

Lecture Notes in Computer Science 6308
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

David Cohen (Ed.)

Principles and Practice
of Constraint
Programming – CP 2010

16th International Conference, CP 2010
St. Andrews, Scotland, September 6-10, 2010
Proceedings

13

Volume Editor

David Cohen
Department of Computer Science
Royal Holloway, University of London
Egham, Surrey, TW20 0EX
United Kingdom
E-mail: d.cohen@rhul.ac.uk

Library of Congress Control Number: 2010933521

CR Subject Classification (1998): F.4.1, F.2, F.3, G.2, F.1, E.1

LNCS Sublibrary: SL 2 – Programming and Software Engineering

ISSN 0302-9743
ISBN-10 3-642-15395-X Springer Berlin Heidelberg New York
ISBN-13 978-3-642-15395-2 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2010
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper 06/3180

Preface

The 16th annual International Conference on the Principles and Practice of
Constraint Programming (CP 2010) was held in St. Andrews, Scotland, during
September 6–10, 2010. We would like to thank our sponsors for their generous
support of this event.

This conference is concerned with all aspects of computing with constraints,
including: theory, algorithms, applications, environments, languages, models and
systems.

We received a wide variety of submissions, each of which was reviewed by
at least three referees. Referees were chosen for each submission by an initial
bidding process where Program Committee members chose papers from their
area of interest. The range of expertise represented by the large Program Com-
mittee meant that almost all submissions were reviewed by subject experts on
the Program Committee, or by colleagues chosen by members of the Program
Committee for their particular expertise. Papers were solicited either as long (15
page), or short (8 page) submissions. Short-paper submissions were refereed to
exactly the same high standards as long-paper submissions but naturally were
expected to contain a smaller quantity of new material. Thus there is no distinc-
tion in these proceedings between short and long papers. I used the excellent
EasyChair conference management system to support this process of reviewing,
and for the collation and organization of these proceedings.

Submissions were made either to the applications track or to the research
track. There were 101 (23 short) research track submissions of which 36 (8 short)
were accepted, which is a 36% (35% of short) acceptance rate. Applications track
submissions received special consideration and the acceptance rate was signifi-
cantly higher than for the research track. There were 21 (2 short) applications
track submissions of which 11 (1 short) were accepted for a 52% (50% of short)
acceptance rate.

There were three invited talks from distinguished scientists: Robert Nieuwen-
huis, Edward Tsang and Moshe Vardi. These proceedings include abstracts of
each of their presentations. Details of the wide variety of workshops and the four
tutorials that took place as part of the conference are also included.

I would like to thank the Association for Constraint Programming (ACP)
for inviting me to be Program Chair. It has been a rewarding experience, not
only because of the high quality of the papers submitted, but also for the help
so readily given to me by friends and colleagues around the world.

I want to thank all of the authors for submitting such interesting papers. It
is their hard work that makes the conference so interesting, but the high quality
of the submissions also makes the decision process challenging. I would also like
to thank the members of the Program Committee for agreeing to help in the

VI Preface

first place, and for the excellent standard of reviewing. My particular thanks go
to those people who provided fourth reviews when decisions were most difficult.

Several people deserve special mention. Karen Petrie, who, as Conference
Chair, saved my life on many occasions. Ian Gent, who, as the Program Chair
for CP 2009, was a source of invaluable information, warnings and good ad-
vice. Barry O’Sullivan for his speedy replies to questions, and general support.
Peter Stuckey, who was the Applications Track Chair, Pedro Meseguer for the
workshop organization, Thomas Schiex for managing the tutorials and Peter
Nightingale and Standa Zivny for running the doctoral program.

The local Organizing Committee always put in a great deal of work, often
unthanked, to make a conference like this successful. Andrea Rendl as Publicity
Chair and Neil Moore who ran the website helped me a lot during the build up
to CP 2010.

September 2010 David Cohen

Distinguished Papers

The Program Committee chose one paper from the Research Track, one paper
from the Applications Track and one Student Paper to be recognized as achieving
the highest standard submitted in their category.

Best Research Paper

Testing Expressibility Is Hard, by Ross Willard.

Best Applications Paper

Applying Constraint Programming to Identification and Assignment of Service
Professionals, by Sigal Asaf, Haggai Eran, Yossi Richter, Daniel P. Connors,
Donna L. Gresh, Julio Ortega and Michael J. Mcinnis.

Best Student Paper

Computing the Density of States of Boolean Formulas, by Stefano Ermon, Carla
Gomes and Bart Selman.

Workshops and Tutorials

Workshops

As part of CP 2010 a number of workshops took place the day before the main
conference, on September 6, 2010.

– 9th Workshop on Constraint Modelling and Reformulation (ModRef 2010)
– 10th Workshop on Symmetry in Constraint Satisfaction Problems (SymCon

2010)
– 7th Workshop on Local Search Techniques in Constraint Satisfaction (LSCS

2010)
– Third Workshop on Quantification in Constraint Programming (QiCP 2010)
– 10th Workshop on Preferences and Soft Constraints (SofT 2010)
– Third Workshop on Techniques for Implementing Constraint Programming

Systems (TRICS 2010)
– First Workshop on Constraint Reasoning and Graphical Structures
– Third Workshop on Constraint Reasoning and Optimization for Computa-

tional Sustainability (CROCS at CP-10)

Tutorials

Four tutorial presentations were given during the main program of the confer-
ence.

– Distributed CSP, by Amnon Meisels.
– SAT with Many Cores, by Youssef Hamadi.
– The Valued CSP (VCSP), by Martin Cooper, Peter Jeavons and Simon de

Givry.
– Backdoors in CSPs, by Barry O’SUllivan.

Organization

Executive Committee

Conference Chair Karen Petrie (University of Dundee, UK)
Program Chair David Cohen, (Royal Holloway, University of London, UK)
Applications Chair Peter Stuckey (University of Melbourne, Australia)
Workshop Chair Pedro Meseguer (IIIA-CSIC, Spain)
Tutorial Chair Thomas Schiex (INRA Toulouse, France)
Doctoral Program Peter Nightingale (University of St. Andrews, UK)

Chairs Standa Živný (University of Oxford, UK)
Sponsorship Chair Ian Miguel (St. Andrews, UK)
Publicity Chair Andrea Rendl (St. Andrews, UK)

Sponsors

4C - Cork Constraint Computational Centre
ACP, Association for Constraint Programming
Google, EMEA University Programs
IBM Research
Institute for Computational Sustainability, Cornell University, USA
NICTA, National Information and Communications Technology, Australia
Optimisation for Sustainable Development, Ecole Polytechnique, France
SICS - Swedish Institute of Computer Science

Program Committee

Roman Bartak Charles University, Czech Republic
Peter van Beek University of Waterloo, Canada
Hubie Chen Universitat Pompeu Fabra, Spain
Andy Chun City University of Hong Kong, Hong Kong
David Cohen Royal Holloway, University of London, UK
Martin Cooper IRIT-UPS, Toulouse, France
Victor Dalmau Universitat Pompeu Fabra, Spain
Rina Dechter University of California, Irvine, USA
Alan Frisch University of York, UK
Ian Gent University of St. Andrews, UK
Carla Gomes Cornell University, USA
Emmanuel Hebrard Cork Constraint Computation Centre, Ireland
Brahim Hnich Izmir University of Economics, Turkey
Peter Jeavons University of Oxford, UK
George Katsirelos CRIL, CNRS, France
Zeynep Kiziltan University of Bologna, Italy

XII Organization

Jimmy Lee The Chinese University of Hong Kong,
Hong Kong

Pedro Meseguer IIIA-CSIC, Spain
Laurent Michel University of Connecticut, USA
Peter Nightingale University of St. Andrews, UK
Barry O’Sullivan Cork Constraint Computation Centre, Ireland
Justin Pearson Uppsala University, Sweden
Karen Petrie University of Dundee, University of Dundee,

UK
Claude-Guy Quimper Université Laval, France
Emma Rollon Technical University of Catalonia, Spain
Francesca Rossi University of Padova, Italy
Thomas Schiex INRA Toulouse, France
Christian Schulte KTH - Royal Institute of Technology, Sweden
Meinolf Sellmann Brown University, USA
Helmut Simonis Cork Constraint Computation Centre, Ireland
Kostas Stergiou University of the Aegean, Greece
Peter Stuckey University of Melbourne, Australia
Mark Wallace Monash University, Australia
Toby Walsh NICTA, Australia
Roland Yap National University of Singapore, Singapore
Standa Živný University of Oxford, UK

Organizing Committee

David Cohen Royal Holloway, University of London
Maria Fox University of Strathclyde
Alan Frisch University of York
Ian Gent University of St. Andrews
Youssef Hamadi Microsoft Research, Cambridge
Peter Jeavons University of Oxford
Chris Jefferson University of St. Andrews
Tom Kelsey University of St. Andrews
Andrei Krokhin University of Durham
Steve Linton University of St. Andrews
Derek Long University of Strathclyde
Ian Miguel University of St. Andrews
Karen Petrie University of Dundee
Patrick Prosser University of Glasgow
Barbara Smith University of Leeds
Edward Tsang University of Essex

Organization XIII

Additional Reviewers

Kiyan Ahmadizadeh
Ozgur Akgun
Alexandre Albore
Carlos Ansétegui
Magnus Ågren
Thanasis Balafoutis
Mauro Bampo
Ralph Becket
Christian Bessiere
Manuel Bodirsky
Andrej Bogdanov
Simone Bova
Martin Brain
Sebastian Brand
Ken Brown
Andrei Bulatov
Hadrien Cambazard
Catarina Carvalho
Kenil Cheng
Geoffrey Chu
Páid́ı Creed
James Cussens
Jessica Davies
Simon de Givry
Thibaut Feydy
Pierre Flener
Yong Gao
Marco Gavanelli
Vibhav Gogate
Laurent Granvilliers
Magnus gren
Tarik Hadzic
Daniel Harabor
Martin Henz
Tim Januschowski
Christopher Jefferson
Serdar Kadioglu
Kalev Kask
Richard Kelly
Lars Kotthoff
Lukas Kroc
Andrei Krokhin
Daniel Kudenko
Mikael Zayenz Lagerkvist

Arnaud Lallouet
Javier Larrosa
Yat Chiu Law
Ronan LeBras
Chavalit Likitvivatanavong
Michele Lombardi
Derek Long
Ines Lynce
Michael Lyu
Yuri Malitsky
Toni Mancini
Radu Marinescu
Joao Marques-Silva
Robert Mateescu
Jacopo Mauro
Chris Mears
Deepak Mehta
Ian Miguel
Michela Milano
Neil Moore
Nina Narodytska
Gustav Nordh
Olga Ohrimenko
Albert Oliveras
Lars Otten
Justyna Petke
Maria Silvia Pini
Cédric Pralet
Steve Prestwich
Steven Prestwich
Luis Quesada
Miguel Ramı́rez
Andrea Rendl
Enric Rodŕıguez-Carbonell
Roberto Rossi
Michel Rueher
Tyrel Russell
Ashish Sabharwal
Domenico Salvagnin
Horst Samulowitz
Andrew Santosa
Tom Schrijvers
Brand Sebastian
Charles F.K. Siu

XIV Organization

David Stynes
Pramudi Suraweera
Guido Tack
Michael Thomas
Evgenij Thorstensen
Marc Thurley
Gilles Trombettoni
Jeremie Vautard

Gérard Verfaillie
Magnus Wahlström
Richard Wallace
May H.C. Woo
Michal Wrona
Yuanlin Zhang
Roie Zivan

Association for Constraint Programming

The Association for Constraint Programming (ACP) aims at promoting con-
straint programming in every aspect of the scientific world, by encouraging its
theoretical and practical developments, its teaching in academic institutions, its
adoption in the industrial world, and its use in applications.

The ACP is a non-profit association, which uses the profit of the organized
events to support future events or activities. At any given time members of the
ACP are all attendees CP conferences of the past five years, and all members of
the Program Committee of the current CP conference.

The ACP is led by an Executive Committee (EC), which takes all the deci-
sions necessary to achieve the goals of the association. In particular, the ACP
EC organizes an annual international conference on constraint programming: se-
lecting the venue and choosing the Program and Conference Chairs. This annual
conference includes a doctoral program, which is intended to encourage doctoral
students to work on CP and to participate in the CP conference.

The ACP EC maintains a website (http://www.4c.ucc.ie/a4cp/) about all
aspects of CP, and publishes a quarterly newsletter about CP events.

ACP Executive Committee

President: Barry O’Sullivan
Secretary: Jimmy H.M. Lee
Treasurer: Thomas Schiex
Conference Coordinator: Pedro Meseguer
Others:

– John Hooker
– Karen Petrie
– Peter Stuckey
– Roland Yap

Table of Contents

Invited Talks

SAT Modulo Theories: Getting the Best of SAT and Global Constraint
Filtering . 1

Robert Nieuwenhuis

Constraint-Directed Search in Computational Finance and
Economics . 3

Edward Tsang

Constraints, Graphs, Algebra, Logic, and Complexity 8
Moshe Y. Vardi

Distinguished Papers

Testing Expressibility Is Hard . 9
Ross Willard

Applying Constraint Programming to Identification and Assignment of
Service Professionals . 24

Sigal Asaf, Haggai Eran, Yossi Richter, Daniel P. Connors,
Donna L. Gresh, Julio Ortega, and Michael J. Mcinnis

Computing the Density of States of Boolean Formulas 38
Stefano Ermon, Carla P. Gomes, and Bart Selman

Research Track

Towards Parallel Non Serial Dynamic Programming for Solving Hard
Weighted CSP . 53

David Allouche, Simon de Givry, and Thomas Schiex

Making Adaptive an Interval Constraint Propagation Algorithm
Exploiting Monotonicity . 61

Ignacio Araya, Gilles Trombettoni, and Bertrand Neveu

Improving the Performance of maxRPC . 69
Thanasis Balafoutis, Anastasia Paparrizou, Kostas Stergiou, and
Toby Walsh

Checking-Up on Branch-and-Check . 84
J. Christopher Beck

XVIII Table of Contents

Spatial, Temporal, and Hybrid Decompositions for Large-Scale Vehicle
Routing with Time Windows . 99

Russell Bent and Pascal Van Hentenryck

Decomposition of the NValue Constraint . 114
Christian Bessiere, George Katsirelos, Nina Narodytska,
Claude-Guy Quimper, and Toby Walsh

Propagating the Bin Packing Constraint Using Linear Programming 129
Hadrien Cambazard and Barry O’Sullivan

Sweeping with Continuous Domains . 137
Gilles Chabert and Nicolas Beldiceanu

A New Hybrid Tractable Class of Soft Constraint Problems 152
Martin C. Cooper and Stanislav Živný

A Propagator for Maximum Weight String Alignment with Arbitrary
Pairwise Dependencies . 167

Alessandro Dal Palù, Mathias Möhl, and Sebastian Will

Using Learnt Clauses in maxsat . 176
Jessica Davies, Jeremy Cho, and Fahiem Bacchus

Domain Consistency with Forbidden Values . 191
Yves Deville and Pascal Van Hentenryck

Generating Special-Purpose Stateless Propagators for Arbitrary
Constraints . 206

Ian P. Gent, Chris Jefferson, Ian Miguel, and Peter Nightingale

Including Ordinary Differential Equations Based Constraints in the
Standard CP Framework . 221

Alexandre Goldsztejn, Olivier Mullier, Damien Eveillard, and
Hiroshi Hosobe

Structural Tractability of Enumerating CSP Solutions 236
Gianluigi Greco and Francesco Scarcello

Diversification and Intensification in Parallel SAT Solving 252
Long Guo, Youssef Hamadi, Said Jabbour, and Lakhdar Sais

A Systematic Approach to MDD-Based Constraint Programming 266
Samid Hoda, Willem-Jan van Hoeve, and J.N. Hooker

A Complete Multi-valued SAT Solver . 281
Siddhartha Jain, Eoin O’Mahony, and Meinolf Sellmann

Exact Cover via Satisfiability: An Empirical Study 297
Tommi Junttila and Petteri Kaski

Table of Contents XIX

On the Complexity and Completeness of Static Constraints for
Breaking Row and Column Symmetry . 305

George Katsirelos, Nina Narodytska, and Toby Walsh

Ensemble Classification for Constraint Solver Configuration 321
Lars Kotthoff, Ian Miguel, and Peter Nightingale

On Testing Constraint Programs . 330
Nadjib Lazaar, Arnaud Gotlieb, and Yahia Lebbah

On the Containment of Forbidden Patterns Problems 345
Florent Madelaine

Improving the Floating Point Addition and Subtraction Constraints 360
Bruno Marre and Claude Michel

The Lattice Structure of Sets of Surjective Hyper-Operations 368
Barnaby Martin

Constraint Based Scheduling to Deal with Uncertain Durations and
Self-Timed Execution . 383

Michele Lombardi and Michela Milano

Local Consistency and SAT-Solvers . 398
Justyna Petke and Peter Jeavons

Heuristics for Planning with SAT . 414
Jussi Rintanen

Value-Ordering Heuristics: Search Performance vs. Solution Diversity . . . 429
Yevgeny Schreiber

A New O(n2 log n) Not-First/Not-Last Pruning Algorithm for
Cumulative Resource Constraints . 445

Andreas Schutt and Armin Wolf

A Generic Visualization Platform for CP . 460
Helmut Simonis, Paul Davern, Jacob Feldman, Deepak Mehta,
Luis Quesada, and Mats Carlsson

Database Constraints and Homomorphism Dualities 475
Balder ten Cate, Phokion G. Kolaitis, and Wang-Chiew Tan

A Box-Consistency Contractor Based on Extremal Functions 491
Gilles Trombettoni, Yves Papegay, Gilles Chabert, and
Odile Pourtallier

Exponential Propagation for Set Variables . 499
Justin Yip and Pascal Van Hentenryck

XX Table of Contents

Applications Track

An Empirical Study of Optimization for Maximizing Diffusion in
Networks . 514

Kiyan Ahmadizadeh, Bistra Dilkina, Carla P. Gomes, and
Ashish Sabharwal

An Integrated Modelling, Debugging, and Visualisation Environment
for G12 . 522

Andreas Bauer, Viorica Botea, Mark Brown, Matt Gray,
Daniel Harabor, and John Slaney

Global Constraints on Feature Models . 537
Ahmet Serkan Karataş, Halit Oğuztüzün, and Ali Doğru

Constraint Programming for Mining n-ary Patterns 552
Mehdi Khiari, Patrice Boizumault, and Bruno Crémilleux

An Integrated Business Rules and Constraints Approach to Data
Centre Capacity Management . 568

Roman van der Krogt, Jacob Feldman, James Little, and
David Stynes

Context-Sensitive Call Control Using Constraints and Rules 583
David Lesaint, Deepak Mehta, Barry O’Sullivan, Luis Quesada, and
Nic Wilson

Load Balancing and Almost Symmetries for RAMBO Quorum
Hosting . 598

Laurent Michel, Alexander A. Shvartsman, Elaine Sonderegger, and
Pascal Van Hentenryck

Testing Continuous Double Auctions with a Constraint-Based Oracle . . . 613
Roberto Castañeda Lozano, Christian Schulte, and Lars Wahlberg

A Safe and Flexible CP-Based Approach for Velocity Tuning
Problems . 628

Michaël Soulignac, Michel Rueher, and Patrick Taillibert

Contingency Plans for Air Traffic Management . 643
Karl Sundequist Blomdahl, Pierre Flener, and Justin Pearson

Author Index . 659

SAT Modulo Theories: Getting the Best of SAT
and Global Constraint Filtering

Robert Nieuwenhuis�

Technical Univ. of Catalonia (UPC), Barcelona, Spain

The propositional satisfiability problem (SAT) is one of the simplest instances
of Constraint Programming (CP): variables are bi-valued (can only take values
0 or 1), and all constraints are clauses (disjunctions of literals) like x ∨ y ∨ z
(meaning that x = 1 or y = 0 or z = 0).

In spite of its simplicity, SAT has become very important for practical appli-
cations, especially in the multi-billion industry of electronic design automation
(EDA), and, in general, hardware and software verification. Research on SAT
has been pushed by these huge industrial needs and resources, in a very prag-
matic way: prestigious conferences are eager to publish papers describing how to
improve performance on their real-world problems, even if these improvements
are not based on highly original techniques (in contrast with conferences like
CP, which tend to prefer new ideas, even if they are tested only on academic
random or artificial problem instances).

As a result, modern SAT solvers work impressively well on real-world problems
from many sources, using a single, fully automatic, push-button strategy. Hence,
modeling and using SAT is essentially a declarative task. On the negative side,
propositional logic is a very low level language and hence modeling and encoding
tools are required, and also optimization aspects are not that well studied.

Sophisticated encodings into SAT have been developed for many constraints
that are typical in EDA and verification applications, such as arrays, congru-
ences, or Difference Logic and other fragments of linear arithmetic. However,
in many cases such encodings become too large, and/or behave poorly. SAT
Modulo Theories (SMT) was developed as an answer to this situation. The idea
is to encode only part of the constraints into SAT. The remaining constraints
are considered as a background “theory”. Similarly to the filtering algorithms in
Constraint Programming, the Theory Solver uses efficient specialized algorithms
to detect additional propagations and inconsistencies with respect to this theory.

For example, given a large input with clauses such as 3x+4y≤6 ∨ z ∨ . . .
the SAT component of the SMT solver will consider the linear arithmetic literals
like 3x+4y ≤6 as any other (meaningless) propositional literal, but in addition
there is a Theory Solver using a simplex algorithm to check whether the current
set (conjunction) of linear arithmetic literals is T -consistent, or whether it T -
propagates some other arithmetic literal occurring in the clause set.

What distinguishes SMT from complete CP search techniques with global con-
straint filtering algorithms is that SMT maintains SAT’s extremely successful

� Partially supported by Spanish Min. of Science &Innovation, LogicTools-2 project

(TIN2007-68093-C02-01).

D. Cohen (Ed.): CP 2010, LNCS 6308, pp. 1–2, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

2 R. Nieuwenhuis

tightly interconnected ingredients, such as clause learning, clause forgetting, con-
flict analysis, backjumping, and activity-based variable selection heuristics.

In this talk we first give an overview of SMT, the DPLL(T) approach to SMT
[NOT06], and its implementation in our Barcelogic SMT tool. Then we discuss
current work on the development of SMT technology for hard combinatorial
(optimization) problems outside the usual verification applications. The aim is
to obtain the best of several worlds, combining the advantages inherited from
SAT: efficiency, robustness and automation (no need for tuning) and CP features
such as rich modeling languages, special-purpose filtering algorithms (for, e.g.,
planning, scheduling or timetabling constraints), and sophisticated optimization
techniques. We give several examples and discuss the impact of aspects such
as first-fail heuristics vs activity-based ones, realistic structured problems vs
random or handcrafted ones, and lemma learning.

Further reading: The recent Handbook of Satisfiability [BHvMW09] has chap-
ters on all the main aspects of SAT, from underlying theoretical results to
implementation techniques and applications, with many further references. In
particular, it contains a very nice chapter on SMT [BSST09].

References

[BHvMW09] Biere, A., Heule, M.J.H., van Maaren, H., Walsh, T. (eds.): Handbook

of Satisfiability. Frontiers in Artificial Intelligence and Applications,

vol. 185. IOS Press, Amsterdam (February 2009)

[BSST09] Barrett, C., Sebastiani, R., Seshia, S.A., Tinelli, C.: Satisfiability

Modulo Theories. In: Biere et al. [BHvMW09], ch. 26, vol. 185, pp.

825–885 (February 2009)

[NOT06] Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT Mod-

ulo Theories: from an Abstract Davis-Putnam-Logemann-Loveland

Procedure to DPLL(T). Journal of the ACM 53(6), 937–977 (2006)

Constraint-Directed Search in Computational
Finance and Economics

Edward Tsang

Centre for Computational Intelligence in Finance & Economics (CCFEA)

University of Essex, Colchester, UK

edward@essex.ac.uk

1 Use the Force

Constraints shield solutions from a problem solver. However, in the hands of
trained constraint problem solvers, the same constraints that create the prob-
lems in the first place can also guide problem solvers to solutions. Constraint
satisfaction is all about learning how to flow with the force of the constraints.

Examples of using constraints to guide one’s search are abundant in complete
search methods (e.g. see [1,2]). Lookahead algorithms propagate constraints in
order to (a) reduce the remaining problem to smaller problems and (b) de-
tect dead-ends. Dependency-directed backtracking algorithms use constraints to
identify potential culprits in dead-ends. This helps the search to avoid examining
(in vain) combinations of variables assignments that do not matter.

Constraint-directed search is used in stochastic search too. Constraints were
used in Guided Local Search (GLS) [3] and Guided Genetic Algorithm (GGA) [4]
to guide the search to promising areas of the search space. In stochastic methods,
a constraint satisfaction problem is handled as an optimization problem, where
the goal is to minimize the number of constraints violated. The approach in
GLS is to use constraints to augment the objective function. This helps local
search to escape local optima. GGA uses the GLS penalty scheme to change the
behaviour of genetic algorithms. This results in a more robust algorithm which
finds quality results consistently. GLS and GGA have been applied to many
optimization problems, including the well-known travelling salesman problem
and the quadric assignment problem.

The GLS idea was generalized to “penalties” and “incentives” in evolutionary
computation. This paper explains how such ideas were applied to two applica-
tions in finance and economics: financial forecasting and automated bargaining.

2 Constraints in Financial Forecasting

In forecasting, the goal is to predict the value of a variable, which defines the
target. The challenge in forecasting is (i) to find a set of variables, and (ii) to
find a function that maps these variables to the target. There is no limit in
the format of this function. It can be a mathematical function. It can also be a
program procedure.

D. Cohen (Ed.): CP 2010, LNCS 6308, pp. 3–7, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

4 E. Tsang

There is no guarantee that such functions exist. If they do, then finding the
relevant variables is essential for their discovery. EDDIE (which stands for Evo-
lutionary Dynamic Data Investment Evaluator) is a framework for finding such
functions [5]. Experts channel their financial expertise into the system through
the suggestion of variables. EDDIE attempts to find functions that map these
variables to the target.

EDDIE attempts to predict a particular form of patterns: whether prices will
go up by r% or more within the next n days. (Here r could be a negative number).
In that case, the target can be represented by a Boolean variable T. If T is true,
it means prices will go up by r% or more within the next n days, which represents
an investment opportunity. For example, domain experts may suggest that the
current price, the “50 days moving average” and “volatility” (which could be
measured by the normalized standard deviation of the previous, say, 25 days)
are indicators of the future price. An example of a function is:

IF the current price is 6.24% above the 50 days moving average
THEN IF volatility is above 1.85,

THEN T is True;
ELSE T is False;

ELSE IF the current price is 12.49% below the 50 days moving average
THEN T is False;

ELSE T is True;

In this example, the function is represented by a tree. EDDIE is responsible for
finding the structure of the tree, as well as the thresholds such as 6.24%, 1.85.

The search for variables is crucial to the success of forecasting. This is the
job of the finance experts, which will not be discussed here. (This job can be
helped by EDDIE, see [6]). Faced by EDDIE is a huge search space of tree
structures and thresholds. EDDIE searches the space with genetic programming.
Pretty standard genetic programming techniques were adopted, except the use
of constraints, which is described below.

In EDDIE, precision refers to the percentage of “True” predictions that turn
out to be correct in reality. Recall refers to the percentage of investment oppor-
tunities that were correctly predicted “True” by EDDIE. Failure in picking an
opportunity is not as serious as making a wrong decision to invest, because the
latter could lead to losses. That means precision is more important than recall in
financial forecasting. Having said that, if a forecasting tool fails to pick up any
investment opportunities at all (i.e. recall=0), then this tool is useless. There-
fore, one would like to have a handle to balance between precision and recall.
This is attempted by FGP2, a version of EDDIE. Following is a brief summary
of FGP2; details can be found in [7].

FGP2 aims to concentrate the search on areas of the space where trees have
higher precision. To achieve that, FGP2 augmented the objective function with
a constraint. The augmented objective function encouraged trees that make a
certain percentage of their predictions “True”. If the percentage of “True” pre-
dictions by a tree is not within a range constrained by the user, its fitness is

Constraint-Directed Search in Computational Finance and Economics 5

significantly reduced. This range constraint is set by the user; it typically re-
flects conditions of the current market.

Trees capture patterns in the data. The EDDIE experience was that, even with
variables drawn from text-books (namely technical trading indicators), patterns
could be found in some of the stocks [7]. With variables of better quality, pat-
terns with extremely high precision could be found [8]. Patterns do not appear in
all stocks. Besides, the market has been changing very fast in recent years (with
the significant growth of algorithmic trading), which hinders learning. Neverthe-
less, one does not have to find all patterns to benefit from forecasting. A single
opportunity, if detected, could provide a trader with valuable reward. Whenever
patterns exist, having a forecasting tool like EDDIE is better than not.

3 Constraints in Automated Bargaining

Game theory is often used in a political or military context to explain conflicts
between countries. More recently it has been used to map trends in the business
world, ranging from how cartels set prices to how companies can better sell their
goods and services in new markets. It has become an important area in eco-
nomics, for which Nobel Prizes have been awarded (e.g. Aumann and Schelling
in 2005).

Bargaining is a main subject in game theory. One of the fundamental bargain-
ing models was Rubinstein’s 1982 model. Under this model, two players bargain
to share a pie. They make alternative offers. For example, the first player may
offer to take 65% of the pie. The second player may either accept it or reject the
35% offerred. If he rejects this offer, he will have to give a counter offer, e.g. he
may ask for 51%. However, both players’ utilities drop exponentially over time.
That means getting 51% in the second round may not worth as much as accept-
ing 35% in the first round. This motivates both players to accept an offer as
soon as possible. It is worth pointing out that the two players may have different
utility discount rates. The value of the discount rate determines their bargaining
power. A player with a higher discount rate is in a weaker position to bargain.

A player’s optimal strategy depends on the other player’s strategy. Subgame
equilibrium is the optimal strategy by both players, given their belief of their
opponent’s strategies. To derive the subgame equilibrium, Rubinstein assumed
complete information, i.e. each player knows both discount rates, and knows that
the opponent knows. Rubinstein also assumed perfect rationality by both players
[9]. Subgame equilibrium was derived recursively by Rubinstein: to calculate the
first player’s optimal strategy, one has to solve the subproblem of the second
player’s strategy. This in turn can be calculated by the first player’s optimal
strategy in the third round should the second player make a counter offer in
the previous round. The subproblems can be solved recursively till both players’
utilities drop to a fix point.

In game theory, subgame equilibrium is typically derived mathematically.
There are two serious drawbacks in this approach. Firstly, it assumes perfect ra-
tionality in decision making. In practice, decision making often involves

6 E. Tsang

computation (chess is a good example). Therefore, computational intelligence
determines the effective rationality (I call this the CIDER theory, see [10]). Sec-
ondly, mathematical derivation of subgame equilibrium is laborious. A slight
change of the bargaining model (for example, when a player has an outside op-
tion which guarantees him, say, 36% of the pie) would typically require complete
revision of the derivation.

The above drawbacks of the mathematical approach motivate a co-evolutionary
approach, where each of the two players is modelled by a population of strategies
[11]. A strategy’s fitness is evaluated through playing it with strategies by the op-
ponent. In evolutionary computation, a strategy’s chance of survival depends on
its fitness. That means under this approach, the perfect rationality assumption
is replaced by reinforcement learning, which is closer to reality. Besides, this ap-
proach is robust: it can easily cope with slight changes to the bargaining model.
It can easily capture asymmetric information or asymmetric ability by the two
players.

Jin et al used genetic programming to approximate subgame equilibrium [11].
Bidding strategies were represented by functions. Under this approach, each
player searches in the space of functions. Unfortunately, the search space is
huge. Besides, only a very small proportion of the functions in the search space
are sensible. For example, a random strategy would typically return a bid of
below 0% or above 100% of the pie. Standard genetic programming failed to
find sensible strategies consistently.

Following EDDIE’s experience, Jin and Tsang used constraints to guide the
search. To do so, desirable attributes were identified for bidding strategies.
Firstly, a strategy should return a value between 0 and 1. Secondly, the value that
a bidding strategy returns should ideally be inversely proportional to the player’s
own utility discount rate. Thirdly, the value that a strategy returns should ide-
ally be proportional to the opponent’s discount rate. These desirable attributes
were translated into incentives, which augmented the objective function.

With the help of incentives, the majority of the populations contained usable
bidding strategies (which demand a value between 0% and 100%). The subgame
equilibrium found by co-evolution was very close to the theoretical solutions
in Robinstein’s 1982 bargaining model. With minor modifications, the programs
were applicable to variations of Rubinstein’s bargaining model [9]. For these sim-
ple bargaining models, the subgame equilibrium found by co-evolution approx-
imated the theoretical solutions. These results suggest that constraint-directed
co-evolutionary is a useful approach to approximate subgame equilibrium in
bargaining.

References

1. Tsang, E.P.K.: Foundations of constraint satisfaction. Academic Press, London

(1993)

2. Rossi, F., van Beek, P., Walsh, T. (eds.): Handbook of Constraint Programming.

Elsevier, Amsterdam (2006)

Constraint-Directed Search in Computational Finance and Economics 7

3. Voudouris, C., Tsang, E.P.K.: Guided local search. In: Glover, F. (ed.) Handbook

of Metaheuristics, pp. 185–218. Kluwer, Dordrecht (2003)

4. Lau, T.L., Tsang, E.P.K.: Guided genetic algorithm and its application to radio

link frequency assignment problems. Constraints 6(4), 373–398 (2001)

5. Tsang, E.P.K., Yung, P., Li, J.: EDDIE-Automation, a decision support tool for

financial forecasting. Journal of Decision Support Systems, Special Issue on Data

Mining for Financial Decision Making 37(4), 559–565 (2004)

6. Kampouridis, M., Tsang, E.: EDDIE for Investment Opportunities Forecasting:

Extending the Search Space of the GP. In: Proceedings of the IEEE Congress on

Evolutionary Computation 2010, Barcelona, Spain (2010) (to appear)

7. Li, J., Tsang, E.P.K.: Investment decision making using FGP: a case study. In:

Proceedings of Congress on Evolutionary Computation, Washington, DC, USA,

pp. 1253–1259 (1999)

8. Tsang, E.P.K., Markose, S., Er, H.: Chance discovery in stock index option and

future arbitrage. New Mathematics and Natural Computation 1(3), 435–447 (2005)

9. Rubinstein, A.: Perfect Equilibrium in a Bargaining Model. Econometrica 50, 97–

110 (1982)

10. Tsang, E.P.K.: Computational intelligence determines effective rationality. Inter-

national Journal on Automation and Control 5(1), 63–66 (2008)

11. Jin, N., Tsang, E.P.K., Li, J.: A constraint-guided method with evolutionary algo-

rithms for economic problems. Applied Soft Computing 9(3), 924–935 (2009)

12. Tsang, E.P.K.: Forecasting — where computational intelligence meets the stock

market. Frontiers of Computer Science in China, pp. 53–63. Springer, Heidelberg

(2009)

Constraints, Graphs, Algebra, Logic, and Complexity�

Moshe Y. Vardi

Rice University, Department of Computer Science, Houston, TX 77251-1892, U.S.A.
vardi@cs.rice.edu

http://www.cs.rice.edu/˜vardi

A large class of problems in AI and other areas of computer science can be viewed as
constraint-satisfaction problems. This includes problems in database query optimiza-
tion, machine vision, belief maintenance, scheduling, temporal reasoning, type recon-
struction, graph theory, and satisfiability. All of these problems can be recast as
questions regarding the existence of homomorphisms between two directed graphs. It
is well-known that the constraint-satisfaction problem is NP-complete. This motivated
an extensive research program to identify tractable cases of constraint satisfaction.

This research proceeds along two major lines. The first line of research focuses on
non-uniform constraint satisfaction, where the target graph is fixed. The goal is to iden-
tify those traget graphs that give rise to a tractable constraint-satisfaction problem. The
second line of research focuses on identifying large classes of source graphs for which
constraint-satisfaction is tractable. We show in this talk how tools from graph theory,
universal algebra, logic, and complexity theory, shed light on the tractability of con-
straint satisfaction.

Reference

1. Kolaitis, P.G., Vardi, M.Y.: A logical approach to constraint satisfaction. In: Creignou, N.,
Kolaitis, P.G., Vollmer, H. (eds.) Complexity of Constraints. LNCS, vol. 5250, pp. 125–155.
Springer, Heidelberg (2008)

� Work supported in part by NSF grants CCR-0311326, CCF-0613889, ANI-0216467, and CCF-
0728882.

D. Cohen (Ed.): CP 2010, LNCS 6308, p. 8, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

http://www.cs.rice.edu/~vardi

Testing Expressibility Is Hard

Ross Willard�

Pure Mathematics Department

University of Waterloo

Waterloo, Ontario N2L 3G1 Canada

http://www.math.uwaterloo.ca/~rdwillar

Abstract. We study the expressibility problem: given a finite constraint

language Γ on a finite domain and another relation R, can Γ express R?

We prove, by an explicit family of examples, that the standard witnesses

to expressibility and inexpressibility (gadgets/formulas/conjunctive

queries and polymorphisms respectively) may be required to be expo-

nentially larger than the instances. We also show that the full express-

ibility problem is co-NEXPTIME-hard. Our proofs hinge on a novel

interpretation of a tiling problem into the expressibility problem.

Keywords: constraint, relation, expressive power, inverse satisfiability,

structure identification, conjunctive query, primitive positive formula,

polymorphism, domino system, nondeterministic exponential time.

1 Introduction

Given a fixed set Γ of basic constraint relations for building constraint programs
or satisfaction problems, there are typically other (perhaps useful) implicit rela-
tions which may treated as if they were actually present in Γ , without affecting
the expressiveness or complexity of Γ .

For example, consider the toy constraint language Γ = {→, U} on the domain
D = {0, 1, 2, 3, 4, 5}, where → is the binary relation pictured in Figure 1 and U
is the unary relation {0, 3}.

0 1 2

3

4

5

Fig. 1. The binary relation →

The unary relation V = {3, 4, 5} is an example of an implicit relation of
{→, U}. Indeed, whenever we wish to constrain a variable x to V , we can ac-
complish this by adding three new auxiliary variables ax, bx, cx and imposing
� The support of the Natural Sciences and Engineering Research Council of Canada

and the American Institute of Mathematics is gratefully acknowledged.

D. Cohen (Ed.): CP 2010, LNCS 6308, pp. 9–23, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

http://www.math.uwaterloo.ca/~rdwillar

10 R. Willard

the basic constraints ax → bx, bx → x, x → cx, U(ax), and U(cx). We say that
Γ can express V . We might similarly ask: can Γ express the complement of V ,
i.e., the unary relation W = {0, 1, 2}? What about the complement of →?

These questions are instances of the expressibility problem (also known as the
existential inverse satisfiability problem [7,6] and the pp-definability problem [4]).
It is a structure identification problem in the sense of [8]. Its answers define what
is called the expressive power of a constraint language [15], now a key tool in
the quest to classify which constraint languages are tractable (e.g., [12,3]).

In this paper we give constructions which show that the general expressibility
problem is impossibly hard according to three natural measures.

We thank Matt Valeriote and Moshe Vardi for some helpful discussions.

2 Definitions, Basic Facts, and Statement of Results

Fix a constraint language Γ on a finite domain D. Given an instance P =
(X, D, C) of CSP(Γ), we shall use Sol(P) to denote the set of all solutions to P,
construed as functions X → D. If s = (s1, . . . , sk) is a k-tuple of variables from
X , then we shall use πs(Sol(P)) to denote the restriction of Sol(P) to s; i.e.,

πs(Sol(P)) = {(f(s1), . . . , f(sk)) : f ∈ Sol(P)} ⊆ Dk.

Definition 1 ([15,5,13]). Given a constraint language Γ and a k-ary relation
R on a domain D, we say that Γ expresses (or generates) R if there exists an
instance P = (X, D, C) of CSP(Γ) and a k-tuple s = (s1, . . . , sk) of variables
with πs(Sol(P)) = R. The pair (P, s) is a witness to the expressibility of R by Γ .

Cohen and Jeavons [5] have called P a gadget and s a construction site in this
context. A witness (P, s) can be trivially re-formulated as a conjunctive query
over Γ (in database theory) or as a primitive positive formula over Γ (in logic);
the latter is an expression of the form ∃y1 · · · ∃yn[C1 & C2 & · · · & Cr], asserting
the existence of auxiliary variables satisfying (with s) the constraints of P .

Example 1. In the example from Section 1, let P be the instance of CSP(Γ)
having variable set {a, b, c, x} and constraints ((a, b), →), ((b, x), →), ((x, c), →),
(a, U), and (c, U). P has exactly four solutions; identifying each solution fi with
its 4-tuple of values (fi(a), fi(b), fi(x), fi(c)), we have

Sol(P) = {(0, 4, 3, 0), (0, 4, 4, 3), (0, 4, 5, 3), (3, 0, 4, 3)}.

As the projection of Sol(P) on its third coordinate (i.e., at x) is {3, 4, 5} = V ,
(P, x) witnesses the fact that Γ can express V . An equivalent primitive positive
formula witnessing this is ∃a∃b∃c[a → b & b → x & x → c & U(a) & U(c)].

Definition 2. Suppose D is a finite domain, Γ is a constraint language over
D, and n, k are positive integers. Let s = (s1, . . . , sk) be a k-tuple of elements
from Dn, R a k-ary relation on D, and h : Dn → D.

Testing Expressibility Is Hard 11

1. proj(s) = {(s1[i], . . . , sk[i]) : 1 ≤ i ≤ n}. (Thus proj(s) ⊆ Dk.)
2. h preserves R at s if proj(s) �⊆ R or (h(s1), . . . , h(sk)) ∈ R.
3. h preserves R if h preserves R at every k-tuple in (Dn)k.
4. h is a polymorphism of Γ (of arity n) if h preserves every relation in Γ .

One can show that, for every n ≥ 1, there exists an instance of CSP(Γ) with
variable set Dn whose solutions are precisely the n-ary polymorphisms of Γ .
Following Jeavons, Cohen and Gyssens [14,11,15,5], we call this CSP instance
the indicator problem for Γ of order n and denote it by In(Γ).

It is well-known that the polymorphisms of Γ (i) include the projections and
(ii) preserve all relations expressed by Γ (see e.g. [15, Lemma 2.18]). From this
one can deduce the following connection between expressible relations, polymor-
phisms, and indicator problems.

Proposition 1. For any n, k ≥ 1 and s ∈ (Dn)k, the relation S expressed
by (In(Γ), s) (i) contains proj(s), and (ii) is contained in every k-ary relation
expressible from Γ which contains proj(s). I.e., S is the smallest k-ary relation
expressible from Γ containing proj(s).

Note that if R is k-ary and there exists an n-ary polymorphism h of Γ which
does not preserve R at some s ∈ (Dn)k, then R is not expressible from Γ . When
this happens we say that h is a witness to the inexpressibility of R from Γ .

Example 2. Returning to the example in Section 1, the 1-ary map h : D → D
when sends 1
→ 3, 2
→ 4, and fixes all other elements of D, is a polymorphism
of Γ = {→, U}. As 1 ∈ W = {0, 1, 2} but h(1) �∈ W , h does not preserve W at
1; hence W is not expressible from Γ , and h is a witness.

For any k-ary relation R on D, if n is the number of rows of R (i.e., n = |R|),
then one can construct s(R) = (s1, . . . , sk) ∈ (Dn)k so that proj(s(R)) = R.
As R is expressible from Γ exactly when the smallest k-ary relation expressible
from Γ and containing R is R itself, it follows from Proposition 1 that either
(In(Γ), s(R)) expresses R, or there exists an n-ary polymorphism of Γ which
does not preserve R at s(R). Thus we get the following theoretical upper bounds
to the size of a witness to the expressibility or inexpressibility of R from Γ .

Corollary 1 ([9,1,15]). Let Γ ∪{R} be a set of relations on D, and let n = |R|.
1. If R is expressible from Γ , then R can be expressed by a CSP instance (or a

primitive positive formula) with variable set of size ≤ |D|n.
2. R is not expressible from Γ if and only if there exists a polymorphism of Γ

of arity ≤ n which does not preserve R.

Example 3. Consider again the example in Section 1. The relation V = {3, 4, 5}
on the 6-element domain {0, 1, 2, 3, 4, 5} is expressible from Γ = {→, U}, so
Corollary 1 promises a CSP witness having ≤ 63 = 216 variables. Conversely,
the complement � of → turns out to be not expressible from Γ . Since � has
26 rows, Corollary 1 promises a witnessing polymorphism of arity ≤ 26.

12 R. Willard

Note the ridiculousness of the bounds in Example 3. Corollary 1 guarantees a
CSP instance having ≤ 216 variables to express V , when in fact we have an
instance using just 4 variables. Even worse is the promise of a 26-ary polymor-
phism witnessing the inexpressibility of �; just storing the values of a random
26-ary function on {0, 1, 2, 3, 4, 5} would require over 5 × 108 terabytes. Yet the
1-ary polymorphism of Example 2 fails to preserve � (e.g., at (2, 2)) and so
already witnesses its inexpressibility.

Example 3 illustrates the fact that the upper bounds to the sizes of witnesses
guaranteed by Corollary 1 are exponential in the size of the test relation. It
is natural to ask if these upper bounds can be improved. For example, Cohen
and Jeavons [5, p. 313] pose as an open research question the identification of
circumstances under which sub-exponential sized CSP instances can be found
witnessing expressible relations. Our first theorem says “not always”:

Theorem 1. For infinitely many n there exist a constraint language Γn and a
relation Rn, both on a 22-element domain, such that |Rn| = n, Rn is expressible
from Γn, but every CSP(Γn) instance expressing Rn has at least 2n/3 variables.

Dually, our next theorem shows that in general we cannot hope to detect inex-
pressibility with sub-exponential sized polymorphisms.

Theorem 2. For infinitely many n there exist a constraint language Γ ′
n and

a relation R′
n, both on a 22-element domain, such that |R′

n| = n, R′
n is not

expressible from Γ ′
n, but every witnessing polymorphism has arity at least n/3.

We formally define Expr to be the combinatorial decision problem which takes
as input a triple (D, Γ, R) (where D is a finite domain, Γ is a finite constraint
language on D, and R is another relation on D), and asks whether R is ex-
pressible from Γ . Expr has also been called ∃-InvSat (the existential inverse
satisfiability problem) [7,6] and the pp-definability problem [4].

Corollary 1 and the discussion preceding it give a general algorithm for testing
¬Expr: among all functions h : Dn → D where n = |R|, search for one which
(i) is a polymorphism of Γ , and (ii) does not preserve R at s(R). This naive
algorithm puts Expr in co-NEXPTIME. Dalmau [7, p. 163] speculated that
perhaps there exists a better, more sophisticated algorithm which would place
Expr in a lower complexity class. Suggestively, Creignou et al [6] have proved
that Expr restricted to the boolean domain is in P.

At a workshop at AIM in 2008, a working group led by M. Vardi contrarily
conjectured that there is essentially no algorithm better than the naive one, in the
sense that Expr restricted to 3-element domains is co-NEXPTIME-complete
[4]. In our last theorem we very nearly confirm this conjecture:

Theorem 3. There exists d > 1 such that Expr restricted to d-element domains
is co-NEXPTIME-complete.

The remainder of this paper is devoted to proving Theorems 1–3 via an inter-
pretation of certain tiling problems defined by domino systems.

Testing Expressibility Is Hard 13

3 Domino Systems and Tiling Problems

A tiling problem is a particular kind of constraint satisfaction problem whose
constraints are organized “horizontally and vertically.” More precisely:

Definition 3 ([10,2]). A domino system is a triple D = (Δ, H, V) where Δ is
a finite nonempty set (of “tile types”) and H, V are binary relations on Δ (called
the horizontal and vertical adjacency constraint relations).

Notation 4. For N > 1 we will use [N×N] to denote the set

[N×N] = {(i, j) : i, j ∈ Z, 0 ≤ i, j < N}.

We informally identify the element (i, j) ∈ [N×N] with the unit square in the
x-y plane whose lower-left corner has coordinates (i, j). The kth row of [N×N]
is the subset Rowk = {(i, k) : 0 ≤ i < N}, while the kth column is the subset
Colk = {(k, j) : 0 ≤ j < N}. Figure 2 illustrates the board [4×4].

Definition 5. Suppose D = (Δ, H, V) is a domino system and N > 1. A tiling
of [N×N] by D is a mapping τ : [N×N] → Δ assigning to each square (i, j) ∈
[N×N] a tile type τ [i, j] ∈ Δ, subject to the following constraints:

– For each pair (i, j), (i+1, j) of horizontally adjacent squares in [N×N], the
corresponding pair (τ [i, j], τ [i+1, j]) of tile types satisfies H.

– For each pair (i, j), (i, j+1) of vertically adjacent squares in [N×N], the
corresponding pair (τ [i, j], τ [i, j+1]) of tile types satisfies V .

Example 4. Define a domino system D1 = (Δ, H, V) where

Δ = {a, b, c, d, e, f}
H = {(a, b), (b, a), (b, d), (c, b), (d, c), (d, f), (e, b)}
V = {(a, b), (a, e), (b, b), (b, c), (c, d), (d, d), (e, e), (f, f)}.

The map τ : [4×4] → Δ pictured in Figure 2 is a tiling of [4×4] by D1.

(0,0)

(0,1)

(0,2)

(0,3)

(1,0)

(1,1)

(1,2)

(1,3)

(2,0)

(2,1)

(2,2)

(2,3)

(3,0)

(3,1)

(3,2)

(3,3)

x

y

0 1 2 3 4

1

2

3

4

Row0

Row1

a b d f

e b d f

e b d f

e b d f

Fig. 2. The board [4×4] and one tiling of it by D1

14 R. Willard

We need to be able to discuss partial tilings and tilings with initial conditions.

Definition 6. Suppose D = (Δ, H, V) is a domino system and N > 1.

1. Let w = (w0, . . . , wm−1) ∈ Δm with 0 < m ≤ N , and let j < N . A tiling τ
of [N×N] by D satisfies the initial condition w if τ [i, 0] = wi for all i < m.

2. If U ⊆ [N×N] then we may speak of tilings of U by D satisfying w; these
are mappings from U to Δ which satisfy those horizontal, vertical and initial
condition constraints that mention squares in U only.

3. Given a tiling τ of [N×N] by D, we say that τ has a repeated row if there ex-
ists z ∈ ΔN and distinct j < k < N such that τ makes the same assignment
to Rowj and to Rowk; that is, τ [i, j] = τ [i, k] for all 0 ≤ i < N .

Example 3 (continued). The tiling of [4×4] pictured in Figure 2 satisfies the initial
condition (a, b). However, D1 cannot tile [4×4] with initial condition (b, a).

In this paper we will be particularly interested in the following “exponential
tiling problem,” which we define in both local and uniform versions.

Definition 7. 1. Given a domino system D = (Δ, H, V), ExpTile(D) de-
notes the combinatorial decision problem whose input is a triple (D, m,w)
where m ≥ 1 and w ∈ Δm, and which asks whether D tiles [2m×2m] with
initial condition w.

2. ExpTile =
⋃

D ExpTile(D).

3.1 A Domino System That Exponentially Counts

Our proofs of Theorems 1 and 2 will exploit the following fact.

Proposition 2. There exists a domino system De = (Δe, He, Ve) with the fol-
lowing property: for all m > 2 there exist m-tuples wm,w′

m ∈ (Δe)m such that

1. De does not tile [2m×2m] with initial condition wm, but De does tile U with
initial condition wm for every U ⊆ [2m×2m] satisfying |U | < 2m.

2. De tiles [2m×2m] with initial condition w′
m, and moreover every tiling of

[2m×2m] by De with initial condition w′
m has no repeated row.

We describe one way to construct such a domino system De. Our strategy is
to design De so that its tilings of subsets of [2m×2m] force consecutive rows to
encode consecutive integers between 0 and 2m−1.

If m > 0 and x ∈ {0, 1, 2, 3, . . . , 2m −1}, let Binm(x) denote the reverse m-bit
binary representation of x (least significant bit at the left).

Example 5. Bin5(6) = (0, 1, 1, 0, 0).

We define some sets of new symbols; they will be the tile types for De:

Δ0 = {0−L , 0−M , 0+
M , 0−R, 0+

R} Δ1 = {1�L, 1�M , 1+
M , 1�R, 1+

R}
Δ01 = Δ0 ∪ Δ1 Δe = Δ01 ∪ {�}.

Testing Expressibility Is Hard 15

Definition 8. Suppose m > 2 and x ∈ {0, 1, 2, 3, . . . , 2m − 1}, with Binm(x) =
(b0, b1, . . . , bm−1). The annotated m-bit binary representation of x is the m-tuple
AnnBinm(x) = (a0, a1, . . . , am−1) ∈ (Δ01)m given as follows: ai = (bi)s

X where

– X is L if i = 0, R if i = m − 1, and M otherwise.
– If there exists j < i such that bj = 1, then s is +. Otherwise, s is − if bi = 0

while s is � if bi = 1.

Example 6. AnnBin5(6) = (0−L , 1�M , 1+
M , 0+

M , 0+
R).

Note that the “bases” of the entries of AnnBinm(x) give the reverse m-bit binary
representation of x; the subscripts are exactly (L, M, . . . , M, R); and the super-
scripts are one of the following patterns: (�, +, . . . , +), (−, . . . , −, �, +, . . . , +),
(−, . . . , −, �), or (−, −, . . . , −), where � occurs at the first bit of x equalling 1.

Fix m > 2 and define τm to be the mapping [2m×2m] → Δe which for each
0 ≤ j < 2m assigns AnnBinm(j) to the first m entries in Rowj , and assigns � to
all remaining squares (see Figure 3).

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

.

.

.
.
.
.

0−
L 0−

M 0−
M 0−

R

1�
L 0+

M 0+
M 0+

R

0−
L 1�

M 0+
M 0+

R

1�
L 1+

M 0+
M 0+

R

0−
L 0−

M 1�
M 0+

R

1�
L 0+

M 1+
M 0+

R

1�
L 1+

M 1+
M 1+

R

Row0

Row1

Row2

Row3

Row4

Row5

Row15

.

.

.

Fig. 3. τ4 defined on [16×16]

Now let De = (Δe, He, Ve) be the smallest domino system with respect to
which τ4 is a tiling of [16×16]. That is, define

He = {0−L}×{0−M , 1�M} ∪ {1�L}×{0+
M , 1+

M} ∪ {0−M}×{0−M , 1�M , 0−R, 1�R}
∪ {0+

M , 1+
M , 1�M}×{0+

M , 1+
M , 0+

R, 1+
R} ∪ {0−R, 0+

R, 1�R, 1+
R, �}×{�}

Ve = {(0−L , 1�L), (1�L, 0−L), (0−M , 0+
M), (0+

M , 0+
M), (0+

M , 1�M), (1�M , 1+
M), (1+

M , 1+
M),

(1+
M , 0−M), (0−R, 0+

R), (0+
R, 0+

R), (0+
R, 1�R), (1�R, 1+

R), (1+
R, 1+

R), (�, �)}.

The reader can check that De, thus defined, satisfies Proposition 2 with wm =
AnnBinm(1) and w′

m = AnnBinm(0). Indeed, τm is the unique tiling by De of
[2m×2m] with initial condition w′

m, and clearly τm has no repeated rows. On
the other hand, De cannot tile [2m×2m] with initial condition wm (as it cannot

16 R. Willard

count past 2m − 1), but if U ⊆ [2m×2m] with |U | < 2m, then there must exist
k < 2m such that U is disjoint from Rowk. In this case De can easily tile U with
initial condition wm, simply by assigning AnnBinm(j+1) to the first m entries
of Rowj for each j < k, assigning AnnBinm(j) to the first m entries of Rowj for
all k < j < 2m, and � to all remaining entries.

4 Interpreting Exponential Tiling into Expressibility

In this section we will describe the main (and most difficult) construction of this
paper. It takes as input an instance (D, m,w) of ExpTile where m > 2 and m
is a power of 2, and produces as output an instance (D, Γ, R) of Expr, so that

R is expressible from Γ ⇔ D cannot tile [2m×2m] with initial condition w.

Furthermore, the existence of “small” witnesses to the expressibility or inexpress-
ibility of R will be connected to the existence of “small” witnesses to untilability
or tilability (small subsets of [2m×2m] that cannot be tiled, or tilings of [2m×2m]
with repeated rows). Thus Proposition 2 will give us Theorems 1 and 2. Because
we also wish the construction (D, m,w)
→ (D, Γ, R) to give a logspace reduction
of this fragment of ExpTile into ¬Expr, the sizes of D, Γ , and the relations
in Γ ∪ {R} must be bounded by a polynomial in |Δ| + m, and the construction
itself must be executable in logspace in |Δ| + m.

4.1 Defining the Domain D and Encoding [2m×2m] in Dm

For the remainder of Section 4 we fix a domino system D = (Δ, H, V), an integer
m = 2t (t > 1), and an m-tuple w = (w0, w1, . . . , wm−1) ∈ Δm.

Definition 9. The domain D for our constraint language is the disjoint union
of the sets Δ, P := {p00, p01, p10, p11}, {0, 1}, {a, b}, {�, ⊥}, and {∞}.
We next explain how we will interpret [2m×2m] in Dm. For (x, y) ∈ [2m×2m],
write Binm(x) = (x0, x1, . . . , xm−1) and Binm(y) = (y0, y1, . . . , ym−1), the re-
verse m-bit binary representations of x and y respectively, and let p(x, y) ∈ Dm

be given by p(x, y)[i] = pxiyi for 0 ≤ i < m. In this way the elements of [2m×2m]
are put in one-to-one correspondence with the elements of Pm.

Example 7. If m = 8, then p(53, 188) = (p10, p00, p11, p01, p11, p11, p00, p01).

Next we define t + 1 auxiliary elements β0, β1, . . . , βt−1, γ in Dm (recall that
t = log2 m), first by example. If m = 8 (so t = 3), then

β0 = (0, 1, 0, 1, 0, 1, 0, 1)
β1 = (0, 0, 1, 1, 0, 0, 1, 1)
β2 = (0, 0, 0, 0, 1, 1, 1, 1)
γ = (b, b, a, b, a, a, a, b).

Note that the columns on the right-hand side of the above equations, restricted
to the βi’s, are Bin3(0), Bin3(1), Bin3(2), . . . , Bin3(7) respectively. In general,

Testing Expressibility Is Hard 17

Definition 10

1. β0, . . . , βt−1 ∈ {0, 1}m are defined so that (β0[i], β1[i], . . . , βt−1[i]) = Bint(i)
for all 0 ≤ i < m.

2. The element γ ∈ {a, b}m is defined by γ[i] = b if i = 2k − 1 for some k ≤ t,
and γ[i] = a otherwise.

3. s = (β0, β1, . . . , βt−1, γ) ∈ (Dm)t+1.
4. R0 = proj(s) = {(Bint(i), γ[i]) : 0 ≤ i < m}.

Example 8. If m = 8, then R0 = {(0, 0, 0, b), (1, 0, 0, b), (0, 1, 0, a), (1, 1, 0, b),
(0, 0, 1, a), (1, 0, 1, a), (0, 1, 1, a), (1, 1, 1, b)}.

The elements β0, . . . , βt−1, γ ∈ Dm and the relation R0 will help us coordinatize
Pm. The element γ helps to enforce some “rigidity” as explained in the next
lemma.

Lemma 1. Suppose σ is a self-map from {0, 1, . . . , t−1} to itself, and d =
(βσ(0), βσ(1), . . . , βσ(t−1), γ). If proj(d) ⊆ R0, then σ(i) = i for all i < t.

Once the constraint language Γ has been constructed, we will be intensely in-
terested in the (t + 1)-ary relation S expressed by (Im(Γ), s). This relation is
equivalently defined as the set of images of (β0, . . . , βt−1, γ) under the m-ary
polymorphisms of Γ . We will be particularly interested in learning whether the
(t+1)-tuple (�, �, . . . , �) belongs to S. Call a map f : Dm → D special if it
satisfies f(β0) = f(β1) = · · · = f(βt−1) = f(γ) = �. The intermediate aim of
the construction of Γ is to achieve the following two competing goals:

1. If h : Dm → D is any special m-ary polymorphism of Γ , then h should map
Pm to Δ; moreover, the restriction of h to Pm should encode a tiling of
[2m×2m] by D with initial condition w.

2. Conversely, if τ is any tiling by D of [2m×2m] with initial condition w, then
there should exist a special m-ary polymorphism h of Γ whose restriction to
Pm encodes τ .

An immediate consequence of these goals, when achieved, is that the expressible
relation S will contain the constant tuple (�, �, . . . , �) if and only if D tiles
[2m×2m] with initial condition w. This will somehow help us in achieving the
goals described at the beginning of Section 4.

4.2 Defining the Constraint Language Γ and the Test Relation R

Each relation in Γ will be constructed using the following recipe. Fix k = 1 or
2. Choose a k-ary relation H on Pm and a k-ary relation C on Δ, subject to
the requirement that H factors as an m-fold product relation H = H0 × H1 ×
· · · × Hm−1 for some k-ary relations H0, H1, . . . , Hm−1 on P . Then define the
(k + t + 1)-ary relation RH⇒C on D as follows:

18 R. Willard

RH⇒C =
m−1⋃
i=0

{(x,y) ∈ P k × ({0, 1}t × {a, b}) : x ∈ Hi, y = (Bint(i), γ[i])}

∪ {(x,y) ∈ Δk × {�, ⊥}t+1 : ⊥ ∈ {y[0], . . . ,y[t]} or x ∈ C}
∪ {(∞, ∞, . . . , ∞)}.

Lemma 2. For any relation RH⇒C constructed according to the recipe above:
1. RH⇒C ⊆ (

P k × {0, 1}t × {a, b}) ∪ (
Δk × {�, ⊥}t+1

) ∪ {∞}k+t+1.
2. For any c ∈ (Dm)k, proj(c, β0, β1, . . . , βt−1, γ) ⊆ RH⇒C if and only if c ∈ H.
3. For any c ∈ Dk, (c, �, �, . . . , �) ∈ RH⇒C if and only if c ∈ C.

Our first family of relations will encode the adjacency constraints of D.

Definition 11. 1. For an integer 0 < x < 2m define lg(x) to be the largest
integer 0 ≤ k < m such that 2k divides x.

2. For 0 ≤ k < m let HA(k), VA(k) be the following binary relations on Pm:

HA(k) = {(p(x, y),p(x+1, y)) : 0 ≤ x, y < 2m, x �= 2m−1, lg(x+1) = k}
VA(k) = {(p(x, y),p(x, y+1)) : 0 ≤ x, y < 2m, y �= 2m−1, lg(y+1) = k}.

I.e., HA(k) is the binary relation on Pm encoding those pairs ((x, y), (x+1, y))
of horizontally adjacent elements of [2m×2m] for which the reverse binary rep-
resentation of x begins with k 1’s followed by 0. The reader should verify that
each of the relations HA(k), VA(k) factors as an m-fold product relation.

Example 9. If m = 8 and k = 3, then

HA(3) = {(p10, p00), (p11, p01)}3 × {(p00, p10), (p01, p11)}
× {(p00, p00), (p01, p01), (p10, p10), (p11, p11)}4.

Definition 12. Recall that D = (Δ, H, V). The set of adjacency relations is

A = {RHA(k)⇒H : 0 ≤ k < m} ∪ {RVA(k)⇒V : 0 ≤ k < m}.

For each (x, y) ∈ [2m×2m], the singleton unary relation {p(x, y)} on Pm clearly
factors as an m-fold product relation.

Definition 13. Recall that w = (w0, . . . , wm−1). The set of initial relations is

I = {R{p(k,0)}⇒{wk} : 0 ≤ k < m}.

Definition 14. Our constraint language is Γ = A ∪ I ∪ {RP n⇒Δ}.
Finally, we define two further (t + 1)-ary relations on D. The first relation, R,
is an easily constructed relation whose expressibility from Γ will be our chief
interest; it may be informally defined as R�⇒⊥ where � and ⊥ are here being
used to denote the 0-ary “true” and “false” relations on Pm and Δ respectively.
The second relation, S, is easily defined but not easily constructed and is not
claimed to be part of the output of our logspace construction.

Definition 15. Recall that R0 = proj(s) where s = (β0, β1, . . . , βt−1, γ).

R = R0 ∪ ({�, ⊥}t+1 \ {(�, �, . . . , �)}) ∪ {(∞, ∞, . . . , ∞)}
S = {(h(β0), h(β1), . . . , h(βt−1), h(γ)) : h is an m-ary polymorphism of Γ}.

Testing Expressibility Is Hard 19

4.3 Connecting Polymorphisms, Tilings, and Expressibility

For convenience, define the notation �̂ = (�, �, . . . , �) and ∞̂ = (∞, ∞, . . . , ∞).

Lemma 3. 1. S is the smallest (t + 1)-ary relation expressible from Γ and
containing R0.

2. R ⊆ S ⊆ R ∪ {�̂}.
3. R is expressible from Γ if and only if �̂ �∈ S.

Proof. S = πs(Sol(Im(Γ))), i.e., S is the relation expressed by (Im(Γ), s) where
s = (β0, . . . , βt−1, γ). (1) follows from this observation, the definition of R0, and
Proposition 1. To prove S ⊆ R ∪ {�̂}, it thus suffices to show that R ∪ {�̂} is
expressible from Γ (as it clearly contains R0). This is easy, since the primitive
positive formula ∃zRP m⇒Δ(z, x0, x1, . . . , xt) defines R ∪ {�̂}. As (3) follows
from (1) and (2), it remains only to prove R ⊆ S.

Clearly R0 ⊆ S by (1), and ∞̂ ∈ S since the constant function Dm → {∞}
is a polymorphism of Γ . Suppose now that f = (f0, . . . , ft) ∈ {�, ⊥}t+1 \ {�̂}.
Pick any d0 ∈ Δ and define hf : Dm → D by

hf (x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

d0 if x ∈ Pm

fi if x = βi for some i < t
ft if x = γ
⊥ if x ∈ {0, 1}m ∪ {a, b}m \ {β0, . . . , βt−1, γ}
∞ otherwise.

To prove f ∈ S, it suffices to show that hf is a polymorphism of Γ . We will show
simply that hf preserves each initial relation R{p(k,0)}⇒{wk} at all (t + 2)-tuples
in Dm, the proofs for the other relations being similar. Indeed, if this were false,
then there would exist c = (x, z0, . . . , zt) ∈ (Dm)t+2 with

(a) proj(c) ⊆ R{p(k,0)}⇒{wk}, but
(b) (hf (x), hf (z0), . . . , hf (zt)) �∈ R{p(k,0)}⇒{wk}.

At least one of hf (x), hf (z0), . . . , hf (zt) must be different from ∞. Hence by
definition of hf , {x, z0, . . . , zt} is not disjoint from Pm ∪ {0, 1}m ∪ {a, b}m. This
last fact, Lemma 2(1), and item (a) above then yield x ∈ Pm, z0, . . . , zt−1 ∈
{0, 1}m, and zt ∈ {a, b}m. Hence (hf (x), hf (z0), . . . , hf (zt)) = (d0, f

′
0, . . . , f

′
t) for

some f ′
0, . . . , f

′
t ∈ {�, ⊥} (by the definition of hf). If d0 = wk or at least one

f ′
i is ⊥, then clearly (d0, f

′
0, . . . , f

′
t) ∈ R{p(k,0)}⇒{wk}; hence d0 �= wk and all f ′

i

are �. The definition of hf then implies that zt = γ and there exists a selfmap
σ on {0, 1, . . . , t−1} such that zi = βσ(i) for i < t. Lemma 1 then implies that
σ(i) = i for all i < t, so c = (x, β0, . . . , βt−1, γ) with x ∈ Pm. The definition
of hf then gives (d0, �, . . . , �) = (d0, f0, . . . , ft), contradicting the assumption
that f �= �̂. ��
We can now prove the desired connection between tilings and expressibility.

Proposition 3. The following are equivalent:

20 R. Willard

1. R is not expressible from Γ .
2. �̂ ∈ S.
3. D tiles [2m×2m] with initial condition w.

Proof. (1) ⇔ (2) follows from Lemma 3.
(2) ⇒ (3). Assume �̂ ∈ S; choose an m-ary polymorphism h of Γ satisfying

h(β0) = · · · = h(βt−1) = h(γ) = �. We first show that h maps Pm into Δ.
Indeed, let x ∈ Pm; then proj((x, β0, . . . , βt−1γ)) ⊆ RP m⇒Δ by Lemma 2(2). As
h is a polymorphism of Γ , it preserves RP m⇒Δ at (x, β0, . . . , βt−1, γ); hence we
get (h(x), h(β0), . . . , h(βt−1), h(γ)) ∈ RP m⇒Δ, i.e., (h(x), �, . . . , �) ∈ RP m⇒Δ.
This with Lemma 2(3) implies h(x) ∈ Δ, as claimed.

Thus we may define a map τh : [2m×2m] → Δ by τh[i, j] = h(p(i, j)). Using
the fact that h preserves the adjacency and initial relations at all tuples of the
form (x,x′, β0, . . . , βt−1, γ) or (x, β0, . . . , βt−1, γ) respectively (x,x′ varying over
Pm), and using Lemma 2(2,3), one can show that τh is a tiling of [2m×2m] with
initial condition w.

(3) ⇒ (2). Assume that τ is a tiling of [2m×2m] by D with initial condition
w. Define hτ : Dm → D by

hτ (x) =

⎧⎪⎪⎨
⎪⎪⎩

τ [i, j] if x = p(i, j) where (i, j) ∈ [2m×2m]
� if x ∈ {β0, . . . , βt−1, γ}
⊥ if x ∈ {0, 1}m ∪ {a, b}m \ {β0, . . . , βt−1, γ}
∞ otherwise.

It suffices to prove that hτ is a polymorphism of Γ . We repeat the proof that hf

preserves R{p(k,0)}⇒{wk} in the proof of Lemma 3, replacing hf with hτ . Again,
we suppose for the sake of contradiction that we have c = (x, z0, . . . , zt) ∈
(Dm)t+2 with

(a) proj(c) ⊆ R{p(k,0)}⇒{wk}, but
(c) (hτ (x), hτ (z0), . . . , hτ (zt)) �∈ R{p(k,0)}⇒{wk}.

Arguing as before, we get

(d) c = (x, β0, . . . , βt−1, γ), and
(e) x ∈ Pm and hτ (x) �= wk.

Items (a) and (d), with Lemma 2, imply x = p(k, 0). Hence hτ (x) = τ [k, 0],
which with item (e) contradicts the fact that τ satisfies w at Row0. ��
As |R| = 3m, Corollary 1 implies that if R is expressible from Γ then R can
be expressed by a CSP(Γ) instance having |D|3m variables, while if R is not
expressible from Γ then this is witnessed by a polymorphism of Γ of arity 3m.
We can slightly improve this. On the one hand, Lemma 3 clearly implies:

Corollary 2. If R is not expressible from Γ , then this is witnessed by an m-ary
polymorphism.

Conversely, a careful examination of the proof of Proposition 3(2)⇒(3) shows
that the only constraints on h needed to complete the proof are ones involving
the values of h at elements of Pm ∪ {β0, . . . , βt−1, γ}. Hence:

Testing Expressibility Is Hard 21

Corollary 3. If R is expressible from Γ , then it can be expressed by an instance
of CSP(Γ) (or a primitive positive formula over Γ) with 22m + t + 1 variables.

4.4 Refining Proposition 3

Proposition 4. Suppose R is not expressible from Γ and this is witnessed by
some polymorphism of Γ of arity k < m. Then there exists a tiling τ of [2m×2m]
by D with initial condition w with the property that every row of τ is repeated.

Proof. Let h be the k-ary polymorphism of Γ ; choose c = (α0, α1, . . . , αt) ∈
(Dk)t+1 such that proj(c) ⊆ R but (h(α0), . . . , h(αt)) �∈ R. Since S is expressible
from Γ , h preserves S at c, so (h(α0), . . . , h(αt)) ∈ S. As S \ R = {�̂}, we get
h(αi) = � for all i ≤ t.

For each 1 ≤ i ≤ k let ci = (α0[i], . . . , αt[i]) ∈ R. Define

M = {i : ci ∈ R0}
Q = {i : ci ∈ {�, ⊥}t+1 \ {�̂}}
Z = {i : ci = ∞̂}.

For each i ∈ M , define σ(i) to be the unique j ∈ {0, 1, . . . , m−1} such that
ci = (β0[j], . . . , βt−1[j], γ[j]). Now define a map λ : [2m×2m] → Dk as follows:
given (x, y) ∈ [2m×2m] and 1 ≤ i ≤ k,

λ(x, y)[i] =

⎧⎨
⎩

p(x, y)[j] if i ∈ M and σ(i) = j
� if i ∈ Q
∞ if i ∈ Z.

We will use λ to “represent” the elements of [2m×2m] as elements of Dk (though
we will see below that λ is not injective). We now loosely follow the proof of
Proposition 3(2)⇒(3). Suppose (x, y) ∈ [2m×2m] and let x = λ(x, y). One can
check that proj(x, α0, . . . , αt) ⊆ RP m⇒Δ. As h is a polymorphism, this im-
plies (h(x), h(α0), . . . , h(αt)) ∈ RP m⇒Δ, i.e., (h(x), �, . . . , �) ∈ RP m⇒Δ. Hence
h(x) ∈ Δ. Thus we may define a map τh : [2m×2m] → Δ by τh[x, y] = h(λ(x, y)).
As in the proof of Proposition 3(2⇒3), it will follow that τh is a tiling of [2m×2m]
by D with initial condition w.

Observe that |M | ≤ k < m, so the map σ is not surjective. Pick some 0 ≤
j < m with j �∈ range(σ). Then the map λ has the property that if x, x′, y, y′ ∈
{0, 1, . . . , 2m − 1} and the binary representations of x and x′ (y and y′) agree
everywhere except at bit j, then λ(x, y) = λ(x′, y′). The same must therefore be
true of the tiling τh. Hence every row (and every column) of τh is repeated. ��
Proposition 5. Suppose R can be expressed from Γ by an instance of CSP(Γ)
(or primitive positive formula) with k < 22m variables. Then there exists a subset
U ⊆ [2m×2m] with |U | ≤ k such that D does not tile U with initial condition w.

Proof. Choose an instance P = (X, D, C) of CSP(Γ) and a (t+1)-tuple s =
(s0, . . . , st) of variables from X such that (P, s) expresses R and |X | = k. Thus

R = {(h(s0), . . . , h(st)) : h ∈ Sol(P)}. (1)

22 R. Willard

For each h ∈ Sol(P) define ch = (h(s0), . . . , h(st)) ∈ R. Define

M = {h ∈ Sol(P) : ch ∈ R0}
Q = {h ∈ Sol(P) : ch ∈ {�, ⊥}t+1 \ {�̂}}
Z = {h ∈ Sol(P) : ch = ∞̂}.

Next define

A = {x ∈ X : [h(x) ∈ P ∀h ∈ M] & [h(x) ∈ Δ ∀h ∈ Q] & [h(x) = ∞ ∀h ∈ Z]}.

Similarly, define B to be the set of all x ∈ X whose values under h in M, Q, Z are
in {0, 1}, {�, ⊥} and {∞} respectively; and define E to be the set of all x ∈ X
whose values under h in M, Q, Z are in {a, b}, {�, ⊥} and {∞} respectively;

For each 0 ≤ i < m choose hi ∈ M so that (hi(s0), . . . , hi(st)) = (Bint(i), γ[i]).
(Such hi must exist by equation 1.) Now define λ : A → Pm as follows: for x ∈ A

and 0 ≤ i < m, put λ(x)[i] = hi(x).
Define U = {(i, j) ∈ [2m×2m] : p(i, j) ∈ range(λ)}. Clearly |U | ≤ |A| ≤

|X | = k. We claim that D cannot tile U with initial condition w. Assume to the
contrary that τ : U → Δ is such a tiling. Define hτ : X → Δ by

hτ (x) =

⎧⎪⎪⎨
⎪⎪⎩

τ [i, j] if x ∈ A and λ(x) = p(i, j)
� if x = sj for some 0 ≤ j ≤ t
⊥ if x ∈ B ∪ E \ {s0, . . . , st}
∞ otherwise.

It can be shown, essentially following the proof of Proposition 3(3⇒2), that hτ

is a solution of P. But this with the fact that (hτ (s0), . . . , hτ (st)) = �̂ �∈ R
contradicts equation 1. ��

5 Conclusion

Proof of Theorem 1. Given n = 3m where m = 2t, t > 1, take De and wm as
in Proposition 2(1), and let (D, Γn, Rn) be the output of our construction on
input (De, m,wm). (Note that D is independent of n, and |D| = 22 if we use the
specific domino system De described in Subsection 3.1.) We have |Rn| = 3m = n.
By Proposition 3, Rn is expressible from Γn but, by Proposition 5, not by any
CSP(Γn) instance having fewer than 2m variables. ��
Proof of Theorem 2. Follows similarly from Propositions 2(2), 3 and 4. ��
Proof sketch of Theorem 3. Let ExpTile2(D) be the restriction of ExpTile(D)
to inputs (D, m,w) where m = 2t, t > 1. Standard modifications of the proof of
[2, Theorem 6.1.2], replacing the torus with the plane as in [10], show that every
problem P ∈ NEXPTIME has a logspace reduction to ExpTile2(D) for some
domino system D. Via a “universal domino system” argument we can get a single

Testing Expressibility Is Hard 23

domino system Du = (Δu, Hu, Vu) such that ExpTile2(Du) is NEXPTIME-
complete. Let d = |Δu|+11. Our construction and Proposition 3 give a logspace
reduction of ExpTile2(Du) to the restriction of ¬Expr to d-element domains.

��
We end with two questions.

1. Can d in Theorem 3 be reduced to d = 3, confirming the AIM conjecture?
2. Can Theorems 1–3 be improved so that both the domain and the constraint

language are fixed and only the test relation varies? (Such an improvement
of Theorem 3 would complement a result of Kozik for functions [16].)

References

1. Bodnarčuk, V.G., Kalužnin, L.A., Kotov, V.N., Romov, B.A.: Galois theory for

Post algebras. I. Cybernetics and Systems Analysis 5, 243–252 (1969)

2. Börger, E., Grädel, E., Gurevich, Y.: The Classical Decision Problem. Springer,

Heidelberg (1997)

3. Bulatov, A., Krokhin, A., Jeavons, P.: Classifying the complexity of constraints

using finite algebras. SIAM J. Comput. 34, 720–742 (2005)

4. ten Cate, B.: Notes on AIM CSP workshop, April 21 (2008),

http://www.aimath.org/WWN/constraintsatis/constraintsatis.pdf

5. Cohen, D., Jeavons, P.: Tractable constraint languages. In: Dechter, R. (ed.) Con-

straint Processing, pp. 299–331. Elsevier, San Francisco (2003)

6. Creignou, N., Kolaitis, P., Zanuttini, B.: Structure identification of boolean rela-

tions and plain bases for co-clones. J. Comput. System Sci. 74, 1103–1115 (2008)

7. Dalmau, V.: Computational complexity of problems over generalized formulas. PhD

thesis, Universitat Politécnica de Catalunya (2000)

8. Dechter, R., Pearl, J.: Structure identification in relational data. Artificial Intelli-

gence 58, 237–270 (1992)

9. Geiger, D.: Closed systems of functions and predicates. Pacific J. Math. 27, 95–100

(1968)

10. Grädel, E.: Dominoes and the complexity of subclasses of logical theories. Ann.

Pure Appl. Logic 43, 1–30 (1989)

11. Jeavons, P.: Constructing Constraints. In: Maher, M.J., Puget, J.-F. (eds.) CP

1998. LNCS, vol. 1520, pp. 2–16. Springer, Heidelberg (1998)

12. Jeavons, P.: On the algebraic structure of combinatorial problems. Theoret. Com-

put. Sci. 200, 185–204 (1998)

13. Jeavons, P.: Presenting constraints. In: Giese, M., Waaler, A. (eds.) TABLEAUX

2009. LNCS (LNAI), vol. 5607, pp. 1–15. Springer, Heidelberg (2009)

14. Jeavons, P., Cohen, D., Gyssens, M.: A test for tractability. In: Freuder, E.C. (ed.)

CP 1996. LNCS, vol. 1118, pp. 267–281. Springer, Heidelberg (1996)

15. Jeavons, P., Cohen, D., Gyssens, M.: How to determine the expressive power of

constraints. Constraints 4, 113–131 (1999)

16. Kozik, M.: A finite set of functions with an EXPTIME-complete composition prob-

lem. Theoret. Comput. Sci. 407, 330–341 (2008)

http://www.aimath.org/WWN/constraintsatis/constraintsatis.pdf

Applying Constraint Programming to
Identification and Assignment of Service

Professionals

Sigal Asaf1, Haggai Eran1, Yossi Richter1, Daniel P. Connors2,
Donna L. Gresh2, Julio Ortega3, and Michael J. Mcinnis4

1 IBM Haifa Research Lab, Haifa University Campus, Haifa 31905, Israel

{sigalas,haggaie,richter}@il.ibm.com
2 IBM Research Division, Thomas J. Watson Research Center,

P.O. Box 218, Yorktown Heights, NY, 10598

{dconnors,gresh}@us.ibm.com
3 IBM Global Business Services, 1503 LBJ Freeway, Dallas, TX 75234

julio@us.ibm.com
4 IBM Global Business Services, 150 Kettletown RD, Southbury, CT, 06488-2600

mike.mcinnis@us.ibm.com

Abstract. Today many companies face the challenge of matching highly-

skilled professionals to high-end positions in large organizations and

human deployment agencies. Non-accurate matches in these businesses

can result in significant monetary losses and other negative effects. Un-

like traditional Workforce Management (WM) problems such as shift

scheduling, highly-skilled employees are professionally distinguishable

from each other and hence non-interchangeable. Therefore, the tech-

niques used for shift-scheduling can’t be applied to the highly-skilled WM

domain. Our work focuses on providing a Constraint Programming so-

lution for supporting the assignment of highly-skilled professionals. Our

experience shows that CP is well adapted to this problem. CP supports

very well the underlying constraints. In addition, the rich expressive lan-

guage supported by CP allows us to provide a convenient mechanism for

changing and adding new matching and preference constraints. Based on

this technology, we have built a tool that is currently being used by IBM

service organizations and provides strong business results.

1 Introduction

Today’s economy is witnessing a constantly increasing demand for skilled pro-
fessionals with specialized combinations of expertise, who are essential in ac-
complishing high-end projects. This trend can be observed in most markets and
industries. As a result, many large business organizations, as well as private and
public human placement agencies, face the Workforce Management (WM) Iden-
tification and Assignment (ID&Assign) problem of assigning skilled professionals
to positions with specialized requirements.

The ultimate goal therefore is to rapidly create matches that are accurate,
while maximizing generated revenue. Poor decisions can result in understaffing,

D. Cohen (Ed.): CP 2010, LNCS 6308, pp. 24–37, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Applying Constraint Programming to Identification and Assignment 25

under-qualification or over-qualification of assigned personnel, and high turnover
of poorly matched workers. While the importance of quality matching is clear,
promptly dealing with pools of hundreds of positions and professionals in a dy-
namic market is a serious challenge. Careful deployment of individuals is essential
for boosting productivity in today’s marketplace.

In spite of its importance, many companies address the WM challenge man-
ually. Resource deployment professionals (RDPs) search for best matches based
on their knowledge and their expertise, and are supported by simple query tools
which provide the ability to search for a professional who is characterized by
some criteria (e.g., search for a C++ developer, from New York). When the
lists of professionals and positions to be matched are larger than a few dozen,
this process results in assignments that are far from optimal and take a long
time to create. Moreover, each RDP is usually responsible for a small number of
positions and professionals and therefore takes into account only local consider-
ations. However, a global view, comprising all positions and professionals in the
pool, is essential for providing good assignments.

Given this complexity, an automated mechanism that produces a more accu-
rate list of matches, and provides recommendations of near-optimal assignments
is essential. However, developing such a system would be quite difficult both
in capturing the correct abstraction level of the workforce model/rules, and in
developing the underlying technology.

We applied constraint programming (CP) to develop a new tool, which suc-
cessfully provides prioritization lists and near-optimal assignments. These results
take into account all resources and positions in the pool, as well as the complex
constraints defining a good match. As its core engine, we use a systematic CP
solver developed in IBM (see [1]). The new tool was successfully piloted in 2005,
and has since been essential in helping resource managers and deployment man-
agers implement better assignments. Today it is widely deployed by IBM’s Global
Business Services (GBS) in all geographies.

A high-level overview of the tool was given in [2], along with many background
references. In [3], we presented some technological advancements including text
analysis and the flexibility feature that adjusts a given assignment when some
of the parameters (e.g., professional pool, position pool or the matching con-
straints) have changed. In this paper, we focus on the advantages of CP as a
supportive technology for a dynamic industry constraint problem. In addition,
we present experimental results, including practical uses, as identified by the
IBM Global Business Services organization (GBS).

Paper organization. In Section 2 we explain why we decided to use CP for this
domain and provide more background information. In Section 3 we describe
the WM problem in more detail, and in Section 4 we explain how we solve the
problem using CP. In Section 5 we present our results. This includes experimental
results on real datasets and practical uses as identified by GBS. We conclude in
Section 6.

26 S. Asaf et al.

2 Why CP

Traditionally, typical WM problems address different variants of shift schedul-
ing. In these problems, there are usually a large number of professionals, roughly
divided into a small number of groups. Each group contains professionals with
similar skills, and is considered to be approximately homogeneous. Professionals
in the same group can be thought of (from the automation point of view) as
indistinguishable and interchangeable. Given this partition to distinct groups,
professionals are scheduled for shifts, where each shift requires a specific com-
bination of personnel. Such WM problems are widely solved using traditional
OR methods (e.g., linear and integer programming, reductions to other OR
problems) or by other methodologies, such as modern meta-heuristics (in partic-
ular tabu search and genetic algorithms) and multi-agent systems. For example,
SWOPS [4], a tool suitable for shift scheduling, is based on integer linear pro-
gramming. Resource capacity planning [5] is a different WM scenario, concerned
with aggregates of professionals rather than individuals. Here planning is per-
formed to estimate future gaps and gluts in the workforce. Here too, the problem
lends itself naturally to mathematical programming methods.

In contrast, the ID&Assign problem we are addressing is at the opposite
extreme: the individual professionals are highly-skilled, each with his or her
own unique combination of competencies, and are highly distinguishable and
non-interchangeable. Additionally, it is essential to find a good match between
professionals and their assigned positions; otherwise we run the risk of an under-
or over-qualified assignment, or understaffing, with the obvious contingent prob-
lems. This WM problem is also inherently different from the usual supply chain
problems in OR. Our entities are people rather than parts; we cannot model them
as pure sets of attributes. Individuals have their own unique skills, behaviors,
interests, and expectations.

This ID&Assign problem has not been addressed before in the literature and
seems to be harder to automate. The traditional OR methods listed above gen-
erally fail on this problem for a number of reasons. First, the constraints, which
depend on the particulars of professionals and positions, are complex and do not
translate easily to linear constraints. This as opposed to the simple constraints,
such as vacation-time and maximum daily work hours, seen in mainstream work-
force scheduling applications. Second, most OR methods rely on optimizing an
objective function. In our case, it is nearly impossible to put a price tag on most
of the variables involved. For example, how can we quantify the cost of a dissat-
isfied customer or a displeased professional resulting from a non-perfect match?
Finally, new rules and constraints arise frequently. To handle them quickly and
efficiently, the desired mechanism should have a rich expressive language that
will easily allow the formulation and maintenance of these constraints. Translat-
ing the problem into a linear model would create a maintenance nightmare as
the model would be very far from the original constraints.

Our tool relies on Constraint Programming (CP) methodology. The expressive
language of CP methodology is rich, natural, and modular, with many types
of constraints, therefore allowing the rapid development and maintenance of

Applying Constraint Programming to Identification and Assignment 27

models. Additionally, the strong algorithmic foundation of CP allows for fast
execution and good optimality. Therefore, it suits the nature of our WM problem
better than traditional OR methods. In the past, there have been a few attempts
to employ CP in solving WM problems, although these cases were scheduling
problems of a more traditional nature (e.g., British Telecom used CP to solve a
real-life problem [6] that was later also solved in [7]. J. Metivier et el. solved the
nurse rostering problem in [8]).

