj(i) (k)

)2 (4.38)

Furthermore, the predicted residual error sum of square of Z = (Z1, Z2, · · ·,
Zp)T is calculated from Eq. (4.39).

PRESS (k) =
p∑

j=1

PRESSj (k) (4.39)

The k that minimizes the predicted residual error sum of square of Z is the
number of components to obtain.

4.1.7.3 Neighborhood Effect

Neighborhood enrichment reflects the relative enrichment of one certain land
use type in neighbor grids, which can be calculated with the following for-
mula:

Fi,k,d =
Pi,k,d

Pk
(4.40)

where Fi,k,d represents the neighborhood enrichment factors; i is the grid
number; k is the number of land use types; d stands for the radius of the
neighborhood, which is determined with prior knowledge; Pi,k,d = ni,k,d/ni,d

is the percent of the grid number of the kth land use type in the total grid
number in the neighborhood of grid i; Pk = Nk/N is the percent of the grid
number of the kth land use type in the total grid number of the study area;
ni,k,d is the grid number of the kth land use type in the neighborhood of grid
i; ni,d represents the total grid number in the neighborhood of grid i; Nk is
the total grid number of the kth land use type in the whole study area; and
N is the total grid number in the region

When Fi,k,d = 1, Fi,k,d < 1 and Fi,k,d > 1, the grid enrichment of the kth
land use type in the neighborhood with a radius of d of grid i is equal to, or
smaller than or larger than that of the whole region, respectively.

Average neighborhood enrichment is an indicator that quantitatively rep-
resents the mutual promotion or inhibition effects of different land use types
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in different neighborhood ranges and is calculated with the following formula:

Gl,k,d =
1
Nl

∑
i∈l

Fi,k,d (4.41)

where Gl,k,d indicates the average neighborhood enrichment of the lth and
kth land use type; Nl is the total grid number of the lth land use type in this
region; i ∈ l indicates the grids that belong to the range of the lth land use
type; and

∑
Fi,k,d represents the sum of neighborhood enrichment of the kth

land use type within the domain of the lth land use type. When Gl,k,d > 1,
there are mutual promotion effects in the spatially statistical sense between
the lth and kth land use types within the neighborhood with a radius of d, in-
dicating the presences of inhibition effects. The interaction between two land
use types in different neighborhood ranges can be quantitatively analyzed by
regulating the neighborhood radius d and calculating the average neighbor-
hood enrichment of the lth and kth land use types in different neighborhood
ranges.

4.1.8 Spatial Allocation of the Changing Area of Land Uses

4.1.8.1 Decision Rules

In the process of spatially allocating changes in land use area, it is necessary
for the DLS model to set certain decision rules for the various land use types
with different degrees of stability to restrict the actions of land use change
in the model according to historical changes in various land use types and
land use planning. If historical data and future land use planning indicate
that a certain land use type is prone to converting to another land use type,
it is set to be easily converted to other land uses; otherwise, it can be set to
relatively stable or hard to be converted to other land uses. Spatial allocation
of changes in land use area simulates the actual stability of various land use
types by assigning proper values to the stability parameters, which constitute
the following stability parameter matrix.

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a11 a12 · · · a1i · · · a1p

a21 a22 · · · a2i · · · a2p

...
...

...
...

aj1 aj2 · · · aji · · · ajp

...
...

...
...

ap1 ap2 · · · api · · · app

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(4.42)

where aji is the stability parameter of conversion of land use type j to land
use type i; aii is the stability parameter of the area of land use type i that
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remains unchanged. Three conditions are usually met when values are as-
signed to stability parameters. First, for the conversion of one land type to
another that has been historically stable and unrelated to land planning,
the corresponding stability parameter in the model is assigned to 1. Second,
for land use types that are prone to conversion, the corresponding stability
parameters in the model are assigned to 0. Third, for most land use types,
the possibility of conversion is between the two extremes, and the stability
parameters in the model are assigned values between 0 and 1. The larger
the stability parameter, the more stable the corresponding land use type and
the lower the possibility of mutual conversion. In addition, it is necessary
to further verify and regulate the process of checking the model because the
configuration of stability parameters in the model mainly depends on experts’
experience and researchers’ understanding of actual conditions of the study
area.