3 Problem Definition

The tool’s main inputs consist of lists of available professionals and open po-
sitions, a set of matching rules, and a set of prioritization rules. These inputs
are dynamic in that the characteristics of the professionals and open positions,
as well as the matching and prioritization rules, are changed on a regular basis.
The problem characteristics can be different between different organizations, and
even between different areas of the same organization. Moreover, the problem
definition may be changed over time by the organization’s administration or by
an RDP exploring different possibilities. For example, the RDP may want to
check for a potential assignment given that the maximal allowed distance be-
tween the professional’s location and the position’s location is within 50 km, and
later check how the assignment differ given a maximal distance of 100 km.

In the following subsections, we describe in more detail the problem’s main
inputs, while concentrating on its dynamic nature.

3.1 Position and Professional Definition

Each professional is characterized by a set of attributes, such as availability
dates, set of skills, and location. In a similar way, each position is characterized
by a set of attributes, including start date and position duration. These sets of
attributes may be different for different problems.

A modeling interface should provide the ability to define these attributes. An
attribute definition includes a name and its type. The type can be a basic type
such as string, integer, and date, or a set of elements all from the same basic
type. For example, the attribute education for a professional may include the list
of courses the professional participated in.

3.2 Matching Rules

The matching rules can be of two types:

– Built-in matching rules — Basic set of matching rules such as availability
rule, location rule, or skill matching rule. These rules are controlled through a
set of parameters. For example, a possible integer parameter for the location
rule is “The maximum distance between the professional’s location and the
job location”. For the skill matching rule, we will find a boolean parameter
such as “Should we consider the professional’s secondary skills?”

28 S. Asaf et al.

– Specific matching rules — Each matching problem may include specific match-
ing rules. For example, one may want to add a matching rule that considers
years of experience. CP naturally supports this type of matching rule, by sim-
ply adding a new constraint using CP language, such as [9] and [10]. For ex-
ample, consider the experience years matching rule as follow:

(position.exp level = beginner) → (person.exp years < 2) and
(position.exp level = expert) → (person.exp years > 6) and
(position.exp level = professional) → ((person.exp years >= 2) and
(person.exp years <= 6))

Another type of specific matching rules are those that correspond to a par-
ticular position or professional, as shown in the example below.

(position.identification = A1) → (person.degree ∈ {MA,PHD})

3.3 Prioritization Scheme

As stated above, assigning the right professional to the right position requires
careful consideration. While the matching rules represent a threshold that needs
to be passed, the prioritization rules ensure high-quality solutions.

The prioritization mechanism ranks all professionals who match a specific
position, and ranks all positions that match a specific professional. This ranking
is considered later in the CP problem, when searching for the best solution.

The prioritization scheme contains an ordered list of prioritization rules such
as “prefer a professional who lives closer to the position.” The final ranking of
each pair is based on an aggregate calculation of these rules. Since it is nearly
impossible to put a price tag on most of the variables involved, the RDPs define
their desired priority hierarchy by picking an ordered list of relevant priority
rules. Given two possible matches, comparison is done according to the order
defined by the user, i.e., the match that satisfies a higher priority rule wins (i.e,
lexicographic order).

The prioritization scheme is dynamic. In each run, the RDPs may want to
explore different prioritization scheme by exploring different order of the rules,
different parameters for the rules or even adding special rules that are specific
to the current WM problem. A flexible modeling mechanism based on CP con-
structs naturally supports such an environment.

We propose two types of prioritization rules:

– Built-in prioritization rules. For example, “prefer a professional who lives
closer to the position location”.

– User-defined prioritization rules. For this, we expose the underlying opti-
mization language and provide constructs such as “minimize”, “maximize”,
and “order”. A declarative language for the prioritization rules provides the
ability to state expressions such as:

Applying Constraint Programming to Identification and Assignment 29

• minimize|(position.required exp years − person.exp years)| —
prefers a match with a smaller gap between the position’s required years
of experience and the professional’s years of experience.

• match(City) — prefers a position and professional that are located in
the same city.

• order(person.employment status(RG,PT ,SC)) —
prefers a regular professional over a part-time professional over a sub-
contractor professional

4 Modeling WM ID and Assign Using CP

There are two major types of WM challenges need to be considered.

– Complete Assignment — construct an explicit near-optimal assignment, at-
tempting to staff as many positions as possible, while enforcing a no-overlap
constraint – the same professional cannot be assigned to positions that over-
lap in time.

– Feasibility solution — Provide a list of feasible professionals for each posi-
tion and a list of feasible positions for each professional. The order of the
professionals/positions in the feasible lists follows the prioritization scheme
and may also consider global considerations such as the number of feasible
matches per each position and per each professional.

In this paper, we present in detail the CP solution for the Assignment problem.
For the Feasibility problem, we use the same modeling as used by the Assignment
problem. However, in the Feasibility problem, the solver stops after it reaches
the first arc-consistency state (For more information, see [11])

4.1 The no-overlap Requirement

Our goal is to maximize the number of positions assigned, while maintaining
the best fit of professionals to their assigned positions. The basic constraint we
wish to enforce is that while the same professional can be assigned to multiple
positions, these positions cannot have overlapping execution times.

We model each position by a variable whose initial domain is the entire set
of professionals. As part of the first arc-consistency the domain is reduced to
include only the professionals who are qualified to perform it and are available
throughout its duration. Suppose every pair of positions overlapped in their ex-
ecution time. In that case, we could define a single alldifferent constraint over
all variables, thereby guaranteeing that no person is assigned to two positions.
Since, in general, not all positions overlap (for example, position A may end
in June, while position B starts in August), we employ the somedifferent con-
straint [12] instead. The somedifferent constraint is a natural generalization of
alldifferent that answers our needs. It is defined over a subset of the variables,
together with an underlying graph whose vertices are the participating variables.
The constraint requires that variables that are adjacent in the graph are assigned

30 S. Asaf et al.

different values. (Note that the alldifferent constraint is the special case obtained
when the underlying graph is complete.) Formulated mathematically,

somedifferentG(v1, . . . , vk) =
{(a1, . . . , ak) : ai ∈ Di, (vi, vj) ∈ E(G) → ai �= aj},

where E(G) is the set of edges of the graph G, and Di the domain of variable
vi. We note that defining a single constraint, rather than a separate constraint
for each pair of conflicting variables, guarantees better pruning during propaga-
tion. The only concern with somedifferent is that its propagation is an NP-hard
problem (since, e.g., it generalizes coloring problems), and therefore it is not
likely that an efficient (polynomial) propagator exists. However, there exists a
non-trivial propagator (see [12]), which together with a few heuristics, works
well in practice. Still, defining this constraint over a large set of variables is not
recommended.

4.2 The CSP Model

Variables and domains. Each position is modeled by a variable whose initial
domain is the entire set of professionals. As part of the first arc-consistency,
the domain is reduced to include only the professionals who are qualified to
perform it and are available throughout its duration. We define a single fictitious
value which we add to all domains. We treat this value specially: although we
admit it as viable in the instantiation phases, we ignore it in the propagation
phases, in effect allowing it to be assigned to overlapping positions. The reason
we introduce this fictitious value is because it is quite likely we will not be able
to staff all positions due to insufficient professionals. Ordinarily, in such cases
we would simply get an indication that the problem is unsatisfiable. By adding
the fictitious value, we can guarantee solvability, and by using value ordering,
we can direct the solver to prefer real professionals over the fictitious one. Of
course, once we obtain a solution, we remove the fictitious value and reject all
positions to which it has been assigned.

Hard constraints. The hard constraints should guarantee that the assigned
professionals match the positions, and that no professional is assigned to two
positions that overlap in time.

We guarantee that the professionals match the positions by adding all the
matching rules to the CP model.

The no-overlap requirement can be accomplished by using a single somedif-
ferent constraint whose underlying graph contains an edge between every two
overlapping positions. However, because the propagator for somedifferent cannot
be efficient (i.e., cannot run in worst-case polynomial time), we use the following
partitioning heuristic, which results in several somedifferent constraints, each
applying to a small underlying graph.

– Edges in the full somedifferent graph connecting pairs of variables with dis-
joint domains are obviously redundant. We delete them. We then partition
the resultant graph into its connected components.

Applying Constraint Programming to Identification and Assignment 31

– We partition each connected component into clusters of size t (a user-defined
threshold set by default to 10). If the size of the connected component is
not divisible by t, one of the clusters will be smaller than t. We apply a
somedifferent constraint to each cluster.

– We further add an approximate somedifferent constraint over each connected
component that is larger than t. The approximate constraint has the same
semantics as the ordinary one, but is associated with an efficient (polynomial)
propagator (see [12]). The drawback is that this propagator may not filter
all unsupported domain values.

When using an approximate some-different propagator, we risk creating subop-
timal staffing: the approximate propagator may result in sub-optimal pruning of
the search tree at the arc-consistency stage, possibly leading to collisions on the
same position, which may have been avoided had the propagation been exact. In
practice, our analysis shows that the suggested heuristic described above works
well and achieves a considerable speedup compared with both a single somedif-
ferent constraint and a single approximate somedifferent constraint, applied to
all variables.

Value ordering. We apply two types of value ordering. First, we prefer the
assignment of real versus fictitious persons. Second, we apply user preferences,
which are typically hard to quantify. We use the preference scheme as defined in
Section 3.3 to sort all the professionals who match a position. For each match,
we attach a match-quality object. The match-quality objects contain a match
quality indicator for each preference rule (e.g., the indicator for the location
preference rule describes the distance between the professional location and the
position location). Then we sort all the match quality objects that corresponds to
a specific position. The sort order follows the lexicographic order of the preference
rules as defined in the preference scheme. Finally, we choose the professionals
whose attached match-quality is located in the highest rank.

Support dynamic model. As stated in Section 3, the matching rules and the
prioritization scheme are changed frequently. They may vary between different
organizations and between different runs of the same organization.

CP naturally supports this type of problem through declarative constraint
language such as MiniZinc [9] and the Optimization Programming Language
(OPL [10]). The constraint language provides a natural way for defining the
matching rules. Optimization constructs such as minimize and maximize provide
the additional layer for supporting the prioritization rules.

To support such a dynamic model, we expose the corresponding part of the
underlying CP language to the user. The built-in matching constraints are up-
dated by setting their corresponding parameters, and both the built-in matching
constraints and the user-defined matching constraints are added to the problem.

The preference rules define the value ordering of each position variable. The
value ordering is based on the match-quality objects as have been described in
the ‘value ordering’ subsection. Each match-quality objects include an indicator
for each built-in preference rule and for each user defined preference rule.

32 S. Asaf et al.

5 Experiments and Practical Usage Discussion

The methods we described were integrated in IBM workforce management tool,
and provide new capabilities beyond traditional database queries (e.g., search for
all professionals with band 8). The solutions for the Feasibility problem help both
the RDPs and the professionals to identify potential matches, and the solutions
for the Assignment problem are mainly used for capacity planning.

In this section, we first present an analysis of the Assignment mode, including
running time and quality analysis. We then present in more detail the practical
usage scenarios of both the Feasibility problem and the Assignment problem.

5.1 Analysis of Experiments

We experimented with two real datasets from GBS. These were run on an In-
tel(R) Xeon(TM) 2.4 GHz machine with 2.5 GB of RAM. The tests, described
in detail in Table 1, included hundreds of available positions and thousands of
professionals. The last column presents the maximum number of positions that
are active on any given date. This provides some indication of the difficulty of
the assignment problem.

Table 1. Experiments: Details of the experimental datasets

Input Input description Number
of posi-
tions

Number
of people

Max over-
lapping
positions

AP Professionals and project

positions in the Asia Pacific

region (i.e, China and other

countries in Southeast Asia)

464 6232 351

USAMS Professionals and project

positions targeted for the US

Application Management

Services organization

622 4882 195

Table 2 shows the results of generating the feasibility solutions on the two
datasets. The table presents the number of positions that one or more profes-
sionals match, and the maximum and the average (avg) number of professionals
that match a position. The same type of data is also presented for profession-
als. The last column presents the number of different priorities each position
has (e.g., two professionals that match the same position may have equal match
quality, or may have different priorities and therefore we would prefer one of
them over the other). The number of priorities for each position demonstrates
how well the priority rules used differentiate between the candidates. The re-
sults show that the number of priorities was close to the number of matching
candidates.

Applying Constraint Programming to Identification and Assignment 33

Table 2. Results of the prioritization mode experiments

Input Time
(sec)

Num of
positions
matched

Num of
people
matched

Positions
per person
(max/avg)

People per
position
(max/avg)

Priorities
per position
(max/avg)

AP 21 351 862 20 / 0.46 77 / 8.13 58 / 8.71

USAMS 20 202 101 26 / 0.10 16 / 0.91 11 / 2.59

Table 3. Results of the assignment mode experiments

Input Time
(sec)

Number
of assign-
ments

Percent
assigned

Assignment
priority
(max/avg)

AP 80 300 85% 19 / 2.69

USAMS 115 88 44% 7 / 1.77

 50

 55

 60

 65

 70

 75

 80

 85

 90

 95

 100

 105

 0 5 10 15 20 25 30 35

A
ss

ig
nm

en
t P

er
ce

nt
ag

e

Priority level

AP USAMS

Fig. 1. Distribution of the assignment priorities

Finally, Table 3 shows the results of the assignment mode run. The average
priority of an assignment provide an indication of the quality of the assignment.
In Figure 1, the distribution of the priorities is shown in more depth. The figure
shows that most positions are assigned their preferred first or second priority
professionals.

34 S. Asaf et al.

5.2 Prioritization Mode Practical Usages

IBM’s Global Business Services (GBS) unit provides project-based professional
services to its customers through its workforce of over 100,000 consultants and
specialists worldwide. Assigning the correct mix of specific skills and expertise
levels is critical to the success of projects, both from the point of view of meeting
customer needs and from that of meeting IBM’s profit objectives.

GBS has been applying the new technology to address the problem of match-
ing professionals to project requirements. Analysis of the data required for both
professionals and positions as well as developing the right set of matching and
prioritization rules were done in conjunction with GBS Business leaders to define
possible ways of meeting project scheduling requirements, professional availabil-
ity, skills requirements, as well as to give higher priority to matches that will
result in improved profit performance.

Project managers and resource deployment professionals already have at their
disposal a number of search tools they can use to find professionals to fill project
positions. Similarly, professionals can search for projects that match their qualifi-
cations. However, the number of matches returned by a search can be daunting.
The new technology can find a more manageable set of high-quality matches
based on a relatively large number of pre-defined requirements.

The data available for the matching and the set of matching and prioritization
rules are key to generating good assignment suggestions. IBM has developed
databases and processes to support a collection of rich and high-quality data
about the professionals and positions. On top of this data, we developed the
corresponding matching and prioritization rules. The data for each professional
includes a set of qualifications, location, a list of languages the professional is
familiar with and at which level, the professional’s preference in terms of work
location (e.g., overseas positions), availability start-date and availability indi-
cators (e.g., a professional who reports less than 10 working hours a week can
be considered as available), and more. The data for each position includes the
position’s start and end dates, the required skill, the job location, whether the
position can be done remotely, which languages are required and at what level,
and more.

Matching skills is a key rule. IBM has developed a corporate skills taxonomy
with several thousand sets of skills that may be required by a position. A pro-
fessional is assigned a primary skill plus a set of secondary skills, and a set of
inferred skills. The last one is created automatically by analyzing the professional
data. (For example, the system may infer that a C++ developer is also qualified
for C coding). In simple skill searches, a professional may only be considered a
candidate for a position if his/her primary skill is the same as the skill requested
for the position. Our method allows the skill to be matched based on multiple
methods, including the secondary skills, the inferred skills, or by comparing the
degree of match between the textual description of a position requirements and
a professional’s resume. Thus, the new technology can often find positions that
were not considered in simpler skill searches.

Applying Constraint Programming to Identification and Assignment 35

In addition, the tool allows for the specification of rules to match on multiple
languages required by the position, professional travel preferences, whether the
work can be done remotely or whether the customer will pay for travel, whether
the professional meets citizenship and security clearance requirements, and more.
This helps reduce the search to a reasonably small number of matches that can
then be more easily examined by RDPs or the interested professionals.

GBS has been employing the new technology in two scenarios: 1) Supporting
Project Managers and Resource Deployment Professionals in their daily activ-
ity of fulfilling project requirements or finding work for professionals with time
available to work on new projects, and 2) Supporting professionals in their search
for projects suitable to their skills.

In the first scenario, a daily report is published for each GBS geographic or-
ganization listing all project positions and a small number of feasible candidates
for each position. Project managers can then choose to further investigate a pro-
fessional’s qualifications and propose them for a project. Since finding the right
professional for each project position is essential to the success of the project,
personal interviews of a small group of candidates is the norm before making a
final assignment. Similarly, a report is generated listing professionals that each
RDP is responsible for, along with matching positions for each one of them.
RDPs can then work with these professionals, propose suitable positions, and
work to help them make it to the short list for personal interviews.

In the second scenario, the objective was to provide actionable information to
the people that have the strongest motivation for finding a project position, i.e.,
professionals that have completed or will soon complete their involvement in a
project and are thus in need of finding a new project assignment. The matching
results of the new technology are used to create a tailored set of suitable project
positions for these professionals. This list is sent directly to the professionals
via email on a weekly basis. If they are interested, the professionals can then
obtain more information about these suitable positions and contact their RDPs
or market themselves to the positions’ project managers, thus giving them more
control of their own future.

5.3 Assignment Mode Practical Usages

One may ask why we do not simply provide the optimal set of assignments,
but rather provide a number of feasible matches. When we built the initial
tool version, we focused on the assignment problem, thinking that the users
of the tool would obviously want an assignment that maximized the number
of assigned positions, while maintaining high quality matches. However, during
early testing of the tool, early users of the tool reported dissatisfaction with
proposed assignments. Although the assignments generated by the tool adhered
to the mandatory matching rules and prioritization schemes, the RDPs often
had additional information about the open seats or the professionals they would
use to invalidate a proposed match or suggest what they believed to be better
match. For example, the RDP may know that the proposed candidate does not
get along with the project manager of the project corresponding to the open seat.

36 S. Asaf et al.

An RDP may want to assign a different professional to an open seat because the
RDP believes the assignment would be a good job-growth exercise for that other
professional. The RDPs felt that the optimized assignment was too rigid for
them. They could easily poke holes in the assignment using their information
and objectives. We recognized that in this space of workforce management, the
new decision support tool we developed needed to be more flexible and so we
created the feasibility mode as an alternative method of producing assignments.

Still, there is an important practical scenario which makes full use of the as-
signment problem. Resource managers and deployment managers are very con-
cerned about overdue open seats, that is, open seat positions that should have
already started work but are unfilled, and open seats that are due to start in
the near-future, for example, the next thirty days. For open seats beyond thirty
days, the managers usually have enough time to consider other sources of sup-
ply, such as contractors, or they can upskill or train an existing professional to
perform the work. Typically for overdue open seats and open seats due to start
in the next month or so, contracts have been signed or the work has been com-
mitted to, so the professional and deployment managers must try to fill those
open seats. To help them determine where they will have problems filling these
open seats, we run the new technology in the assignment mode. We consider the
open seats that are overdue and those that are due to start in the next thirty
days. We consider the professionals that are currently available and those profes-
sionals that will become available in the next thirty days. After running the tool
in the assignment mode, we then report the open seats that were not matched
in the assignment, the missed assignments. The missed assignment report gives
the resource and deployment managers a good idea of how many assignments
they will be able to fill and which assignments will be troublesome to fill in the
near-future.

6 Concluding Remarks

We described a CP approach to the ID&Assign problem of highly-skilled pro-
fessionals. CP has many advantages over traditional OR methods in solving this
problem, most notably its separation between problem modeling and algorithmic
foundations, which enables easy modeling of complex rules, and rapid adjust-
ment to newly created constraints. The tool we developed demonstrates the
applicability of CP to the problem, and shows that large industrial-scale prob-
lems can be solved with near-optimal results and with real-time performance.
It is aimed at automating the tedious and repetitive tasks performed manu-
ally by resource deployment managers, while allowing them to concentrate on
real decision-making. As such, our main direction of current development is in
modeling and solving complex CSPs that arise when building coherent teams of
professionals for assignment to large projects.

Acknowledgments. We would like to thanks Steve Heise, Crystal Howell, and
Will Riddle from GBS for their contribution in applying the technology in a
business environment.

Applying Constraint Programming to Identification and Assignment 37

References

1. Naveh, Y., Rimon, M., Jaeger, I., Katz, Y., Vinov, M., Marcus, E., Shurek, G.:

Constraint-based random stimuli generation for hardware verification. AI Maga-

zine 28, 13–30 (2007)

2. Naveh, Y., Richter, Y., Altshuler, Y., Gresh, D.L., Connors, D.P.: Workforce op-

timization: Identification and assignment of professional workers using constraint

programming. IBM J. Res. and Dev. 51(3), 263–279 (2007)

3. Richter, Y., Naveh, Y., Gresh, D.L., Connors, D.P.: Optimatch: Applying con-

straint programming to workforce management of highly-skilled employees. In:

IEEE/INFORMS International Conference on Service Operations and Logistics,

and Informatics (SOLI), pp. 173–178 (2007)

4. Gilat, D., Landau, A., Ribak, A., Shiloach, Y., Wasserkrug, S.: Swops– shift work

optimized planning and scheduling. In: Proc. 6th International Conference on the

Practice and Theory of Automated Timetabling (PATAT), pp. 518–523 (2006)

5. Gresh, D.L., Connors, D.P., Fasano, J.P., Wittrock, R.: Applying supply chain op-

timization techniques to workforce planning problems. IBM J. Res. and Dev. 51(3),

251–261 (2007)

6. Munaf, D., Tester, B.: And/or parallel programming in practice. Technical Report

WP12:1203, British Telecom Research Lab, London, UK (1993)

7. Yang, R.: Solving a workforce management problem with constraint programming.

In: The 2nd International Conference on the Practical Application of Constraint

Technology, pp. 373–387 (1996)

8. Metivier, J., Boizumault, P., Loudni, S.: Solving nurse rostering problems using

soft global constraints. In: Gent, I.P. (ed.) CP 2009. LNCS, vol. 5732, pp. 73–87.

Springer, Heidelberg (2009)

9. Nethercote, N., Stuckey, P.J., Becket, R., Brand, S., Duck, G.J., Tack, G.: Minizinc:

Towards a standard cp modelling language. In: Bessière, C. (ed.) CP 2007. LNCS,

vol. 4741, pp. 529–543. Springer, Heidelberg (2007)

10. van Hentenryck, P.: The OPL optimization programming language, Cambridge,

MA, USA (1999)

11. Dechter, R.: Constraint Processing. Elsevier Scinece, Amsterdam (2003)

12. Richter, Y., Freund, A., Naveh, Y.: Generalizing alldifferent: The somedifferent con-

straint. In: Benhamou, F. (ed.) CP 2006. LNCS, vol. 4204, pp. 468–483. Springer,

Heidelberg (2006)

Computing the Density of States
of Boolean Formulas

Stefano Ermon, Carla P. Gomes, and Bart Selman

Cornell University, Ithaca NY 14850, USA

{ermonste,gomes,selman}@cs.cornell.edu

Abstract. In this paper we consider the problem of computing the den-

sity of states of a Boolean formula in CNF, a generalization of both

MAX-SAT and model counting. Given a Boolean formula F , its den-

sity of states counts the number of configurations that violate exactly

E clauses, for all values of E. We propose a novel Markov Chain Monte

Carlo algorithm based on flat histogram methods that, despite the hard-

ness of the problem, converges quickly to a very accurate solution. Using

this method, we show the first known results on the density of states

of several widely used formulas and we provide novel insights about the

behavior of random 3-SAT formulas around the phase transition.

1 Introduction

Boolean satisfiability (SAT) solvers have been successfully applied to a wide
range of problems, ranging from automated planning to hardware and software
verification. In all these applications, the original problem is encoded into a
Boolean formula and the task is that of deciding whether it is satisfiable or not.

Given the tremendous success of SAT solvers, a lot of attention has been di-
rected toward extending this technology to the model counting problem ([1,2,3]),
that is the problem of computing the number of distinct satisfying assignments
for a given propositional formula. This task is also very important because of its
wide range of applications. For example, several probabilistic inference problems
in graphical models such as Bayesian inference can be effectively translated into
model counting ([4,5]). Moreover, when a SAT encoding is used to solve hard
combinatorial problems arising in other domains, knowledge of the number of
solutions can usually provide useful insights into the original problem.

Another very active line of research is devoted to the study of the optimization
version of SAT, namely the maximum satisfiability problem (MAX-SAT). In
MAX-SAT the goal is to find a truth assignment that satisfies the maximum
possible number of clauses of a given Boolean formula in conjunctive normal form
(CNF). This problem is important because many fundamental graph theoretic
problem such as MAX-CUT, MAX-CLIQUE, Minimum Vertex Cover have linear
time encodings as MAX-SAT. Moreover MAX-SAT has direct applications in a
wide range of domains such as routing problems and expert-systems (see e.g. [6])

In this paper we consider the problem of computing the density of states of a
Boolean formula in CNF, which is a generalization of both MAX-SAT and model

D. Cohen (Ed.): CP 2010, LNCS 6308, pp. 38–52, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Computing the Density of States of Boolean Formulas 39

counting. The density of states (DOS) counts the number of truth assignments or
configurations that violate exactly E clauses, for all values of E. In other words,
the problem is to compute the number n(E) of configurations that leave exactly
E clauses unsatisfied, for all possible values of E. The density of states is a very
detailed characterization of the configuration space associated to a formula. In
particular, n(0) is the number of satisfying assignments or models of the formula.
The lowest value of E with a non-zero density (i.e. minE{E|n(E) > 0}) is the
solution of the corresponding MAX-SAT problem.

Given that computing n(0) is equivalent to model counting, the problem of
computing the entire density of states is at least as hard as model counting and
therefore it is #P -hard.

The name density of states is borrowed from statistical and condensed matter
physics, where the density of states (DOS) of a system describes the number of
states at each energy level that are available to be occupied. For SAT instances,
we simply define the energy E(σ) of a configuration σ to be the number of
clauses that are not satisfied by σ. In physics the density of states represents a
deep characterization of the system, that is used to investigate various physical
properties of matter and to explain a number of quantum mechanical phenom-
ena. Analogously, in SAT the density of states gives a fine characterization of
the search space which can provide further insights into the development of new
algorithms.

We propose MCMC-FlatSat, a novel Markov Chain Monte Carlo sampling
technique to estimate the DOS for Boolean formulas, that is inspired by re-
cent methods introduced to estimate the DOS for statistical physics models [7].
Our technique outperforms standard Metropolis sampling by overcoming the the
often impractical mixing times. Moreover our method is especially suitable to
deal with rough energy landscapes with multiple local minima in the free energy
that are typical of combinatorial problems.

We empirically demonstrate that MCMC-FlatSat converges quickly to a very
accurate solution. Using this new method, we obtain novel insights about the
behavior of random 3-SAT formulas around the phase transition. Moreover, we
are able to show the first known results on the shape of the density of states
for several widely used formulas from the SATLib benchmark. Our results are
very promising and we expect that this new approach will find many other
applications both to counting and inference problems.

2 Density of States: Problem Definition

In this paper we consider the problem of computing the density of states of a
given Boolean formula F in conjunctive normal form (CNF). A clause C is a
logical disjunction of a set of (possibly negated) variables. A formula F is said
to be in CNF form if it is a logical conjunction of a set of clauses C.

We define V to be the set of propositional variables in the formula, where
|V | = n. A variable assignment σ : V → {0, 1} is a function that assigns a value
in {0, 1} to each variable in V . As usual, the value 0 is interpreted as FALSE and

40 S. Ermon, C.P. Gomes, and B. Selman

the value 1 as TRUE. A variable assignment σ will also be interchangeably called
a configuration, a term that refers to an element of {0, 1}n, a set isomorphic to
the set of all possible variable assignments.

Let F be a formula in CNF over the set V of variables with m = |C| clauses
and let σ be a variable assignment. We say that σ satisfies a clause C if at least
one signed variable of C is TRUE. We define the energy of a configuration E(σ)
to be the number of clauses that are unsatisfied when F is evaluated under σ.
If E(σ) = 0, then σ satisfies F and σ is called a model, solution, a ground state
or satisfying assignment for F .

Given a Boolean formula F , the density of states (DOS) n(·) is the function
n : [0, . . . , m] → N that maps energy levels to the number of configurations with
that energy level:

E
→ |{σ ∈ {0, 1}n|E(σ) = E}|.
It is clear from the definition that the DOS of any formula F satisfies the nor-
malization constraint

∑m
E=0 n(E) = 2n.

3 Prior Work

Despite the rich literature devoted to the study of model counting and MAX-
SAT, there is little prior work on the more general problem of the computation
of the density of states.

In [8] the authors propose sampling uniformly at random N configurations
σ1, . . . , σN and then estimating the DOS with an energy histogram h(E) based on
the samples. This approach is clearly unpractical because it requires an enormous
number of samples to get an accurate description of the DOS. In particular, any
attempt to sample at least a constant fraction of the whole configuration space
is doomed to have exponential complexity.

A more sophisticated sampling scheme is proposed in [9]. The authors pro-
pose the use of a Monte Carlo simulation with standard Metropolis transition
probabilities between configurations σi and σj given by pi→j = min{1, e

Ei−Ej
T },

where Ej is the number of unsatisfied clauses by σj and T is a temperature
parameter. Upon convergence, it is well known that the steady state distribu-
tion P (i) is Boltzmann distributed with the correct energy function E(·) (that
measures the number of unsatisfied clauses). The density of states can then be
obtained from the canonical ensemble rule n(E) = P (E)e−

E
T . It is well known

that the Metropolis algorithm can have very slow mixing times, especially when
dealing with rough energy landscapes with multiple local minima in the free
energy ([7,10]). Unfortunately combinatorial energy landscapes, such as the one
corresponding to the energy used here, are known to have many free energy min-
ima and a similar problem of long tunneling times between local minima arises.
These reasons intuitively explain why the use of the Metropolis algorithm is un-
practical to deal with Boolean formulas. In the experiments we conducted, we
observed convergence only on very small instances and only for certain temper-
ature ranges.

Computing the Density of States of Boolean Formulas 41

4 A Novel Sampling Strategy: The Flat Histogram
Method

We propose a Markov Chain Monte Carlo method to compute the density of
states based on the flat histogram idea that is inspired by recent work devel-
oped by the statistical physics community [7] to avoid Metropolis sampling. The
central idea of this method is that if we perform a random walk in the configu-
ration space {0, 1}n such that the probability of visiting a given energy level E
is inversely proportional to the density of states n(E), then a flat histogram is
generated for the energy distribution of the states visited. Suppose we define a
random walk with the following transition probability

pσ→σ′ = min
{

1,
n(E)
n(E′)

}
(1)

of going from a configuration σ with energy E to a configuration σ′ with energy
E′. The detailed balance equation

P (σ)pE→E′ = P (σ′)pE′→E

is satisfied when P (σ) ∝ 1/n(E). This leads to a flat histogram of the energies
of the states visited because P (E) =

∑
σ:E(σ)=E P (σ) = const.

Since the density of states is unknown a priori, and computing it is precisely
the goal of the algorithm, it is not possible to construct a random walk with
transition probability (1). However it is possible to start from an initial guess of
the DOS and keep changing the current estimate g(E) in a systematic way to
produce a flat energy histogram and simultaneously make the density of states
converge to the true value n(E).

MCMC-FlatSat(φ)
1 Start with g(E) = 1 for all E
2 Start with a modification factor F = F0

3 repeat

4 repeat

5 Generate a new state and accept with prob. given by eq. (1)
6 Adjust g(E) : g(E) = g(E)× F
7 Increase visit histogram H(E) ← H(E) + 1
8 until until H is flat
9 Reduce F
10 Reset the visit histogram H
11 until F is close enough to 1
12 Normalize g
13 return g

To generate a new configuration we randomly flip a variable with uniform
probability, but other strategies are possible as well. The modification factor F
plays a critical role because it controls the tradeoff between the convergence rate

42 S. Ermon, C.P. Gomes, and B. Selman

of the algorithm and its accuracy. Large initial values of F imply a substantial
diffusion rate and therefore fast convergence to a rather inaccurate solution. This
rough initial estimate is subsequently refined as the value of F decreases until
F ≈ 1, at which point when a flat histogram is produced g(E) has converged to
the true density n(E).

Due to statistical fluctuations, a perfectly flat histogram occurs with an ex-
tremely low probability. Therefore in our implementation we use a flatness pa-
rameter; in our experiments it is set so that an histogram is considered flat when
all the values are between 90% and 100% of the maximum value. The value of
F is reduced according to the schedule F ← √

F , with an initial value F0 = 1.5;
the impact of the schedule on the convergence rate is an open research question.
By construction the DOS is obtained only up to constant factors: the normal-
ization of g ensures that

∑
E g(E) = 2n, where n is the number of variables in

the formula.

5 Effectiveness and Validation of MCMC-FlatSat

The goal of this section is to verify the convergence of MCMC-FlatSat and to
empirically evaluate the accuracy of the solution obtained. To accomplish these
results, we first empirically check the accuracy of the results obtained for small
structured formulas, for which we can compute the true density by exact enumer-
ation of the entire (exponentially large) state space. We also test MCMC-FlatSat
on larger synthetic formulas for which we derive an analytical expression for the
true density of states, as well as on random 3-SAT formulas. For larger struc-
tured instances, for which no known method can be used to compute the true
DOS, we make use of partial consistency checks to validate the results.

When the true DOS is known, we employ two metrics to evaluate the accu-
racy of the results: the relative error for each data point and a global measure
represented by the Kullback-Leibler divergence between the true and the esti-
mated densities. The Kullback-Leibler divergence between the true density n(·)
and the estimated one g(·) is defined as:

DKL(n||g) =
m∑

E=0

n(E)
Z

log
(
n(E)
g(E)

)

where Z = 2n is used to normalize the DOS to probability distributions. In fact,
the KL divergence is a standard information theoretic non-symmetric measure
of the difference between two probability distributions P and Q. In information
theoretic terms, the KL divergence measures the expected number of extra bits
required to code samples from P when using a code based on Q, rather than
using a code based on P .

5.1 Structured Problems: Exact Counts

In figure 1, we compare the true and estimated log-densities for several small
instances (all with less than 28 variables) from the MAXSAT-2007 competition

Computing the Density of States of Boolean Formulas 43

10 20 30 40 50 60 70
E �unsat clauses�

5

10

15

Log �n�E��

(a) Exact and estimated log-densities:

curves are overlapping to the eye.

10 20 30 40 50 60 70
E

�1

1

2

3

Rel. error ���

(b) Relative errors.

10 20 30 40 50 60
E �unsat clauses�

5

10

15

Log �n�E��

(c) Exact and estimated log-densities:

curves are overlapping to the eye.

30 40 50 60
E

�2

�1

1

2

3

Rel. error ���

(d) Relative errors.

50 100 150 200
E �unsat clauses�

5

10

15

Log �n�E��

(e) Exact and estimated log-densities:

curves are overlapping to the eye.

100 120 140 160 180 200
E

�2

2

4

Rel. error ���

(f) Relative errors.

Fig. 1. The density of states of a Boolean formula counts the number of configurations

that violate exactly E clauses, for all values of E. We present a comparison of the

estimated density (g(E)) and the exact one (n(E)) computed by explicit enumeration

for several small instances from the MaxSAT-2007 benchmark. Figures 1(a),1(b) are

relative to the Ramsey Theorem instance ram k3 n8.ra0.cnf (28 variables, 126 clauses).

Figures 1(c),1(d) are relative to the Spin Glass instance t3pm3-5555.spn.cnf (27 vari-

ables, 162 clauses, unsat). Figures 1(e),1(f) are relative to the Clique instance johnson8-
2-4.clq.cnf (28 variables, 420 clauses, unsat). A comparison in terms of Kullback-Leibler

divergence is presented in table (1).

44 S. Ermon, C.P. Gomes, and B. Selman

Table 1. Comparison with exact enumerator. Kullback-Leibler divergence between the

true density of states and the estimated one.

Instance variables clauses KL-divergence DKL(n||g)
ram k3 n7.ra0.cnf 21 70 0.00003956
ram k3 n8.ra0.cnf 28 126 0.0000119634

johnson8-2-4.clq.cnf 28 420 0.0000458743
t3pm3-5555.spn.cnf 27 162 0.0000130045
Synth. formula (3) 50 100 0.0000118838
Synth. formula (6) 200 750 0.000000125958

benchmark. The true density is computed by exact enumeration. We chose in-
stances that are encodings of three different class of problems (Ramsey Theorem,
Spin Glass, Max Clique) and we plotted log-densities because of the large range
of values involved.

Although by the effect of the logarithmic scale the two densities in the plots are
overlapping to the eye and therefore are not distinguishable, the corresponding
relative error plots show that there is small error, that is never greater than 5%.
The impressive degree of accuracy obtained is confirmed by the Kullback-Leibler
divergences presented in table 1.

We also notice that even though the shape of the DOS is a distinctive char-
acteristic of the original problem class, in all cases the distribution concentrates
almost all the probability weight on a small energy range.

5.2 Synthetic Formulas: Exact Analytic Counts

The simplest analytical results can be obtained for a k-SAT formula with m
clauses such that each variable appears in exactly one clause (so there are n = km
variables). In this case the density of states is

n(E) =
(

m

E

)
pE(1 − p)m−E2km =

(
m

E

) (
1
2k

)E (
1 − 1

2k

)m−E

2n , (2)

where p = 1/2k is the probability that a clause is unsatisfied by an assignment
chosen uniformly at random.

A more interesting class of instances with a closed form solution can be con-
structed in the following way:

x1 ∧ x2 ∧ (x1 ∨ x2) ∧ (x1 ∨ x2) ∧ x3 ∧ x4 ∧ (x3 ∨ x4) ∧ (x3 ∨ x4) ∧ . . . (3)
∧x�−1 ∧ x� ∧ (x�−1 ∨ x�) ∧ (x�−1 ∨ x�)

Each subformula of the form x1 ∧ x2 ∧ (x1 ∨ x2) ∧ (x1 ∨ x2) has a density of
satisfied clauses that is uniform in the interval [1, 4]. Using the fact that the
probability that the sum of n s-sided dices is k can be written as

F [s,n, k] =
1
sn

	 k−n
s
∑

i=0

(−1)i

(
n

i

)(
k − si − 1
n− 1

)
, k > n.

Computing the Density of States of Boolean Formulas 45

We therefore have that the number of configurations satisfying k clauses of a
formula constructed as in equation (3) is F [4, �

2 , k]2� and from that the density
of states is

n(E) = F [4,
�

2
, 2� − E]2� (4)

More generally, consider a (small) formula φ for which we know the density of
states nφ(E). We can construct a larger formula F by taking the conjunction of
� copies of φ, each one involving a different set of variables x1, . . . , x�:

F (x1, . . . , x�) = φ(x1) ∧ φ(x2) ∧ . . . ∧ φ(x�).

Given the independence assumption implied by the fact that by construction
the subformulas do not share variables, the DOS nF (·) of the larger formula F
can be obtained in closed form using a multinomial distribution. Moreover, by
noticing that the subformulas in F do not share variables, it is easy to see that
nF (E) can be computed as a multiple convolution of nφ(·):

nF (E) = (nφ ∗ . . . ∗ nφ)(E), (5)

where ∗ is the convolution operator. This result is analogous to the fact that
the probability density function (PDF) of the sum of independent random vari-
ables is equal to the convolution of the PDFs of the addends (concentrating the
measure on the mean).

In particular, let Pn(x) be the standard CNF encoding of a Pigeon Hole
problem with n holes and n + 1 pigeons, with n + 1 clauses which say that a
pigeon has to be placed in some hole and a set of clauses ensuring that only one
single pigeon is placed into each hole. This encoding leads to n(n+ 1) variables
and to (n + 1) + n(n(n + 1)/2) clauses. Now we consider the following CNF
formula:

P �
n(x1, . . . , x�) = Pn(x1) ∧ Pn(x2) ∧ . . . ∧ Pn(x�) (6)

where xi ∩ xj = ∅ whenever i �= j. Using (5), the DOS of formula (6) can be
obtained as the convolution of the DOS of a single Pn(x) with itself � − 1 times.

We test the effectiveness of MCMC-FlatSat on large synthetic instances, for
which exact enumeration would not be possible, by comparing the estimated
DOS with the analytical results we just derived. In figure 2(c) and 2(d) we com-
pare the results of MCMC-FlatSat on a formula constructed as in equation (3)
with the theoretical density of states given by (4). In the experiment presented
in figure 2(a) and 2(b) we evaluate the DOS of a single P4(x) by explicit enu-
meration, and then we compute the exact DOS of P 10

4 (x1, . . . , x10) by carrying
over the convolutions. This is compared with the approximate result given by
MCMC-FlatSat when used directly on the large formula (6). Even in this case,
the log-densities in the plots are overlapping and therefore are not distinguish-
able to the eye, and the corresponding relative error is never greater than 3%,
as confirmed by the small Kullback-Leibler divergences reported in table 1.

46 S. Ermon, C.P. Gomes, and B. Selman

100 200 300 400 500 600 700
E

20

40

60

80

100

120

Log�n�E��

(a) Exact and estimated log-densities:

curves are overlapping to the eye.

100 200 300 400 500 600 700
E

�2

�1

1

2

3

Rel. error ���

(b) Relative errors.

10 20 30 40 50 60 70
E

5

10

15

20

25

30

Log�n�E��

(c) Exact and estimated log-densities:

curves are overlapping to the eye.

10 20 30 40 50 60 70
E

�2

�1

1

2

Rel. error ���

(d) Relative errors.

Fig. 2. Comparison of the estimated DOS and the exact analytical results obtained in

section 5.2. In figure 2(a) and 2(b) we used a formula constructed as in equation (6)

with n = 4, � = 10, resulting in 200 variables, 750 clauses. In figure 2(c) and 2(d) we

used a formula constructed as in equation (3) with 50 variables and 100 clauses.

5.3 Random Formulas

In this section we present a detailed study of the behavior of the DOS for random
3-SAT formulas as a function of the ratio clauses to variables α. In particular, we
compute the average DOS over 1000 random instances for each value of α in the
range considered. By studying the behavior of g(0) (the number of estimated
models) in figure 3(a) and 3(b), we recover the well known phase transition
between the SAT and UNSAT phase, occurring at the critical ratio αc = 4.27.
Notice that we have E[g(0)] > 0 for α > αc because even if it is true that in that
region most of the formulas are not satisfiable, the ones that are contributing to
the average with large numbers of solutions (see [11]).

We discovered a similar phase transition behavior for g(i), i > 0 as reported
in figures 3(a) and 3(b). To the best of our knowledge, this is the first time
these phase transition phenomena have been discovered experimentally. Notice
however that the average DOS (E[g(i)]) for random k-SAT formulas can be
obtained using equation (2). This is because given a truth assignment σ, the
probability of having a clause that is violated by σ is 1/2k when the k-SAT
formula is chosen uniformly at random. The comparison with the analytic result

Computing the Density of States of Boolean Formulas 47

�
�
�
�
�
�
�
�
�
�
�
� �

�
� �

�
� � �

�

�
�
�
�
�
�
�
�
�
�
�
� �

�
�
�
�
� � �

�
�

�
�
�
�
�
�
�
�
�
�
�
� �

�
�
�
�
� �

�
�
�

�
� �

�

�
�
�
�
�
�
�
�
�
�
�
� �

�
�
�
�
� �

�
�
�
�
� �

�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
� �

�
�
�

�

� � �
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
� �

�
� �

�
�
�

3 4 5 6 7 8
Α

�5

5

10

15

20

25

30

Log�E�g�����

Analytic
� g�5�
� g�4�
� g�3�
� g�2�
� g�1�
� g�0�

(a) Average DOS.

3 4 5 6 7 8
Α

0.2

0.4

0.6

0.8

1.0

Fraction

g�2��0

g�1��0

g�0��0

(b) Phase transitions.

Fig. 3. Average DOS and fraction of instances that have g(i) > 0 for random 3-SAT

formulas as functions of the ratio clauses to variables α. The number of variables is

n = 50 (see pdf for color version of figures).

(2) in figure 3(a) confirms the good accuracy of the DOS estimation algorithm.
Moreover, by using a Markov bound P [g(i) > 0] ≤ E[g(i)] we can get upper
bounds on the phase transition thresholds we see in figure 3(b). For instance, we
obtain that P [g(i) > 0] ≤ 0.001 for α greater than 6.22, 6.80, 7.30 for i = 0, 1, 2
respectively. Interestingly, using the same Markov bound one can also show that
P [g(i) > 0] → 0 for α > log8/7 2 = 5.19 . . . for n → ∞ and i ∈ o(n/log(n)).

With the density of states we can use canonical average formulas to cal-
culate exactly macroscopic properties such as the log-partition function Z(T)
at temperature T , defined as Z(T) = log

(∑
E g(E)e−

1
T E

)
. This property is of

considerable theoretical and practical interest because its zero temperature limit
limT→0 Z(T) counts the number of models. Several analytical and algorithmic
attempts ([12,13]) have been made to estimate its value in the low tempera-
ture range. Our findings reported in figure 4(a) suggest that small but non-zero

48 S. Ermon, C.P. Gomes, and B. Selman

0.5 1.0 1.5 2.0 2.5 3.0
T

5

10

15

20

25

30

Log�Z�T��

Α�5.4

Α�4.2

Α�2

(a) Log partition function log Z(T).

3 4 5 6 7 8
Α

6. � 107

8. � 107

1. � 108

1.2 � 108

1.4 � 108

1.6 � 108

Runtime �flips�

(b) Runtime.

Fig. 4. Log partition function and runtime for random 3-SAT formulas as functions

of the ratio clauses to variables and temperature. Notice that the value of Z(0) corre-

sponds to the model count given by g(0) in figure 3(a).

temperature approximations of Z(T) can indeed provide accurate information
on the number of models for random 3-SAT formulas.

Of practical interest is also the study of the running time of the algorithm
presented in figure 4(b). We find an increased complexity as we approach the
critical threshold αc that is typical of local search methods. However, given the
peculiar nature of this local search method, we can study its behavior even for
α > αc. In that range, the runtime increases with a smaller slope, that we
believe is caused by the additional effort required to estimate an histogram with
an increasing number of energy levels.

5.4 Large Structured Instances

In this section we present the results obtained on large structured formulas
for which the exact DOS is unknown and direct enumeration is not feasible.
Given that we are not aware of any complete solver that is able to compute
the exact DOS, we need to resort to partial consistency checks to assess the
accuracy of MCMC-FlatSat. In particular, when it is possible, one can compare
g(0) with the exact model count given by a complete solver such as Cachet ([14]).
A further consistency check can be obtained by looking at the moments of the
DOS. Intuitively, the moments represent a quantitative measure of the shape of
a set of points and therefore they can be used to check that the probability mass
is concentrated in the right regions. The k-th order moment is defined as

M(k) =
∑
E

Ek g(E)
Z

where Z = 2n is again used to normalize to a probability distribution. For ex-
ample, M(1) is the average number of violated clauses by a random assignment.
This value is compared with the sample k-th moment

Ms(k) =
1
�

�∑
i=1

E(Xi)k

Computing the Density of States of Boolean Formulas 49

100 200 300 400 500 600
E

5

10

15

20

25
Log �n�E��

(a) Log-Density for a Clique problem

brock400 2.clq.cnf from MaxSAT-2009.

50 100 150 200 250 300
E

20

40

60

80

Log �n�E��

(b) Log-Density for a Spin Glass prob-

lem spinglass5 10.pm3.cnf from MaxSAT-

2009. Notice there are no configurations

with an even number of unsatisfied clauses.

200 400 600 800
E

5

10

15

20

25

Log �n�E��

(c) Log-Density for a Clique problem

MANN a27.clq.cnf from MaxSAT-2009.

No solver presented at MAXSAT09 could

solve this instance (within 30 minutes).

500 1000 1500 2000 2500 3000
E

50

100

150

200

250

300

Log �n�E��

(d) Log-Density for the Logistic problem

bw large.a.cnf from SATLib.

100 200 300 400 500
E

10

20

30

40

50

60

70

Log �n�E��

(e) Log-Density for the Pigeon Hole prob-

lem instance hole10.cnf from SATLib.

500 1000 1500 2000 2500 3000
E

50

100

150

200

250

300

Log �n�E��

(f) Log-Density for the Morphed Graph

Colouring problem sw100-1.cnf from

SATLib.

Fig. 5. DOS for several large formulas from MaxSAT-2009 and SATLib ([15])

50 S. Ermon, C.P. Gomes, and B. Selman

Table 2. Comparison of the moments. Sample moments estimated with � = 106 uni-

formly sampled truth assignments. Exact model counting is done with Cachet.

Instance var clauses g(0) # models Ms(1) M(1) Ms(2) M(2)
brock400 2.clq.cnf 40 1188 0 0 297.014 297.024 88365.9 88372.3

spinglass5 10.pm3.cnf 125 750 0 0 187.498 187.492 35249.2 35247
MANN a27.clq.cnf 42 1690 0 0 422.49 422.483 178709 178703

bw large.a.cnf 459 4675 1 1 995.298 995.322 996349 996634
hole10.cnf 110 561 0 0 137.482 137.562 19621.7 19643.8
sw100-1.cnf 500 3100 8.04 × 1027 753.072 753.06 571718 571863

where X1, X2, ..., X� are samples drawn uniformly from all possible assignments.
Given that the space of all possible assignments is exponentially large, the sam-
ples X1, X2, ..., X� will be representative only of high probability regions of that
space. While this is precisely the reason why the method of uniform sampling
cannot be used to estimate an entire DOS, it can still be used to check that the
probability mass is concentrated in the right regions.

In figure 5, we present the estimated DOS for several instances from the
MaxSAT-2009 benchmark and SATLib ([15]). These kind of results are, to the
best of our knowledge, novel. Even though we cannot provide a formal guarantee
that our results are accurate, the experimental validation in the previous sections
suggests that they should be accurate. Moreover we have a perfect correspondence
both with Model Counters and in terms of sample k-th moments, as confirmed by
the results presented in table 2. In all these instances, we see that the shape of
the DOS appears to be a characteristic property of the class of problems that was
translated into SAT, and that the probability weight is again concentrated in a
small energy range. We believe this type of information can be used to improve
local search strategies targeted to a particular class of encodings.

5.5 Model Counting

Even if computing the DOS is a more general and more difficult problem than
model counting, comparing MCMC-FlatSat with model counters still provides
some useful insights. In particular, we can show that when the number of clauses
in the formula is not too big, that is the overhead derived from computing the
entire DOS is not overwhelming, MCMC-FlatSat competes against state of the art
model counters, both in terms of accuracy and running times. We compared the
performance of MCMC-FlatSat with two approximate model counters: Sample-
Count ([2]) and SampleMiniSATExact ([1]). The instances used are taken from
the benchmark used in [1,2]. The results in table 3 show that MCMC-FlatSat
generally achieves a greater accuracy, even though it does not provide any guar-
antee on the results (as [1,2] do). When the ratio of clauses to variables is not
too high, it has comparable if not favorable running times. However, when the
number of clauses is too large, the overhead caused by the computation of the
entire DOS becomes too large and the comparison in terms of running times
becomes unfair, even though it still wins in terms of accuracy.

A more detailed comparison is beyond the scope of this paper, but we believe
that a fairly straightforward implementation that forces the random walk to

Computing the Density of States of Boolean Formulas 51

Table 3. Comparison with model counters on formulas from the benchmark in [2]

with a small number of clauses. Timings for SampleCount and SampleMiniSATExact

are taken from the respective papers [1,2]. MCMC-FlatSat timings are obtained on a

comparable 3Ghz machine.

Instance n m Exact # SampleCount SampleMiniSAT MCMC-FlatSat
Models Time Models Time Models Time

2bitmax 6 252 766 2.10 × 1029 ≥ 2.40 × 1028 29 2.08 × 1029 345 1.96 × 1029 1863
wff-3-3.5 150 525 1.40 × 1014 ≥ 1.60 × 1013 240 1.60 × 1013 145 1.34 × 1014 393
wff-3.1.5 100 150 1.80 × 1021 ≥ 1.00 × 1020 240 1.58 × 1021 128 1.83 × 1021 21
wff-4-5.0 100 500 ≥ 8.00 × 1015 120 1.09 × 1017 191 8.64 × 1016 189
ls8-norm 301 1603 5.40 × 1011 ≥ 3.10 × 1010 1140 2.22 × 1011 168 5.93 × 1011 2693

stay inside low energy regions, without wasting time exploring the high energy
space, could have dramatic impact on model counting. The reason is that the
random walk used by estimating DOS is explicitly designed to count, while other
sampling-based strategies are built on top of systems that might be too biased
towards greedy heuristics when they perform random walks in the configuration
space. Moreover, the information collected on how many configurations are not
models (that is g(i), i > 0) can be effectively used to infer about g(0), given the
normalization constraint

∑
g(i) = 2n.

6 Conclusions and Future Work

We described MCMC-FlatSat, a Markov Chain Monte Carlo technique based on
the flat histogram method to estimate the density of states of Boolean formulas.
We demonstrated the effectiveness of MCMC-FlatSat, both in terms of conver-
gence and accuracy, on a broad range of structured and synthetic instances.
Using our method, we also provided new insights about the phase transition
phenomena of random 3-SAT formulas. We believe that the results presented
in this paper are very promising and that the very detailed characterization
of the configuration space provided by MCMC-FlatSat will open the way for a
new set of heuristics for local search methods, and will provide further insights
about random k-SAT formulas as well. Moreover, considered the generality of
the flat histogram idea, we expect that this new approach will find many other
applications both to counting and inference problems.

Acknowledgments

This research is funded by NSF Expeditions in Computing grant 0832782.

References

1. Gogate, V., Dechter, R.: Approximate counting by sampling the backtrack-free

search space. In: Proc. of AAAI-2007, pp. 198–203 (2007)

2. Gomes, C., Hoffmann, J., Sabharwal, A., Selman, B.: From sampling to model

counting. In: Proceedings of the 20th International Joint Conference on Artificial

Intelligence, IJCAI 2007 (2007)

52 S. Ermon, C.P. Gomes, and B. Selman

3. Gomes, C., Sabharwal, A., Selman, B.: Model counting: a new strategy for obtain-

ing good bounds. In: Proceedings of AAAI 2006, pp. 54–61. AAAI Press, Menlo

Park (2006)

4. Littman, M., Majercik, S., Pitassi, T.: Stochastic boolean satisfiability. Journal of

Automated Reasoning 27(3), 251–296 (2001)

5. Sang, T., Beame, P., Kautz, H.: Solving Bayesian networks by weighted model

counting. In: Proc. of AAAI 2005, pp. 475–481 (2005)

6. Hansen, P., Jaumard, B.: Algorithms for the maximum satisfiability problem. Com-

puting 44(4), 279–303 (1990)

7. Wang, F., Landau, D.: Efficient, multiple-range random walk algorithm to calculate

the density of states. Physical Review Letters 86(10), 2050–2053 (2001)

8. Belaidouni, M., Hao, J.K.: Sat, local search dynamics and density of states. In:

Selected Papers from the 5th European Conference on Artificial Evolution, pp.

192–204. Springer, Heidelberg (2002)

9. Rosé, H., Ebeling, W., Asselmeyer, T.: The density of states - a measure of the

difficulty of optimisation problems. In: Ebeling, W., Rechenberg, I., Voigt, H.-

M., Schwefel, H.-P. (eds.) PPSN 1996. LNCS, vol. 1141, pp. 208–217. Springer,

Heidelberg (1996)

10. Wei, W., Erenrich, J., Selman, B.: Towards efficient sampling: Exploiting random

walk strategies. In: Proceedings of the 19th National Conference on Artifical Intel-

ligence, pp. 670–676. AAAI Press, Menlo Park (2004)

11. Kamath, A., Motwani, R., Palem, K., Spirakis, P.: Tail bounds for occupancy and

the satisfiability threshold conjecture. In: Proc. of the 35th Annual Symposium on

the Foundations of Computer Science, pp. 592–603 (1994)

12. Monasson, R., Zecchina, R.: Entropy of the K-satisfiability problem. Physical re-

view letters 76(21), 3881–3885 (1996)

13. Montanari, A., Shah, D.: Counting good truth assignments of random k-SAT for-

mulae. In: Proc. of the 18th ACM Symposium on Discrete Algorithms (2007)

14. Sang, T., Bacchus, F., Beame, P., Kautz, H., Pitassi, T.: Combining component

caching and clause learning for effective model counting. In: Proc. of SAT 2004

(2004)

15. Hoos, H., Stiitzle, T.: SATLlB: An Online Resource for Research on SAT. In: Sat

2000: Highlights of Satisfiability Research in the Year, p. 283 (2000)

Towards Parallel Non Serial Dynamic
Programming for Solving Hard Weighted CSP

David Allouche, Simon de Givry, and Thomas Schiex

Unité de Biométrie et Intelligence Artificielle, UR 875, INRA,

F-31320 Castanet Tolosan, France

{david.allouche,simon.degivry,thomas.schiex}@toulouse.inra.fr

Abstract. We introduce a parallelized version of tree-decomposition

based dynamic programming for solving difficult weighted CSP instances

on many cores. A tree decomposition organizes cost functions in a tree

of collection of functions called clusters. By processing the tree from

the leaves up to the root, we solve each cluster concurrently, for each

assignment of its separator, using a state-of-the-art exact sequential al-

gorithm. The grain of parallelism obtained in this way is directly related

to the tree decomposition used. We use a dedicated strategy for building

suitable decompositions.

We present preliminary results of our prototype running on a cluster

with hundreds of cores on different decomposable real problems. This

implementation allowed us to solve the last open CELAR radio link

frequency assignment instance to optimality.

1 Introduction

Graphical model processing is a central problem in AI. The optimization of the
combined cost of local cost functions, central in the valued CSP framework [12],
captures problems such as weighted Max-SAT, Weighted CSP or Maximum
Probability Explanation in probabilistic networks. It has applications in resource
allocation [2], combinatorial auctions, optimal planning, bioinformatics. Valued
constraints can be used to code classical crisp constraints and cost functions.

Because these problems are NP-hard, however, there are always relevant prob-
lems which cannot be solved in reasonable time. With the current trend of in-
creasing number of cores per machine and increasing number of machines in
clusters or grids, it is only natural to try to exploit problem decomposability by
distributing the workload on a large number of computing resources.

In this paper, we use tree decompositions as a source of workload distribu-
tion. Tree decomposition has repeatedly been used to solve reasoning problems
in graphical models, from constraint satisfaction [4] to bayesian networks [7].
In constraint satisfaction, different algorithms such as Adaptive Consistency,
Bucket Elimination or Cluster Tree Elimination rely on a tree decomposition to
decompose the original problem and improve the worst-case time complexity.

On a single core, our algorithm can be described as a block by block elimi-
nation process in non serial dynamic programming as proposed in [1]. In a CSP

D. Cohen (Ed.): CP 2010, LNCS 6308, pp. 53–60, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

54 D. Allouche, S. de Givry, and T. Schiex

context, it can also be described as a simplified version of Cluster Tree Elimina-
tion [5] that performs only one pass over the problem.

We show how the tree decomposition can be exploited to distribute the work-
load on many cores and how the granularity of the distribution can be controlled
by modifying the tree decomposition itself. We define specific operations on tree
decompositions allowing to reach a suitable tree decomposition, when it exists.
We then perform an empirical evaluation of the algorithm on different hard
instances coming from bioinformatics (haplotyping problems) and resource allo-
cation (CELAR radio frequency assignment problems) and analyze the influence
of the number of cores on the time needed to solve the problem.

2 Background

A weighted CSP (WCSP) is a pair (X,W) where X = {1, . . . , n} is a set of n
variables and W a set of cost functions. Each variable i ∈ X has a finite domain
Di of values than can be assigned to it. The maximum domain size is d. For a
set of variables S ⊆ X , DS denotes the Cartesian product of the domain of the
variables in S. For a given tuple of values t, t[S] denotes the projection of t over
S. A cost function wS ∈ W , with scope S ⊆ X , is a function wS : DS �→ [0, k]
where k is a maximum integer cost used for forbidden assignments (expressing
hard constraints). It can be described by a table or by an analytic function.

Cost functions can be manipulated by two operations. For two cost functions
wS and wS′ , the combination wS ⊕ wS′ is a cost function wS∪S′ defined as
wS∪S′(t) = wS(t[S]) +wS′(t[S′]). The marginal wS↓S′ of wS on S′ ⊂ S is a cost
function over S′ defined as wS↓S′ (t′) = mint∈DS ,t[S′]=t′ wS(t) for all t′ ∈ DS′ .

The weighted Constraint Satisfaction Problem is to find a complete assign-
ment t minimizing the combined cost function

∑
wS∈W wS(t[S]). This optimal

cost can be defined using combination and marginalization as (
⊕

wS∈W wS)↓∅.
This optimization problem has an associated NP-complete decision problem.

The hypergraph of a WCSP is an hypergraph H = (X,E) with one vertex for
each variable and one hyperedge S for every cost function wS ∈ W . The primal
graph of H is an undirected graph G = (X,F) s.t. there is an edge (i, j) ∈ F for
any two vertices i, j ∈ X that appear in the same hyperedge S in H .

A tree decomposition for a WCSP (X,W) is a triple (T, χ, ψ) where T =
(V,E) is a tree and χ, ψ are labelling functions that associate with each vertex
v ∈ V a set of variables χ(v) ⊆ X and a set of cost functions ψ(v) ⊆ W s.t.:

1. for each wS ∈ W , there is exactly one vertex v ∈ V s.t. wS ∈ ψ(v)
2. if wS ∈ ψ(v) then S ⊆ χ(v)
3. ∀i ∈ X , the set {v ∈ V | i ∈ χ(v)}} induces a connected subtree of T .

The treewidth of a tree decomposition, denoted by w, is the size of the largest
set χ(v) minus one. For a given v ∈ V , the WCSP (χ(v), ψ(v)) is a subproblem of
the master WCSP (X,W). Two subproblems defined by two vertices in the tree
may share variables, but not cost functions (property 1). A tree decomposition
can be rooted by choosing a root v ∈ V . For a vertex v ∈ V , the separator of v

Parallel Non Serial Dynamic Programming for WCSP 55

is s(v) = χ(v)∩χ(father(v)) (where father(v) is the father of v in T or ∅ for the
root). The variables of χ(v) \ s(v) are said to be the proper variables of v.

The rationale behind tree decompositions is that acyclic problems can be
solved with a good theoretical complexity as it decomposes a master problem in
subproblems (called clusters) organized as a tree.

0
1

23

45

6

7

8

9

10

11

1213

14
15

16

1718

19

20

21

22
23

24

2526

27

28

29

30
31

32

33

34

35

36

37

38

39

40

41

42

43

44 45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63 64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

4v

3v

5v

1v

6v

7v

2v

4v

3

1

2

5

6

7v

v

v

v

v

v

This is illustrated on the right,
where the graph of a frequency
assignment problem is covered by
clusters (the sets χ(v)) defining a tree
decomposition. Locality of informa-
tion in space or time often yield such
nice decompositions in real problems.

Different algorithms have been
proposed to exploit such tree decom-
positions. We focus in this paper on
elimination algorithms such as vari-
able or bucket elimination (BE) [3,1].
In BE, a variable is chosen, all the
cost functions that involve this vari-
able are removed from the problem,
and the marginal of the combination of these functions on the rest of the prob-
lem is added to the original problem. The problem obtained has one less variable
and the same optimal cost as the original problem [3]. By repeatedly eliminating
all variables, we ultimately get the optimal cost. One can show [5] that an im-
plicit rooted tree decomposition lies behind BE and the complexity of the whole
elimination process depends on this tree decomposition.

Instead of eliminating one variable after the other, one may eliminate several
variables at once. This is called block-by-block elimination [1]. Typically, all
the proper variables of a leaf cluster v ∈ T are eliminated in one step. This
is done repeatedly until the root cluster is eliminated, leaving the optimal cost
to read as a constant. This approach has been sophisticated in Cluster Tree
Elimination (CTE [5]) which may compute the marginals for each variable in
two passes. Such algorithms have been parallelized in the context of inference,
with no pruning [13].

3 Parallelization of Block by Block Elimination

In this paper, since we are just interested in computing the global optimum,
we use the one pass block-by-block elimination algorithm described in [1] for
optimization and adapt it to WCSP. Given an initial WCSP (X,W) together
with a tree decomposition (T, χ, ψ) of the WCSP, the elementary action of the
algorithm is to process a leaf cluster v ∈ T , by eliminating all its proper variables:

1. we compute the marginal cost function F on the separator s(v):

F = (
⊕

wS∈ψ(v)

wS)↓s(v)

56 D. Allouche, S. de Givry, and T. Schiex

2. we remove v from T , ψ(v) from W and all proper variables of v from X
3. we add F to both ψ(father(v)) and W

As in BE, the problem obtained has less variables and the same optimum [1] and
the updated triple (T, χ, ψ) is a tree decomposition of this problem. The process
can be repeated on any leaf of the new tree T until an empty tree is obtained.
The last marginal function F computed is a constant (a marginal on an empty
set of variables) and its value is the optimum of the problem.

Theorem 1. The time complexity for processing one cluster v ∈ T is O((|ψ(v)|+
#sons).d|χ(v)|) and the space complexity is O(d|s(v)|) where d is the domain size
and #sons the number of sons of v in the original T .

Proof. There are at most d|χ(v)| costs to compute and ((|ψ(v)| + #sons) cost
functions in v. For space, there are d|s(v)| costs to store for the projection.

The overall sequential complexity is obtained by summing on all clusters leading
to a time complexity of O((e + |T |).dw) and a space complexity of O(|T |.dr)
where w is the treewidth and r = maxv(|s(v)|) is the maximum separator size.
To parallelize this algorithm, two sources of non determinism can be exploited.

– The first lies in the computation of the marginal cost function F . It can be
computed independently for each possible assignment t of the separator s(v)
by assigning the separator variables with t in the WCSP (χ(v), ψ(v)) and
solving the WCSP obtained using a state-of-the-art DFBB algorithm.

– the second source of non determinism lies in the fact that the tree T may
have several leaves. Whenever all the sons of a vertex v ∈ T have been
processed, v becomes a leaf and can be processed.

To get an idea of the speedups that can be reached in ideal (inexistent) con-
ditions, we consider a PRAM machine with an unbounded number of cores, a
constant time memory access, with a constant sequential setup time “s“ for
starting a new process.

Theorem 2. With an unbounded number of cores, the time complexity for pro-
cessing one cluster v is O((|ψ(v)|+#sons).d|χ(v)−s(v)|)+s.d|s(v)|) and the space
complexity is O(d|s(v)|).

Proof. The complexity of solving (χ(v), ψ(v)) after its separator assignment is
O(|ψ(v)| + #sons).d|χ(v)−s(v)|) since only |χ(v) − s(v)| variables remain unas-
signed. In parallel, the complete projection can be done in the same bound. The
extra setup time for the d|s(v)| jobs is O(s.d|s(v)|).

Since a cluster v cannot be processed until all its sons have been processed, the
overall complexity is controlled by the longest path from the root to any leaf
where the length of a path is the sum of the processing times of its clusters.

Compared to the sequential complexity, one see the impact of the sources of
parallelism exploited. The separator assignment based parallization shifts com-
plexity from an exponential in w (max. cluster size) to one in the maximum
number of proper variables but we get an additive (instead of multiplicative) ex-
ponential term in r (max. separator size). The use of the T itself as a source of
parallelism replaces a factor related to tree size by a factor related to its height.

Parallel Non Serial Dynamic Programming for WCSP 57

4 Producing a Suitable Tree Decomposition

There has been a lot of work on tree decompositions. Usually, the problem con-
sidered is to produce a decomposition with a minimum treewidth, an NP-hard
problem. We used Min-Fill and MCS heuristics, very usual heuristics aimed at
the production of tree-decompositions with small treewidth [10].

Because of space complexity, separator size, instead of treewidth, is the main
restricting factor for elimination algorithms. In our case, this is reinforced by the
influence of setup times on time complexity. More precisely, for a separator s(v),
the limiting factor is the associated separator space SS(v), defined as the size of
the Cartesian product of the domains. These can be summed up over all v ∈ T
to compute the overall separator space (and number of jobs) associated with the
decomposition. We use decompositions with a bounded separator space.

A traditional approach to get rid of a large separator is the so-called “super-
bucket” approach [5] which simply consists in merging the two separated clusters
v and father(v) into one if the separator s(v) contains more than rmax variables.

From the theoretical parallel complexity, one should a priori favor decom-
positions with a small maximum number of proper variables. However, time
complexity is controlled by a tight (s.dr) term for setup times and a much looser
upper bound in O(dp) for solving assigned problems.

0
1

23

45

6

7

8

9

10

11

1213

14
15

16

1718

19

20

21

22
23

24

2526

27

28

29

30
31

32

33

34

35

36

37

38

39

40

41

42

43

44 45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63 64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

3v

5v

1v

7v

2v

3

1

2

5

7v

v

v

v

v

Therefore, the number of proper
variables should not be too small or
the overall time will be dominated
by setup times. We therefore extend
the “super-bucket” strategy, merging
a cluster v with father(v) whenever
the number of proper variables of v
is smaller than a bound xmin.

In the previously shown tree de-
composition, we merge v3 and v4 be-
cause the separator space is too large,
and similarly we merge v5 and v6
because v6 has too little proper vari-
ables, leading to the updated tree de-
composition in the figure on the right.

Note that our elimination algorithm computes the cost of an optimal solution,
but not the optimal solution itself. Producing an optimal solution afterwards can
be done by solving each cluster once from root to leaves, using the projection of
the optimal solution found for the father cluster on the separator of the current
cluster as the initial values of the separator variables of the son. This takes less
time than calculating the minimum cost itself.

5 Implementation and Results

To evaluate the practical interest of parallel block-by-block elimination, we have
experimented it on hard decomposable problems. We preprocess a WCSP by

58 D. Allouche, S. de Givry, and T. Schiex

eliminating all variables with a small degree (2 or 3). An initial tree decomposi-
tion is produced by the Min-Fill and MCS heuristics [10]. For all values of rmax
and xmin in [1, 25] and [1, 33] respectively, the super-bucket strategy is applied
and the corresponding separator space SS and treewidth w are computed. If no
decomposition with SS ≤ 2.106 exists, the method is said to be unsuitable for
this instance. Else, we select a decomposition with minimum treewidth, unless
an alternative decomposition exists that has a treewidth close to the minimum
and a significantly smaller separator space (used for instances with a ∗ in the
table below). The decomposition is rooted in the cluster with maximum |χ(v)|.

This process has been applied to the CELAR radio link frequency assignment
instances scen06, scen07, and scen08 (still open) and to hard genetics haplo-
typing instances, which have been tackled by a parallel AND/OR branch and
bound approach in [9]. Name |X | d |W | w |T | SS rmax xmin

scen06* 82 44 409 40 7 3.105 3 3
scen07* 162 44 927 56 5 4.104 3 13
scen08 365 44 1905 85 13 2.106 4 15
ped7* 293 4 667 141 28 2.105 14 5

ped19* 484 5 1092 79 40 1.106 15 7
ped31* 513 5 1106 132 300 4.105 12 1

The table on the right gives,
for each instance, the number
of variables, maximum domain
size, cost functions, treewidth,
number of clusters and separa-
tor space obtained after prepro-
cessing and “super-bucketing”
with corresponding rmax and xmin (using MCS for scen* and Min-Fill for ped*).

The resolution of the WCSP (χ(v), ψ(v)) with a specific separator assignment
is done using a Depth First Branch and Bound (DFBB) algorithm maintaining
Existential Directional Arc Consistency [6] with a variable ordering combining
Weighted Degree with Last Conflict [8] and using an upper bound produced by
an initial restart strategy using Limited Discrepancy Search with a randomized
variable ordering. Cost functions of arity above 3 are preprojected onto binary
and ternary scopes. This corresponds to executing toulbar21 with options hlL.

The parallel elimination process has been performed on a cluster with 400
cores (L5420 Xeon, 2.5 GHz with 4GB RAM per core) managed by the Sun
Grid Engine. SGE uses a “fair share” strategy which may drastically change the
number of cores allocated during execution. This makes a precise analysis of the
effect of parallelization impossible. We therefore measured the CPU-time, num-
ber of nodes and backtracks of every toulbar2 execution. These times are used
as input to a k-core simulator using real individual CPU- times. This simulation
is played for different numbers of cores (k = 1, 15, 100, 1,000) using a 10 second
job setup time for multi-core executions only (this is the scheduler interval
used in the SGE configuration and it is consistent with real time: scen08 took less
than 2 days to solve). Each job is in charge of solving 100 separator assignments.
For two instances, solved with 100 reserved cores, we report the wall-clock time
(inside parenthesis). We then give the CPU-time (on the same hardware, 1 core)
of BTD-RDS [11], a state-of-the-art sequential branch and bound algorithm ex-
ploiting the same tree decomposition. A“-” indicates the problem could not be

1 http://mulcyber.toulouse.inra.fr/projects/toulbar2 version 0.9.1.2.

Parallel Non Serial Dynamic Programming for WCSP 59

solved after 7 days. Finally, lower/upper bounds on the time needed to rebuild
a solution on 1 core (sum of the min/max time in each cluster) is given.

Name 1 core 15 cores 102 cores 103 cores Btd-Rds rebuild (l/u)
scen06 13h 08’ 1h 28’ 15’ 39” (20’ 53”) 3’ 32” 1’ 26” 2’ 44”/2’47”
scen07 1d 6h 2h09’ 23’ 27” (42’02”) 10’ 07” - 3’08”/3’ 10”
scen08 127d14h 8d 15h 1d 7h 3h 13’ - 1h 32’/1h37’

ped7 40’ 52” 22’ 55” 3’ 37” 35” 1’ 6” 11”/11”
ped19 30d 3h 2d2h 7h 32’ 58’ 18” 1d, 12h 1’ 17”/1’47”
ped31 20’ 27” 41’ 03” 6’ 55” 1’ 25” 3h 37’ 44”/45”

For the smallest scen06 problem, which is easily solved using BTD-RDS, the
approach is counter productive. For harder RLFAP problems, block elimination
is capable of exploiting the full power of parallelism, enabling us to solve for
the first time scen08 to optimality. The haplotyping problem instances ped7,
19 and 31 have been selected among the hard instances solved in [9] using a
parallel AND/OR branch and bound with mini-buckets on similar CPUs. Our
decomposition strategy gives again good results. If ped7 is too simple (less than
2′ with BTD-RDS) to benefit from parallelization, for ped19 and ped31, we
obtain good results. The elimination algorithm can be slower on 15 cores than
on 1 core because of the 10” setup times. This is the case for ped31, because the
100 assignment jobs have a duration which is very short compared to setup time.
In this case, a large part of the gain comes from the elimination algorithm itself,
which is more efficient than BTD-RDS even in a sequential context. These times
can be compared, with caution (these are simulated executions), with the best
parallel (15 cores) times of [9]: 53’56”, 8h59’ and 2h09’ respectively: elimination,
which is restricted to decomposable problems, gives better results on 100 cores.
Contrarily to [9], which observed a large variability in the job durations, we
observed a relatively limited variability of job durations inside a cluster. This
could be explained by the small separator sizes (the different problems solved
for a given cluster are not so different) and the upper-bounding procedure that
adapts to each assignment. Note that sufficient separator space is needed to avoid
starvation which occurs for example in scen07 on 1000 cores: scen07 defines only
400 jobs of 100 assignments. However, on the problems tested, job granularity
seems relatively well handled by our super-bucket strategy. It could be improved
by tuning the number of assignments per jobs according to the separator space,
number of cores, tree decomposition topology and mean job duration.

6 Conclusion and Future Work

This paper presents a parallelization of an elimination algorithm for WCSP. The
approach is suitable for difficult problems that can be decomposed into a tree-
decomposition with small separator size. This can be tested beforehand. Two
sources of parallelization have been used in this process: the dominating one is
based on partial problem assignments in separators, the second one comes from
the branching of the tree-decomposition itself. The application of our prototype

60 D. Allouche, S. de Givry, and T. Schiex

on different real hard decomposable problems shows that a large number of cores
can be effectively exploited to solve hard WCSP. This allowed us to solve to opti-
mality the last CELAR radio link frequency assignment problem open instance.

Obviously, more extensive experiments are needed on other decomposable
problems. Beyond this, the most obvious way to improve the method is to tune
the granularity of the jobs processed. We have used the super-bucket strategy
and a fixed number of assignment solved per job to reach a suitable granularity,
with good results on hard problems. Such tuning should ideally be done based
on the problem at hand or even better, dynamically, as it is done in Branch and
and Bound parallelization. Existing B&B parallization strategies could also be
exploited inside each cluster resolution. Ultimately smarter scheduling strategies,
taking into account precedences between clusters, could further improve the
overall efficiency of the implementation.

Acknowledgments. This work is partly supported by Toulouse Midi-Pyrénées
bioinformatic platform.

References

1. Bertelé, U., Brioshi, F.: Nonserial Dynamic Programming. Academic Press, London

(1972)

2. Cabon, B., de Givry, S., Lobjois, L., Schiex, T., Warners, J.: Radio link frequency

assignment. Constraints 4, 79–89 (1999)

3. Dechter, R.: Bucket elimination: A unifying framework for reasoning. Artificial

Intelligence 113(1-2), 41–85 (1999)

4. Dechter, R., Pearl, J.: Tree clustering for constraint networks. Artificial Intelli-

gence 38, 353–366 (1989)

5. Kask, K., Dechter, R., Larrosa, J., Dechter, A.: Unifying Cluster-Tree Decomposi-

tions for Reasoning in Graphical models. Artificial Intelligence 166(1-2), 165–193

(2005)

6. Larrosa, J., de Givry, S., Heras, F., Zytnicki, M.: Existential arc consistency: get-

ting closer to full arc consistency in weighted CSPs. In: Proc. of the 19th IJCAI,

Edinburgh, Scotland, pp. 84–89 (August 2005)

7. Lauritzen, S., Spiegelhalter, D.: Local computations with probabilities on graphical

structures and their application to expert systems. Journal of the Royal Statistical

Society – Series B 50, 157–224 (1988)

8. Lecoutre, C., Säıs, L., Tabary, S., Vidal, V.: Reasoning from last conflict(s) in

constraint programming. Artificial Intelligence 173, 1592–1614 (2009)

9. Otten, L., Dechter, R.: Towards parallel search for optimization in graphical mod-

els. In: Proc. of ISAIM 2010. Fort Lauderdale (FL), USA (2010)

10. Rose, D.: Tringulated graphs and the elimination process. Journal of Mathematical

Analysis and its Applications 32 (1970)

11. Sanchez, M., Allouche, D., de Givry, S., Schiex, T.: Russian doll search with tree

decomposition. In: Proc. IJCAI 2009, San Diego, CA, USA, pp. 603–608 (2009)

12. Schiex, T., Fargier, H., Verfaillie, G.: Valued constraint satisfaction problems: hard

and easy problems. In: Proc. of the 14th IJCAI, Montréal, Canada, pp. 631–637

(August 1995)

13. Xia, Y., Prasanna, V.: Parallel Exact Inference. In: Bischof, C., Bücker, M., Gibbon,

P. (eds.) Parallel Computing 2007. NIC, vol. 38, pp. 185–192. John von Neumann

Institute for Computing (September 2007)

Making Adaptive an Interval Constraint
Propagation Algorithm Exploiting Monotonicity

Ignacio Araya, Gilles Trombettoni, and Bertrand Neveu

UTFSM (Chile), INRIA, Univ. Nice–Sophia, Imagine LIGM Univ. Paris–Est (France)

iaraya@inf.utfsm.cl, {Gilles.Trombettoni,Bertrand.Neveu}@sophia.inria.fr

Abstract. A new interval constraint propagation algorithm, called

MOnotonic Hull Consistency (Mohc), has recently been proposed. Mohc
exploits monotonicity of functions to better filter variable domains. Em-

bedded in an interval-based solver, Mohc shows very high performance

for solving systems of numerical constraints (equations or inequalities)

over the reals. However, the main drawback is that its revise procedure

depends on two user-defined parameters.

This paper reports a rigourous empirical study resulting in a variant of

Mohc that avoids a manual tuning of the parameters. In particular, we

propose a policy to adjust in an auto-adaptive way, during the search,

the parameter sensitive to the monotonicity of the revised function.

1 Introduction

Interval-based solvers can solve systems of numerical constraints, i.e., nonlinear
equations or inequalities over the reals. Their reliability and increasing perfor-
mance make them applicable to various domains such as robotics design [10],
dynamic systems in robust control or robot localization [8], robust global opti-
mization [7,12] and bounded-error parameter estimation [6].

To find all the solutions of a numerical CSP, an interval-based solving strategy
starts from an initial search space called a box (an interval for every variable in
the handled system) and builds a search tree by following a Branch & Contract
scheme. Filtering or contraction algorithms reduce the search space, i.e., improve
the bounds of the corresponding variable intervals, with no loss of solution.
Mohc is a new contraction algorithm based on interval constraint propagation [2].
Mohc-Revise exploits monotonicity of functions to improve contraction/filtering.
Monotonicity is generally verified for a few functions at the top of the search
tree, but can be detected for more functions when smaller boxes are handled.
In practice, experiments shown in [2,1] highlight very high performance of Mohc,
in particular when it is used inside 3BCID [13]. The combination 3BCID(Mohc)
appears to be state of the art in this area.

The Mohc-Revise algorithm handles two user-defined parameters falling in
[0, 1]: a precision ratio ε and another parameter called τmohc that reflects a
sensitivity to the degree of monotonicity of the handled function f . This paper
mainly presents a rigourous empirical study leading to a policy for tuning τmohc

in an adaptive way for every function f . An adjustment procedure is run in a

D. Cohen (Ed.): CP 2010, LNCS 6308, pp. 61–68, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

62 I. Araya, G. Trombettoni, and B. Neveu

preprocessing phase called at every node of the search tree. Its cost is negligible
when Mohc is called in combination with 3BCID.

2 Intervals and Numerical CSPs

Intervals allow reliable computations on computers by managing floating-point
bounds and outward rounding.

Definition 1 (Basic definitions, notations)
IR denotes the set of intervals [v] = [a, b] ⊂ R, where a, also denoted v, and b,
also denoted v, are floating-point numbers.
Diam([v]) := v − v denotes the size, or diameter, of [v].
A box [V] = ([v1], ..., [vn]) represents the Cartesian product [v1]× ...× [vn].

Interval arithmetic has been defined to extend to IR elementary functions over
R [11]. For instance, the interval sum is defined by [v1]+ [v2] = [v1 + v2, v1 + v2].
When a function f is a composition of elementary functions, an extension of
f to intervals IR must be defined to ensure a conservative image computation.
The natural extension [f]N of a real function f replaces the real arithmetic by
the interval arithmetic. The monotonicity-based extension is particularly useful
in this paper. A function f is monotonic w.r.t. a variable v in a given box [V] if
the evaluation of the partial derivative of f w.r.t. v is positive (resp. negative)
or null in every point of [V]. For the sake of conciseness, we sometimes write
that the variable v is monotonic.

Definition 2 (fmin, fmax, monotonicity-based extension)
Let f be a function defined on variables V of domains [V]. Let X ⊆ V be

a subset of monotonic variables. Consider the values x+
i and x−

i such that: if
xi ∈ X is an increasing (resp. decreasing) variable, then x−

i = xi and x+
i = xi

(resp. x−
i = xi and x+

i = xi). Consider W = V \ X the set of variables not
detected monotonic. Then, we define

fmin(W) = f(x−
1 , ..., x−

n , W)
fmax(W) = f(x+

1 , ..., x+
n , W)

Finally, the monotonicity-based extension [f]M of f in the box [V] produces the
interval image [f]M ([V]) =

[
[fmin]N ([W]), [fmax]N ([W])

]
.

Consider for example f(x1, x2, w) = −x2
1 + x1x2 + x2w − 3w.

[f]N ([6, 8], [2, 4], [7, 15]) = −[6, 8]2 + [6, 8]× [2, 4] + [2, 4]× [7, 15]− 3 × [7, 15] =
[−83, 35]. ∂f

∂x1
(x1, x2) = −2x1 + x2. Since [∂f

∂x1
]N ([6, 8], [2, 4]) = [−14,−8] < 0,

we deduce that f is decreasing w.r.t. x1. With the same reasoning, x2 is increas-
ing and w is not detected monotonic. Following Def. 2, the monotonicity-based
evaluation yields:

[f]M([V]) =
�
[f]N (x1, x2, [w]), [f]N (x1, x2, [w])

�
=

�
[f]N (8, 2, [7, 15]), [f]N (6, 4, [7, 15])

�
= [−79, 27]

Making Adaptive an Interval Constraint Propagation Algorithm 63

The dependency problem is the main issue of interval arithmetic. It is due
to multiple occurrences of a same variable in an expression that are handled
as different variables by interval arithmetic and produce an overestimation of
the interval image. Since the monotonicity-based extension replaces intervals by
bounds, it suppresses the dependency problem for the monotonic variables. It
explains why the interval image computed by [f]M is sharper than or equal to
the one produced by [f]N .

This paper deals with nonlinear systems of constraints or numerical CSPs.

Definition 3 (NCSP). A numerical CSP P = (V, C, [V]) contains a set of
constraints C, a set V of n variables with domains [V] ∈ IR

n.
A solution S ∈ [V] to P satisfies all the constraints in C.

The interval-based solving strategies follow a Branch & Contract process to find
all the solutions of an NCSP. We present two existing interval constraint
propagation algorithms for contracting the current box in the search tree with
no loss of solution. HC4 and Box [3,14] perform a constraint propagation loop
and differ in their revise procedure handling the constraints individually. The
procedure HC4-Revise traverses twice the tree representing the mathematical
expression of the constraint for narrowing all the involved variable intervals.
Since the different occurrences of a same variable are handled as different vari-
ables, HC4-Revise is far from bringing an optimal contraction (dependency prob-
lem). The BoxNarrow revise procedure of Box is more costly and stronger than
HC4-Revise [5]. For every pair (f, x), where f is a function of the considered
NCSP and x is a variable involved in f , BoxNarrow first replaces the other a vari-
ables in f by their interval [y1], ..., [ya]. Then, it uses a shaving principle where
slices [xi] at the bounds of [x] that do not satisfy the constraint are eliminated
from [x]. BoxNarrow is not optimal in case the variables yi different from x also
have multiple occurrences.

These algorithms are used in our experiments as sub-contractor of 3BCID [13],
a variant of 3B [9]. 3B uses a shaving refutation principle that splits an interval
into slices. A slice at the bounds is discarded if calling a sub-contractor (e.g.,
HC4) on the resulting subproblem leads to no solution.

3 Overview of the Mohc Algorithm

The MOnotonic Hull-Consistency algorithm (in short Mohc) is a recent constraint
propagation algorithm that exploits monotonicity of functions to better contract
a box [2]. The contraction brought by Mohc-Revise is optimal (with a precision
ε) when f is monotonic w.r.t. every variable x involved in f in the current
box. Mohc has been implemented with the interval-based C++ library Ibex [4].
It follows a standard propagation loop and calls the Mohc-Revise procedure for
handling one constraint f(V) = 0 individually (see Algorithm 1).

Mohc-Revise starts by calling HC4-Revise. The monotonicity-based contrac-
tion procedures (i.e., MinMaxRevise and MonotonicBoxNarrow) are then called
only if V contains at least one variable that appears several times (function

64 I. Araya, G. Trombettoni, and B. Neveu

Algorithm 1. Mohc-Revise (in-out [V]; in f , V , ρmohc, τmohc, ε)
HC4-Revise (f(V) = 0, [V])

if MultipleOccurrences(V) and ρmohc[f] < τmohc then
(X, Y, W, fmax, fmin, [G])← PreProcessing(f, V, [V])

MinMaxRevise ([V], fmax, fmin, Y, W)

MonotonicBoxNarrow ([V], fmax, fmin, X, [G], ε)
end if

MultipleOccurrences). The other condition is detailed below. The procedure
PreProcessing computes the gradient of f (stored in the vector [G]) and deter-
mines the two functions fmin and fmax, introduced in Definition 2, that exploit
the monotonicity of f . The gradient is also used to partition the variables in V
into three subsets X , Y and W :

– variables in X are monotonic and occur several times in f ,
– variables in Y occur once in f (they may be monotonic),
– variables w ∈W appear several times in f and are not detected monotonic,

i.e., 0 ∈ [∂f
∂w]N ([V]). (They might be monotonic – due to the overestimation

of the evaluation – but are considered and handled as non monotonic.)

The next two routines are in the heart of Mohc-Revise. Using the monotonicity of
fmin and fmax, MinMaxRevise contracts [Y] and [W] while MonotonicBoxNarrow
contracts [X]. MinMaxRevise is a monotonic version of HC4-Revise. It applies
HC4-Revise on the two constraints: fmin([Y ∪W]) ≤ 0 and 0 ≤ fmax([Y ∪W]).
MonotonicBoxNarrow performs a loop on every monotonic variable x ∈ X . If f is
increasing w.r.t. x, it performs a first binary search with fmax to improve x, and
a second one with fmin to improve x. A binary search runs in time O(log(1

ε)),
where ε is a user-defined precision parameter expressed as a percentage of the
interval size.

The user-defined parameter τmohc ∈ [0, 1] allows the monotonicity-based pro-
cedures to be called more or less often during the search (see Algorithm 1). For
every constraint, the procedures exploiting monotonicity of f are called only if
ρmohc[f] < τmohc. The ratio ρmohc[f] = Diam([f]M ([V]))

Diam([f]N ([V])) indicates whether the
monotonicity-based image of a function is sufficiently sharper than the natural
one. ρmohc[f] is computed in a preprocessing procedure called after every bi-
section/branching. Since more cases of monotonicity occur on smaller boxes,
Mohc-Revise activates in an adaptive way the machinery related to monotonic-
ity. This ratio is relevant for the bottom-up evaluation phases of MinMaxRevise,
and also for MonotonicBoxNarrow in which a lot of evaluations are performed.

4 Making Mohc Auto-Adaptive

The procedure Mohc-Revise has two user-defined parameters, whereas Box-
Narrow has one parameter and HC4-Revise has no parameter. The goal of this
paper is to avoid the user fixing the parameters of Mohc-Revise.

Making Adaptive an Interval Constraint Propagation Algorithm 65

All the experiments have been conducted on the same Intel 6600 2.4 GHz
over 17 NCSPs with a finite number of zero-dimensional solutions issued from
COPRIN’s web page maintained by J.-P. Merlet.1 Ref. [2] details the criteria
used to select these NCSPs with multiple occurrences.2 All the solving strate-
gies use a round-robin variable selection. Between two branching points, three
procedures are called in sequence. First, a monotonicity-based existence test [1]
cuts the current branch if the image computed by a function does not contain
zero. Second, the evaluated contractor is called : 3BCID(Mohc) or 3BCID(Amohc)
where Amohc denotes an auto-adaptive variant of Mohc. Third, an interval New-
ton is run. The shaving precision ratio in 3BCID is 10% ; a constraint is pushed
into the propagation queue if the interval of one of its variables is reduced more
than 10%.

We have first studied how the ratio Time(3BCID(Mohc))
Time(3BCID(LazyMohc)) evolves when ε

decreases, i.e., when the required precision in MonotonicBoxNarrow increases.
LazyMohc [1] is a variant of Mohc that does not call MonotonicBoxNarrow. The
measured ratio thus underlines the additional contraction brought by this binary
search. For all the tested instances, the best value of ε falls between 1

32 and 1
8 ,

which led us to fix ε to 10%. Further decreasing ε turns out to be a bad idea
since the ratio remains quasi-constant (see Fig. 4.4–left in [1]).

The main contribution of this paper is an empirical analysis that has led us
to an automatic tuning of the τmohc parameter during the search.

Table 1 contains the main results useful for our analysis. It reports the CPU
time (first row of a multi-row) required by the solving strategy described above
(based on 3BCID(Mohc)) in function of τmohc. The NCSPs are sorted by decreas-
ing gains in performance of 3BCID(Amohc) w.r.t. 3BCID(HC4) (column G/3B).
The entries of columns 2 to 10 also contain (second row of a multi-row) a gain
falling in [0, 1]. The gain is Time(3BCID(Mohc))

Time(3BCID(Oracle)) , where Oracle is a theoretical
Mohc variant that would be able to select the best value (yielding the results in
bold in the table) for τmohc.

The first 10 columns highlight that the best value of τmohc nearly always falls
in the range [50%, 99.99%]. The value 50% yields always better results than (or
similar to) τmohc = 40% or less [1]. Also, τmohc = 99.99% is better than or similar
to 100% (except in ButcherA). Note that Mohc with τmohc = 0% is identical to
HC4 (see Algorithm 1).

Second, a significant correlation can be observed on Table 1 and on the
graphic shown in Fig. 1. The curves show how the application frequency of
the monotonicity-based procedures (number of calls(ρmohc [f]<τmohc)

number of calls(Mohc−Revise)) evolves when
τmohc increases. (Of course, the frequency becomes 1 when τmohc = 1.) The
correlation can be observed vertically for any value of τmohc, although this is
clearer for intermediate values. For instance, with the abscissa τmohc = 60%,

1 See www-sop.inria.fr/coprin/logiciels/ALIAS/Benches/benches.html
2 Compared to [2], the NCSP kin1 has been removed because it can be solved with

3BCID(HC4) in less than 100 choice points. ButcherB has been added. ButcherA (with

[a] = [−50,−1.1]) and ButcherB (with [a] = [−0.9, 50]) are two sub-instances of the

NCSP Butcher. Merlet has manually removed the value a = 1 to avoid a singularity...

66 I. Araya, G. Trombettoni, and B. Neveu

Table 1. Experimental results. The column G/3B =
Time(3BCID(HC4))

Time(3BCID(Amohc))
highlights

the gain of our 3BCID(Amohc) contractor w.r.t. the standard 3BCID(HC4) (column 2).

NCSP Mohc Amohc G/3B Amohc
#var #sol τmohc 0% 40% 50% 60% 70% 80% 90% 99.99% 100% policy1 policy 2
ButcherA 492480 67134 33560 16380 9317 6134 4071 3138 2949 3371 146 3988
8 3 0.01 0.04 0.09 0.18 0.32 0.48 0.72 0.94 1 0.87 0.74

DirectKin 29882 2911 1479 1075 741 608 599 605 680 617 48.4 960
11 2 0.02 0.21 0.41 0.56 0.81 0.98 1 0.99 0.88 0.97 0.62

Virasoro 12863 9268 5338 3050 1844 1660 1657 1544 1554 1552 8.29 2047
8 224 0.12 0.17 0.29 0.51 0.84 0.93 0.93 1 0.99 1 0.75

ButcherB 3157 1752 1364 1100 914 705 579 471 479 459 6.87 474
8 3 0.15 0.27 0.35 0.43 0.52 0.67 0.81 1 0.98 1.03 1

Geneig 655 421 293 219 181 161 150 143 163 143 4.60 140
6 10 0.22 0.34 0.49 0.65 0.79 0.89 0.95 1 0.88 1 1.02

Yam.1-10 318 121 79.1 65.5 58.4 59.1 64.6 73.2 93.1 74.2 4.29 80.5
10 9 0.18 0.48 0.74 0.89 1 0.99 0.90 0.80 0.63 0.79 0.73

Hayes 73.1 54.9 52.8 47.2 32.2 21.1 21.5 23.1 22.8 20.8 3.51 23.5
4 1 0.29 0.38 0.4 0.45 0.66 1 0.98 0.92 0.93 1.01 0.9

Fourbar 1968 942 782 706 664 647 643 651 659 648 3.04 660
4 3 0.33 0.68 0.82 0.91 0.97 0.99 1 0.99 0.98 0.99 0.97

Trigo1-10 214 146 97.4 84.2 95.1 94.1 114 123 115 108 1.99 80.0
10 9 0.39 0.58 0.86 1 0.89 0.89 0.74 0.69 0.73 0.78 1.05

Pramanik 65.9 45.8 40.4 37.1 34.5 32.8 33.2 36.0 45.2 36.1 1.83 32.1
3 2 0.5 0.72 0.81 0.88 0.95 1 0.99 0.91 0.73 0.91 1.02

Caprasse 3.91 3.84 3.59 3.72 3.74 3.84 3.26 3.4 3.33 3.52 1.11 3.72
4 18 0.83 0.85 0.91 0.88 0.87 0.85 1 0.96 0.98 0.92 0.88

I5 87.0 82.9 80.0 77.1 75.6 74.6 73.6 79.0 180.2 79.5 1.09 78.0
10 30 0.85 0.89 0.92 0.95 0.97 0.99 1 0.93 0.41 0.93 0.94

Brent-10 33.3 33.3 32.7 33.0 35.6 44.9 50.6 73.5 72.7 32.7 1.02 52.5
10 1008 0.98 0.98 1 0.99 0.92 0.73 0.65 0.44 0.45 1 0.62

Trigexp2-11 139 136 136 136 139 136 140 182 225 136 1.02 193
11 0 0.98 1 1 1 0.98 1 0.97 0.75 0.61 1 0.71

Eco9 22.1 21.6 21.5 21.7 22.1 23.5 27.5 41.3 46.6 22.3 0.99 23.0
9 16 0.98 1 1 0.99 0.98 0.92 0.78 0.52 0.46 0.97 0.94

Redeco-8 9.58 9.58 9.61 9.75 9.89 10.9 12.2 16.9 19.5 9.78 0.98 10.2
8 8 1 1 1 0.98 0.97 0.88 0.78 0.57 0.49 0.98 0.94

Katsura-12 64.7 65.7 64.3 73.0 87.9 168 249 232 234 85.5 0.76 69.2
12 7 0.99 0.98 1 0.88 0.73 0.38 0.26 0.28 0.28 0.75 0.93

Average 0.52 0.62 0.71 0.77 0.83 0.86 0.85 0.80 0.73 0.94 0.87

the application frequencies of Katsura, Redeco, Eco9, Trigexp2, Brent and I5
are inferior to 10%. It appears that these instances are not very well solved
by 3BCID(Mohc) with τmohc = 100% (compared to 3BCID(HC4)). This suggests
that when the application frequency is low (resp. high), τmohc should rather be
tuned to a low (resp. high) value. Intuitively, a high frequency means that a lot
of monotonicity-based evaluations produce a sharp interval image, so that Mohc
should well exploit these sharp evaluations.

This study has led us to a simple auto-adaptive τmohc tuning policy following
three significant choices:

– Since Mohc-Revise exploits the monotonicity of a single function f , there is
no reason that τmohc be the same for all constraints. This prevented the user

Making Adaptive an Interval Constraint Propagation Algorithm 67

Fig. 1. Application frequency of the monot. Based procedures in function of τmohc.

from specifying a τmohc parameter for each function f , but this simplification
is no more relevant in an adaptive tuning policy.3

– For any constraint f , τmohc[f] is fixed to one of both values 50% and 99.99%.
Indeed, if we had an oracle able to select in any instance the best value
for τmohc among 50% and 99.99%, the loss in performance w.r.t. an oracle
knowing the best value of τmohc would be only 4%. τmohc = 50% (resp.
99.99%) is generally the most relevant value when the gain in CPU time of
3BCID(Mohc) compared to 3BCID(HC4) is the smallest (resp. greatest).

– The application frequency is updated at each node of the search tree. It is
more and more accurate as the number of measurements increases.

These choices lead to the tuning policy 1 based on Algorithm 2. The proce-
dure ComputeRhoMohc is run for every constraint at each node of the search
tree, before running the contraction procedures. nb calls[f] and nb interes-
ting[f], related to a given constraint f , are initialized to 0 before the search.
The ratios tau mohc[f] are set to 99.99% during the first 50 nodes before being
adjusted in ComputeRhoMohc. The results are not sensitive to a fine tuning of
RHO INTERESTING and TAU FREQ, empirically fixed to 65% and 10% respectively.

The performance of this policy is illustrated by the last line of Table 1. The
loss in performance w.r.t. an oracle knowing the best value of τmohc (τmohc being
common to all the constraints in a given NCSP) is 6% on average (at worst 25%;
around 0% in 7 NCSPs). The obtained average gain (94%) highlights that Amohc
is better than any fixed value of τmohc (i.e., 86% for τmohc = 80%). The column
G/3B is also very convincing because 3BCID(Amohc) and 3BCID(HC4) have the
same number of parameters, i.e., 0 coming from HC4-Revise and Amohc-Revise.

3 This explains why our auto-adaptive versions of Mohc sometimes (slightly) outper-

form the oracle so that the corresponding gains in the table are greater than 1.

68 I. Araya, G. Trombettoni, and B. Neveu

Algorithm 2. ComputeRhoMohc(in f : a function, V : variables, [V]: domains)
nb calls[f]++
rho mohc[f] ← Diam([f]M([V]))

Diam([f]N ([V]))
/* rho mohc[f] is computed */

if rho mohc[f] < RHO INTERESTING then nb interesting[f]++; end if
interesting freq ← nb interesting[f]

nb calls[f]

if nb calls[f] > 50 and interesting freq < TAU FREQ then
tau mohc[f] ← 50%

else
tau mohc[f] ← 99.99%

end if

An alternative policy 2 is based on contraction. Each time the monotonicity-
based procedures of Algorithm 1 are applied, two ratios of box perimeters are
computed: re is the gain in perimeter brought by HC4-Revise w.r.t. the initial
box; rm is the gain brought by MinMaxRevise+MonotonicBoxNarrow w.r.t. the
previous box. If rm is better (enough) than re, then τmohc is slightly incremented;
if re is better than rm, then it is decremented.

As shown in Table 1, the policy 2 is not so bad although less efficient than
the policy 1 on average (87%). Unfortunately, this adaptive policy is the worst
when Mohc is the most useful (e.g., see ButcherA, DirectKin, Virasoro).

References

1. Araya, I.: Exploiting Common Subexpressions and Monotonicity of Functions for

Filtering Algorithms over Intervals. PhD thesis, University of Nice–Sophia (2010)

2. Araya, I., Trombettoni, G., Neveu, B.: Exploiting Monotonicity in Interval Con-

straint Propagation. In: Proc. AAAI (to appear, 2010)

3. Benhamou, F., Goualard, F., Granvilliers, L., Puget, J.-F.: Revising Hull and Box

Consistency. In: Proc. ICLP, pp. 230–244 (1999)

4. Chabert, G.: Ibex – An Interval Based EXplorer (2010), http://www.ibex-lib.org
5. Collavizza, H., Delobel, F., Rueher, M.: Comparing Partial Consistencies. Reliable

Comp. 5(3), 213–228 (1999)

6. Jaulin, L.: Interval Constraint Propagation with Application to Bounded-error Es-

timation. Automatica 36, 1547–1552 (2000)

7. Kearfott, R.B.: Rigorous Global Search: Continuous Problems. Kluwer, Dordrecht

(1996)

8. Kieffer, M., Jaulin, L., Walter, E., Meizel, D.: Robust Autonomous Robot Local-

ization Using Interval Analysis. Reliable Computing 3(6), 337–361 (2000)

9. Lhomme, O.: Consistency Tech. for Numeric CSPs. In: IJCAI, pp. 232–238 (1993)

10. Merlet, J.-P.: Interval Analysis and Robotics. In: Symp. of Robotics Research

(2007)

11. Moore, R.E.: Interval Analysis. Prentice-Hall, Englewood Cliffs (1966)

12. Rueher, M., Goldsztejn, A., Lebbah, Y., Michel, C.: Capabilities of Constraint

Programming in Rigorous Global Optimization. In: NOLTA (2008)

13. Trombettoni, G., Chabert, G.: Constructive Interval Disjunction. In: Bessière, C.

(ed.) CP 2007. LNCS, vol. 4741, pp. 635–650. Springer, Heidelberg (2007)

14. Van Hentenryck, P., Michel, L., Deville, Y.: Numerica: A Modeling Language for

Global Optimization. MIT Press, Cambridge (1997)

http://www.ibex-lib.org

Improving the Performance of maxRPC

Thanasis Balafoutis1, Anastasia Paparrizou2, Kostas Stergiou1,2,�, and Toby Walsh3

1 Department of Information and Communication Systems Engineering,
University of the Aegean, Greece

2 Department of Informatics and Telecommunications Engineering,
University of Western Macedonia, Greece

3 NICTA, University of New South Wales, Australia

Abstract. Max Restricted Path Consistency (maxRPC) is a local consistency
for binary constraints that can achieve considerably stronger pruning than arc
consistency. However, existing maxRPC algorithms suffer from overheads and
redundancies as they can repeatedly perform many constraint checks without trig-
gering any value deletions. In this paper we propose techniques that can boost
the performance of maxRPC algorithms. These include the combined use of two
data structures to avoid many redundant constraint checks, and heuristics for the
efficient ordering and execution of certain operations. Based on these, we pro-
pose two closely related maxRPC algorithms. The first one has optimal O(end3)

time complexity, displays good performance when used stand-alone, but is ex-
pensive to apply during search. The second one has O(en2d4) time complex-
ity, but a restricted version with O(end4) complexity can be very efficient when
used during search. Both algorithms have O(ed) space complexity when used
stand-alone. However, the first algorithm has O(end) space complexity when
used during search, while the second retains the O(ed) complexity. Experimental
results demonstrate that the resulting methods constantly outperform previous al-
gorithms for maxRPC, often by large margins, and constitute a more than viable
alternative to arc consistency.

1 Introduction

maxRPC is a strong domain filtering consistency for binary constraints introduced in
1997 by Debruyne and Bessiere [5]. maxRPC achieves a stronger level of local consis-
tency than arc consistency (AC), and in [6] it was identified, along with singleton AC
(SAC), as a promising alternative to AC. Although SAC has received considerable at-
tention since, maxRPC has been comparatively overlooked. The basic idea of maxRPC
is to delete any value a of a variable x that has no arc consistency (AC) or path consis-
tency (PC) support in a variable y. A value b is an AC support for a if the two values
are compatible, and it is also a PC support for a if this pair of values is path consistent.
A pair of values (a, b) is path consistent iff for every third variable there exists at least
one value, called a PC witness, that is compatible with both a and b.

The first algorithm for maxRPC was proposed in [5], and two more algorithms have
been proposed since then [7,10]. The algorithms of [5] and [10] have been evaluated on

� Part of this work was carried out when the 3rd author was at NICTA, Australia.

D. Cohen (Ed.): CP 2010, LNCS 6308, pp. 69–83, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

70 T. Balafoutis et al.

random problems only, while the algorithm of [7] has not been experimentally evalu-
ated at all. Despite achieving considerable pruning, existing maxRRC algorithms suf-
fer from overhead and redundancies as they can repeatedly perform many constraint
checks without triggering any value deletions. These constraint checks occur when a
maxRPC algorithm searches for an AC support for a value and when, having located
one, it checks if it is also a PC support by looking for PC witnesses in other variables.
As a result, the use of maxRRC during search often slows down the search process
considerably compared to AC, despite the savings in search tree size.

In this paper we propose techniques to improve the applicability of maxRPC by
eliminating some of these redundancies while keeping a low space complexity. We also
investigate approximations of maxRPC that only make slightly fewer value deletions
in practice, while being significantly faster. We first demonstrate that we can avoid
many redundant constraint checks and speed up the search for AC and PC supports
through the careful and combined application of two data structures already used by
maxRPC and AC algorithms [7,10,2,8,9]. Based on this, we propose a coarse-grained
maxRPC algorithm called maxRPC3with optimal O(end3) time complexity. This algo-
rithm displays good performance when used stand-alone (e.g. for preprocessing), but is
expensive to apply during search. We then propose another maxRPC algorithm, called
maxRPC3rm. This algorithm has O(en2d4) time complexity, but a restricted version
with O(end4) complexity can be very efficient when used during search through the
use of residues. Both algorithms have O(ed) space complexity when used stand-alone.
However, maxRPC3 has O(end) space complexity when used during search, while
maxRPC3rm retains the O(ed) complexity.

Similar algorithmic improvements can be applied to light maxRPC (lmaxRPC), an
approximation of maxRPC [10]. This achieves a lesser level of consistency compared
to maxRPC but still stronger than AC, and is more cost-effective than maxRPC when
used during search. Experiments confirm that lmaxRPC is indeed a considerably better
option than maxRPC.

We also propose a number of heuristics that can be used to efficiently order the
searches for PC supports and witnesses. Interestingly, some of the proposed heuristics
not only reduce the number of constraint checks but also the number of visited nodes.

We make a detailed experimental evaluation of new and existing algorithms on vari-
ous problem classes. This is the first wide experimental study of algorithms for maxRPC
and its approximations on benchmark non-random problems. Results show that our
methods constantly outperform existing algorithms, often by large margins. When ap-
plied during search our best method offers up to one order of magnitude reduction in
constraint checks, while cpu times are improved up to four times compared to the best
existing algorithm. In addition, these speed-ups enable a search algorithm that applies
lmaxRPC to compete with or outperform MAC on many problems.

2 Background and Related Work

A Constraint Satisfaction Problem (CSP) is defined as a tuple (X,D,C) where: X =
{x1, . . . , xn} is a set of n variables, D = {D(x1), . . . , D(xn)} is a set of domains,
one for each variable, with maximum cardinality d, and C = {c1, . . . , ce} is a set of e

Improving the Performance of maxRPC 71

constraints. Each constraint c is a pair (var(c), rel(c)), where var(c) = {x1, . . . , xm}
is an ordered subset of X , and rel(c) is a subset of the Cartesian productD(x1)× . . .×
D(xm) that specifies the allowed combinations of values for the variables in var(c). In
the following, a binary constraint c with var(c) = {xi, xj} will be denoted by cij , and
D(xi) will denote the current domain of variable xi. Each tuple τ ∈ rel(c) is an ordered
list of values (a1, . . . , am) such that aj ∈ D(xj),j = 1, . . . ,m. A tuple τ ∈ rel(ci)
is valid iff none of the values in the tuple has been removed from the domain of the
corresponding variable.

The process which verifies whether a given tuple is allowed by a constraint c is called
a constraint check. A binary CSP is a CSP where each constraint involves at most two
variables. We assume that binary constraint checks are performed in constant time. In a
binary CSP, a value ai ∈ D(xi) is arc consistent (AC) iff for every constraint cij there
exists a value aj ∈ D(xj) s.t. the pair of values (ai, aj) satisfies cij . In this case aj is
called an AC-support of ai. A variable is AC iff all its values are AC. A problem is AC
iff there is no empty domain in D and all the variables in X are AC.

2.1 maxRPC

A value ai ∈ D(xi) is max restricted path consistent (maxRPC) iff it is AC and for
each constraint cij there exists a value aj ∈ D(xj) that is an AC-support of ai s.t. the
pair of values (ai, aj) is path consistent (PC) [5]. A pair of values (ai, aj) is PC iff for
any third variable xk there exists a value ak ∈ D(xk) s.t. ak is an AC-support of both
ai and aj . In this case aj is a PC-support of ai in xj and ak is a PC-witness for the
pair (ai, aj) in xk. A variable is maxRPC iff all its values are maxRPC. A problem is
maxRPC iff there is no empty domain and all variables are maxRPC.

To our knowledge, three algorithms for achieving maxRPC have been proposed
in the literature so far. The first one, called maxRPC1, is a fine-grained algorithm
based on AC6 and has optimal O(end3) time complexity and O(end) space complex-
ity [5]. The second algorithm, called maxRPC2, is a coarse-grained algorithm having
O(end3) time and O(ed) space complexity [7]. Finally, maxRPCrm is a coarse-grained
algorithm based on AC3rm [10]. The time and space complexities of maxRPCrm are
O(en2d4) and O(end) but it has some advantages compared to the other two because
of its lighter use of data structures. Among the three algorithms maxRPC2 seems to
be the most promising for stand-alone use as it has a better time and space complexity
than maxRPCrm without requiring heavy data structures or complex implementation
as maxRPC1 does. On the other hand, maxRPCrm can be better suited for use during
search as it avoids the costly maintainance of data structures.

Central to maxRPC2 is the LastPC data structure, as we call it here. For each con-
straint cij and each value ai ∈ D(xi), LastPCxi,ai,xj gives the most recently discov-
ered PC-support of ai in D(xj). maxRPC2 maintains this data structure incrementally.
This means that the data structure is copied when moving forward during search (i.e.
after a successfully propagated variable assignment) and restored when backtracking
(after a failed variable assignment). This results in the following behavior: When look-
ing for a PC-support for ai in D(xj), maxRPC2 first checks if LastPCxi,ai,xj is valid.
If it is not, it searches for a new PC-support starting from the value immediately after
LastPCxi,ai,xj in D(xj). In this way a good time complexity bound is achieved. On

72 T. Balafoutis et al.

the other hand, maxRPCrm uses a data structure similar to LastPC to store residues,
i.e. supports that have been discovered during execution and stored for future use, but
does not maintain this structure incrementally1. When looking for a PC-support for ai

in D(xj), if the residue LastPCxi,ai,xj is not valid then maxRPCrm searches for a
new PC-support from scratch in D(xj). This results in higher complexity, but crucially
does not require costly maintainance of the LastPC data structure during search.

A major overhead of both maxRPC2 and maxRPCrm is the following. When search-
ing for a PC-witness for a pair of values (ai, aj) in a third variable xk, they always start
the search from scratch, i.e. from the first available value in D(xk). As these searches
can be repeated many times during search, there can be many redundant constraint
checks. In contrast, maxRPC1 manages to avoid searching from scratch through the
use of an additional data structure. This saves many constraint checks, albeit resulting
in O(end) space complexity and requiring costly maintainance of this data structure
during search. The algorithms we describe below largely eliminate these redundant
constraint checks with lower space complexity, and in the case of maxRPC3rm with
only light use of data structures.

3 New Algorithms for maxRPC

We first recall the basic ideas of algorithms maxRPC2 and maxRPCrm as described in
[7] and [10]. Both algorithms use a propagation list L where variables whose domain
is pruned are added. Once a variable xj is removed from L all neighboring variables
are revised to delete any values that are no longer maxRPC. For any value ai of such
a variable xi there are two possible reasons for deletion. The first, which we call PC-
support loss hereafter, is when the unique PC-support aj ∈ D(xj) for ai has been
deleted. The second, which we call PC-witness loss hereafter, is when the unique PC-
witness aj ∈ D(xj) for the pair (ai, ak), where ak is the unique PC-support for ai on
some variable xk, has been deleted. In both cases value ai is no longer maxRPC.

We now give a unified description of algorithms maxRPC3 and maxRPC3rm. Both
algorithms utilize data structuresLastPC andLastAC which have the following func-
tionalities: For each constraint cij and each value ai ∈ D(xi), LastPCxi,ai,xj and
LastACxi,ai,xj give (point to) the most recently discovered PC and AC supports of ai in
D(xj) respectively. Initially, allLastPC andLastAC pointers are set to a special value
NIL, considered to precede all values in any domain. Algorithm maxRPC3 updates the
LastPC and LastAC structures incrementally like maxRPC2 and AC2001/3.1 re-
spectively do. In contrast, algorithm maxRPC3rm uses these structures as residues like
maxRPCrm and ACrm do.

The pseudocode for the unified description of maxRPC3 and maxRPC3rm is given
in Algorithm 1 and Functions 2, 3, 4. We assume the existence of a global Boolean vari-
able RM which determines whether the algorithm presented is instantiated to maxRPC3
or to maxRPC3rm. If RM is true, the algorithm used is maxRPC3rm. Otherwise, the
algorithm is maxRPC3.

Being coarse-grained, Algorithm 1 uses a propagation list L where variables that
have their domain filtered are inserted. If the algorithm is used for preprocessing then,

1 maxRPCrm also uses residues in a different context.

Improving the Performance of maxRPC 73

during an initialization phase, for each value ai of each variable xi we check if ai is
maxRPC. If it is not then it is deleted fromD(xi) and xi is added toL. The initialization
function is not shown in detail due to limited space. If the algorithm is used during
search then L is initialized with the currently assigned variable (line 3).

In the main part of Algorithm 1, when a variable xj is removed fromL, each variable
xi constrained with xj must be made maxRPC. For each value ai ∈ D(xi) Algorithm
1, like maxRPC2 and maxRPCrm, establishes if ai is maxRPC by checking for PC-
support loss and PC-witness loss at lines 8 and 12.

Algorithm 1. maxRPC3/maxRPC3rm

1: if preprocessing then
2: if ¬initialization(L, LastPC, LastAC) then return FAILURE;
3: else L = {currently assigned variable};
4: while L �= Ø do
5: L=L−{xj};
6: for each xi ∈ X s.t. cij ∈ C do
7: for each ai ∈ D(xi) do
8: if ¬searchPCsup(ai, xj) then
9: delete ai;
10: L=L ∪ {xi};
11: else
12: if ¬checkPCwit(ai, xj) then
13: delete ai;
14: L=L ∪ {xi};
15: if D(xi) is empty then return FAILURE;
16: return SUCCESS;

First, function searchPCsup is called to check if a PC-support for ai exists in D(xj).
If value LastPCxi,ai,xj is still in D(xj), then searchPCsup returns TRUE (lines 1-
2). If LastPCxi,ai,xj is not valid, we search for a new PC-support. If maxRPC3 is
used, we can take advantage of the LastPC and LastAC pointers to avoid starting
this search from scratch. Specifically, we know that no PC-support can exist before
LastPCxi,ai,xj , and also none can exist before LastACxi,ai,xj , since all values before
LastACxi,ai,xj are not AC-supports of ai. Lines 5-6 in searchPCsup take advantage of
these to locate the appropriate starting value bj . Note that maxRPC2 always starts the
search for a PC-support from the value after LastPCxi,ai,xj . If the algorithm is called
during search, in which case we use maxRPC3rm then the search for a new PC-support
starts from scratch (line 8), just like maxRPCrm does.

For every value aj ∈ D(xj), starting with bj , we first check if is an AC-support of ai

(line 10). This is done using function isConsistent which simple checks if two values are
compatible. If it is, and the algorithm is maxRPC3, then we can updateLastACxi,ai,xj

under a certain condition (lines 12-13). Specifically, if LastACxi,ai,xj was deleted
from D(xj), then we can set LastACxi,ai,xj to aj in case LastACxi,ai,xj >
LastPCxi,ai,xj . If LastACxi,ai,xj ≤ LastPCxi,ai,xj then we cannot do this as there
may be AC-supports for ai between LastACxi,ai,xj and LastPCxi,ai,xj in the lexico-
graphical ordering. We then move on to verify the path consistency of (ai, aj) through
function searchPCwit.

74 T. Balafoutis et al.

Function 2. searchPCsup(ai, xj):boolean
1: if LastPCxi,ai,xj

∈ D(xj) then

2: return true;
3: else
4: if ¬ RM then
5: if LastACxi,ai,xj

∈ D(xj) then bj = max(LastPCxi,ai,xj
+1,LastACxi,ai,xj

);

6: else bj = max(LastPCxi,ai,xj
+1,LastACxi,ai,xj

+1);

7: else
8: bj = first value in D(xj);
9: for each aj ∈ D(xj), aj ≥ bj do
10: if isConsistent(ai, aj) then
11: if ¬RM then
12: if LastACxi,ai,xj

/∈ D(xj) AND LastACxi,ai,xj
> LastPCxi,ai,xj

then

13: LastACxi,ai,xj
= aj ;

14: if searchPCwit(ai, aj) then
15: LastPCxi,ai,xj

= aj ;

16: if RM then LastACxi,ai,xj
= aj ; LastPCxj,aj,xi

= ai;

17: return true;
18: return false;

If no PC-support for ai is found inD(xj), searchPCsup will return FALSE, ai will be
deleted and xi will be added to L. Otherwise, LastPCxi,ai,xj is set to the
discovered PC-support aj (line 15). If maxRPC3rm is used then we update the residue
LastACxi,ai,xj since the discovered PC-support is also an AC-support. In addition, to
exploit the multidirectionality of residues, maxRPC3rm sets LastPCxj,aj ,xi to ai, as
in [10].

Function searchPCwit checks if a pair of values (ai,aj) is PC by doing the fol-
lowing for each variable xk constrained with xi and xj

2. First, it checks if either
LastACxi,ai,xk

is valid and consistent with aj or LastACxj ,aj,xk
is valid and consis-

tent with ai (line 3). If one of these conditions holds then we have found a PC-witness
for (ai,aj) without searching in D(xk) and we move on to the next variable constrained
with xi and xj . Note that neither maxRPC2 nor maxRPCrm can do this as they do not
have the LastAC structure. Experimental results in Section 5 demonstrate that these
simple conditions can eliminate a very large number of redundant constraint checks.

Function 3. searchPCwit(ai, aj):boolean
1: for each xk ∈ V s.t. cik ∈ C and cjk ∈ C do
2: maxRPCsupport=FALSE;
3: if (LastACxi,ai,xk

∈ D(xk) AND isConsistent(LastACxi,ai,xk
, aj)) OR (LastACxj,aj,xk

∈
D(xk) AND isConsistent(LastACxj,aj,xk

, ai)) then continue;

4: if ¬ RM then
5: if ¬seekACsupport(xi, ai, xk) OR ¬seekACsupport(xj , aj , xk) then return false;
6: bk = max(LastACxi,ai,xk

, LastACxj,aj ,xk
);

7: else bk = first value in D(xk);
8: for each ak ∈ D(xk), ak ≥ bk do
9: if isConsistent(ai, ak) AND isConsistent(aj , ak) then
10: if RM then LastACxi,ai,xk

= LastACxj,aj ,xk
= ak;

11: maxRPCsupport=TRUE; break;
12: if ¬maxRPCsupport then return false;
13: return true;

2 Since AC is enforced by the maxRPC algorithm, we only need to consider variables that form
a 3-clique with xi and xj .

Improving the Performance of maxRPC 75

If none of the conditions holds then we have to search in D(xk) for a PC-witness. If
the algorithm is maxRPC3 then we can exploit the LastAC structure to start this search
from bk = max{LastACxi,ai,xk

, LastACxj,aj ,xk
} (line 6). But before doing this,

we call function seekACsupport (not shown for space reasons), first with (xi, ai, xk)
and then with (xj , aj, xk) as parameters, to find the lexicographically smallest AC-
supports for ai and aj in D(xk) (line 5). If such supports are found, LastACxi,ai,xk

and LastACxj,aj ,xk
are updated accordingly. In case no AC-support is found for either

ai or aj then seekACsupport returns FALSE, and subsequently searchPCwit() will also
return FALSE.

If the algorithm used is maxRPC3rm then we start search for a PC-witness from
scratch (line 7), as maxRPC2 and maxRPCrm always do. If a PC-witness ak is found
(line 9) and we are using maxRPC3rm then both residues LastACxi,ai,xk

and
LastACxj,aj ,xk

are set to ak as they are the most recently discovered AC-supports.
If no PC-witness is found then we have determined that the pair (ai,aj) is not PC and
as a result FALSE will be returned and searchPCsup will move to check if the next
available value in D(xj) is a PC-support for ai.

Function 4. checkPCwit(ai, xj):boolean
1: for each xk ∈ V s.t. cik ∈ C and ckj ∈ C do
2: witness=FALSE; findPCsupport=FALSE;
3: if ak = LastPCxi,ai,xk

∈ D(xk) then
4: if (LastACxi,ai,xj

∈ D(xj) AND isConsistent(LastACxi,ai,xj
, ak)) OR (LastACxk,ak,xj

∈
D(xj) AND isConsistent(LastACxk,ak,xj

, ai)) then

5: witness=TRUE;
6: else
7: if ¬ RM then
8: if seekACsupport(xi, ai, xj) AND seekACsupport(xk , ak, xj) then
9: bj = max(LastACxi,ai,xj

, LastACxk,ak,xj
);

10: else findPCsupport=TRUE;
11: else bj = first value in D(xj);
12: if ¬findPCsupport then
13: for each aj ∈ D(xj), aj ≥ bj do
14: if isConsistent(ai, aj) AND isConsistent(ak, aj) then
15: if RM then LastACxi,ai,xj

= LastACxk,ak,xj
= aj ;

16: witness=TRUE; break;
17: if ¬witness AND exists ak > LastPCxi,ai,xk

∈ D(xk) then
18: if ¬ RM then
19: if LastACxi,ai,xk

∈ D(xk) then bk = max(LastPCxi,ai,xk
+1,LastACxi,ai,xk

);

20: else bk = max(LastPCxi,ai,xk
+1,LastACxi,ai,xk

+1

21: else
22: bk = first value in D(xk);
23: for each ak ∈ D(xk), ak ≥ bk do
24: if isConsistent(ai, ak) then
25: if ¬ RM then
26: if LastACxi,ai,xk

/∈ D(xk) AND LastACxi,ai,xk
> LastPCxi,ai,xk

then
27: LastACxi,ai,xk

= ak;

28: if searchPCwit(ai, ak) then
29: LastPCxi,ai,xk

= ak;

30: if RM then LastACxi,ai,xk
= ak; LastPCxk,ak,xi

= ai;

31: witness=TRUE; break;
32: if ¬witness then return false;
33: return true;

76 T. Balafoutis et al.

If value ai is not removed by searchPCsup in Algorithm 1, function checkPCwit
is called to check for PC-witness loss. This is done by iterating over the variables
that are constrained with both xi and xj . For each such variable xk, we first check
if ak = LastPCxi,ai,xk

is still in D(xk) (line 3). If so then we check if there still
is a PC-witness in D(xj). This is done by first checking if either LastACxi,ai,xj

is valid and consistent with ak or LastACxk,ak,xj is valid and consistent with ai

(line 4). If neither of these conditions holds then we search for a PC-witness starting
from bj = max{LastACxi,ai,xj , LastACxk,ak,xj} in case of maxRPC3 (line 9), after
checking the existence of AC-supports for ai and ak in D(xj), by calling seekACsup-
port (line 8). If there is no AC-support in D(xj) for either ai or ak we set the auxiliary
Boolean variable findPCsupport to TRUE to avoid searching for a PC-witness.

If maxRPC3rm is used, we start searching for a PC-witness from scratch (line 11).
Note that maxRPC2 does not do the check of line 4 and always starts the search for
a PC-witness from the first value in D(xj). In contrast, maxRPCrm avoids some re-
dundant checks through the use of special residues, albeit resulting in O(end) space
complexity. When using maxRPC3rm, for each value aj ∈ D(xj) we check if it is
compatible with ai and ak and move the LastAC pointers accordingly (lines 14-15),
exploiting the multidirectionality of residues,

If LastPCxi,ai,xk
has been removed or ai has no PC-witness in D(xj), we search

for a new PC-support for ai in D(xk). As in function searchPCsup, when maxRPC3 is
used this search starts at an appropriate value calculated taking advantage of
LastPCxi,ai,xk

and LastACxi,ai,xk
(lines 18-20). When maxRPC3rm is used we

start from scratch. If an AC-support for ai is found (line 24), we check if it is also
a PC-support by calling function searchPCwit (line 28). If maxRPC3 is used then
LastACxi,ai,xk

is updated when necessary (lines 26-27). If a PC-support is found,
LastPCxi,ai,xk

is set accordingly (line 29). If maxRPC3rm is used then the residue
LastACxi,ai,xk

is also updated, as is LastPCxk,ak,xi (bidirectionality). If the search
for a PC-support fails then FALSE will be returned, ai will be deleted, and xi will be
added to L.

3.1 Light maxRPC

Light maxRPC (lmaxRPC) is an approximation of maxRPC that only propagates the
loss of AC-supports and not the loss of PC-witnesses [10]. This ensures that the obtained
algorithm enforces a consistency property that is at least as strong as AC.

lmaxRPC is a procedurally defined local consistency, meaning that its description
is tied to a specific maxRPC algorithm. Light versions of algorithms maxRPC3 and
maxRPC3rm, simply noted lmaxRPC3 and lmaxRPC3rm respectively, can be ob-
tained by omitting the call to the checkPCwit function (lines 11-14 of Algorithm 1). In
a similar way, we can obtain light versions of algorithms maxRPC2 and maxRPCrm.

As already noted in [10], the light versions of different maxRPC algorithms may
not be equivalent in terms of the pruning they achieve. To give an example, a brute
force algorithm for lmaxRPC that does not use any data structures can achieve more
pruning than algorithmslmaxRPC2, lmaxRPC3, and lmaxRPCrm, albeit being much
slower in practice. Consider that any of these three algorithms will return TRUE in case
LastPCxi,ai,xj is valid. However, although LastPCxi,ai,xj is valid, it may no longer

Improving the Performance of maxRPC 77

be a PC-support because the PC-witness in some third variable may have been deleted,
and it may be the last one. In a case where LastPCxi,ai,xj was the last PC-support in
xj for value ai, the three advanced algorithms will not delete ai while the brute force
one will. This is because it will exhaustively check all values of xj for PC-support,
concluding that there is none.

The worst-case time and space complexities of algorithmlmaxRPC2 are the same as
maxRPC2. Algorithm lmaxRPCrm has O(n3d4) time and O(ed) space complexities,
which are lower than those of maxRPCrm. Experiments with random problems using
algorithmslmaxRPCrm and maxRPCrm showed that the pruning power of lmaxRPC is
only slightly weaker than that of maxRPC [10]. At the same time, it can offer significant
gains in run times when used during search. These results were also verified by us
through a series of experiments on various problem classes.

3.2 Complexities

We now discuss the complexities of algorithms maxRPC3 and maxRPC3rm and their
light versions. To directly compare with existing algorithms for (l)maxRPC, the time
complexities give the asymptotic number of constraint checks3. Folllowing [9], the node
time (resp. space) complexity of a (l)maxRPC algorithm is the worst-case time (resp.
space) complexity of invoking the algorithm after a variable assignment. The corre-
sponding branch complexities of an (l)maxRPC algorithm are the worst-case complex-
ities of any incremental sequence of k ≤ n invocations of the algorithm. That is, the
complexities of incrementally running the algorithm down a branch of the search tree
until a fail occurs.

Proposition 1. The node and branch time complexity of (l)maxRPC3 is O(end3).

Proof. The complexity is determined by the total number of calls to function isCon-
sistent in searchPCsup, checkPCwit, and mainly searchPCwit where most checks are
executed.

Each variable can be inserted and extracted fromL every time a value is deleted from
its domain, giving O(d) times in the worst case. Each time a variable xj is extracted
fromL, searchPCsup will look for a PC-support in D(xj) for all values ai ∈ D(xi), s.t.
cij ∈ C. For each variable xi, O(d) values are checked. Checking if a value aj ∈ D(xj)
is a PC-support involves first checking in O(1) if it is an AC-support (line 10 in Function
2) and then calling searchPCwit. The cost of searchPCwit is O(n+ nd) since there are
O(n) variables constrained with both xi and xj and, after making the checks in line
3, their domains must be searched for a PC-witness, each time from scratch with cost
O(nd). Through the use of LastPC no value of xj will be checked more than once
over all the O(d) times xj is extracted from L, meaning that for any value ai ∈ D(xi)
and any variable xj , the overall cost of searchPCwit will be O(dn + nd2) = O(nd2).
Hence, searchPCsup will cost O(nd2) for one value of xi, giving O(nd3) for d values.
Since, in the worst case, this process will be repeated for every pair of variables xi and
xj that are constrained, the total cost of searchPCsup will be O(end3). This is the node
complexity of lmaxRPC3.

3 However, constraint checks do not always reflect run times as other operations may have an
equal or even greater effect.

78 T. Balafoutis et al.

In checkPCwit the algorithms iterate over the variables in a triangle with xj and xi.
In the worst case, for each such variable xk , D(xj) will be searched from scratch for
a PC-witness of ai and its current PC-support in xk. As xj can be extracted from L
O(d) times and each search from scratch costs O(d), the total cost of checking for a
PC-witness in D(xj), including the checks of line 4 in Function 4, will be O(d + d2).
For d values of xi this will be O(d3). As this process will be repeated for all triangles
of variables, whose number is bounded by en, its total cost will be O(end3). If no PC-
witness is found then a new PC-support for ai in D(xk) is seeked through searchPCwit.
This costs O(nd2) as explained above but it is amortized with the cost incurred by the
calls to searchPCwit from searchPCsup. Therefore, the cost of checkPCwit is O(end3).
This is also the node complexity of maxRPC3.

The branch complexity of (l)maxRPC3 is also O(end3). This is because the use of
LastPC ensures that for any constraint cij and a value ai ∈ D(xi), each value of xj

will be checked at most once for PC-support while going down the branch. Therefore,
the cost of searchPCwit is amortized. ��

Proposition 2. The node and branch time complexities of lmaxRPC3rm and
maxRPC3rm are O(end4) and O(en2d4) respectively.

Proof. The proof is not given in detail due to lack of space. The main difference with
lmaxRPC3 is that since lastPC is not updated incrementally, each time we seek a PC-
support for a value ai ∈ D(xi) in xj , D(xj) will be searched from scratch in the worst
case. This incurs an extra O(d) cost to searchPCsup and searchPCwit. Hence, the node
complexity of lmaxRPC3rm is O(end4). Also, the total cost of searchPCwit in one
node cannot be amortized. This means that the cost of searchPCwit within checkPCwit
is O(nd2). Hence, the node complexity of maxRPC3rm is O(en2d4). The branch com-
plexities are the same because the calls to searchPCwit are amortized. ��

The space complexities of the algorithms are determined by the space required for
data structures LastPC and LastAC. Since both require O(ed) space, this is the node
space complexity of (l)maxRPC3 and (l)maxRPC3rm. (l)maxRPC3 has O(end)
branch space complexity because of the extra space required for the incremental update
and restoration of the data structures. As (l)maxRPC3rm avoid this, its branch space
complexity is O(ed).

4 Heuristics for maxRPC Algorithms

Numerous heuristics for ordering constraint or variable revisions have been proposed
and used within AC algorithms [11,3,1]. Heuristics such as the ones used by AC al-
gorithms can be also used within a maxRPC algorithm to efficiently select the next
variable to be removed from the propagation list (line 5 of Algorithm 1). In addition
to this, maxRPC and lmaxRPC algorithms can benefit from the use of heuristics else-
where in their execution. Once a variable xj has been removed from the propagation
list, heuristics can be applied as follows in either a maxRPC or a lmaxRPC algorithm
(we use algorithm (l)maxRPC3 for illustration):

Improving the Performance of maxRPC 79

1. After a variable xj is removed from L all neighboring variables xi are revised.
lmaxRPC (resp. maxRPC) will detect a failure if the condition of PC-support loss
(resp. either PC-support or PC-witness loss) occurs for all values of xi. In such sit-
uations, the sooner xi is considered and the failure is detected, the more constraint
checks will be saved. Hence, the order in which the neighboring variables of xj are
considered can be determined using a fail-first type of heuristic.

2. Once an AC-support aj ∈ D(xj) has been found for a value ai ∈ D(xi), search-
PCsup tries to establish if it is a PC-support. If there is no PC-witness for the pair
(ai, aj) in some variable xk then aj is not a PC-support. Therefore, we can again
use fail-first heuristics to determine the order in which the variables forming a tri-
angle with xi and xj are considered.

The above cases apply to both lmaxRPC and maxRPC algorithms. In addition, a maxRPC
algorithm can employ heuristics as follows:

3. For each value ai ∈ D(xi) and each variable xk constrained with both xi and xj ,
Function 4 checks if the pair (ai, ak) still has a PC-witness in D(xj). If there is no
PC-witness or LastPCxi,ai,xk

is not valid then a new PC-support in xk is seeked.
If none is found then ai will be deleted. Again heuristics can be used to determine
the order in which the variables constrained with xi and xj are considered.

4. In Function 4 if LastPCxi,ai,xk
is not valid then a new PC-support for ai in D(xk)

is seeked. The order in which variables constrained with both xi and xk are consid-
ered can be determined heuristically as in Case 2 above.

As explained, the purpose of such ordering heuristic will be to “fail-first”. That is, to
quickly discover potential failures (Case 1 above), refute values that are not PC-supports
(Cases 2 and 4) and delete values that have no PC-support (Case 3). Such heuristics
can be applied in any coarse-grained maxRPC algorithm to decide the order in which
variables are considered in Cases 1-4. Examples are the following:

dom. Consider the variables in ascending domain size. This heuristic can be applied in
any of the four cases.

del ratio. Consider the variables in ascending ratio of the number of remaining values
to the initial domain size. This heuristic can be applied in any of the four cases.

wdeg. In Case 1 consider the variables xi in descending weight for the constraint cij .
In Case 2 consider the variables xk in descending average weight for the constraints
cik and cjk. Similarly for Cases 3 and 4.

dom/wdeg. Consider the variables in ascending value of dom/wdeg. This heuristic can
be applied in any of the four cases.

Experiments demonstrated that applying heuristics in Cases 1 and 3 are particularly ef-
fective, while doing so in Cases 2 and 4 saves constraint checks but only marginally
reduces cpu times. All of the heuristics mentioned above for Cases 1 and 3 offer cpu
gains, with dom/wdeg being the most efficient. Although the primal purpose of the
heuristics is to save constraint checks, it is interesting to note that some of the heuristics
can also divert search to different areas of the search space when a variable ordering

80 T. Balafoutis et al.

heuristic like dom/wdeg is used, resulting in fewer node visits. For example, two dif-
ferent orderings of the variables in Case 1 may result in different constraints causing
a failure. As dom/wdeg increases the weight of a constraint each time it causes a fail-
ure and uses the weights to select the next variable, this may later result in different
branching choices. This is explained for the case of AC in [1].

5 Experiments

We have experimented with several classes of structured and random binary CSPs taken
from C.Lecoutre’s XCSP repository. Excluding instances that were very hard for all
algorithms, our evaluation was done on 200 instances in total from various problem
classes. More details about these instances can be found in C.Lecoutre’s homepage.
All algorithms used the dom/wdeg heuristic for variable ordering [4] and lexicographic
value ordering. In case of a failure (domain wipe-out) the weight of constraint cij is
updated (right before returning in line 15 of Algorithm 1). The suffix ’+H’ after any
algorithm’s name means that we have applied the dom/wdeg heuristic for ordering the
propagation list [1], and the same heuristic for Case 1 described in Section 4. In absense
of the suffix, the propagation list was implemented as a FIFO queue and no heuristic
from Section 4 was used.

Table 1 compares the performance of stand-alone algorithms used for preprocessing.
We give average results for all the instances, grouped into specific problem classes. We
include results from the two optimal coarse-grained maxRPC algorithms, maxRPC2
and maxRPC3, from all the light versions of the coarse-grained algorithms, and from
one of the most competitive algorithms (maxRPC3) in tandem with the dom/wdeg
heuristics of Section 4 (lmaxRPC3+H). Results show that in terms of run time our
algorithms have similar performance and are superior to existing ones by a factor of
two on average. This is due to the elimination of many redundant constraint checks as
the cc numbers show. Heuristic do not seem to make any difference.

Tables 2 and 3 compare the performance of search algorithms that apply lmaxRPC
throughout search on RLFAPs and an indicative collection of other problems respec-
tively. The algorithms compared are lmaxRPCrm and lmaxRPC3rm with and without

Table 1. Average stand-alone performance in all 200 instances grouped by problem class. Cpu
times (t) in secs and constraint checks (cc) are given.

Problem class maxRPC2 maxRPC3 lmaxRPC2 lmaxRPC3 lmaxRPCrm lmaxRPC3rm lmaxRPC3+H
RLFAP t 6.786 2.329 4.838 2.043 4.615 2.058 2.148
(scen,graph) cc 31M 9M 21M 8M 21M 9M 8M
Random t 0.092 0.053 0.079 0.054 0.078 0.052 0.056
(modelB,forced) cc 0.43M 0.18M 0.43M 0.18M 0.43M 0.18M 0.18M
Geometric t 0.120 0.71 0.119 0.085 0.120 0.086 0.078

cc 0.74M 0.35M 0.74M 0.35M 0.74M 0.35M 0.35M
Quasigroup t 0.293 0.188 0.234 0.166 0.224 0.161 0.184
(qcp,qwh,bqwh) cc 1.62M 0.59M 1.28M 0.54M 1.26M 0.54M 0.54M
QueensKnights, t 87.839 47.091 91.777 45.130 87.304 43.736 43.121
Queens,QueenAttack cc 489M 188M 487M 188M 487M 188M 188M
driver,blackHole t 0.700 0.326 0.630 0.295 0.638 0.303 0.299
haystacks,job-shop cc 4.57M 1.07M 4.15M 1.00M 4.15M 1.00M 1.00M

Improving the Performance of maxRPC 81

Table 2. Cpu times (t) in secs, nodes (n) and constraint checks (cc) from RLFAP instances.
Algorithms that use heuristics are denoted by their name + H. The best cpu time among the
lmaxRPC methods is highlighted.

instance ACrm lmaxRPCrm lmaxRPC3rm lmaxRPCrm + H lmaxRPC3rm + H
scen11 t 5.4 13.2 4.6 12.5 4.3

n 4,367 1,396 1,396 1,292 1,292
cc 5M 92M 29M 90M 26M

scen11-f10 t 11.0 29.0 12.3 22.3 9.8
n 9,597 2,276 2,276 1,983 1,983
cc 11M 141M 51M 114M 41M

scen2-f25 t 27.1 109.2 43.0 79.6 32.6
n 43,536 8,310 8,310 6,179 6,179
cc 44M 427M 151M 315M 113M

scen3-f11 t 7.4 30.8 12.6 17.3 7.8
n 7,962 2,309 2,309 1,852 1,852
cc 9M 132M 46M 80M 29M

scen11-f7 t 4,606.5 8,307.5 3,062.8 6,269.0 2,377.6
n 3,696,154 552,907 552,907 522,061 522,061
cc 4,287M 35,897M 9,675M 22,899M 6,913M

scen11-f8 t 521.1 2,680.6 878.0 1,902.4 684.7
n 345,877 112,719 112,719 106,352 106,352
cc 638M 10,163M 3,172M 7,585M 2,314M

graph8-f10 t 16.4 16.8 9.1 11.0 6.3
n 18,751 4,887 4,887 3,608 3,608
cc 14M 71M 31M 51M 21M

graph14-f28 t 31.4 4.1 3.1 2.6 2.1
n 57,039 2,917 2,917 1,187 1,187
cc 13M 17M 8M 13M 6M

graph9-f9 t 273.5 206.3 101.5 289.5 146.9
n 273,766 26,276 26,276 49,627 49,627
cc 158M 729M 290M 959M 371M

the use of heuristic dom/wdeg for propagation list and for Case 1 of Section 4. We
also include results from MACrm which is considered the most efficient version of
MAC [8,9].

Experiments showed that lmaxRPCrm is the most efficient among existing algo-
rithms when applied during search, which confirms the results given in [10]. Accord-
ingly, lmaxRPC3rm is the most efficient among our algorithms. It is between two and
four times faster than maxRPC3rm on hard instances, while algorithms lmaxRPC3
and lmaxRPC2 are not competitive when used during search because of the data struc-
tures they maintain. In general, when applied during search, any maxRPC algorithm
is clearly inferior to the corresponding light version. The reduction in visited nodes
achieved by the former is relatively small and does not compensate for the higher run
times of enforcing maxRPC.

Results from Tables 2 and 3 demonstrate that lmaxRPC3rm always outperforms
lmaxRPCrm, often considerably. This was the case in all 200 instances tried. The use of
heuristics improves the performance of both lmaxRPC algorithms in most cases. Look-
ing at the columns for lmaxRPCrm and lmaxRPC3rm+H we can see that our methods
can reduce the numbers of constraint checks by as much as one order of magnitude (e.g.
in quasigroup problems qcp and qwh). This is mainly due to the elimination of redun-
dant checks inside function searchPCwit. Cpu times are not cut down by as much, but
a speed-up of more than 3 times can be obtained (e.g. scen2-f25 and scen11-f8).

Importantly, the speed-ups obtained can make a search algorithm that efficiently ap-
plies lmaxRPC competitive with MAC on many instances. For instance, in scen11-f10

82 T. Balafoutis et al.

Table 3. Cpu times (t) in secs, nodes (n) and constraint checks (cc) from various instances

instance ACrm lmaxRPCrm lmaxRPC3rm lmaxRPCrm + H lmaxRPC3rm + H
rand-2-40-8 t 4.0 47.3 21.7 37.0 19.0
-753-100-75 n 13,166 8,584 8,584 6,915 6,915

cc 7M 289M 82M 207M 59M
geo50-20 t 102.7 347.7 177.5 273.3 150.3
d4-75-1 n 181,560 79,691 79,691 75,339 75,339

cc 191M 2,045M 880M 1,437M 609M
qcp150-120-5 t 52.1 89.4 50.2 80.0 55.3

n 233,311 100,781 100,781 84,392 84,392
cc 27M 329M 53M 224M 36M

qcp150-120-9 t 226.8 410.7 238.1 239.9 164.3
n 1,195,896 583,627 583,627 315,582 315,582
cc 123M 1,613M 250M 718M 112M

qwh20-166-1 t 52.6 64.3 38.9 21.2 14.9
n 144,653 44,934 44,934 13,696 13,696
cc 19M 210M 23M 53M 6M

qwh20-166-6 t 1,639.0 1,493.5 867.1 1,206.2 816.5
n 4,651,632 919,861 919,861 617,233 617,233
cc 633M 5,089M 566M 3,100M 351M

qwh20-166-9 t 41.8 41.1 25.0 39.9 28.5
n 121,623 32,925 32,925 26,505 26,505
cc 15M 135M 15M 97M 11M

blackHole t 1.8 14.4 3.8 12.1 3.6
4-4-e-8 n 8,661 4,371 4,371 4,325 4,325

cc 4M 83M 12M 68M 10M
queens-100 t 15.3 365.3 106.7 329.8 103.0

n 7,608 6,210 6,210 5,030 5,030
cc 6M 1,454M 377M 1,376M 375M

queenAttacking5 t 34.3 153.1 56.7 136.0 54.8
n 139,534 38,210 38,210 33,341 33,341
cc 35M 500M 145M 436M 128M

queensKnights t 217.0 302.0 173.6 482.0 283.5
-15-5-mul n 35,445 13,462 13,462 12,560 12,560

cc 153M 963M 387M 1,795M 869M

Table 4. Average search performance in all 200 instances grouped by class

Problem class ACrm lmaxRPCrm lmaxRPC3rm lmaxRPCrm + H lmaxRPC3rm + H
RLFAP t 242.8 556.7 199.3 416.3 157.3
(scen,graph) cc 233M 2,306M 663M 1,580M 487M
Random t 8.4 28.0 14.8 28.5 17.1
(modelB,forced) cc 14M 161M 60M 137M 51M
Geometric t 21.5 72.2 37.2 57.6 32.1

cc 39M 418M 179M 297M 126M
Quasigroup t 147.0 162.5 94.9 128.9 89.6
(qcp,qwh,bqwh) cc 59M 562M 68M 333M 40M
QueensKnights, t 90.2 505.2 180.3 496.4 198.1
Queens,QueenAttack cc 74M 1,865M 570M 1,891M 654M
driver,blackHole t 3.2 17.1 9.1 11.9 7.0
haystacks,job-shop cc 1.8M 55M 6.4M 36.7M 5.1M

we achieve the same run time as MAC while lmaxRPCrm is 3 times slower while in
scen11-f7 we go from 2 times slower to 2 times faster. In addition, there are several
instances where MAC is outperformed (e.g. the graph RLFAPs and most quasigroup
problems). Of course, there are still instances where MAC remains considerably faster
despite the improvements.

Table 4 summarizes results from the application of lmaxRPC during search. We give
average results for all the tested instances, grouped into specific problem classes. As

Improving the Performance of maxRPC 83

can be seen, our best method improves on the existing best one considerably, mak-
ing lmaxRPC outperform MAC on the RFLAP and quasigroup problem classes. Over-
all, our results demonstrate that the efficient application of a maxRPC approximation
throughout search can give an algorithm that is quite competitive with MAC on many
binary CSPs. This confirms the conjecture of [6] about the potential of maxRPC as an
alternative to AC. In addition, our results, along with ones in [10], show that approxi-
mating strong and complex local consistencies can be very beneficial.

6 Conclusion

We presented maxRPC3 and maxRPC3rm, two new algorithms for maxRPC, and their
light versions that approximate maxRPC. These algorithms build on and improve ex-
isting maxRPC algorithms, achieving the elimination of many redundant constraint
checks. We also investigated heuristics that can be used to order certain operations
within maxRPC algorithms. Experimental results from various problem classes demon-
strate that our best method, lmaxRPC3rm, constantly outperforms existing algorithms,
often by large margins. Significantly, the speed-ups obtained allow lmaxRPC3rm to
compete with and outperform MAC on many problems. In the future we plan to adapt
techniques for using residues from [9] to improve the performance of our algorithms
during search. Also, it would be interesting to investigate the applicability of similar
methods to efficiently achieve or approximate other local consistencies.

References

1. Balafoutis, T., Stergiou, K.: Exploiting constraint weights for revision ordering in Arc Con-
sistency Algorithms. In: ECAI 2008 Workshop on Modeling and Solving Problems with
Constraints (2008)

2. Bessière, C., Régin, J.C., Yap, R., Zhang, Y.: An Optimal Coarse-grained Arc Consistency
Algorithm. Artificial Intelligence 165(2), 165–185 (2005)

3. Boussemart, F., Hemery, F., Lecoutre, C.: Revision ordering heuristics for the Constraint
Satisfaction Problem. In: CP-2004 Workshop on Constraint Propagation (2004)

4. Boussemart, F., Hemery, F., Lecoutre, C., Sais, L.: Boosting systematic search by weighting
constraints. In: Proceedings of ECAI-2004 (2004)

5. Debruyne, R., Bessière, C.: From restricted path consistency to max-restricted path consis-
tency. In: Smolka, G. (ed.) CP 1997. LNCS, vol. 1330, pp. 312–326. Springer, Heidelberg
(1997)

6. Debruyne, R., Bessière, C.: Domain Filtering Consistencies. JAIR 14, 205–230 (2001)
7. Grandoni, F., Italiano, G.: Improved Algorithms for Max-Restricted Path Consistency. In:

Rossi, F. (ed.) CP 2003. LNCS, vol. 2833, pp. 858–862. Springer, Heidelberg (2003)
8. Lecoutre, C., Hemery, F.: A study of residual supports in arc cosistency. In: Proceedings of

IJCAI 2007, pp. 125–130 (2007)
9. Likitvivatanavong, C., Zhang, Y., Bowen, J., Shannon, S., Freuder, E.: Arc Consistency dur-

ing Search. In: Proceedings of IJCAI 2007, pp. 137–142 (2007)
10. Vion, J., Debruyne, R.: Light Algorithms for Maintaining Max-RPC During Search. In: Pro-

ceedings of SARA 2009 (2009)
11. Wallace, R., Freuder, E.: Ordering heuristics for arc consistency algorithms. In: AI/GI/VI,

Vancouver, British Columbia, Canada, pp. 163–169 (1992)

Checking-Up on Branch-and-Check

J. Christopher Beck

Department of Mechanical & Industrial Engineering

University of Toronto

Toronto, Ontario M5S 3G8, Canada

jcb@mie.utoronto.ca

Abstract. Branch-and-Check, introduced ten years ago, is a generaliza-

tion of logic-based Benders decomposition. The key extension is to solve

the Benders sub-problems at each feasible solution of the master problem

rather than only at an optimal solution. We perform the first systematic

empirical comparison of logic-based Benders decomposition and branch-

and-check. On four problem types the results indicate that either Benders

or branch-and-check may perform best, depending on the relative diffi-

culty of solving the master problem and the sub-problems. We identify

a characteristic of the logic-based Benders decomposition runs, the pro-

portion of run-time spent solving the master problem, that is valuable

in predicting the performance of branch-and-check. We also introduce a

variation of branch-and-check to address difficult sub-problems. Empir-

ical results show that this variation leads to more robust performance

than both logic-based Benders decomposition and branch-and-check on

the problems investigated.

1 Introduction

Logic-based Benders decomposition (LBBD) [1,2] has been proposed as a frame-
work for hybrid techniques that combine mixed-integer programming (MIP) and
constraint programming (CP). Informally, LBBD requires the decomposition of
a problem into a master problem and a set of sub-problems. The solution ap-
proach solves the master to optimality, solves the sub-problems, and then adds
constraints (“Benders cuts”) to the master problem based on the sub-problem
results. The approach iterates between solving the master problem and the sub-
problems until a globally optimal solution is found and proved.

Branch-and-Check (B&C) [1,3] is a generalization of LBBD where the sub-
problems are solved during the search for a solution to the master problem.
In Thorsteinsson’s formulation [3], the sub-problems are solved every time a
feasible master solution is found, and the cuts are added to the master problem,
if necessary. B&C, therefore, is essentially a branch-and-cut search with the
Benders sub-problems being the source of the cuts.

Despite the increasing interest in LBBD and speculation (e.g., [4]) that B&C
could result in a significant improvement over LBBD, there does not appear
to have been a systematic evaluation of B&C. We do not have a clear picture

D. Cohen (Ed.): CP 2010, LNCS 6308, pp. 84–98, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Checking-Up on Branch-and-Check 85

of how B&C performs on different problems nor what problem characteristics
contribute to its behavior. The contributions of this paper, therefore, are:
1. The first systematic empirical comparison of logic-based Benders decompo-

sition and branch-and-check.
2. The identification of a characteristic of the behavior of LBBD that appears

to be correlated to whether an improvement in performance can be expected
from B&C.

3. The introduction and evaluation of a variation on B&C that addresses the
poor performance of B&C when the sub-problems are difficult.

The following section provides the necessary background. We then turn to the
empirical investigations which result in the first two contributions of this paper.
Section 4 proposes and evaluates the variation of B&C while Section 5 discusses
our results and concludes.

2 Background

In this section, logic-based Benders decomposition and branch-and-check are
defined, the literature on branch-and-check is reviewed in detail, and the formal
definitions of the problems studied in this paper are presented.

2.1 Logic-Based Benders Decomposition and Branch-and-Check

Logic-based Benders decomposition [2] is a generalization of classical Benders
decomposition that is based on the division of a problem into a master problem
(MP) and a set of sub-problems (SPs). The MP is a projection of the global model
to a subset of decision variables, denoted y, and the constraints and objective
function components that involve only y. The rest of the decision variables, x,
define the sub-problems. Solving a problem by Benders decomposition involves
iteratively solving the MP to optimality and using the solution to fix the y
variables, generating the sub-problems. The duals of the SPs are solved to find
the tightest bound on the (global) cost function that can be derived from the
original constraints and the current MP solution. If this bound is less than
or equal to the current MP solution (assuming a minimization problem), then
the MP solution and the SP solutions constitute a globally optimal solution.
Otherwise, a constraint, called a “Benders cut,” is added to the MP to express
the violated bound and another iteration is performed.

Branch-and-check (B&C) [3] moves the SP solving into a branch-and-cut
search to solve the MP. Rather than waiting until the MP is solved to optimal-
ity, the B&C algorithm solves the SPs at each feasible MP solution, generates
the Benders cuts, and immediately adds them to the branch-and-cut tree. The
current feasible MP solution is therefore rejected and search continues. Because
only globally feasible MP solutions are accepted, the MP is solved only once:
there are no MP-SP iterations as in LBBD.

Intuitively, B&C may out-perform LBBD because the MP is not repeatedly
solved from scratch. Furthermore, a cut introduced based on one sub-optimal
MP solution may cut-off other sub-optimal MP solutions whereas in LBBD these
sub-optimal solutions may be enumerated in each iteration.

86 J.C. Beck

2.2 Literature Review

Thorsteinsson [3] introduced the name branch-and-check and performed experi-
ments on a planning and scheduling problem. A significant speed-up was shown
when compared to an LBBD model due to Jain & Grossmann [5]. These results
were attributed to the claim that the MP was hard to solve, relative to the SPs,
and therefore adding the SP cuts based on feasible MP solutions (rather than
waiting for optimality) sped-up the overall solving process. A significant weak-
ness of the work, however, is that the B&C implementation did not actually
solve the SPs during the MP branch-and-cut search: each time the SPs were
solved, the MP search was restarted.

Bockmayr & Pisaruk [6] adopt an approach very similar to B&C, except that
cuts are added at each node in the MP branch-and-cut tree rather than only
at integer feasible nodes.1 The relaxed solution at each node is used to derive
bounds that are then used to define the SPs. Computational results show that
solving the SPs more often results in an improvement over the results of Jain &
Grossmann. No comparison is done against Thorsteinsson’s approach.

Sadykov & Wolsey [7] address the same scheduling problem as the above au-
thors with a B&C approach. They state that solving the SPs at integral MP
nodes only is an important feature distinguishing their algorithm from Bock-
mayr & Pisaruk. However, Sadykov & Wolsey use a tighter MP formulation
than Bockmayr & Pisaruk and so it is not possible to attribute their improved
performance solely to the more frequent solution of the SPs. In fact, Sadykov &
Wolsey state that they believe that the main reason for their performance is the
tighter MP model. Follow-up work [8] solves a one-machine minimum weighted
number of late activities problem using B&C: the SP is solved at each feasi-
ble MP solution and the MP branch-and-cut search continues with the added
Benders cuts. However, no LBBD algorithm is used for comparison.

In summary, we have been able to find only four papers [3,6,7,8] that have
implemented a B&C-like approach. Thorsteinsson and Bockmayr & Pisaruk use
the same model as Jain & Grossmann and so these three papers vary only on the
frequency with which the sub-problems are solved. Jain & Grossmann solve the
sub-problems the least, only when an optimal MP solution is found. Thorsteins-
son solves the SP at each feasible MP solution, restarting the MP search each
time. Bockmayr & Pisaruk solve the SPs most often, at each node in the MP
tree. Both Thorsteinsson and Bockmayr & Pisaruk show better performance
than Jain & Grossmann but their approaches have not been compared to each
other. The fourth work, Sadykov & Wolsey, also solves the SPs at each feasible
MP solution and shows stronger results than Bockmayr & Pisaruk but uses a
tighter MP formulation.

It appears, therefore, that the most we can conclude from previous work is
that for a specific scheduling problem, solving the SPs more frequently than is
done in LBBD leads to improved performance. We have not been able to find
any work that directly compares B&C (without restarting the MP search) to
1 The idea of solving the sub-problems more often than at each feasible MP solution

appears in Hooker’s original formulation [1].

Checking-Up on Branch-and-Check 87

LBBD. Moreover, work on B&C has been restricted to a single problem type,
limiting the generality of the resulting conclusions.

2.3 Problems and Models

In this section, we define the four problems used in this study. Each of these
problems has an existing LBBD model in the literature. We study three planning
and scheduling problems and one location-allocation problem.

CostMinUnary. CostMinUnary is the problem studied by Jain & Grossmann,
Thorsteinsson, and Bockmayr & Pisaruk. The problem is defined by a set of
jobs, j ∈ J , each with an individual release date, Rj , and deadline, Sj , which
must be scheduled on a set of resources, I. A job can be assigned to any resource;
however, its processing time, pij , and cost, fij , depend on the resource, i ∈ I, to
which it is assigned. The objective is to assign the jobs to resources so that they
can execute within their time-windows [Rj , Sj], no jobs on the same resource
overlap, and the cost of the resource assignment is minimized.

Following existing work [1,5,4], the master problem in an LBBD model can
be defined as follows, with yij being a 0-1 variable expressing whether job j is
assigned to resource i:

minimize
∑
ij

fijyij (1)

s.t.
∑

i

yij = 1 all j (2)
∑

j

pijyij ≤ max
j
{Sj} −min

j
{Rj} all i (3)

∑
j∈Jhi

(1− yij) ≥ 1 all i, h = 1, . . .H − 1 (4)

yij ∈ {0, 1} all i, j

The objective function (1) minimizes the cost of assigning jobs to resources,
subject to the constraint that all jobs must be assigned to exactly one resource
(2). Constraint (3) is a relaxation of the sub-problem expressing that the sum of
the durations of the jobs assigned to any resource must be less than or equal to
the time between the minimum release date and maximum due date. Constraints
(4) are the Benders cuts, where Jhi is the set of jobs assigned to resource i in
iteration h and that led to an infeasibility in the sub-problem. The cut simply
expresses that, in order to form a feasible schedule, at least one job in Jhi must
be assigned to a different resource.

The sub-problems are then straightforward to define using constraint pro-
gramming: they are single-machine scheduling problems with release dates and
due dates where the goal is to find a feasible schedule. Explicitly, if tj is the start
time of job j, the sub-problem for resource i for all j with yij = 1 is:

tj ≥ Rj (5)

88 J.C. Beck

tj + pij ≤ Sj (6)

cumulative(tj , pij ,1, 1) (7)

The global constraint cumulative [9] represents a single-machine scheduling
problem to assign values to all start times, tj , taking into account the durations
of each job and the capacities. The capacity required by each job is represented
in the vector 1 and the capacity of the resource is 1.

CostMinMulti. The CostMinMulti problem is the same as CostMinUnary
except that the resources are no longer unary and each job may require more
than one unit of the resource. The model [4] has the objective function (1),
constraint (2), and the Benders cuts (4) as in CostMinUnary. The sub-problem
relaxation (3) is different to account for the discrete resource capacity and the
fact that all the problems solved here have a release date of 0 and the same
due date, represented by d0. Letting Ci be the capacity of resource i and cij
the amount of resource i required by job j during its processing time, the sub-
problem relaxation expresses that the area of resource availability (i.e., capacity
multiplied by the time horizon: Ci × (d0 − 0)) must be greater than or equal to
the sum of the areas of the jobs assigned to i (pijcijyij). Therefore, constraint
(8) replaces constraint (3).

1
Ci

∑
j

pijcijyij ≤ d0, all i (8)

The sub-problem formulation is also changed to reflect the discrete capacity.
Thus, constraint (7) becomes:

cumulative(tj , pij , cij , Ci) (9)

MkspMinMulti. MkspMinMulti is a multi-capacity planning and scheduling
problem with the objective of makespan minimization. In Hooker’s model [4],
M represents the makespan and the master problem is defined as follows:

minimize M (10)
s.t.

∑
i

yij = 1 all j (11)

M ≥ 1
Ci

∑
j

pijcijyij all i (12)

M ≥M∗
hi −

∑
j∈Jhi

(1− yij)pij all i, h = 1, . . .H − 1 (13)

yij ∈ {0, 1} all i, j

The differences from CostMinMulti are the sub-problem relaxation (12) and
the Benders cut (13). The sub-problem relaxation is, in fact, a restatement of
constraint (8) with a variable end of horizon, M , rather than the fixed one, d0,
and as such is based on exactly the same reasoning. The Benders cut makes

Checking-Up on Branch-and-Check 89

use of M∗
hi, the minimum makespan on resource i in iteration h. The expression

that is subtracted from M∗
hi relies on the fact that the maximum reduction in

makespan that can come from removing job j from resource i (i.e., by setting
yij to 0) is the duration of that job, pij .

Unlike the other two scheduling problems, in MkspMinMulti, the sub-problem
is an optimization problem as follows:

minimize Mi (14)
s.t. Mi ≥ tj + pij (15)

tj ≥ 0 (16)
cumulative(tj , pij , cij , Ci) (17)

LocAlloc. The LocAlloc problem is a facility location, customer allocation,
and truck allocation problem. Given the set J of potential sites and the set I
of clients, the goal is to choose which sites to open, to assign each customer to
a single open site, to assign a number of trucks to each site, and to assign each
customer to a single truck. Multiple customers can be assigned to the same truck
provided the sum of their travel distances is less than a given maximum distance
for the truck. For each site j there is an opening cost, fj , and a capacity, bj .
The demand of the clients, di, assigned to a site must be less than or equal to
the site capacity. Each vehicle has a fixed utilization cost, u, and a maximum
total driving distance, �. Serving client i from site j generates a driving distance,
tij , for the vehicle performing the service and has an associated cost, cij . The
available vehicles at a site are indexed in set K with parameter k ≥ |K| being
the maximum number of vehicles at any site.

In the LBBD model presented by Fazel-Zarandi & Beck [10], the master prob-
lem determines the open sites, the assignment of customers to sites, and the
number of trucks at each site. The sub-problems are then separate feasibility
problems which attempt to assign the customers to trucks.

The master problem decision variables are:

pj =
{

1, if site j is opened
0, otherwise

xij =
{

1, if client i is served by site j
0, otherwise

numVehj = number of vehicles assigned to facility j

The master problem can then be modeled as:

minimize
∑
j∈J

fjpj +
∑
i∈I

∑
j∈J

cijxij + u
∑
j∈J

numVehj (18)

90 J.C. Beck

s.t.
∑
j∈J

xij = 1 i ∈ I (19)

∑
i∈I

tijxij ≤ � · k j ∈ J (20)

tijxij ≤ � i ∈ I, j ∈ J (21)∑
i∈I

dixij ≤ bjpj j ∈ J (22)

numVehj ≥
⌈∑

i∈I tijxij

�

⌉
j ∈ J (23)

numVehj ≥ numVeh∗
jh −

∑
i∈Ijh

(1− xij) j ∈ Jh (24)

xij ≤ pj i ∈ I, j ∈ J (25)
xij , pj ∈ {0, 1} i ∈ I, j ∈ J (26)

The objective (18) is to minimize the total cost of opening facilities, serving
customers from a site, and allocating vehicles to a site. Constraint (19) ensures
that all clients are served by exactly one facility. The distance limitations are
defined by constraints (20) and (21). Constraint (22) limits the demand assigned
to facility j. Constraint (23) defines the minimum number of vehicles assigned
to each site.

Constraint (24) is the Benders cut. Inspired by the makespan cut in the Mk-
spMinMulti problem, this cut makes use of the optimal number of trucks at
facility j in iteration h, numVeh∗

jh, and subtracts from it an upper-bound on the
reduction in the number of trucks that can arise from removing one customer.

The sub-problem is a feasibility problem to determine if the customers can be
feasibly assigned to the allocated trucks. In order to generate a cut, however, we
must solve the optimization version of the problem, finding the minimum number
of vehicles that the assigned clients can be packed into. This is a bin-packing
problem that can be modeled in CP as follows:

min numVehBinPackingj

s.t. pack(loadk, trucki, disti) (27)
numVehj ≤ numVehBinPackingj < numVehFFDj (28)

The variables of the sub-problem are loadk, the total travel distance for truck
k based on its assigned clients and trucki, the index of the truck assigned to
client i. The distances between site j and client i are represented in the data
vector disti. The pack global constraint (27) maintains the load of the vehicles
given the distances and assignments of clients to vehicles [11]. The upper and
lower bounds on the number of vehicles are represented by constraint (28). These
bounds are derived from the MP solution (numVehj) and heuristic preprocessing
(numVehFFDj).

3 A Systematic Evaluation of Branch-and-Check

The next sub-section describes the problem instances for each of our problems as
well as providing the experimental details. We then compare logic-based Benders

Checking-Up on Branch-and-Check 91

decomposition and branch-and-check experimentally and present insights into
the performance comparison through a deeper analysis of the results.

3.1 Experimental Setup

We use existing problem instances in all of our experiments. For the two multi-
capacity scheduling problems we use Hooker’s instances [4]: 75 instances with
2 resources, 60 instances with 3 resources, and 60 instances with 4 resources.
The number of jobs varies between 10 and 38. The unary capacity problem in-
stances are generated by modifying the multi-capacity instances by setting the
capacity equal to 1 and modifying the time windows of each activity. The overall
scheduling horizon is extended by a factor of 3.6, a value chosen after experi-
mentation in order to guarantee that all instances have a feasible solution. The
horizon change resulted in two other changes: as in Hooker’s work the possible
window for an activity is set to one-third of the (now extended) horizon and,
unlike Hooker, the release of each job was drawn with uniform probability from
the first two-thirds of the horizon. All other parameters (cost, processing times,
etc.) are exactly as in Hooker’s instances.

For the Location-Allocation problems, 300 instances are taken from Fazel-
Zarandi & Beck [10]. In half of these instances, the cost of serving a customer
from a specific location is correlated with the distance to the location, while in
the remaining half, distance and cost are uncorrelated. The problem sizes (i.e.,
number of possible facilities × number of clients) are: {20×10, 30×15, 40×20}.

All experiments were run with a 7200-second time limit on a Duo Core AMD
720 CPU with 1 MB cache, 4 GB of memory, running Red Hat Enterprise 4. The
MIP solver is CPLEX 12.1 and the CP solver is ILOG Solver/Scheduler 6.7.

3.2 Logic-Based Benders Decomposition vs. Branch-and-Check

The comparison of logic-based Benders decomposition with branch-and-check is
shown in Table 1.2 For each problem set, we present the mean and median dif-
ference in CPU time (LBBD minus B&C). This formulation means that positive
numbers favor B&C (i.e., it has a lower mean CPU time) and negative entries
favor LBBD. Using a bootstrap paired-t test [12], we also indicate the statistical
significance at p ≤ 0.005.

Our results are consistent with previous work on the CostMinUnary problems:
B&C shows a clear benefit, especially with an increased number of resources.
However, the advantage for B&C disappears for the other scheduling problems
to the point that LBBD shows significantly lower mean run-time overall and
on three of the six subsets of CostMinMulti and MkspMinMulti. Finally, for
LocAlloc, B&C again shows a significant advantage over LBBD.

3.3 A Deeper Analysis

Table 2 presents further data: the number of iterations and the percentage of
the run-time spent on the master problem and the sub-problems.
2 The OPT15 columns are discussed in Section 4.1.

92 J.C. Beck

Table 1. Summary of B&C and OPT15 Performance. Mean and Median are the cor-

responding average differences in run-time (in seconds) between B&C and LBBD and

between OPT15 and LBBD. A negative value indicates that LBBD achieves a lower

run-time. The symbols ∗ and † indicate a significant difference in mean run-time at

p ≤ 0.005, for the corresponding B&C variation and LBBD, respectively.

B&C OPT15

Problem Set Mean Median Mean Median

2 ∗110.9 0.1 ∗110.9 0.1

CostMinUnary 3 ∗164.8 1.2 ∗200.2 1.2

4 ∗1049.7 19.7 ∗1038.7 19.7

all ∗416.3 0.7 ∗423.8 0.7

2 †-206.4 0 †-207.3 0

CostMinMulti 3 -194.8 0.1 †-224.6 0.1

4 -15.1 0.9 -8.6 0.9

all †-144.0 0 †-151.5 0

2 -106.8 0 -58.7 0

MkspMinMulti 3 †-361.7 0 -215.2 0

4 †-804.3 -0.1 -163.9 0.2

all †-400.0 0 -139.2 0

LocAlloc cor ∗999.4 66.8 ∗948.1 12.9

uncor ∗812.5 11.4 ∗848.5 11.7

all ∗905.9 23.9 ∗898.3 12.4

Table 2. Details of the logic-based Benders decomposition vs. Branch-and-Check ex-

periment. On the left-hand side, we present the mean (and median) number of master

problem iterations and the percentage of time spent solving the master problem (%

MP) and the sub-problems (% SP). On the right-hand side, branch-and-check data is

presented: the number of iterations of the sub-problem (i.e., the number of times that

the set of sub-problems is solved–recall that the master problem is solved only once), as

well as the percentages of the run-time spent on the master problem and sub-problems.

LBBD B&C
Problem Set Iterations % MP % SP SP Iterations % MP % SP

2 62.8 (6) 75.9 (91.5) 22.8 (7.9) 165.4 (11) 32.0 (28.0) 57.3 (64.5)
CostMinUnary 3 138.9 (24) 90.4 (95.1) 9.6 (4.9) 1047.5 (40) 44.1 (42.7) 54.2 (57.1)

4 258.2 (81.5) 96.2 (99.3) 3.8 (0.7) 1022.4 (160) 53.5 (50.8) 46.5 (49.2)
all 146.3 (23) 86.6 (97.0) 12.9 (2.8) 700.5 (50) 42.4 (42.5) 53.0 (55.6)
2 2.6 (1) 12.8 (0) 81.9 (100) 4.1 (2) 8.1 (0) 90.5 (100)

CostMinMulti 3 23.6 (14.5) 51.3 (66.5) 48.7 (33.5) 47.2 (26.5) 15.9 (3.7) 84.1 (96.2)
4 35.2 (22) 68.8 (93.4) 31.2 (6.6) 69.4 (45.5) 22.7 (18.1) 77.3 (81.9)

all 19.1 (7) 41.9 (11.2) 56.1 (73.5) 37.4 (17) 15.0 (0.5) 84.5 (99.4)
2 18.9 (5) 9.0 (0) 91.0 (100) 20.8 (6) 3.7 (0) 96.3 (100)

MkspMinMulti 3 59.0 (25.5) 37.4 (33.3) 62.6 (66.7) 69.9 (28.5) 13.0 (1.2) 87.0 (98.8)
4 51.3 (20) 55.5 (60.0) 44.5 (40.0) 70.2 (36) 17.4 (8.7) 82.6 (91.4)

all 41.2 (13) 32.0 (21.5) 68.0 (78.5) 51.1 (20) 10.8 (0.3) 89.2 (99.7)
cor 7.2 (1.5) 99.9 (100) 0.1 (0) 70.6 (19) 99.4 (100) 0.6 (0)

LocAlloc uncor 5.9 (2) 99.9 (100) 0.1 (0) 87.2 (23.5) 98.4 (100) 1.6 (0)
all 6.5 (2) 99.9 (100) 0.1 (0) 78.9 (21.5) 98.9 (100) 1.1 (0)

Checking-Up on Branch-and-Check 93

The statistics for LBBD indicate that it has significantly different behavior
on the four problems. Using the median, we see that in CostMinUnary, LBBD
spends over 97% of the run-time solving the MP and does 23 iterations. This is
a substantial difference from the other two scheduling problems: a median 11%
and 21% of their run-times is spent on the MP and they perform a median of
7 and 13 iterations, respectively. LocAlloc is different again, spending 100% of
the run-time on the master problem but only requiring two iterations.

The branch-and-check results show a large increase in both the number of
times that the SPs are solved and a corresponding increase in the proportion of
CPU time spent solving them. This pattern is not seen for LocAlloc as, though
there is a substantial increase in the number of SP iterations, most of the run-
time is still spent solving the master problem.

The positive differences in CPU time in Table 1 correspond to problem sets
where a significant portion of the run-time is spent on the master problems.
Figure 1 plots the mean difference in run-time between LBBD and B&C against
the proportion of time spent solving the MP by LBBD. We have aggregated the
latter data into 10 buckets corresponding to intervals of size 0.1. The pattern
that can be observed is that unless LBBD spends about 80% or more of its time
solving the master problem, the benefits from branch-and-check are rare. In
contrast, with master run-time proportions approaching 1, both the magnitude
and the frequency of benefits from using B&C are much higher.

These results can be understood by noting that LBBD and B&C embody
different expectations with respect to relative sub-problem difficulty. In LBBD,
the SPs are solved once for every (optimal) MP solution. In B&C, the SPs are
solved at each feasible solution to the MP. If the MP is much harder to solve than
the SPs, solving the MP once and using the cuts that are generated inexpensively
from repeated SP solutions should result in lower overall run-time. In contrast, if
the SPs are not easily solved, then frequently solving them is counter-productive.
It would be better to solve the SPs only when necessary: when an optimal master
problem needs to be either confirmed or cut-off. This is precisely the link between
the results in Tables 1 and 2.

The generality and analytical understanding of this pattern remain to be
explored. However, we believe that, as a broad measure, the portion of run-time
spent by LBBD on solving the master problem is a promising indicator of the
benefit that can accrue from applying B&C. Minimally, it can be employed by
practitioners when they are deciding if spending the time to implement B&C is
likely to be worthwhile.

4 A Variation on Branch-and-Check

The experiments above indicate that the difficulty in solving sub-problems is
important to the performance differences between LBBD and B&C. Additionally,
we make two observations.

1. A feasible MP solution may be very different from an optimal one. The cuts
that are generated to remove the former may be irrelevant to cutting off

94 J.C. Beck

-2000

-1500

-1000

-500

 0

 500

 1000

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

M
ea

n
C

P
U

 D
iff

er
en

ce
 (

LB
B

D
 -

 B
&

C
)

MP CPU Time Proportion Bucket

All
CostMinUnary

CostMinMulti
MkspMinMulti

LocAlloc

Fig. 1. A plot of the proportion of run-time spent solving the master problem, ag-

gregated into 10 buckets ([0 0.1), [0.1 0.2) . . . [0.9 1.0]), against the mean difference

in CPU time (LBBD minus B&C). Note that the LocAlloc data all fall into the final

bucket and therefore form only a single point.

optimal MP solutions that are not globally feasible and, therefore, the work
of solving the SPs and generating cuts may be wasted.