In the process of spatially allocating changes in land use area, the stability
of certain land use types defined with stability parameters in the model is
restricted by two aspects, i.e., when one land use type is not prone to convert
to other land use types and when other land use types are not prone to convert
to this land use type. Many uncertainties exist in land use change. In fact, in
model simulations, it may be very difficult or impossible for land use change
to occur in a certain direction, but conversion in the reverse direction may
be very common (Deng et al., 2008). For example, it is costly and uncommon
to convert water areas to cultivated land, but in southern China, where the
demand for aquatic produce is high and the price continues to rise, many
paddy fields are converted into fish or shrimp ponds. Under these conditions,
the spatial allocation of changing land use area defines the decision rules of
these conversions by constructing the land use conversion rule matrix.

4.1.8.2 Allocation Steps

The input parameters used in the module for spatially allocating changes
in land use area reflect local, regional and historical characteristics of the
pattern changes in regional land uses (Fig. 4.2). Specific steps are shown in
the following figure.

The spatial allocation module of land use first calculates the number of
grids to allocate according to the conversion rules set for each pixel and
the land areas to be allocated over space. It then calculates the allocation
probability Lik of different land use types for the grid to allocate. Finally, it
allocates the land use pattern with the obtained allocation probability Lik

and obtains the change rules for the regional land use pattern.
Generally, the allocation probability of different land use types Lik is

determined based on the following three situations:
(i) If a certain land use type existed in the previous simulation year, and

its stability is less than 1, the spatial allocation module will calculate the
distribution probability, sum of the compensation factor and stability factor,
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Fig. 4.2 Steps of spatial allocation of area change in land use in the DLS model.

which are used as the allocation probability:

Li,k = Pi,k + Ck + Sk (4.43)

where Lik is the allocation probability of the kth land use type in grid i; Pik

is the distribution probability of the kth land use type in grid i; Ck and Sk

are the compensation and stability factors, respectively.
(ii) When the compensation factor Ck is nearly 0, Lik consists of the

distribution probability Pik and stability factor Sk as follows:

Li,k = Pi,k + Sk (4.44)

(iii) Within each spatial allocation step, the DLS model excludes those
pixels with a decreasing trend for a certain kind of land use type from obtain-
ing new areas of that kind of land use type. If the spatial allocation module
does not allow the configuration of stability, then the land use type with the
largest Lik is allocated to the grids without enough area of land use types
(Fig. 4.3).

When the area of the study site is small and the geophysical conditions
are relatively consistent, the area change can be directly allocated with the
method mentioned above. Conversely, if the area of the study site is large
and there is significant spatial difference in regional geophysical conditions,
it is more feasible to first zone and then allocate the area change based on
the spatial distribution of geophysical conditions (Gao and Deng, 2002; Deng
et al., 2008).
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Fig. 4.3 Schematic representation of the spatial allocation of land use changes at
the regional and pixel scales.

In summary, the DLS model is an effective tool to identify various fac-
tors that influence the distribution of regional land use types, reveal driving
mechanisms of land use pattern changes and reflect the pattern changes in
land uses in grids at certain scales.

4.2 DLS Installation and Configuration

Installation and configuration of DLS software are two main steps before
development of the DLS model.

4.2.1 DLS Installation

DLS Software is a software tool for the dynamic simulation of the land use
pattern which was developed based on the DLS model. The latest version
of DLS was released in 2007. It has developed into a program package that
can be installed independently. DLS in version 2007 can be used in Microsoft
Windows and was developed for Windows XP Professional. However, the
software has passed testing in Windows 9x, Me, 2000/NT, 2003 Server and
XP Home environments.

In the Windows operating system, insert the installation program CD in
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the CD-ROM, click “DLS MODEL setup program” in the root directory,
enter the installation directory, double-click the installation file “Setup.exe”
and then enter the installation interface. Follow the instructions to complete
the installation.