2. The sub-problems in a given problem instance are not equally difficult. For
example, on the scheduling problems we have observed poor but feasible
MP solutions that place most or all activities on one machine, inducing the
worst-case in terms of SP difficulty.

These observations suggest that the avoidance of difficult and irrelevant sub-
problems may lead to better performance. Therefore, we propose a variation of
B&C that solves the SPs more frequently than LBBD but less often than B&C
by filtering the feasible MP solutions for which it solves the SPs. Our simple idea,
denoted OPT15, is as follows: within the B&C algorithm, rather than solving
SPs for each feasible MP solution, we solve the SPs corresponding to feasible
MP solutions with an optimality gap of less than 15%.3 Feasible solutions with
larger gaps are accepted as globally feasible.

The completeness of B&C is compromised by this change unless a feasible
MP solution with a gap of less than 15% is subsequently found and proved

3 This gap is between the cost of the incumbent MP solution and the best current

lower bound on the MP solution.

Checking-Up on Branch-and-Check 95

Table 3. The mean (and median) number of sub-problem iterations (SP Iter.) and

percentage of problem instances (% Best) for which the algorithm’s run-time was within

10 seconds of the best run-time. Bold entries indicate the highest percentage in a row.

LBBD B&C OPT15

Problem Set % Best SP Iter. % Best SP Iter. % Best SP Iter.

2 85.3 62.8 (6) 100.0 165.4 (11) 100.0 165.0 (11)

CostMinUnary 3 75.0 138.9 (24) 98.3 1047.5 (40) 98.3 1008.3 (34)

4 41.7 258.2 (81.5) 96.7 1022.4 (160) 91.7 1045.7 (139)

all 68.7 146.3 (23) 98.4 700.5 (50) 96.9 695.4 (40)

2 98.7 2.6 (1) 88.0 4.1 (2) 88.0 4.1 (2)

CostMinMulti 3 83.3 23.6 (14.5) 76.7 47.2 (26.5) 78.3 45.9 (26.5)

4 80.0 35.2 (22) 81.7 69.4 (45.5) 85.0 74.5 (41.5)

all 88.2 19.1 (7) 82.6 37.4 (17) 84.1 38.6 (16)

2 90.7 18.9 (5) 85.3 20.8 (6) 86.7 19.5 (6)

MkspMinMulti 3 85.0 59.0 (25.5) 68.3 69.9 (28.5) 80.0 62.6 (26.5)

4 88.3 51.3 (20) 66.7 70.2 (36) 85.0 71.6 (26)

all 88.2 41.2 (13) 74.4 51.1 (20) 84.1 48.8 (17)

LocAlloc cor 35.3 7.2 (1.5) 82.0 70.6 (19) 71.3 62.7 (15.5)

uncor 45.3 5.9 (2) 74.0 87.2 (23.5) 84.0 69.3 (20)

all 40.3 6.5 (2) 78.0 78.9 (21.5) 77.7 66.0 (18)

All 67.7 47.8 (6) 82.7 200.9 (23) 84.7 194.9 (19)

to be globally feasible. If such a new MP solution is not found, we preserve
completeness by running a second iteration of B&C without the 15% threshold.
The second iteration has two significant advantages over the first iteration: all the
cuts from solving the SPs in the first iteration are incorporated and the warm-
start functionality of the MIP solver typically allows a good initial feasible MP
solution to be found in the pre-solve phase.

The choice of 15% is arbitrary and based on examination of preliminary ex-
periments. No tuning was done to investigate different choices for the threshold.

4.1 Experimental Evaluation

The right-hand side of Table 1 in Section 3.2 presents the mean and median
run-time difference between LBBD and OPT15. The problem instances and ex-
perimental setup are the same as described in Section 3.1.

The empirical results indicate that OPT15 performs more robustly than LBBD
or B&C. On the problems where B&C does significantly better than LBBD
(CostMinUnary and LocAlloc), OPT15 performs about the same as B&C, achiev-
ing a statistically significant difference when compared to LBBD run-time and
achieving equivalent performance in terms of mean run-time as B&C. The only
statistic that is significantly different is the median run-time for LocAlloc, which
is considerably smaller for OPT15. On problems where B&C performs poorly
compared to LBBD, OPT15 performs approximately the same as B&C on Cost-
MinMulti and much better on MkspMinMulti. In fact, there is no statistically
significant difference between LBBD and OPT15 on the latter set.

96 J.C. Beck

A different perspective on this data is presented in Table 3. The table presents
two pieces of data: the mean and median number of times that the set of SPs is
solved (SP Iter.) and the percentage of problem instances for which the algorithm
achieved a run-time within 10 seconds of the best run-time achieved by any
algorithm. For example, on the two-machine instances of CostMinUnary, LBBD
is within the 10 seconds of the best run-time on 85.3% of the problem instances,
while B&C and OPT15 are within the threshold on all instances.

The SP iteration data demonstrate that, indeed, OPT15 tends to solve the
sub-problems less frequently than B&C. The difference, however, is small.

The % Best data indicates that OPT15 is seldom best on a given subset:
it is alone with the highest percentage on two subsets (CostMinMulti/4 and
LocAlloc/uncor), while LBBD is uniquely the best on 5 sets and B&C on 2.
However, it is never the worst performer while LBBD and B&C have poor results
on different problem sets. Overall, the performance of OPT15 results in it being
within the 10-second threshold on 84.7% the problems compared to 82.7% and
67.7% for B&C and LBBD, respectively.

5 Discussion and Conclusion

This paper has presented the first systematic comparison of logic-based Ben-
ders decomposition and branch-and-check. Using four different problems from
the scheduling and facility location literature, we have demonstrated that B&C
can lead to a significant improvement over LBBD but that the improvement is
dependent on the difficulty of solving the sub-problems relative to that of solving
the master problem. For problems where the sub-problem is difficult, B&C can
result in significantly longer run-times than LBBD. We have also shown that
the proportion of run-time used in LBBD to solve the master problem is a good
measure of the likelihood of the benefit from implementing a B&C algorithm.
Our results show that unless at least 80% of the LBBD run-time is spent on the
master problem, benefits from B&C are small and rare.

The generality of these conclusions is still in question, as we have only evalu-
ated four problem types, three of which are related scheduling problems. It would
be interesting to perform similar experiments with radically different problems.
Despite the problem similarities, however, three different behaviors were ob-
served in terms of the proportion of CPU time spent solving the sub-problems
and the number of master problem iterations (see Table 2). Furthermore, our
results are consistent with our understanding of the increased emphasis on solv-
ing sub-problems that is embodied by B&C. We are, therefore, optimistic that
the conclusions here will be confirmed in follow-up research.

In our experiments, the sub-problem relaxation and the Benders cut were
not independent variables. These are two critical components of an LBBD-style
algorithm and changing these model components may change the relative perfor-
mance of LBBD and B&C on a given problem. However, we conjecture that the
fundamental conclusion regarding the proportion of effort in solving the mas-
ter problem versus the sub-problems would still be valid. Specifically, a tighter,

Checking-Up on Branch-and-Check 97

harder-to-compute Benders cut should result in fewer iterations but may re-
sult in much more expensive sub-problems. Depending on the strength and
computational cost of the cut, the new model may spend either a higher or
lower proportion of its run-time on the sub-problems. Our results suggest that
if the new cut shifts the run-time toward the master problem then B&C has an
improved likelihood of out-performing LBBD when compared with the weaker
cut. The reverse is true if the new cut results in a larger proportional effort
on the sub-problems. In contrast, a tighter, more expensive sub-problem relax-
ation should increase the effort required in solving the master problem while
reducing the number of times that the sub-problems must be solved. This shift
suggests that a tighter sub-problem relaxation would tend to favour B&C over
LBBD.

This paper also introduces OPT15, a B&C variation that achieves more robust
performance by avoiding sub-problems that are difficult and irrelevant to cutting
off optimal master solutions. It achieves this goal by only solving sub-problems
for master problem solutions with an optimality gap of 15% or less.

The relative performance of OPT15 and B&C depends on the quality of the
feasible MP solutions that are found. Experiments using an earlier version of
CPLEX (version 11.0) demonstrated significantly worse B&C performance and
correspondingly larger OPT15 improvement on the CostMinMulti and Mksp-
MinMulti problems. The performance change with CPLEX 12.1 was due to an
improvement in the quality of the first feasible MP solution found. With CPLEX
11.0, the initial MP solutions often induced worst-case SPs that, by themselves,
exhausted the 7200-second time limit. It would be interesting to repeat the above
experiments with different CPLEX settings (e.g., preferring optimal to feasible
solutions) and with other MIP solvers to further investigate the importance of
the initial feasible MP solution. We expect the performance of OPT15 to increase
when the initial feasible MP solutions are of poorer quality.

OPT15 investigates “middle ground” between solving sub-problems only for
optimal MP solutions versus solving them for each feasible MP solution. As a
relatively simple idea, it is unclear if OPT15 specifically deserves further de-
velopment. However, as an example of a technique that interpolates between
LBBD and B&C, it opens the possibility for more sophisticated approaches.
Our choice of using a threshold on the optimality gap and the specific choice of
that threshold were arbitrary. One might instead set a small time-limit on sub-
problem searches. For easy sub-problems, the performance would be identical to
B&C while for harder sub-problems, performance may approach that of LBBD.
One could consider adaptively learning such time limits for given problems or
problem instances.

Acknowledgments. This research was supported in part by the Natural Sciences
and Engineering Research Council of Canada, Canadian Foundation for Innova-
tion, Ontario Ministry for Research and Innovation, Alcatel-Lucent, and IBM.
Thanks to Daria Terekhov for comments on earlier versions.

98 J.C. Beck

References

1. Hooker, J.N.: Logic-based Methods for Optimization. Wiley, Chichester (2000)

2. Hooker, J., Ottosson, G.: Logic-based Benders decomposition. Mathematical Pro-

gramming 96, 33–60 (2003)

3. Thorsteinsson, E.S.: Branch-and-check: A hybrid framework integrating mixed in-

teger programming and constraint logic programming. In: Walsh, T. (ed.) CP 2001.

LNCS, vol. 2239, pp. 16–30. Springer, Heidelberg (2001)

4. Hooker, J.: A hybrid method for planning and scheduling. Constraints 10, 385–401

(2005)

5. Jain, V., Grossmann, I.E.: Algorithms for hybrid MILP/CP models for a class of

optimization problems. INFORMS Journal on Computing 13(4), 258–276 (2001)

6. Bockmayr, A., Pisaruk, N.: Detecting infeasibility and generating cuts for mixed

integer programming using constraint programming. Computers & Operations Re-

search 33, 2777–2786 (2006)

7. Sadykov, R., Wolsey, L.A.: Integer programming and constraint programming in

solving a multimachine assignment scheduling problem with deadlines and release

dates. INFORMS Journal on Computing 18(2), 209–217 (2006)

8. Sadykov, R.: A branch-and-check algorithm for minimizing the weighted number of

late jobs on a single machine with release dates. European Journal of Operational

Research 189, 1284–1304 (2008)

9. Baptiste, P., Le Pape, C., Nuijten, W.: Constraint-based Scheduling. Kluwer Aca-

demic Publishers, Dordrecht (2001)

10. Fazel-Zarandi, M.M., Beck, J.C.: Solving a location-allocation problem with logic-

based Benders decomposition. In: Gent, I.P. (ed.) CP 2009. LNCS, vol. 5732,

pp. 344–351. Springer, Heidelberg (2009)

11. Shaw, P.: A constraint for bin packing. In: Wallace, M. (ed.) CP 2004. LNCS,

vol. 3258, pp. 648–662. Springer, Heidelberg (2004)

12. Cohen, P.R.: Empirical Methods for Artificial Intelligence. The MIT Press, Cam-

bridge (1995)

Spatial, Temporal, and Hybrid Decompositions
for Large-Scale Vehicle Routing with Time Windows

Russell Bent1 and Pascal Van Hentenryck2

1 Los Alamos National Laboratory
2 Brown University

Abstract. This paper studies the use of decomposition techniques to quickly
find high-quality solutions to large-scale vehicle routing problems with time win-
dows. It considers an adaptive decomposition scheme which iteratively decouples
a routing problem based on the current solution. Earlier work considered vehicle-
based decompositions that partitions the vehicles across the subproblems. The
subproblems can then be optimized independently and merged easily. This pa-
per argues that vehicle-based decompositions, although very effective on various
problem classes also have limitations. In particular, they do not accommodate
temporal decompositions and may produce spatial decompositions that are not
focused enough. This paper then proposes customer-based decompositions which
generalize vehicle-based decouplings and allows for focused spatial and tempo-
ral decompositions. Experimental results on class R2 of the extended Solomon
benchmarks demonstrates the benefits of the customer-based adaptive decom-
position scheme and its spatial, temporal, and hybrid instantiations. In particu-
lar, they show that customer-based decompositions bring significant benefits over
large neighborhood search in contrast to vehicle-based decompositions.

1 Introduction

The scale of optimization problems and the need for finding high-quality solutions has
grown steadily in recent years as optimization systems are increasingly deployed in
operational, integrated settings. This trend generates significant issues for optimization
research, changing the focus from finding optimal solutions to delivering high-quality
solutions under time constraints. This paper examines the underlying algorithmic issues
in the context of multiple vehicle routing with time windows (VRPTWs), which arise
in many transportation applications including courier services, the scheduling of repairs
in telecommunication companies, and supply-chain logistics. VRPTWs are particularly
interesting in this respect, since instances with as few as 100 customers have not been
solved optimally despite intense research. Hence finding high-quality solutions under
time constraints for problems with 1,000 customers is a significant challenge.

Spatial and temporal decouplings [17] are natural avenues for speeding up optimiza-
tion algorithms. Unfortunately, they do not apply easily to large-scale VRPTWs that
involve complex spatial and temporal dependencies. To remedy this limitation, the con-
cept of adaptive decoupling was proposed in [4]. Its key idea is to iteratively select sub-
problems that are optimized independently and reinserted into an existing solution. The
successive decouplings are adaptive as they depend on the current solution, not simply

D. Cohen (Ed.): CP 2010, LNCS 6308, pp. 99–113, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

100 R. Bent and P. Van Hentenryck

the instance data. The benefits of this approach were demonstrated by a vehicle-based
adaptive spatial decomposition VASD scheme which produces high-quality solutions
significantly faster than large neighborhood search (LNS) on the class RC1 of the ex-
tended Solomon benchmarks. Informally speaking, the VASD scheme partitions the
vehicles of an existing solution to obtain two subproblems, reoptimizes one of these
subproblems using LNS, and reinsert the optimized vehicle routes to obtain a new so-
lution. The VASD scheme is attractive since it makes it easy to merge the solutions
of decoupled problems. However, it also has a number of limitations. Because it is
vehicle-based, it is not as spatially focused as possible since vehicles may often travel
across large regions, especially early in the optimization process. Moreover, vehicle-
based decompositions cannot really accommodate temporal decouplings, since vehicles
generally serve customers with a wide variety of time windows.

This paper remedies these limitations and proposes a customer-based adaptive de-
composition (CAD) scheme which can be naturally instantiated to spatial, temporal,
and hybrid decouplings. Its key idea is to select a set of customers based on a spatial,
temporal, or hybrid property and to define a generalized multi-depot VRPTW involving
these customers only. The CAD scheme thus allows for more focused spatial decom-
positions, tight temporal decompositions, or a combination thereof. The generalized
VRPTW is also designed to allow for an easy merging of its reoptimized solution into
the existing solution.

The benefits of the CAD scheme are demonstrated on the class R2 of the extended
Solomon benchmarks. The experimental results indicate that the CAD scheme signif-
icantly outperforms LNS and the VASD scheme on this class. They also indicate the
complementarity between spatial and temporal decompositions and hence the value of
hybrid decompositions.

The rest of this paper is organized as follows. It first reviews VRPTWs and the adap-
tive decomposition scheme. It then presents the earlier work on vehicle-based adaptive
spatial decompositions and the novel contributions on customer-based adaptive decou-
plings. The paper then presents several instantiations of the CAD scheme, including
spatial, temporal, and randomized decouplings. The experimental results and the re-
lated work concludes the paper.

2 VRPTWs

A VRPTW instance is specified by a set C of customers, a set of departure depots D−,
a set of arrival depots D+, and a set of vehicles V such that |D−| = |D+| = |V|. A
single depot problem is easily generalized into a multi-depot problem by creating mul-
tiple depots at the same location. We use multiple depots since it enables us to specify
decoupled problems as VRPTWs. The sites of the VRPTW instance are elements of
Sites = C ∪ D− ∪ D+. Every site c has a demand qc ≥ 0 and a service time sc ≥ 0
which is the duration spent at each customer location. The travel cost between sites i
and j is tij . Each site c has a time window [ec, lc] constraining when it can be visited,
where ec and lc represent the earliest and latest arrival times. Vehicles must arrive at
site c before the end of the time window lc. They may arrive early but they have to wait
until time ec to be serviced. Each vehicle has a capacity Q. The recursive computation

Spatial, Temporal, and Hybrid Decompositions for Large-Scale Vehicle Routing 101

of earliest and latest arrival times is specified in detail in [2] and is omitted here for
space reasons.

Solutions are specified in terms of vehicle routes and routing plans. A vehicle route
starts from a depot d−, visits a number of customers at most once, and returns to a de-
pot d+. It is thus a sequence 〈d−, c1, . . . , cn, d+〉 where all sites are different. The cus-
tomers of a route r = 〈d−, c1, . . . , cn, d+〉, denoted by cust(r), is the set {c1, . . . , cn}
and the route r of a customer in {c1, . . . , cn} is denoted by route(c). The size of a
route, denoted by |r|, is |cust(r)|. The demand of a route, denoted by q(r), is the sum
of the demands of its sites, i.e., q(r) = q(d−) +

∑n
i=1 q(ci) + q(d+). A route satisfies

its capacity constraint if q(r) ≤ Q. We use q(c) to denote the amount of capacity used
by a route up to site c. The travel cost t(r) of a route r = 〈d−, c1, . . . , cn, d+〉 is the cost
of visiting all its sites, i.e., t(r) = d(d−, c1)+d(c1, c2)+ . . .+d(cn−1, cn)+d(cn, d+).

A routing plan is a set of routes in which every customer is visited exactly once
and every depot at most once. Observe that a routing plan assigns a unique earliest
arrival time ac for each site c. It also assigns a unique return time a(r) to its destination
depot d+ for each route r. The routing plan also assigns a departure time for each site
c, denoted by δc. The routing plan also assigns a critical arrival time for each site c,
denoted by zc. This is the latest time a vehicle can feasibly arrive at c.

A solution to the VRPTW is a routing plan σ satisfying the capacity and time win-
dow constraints, i.e., ∀r ∈ σ : q(r) ≤ Q & ∀c ∈ Sites : ac ≤ lc. The ordering
of the customers on a route in σ implicitly defines a predecessor and successor site
for each site c, denoted by pred(σ, c) and succ(σ, c). When the context is clear, σ is
dropped from the notation for brevity. The size |σ| of a routing plan σ is the number
of non-empty routes in σ. The VRPTW problem consists of finding a solution σ which
minimizes a lexicographic function consisting of the number of vehicles and the total
travel cost, i.e., f(σ) = 〈|σ|,

∑
r∈σ t(r)〉. Modern algorithms for the VRPTW are often

organized in two stages, first minimizing the number of vehicles and then minimizing
travel distance [2,19].

3 The Adaptive Decomposition Scheme

This paper aims at finding decouplings to speed up the solving of large-scale VRPTWs.
The goal of the decouplings is to decompose a VRPTW P into two sub-VRPTWs Po

and Ps that can be solved independently and whose solutions can be merged into a
solution of P . In general, finding static decompositions is difficult. For this reason, we
proposed in [4] to use the current solution σ of P to find a decoupling (Po,Ps) with
projected solution σo and σs. The VRPTW Po is then reoptimized and its solution is
merged with σs to obtain a new solution to P . More precisely, the Adaptive Decompo-
sition Scheme (ADS) is based on two main principles:

1. Starting from plan σ0, it produces a sequence of plans σ1, . . . , σj such that f(σ0) ≥
f(σ1) ≥ . . . ≥ f(σj).

2. At step i, the scheme uses σi−1 to obtain a decoupling (Po,Ps) of P with pro-
jected solutions σo and σs. It reoptimizes Po to obtain σ∗

o and the new plan σi =
MERGE(σ∗

o , σi−1)

102 R. Bent and P. Van Hentenryck

One of the most challenging aspects of ADS is how to perform the merging of the
decoupled solutions, i.e, σi = MERGE(σ∗

o , σi−1). In [4], we addressed this challenge
by choosing Po such that the customers of entire vehicles are removed. The merging
operation is then trivial, since the vehicles in (Po and Ps) are disjoint. We now review
this scheme to emphasize its strengths and limitations.

4 Vehicle-Based Spatial Adaptive Decompositions

The decomposition presented in [4] is a vehicle-based adaptive decoupling (VAD). It
partitions the vehicles to obtain Po and Ps, reoptimizesPo, and uses the new optimized
routes, and the routes in Po to obtain a new solution. Only spatial decompositions were
considered in [4]. The idea was to view the customer region as a circle, randomly selects
a wedge W , and partitions the vehicles into those serving at least one customers in W
and the others. The resulting Vehicle-Based Spatial Adaptive Decomposition VASD
is particularly effective and produced high-quality solutions quickly on instances with
up to 1,000 vertices. Its main benefits are the simple definition of Po and the trivial
implementation of merging, which simply uses the optimized routes of Po to replace
the old routes in the existing solution.

The VAD scheme has a number of limitations however. First, because the decoupling
is vehicle-based, the customers can be located significantly outside the selected wedge.
This is illustrated in Figure 1 which depicts the behavior of the VASD scheme visually.
The left part of Figure 1 shows the initial plan σ0 (left) and the plan σ1 (right) after
the first decoupling and optimization. The customers in the subproblem Po are in red,
the remaining ones in blue. The right part of Figure 1 shows the projected solution
σo for subproblem Po (left) and its reoptimization σ∗

o (right). As can be seen, the first
subproblem is quite spread out, illustrating the spatial decomposition is not as tight
as desired.

More important however is the fact that the VAD scheme does not scale to other
decomposition criteria and, in particular, to temporal decompositions. Indeed, unless
the time windows are wide, it is very unlikely that good solutions cluster customers with
similar time windows on the same vehicle, since the vehicle will be inactive for most

Fig. 1. The First Decoupling of VASD

Spatial, Temporal, and Hybrid Decompositions for Large-Scale Vehicle Routing 103

of the time horizon. Since it uses a vehicle-based decomposition, the VASD scheme is
not well-adapted to exploit temporal locality.

5 Customer-Based Adaptive Decompositions

To remedy this limitation, this paper proposes a Customer-based Adaptive Decompo-
sition (CAD) scheme. A decoupled problem in the CAD scheme is given by a set of
customer sequences and has a new set of depots and constraints so that the solutions of
σ∗

o can be inserted into σs, while ensuring feasibility of the resulting plan.
Given a sequence of customers 〈ci, . . . , cj〉 for the decoupling, the depots of the

subproblem are constructed as follows:

– d− = pred(ci): the origin depot is the predecessor of the sequence.
– d+ = succ(cj): the destination depot is the successor of the sequence.
– ed− = δpred(ci): the departure time of ci is the earliest departure time for d−.
– ld+ = zsucc(cj): the critical arrival time of succ(cj) is the latest arrival for d+.
– qd− = q(pred(ci)): the demand of d− is the cumulative demand up to pred(ci).
– qd+ = q(succ(cj))− q(cj): the demand of d+ is the cumulative demand after cj .

By constructing depots using the border regions of a sequence, any feasible route be-
tween d− and d+ can be reinserted between pred(ci) and succ(cj) of σi−1, while
maintaining the feasibility of Pi.

The CAD scheme is formalized in Figure 2. The core of the algorithm is in lines
3–6 which selects a set of customers (line 3), extracts the customers as a VRPTW
(line 4), reoptimizes subproblem Po using algorithm A (line 5), and merges the new
optimized subplan σ∗

o to obtain the new solution (line 6). These main steps are repeated
until the time limit is reached. The extraction step is given by the EXTRACT function,
which collects all vehicles serving a customer in the decomposition (line 1), collects all
the customers served by these vehicles in between customers of S, and constructs the
depots (lines 2–10). The customers and depots so obtained define the subproblem (line
11). The CONSTRUCTARRIVALDEPOT and CONSTRUCTDEPARTUREDEPOT functions
describe how to create depots forPo that allows σ∗

o to be feasibly merged into σ. Finally,
the MERGE function shows how σ∗

o is merged into σ.

6 Instantiations of the CAD Scheme

This section presents a variety of instantiations of the CAD scheme. Each such instan-
tiation only has to specify how the function SELECTCUSTOMERS is implemented. We
start with the vehicle-based spatial decomposition proposed in [4], generalize it, and
then present temporal and random decompositions.

6.1 The VASD Scheme

We first show how the VASD scheme can be viewed as an instantiation of CAD. The
VASD decomposition scheme is depicted in Figure 3 and aims at choosing wedges

104 R. Bent and P. Van Hentenryck

CAD(A, σ0)

1 σ ← σ0;

2 while time limit unreached

3 do S ← SELECTCUSTOMERS(P , σ);

4 Po ← EXTRACT(S,P , σ);

5 σ∗
o ← A(Po);

6 σ ← MERGE(Po, σ
∗
o , σ);

7 return σ

EXTRACT(S,P , σ)

1 R ← {r ∈ σ | ∃c ∈ r : c lies in S};
2 Co ← ∅;
3 D−

o ← ∅;
4 D+

o ← ∅;
5 for r ∈ R
6 do i ← argmin(c∈r∩S) ac;

7 j ← argmax(c∈r∩S) ac;

8 Co ← Co ∪⋃
(c∈r):ai≤ac≤aj

;

9 D−
o ← D−

o ∪ CONSTRUCTDEPARTUREDEPOT(pred(i));
10 D+

o ← D+
o ∪ CONSTRUCTARRIVALDEPOT(succ(j));

11 return (Co,D+
o ,D−

o);

CONSTRUCTARRIVALDEPOT(p)

1 d− ← p;

2 [ed− , ld−] ← [δp,∞];

3 qd− ← q(p);

4 return d−;

CONSTRUCTDEPARTUREDEPOT(s)
1 d+ ← s;
2 [ed+ , ld+] ← [0, zs];

3 qd+ ← q(s) − q(pred(s));
4 return d+;

MERGE(Po, σ
∗
o , σ)

1 for c ∈ Po

2 do succ(σ, pred(c)) ← c;
3 pred(σ, succ(c)) ← c;
4 succ(σ, c) ← succ(σ∗

o , c);
5 pred(σ, c) ← pred(σ∗

o , c);
6 return σ;

Fig. 2. The CAD Scheme

Spatial, Temporal, and Hybrid Decompositions for Large-Scale Vehicle Routing 105

SELECTDECOMPOSITIONVASD(P , σ)

1 select α ∈ [0, 359];
2 select β > α such that the wedge W ← (α, β);

3 (a) contains at least N customers;

4 (b) is the smallest wedge satisfying (a);
5 V� ← {v ∈ V | ∃ c ∈ rv : c lies in W};
6 return

⋃
v∈V� cust(rv);

Fig. 3. The VASD Scheme for VRPTW Decouplings

SELECTDECOMPOSITIONCASD(P , σ)

1 select α ∈ [0, 359];
2 select β > α such that the wedge W ← (α, β);

3 (a) contains at least N customers;

4 (b) is the smallest wedge satisfying (a);
5 return

⋃
c lies in W ;

Fig. 4. The CASD Scheme for VRPTW Decouplings

producing roughly the same number N of customers. It first chooses the lower angle α
of the wedge randomly (line 1). It then selects the upper angle β as the smallest angle
greater than α producing the smallest wedge with at least N customers (lines 2–4).
Finally, all customers of vehicles within in the wedge are included in the decomposition.

6.2 The CASD Scheme

We now present a customer-based spatial decomposition CASD that generalizes the
VASD scheme. This generalization is especially important when considering problems
(such as the class 2 problems of the extended Solomon benchmarks) where the vehicles
serve many customers and can travel across many portions of the space. Under these
conditions, VASD loses some of its locality as shown in Figure 1. In contrast, CASD
algorithm preserves the spatial boundaries and improves the results of spatial decou-
plings on the class 2 extended Solomon benchmarks. Figure 4 gives the formalization
of CASD which is a simplification of VASD. Figure 5 shows how the CASD scheme
performs a decoupling from the same starting solution as Figure 1. The right hand pic-
ture shows all routes with decoupled customers, with the decoupled customers shown
in red and the remaining ones in blue. It is interesting to compare this with Figure 1.
CASD is clearly better at respecting spatial boundaries and allows customers of more
vehicles to be considered in the decomposition.

6.3 The CATD Scheme

We now present a temporal instantiation (CATD) of the CAD scheme. The CATD
scheme chooses random time slices and returns all of the customers that are served
within that time slice. Figure 6 provides the implementation of this algorithm where
lines 1–4 select a random slice that contains at least N customers. The mechanism for

106 R. Bent and P. Van Hentenryck

Fig. 5. The First Decoupling of CASD

SELECTDECOMPOSITIONCATD(P , σ)

1 select α ∈ [0, ld∈D];

2 select β > α such that the time period T = (α, β);

3 (a) contains at least N customers;

4 (b) is the smallest time period satisfying (a);

5 return
⋃

c served in T ;

Fig. 6. The CATD Scheme for VRPTW Decouplings

Fig. 7. The First Decoupling of CATD

choosing a time period is similar to that of CASD. First, α is chosen randomly from
the interval [0, ld∈D]. β is then incremented from α + 1 until the desired number of
customers appear in the interval (or when β = ld∈D). Figure 7 demonstrates a decou-
pling based on the CATD scheme. Unlike prior decouplings, the temporal decoupling
crosses most of the vehicles as seen by the number of routes included in the righthand
side of the figure.

Spatial, Temporal, and Hybrid Decompositions for Large-Scale Vehicle Routing 107

SELECTDECOMPOSITIONCARD(P , σ)

1 S ← ∅;
2 while |S| < N
3 do select α ∈ C \ S;

4 select β ∈ C \ S such that route(α) = route(β) ∧ δα < δβ;

5 S ← S ∪⋃
c ∈ C such that route(c) = route(α) ∧ δα ≤ δc ≤ δβ;

6 return S;

Fig. 8. The CARD Scheme for VRPTW Decouplings

6.4 The CARD Scheme

This section describes a simple random decoupling scheme (CARD) used to provide
a basis to evaluate the structured decoupling schemes described in the prior sections.
Figure 8 shows the implementation. The scheme iterates by selecting random sequences
of customers (lines 3–4) until the desired number of customers is achieved (line 2).

7 Experimental Results

This section presents the experimental results for the 1,000 customer extended Solomon
benchmarks (www.top.sintef.no/vrp/benchmarks.html).The benchmarks
contain a mix of loose and tight time windows and different types of spatial distribu-
tions. Recall that the difficulty in these problems, once two-stage algorithms are con-
sidered, is mostly in optimizing travel distances. Hence the experimental results mostly
focus on this second stage, and uses a fixed solution with the minimal number of vehi-
cles from the first phase. The experimental results use large neighborhood search (LNS)
[29] for algorithm A. LNS is one of the most effective algorithms for optimizing ve-
hicle routing problems [29,3,2,26,24]; it also has the benefits of easily accommodating
side constraints [3], which is important in practical implementations. The experiments
report the solution quality under various time constraints (i.e., 2.5, 5, 10, and 15 min-
utes). Each reported result is the average of 50 runs on an AMD Athlon Dual Core
Processor 3800.

For space reasons, we focus only on class R2. In general, the results on RC1 and R1
show that VASD(LNS) is the best implementation and produces significant improve-
ments in solution quality under time constraints. In average, it produces improvements
of 35%, 29%, 17%, and 6% over LNS when the time constraints require solutions to
be found within 1, 2.5, 5, and 10 minutes respectively on RC1 problems. Both VASD
and CASD outperform LNS on all RC1 and R1 instances and the results of CATD
and CARD are good after the first 2.5 minutes. In general, good solutions to RC1 and
R1 are characterized by vehicles serving very few customers in narrow regions, making
spatial decompositions very natural. It is also important that the decomposition scheme
provides highly competitive solutions when run for about an hour and improves some
of the best-known solutions on these benchmarks.

108 R. Bent and P. Van Hentenryck

Table 1. R2 Solution Quality Under Time Constraints

BK R2 10 1 R2 10 2 R2 10 3 R2 10 4 R2 10 5 R2 10 6 R2 10 7 R2 10 8 R2 10 9 R2 10 10 Avg
UB 42294.31 33459.32 24938.95 17880.11 36258.34 30073.6 23253.89 17509.69 33068.74 30312.5

LNS (1) 56336.2 43864.4 42620.2 33281.9 47352.4 40907.5 38056.6 29516.6 44540.9 40973.8
VASD (1) 67937.5 48391.3 47151.0 29349.6 59075.1 49561.9 38104.1 26981.8 55860.8 47982.2
%Impr. -20.6 -10.3 -10.6 11.8 -24.8 -21.2 -0.1 8.6 -25.4 -17.1 -11.0
CASD (1) 68108.7 50337.8 47611.1 28388.1 56962.9 50430.3 37210.3 25543.2 56308.1 51254.3
%Impr. -20.9 -14.8 -11.7 14.7 -20.3 -23.3 2.2 13.5 -26.4 -25.1 -11.2
CATD (1) 51346.6 42352.3 41823.3 34448.2 46275.7 43460.7 38282.0 31186.8 42321.8 42122.2
%Impr. 8.9 3.4 1.9 -3.5 2.3 -6.2 -0.6 -5.7 5.0 -2.8 0.3
CARD (1) 76915.0 63039.1 57772.6 40365.4 59084.6 60321.9 48678.5 35275.7 66420.1 62966.8
%Impr. -36.5 -43.7 -35.6 -21.3 -24.8 -47.5 -27.9 -19.5 -49.1 -53.7 -36.0

LNS (2.5) 53667.5 41260.3 37907.6 30007.5 44941.5 38028.4 33939.7 26921.2 42134.0 38351.7
VASD (2.5) 58759.6 41955.8 38316.4 24632.8 49847.5 38975.1 32055.8 23029.9 46152.3 40896.1
%Impr. -9.5 -1.7 -1.1 17.9 -10.9 -2.5 5.6 14.5 -9.5 -6.6 -0.4
CASD (2.5) 54423.3 40426.1 33387.2 22717.8 46063.0 38462.0 29460.6 20837.6 43235.2 39663.2
%Impr. -1.4 2.0 11.9 24.3 -2.5 -1.1 13.2 22.6 -2.6 -3.4 6.3
CATD (2.5) 46203.4 38061.9 33749.0 28799.4 40220.7 36499.3 32848.3 26997.1 37653.3 34791.7
%Impr. 13.9 7.8 11.0 4.0 10.5 4.0 3.2 -0.3 10.6 9.3 7.4
CARD (2.5) 65820.0 50880.9 43792.2 31651.3 56636.9 47119.1 37598.2 25336.4 54375.1 50583.8
%Impr. -22.6 -23.3 -15.5 -5.5 -26.0 -23.9 -10.8 5.9 -29.1 -31.9 -18.3

LNS (5) 51877.8 39871.7 34873.2 27549.9 43616.4 36400.2 31500.3 25323.0 40647.4 37109.6
VASD (5) 54743.7 40546.3 34540.3 22899.2 46174.3 36959.9 30188.5 21775.7 42417.0 38351.2
%Impr. -5.5 -1.7 1.0 16.9 -5.9 -1.5 4.2 14.0 -4.4 -3.3 1.4
CASD (5) 49454.3 38194.8 30138.7 21578.2 42203.5 34796.8 27451.5 20837.6 38577.2 35847.8
%Impr. 4.9 4.4 15.7 27.7 3.3 4.6 14.7 21.5 5.4 3.5 10.6
CATD (5) 44633.9 36339.7 31647.7 26463.1 39040.4 34816.3 29354.2 25357.9 36014.8 33517.4
%Impr. 14.0 8.9 9.2 3.9 10.5 4.4 6.8 -0.1 11.4 9.7 7.9
CARD(5) 58595.0 44269.4 37808.6 27458.0 49889.9 40801.7 32854.8 23217.5 47379.4 43606.2
%Impr. -5.5 -1.7 1.0 16.9 -5.9 -1.5 4.2 14.0 -4.4 -3.3 1.4

LNS (10) 50763.2 38737.0 34873.2 25195.6 42848.5 35342.0 29752.8 23665.7 39802.5 36378.8
VASD (10) 51950.6 39427.7 32426.1 22185.2 44327.2 35842.8 29264.1 21164.4 40519.9 37099.5
%Impr. -2.3 -1.8 7.0 11.9 -3.5 -1.4 1.6 10.6 -1.8 -2.0 1.8
CASD (10) 47371.3 37343.2 28991.6 21010.5 40890.2 33852.4 26566.4 20290.5 37112.5 34632.8
%Impr. 6.7 3.6 16.9 16.6 4.6 4.2 10.7 14.3 6.8 4.8 8.9
CATD (10) 44172.2 36339.7 31358.7 25469.9 38445.3 33830.0 29354.2 24371.9 35221.8 32786.1
%Impr. 13.0 6.2 10.1 -1.1 10.3 4.3 1.3 -3.0 11.5 9.9 6.2
CARD (10) 52845.8 40408.6 33549.5 24331.5 45462.6 36987.2 29852.5 23217.5 42537.3 38638.1
%Impr. -4.1 -4.3 3.8 3.4 -6.1 -4.7 -0.3 1.9 -6.9 -6.2 -2.3

Benefits of CAD. Table 1 describes the solution quality under various time constraints
for LNS and various instantiations of CAD(LNS) on R2 problems. Each column de-
scribes a R2 instance with 1,000 customers and the best-known number of vehicles. The
clusters of rows consider various time constraints: 1, 2.5, 5, and 10 minutes. The row
BK specifies the travel distance of the best known solution (prior to this research). The
rows %Impr describes the improvement in solution quality of CAD(LNS) with respect
to LNS. CAD(LNS) is run with N = 200, i.e., the decomposition must contain at least
200 customers.

It is interesting to observe that Table 1 provides very different conclusions than the
results on classes RC1 and R1. High-quality solutions to R2 problems are characterized
by fewer vehicles serving many more customers over wide temporal regions. This puts
VASD at a disadvantage as decompositions typically violate the natural spatial bound-
aries of the wedge due to the need to include all customers of vehicles. This is best
illustrated by the 5 minute results, when the CASD scheme vastly outperforms VASD.
After 2.5, 5, and 10 minutes, CASD produces average improvements of 6.3%, 10.6%,
and 8.9% over LNS, while VASD degrades the performance after 2.5 minutes and

Spatial, Temporal, and Hybrid Decompositions for Large-Scale Vehicle Routing 109

Fig. 9. Benefits of CAD on R2 10 1 and R2 10 3

produces improvements of 1.4% and 1.6% for 5 and 10 minutes. On some benchmarks,
CASD produces more than 10% over LNS. Interestingly, CATD produces excellent re-
sults on class R2 and produces average improvements of 0.3%, 7.5%, 7.9%, and 6.2%
after 1, 2.5, 5, and 10 minutes. Moreover, it significantly outperforms other decomposi-
tions on several benchmarks where it can produce improvements up to 14%. On closer
inspection, CATD performs very well on those problems whose customers have narrow
time windows. The explanation for this behavior is interesting: when a customer has a
wide time window, it can be served early or late. If it is initially served early when it
should be served late, it is impossible to find a solution that moves the customer to a
later time period, unless every intermediate temporal decoupling provides an improving
solution. On problems with customers with narrow time windows, the problem struc-
ture itself enforces the correct temporal locations of the customers, making a temporal
decomposition very natural.

Figure 9 depicts the typical behavior of LNS and CAD(LNS) on two benchmarks in
the R2 class. In the left graph, the R2 problem has narrow time windows and CATD is
clearly the best, further demonstrating the natural benefits of this decomposition when
customers have narrow time windows. It also shows the limitations of the VASD ap-
proach under the conditions of class 2 problems. The right part of the figure shows
results on a class 2 problem with wide time windows. Here we see a reversal of the ef-
fectiveness of CATD where CASD is clearly better. Note also that CASD(LNS) and
CATD(LNS) still dominates LNS when both algorithms run for an hour.

Overall, these results clearly show the benefits of customer-based decompositions
and the complementary between spatial and temporal decompositions.

Hybrid Implementations. To exploit this complementarity, We also considered some
hybrid approaches between CASD and CATD to determine if a single approach would
perform well on all instances (for example good on both R2 10 1 and R2 10 3). Two
hybrids worked quite well. The first hybrid chooses to either follow a CATD decou-
pling or a CASD decoupling randomly at each iteration. The second hybrid creates a
decoupling at each iteration that contains N/2 customers from a CATD selection and

110 R. Bent and P. Van Hentenryck

Fig. 10. Benefits of Hybrid Approaches

N/2 from CASD selection. Both schemes generated very consistent results on all prob-
lems, in general being within 1% of the best CASD or CATD result on each problem.
This indicates that when problem structure is unknown or varied, a hybrid approach
may produce the best results. Figure 10 demonstrates how the first hybrid approach
smoothes out performance.

8 Related Work

There are literally hundreds of papers discussing vehicle routing problems and their
variations and it is beyond the scope of this paper to provide a comprehensive litera-
ture review. The reader is invited to see [8,9,11,16,27,25] for recent surveys. Almost all
papers focus on problems of relatively small size which, as mentioned earlier, are al-
ready extremely difficult. Unfortunately, many of the proposed techniques do not scale
well and some recent papers specifically address large-scale problems. We now focus
attention on recent work that have considered decomposition ideas.

Decomposition comes in many different varieties in literature. In some papers, like
[5,6], decomposition focuses on decomposing the search strategy space (as opposed
to problem structure). Related to this idea is the view of decomposition across at-
tributes (variables) of the problems. Multi-stage approaches such as [15,2,21,18,10,7]
can be classified in this way (i.e., first minimizing the number vehicles required and
then minimizing the travel distance). [12] suggests a general framework for breaking
problems across attribute boundaries using evolutionary algorithms. The different sub-
problems communicate results via population exchanges. The framework is tested on
the VRPTW. They key difference between attribute decomposition and CAD is that
our approach retains information about the entire problem and simplifies the problem
by decreasing their scale.

Recent and concurrent work has focused on dividing the problem into smaller sub-
problems across structural boundaries that is very much in the spirit of VASD. [20]
presents a deterministic hierarchical decomposition scheme for evolutionary algorithms.
The VRPTW spatial region is divided into rectangles, defining sub problems that are

Spatial, Temporal, and Hybrid Decompositions for Large-Scale Vehicle Routing 111

solved independently. The rectangles are recursively merged into larger subproblems
which rely on the smaller problems as starting solutions for the larger subproblems. [1]
introduces spatial-based decomposition ideas in a genetic algorithm. Their approach
randomly applies the evolutionary operations to either the whole problem or spatially
defined sub regions. [23,22] presents some interesting spatial decomposition approaches
based on clustering (POPMUSIC). At a high level, POPMUSIC iteratively chooses
routes and creates subproblems based on nearness to that route (different approaches to
defining nearness are explored). The algorithm iterates until it has created subproblems
on all routes without improvement. Finally, the work of [13] proposes a decoupling
scheme for the air-taxi problem based on spatial boundaries.

In many ways, all of these approach can be viewed as variations of VASD. The key
difference between these approaches and our framework is that they decompose prob-
lems based on routes as opposed to customers. This makes the merging of solutions
from the subproblems to the global problem easy. However, by structuring the decom-
positions on a customer basis, we are able to create subproblems within routes, a prop-
erty that is very important when routes cross multiple spatial and temporal boundaries.
But is important to note that this related work also supports our claim that decomposi-
tion improves algorithm performance.

It is useful to contrast the deconstruction steps of LNS ([29,26,28,24]) and the CAD
scheme. In LNS, the basic step consists of removing related customers (often based
on spatial or temporal relationships) from a plan σ and to reinsert them in σ using
an optimization algorithm. The CAD scheme can also be thought of as removing re-
lated customers with two fundamental differences: 1) the removed customers defines
a VRPTW subproblem of (significantly) smaller size which can solved independently
and 2) Subproblems restrict neighborhood explorations to being within the decomposi-
tion itself. This is critical for finding high-quality solution quickly. Obviously, the two
approaches are synergetic since our results are obtained using CAD(LNS).

Finally, it is useful to relate CAD to the approach in [17] which impose specific tem-
poral constraints to obtain decouplings. CAD uses spatial and temporal decouplings
that constrain specific subsets of customers to be served by designated vehicles. More-
over, the use of decoupling is fundamentally different. The idea is to iteratively obtain
new decouplings to optimize an existing plan by re-optimizing subproblems. This use
of decouplings also contrast with traditional decomposition techniques in constraint
satisfaction [14].

9 Conclusion

This paper reconsidered the adaptive decomposition framework to quickly find high-
quality solutions to large-scale vehicle routing problems with time windows. Earlier
work had focused vehicle-based decompositions that partition the vehicles across the
subproblems which makes it easy to define the subproblems and merge their solutions.
Although vehicle-based spatial decompositions are very effective on classes R1 and
RC1 of the extended Solomon benchmarks, the paper identified some of their limita-
tions and, in particular, the difficulty in adapting them to temporal decompositions. This
paper then proposed customer-based decompositions which generalize vehicle-based

112 R. Bent and P. Van Hentenryck

decouplings and allow for focused spatial and temporal decompositions. Experimen-
tal results on class R2 of the extended Solomon benchmarks demonstrated the benefits
of the customer-based adaptive decomposition scheme and its spatial, temporal, and
hybrid instantiations. In particular, the results show significant benefits over the use
of large neighborhood search and vehicle-based spatial decompositions. For instance,
customer-based temporal decompositions yield an average improvement of 7.4% over
LNS after 2.5 minutes, while the vehicle-based spatial decomposition degrades the per-
formance by 0.4% in average. Similarly, customer-based spatial decompositions yield
an average improvement of 10.6% over LNS after 5 minutes, while the vehicle-based
spatial decomposition improves the performance by only 1.4% in average. The com-
plementary between spatial and temporal decompositions was also highlighted and hy-
bridizations were shown to be particularly effective in producing robust results across
all benchmarks. An intriguing future research direction is to determine whether the de-
composition can be chosen automatically from the instance structure.

References

1. Alvarenga, G.B., Mateus, G.R., de Tomi, G.: A genetic and set partitioning two-phase ap-
proach for the vehicle routing problem with time windows. Computers & Operations Re-
search 34, 1561–1584 (2007)

2. Bent, R., Van Hentenryck, P.: A Two-Stage Hybrid Local Search for the Vehicle Routing
Problem with Time Windows. Transportation Science 38(4), 515–530 (2004)

3. Bent, R., Van Hentenryck, P.: A Two-Stage Hybrid Algorithm for Pickup and Delivery Ve-
hicle Routing Problems with Time Windows. Computers and Operations Research 33(4),
875–893 (2006)

4. Bent, R., Van Hentenryck, P.: Randomized Adaptive Spatial Decoupling For Large-Scale
Vehicle Routing with Time Windows. In: Proceedings of the Twenty-Second Conference on
Artificial Intelligence (AAAI), Vancouver, Canada (2007)

5. Le Bouthillier, A., Crainic, T.: A Cooperative Parallel Meta-Heuristic for the Vehicle Routing
Problem with Time Windows. Computers and Operations Research 32, 1685–1708 (2005)

6. Le Bouthillier, A., Crainic, T., Kropf, P.: A Guided Cooperative Search for the Vehicle Rout-
ing Problem with Time Windows. IEEE Intelligent Systems 20(4), 36–42 (2005)

7. Braysy, O.: A Reactive Variable Neighborhood Search for the Vehicle Routing Problem with
Time Windows. INFORMS Journal on Computing 15(4), 347–368 (2003)

8. Braysy, O., Gendreau, M.: Vehicle Routing Problems with Time Windows, Part i: Route
Construction and Local Search Algorithms. Transportation Science 39, 104–118 (2005)

9. Braysy, O., Gendreau, M.: Vehicle Routing Problems with Time Windows, Part ii: Meta-
heuristics. Transportation Science 39, 119–139 (2005)

10. Braysy, O., Hasle, G., Dullaert, W.: A Multi-Start Local Search for the Vehicle Routing
Problem with Time Windows. European Journal of Operational Research 159(3), 586–605
(2004)

11. Cordeau, J.-F., Desaulniers, G., Desrosiers, J., Solomon, M., Soumis, F.: The VRP with Time
Windows. In: The Vehicle Routing Problem: SIAM Monographs on Discrete Mathematics
and Applications, pp. 157–194 (2001)

12. Crainic, T.G., Crisan, G.C., Gendreau, M., Lahrichi, N., Rei, W.: A concurrent evolutionary
approach for rich combinatorial optimization. In: Proceedings of the 11th Annual Confer-
ence Companion on Genetic and Evolutionary Computation Conference (GECCO 2009),
pp. 2017–2022. ACM, New York (2009)

Spatial, Temporal, and Hybrid Decompositions for Large-Scale Vehicle Routing 113

13. Espinoza, D., Garcia, R., Goycoolea, M., Nemhauser, G.L., Savelsbergh, M.: Per-Seat, On-
Demand Air Transportation Part II: Parallel Local Search. Transportation Science 42(3),
279–291 (2008)

14. Dechter, R.: Constraint Processing. Morgan Kaufmann, San Francisco (2003)
15. Gehring, H., Homberger, J.: A Parallel Two-phase Metaheuristic for Routing Problems with

Time Windows. Asia-Pacific Journal of Operational Research 18, 35–47 (2001)
16. Golden, B., Raghavan, S., Wasil, E.: The Vehicle Routing Problem: Latest Advances and

New Challenges. Springer, Heidelberg (2008)
17. Hunsberger, L.: Algorithms for a Temporal Decoupling Problem in Multi-Agent Planning.

In: Proceedings of the Eighteenth American Conference on Artifical Intelligence (AAAI),
Edmonton, Canada, pp. 468–475 (2002)

18. Lim, A., Zhang, X.: A two-stage heuristic with ejection pools and generalized ejection chains
for the vehicle routing problem with time windows. INFORMS Journal on Computing 19(3),
443–457 (2007)

19. Mester, D., Braysy, O.: Active Guided Evolution Strategies for Large Scale Vehicle Routing
Problems with Time Windows. Computers and Operations Research 32, 1593–1614 (2005)

20. Mester, D., Braysy, O., Dullaert, W.: A multi-parametric evolution strategies algorithm for
vehicle routing problems. Expert Systems with Applications 32, 508–517 (2007)

21. Nagataa, Y., Bysy, O., Dullaert, W.: A penalty-based edge assembly memetic algorithm for
the vehicle routing problem with time windows. Computers and Operations Research 37(4),
724–737 (2010)

22. Ostertag, A., Doerner, K., Hartl, R., Taillard, E., Waelti, P.: POPMUSIC for a real-world
large-scale vehicle routing problem with time windows. Journal of the Operational Research
Society 60(7), 934–943 (2009)

23. Ostertag, A., Doerner, K.F., Hartl, R.F.: A variable neighborhood search integrated in the
popmusic framework for solving large scale vehicle routing problems. In: Blesa, M.J., Blum,
C., Cotta, C., Fernández, A.J., Gallardo, J.E., Roli, A., Sampels, M. (eds.) HM 2008. LNCS,
vol. 5296, pp. 29–42. Springer, Heidelberg (2008)

24. Pisinger, D., Ropke, S.: Large neighborhood search. In: Potvin, J.-Y., Gendreau, M. (eds.)
Handbook of Metaheuristics. Springer, Heidelberg (2009)

25. Potvin, J.-Y.: A review of bio-inspired algorithms for vehicle routing. In: Pereira, F.B.,
Tavares, J. (eds.) SCI, ch. 1, pp. 1–34. Springer, Heidelberg (2008)

26. Prescott-Gagnon, E., Desaulniers, G., Rousseau, L.-M.: A branch-and-price-based large
neighborhood search algorithm for the vehicle routing problem with time windows. Net-
works, 1–15 (to appear)

27. Repoussis, P.P., Tarantilis, C.D., Ioannou, G.: Arc-guided evolutionary algorithm for the ve-
hicle routing problem with time windows. IEEE Transactions on Evolutionary Computa-
tion 13(3), 624–647 (2009)

28. Rousseau, L.-M., Gendreau, M., Pesant, G.: Using Constraint-Based Operators to Solve the
Vehicle Routing Problem with Time Windows. Journal of Heuristics 8(1), 43–58 (2002)

29. Shaw, P.: Using Constraint Programming and Local Search Methods to Solve Vehicle Rout-
ing Problems. In: Maher, M.J., Puget, J.-F. (eds.) CP 1998. LNCS, vol. 1520, pp. 417–431.
Springer, Heidelberg (1998)

Decomposition of the NVALUE Constraint

Christian Bessiere1, George Katsirelos2, Nina Narodytska3,
Claude-Guy Quimper4, and Toby Walsh3

1 LIRMM, CNRS, Montpellier
bessiere@lirmm.fr

2 CRIL-CNRS, Lens
gkatsi@gmail.com

3 NICTA and University of NSW, Sydney, Australia
{nina.narodytska,toby.walsh}@nicta.com.au

4 Université Laval
cquimper@gmail.com

Abstract. We study decompositions of the global NVALUE constraint. Our main
contribution is theoretical: we show that there are propagators for global con-
straints like NVALUE which decomposition can simulate with the same time com-
plexity but with a much greater space complexity. This suggests that the benefit
of a global propagator may often not be in saving time but in saving space. Our
other theoretical contribution is to show for the first time that range consistency
can be enforced on NVALUE with the same worst-case time complexity as bound
consistency. Finally, the decompositions we study are readily encoded as linear
inequalities. We are therefore able to use them in integer linear programs.

1 Introduction

Global constraints are one of the distinguishing features of constraint programming.
They capture common modelling patterns and have associated efficient propagators for
pruning the search space. For example, ALL-DIFFERENT is one of the best known
global constraints that has proven useful in the modelling and solving of many real
world problems. A number of efficient algorithms have been proposed to propa-
gate the ALL-DIFFERENT constraint (e.g. [1,2,3]). Whilst there is little debate that
ALL-DIFFERENT is a global constraint, the formal definition of a global constraint
is more difficult to pin down. One property often associated with global constraints is
that they cannot be decomposed into simpler constraints without impacting either the
pruning or the efficiency of propagation [4]. Recently progress has been made on the
theoretical problem of understanding what is and isn’t a global constraint. In particular,
whilst a bound consistency propagator for the ALL-DIFFERENT constraint can be ef-
fectively simulated with a simple decomposition [5], circuit complexity lower bounds
have been used to prove that a domain consistency propagator for ALL-DIFFERENT

cannot be polynomially simulated by a simple decomposition [6].
In this paper, we turn to a strict generalization of the ALL-DIFFERENT constraint.

NVALUE counts the number of values used by a set of variables; the ALL-DIFFERENT

constraint ensures that this count equals the cardinality of the set. From a theoretical

D. Cohen (Ed.): CP 2010, LNCS 6308, pp. 114–128, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Decomposition of the NVALUE Constraint 115

perspective, the NVALUE constraint is significantly more difficult to propagate than the
ALL-DIFFERENT constraint since enforcing domain consistency is known to be NP-
hard [7]. Moreover, as NVALUE is a generalization of ALL-DIFFERENT, there exists no
polynomial sized decomposition of NVALUE which achieves domain consistency [6].
Nevertheless, we show that decomposition can simulate the polynomial time algorithm
for enforcing bound consistency on NVALUE but with a significant space complexity.
We also prove, for the first time, that range consistency on NVALUE can be enforced
in the same worst case time complexity as bound consistency. This contrasts with the
ALL-DIFFERENT constraint where range consistency takes O(n2) time [2] but bound
consistency takes just O(n log n) time [3].

The main value of these decompositions is theoretical as their space complexity is
equal to their worst case time complexity. When domains are large, this space complex-
ity may be prohibitive. In the conclusion, we argue why it appears somewhat inevitable
that the space complexity is equal to the worst case time complexity. These results sug-
gest new insight into what is and isn’t a global constraint: a global constraint either
provides more pruning than any polynomial sized decomposition or provides the same
pruning but with lower space complexity. There are several other theoretical reasons
why the decompositions studied here are interesting. First, it is technically interest-
ing that a complex propagation algorithm like the bound consistency propagator for
NVALUE can be simulated by a simple decomposition. Second, these decompositions
can be readily encoded as linear inequalities and used in linear programs. In fact, we
will report experiments using both constraint and integer linear programming with these
decompositions. Since global constraints are one of the key differentiators between con-
straint and integer programming, these decompositions provide us with another tool to
explore the interface between constraint and integer programming. Third, the decompo-
sitions give insights into how we might add nogood learning to a NVALUE propagator.

2 Background

A constraint satisfaction problem (CSP) consists of a set of variables, each with a fi-
nite domain of values, and a set of constraints. We use capitals for variables and lower
case for values. We assume values are taken from the set 1 to d. We write dom(Xi) for
the domain of possible values for Xi, min(Xi) for the smallest value in dom(Xi),
max(Xi) for the greatest, and range(Xi) for the interval [min(Xi),max(Xi)].
Constraint solvers typically use backtracking search to explore the space of partial as-
signments. After each assignment, propagation algorithms prune the search space by
enforcing local consistency properties like domain, range or bound consistency. A con-
straint is domain consistent (DC) iff when a variable is assigned any of the values in
its domain, there exist compatible values in the domains of all the other variables of
the constraint. Such an assignment is called a support. A CSP is domain consistent iff
every constraint is domain consistent. A constraint is disentailed iff there is no possi-
ble support. A propagator which enforces domain consistency will detect disentailment,
but a propagator that detects just disentailment will not enforce domain consistency. A
constraint is range consistent (RC) iff, when a variable is assigned any of the values in
its domain, there exist compatible values between the minimum and maximum domain

116 C. Bessiere et al.

value for all the other variables of the constraint. Such an assignment is called a bound
support. A constraint is bound consistent (BC) iff the minimum and maximum value
of every variable of the constraint belong to a bound support. A CSP is bound con-
sistent iff every constraint is bound consistent. We compute the total amortized cost of
enforcing a local consistency down an entire branch of the search tree. This captures the
incremental cost of propagation. Finally, we will assume that a propagator is invoked
at most once for each domain change and that the solver uses an optimal propagator
to enforce BC on sum and channeling constraints. Such assumptions hold for modern
solvers like Gecode and Ilog Solver. However, we make no assumption about the order
of invocation of the constraints in a decomposition. The upper bounds we give hold
regardless of the order in which constraints are processed.

A global constraint is one in which the arity of the constraint n is a parameter. A
decomposition of a global constraint is a CSP involving the n variables of the global
constraint (and possibly others), involving only constraints with fixed arity (no global
constraint) or constraints that are themselves decomposable, such that the size of the
CSP is polynomial in the sum of the sizes of the domains of the n original variables, and
such that the projection of its solutions on those n variables corresponds to the solutions
of the global constraint. A useful notion is algorithmic globality [4]. Informally, given
a local consistency property, a global constraint is algorithmically global if there is no
decomposition on which this local consistency is achieved in the same time and space
complexity. We suggest here two refinements of this notion of algorithmic globality.
First, we will separate the space and time complexity. That is, given a local consistency
property, a global constraint is algorithmically global with respect to time (space) if
there is no decomposition on which this local consistency is achieved in the same time
(space) complexity. Second, unlike [4], we consider decompositions that may introduce
new variables. Our results will show that, when we introduce new variables, NVALUE

is not algorithmically global with respect to time but is global with respect to space.

3 NVALUE Constraint

Pachet and Roy first proposed the NVALUE constraint [8]. Formally
NVALUE([X1, . . . , Xn], N) ensures that N = |{Xi | 1 ≤ i ≤ n}|. This gener-
alizes several other global constraints including ALL-DIFFERENT (which ensures
that the number of values taken by a set of variables equals the cardinality of the set)
and NOT-ALL-EQUAL (which ensures a set of variables take more than one value).
Enforcing domain consistency on the NVALUE constraint is NP-hard (Theorem 3 in
[7]) even when N is fixed (Theorem 2 in [9]). In fact, just computing the lower bound
on N is NP-hard (Theorem 3 in [10]). In addition, enforcing domain consistency on
the NVALUE constraint is not fixed parameter tractable since it is W [2]-complete [11].
However, several polynomial propagation algorithms have been proposed that achieve
bound consistency and some closely related levels of local consistency [12,9,13].

3.1 Simple Decomposition

Global constraints can often be decomposed into simpler, more primitive and small ar-
ity constraints. For example, the ALL-DIFFERENT constraint can be decomposed into

Decomposition of the NVALUE Constraint 117

a quadratic number of binary inequalities. However, such decomposition often hinders
propagation and can have a significant impact on the solver’s ability to find solutions
[14]. We can decompose the NVALUE constraint by introducing 0/1 variables to repre-
sent which values are used and posting a sum constraint on these introduced variables:

Xi = j → Bj = 1 ∀1 ≤ i ≤ n, 1 ≤ j ≤ d (1)

Bj = 1 → ∨n
i=1 Xi = j ∀1 ≤ j ≤ d (2)∑d

j=1 Bj = N (3)

Note that constraint 3 is not a fixed arity constraint, but can itself be decomposed to
ternary sums without hindering bound propagation. Unfortunately, this simple decom-
position hinders propagation. It can be BC whereas BC on the corresponding NVALUE

constraint detects disentailment.

Theorem 1. BC on NVALUE is stronger than BC on its decomposition into (1) to (3).

Proof: Clearly BC on NVALUE is at least as strong as BC on the decomposition. To
show strictness, consider X1 ∈ {1, 2}, X2 ∈ {3, 4}, Bj ∈ {0, 1} for 1 ≤ j ≤ 4, and
N = 1. Constraints (1) to (3) are BC. However, the corresponding NVALUE constraint
has no bound support and thus enforcing BC on it detects disentailment. ��
We observe that enforcing DC instead of BC on constraints (1) to (3) in the example
of the proof above still does not prune any value. To decompose NVALUE without
hindering propagation, we must look to more complex decompositions.

3.2 Decomposition into ATMOSTNVALUE and ATLEASTNVALUE

Our first step in decomposing the NVALUE constraint is to split it into
two parts: an ATMOSTNVALUE and an ATLEASTNVALUE constraint.
ATLEASTNVALUE([X1, . . . , Xn], N) holds iff N ≤ |{Xi|1 ≤ i ≤ n}| whilst
ATMOSTNVALUE([X1, . . . , Xn], N) holds iff |{Xi|1 ≤ i ≤ n}| ≤ N .

Running Example. Consider a NVALUE constraint over the following variables and
values:

1 2 3 4 5
X1 ∗ ∗ ∗ ∗
X2 ∗
X3 ∗ ∗ ∗
X4 ∗
X5 ∗ ∗
N ∗ ∗ ∗

Suppose we decompose this into an ATMOSTNVALUE and an ATLEASTNVALUE con-
straint. Consider the ATLEASTNVALUE constraint. The 5 variables can take at most
4 different values because X2, X3, X4, and X5 can only take values 2, 3 and 4. Hence,
there is no bound support for N = 5. Enforcing BC on the ATLEASTNVALUE con-
straint therefore prunes N = 5. Consider now the ATMOSTNVALUE constraint. Since
X2 and X4 guarantee that we take at least 2 different values, there is no bound support
for N = 1. Hence enforcing BC on an ATMOSTNVALUE constraint prunes N = 1. If

118 C. Bessiere et al.

X1 = 1, 3 or 5, or X5 = 3 then any complete assignment uses at least 3 different val-
ues. Hence there is also no bound support for these assignments. Pruning these values
gives bound consistent domains for the original NVALUE constraint:

1 2 3 4 5
X1 ∗
X2 ∗
X3 ∗ ∗ ∗
X4 ∗
X5 ∗
N ∗

To show that decomposing the NVALUE constraint into these two parts does not
hinder propagation in general, we will use the following lemma. Given an assignment
S of values, card(S) denotes the number of distinct values in S. Given a vector of
variables X = X1 . . .Xn, card↑(X) = max{card(S) | S ∈ ΠXi∈Xrange(Xi)} and
card↓(X) = min{card(S) | S ∈ ΠXi∈Xrange(Xi)}.

Lemma 1 (adapted from [13]). Consider NVALUE([X1, . . . , Xn], N). If dom(N) ⊆
[card↓(X), card↑(X)], then the bounds of N have bound supports.

Proof: Let Smin be an assignment of X in ΠXi∈Xrange(Xi) with card(Smin) =
card↓(X) and Smax be an assignment of X in ΠXi∈Xrange(Xi) with card(Smax) =
card↑(X). Consider the sequence Smin = S0, S1, . . . , Sn = Smax where Sk+1 is the
same as Sk except that Xk+1 has been assigned its value in Smax instead of its value in
Smin. |card(Sk+1)− card(Sk)| ≤ 1 because they only differ on Xk+1. Hence, for any
p ∈ [card↓(X), card↑(X)], there exists k ∈ 1..n with card(Sk) = p. Thus, (Sk, p) is a
bound support for p on NVALUE([X1, . . . , Xn], N). Therefore, min(N) and max(N)
have a bound support. ��
We now prove that decomposing the NVALUE constraint into ATMOSTNVALUE and
ATLEASTNVALUE constraints does not hinder pruning when enforcing BC.

Theorem 2. BC on NVALUE([X1, . . . , Xn], N) is equivalent to BC on
ATMOSTNVALUE([X1, . . . , Xn], N) and on ATLEASTNVALUE([X1, . . . , Xn], N).

Proof: Suppose the ATMOSTNVALUE and ATLEASTNVALUE constraints are BC.
The ATMOSTNVALUE constraint guarantees that card↓(X) ≤ min(N) and the
ATLEASTNVALUE constraint guarantees that card↑(X) ≥ max(N). Therefore,
dom(N) ∈ [card↓(X), card↑(X)]. By Lemma 1, the variable N is bound consistent.

Consider a variable/bound value pair Xi = b. Let (Sb
least, p1) be a bound support

of Xi = b in the ATLEASTNVALUE constraint and (Sb
most, p2) be a bound sup-

port of Xi = b in the ATMOSTNVALUE constraint. We have card(Sb
least) ≥ p1

and card(Sb
most) ≤ p2 by definition of ATLEASTNVALUE and ATMOSTNVALUE.

Consider the sequence Sb
least = Sb

0, S
b
1, . . . , S

b
n = Sb

most where Sb
k+1 is the same

as Sb
k except that Xk+1 has been assigned its value in Sb

most instead of its value in
Sb

least. |card(Sb
k+1) − card(Sb

k)| ≤ 1 because they only differ on Xk+1. Hence,
there exists k ∈ 1..n with min(p1, p2) ≤ card(Sb

k) ≤ max(p1, p2). We know
that p1 and p2 belong to range(N) because they belong to bound supports. Thus,
card(Sb

k) ∈ range(N) and (Sb
k, card(S

b
k)) is a bound support for Xi = b on

NVALUE([X1, . . . , Xn], N). ��

Decomposition of the NVALUE Constraint 119

When enforcing domain consistency, Bessiere et al. [13] noted that decomposing the
NVALUE constraint into ATMOSTNVALUE and ATLEASTNVALUE constraints does
hinder propagation, but only when dom(N) contains just card↓(X) and card↑(X) and
there is a gap in the domain in-between (see Theorem 1 in [13] and the discussion that
follows). When enforcing BC, any such gap in the domain for N is ignored.

4 ATMOSTNVALUE Constraint

We now give a decomposition for the ATMOSTNVALUE constraint which does not hin-
der bound consistency propagation. To decompose the ATMOSTNVALUE constraint,
we introduce 0/1 variables, Ailu to represent whether Xi uses a value in the interval
[l, u], and “pyramid” variables, Mlu with domains [0,min (u− l + 1, n)] which count
the number of values taken inside the interval [l, u]. To constrain these introduced vari-
ables, we post the following constraints:

Ailu = 1 ⇐⇒ Xi ∈ [l, u] ∀ 1 ≤ i ≤ n, 1 ≤ l ≤ u ≤ d (4)

Ailu ≤Mlu ∀ 1 ≤ i ≤ n, 1 ≤ l ≤ u ≤ d (5)

M1u = M1k +M(k+1)u ∀ 1 ≤ k < u ≤ d (6)

M1d ≤ N (7)

Running Example. Consider the decomposition of an ATMOSTNVALUE constraint
over the following variables and values:

1 2 3 4 5
X1 ∗ ∗ ∗ ∗
X2 ∗
X3 ∗ ∗ ∗
X4 ∗
X5 ∗ ∗
N ∗ ∗

Observe that we consider that value 5 for N has already been pruned by
ATLEASTNVALUE, as will be shown in next sections. Bound consistency reasoning
on the decomposition will make the following inferences. As X2 = 2, from (4) we
get A222 = 1. Hence by (5), M22 = 1. Similarly, as X4 = 4, we get A444 = 1
and M44 = 1. Now N ∈ {1, 2}. By (7) and (6), M15 ≤ N , M15 = M14 + M55,
M14 = M13 +M44, M13 = M12 +M33, M12 = M11 +M22. Since M22 = M44 = 1,
we deduce that N > 1 and hence N = 2. This gives M11 = M33 = M55 = 0. By (5),
A111 = A133 = A155 = A533 = 0. Finally, from (4), we get X1 = 2 and X5 = 3. This
gives us bound consistent domains for the ATMOSTNVALUE constraint.

We now prove that this decomposition does not hinder propagation in general.

Theorem 3. BC on constraints (4) to (7) is equivalent to BC on ATMOSTNVALUE

([X1, . . . , Xn], N), and takes O(nd3) time to enforce down the branch of the search
tree.

Proof: First note that changing the domains of the X variables cannot affect the upper
bound of N by the ATMOSTNVALUE constraint and, conversely, changing the lower
bound of N cannot affect the domains of the X variables.

120 C. Bessiere et al.

Let Y = {Xp1 , . . . , Xpk
} be a maximum cardinality subset of variables of X whose

ranges are pairwise disjoint (i.e., range(Xpi) ∩ range(Xpj) = ∅, ∀i, j ∈ 1..k, i �= j).
Let IY = {[bi, ci] | bi = min(Xpi), ci = max(Xpi), Xpi ∈ Y } be the corresponding
ordered set of disjoint ranges of the variables in Y . It has been shown in [9] that |Y | =
card↓(X).

Consider the interval [bi, ci] ∈ IY . Constraints (5) ensure that the variablesMbici i =
[1, . . . , k] are greater than or equal to 1 and constraints (6) ensure that the variable M1d

is greater than or equal to the sum of lower bounds of variables Mbici , i = [1, . . . , k],
because intervals [bi, ci] are disjoint. Therefore, the variable N is greater than or equal
to card↓(X) and it is bound consistent.

We show that when N is BC and dom(N) �= {card↓(X)}, all X variables are BC.
Take any assignment S ∈ ΠXi∈Xrange(Xi) such that card(S) = card↓(X). Let
S[Xi ← b] be the assignment S where the value of Xi in S has been replaced by b, one
of the bounds of Xi. We know that card(S[Xi ← b]) ∈ [card(S)− 1, card(S) + 1] =
[card↓(X)− 1, card↓(X) + 1] because only one variable has been flipped. Hence, any
assignment (S, p) with p ≥ card↓(X) + 1 is a bound support. dom(N) necessarily
contains such a value p by assumption.

The only case when pruning might occur is if the variable N is ground and
card↓(X) = N . Constraints (6) imply that M1d equals the sum of variablesM1,b1−1 +
Mb1,c1 +Mc1+1,b2−1 . . .+MbN ,cN +McN+1,d. The lower bound of the variableMci,bi

is greater than one and there are |Y | = card↓(X) = N of these intervals. Therefore, by
constraint (7), the upper bound of variables Mci−1+1,bi−1 that correspond to intervals
outside the set IY are forced to zero.

There are O(nd2) constraints (4) and constraints (5) that can be woken O(d) times
down the branch of the search tree. Each requiresO(1) time for a total of O(nd3) down
the branch. There are O(d2) constraints (6) which can be woken O(n) times down the
branch and each invocation takes O(1) time. This gives a total of O(nd2). The final
complexity down the branch of the search tree is therefore O(nd3). ��
The proof of theorem 3 also provides the corollary that enforcing range on consistency
on constraints 4 enforces range consistency on ATMOSTNVALUE. Note that theorem 3
shows that the BC propagator of ATMOSTNVALUE [12] is not algorithmically global
with respect to time, as BC can be achieved with a decomposition with comparable
time complexity. On the other hand, the O(nd2) space complexity of this decomposi-
tion suggests that it is algorithmically global with respect to space. Of course, we only
provide upper bounds here, so it may be that ATMOSTNVALUE is not algorithmically
global with respect to either time or space.

5 Faster Decompositions

We can improve how the solver handles this decomposition of the ATMOSTNVALUE

constraint by adding implied constraints and by implementing specialized propagators.
Our first improvement is to add an implied constraint and enforce BC on it:

M1d =
d∑

i=1

Mii (8)

Decomposition of the NVALUE Constraint 121

This does not change the asymptotic complexity of reasoning with the decomposition,
nor does it improve the level of propagation achieved. However, we have found that the
fixed point of propagation is reached quicker in practice with such an implied constraint.

Our second improvement decreases the asymptotic complexity of enforcing BC on
the decomposition of Section 4. The complexity is dominated by reasoning with con-
straints (4) which channel from Xi to Ailu and thence onto Mlu (through constraints
(5)). If constraints (4) are not woken uselessly, enforcing BC costs O(1) per constraint
down the branch. Unfortunately, existing solvers wake up such constraints as soon as a
bound is modified, thus giving a cost in O(d). We therefore implemented a specialized
propagator to channel between Xi and Mlu efficiently. To be more precise, we remove
the O(nd2) variables Ailu and replace them with O(nd) Boolean variables Zij . We
then add the following constraints

Zij = 1 ⇐⇒ Xi ≤ j 1 ≤ j ≤ d (9)

Zi(l−1) = 1 ∨ Ziu = 0 ∨Mlu > 0 1 ≤ l ≤ u ≤ d, 1 ≤ i ≤ n (10)

These constraints are enough to channel changes in the bounds of the X variables to
Mlu. There are O(nd) constraints (9), each of which can be propagated in time O(d)
over a branch, for a total of O(nd2). There areO(nd2) clausal constraints (10) and each
of them can be made BC in time O(1) down a branch of the search tree, for a total cost
of O(nd2). Since channeling dominates the asymptotic complexity of the entire decom-
position of Section 4, this improves the complexity of this decomposition to O(nd2).
This is similar to the technique used in [5] to improve the asymptotic complexity of the
decomposition of the ALL-DIFFERENT constraint.

Our third improvement is to enforce stronger pruning by observing that when
Mlu = 0, we can remove the interval [l, u] from all variables, regardless of whether
this modifies their bounds. This corresponds to enforcing RC on constraints (4). Inter-
estingly, this is sufficient to achieve RC on the ATMOSTNVALUE constraint. Unfortu-
nately, constraints (10) cannot achieve this pruning and using constraints (4) increases
the complexity of the decomposition back to O(nd3). Instead we extend the decompo-
sition with O(d log d) Boolean variables Bil(l+2k) ∈ [0, 1], 1 ≤ i ≤ n, 1 ≤ l ≤ d, 0 ≤
k ≤ �log d�. The following constraint ensures that Bijj = 1 ⇐⇒ Xi = j.

DOMAINBITMAP(Xi, [Bi11, . . . , Bidd]) (11)

Clearly we can enforce RC on this constraint in time O(d) over a branch, and O(nd)
for all variables Xi. We can then use the following clausal constraints to channel from
variables Mlu to these variables and on to the X variables. These constraints are posted
for every 1 ≤ i ≤ n, 1 ≤ l ≤ u ≤ d, 1 ≤ j ≤ d and integers k such that 0 ≤ k ≤
�log d�:

Bij(j+2k+1−1) = 1 ∨Bij(j+2k−1) = 0 (12)

Bij(j+2k+1−1) = 1 ∨Bi(j+2k)(j+2k+1−1) = 0 (13)

Mlu �= 0 ∨Bil(l+2k−1) = 0 2k ≤ u− l + 1 < 2k+1 (14)

Mlu �= 0 ∨Bi(u−2k+1)u = 0 2k ≤ u− l + 1 < 2k+1 (15)

122 C. Bessiere et al.

The variable Bil(l+2k−1), similarly to the variables Alu, is true when Xi ∈ [l, l +
2k−1], but instead of having one such variable for every interval, we only have them for
intervals whose length is a power of two. When Mlu = 0, with 2k ≤ u− l+1 < 2k+1,
the constraints (14)–(15) set to 0 the B variables that correspond to the two intervals of
length 2k that start at l and finish at u, respectively. In turn, the constraints (12)–(13)
set to 0 the B variables that correspond to intervals of length 2k−1, all the way down to
intervals of size 1. These trigger the constraints (11), so all values in the interval [l, u]
are removed from the domains of all variables.

Example. SupposeX1 ∈ [5, 9]. Then, by (9), Z14 = 0, Z19 = 1 and by (10), M59 > 0.
Conversely, suppose M59 = 0 and X1 ∈ [1, 10]. Then, by (14)–(15), we get B158 = 0
and B169 = 0. From B158 = 0 and (12)–(13) we get B156 = 0, B178 = 0, B155 =
B166 = B177 = B188 = 0, and by (11), the interval [5, 8] is pruned from X1. Similarly,
B169 = 0 causes the interval [6, 9] to be removed from X1, so X1 ∈ [1, 4] ∪ {10}.

Note that RC can be enforced on each of these constraints in constant time over a
branch. There exist O(nd log d) of the constraints (12)–(13) and O(nd2) of the con-
straints (14)–(15), so the total time to propagate them all down a branch is O(nd2).

6 ATLEASTNVALUE Constraint

There is a similar decomposition for the ATLEASTNVALUE constraint. We introduce
0/1 variables, Ailu to represent whether Xi uses a value in the interval [l, u], and integer
variables, Elu with domains [0, n] to count the number of times values in [l, u] are re-
used, that is, how much the number of variables taking values in [l, u] exceeds the
number u− l+1 of values in [l, u]. To constrain these introduced variables, we post the
following constraints:

Ailu = 1 ⇐⇒ Xi ∈ [l, u] ∀ 1 ≤ i ≤ n, 1 ≤ l ≤ u ≤ d (16)

Elu ≥
∑n

i=1 Ailu − (u− l + 1) ∀ 1 ≤ l ≤ u ≤ d (17)

E1u = E1k + E(k+1)u ∀ 1 ≤ k < u ≤ d (18)

N ≤ n− E1d (19)

Running Example. Consider the decomposition of an ATLEASTNVALUE constraint
over the following variables and values:

1 2 3 4 5
X1 ∗ ∗ ∗ ∗
X2 ∗
X3 ∗ ∗ ∗
X4 ∗
X5 ∗ ∗
N ∗ ∗ ∗

Bound consistency reasoning on the decomposition will make the following inferences.
As dom(Xi) ⊆ [2, 4] for i ∈ 2..5, from (16) we get Ai24 = 1 for i ∈ 2..5. Hence, by
(17), E24 ≥ 1. By (18), E15 = E14 +E55, E14 = E11 +E24. SinceE24 ≥ 1 we deduce
that E15 ≥ 1. Finally, from (19) and the fact that n = 5, we get N ≤ 4. This gives us
bound consistent domains for the ATLEASTNVALUE constraint.

Decomposition of the NVALUE Constraint 123

We now prove that this decomposition does not hinder propagation in general.

Theorem 4. BC on the constraints (16) to (19) is equivalent to BC on
ATLEASTNVALUE ([X1, . . . , Xn], N), and takes O(nd3) time to enforce down the
branch of the search tree.

Proof: First note that changing the domains of the X variables cannot affect the lower
bound of N by the ATLEASTNVALUE constraint and, conversely, changing the upper
bound of N cannot affect the domains of the X variables.

It is known [12] that card↑(X) is equal to the size of a maximum matching M in
the value graph of the constraint. Since N ≤ n−E1d, we show that the lower bound of
E1d is equal to n−|M |.1 We first show that we can construct a matching M(E) of size
n−min(E1d), then show that it is a maximum matching. The proof uses a partition of
the interval [1, d] into a set of maximal saturated intervals I = {[bj, cj]}, j = 1, . . . , k
such that min(Ebj ,cj) =

∑n
i=1 min(Aibjcj) − (cj − bj + 1) and a set of unsaturated

intervals {[bj , cj]}such that min(Ebj ,cj) = 0.
Let I = {[bj, cj] | j ∈ [1 . . . k]} be the ordered set of maximal intervals such

that min(Ebj ,cj) =
∑n

i=1 min(Aibjcj) − (cj − bj + 1). Note that the intervals in
I are disjoint otherwise intervals are not maximal. An interval [bi, ci] is smaller than
[bj , cj] iff ci < bj . We denote the union of the first j intervals Dj

I =
⋃j

i=1[bi, ci],
j = [1, . . . , k], p = |Dk

I | and the variables whose domain is inside one of intervals I
XI = {Xpi |dom(Xpi) ⊆ Dk

I }.
Our construction of a matching uses two sets of variables, XI and X \XI . First, we

identify the cardinality of these two sets. Namely, we show that the size of the set XI is
p+min(E1,d) and the size of the set X \XI is n− (p +min(E1,d)).

Intervals I are saturated therefore each value from these intervals are taken by a
variable in XI . Therefore, XI has size at least p. Moreover, there exist min(E1d)
additional variables that take values from Dk

I , because values from intervals be-
tween two consecutive intervals in I do not contribute to the lower bound of the
variable E by construction of I . Therefore, the number of variables in Dk

I is at
least p + min(E1,d). Note that constraints (18) imply that E1d equals the sum of
variables E1,b1−1 + Eb1,c1 + Ec1+1,b2−1 . . . + Ebk,ck

+ Eck+1,d. As intervals in I

are disjoint then
∑k

i=1 min(Ebi,ci) = |XI | − p. If |XI | > p + min(E1,d) then∑k
i=1 min(Ebi,ci) > min(E1,d) and the lower bound of the variable E1d will be in-

creased. Hence, |XI | = p+min(E1,d).
Since all these intervals are saturated, we can construct a matchingMI of size p using

the variables in XI . The size of X \XI is n−p−min(E1d). We show by contradiction
that we can construct a matching MD−Dk

I
of size n−p−min(E1d) using the variables

in X \XI and the values D −Dk
I .

Suppose such a matching does not exist. Then, there exists an interval [b, c] such
that |(D \ Dk

I) ∩ [b, c]| <
∑

i∈X\XI
min(Aibc), i.e., after consuming the values in

I with variables in XI , we are left with fewer values in [b, c] than variables whose
domain is contained in [b, c]. We denote p′ = |[b, c] ∩ Dk

I |, so that p′ is the number of
values inside the interval [b, c] that are taken by variables in XI . The total number of

1 We assume that E1d is not pruned by other constraints.

124 C. Bessiere et al.

variables inside the interval [b, c] is greater than or equal to
∑n

i=1 min(Aibc). The total
number of variables XI inside the interval [b, c] equals to p′ + min(Eb,c). Therefore,∑

i∈X\XI
min(Aibc) ≤

∑n
i=1 min(Aibc) − p′ − min(Eb,c). On the other hand, the

number of values that are not taken by the variables XI in the interval [b, c] is c −
b + 1 − p′. Therefore, we obtain the inequality c − b + 1 − p′ <

∑n
i=1 min(Aibc) −

p′ − min(Eb,c) or min(Ebc) <
∑n

i=1 min(Aibc) − (c − b + 1). By construction of
I ,

∑n
i=1 min(Aibc) − (c − b + 1) < min(Ebc), otherwise the intervals in I that are

subsets of [b, c] are not maximal. This leads to a contradiction, so we can construct a
matching M(E) of size n−min(E1d).

Now suppose that M(E) is not a maximum matching. This means that min(E1d)
is overestimated by propagation on (16) and (19). Since M(E) is not a maximum
matching, there exists an augmenting path of M(E), that produces M ′, such that
|M ′| = |M(E)| + 1. This new matching covers all the values that M(E) covers and
one additional value q. We show that q cannot belong to the interval [1, d].

The value q cannot be in any interval in I , because all values in [bi, ci] ∈ I are used
by variables whose domain is contained in [bi, ci]. In addition, q cannot be in an interval
[b, c] between two consecutive intervals in I , because those intervals do not contribute
to the lower bound of E1d. Thus, M ′ cannot cover more values than M(E) and they
must have the same size, a contradiction.

We show that when N is BC and dom(N) �= {card↑(X)}, all X variables are BC.
Take any assignment S ∈ ΠXi∈Xrange(Xi) such that card(S) = card↑(X). Let
S[Xi ← b] be the assignment S where the value of Xi in S has been replaced by b, one
of the bounds of Xi. We know that card(S[Xi ← b]) ∈ [card(S)− 1, card(S) + 1] =
[card↑(X)− 1, card↑(X) + 1] because only one variable has been flipped. Hence, any
assignment (S, p) with p ≤ card↑(X) − 1 is a bound support. dom(N) necessarily
contains such a value p by assumption.

We now show that if N = card↑(X), enforcing BC on the constraints (16)–(19)
makes the variables X BC with respect to the ATLEASTNVALUE constraint. We first
observe that in a bound support, variables X must take the maximum number of dif-
ferent values because N = card↑(X). Hence, in a bound support, variables X that are
not included in a saturated interval will take values outside any saturated interval they
overlap and they all take different values. We recall that min(E1d) = n − |M | =
n − card↑(X). Hence, by constraint (19), E1d = n − N . We recall the the size
of set XI equals p + E1d. Constraints (18) imply that E1d equals the sum of vari-
ables E1,b1−1 +Eb1,c1 +Ec1+1,b2−1 . . . +Ebk,ck

+Eck+1,d and
∑k

i=1 min(Ebi,ci) =
|XI | − p = min(E1d) = max(E1d). Hence, by constraints (18), the upper bounds of
all variables Ebi,ci that correspond to the saturated intervals are forced to min(Ebi,ci).
Thus, by constraints (16) and (17), all variables in X \ XI have their bounds pruned
if they belong to Dk

I . By constraints (18) again, the upper bounds of all variables Elu

that correspond to the unsaturated intervals are forced to take value 0, and all variables
El′u′ with [l′, u′] ⊆ [l, u] are forced to 0 as well. Thus, by constraints (16) and (17), all
variables in X \XI have their bounds pruned if they belong to a Hall interval of other
variables in X \XI . This is what BC on the ALL-DIFFERENT constraint does [5].

There are O(nd2) constraints (16) that can be woken O(d) times down the branch
of the search tree in O(1), so a total of O(nd3) down the branch. There are O(d2)

Decomposition of the NVALUE Constraint 125

constraints (17) which can be propagated in time O(n) down the branch for a O(nd2).
There areO(d2) constraints (18) which can be wokenO(n) times each down the branch
for a total cost in O(n) time down the branch. Thus a total of O(nd2). The final com-
plexity down the branch of the search tree is therefore O(nd3). ��
The complexity of enforcing BC on ATLEASTNVALUE can be improved to O(nd2)
in a way similar to that described in Section 5 and in [5]. As with ATMOSTNVALUE,
enforcing RC on constraints (16) enforces RC on ATLEASTNVALUE, but in this case
we cannot reduce the complexity below O(nd3). Similarly to ATMOSTNVALUE, the-
orem 4 shows that the bound consistency propagator of ATLEASTNVALUE is not algo-
rithmically global with respect to time and provides evidence that it is algorithmically
global with respect to space.

7 Experimental Results

As noted before, the main value of these decompositions is theoretical: demonstrating
that the bound consistency propagator of [12] for the NVALUE constraint can be sim-
ulated using a simple decomposition with comparable time complexity over a branch
of the search tree but greater space complexity. To see when this space complexity hits,
we performed some experiments. We used a benchmark problem, the dominating set of
the Queen’s graph used in previous studies of NVALUE [13] and ran experiments with
Ilog Solver 6.2 and Ilog CPLEX 9.1 on an Intel Xeon 4 CPU, 2.0 Ghz, 4Gb RAM. The
dominating set of the Queen’s graph problem is to put the minimum number of queens
on a n×n chessboard, so that each square either contains a queen or is attacked by one.
This is equivalent to the dominating set problem of the Queen’s graph. Each vertex in
the Queen’s graph corresponds to a square of the chessboard and there exists an edge
between two vertices iff a queen from one square can attack a queen from the other
square. To model the problem, we use a variable Xi for each square, and values from
1 to n2 and post a single ATMOSTNVALUE([X1, . . . , Xn2], N) constraint. The value
j belongs to dom(Xi) iff there exists an edge (i, j) in the Queen’s graph or j = i. For
n ≤ 120, all minimum dominating sets for the Queen’s problem are either of size �n/2�
or �n/2 + 1� [15]. We therefore only solved instances for these two values of N .

We compare our decomposition with the simple decomposition of the
ATMOSTNVALUE constraint in Ilog Solver and Ilog CPLEX solvers. The simple de-
composition is the one described in Section 3.1 except that in constraint (3), we replace
“=” by “≤”. We denote this decomposition Occs and OccsCPLEX in Ilog Solver and
CPLEX, respectively. To encode this decomposition into an integer linear program, we
introduce literals bij , i, j ∈ [1, n2] and use a direct encoding with bij for the truth of
Xi = j and channeling inequalities 1 − bij + Bj ≥ 1, i, j ∈ [1, n2]. We use the di-
rect encoding of variables domains to avoid using logic constraints, like disjunction and
implication constraints in CPLEX. The default transformation of logic constraints in
CPLEX appears to generate large ILP models and this slows down the search.

The BC decomposition is described in Section 4, which we call PyramidBC and
PyramidCPLEX

BC in Ilog Solver and CPLEX, respectively. In Ilog Solver, as explained
in Section 5, we channel the variables Xi directly to the pyramid variables Mlu to
avoid introducing many auxiliary variables Ailu and we add the redundant constraint

126 C. Bessiere et al.

Table 1. Backtracks and rumtime (in seconds) to solve the dominating set problem for the
Queen’s graph

n N Occs PyramidBC OccsCPLEX PyramidCPLEX
BC

backtracks time backtracks time backtracks time backtracks time
5 3 34 0.01 7 0.00 1 0.05 3 0.4
6 3 540 0.16 118 0.03 2 0.16 183 9.6
7 4 195,212 84.50 83,731 15.49 130,010 1802.49 63 15.8
8 5 390,717 255.64 256,582 58.42 24,588 585.07 30 41.28

∑n2

i=1 Mii = M1,n2 to the decomposition to speed up the propagation across the pyra-
mid. We re-implemented the ternary sum constraint in Ilog for a 30% speedup.

To encode the BC decomposition into an integer linear program, we use the linear
encoding of variables domains [16]. We introduce literals cij for the truth of Xi ≤ j,
and the channeling inequalities of the form ci(l−1) + 1 − ciu + Mlu ≥ 1. We again

add the redundant constraint
∑n2

i=1 Mii = M1,n2 . Finally, we post constraints (6) as
lazy constraints in CLPEX. Lazy constraints are constraints that are not expected to
be violated when they are omitted. These constraints are not taken into account in the
relaxation of the problem and are only included when they violate an integral solution.

Results of our experiments are presented in Table 1. Our BC decomposition per-
forms better than the Occs decomposition, both in runtime and in number of back-
tracks needed by Ilog Solver or CPLEX. CPLEX is slower per node than Ilog Solver.
However, CPLEX usually requires fewer backtracks compared to ILOG Solver. In-
terestingly CPLEX performs well with the BC decomposition. The time to explore
each node is large, reflecting the size of decomposition, but the number of search
nodes explored is small. We conjecture that integer linear programming methods
like CPLEX will perform in a similar way with other decompositions of global con-
straints which do not hinder propagation (e.g. the decompositions we have proposed for
ALL-DIFFERENT and GCC). Finally, the best results here are comparable with those
for the ATMOSTNVALUE bounds consistency propagator in [13].

8 Other Related Work

Bessiere et al. consider a number of different methods to compute a lower bound on the
number of values used by a set of variables [13]. One method is based on a simple linear
relaxation of the minimum hitting set problem. This gives a propagation algorithm that
achieves a level of consistency strictly stronger than bound consistency on the NVALUE

constraint. Cheaper approximations are also proposed based on greedy heuristics and
an approximation for the independence number of the interval graph due to Turán. De-
compositions have been given for a number of other global constraints. For example,
Beldiceanu et al. identify conditions under which global constraints specified as au-
tomata can be decomposed into signature and transition constraints without hindering
propagation [17]. As a second example, many global constraints can be decomposed
using ROOTS and RANGE which can themselves be propagated effectively using sim-
ple decompositions [18]. As a third example, the REGULAR and CFG constraints can be

Decomposition of the NVALUE Constraint 127

decomposed without hindering propagation [19,20]. As a fourth example, decomposi-
tions of the SEQUENCE constraint have been shown to be effective [21]. Most recently,
we demonstrated that the ALL-DIFFERENT and GCC constraint can be decomposed
into simple primitive constraints without hindering bound consistency propagation [5].
These decompositions also introduced variables to count variables using values in an
interval. For example, the decomposition of ALL-DIFFERENT ensures that no interval
has more variables taking values in the interval than the number of values in the inter-
val. Using a circuit complexity lower bound, we also proved that there is no polynomial
sized SAT decomposition of the ALL-DIFFERENT constraint (and therefore of its gen-
eralizations like NVALUE) on which unit propagation achieves domain consistency [6].
Our use of “pyramid” variables is similar to the use of the “partial sums” variables in the
encoding of the SEQUENCE constraint in [21]. This is related to the cumulative sums
computed in [22].

9 Conclusions

We have studied a number of decompositions of the NVALUE constraint. We have
shown that a simple decomposition can simulate the bound consistency propagator for
NVALUE [12] with comparable time complexity but with a much greater space com-
plexity. This supports the conclusion that the benefit of a global propagator may of-
ten not be in saving time but in saving space. Our other theoretical contribution is to
show the first range consistency algorithm for NVALUE, that runs in O(nd3) time and
O(nd2) space. These results are largely interesting from a theoretical perspective. They
help us understand the globality of global constraints. They highlight that saving space
may be one of the important advantages provided by propagators for global constraints.
We have seen that the space complexity of decompositions of many propagators equals
the worst case time complexity (e.g. for the ALL-DIFFERENT, GCC, AMONG, LEX,
REGULAR, CFG and SEQUENCE constraints). For global constraints like REGULAR,
the space complexity of the decompositions does not appear to be that problematic.
However, for global constraints like NVALUE, the space complexity of the decompo-
sitions is onerous. This space complexity seems hard to avoid. For example, consider
encodings into satisfiability and unit propagation as our inference method. As unit prop-
agation is linear in time in the size of the encoding, it is somewhat inevitable that the
size of any encoding is the same as the worst-case time complexity of any propagator
that is being simulated. One other benefit of these decompositions is that they help us
explore the interface between constraint and integer linear programming. For exam-
ple, we saw that an integer programming solver performed relatively well with these
decompositions.

Acknowledgements. NICTA is funded by the Department of Broadband, Communica-
tions and the Digital Economy, and the ARC. Christian Bessiere is supported by ANR
project ANR-06-BLAN-0383-02, and George Katsirelos by ANR UNLOC project:
ANR 08-BLAN-0289-01. We thank Lanbo Zheng for experimental help.

128 C. Bessiere et al.

References

1. Régin, J.C.: A filtering algorithm for constraints of difference in CSPs. In: Proc. of the 12th
National Conf. on AI, pp. 362–367. AAAI, Menlo Park (1994)

2. Leconte, M.: A bounds-based reduction scheme for constraints of difference. In: Proc. of 2nd
Int. Workshop on Constraint-Based Reasoning, Constraint 1996 (1996)

3. Puget, J.: A fast algorithm for the bound consistency of alldiff constraints. In: 15th National
Conf. on Artificial Intelligence, pp. 359–366. AAAI, Menlo Park (1998)

4. Bessiere, C., Hentenryck, P.V.: To be or not to be... a global constraint. In: Rossi, F. (ed.) CP
2003. LNCS, vol. 2833, pp. 789–794. Springer, Heidelberg (2003)

5. Bessiere, C., Katsirelos, G., Narodytska, N., Quimper, C.G., Walsh, T.: Decompositions of
all different, global cardinality and related constraints. In: Proc. of 21st IJCAI, pp. 419–424
(2009)

6. Bessiere, C., Katsirelos, G., Narodytska, N., Walsh, T.: Circuit complexity and decomposi-
tions of global constraints. In: Proc. of 21st IJCAI, pp. 412–418 (2009)

7. Bessiere, C., Hebrard, E., Hnich, B., Walsh, T.: The complexity of global constraints. In:
Proc. of the 19th National Conf. on AI. AAAI, Menlo Park (2004)

8. Pachet, F., Roy, P.: Automatic generation of music programs. In: Jaffar, J. (ed.) CP 1999.
LNCS, vol. 1713, pp. 331–345. Springer, Heidelberg (1999)

9. Bessiere, C., Hebrard, E., Hnich, B., Kiziltan, Z., Walsh, T.: Filtering algorithms for the
NVALUE constraint. In: Barták, R., Milano, M. (eds.) CPAIOR 2005. LNCS, vol. 3524, pp.
79–93. Springer, Heidelberg (2005)

10. Bessiere, C., Hebrard, E., Hnich, B., Walsh, T.: The complexity of global constraints. Con-
straints 12, 239–259 (2007)

11. Bessiere, C., Hebrard, E., Hnich, B., Kiziltan, Z., Quimper, C.G., Walsh, T.: The param-
eterized complexity of global constraints. In: Proc. of the 23rd National Conf. on AI, pp.
235–240. AAAI, Menlo Park (2008)

12. Beldiceanu, N.: Pruning for the minimum constraint family and for the number of dis-
tinct values constraint family. In: Walsh, T. (ed.) CP 2001. LNCS, vol. 2239, pp. 211–224.
Springer, Heidelberg (2001)

13. Bessiere, C., Hebrard, E., Hnich, B., Kiziltan, Z., Walsh, T.: Filtering algorithms for the
NVALUE constraint. Constraints 11, 271–293 (2006)

14. Stergiou, K., Walsh, T.: The difference all-difference makes. In: Proc. of 16th IJCAI (1999)
15. Östergård, P., Weakley, W.: Values of domination numbers of the queen’s graph. The Elec-

tronic Journal of Combinatorics 8 (2001)
16. Ohrimenko, O., Stuckey, P., Codish, M.: Propagation = lazy clause generation. In: Bessière,

C. (ed.) CP 2007. LNCS, vol. 4741, pp. 544–558. Springer, Heidelberg (2007)
17. Beldiceanu, N., Carlsson, M., Debruyne, R., Petit, T.: Reformulation of Global Constraints

Based on Constraints Checkers. Constraints 10, 339–362 (2005)
18. Bessiere, C., Hebrard, E., Hnich, B., Kiziltan, Z., Walsh, T.: The range and roots constraints:

Specifying counting and occurrence problems. In: Proc. of 19th IJCAI, pp. 60–65 (2005)
19. Quimper, C.G., Walsh, T.: Global grammar constraints. In: Benhamou, F. (ed.) CP 2006.

LNCS, vol. 4204, pp. 751–755. Springer, Heidelberg (2006)
20. Quimper, C.G., Walsh, T.: Decomposing global grammar constraints. In: Bessière, C. (ed.)

CP 2007. LNCS, vol. 4741, pp. 590–604. Springer, Heidelberg (2007)
21. Brand, S., Narodytska, N., Quimper, C.G., Stuckey, P., Walsh, T.: Encodings of the Sequence

Constraint. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 210–224. Springer, Heidel-
berg (2007)

22. van Hoeve, W.J., Pesant, G., Rousseau, L.M., Sabharwal, A.: Revisiting the Sequence Con-
straint. In: Benhamou, F. (ed.) CP 2006. LNCS, vol. 4204, pp. 620–634. Springer, Heidelberg
(2006)

Propagating the Bin Packing Constraint
Using Linear Programming�

Hadrien Cambazard and Barry O’Sullivan

Cork Constraint Computation Centre
Department of Computer Science, University College Cork, Ireland

{h.cambazard,b.osullivan}@4c.ucc.ie

Abstract. The state-of-the-art global constraint for bin packing is due to Shaw.
We compare two linear continuous relaxations of the bin packing problem, based
on the DP-flow and Arc-flow models, with the filtering of the bin packing con-
straint. Our experiments show that we often obtain significant improvements in
runtime. The DP-flow model is a novel formulation of the problem.

1 Introduction

The one-dimensional bin packing problem is ubiquitous in operations research. It is
typically defined as follows. Given a set S = {s1, . . . , sn} of n indivisible items each
of a known positive size si, and m bins each of capacity C, can we pack all n items into
the m bins such that the sum of sizes of the items in each bin does not exceed C? The
one-dimensional bin packing problem is NP-Complete. Amongst the many applications
of this problem are timetabling, scheduling, stock cutting, television commercial break
scheduling, and container packing.

Our motivation comes from a real-world timetabling problem in the Dental School
at University College Cork. An interesting characteristic of this problem is that the
core challenge relates to solving one-dimensional bin packing problems. This contrasts
with many other school timetabling problems which often have challenging list colour-
ings at their core. Our objective is to compare two continuous relaxations of the bin
packing problem with the state-of-the-art filtering algorithm used in the constraint pro-
gramming community [9]. Continuous relaxations have been developed for many global
constraints including cumulative [6], all-different, element and others [5]. We believe
that continuous relaxations can be successfully used for the bin packing and knapsack
constraints [9,10]. This paper presents our initial results in this direction.

2 Linear Programming Formulations for Bin Packing

Numerous linear programming models have been proposed for the bin packing prob-
lem [3]. A standard linear model is the following. For each bin j ∈ {1, . . . ,m} we
introduce a binary variable yj which we set to 1 if bin j is used in the packing, and 0

� This work was supported by Science Foundation Ireland (Grant Number 05/IN/I886).

D. Cohen (Ed.): CP 2010, LNCS 6308, pp. 129–136, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

130 H. Cambazard and B. O’Sullivan

10 2 2 3 5 5

7

0

2

3

4

5

s

Fig. 1. An example of the graph used by the DP-FLOW model on S = {2,2,3,5,5}, C = 7

otherwise. For each item i ∈ {1, . . . , n} and each bin j we introduce a binary variable
xij which we set to 1 if item i is packed into bin j, and 0 otherwise. The full model is:

minimize
∑m

j=1 yj∑m
j=1 xij = 1, ∀i ∈ {1, . . . , n}∑n
i=1 si × xij ≤ Cyj , ∀j ∈ {1, . . . ,m}

xij ∈ {0, 1}, yi ∈ {0, 1}

(1)

The lower bound on the number of bins obtained by solving the continuous relaxation
of this model is referred to as L1 in the literature. It has been shown to be equal to
�
∑n

i=1 si/C�. Many other lower bounds have been designed, amongst which the most
widely used is the one due to Martello and Toth [7], referred to as L2. In the remainder
of this section we will present two alternative formulations that give better lower bounds
on the number of bins. The first one, referred to the DP-FLOW model, is novel. The
second one is known as the ARC-FLOW model [2].

The DP-FLOW Model. We consider the directed graph construction used by Trick [10]
to build a propagator for the knapsack constraint using dynamic programming; an ex-
ample is presented in Figure 1. Consider a layered graph G(V,A) with n + 1 layers
labelled from 1 to n + 1, and a sink node, s. The nodes are labelled ib where i denotes
the layer and b a value between 0 and C. A path from the node of the first layer to a node
of the last layer represents a packing, i.e. a set of items assigned to the same bin. More
specifically a path using an edge starting at layer i between two nodes ib and (i+1)b+si

represents a packing that includes item i, whereas the use of the edge (ib, (i + 1)b) ex-
cludes item i from the packing. Edges are added between the nodes of the last layer of
the graph and the sink node, s. An example of such a graph is shown Figure 1 for the
instance S = {2, 2, 3, 5, 5}, C = 7. The packing 2, 3 is the path shown in dashed line.

A solution to the bin packing problem corresponds to a minimum flow problem in
this graph, with an additional constraint stating that exactly one oblique edge from each
layer must be used. We consider a variable xk,l per edge (k, l) ∈ A, 10 being the node
of the first layer, and the number of bins is represented by xs,10 , i.e. the flow circulating
in the graph:

Propagating the Bin Packing Constraint Using Linear Programming 131

minimise xs,10

∑
(j,ib)∈A xj,ib

−
∑

(ib,k)∈A xib,k =

⎧⎨
⎩
−xs,10 if ib = 10,
0 if ib s.t i ∈ [2, n+ 1], b ∈ [0, C]
xs,10 if ib = s∑

(ib,(i+1)b+si
)∈A x(ib,(i+1)b+si

) = 1 i ∈ [1, n]
xk,l ≥ 0, integer ∀(k, l) ∈ A

A solution to the bin packing problem can be obtained by decomposing the resulting
flow into paths connecting the source node to the nodes of the final layer. This flow
decomposition is possible because the graph is acyclic. The number of variables and
constraints in this model isO(nC) since each node in the graph has at most two outgo-
ing edges. Notice that the formulation depends on the ordering of the items used to order
the layers of the graph; the size of the graph as well as the strength of the formulation
are also affected by this ordering.

The ARC-FLOW Model. Carvalho introduced an elegant ARC-FLOW model for the bin
packing problem [2,3]. His model, which we present below, makes explicit the capacity
of the bins, and its size depends on the number of items of different sizes rather than
the total number of items.

Consider a graph G(V,A) with C + 1 nodes labelled from 0 to C in which there is
an edge (i, j) ∈ A if there exists an item of size j − i in S. Additional edges (i, i+ 1)
are added between consecutive pair of nodes. An example of such a graph is shown in
Figure 2 for S = {2, 2, 3}with C = 5. Any path in this graph corresponds to a packing
of a single bin. For example, the path shown in dotted lines in Figure 2 corresponds to
a packing of two items of size 2, leaving the remaining capacity of the bin unused (the
last edge is a loss edge). More formally, a packing for a single bin corresponds to a flow
of one unit between vertices 0 and C. A larger flow corresponds to the same packing
into multiple bins.

Such a formulation has many symmetries since the same solution can be encoded
by many different flows. Some reduction rules were given by Carvalho that help reduce
such symmetries [2]. The graph presented in Figure 3 is a simplied graph for the same
example as the one used for the DP-FLOW model. Firstly one can notice that the pack-
ings are ordered by decreasing value of the sizes of the items. Secondly, the loss edges
before Node 2, which is the smallest item size, have been removed as well. Finally,
the number of consecutive edges of a given size is bounded by the number of items of
this size. This is why no edges of size 2 are outgoing from Node 4 as this would not
correspond to any valid packing. However, all the symetries have not been eliminated.

1 2 4 530

Fig. 2. An example of the graph underlying the ARC-FLOW model for S = {2, 2, 3} and C = 5.
The packing 2, 2 is shown with dotted lines.

132 H. Cambazard and B. O’Sullivan

0 1 2 3 4 5 6 7

Fig. 3. An example of the graph underlying the ARC-FLOW model for S = {2,2,3,5,5}, C = 7

The bin packing problem can be formulated as a minimum flow between vertex 0
and vertexC with constraints enforcing that the number of edges of a given length used
by the flow must be greater than or equal to the number of items of the corresponding
size. Variables xij are associated with the edges (i, j). xC0 denotes the flow variable
corresponding to the number of bins used. We will denote by S

′
= {s′

1, . . . , s
′
n′ } the

set of different item sizes, and bi the number of items of size s
′
i. n

′
is the number of

items of different sizes. The model is as follows:

minimise xC0

∑
(i,j)∈A xij −

∑
(j,k)∈A xjk =

⎧⎨
⎩
−xC0 if j = 0,
0 if j = 1, 2, . . . , C − 1,
xC0 if j = C∑

(k,k+s
′
i)∈A xk,k+s

′
i
≥ bi i = 1, 2, . . . , n

′

xi,j ≥ 0, integer ∀(i, j) ∈ A

A solution can be obtained again by decomposing the flow. The number of variables
in this model is O(n

′
C). However there are only C flow conservation constraints, as

opposed to the nC of our model, which makes this formulation clearly more compact.

3 Dealing with Partial Assignments

The bounds we have presented can be applied during search by transforming a partial
assignment into a reduced bin packing problem. Once items are assigned to bins we
have a bin packing problem in which some item sizes are missing, since they have
already been assigned, and not all bins have the same remaining capacity. Both previous
formulations can be modified to handle these cases.

For the DP-FLOW model we can simply add capacities to the edges between the
last layer of the graph and the sink node. These capacities express the number of bins
that have enough capacity to accommodate the corresponding size. For example, if we
dispose of three bins of capacity 10 and an item of size 2 has been assigned to each of
the first two bins, then sizes of value 9 and 10 are given a capacity of 1. Additionally, the
flows in the oblique edges corresponding to taking items already assigned are enforced
to zero. For the ARC-FLOW model a back edge, adding to the overall flow to minimize,
can be added from each node corresponding to an available capacity in the reduced bin
packing problem. In the previous example an edge would leave Node 8 as well as 10 to
go back to Node 0. The bi values of the linear model are also updated accordingly to
reflect the remaining items available.

Propagating the Bin Packing Constraint Using Linear Programming 133

Table 1. Comparing the quality and time of various lower bounds on the B1 benchmark

L1 L2 DP-FLOW ARC-FLOW ARC-FLOW+red
sum 74650.49 77945.76 78114.48 78099.66 78113.4

avg time (in s) 0 0 2.96 0.07 0.02

It is possible to propagate with the LP lower bounds using a similar approach to
that adopted by Shaw [9]; that is, we simply commit items to bins, compute the corre-
sponding reduced problem and check whether the bound raises a contradiction or not, in
which case the item can be pruned from the corresponding bin. However, that approach
is suitable for very fast filtering rules only, but otherwise leads to significant overheads.

4 Experimental Results

We conducted a series of experiments on a single thread on a Dual Quad Core Xeon
CPU, 2.66GHz with 12MB of L2 cache per processor and 16GB of RAM overall, run-
ning Linux 2.6.25 x64. We put a 3GB limit on memory. CPLEX 12 was used for all
the linear models. We used two sets of publicly available instances as benchmarks. The
Falkenauer benchmark [4] comprises two classes of instances U and T with four sets of
20 instances in each class containing 120 to 1000 items. Class U comprises item sizes
uniformly distributed in [20, 100] to be packed into bins of size 150. Class T consists of
triplets of items from [25, 50] to be packed into bins of size 100. Four sets are in class
T and instances were generated so that there is no slack. The second benchmark suite
used are the B1 and B2 sets studied in [8], made of 720 and 480 instances, respectively.
The number of items in these sets vary from 50 to 500; the capacity can reach 1000 in
the B2 set. We used the first 350 instances of B2. When quoting a benchmark we will
use either U, T or B as prefixes followed by the number of items to be packed, unless it
is otherwise obvious.

Experiment 1: Comparison of the Lower Bounds on the Number of Bins. We com-
pared four lower bounds: (a)L1 is the continuous lower bound, (b)L2 is the well known

Table 2. Comparison between different variants of the bin packing constraint

benchmark u120 u250 u500 u1000 t60 t120 t249 t501 B1 B2
CP Backt Med 0.00 3.13M 8.68M 2.95M 147.00 5518.00 1.79M 2.41M 0.00 0.00
Sh Avg 1.41M 4.83M 9.10M 3.01M 216.15 1.54M 2.81M 2.37M 1.15M 3.21M

Time(s) Med 0.15 3600.00 3600.07 3600.09 0.07 3.06 3600.07 3600.09 0.34 0.06
Avg 371.61 1981.41 2992.87 3600.10 0.13 741.78 3265.10 3600.09 497.11 726.09

StDev 1038.75 1835.99 1302.88 0.06 0.14 1467.85 1033.12 0.06 1224.44 1439.92
NS 19 9 4 0 20 16 2 0 625 280

CP Backt Med 15.00 76.00 175.00 285.00 313.00 1093.00 3604.00 8535.50 0.00 0.00
AC Avg 25.75 87.80 177.85 268.45 318.20 1100.80 14676.05 16240.85 15.76 132.40

Time(s) Med 0.29 0.71 0.96 1.45 13.18 58.10 142.51 208.05 0.21 29.26
Avg 0.34 0.73 1.02 1.45 13.34 64.92 379.02 408.70 0.54 246.49

StDev 0.12 0.11 0.15 0.08 4.37 37.95 788.56 757.92 0.96 631.00
NS 20 20 20 20 20 20 19 19 720 343

CP Backt Med 0.00 7.50 21.00 40.50 7.00 33.00 173.50 645.00 0.00 0.00
Sh+AC Avg 3.95 23.10 24.15 46.10 7.50 39.65 4420.00 3981.50 3.65 68.29

Time(s) Med 0.40 1.38 4.44 48.86 3.73 5.65 29.10 76.75 0.48 19.56
Avg 0.39 1.53 4.86 61.84 3.72 17.43 221.79 272.69 2.28 150.39

StDev 0.07 0.40 0.93 25.06 1.98 15.10 796.55 785.83 3.92 421.52
NS 20 20 20 20 20 20 19 19 720 349

134 H. Cambazard and B. O’Sullivan

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1 10 100 1000 10000 100000 1e+06 1e+07 1e+08

S
ha

w

Hybrid

B1
B2

(a) B Instances - Backtracks

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1 10 100 1000 10000 100000 1e+06 1e+07

S
ha

w

Hybrid

time limit
B1
B2

(b) B Instances - Time

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1 10 100 1000 10000 100000 1e+06 1e+07 1e+08

S
ha

w

Hybrid

U 120
U 250
U 500

U 1000

(c) U Instances - Backtracks

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1 10 100 1000 10000 100000 1e+06 1e+07

S
ha

w

Hybrid

time limit
U 120
U 250
U 500

U 1000

(d) U Instances - Time

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1 10 100 1000 10000 100000 1e+06 1e+07 1e+08

S
ha

w

Hybrid

U 120
U 250
U 500

U 1000

(e) T Instances - Backtracks

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1 10 100 1000 10000 100000 1e+06 1e+07

S
ha

w

Hybrid

time limit
U 120
U 250
U 500

U 1000

(f) T Instances - Time

Fig. 4. A detailed comparison of our approach (x-axis) against the bin packing constraint of Shaw
on the y-axis - time and backtracks are presented

bound due to Martello and Toth [7], (c) the linear relaxation of the DP-FLOW model
where the ordering of the layers in the graph is done by non-decreasing item size, (d) the
linear relaxation of the ARC-FLOW model without the simplifications of the graph, and
(e) with the reductions. The lower bounds obtained on the Falkenauer benchmark at
the root node are not interesting, and mostly equal to the continuous bound L1 with
few exceptions. The second benchmark, B1, exhibits more variety and we report in Ta-
ble 1 the sum of the lower bounds found on all the instances of the B1 set by the five
lower bounds. The linear relaxation of DP-FLOW is the strongest but does not improve
ARC-FLOW+red significantly and is also significantly more expensive to compute.

Propagating the Bin Packing Constraint Using Linear Programming 135

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1 10 100 1000 10000 100000 1e+06 1e+07 1e+08

S
ha

w

CP Arc Flow

B1
B2

(a) B Instances - Backtracks

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1 10 100 1000 10000 100000 1e+06 1e+07 1e+08

S
ha

w

CP Arc Flow

T 60
T 120
T 249
T 501

(b) T Instances - Backtracks

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1 10 100 1000 10000 100000 1e+06 1e+07 1e+08

S
ha

w

CP Arc Flow

U 120
U 250
U 500

U 1000

(c) U Instances - Backtracks

Fig. 5. Comparison of the reasoning capabilities of Shaw’s global constraint against ours

Experiment 2: Comparison with the Bin Packing Constraint. We embedded the
ARC-FLOW+red bound within a bin packing global constraint to evaluate the strength
of the pruning we would get compared to that obtained using the state-of-the-art global
constraint designed by Shaw [9]. We compared these three methods by optimally solv-
ing the bin packing problem: “CP Shaw” denotes the constraint described in [9]; “CP
Arc-flow” refers to a constraint that simply solves the linear relaxation of the ARC-
FLOW model with reductions and uses this lower bound to detect contradiction; “CP
Shaw+Arc-flow” first applies the filtering of Shaw’s bin packing constraint and then
computes the lower bound of the ARC-FLOW model.

We use similar settings to those in [9]. The standard search heuristic decreasing best
fit is used, packing items in non-increasing size into the first bin with the least possible
space sufficient for the item. On backtracking a bin is removed from the domain of
an item and two symmetry breaking rules are used: the bin is also removed from the
domain of all equivalent items (items of the same size), and all equivalent bins (bins
with same load) are also pruned from the domains of these items. Two dominance rules
are also added. The first is applied before creating a new choice point: if all the bins are
equivalent for any item it is assigned to the first available one. The second ensures that
if an item can fit exactly in the remaining space of a bin it is assigned to this bin.

Our algorithms are implemented with Choco and CPLEX. Shaw’s bin packing con-
straint is available in Choco, which we used as a baseline. It differs from Shaw’s im-
plementation by using several dual feasible functions [1] that subsume the L2 bound
of Martello and Toth. The results presented in [9] are detailed for the T60 and U120
categories where all instances are solved, but U12019 requires 15 hours. We observed
a similar behavior: U12019 was the only instance not solved within the one hour time
limit allowed for the Choco implementation of the bin packing constraint. Table 2 re-
ports the comparison giving for each category the median and average number of back-
tracks, time (in seconds), as well as the standard deviation in time and the number of
instances solved to optimality within the time limit (NS). Clearly the approach pre-
sented here significantly improves over Shaw’s bin packing constraint. In Figure 4 we
present an instance by instance comparison for each benchmark suite using both Shaw’s
global constraint and our hybrid approach. Our approach tends to have a less variation
in the effort required to solve a bin packing problem. Finally, in Figure 5 we compare
the reasoning capabilities of the ARC-FLOW relaxation against that of Shaw’s global
constraint. A point below the diagonal means that Shaw has fewer backtracks than the
ARC-FLOW relaxation. The ARC-FLOW alone is usually better than Shaw, by capturing

136 H. Cambazard and B. O’Sullivan

most of the benefits of more sophisticated filtering while achieving orders of magnitude
improvements in time.

5 Conclusion

We have presented a novel direction for handling bin packing constraints in constraint
programming. Our approach can give significant improvements in running time. The
DP-FLOW and ARC-FLOW models remain to be compared theoretically. A deeper
study of the DP-FLOW model focusing on the impact of the ordering of the layers
and graph reduction criteria is still to be carried out, although the ARC-FLOW model
appears to be much more promising. Furthermore we believe that the graph underlying
the ARC-FLOW model scales to much larger problems than the one used by the DP-
FLOW model. This immediately suggests that we could apply the same idea to knapsack
constraints. The resulting formulation would not be able to provide GAC for the knap-
sack constraint as opposed to [10] but should allow a very strong propagation in practice
while scaling to much bigger knapsacks.

References

1. Clautiaux, F., Alves, C., de Carvalho, J.M.V.: A survey of dual-feasible and superadditive
functions. Annals of Operations Research (2008)

2. de Carvalho, J.M.V.: Exact solution of bin-packing problems using column generation and
branch-and-bound. Annals of Operations Research 86, 629–659 (1999)

3. de Carvalho, J.M.V.: LP models for bin packing and cutting stock problems. European Jour-
nal of Operational Research 141(2), 253–273 (2002)

4. Falkenauer, E.: A hybrid grouping genetic algorithm for bin packing. Journal of Heuristics 2,
5–30 (1996)

5. Hooker, J.N.: Integrated Methods for Optimization. International Series in Operations Re-
search & Management Science. Springer, New York (2006)

6. Hooker, J.N., Yan, H.: A relaxation of the cumulative constraint. In: Van Hentenryck, P. (ed.)
CP 2002. LNCS, vol. 2470, pp. 686–690. Springer, Heidelberg (2002)

7. Martello, S., Toth, P.: Lower bounds and reduction procedures for the bin packing problem.
Discrete Appl. Math. 28(1), 59–70 (1990)

8. Scholl, A., Klein, R., Jürgens, C.: Bison: A fast hybrid procedure for exactly solving the
one-dimensional bin packing problem. Computers and Operations Research 24(7), 627–645
(1997)

9. Shaw, P.: A constraint for bin packing. In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp.
648–662. Springer, Heidelberg (2004)

10. Trick, M.A.: A dynamic programming approach for consistency and propagation for knap-
sack constraints. Annals OR 118(1-4), 73–84 (2003)

Sweeping with Continuous Domains

Gilles Chabert and Nicolas Beldiceanu

École des Mines de Nantes LINA CNRS UMR 6241,

4, rue Alfred Kastler 44300 Nantes, France

{gilles.chabert,nicolas.beldiceanu}@mines-nantes.fr

Abstract. The geost constraint has been proposed to model and solve

discrete placement problems involving multi-dimensional boxes (packing

in space and time). The filtering technique is based on a sweeping algo-

rithm that requires the ability for each constraint to compute a forbidden

box around a given fixed point and within a surrounding area. Several

cases have been studied so far, including integer linear inequalities. Mo-

tivated by the placement of objects with curved shapes, this paper shows

how to implement this service for continuous constraints with arbitrary

mathematical expressions. The approach relies on symbolic processing

and defines a new interval arithmetic.

1 Introduction

Sweeping [4] is a generic technique for filtering with constraints, like propagation
for instance. This technique has been fruitfully applied in the context of place-
ment problems (rectangle packing, container loading, warehouse management).
In particular, the filtering algorithm of the geost constraint [5,8,6], today im-
plemented in different systems like Choco [1], JaCop [10] or SICStus [9], is based
on a sweeping loop.

Propagation (e.g., AC3 [11]) requires a propagator for each constraint, that
is, an operator that removes inconsistent values. Symmetrically, we will see that
sweeping requires an inflater for each constraint, that is, an operator that returns
a set of unfeasible tuples.

Propagators can be built simply by checking consistency for each value. Like-
wise, inflaters can be built by enumerating values inside the cross product of
domains and checking for inconsistency.

However, such brute force methods, apart from being inefficient, are not possi-
ble with continuous domains (that are not countable). In previous publications,
inflaters have been proposed for several important classes of constraints: rectan-
gle inclusion and non-overlapping [5], linear equations, distance equations [2] as
well as constraints derived from business rules [8]. The method in [8] is generic
as it addresses a class of first-order formulae with linear constraints by way of
predicates. However, all these methods are restricted to discrete domains and
only propose ad-hoc solutions for (a few) nonlinear constraints.

The main contribution of this paper is a generic inflater that works for any
constraint on continuous domains, as long as the constraint has a mathematical

D. Cohen (Ed.): CP 2010, LNCS 6308, pp. 137–151, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

138 G. Chabert and N. Beldiceanu

expression made of usual operators (+,×,−,/) and functions (sqr, sqrt, sin, etc.).
The complexity of this inflater is linear in the length of the constraint expression
and optimal (i.e., the corresponding box cannot be extended any more in any
dimension) if variables have no multiple occurrences.

Hence, thanks to this new algorithm, the applicability of geost can be ex-
tended to a significantly larger class of placement problems: nonlinear inequal-
ities can indeed model, e.g., the non-overlapping of objects with curved shapes
(balls, cylinders, etc.) in two or three dimensions.

The paper is organized as follows. In Section 2, the sweeping algorithm is
recalled, but in a slightly revised form that makes it independent of the nature
of domains (discrete or continuous). In Section 3, a generic inflater is described.

2 Sweeping

Since this paper is dedicated to continuous domains, we will need notations to
represent and handle intervals of reals. Let us state them now.

Notations. Vectors will be represented by bold face letters. Intervals and boxes
(cross products of intervals) will be surrounded by brackets, e.g., [x] and [x].
The symbol IR represents the set of all intervals. If [x] is an interval, x and x
will stand for the lower and upper bound respectively of [x]. If [x] is a box, the
ith component of [x] is an interval [x]i (or [xi]) and the bounds of [x]i will be
denoted by xi and xi.

2.1 From Propagation to Sweeping

Consider first a classical propagation of constraints. We are comparing here
inference methods (not particular algorithms), but to fix idea one may think
about AC3. The principle of propagation is the same for continuous domains as for
discrete ones (except that only bounds are usually reduced for practical reasons).
In the situation depicted in Figure 1.(a), each constraint is able, separately, to
filter the domain of a variable. This results in “strips” removed from the domain
[x] = [x]1×[x]2. For instance, when c1 reduces the left bound of x1 to x̃1, all the
tuples in the hatched strip are proven to be inconsistent.

In the situation of Figure 1.(b), propagation is blocked because all the bounds
(x1, x1, x2 and x2) are consistent (have supports) w.r.t. each constraint. How-
ever, let us now assume that, by some means, one can build forbidden boxes in
the cross domain [x]×[y], according to the following definition:

Definition 1 (Forbidden box). Given a constraint c over R
n, a box [x] ⊂ R

n

is called forbidden w.r.t. c if no vector in [x] satisfies c.

A first forbidden box [f], w.r.t. c1, can be placed in the lower left corner of [x] (see
Figure 1.(b)). A second forbidden box [f ′] can then be built above the first one,
but by considering this time c2. By considering again c1 a third box [f ′′] can be
placed again on top of [f ′]. The union of these boxes covers a strip [x1, x̃1]×[x]2

Sweeping with Continuous Domains 139

x2

c1

c2

[x]

x̃1x1 c2

[x]

c1

[f ′′]

[f]

[f ′]

[x]

x̃1
c2

c1

x1

(a) (b) (c)

Fig. 1. Comparing propagation and sweeping. The outer rectangle represents

the initial box [x]. Feasible points of constraints are represented in light gray. The set

of solutions in [x] is in dark gray. (a). Propagation can be applied: the left bound of x1

is reduced by the constraint c1 (hatched strip). The upper bound of x2 is then reduced

by c2. Note that, at this stage, the fixpoint is not reached yet and pruning could be

carried on. (b). In this situation, nothing happens with propagation: the bounds of

[x] are consistent w.r.t. c1 and c2 (taken separately). However a forbidden box can be

built w.r.t. each constraint. (c) The union of the forbidden boxes allows to prune x1.

(see Figure 1.(c)) that can be removed, just as in classical propagation. Note
that [x1, x̃1] is [f]1 ∩ [f ′]1 ∩ [f ′′]1, that is, x̃1 is the smallest upper bound of the
x1’s, among the forbidden boxes.

There is a duality between propagation and sweeping. Propagation requires
each individual constraint to provide a global filtering (a full strip) while sweeping
aggregates the result of several constraints, each only providing a partial filtering
(a forbidden box). The advantage of propagation is clear: a global filtering is an
information that can be directly shared by other constraints. But global filtering
is clearly difficult to obtained, in general, from a single constraint (especially
when related variables have large domains). This is typically observed in place-
ment problems as an empirical fact, even when some objects are initially fixed.

On the contrary, a forbidden box is easier to obtain but does not help the
other constraints directly. Computations of forbidden boxes are independent
from one constraint to the other. The key idea behind sweeping is to guide these
computations so that piling up forbidden boxes maximizes the chance to perform
a global filtering quickly. This relies on the concept of working area.

2.2 The Working Area

In this section, we shall first consider 2 and then n> 2 variables. For the sake
of clarity and w.l.o.g., pruning is always assumed to be performed on the left
bound of the first variable, x1. The other cases are obtained symmetrically, by
reordering variables and reversing some inequalities.

A strip like [x1, x̃1]× [x]2 in Figure 1.(c) is formed when the union of the
projections of forbidden boxes over x2 entirely cover [x]2. We say, in this case,
that x2 is saturated. The property each x1 ∈ [x1, x̃1] satisfies is then ∀x2 ∈

140 G. Chabert and N. Beldiceanu

[x]2, (x1, x2) is not a solution, which indeed means that [x1, x̃1] is inconsistent.
Forbidden boxes have to be built within a limited space, bounded below and
above by anchors:

1. A forbidden box has to be placed on a precise location. For instance, while
x2 is not saturated, the next forbidden box must be placed on the lower left
corner above the last one. This location (the lower left corner) defines a left
anchor for x1 and x2.

2. As said above, x̃1 is the lowest upper bound of the x1’s among the forbidden
boxes used to saturate x2. This bound can be initialized to x1 and updated
incrementally along the process, until saturation of x2 is achieved. Then, the
bound is reset to x1, for the next strip. This bound defines a right anchor
for x1. The right anchor for x2 can simply be set to x2 since x2 is always the
first dimension to saturate (in our considered situation).

We call working area and denote by [X] the box delimited by the anchors. It is
clear that for a forbidden box [f], all the part that exceeds the working area is
superfluous. Consider for instance Figure 1.(b), once [f] is calculated. The right
anchor for x1 becomes f1. Then, all the points x of [f ′] with x1 > f1 are useless
and, indeed, they won’t belong to the final strip. All this extends to n variables
thanks to a n-dimensional working area, as shown in Figure 2 for n = 3.

For all j, 1 ≤ j ≤ n, sweeping over xj (potentially up to saturation) is
recursively based on the saturation of xj+1. When xj+1 is saturated, the (n− j)-

x1

x3

x2

[f]

[f]

(a) (b) (c)

[f]

[f]

[f]

(d) (e) (f)

Fig. 2. Evolution of the working area. The forbidden boxes are in white and

the working area in transparent (light gray). (a) At the beginning, [X] ← [x]. (b-1)

X1 ← f1, X2 ← f2, X3 ← f3. (b-2) Since x3 is the last dimension: [X]3 ← [X3, x3].

(c-1) X1 ← f1 (X2 and X3 are not impacted: f2 = X2 and f3 = X3). (c-2) x3 is

saturated so [X]2← [X2, x2] and [X]3← [x]3. (d-1) only X3 is impacted: X3←f3. (d-2)

[X]3← [X3, x3]. (e-1) Nothing is impacted. (e-2) Since x2 is saturated, [X]1← [X1, x1],

[X]2← [x]2 and [X]3← [x]3. (f-1) X1←f1, X2←f2, X3←f3. (f-2) [X]3← [X3, x3].

Sweeping with Continuous Domains 141

[X]

< ε

x̃

c

Fig. 3. Non-unicity and quality of inflation. Three different forbidden boxes (in-

side the same area [X] and w.r.t. the same constraint c) are represented with dashed

contour. They are all optimal, i.e., they cannot be inflated more in any direction.

The projection of a forbidden box can be wide on a dimension and very narrow on

another one.

dimensional face [x]j+1 × · · · × [x]n is covered by the projection of forbidden
boxes. It is then proven that [X]1× · · ·× [X]j is inconsistent. Geometrically, the
following box: (

[X]1 × · · · × [X]j
)
×

(
[x]j+1 × · · · × [x]n

)
(1)

forms a “bar”, that generalizes the “strip” in 2D above. When j = 1, the interval
[X]1 can be definitely pruned. The working area is initialized to the whole box
[x] and maintained in two steps each time a new box is calculated. First step:
for all j, Xj is updated in order to be the minimum of f j among the forbidden
boxes [f] obtained since the last saturation of xj+1. At this point, inconsistency
of (1) holds. Second step: if xj+1 is saturated, the area is extended to all the
points necessary to saturate xj : [X]j ← [Xj , xj] and [X]i ← [x]i for all i > j.

Hence, boxes are calculated in order to saturate xn, xn−1, . . . downto x1, each
time from bottom to up. These choices are clearly arbitrary (except for x1 that
must be the last saturated variable if one is to prune this variable) and we could
proceed in other ways. This means that tuples have to be ordered. The natural
order we chose is the lexicographic one.

2.3 Inflaters

Let us now focus on the way forbidden boxes are built. For reasons that will be
soon apparent, we consider that forbidden boxes are the result of a new kind
of operator, called inflater. The basic idea behind an inflater is to take a single
forbidden point x̃ and to build a forbidden (and as large as possible) box around
x̃ inside a working area. However, it is often possible to inflate in different (and
incomparable) ways as Figure 3 suggests.

Boxes that are not well-balanced slow down the sweeping process. To help
the intuition, imagine that a degenerated interval (reduced to a single point)
appears on a dimension. The working area is then flattened on this dimension
until the subsequent dimensions are all saturated. All this work is done for no
gain at all.

142 G. Chabert and N. Beldiceanu

With a very basic geometric argument, we can say that the most extended a
box is in a given direction, the less it is in another. As a consequence, taking
into account the working area at the source of the inflation is important. This
explains why, in the next definition, an inflater takes an initial forbidden point
x̃ and a working area [X] (a bad alternative would be to calculate a forbidden
box unboundedly and intersect the result with the working area).

Definition 2 (Inflater). Let C be a constraint over a set of n variables, i.e., a
subset of R

n. An inflater I of C is an operator from R
n×IR

n → IR
n such that:

∀[X] ∈ R
n, ∀x̃ ∈ [X],

⎧⎨
⎩

(i) I(x̃, [X]) ⊆ [X]
(ii) I(x̃, [X]) �= ∅=⇒ x̃ ∈ I(x̃, [X])
(iii) I(x̃, [X]) ∩ C = ∅

(i) means that the inflation is bounded by the working area. (ii) means that the
anchor x̃ belongs to the inflated box. (iii) means that the inflated box is forbidden.

Note that the inflater can return an empty set. This property ensures that the
definition is consistent with the case where x̃ is feasible w.r.t. a constraint.

2.4 Algorithm

We can give now our lexicographic sweeping algorithm for pruning the lower
bound of a variable. This corresponds to a revision of the algorithm pruneMin
given in [5] page 9. The algorithm for pruning the upper bound (pruneMax) is
easy to obtain from the same algorithm by swapping bounds and inequality signs
conveniently, it will be omitted here.

The procedure try inflate tries to build a forbidden box containing x̃ and
inside [X], by considering each constraint of C in turn. The purpose of Section 3
is precisely to show how to inflate w.r.t. a given constraint. If the best forbidden
box found [f] is significantly large, the procedure sets [X] to [f] and returns true
(and false otherwise).

The changes we brought to the original discrete version are:

1. A working area is maintained instead of a sweep point and a jump vector, in
the terminology of the papers cited above.

2. This working area is transmitted to the inflaters for the calculation of more
well-balanced forbidden boxes (as justified in §2.3).

3. Since we are in a continuous setting, the lower left corner of [X] is not the
lowest feasible vector but the greatest unfeasible one reached by the inflaters.

4. Forbidden boxes whose size is below a certain floor are discarded.

2.5 Tradeoff between Sweeping and Propagation

In presence of n variables, sweeping means dealing with a worst-case number of
forbidden boxes that grows exponentially with n. Therefore, a tradeoff between
sweeping and propagation is usually made. The number k of variables involved in

Sweeping with Continuous Domains 143

Algorithm 1. pruneMin(C, [x], d)
Input: a set of constraints C, a k-dimensional box [x]

Output: a subbox of [x] with the lower bound of the dth coordinate pruned

w.r.t. C
b ← true; // true while a solution may exist in [x]1

success ← false; // true if filtering occurs2

[X] ← [x] ; // init the working area3

while b and try inflate(C, X, [X]) do // see comment below4

b ← false5

for j = k − 1 downto 0 do // for each saturated dimension6

j′ ← (j + d) mod k7

if Xj′ < xj′ then // (j′+1) is the last saturated dimension8

if j = 0 then success ← true; // “global” filtering has occurred9

[X]j′ ← [Xj′ , xj′]; // start a new “strip”10

b ← true; // something is left inside [x]11

break; // exit the “for” loop (xj′ is not saturated)12

[X]j′ ← [x]j′ ; // reset to the whole domain (saturated dimension)13

if b then14

[x′] ← [x] ; // load the initial box15

[x′]d ← [Xd, xd]; // apply the global filtering16

else17

[x′] ← ∅; // raise unfeasibility18

return [x′]19

a sweeping loop is typically limited to 2 or 3. The pruning obtained by sweeping
is then propagated to the other groups of variables, in a classical way.

Of course, there must be some correlation between variables of a same group.
Otherwise, sweeping has less effect: if we consider the extreme case of two in-
dependent variables, sweeping with these two variables amounts to filter with
constraints separately, i.e., propagation.

We must therefore choose groups of k variables that are “correlated”. But
finding such mappings in a general setting is a problem on its own (see, e.g., [3]).
This is the main reason why sweeping is well adapted to geometrical problems: we
have in these problems a direct correlation between the variables that correspond
to the coordinates of the same object. In other words, the dimensions of the
sweeping loop match the geometrical dimensions.

3 A Generic Inflater for Arithmetical Constraints

Our inflater manipulates constraints in symbolic form. Inflation is made by an
induction over the syntactical tree of the constraint expression. Symbolic pro-
cessing is well known through modern computer algebra systems (like Maple or
Mathematica). But it has also led to significant results in constraint program-
ming, for building propagators and calculating enclosures of derivatives, see [7].

144 G. Chabert and N. Beldiceanu

w9

w6

w5 = w7 − w8

w5

w7 w8

w2 = w3 + w4

w3 w4

w2

w1

w1 = 0

w4 = w2
6w3 = w2

5

w10 w11

w1 = w11−w2

w6 = w9 − w10

Fig. 4. Decomposition of the constraint (c) into elementary constraints. Vari-

ables w7, . . . , w11 correspond to the real variables x1, . . . , x5. The variables w1, . . . , w6,

are dummy variables, created on-the-fly upon activation of the constraint.

Our algorithm needs to symbolically inverse elementary functions, as done by
HC4Revise [7] for filtering a constraint. However, the inverted functions are eval-
uated with a new interval arithmetic (cf. Algorithms 2 and 3).

The syntactical tree of a mathematical expression is a composition of op-
erators ◦ ∈ {+,−,×, /} and elementary functions φ ∈ {sqr, sqrt, cos, . . .}. A
constraint can therefore be decomposed into a tree-structured network of ele-
mentary constraints z = x ◦ y and y = φ(x). For instance, consider the following
distance constraint of arity 5:

(c) x5 = (x1 − x2)2 + (x3 − x4)2.

The network of elementary constraints equivalent to c is given in Figure 4.
Let us call dec(c) the CSP resulting from the decomposition of c, and k

the number of dummy variables. Let us denote by w1, . . . , wk+n the variables
of dec(c) sorted increasingly with respect to the partial order induced by the
tree, i.e., w1 is the variable of the root constraint and i < j if wj is a vari-
able that appears below wi in the same branch. Note that Figure 4 respects
this convention. Let us also call output(j) the index i of w such that wi is
the output variable of the elementary constraint involving wj as input (e.g.,
output(9) = 6, output(6) = 4 and output(4) = 2). Finally, we will consider the
functions f1(x), . . . , fk(x) such that wi = fi(x) is the constraint corresponding
to the subtree below wi. E.g., f5(x) = x1 − x2, f4(x) = (x3 − x4)2.

The basic idea is to calculate a (k + n)-dimensional box

(−∞,+∞)k × [wk+1]× · · · × [wk+n]

that is forbidden w.r.t. dec(c). The forbidden box [x] is then simply obtained by
projection on the n last dimensions:

Sweeping with Continuous Domains 145

[x] ← [wk+1]×· · · [wk+n].

Indeed, if some x ∈ [x] would be a solution w.r.t. c, there would be an instantia-
tion of the wi’s with wk+1 = x1, . . ., wk+n = xn that would satisfy dec(c). Such
instantiation would necessarily belong to [f], giving a contraction.

Our algorithm in split into two phase. The forward phase propagates x̃ (the
initial forbidden point) and [X], that is, calculates a point w̃i and an interval
[Wi] for each variable of dec(c). The backward phase yields the desired forbidden
box.

3.1 Forward Phase

In this phase, a vector w̃ is calculated from x̃. Similarly, an area [W] is calculated
from [X]. The vector w̃ (resp., the box [W]) are built by instantiating leaves
to x̃ (resp. fixing their domains to [X]) and propagating with the elementary
constraints up to the root. The root constraint w1 = 0 is ignored in this phase.

Base Case. For all i > k, set w̃i ← x̃i−k and [Wi] ← [Xi−k].

Induction. If i < k, wi is the output of an elementary constraint. If the
constraint is wi = φ(wj), we set:

w̃i ← φ(w̃j).

We also set [Wi] to the image of [Wj] by φ using standard interval arithmetic:

[Wi] ← φ([Wj]).

If the constraint is wi = wj1 ◦ wj2 , we set in a similarly way:

(i) w̃i ← w̃j1 ◦ w̃j2 ,
(ii) [Wi] ← [Wj1] ◦ [Wj2],

(2)

At the end of the forward phase, w̃ and [W] have the following properties:

(i) w̃ is unfeasible w.r.t. dec(c),
(ii) ∀i, 1 ≤ i ≤ k + n, w̃i ∈ [Wi],
(iii) ∀i < k, fi([X]) ⊆ [Wi].

(3)

(i) comes from the fact that x̃ is unfeasible w.r.t. c, by using the same argu-
ment by contradiction as above. (ii) and (iii) are obtained by a straightforward
induction (remember that x̃ ∈ [X]).

If it turns that 0 �∈ [W1], then, by (3.iii), the whole box [X] is unfeasible.
In this case, the backward phase is skipped and the area [X] can be directly
returned.

We need now the concept of inner inflaters for the backward phase. We in-
troduce it first.

146 G. Chabert and N. Beldiceanu

[y]

x

x̃

y

[X][x]

φ(
x)

Fig. 5. Inner inflation for a function φ. The initial forbidden point is x̃ and the

working area [X]. The result of the inflater is the interval [x].

3.2 Inner Inflaters

Consider first an elementary function φ. Intuitively, assume we have an interval
[y] that is “forbidden”, that is, values in [y] are not allowed in some “context”
(all this will be restated on a more rigorous footing in §3.3). The purpose of
an inner inflater is to calculate an interval [x] (as large as possible) such that
φ([x]) ⊆ [y]. Then, [x] is “forbidden” since the image of all x in [x] is a forbidden
point of [y].

However, there are often different possible intervals [x], as illustrated in Figure
5. For instance, if y = x2 and [y] = [4, 9], then [x] can be set to [−3,−2] or [2, 3].
We will require the interval to contain a specific point x̃ (a precondition being
φ(x̃) ∈ [y]). With this additional parameter, we can select a (maximal) interval
containing x̃ and whose image is included in [y]. We will also require the result
to be limited by an “area” [X] (again, a precondition being x̃ ∈ [X]).

The exact same idea carries over binary operators. All is summarized in the
following definition:

Definition 3 (Inner Inflater). Let φ be an elementary function. An inner
inflater of φ is an operator [φ]♦ that takes as input a point x̃ and two intervals
[X] and [y] such that x̃ ∈ [X] and φ(x̃) ∈ [y]. Then, the result

[x] := [φ]♦(x̃, [X], [y]) satisfies

⎧⎨
⎩

[x] ⊆ [X]
x ∈ [x]
φ([x]) ⊆ [y]

Similarly, if ◦ is an operator, an inner inflater of ◦ is an operator [◦]♦ that takes
as input a couple (x̃, ỹ) and three intervals [X], [Y] and [z] such that (x̃, ỹ) ∈
[X]×[Y] and x̃ ◦ ỹ ∈ [z]. Then the result

[x]×[y] := [◦]♦(x̃, ỹ, [X], [Y], [z]) satisfies

⎧⎨
⎩

[x]×[y] ⊆ [X]×[Y]
(x̃, ỹ) ∈ [x]×[y]
[x] ◦ [y] ⊆ [z]

Examples of algorithms for inner inflaters will be given in §3.5.

Sweeping with Continuous Domains 147

3.3 Backward Phase

The backward phase inflates w̃ to a forbidden box [f] of the following form:

[f] := (−∞,+∞)k × [wk+1]× · · · × [wk+n]. (4)

that also satisfies

(w̃k+1, . . . , w̃k+n) ∈ [wk+1]× · · · × [wk+n] ⊆ [Wk+1]× · · · [Wk+n]. (5)

To prove the correctness, we shall consider boxes [f (1)], . . . , [f (k+1)] (of course,
these boxes are not actually built). The invariant satisfied by the ith box is:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[f (i)] is forbidden (i)
j < i=⇒[f (i)]j = (−∞,+∞) (ii)
(j > i ∧ output(j) ≥ i)=⇒[f (i)]j = (−∞,+∞) (iii)
(j ≥ i ∧ output(j) < i)=⇒[f (i)]j ⊆ [W]j (iv)
∀j, w̃j ∈ [f (i)]j (v)

(6)

We proceed this time from the root down to the leaves of the tree.

Base Case. The base case is the root constraint w1 = 0, w1 ≤ 0 or w1 ≥ 0.
Consider w1 = 0 (the other cases are derived straightforwardly). By (3.ii) w̃1 ∈
[W1]. We have to build [w1] ⊆ [W1] such that w̃1 ∈ [w1] and [w1] ∩ {0} = ∅:

If w̃1 > 0, we just set [w1] to [W1] ∩ (0,+∞). In practice, the open bound 0
can be replaced by any floating point number greater than 0 and smaller than
w̃1. Similarly, if w̃1 < 0, [w1] is set to [W1] ∩ (−∞, 0).

At this point, the box [f (1)] := [w1] × (−∞,+∞)k+n−1 satisfies (6), as one
can check directly.

Now, the intuition behind the recursion is to move the “bubble” (the inter-
val [w1]) downto the leaves by swapping successively the bubble with infinite
intervals.

Induction. Assume now by induction that for i > 0, a box [f (i)] satisfies (6).
If i = k+ 1, we are done (wi and the subsequent variables are the leaves) and

the desired box [f] is simply [f (k+1)]. The conditions (4) and (5) required for [f]
are fulfilled via (6.ii), (6.iv) and (6.v).

If i ≤ k, wi is the output variable of an elementary constraint. To deal with
the most general situation, we shall consider that the constraint is wi = wj1 ◦wj2

(and necessarily, j1 > i, j2 > i). The case of a binary constraint wi = φ(wj1) is
obtained easily by canceling terms with j2 in what follows.

Since (w̃j1 , w̃j2) ∈ [Wj1]×[Wj2] by (3.ii) and since w̃j1 ◦ w̃j2 = w̃i by (2.i) with
w̃i ∈ [wi] by (6.v), we can apply the inner inflater of the constraint as follows:

[wj1]×[wj2] ← [◦]♦(w̃j1 , w̃j2 , [Wj1], [Wj2], [wi]).

Assume now that all the other components wk (k �∈ {i, j1, j2}) are instantiated
to any values inside their respective domains [f (i)]k. By (6.i) and (6.iii) we have:

∀wi ∈ [wi], ∀wj1 ∈ (−∞,+∞), ∀wj2 ∈ (−∞,+∞) w is unfeasible.

148 G. Chabert and N. Beldiceanu

In particular,

∀wi ∈ [wi], ∀wj1 ∈ [wj1], ∀wj2 ∈ [wj2] w is unfeasible.

Now, for all (wj1 , wj2) ∈ [wj1]× [wj2], either wi ∈ [wi] and w is unfeasible by
virtue of the previous relation, either wi �∈ [wi] and wi �= wj1 ◦wj2 (by virtue of
the inner inflation) which also means that w is unfeasible. Finally:

∀wi ∈ (−∞,+∞), ∀wj1 ∈ [wj1], ∀wj2 ∈ [wj2] w is unfeasible. (7)

We have “shifted the bubble” from i to j1 and j2. Build [f (i+1)] as follows:

∀k �∈ {i, j}, [f (i+1)]k ← [f (i)]k, [f (i+1)]i ← (−∞,+∞),
[f (i+1)]j1 ← [wj1], [f (i+1)]j2 ← [wj2].

Since the choice for the other components was arbitrary in (7), we have that
[f (i+1)] is forbidden. The other properties of (6) simply follow from the way
[f (i+1)] was built. ��
The complexity of both phases is linear in the size of the tree (i.e., the length
of the constraint expression) as long as inner inflaters take constant time. Fur-
thermore, if inner inflaters are optimal, it can be easily proven by induction that
the forbidden box is optimal in the n directions represented by the leaves of the
tree. This means that the inflation w.r.t. the original constraint c is optimal if
variables have no multiple occurrences. Otherwise, the best we can do is to take
the union of the [wi]’s corresponding to the same variable.

Requiring inner inflaters to be optimal and in constant time is easily fulfilled,
as it will be shown below.

3.4 Remark on the Area of Dummy Variables

One may wonder why we need to restrict inflation of the wi’s with i ≤ k to an
area [Wi] since these variables disappear at the end of the process. Notice first
that extending wi out of the bounds of [Wi] is useless because of (3.iii). Such
values for wi only have support on x outside of [X]. Now, by limiting in this way
the inflation for a dummy variable, we can improve the inflation for another one
(this will be illustrated in Figure 6) resulting, in fine, to a wider inflated box.

3.5 Algorithms for Inner Inflaters

In this section, we give two examples of inner inflaters: one for the square function
and one for the addition. In order to give turn-key algorithms, we shall consider
roundoff issues. All the operations are now potentially inaccurate and can be
rounded upward or downward. The two variants are marked by the symbols �

and ∇ respectively. For instance, x+�y is the addition rounded upward; ∇√y is
the square root of y rounded downward.

Sweeping with Continuous Domains 149

Algorithm 2. [sqr]♦([x̃], [X], [y])
Input: three intervals [x̃], [y] and [X] with [x̃] ⊆ [X] and [x̃]2 ⊆ [y]

Output: a maximal interval [x] such that [x̃] ⊆ [x] ⊆ [X] and [x]2 ⊆ [y]

u ← max{ ∇√y, 0};1

if y > 0 then2

l ← �√y;3

if l < u then4

if x̃ > 0 then return ([X] ∩ [l, u]) ∪ [x̃];5

else return ([X] ∩ [−u,−l]) ∪ [x̃];6

else return [x̃];7

else return ([X] ∩ [−u, u]) ∪ [x̃];8

In the forward phase above, the vector w̃ was calculated from x̃ by applying
elementary functions and operators recursively. Because of rounding errors, all
these operations are inaccurate and must be replaced by interval counterparts.
Therefore, all the w̃i’s are now intervals [w̃i]. And, for the leaves, we set [w̃k+i] to
the degenerated interval [x̃i, x̃i]. Note that rounding may cause [w̃1] to contain
0 although the initial box [x̃] is forbidden w.r.t. c. In this case, the backward
phase can also be skipped since no inflation at all can be expected.

Square root

line 1. u represents the maximal upper bound of [x]. To guarantee [x]2 ⊆ [y],
we must have x2 ≤ y, i.e., x ≤

√
y. Therefore,

√
y has to be rounded downward.

But, at least in theory, this may lead to a negative number, whence the max.
line 2. If y > 0, there are two disjoint intervals whose image is [y] (e.g., if
[y] = [4, 9], [−3,−2]2 = [2, 3]2 = [y]). We must identify the one that contains x̃.
line 3. l represents the lowest positive bound for [x] which is√y rounded upward.
lines 4 & 7. Because of rounding, l is not necessarily smaller than u. If l > u,
inflation has failed and the best we can do is to return [x̃].
lines 5 & 6. If x̃ > 0, the nonnegative interval is selected and intersected with
the area [X]. Still because of rounding, [x̃] may not be included in the resulting
interval. It has to be merged. The case x̃ < 0 is symmetric.
line 8. If l = 0, the largest interval whose image is included in [y] is [−u, u]. The
latter must be intersected with the area [X] and merged with [x̃] as before.

Addition

The variables initialized in Lines 1-3 are all represented in Figure 6. Round-
ing is made in order to guarantee x1 + y1 ≥ z and x2 + y2 ≤ z. All the other
lines work symmetrically. They compute two vectors: l and u, the lower and up-
per corners of [x]×[y]. The case depicted for u in Figure 6 correspond to Line 7.
The upper bound for x is Y −z, except if this value exceeds X (whence the min).

150 G. Chabert and N. Beldiceanu

d1
d1

[x]×[y]

x+
y =

z

d2

l

x+
y =

z

[x̃]×[ỹ] d2 u

X x1 x2 X

Y

y1

Y

y2

y

x

Fig. 6. Inner inflation for addition. Isolines x+y = z and x+y = z are drawn with

dashes. All couple (x, y) between by these two lines satisfy x+y ∈ [z]. Therefore, the box

[x̃]×[ỹ] must be inflated inside this area. The half distances d1 and d2 gives a perfectly

balanced box (a square). However, the surrounding [X]×[Y] may limit inflation in one

direction, giving more freedom in the other one. This appears here with Y being less

than y2. The resulting box [x]×[y] is therefore a rectangle elongated on the x axis.

Algorithm 3. [+]♦(x̃, ỹ, [X], [Y], [z])
Input: 5 intervals [x̃], [ỹ], [X], [Y], [z] such that [x̃]×[ỹ]⊆ [X]×[Y] ∧ [x̃]+[ỹ]⊆ [z]

Output: a box [x]×[y] such that [x̃]×[ỹ] ⊆ [x]×[y] ⊆ [X]×[Y] and [x]+[y] ⊆ [z]

d1 ← (x̃+∇ỹ−∇z)/∇2; d2 ← (z−∇x̃−∇ỹ)/∇2;1

x1 ← x̃−
d1; x2 ← x̃+∇d2;2

y1 ← ỹ−
d1; y2 ← ỹ+∇d2;3

if Y > y1 then l ← (max{X, min{x̃, z−
Y }}, Y);4

else if X > x1 then l ← (X, max{Y , min{ỹ, z−
X}});5

else l ← (x1, y1);6

if Y < y2 then u ← (min{X, max{x̃, z−∇Y }}, Y);7

else if X < x2 then u ← (X, min{Y , max{ỹ, z−∇X}});8

else u ← (x2, y2);9

return [l1, u1] × [l2, u2];10

Furthermore, downward rounding may lose the upper bound of [x̃] for the same
reason evoked for [sqr]♦. This bound has to be kept anyway, whence the max.

4 Discussion

In this paper, we have restated sweeping in a continuous setting and given a
generic inflater. This inflater builds automatically forbidden boxes w.r.t. a con-
straint whose expression is a composition of standard mathematical operators.
This makes geost fully generic and now applicable for packing curved objects.

Sweeping with Continuous Domains 151

The inflater is fast and optimal if no variable is duplicated in the constraint,
which includes situations of particular interest such as distance constraints.

This is the first theoretical contribution for adapting sweeping (hence geost)
to continuous domains. Of course, benchmarking has to be made now to check
that our revised global constraint geost still outperforms generic propagation
techniques in presence of curved objects. One practically useful extension of this
work would also be to adapt the proposed inflater to discrete domains.

References

1. Choco: An open source Java CP library. documentation, http://choco.emn.fr/.

2. Agren, M., Beldiceanu, N., Carlsson, M., Sbihi, M., Tuchet, C., Zampelli, S.: 6 Ways

of Integreting Symmetries Within Non-Overlapping Constraints. In: van Hoeve,

W.-J., Hooker, J.N. (eds.) CPAIOR 2009. LNCS, vol. 5547, pp. 11–25. Springer,

Heidelberg (2009)

3. Araya, I., Trombettoni, G., Neveu, B.: Filtering Numerical CSPs Using Well-

Constrained Subsystems. In: Gent, I.P. (ed.) CP 2009. LNCS, vol. 5732,

pp. 158–172. Springer, Heidelberg (2009)

4. Beldiceanu, N., Carlsson, M.: Sweep as a Generic Pruning Technique Applied to

the Non-Overlapping Rectangles Constraints. In: Walsh, T. (ed.) CP 2001. LNCS,

vol. 2239, pp. 377–391. Springer, Heidelberg (2001)

5. Beldiceanu, N., Carlsson, M., Poder, E., Sadek, R., Truchet, C.: A Generic Ge-

ometrical Constraint Kernel in Space and Time for Handling Polymorphic k-

Dimensional Objects. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 180–194.

Springer, Heidelberg (2007)

6. Beldiceanu, N., Carlsson, M., Thiel, S.: Sweep Synchronisation as a Global Prop-

agation Mechanism. Comp. & Operations Research 33(10), 2835–2851 (2006)

7. Benhamou, F., Goualard, F., Granvilliers, L., Puget, J.-F.: Revising Hull and Box

Consistency. In: ICLP, pp. 230–244 (1999)

8. Carlsson, M., Beldiceanu, N., Martin, J.: A Geometric Constraint over k-

Dimensional Objects and Shapes Subject to Business Rules. In: Stuckey, P.J. (ed.)

CP 2008. LNCS, vol. 5202, pp. 220–234. Springer, Heidelberg (2008)

9. Carlsson, M., Ottosson, G., Carlson, B.: An open-ended finite domain constraint

solver. In: 9th International Symposium on Programming Languages: Implemen-

tations, Logics, and Programs, vol. 1292, pp. 191–206 (1997)

10. Kuchcinski, K.: Constraints-driven scheduling and resource assignment. ACM

Transactions on Design Automation of Electronic Systems 8(3), 355–383 (2003)

11. Mackworth, A.K.: Consistency in Networks of Relations. Artificial Intelligence 8,

99–118 (1977)

http://choco.emn.fr/

A New Hybrid Tractable Class of
Soft Constraint Problems�

Martin C. Cooper1 and Stanislav Živný2

1 IRIT, University of Toulouse III, 31062 Toulouse, France

cooper@irit.fr
2 Computing Laboratory, University of Oxford, OX1 3QD Oxford, UK

standa.zivny@comlab.ox.ac.uk

Abstract. The constraint satisfaction problem (CSP) is a central generic

problem in artificial intelligence. Considerable effort has been made in

identifying properties which ensure tractability in such problems. In this

paper we study hybrid tractability of soft constraint problems; that is,

properties which guarantee tractability of the given soft constraint prob-

lem, but properties which do not depend only on the underlying structure

of the instance (such as being tree-structured) or only on the types of

soft constraints in the instance (such as submodularity).

We firstly present two hybrid classes of soft constraint problems de-

fined by forbidden subgraphs in the structure of the instance. These

classes allow certain combinations of binary crisp constraints together

with arbitrary unary soft constraints.

We then introduce the joint-winner property, which allows us to de-

fine a novel hybrid tractable class of soft constraint problems with soft

binary and unary constraints. This class generalises the SoftAllDiff
constraint with arbitrary unary soft constraints. We show that the joint-

winner property is easily recognisable in polynomial time and present a

polynomial-time algorithm based on maximum-flows for the class of soft

constraint problems satisfying the joint-winner property. Moreover, we

show that if cost functions can only take on two distinct values then this

class is maximal.

1 Introduction

Background. An instance of the constraint satisfaction problem (CSP) con-
sists of a collection of variables which must be assigned values subject to specified
constraints. Each CSP instance has an underlying undirected graph, known as
its constraint network, whose vertices are the variables of the instance, and two
vertices are adjacent if corresponding variables are related by some constraint.
Such a graph is also known as the structure of the instance.

An important line of research on the CSP is to identify all tractable cases
which are recognisable in polynomial time. Most of this work has been focused
� Stanislav Živný gratefully acknowledges the support of EPSRC grant

EP/F01161X/1, EPSRC PhD+ Award, and Junior Research Fellowship at

University College, Oxford.

D. Cohen (Ed.): CP 2010, LNCS 6308, pp. 152–166, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

A New Hybrid Tractable Class of Soft Constraint Problems 153

on one of the two general approaches: either identifying forms of constraint
which are sufficiently restrictive to ensure tractability no matter how they are
combined [4,15], or else identifying structural properties of constraint networks
which ensure tractability no matter what forms of constraint are imposed [13].

The first approach has led to identifying certain algebraic properties known
as polymorphisms [20] which are necessary for a set of constraint types to ensure
tractability. A set of constraint types with this property is called a tractable con-
straint language. The second approach has been used to characterise all tractable
cases of bounded-arity CSPs (such as binary CSPs): the only class of structures
which ensures tractability (subject to certain complexity theory assumptions)
are structures of bounded tree-width [17].

In practice, constraint satisfaction problems usually do not possess a suffi-
ciently restricted structure or use a sufficiently restricted constraint language to
fall into any of these tractable classes. Nevertheless, they may still have proper-
ties which ensure they can be solved efficiently, but these properties concern both
the structure and the form of the constraints. Such properties have sometimes
been called hybrid reasons for tractability [12,10,9,22,11].

Since in practice many constraint satisfaction problems are over-constrained,
and hence have no solution, soft constraint satisfaction problems have been stud-
ied [12]. In an instance of the soft CSP, every constraint is associated with a func-
tion (rather than a relation as in the CSP) which represents preferences among
different partial assignments, and the goal is to find the best assignment. Several
very general soft CSP frameworks have been proposed in the literature [30,2]. In
this paper we focus on one of the very general frameworks, the valued constraint
satisfaction problem (VCSP) [30].

Similarly to the CSP, an important line of research on the VCSP is to identify
tractable cases which are recognisable in polynomial time. Is is well known that
structural reasons for tractability generalise to the VCSP [12]. In the case of
language restrictions, only a few conditions are known to guarantee tractability
of a given set of valued constraints [8,7].

Up until now there have been very few results on hybrid tractability for
the VCSP. For instance, Kumar defines an interesting framework for hybrid
tractability for the Boolean weighted CSP [22]. However, to the best of our
knowledge, this framework has so far not provided any new hybrid classes. In
fact, all tractable classes presented in [22] are not hybrid and are already known.

Contributions. In this paper we study hybrid tractability of the VCSP. As a
first step, we start with binary VCSPs. We will demonstrate two hybrid classes
defined by forbidding certain graphs as induced subgraphs in the structure of the
VCSP instance.1 However, these tractable classes are not entirely satisfactory
as a first step towards a general theory of hybrid tractable classes of VCSP
instances since the only soft constraints they allow are unary.

As the main contribution of the paper, we introduce the joint-winner property
(JWP), which allows us to define a novel hybrid tractable class of VCSPs.

1 More precisely, in the micro-structure complement of the instance.

154 M.C. Cooper and S. Živný

a

vi

b

vj

c

vk

cij

cik

cjk

Fig. 1. The joint-winner property: cij(a, b) ≥ min(cik(a, c), cjk(b, c))

We now describe the joint-winner property. Let vi and vj be two variables,
and let cij(a, b) denote the cost of the assignment vi = a and vj = b given by
the valued constraint cij between the variables vi and vj . We denote by Di the
domain of variable vi. A VCSP instance satisfies the joint-winner property if
for every triple of distinct variables vi, vj , vk and all domain values a ∈ Di, b ∈
Dj , c ∈ Dk: cij(a, b) ≥ min(cik(a, c), cjk(b, c)) (see Figure 1).

The joint-winner property is preserved by all unary constraints and hence
conservative, and also easily recognisable in polynomial time. The polynomial-
time algorithm for solving instances satisfying JWP is based on maximum flows.

As the next example shows, the well-known hybrid tractable class Soft-
AllDiff satisfies the JWP property, thus showing that JWP defines a hybrid
tractable class.

Example 1. One of the most commonly used global constraints is the AllDif-
ferent constraint [28]. Petit et al. introduced a soft version of the AllDif-
ferent constraint, SoftAllDiff [27]. They proposed two types of costs to be
minimised: graph- and variable-based costs. The former counts the number of
equalities, whilst the latter counts the number of variables violating an AllD-
ifferent constraint. The algorithms for filtering these constraints, introduced
in the same paper, were then improved by van Hoeve et al. [33].

It is easy to check that the graph-based variant of the SoftAllDiff con-
straint satisfies the joint-winner property. In this case for every i and j, the
cost function cij is defined as cij(a, b) = 1 if a = b, and cij(a, b) = 0 oth-
erwise. Take any three variables vi, vj , vk and a ∈ Di, b ∈ Dj , c ∈ Dk. If
cij(a, b) = cjk(b, c) = cik(a, c) (which means that that the domain values a, b, c
are all equal or all different), then the joint-winner property is satisfied trivially.
If only one of of the costs is 1, then the joint-winner property is satisfied as well.
Observe that due to the transitivity of equality it cannot happen that only one
of the costs is 0.

A New Hybrid Tractable Class of Soft Constraint Problems 155

In order to code the variable-based SoftAllDiff constraint as a binary
VCSP P , we can create n variables v′i with domains Di×{1, 2}. The assignment
v′i = (a, 1) means that vi is the first variable of the original CSP to be assigned
the value a, whereas v′i = (a, 2) means that vi is assigned a but it is not the first
such variable. In P there is a crisp constraint which disallows v′i = v′j = (a, 1)
(for any value a ∈ Di ∩Dj) for each pair of variables i < j together with a soft
unary constraint ci(a, k) = k − 1 (for k = 1, 2) for each i ∈ {1, . . . , n}. Hence
at most one variable can be the first to be assigned a, and each assignment of
the value a to a variable (apart from the first) incurs a cost of 1. Again due to
the transitivity of equality, it cannot happen that only one of the binary costs
shown in the triangle of Figure 1 is zero, from which it follows immediately that
the joint-winner property is satisfied in P . We remark that the class defined by
JWP is strictly bigger than SoftAllDiff, and hence our generic algorithm is
not as efficient as tailor-made algorithms for SoftAllDiff.

When restricted to the standard CSP, the JWP property gives a set of disjoint
AllDifferent constraints on subdomains, which is a proper (although not very
surprising) generalisation of disjoint AllDifferent constraints.

Example 2. Suppose that n jobs must be assigned to d machines. Let li(m) be
the length of time required for machine m to complete job i. If machine m cannot
perform job i, then li(m) = ∞. We use variable vi to represent the machine to
which job i is assigned. The set of jobs (which we denote by Sm) assigned to the
same machine m are performed in series in increasing order of their length li(m).
The aim is to minimise T the sum, over all jobs, of their time until completion.
If jobs i and j are assigned to the same machine, and li(m) < lj(m), then job j
will have to wait during the execution of job i, contributing a time of li(m) to
the sum T . This means that

T =
d∑

m=1

(
∑

i∈Sm

li(m) +
∑

i, j ∈ Sm

i < j

min(li(m), lj(m)))

In other words, optimal assignments of jobs to machines are given by solutions
to the binary VCSP with unary constraints ci(m) = li(m) (representing the
execution times of jobs) and binary constraints

cij(m,m′) =
{

min(li(m), lj(m)) if m = m′

0 otherwise

(representing the waiting times of jobs).
The joint-winner property cij(a, b) ≥ min(cik(a, c), cjk(b, c)) is trivially sat-

isfied in this VCSP instance if a, b, c are not all equal, since in this case one
of cik(a, c), cjk(b, c) is zero. It is also satisfied when a = b = c = m since
min(li(m), lj(m)) ≥ min(min(li(m), lk(m)),min(lj(m), lk(m))).

This problem has been shown solvable in polynomial time in [19,3].

The rest of the paper is organised as follows. In Section 2, we define binary
constraint satisfaction problems (CSPs), valued constraint satisfaction problems

156 M.C. Cooper and S. Živný

(VCSPs) and other necessary definitions needed throughout the paper. In Sec-
tion 3, we study binary VCSPs whose only soft constraints are unary. Using a
connection between these VCSPs and the maximum weighted independent set
problem in certain graph classes, we identify hybrid tractable classes of VCSPs.
In Section 4, we define the joint-winner property. In Section 5, we present a
polynomial-time algorithm for solving binary VCSPs satisfying the joint-winner
property. In Section 6, we present an important case in which this new tractable
class is maximal.

2 Preliminaries

In this paper we focus on binary valued constraint satisfaction problems. We
denote by Q+ the set of all non-negative rational numbers. We denote Q+ =
Q+∪{∞} with the standard addition operation extended so that for all a ∈ Q+,
a+ ∞ = ∞. Members of Q+ are called costs.

A unary cost function over domain Di is a mapping ci : Di → Q+. A binary
cost function over domains Di and Dj is a mapping cij : Di ×Dj → Q+. For
notational convenience, throughout this paper we assume that there is a unique
valued constraint on any given scope. In particular, cij(a, b) = cji(b, a), since they
are simply two different ways of representing the unique cost of simultaneously
assigning 〈a, b〉 to variables 〈i, j〉. If the range of ci (cij respectively) lies entirely
within Q+, then ci (cij respectively) is called a finite-valued cost function.

If the range of ci (cij respectively) is {α,∞}, for some α ∈ Q+, then ci (cij
respectively) is called a crisp cost function. Note that crisp cost functions are
just relations; that is, subsets of Di (in the unary case) or Di×Dj (in the binary
case) corresponding to the set of finite-cost tuples. If ci (cij respectively) is not
a crisp cost function, it is called soft.

A binary VCSP instance [30] consists of a set of variables (denoted as vi, where
i ∈ {1, . . . , n}); for each variable vi a domain Di containing possible values for
variable vi; and a set of valued constraints. Each valued constraint is either of the
form 〈vi, ci〉, where vi is a variable and ci is a unary cost function (constraints
of this form are called unary constraints), or of the form 〈〈vi, vj〉, cij〉, where vi

and vj are variables, the pair 〈vi, vj〉 is called the scope of the constraint, and cij
is a binary cost function (constraints of this form are called binary constraints).
A constraint is called crisp if its associated cost function is crisp, and similarly
a constraint is called soft if its associated cost function is soft.

A solution to a VCSP instance is an assignment of values from the domains
to the variables with the minimum total cost given by

n∑
i=1

ci(vi) +
∑

1≤i<j≤n

cij(vi, vj).

A VCSP instance with only crisp constraints is called a CSP instance. In the
CSP, the task of finding an optimal solution amounts to deciding whether there
is a solution with finite cost (all constraints are satisfied).

A New Hybrid Tractable Class of Soft Constraint Problems 157

The microstructure of a binary CSP instance P is a graph where the set of
vertices corresponds to the set of possible assignments of values to variables: a
vertex 〈vi, a〉 represents the assignment of value a to variable vi [21]. The edges
of the microstructure connect all pairs of variable-value assignments that are al-
lowed by the constraints. (Note that if there is no explicit constraint between two
variables, then it is considered to be the complete constraint.) The microstruc-
ture of a binary VCSP instance is defined similarly, but both vertices and edges
of the graph are assigned costs. For CSPs, the microstructure complement is
the complement of the microstructure: its edges represent pairs of variable-value
assignments that are disallowed by the constraints. Hence for every variable vi,
the microstructure complement contains all edges of the form {〈vi, a〉, 〈vi, b〉} for
a �= b ∈ Di as every variable can be assigned only one value.

A clique in a graph is a set of vertices which are pairwise adjacent. An inde-
pendent set in a graph is a set of vertices which are pairwise non-adjacent. It
is well known that solving a CSP instance P is equivalent to finding a clique of
size n in the microstructure of P , and to finding an independent set of size n in
the microstructure complement of P [21]. Therefore, tractability results on the
maximum independent set problem for various classes of graphs can be easily
used to obtain tractable CSP classes [10].

3 VCSPs with Crisp Binary Constraints

In this section we restrict our attention to binary VCSP instances with crisp
binary constraints. There are no restrictions on unary constraints; hence both
crisp and soft unary constraints are allowed. First we show how tractability
results on the maximum weighted independent set in graphs can be used to
obtain tractable classes of VCSPs. Next we show that the recently discovered
hybrid CSP class defined by the broken-triangle property [11] is not extendible
to soft unary constraints.

Let G be a graph G = 〈V,E〉 with weights w : V → Q+ on the vertices of G.
The weight of an independent set S in G, denoted w(S), is the sum of weights of
the vertices in S: w(S) =

∑
v∈S w(v). It is easy to see that given a binary VCSP

instance P where only unary constraints can be soft, P can be solved by finding
a maximum weighted independent set in the microstructure complement of P
with weights given by w(〈vi, a〉) = Mn− ci(a), where M is strictly greater than
the maximum finite unary cost ci(a). Indeed, independent sets of weight strictly
greater than Mn(n − 1) are in one-to-one correspondence with assignments to
n variables in P .

Two well-studied classes of graphs for which the maximum weighted indepen-
dent set problem (WIS) is known to be solvable in polynomial time are perfect
graphs and claw-free graphs.

A graph G is perfect if for every induced subgraph H of G, the chromatic
number (the smallest number of colours needed to colour vertices of H such that
adjacent vertices are coloured differently) of H is equal to the size of the largest
clique in H . The Strong Perfect Graph Theorem states that a graph G is perfect

158 M.C. Cooper and S. Živný

if, and only if, G does not contain any cycle of odd length ≥ 5 (known as a
hole) nor any complement of a cycle of odd length ≥ 5 (known as an antihole)
as an induced subgraph [6]. It is known that WIS in perfect graphs is solvable in
polynomial time [18]. Moreover, perfect graphs can be recognised in polynomial
time [5].

A graph G is claw-free if it does not contain a claw as an induced subgraph,
where a claw is a complete bipartite graph K1,3 with 1 vertex in one group and
3 vertices in the other group. It is obvious that claw-free graphs are recognisable
in polynomial time. Extending Edmond’s algorithm for maximum matchings in
graphs [14], Minty designed an algorithm for the independent set problem in
claw-free graphs [24]. Minty’s algorithm was later corrected and extended to
the maximum weighted independent set problem in claw-free graphs [25]. The
combination of these results gives:

Theorem 1. The class of VCSP instances (with crisp binary and arbitrary
unary constraints) whose microstructure complement is either perfect or claw-
free is tractable.

The tractability of VCSPs with perfect microstructure (complement) and soft
unary constraints was also pointed out by Takhanov [32].

Next we show that the recently discovered hybrid class of tractable CSPs
defined by the broken-triangle property [11] is not extendible to VCSPs with
soft unary constraints. A binary CSP instance P satisfies the broken-triangle
property with respect to the variable ordering < if, and only if, for all triples
of variables vi, vj , vk such that i < j < k, if cij(u, v) < ∞, cik(u, a) < ∞ and
cjk(v, b) < ∞, then either cik(u, b) < ∞ or cjk(v, a) < ∞. (In other words, every
“broken” triangle a − u − v − b can be closed.)

Let 〈G, k〉 be an instance of the decision version of the maximum independent
set problem which consists in deciding whether there is an independent set of size
at least k in graph G. This problem is known to be NP-complete [16]. We now
transform this instance into a binary VCSP instance with soft unary constraints
that satisfies the broken-triangle property.

Every vertex of G is represented by a Boolean variable vi where Di = {0, 1}.
We impose the constraint 〈〈vi, vj〉, {〈0, 0〉, 〈0, 1〉, 〈1, 0〉}〉 if the vertices corre-
sponding to vi and vj are adjacent in G. Now the assignments satisfying all con-
straints are in one-to-one correspondence with independent sets I in G, where
vertex i ∈ I if and only if vi = 1. We also impose the soft unary constraints
〈vi, ci〉, where ci(x) = 1 − x. The unary constraints ensure that the goal is to
minimise the number of variables assigned value 0, which is the same as max-
imising the number of variables assigned value 1. Therefore, the constructed
VCSP instance is equivalent to the given maximum independent set problem. It
remains to show that the resulting VCSP instance satisfies the broken-triangle
property with respect to some ordering. In fact, we show that it is satisfied
with respect to any ordering. Take any three variables vi, vj , vk. If either of the
pairs of variables 〈vi, vk〉, 〈vj , vk〉 are not constrained, then the broken-triangle
property is trivially satisfied. Assume therefore that these two constraints are
present. The situation is illustrated in Figure 2. It can be checked easily that

A New Hybrid Tractable Class of Soft Constraint Problems 159

0

1

vi

0

1

vj

0 1

vk

Fig. 2. VCSP encoding maximum independent set

the broken-triangle property is indeed satisfied whether the constraint on 〈vi, vj〉
is {〈0, 0〉, 〈0, 1〉, 〈1, 0〉} (as shown in Figure 2) or the complete constraint. This
gives us the following result:

Theorem 2. Assuming P�=NP, the broken-triangle property cannot be extended
to a tractable class including soft unary constraints.

4 Joint-Winner Property

In this section we define the joint-winner property (see Figure 1), which is the
key concept in this paper. We also study basic properties of VCSPs satisfying the
joint-winner property as these will be important in designing a polynomial-time
algorithm in Section 5.

Definition 1 (Joint-winner property). A triple of variables 〈vi, vj , vk〉 sat-
isfies the joint-winner property (JWP) if cij(a, b) ≥ min(cik(a, c), cjk(b, c)) for
all domain values a ∈ Di, b ∈ Dj, c ∈ Dk.

A binary VCSP instance satisfies the joint-winner property if every triple of
distinct variables of the instance satisfies the joint-winner property.