4.2.2 Configuring the DLS Operating Environment

After installation, the DLS model interface (Fig. 4.4) can be opened by click-
ing “Start” → “All Programs” → “DLS MODEL.” The DLS user interface
is user friendly, and the user can directly configure the model operating en-
vironment and input the parameters and variables in the main interface.

Fig. 4.4 User interface of DLS.

The operating system can be configured either in the Settings pull-down
menu or the Settings button in the main interface. After starting the DLS
model, set the file allocation running path and the name of the control file
(Fig. 4.5). Select the control file allocation input parameters, the storage path
of the output results and the names of the restricted zone data and those of
land demand scenario data (Fig. 4.6).

Fig. 4.5 Setting of running environment of DLS.



148 Chapter 4 The DLS Model and Its Application

Fig. 4.6 Configurations of input and output parameters for running the DLS
model.

If DLS is installed in the Linux operating system, it is necessary to use
“/” when setting the file path, while “\” is used in a Windows system. All
configuration files are saved in the file folder in the installation directory.

4.3 DLS Input Parameter Preparation

Six kinds of parameters are needed for DLS, i.e., simulation condition setting
parameters, driving factor data, spatial analysis parameters, restricted region
code, land demand scenario data and binary data of land types. The main
DLS interface is convenient for the user to input and change the parameters
(Fig 4.5). Meanwhile, to make the DLS program automatically read the re-
lated files, the user can use an ASCII data file prepared in another software
environment and directly copy it to the DLS installation directory or the
simulation directory set by the user.

4.3.1 Simulation Condition Setting Parameters

Parameters in the “Parameters” window at the far left can be edited through
the “Input” menu under the “Parameters” menu. Once the user begins to
edit the parameters, the “Parameters” window will change from a grey in-
active window to an active window where the user can edit the parameters.
After editing parameters, the user can store changes in the parameters in the
simulated pattern changes in land uses by clicking the “Save” button.

Parameters in the “Parameters” window, which the user can also edit with
Notepad software or a text editor, are included in the “main.1” file under the
installation directory “DLS\Input.” The user can also create a new file in
Notepad software or a text editor, save it as a file in “main.1” format and
put it under the installation directory “DLS\Input.” The main parameters
are included in the following figure (Fig. 4.7).

Line 1: Number of land use types;
Line 2: Land use type codes, starting from 0;
Line 3: Decision rules corresponding with the land use type;
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Fig. 4.7 Compilation of main file for running DLS.

Line 4: Condition for convergence: the permissible error when the land
demand changes and actual allocated land converge;

Line 5: Initial and ending year of simulation;
Line 6: Number of driving factors for the distribution of land use types;
Line 7: Record format mark of the main file: 1 indicates that the ArcView

header file will be exported in the output file; 0 indicates that it will not.

4.3.2 Spatial Analysis Parameters

The main component of the user interface is the Spatial Analysis window,
which contains regression equations of different land use types and driving
factors. The user can edit this file by clicking “Modify” under the “Regres-
sion” menu. Another option is to open and modify the “alloc1.reg” file under
the installation directory “DLS\Input.”

The regression coefficients between different land types and driving factors
are calculated with the following steps.

(i) Resample the GRID data of land types and driving factors at a certain
spatial scale with the “SAMPLE” order in the Arc module of ArcGIS soft-
ware. Save the result in a text file, the first line of which records the variable
names of the corresponding land type and driving factors (Fig. 4.8).

(ii) Calculate the coefficients of determination between the land type and
driving factors with statistical software capable of logistic regression analysis
(e.g., SPSS software) and ENMLUP with the following procedures: open the
logistic regression dialog box from the menu Analyze → Regression → Bi-
nary Logistic. Select the independent variables and related parameters, and
perform the calculation to obtain the regression coefficients between the land
type and driving factors (Table 4.1). Estimate the correlation between the
land types and driving factors according to “S.E.”. An S.E. larger than 0.2 in-
dicates that the correlation is not strong, and the coefficient of determination
can be deleted.