The joint-winner property places no restrictions on the unary soft constraints
ci. Note that the JWP on a CSP instance amounts to forbidding the multiset of
binary costs {α,∞,∞} (for α < ∞) in any triangle formed by three assignments
to distinct variables. Since this combination can never occur on triples of vari-
ables 〈vi, vj , vk〉 constrained by the three binary constraints vi �= vj �= vk �= vi,
the class of CSPs satisfying the joint-winner property generalises the AllDif-
ferent constraint with arbitrary soft unary constraints.

The next lemma explains the reason for the name of the joint-winner property:
in every triangle there is no unique smallest cost.

Lemma 1. A VCSP instance satisfies the joint-winner property if and only if,
for all triples of distinct variables 〈vi, vj , vk〉 and for all a ∈ Di, b ∈ Dj, c ∈ Dk,
two of the costs cij(a, b), cik(a, c), cjk(b, c) are equal and less than or equal to the
third.

160 M.C. Cooper and S. Živný

Proof. Assume that the joint-winner property is satisfied on the triples of vari-
ables 〈vi, vj , vk〉, 〈vj , vk, vi〉 and 〈vk, vi, vj〉, and write α = cij(a, b), β = cik(a, c)
and γ = cjk(b, c). Without loss of generality, let α = min(α, β, γ). From α ≥
min(β, γ), we can deduce that α = min(β, γ) and hence that two of α, β, γ are
equal and less than or equal to the third.

On the other hand, if two of α, β, γ are equal and less than or equal to the
third, then min(β, γ) = min(α, β, γ) ≤ α and the JWP is satisfied. ��

Lemma 2. Let P be a binary VCSP instance. Then, for a fixed α, the edges of
the microstructure of P corresponding to binary costs of at least α, together with
the corresponding vertices, form non-intersecting cliques.

Proof. For a contradiction let us assume that the edges of the microstructure
of P corresponding to binary costs of at least α do not form non-intersecting
cliques. This means that there are three vertices 〈vi, a〉, 〈vj , b〉, 〈vk, c〉 of the mi-
crostructure such that cij(a, b) ≥ α, cik(a, c) ≥ α, and cjk(b, c) < α. But this is
in contradiction with Lemma 1. ��

Lemma 3. Let P be a binary VCSP instance. Let Cα be a clique in the mi-
crostructure of P corresponding to binary costs of at least α, and Cβ a clique
in the microstructure of P corresponding to binary costs of at least β. If Cα

intersects Cβ and α ≤ β, then Cα ⊇ Cβ.

Proof. Suppose that Cα and Cβ intersect and α ≤ β. If α = β, the claim is
satisfied trivially by Lemma 2, so we can suppose that α < β. For a contradiction,
assume that Cα �⊇ Cβ . By our assumptions, ∃〈vi, a〉 ∈ Cα ∩ Cβ and ∃〈vj , b〉 ∈
Cβ \Cα. Since Cβ is a clique, we must have cij(a, b) ≥ β > α. Thus, by Lemma
2, the edge {〈vj , b〉, 〈vi, a〉} is part of a clique C′

α of edges of cost at least α
(but not Cα since 〈vj , b〉 �∈ Cα). But then Cα and C′

α intersect at 〈vi, a〉 which
contradicts Lemma 2. ��

5 Algorithm

In this section we present a polynomial-time algorithm for solving binary VCSPs
satisfying the joint-winner property. The algorithm is an extension of a reduction
to the standard max-flow/min-cut problem that has been used for flow-based soft
global constraints [29,33,23].

First we review some basics on flows in graphs (see [1] for more details). Let
G = (V,A) be a directed graph with vertex set V and arc set A. To each arc
a ∈ A we assign a demand/capacity function [d(a), c(a)] and a weight function
w(a). Let s, t ∈ V . A function f : A → Q is called an s− t flow (or a flow) if

– f(a) ≥ 0 for all a ∈ A;
– for all v ∈ V \{s, t},

∑
a=(u,v)∈A f(a) =

∑
a=(v,u)∈A f(a) (flow conservation).

We say that a flow is feasible if d(a) ≤ f(a) ≤ c(a) for each a ∈ A. We define the
value of flow f as val(f) =

∑
a=(s,v)∈A f(a) −

∑
a=(v,s)∈A f(a). We define the

A New Hybrid Tractable Class of Soft Constraint Problems 161

cost of flow f as
∑

a∈A w(a)f(a). A minimum-cost flow is a feasible flow with
minimum cost.

Algorithms for finding the minimum-cost flow of a given value are described
in [31, Chapter 12] and [1]. Given a network G with integer demand and capacity
functions, the successive shortest path algorithm [31], can be used to find a
feasible s− t flow with value α and minimum cost in time O(α · SP), where SP
is the time to compute a shortest directed path in G.

Given a VCSP P satisfying the JWP, we construct a directed graph GP whose
minimum-cost integral flows of value n are in one-to-one correspondence with
the solutions to P . Apart from the source node s, GP has three types of node:

1. a variable node vi (i = 1, . . . , n) for each variable of P ;
2. an assignment node 〈vi, a〉 (a ∈ Di, i = 1, . . . , n) for each possible variable-

value assignment in P ;
3. a clique node Cα for each clique of edges in the microstructure of P corre-

sponding to binary costs of at least α. (The subscript α is equal to the min-
imum cost of edges in the clique and, where necessary, we use Cα, C′

α, . . . to
denote the distinct non-intersecting cliques corresponding to the same value
of α.)

In GP there is an arc (s, vi) for each variable vi of P . For all variables vi and for
each a ∈ Di, there is an arc (vi, 〈vi, a〉) and also an arc from 〈vi, a〉 to the clique
Cα containing 〈vi, a〉 such that α is maximal (Cα is unique by Lemma 3).

We say that clique Cβ is the father of clique Cα if it is the minimal clique
which properly contains Cα, i.e. Cα ⊂ Cβ (and hence α > β) and �Cγ such
that Cα ⊂ Cγ ⊂ Cβ (Cβ is unique by Lemma 3). In GP , for each clique Cα

with father Cβ , there is a bundle of arcs from Cα to Cβ consisting of r arcs ei

(i = 1, . . . , r), where r is the number of vertices in the clique Cα. The weight of
arc ei from Cα to Cβ is w(ei) = i(α − β). (If α = ∞ then there is a single arc
of weight 0; the arcs of weight ∞ can simply be omitted.) We identify the sink
node t with the clique C0 consisting of all edges in the microstructure (since all
binary costs are at least 0).

Each arc has demand 0 and capacity 1 except for arcs (s, vi) which have both
demand 1 and capacity 1 (this forces a flow of exactly 1 through each variable
node vi). Weights of all arcs are 0 except for arcs going from a clique node to its
father clique node, as described above, and arcs from a variable node vi to an
assignment node 〈vi, a〉 which have a weight of ci(a).

We show below that integral flows in the constructed network are in one-to-
one correspondence with assignments in P , but first we give an example.

Example 3. We show the general construction on a simple example. Let P be
a VCSP instance with variables v1, v2, v3 and D1 = D2 = {a, b}, D3 = {a}.
The microstructure of P is shown in Figure 3. Missing edges have cost 0. There
are two cliques corresponding to cost at least 1: C1 = {〈v1, a〉, 〈v2, a〉, 〈v3, a〉}
and C′

1 = {〈v1, b〉, 〈v2, b〉}; and one clique corresponding to cost at least 2:
C2 = {〈v1, a〉, 〈v2, a〉} (see Figure 3). The network corresponding to instance
P is shown in Figure 4: demands and capacities are in square brackets, and

162 M.C. Cooper and S. Živný

weights of arcs without numbers are 0. The bold edges represent flow f corre-
sponding to the assignment v1 = v2 = v3 = a with total cost 4, which is the
same as the cost of f .

We now prove that integral flows f in GP are in one-to-one correspondence with
assignments in the VCSP P and, furthermore, that the cost of f is equal to the
cost in P of the corresponding assignment.

All feasible flows have value n since all n arcs (s, vi) leaving the source have
both demand and capacity equal to 1. Integral flows inGP necessarily correspond
to the assignment of a unique value ai to each variable vi since the flow of
1 through node vi must traverse a node 〈vi, ai〉 for some unique ai ∈ Di. It
remains to show that for every assignment 〈a1, . . . , an〉 to 〈v1, . . . , vn〉 which is
feasible (i.e. whose cost in P is finite), there is a corresponding minimum-cost
integral feasible flow f in GP of cost

∑
i ci(ai) +

∑
i<j cij(ai, aj).

For each arc a which is incoming to or outgoing from 〈vi, u〉 in GP , let f(a) = 1
if u = ai and 0 otherwise. We denote the number of assignments 〈vi, ai〉 in clique
Cα by N(Cα) = |{〈vi, ai〉 ∈ Cα : 1 ≤ i ≤ n}|. By construction, each clique node
Cα in GP only has outgoing arcs to its father clique. For the outgoing arc a of
weight i from Cα to its father clique, let f(a) = 1 if N(Cα) > i and 0 otherwise.
This simply means that the outgoing arcs (each of capacity 1) from Cα are used
in increasing order of their weight, one per assignment 〈vi, ai〉 ∈ Cα. This is
clearly a minimum-cost flow corresponding to the assignment 〈a1, . . . , an〉.

Let cf(Cα) denote the cost β of the father clique Cβ of Cα. The cost of flow
f is given by

n∑
i=1

ci(ai) +
∑
Cα

N(Cα)−1∑
i=1

i(α− cf(Cα))

=
n∑

i=1

ci(ai) +
∑
Cα

(N(Cα)− 1)N(Cα)
2

(α − cf(Cα))

This corresponds precisely to the cost of the assignment 〈a1, . . . , an〉 in P , since
in a clique Cα with father clique Cβ , each of the (N(Cα) − 1)N(Cα)/2 binary
constraints contributes a cost of α − β over and above the cost of β for each of
the edges in Cβ .

Theorem 3. VCSPs satisfying the joint-winner property are recognisable and
solvable in polynomial time.

Proof. From Definition 1, recognition can be achieved in O(n3d3) time, where
d = max1≤i≤n |Di| is the size of the largest domain.

To solve a VCSP satisfying the JWP, we create a vertex for each of the cliques
corresponding to binary costs of at least α. There are at most |Di|×|Dj| different
costs in the cost function cij . Hence in total there are at most O(n2d2) different
cliques. So our network has O(n2d2 +nd+n+ 2) = O(n2d2) vertices. The result
follows from the fact that a polynomial-time algorithm exists for determining a
minimum-cost maximum flow in a network. In particular, using the successive

A New Hybrid Tractable Class of Soft Constraint Problems 163

a

b

v1

a

v3

a

b

v2

1

2

1

1

Fig. 3. Microstructure of P described in Example 3

s

v1

v2

v3

〈v1, a〉

〈v1, b〉

〈v2, a〉

〈v2, b〉

〈v3, a〉

C2

C′
1

C1

t

[1, 1] [0, 1] [0, 1] [0, 1] [0, 1]

1

1

2

1

Fig. 4. Network GP corresponding to the VCSP P of Example 3

164 M.C. Cooper and S. Živný

shortest path algorithm, the running time is O(n ·SP), where SP is the time to
compute a shortest directed path in the network [31,1]. Using Fibonacci heaps,
this is O(n(n4d4 + n2d2 log(n2d2))) = O(n5d4). ��

6 Maximality

Tractable classes defined by structural or language restrictions are often shown
to be maximal. That is, any extension of the class is NP-hard. We consider that
a hybrid tractable class defined by a set of possible combinations of costs within
a subproblem is maximal if extending it to include any other single combination
of costs renders the problem NP-hard. In particular, since JWP is defined on
3-variable subproblems, we call an instance 3-maximal if extending it to include
any other single combination of costs on 3 variables renders the problem NP-
hard. The existence of a larger tractable class subsuming JWP and defined by
a rule on k-variable subproblems (for k > 3) is an interesting open question.

In this section we show a special case for which the joint-winner property
is 3-maximal, namely when all binary cost functions take on only two possible
costs α < β.

Theorem 4. If all costs belong to {α, β} (for some fixed distinct costs α < β),
then the joint-winner property defines a 3-maximal tractable class provided d > 2
or (d ≥ 2) ∧ (β < ∞), where d is the maximum domain size.

Proof. To prove 3-maximality we have to show the NP-hardness of the set of
instances defined by the fact that in each triangle the triple of costs either
satisfies the joint-winner property or is just one other fixed combination. Since
all costs belong to {α, β} where α < β, from Definition 1, the only situation
forbidden by the JWP is that there are 3 variables vi, vj , vk and domain values
a ∈ Di, b ∈ Dj , c ∈ Dk such that cij(a, b) = α and cik(a, c) = cjk(b, c) = β.
Hence extending the JWP means allowing all combinations of costs from {α, β}
in all triangles.

If β = ∞, allowing all combinations of costs means that our instance allows
all binary relations (corresponding to the set of finite-cost tuples) and hence we
can encode any binary CSP. This is NP-complete if d > 2.

If β < ∞, allowing all combinations of costs in {α, β} is equivalent to the set of
instances of MAX-CSP in which no two constraints can have the same scope. The
NP-hardness of this latter problem for d ≥ 2 follows from the following reduction
from MAX-CSP [26]. A polynomial reduction of an instance I of MAX-CSP into
an equivalent instance I ′ in which no two constraints have the same scope can
be achieved by replacing each variable vi in I by M variables vj

i (j = 1, . . . ,M)
in I ′ constrained by a clique of equality constraints, where M is greater than
the total number of constraints in I. In the optimal solution to I ′, variables vj

i

(j = 1, . . . ,M) are necessarily assigned the same value (otherwise a cost of at
least M would be incurred). ��

A New Hybrid Tractable Class of Soft Constraint Problems 165

7 Conclusions

We consider the tractable class of VCSPs defined by the joint-winner property
(JWP) as a necessary first step towards a general theory of tractability of opti-
misation problems which will eventually cover structural, language and hybrid
reasons for tractability.

The JWP is interesting in its own right since it is a proper extension to known
tractable classes (such as VCSPs consisting of arbitrary unary constraints and
non-intersecting SoftAllDiff constraints of arbitrary arity).

References

1. Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows: Theory, Algorithms, and

Applications. Prentice Hall, Pearson (2005)

2. Bistarelli, S., Montanari, U., Rossi, F.: Semiring-based Constraint Satisfaction and

Optimisation. Journal of the ACM 44(2), 201–236 (1997)

3. Bruno, J.L., Coffman, E.G., Sethi, R.: Scheduling Independent Tasks to Reduce

Mean Finishing Time. Communications of the ACM 17(7), 382–387 (1974)

4. Bulatov, A., Krokhin, A., Jeavons, P.: Classifying the Complexity of Constraints

using Finite Algebras. SIAM Journal on Computing 34(3), 720–742 (2005)

5. Chudnovsky, M., Cornuéjols, G., Liu, X., Seymour, P.D., Vušković, K.: Recognizing

Berge graphs. Combinatorica 25(2), 143–186 (2005)

6. Chudnovsky, M., Robertson, N., Seymour, P., Thomas, R.: The strong perfect

graph theorem. Annals of Mathematics 164(1), 51–229 (2006)

7. Cohen, D.A., Cooper, M.C., Jeavons, P.G.: Generalising submodularity and Horn

clauses: Tractable optimization problems defined by tournament pair multimor-

phisms. Theoretical Computer Science 401(1-3), 36–51 (2008)

8. Cohen, D.A., Cooper, M.C., Jeavons, P.G., Krokhin, A.A.: The Complexity of Soft

Constraint Satisfaction. Artificial Intelligence 170(11), 983–1016 (2006)

9. Cohen, D., Jeavons, P.: The complexity of constraint languages. In: Rossi, F.,

van Beek, P., Walsh, T. (eds.) Handbook of Constraint Programming. Elsevier,

Amsterdam (2006)

10. Cohen, D.A.: A New Class of Binary CSPs for which Arc-Constistency Is a Decision

Procedure. In: Rossi, F. (ed.) CP 2003. LNCS, vol. 2833, pp. 807–811. Springer,

Heidelberg (2003)

11. Cooper, M.C., Jeavons, P.G., Salamon, A.Z.: Generalizing constraint satisfaction

on trees: hybrid tractability and variable elimination. Artificial Intelligence (2010)

12. Dechter, R.: Constraint Processing. Morgan Kaufmann, San Francisco (2003)

13. Dechter, R., Pearl, J.: Network-based Heuristics for Constraint Satisfaction Prob-

lems. Artificial Intelligence 34(1), 1–38 (1988)

14. Edmonds, J.: Paths, trees, and flowers. Canad. J. Math. 17, 449–467 (1965)

15. Feder, T., Vardi, M.: The Computational Structure of Monotone Monadic SNP

and Constraint Satisfaction: A Study through Datalog and Group Theory. SIAM

Journal on Computing 28(1), 57–104 (1998)

16. Garey, M., Johnson, D.: Computers and Intractability: A Guide to the Theory of

NP-Completeness. W.H. Freeman, New York (1979)

17. Grohe, M.: The complexity of homomorphism and constraint satisfaction problems

seen from the other side. Journal of the ACM 54(1) (2007)

166 M.C. Cooper and S. Živný

18. Grötschel, M., Lovasz, L., Schrijver, A.: The ellipsoid method and its consequences

in combinatorial optimization. Combinatorica 1(2), 169–198 (1981)

19. Horn, W.A.: Minimizing Average Flow Time with Parallel Machines. Operations

Research 21(3), 846–847 (1973)

20. Jeavons, P.: On the Algebraic Structure of Combinatorial Problems. Theoretical

Computer Science 200(1-2), 185–204 (1998)

21. Jégou, P.: Decomposition of Domains Based on the Micro-Structure of Finite

Constraint-Satisfaction Problems. In: AAAI, pp. 731–736 (1993)

22. Kumar, T.K.S.: A framework for hybrid tractability results in boolean weighted

constraint satisfaction problems. In: Stuckey, P.J. (ed.) CP 2008. LNCS, vol. 5202,

pp. 282–297. Springer, Heidelberg (2008)

23. Lee, J.H.M., Leung, K.L.: Towards efficient consistency enforcement for global

constraints in weighted constraint satisfaction. In: IJCAI, pp. 559–565 (2009)

24. Minty, G.J.: On maximal independent sets of vertices in claw-free graphs. J. Comb.

Theory, Ser. B 28(3), 284–304 (1980)

25. Nakamura, D., Tamura, A.: A revision of Minty’s algorithm for finding a maximum

weighted stable set of a claw-free graph. J. Oper. Res. Soc. 44(2), 194–204 (2001)

26. Papadimitriou, C.H.: Computational Complexity. Addison-Wesley, Reading (1994)

27. Petit, T., Régin, J.C., Bessière, C.: Specific Filtering Algorithms for Over-

Constrained Problems. In: Walsh, T. (ed.) CP 2001. LNCS, vol. 2239, pp. 451–463.

Springer, Heidelberg (2001)

28. Régin, J.C.: A filtering algorithm for constraints of difference in CSPs. In: AAAI,

pp. 362–367 (1994)

29. Régin, J.C.: Cost-based arc consistency for global cardinality constraints. Con-

straints 7(3-4), 387–405 (2002)

30. Schiex, T., Fargier, H., Verfaillie, G.: Valued Constraint Satisfaction Problems:

Hard and Easy Problems. In: IJCAI, pp. 631–637 (1995)

31. Schrijver, A.: Combinatorial Optimization: Polyhedra and Efficiency. Algorithms

and Combinatorics, vol. 24. Springer, Heidelberg (2003)

32. Takhanov, R.: A Dichotomy Theorem for the General Minimum Cost Homomor-

phism Problem. In: STACS, pp. 657–668 (2010)

33. van Hoeve, W.J., Pesant, G., Rousseau, L.M.: On global warming: Flow-based soft

global constraints. J. Heuristics 12(4-5), 347–373 (2006)

A Propagator for Maximum Weight String
Alignment with Arbitrary Pairwise

Dependencies

Alessandro Dal Palù1, Mathias Möhl2, and Sebastian Will2,3

1 Dipartimento di Matematica, Università degli Studi di Parma, Parma, Italy

alessandro.dalpalu@unipr.it
2 Bioinformatics, Institute of Computer Science, Albert-Ludwigs-Universität,

Freiburg, Germany

{mmohl,will}@informatik.uni-freiburg.de
3 Computation and Biology Lab, CSAIL, MIT, Cambridge MA, USA

swill@csail.mit.edu

Abstract. The optimization of weighted string alignments is a well

studied problem recurring in a number of application domains and can

be solved efficiently. The problem becomes MAX-SNP-hard as soon as

arbitrary pairwise dependencies among the alignment edges are intro-

duced. We present a global propagator for this problem which is based

on efficiently solving a relaxation of it. In the context of bioinformatics,

the problem is known as alignment of arc-annotated sequences, which

is e.g. used for comparing RNA molecules. For a restricted version of

this alignment problem, we show that a constraint program based on

our propagator is on par with state of the art methods. For the general

problem with unrestricted dependencies, our tool constitutes the first

available method with promising applications in this field.

The maximum weight string alignment problem for strings Sa and Sb asks for a
partial matching of positions in Sa and Sb that preserves the string order and has
maximum weight. This problem is efficiently solved by dynamic programming
(DP) [10]. An extended variant of the problem introduces pairwise dependencies
among positions in each string Sa and Sb. In this problem variant, one optimizes
the sum of weights, where a weight is associated with each pair of matched
positions and with each pair of matched dependencies. In general, this problem
is MAX-SNP-hard [2].

In bioinformatics, the problem has been studied as alignment of arc-annotated
sequences, where each arc represents a dependency. There, the problem has
applications in aligning RNA or protein molecules that can be abstracted as
sequences of monomers and structural dependencies among those that represent
a proximity of the respective positions in the molecules structure.

Due to the hardness of the problem, restricted versions with limited depen-
dencies, in particular nested and crossing ones, have been considered. For nested
and also certain restricted crossing dependencies the alignment problem can be
solved efficiently with DP algorithms [6,9]. Heuristic approaches based on Integer

D. Cohen (Ed.): CP 2010, LNCS 6308, pp. 167–175, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

168 A.D. Palù, M. Möhl, and S. Will

Linear Programming (ILP) are available for crossing dependencies specialized to
RNA [1] and for unlimited dependencies specialized to proteins [3]. By using
DP-based propagation, our approach is similar to Trick [11]. Furthermore, there
is prior work applying this idea in an optimization setting [5].

Contribution. In this work, we consider a constraint programming approach
to the arc-annotated sequence alignment problem with unlimited dependencies.
Our main contribution is a general propagator for the maximum weight string
alignment with arbitrary pairwise dependencies. The propagator is based on a
relaxation that resolves the dependencies by bounding their weight contribution.
It propagates on the upper bound of the total weight and prunes the valid
alignments accordingly. Furthermore, we discuss decomposition into independent
subproblems for optimization approaches using our propagator.

We apply the technique to RNA sequence-structure alignment and show that
results are comparable to the state-of-the-art ILP approach Lara [1]. Finally, we
discuss a new method to compare riboswitches, which was not applicable before,
because prior RNA alignment approaches score at most crossing dependencies.

1 Preliminaries

An arc-annotated sequence is a pair (S, P), where the sequence S is a string over
some alphabet Σ and P is a set of arcs (i, j) with 1 ≤ i < j ≤ |S|. We denote
the i-th symbol of S by S[i] and S[i..j] is the subsequence SiSi+1 . . . Sj .

We distinguish crossing and unlimited sets of arcs. A set P , where each se-
quence position is involved in at most one arc, i.e. ∀(i, j) �= (i′, j′) ∈ P : i �=
i′ ∧ j �= j′ ∧ i �= j ∧ i′ �= j′, is called crossing. Otherwise it is called unlimited.

An alignment A of two arc-annotated sequences (Sa, Pa) and (Sb, Pb) is a
ordered partial matching between the positions of Sa and Sb. More precisely,
A ⊆ {1, . . . , |Sa|} × {1, . . . , |Sb|} has to satisfy for all (i, i′), (j, j′) ∈ A that
1.) i > j implies i′ > j′ and 2.) i = j if and only if i′ = j′. We define the
(i, i′)-prefix of A as A ∩ { (j, j′) | j ≤ i, j′ ≤ i′ } and the (i, i′)-suffix of A as
A ∩ { (j, j′) | j > i, j′ > i′ }.

Fix two arc-annotated sequences (Sa, Pa) and (Sb, Pb) with unlimited struc-
tures Pa and Pb. Define the weight of alignment A of (Sa, Pa) and (Sb, Pb) as

weight(A) :=
∑

(i,i′)∈A

σ(i, i′) +
∑

(i,j)∈Pa,(i′,j′)∈Pb,
(i,i′)∈A,(j,j′)∈A

τ(i, j, i′, j′) + γ(|Sa|+|Sb|−2|A|),

where σ(i, i′) is the similarity of sequence positions Sa[i] and Sb[i′], τ(i, j, i′, j′) is
the similarity of arcs (i, j) ∈ Pa and (i′, j′) ∈ Pb and γ is the gap cost associated
with each sequence position that is not matched.

The alignment problem is to determine

argmax
A alignment of (Sa, Pa) and (Sb, Pb)

weight(A).

A Propagator for Maximum Weight String Alignment 169

Note that on crossing arc annotation, the ILP approach Lara [1] solves essentially
the same problem. On unlimited input, Lara scores only a crossing subset of the
matched arcs whereas our approach scores all matches of arcs.

2 Constraint Model

We model an alignment of arc-annotated sequences (Sa, Pa) and (Sb, Pb) by
variables MDi and Mi for 1 ≤ i ≤ |Sa| with initial domains D(MDi) = {1, . . . , |Sb|}
and D(Mi) = {0, 1}. We write MD and M to denote the vectors of respective
variables MDi and Mi.

A valuation V of these variables corresponds to at most one alignment AV of
(Sa, Pa) and (Sb, Pb) as defined by

V (MDi) = j ∧ V (Mi) = 1 iff (i, j) ∈ A

V (MDi) = j ∧ V (Mi) = 0 iff �j with (i, j) ∈ A

∧ ∀(i′, j′) ∈ A : i′ < i → j′ ≤ j ∧ i′ > i→ j′ > j.

In this way, Mi tells whether i is matched or deleted and the value j of MDi tells
that i is matched to j or deleted after j. One can show that for each alignment
A of (Sa, Pa) and (Sb, Pb) there is a corresponding valuation V with A = AV .

For example, the following alignment A = {(1, 1), (2, 4), (4, 5)} of Sa = ACUG

and Sb = ACACG, which is often written as
A--CUG
ACAC-G

, corresponds to the valu-

ation MD = (1, 4, 4, 5) and M = (1, 1, 0, 1).
We introduce a constraint StringAlignment(MD, M) that is satisfied by any

valuation with a corresponding alignment. For modeling the weight of the align-
ment, we introduce a variable Weight and a constraint StringAlignment-
Weight(MD, M , Weight). This constraint relates a valuation of MD and M to the
weight of its corresponding alignment. Note that, formally, (Sa, Pa) and (Sb, Pb)
are parameters of the constraints but we omit them to simplify notation.

Both constraints are propagated by our propagator described in the next
section. For finding optimal alignments we perform a branch-and-bound search
enumerating MD and M according to a specific search strategy described after
introducing the propagator itself.

3 The Alignment Propagator

Our propagator computes hyper-arc consistency for StringAlignment(MD, M)
and propagates StringAlignmentWeight(MD, M , Weight).

It prunes MD and M due to the weight by computing upper bounds of
weights for single variable assignments and furthermore computes lower and up-
per bounds for Weight based on MD and M . Computing such bounds efficiently
is essential for branch-and-bound optimization.

Define the class A(D) as union of AV over all valuations V that satisfy D.
The computation of bounds is based on a relaxation of the alignment problem.

170 A.D. Palù, M. Möhl, and S. Will

In this relaxation the two ends of each arc match are decoupled. Thus in the
relaxed optimization problem for D, we maximize a relaxed weight

weightn,m
relaxed(A) :=

∑
(i,i′)∈A

[σ(i, i′) + ubD(i, i′)] + γ(n + m− |A|),

over all alignments in A(D), where n = |Sa| and m = |Sb| and

ubD(i, i′) :=
1
2

max
A∈A(D)

[
∑

(i,j)∈Pa,(i′,j′)∈Pb,
(i,i′)∈A,(j,j′)∈A

τ(i, j, i′, j′) +
∑

(j,i)∈Pa,(j′,i′)∈Pb,
(i,i′)∈A,(j,j′)∈A

τ(j, i, j′, i′)].

Here, ubD works as an upper bound for the weight contributions by arc
matches involving (i, i′) and consequently weight|Sa|,|Sb|

relaxed (A) ≥ weight(A) for
A ∈ A(D). Thus, solving the relaxed problem yields an upper bound of Weight.

For a moment, postpone how to efficiently compute ubD(i, i′). Then, because
the relaxed weight has the form of a sequence similarity score, one can apply
the Smith-Waterman algorithm [10] to maximize the relaxed weight in O(n2) by
dynamic programming, where n = max(|Sa|, |Sb|). The optimization problem is
easily constrained due to domain D, because domains directly restrict the valid
cases in the dynamic programming recursion.

Tracing back through the dynamic programming matrix yields an alignment
Al. If Al also satisfies all other constraints of the constraint problem, then
weight(Al) is a lower bound of Weight. For the later studied RNA alignment
problem, this bound can always be propagated, since there are no other con-
straints. Furthermore, we compute upper bounds for each single variable valua-
tion. This requires to complement the above “forward algorithm” that computes
the matrix entries

Prefix (i, i′) := max
(i, i′)-prefix Ap

ii′ of A∈A(D)
weighti,i

′
relaxed(A

p
ii′)

by a symmetric “backward algorithm” that computes the matrix entries

Suffix (i, i′) := max
(i, i′)-suffix As

ii′ of A∈A(D)
weight|Sa|−i,|Sb|−i′

relaxed (As
ii′).

Now the variables MD can be pruned efficiently, because Prefix (i, i′)+Suffix (i, i′)
is an upper bound of Weight for the assignment MDi = j. Hence, j can be re-
moved from the domain of MDi, if Prefix (i, i′) + Suffix (i, i′) is larger than the
upper bound of Weight. Similarly, we prune M using the two matrices.

It remains to describe the efficient computation of ubD(i, i′). It suffices to
describe the maximization of

∑
(i,j)∈Pa,(i′,j′)∈Pb,
(i,i′)∈A,(j,j′)∈A

τ(i, j, i′, j′) over alignments in

A(D). A single match (j, j′) can occur in an alignment in A(D) if j′ ∈ D(MDj)
and 1 ∈ D(Mj). However, we look for the best set of simultaneously valid matches
(j, j′). The structure of this subproblem is analogous to sequence alignment. For
solving it efficiently, we define sorted lists j1, . . . , jl and j′1, . . . , j

′
l′ such that

A Propagator for Maximum Weight String Alignment 171

(jh, i) ∈ Pa for all 1 ≤ h ≤ l and (j′h′ , i′) ∈ Pb for all 1 ≤ h′ ≤ l′. We apply
dynamic programming for evaluating

UL(0, 0) = 0 UL(h, 0) = 0 UL(0, h′) = 0
UL(h, h′) =

max

⎧⎪⎨
⎪⎩

UL(h− 1, h′) unless MDjh
= j′h′ and Mjh

= 1
UL(h, h′ − 1) unless MDjh

= j′h′ and Mjh
= 1

UL(h− 1, h′ − 1) + τ(jh, j′h′ , i, i′) j′h′ ∈ D(MDjh
) and 1 ∈ D(Mjh

)

for 1 ≤ h ≤ l, 1 ≤ h′ ≤ l′. Then, we perform the same construction for the
respective r and r′ many arcs to the right of i and i′ and evaluate the cor-
responding recursion equation UR(h, h′) for 1 ≤ h ≤ r, 1 ≤ h′ ≤ r′. Then,
ubD(i, i′) = UL(l, l′) + UL(r, r′).

Therefore, ubD(i, i′) is computed in O(ll′+rr′) time. For crossing arcs l+r =
l′ + r′ = 1 and for many other applications l + r and l′ + r′ can be constantly
bounded [12] such that the propagator runs in O(n2) time and space.

Affine Gap Cost. In bioinformatics, penalizing unmatched positions using an
affine weighting function yields more realistic results. Our method is straight-
forwardly extended to such scoring by using a Gotoh-like forward and backward
algorithm [4] in the propagator without increasing its complexity. It appears that
this modification comes more natural in our approach than the corresponding
extension in ILP, because it does not require any change of the model.

Propagator-guided Search Strategy. To maximize the use of the propagator in a
branch-and-bound setting, we suggest a search strategy that aims at disproving
overestimated bounds fast and finding valid good alignments quickly. To achieve
this, information computed by the propagator in each propagation step can be
used to guide the search. In particular, this allows to select a variable that
yields a high undecided contribution to the upper bound of the total weight.
Furthermore, the computed backtrace provides a good candidate for a solution,
which can be favored by the search strategy.

In our application to RNA, we select a variable with highest undecided con-
tribution to the upper bound and domain size as tie breaking. Its domain is split
such that the 20% highest relaxed weights are chosen first.

4 Problem Decomposition

Certain constraint optimization problems can be solved faster by detecting inde-
pendent subproblems during search and optimizing these subproblems indepen-
dently. In our setting, independent means that the two parts of the alignment do
not depend on each other due to the string order, arcs connecting the two parts,
or due to additional constraints other than StringAlignment and StringAlignmen-
tWeight. In the following, we denote anything that makes two subproblems de-
pendent a dependency, not only dependencies introduced by arcs.

172 A.D. Palù, M. Möhl, and S. Will

In general, problem decomposition introduces overhead for detecting depen-
dencies and even interferes with Branch-and-Bound when subproblems cannot
be bounded well (confer AND/OR search [7], which however doesn’t discuss
decomposition in the presence of global propagators). However, the string align-
ment problem suggests a special form of decomposition along the string order,
where our propagator provides upper bounds for the partial problems. The de-
pendency due to the string order between the two subproblems for variables
MD1, . . . , MDi−1, M1, . . . , Mi−1 and MDi+1, . . . , MD|Sa|, Mi+1, . . . , M|Sa| is resolved as
soon as a matching edge (i, j) is assigned (i.e. MDi = j and Mi = 1). The
problem can be decomposed, if in addition the dependencies due to arcs are
resolved and the corresponding variables do not have dependencies by other
constraints. Notably, for resolving the dependencies due to an arc (i, j) it suf-
fices that one of its ends is matched, i.e. ∀A ∈ D(A) : (i, i′) ∈ A (or ∀A ∈ D(A) :
(j, j′) ∈ A). Then one can move the weight of each arc match, τ(i, j, i′, j′), to the
match weight of the other end σ(j, j′) (or σ(i, i′) respectively) and discard the
dependency.

In the RNA alignment problem, all dependencies can be checked within the
propagator.1 To avoid overhead, we apply the decomposition only if an in-
dependent subproblem for MDi, . . . , MDj , Mi, . . . , Mj can be solved to optimal-
ity by the propagator alone. This is the case, if all arc dependencies in the
subproblem are resolved. Then, the problem reduces to maximum weighted
string alignment without dependencies and the traceback alignment represents
an optimal solution. Assigning the traceback of the subproblem to MDi, . . . , MDj ,
Mi, . . . , Mj is a form of symmetry breaking, because it discards alignments with
less or equal weight that are systematically generated from other alignments in
A(D).

5 Results

The propagator and its application to RNA sequence-structure alignment, called
Carna, is implemented in C++ using the constraint programming system Gecode.
For handling input and output as well as for special data structures we reused
code of LocARNA [12].

We run tests for two application scenarios. All experiments were performed
under 32-bit Linux on a T400s notebook with Intel P9600 CPU. First, we explore
Carna’s behavior on crossing input structure using instances from all 16 Rfam
families with crossing structure. Table 1 compares our results to Lara [1]. The
table omits all 8 instances where both approaches run in less than 0.1 seconds. In
all but one of the omitted cases, Carna solves the problem without backtracking.
In terms of performance, with the single exception of tmRNA, both programs
are on a par for the simpler class of crossing structures.

1 This is important for our implementation, because checking for independent sub-

problems in the presence of arbitrary propagators is expensive in Gecode.

A Propagator for Maximum Weight String Alignment 173

Table 1. Results for the eight harder instances of the benchmark set with crossing

structures. We omit details for 8 instances where both programs run in less than 0.1

seconds. All times are given as user times.

Family Lengths Run-time (s) Carna Search Tree

Sa Sb Carna Lara Depth Fails Size

Entero OriR 126 130 0.03 0.18 38 13 50

Intron gpI 443 436 0.1 0.2 0 0 1

IRES Cripavirus 202 199 0.2 0.04 157 127 296

RNaseP arch 303 367 0.46 1.4 63 8 64

RNaseP bact b 408 401 3.0 2.3 370 677 1463

RNaseP nuc 317 346 0.07 2.9 14 4 16

Telomerase-vert 448 451 0.47 2.3 146 32 161

tmRNA 384 367 63 3.7 433 14347 28785

Table 2. Rfam Riboswitches. For 100 instances from each Rfam family annotated as

riboswitch and confirmed by literature: Medians of average sequence length, average

number of base pairs, and run-time (user time), maximal memory requirement and

percentage of instances not solved to optimality within a given time limit of 1 min.

Family Length Base pairs Time (s) Memory (MB) Limit

SAH riboswitch 79 81 0.13 3.3 2%

SAM alpha 79 96 0.03 1.9 0%

Purine 101 74 0.07 2.3 0%

Glycine 101 83 0.44 5.0 3%

SAM 106 74 0.06 6.0 0%

TPP 107 96 0.43 8.7 13%

SAM-IV 116 128 0.05 3.7 2%

MOCO RNA motif 141 111 0.24 9.4 10%

Lysine 181 210 60 14.5 60%

Cobalamin 204 237 60 18.7 71%

In our second scenario, we evaluate the behavior on the general class of
unlimited structures. Therefore, we apply the approach to the alignment of
riboswitches, which are RNA molecules with more than one evolutionary con-
served structure. We annotate the RNA sequences by the set of all base pairs
with sufficiently high probability in the RNA’s structure ensemble [8]. This set
approximates the overlay of the different riboswitch structures. In consequence,
the alignment is optimized with respect to all these structures simultaneously.
Since the set of base pairs is unlimited this application has not been possible
for existing approaches, which at most score crossing structure. The Rfam data-
base contains 10 RNA riboswitch families that are confirmed by literature. To
benchmark the approach, we align 100 random instances from each of those fami-
lies. Since in large scale studies an instance is rather skipped than spending much

174 A.D. Palù, M. Möhl, and S. Will

time on it, we set a time limit of 1 minute for each instance. The results are
given in Table 2. For this new problem, not all instances could be solved within
our strict time limit. However, the results show that the approach handles all
Riboswitch families sufficiently well for bioinformatics applications with only
some limitations for the very longest sequences.

6 Discussion

We presented a propagator for the problem of weighted string alignment with ar-
bitrary pairwise dependencies, which is also known as the alignment problem for
arc-annotated sequences with unlimited structure. Whereas the problem itself
is MAX-SNP-hard, our propagator allows for an effective constraint program-
ming approach by efficiently solving relaxations of the problem. Futhermore, we
proposed a search strategy that improves the benefit due to the propagator. Fi-
nally, we showed that the weighted string alignment problem can be decomposed
into independent subproblems during search. This allows for a AND/OR-type
optimization in the context of our global propagator.

To evaluate the applicability of our method in practice, we apply it to the
alignment of RNA structures. While all previous approaches in this area are
limited to score at most crossing subsets of the input structures, our approach is
able to align unlimited structures. This is useful to align Riboswitches and other
molecules with more than one conserved structure, because it allows considering
all their potential structural conformations simultaneously.

Acknowledgments. This work is partially supported by DFG grants WI 3628/1-1
and BA 2168/3-1 and PRIN-2008 (Innovative multi-disciplinary approaches for
constraint and preference reasoning).

References

1. Bauer, M., Klau, G.W., Reinert, K.: Accurate multiple sequence-structure align-

ment of RNA sequences using combinatorial optimization. BMC Bioinformatics 8,

271 (2007)

2. Blin, G., Fertin, G., Rusu, I., Sinoquet, C.: Extending the hardness of RNA sec-

ondary structure comparison. In: Chen, B., Paterson, M., Zhang, G. (eds.) ES-

CAPE 2007. LNCS, vol. 4614, pp. 140–151. Springer, Heidelberg (2007)

3. Caprara, A., Lancia, G.: Structural alignment of large-size proteins via lagrangian

relaxation. In: Proceedings of the Sixth Annual International Conference on Com-

putational Biology (RECOMB 2002), pp. 100–108. ACM Press, New York (2002)

4. Gotoh, O.: An improved algorithm for matching biological sequences. Journal of

Molecular Biology 162, 705–708 (1982)

5. Hoeve, W.-J., Pesant, G., Rousseau, L.-M.: On global warming: Flow-based soft

global constraints. Journal of Heuristics 12(4-5), 347–373 (2006)

6. Jiang, T., Lin, G., Ma, B., Zhang, K.: A general edit distance between RNA struc-

tures. Journal of Computational Biology 9(2), 371–388 (2002)

A Propagator for Maximum Weight String Alignment 175

7. Marinescu, R., Dechter, R.: And/or branch-and-bound search for combinatorial

optimization in graphical models. Artif. Intell. 173(16-17), 1457–1491 (2009)

8. McCaskill, J.S.: The equilibrium partition function and base pair binding proba-

bilities for RNA secondary structure. Biopolymers 29(6-7), 1105–1119 (1990)

9. Möhl, M., Will, S., Backofen, R.: Lifting prediction to alignment of RNA pseudo-

knots. Journal of Computational Biology (2010) (accepted)

10. Smith, T.F., Waterman, M.S.: Comparison of biosequences. Adv. Appl. Math. 2,

482–489 (1981)

11. Trick, M.A.: A dynamic programming approach for consistency and propagation

for knapsack constraints. Annals OR 118(1-4), 73–84 (2003)

12. Will, S., Reiche, K., Hofacker, I.L., Stadler, P.F., Backofen, R.: Inferring non-coding

RNA families and classes by means of genome-scale structure-based clustering.

PLOS Computational Biology 3(4), e65 (2007)

Using Learnt Clauses in maxsat

Jessica Davies, Jeremy Cho, and Fahiem Bacchus

Department of Computer Science, University of Toronto, Canada

{fbacchus,jkcho,jdavies}@cs.toronto.edu

Abstract. maxsat is an optimization version of SAT capable of express-

ing a variety of practical problems. maxsat solvers have been designed

to take advantage of many of the successful techniques of SAT solvers.

However, the most important technique of modern SAT solvers, clause

learning, has not been utilized since learnt clauses cannot be soundly

added to a maxsat theory. In this paper we present a new method that

allows SAT clause learning to be exploited in a maxsat solver without

losing soundness. We present techniques for learning clauses during a

branch and bound (B&B) maxsat search, a process that is more compli-

cated than standard clause learning. To exploit these learnt clauses we

develop a connection between them and bounds that can be used during

B&B. This connection involves formulating a hitting set problem and

finding bounds on its optimal solution. We present some new techniques

for generating useful hitting set bounds and also show how linear and

integer programs can be exploited for this purpose, opening the door for

a hybrid approach to solving maxsat.

1 Introduction

maxsat, in its most basic form, is the problem of finding a truth assignment
that satisfies the maximum number of clauses of a CNF theory. Partial-maxsat
is the extension in which some clauses are hard. Here the objective is to find a
truth assignment that satisfies all the hard clauses and a maximum number of
the other (soft) clauses. In weighted maxsat, clauses are assigned weights, and
the objective is to find a truth assignment that maximizes the sum of the weights
of the satisfied clauses. Weighted partial maxsat extends weighted maxsat by
adding hard clauses that must be satisfied.

maxsat plays a fundamental role for optimization problems, similar to the
role that SAT plays for satisfiability problems. Any optimization problem over
finite domain variables can be encoded in maxsat. Thus maxsat can encode any
finite domain max-csp problem [5] (where the aim is satisfy as many constraints
as possible), while the weighted versions of maxsat can encode most valued-
csps [17]. maxsat serves as a general modeling language for such problems.

maxsat also has the advantage that it possesses a different structure than the
corresponding max-csp and valued-csp formalisms. Each formalism can yield
algorithmic insights that can potentially be exploited in the other. See [9,6] for
an illustration of this type of cross-fertilization.

The literature on exact maxsat solvers is fairly extensive and can be cat-
egorized into two main approaches. The first approach solves the problem by

D. Cohen (Ed.): CP 2010, LNCS 6308, pp. 176–190, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Using Learnt Clauses in maxsat 177

solving a sequence of SAT problems, e.g., [13]. This approach can fully exploit
modern SAT solver technology including clause learning, but has a number of
drawbacks that we will discuss later. The second approach employs a depth-first
branch and bound search, e.g., [7]. In this line of research the key contribu-
tions consist of various techniques for computing good lower bounds during the
search. Most of these techniques can be understood as applying restricted forms
of maxsat-resolution [10].

First it should be noted that clauses inferred via standard resolution cannot
be soundly added to a maxsat theory. If Φ is a maxsat CNF theory, and c is a
clause inferred by resolution, then it is not sound to add c to Φ. In particular, the
new theory Φ ∪ {c} can have different solutions than the original. For example,
the truth assignment π = (x = true, y = false) is a solution to the maxsat
theory Φ = {(¬x, y), (x), (¬y)}: it falsifies only one clause. However, (y) can be
inferred from Φ, but π is not a solution to Φ∪{(y)}: π falsifies two clauses while
(x = true, y = true) falsifies only one.

In response to this, alternative rules of inference have been developed. In par-
ticular, the maxsat-resolution rule is an extension of ordinary resolution that is
sound and complete for maxsat [3,9]. However, maxsat-resolution can gener-
ate a large number of additional “compensation” clauses with each inference. In
fact, the maxsat-resolution of two clauses of length k and j can generate up to
k+ j additional clauses. This makes it difficult to use maxsat-resolution during
search. Hence, previous work has concentrated on finding restricted cases where
maxsat-resolution type inferences can be more efficiently applied.

Furthermore, current solvers look for these restricted cases in the reduced
maxsat theory. That is, at each node of the B&B search tree, the maxsat theory
has been reduced by the prefix of assigned variables. Current B&B maxsat
solvers examine the reduced theory to determine if any restricted applications
of maxsat-resolution can be supported. For example, in the reduced theory
two originally long clauses might now be reduced to the unit clauses (x) and
(¬x). These two unit clauses can be maxsat-resolved to generate the empty
clause, thereby increasing the lower bound. However, in the original theory this
resolution step actually corresponds to maxsat-resolving the two original long
clauses, potentially generating many additional clauses which cannot be stored
efficiently. As a result, all of the inferences made must be undone on backtrack
and recomputed from scratch at future nodes in the search tree.

This is in stark contrast with SAT clause learning where clauses learnt in one
part of the search tree can be utilized anywhere else. In fact, it is this caching
and reuse of previous work that makes clause learning so effective.

In this paper we show how standard SAT clause learning can in fact be utilized
in any kind of maxsat problem (weighted and/or partial). This allows us to learn
clauses without having to generate large numbers of additional clauses. Hence we
can apply clause learning in many cases where an equivalent maxsat-resolution
would be impractical. Furthermore, clauses learnt in one part of the search tree
or during a preprocessing phase can be reused throughout the rest of the search
tree. As pointed out above, learnt clauses cannot be soundly added to a maxsat

178 J. Davies, J. Cho, and F. Bacchus

theory. So to use these learnt clauses soundly we exploit a known relationship
between conflicts and hitting sets [16]. This allows us to formulate a hitting set
problem from the learnt clauses whose minimal solution provides a lower bound
for the B&B search.

To exploit this connection we address two additional problems. First we de-
velop techniques for learning clauses that are more likely to increase the mini-
mal hitting set solution. Second, since computing a minimal hitting set is itself
an NP-Complete problem, we develop some tractable techniques for computing
lower bounds on the exact solution. We develop two heuristics for this purpose,
one of which improves on the heuristic given in [16]. We also can formulate the
minimal hitting set problem as an integer program and use linear programming
to provide a lower bound approximation. We show how this link to standard OR
techniques yields an interesting hybrid approach to the maxsat problem.

From our experimental results, we show that this novel approach to computing
lower bounds demonstrates potential, in particular it can often quickly prune the
search space. On several maxsat benchmarks, we show that enough inference
can be made to terminate search at the root, while other state-of-the-art solvers,
such as MiniMaxSat [7] require search. Our approach does not currently achieve
state-of-the-art performance, although we are pursuing a number of ideas aimed
at improving its performance. Furthermore, much recent research has focused
on ways of improving existing bounding techniques, e.g., by exploiting cyclic
structures [11]. Our approach offers a completely new way of producing improved
bounds through finding specialized ways of learning new clauses. Finally, we
believe that the techniques we present for computing bounds on minimal hitting
sets and our empirical results assessing the trade offs between these techniques
may also be of independent interest for other applications that rely on computing
hitting sets.

In the sequel we first provide some brief background, followed in Section 3 by
our results on the connection between solving maxsat and the weighted minimal
hitting set problem. Section 4 describes proposed methods of approximating the
min-weight hitting set, while in Section 5 we consider how to generate learnt
clauses to employ in our bounds. We present preliminary experimental results
in Section 6 that encourage future work in this direction, as discussed in the
conclusion.

2 Background

For simplicity we will formulate the maxsat problem in terms of computing
the minimal value of an objective function, as opposed to a truth assignment.
We have as input a set of propositional variables x1, . . . , xn and a set of clauses
c1, . . . , cm over these variables each with an associated weight wt(ci). Let Π be
the set of 2n truth assignments to the variables xi. For π ∈ Π the function π(c)
has value 1 if π falsifies the clause c and 0 if it satisfies it. The maxsat problem
is to compute the minimum sum of weights of the falsified clauses over all truth
assignments to the variables: minπ∈Π

(∑m
i=1 wt(ci)π(ci)

)
. Thus the weight of the

Using Learnt Clauses in maxsat 179

satisfied clauses is being maximized. Hard clauses are modeled as clauses c with
wt(c) = ∞ (or any sufficiently large number). In the case of unweighted maxsat,
we set wt(c) = 1 for all soft clauses c.

Solution methods: It is possible to approximate the optimal solution using
methods like local search. But here we are mainly interested in exact solution
methods, of which there are two main approaches taken in the literature.

In the first approach, e.g., [13], maxsat is solved by solving a sequence of
SAT problems. Each run of the SAT solver checks to see if the current theory is
UNSAT. If so, the theory is modified so that one (and only one) of the subset of
clauses that caused the UNSAT result can be “turned off.” This is accomplished
by adding new “turn-off” variables to the culprit clauses along with extra clauses
constraining the turn-off variables so that only one can be true. Then the SAT
solver is run again on the new problem. If the SAT solver returns SAT after
k such runs we know that k is the minimum number of clauses that must be
falsified when satisfying the remaining clauses.

Although this approach works well on some problems it quickly becomes in-
efficient when more and more clauses have to be turned off, resulting in SAT
problems which are larger and more difficult to solve. In particular, in the ith
run many more clauses have been added to handle the turn-off variables, and
the solver must search over many combinations of i clauses to turn off. Thus
the approach is less effective on highly constrained problems. A more serious
limitation however lies in its extension to weighted maxsat problems [1,14]. On
such problems we must step through all possible values the maxsat solution can
take, i.e., all distinct sums of clause weights. This can produce an explosion in
the number of separate SAT solving episodes required.

The second approach involves a depth-first B&B search, which we also use in
our work. Typically, a local search method is used to first compute an approx-
imate solution, whose weight is taken as an initial upper bound on the optimal
solution. During search, variables are assigned and any hard clauses (or clauses
whose weight exceeds the upper bound) are used to perform unit propagation. Af-
ter unit propagation various methods are used to compute a lower bound on the
weight of clauses that must be falsified below the current node. This lower bound
includes the weight of all clauses already falsified by the current assignment. In
addition, inference is performed on the not-yet falsified (or satisfied) clauses to
determine additions to the lower bound. For example, if two clauses have been re-
duced to units (x) and (¬x) then at every node below, one of these clauses will
be falsified. Hence, min(wt((x)),wt((¬x)) can be added to the lower bound. More
powerful inference methods are used to handle more complex cases [7,11]. How-
ever, as mentioned above, all of these inferences must be undone on backtrack.

3 Learnt Clauses—The Hitting Set Connection

We have already pointed out that learnt clauses cannot be soundly added to a
maxsat theory (except if these clauses are inferred solely from the hard clauses
of the theory). Nevertheless, they can be utilized in a maxsat solver.

180 J. Davies, J. Cho, and F. Bacchus

First consider resolution proofs from a CNF maxsat theory Φ. Each proof p
of a clause ck is a sequence of clauses c1, . . . , ck, where each ci is either an input
clause from Φ or the result of resolving two previous clauses in the sequence. For
any proof p let ic(p) be the set of input clauses used in p, i.e., p ∩ Φ. For any
set of proofs P let ic(P) be the set of sets of input clauses arising from these
proofs {ic(p)|p ∈ P}.

Initially we will be interested in refutations. These are proofs of the empty
clause, i.e., ck = (). Since resolution is sound, any truth assignment that satisfies
the input clauses of a refutation must also satisfy (). However, no truth assign-
ment can satisfy (), hence no truth assignment can satisfy all of these clauses.
That is, the input clauses of each refutation form a conflict set [16]. Since we
are considering conflicts detectable by a complete inference technique (resolu-
tion) we can prove a more general connection between conflicts and solutions to
maxsat than that given in [16].

For any maxsat CNF problem Φ let minval (Φ) be the solution of Φ, i.e., the
minimum achievable weight of falsified clauses; and let Rall (Φ) be the set of all
refutations that can be computed from Φ. A hitting set for any set of sets
of clauses S is a set of clauses H such that for each s ∈ S, H ∩ s �= ∅. The
weight of a hitting set H, val(H) is the sum of the weights of the clauses in H,
and we let minwtHS (S) denote the weight of a minimum weight hitting set of
S. Hence, minwtHS (ic(Rall (Φ))) is the weight of a minimum weight hitting set
of ic(Rall (Φ)).

Theorem 1. For any maxsat theory Φ, minval (Φ) = minwtHS (ic(Rall (Φ))).

Proof. Let H be a minimum weight hitting set of ic(Rall (Φ)).
We cannot prove the empty clause from Φ − H, otherwise there would be a

refutation r in Rall (Φ) such that ic(r) ⊆ (Φ − H). But then H would not hit
ic(r) and H would not be a hitting set of ic(Rall (Φ)). Thus we conclude that
minval(Φ) ≤ val(H). Say that minval(Φ) < val (H). Then there must exist a set
of input clauses H with val(H) < val(H) and such that Φ−H is satisfiable. But
sinceH is a minimum weight hitting set, H cannot be a hitting set of ic(Rall (Φ)).
Hence, there exists a refutation r ∈ Rall (Φ) such that H ∩ ic(r) = ∅. That is,
r is a refutation provable from Φ −H . This is a contradiction and we conclude
that minval(Φ) = val(H). ��

Theorem 1 says that the technique of finding hitting sets can solve the maxsat
problem: it is a complete method. However, as stated it is also quite impractical.
For one there are an exponential number of possible refutations of Φ.1 Consider
the case where instead of having access to Rall (Φ) we have an incomplete col-
lection of refutations R ⊂ Rall (Φ). In this case a minimum hitting set of ic(R)
provides a lower bound on minval(Φ).

Proposition 1. If R and R′ are two sets of proofs with R ⊂ R′, then
minwtHS (ic(R)) ≤ minwtHS (ic(R′)).
1 The NP-Hardness of computing a minimum hitting set is also a problem with the

direct application of Theorem 1. We address this issue in the next section.

Using Learnt Clauses in maxsat 181

This holds since every hitting set of ic(R′) must be a hitting set of ic(R). Thus
we have that minwtHS (ic(R)) ≤ minwtHS (ic(Rall (Φ))) = minval(Φ).

Now we consider how these ideas could be utilized inside of a B&B search. At
each node n of the search the original problem has been reduced by instantiating
some set of variables. In addition, by employing clause learning techniques (de-
scribed below) the search has been able to augment the input clauses Φ with an
additional set of learnt clauses L. For each � ∈ L the search has also computed
the set of input clauses ic(�) used in the proof of �. We note that if c is an input
clause (c ∈ Φ) then a proof of c is simply c itself. Thus for convenience for c ∈ Φ
we use ic(c) to denote the set {c}.

At node n we wish to determine if minval(Φ|n) (the input formula reduced
by the literals made true at node n) has a value that is so high that it pre-
cludes finding a better solution under n. Theorem 1 says that minval(Φ|n) =
minwtHS (ic(Rall (Φ|n))) and we can lower bound this value using any subset of
ic(Rall (Φ|n)). Unfortunately we do not know any non-empty subset. The search
has never visited n before, and thus has not derived any refutations from Φ|n.

Instead we will consider clauses that we know to be falsified at node n. Let
Πn be the set of all truth assignments (to the variables in Φ) that agree with the
assignments made at node n. Let minval(n) = minπ∈Πn

(∑m
i=1 wt(ci)π(ci)

)
; this

is the minimum weight of falsified clauses achievable by any truth assignment
that lies below node n. We can backtrack immediately from n if we know any
lower bound LB such that LB ≤ minval(n) and LB ≥ UB where UB is the
value of the current best known solution.

Let Pall (Φ, n) be the set of all proofs from Φ that derive a clause falsified by
the assignments made at node n. That is, p ∈ Pall (Φ, n) means that p derives,
from the clauses of Φ, a clause all of whose literals are falsified at node n.

Theorem 2. minval(n) = minwtHS (ic(Pall (Φ, n))).

This means that if we had access to all proofs of clauses falsified at node n,
we could find minval(n) by way of a minimum hitting set problem. We do not
have access to Pall (Φ, n), but as noted above for every clause c of Φ ∪ L that
has been falsified at n we know ic(c), the input clauses used in the proof of c.
Hence, FC = {ic(c) | c is falsified at n} ⊂ ic(Pall (Φ, n)) and Prop. 1 tells us
that minwtHS (FC) ≤ minval(n). By computing minwtHS (FC) the search can
use this value to potentially backtrack away from n.

Proof. The proof of this theorem is more complicated than the proof of Theo-
rem 1, so we provide only a sketch. First, let Φ|n be Φ reduced by the assignments
made at n, i.e., all satisfied clauses and falsified literals are removed from Φ. It
can be shown that minval(Φ|n) = minval(n) by observing that for every clause
of Φ falsified at n, Φ|n contains an empty clause of equal weight. Theorem 1
then shows that minwtHS (ic(Rall (Φ|n))) = minval(n). Now all that remains
to be done is to prove that minwtHS (ic(Rall (Φ|n))) = minwtHS (ic(Pall (Φ, n))).
First, we show that all proofs in Rall (Φ|n) can be converted to equivalent proofs
in Pall (Φ, n) by adding back all of the falsified literals to the clauses of the proof.
This shows that any hitting set of ic(Pall (Φ, n)) can generate a hitting set of

182 J. Davies, J. Cho, and F. Bacchus

ic(Rall (Φ|n)) of no greater weight, and thus that minwtHS (ic(Rall (Φ|n))) ≤
minwtHS (ic(Pall (Φ, n))). The other direction is more complex, but we use the
same argument as Theorem 1 to show that if minwtHS (ic(Rall (Φ|n))) <
minwtHS (ic(Pall (Φ, n))) there must be a hitting set H of ic(Rall (Φ|n)) which
when converted to a set of clauses of Φ (by adding back the falsified literals)
cannot be a hitting set of ic(Pall (Φ, n)). Hence, there is a proof p ∈ Pall (Φ, n) not
covered by H . With a more complex transformation, p can then be converted
into a refutation in Rall (Φ|n) by removing all satisfied clauses and falsified lit-
erals, and then fixing all of the now broken resolution steps. (For example, the
literal being resolved on might have been removed from one of the clauses, or
one of the clauses might have been satisfied). The conversion of p is not hit by
H contradicting that H exists. ��

In summary, the results of this section show that learnt clauses can be exploited
in maxsat to produce lower bounds. In particular, at any node n of the search
tree some set of clauses will be falsified. These could be either input or learnt
clauses. By keeping track of the input clauses used to derive each clause a hitting
set problem can be set up. The minimum weight hitting set provides a lower
bound on the best value that can be achieved below node n, minval(n), which
can be used by the B&B bounding procedure. Furthermore, it can be the case
that some learnt clauses are falsified at node n even though no input clause
is violated. Hence, clause learning can allow us to construct richer hitting set
problems that can yield better bounds.

Two problems remain. First we cannot necessarily compute a minimum weight
hitting set as this is an NP-Complete problem in itself. In the next section we
present some ways of computing lower bounds on the minimum weight hitting
set, which in turn act as lower bounds on minval(n). Second, we present some
ways that clauses can be learnt both prior to search and during search so as to
increase the effectiveness of the computed lower bounds.

4 Lower Bounding the Minimal Hitting Set

During clause learning we remember for each learnt clause the set of input clauses
used in its derivation. This increases the space required to store learnt clauses,
but does not impose additional computational overheads during search. In par-
ticular, we only need to access this derivation set when a clause has been falsified.

During search, we use standard watched literal techniques to detect when
clauses become false. The collection of falsified clauses at each node of the
search tree form a hitting set problem. Let FC represent this collection. For
each f ∈ FC let ic(f) be the set of input clauses used to derive it, and ic(FC) =⋃

f∈FC ic(f). As noted above, if f is an input clause, i.e., f ∈ Φ, we let ic(f) =
{f}. The hitting set problem is to select a minimum weight set of input clauses
that touches ic(f) for each f ∈ FC . Due to the difficulty of computing this, our
aim is to compute a lower bound on the weight of a minimal weight hitting set.

Using Learnt Clauses in maxsat 183

Simplification: Before trying to solve the problem we first apply two quite
effective simplification rules [20].
1. If f1, f2 ∈ FC with ic(f1) ⊆ ic(f2) remove f2 from FC . Any hitting set that

hits f1 will necessarily hit f2.
2. If wt(c1) ≤ wt(c2) and {f |c1 ∈ ic(f)} ⊇ {f |c2 ∈ ic(f)} remove c2 from all

sets ic(f), f ∈ FC . We can substitute c1 for c2 in any hitting set without
increasing the hitting set’s weight.

Note that these two rules define a propagation scheme. That is, one application
of these rules can enable additional applications. Simplification continues until
neither of these rules can be applied again.

In addition to these two rules, which are applicable for any hitting set, we can
also utilize an additional simplification rule specific to our problem.
3. Remove all input clauses c that are satisfied at the current node from ic(f),

f ∈ FC .
This last rule is justified by the semantics of our hitting sets. Each falsified clause
implies that at least one of the input clauses used to derive it must be falsified
by all truth assignments extending the current node. Thus, any clause that is
already satisfied is no longer a candidate for falsification.

One thing that is useful to notice is that simplification often generates a col-
lection of disjoint hitting set problems. For example, say that for falsified clause
f we have ic(f) = {c}, perhaps because simplification removed all other mem-
bers of ic(f). Rule 1 then implies that all other falsified clauses f ′ with c ∈ ic(f ′)
will be removed from the hitting set problem. That is, an isolated hitting set
problem consisting only of f = {c} will be created. These disjoint problems can
be solved independently and the answers added.

Heuristics: We have developed two heuristics for lower bounding the minimum
weight hitting set.

H1(LB)
1. LB = 0
2. while FC �= ∅
3. choose f ∈ FC
4. LB += minc∈ic(f) wt(c)
5. F = {f ′ ∈ FC |ic(f) ∩ ic(f ′) �= ∅}
6. FC = FC − F

This heuristic first chooses some falsified clause, f , and adds its minimum weight
input clause to the lower bound. Then it removes f and all clauses that share
an input clause with f from the set of falsified clauses. It repeats this loop until
no more falsified clauses remain.

The intuition behind this heuristic is simple: we can hit f by selecting its
min-weight input clause. But we could have selected any other input clause from
ic(f). Hence, the most we could have done is also hit all other falsified clauses
connected to f via a member of ic(f). The heuristic conservatively estimates
that we did in fact hit all of these clauses with f ’s min-weight clause. Note

184 J. Davies, J. Cho, and F. Bacchus

that the heuristic can yield different values dependent on which f is chosen.
In our implementation, we use different selection schemes for f in the weighted
and unweighted cases. For weighted, we always select the f with the minimum
weight input clause of maximum weight, while for unweighted, we select the f
whose set F in line 5 is of minimum cardinality. However, other natural selection
schemes also exist.

This heuristic inherently takes advantage of any disjoint sub-problems. In
particular, if the hitting set problem has been broken up into k disjoint sub-
problems, H1 will return an LB that is no worse than the sum of the weights of
the minimum weight input clause present in each subproblem.

For the second heuristic, for input clause c let nbrs(c) = {f |f ∈ FC ∧ c ∈
ic(f)} and deg(c) = |nbrs(c)|, that is the number of falsified clauses it hits.

H2(LB)
1. LB = 0
2. foreach disjoint subproblem FC P

3. lb = 0, n = |FCP |
4. while n > 0
5. c = c ∈ ic(FC P) that minimizes wt(c)/deg(c)
6. if deg(c) ≥ n OR unweighted clauses
7. lb += wt(c)
8. else lb += n× wt(c)/deg(c)
9. n -= deg(c)
10. remove c from ic(f) for all f ∈ FC P

11. LB += lb

This heuristic generalizes one given in [16]. First it takes advantage of the
possible disjointness of the hitting set problem that might arise after simpli-
fication, and second it handles the case of weighted input clauses. It operates
on each disjoint subproblem by selecting input clauses with lowest weight over
degree. These clauses hit the most sets on a minimum cost per set basis. We
select enough such minimum average cost input clauses until the sum of their
degrees equals or exceeds the total number of sets to hit. However, in the case
of weighted clauses, we are only allowed to count part of the weight of the last
clause selected (line 8).

Proposition 2. Both H1 and H2 return a lower bound on the weight of the
minimum weight hitting set.

This proposition is easy to see for H1 and for H2 in the unweighted case. The
weighted case requires a bit more insight, but ultimately it also is not too difficult.

These two heuristics are incomparable. That is, on some problems H1 provides
a better bound than H2 and vice versa on other problems.

For example, let FC = {f1, f2, f3}, ic(FC) = {i1, i2, i3} (all unweighted),
where nbrs(i1) = {f1, f2}, nbrs(i2) = {f1, f3}, nbrs(i3) = {f2, f3}. Then H1 can
only pick a single element from FC for a LB of 1 while H2 can pick any two
elements from ic(FC) for a LB of 2.

Using Learnt Clauses in maxsat 185

On the other hand, let FC = {f1, f2, f3, f4, f5, f6}, ic(FC) = {i1, i2, i3} (all
unweighted), where nbrs(i1) = {f1, f2, f3}, nbrs(i2) = {f3, f4, f5}, and nbrs(i3)
= {f5, f6}. Then H1 can pick {f1, f4, f6} for a LB of 3 while H2 is forced to pick
{i1, i2} for a LB of 2.

Unfortunately both heuristics can yield arbitrarily bad approximations.

Theorem 3. For hitting set instance S, let H1(S) and H2(S) be the lower bounds
computed by the heuristics and minwtHS (S) be the weight of the minimum weight
hitting set forS. Then for any ε > 0, there existsS,S′ such that H1(S)/minwtHS (S)
≤ ε and H2(S′)/minwtHS (S′) ≤ ε

4.1 Integer Programming Connection

Recall from Section 3 that the quality of the lower bound on the minimum hitting
set dictates how soon we can backtrack from a non-optimal partial assignment.
Furthermore, by recomputing the lower bound at each node during backtrack2,
it also impacts how far we can backtrack (as long as LB ≥ UB). In light of this
and Theorem 3, it may be desirable to use more powerful techniques to compute
the exact value of the minimum hitting set at strategic points during search.
One way to do this is to encode the hitting set instance as an integer program
and solve it using a Mixed Integer Program (MIP) solver, such as CPLEX. A
standard encoding [19] of a hitting set instance with FC = {f1, ..., fn}, ic(FC) =
{i1, ..., im}, where wk is the weight of ik, maps FC to constraints and ic(FC) to
boolean variables as follows:

minimize:
m∑

k=1

wk·xk where :

for 1 ≤ j ≤n
∑

ik∈ic(fj)

xk ≥ 1

for 1 ≤ k ≤m xk ∈ {0, 1}

Because Integer Programming is itself NP-complete, the backtracking gains of
an exact solution to the minimum hitting set problem may be outweighed by the
overhead required to compute it, particularly for large instances. As a result, it
can be more practical to instead solve the linear programming relaxation, whose
solution is a valid lower bound on the minimum hitting set. To balance the
trade off between the quality of the minimum hitting set approximation and the
computational cost required, we employed the following strategy: first heuristics
H1 and H2 are computed and their maximum used as initial lower bound LB.
If LB < UB but LB/UB ≥ α, for some tuned parameter α, then the linear
program is solved. Finally, if this is still insufficient to exceed UB and if the size
of the hitting set problem is less than some other tuned parameter β, the integer
program is solved.
2 Note that it may not be sufficient to simply reuse the lower bound that was computed

the first time the node was reached, as additional learnt clauses may have been added

to the hitting set instance since then.

186 J. Davies, J. Cho, and F. Bacchus

5 Learning Clauses

It remains to consider how to generate the learnt clauses; we consider two meth-
ods. The first is to perform a preprocessing step to learn clauses during a relaxed
DPLL search where soft as well as hard clauses are involved in learning [8]. A
drawback to this approach is that the learnts may not be relevant to the sub-
sequent B&B search. For one thing, all soft unit clauses are satisfied during
relaxed DPLL but may have to be violated to find the optimum. As observed by
Kroc et al., we found that some maxsat problems are too easy to refute even
for relaxed DPLL, and in many cases few or no learnts can be generated this
way. Therefore, we developed techniques to generate learnts during the B&B of
a maxsat solver.

Soft Unit Propagation: At every node of the B&B search, unit propagation is
applied over the hard (with respect to the current UB) clauses to soundly reduce
the theory under the current prefix. If a hard conflict is found, we learn a hard
clause and backtrack as normal to the asserting level. Otherwise, as in [7], we
initialize a phase of soft unit propagation (SUP) with all soft clauses that are unit
or falsified under the current prefix. Soft propagation involves unit propagating
soft clauses as well as hard, so any literals set during the SUP phase must be
undone before continuing search with another decision. However, if a clause is
falsified during SUP, this conflict can be analyzed using standard techniques to
produce a learnt with the desirable property of being falsified under the current
prefix, before SUP. Thus it may contribute to increasing the hitting set lower
bound at the current node. Therefore, the learnts produced are immediately
relevant to the search, in contrast to those we obtained from the preprocessing
step. The learnt clause, together with its set of input clauses, is saved upon
backtrack and can be use in future search whenever it is falsified, to contribute
to the hitting set lower bound. The soft learnts also participate in future SUP
phases, so that soft learnts can be learned from others, contributing to the power
of these clauses to prune the search.

SUP continues to propagate and learn until no more new falsified clauses are
found. Thus many soft learnts can be produced at each node of the search, and we
update the lower bound after SUP is finished. However, it could be beneficial to
limit the amount of SUP learning performed at every node, or update the lower
bound with new learnts as soon as we expect to be able to exceed the upper
bound. The trade off between the strength of lower bound we can produce and
time spent learning will be a focus of future investigation.

Turning off clauses: SUP learning, if implemented as described above, can
produce duplicate learnts. Note that in our context, a learnt is only considered
a duplicate of another if their sets of input clauses are also the same, since
otherwise each can contribute to the lower bound under different circumstances
depending on the structure of the hitting set problem. In order to prevent du-
plicate learnts from creating overhead, we prevent them from being learnt in the
first place. This is achieved by “turning off” for SUP, one of the input clauses
of each existing falsified learnt, for the duration of time it remains falsified. A

Using Learnt Clauses in maxsat 187

turned-off input clause can’t be used to derive any more learnts, until it is turned
back on. Of course, this policy may reject new learnts that aren’t actually du-
plicates of an existing one. This is undesirable since it may reduce the strength
of the lower bound. To limit the negative impact on heuristics H1 and H2, we
always choose to turn off the min-weight input clause, or the one with largest
degree. We also consider turning off input clauses only at decision levels greater
than k and relying instead on a general scheme of learnt database reduction to
limit the number of learnts.

Similarly, when an input clause c is falsified by the current prefix, we turn off
all of the learnts it has derived. This prevents us from learning clauses that we
know can’t currently contribute to the lower bound. To see this, note that any
learnt we avoid deriving would have had c in its set of input clauses. Therefore,
while c is falsified, it would be used by the hitting set heuristics to cover all such
learnts, so the weight of the hitting set would not be increased by their presence.

Related lower bounds: If no clauses are turned off for SUP, and the exact
minimum weight hitting set is calculated for the lower bound, this technique sub-
sumes existing unit-propagation based bounds in the maxsat literature [12,7,21].
If we turn off clauses for SUP, our lower bound will be at least as good as the
disjoint-inconsistent sub-formulas bound [12], since the turned off input clause
from one inconsistent sub-formula does not need to be used to refute the others.

6 Empirical Study

We implemented these ideas on top of the SAT solver Minisat [4], to investigate
how they perform in practice. We incorporated the variable ordering heuristics
used by MiniMaxSat, as well as the natural extension of probing (aka failed
literal detection) to our clause learning framework [7]. We also use the Dominat-
ing Unit Clause rule to simplify the theory at each node [15]. Our experiments
were conducted on a subset of 378 instances from the previous MaxSAT Eval-
uations [2]. The instances were selected by identifying benchmark families in
which MiniMaxSat is unable to solve some instances, where our B&B solver can
outperform MiniMaxSat on at least some problems. We then selected particu-
lar families in order to represent all types (maxsat, partial maxsat etc.) and
some from each category (random, crafted, industrial). All experiments were
conducted on a dual-core 2GHz AMD Opteron processor with 3GB of RAM,
and all experiments were run with a 1200 second timeout.

H1 vs. H2: Our first set of experiments investigates the performance of the two
hitting set approximation heuristics, H1 and H2, in the context of providing a
lower bound during B&B search. We ran the B&B search with both heuristics
enabled, and used the maximum of the two as the lower bound. We counted
the number of times each of the two heuristics provided different bounds, and
calculated the relative amount by which the winner was better. The results over
the 226 instances that required at least 100 decisions to solve, are summarized
in Table 1. The first column specifies the heuristic that was used, either H1

188 J. Davies, J. Cho, and F. Bacchus

Table 1. Comparison of the H1 and H2 lower bounds during search. The ‘Freq’ column

refers to the percentage of all lower bounds calculated for which the heuristic gave the

larger bound, averaged over all instances. The ‘Size’ column gives the average factor by

which the bound was larger. The other columns give the average number of decisions,

average runtime, and number of instances solved.

LB Heuristic Freq Size Decisions Time (s) Num Solved

H1 50 1.15 36280 49 115

H2 6 1.09 40115 50 115

max(H1,H2) – – 36192 49 117

Table 2. Comparison of the H1 and CPLEX LP lower bounds during search. The

average number of decisions and runtime (over instances both methods solved), and

the number of instances solved is shown.

LB Heuristic Decisions Time (s) Num Solved

CPLEX LP 25296 48 105

H1 35059 15 115

Table 3. Comparison of MiniMaxSat and our B&B solver using the CPLEX ILP

lower bound

Year Type Name Optimum MiniMaxSat Our MiniMaxSat Our
Decisions Decisions Time (s) Time (s)

2007 wpms 8.wcsp.log 2 1 0 0.05 0.05
2007 wpms norm-mps-v2-20-10-stein15 9 2191970 0 3.8 0.07
2007 wpms norm-mps-v2-20-10-stein27 18 – 0 >1200 0.59
2007 wpms norm-mps-v2-20-10-stein9 5 230 0 0.12 0.14
2008 pms norm-fir01 area delay 5 14 0 0.14 0.12
2008 pms norm-fir02 area partials 19 38 0 0.16 0.06
2008 pms norm-fir04 area partials 30 13 0 0.12 0.6
2008 wms frb10-6-1 50 755 0 0.27 0.23
2008 wms frb10-6-2 50 678 0 0.13 0.26
2008 wms frb10-6-3 50 1302 0 0.13 0.23
2008 wms frb10-6-4 50 580 0 0.29 0.3
2008 wms frb15-9-1 120 387470 0 1.37 3.76
2008 wms frb15-9-2 120 206845 0 2.29 4.6
2008 wms frb15-9-4 120 199365 0 2.24 5.77
2008 wms frb15-9-5 120 271024 0 1.27 5.59
2009 wpms warehouse0.wcsp 328 46 0 0.11 0.12

or H2 alone, or their maximum. The second column shows the percentage of all
lower bounds calculated for which the one heuristic gave a larger bound than the
other (averaged over all instances). Whenever one heuristic gave a strictly larger
bound than the other, we measured the relative difference (e.g. H1/H2 if H1 was
the larger); the third column reports this averaged over all instances. The average
number of decisions and average runtime are shown in columns four and five,
over the 112 instances that were solved by all three methods. The total number of
instances solved using each method is included in the last column. These results
encourage us to use both lower bounds and take the maximum, since they are
both cheap to calculate and can solve more problems when combined.
H1 vs. CPLEX LP: We also consider the trade off between using our H1 heuris-
tic, and solving the linear program for the hitting set problem using CPLEX.

Using Learnt Clauses in maxsat 189

We expected that the dynamic addition and removal of variables and constraints
from the CPLEX model would limit the efficiency of this approach, and the re-
sults confirm that the added strength of the LP lower bound comes with the
price of greater computational cost. We ran our B&B solver with the H1 lower
bound alone, and then with only the CPLEX LP lower bound. Ninety-seven in-
stances were solved by both methods, and the results are shown in Table 2. We
see that by using the LP lower bound, we make 28% fewer decisions on average.
We found that the reduction in decisions can sometimes pay off in reduced run-
time, for 37 instances. However in the majority of cases, the LP bound increases
the runtime by an average of about 30%. In general, the extra computational
cost does not pay off, since using the stronger LP bound solves 10 fewer prob-
lems. These results confirmed our expectations, but demonstrate that a hybrid
approach, using the stronger bounds at judicious points during search to exceed
the UB, is a well-justified direction for future work.

Solving without search: Finally, we present some results that show the promis-
ing potential of our framework to allow stronger yet practical inference. As men-
tioned at the beginning of this section, we implemented a probing phase at the
root of the B&B search. For each literal, we force it to true and reduce the
theory with this assignment using first hard unit propagation, followed by SUP.
If a clause is falsified, we learn a unit or empty clause (associated with a set of
input clauses) and move on to probe the next literal. On some instances, the set
of clauses we learn during probing is strong enough that the lower bound will
equal a tight upper bound provided by one run of ubcsat [18]. This occurs on 16
problems, presented in Table 3. Note that we only report the cases where Mini-
MaxSat couldn’t solve the instance without search. Here, we have used CPLEX
to solve the ILP model and generate the lower bound, since the size of the hitting
set problem is sufficiently small.

7 Conclusions

We introduced an innovative approach for maxsat solving, with potential for
practical impact based on generating bounds from unrestricted clause learning
for maxsat. Although it may always be necessary to use a restricted version
on real problems, we argue that this framework provides new insight into how
strong lower bounds can be made practical, for example, by being smart about
which soft clauses we learn, or by approximating the minimum hitting set well.
In addition to these contributions, we present two heuristics for the weighted
hitting set problem, and show that this approach can be used effectively in a
novel context. Based on our preliminary implementation, we have discovered
that the primary challenge in bringing this technique to the state-of-the-art in
practical performance, will be to develop methods to learn the best clauses to
prune the search tree. This is the topic of ongoing research.

Acknowledgment. This work was supported by the National Research Council
of Canada.

190 J. Davies, J. Cho, and F. Bacchus

References

1. Ansótegui, C., Bonet, M.L., Levy, J.: Solving (weighted) partial maxsat through

satisfiability testing. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 427–

440. Springer, Heidelberg (2009)

2. Argelich, J., Li, C.M., Manyà, F., Planes, J.: The maxsat evaluations (2007–2009)

3. Bonet, M.L., Levy, J., Manyà, F.: A complete calculus for max-SAT. In: Biere, A.,

Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 240–251. Springer, Heidelberg

(2006)

4. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella,

A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)

5. Freuder, E., Wallace, R.: Partial constraint satisfaction. Artificial Intelligence

(AI) 58(1-3), 21–70 (1992)

6. de Givry, S., Larrosa, J., Meseguer, P., Schiex, T.: Solving max-SAT as weighted

csp. In: Rossi, F. (ed.) CP 2003. LNCS, vol. 2833, pp. 363–376. Springer, Heidelberg

(2003)

7. Heras, F., Larrosa, J., Oliveras, A.: MinimaxSAT: An efficient weighted max-sat

solver. Journal of Artificial Intelligence Research (JAIR) 31, 1–32 (2008)

8. Kroc, L., Sabharwal, A., Selman, B.: Relaxed dpll search for maxsat. In: Kullmann,

O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 447–452. Springer, Heidelberg (2009)

9. Larrosa, J., Heras, F.: Resolution in max-SAT and its relation to local consistency

in weighted csps. In: Proceedings of the International Joint Conference on Artifical

Intelligence (IJCAI). pp. 193–198 (2005)

10. Larrosa, J., Heras, F., de Givry, S.: A logical approach to efficient max-SAT solving.

Artificial Intelligence (AI) 172(2-3), 204–233 (2008)

11. Li, C.M., Manyà, F., Mohamedou, N., Planes, J.: Exploiting cycle structures

in max-SAT. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 467–480.

Springer, Heidelberg (2009)

12. Li, C.M., Manyà, F., Planes, J.: New inference rules for max-SAT. Journal of

Artificial Intelligence Research (JAIR) 30, 321–359 (2007)

13. Liffiton, M., Sakallah, K.: Generalizing core-guided max-SAT. In: Kullmann, O.

(ed.) SAT 2009. LNCS, vol. 5584, pp. 481–494. Springer, Heidelberg (2009)

14. Manquinho, V., Marques-Silva, J., Planes, J.: Algorithms for weighted boolean

optimization. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 495–508.

Springer, Heidelberg (2009)

15. Niedermeier, R., Rossmanith, P.: New upper bounds for maximum satisfiability.

Journal of Algorithms 36, 63–88 (2000)

16. Petit, T., Bessière, C., Régin, J.C.: A general conflict-set based framework for

partial constraint satisfaction. In: 5th Workshop on Soft Constraints (Soft 2003),

Kinsale, Ireland (2003)

17. Schiex, T., Fargier, H., Verfaillie, G.: Valued constraint satisfaction problems: Hard

and easy problems. In: Proceedings of the International Joint Conference on Ar-

tifical Intelligence (IJCAI), pp. 631–639 (1995)

18. Tompkins, D., Hoos, H.: Ubcsat: An implementation and experimentation environ-

ment for sls algorithms for SAT and max-SAT. In: Hoos, H., Mitchell, D.G. (eds.)

SAT 2004. LNCS, vol. 3542, pp. 306–320. Springer, Heidelberg (2005)

19. Vazirani, V.: Approximation algorithms. Springer, Heidelberg (2001)

20. Weihe, K.: Covering trains by stations or the power of data reduction. In: Proceed-

ings of Algorithms and Experiments (ALEX 1998), pp. 1–8 (1998)

21. Xing, Z., Zhang, W.: Maxsolver: An efficient exact algorithm for (weighted) max-

imum satisfiability. Artificial Intelligence (AI) 164, 47–80 (2005)

Domain Consistency with Forbidden Values

Yves Deville1 and Pascal Van Hentenryck2

1 Université catholique de Louvain
yves.deville@uclouvain.be

2 Brown University
pvh@cs.brown.edu

Abstract. This paper presents a novel domain-consistency algorithm which does
not maintain supports dynamically during propagation, but rather maintain for-
bidden values. It introduces the optimal NAC4 (negative AC4) algorithm based
on this idea. It further shows that maintaining forbidden values dynamically al-
lows the generic algorithm AC5 to achieve domain consistency in time O(ed)

for classes of constraints in which the number of supports is O(d2) but the num-
ber of forbidden values is O(d). The paper also shows how forbidden values and
supports can be used jointly to achieve domain consistency on logical combina-
tions of constraints and to compute validity as well as entailment of constraints.
Experimental results show the benefits of the joint exploitation of supports and
forbidden values.

1 Introduction

In constraint programming, propagation aims at reducing the search space without re-
moving solutions. The propagation algorithm considers each constraint individually and
terminates when no constraint can be used to reduce the domains of the variables. The
ideal propagation for a constraint is domain consistency, also known as arc consistency:
It removes from the domain of each variable all values that do not belong to a solution
of the considered constraint. Many algorithms have been proposed for achieving do-
main consistency, such as AC3, AC4, AC6, AC7 and AC2001 (see [1]). Consistency
algorithms typically use the concept of support. For a binary constraint x over variables
x and y, a support for a pair (x, a), where a is a possible value for x, is a pair (y, b) such
thatC(x/a, y/b) holds. The optimal time complexity to achieve domain consistency for
a CSP is O(e.d2) for binary constraints and O(e.r.dr) for non-binary constraints (d is
the size of the largest domain, e the number of constraints and r the largest arity of the
constraints). An algorithm such as AC4 maintains all the supports for all pairs (x, a),
while other algorithms (e.g., AC6) only maintain a single support and search for subse-
quent supports on demand. AC4 works in two steps. First, it computes all the supports
for all the variable/value pairs in each constraint. Then, it propagates the removal of a
value a from the domain of a variable x. An interesting property of the propagation step
is that its time complexity is proportional to the total number of supports.

Example 1. Consider the constraint x = y mod 10, with D(x) = {0..9} and D(y) =
{0..99}, the size of the supports for x is linear (O(#D(y)), where #A is the size of A).
The propagation step of AC4 for this constraint is also linear, while it remains quadratic
for other optimal AC algorithms such as AC6, AC7, or AC2001.

D. Cohen (Ed.): CP 2010, LNCS 6308, pp. 191–205, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

192 Y. Deville and P. Van Hentenryck

Of course, the initialization step of AC4, which computes all the supports, is O(d2)
even if the number of supports is O(d), since the algorithm has no knowledge of the
semantics of the constraint. The generic AC5 algorithm [2] was designed to exploit
the semantics of the constraints, and can then be used to generate the supports of such
constraints in linear time, resulting in an O(ed) complexity.

The scientific question addressed in this paper is the following: Is it possible to de-
sign a domain-consistency algorithm running in time O(ed) if the number of supports
is quadratic, but the number of forbidden values (also called conflict set) is linear?

Example 2. Consider the constraint x �= y mod 10, with D(x) = {0..9} and D(y) =
{0..99}. The size of the supports for x is 900, hence a complexity ofO(#D(x).#D(y))
in the propagation step of AC4. Using AC3, AC7 or AC2001 does not help to reduce
this complexity. However, the size of the forbidden values is 100 (O(#D(y))). Can
we use an AC4-like algorithm that maintains the list of forbidden values instead of the
supports to obtain an O(ed) algorithm?

This paper answers this question positively and makes the following contributions:

– It proposes the NAC4 algorithm (Negative AC4) that achieves the optimal O(e.d2)
time complexity for binary CSPs, but dynamically maintains the set of forbidden
values instead of supports. It shows that both AC4 and NAC4 are instances of the
generic AC5 algorithm: they can be combined naturally in a single constraint solver
and AC5 can exploit the constraint semantics to obtain higher efficiency. NAC4 is
also generalized for non-binary CSPs.

– It identifies classes of constraints for which domain consistency can be achieved in
linear time.

– It demonstrates how the combination AC4/NAC4 can achieve domain consistency
on logical combinations of constraints over the same variables.

– It shows that the combination of AC4/NAC4 can easily be extended to provide
methods assessing the validity and the entailment of a constraint.

– It presents experimental results showing the benefits of the combination AC4/NAC4.

Related Work. The idea of using forbidden values is not new in CP: what is novel in
this paper is that NAC4 maintains the set of forbidden values dynamically during the
propagation. References [3,4] use negative table constraints, where the table describes
the set of forbidden tuples. The negative table is used to find the next support of a value
by means of binary search; it is static however and not updated during propagation.
Lecoutre [5] showed that (x, a) has a support for a constraint c(x, y) if the size of D(y)
is strictly superior to the size of the initial conflict set of (x, a). This idea is integrated in
a coarse-grained algorithm. Once again, the size of the conflict set is not updated during
the computation. The same idea is also proposed as a support condition in [6].

The consistency of a combination of constraints has been handled in different ways.
Some approaches achieve domain consistency, which is NP-hard in general. A domain-
consistency algorithm, based on AC7, was proposed in [7] for the conjunction of con-
straints. Lhomme [8] describes a domain-consistency algorithm for any combination
of constraints. It focuses primarily on constraints given in extension. Forbidden tu-
ples are used once again through a static negative table. Other approaches compute an

Domain Consistency with Forbidden Values 193

approximation of domain consistency, such as in [9] (cardinality), [10] (constructive
disjunction), or [11] which provides an algebra for combining constraints.

2 AC5

This section revisits the generic AC5 algorithm [2], generalizing it slightly to accom-
modate AC4, AC6, and AC2001 as instantiations.

Definition 1 (CSP). A binary CSP (X ,D(X),C) is composed of a set of n variables
X = {x1, . . . ,xn}, a set of domainsD(X) = {D(x1), . . . ,D(xn)} where D(x) is the
set of possible values for variable x, and a set of binary constraints C = {c1, . . . , ce},
with V ars(ci) ⊆ X (1 ≤ i ≤ e). We denote d = max1≤i≤n(#D(x)).

Let c be a constraint with V ars(c) = {x, y}, a ∈ D(x), b ∈ D(y). c(x/a, y/b) or
c(y/b,x/a) denote the constraint where variables x and y have been replaced by the
values a and b. We assume that testing c(x/a, y/b) takes O(1) time. If c(x/a, y/b)
holds, then (x/a, y/b) is called a support of c and (y, b) is a support for (x, a) on c. If
c(x/a, y/b) does not hold, then (x/a, y/b) is called a conflict of c and (y, b) is a conflict
(or forbidden value) for (x, a) on c.

Definition 2. Let c be a constraint with V ars(c) = {x, y}. The set of inconsistent,
consistent, and valid values for x in c wrt a set of values B are defined as follows:

Inc(c,x,B)= {(x, a)| a ∈ D(x) ∧ ∀b ∈ B : ¬c(x/a, y/b)}
Cons(c,x,B)= {(x, a)| a ∈ D(x) ∧ ∃b ∈ B : c(x/a, y/b)}
V alid(c,x,B)= {(x, a)| a ∈ D(x) ∧ ∀b ∈ B : c(x/a, y/b)}

We use Inc(c,x) to denote Inc(c,x,D(y)) and similarly for the other sets.

Definition 3 (Domain Consistency). A constraint c over {x, y} is domain-consistent
wrt D(X) iff Inc(c,x) = ∅ and Inc(c, y) = ∅. A CSP (X ,D(X),C) is domain-
consistent iff all its constraints are domain-consistent wrt D(X).

Specification 1 describes the principal methods used by AC5. The AC5 algorithm uses a
queueQ of triplets (c,x, a) stating that the domain consistency of constraint c should be
reconsidered because value a has been removed from D(x). When a value is removed
from a domain, the method enqueue puts the necessary information on the queue. In
the postcondition, Qo represents the value of Q at call time. The parameter C1 allows
us to consider a subset of constraints, which will be necessary in the initialization. As
long as (c,x, a) is in the queue, it is algorithmically desirable to consider that value a
is still in D(x) from the perspective of constraint c. This is captured by the following
definition.

Definition 4. The local view of a domain D(x) wrt a queue Q for a constraint c is
defined as D(x,Q, c) = D(x) ∪ {a|(c,x, a) ∈ Q}.

Example 3. Given a queue Q = {(c1, y, 2), (c1, z, 2), (c2, y, 3)} and domains D(x) =
{1, 2}, D(y) = D(z) = {1}, then D(x,Q, c1) = D(y,Q, c1) = D(z,Q, c1) = {1, 2}.

194 Y. Deville and P. Van Hentenryck

1 enqueue(in x: Variable;in a: Value;in C1: Set of Constraints;
2 inout Q: Queue)
3 // Pre: x ∈ X , a /∈ D(x) and C1 ⊆ C
4 // Post: Q = Q0 ∪ {(c, x , a)|c ∈ C1, x ∈ V ars(c)}
5

6 post(in c: Constraint;out �: Set of Values)
7 // Pre: c ∈ C with Vars(c) = {x , y}
8 // Post: � = Inc(c, x) ∪ Inc(c, y) + initialization of specific data structures
9

10 boolean valRemove(in c: Constraint;in y: Variable; in b: Value;
11 out �: Set of Values)
12 // Pre: c ∈ C, V ars(c) = {x , y} , b /∈ D(y , Q, c)
13 // Post: �1 ⊆ � ⊆ �2 with �1 = Inc(c, x , D(y , Q, c)) ∩ Cons(c, x , {b})
14 // and �2 = Inc(c, x)

Specification 1. The enqueue, post, and valRemove Methods for AC5

The central method of the AC5 algorithm is the valRemove method, where the set�
(called the delta-set in the folklore of CP due the use of the letter� in the original AC5
description) is the set of values no longer supported because of the removal of value b
in D(y). In this specification, b is a value that is no longer in D(y) and valRemove
computes the values (x, a) no longer supported because of the removal of b from D(y).
Note that values in the queue (for variable y) are still considered in the potential sup-
ports as their removal has not yet been reflected in this constraint. We also restrict our
attention to values that had the value b in their support (i.e., (x, a) ∈ Cons(c,x, {b})).
However, we leave valRemove the possibility of achieving more pruning (�2), which
is useful for monotonic constraints [2].

The AC5 algorithm is depicted in Algorithm 1. Function propagateQueueAC5
applies valRemove on each element of the queue until the queue is empty. Function
initAC5 initializes the queue. Function post(c,�) computes the inconsistent val-
ues of the constraint c. If it removes values in some domains, only the already posted
constraints are considered by the enqueue call. The constraints not yet posted are
not concerned by such removals as they will directly use the current domain of the
variables upon posting. The post call typically initializes some data structures to be
used in valRemove. With a slight generalization of the specifications of post and
valRemove, the AC5 algorithm also handles non-binary constraints. AC5 is generic
because the implementation of post and valRemove is left open. Different con-
straints may have their own implementation of these functions. This allows AC5 to
combine, in a single framework, different algorithms such as AC4, AC6, AC7, and
AC2001 and to exploit the semantics of the constraints for achieving a better efficiency.

Proposition 1. Assuming a correct implementation of post and valRemove, AC5 is
correct wrt its specification.

In AC5, an element (c,x, a) can be put in the queue only once. The size of the queue is
thus O(e.r.d) for non-binary CSPs and O(e.d) for binary CSPs. The number of execu-
tions of valRemove is also bounded by O(e.r.d).

Domain Consistency with Forbidden Values 195

1 AC5(in X, C, inout D(X)){
2 // Pre: (X , D(X), C) is a CSP
3 // Post: D(X) ⊆ D(X)0, (X , D(X), C) equivalent to (X , D(X)0, C)
4 // (X , D(X), C) is domain consistent
5 initAC5(Q);
6 propagateQueueAC5(Q);
7 }

8 initAC5(out Q){
9 Q = ∅;

10 C1 = ∅;
11 forall(c in C){
12 C1 += c;
13 post(c,�);
14 forall((x, a) in �){
15 D(x) -= a;
16 enqueue(x, a,C1,Q);
17 }
18 }
19 }

20 propagateQueueAC5(in Q){
21 while Q != ∅ {
22 select((c, y, b) in Q) {
23 Q = Q - (c, y, b);
24 valRemove(c, y, b,�);
25 forall((x, a) in �){
26 D(x) -= a;
27 enqueue(x, a,C,Q);
28 }
29 }
30 }
31 }

Algorithm 1. The AC5 Algorithm

Proposition 2. For binary CSPs, if the time complexity of post is O(d2), and the time
complexity of valRemove is O(d), then the time complexity of AC5 is the optimal
O(e.d2). If the time complexity of post is O(d) and the amortized time complexity of
all the executions of valRemove for each constraint is O(d) (e.g., time complexity of
valRemove is O(�)), then the time and space complexity of AC5 is O(e.d).

We now present AC4 as an instantiation of AC5 by giving the implementation of post
and valRemove (Algorithm 2). valRemoveAC4 uses a data structure S to record
the supports of each value in the different constraints. It is initialized in postAC4 and
satisfies the following invariant at line 21 of Algorithm 1 (AC5).

Let c ∈ C with V ars(c) = {x, y}:

(1.x) ∀a ∈ D(x,Q, c)) : S[x, a, c] = {b ∈ D(y,Q, c)|c(x/a, y/b)}
(2.x) ∀a ∈ D(x) : S[x, a, c] �= ∅

And similarly for y. This invariant ensures the correctness of valRemoveAC4. After
calling postAC4, we also have

∑
a∈D(x) #S[x, a, c] =

∑
b∈D(y) #S[y, b, c] which is

O(d2). The size of the data structure is O(e.d2).

3 NAC4

NAC4 (Negative AC4), another instance of AC5, is based on forbidden values that are
dynamically maintained during the propagation. By NAC4, we mean the AC5 algorithm
with the postNAC4 and valRemoveNAC4 methods depicted in Algorithms 3 and 4.

196 Y. Deville and P. Van Hentenryck

1 postAC4(in c: Constraint;out �: Set of Values) {
2 // Pre: c ∈ C with Vars(c) = {x , y}
3 // Post: � = Inc(c, x) ∪ Inc(c, y) + initialization of the S data structure
4 post_varAC4(c, x, �1);
5 post_varAC4(c, y, �2);
6 � = �1 ∪�2;
7 }
8 post_varAC4(in c: Constraint;in x: Variable;out �: Set of Values) {
9 � = ∅;

10 forall(a in D(x)){
11 S[x , a, c] = ∅;
12 forall(b in D(y) : c(x/a, y/b))
13 S[x , a, c] += b ;
14 if (S[x , a, c]==∅)
15 � += (x , a) ;
16 }
17 }
18 valRemoveAC4(in c: Constraint;in y: Variable;in b: Value;
19 out �: Set of Values) {
20 // Pre: c ∈ C, V ars(c) = {x , y} , b /∈ D(y , Q, c)
21 // Post: � = Inc(c, x , D(y , Q, c)) ∩ Cons(c, x , {b})
22 � = ∅;
23 forall(a in S[y , b, c]) {
24 S[x , a, c] -= b ;
25 if (S[x , a, c]==∅ & a in D(x))
26 � += (x , a) ;
27 }
28 }

Algorithm 2. The post and valRemove Methods for AC4

NAC4 uses a data structure F to record the forbidden values for each value in the
different constraints. For a constraint c over x, y, the basic idea is that the value a
should be removed from D(x) as soon as the set of forbidden values for (x, a) and
the set D(y) are the same. This check can be performed efficiently by (1) reason-
ing about the sizes of the set of forbidden values for (x, a) and the set D(y), (2) us-
ing a data structure sorting the conflict sets by size, and (3) recording the size of the
local view of the domains. These data structures are initialized in postNAC4 and
updated in valRemoveNAC4. The data structure F [x, a, c] denotes the set of for-
bidden values for (x, a) and c, setOfSize[x, k, c] denotes the set of values b such
that #F [x, b, c] = k, and localSize[x, c] denotes the size of the local view of do-
main D(x). valRemoveNAC4 first updates the size of the local view of D(y) and
removes b from the setOfSize data structure for variable y (lines 5–7). It then updates
the set of forbidden values and setOfSize for each pair (x, a) ∈ F [y, b, c] (lines 8–
13). Finally, it removes the values which are no longer supported, i.e., those values in
setOfSize[x, s, c] ∩D(x), where s is the local size of D(y) (lines 14–18).

The data structures satisfy the following invariant at line 21 of Algorithm 1 (AC5).
Let c ∈ C with V ars(c) = {x, y}:

Domain Consistency with Forbidden Values 197

(3.x) ∀a ∈ D(x,Q, c) : F [x, a, c] = {b ∈ D(y,Q, c)|¬c(x/a, y/b)}
(4.x) ∀a ∈ D(x) : F [x, a, c] ⊂ D(y,Q, c)
(5.x) setOfSize[x, k, c]={a∈D(x,Q, c))|#F [x, a, c]=k}(0≤ k ≤#D(y,Q, c))
(6.x) localSize[x, c] = #D(x,Q, c)

and similarly for y. From these invariants, we have that F [x, a, c] ⊆ D(y,Q, c) at line
24 and the value a must be removed from D(x) if F [x, a, c] = D(y,Q, c). Hence, if
s = localSize[y, c], the algorithm must remove the values in setOfSize[x, s, c] from
D(x). These invariants ensure the correctness of valRemoveNAC4.

The size of the data structure is O(e.d2). In the pruning of the postNAC4 method,
the local view of the size of domain D(y) is #D(y) since the queue does not contain
element of the form (x, ., c). The complexity of postNAC4 is O(d2) and the complex-
ity of valRemoveNAC4 is O(d). Hence, by Property 2, the overall time complexity
of NAC4 is O(e.d2), which has been shown to be the optimal complexity for achieving
domain consistency on binary CSPs.

Example 4. We illustrate NAC4 on the following CSP:
c1(x, y) = {(1, 4), (1, 5), (2, 2), (2, 5), (3, 1), (3, 3), (3, 4)}, c2 : y �= 4, c3 : y �= 5,
D(x) = {1, 2, 3}, and D(y) = {1, 2, 3, 4, 5}. The execution of postNAC4(c1,�)
yields� = ∅ and fills the data structures as follows:

F [x, 1, c1] = {1, 2, 3} F [y, 1, c1] = {1, 2}
F [x, 2, c1] = {1, 3, 4} F [y, 2, c1] = {1, 3}
F [x, 3, c1] = {2, 5} F [y, 3, c1] = {1, 2}

F [y, 4, c1] = {2}
F [y, 5, c1] = {3}

setOfSize[x, 1, c1] = ∅ setOfSize[y, 1, c1] = {4, 5}
setOfSize[x, 2, c1] = {3} setOfSize[y, 2, c1] = {1, 2, 3}
setOfSize[x, 3, c1] = {1, 2} setOfSize[y, 3, c1] = ∅
setOfSize[x, 4, c1] = ∅
setOfSize[x, 5, c1] = ∅
localSize[x, c1] = 3 localSize[y, c1] = 5

postNAC4(c2,�) returns� = {(y, 4)} and postNAC4(c3,�) yields� = {(y, 5)},
giving Q = {(c1, y, 4), (c1, y, 5)}, D(x) = {1, 2, 3}, and D(y) = {1, 2, 3}. Method
valRemoveNAC4(c1, y, 4,�) updates the following variables:

F [x, 2, c1] = {1, 3}
setOfSize[x, 3, c1] = {1}
setOfSize[x, 2, c1] = {2, 3}
localSize[y, c1] = 4
setOfSize[y, 1, c1] = {5}

198 Y. Deville and P. Van Hentenryck

1 postNAC4(in c: Constraint;out �: Set of Values) {
2 // Pre: c ∈ C with Vars(c) = {x , y}
3 // Post: � = Inc(c, x) ∪ Inc(c, y)
4 // + initialization of the F, setOfSize and localSize data structures
5 post_varNAC4(c,x,�1);
6 post_varNAC4(c,y,�2);
7 localSize[x , c] = #D(x);
8 localSize[y , c] = #D(y);
9 � = �1 ∪�2;

10 }
11 post_varNAC4(in c: Constraint;in x: Variable;out �: Set of Values) {
12 � = ∅;
13 forall(k in 0..#D(y))
14 setOfSize[x , k , c] = ∅;
15 forall(a in D(x)){
16 F[x , a, c] = ∅;
17 forall(b in D(y) : ¬c(x/a, y/b))
18 F[x , a, c] += b ;
19 k = #F[x , a, c];
20 setOfSize[x , k , c]) += a;
21 if (k==#D(y))
22 � += (x , a) ;
23 }
24 }

Algorithm 3. The post Algorithm for NAC4

Since setOfSize[x, 4, c1] = ∅, � = ∅, Q = {(c1, y, 5)}, D(x) = {1, 2, 3}, and
D(y) = {1, 2, 3}. valRemoveNAC4(c1, y, 5,�) updates the following variables:

F [x, 3, c1] = {2}
setOfSize[x, 2, c1] = {2}
setOfSize[x, 1, c1] = {3}
localSize[y, c1] = 3
setOfSize[y, 1, c1] = ∅

Since setOfSize[x, 3, c1] = {1}, � = {(x, 1)}, Q = {(c1,x, 1)}, D(x) = {2, 3},
and D(y) = {1, 2, 3}. valRemoveNAC4(c1,x, 1,�) updates the following variables:

F [y, 1, c1] = {2}
F [y, 2, c1] = {3}
F [y, 3, c1] = {2}
setOfSize[y, 2, c1] = ∅
setOfSize[y, 1, c1] = {1, 2, 3}
localSize[x, c1] = 2
setOfSize[x, 3, c1] = ∅

The domains are finally D(x) = {2, 3} and D(y) = {1, 2, 3}.

Proposition 3. Let c ∈ C over {x, y}. Invariants (3-6.x-y) hold at line 21 of AC5.

Proposition 4. NAC4 is correct and its time and space complexity is O(e.d2).

Domain Consistency with Forbidden Values 199

1 valRemoveNAC4(in c: Constraint;in y: Variable;in b: Value,
2 out �: Set of Values) {
3 // Pre: c ∈ C, V ars(c) = {x, y} , b /∈ D(y, Q, c)
4 // Post: � = Inc(c, x, D(y, Q, c)) ∩ Cons(c, x, {b})
5 localSize[y, c]-- ;
6 k = #F[y, b, c];
7 setOfSize[y, k, c] -= b;
8 forall(a in F[y, b, c]){
9 F[x, a, c] -= b ;

10 k = #F[x, a, c];
11 setOfSize[x, k + 1, c] -= a;
12 setOfSize[x, k, c] += a;
13 }
14 � = ∅;
15 s = localSize[y, c];
16 forall(a in setOfSize[x, s, c] : a in D(x))
17 � += (x, a);
18 }

Algorithm 4. The valRemove method for NAC4

4 Applications

We now review a variety of applications of the principles of maintaining forbidden
values.

Sparse AC Constraints. As two instances of AC5, AC4 and NAC4 can be combined,
each constraint implementing its AC4 or NAC4 version of the post and valRemove
methods. This will be denoted AC5(AC4,NAC4). A nice property of AC5(AC4,NAC4)
is that the amortized complexity of all the executions of valRemoveAC4 or
valRemoveNAC4 for a constraint is bounded by the number of elements in the data
structure S or F in this constraint. We then obtain the following specialization of
Proposition 2.

Proposition 5. If a specialization of postAC4 or postNAC4 exploiting the constraint
semantics runs in time O(K) for each constraint of a binary CSP, then the time and
space complexity of AC5(AC4,NAC4) is O(e.K).

As a particular case, if S or F can be filled in O(d), a domain-consistency algorithm
runs in time O(e.d), as formalized by the following class of constraints.

Definition 5. A constraint c with V ars(c) = {x, y} is positively sparse wrt a domain
D iff #{(a, b) ∈ D2|c(x/a, y/b)} is O(#D). The constraint c is negatively sparse wrt
D iff ¬c is positively sparse wrt D.

Example 5. Examples of positively and negatively sparse constraints are bijective con-
straints (x + y = k, where k is a constant), anti-bijective constraints (x + y �= k),

200 Y. Deville and P. Van Hentenryck

functional constraints (x = |y − k| or x = y mod k), anti-functional constraints
(x �= |y − k| or x �= y mod k), but also include non (anti-)functional constraints such
as |x− y| = k and |x− y| �= k. One can also consider congruence constraints, such as
(x+ y) mod k = 0 and (x+ y) mod k �= 0 which are sparse when k is O(d).

Thanks to the genericity of AC5, we can exploit the semantics of the constraints in a
specific postAC4 method for positively sparse constraints and a specific postNAC4
method for negatively sparse constraints to fill the data structure S or F in O(d) and
obtain a time complexity of O(d).

Proposition 6. For positively and negatively sparse constraints, AC5(AC4,NAC4) can
run within a space and time complexity of O(e.d).

Combining Constraints on the same Variables. Consider now a constraint c over
{x, y} defined as a boolean combination of constraints {c1, . . . , ck} on the same vari-
ables and assume for simplicity that the number of logical connectors is bounded by k.
The constraint c can be posted in AC5(AC4,NAC4) with a complexity of O(k.d2). The
propagation step on this constraint to achieve domain consistency will then run in time
O(K), where K is the number of supports.

Example 6. Consider the constraint c ≡ (c1 ∧ c2) ∨ (c3 ∧ c4) where c1 ≡ x �= |y − 2|,
c2 ≡ y − 1 �= x mod 2, c3 ≡ x = |y − 1|, c4 ≡ |x− 2| = y, with D(x) = {0, 1} and
D(y) = {1, 2}. Each constraint ci is domain-consistent, but neither c1 ∧ c2 nor c3 ∧ c4
are. Applying AC4 (or NAC4) on c will detect an inconsistency.

In some cases, such as in the above example, it is possible to achieve a better complexity
by exploiting both supports and forbidden values. They key idea is that each constraint
ci should use either supports or forbidden values depending on its semantics. Then the
individual constraints are combined through logical operators which use the supports
and forbidden values to compute their own supports or forbidden values recursively.
Table 1 depicts the rules to combine constraints and to compute a data structure S or F
for the variables x and y according to the data structure maintained in the subexpres-
sions. The rules are given for variable x but are similar for y. A constraint ci using an S
(resp. F) data structure will be denoted c+i (resp. c−i). If the post method applies these
rules on c, then the resulting algorithm achieves domain consistency. There is no time
or space overhead as all the operations in Table 1 can be performed in time s1 + s2,
where si is the size of the data structure (S or F) for ci. As a particular case, if the time
complexity to post each ci is O(d) (e.g. functional or anti-functional constraint), the
time and space complexity of the post constraint for c is O(k.d).

Proposition 7. Given a set of binary constraintsC and a binary constraint c expressed
as logic combination of constraints c1, . . . , ck with V ars(c) = V ars(ci) (1 ≤ i ≤ k),
if the post method for c applies the rules of Table 1, then the resulting AC5(AC4,NAC4)
algorithm on C ∪ {c} achieves domain consistency. If the time complexity of the post
methods of the constraints in C ∪ {c1, . . . , ck} is O(d), then the time and space com-
plexity of AC5(AC4,NAC4) applied on C ∪ {c} is O((e + k).d), with e = #C.

Domain Consistency with Forbidden Values 201

Table 1. Rules for Combining c1(x, y) and c2(x, y)

c− ≡ ¬c+
1 F [x, a, c] = S[x, a, c1]

c+ ≡ ¬c−1 S[x, a, c] = F [x,a, c1]

c+ ≡ c+
1 ∧ c+

2 S[x, a, c] = S[x, a, c1] ∩ S[x, a, c2]

c− ≡ c−1 ∧ c−2 F [x, a, c] = F [x,a, c1] ∪ F [x,a, c2]

c+ ≡ c+
1 ∧ c−2 S[x, a, c] = S[x, a, c1] \ F [x, a, c2]

c+ ≡ c+
1 ∨ c+

2 S[x, a, c] = S[x, a, c1] ∪ S[x, a, c2]

c− ≡ c−1 ∨ c−2 F [x, a, c] = F [x,a, c1] ∩ F [x,a, c2]

c− ≡ c+
1 ∨ c−2 F [x, a, c] = F [x,a, c2] \ S[x, a, c1]

1 Boolean isValid(in c: Constraint, in x: Variable, in a: Value)
2 // Pre: c ∈ C, V ars(c) = {x , y}, a ∈ D(x), D(y) �= ∅
3 // Post: return true iff (x , a) ∈ Valid(c, x , D(y , Q, c))
4 Boolean isEntailed(in c: Constraint)
5 // Pre: c ∈ C with V ars(c) = {x , y}, D(x) �= ∅, D(y) �= ∅
6 // Post: return true iff ∀a ∈ D(x) : (x , a) ∈ Valid(c, x , D(y , Q, c))

Specification 2. The isValid and isEntailed Methods

Validity and Entailment. AC5(AC4,NAC4) can be extended to support the isValid
and isEntailed methods (Specification 2). In AC4, a value (x, a) is detected to
be valid in c if the size of S[x, a, c] is #D(y,Q, c). AC4 should then maintain the
setOfSize and localSize data structures of NAC4. In NAC4, a value (x, a) is detected
to be valid in c if F [x, a, c] is empty. The invariant of the data structures for both AC4
and NAC4 would then be (1-6.x-y). The theoretical complexity of AC5(AC4,NAC4) is
unchanged, while the practical complexity is roughly doubled. AC4 and NAC4 would
keep the number of valid values for each constraint c. If the valid values for x in c
reaches #D(x,Q, c), then the constraint is known to be entailed (assuming the domains
are non empty). We could also easily extend the post and valRemove methods to
post(c,�−,�+) and valRemove(c,y,b,�−,�+), where the extra argument�+ re-
turns the set of new valid values, defined as

�+ = V alid(c,x) ∪ V alid(c, y)

for post, and
�+ = V alid(c,x,D(y,Q, c)) ∩ Inc(c, y, {b})

for valRemove. These extended domain consistency algorithms are useful for con-
straint combinators, reification and in an Ask & Tell framework.

Combining Constraints on Different Variables. Achieving domain consistency on a
combination of (binary) constraints on different variables is an NP-hard problem. An
approximation of domain consistency can be achieved by using the framework proposed
in [11], where primitive constraints produce not only the inconsistent values but also the
valid ones. Our extended AC5(AC4,NAC4) can be used for combining constraints using
the proposed algebra.

202 Y. Deville and P. Van Hentenryck

5 GNAC4: NAC4 for Non-binary Constraints

This section extends NAC4 to non-binary constraints. It is specified by methods
postGNAC4 and valRemoveGNAC4 specified in Algorithms 5 and 6. A tuple or vec-
tor (v1, . . . , vn) is denoted by v and v[xi] denotes the value vi. We denote D(X)xi=a

the set of tuples v in D(X) with v[xi] = a. Let Y = {x1, . . . ,xk} ⊆ X . The set of
tuples in D(x1)× . . .×D(xk) is denoted D(Y).

Definition 6. Let c be a constraint with x, y ∈ V ars(c), and D(X) ⊆ B(X)

Inc(c,x,B(X))= {(x, a)| a ∈ D(x) ∧ ∀v ∈ B(V ars(c))x=a : ¬c(v)}
Cons(c,x, y, b)= {(x, a)| a ∈ D(x) ∧ ∃v : v[x] = a ∧ v[y] = b ∧ c(v)}.

We define Inc(c,B(X))=
⋃

x∈V ars(c) Inc(c,x,B(X)) and similarly forCons(c, y, b).

The data structure F is generalized and satisfies the following invariant at line 21 of
Algorithm 1 (AC5). Let c ∈ C with x ∈ V ars(c):

(3′.x) ∀a ∈ D(x,Q, c) : F [x, a, c] = {v ∈ D(V ars(c),Q, c)x=a|¬c(v)}
(4′.x) ∀a ∈ D(x) : F [x, a, c] ⊂ D(V ars(c),Q, c)x=a

(5′.x) setOfSize[x, k, c] = {a ∈ D(x,Q, c))|#F [x, a, c] = k}
(6′.x) localSize[x, c] = #D(x,Q, c)

and similarly for the other variables of c. The time complexity of postGNAC4 is
O(r.dr). The time complexity of valRemoveNGAC4 isO(r.dr−1). However, an amor-
tized analysis of GAC4 shows that each element in F can only be removed once, hence
a global complexity of O(e.r.dr) for all the executions of valRemoveGNAC4. The
complexity of GNAC4 is thus the optimal O(e.r.dr).

1 postGNAC4(in c: Constraint;out �: Set of Values) {
2 // Pre: c ∈ C
3 // Post: � = Inc(c)
4 // + initialization of the F, setOfSize and localSize data structures
5 forall(x in Vars(c), k in 1..#D(Vars(c) \ {x}))
6 setOfSize[x, k, c] = ∅;
7 forall(x in Vars(c), a in D(x)) F[x, a, c] = ∅ ;
8 forall(v in D(Vars(c)): ¬c(v))
9 forall(x in Vars(c))

10 F[x, v[x], c] += v;
11 � = ∅;
12 forall(x in Vars(c), a in D(x)){
13 k = #F[x, a, c];
14 setOfSize[x, k, c]) += a;
15 if (k==#D(Vars(c) \ {x}))
16 � += (x, a) ;
17 }
18 }

Algorithm 5. The post Method for GNAC4

Domain Consistency with Forbidden Values 203

1 valRemoveGNAC4(in c: Constraint;in y: Variable;in b: Value,
2 out �: Set of Values) {
3 // Pre: c ∈ C, y ∈ Vars(c) , b /∈ D(y, Q, c)
4 // Post: � = Inc(c, D(X, Q, c)) ∩ Cons(c, y, b)
5 localSize[y, c]-- ;
6 k = #F[y, b, c];
7 setOfSize[y, k, c]) -= b;
8 forall(v in F[y, b, c]){
9 forall(x in Vars(c) \ {y}){

10 a = v[x];
11 F[x, a, c] -= v ;
12 k = #F[x, a, c];
13 setOfSize[x, k + 1, c]) -= a; setOfSize[x, k, c]) += a;
14 }
15 }
16 � = ∅;
17 s =

∏
x∈Vars(c) localSize[x, c];

18 forall(x in Vars(c) \ {y}){
19 s1 = s/localSize[x, c];
20 forall(a in setOfSize[x, s1, c] : a in D(x))
21 � += (x, a);
22 }
23 }

Algorithm 6. The valRemove Method for GNAC4

6 Experimental Results

This section illustrates the benefits of jointly exploiting supports and forbidden values.
We evaluated AC4, NAC4, and their combination on CSPs involving the positively and
negatively sparse constraints x = y mod k, x = |y − k|, x + y = k, |x − y| = k,
(x + y) mod k = 0 and their negative version, where k is a constant. Three sets of
20 CSPs were generated: a set with only positive constraints (cPos), a set with only
negative constraint (cNeg), and a set with positive and negative constraints (cPosNeg).
The results are presented in Table 2. The name cNeg_50_200_10 means that each CSP
has 50 variables with a domain {0..199}, and 10% of constraints between all the pairs
of distinct variables. The settings were chosen to avoid trivially consistent or trivially
inconsistent CSPs. The constraints were randomly chosen using a uniform distribu-
tion. The values k are also determined using a uniform distribution. Each CSP has
been solved in Comet using four different consistency algorithms: (1) AC4 for each
constraint, (2) NAC4 for each constraint, (3) the combination AC5(AC4,NAC4) using
AC4 for positive constraints and NAC4 for negative constraints and (4) the combi-
nation AC5(AC4*,NAC*) which is similar to AC5(AC4,NAC4) but uses specialized
(linear) post methods exploiting the semantics of the constraints. For CSPs with only
positive constraints, AC5(AC4,NAC4) reduces to AC4 and, for CSPs with only negative

204 Y. Deville and P. Van Hentenryck

Table 2. Comparing AC4, NAC4, AC5(AC4,NAC4) and AC5(AC4*/NAC4*)

% Consist. AC4 NAC4 AC5(AC4,NAC4) AC5(AC4*,NAC4*)
cPos_10_200_01 55% 0.466 19.198 - 0.181
cNeg_50_200_10 100% 27.596 2.381 - 2.027
cPosNeg_50_200_05 53% 21.690 76.073 1.700 1.454

constraints, AC5(AC4,NAC4) reduces to NAC4. The average execution time (in sec-
onds) is reported. We also report the percentage of consistent CSPs in each data set.
The inconsistency of the CSPs was always detected in the root node of the search tree.
For consistent CSPs, the search is terminated after 1000 fail nodes. The experiments
were performed on a single core of a machine with an Intel Core Duo at 2.8GHz with
4GB memory.

For positively sparse constraints, AC4 is much more efficient (speedup of 41) than
NAC4, while NAC4 is much more efficient than AC4 (speedup of 11.5) on negatively
sparse constraints. This shows the interest of NAC4. Using a specialized post constraint
leads to a speedup of 2.57 for AC4 and 1.17 for NAC4. For CSPs combining positively
and negatively sparse constraints, NAC4 is 3.5 times slower than AC4, which is is ex-
plained by the more complicated data structures maintained by NAC4. This last set of
CSPs shows the interest of a generic algorithm allowing the combination of different
algorithms such as AC4 and NAC4. The speedup of AC5(AC4,NAC4) compared to
AC4 is 12.7. This speedup increases to 14.9 when using specialized post methods in
AC5(AC4*,NAC4*).

7 Conclusion

This paper proposed the optimal domain-consistency algorithm NAC4 which is not
based on supports but dynamically maintains forbidden values during propagation. The
ideas behind NAC4 can be combined within the AC5 algorithm with the techniques
used in AC4, AC6, and AC2001 for exploiting the semantics of constraints and ob-
taining greater efficiency. In particular, forbidden values allow AC5 to achieve domain
consistency in time O(ed) for classes of constraints in which the number of supports is
O(d2) but the number of forbidden values is O(d). The paper also shows how forbid-
den values and supports can be used jointly to achieve domain consistency on logical
combinations of constraints and to compute validity and entailment of constraints. Ex-
perimental results show that the combination of supports and forbidden values can bring
significant computational benefits in arc-consistency algorithms.

Future work includes the comparison of AC5(AC4/NAC4) with other AC algorithms,
experimental evaluation on other benchmarks, including non-binary CSP instances and
extension of NAC4 to handle negative tables represented in a compact way such as in
[12,13,14].

Acknowledgment. Many thanks to Jean-Noël Monette for his help in the experimen-
tal setting. This research is partially supported by the Interuniversity Attraction Poles
Programme (Belgian State, Belgian Science Policy) and the FRFC project 2.4504.10 of
the Belgian FNRS (National Fund for Scientific Research).

Domain Consistency with Forbidden Values 205

References

1. Bessiere, C.: Constraint propagation. In: Rossi, F., Beek, P.v., Walsh, T. (eds.) Handbook of
Constraint Programming. Elsevier Science Inc., New York (2006)

2. Van Hentenryck, P., Deville, Y., Teng, C.M.: A generic arc-consistency algorithm and its
specializations. Artif. Intell. 57(2-3), 291–321 (1992)

3. Bessière, C., Régin, J.C.: Arc consistency for general constraint networks: Preliminary re-
sults. In: IJCAI, pp. 398–404 (1997)

4. Lecoutre, C.: Constraint Networks: Techniques and Algorithms. ISTE/Wiley (2009)
5. Boussemart, F., Hemery, F., Lecoutre, C., Sais, L.: Support inference for generic filtering. In:

Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 721–725. Springer, Heidelberg (2004)
6. Mehta, D., van Dongen, M.R.C.: Reducing checks and revisions in coarse-grained MAC

algorithms. In: IJCAI, pp. 236–241 (2005)
7. Bessière, C., Régin, J.C.: Local consistency on conjunctions of constraints. In: Proceedings

Workshop on Non Binary Constraints on ECAI 1998, pp. 53–60 (1998)
8. Lhomme, O.: Arc-consistency filtering algorithms for logical combinations of constraints.

In: Régin, J.-C., Rueher, M. (eds.) CPAIOR 2004. LNCS, vol. 3011, pp. 209–224. Springer,
Heidelberg (2004)

9. Van Hentenryck, P., Deville, Y.: The cardinality operator: A new logical connective for con-
straint logic programming. In: ICLP, pp. 745–759 (1991)

10. Van Hentenryck, P., Saraswat, V.A., Deville, Y.: Design, Implementation, and Evaluation of
the Constraint Language cc(FD). In: Constraint Programming: Basics and Trends, pp. 293–
316. Springer, Heidelberg (1994)

11. Bacchus, F., Walsh, T.: Propagating logical combinations of constraints. In: IJCAI, pp. 35–40
(2005)

12. Gent, I.P., Jefferson, C., Miguel, I., Nightingale, P.: Data structures for generalised arc con-
sistency for extensional constraints. In: AAAI 2007, pp. 191–197 (2007)

13. Katsirelos, G., Walsh, T.: A compression algorithm for large arity extensional constraints. In:
Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 379–393. Springer, Heidelberg (2007)

14. Cheng, K.C.K., Yap, R.H.C.: Maintaining generalized arc consistency on ad hoc r-ary con-
straints. In: Stuckey, P.J. (ed.) CP 2008. LNCS, vol. 5202, pp. 509–523. Springer, Heidelberg
(2008)

Generating Special-Purpose Stateless
Propagators for Arbitrary Constraints

Ian P. Gent, Chris Jefferson, Ian Miguel, and Peter Nightingale

School of Computer Science, University of St Andrews, St Andrews, Scotland, UK

{ipg,caj,ianm,pn}@cs.st-andrews.ac.uk

Abstract. Given an arbitrary constraint c on n variables with domain

size d, we show how to generate a custom propagator that establishes

GAC in time O(nd) by precomputing the propagation that would be

performed on every reachable subdomain of scope(c). Our propagators

are stateless: they store no state between calls, and so incur no over-

head in storing and backtracking state during search. The preprocessing

step can take exponential time and the custom propagator is potentially

exponential in size. However, for small constraints used repeatedly, in

one problem or many, this technique can provide substantial practical

gains. Our experimental results show that, compared with optimised im-

plementations of the table constraint, this technique can lead to an order

of magnitude speedup, while doing identical search on realistic problems.

The technique can also be many times faster than a decomposition into

primitive constraints in the Minion solver. Propagation is so fast that, for

constraints available in our solver, the generated propagator compares

well with a human-optimised propagator for the same constraint.

1 Introduction

Constraint models of structured problems often contain many copies of a con-
straint, which differ only in their scope. English Peg Solitaire, for example, is
naturally modelled with a move constraint for each of 76 moves, at each of 31
time steps, giving 2,356 copies of the constraint [14]. Efficient implementation of
such a constraint is vital to solving efficiency, but choosing an implementation
is often difficult. The solver may provide a hand-optimized propagator, other-
wise there are two choices: decompose the constraint, or use a table propagator.
Decompositions typically introduce extra variables (and so overhead) and/or
reduce propagation. In the worst case table propagators take time exponential
in the size of their scope. Even hand-optimized propagators the solver provides
may not be optimal if they are designed for a more general class of constraints.

The algorithms we give herein generate GAC propagators for arbitrary con-
straints that run in time O(nd), in extreme cases an exponential factor faster
than any table constraint propagator [4,12,7,6,17,15]. As our experiments show,
generated propagators can even outperform hand-optimized propagators when
performing the same propagation. Our approach is general but in practice does
not scale to large constraints as it precomputes domain deletions for all reachable
subdomains. It scales easily to 10 Boolean variables, as a case study shows.

D. Cohen (Ed.): CP 2010, LNCS 6308, pp. 206–220, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Generating Special-Purpose Stateless Propagators for Arbitrary Constraints 207

2 Theoretical Background

We summarise relevant definitions. For further discussion of propagators see [2].

Definition 1. A CSP instance, P , is a triple 〈V, D, C〉, where: V is a finite
set of variables; D is a function from variables to their domains, where ∀v ∈
V : D(v) � Z; and C is a set of constraints. A literal of P is a pair 〈v, d〉,
where v ∈ V and d ∈ D(v). An assignment to any subset X ⊆ V is a set
consisting of exactly one literal for each variable in X. Each constraint c is
defined over a list of variables, denoted scope(c). A constraint either forbids
or allows each assignment to the variables in its scope. An assignment S to V
satisfies a constraint c if S contains an assignment allowed by c. A solution
to P is any assignment to V that satisfies all the constraints of P .

Constraint propagators work with subdomain lists, as defined below.

Definition 2. For a set of variables X = {x1 . . . xn} with original domains
D(x1), . . . , D(xn), a subdomain list for X is a function from variables to sets
which satifies: ∀1≤ i≤n : S(xi) ⊆ D(xi) We abuse notation, in a natural way,
to write R ⊆ S for subdomain lists R and S iff ∀1≤ i≤n : R(xi) ⊆ S(xi). Given
a CSP instance P = 〈V, D, C〉, a search state for P is a subdomain list for V .

Backtracking search operates on search states to solve CSPs. During solving, the
search state is changed in two ways: branching and propagation. Propagation
removes literals from the current search state without removing solutions. Herein,
we consider only propagators that establish Generalized Arc Consistency (GAC):

Definition 3. Given a constraint c, a subdomain list S of scope(c) is Gener-
alized Arc Consistent (GAC) if, for every d ∈ S(v), the literal 〈v, d〉 is in
some assignment which satisfies c and is contained in S.

Any literal that does not satisfy the test in Definition 3 may be removed.

Definition 4. Given a CSP P = 〈V, D, C〉, a search state S for P and a con-
straint c ∈ C, The GAC propagator for c returns a new search state S′ which:

1. For all variables not in scope(c): is identical to S.
2. For all variables in scope(c): omits all (and only) literals in S that are in no

solution to c, and is otherwise identical to S.

3 Propagator Generation

GAC propagation is NP-hard for families of constraints defined intensionally.
For example, establishing GAC on the constraint

∑
i xi = 0 is NP-hard, as it is

equivalent to the subset-sum problem [9](§35.5). However, given a constraint c
on n variables, each with domain size d, it is possible to generate a GAC prop-
agator that runs in time O(nd). The approach is to precompute the deletions

208 I.P. Gent et al.

performed by a GAC algorithm for every subdomain list for scope(c). The dele-
tions are stored in an array T mapping subdomain lists to sets of literals. The
generated propagator reads the domains (in O(nd) time), looks up the appropri-
ate subdomain list in T and performs the required deletions. T can be indexed as
follows: for each literal in the initial domains, represent its presence or absence
in the sub-domain list with a bit, and concatenate the bits to form an integer.

T can be generated in O((2d − 1)n.n.dn) time. There are 2d − 1 non-empty
subdomains of a size d domain, and so (2d − 1)n non-empty subdomain lists on
n variables. For each, GAC is enforced in O(n.dn) time and the set of deletions
is recorded. As there are at most nd deletions, T is size at most (2d − 1)n.nd.

This algorithm has obvious disadvantages. This preprocessing step can take
substantial time and T requires substantial space. However, for small constraints
which are used repeatedly, in either one problem or many problems, we shall show
how a refinement of this technique can provide substantial practical gains.

4 Generating Tree Propagators

The above approach uses a large data structure, containing all possible subdo-
main lists. Also, the generated propagator tests the presence of every value in
each domain before propagating. We address both problems by using a tree to
represent the generated propagator. The tree represents only the subdomain lists
that are reachable: no larger subdomain fails or is entailed. This improves the
average- but not the worst-case complexity. In this section we describe an al-
gorithm that generates a tree-propagator, given any propagator and entailment
checker for the constraint in question. First we define tree-propagator.

Definition 5. A tree-propagator is a rooted tree T = 〈V, L, R, r,Prune,Test〉
with vertices V , where r ∈ V is the root, L is a function mapping vertices to
their left child, and R maps vertices to their right child. Two other functions
map vertices to prunings and to a literal: Prune : V → 2{(xi,a)|a∈Di}, and Test :
V → {(xi, a)|a ∈ Di}.

An execution of a tree-propagator follows a path in T starting at the root r. At
each vertex v, the propagator prunes the values specified by Prune(v), and tests
if the literal Test(v) = (xi, a) is in the current domain. If a ∈ D(xi), then the
next vertex in the path is the left child L(a), otherwise it is the right child R(a).
If the relevant child is not present, then the propagator is finished.

SimpleGenTree (Algorithm 1) is a naive algorithm to create a propagator tree
given a constraint c and the initial domains D. The algorithm is recursive and
builds the tree in depth-first left-first order. Let Dcur be the current domain. As
a tree-propagator is executed, it tests values to obtain more information about
Dcur. At a given tree node, each value from the initial domain D may be in Dcur,
or out, or unknown (not yet tested). SimpleGenTree constructs a sub-domain
list SD for each tree node, representing values that are in Dcur or unknown. It
also constructs ValsIn, representing values that are known to be in Dcur.

Generating Special-Purpose Stateless Propagators for Arbitrary Constraints 209

Algorithm 1. SimpleGenTree(c, SD, ValsIn)
1: Deletions ← Propagate(c, SD)

2: SD′ ← SD \ Deletions

3: if all domains in SD′ are empty then
4: return Treenode(Prune=Deletions, Test=Nil, Left=Nil, Right=Nil)

5: ValsIn∗ ← ValsIn \ Deletions

6: ValsIn ′ ← ValsIn∗ ∪ {(x, a)|(x, a) ∈ SD′, |SD′(x)| = 1}
7: if SD′ = ValsIn ′ then
8: return Treenode(Prune=Deletions, Test=Nil, Left=Nil, Right=Nil)

{Pick a variable and value, and branch}
9: (y, l) ← heuristic(SD′ \ ValsIn ′)

10: LeftT←SimpleGenTree(c, SD′, ValsIn ′ ∪ (y, l))
11: RightT←SimpleGenTree(c, SD′ \ {(y, l)}, ValsIn ′)
12: return Treenode(Prune=Deletions, Test=(y, l), Left=LeftT, Right=RightT)

SimpleGenTree proceeds in two stages. First, it runs a propagation algorithm
on SD to compute the prunings required given current domain knowledge. The
prunings are stored in the current tree node, and each pruned value is removed
from SD and ValsIn to form SD′ and ValsIn∗. If a domain is empty in SD′, the
algorithm returns. If only one value remains for some variable in SD′, the value
is added to ValsIn∗ to form ValsIn ′ (because otherwise the domain is empty).

The second stage is to choose a literal and branch. This literal is unknown, ie
in SD′ but not ValsIn ′. SimpleGenTree recurses for both left and right branches.
On the left branch, the chosen literal is added to ValsIn, because it is known to be
present in Dcur. On the right, the chosen literal is removed from SD. The main
terminating condition for the recursion is when SD′ = ValsIn ′. At this point, we
have complete knowledge of the current domains: SD′ = ValsIn ′ = Dcur. The
recursion also terminates when a domain is emptied by propagation.

4.1 Generating Code

Algorithm 2 (GenCode) generates a program from a tree-propagator via a depth-
first, left-first tree traversal. It is called initially with the root r. GenCode creates
the body of the propagator function, the remainder is solver specific. In the case
of Minion this code is very short and the same for all generated propagators. As
an alternative to generating code, it is possible to execute a tree-propagator by
traversing the tree at run time. However, in preliminary experiments we found
this approach to be roughly 25% slower.

4.2 Correctness

In order to prove the SimpleGenTree algorithm correct, we assume that the
Propagate function called on line 1 enforces GAC. We need to be careful about
what GAC propagators do. Note that, if a GAC propagator produces a domain
wipeout, it should also delete all values of all other variables in the constraint.
We assume that the Propagate function does this. We also assume that the target

210 I.P. Gent et al.

Algorithm 2. GenCode(Tree-propagator T , Vertex v)
1: if v=Nil then
2: WriteToCode(“NoOperation;”)
3: else
4: WriteToCode(“RemoveValuesFromDomains(”+Prune(v)+“);”)
5: if Test(v) �= Nil then
6: (xi, a) ← Test(v)

7: WriteToCode(“if IsInDomain(”+a+“,”+xi+“) then”)
8: GenCode(T ,L(v))

9: WriteToCode(“else”)
10: GenCode(T ,R(v))

11: WriteToCode(“endif;”)

constraint solver removes all values of all variables in a constraint if our generated
propagator empties any individual domain. In practice, constraint solvers often
have some shortcut method, such as a special function Fail for these situations,
but our proofs are slightly cleaner for assuming domains are emptied. Finally we
implicitly match up nodes in the generated trees with corresponding points in
the generated code for the propagator. Given these assumptions, we will prove
that the code we generate does indeed establish GAC.

Lemma 1. Assuming that the Propagate function in Line 1 establishes GAC,
then: given inputs (c, SD, V alsIn), if Algorithm 1 returns at line 4 or line 8, the
resulting set of prunings achieve GAC for the constraint c on any search state
S such that V alsIn ⊆ S ⊆ SD.

Proof. If Algorithm 1 returns on either line 4 or line 8, the set of propagations re-
turned are those generated on Line 1. These deletions achieve GAC propagation
for the search state SD.

If the GAC propagator for c would remove a literal from SD, then that literal
is in no assignment which satisfies c and is contained in SD. As S is contained in
SD, that literal must also be in no assignment which satisfies c and is contained
in S. Therefore any literals in S which are removed by a GAC propagator for
SD would also be removed by a GAC propagator for S.

We now show no extra literals would be removed by a GAC propagator for
S. This is separated into two cases. The first case is if Algorithm 1 returns on
line 4. Then GAC propagation on SD has removed all values from all domains.
There are therefore no further values which can be removed, so the result follows
trivially. The second case is if Algorithm 1 returns on line 8. Then SD′ = ValsIn ′

on Line 7. This can be reached in one of two cases:

1. S \Deletions has at least one empty domain. In this case, the returned tree
node correctly leads to S having a domain wipeout.

2. S\Deletions has no empty domains. In this case, any literals added to ValsIn ′

on line 6 are also in S, as literals are added when exactly one value exists in
the domain of a variable in SD, and so this value must also be in S, else there

Generating Special-Purpose Stateless Propagators for Arbitrary Constraints 211

would be an empty domain in S. Thus we have ValsIn′ ⊆ (S \Deletions) ⊆
SD′. But since ValsIn ′ = SD′, we also have SD′ = S \ Deletions. Since we
know SD′ is GAC by the assumed correctness of the Propagate function, so
is S \Deletions. ��

Theorem 1. Assuming that the Propagate function in Line 1 establishes GAC,
then: given inputs (c, SD, V alsIn), then the code generator Algorithm 2 applied
to the result of Algorithm 1 returns a correct GAC propagator for search states
S such that V alsIn ⊆ S ⊆ SD.

Proof. We shall proceed by induction on the size of the tree generated by Algo-
rithm 1. The base is that the tree contains just a single leaf node, and this case
is implied by Lemma 1. The rest of the proof is therefore the induction step.

By the same argument used in Lemma 1, the Deletions generated on Line 1
can also be removed from S. If applying these deletions to S leads to a domain
wipeout, then (as we have assumed) the constraint solver sets S = ∅, and the
propagator has established GAC, no matter what happens in the rest of the tree.

If no domain wipeout occurs, we can progress to Line 9. Again using the same
arguments as in Lemma 1, assuming that the Deletions do not cause a domain
wipeout in S, then once we get to line 9, we know that V alsIn′ ⊆ S\Deletions ⊆
SD′. Since we passed Line 7, we know that V alsIn′ �= SD′, and therefore there
is at least one value for the heuristic to choose.

There are now two cases. The heuristic value (y, l) is in S, or not.
If (y, l) ∈ S, then the generated propagator will branch left. The propaga-

tor generated after this branch is generated from the tree produced by Simple-
GenTree(c, SD′,ValsIn ′ ∪ (y, l)). Since (y, l) ∈ S, we have V alsIn′ ∪ (y, l) ⊆
S \Deletions ⊆ SD′. Since the tree on the left is strictly smaller, we can appeal
to the induction hypothesis that we have generated a correct GAC propagator
for S \ Deletions. Since we know that Deletions were correctly deleted from S,
we have a correct GAC propagator at this node for S.

If (y, l) �∈ S, the generated propagator branches right. The propagator on the
right is generated from the tree given by SimpleGenTree(c, SD′\ (y, l),ValsIn′)
on S \ Deletions. Here we have V alsIn′ ⊆ S \ Deletions ⊆ SD′ \ (y, l). As in
the previous case, the requirements of the induction hypothesis are met and we
have a correct GAC propagator for S.

Finally we note that the set SD \ ValsIn is always reduced by at least one
literal on each recursive call to Algorithm 1, and can never grow. Therefore we
know the algorithm will eventually terminate. With this theorem proved the
main result we want is an immediate corollary. ��
Corollary 1. Assuming the Propagate function correctly establishes GAC for
any constraint c, then the code generator Algorithm 2 applied to the result of
Algorithm 1 with inputs (c, ∅, D), where D are the initial domains of the variables
in c, generates a correct GAC propagator for all search states.

Lemma 2. If r is the time a solver needs to remove a value from a domain,
and s the time to check whether or not a value is in the domain of a variable,
the code generated by Algorithm 2 runs in time O(nd max(r, s)).

212 I.P. Gent et al.

Proof. The execution of the algorithm is to go through a single branch of an
if/then/else tree. The tree cannot be of depth greater than nd since one literal is
chosen at each depth and there are at most nd literals in total. Furthermore, on
one branch any given literal can either be removed from a domain or checked,
but not both. This is because Algorithm 1 never chooses a test from a removed
value. Therefore the worst case is nd occurrences of whichever is more expensive
out of testing domain membership and removing a value from a domain. ��

In some solvers both r and s are O(1), e.g. where domains are stored only in
bitarrays. In such solvers our generated GAC propagator is O(nd).

5 Generating Smaller Trees

Algorithm 3 shows the GenTree algorithm. This is an improvement of Simple-
GenTree. We present this without proof of correctness, but a proof would be easy
since the effect is only to remove nodes in the tree for which no propagation can
occur at any subtree.

The first efficiency measure is that GenTree always returns Nil when no prun-
ing is performed at the current node or any of its children. This means that the
generated tree will have pruning at all of its leaf nodes. The second efficiency
measure is to use an entailment checker. A constraint is entailed with respect to
a subdomain list SD if every tuple allowed on SD is allowed by the constraint.
When a constraint is entailed there is no possibility of further pruning. We as-
sume we have a function ‘entailed’ to check this. The function entailed(c, SD) is
called at the start of GenTree, and also after domains are updated by pruning
(line 9). If the constraint is entailed under SD, then no pruning is possible for
SD or any sub-domain of it. The value returned is either Nil (if values were
pruned at the current node) or a tree node with no children.

To illustrate the difference between SimpleGenTree and GenTree, consider
Figure 1. The constraint is very small (x ∨ y on Boolean domains) but even
so SimpleGenTree generates 7 more nodes than GenTree. The figure illustrates
the effectiveness and limitations of entailment checking. Subtree C contains no
prunings, therefore it would be removed by GenTree with or without entailment
checking. However, the entailment check is performed at the topmost node in
subtree C, and GenTree immediately returns (line 2) without exploring the four
nodes beneath. Subtree B is entailed, but the entailment check does not reduce
the number of nodes explored by GenTree compared to SimpleGenTree. Subtree
A is not entailed, however GAC does no prunings here so GenTree will explore
this subtree but not output it.

Heuristic. The choice of literal to branch on is very important, and can make
a huge difference in the size of the propagator-tree. To minimize the size of
the tree, the aim of a heuristic must be to cause Algorithm 3 to return before
branching. There are a number of conditions that cause this: entailment (lines 2
and 15); domain wipe-out (line 8); and complete domain information (line 15).

Generating Special-Purpose Stateless Propagators for Arbitrary Constraints 213

Algorithm 3. Generate Tree-Propagator: GenTree(c, SD, ValsIn)
1: if entailed(c, SD) then
2: return Nil

3: Deletions ← Propagate(c, SD)

4: SD′ = SD \ Deletions

5: if all domains in SD′ are empty then
6: return Treenode(Prune=Deletions, Test=Nil, Left=Nil, Right=Nil)

7: ValsIn∗ ← ValsIn \ Deletions

8: ValsIn ′ ← ValsIn∗ ∪ {(x, a)|(x, a) ∈ SD′, |SD′(x)| = 1}
9: if SD′ = ValsIn ′ or entailed(c, SD) then

10: if Deletions=Nil then
11: return Nil

12: else
13: return Treenode(Prune=Deletions, Test=Nil, Left=Nil, Right=Nil)

{Pick a variable and value, and branch}
14: (y, l) ← heuristic(SD′ \ ValsIn ′)
15: LeftT←GenTree(c, SD′, ValsIn′ ∪ (y, l))
16: if SD′(y) \ {l} = ∅ then
17: RightT←Nil

18: else
19: RightT←GenTree(c, SD′ \ {(y, l)}, ValsIn ′)
20: if LeftT=Nil And RightT=Nil And Deletions=∅ then
21: return Nil

22: else
23: return Treenode(Prune=Deletions, Test=(y, l), Left=LeftT, Right=RightT)

Fig. 1. Example of propagator tree for constraint x ∨ y initial domains of {0,1}. The

entire tree is generated by SimpleGenTree (Algorithm 1). The more sophisticated al-

gorithm GenTree (Algorithm 3) does not generate the subtrees A, B and C.

214 I.P. Gent et al.

The proposed heuristic greedily attempts to make the constraint entailed. This
is done by selecting the literal contained in the greatest number of disallowed
tuples of c that are valid with respect to SD.

Implementation. The implementation is recursive and very closely follows the
structure of Algorithm 3. It is instantiated with the GAC2001 table propagator
[4]. The implementation maintains a list of disallowed tuples of c that are valid
with respect to SD. This list is used by the entailment checker: when the list
becomes empty, the constraint is entailed. It is also used to calculate the heuristic
described above. It is implemented in Python and is not highly optimized.

In all the case studies below, we use the solver Minion [11] 0.10. We experiment
with 3 generated propagators, in each case comparing against hand-optimized
propagators provided in Minion, and also against table constraints where appro-
priate. All case studies were run with a time out of 24 hours. Instances that took
less than 1 hour were run 5 times and the median was taken. In all cases times
are given for an 8-core Intel Xeon E5520 at 2.27GHz with 12GB RAM. Minion
was compiled with g++ 4.4.1, optimisation level -O3.

Two table constraints were used: Table, which uses a trie data structure with
watched literals (as described in [12]), and Lighttable, which uses the same trie
data structure but is stateless and uses static triggers. It searches for support
for each value of every variable each time it is called.

6 Case Study: English Peg Solitaire

English Peg Solitaire is a one-player game played with pegs on a board. It is
Problem 37 at www.csplib.org. The game and a model are described by Jef-
ferson et al [14]. The game has 33 board positions (fields), and begins with 32
pegs and one hole. The aim is to reduce the number of pegs to 1. At each step,
a peg (A) is jumped over another peg (B) and into a hole, and B is removed. As
each move removes one peg, we fix the number of moves in our model to 31.

The model we use is as follows. The board is represented by a Boolean array
b[32, 33] where the first index is the time step 0 . . . 31 and the second index is
the field. The moves are represented by Boolean variables moves [31, 76], where
the first index is the time step 0 . . . 30 (where move 0 connects board states 0
and 1), and the second index is the move number, where there are 76 possible
moves. The third set of Boolean variables are equal [31, 33], where the first index
is the time step 0 . . . 30 and the second is the field. The following constraints are
posted: equal [a, b]⇔ (b[a, b] = b[a + 1, b]). The board state for the first and last
time step are filled in, with one hole at the position we are starting at and one
peg at the same position we are finishing at.

For each time step t ∈ {0 . . .30}, exactly one move must be made, therefore
constraints are posted to enforce

∑
i moves [t, i] = 1. Also for each time step t,

the number of pegs on the board is 32 − t, therefore constraints are posted to
enforce

∑
i b[t, i] = 32− t.

The bulk of the constraints model the moves. At each time step t ∈ {0 . . .30},
for each possible move m ∈ {0 . . .75}, the effects of move m are represented by

www.csplib.org

Generating Special-Purpose Stateless Propagators for Arbitrary Constraints 215

Table 1. Results on peg solitaire problems

Starting Time (s) Node rate (per s) Nodes

position Generated Min Reified Generated Min Reified

Sumgeq Sumgeq

1 >86389 >86394 >86400 11249 7088 3303 —

2 1.62 2.48 3.10 6338 4140 3312 10,268

4 >86393 >86381 >86369 10986 7514 3926 —

5 879.25 1351.88 3120.26 12964 8431 3652 11,398,210

9 >86400 >86385 >86380 11135 7531 3544 —

10 110.48 167.30 379.22 13456 8886 3920 1,486,641

17 1.49 2.38 3.97 6892 4315 2587 10,269

an arity 7 Boolean constraint. Move m jumps a piece from field f1 to f3 over
field f2. The constraint is as follows.

(b[t, f1]∧¬b[t+1, f1]∧b[t, f2]∧¬b[t+1, f2]∧¬b[t, f3]∧b[t+1, f3])⇔ moves[t, m]

Also, a frame constraint is posted to ensure that all fields other than f1, f2
and f3 remain the same. The constraint states (for all relevant fields f4) that
equal [t, f4] = 1 when moves[t, m] = 1.

The arity 7 move constraint is implemented in three ways. The Reified Sumgeq
implementation uses a sum to represent the conjunction. The negation of some
b variables is achieved with mappers, therefore no auxiliary variables are in-
troduced. The sum constraint is reified to the moves[t, m] variable, as follows:
[(
∑

b[t, f1], . . . , b[t + 1, f3]) ≥ 6]⇔ moves[t, m].
The Min implementation uses a single min constraint, as follows. Again map-

pers are used for negation. min(b[t, f1], . . . , b[t + 1, f3]) = moves[t, m]
The Generated propagator was generated by GenTree in 0.14s. The tree has

316 nodes, and the algorithm explored 521 nodes. The propagator was compiled
and Minion linked in 16.5s. (For all case studies, we give the time to compile the
generated propagator only, plus the time to link Minion, excluding compilation
of the rest of Minion.)

Table 1 shows our results for peg solitaire. In all cases the generated prop-
agator outperforms Min by a substantial margin (54% on instance 5), which
is perhaps remarkable given that Min is a hand-optimized propagator. For the
harder instances, Generated more than repays the overhead of compiling the
specialized constraint. The generated propagator outperforms Reified Sumgeq
by an even wider margin.

7 Case Study: Low Autocorrelation Binary Sequences

The Low Autocorrelation Binary Sequence (LABS) problem is described by Gent
and Smith [13]. The problem is to find a sequence s of length n of symbols
{−1, 1}. For each k ∈ {1 . . . n−1}, the correlation Ck is the sum of the products

216 I.P. Gent et al.

Table 2. Results on LABS problems of size 25-30. All times are a median of 5 runs.

n Time (s) Search nodes Nodes per second

Generated Product Lighttable Table Generated, Product Generated Product

(Light)Table

25 8.86 11.92 20.54 20.71 206,010 365,470 23252 30660

26 18.20 24.86 51.21 43.03 404,879 731,886 22246 29440

27 41.37 53.27 91.58 90.58 790,497 1,383,351 19108 25969

28 80.67 110.66 182.55 184.72 1,574,100 2,755,212 19513 24898

29 131.91 184.64 326.88 360.36 2,553,956 4,550,121 19361 24643

30 258.58 325.63 711.18 697.31 4,120,335 7,345,259 15934 22557

s[i] × s[i + k] for all i ∈ {0 . . . n − k − 1}. The overall correlation is the sum of
the squares of all Ck:

∑n−1
k=1 (Ck)2. This quantity must be minimized.

The sequence is modelled directly, using variables s[n] ∈ {−1, 1}. For each
k ∈ {1 . . . n− 1}, and each i ∈ {0 . . . n− k− 1}, we have a variable pi

k ∈ {−1, 1}
and the product constraint pi

k = s[i] × s[i + k]. For each k ∈ {1 . . . n − 1} we
have a variable Ck ∈ {−n . . . n}. Ck is constrained to be the sum of pi

k for all
i. There are also variables C2

k ∈ {0 . . . n2}, and a binary lighttable constraint
is used to link Ck and C2

k . Finally we have minvar =
∑n−1

k=1 C2
k , and minvar is

minimized. Gent and Smith identified 7 symmetric images of the sequence [13].
We use these to post 7 symmetry-breaking constraints on s. Gent and Smith
also proposed a variable and value ordering that we use here.

There are more ternary product constraints than any other constraint in
LABS. Ck is a sum of products: Ck = (s[0] × s[k]) + (s[1] × s[k + 1]) + · · · .
To test constraint generation on this problem, we combine pairs of product con-
straints into a single 5-ary constraint: (s[i]× s[k])+ (s[i + 1]× s[k + i+ 1]) = pi

k.
This allows almost half of the pi

k variables to be removed.
We compare four models of LABS: Product, the model with ternary product

constraints; Generated, where the new 5-ary constraint has a generated propaga-
tor; Table and Lighttable where the 5-ary constraint is implemented with a table
propagator. The Product model does not enforce GAC on the 5-ary constraint.
The Generated propagator was generated by GenTree in 0.007s. The algorithm
explored 621 nodes and the resulting propagator has 396 nodes. It was compiled
and Minion linked in 15.69s.

Table 2 shows our results for LABS sizes 25 to 30. The instances were solved to
optimality. The Generated, Table and Lighttable models search the same number
of nodes as each other, and exhibit stronger propagation than Product, but their
node rate is lower than Product in all cases. The table models are substantially
slower than Product. However, Generated is faster than Product, and for the
larger instances it more than repays the overhead of compiling the specialized
constraint. This is perhaps remarkable when comparing against hand-optimized
product and sum constraints.

Generating Special-Purpose Stateless Propagators for Arbitrary Constraints 217

8 Case Study: Maximum Density Oscillating Life

Conway’s Game of Life was invented by John Horton Conway. The game is
played on a square grid. Each cell in the grid is in one of two states (alive or
dead). The state of the board evolves over time: for each cell, its new state is
determined by its previous state and the previous state of its eight neighbours
(including diagonal neighbours). Oscillators are patterns that return to their
original state after a number of steps (referred to as the period). A period 1
oscillator is named a still life.

Various problems in Life have been modelled in constraints. Bosch and Trick
considered period 2 oscillators and still lifes [5]. Smith [18] and Chu et al [8]
considered the maximum-density still life problem. Here we consider the problem
of finding oscillators of various periods. We use simple models for the purpose
of evaluating the propagator generation technique rather than competing with
the sophisticated still-life models in the literature. However, to our knowledge
we present the first model of oscillators of period greater than 2.

The problem of size n×n (i.e. live cells are contained within an n×n bounding
box at each time step) and period p is represented by a 3-dimensional array of
Boolean variables b[n+4, n+4, p] indexed (from 0) by position i, j and time step
t. To enforce the bounding box, for each t, the rows 0, 1, n+2 and n+3 are set to
0. Similarly, columns 0, 1, n +2 and n +3 are set to 0. For a cell b[i, j, t] at time
step t, its liveness is determined as follows. The 8 adjacent cells at the previous
step are summed: s =

∑
adjacent(b[i, j, t−1]), and (s > 3∨s < 2) ⇒ b[i, j, t] = 0,

(s = 3) ⇒ b[i, j, t] = 1, and (s = 2) ⇒ b[i, j, t] = b[i, j, t − 1]. If t is the first
time step, then p− 1 is the previous step, to complete the loop.

We refer to the grid at a particular time step as a layer. For each pair of layers,
a watchvecneq constraint is used to constrain them to be distinct. To break some
symmetries, the first layer is lex less than all subsequent layers. Also, the first
layer may be reflected horizontally and vertically, and rotated 90 degrees, so it is
constrained to be lex less or equal than each of its 7 symmetric images. Finally,
all cells in all layers are summed to a variable m which is maximized.

The liveness constraint involves 10 Boolean variables. We generated a propa-
gator using the GenTree algorithm. The algorithm explored 87041 nodes in 45s.
The resulting propagator tree has 28351 nodes. The constraint is compiled and
Minion linked in 217s, so the total overhead is 262s1.

The generated propagator is compared to two other implementations. The
Sum implementation adds an auxiliary variable s[i, j, t] ∈ 0 . . . 8 for each b[i, j, t],
and the sum constraint s[i, j, t] =

∑
adjacent(b[i, j, t − 1]). s[i, j, t], b[i, j, t − 1]

and b[i, j, t] are linked by a ternary table (lighttable) constraint encoding the
liveness rules. The Table implementation simply encodes the arity-10 constraint
as a table or lighttable constraint.

We used instances with parameters n ∈ {5, 6, 7} and period p ∈ {2, 3, 4, 5, 6}.
Results are shown in Table 3. In 6 cases, the instances timed out after 24 hours,

1 In this case the generated constraint was compiled once for Boolean variables only,

rather than multiple times for different variable types as is standard in Minion.

218 I.P. Gent et al.

Table 3. Time to solve to optimality, for each implementation of the life constraint

n period p Time (s) Nodes Nodes per s,

Generated Sum Lighttable Table Generated

5 2 0.04 0.09 0.20 0.22 1,169 29,225

5 3 0.08 0.42 1.34 1.26 5,489 68,613

5 4 0.42 2.38 7.42 6.05 21,906 52,157

5 5 1.09 6.35 21.55 16.66 49,704 45,600

5 6 2.34 11.18 40.00 38.15 71,809 30,688

6 2 0.13 0.67 2.03 2.17 13,631 104,853

6 3 0.93 7.02 19.18 24.59 88,655 95,328

6 4 11.98 75.29 350.19 225.29 886,371 73,988

6 5 124.75 896.97 2779.78 1999.82 6,172,319 49,478

6 6 446.44 3108.18 13929.2 6231.22 16,538,570 37,045

7 2 2.34 13.63 44.57 66.58 316,612 135,304

7 3 18.84 122.13 585.48 377.50 1,905,288 101,130

7 4 366.59 2517.26 12163.6 6706.33 29,194,918 79,639

7 5 9822.84 67014.9 >86393 >86397 564,092,290 50,664

7 6 >86395 >86398 >86398 >86359 — 32,922

but otherwise they were solved to optimality. The three models explored the
same number of nodes in all cases.

The generated propagator is substantially faster than the sum implementa-
tion. For instance n = 7 p = 5, Generated is 6.8 times faster than Sum. Also, Sum
is faster than Table by a factor of 2 or more. For the four hardest instances that
were solved (n = 6, p ∈ {5, 6}, and n = 7, p ∈ {4, 5}), the generated propagator
more than paid back its 262s overhead. Furthermore, note that the generated
propagator is identical in each case: that is the arity 10 constraint is independent
of n and p since it depends only on the rules of the game. Therefore the over-
head can be amortised over this entire set of runs, as well as any future problems
needing this constraint. We can conclude that the generated propagator is the
best choice for this set of instances, and by a very wide margin.

9 Related Work

There are a variety of algorithms which achieve GAC propagation for arbitrary
constraints, for example GAC2001 [4] and GAC-Schema [3]. The major weakness
of these and similar algorithms is that their time complexity for propagation is
exponential, with a worst case of (at least) dn. In GAC2001 and GAC-Schema,
constraints presented as allowed tuples have the allowed tuples stored as a simple
list. There have been a number of attempts to improve these algorithms by using
a more suitable data structure to store the allowed tuples. Many have been
used, including tries [12], Binary Decision Diagrams [7], Multi-valued Decision
Diagrams [6], skip lists [17] and decision trees [15]. In all cases the worst case
complexity is polynomial in the size of the data structure. In some cases the
data structure can be much smaller than an explicit list of all allowed tuples,

Generating Special-Purpose Stateless Propagators for Arbitrary Constraints 219

but the worst case time remains exponential. That is, establishing GAC during
search can take time dn, compared to our worst case of O(dn).

Other improvements to GAC table propagators, such as caching and reusing
results [16], have also improved average-case performance, but have not removed
the worst-case exponential behaviour.

Constraint Handling Rules is a framework for representing constraints and
propagation. Apt and Monfroy [1] have shown how to generate rules to enforce
GAC for any constraint, although they state that the rules will have an expo-
nential running time in the worst case. However, such systems can produce very
compact sets of propagation rules for some constraints.

The major difference therefore between these techniques and the algorithm in
this paper is that our algorithm provides guaranteed polynomial-time execution
during search, at the cost of much higher space requirements and preprocess-
ing time than any previous technique. Work in CHR is closest in spirit to our
algorithm, but does not guarantee to achieve GAC in polynomial time.

It is possible that techniques from knowledge compilation [10] (in particular
prime implicates) could be usefully applied to propagator compilation. However,
the rules encoded in a propagator-tree are not prime implicates — the set of
known domain deletions is not necessarily minimal. We do not at present know
of a data structure which exploits prime implicates and allows O(nd) traversal.

10 Conclusion

We have presented a novel approach to propagating small constraints. The ap-
proach is to generate a custom stateless propagator that enforces GAC in O(nd)
time. The tradeoff is that the propagator program can be very large — it scales
exponentially in the size of the constraint — therefore generating and compiling
it is only feasible up to a certain size.

In three case studies, we demonstrated that the propagator generation ap-
proach can be highly efficient, compared to table constraints and decompositions.
For example, on Life n = 7 p = 4, the generated constraint is 18 times faster
than a table propagator, and 6.9 times faster than a decomposition. Remarkably,
generated propagators can even be faster than hand-optimized propagators. For
example, 54% faster than a min constraint on peg solitaire 5.

While surprisingly fast, the generated propagators are entirely stateless —
there is no state stored between calls, and no local variables. They also do
not make use of trigger events, which are often essential to the efficiency of
propagators. Therefore we believe there is much scope to improve the scalability
of this approach.

Acknowledgements. This research is supported by UK EPSRC Grants no.’s
EP/H004092/1 and EP/E030394/1.

220 I.P. Gent et al.

References

1. Apt, K.R., Monfroy, E.: Constraint programming viewed as rule-based program-

ming. Theory and Practice of Logic Programming 1(6), 713–750 (2001)

2. Bessiere, C.: Constraint Propagation. In: Handbook of Constraint Programming,

pp. 29–83. Elsevier Science Inc., New York (2006)

3. Bessière, C., Régin, J.C.: Arc consistency for general constraint networks: Prelim-

inary results. In: IJCAI, vol. (1), pp. 398–404 (1997)

4. Bessière, C., Régin, J.C., Yap, R., Zhang, Y.: An optimal coarse-grained arcconsis-

tency algorithm. Artificial Intelligence 165, 165–185 (2005)

5. Bosch, R., Trick, M.: Constraint programming and hybrid formulations for three

life designs. Annals of Operations Research 130, 41–56 (2004)

6. Cheng, K.C., Yap, R.H.: An MDD-based generalized arc consistency algorithm

for positive and negative table constraints and some global constraints. Con-

straints 15(2), 265–304 (2010)

7. Cheng, K.C.K., Yap, R.H.C.: Maintaining generalized arc consistency on ad-hoc

n-ary boolean constraints. In: Proceeding of the 2006 Conference on ECAI 2006,

pp. 78–82. IOS Press, Amsterdam (2006)

8. Chu, G., Stuckey, P.J., de la Banda, M.G.: Using relaxations in maximum density

still life. In: Gent, I.P. (ed.) CP 2009. LNCS, vol. 5732, pp. 258–273. Springer,

Heidelberg (2009)

9. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,

2nd edn. MIT Press/McGraw-Hill (2001)

10. Darwiche, A., Marquis, P.: A knowledge compilation map. Journal of Artificial

Intelligence Research 17, 229–264 (2002)

11. Gent, I.P., Jefferson, C., Miguel, I.: Minion: A fast, scalable, constraint solver.

In: Proceedings 17th European Conference on Artificial Intelligence (ECAI 2006),

pp. 98–102 (2006)

12. Gent, I.P., Jefferson, C., Miguel, I., Nightingale, P.: Data structures for generalised

arc consistency for extensional constraints. In: AAAI 2007: Proceedings of the 22nd

National Conference on Artificial Intelligence, pp. 191–197. AAAI Press, Menlo

Park (2007)

13. Gent, I.P., Smith, B.M.: Symmetry breaking in constraint programming. In: Horn,

W. (ed.) Proceedings of ECAI-2000, pp. 599–603. IOS Press, Amsterdam (2000)

14. Jefferson, C., Miguel, A., Miguel, I., Tarim, A.: Modelling and solving english peg

solitaire. Computers and Operations Research 33(10), 2935–2959 (2006)

15. Katsirelos, G., Walsh, T.: A compression algorithm for large arity extensional con-

straints. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 379–393. Springer,

Heidelberg (2007)

16. Lecoutre, C., Hemery, F.: A study of residual supports in arc consistency.

In: IJCAI 2007: Proceedings of the 20th International Joint Conference on Ar-

tifical Intelligence, pp. 125–130. Morgan Kaufmann Publishers Inc., San Francisco

(2007)

17. Lecoutre, C., Szymanek, R.: Generalized arc consistency for positive table con-

straints. In: Benhamou, F. (ed.) CP 2006. LNCS, vol. 4204, pp. 284–298. Springer,

Heidelberg (2006)

18. Smith, B.M.: A dual graph translation of a problem in ‘Life’. In: Van Hentenryck,

P. (ed.) CP 2002. LNCS, vol. 2470, pp. 402–414. Springer, Heidelberg (2002)

Including Ordinary Differential Equations Based
Constraints in the Standard CP Framework

Alexandre Goldsztejn2, Olivier Mullier1,3,
Damien Eveillard1, and Hiroshi Hosobe3

1 University of Nantes, CNRS, LINA (UMR 6241), Nantes, France
2 CNRS, LINA (UMR 6241), Nantes, France

3 National Institute of Informatics, Tokyo, Japan

Alexandre.Goldsztejn@univ-nantes.fr,
Olivier.Mullier@etu.univ-nantes.fr,
Damien.Eveillard@univ-nantes.fr,

Hosobe@nii.ac.jp

Abstract. Coupling constraints and ordinary differential equations has

numerous applications. This paper shows how to introduce constraints

involving ordinary differential equations into the numerical constraint

satisfaction problem framework in a natural and efficient way. Slightly

adapted standard filtering algorithms proposed in the numerical con-

straint satisfaction problem framework are applied to these constraints

leading to a branch and prune algorithm that handles ordinary differen-

tial equations based constraints. Preliminary experiments are presented.

1 Introduction

Solving problems involving constraints and ordinary differential equations (ODE)
allows numerous applications (e.g. in parameter estimation, control, design). A
lot of work has been dedicated to solving such problems ([1,2,3,4,5,6] and ref-
erences therein). Each of these works proposed a method dedicated to a spe-
cific problem, which somehow goes against the paradigm of CSPs that intends
separating the problem declaration and the resolution process. However these
problems all involve variables on continuous domains and some relations that
constrain the variable values thus they should match naturally the numerical
CSP framework (NCSP). Such a matching should allow cross-fertilization be-
tween the NCSP framework and these specific resolution methods, and express-
ing and solving more problems involving ODE based constraints. Furthermore,
separating the problem declaration and the resolution process has many advan-
tages which have been the basis of the success of the CP framework.

On the other hand, a specialized class of CSPs which includes ODE based
constraints was proposed in [7,8], namely Constraint Satisfaction Differential
Problems (CSDP). CSDPs include two different kinds of variables: Some func-
tional variables whose values are functions x(t) from R to R

n (corresponding
to the trajectories of the ODE) and some real variables, called restriction vari-
ables, that correspond to characteristic values of functions x(t) (for example x(0)

D. Cohen (Ed.): CP 2010, LNCS 6308, pp. 221–235, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

222 A. Goldsztejn et al.

or max0≤t≤1 x(t)). The constraints of the CSDP include constraints acting on
the functional variables (corresponding to the ODE definition) and constraints
acting on the restriction variables (like the Value Restriction constraints, e.g.
||x(0)|| ≤ 1, and the Maximum Restriction constraints, e.g. max0≤t≤1 x(t) ≤ 1).
Thus, although CSDPs are a specific class of CSPs, they do not match the NCSP
framework. In particular, they are more complex and less flexible than one could
expect (for example restriction variables of CSDPs can only be directly related
to the ODE solution through some Restriction constraints, see Subsection 3.2
for an example of problem that cannot be expressed in the CSDP framework).

In the present paper, we show that ODE based constraints can be naturally
used in the NCSP framework. This is done by abstracting an ODE by its solution
operator which is a function that maps an initial condition and a time to the
corresponding final state (cf. Section 3). We show that in particular parameter
estimation problems and two-point boundary value problems can be expressed
homogeneously in this framework (cf. subsections 3.3 and 3.4). The only adapta-
tion of the NCSP framework to solve such constraints involving ODEs is to tune
the standard filtering algorithms in order to solve efficiently these constraints.
In particular, solving these constraints involve evaluating the solution operator
and its derivatives which is very expensive since each evaluation requires sim-
ulating the ODE. These solution operator evaluations are performed rigorously
for interval inputs using standard methods from interval analysis for integrating
ODEs. On the other hand, these methods usually evaluate both the solution op-
erator and its derivatives for the same cost. Therefore, standard NCSPs filtering
algorithms have to be tuned in order to evaluate the constraints as rarely as
possible, while exploiting all information provided by these evaluations.

Notations. Intervals are denoted using brackets, e.g. [x] is an interval, and the
set of closed intervals by IR. Vectors are denoted by bold symbols, so [x] is
an interval vector (also called a box). Also, f : R

n → R
m is a vector valued

function, which can be viewed as a vector of real valued function, i.e. f(x) =
(f1(x), . . . , fm(x)). Its Jacobian is denoted by Df(x) = (∂fi

∂xj
(x))ij ∈ R

m×n.
The lower and upper bounds of an interval [x] are denoted by inf[x] ∈ R and
sup[x] ∈ R respectively. When not confusing, the lower and upper bounds of
an interval [x] will be denoted respectively by x ∈ R and x ∈ R. Inequality for
vectors being understood componentwise, sup[x] ≤ 0 means that [x] contains
vectors whose components are all nonpositive. In the case of interval vectors,
inf[x] ∈ R

n and sup[x] ∈ R
n. The width wid[x] of an interval is x− x, while the

width of an interval vector is the maximum of the widths of it components.

2 Interval Analysis for Numerical CSPs

A constraint satisfaction problem (CSP) is a triplet made of a list of variables,
a list of domains corresponding to these variables, and a set of constraints.
Numerical CSPs are simply characterized by continuous domains, although issues
and technics involved in the resolution of NCSPs and discrete domain CSP are

Including ODE Based Constraints in the Standard CP Framework 223

different. This section presents the basics of NCSPs resolution for constraints
that do not involve any ODE.

A solution of a NCSP is often defined as a real vector x that belongs to the
Cartesian product [x] of the variable domains (i.e. [x] = ([x1], . . . , [xn])), whose
components correspond to the values of the variables (i.e. x = (x1, . . . , xn)) and
that satisfies the constraints. The set of its solutions is denoted by Sol(P) ⊆ [x].

2.1 Interval Analysis

The modern interval analysis was born in the 60’s with [9] (see [10,11] and ex-
tensive references). It allows dealing rigorously with real numbers and functions
using machine representable numbers. It therefore plays a key role in the reso-
lution of NCSPs.

The most basic operation of interval analysis is to enclose the image of inter-
vals by a real function. First, arithmetic operations (+, −, × and ÷) and ele-
mentary functions (exp, ln, sin, cos, etc.) are extended to intervals by [x] ◦ [y] =
{x ◦ y : x ∈ [x], y ∈ [y]} and f([x]) = {f(x) : x ∈ [x]} respectively. For example,
[x, x] + [y, y] = [x+ y, x+ y] and exp([x, x]) = [exp(x), exp(x)] (non monotonous
functions require more complicated but still simple algorithms). Then, expression
compound of these elementary operations can be evaluated to intervals replac-
ing real operations by their interval counterparts. The fundamental theorem of
interval analysis states that the interval evaluation of an expression gives rise
to an interval enclosure of this function (see e.g. [10]). For example, the inter-
val evaluation of f(x, y) = xy + exp(x + y) for interval arguments [x] = [−1, 1]
and [y] = [3, 4] gives rise to [3.38, 152.42] (rounded to two decimals) which is a
superset of {f(x, y) : x ∈ [x], y ∈ [y]}.

The interval evaluation of an expression is the basis for dealing with con-
straints. For example consider the constraint f(x, y) = 0 where f and the do-
mains [x] and [y] are defined as above. The interval evaluation of the expression
of f gave rise to an interval that does not contain 0, and therefore proves that
the constraint has no solution in the domain hence providing a rigorous filtering
process. More elaborated filtering algorithms are presented in Subsection 2.3.

2.2 The Branch and Prune Algorithm

The branch and prune algorithm [12,13] alternates branching and pruning in
order to produce two pavings1 B and S, called respectively boundary boxes and
solution boxes. It is described in Algorithm 1 where the pruning is performed by
the function ContractC whose semantic is

x ∈ [x] ∧
(
∀c ∈ C, c(x)

)
=⇒ x ∈ ContractC([x]). (1)

So ContractC contracts a box in such a way that no NCSP solution is lost, and
therefore all the solutions are eventually contained in one box from B or S:

Sol(P) ⊆ (∪S) ∪ (∪B). (2)
1 I.e. sets of boxes which overlap only on their boundaries.

224 A. Goldsztejn et al.

Algorithm 1. Branch and Prune Algorithm.
Input: C = {c1, . . . , cm}, [x] ∈ IR

n, ε > 0

Output: S ⊆ IR
n, B ⊆ IR

n

L ← {[x]}; B ← ∅; S ← ∅;1

while L �= ∅ do2

([x],L) ← Extract(L);3

if IsSolutionC([x]) then S ← S ∪ {[x]};4

else if wid([x]) < ε then B ← B ∪ {[x]};5

else6

[x] ← ContractC([x]);7

if [x] �= ∅ then8

{[x′], [x′′]} ← Split([x]);9

L ← L ∪ {[x′], [x′′]};10

end11

end12

end13

return (S ,B);14

The solution boxes carry the additional information that the function IsSolutionC ,
which returns a boolean, evaluates to True on them. The semantic of this func-
tion depends on the type of constraints involved in the NCSP. In this paper, we
are interested in two kinds of NCSPs that are detailed below.

The first involves only inequality constraints. It will be convenient to group
the conjunction of several inequality constraints to one inequality constraint
involving a vector valued function: f(x) ≤ 0 with f : R

n −→ R
m. In this case, the

function IsSolution{f(x)≤0}([x]) returns True if [f]([x]) ≤ 0 and False otherwise.
Thus, IsSolution{f(x)≤0}([x]) is true only if the box [x] contains only solutions
of the constraint. If several such constraints are involved then the conjunction
of each constraint solution test can obviously be used. Finally in this case, the
branch and prune algorithms outputs pavings that satisfies ∪S ⊆ Sol(P) in
addition to (2). Such pavings are shown in Section 4 (see e.g. Figure 2 page 230).

The second kind of NCSPs involves n equations and n variables (which cor-
responds to a well constrained system of equations) and possibly additional in-
equalities. In this case, the NCSP typically has a finite number of solutions and
the function IsSolutionC([x]) returns true only if the existence of one solution
in [x] is proved. This existence proof is carried out using the multidimensional
interval Newton operator (4) which is introduced in Subsection 2.3. Therefore
uniqueness of this solution in [x] is also proved.

2.3 Filtering Algorithms for NCSP

Standard filtering algorithms used in the NCSP framework must be slightly
adapted in order to be efficiently used for constraints involving ODEs. These
constraints are characterized by the fact that evaluating a function involving an
ODE is very expensive, but only a small extra work is necessary to evaluate the

Including ODE Based Constraints in the Standard CP Framework 225

Jacobian of this function (see Section 3 for details). Thus the filtering algorithms
presented in this section also classically used in the context of NCSP may turn
out not to be the most efficient ones when constraints involve no ODEs.

Conjunction of inequality constraints. Two filtering algorithms will be
used for such constraints f(x) ≤ 0: The simple interval enclosure test and the
unidimensional interval Newton2. The interval enclosure test simply consists
of computing an interval enclosure of f and checking whether or not it allows
rejecting the whole box: If inf[f]([x]) ≤ 0 is not satisfied then the whole box can
be rejected. The unidimensional interval Newton allows removing a slice of [x] as
follows: The domain [xj] of the variable xj is contracted to the new domain [x′j]
applying the unidimensional interval Newton for each component of f(x) ≤ 0:

[x′j] =
⋂

i∈{1,...,m}

(
x̃j −

1
[aij]

(
[bi] + [0,∞] +

∑
k �=j

[aik]([xk]− x̃k)
))
∩ [xj] (3)

where [A] = [Df]([x]), [b] = [f](x̃) for some x̃ ∈ [x], usually the midpoint of [x].
The addition of the interval [0,∞] allows applying the interval Newton, which
is originally defined for equality constraints, to inequality constraints: Indeed,
f(x) ≤ 0 is equivalent to 0 ∈ f(x) + [0,∞] and the interval Newton for equality
constraint is actually applied to the latter.

It is worth noting that in order to apply these two filtering algorithms, only
interval enclosures of f over [x] and over x̃, and of Df over the whole domain
are required.