(iii) Delete the parameters with weak correlation, and create a file named
“alloc1.reg” in the following format shown in Fig. 4.9. Save it under the
installation directory “DLS\Input.”
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Fig. 4.8 Snapshot of the variables used by the DLS model to estimate the land
use conversion elasticity.

Table 4.1 Output results of the ENMLUP estimation

Variables in the equation

B S.E. Wald df Sig. Exp(B)

Step 1a

Ctemp .002 .001 3.860 1 .049 1.002

Erosion −.009 .007 1.493 1 .222 .992

shining hr −1.052 .336 9.801 1 .002 .349

Temp .046 .002 704.854 1 .000 1.047

Rainfall −.018 .000 3.047E3 1 .000 .982

Elevation .758 .017 2.041E3 1 .000 2.134

Loam −.464 .018 653.227 1 .000 .629

Splain −.003 .000 3.360E3 1 .000 .997

d2expway .005 .009 .232 1 .630 1.005

Landform .009 .001 72.306 1 .000 1.009

Organic −1.763 .029 3.799E3 1 .000 .172

d2hwy .081 .005 295.466 1 .000 1.084

d2pvcap −.046 .008 36.404 1 .000 .955

d2pvway .188 .013 222.260 1 .000 1.207

d2road .019 .006 10.530 1 .001 1.019

Popdensity .064 .008 66.277 1 .000 1.066

GDP −.001 .000 479.715 1 .000 .999

Constant −31.984 14.830 4.651 1 .031 .000

a. Variable(s) entered in step 1: ctemp, erosion, shining hr, temp, rainfall, elevation, loam,
splain, d2expway, landform, organic, d2hwy, d2pvcap, d2pvway, d2road, popdensity, GDP.
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Line 1: Codes of each land type;
Line 2: Constant of spatial regression results of each land type;
Line 3: Number of driving factors for the distribution of land types;
Line 4 (and subsequent lines): Codes of the regression coefficients and

driving factors.
The next land types after the regression coefficients of one land type

are listed, and the regression coefficients of all land types that need to be
calculated will be listed in this file.

Fig. 4.9 Formatted parameters exported from the ENMLUP estimation.

4.3.3 Driving Factor Data

Driving factor data are saved in the files under the installation directory
“DLS\Input.” All factors that affect the distribution of land types such
as natural variables, socioeconomic variables and policies are prepared with
ArcGIS software according to characteristics of each variable. All data are
disaggregated onto the spatial unit with a certain spatial resolution, and
the final dataset is saved as ASCII data in “sc1gr*.grd” format. The “*” in
different driving force file names is replaced with a number corresponding
to the code numbers of the impact factors. The process of transforming the
data in ArcView and ArcGIS software is as follows. (i) Transform the GRID
data into text data with the File → Export Data Source tool; (ii) Select the
output data format; as the output data are GRID data, the ASCII Raster
format is selected; (iii) Select the GRID data file that needs to be output
from the storage directory of the GRID data; (iv) Choose the save file path,
input the name of the output text data and save the text file in the selected
path.
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4.3.4 Land Demand Scenario Data

The land demand scenario data are saved under the installation directory
“DLS\Input.” The land demand scenario file is named in the “demand.*”
format the corresponding selection list of which is displayed in the “Scenario
Design” pull-down menu in the main interface. This can be opened and edited
with a text editor such as Notepad, and each line of this file records the
demand of different land types in the simulation period (Fig. 4.10).

Fig. 4.10 Scenario-based land demands for running DLS.

The land demand scenario data are prepared as follows: estimate the
rate of change for each land type according to land use planning data for
the subsequent 20 years and statistical data of land types of recent years.
Then calculate the land type data of each year with a rate of change with
Ni+1 = N∗

i (1 + b).
The area sum of all land types should be equal to the regional total area

prior to performing the calculation. Thus, it is necessary to make adjustments
according to the regional total area and land use pattern.

4.3.5 Restricted Region Code Data

The restricted region files under the installation directory “DLS\Input” are
named in the “regi*.*” format, and their names appear in the region selection
box “Area restriction.” The GRID files included in the restricted region files
are in a rectangular format; only these active grids located in non-restricted
areas can participate in simulations of land use changes, where the value “0”
stands for the active grid and “−9999” null and “−9998” stand for restricted
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regions (Fig. 4.11). The sort order of values in this file corresponds with that
of the actual grids. Preparation of the restricted region code data are similar
to that of the driver data, which can be realized by saving the GRID data as
a text file with the Export Data tool.

Fig. 4.11 Representation of the null value, restricted and active grid pixels by
evaluating −9999, −9998 and 0, respectively.

4.3.6 Land Use Type Data

Many methods can be used to prepare the land-type binary data. The method
used in the Workstation program in the ArcGIS software environment will
be introduced in Chapter 6. Another method with ArcView software is in-
troduced as follows.

First, open the grid data for the land type and boundary. Select Analysis
→ Property to open the dialog box, and select the boundary grid data in
Analysis Mask.

Then, open the dialog box through Analysis → Map Calculation, and
input the calculation formula to extract the binary grid data with the land
type codes 1, 2, 3, 4, 5 and 6, respectively.

Save the calculation results as follows: open Theme → Storage Data Set,
select the storage path and input the storage file name.
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Finally, transform the binary data into text data named in the “cov1 #.0”
format, and then save it under the installation directory “DLS\Input.”

4.4 DLS Operation and Results Output

The model must be reconfigured when it is used in a new region and the
model results are saved in two formats according to the year.

4.4.1 DLS Operation

After reconfiguration, select the restricted region and scenario files and click
the “Run” button. The model will run automatically, and the results will
be listed one by one in the view window. These can be saved in the file
“DLS\Output,” and the running process will be saved in the “Log” file under
the output directory, which includes not only the running information but
also the iteration parameters listed in every step of the operation. All these
parameters are listed in the operation steps. The implication of the codes
annotated is as follows. (i) Number of iterations; (ii) Allocated quantity of
each land use type; (iii) Iteration parameters of each land use type; (iv) Gaps
between the demanded quantity and allocated quantity; (v) Maximum gaps
between the demanded quantity and allocated quantity.

4.4.2 Results Output

The results of each land type are saved as an “out1 #.*” file where “#” is
the land type code and “*” is the year to calculate. The results of all land
types every year are saved as “out all.*” files, in which a single value of
each land type is saved. The new values of all grids are also saved in these
result files, which can be read by ArcView GIS software. ArcView GIS reads
data as follows. (i) If the seventh line of the “main.1” file is 1, the ArcView
title will be output in the output file, which can be directly saved in ASCII-
GRID format. This kind of data can be imported through File (Import Data
Source) in ArcView GIS software; (ii) Run this module, and select the input
data type in the pop-up window. Here the ASCII Raster data type is selected;
(iii) Select the name of the layer to convert (a single land type or all land
types); (iv) Input the name of the output data. The output data will be saved
in the selected path. “Integer” format is selected as the type of output grid
unit data, which can be directly opened in the active window.
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4.5 Summary

The DLS model is a powerful tool for simulating the dynamics of land use
changes. It comprehensively considers the control of external demand and
influences of various neighborhood driving factors, emphasizes internal suit-
ability, controls random disturbance factors, has specific decision rules and
constructs multiple objective functions. Therefore, it is robust for simulating
land use pattern changes in terms of both the expression of mechanisms and
simulation effects (Deng et al., 2008; Zhan et al., 2007).

DLS is a software tool developed based on the DLS model for the dynamic
simulation of the land use pattern changes. This chapter introduces the main
procedures of DLS including installation, parameter configuration, running
steps and results output. It can measure the influence of driving factors that
are closely associated with changes in the land use pattern, including natural
conditions, socioeconomic factors and even land use management policies. It
can simulate the spatiotemporal process of pattern changes in land uses and
export maps of pattern changes in land uses with high spatial and temporal
resolution by setting conversion rules of land use types and designing change
scenarios.
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