Well constrained systems of equations. The simple interval enclosure test
is also applied to constraints f(x) = 0 by rejecting the whole box if 0 ∈ [f]([x])
is not satisfied. We will also use the Krawczyk version of the multidimensional
interval Newton (see e.g. [10]) that allows contracting the whole domain [x] to
the new domain [x′] as follows:

[x′] =
(
(I − C[A])[x] + C[b]

)
∩ [x] (4)

where [A] and [b] are defined like in (3), and C = (mid[A])−1.

Remark 1. The multidimensional interval Newton operator is used for both fil-
tering non consistent vectors and proving the existence of solutions (see [10] for
details). Thus only one application of the multidimensional interval Newton is
performed for both purposes, while this optimization is not explicitly shown in
Algorithm 1 for clarity.

It is worth noting that again in order to apply the filtering algorithms dedi-
cated to well constrained systems of equations, only interval enclosures of f over
2 Usually, the unidimensional interval Newton is improved encapsulating it into

the box-consistency filtering (cf. [14] and references therein). However, the box-

consistency filtering requires many function evaluations, which makes it too expen-

sive when ODEs are involved.

226 A. Goldsztejn et al.

[x] and over x̃, and of Df over the whole domain are required. Therefore, all we
will need to be able to apply these filtering algorithms to ODE based constraints
is to be able to compute these interval enclosures in the case of constraints in-
volving ODEs. This is done by abstracting the ODEs by their solution operator,
as shown in the next section.

3 Including ODE Based Constraints in CSPs

We consider herein an ODE x′(t) = h(x(t)) where h : R
n −→ R

n is supposed
to be enough differentiable so that interval integrator can solve it (see e.g. [15]
for an introduction to ODEs). The solution operator of this ODE is introduced
in Subsection 3.1, while the remaining subsections show how to use this solution
operator to model different problems.

3.1 The ODE Solution Operator and Its Derivatives

The solution operator is introduced noting that the ODE maps an initial condi-
tion x(t0) ∈ R

n and a duration t ∈ R to an unique vector3 x(t). Therefore, the
ODE defines an operator Φ : R

n × R −→ R
n characterized by

Φ
(
x(t0), t

)
= x(t0 + t) (5)

called the ODE solution operator. It allows to abstract the simulation of the
ODE into a simple function evaluation. On the other hand, the evaluation of the
solution operator of course requires to integrate the ODE, thus each evaluation
of Φ is computationally very expensive.

The Jacobian DΦ : R
n×R −→ R

n×(n+1) of the solution operator is also very
useful as it allows to quantify the sensitivity of Φ. For convenience, it is split
into two submatrices DxΦ : R

n × R −→ R
n×n and DtΦ : R

n × R −→ R
1×n, the

latter being actually equal to h(Φ(x, t)). The former is usually computed solving
the ODE first variational equation, which is a linear non-autonomous ODE of
dimension n2. Therefore, evaluating Φ and DΦ turns out to solving an ODE of
dimension n2 + n.

Standard integrators coming from numerical analysis (e.g. Runge-Kuntta,
Adams methods, etc., see e.g. [15] for details) compute approximations of the
ODE solution. Therefore, they can be used to evaluate approximately Φ and DΦ.
On the other hand, interval integrators (see [16] for review and references therein
for the theory of interval integrators) allow enclosing rigorously the solution of
the ODE for interval initial conditions. Therefore interval integrators give rise
to interval enclosures of Φ and DΦ. This is the key point of our approach: In
order to apply the NCSP framework to ODE based constraints, we need interval
enclosures of the solution operator and its Jacobian, these interval enclosures
being computed by interval ODE integrators.
3 Existence and uniqueness are assumed here, and follow from some hypothesis on the

function φ that are usually verified. While the concept of solution operator can be

generalized considering a domain different than R
n, the interval integrators used in

the sequel rigorously prove existence and uniqueness.

Including ODE Based Constraints in the Standard CP Framework 227

Remark 2. The work [17] proposes to use constraints techniques to help inte-
grating ODE. However, this kind of techniques cannot be used directly in our
framework since it does not provide any enclosure of the solution operator deriva-
tives.

In theory an interval ODE integrator can compute [Φ]([x], [t]), [Φ](mid[x], [t])
and [DΦ]([x], [t]) in simulation for approximately the same cost than computing
only [Φ]([x], [t]) (see [18,19]). This is perfectly fitted to the application of the
different contractors used in NCSP resolution presented in Section 2.3.

In the next subsections, we show how the solution operator allows express-
ing ODE based constraints modeling different problems. It can be note already
that any problem that can be expressed in the CSDP framework can also be
expressed using the solution operator (this is trivial since the solution operator
is actually equivalent to the ODE itself so any restriction acting on the ODE
can be expressed using the solution operator).

3.2 An Academic Design Problem

A simple academic design problem first shows the expressiveness of the NCSP
framework with ODE based constraints. We consider for that a 2D ODE x′(t) =
h(x(t)). We are looking for the points a and b belonging to the radius 1 circle
centered on (1, 0) such that the state x(tf) at a fixed time tf of the ODE starting
at a (i.e. x(0) = a), and the points a and b form an equilateral triangle. In the
case where the ODE is x′(t) = Ax(t) with

A =
(

0 1
−1 0

)
, (6)

and thus the solution operator Φ(x, t) = exp(tA) is a rotation of angle t, and
tf = π

2 , the solution can be found graphically as depicted in Figure 1.
This problem is expressed by the following simple NCSP: Variables are two

angles θ and τ that define the position of a and b on the circle (i.e. aθ =
(cos(θ), sin(θ)) and bτ = (cos(τ), sin(τ))) and the domains of these variables
are [−π, π]. There are two constraints relating the distances between the three
points :

||aθ − Φ(aθ, tf)||2 − ||aθ − bτ ||2 = 0 (7)
||bτ − Φ(aθ, tf)||2 − ||aθ − bτ ||2 = 0 (8)

where Φ : R
2×R −→ R

2 is the solution operator of the ODE. The expression of
this geometric problem as a NCSP is really clear (even clearer than its original
English description). Note that this problem cannot be expressed in the CSDP
framework as variables are neither CSDP solution variables nor restriction vari-
ables4. Using the chain rule the constraints can be automatically differentiated,
4 It could be possible to add a third kind of variables in the CSDP framework to

handle this NCSP. However, the CSDP framework is already made quite complex

because of these two kinds of variables and introducing a third kind of variables

would make it even more complex.

228 A. Goldsztejn et al.

Fig. 1. Graphical solution of the NCSP of Subsection 3.2. The dashed line shows the

ODE flow starting at a which is abstracted by the ODE solution operator in the NCSP

definition.

hence allowing applying the contractors based on the interval Newton operator.
Thus this problem can now be solved using the standard methods dedicated to
NCSPs.

3.3 Parameter Estimation Problems

The parameter estimation problem represents a special case of finding the initial
conditions that satisfy some constraints (usually coming from measurements or
observations). Formally, given an ODE x′(t) = h(x(t)) and some measurements
(ti, [mi]) for i ∈ {1, . . . , p}, the problem consists of finding the initial values
such that the state satisfies x(ti) ∈ [mi] for i ∈ {1, . . . , p}. Using the solution
operator, this problem is easily cast to a standard NCSP (V,D,C) where: V =
x = (x1, . . . , xn) are the initial conditions we search, D = [x] = ([x1], . . . , [xn])
is the initial search region for the initial conditions and

C = {Φ(x, t1) ∈ [m1], . . . , Φ(x, tp) ∈ [mp]}. (9)

Each constraint represents two vectorial inequalities which can be handled using
the evaluation test and the unidimensional interval operator as explained in
Section 2.

However, an efficient handling of the conjunction of constraints C require
an important optimization: When evaluating the solution operator for x and
ti, the interval integrator performs a simulation from 0 to ti. Therefore, if the
interval evaluation of the solution operator for different times are performed
independently then simulations are unnecessarily repeated. Therefore, only one
simulation from 0 to tp must be performed to evaluate the solution operator and
its Jacobian for all time measures.

Including ODE Based Constraints in the Standard CP Framework 229

3.4 Two-Point Boundary Value Problems

A two-point boundary value problem (TPBVP) consists of an ODE x′(t) =
h(x(t)) and n equality constraints gi that relate x(t0) and x(t1). Solving the
TPBVP consists in finding trajectories x(t) satisfying the ODE and the con-
straints gi(x(t0),x(t1)) = 0. As the trajectory is completely defined by its initial
condition, the TPBVP actually consists in finding the initial conditions that give
rise to such trajectories. Such a problem perfectly fits the NCSP framework since
these initial conditions are the solutions of the NCSP (V,D,C) where: V = x =
(x1, . . . , xn) are the initial conditions we search, D = [x] = ([x1], . . . , [xn]) is the
initial search region for the initial conditions and C = {c1(x) = 0, . . . , cn(x) = 0}
with

ci(x) = gi(x, Φ(x, t1 − t0)). (10)

Note that once [Φ]([x], t1 − t0), [Φ](mid[x], t1 − t0) and [DΦ]([x], t1 − t0) are
evaluated then [ci]([x]), [ci](mid[x]) and [Dci]([x]) directly follow from (10). In
particular using the chain rule we obtain

Dci(x) =
∂g(u,v)

∂u

∣∣∣∣
(x,y)

+
∂g(u,v)

∂v

∣∣∣∣
(x,y)

DxΦ(x, t1 − t0) (11)

with y = Φ(x, t1 − t0). The expression (11) can be evaluated for interval argu-
ments using [Φ]([x]) and [DΦ]([x]).

Remark 3. In some cases the number of variables of the problem can be reduced,
which ease its resolution by a branch and prune algorithm. This is the case typ-
ically when one constraint gi involves only the state at t = t0 and can be solved
formally. For example let g1(u,v) = u1−u2 and g2(u,v) = v1−v2 so the TPBVP
to be solved is x1(t0) = x2(t0) and x1(t1) = x2(t1). So we need only to perform
the search on x1(0) since x2(0) is a function of the former. So the NCSP we solve
will actually be: V = {x}, D = {[x]} and C = {Φ((x, x), tt)1−Φ((x, x), tt)2 = 0}
which is simpler than the original NCSP involving the constraints (10).

4 Experiments

Experiments have been carried out on a 2.53 GHz Intel Dual Core. We used
the interval ODE integrator available as part of the CAPD library5. In theory
[Φ]([x], [t]), [DΦ]([x], [t]) and [Φ](mid[x], [t]) can be computed during one single
integration. However, the CAPD integrator does not offer this possibility so
we performed two integrations independently, thus approximately doubling the
computational time. Also, the CAPD integrator is optimized for small initial
conditions (which is required for the usual usage of this integrator related to
chaotic dynamical systems investigation) so we obtained very sharp enclosures
of solutions, but poorer performances for exploring large domains.

5 CAPD is available at http://capd.ii.uj.edu.pl/

http://capd.ii.uj.edu.pl/

230 A. Goldsztejn et al.

Fig. 2. Left: Paving obtained for the academic problem of Section 4.1 (solution and

boundary boxes are in gray and black respectively). Right: Volume of the boundary

boxes vs time for the interval enclosure test (dashed) and the Newton contractor (plain).

4.1 Parameter Estimation Problems

Academic Example. It is a simple problem for which we can formally compute
the solution set. We look for the initial conditions x(0) ∈ ([0, 2], [0, 2]) for which
the trajectories of the ODE x′(t) = Ax(t) with

A =
(

0.1 1
−1 0.1

)
(12)

(trajectories are spirals that unroll toward infinity) belong to the box [mi] =
mi ± 0.25 at time ti. In that purpose, we dispose of the following values:

ti 3 5 7 8
mi (−1.34,−1.52) (−1.11, 2.24) (2.84, 0.19) (1.87,−2.52)

As the ODE is linear, its trajectories can be formally computed using the ma-
trix exponential: x(t) = exp(tA)x(0). Therefore, each constraint that forces the
trajectory to be in a specific box at time ti actually implies that the initial
condition belongs to the parallelepiped {exp(tiA)−1u : u ∈ mi ± 0.25}. These
parallelepipeds are represented in dashed lines on the left hand side diagram of
Figure 2 together with the paving computed by our algorithm. The right hand
side diagram of Figure 2 shows the total volume of the boundary boxes (verti-
cal axis) that decreases with time (horizontal axis). The plain curve represents
the timings obtained using both the interval enclosure test and the contractor
based on the interval Newton, while the dashed curve corresponds to the inter-
val enclosure test alone. We can see that the Newton based contractor improves
the resolution, although it could be used more efficiently: Indeed, it could also
be used to compute inner boxes (cf. [20]) or in conjunction with parallelotope
domains (cf. [21]) although this framework needs to be extended to inequality
constraints for this purpose.

Including ODE Based Constraints in the Standard CP Framework 231

Fig. 3. Left: Paving obtained for the kinetic parameters estimation of an enzymatic

reaction of Section 4.1 (solution and boundary boxes are in gray and blackrespec-

tively). Right: Volume of the boundary boxes versus time for the interval enclosure

test (dashed) and the Newton contractor (plain).

Estimating Kinetic Parameters of an Enzymatic Reaction. In [22] was
reported the important potential interest of rigorously simulating the following
kinetic enzymatic reaction:

s′(t) = −Vmax s(t)
ks+s(t)

p′(t) = Vmax s(t)
ks+s(t)

(13)

However, the used implementation of HybridCC [23,24] could not integrate this
ODE sharply enough to provide interesting numerical evidences. The NCSP
framework proposed herein uses CAPD which is able to integrate sharply the
ODE (13). Thus, we are in position to perform some parameter estimation of
this model. Some measurements are provided for parameter estimation in [25,26],
however the duration of the experiment is too long for CAPD to integrate it
sharply enough for large initial conditions. Thus, we have prepared the following
set of measurements by simulating the system for s(0) = 25, p(0) = 0, Vmax =
100 and ks = 5 and added a random noise of amplitude 0.1. We obtained the
following measurements:

ti 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
pi 8.01 15.32 21.01 23.92 24.74 24.96 24.97 25.02 24.95 24.91

The parameter estimation problem consists in finding the parameter values
(Vmax, ks) in the initial domain ([90, 110], [0, 10]) which satisfy p(ti) ∈ pi ± 0.1.
Results are shown in Figure 3. We see again that the interval Newton based
contractor improves the resolution in spite of the possible improvements of its
integration with the solution operator evaluation.

4.2 Two-Point BVPs

We have solved two boundary value problems that were studied in [6]. The
method proposed in [6] consists of a bisection algorithm that implements a spe-
cific filtering algorithm on Taylor models (see [27] for details on the Taylor model
method used in [6]). On the one hand, using Taylor models allows integrating

232 A. Goldsztejn et al.

Table 1. Solutions for the catalytic reaction in a flat particle problem computed from

the initial interval [0, 1]

λ Solution enclosure Width Time (s)

0.05 0.97034556001404[65, 88] 2.2 × 10−15 1.1

0.1

0.9226804137526[691, 733] 4.2 × 10−15

3.70.5058725840206[640, 786] 1.5 × 10−14

0.06446821272269[81, 149] 6.7 × 10−15

0.15 0.01655884279376[13, 30] 1.6 × 10−15 5.3

sharply larger initial conditions than the algorithm implemented in CAPD so
larger initial domains can be used than in our implementation (cf. the tubu-
lar reactor model problem). On the other hand, the NCSP framework allows
to compute sharper enclosures and proving rigorously the existence of solutions
which is an important issue in BVP resolution. This detailed in the following.

Catalytic Reaction in a Flat Particle. Under some assumptions, the cat-
alytic reaction of a particle can be modeled by the following BVP (cf. [28]):

x′1(t) = x2(t)

x′2(t) = λx1(t) exp
(

γβ
(
1−x1(t)

)
1+β

(
1−x1(t)

))
x2(0) = 0
x1(1) = 1.

(14)

This is naturally expressed as a NCSP as shown in Section 3.4. As in [6], we
solved the problem for γ = 20, β = 0.4, three values of λ and the initial search
interval x1(0) ∈ [0, 1]. Table 1 reports the results obtained. We have found the
same solutions in approximately the same computation time as in [6]. However,
the enclosures obtained by our algorithm are much sharper, while we have proved
the existence of one unique solution in each of them. This is an important ad-
vantage of the usage of the interval Newton as usually implemented in the NCSP
framework.

Tubular Reactor Model. The following simplified model of a tubular reactor
was studied in [29,6]:

x′1(t) = x2(t)
x′2(t) = 6

(
x2(t)− 0.05

(
1− x1(t)

)
exp

(10x1(t)
1+0.5x1(t)

))
x2(0) = 6x1(0)
x2(1) = 0.

(15)

In [6] the initial search domain was x1(0) ∈ [0, 1]. However, we found that
a trajectory starting at x1(0) = 0 and x2(0) = 0 probably converges to a sin-
gularity in finite time, which prevents any further integration6. The bisection
6 This behavior was pointed out by Daniel Wilczak in a personal communication.

Including ODE Based Constraints in the Standard CP Framework 233

Table 2. Solutions for the tubular reactor model computed in 30 seconds from the

initial interval [0.01, 0.04]

Solution enclosure Width

0.010042462528303[8, 9] 2.8 × 10−17

0.01844542857635[59, 68] 7.6 × 10−16

0.03738712388979[57, 179] 1.3 × 10−14

algorithm proposed in [6] is able to get rid of this convergence to a singularity
by enforcing the constraint x1(t) ∈ [0, 1] for all t, which is justified by physi-
cal considerations. This additional constraint strongly ease the resolution of the
BVP, but we have not yet been able to integrate this constraint in our framework.
This together with the fact that CAPD is optimized for small initial conditions
(while the ODE integrator used in [6] better integrates larger initial conditions)
restricted us to a smaller initial domain: Table 2 shows the enclosures computed
by our algorithm starting from the initial domain x1(0) ∈ [0.01, 0.04] (which
contains all the BVP solutions). We have found the same solutions as in [6].
However, five intervals were found in [6] and the authors conjectured that three
of them were corresponding to the same solution (because they were very small
neighbors). Our algorithm gave the rigorous proof that a unique solution lies
in each intervals hence proving that this BVP actually has three solutions, and
provided sharper enclosures of these solutions. These are the typical advantages
of the NCSP framework.

5 Conclusion

We have shown that abstracting an ODE by its solution operator allows including
naturally any ODE based constraint into the standard framework of numerical
CSPs (NCSP). This permits the homogenizing and generalizing of several state
of the art algorithms, like for example those dedicated to parameter estimation
and boundary value problems. The expression of problems involving ODE in
this framework presents many advantages: First it allows to separate the prob-
lem declaration and its resolution, which is a well known advantage of the CP
framework. Second, the resolution of these problems can benefit from present
and future efficient methods designed in the NCSP framework.

Our current implementation of this framework is not yet able to solve the
hardest problems solved by dedicated state of the art methods. However, it has
already shown some advantages with some very sharp BVP solution enclosures
and their existence and uniqueness proof.

Tackling larger problems require strong optimization of the resolution pro-
cess. For example, experiments have shown that at the beginning of the search,
when intervals are large, the pruning is not efficient so reducing the order of
the Taylor expansion would certainly pay off. Also, we are using today the in-
terval integrator from the CAPD library but implementing a dedicated interval

234 A. Goldsztejn et al.

integrator would allow integrating ODE more carefully in order to save compu-
tations that are not necessary to the CSP resolution process. Also, this interval
integrator is optimized for small initial conditions, which is good for computing
sharp enclosure of solutions at the end of the resolution process but which is not
efficient at the beginning of the search process when domain to be proceeded
are large.

Finally, some specific NCSP features like universally quantified constraints,
parallelotopes domains, rigorous global optimization can naturally be used with
ODE based constraints, which can lead to interesting developments.

Acknowledgments

This work was supported in part by the International Internship Program of the
National Institute of Informatics, Japan. The authors are particularly grateful to
Daniel Wilczak who helped them using the ODE integrator available in CAPD,
and for his helpful comments on our simulations.

References

1. Räıssi, T., Ramdani, N., Candau, Y.: Set membership state and parameter estima-

tion for systems described by nonlinear differential equations. Automatica 40(10),

1771–1777 (2004)

2. Granvilliers, L., Cruz, J., Barahona, P.: Parameter estimation using interval com-

putations. SIAM J. Sci. Comput. 26(2), 591–612 (2005)

3. Kapela, T., Simó, C.: Computer assisted proofs for nonsymmetric planar chore-

ographies and for stability of the eight. Nonlinearity 20(5), 1241 (2007)

4. Lin, Y., Stadtherr, M.A.: Guaranteed state and parameter estimation for non-

linear continuous-time systems with bounded-error measurements. Industrial &

Engineering Chemistry Research 46(22), 7198–7207 (2007)

5. Johnson, T., Tucker, W.: Brief paper: Rigorous parameter reconstruction for dif-

ferential equations with noisy data. Automatica 44(9), 2422–2426 (2008)

6. Lin, Y., Enszer, J.A., Stadtherr, M.A.: Enclosing all solutions of two-point bound-

ary value problems for odes. Computers & Chemical Engineering 32(8), 1714–1725

(2008)

7. Cruz, J., Barahona, P.: Constraint Satisfaction Differential Problems. In: Rossi, F.

(ed.) CP 2003. LNCS, vol. 2833, pp. 259–273. Springer, Heidelberg (2003)

8. Cruz, J., Barahona, P.: Constraint reasoning in deep biomedical models. Artificial

Intelligence in Medicine 34(1), 77–88 (2005)

9. Moore, R.: Interval Analysis. Prentice-Hall, Englewood Cliffs (1966)

10. Neumaier, A.: Interval Methods for Systems of Equations. Cambridge Univ. Press,

Cambridge (1990)

11. Benhamou, F., Older, W.: Applying Interval Arithmetic to Real, Integer and

Boolean Constraints. Journal of Logic Programming 32(1), 1–24 (1997)

12. Van Hentenryck, P., McAllester, D., Kapur, D.: Solving polynomial systems using

a branch and prune approach. SIAM J. Numer. Anal. 34(2), 797–827 (1997)

13. Granvilliers, L.: A symbolic-numerical branch and prune algorithm for solving non-

linear polynomial systems. Journal of Universal Computer Science 4(2), 125–146

(1998)

Including ODE Based Constraints in the Standard CP Framework 235

14. Goldsztejn, A., Goualard, F.: Box Consistency through Adaptive Shaving. In: Proc.

of ACM SAC 2010, pp. 2049–2054 (2010)

15. Hairer, E., Nørsett, S.P., Wanner, G.: Solving Ordinary Differential Equations I.

Springer, Heidelberg (2000)

16. Nedialkov, N.S., Jackson, K.R., Corliss, G.F.: Validated Solutions of Initial Value

Problems for Ordinary Differential Equations. Applied Mathematics and Compu-

tation 105(1), 21–68 (1999)

17. Janssen, M., Deville, Y., Hentenryck, P.V.: Multistep filtering operators for or-

dinary differential equations. In: Jaffar, J. (ed.) CP 1999. LNCS, vol. 1713, pp.

246–260. Springer, Heidelberg (1999)

18. Zgliczynski, P.: C1-Lohner Algorithm. Foundations of Computational Mathemat-

ics 2(4), 429–465 (2002)

19. Goldsztejn, A., Hayes, W.: Reliable Inner Approximation of the Solution Set to

Initial Value Problems with Uncertain Initial Value. In: Proceedings of SCAN

2006, p. 19. IEEE Press, Los Alamitos (2006)

20. Goldsztejn, A., Michel, C., Rueher, M.: Efficient Handling of Universally Quantified

Inequalities. Constraints 14(1), 117–135 (2008)

21. Goldsztejn, A., Granvilliers, L.: A New Framework for Sharp and Efficient Reso-

lution of NCSP with Manifolds of Solutionss. Constraints 15(2), 190–212 (2010)

22. Eveillard, D., Ropers, D., de Jong, H., Branlant, C., Bockmayr, A.: A multi-scale

constraint programming model of alternative splicing regulation. Theor. Comput.

Sci. 325(1), 3–24 (2004)

23. Carlson, B., Gupta, V.: Hybrid cc with interval constraints. In: HSCC 1998: Pro-

ceedings of the First International Workshop on Hybrid Systems, pp. 80–95 (1998)

24. Gupta, V., Jagadeesan, R., Saraswat, V.A.: Computing with continuous change.

Sci. Comput. Program. 30(1-2), 3–49 (1998)

25. Kuzmic, P.: Program DYNAFIT for the Analysis of Enzyme Kinetic Data: Appli-

cation to HIV Proteinase. Analytical Biochemistry 237(2), 260–273 (1996)

26. Mendes, P., Kell, D.: Non-linear optimization of biochemical pathways: applications

to metabolic engineering and parameter estimation. Bioinformatics 14(10), 869–883

(1998)

27. Lin, Y., Stadtherr, M.A.: Validated solutions of initial value problems for paramet-

ric odes. Applied Numerical Mathematics 57(10), 1145–1162 (2007)

28. Hlavácek, V., Marek, M., Kub́ıcek, M.: Modelling of chemical reactors – X multiple

solutions of enthalpy and mass balances for a catalytic reaction within a porous

catalyst particle. Chemical Engineering Science 23(9), 1083–1097 (1968)

29. Chen, Y.: Dynamic systems optimization. Ph. D. Thesis, University of California

(2006)

Structural Tractability of Enumerating
CSP Solutions

Gianluigi Greco1 and Francesco Scarcello2

1 Dept. of Mathematics
2 DEIS, University of Calabria, 87036, Rende, Italy

ggreco@mat.unical.it, scarcello@deis.unical.it

Abstract. The problem of deciding whether CSP instances admit so-

lutions has been deeply studied in the literature, and several structural

tractability results have been derived so far. However, constraint satis-

faction comes in practice as a computation problem where the focus is

either on finding one solution, or on enumerating all solutions, possibly

projected over some given set of output variables. The paper investigates

the structural tractability of the problem of enumerating (possibly pro-

jected) solutions, where tractability means here computable with polyno-

mial delay (WPD), since in general exponentially many solutions may be

computed. A general framework based on the notion of tree projection

of hypergraphs is considered, which generalizes all known decomposi-

tion methods. Tractability results have been obtained both for classes

of structures where output variables are part of their specification, and

for classes of structures where computability WPD must be ensured for

any possible set of output variables. These results are shown to be tight,

by exhibiting dichotomies for classes of structures having bounded arity

and where the tree decomposition method is considered.

1 Introduction

1.1 Constraint Satisfaction and Decomposition Methods

Constraint satisfaction is often formalized as a homomorphism problem that
takes as input two finite relational structures A (modeling variables and scopes
of the constraints) and B (modeling the relations associated with constraints),
and asks whether there is a homomorphism from A to B. Since the general prob-
lem is NP-hard, many restrictions have been considered in the literature, where
the given structures have to satisfy additional conditions. In this paper, we are
interested in restrictions imposed on the (usually said) left-hand structure, i.e.,
A must be taken from some suitably defined class A of structures, while B is
any arbitrary structure from the class “−” of all finite structures.1 Thus, we

1 The finite property is a feature of this framework, and not a simplifying assumption.

E.g., on structures with possibly infinite domains, the open question in [10] (recently

answered by [15] on finite structures) would have been solved in 1993 [23].

D. Cohen (Ed.): CP 2010, LNCS 6308, pp. 236–251, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Structural Tractability of Enumerating CSP Solutions 237

face the so-called uniform constraint satisfaction problem, shortly denoted as
CSP(A,−), where both structures are part of the input (nothing is fixed).

The decision problem CSP(A,−) has intensively been studied in the litera-
ture, and various classes of structures over which it can be solved in polynomial
time have already been singled out (see [7,11,18,1], and the references therein).
These approaches, called decomposition methods, are based on properties of the
hypergraph HA associated with each structure A ∈ A. In fact, it is well-known
that, for the class Aa of all structures whose associated hypergraphs are acyclic,
CSP(Aa,−) is efficiently solvable by just enforcing generalized arc consistency
(GAC)—roughly, by filtering constraint relations until every pair of constraints
having some variables X̄ in common agree on X̄ (that is, they have precisely the
same set of allowed tuples of values on these variables X̄).

Larger “islands of tractability” are then identified by generalizing hypergraph
acyclicity. To this end, every decomposition method DM associates with any hy-
pergraph HA some measure w of its cyclicity, called the DM-width of HA. The
tractable classes A of instances (according to DM) are those (with hypergraphs)
having bounded width, that is, whose degree of cyclicity is below some fixed
threshold. For every instance A in such a class A and every structure B, the in-
stance (A,B) can be solved in polynomial-time by exploiting the solutions of a set
of suitable subproblems, that we call views, each one solvable in polynomial-time
(in fact, exponential in the—fixed—width, for all known methods). In particu-
lar, the idea is to arrange some of these views in a tree, called decomposition,
in order to exploit the known algorithms for acyclic instances. In fact, whenever
such a tree exists, instances can be solved by just enforcing GAC on the available
views, even without computing explicitly any decomposition. This very general
approach traces back to the seminal database paper [10], and it is based on the
graph-theoretic notion of tree-projection of the pair of hypergraphs (HA,HV),
associated with the input structure A and with the structure V of the available
views, respectively (tree projections are formally defined in Section 2).

For instance, assume that the fixed threshold on the width is k: in the gen-
eralized hypertree-width method [13], the available views are all subproblems
involving at most k constraints from the given CSP instance; in the case of
treewidth [21], the views are all subproblems involving at most k variables; for
fractional hypertree-width, the views are all subproblems having fractional cover-
width at most k (in fact, if we require that they are computable in polynomial-
time, we may instead use those subproblems defined in [19] to compute a O(k3)
approximation of this notion).

Note that, for the special case of generalized hypertree-width, the fact that
enforcing GAC on all clusters of k constraints is sufficient to solve the given
instance, without computing a decomposition, has been re-derived in [5] (with
proof techniques different from those in [10]). Moreover, [5] actually provided
a stronger result, as it is proved that this property holds even if there is some
homomorphically equivalent subproblem having generalized hypertree-width at
most k. However, the corresponding only if result is missing in that paper, and
characterizing the precise power of this GAC procedure for the views obtained

238 G. Greco and F. Scarcello

from all clusters of k constraints (short: k-GAC) remained an open question.
For any class A of instances having bounded arity (i.e., with a fixed maximum
number of variables in any constraint scope of every instance of the class), the
question has been answered in [2]: ∀A ∈ A, k-GAC is correct for every right-hand
structure B if, and only if, the core of A has tree width at most k (recall that
treewidth and generalized hypertree-width identify the same set of bounded-
arity tractable classes). In its full version, the answer to this open question
follows from a recent result in [15] (see Theorem 2).

In fact, for any recursively enumerable class of bounded-arity structures A,
it is known that this method is essentially optimal: CSP(A,−) is solvable in
polynomial time if, and only if, the cores of the structures in A have bounded
treewidth (under standard complexity theoretic assumptions) [17]. Note that the
latter condition may be equivalently stated as follows: for every A ∈ A there is
some A

′ homomorphically equivalent to A and such that its treewidth is below
the required fixed threshold. For short, we say that such a class has bounded
treewidth modulo homomorphic equivalence.

Things with unbounded-arity classes are not that clear. Generalized hypertree-
width does not characterize all classes of (arbitrary) structures where CSP(A,−)
is solvable in polynomial time [18]. It seems that a useful characterization may be
obtained by relaxing the requirement that views are computable in polynomial
time, and by requiring instead that such tasks are fixed-parameter tractable
(FPT) [9]. In fact, towards establishing such characterization, it was recently
shown in [20] that (under some reasonable technical assumptions) the problem
CSP(H), i.e., CSP(A,−) restricted to the instances whose associated hyper-
graphs belong to the class H, is FPT if, and only if, hypergraphs in H have
bounded submodular width—a new hypergraph measure more general than frac-
tional hypertree-width and, hence, than generalized hypertree-width.

It is worthwhile noting that the above mentioned tractability results for classes
of instances defined modulo homomorphically equivalence are actually tractabil-
ity results for the promise version of the problem. In fact, unless P = NP, there
is no polynomial-time algorithm that may check whether a given instance A

actually belongs to such a class A. In particular, it has been observed by differ-
ent authors [24,4] that there are classes of instances having bounded treewidth
modulo homomorphically equivalence for which answers computable in polyno-
mial time cannot be trusted. That is, unless P = NP, there is no efficient way
to distinguish whether a “yes” answer means that there is some solution of the
problem, or that A �∈ A.

In this paper, besides promise problems, we also consider the so-called no-
promise problems, which seem more appealing for practical applications. In
this case, either certified solutions are computed, or the promise A ∈ A is
correctly disproved. For instance, the algorithm in [5] solves the no-promise
search-problem of computing a homomorphism for a given CSP instance (A,B).
This algorithm either computes such a homomorphism or concludes that HA has
generalized hypertree-width greater than k.

Structural Tractability of Enumerating CSP Solutions 239

1.2 Enumeration Problems

While the structural tractability of deciding whether CSP instances admit so-
lutions has been deeply studied in the literature, the structural tractability of
the corresponding computation problem received considerably less attention so
far [4], though this is certainly a more appealing problem for practical applica-
tions. In particular, it is well-known that for classes of CSPs where the decision
problem is tractable and a self-reduction argument applies the enumeration prob-
lem is tractable too [8,6]. Roughly, these classes have a suitable closure property
such that one may fix values for the variables without going out of the class, and
thus may solve the computation problem by using the (polynomial-time) algo-
rithm for the decision problem as an oracle. In fact, for the non-uniform CSP
problem, the tractability of the decision problem always entails the tractability
of the search problem [6]. As observed above, this is rather different from what
happens in the uniform CSP problem that we study in this paper, where this
property does not hold (see [24,4], and Proposition 1), and thus a specific study
for the computation problem is meaningful and necessary.

In this paper, we embark on this study, by focusing on the problem ECSP
of enumerating (possibly projected) solutions. In particular, our goals are (1) to
identify precisely those classes of uniform CSPs where consistency-based algo-
rithms allow us to solve efficiently the problem and, more ambitiously, (2) to
prove dichotomies saying that such classes are in fact all the tractable ones (at
least for the case of bounded-arity CSPs). Since even easy instances of enumera-
tion problems may have an exponential number of solutions, tractability means
here having algorithms that compute solutions with polynomial delay (WPD):
An algorithm M solves WPD a computation problem P if there is a polynomial
p(·) such that, for every instance of P of size n, M discovers if there are no so-
lutions in time O(p(n)); otherwise, it outputs all solutions in such a way that a
new solution is computed within O(p(n)) time from the previous one.

Before stating our contribution, we notice that there are different facets of
the enumeration problem, and thus different research directions to be explored:

(Which Decomposition Methods?) We considered the more general framework
of the tree projections, where subproblems (views) may be completely arbitrary,
so that our results are smoothly inherited by all (known) decomposition methods.
We remark that this choice posed interesting technical challenges to our analysis,
and called for solution approaches that were not explored in the earlier literature
on traditional methods, such as treewidth. E.g., in this context, we cannot speak
anymore of “the core” of a structure, because different isomorphic cores may have
different structural properties with respect to the available views.

(Only full solutions or possibly projected solutions?) In this paper, an ECSP
instance is a triple (A,B, O), for which we have to compute all solutions (homo-
morphisms) projected over a set of desired output variablesO, denoted by A

B[O].
We believe this is the more natural approach. Indeed, modeling real-world appli-
cations through CSP instances typically requires the use of “auxiliary” variables,
whose precise values in the solutions are not relevant for the user, and that are
(usually) filtered-out from the output. In these cases, computing all combinations

240 G. Greco and F. Scarcello

of their values occurring in solutions means wasting time, possibly exponential
time. Of course, this aspect is irrelevant for the problem of computing just one
solution, but is crucial for the enumeration problem.

(Should classes of structures be aware of output variables?) This is an important
technical question. We are interested in identifying classes of tractable instances
based on properties of their left-hand structures, while right-hand structures have
no restrictions. What about output variables? In principle, structural properties
may or may not consider the possible output variables, and in fact both approaches
have been explored in the literature (see, e.g., [17]), and both approaches are dealt
with in this paper. In the former output-aware case, possible output variables are
suitably described in the instance structure. Unlike previous approaches that con-
sidered additional “virtual” constraints covering together all possible output vari-
ables [17], in this paper possible output variables are described as those variables
X having a domain constraint dom(X), that is, a distinguished unary constraint
specifying the domain of this variable. Such variables are said domain restricted.
In fact, this choice reflects the classical approach in constraint satisfaction sys-
tems, where variables are typically associated with domains, which are heavily
exploited by constraint propagation algorithms. Note that this approach does not
limit the number of solutions, while in the tractable classes considered in [17] only
instances with a polynomial number of (projected) solutions may be dealt with.
As far as the latter case of arbitrary sets of output variables is considered, observe
that in general stronger conditions are expected to be needed for tractability. In-
tuitively, since we may focus on any desired substructure, no strange situations
may occur, and the full instance should be really tractable.

1.3 Contribution

Output-aware classes of ECSPs:

(1) We define a property for pairs (A, O), where A is a structure and O ⊆ A is
a set of variables, that allows us to characterize the classes of tractable in-
stances. Roughly, we say that (A, O) is tp-covered through the decomposition
method DM if variables in O occur in a tree projection of a certain hypergraph
w.r.t. to the (hypergraph associated with the) views defined according to DM.

(2) We describe an algorithm that solves the promise enumeration problem, by
computing with polynomial delay all solutions of a given instance (A,B, O),
whenever (A, O) is tp-covered through DM.

(3) For the special case of (generalized hyper)tree width, we show that the above
condition is also necessary for the correctness of the proposed algorithm (for
every B). In fact, for these traditional decomposition methods we now have
a complete characterization of the power of the k-GAC approach.

(4) For recursively enumerable classes of structures having bounded arity, we
exhibit a dichotomy showing that the above tractability result is tight, for
DM = treewidth (and assuming FPT �= W [1]).

Structural Tractability of Enumerating CSP Solutions 241

ECSP instances over arbitrary output variables:

(1) We describe an algorithm that, on input (A,B, O), solves the no-promise
enumeration problem. In particular, either all solutions are computed, or it
infers that there exists no tree projection of HA w.r.t. HV (the hypergraph
associated with the views defined according to DM). This algorithm general-
izes to the tree projection framework the enumeration algorithm of projected
solutions recently proposed for the special case of treewidth [4].

(2) Finally, we give some evidence that, for bounded arity classes of instances,
we cannot do better than this. In particular, having bounded width tree-
decompositions of the full structure seems a necessary condition for enu-
merating WPD. We speak of “evidence,” instead of saying that our result
completely answers the open question in [17,4], because our dichotomy theo-
rem focuses on classes of structures satisfying the technical property of being
closed under taking minors (in fact, the same property assumed in the first
dichotomy result on the complexity of the decision problem on classes of
graphs [16]).

2 Relational Structures and Homomorphisms

A constraint satisfaction problem may be formalized as a relational homomor-
phism problem. A vocabulary τ is a finite set of relation symbols of specified
arities. A relational structure A over τ consists of a universe A and an r-ary
relation RA ⊆ Ar, for each relation symbol R in τ .

If A and A
′ are two relational structures over disjoint vocabularies, we denote

by A�A
′ the relational structure over the (disjoint) union of their vocabularies,

whose domain (resp., set of relations) is the union of those of A and A
′.

A homomorphism from a relational structure A to a relational structure B

is a mapping h : A �→ B such that, for every relation symbol R ∈ A, and for
every tuple 〈a1, . . . , ar〉 ∈ RA, it holds that 〈h(a1), . . . , h(ar)〉 ∈ RB. For any
set X ⊆ A, denote by h[X] the restriction of h to X . The set of all possible
homomorphisms from A to B is denoted by A

B, while A
B[X] denotes the set of

their restrictions to X .
An instance of the constraint satisfaction problem (CSP) is a pair (A,B)

where A is called a left-hand structure (short: �-structure) and B is called a
right-hand structure (short: r-structure). In the classical decision problem, we
have to decide whether there is a homomorphism from A to B, i.e., whether
A

B �= ∅. In an instance of the corresponding enumeration problem (denoted
by ECSP) we are additionally given a set of output elements O ⊆ A; thus, an
instance has the form (A,B, O). The goal is to compute the restrictions to O of
all possible homomorphisms from A to B, i.e., A

B[O]. If O = ∅, the computation
problem degenerates to the decision one. Formally, let hφ : ∅ �→ true denote (the
constant mapping to) the Boolean value true; then, define A

B[∅] = {hφ} (resp.,
A

B[∅] = ∅) if there is some (resp., there is no) homomorphism from A to B.
In the constraint satisfaction jargon, the elements of A (the domain of the

�-structure A) are the variables, and there is a constraint C = (〈a1 . . . , ar〉, RB)

242 G. Greco and F. Scarcello

for every tuple 〈a1 . . . , ar〉 ∈ RA and every relation symbol R ∈ τ . The tuple of
variables is usually called the scope of C, while RB is called the relation of C.
Any homomorphism from A to B is thus a mapping from the variables in A to
the elements in B (often called domain values) that satisfies all constraints, and
it is also called a solution (or a projected solution, if it is restricted to a subset
of the variables).

Two relational structures A and A′ are homomorphically equivalent if there is
a homomorphism from A to A

′ and vice-versa. A structure A
′ is a substructure

of A if A′ ⊆ A and RA
′ ⊆ RA, for each symbol R ∈ τ . Moreover, A

′ is a core of
A if it is a substructure of A such that: (1) there is a homomorphism from A to
A

′, and (2) there is no substructure A
′′ of A

′, with A
′′ �= A

′, satisfying (1).

3 Decomposition Methods, Views, and Tree Projections

Throughout the following sections we assume that (A,B) is a given connected
CSP instance, and we shall seek to compute its solutions (possibly restricted over
a desired set of output variables) by combining the solutions of suitable sets of
subproblems, available as additional distinguished constraints called views.

Let AV be an �-structure with the same domain as A. We say that AV is a
view structure (short: v-structure) if
– its vocabulary τV is disjoint from the vocabulary τ of A;
– every relation RAV contains a single tuple whose variables will be denoted

by var (RAV). That is, there is a one-to-one correspondence between views
and relation symbols in τV , so that we shall often use the two terms inter-
changeably;

– for every relation R ∈ τ and every tuple t ∈ RA, there is some relation
Rt ∈ τV , called base view, such that {t} = RAV

t , i.e., for every constraint in
A there is a corresponding view in AV .

Let BV be an r-structure. We say that BV is legal (w.r.t. AV and (A,B)) if
– its vocabulary is τV ;
– For every view R ∈ τV , RBV ⊇ A

B[w] holds, where w = var (RAV). That is,
every subproblem is not more restrictive than the full problem.

– For every base view Rt ∈ τV , RBV
t ⊆ RB. That is, any base view is at least

as restrictive as the “original” constraint associated with it.

The following fact immediately follows from the above properties.

Fact 1. Let BV be any r-structure that is legal w.r.t. AV and (A,B). Then, ∀O ⊆
A, the ECSP instance (AV ,BV , O) has the same set of solutions as (A,B, O).

In fact, all structural decomposition methods define some way to build the
views to be exploited for solving the given CSP instance. In our framework,
we associate with any decomposition method DM a pair of polynomial-time com-
putable functions �-DM and r-DM that, given any CSP instance (A,B), compute
the pair (AV ,BV), where AV = �-DM(A) is a v-structure, and BV = r-DM(A,B)

Structural Tractability of Enumerating CSP Solutions 243

Fig. 1. A structure A. A hypergraph HAV such that (HA,HAV) has no tree projections.

Two hypergraphs HA′ and HA′′ , where A
′ and A

′′ are cores of A. A tree projection Ha

of (HA′ ,HAV).

is a legal r-structure.2 For instance, for any fixed natural number k, the gener-
alized hypertree decomposition method [12] (short: hwk) is associated with the
functions �-hwk and r -hwk that, given a CSP instance (A,B), build the pair
(�-hwk (A), r -hwk (A,B)) where, for each subset C of at most k constraints from
(A,B), there is a view RC such that: (1) var(R
-hwk (A)

C) is the set of all variables
occurring in C, and (2) the tuples in R

r-hwk (A,B)
C are the solutions of the subprob-

lem encoded by C. Similarly, the tree decomposition method [21] (twk) is defined
as above, but we consider each subset of at most k variables in A instead of each
subset of at most k constraints.

3.1 Tree Projections for CSP Instances

In this paper we are interested in restrictions imposed on left-hand structures
of CSP instances, based on some decomposition method DM. To this end, we
associate with any �-structure A a hypergraph HA = (A,H), whose set of nodes
is equal to the set of variables A and where, for each constraint scope in RA, the
set H of hyperedges contains a hyperedge including all its variables (no further
hyperedge is in H). In particular, the v-structure AV = �-DM(A) is associated
with a hypergraph HAV = (A,H), whose set of nodes is the set of variables A
and where, for each view R ∈ τV , the set H contains the hyperedge var(RAV). In
the following, for any hypergraphH, we denote its nodes and edges by nodes(H)
and edges(H), respectively.

Example 1. Consider the �-structure A whose vocabulary just contains the bi-
nary relation symbol R, and such that RA = {〈F,E〉, 〈A,E〉, 〈A,C〉, 〈A,B〉,
〈B,C〉, 〈D,B〉, 〈D,C〉}. Such a simple one-binary-relation structure may be
2 A natural extension of this notion may be to consider FPT decomposition methods,

where functions 	-DM and r-DM are computable in fixed-parameter polynomial-time.

For the sake of presentation and space, we do not consider FPT decomposition

methods in this paper, but our results can be extended to them rather easily.

244 G. Greco and F. Scarcello

easily represented by the directed graph in the left part of Figure 1, where edge
orientation reflects the position of the variables in R. In this example, the as-
sociated hypergraph HA is just the undirected version of this graph. Let DM be
a method that, on input A, builds the v-structure AV = �-DM(A) consisting of
the seven base views of the form Rt, for each tuple t ∈ RA, plus the three rela-
tions R1, R2, and R3 such that RAV

1 = {〈A,E, F 〉}, RAV
2 = {〈A,B,C, F 〉}, and

RAV
3 = {〈C,D, F 〉}. Figure 1 also reports HAV . �

A hypergraph H is acyclic iff it has a join tree [3], i.e., a tree JT (H), whose
vertices are the hyperedges of H, such that if a node X occurs in two hyperedges
h1 and h2 of H, then h1 and h2 are connected in JT (H), and X occurs in each
vertex on the unique path linking h1 and h2 in JT (H).

For two hypergraphsH1 andH2, we write H1 ≤ H2 iff each hyperedge ofH1 is
contained in at least one hyperedge of H2. Let H1 ≤ H2. Then, a tree projection
of H1 with respect to H2 is an acyclic hypergraph Ha such that H1 ≤ Ha ≤ H2.
Whenever such a hypergraph Ha exists, we say that the pair (H1,H2) has a tree
projection (also, we say that H1 has a tree projection w.r.t. H2). The problem
of deciding whether a pair of hypergraphs has a tree projection is called the tree
projection problem, and it has recently been proven to be NP-complete [14].

Example 2. Consider again the setting of Example 1. It is immediate to check
that the pair of hypergraphs (HA,HAV) does not have any tree projection. Con-
sider instead the (hyper)graphHA′ reported on the right of Figure 1. The acyclic
hypergraphHa is a tree projection ofHA′ w.r.t.HAV . In particular, note that the
hyperedge {A,B,C} ∈ edges(Ha) “absorbs” the cycle inHA′ , and that {A,B,C}
is in its turn contained in the hyperedge {A,B,C, F} ∈ edges(HAV). �

Note that all the (known) structural decomposition methods can be recast as
special cases of tree projections, since they just differ in how they define the set
of views to be built for evaluating the CSP instance. For instance, a hypergraph
HA has generalized hypertree width (resp., treewidth) at most k if and only if
there is a tree projection of HA w.r.t. H
-hwk (A) (resp., w.r.t. H
-twk (A)).

However, the setting of tree projections is more general than such traditional
decomposition approaches, as it allows us to consider arbitrary sets of views,
which often require more care and different techniques. As an example, we shall
illustrate below that in the setting of tree projections it does not make sense to
talk about “the” core of an �-structure, because different isomorphic cores may
differently behave with respect to the available views. This phenomenon does not
occur, e.g., for generalized hypertree decompositions, where all combinations of
k constraints are available as views.

Example 3. Consider the structure A illustrated in Example 1, and the struc-
tures A

′ and A
′′ over the same vocabulary as A, and such that RA

′
= {〈A,C〉,

〈A,B〉, 〈B,C〉} and RA
′′

= {〈B,C〉, 〈D,B〉, 〈D,C〉}. The hypergraphs HA′ and
HA′′ are reported in Figure 1. Note that A

′ and A
′′ are two (isomorphic) cores of

A, but they have completely different structural properties. Indeed, (HA′ ,HAV)
admits a tree projection (recall Example 2), while (HA′′ ,HAV) does not. �

Structural Tractability of Enumerating CSP Solutions 245

3.2 CSP Instances and tp-Coverings

We complete the picture of our unifying framework to deal with decomposition
methods for constraint satisfaction problems, by illustrating some recent results
in [15], which will be useful to our ends.

For a set of variables O = {X1, . . . , Xr}, let SO denote the structure with a
fresh r-ary relation symbol RO and domain O, such that RAO

O = {〈X1, . . . , Xr〉}.

Definition 1. Let AV be a v-structure. A set of variables O ⊆ A is tp-covered in
AV if there is a core A

′ of A�SO such that (HA′ ,HAV) has a tree projection.3 �

For instance, the variables {A,B,C} are tp-covered in the v-structure AV dis-
cussed in Example 1. In particular, note that the structure A � S{A,B,C} is
associated with the same hypergraph HA′ that has a tree projection w.r.t. HAV
(cf. Example 3). Instead, the variables {B,C,D} are not tp-covered in AV .

Given a CSP instance (AV ,BV), we denote by GAC(AV ,BV) the r-structure
that is obtained by enforcing generalized arc consistency on (AV ,BV). The pre-
cise relationship between generalized-arc-consistent views and tp-covered sets of
variables has recently been stated in [15], thus answering a long standing open
question [10,23] about the relationship between the existence of tree projections
and (local and global) consistency properties. As a consequence of this result,
we characterize the power of local-consistency for any decomposition method
DM such that, for each pair (A,B), each view in BV = r-DM(A,B) contains the
solutions of the subproblem encoded by the constraints over which it is defined.
For the sake of simplicity, we state below the result specialized to the well-known
decomposition methods twk and hwk.4

Theorem 2. Let DM be a decomposition method in {twk, hwk}, let A be an �-
structure, and let AV = �-DM(A). The following are equivalent:

(1) A set of variables O ⊆ A is tp-covered in AV ;
(2) For every r-structure B, and for every relation R ∈ τV with O ⊆ var (RAV),

RGAC(AV ,BV)[O] = A
B[O], where BV = r-DM(A,B).

Note that, for the case of treewidth, we re-derive the nice result of [2], while
for generalized hypertree-width we obtain the corresponding answer for the
unbounded-arity case. In words, the result states that enforcing generalized arc
consistency on the available views is a sound and complete procedure to solve
ECSP instances if, and only if, we are interested in (projected) solutions over
output variables that are tp-covered and occur together in some available view.
Thus, in these cases, all solutions can be computed in polynomial time.

The more general case where output variables are arbitrary (i.e., not neces-
sarily included in some available view) is explored in the rest of this paper.
3 For the sake of completeness, note that we use here a core A

′ because we found

it more convenient for the presentation and the proofs. However, it is straightfor-

ward to check that this notion can be equivalently stated in terms of any structure

homomorphically equivalent to A� SO. The same holds for the related Definition 3.
4 All proofs of this paper are available in the CoRR report 1005.1567 (at arxiv.org).

246 G. Greco and F. Scarcello

4 Enumerating Solutions of Output-Aware CSP Instances

The goal of this section is to study the problem of enumerating CSP solutions for
classes of instances where possible output variables are part of the structure of
the given instance. This is formalized by assuming that the relational structure
contains domain constraints that specify the domains for such variables.

Definition 2. A variableX ∈ A is domain restricted in the �-structure A if there
is a unary distinguished (domain) relation symbol dom(X) ∈ τ with {〈X〉} =
dom(X)A. The set of all domain restricted variables is denoted by drv(A). �

We say that an ECSP instance (A,B, O) is domain restricted if O ⊆ drv(A). Of
course, if it is not, then one may easily build in linear time an equivalent domain-
restricted ECSP instance where an additional fresh unary constraint is added
for every output variable, whose values are taken from any constraint relation
where that variable occurs. We say that such an instance is a domain-restricted
version of (A,B, O).

Figure 2 shows an algorithm, named ComputeAllSolutionsDM, that com-
putes the solutions of a given ECSP instance. The algorithm is parametric
w.r.t. any chosen decomposition method DM, and works as follows. Firstly,
ComputeAllSolutionsDM starts by transforming the instance (A,B, O) into a
domain restricted one, and by constructing the views in (AV ,BV) via DM. Then,
it invokes the procedure Propagate. This procedure backtracks over the output
variables {X1, . . . , Xm}: At each step i, it tries to assign a value to Xi from
its domain view,5 and defines this value as the unique one available in that do-
main, in order to “propagate” such an assignment over all other views. This is
accomplished by enforcing generalized arc-consistency each time the procedure
is invoked. Eventually, whenever an assignment is computed for all the vari-
ables in O, this solution is returned in output, and the algorithm proceeds by
backtracking again trying different values.

4.1 Tight Characterizations

To characterize the correctness of ComputeAllSolutionsDM, we need to define
a structural property that is related to the one stated in Definition 1. Below,
differently from Definition 1 where the set of output variables O is treated as a
whole, each variable in O has to be tp-covered as a singleton set.

Definition 3. Let (A,B, O) be an ECSP instance. We say that (A, O) is
tp-covered through DM if there is a core A

′ of A �
⊎

X∈O S{X} such that
(HA′ ,H
-DM(A)) has a tree projection. �

Note that the above definition is purely structural, because (the right-hand struc-
ture) B plays no role there. In fact, the following result states that this definition
captures classes of instances where ComputeAllSolutionsDM is correct.
5 In the algorithm we denote by dom(X) the base view in τV associated with the input

constraint dom(X) ∈ τ—no confusion arises as the algorithm only works on views.

Structural Tractability of Enumerating CSP Solutions 247

Fig. 2. Algorithm ComputeAllSolutionsDM

Theorem 3. Let DM be a decomposition method, let A be an �-structure, and let
O ⊆ A be a set of variables. Assume that (A, O) is tp-covered through DM. Then,
for every r-structure B, ComputeAllSolutionsDM computes the set A

B[O].

We now complete the picture by observing that Definition 3 also provides the
necessary conditions for the correctness of ComputeAllSolutionsDM. As in The-
orem 2, we state below the result specialized to the methods twk and hwk.

Theorem 4. Let DM be a decomposition method in {twk, hwk}, let A be an
�-structure, and let O ⊆ A be a set of variables. If for every r-structure B

ComputeAllSolutionsDM computes A
B[O], then (A, O) is tp-covered through DM.

We next analyze the complexity of ComputeAllSolutionsDM.

Theorem 5. Let A be an �-structure, and O ⊆ A be a set of variables. If (A, O)
is tp-covered through DM, then ComputeAllSolutionsDM runs WPD.

By the above theorem and the definition of domain restricted variables, the
following can easily be established.

Corollary 1. Let A be any class of �-structures such that, for each A ∈ A,
(A, drv (A)) is tp-covered through DM. Then, for every r-structure B, and for every
set of variables O ⊆ drv (A), the ECSP instance (A,B, O) is solvable WPD.

In the case of bounded arity structures and if the (hyper)tree width is the chosen
decomposition method, it is not hard to see that the result in Corollary 1 is
essentially tight. Indeed, the implication (2) ⇒ (1) in the theorem below easily
follows from the well-known dichotomy for the decision version [17], which is
obtained in the special case of ECSP instances without output variables (O = ∅).

248 G. Greco and F. Scarcello

Theorem 6. Assume FPT �= W [1]. Let A be any class of �-structures of
bounded arity. Then, the following are equivalent:

(1) A has bounded treewdith modulo homomorphic equivalence;
(2) For every A ∈ A, for every r-structure B, and for every set of variables

O ⊆ drv (A), the ECSP instance (A,B, O) is solvable WPD.

Actually, from an application perspective of this result, we observe that there
is no efficient algorithm for the no-promise problem for such classes. In fact,
the following proposition formalizes and generalizes previous observations from
different authors about the impossibility of actually trusting positive answers in
the (promise) decision problem [24,4].

We say that a pair (h, c) is a certified projected solution of (A,B, O) if, by
using the certificate c, one may check in polynomial-time (w.r.t. the size of
(A,B, O)) whether h ∈ A

B[O]. E.g., any full solution extending h is clearly such
a certificate. If O = ∅, h is also empty, and c is intended to be a certificate
that (A,B) is a “Yes” instance of the decision CSP. Finally, we assume that the
empty output is always a certified answer, in that it entails that the input is a
“No” instance, without the need for an explicit certificate of this property.

Proposition 1. The following problem is NP-hard: Given any ECSP instance
(A,B, O), compute a certified solution in A

B[O], whenever (A, O) is tp-covered
through DM; otherwise, there are no requirements and any output is acceptable.
Hardness holds even if DM is the treewidth method with k = 2, the vocabulary
contains just one binary relation symbol, and O = ∅.

5 Enumeration over Arbitrary Output Variables

In this section we consider structural properties that are independent of output
variables, so that tractability must hold for any desired sets of output variables.
For this case, we are able to provide certified solutions WPD, which seems the
more interesting notion of tractability for actual applications.

Figure 3 shows the ComputeCertifiedSolutionsDM algorithm computing all
solutions of an ECSP instance, with a certificate for each of them. The al-
gorithm is parametric w.r.t. any chosen decomposition method DM, and re-
sembles in its structure the ComputeAllSolutionsDM algorithm. The main dif-
ference is that, after having found an assignment 〈a1, ..., am〉 for the vari-
ables in O, ComputeCertifiedSolutionsDM still iterates over the remaining
variables in order to find a certificate for that projected solution. Of course,
ComputeCertifiedSolutionsDM does not backtrack over the possible values to
be assigned to the variables in {Xm+1, ..., Xn}, since just one extension suffices
to certify that this partial solution can be extended to a full one. Thus, we break
the cycle after an element 〈ai〉 is picked from its domain and correctly propa-
gated, for each i > m, so that in these cases we eventually backtrack directly to
i = m (to look for a new projected solution).

Structural Tractability of Enumerating CSP Solutions 249

Fig. 3. Algorithm ComputeCertifiedSolutionsDM

Note that ComputeCertifiedSolutionsDM incrementally outputs various solu-
tions, but it halts the computation if the current r-structure B

′
V becomes empty.

As an important property of the algorithm, even when this abnormal exit con-
dition occurs, we are guaranteed that all the elements provided as output until
this event are indeed solutions. Moreover, if no abnormal termination occurs,
then we are guaranteed that all solutions will actually be computed. Correct-
ness follows easily from the same arguments used for ComputeAllSolutionsDM,
by observing that, whenever (HA,H
-DM(A)) has a tree projection, the full set of
variables A is tp-covered through DM.

Theorem 7. Let A be an �-structure, and O ⊆ A be a set of variables. Then, for
every r-structure B, ComputeCertifiedSolutionsDM computes WPD a subset of
the solutions in A

B[O], with a certificate for each of them. Moreover,

– If ComputeCertifiedSolutionsDM outputs “DM failure”, then (HA,H
-DM(A))
does not have a tree projection;

– otherwise, ComputeCertifiedSolutionsDM computes WPD A
B[O].

Moreover, we next give some evidence that, for bounded arity classes of in-
stances, we cannot do better than this. In particular, having bounded width
tree-decompositions of the full structure seems a necessary condition for the
tractability of the enumeration problem WPD w.r.t. arbitrary sets of output
variables (and for every r-structure).

Theorem 8. Assume FPT �= W[1]. Let A be any bounded-arity recursively-
enumerable class of �-structures closed under taking minors. Then, the following
are equivalent:

250 G. Greco and F. Scarcello

(1) A has bounded treewdith;
(2) For every A ∈ A, for every r-structure B, and for every set of variables

O ⊆ A, the ECSP instance (A,B, O) is solvable WPD.

References

1. Adler, I.: Tree-Related Widths of Graphs and Hypergraphs. SIAM Journal Discrete

Mathematics 22(1), 102–123 (2008)

2. Atserias, A., Bulatov, A., Dalmau, V.: On the Power of k-Consistency. In: Arge,

L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596,

pp. 279–290. Springer, Heidelberg (2007)

3. Bernstein, P.A., Goodman, N.: The power of natural semijoins. SIAM Journal on

Computing 10(4), 751–771 (1981)

4. Bulatov, A., Dalmau, V., Grohe, M., Marx, D.: Enumerating Homomorphism.

In: Proc. of STACS 2009, pp. 231–242 (2009)

5. Chen, H., Dalmau, V.: Beyond Hypertree Width: Decomposition Methods Without

Decompositions. In: van Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp. 167–181.

Springer, Heidelberg (2005)

6. Cohen, D.A.: Tractable Decision for a Constraint Language Implies Tractable

Search. Constraints 9(3), 219–229 (2004)

7. Cohen, D., Jeavons, P., Gyssens, M.: A unified theory of structural tractability for

constraint satisfaction problems. Journal of Computer and System Sciences 74(5),

721–743 (2008)

8. Dechter, R., Itai, A.: Finding All Solutions if You can Find One. In: AAAI 1992

Workshop on Tractable Reasoning, pp. 35–39 (1992)

9. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, New York

(1999)

10. Goodman, N., Shmueli, O.: The tree projection theorem and relational query pro-

cessing. Journal of Computer and System Sciences 29(3), 767–786 (1984)

11. Gottlob, G., Leone, N., Scarcello, F.: A Comparison of Structural CSP Decompo-

sition Methods. Artificial Intelligence 124(2), 243–282 (2000)

12. Gottlob, G., Leone, N., Scarcello, F.: Hypertree decompositions and tractable

queries. Journal of Computer and System Sciences 64(3), 579–627 (2002)

13. Gottlob, G., Leone, N., Scarcello, F.: Robbers, marshals, and guards: game theo-

retic and logical characterizations of hypertree width. J. of Computer and System

Sciences 66(4), 775–808 (2003)

14. Gottlob, G., Miklós, Z., Schwentick, T.: Generalized hypertree decompositions:

NP-hardness and tractable variants. Journal of the ACM 56(6) (2009)

15. Greco, G., Scarcello, F.: The Power of Tree Projections: Local Consistency,

Greedy Algorithms, and Larger Islands of Tractability. In: Proc. of PODS 2010,

pp. 327–338 (2010)

16. Grohe, M., Schwentick, T., Segoufin, L.: When is the evaluation of conjunctive

queries tractable? In: Proc. of STOC 2001, pp. 657–666 (2001)

17. Grohe, M.: The complexity of homomorphism and constraint satisfaction problems

seen from the other side. Journal of the ACM 54(1) (2007)

18. Grohe, M., Marx, D.: Constraint solving via fractional edge covers. In: Proc. of

SODA 2006, pp. 289–298 (2006)

19. Marx, D.: Approximating fractional hypertree width. In: Proc. of SODA 2009,

pp. 902–911 (2008)

Structural Tractability of Enumerating CSP Solutions 251

20. Marx, D.: Tractable Hypergraph Properties for Constraint Satisfaction and Con-

junctive Queries. In: Proc. of STOC 2010, pp. 735–744 (2010)

21. Robertson, N., Seymour, P.D.: Graph minors III: Planar tree-width. Journal of

Combinatorial Theory, Series B 36, 49–64 (1984)

22. Robertson, N., Seymour, P.D.: Graph minors V: Excluding a planar graph. Journal

of Combinatorial Theory, Series B 41, 92–114 (1986)

23. Sagiv, Y., Shmueli, O.: O Shmueli. Solving Queries by Tree Projections. ACM

Transaction on Database Systems 18(3), 487–511 (1993)

24. Scarcello, F., Gottlob, G., Greco, G.: Uniform Constraint Satisfaction Problems

and Database Theory. In: Creignou, N., Kolaitis, P.G., Vollmer, H. (eds.) Com-

plexity of Constraints. LNCS, vol. 5250, pp. 156–195. Springer, Heidelberg (2008)

Diversification and Intensification
in Parallel SAT Solving

Long Guo1, Youssef Hamadi2,3, Said Jabbour4, and Lakhdar Sais1

1 Université Lille-Nord de France
CRIL - CNRS UMR 8188

Artois, F-62307 Lens
{guo,sais}@cril.fr

2 Microsoft Research
7 J J Thomson Avenue

Cambridge, United Kingdom
3 LIX École Polytechnique
F-91128 Palaiseau, France

youssefh@microsoft.com
4 INRIA-Microsoft Research Joint Centre

28 rue Jean Rostand
91893 Orsay Cedex, France

said.jabbour@inria.fr

Abstract. In this paper, we explore the two well-known principles of diversifica-
tion and intensification in portfolio-based parallel SAT solving. These dual con-
cepts play an important role in several search algorithms including local search,
and appear to be a key point in modern parallel SAT solvers. To study their trade-
off, we define two roles for the computational units. Some of them classified as
Masters perform an original search strategy, ensuring diversification. The remain-
ing units, classified as Slaves are there to intensify their master’s strategy. Several
important questions have to be answered. The first one is what information should
be given to a slave in order to intensify a given search effort? The second one is,
how often, a subordinated unit has to receive such information? Finally, the ques-
tion of finding the number of subordinated units and their connections with the
search efforts has to be answered. Our results lead to an original intensification
strategy which outperforms the best parallel SAT solver ManySAT, and solves
some open SAT instances.

Keywords: Satisfiability, SAT and CSP, Search.

1 Introduction

In addition to the traditional hardware and software verification fields, SAT solvers are
gaining popularity in new domains. For instance they are also used for general theorem
proving and computational biology. This widespread adoption is the result of the effi-
ciency gains made during the last decade [1]. Indeed, industrial instances with hundred
of thousand of variables and millions of clauses are now solved within a few minutes.
This impressive progress can be related to both the algorithmic improvements and to

D. Cohen (Ed.): CP 2010, LNCS 6308, pp. 252–265, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

{guo,sais}@cril.fr
youssefh@microsoft.com
said.jabbour@inria.fr

Diversification and Intensification in Parallel SAT Solving 253

the ability of SAT solvers to exploit the hidden structures1 of such instances. How-
ever, new applications are always more challenging with instances of increasing size
and complexity, while the gains traditionally given by low level algorithmic adjust-
ments are now stalling. As a result, a large number of industrial instances from the last
competitions remain challenging for all the available SAT solvers. Fortunately, this last
challenge comes at a time where the generalization of multicore hardware gives paral-
lel processing capabilities to standard PCs. While in general it is important for existing
applications to exploit these new hardwares, for SAT solvers, this becomes crucial.

Many parallel SAT solvers have been previously proposed. Most of them are based
on the divide-and-conquer principle (e.g. [2]). They generally divide the search space
using the well known guiding-path concept [3]. The main problems behind these ap-
proaches rise in the difficulty to get workload balanced between the different processing
units and in finding the best guiding path. Also, splitting the search tree using guiding
paths leads to the exploration of unrelated parts of the search space and reduces the
benefit of clauses sharing. Portfolio-based parallel SAT solving has been recently intro-
duced [4]. It avoids the previous problem by letting several differentiated DPLL engines
compete and cooperate to be the first to solve a given instance. Each solver works on
the original formula, and search spaces are not split or decomposed anymore. To be
efficient, the portfolio has to use diversified search engines with clauses sharing. The
key point remains in finding such strategies while maintaing clauses exchange of higher
quality. In ManySAT [4], the state-of-the-art portfolio-based parallel SAT solver, such
diversification is obtained by a careful combination of different restarts policies, lit-
erals polarity assignment, and learning schemes. These differentiated search strategies
enhanced with clause sharing aim to explore the search space with less possible redun-
dancies. The first rank obtained by ManySAT on the parallel track of the 2008 SAT
Race and 2009 SAT competition demonstrates that portfolio-based parallel approaches
clearly outperform the divide-and-conquer based ones.

However, when clause sharing is added, diversification has to be restricted in order to
maximize the impact of a foreign clause whose relevance is more important in a similar
or related search effort. Despite the efficiency of ManySAT, the question of finding the
best portfolio of diversified strategies while maintaining a hight quality of exchange
remains very challenging. Indeed, two orthogonal (respectively close) strategies might
reduce (respectively increase) the impact of clause sharing. Therefore, a challenging
question is to maintain a good and relevant ”distance” between the parts of the search
space explored by the different search units which is equivalent to the finding of a
good diversification and intensification tradeoff. Indeed, intensification (respectively
diversification) directs the search to the same (respectively different) parts of the search
space. This question heavily depends on the problem instance. On hard ones it might
be more convenient to direct the search towards building the same and common proof
(intensification), whereas on easy ones diversifying it might be the way towards finding
a short proof.

Taking this in mind, we propose to study the diversification/intensification tradeoff in
a parallel SAT portfolio. We define two roles for the computational units. Some of them

1 By structure, we understand the dependencies between variables, which can often appear
through Boolean functions. One particular example being the well known notion of backdoors.

254 L. Guo et al.

classified as Masters perform an original search strategy, ensuring diversification. The
remaining ones, classified as Slaves are there to intensify their master’s strategy. Doing
so, several important questions have to be answered. The first one is what information
should be given to a unit in order to intensify a given search effort? The second one is,
how often, a subordinated unit has to receive such information? Finally, the question of
finding the number of subordinated units along their connections with original search
efforts has to be answered. In other words, we need to determine the best Masters/Slaves
division and hierarchy i.e. topology.

In the following, Section two describes the internals of modern SAT solvers, and
the architecture of a portfolio-based parallel SAT engine. Section three studies the best
way to intensify a given search strategy. Section four, considers the different diversi-
fication/intensification tradeoffs in a portfolio. Section five, presents our experimental
results. Finally, before the general conclusion, section six presents the related works.

2 Technical Background

In this section, we first introduce the most salient computational features of modern
SAT solvers. Then, we describe a typical portfolio based parallel SAT solver.

2.1 Modern SAT Solvers

Modern SAT solvers [5,6], are based on classical DPLL search procedure [7] combined
with (i) restart policies [8,9], (ii) activity-based variable selection heuristics (VSIDS-
like) [5], and (iii) clause learning [10]. The interaction of these three components being
performed through efficient data structures (e.g., Watched literals [5]).

Modern SAT solvers are especially efficient with ”structured” SAT instances com-
ing from industrial applications. On these problems, Gomes et al. [11] have identified a
heavy tailed phenomenon, i.e., different variable orderings often lead to dramatic differ-
ences in solving time. This explains the introduction of restart policies in modern SAT
solvers, which attempt to discover a good variable ordering. VSIDS and other variants
of activity-based heuristics [12], on the other hand, were introduced to avoid thrashing
and to focus the search: when dealing with instances of large size, these heuristics direct
the search to the most constrained parts of the formula. VSIDS and restarts are two im-
portant and connected components since the first increase the activities of the variables
involved in conflicts while the second allows the solver to reorder the decision stack
according to these activities. Conflict Driven Clause Learning (CDCL) is the third com-
ponent, leading to non-chronological backtracking. In CDCL a central data-structure
is the implication graph [10], which records the partial assignment under construction
made of the successive decision literals (chosen variable with either positive or negative
polarity) with their propagations. Each time a conflict is encountered (say at level i) a
conflict clause or nogood is learnt thanks to a bottom up traversal of the implication
graph. Such a traversal can be seen as a resolution derivation starting from the two im-
plications of the conflicting variable. The next resolvent is generated, from the previous
one and another clause from the implication graph. Such linear resolution derivation
stops when the current resolvent (α∨a) with α a sub-clause, contains only one literal a

Diversification and Intensification in Parallel SAT Solving 255

from the current conflict level, called an asserting literal. The node in the graph labeled
with ¬a is called the first Unique Implication Point (first-UIP). This traversal or reso-
lution process is also used to update the activity of related variables, allowing VSIDS
to always select the most active variable as the new decision point. The learnt conflict
clause (α∨a), called asserting clause, is added to the learnt data base and the algorithm
backtracks non chronologically to level j < i.

Modern SAT solvers can now handle propositional satisfiability problems with hun-
dreds of thousands of variables or more. However, it is now recognized (see the re-
cent SAT competitions) that the performances of the modern SAT solvers evolve in
a marginal way. More precisely, on the industrial benchmarks category usually pro-
posed to the annual SAT Races and/or SAT Competitions, many instances remain open
(not solved by any solver within a reasonable amount of time). Consequently, new ap-
proaches are clearly needed to solve these challenging industrial problems.

2.2 ManySAT: A Parallel SAT Solver

ManySAT is a DPLL-engine which includes all the classical features like two-watched-
literal, unit propagation, activity-based decision heuristics, lemma deletion strategies,
and clause learning. In addition to the classical first-UIP scheme [13], it incorporates
a new technique which extends the implication graph used during conflict-analysis
to exploit the satisfied clauses of a formula [14]. Unlike other parallel SAT solvers,
ManySAT does not implement a divide-and-conquer strategy based on some dynamic
partitioning of the search space. On the contrary, it uses a portfolio philosophy which
lets several sequential DPLLs compete and cooperate to be the first to solve the common
instance. These DPLLs are differentiated in many ways. They use different and com-
plementary restart strategies, VSIDS, polarity heuristics, and learning schemes. Addi-
tionally, all the DPLLs are exchanging learnt clauses up to some size limit.

As ManySAT finished first during the 2008 SAT Race and 2009 SAT Competition
(parallel track - industrial category), we conducted our experimental comparison using
this state-of-the-art parallel SAT solver.

3 Towards a Good Intensification Strategy

In this section, we first determine the relevant knowledge to be passed from a Master
to a Slave in order to intensify the search. Secondly, we address the frequency of such
directed intensification.

To this end, we consider a simple system with two computing units, respectively a
Master (M) and a Slave (S) (see Figure 1). The role of the Master is to invoke the Slave
for search intensification (dashed arrow in Figure 1). By intensification we mean that
the slave would explore ”differently” around the search space explored by the Master.
Consequently, the clauses learnt by the Master and the Slave are relevant to each other
and shared in both direction (plain line in Figure 1).

To explore differently around a given search effort, several kind of knowledge can be
considered. Suppose that the Master is currently at a given state SM = (F ,DM , ΓM),
where F is the original SAT instance, DM the set of decision literals, and ΓM the set

256 L. Guo et al.

clause sharing

intensification
M S

Fig. 1. Intensification topology

¬ak

sksk−1

x2

x1

¬a1 ¬ak−1

xi

xnk
xn1 xnk−1

s1

⊥ ⊥

(αk−1 ∨ ak−1) (αk ∨ ak)

ak−1

(α1 ∨ a1)

⊥

Fig. 2. A partial view of the Master search tree : conflicts branches and implication graphs

of learnt clauses (learnt database). In the following, from a given state SM , we derive
three different knowledge characterizing the Master search effort.

We use Figure 2, to illustrate such knowledge. It represents a current state SM cor-
responding to the branch leading to the last conflict k. The decisions made in the last
branch are x1, x2,. . ., xnk

. The boxes give a partial view of the implication graph ob-
tained on the last k conflicts derived after the assignment of the last decisions xnk

,
xnk−1 , . . ., and xn1 . The learnt clauses are respectively (αk ∨ ak), (αk−1 ∨ ak−1), . . .,
and (α1∨a1) where ak, ak−1, . . ., and a1 are the asserting literals corresponding to the
first-UIP ¬ak, ¬ak−1, . . ., and ¬a1.

Decision list. The first kind of knowledge characterizing the Master search effort uses
the current set of decisions DM (in short decision list). Using such decisions, the
Slave can build the whole or a subset of the current partial assignment of the Master
depending if all the asserting clauses generated by M on the current branch are passed
to S. Since the activity of the variables are not passed to the Slave, it shall explore the
same area in a different way.

Diversification and Intensification in Parallel SAT Solving 257

Asserting set. The second one, uses the sequence AM =< ak, ak−1, . . . , a1 > (in
short asserting set) of the Master asserting literals associated to the k clauses learnt
before the current stateSM . The sequence is ordered from the latest to the oldest conflict.
By branching on the ordered sequence AM using the same polarity, the Slave is able to
construct a partial assignment involving the most recent asserting literals learnt from the
Master unit. Let us recall that an asserting literal ai is part of the Master learnt clause
(α∨ai). As the Slave branches on ai, future conflicts analysis involvingai, might lead to
learnt clauses containing¬ai. More generally, invoking the Slave usingAM pushes it to
learn more relevant clauses, connected by resolution (contains complementary literals)
to the most recent clauses learned byM . This is clearly an intensification process, as the
clauses learnt by S involve the most important literals of M , and lead in some way to a
more constructive resolution proof thanks to the complementary shared literals between
M ’s learnt clauses, and the future clauses that will be learnt by S.

Conflict sets. The last one, uses the sequence of ordered setsCM =<sk, sk−1, . . . , s1>
of literals collected during the Master conflict analysis (in short conflict sets). The set
sk represents the set of literals collected during the last conflict analysis. More pre-
cisely, the literals in sk correspond to the nodes of the implication graph located be-
tween the conflict node and the the first-UIP node ¬ak (see Figure 2). Moreover, the
set sk includes a literal of the conflicting variable and the literal labeling the first-UIP
node ¬ak. It can be defined as sk =< yk1 , yk2 , . . . , ykm >, where yk1 corresponds to
the literal of the first-UIP node ¬ak and ykm to the literal of the conflict variable as it
appears in the current partial assignment. The aim of considering this sequence of sets
is to intensify the search by directing S around the same conflicts. Let us note that the
activity of the variables appearing in the conflict sets are those updated during conflict
analysis. One can use the most active variables of the Masters to direct the search of the
Slaves. However, exploiting such kind of knowledge leads to redundant search between
the Masters and Slaves i.e. the Masters and Slaves tends to reproduce the same search.

We can first remark that, the sequence AM and CM might contain redundant literals
(the same literal occurs several times). As the Slave S assign such literals according to
the defined ordering, S chooses the next unassigned literal in the ordering. For the first
one, and as mentioned above, the Master invoke the Slave using the decision list DM

together with the set of asserting clauses learnt on the current branch in order to build
the same partial assignment.

To compare the relevance of the previously defined intensification strategies, we con-
ducted the following experiments on the whole set of instances (292 instances) from the
industrial category of the 2009 SAT Competition. We use ManySAT with two comput-
ing units (see figure 1) sharing clauses of size less or equal to 8. The Master M invokes
the Slave S at each restart and transmits at the same time the intensification knowl-
edge. For the Master M we used a rapid restart strategy. It is widely admitted that
rapid restarts lead to better learning [15] or to learnt clauses of small width [16]. Ad-
ditionally, rapid restarts provide frequent intensification of the Slave leading to a tight
synchronization of the search efforts.

Let us note that, the Slave do not implement any restart strategy. It restarts when
invoked by the Master. For the Master, we use in this experiments the rapid and dynamic
restart policy introduced in [4].

258 L. Guo et al.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 120 140 160 180 200 220 240

tim
e

(s
ec

on
ds

)

#solved instances

decision list
asserting set
conflict sets

Fig. 3. Three intensification strategies

The Figure 3, shows the experimental comparison using the above three intensifi-
cation strategies (decision list, asserting set, and conflict sets). It presents the cu-
mulated time results i.e. the number of instances (x-axis) solved under a given amount
of time in seconds (y-axis). As we can observe, directing the search using conflict
sets gives the best results. The number of solved instances using the decision list,
asserting set and conflict sets are 201, 207 and 212 respectively. In the rest of this
paper, we use conflict sets as the intensification strategy.

4 Towards a Good Search Tradeoff

This section explores the diversification and intensification tradeoff. We are using the
ManySAT architecture which is represented by a clique of four computational units in-
teracting through clause sharing [4] up to size 8. As ManySAT finished first during the
2008 SAT Race and 2009 SAT Competition (parallel track - industrial category), we are
testing our intensification technique against a state-of-the-art solver. These units repre-
sent a fully diversified set of strategies. In order to add some intensification, we propose
to extend this architecture and to partition the units between Masters and Slaves. If we
allow a Slave to intensify its own search effort through another Slave, we have a total
of seven possible configurations. They are presented in Figure 4. In this Figure, dotted
lines represents the Master/Slave relationships. Note that when a unit has to provide
intensification directives to several Slaves, it alternates its guidance between them, i.e.,
round-table. Moreover, when a configuration contains chain(s) of Slaves, (see (d), (f),
and (g) in Figure 4), the intensification of a Slave of level i is triggered by the Slave of
level i− 1.

These configurations represent all the possible diversification and intensification
tradeoffs which can be implemented on top of the ManySAT architecture. We recall

Diversification and Intensification in Parallel SAT Solving 259

(f)

M

S S

S

(e)

M S

S S

clause sharing

intensification

M M

M

(b) (c) (a)

M M M M

SS SSS

M M

S S

(d)

M

S S

S

(g)

Fig. 4. Diversification/Intensification topologies

that ManySAT exploit diversified search strategies on each core [4]. In ManySAT, the
different cores (or processing units) are ordered according to their overall performance
from the best (core 0) to the least best (core 3). The performance of the different cores
are taken from the results obtained by ManySAT during the last SAT 2009 competition
and corresponds to the number of instances solved by each core. In the different topolo-
gies of Figure 4, the core 0, core 1, core 2 and core 3 corresponds to the processing
unit at the bottom left, bottom right, top right and top left boxes respectively. Naturally,
in our experiments, we allocate in priority the best strategies of ManySAT to Masters
and the least performant ones to Slaves. This rational choice avoids to consider all the
possible symmetric topologies that can be obtained by simple rotations.

The following section explores their respective performances and compare them to
the original ManySAT solver.

5 Experiments

Our tests were done on Intel Xeon quadcore machines with 32GB of RAM running at
2.66 Ghz. For each instance, we used a timeout of 4 hours of CPU time which corre-
sponds to a 1 hour timeout per computational unit (core). Our Master/Slave roles and
their different configurations were implemented on top of the original ManySAT. This
solver was also used as a baseline for comparison. We used the conflict sets intensifi-
cation strategy.

We used the 292 industrial instances of the 2009 SAT competition to compare our
different algorithms.

260 L. Guo et al.

Table 1. 2009 SAT Competition, Industrials: overall results

Method # SAT # UNSAT Total Tot. time (sc.) Avg. time

ManySAT 87 125 212 329378 1128
Topo. (a) 86 (7) 133 (49) 219 (56) 311590 1067
Topo. (b) 84 (28) 130 (73) 214 (101) 324800 1112
Topo. (c) 89 (23) 132 (74) 221 (97) 307345 1052
Topo. (d) 87 (25) 132 (67) 219 (92) 315537 1080
Topo. (e) 86 (45) 131 (109) 217 (154) 323208 1106
Topo. (f) 82 (44) 128 (102) 210 (146) 339677 1163
Topo. (g) 80 (45) 127 (107) 207 (152) 343800 1177

The Table 1 summarizes our results. The first column presents the method, i.e., the
original ManySAT (first line) or ManySAT extended with one of our seven diversifi-
cation/intensification topology (see Figure 4). In the second column, the first number
represents the overall number of SAT instances solved by the associated method, the
second number (in parenthesis) gives the number of instances found SAT by a Slave.
The third column gives similar information for UNSAT problems. The column four,
gives the overall number of instances solved, again the parenthesis gives the number
solved by one of the Slaves. To alleviate the effects of unpredictable threads schedul-
ing, each instance was solved three times and we take the average as the time needed
for solving a given instance. The average is calculated using the 1 hour timeout when
an instance is not solved at a given run. Finally, the last two columns give respectively,
the total time (cumulated), and the average time in seconds calculated over the overall
set of 292 instances.

This Table shows that the vast majority of our topology-based extensions are supe-
rior to the original ManySAT. This algorithm solves 212 problems whereas the best
topology (c) solves 221. Remarkably, all the topologies are able to solve more UN-
SAT problems than ManySAT. This unsurprisingly shows that adding intensification, is
more beneficial on this last category of problems. Indeed, our intensification strategy
increases the relevance of the learnt clauses exchanged between masters and slaves,
since unsatisfiable instances are mainly solved by resolution, improving the quality of
the learnt clauses increases the performances on UNSAT problems.

When we compare the results achieved by our different topologies. It seems that
balancing the tradeoff between 2 Slaves and 2 Masters works better (topo. b, c, and d).
Among them, balancing the slaves to the masters gives the most efficient results i.e.,
topology c.

The Table 2 highlights the results achieved by our best topology (c) against ManySAT
on three complete families of problems. We can see that our best topology outperforms
ManySAT on all these problems. Let us mention that we have not found families where
ManySAT dominates our best topology (c). Even more importantly, our algorithm al-
lowed the resolution of two open instances (9dlx vliw at b iq8, and 9dlx vliw at b iq9),
proved UNSAT for the first time.

The Figure 5, presents cumulated time results for ManySAT and for our best topol-
ogy on the whole set of problems. On small time limit (less than 10 minutes), the algo-
rithms have the same behavior. On the other hand, when more time is allowed, the new
technique exhibits an important improvement, and solves 9 more instances.

Diversification and Intensification in Parallel SAT Solving 261

Table 2. 2009 SAT Competition, Industrials: time (s) results on three families

Instance Status ManySAT Topology (c)

9dlx vliw at b iq1 UNSAT 87.3 10.6
9dlx vliw at b iq2 UNSAT 226.3 27.1
9dlx vliw at b iq3 UNSAT 602.8 103.2
9dlx vliw at b iq4 UNSAT 1132 163.5
9dlx vliw at b iq5 UNSAT 2428 313.1
9dlx vliw at b iq6 UNSAT – 735.6
9dlx vliw at b iq7 UNSAT – 991
9dlx vliw at b iq8 UNSAT – 1822.7
9dlx vliw at b iq9 UNSAT – 2670.1
velev-pipe-sat-1.0-b10 SAT 4.4 3.6
velev-engi-uns-1.0-4nd UNSAT 5 4.9
velev-live-uns-2.0-ebuf UNSAT 6.7 6.8
velev-pipe-sat-1.0-b7 SAT 48.3 6.2
velev-pipe-o-uns-1.1-6 UNSAT 65.2 30.8
velev-pipe-o-uns-1.0-7 UNSAT 149.9 118.2
velev-pipe-uns-1.0-8 UNSAT 274.5 82.7
velev-vliw-uns-4.0-9C1 UNSAT 297.2 235.4
velev-vliw-uns-4.0-9-i1 UNSAT – 1311.6
goldb-heqc-term1mul UNSAT 23.8 4.3
goldb-heqc-i10mul UNSAT 36.3 23.5
goldb-heqc-alu4mul UNSAT 49.9 40.9
goldb-heqc-dalumul UNSAT 384.1 33.6
goldb-heqc-frg1mul UNSAT 2606 83.1
goldb-heqc-x1mul UNSAT – 246.9

 0

 500

 1000

 1500

 2000

 2500

 3000

 120 140 160 180 200 220 240

tim
e

(s
ec

on
ds

)

#solved instances

ManySAT
Topology C

Fig. 5. 2009 SAT Competition, Industrials: cumulated time

Finally, it is important to note that in the last SAT 2009 competition no sequential
or parallel SAT solver has been able to reach such number of solved instances. In SAT
2009 competition, all the solvers are allowed a time limit of about 3 hours (10 000
seconds) for a given instance. The tests were done on a Intel Xeon machines with 2GB
of RAM and 3.2 Ghz. The Virtual Best Solver (VBS) solved 229 instances (91 SAT and
138 UNSAT). VBS is a theoretical construction which returns the best answer provided
by one of the submitted solver. An instance is solved by VBS if it is solved by at least
one of the submitted solvers. Another way to look at it is to consider this VBS as a

262 L. Guo et al.

solver which would run all other solvers in parallel, bringing together all the solvers
strengths. This VBS is essentially the same notion as State Of The Art (SOTA) solver
defined in [17]. From the description above, we can measure that the performance of
our proposed approach is very close to those of VBS.

6 Related Works

We present here the most noticeable approaches related to parallel SAT solving.
In [18] a parallelization scheme for a class of SAT solvers based on the DPLL pro-

cedure is presented. The scheme uses a dynamic load-balancing mechanism based on
work-stealing techniques to deal with the irregularity of SAT problems. PSatz is the
parallel version of the well known Satz solver. Gradsat [19] is based on zChaff. It uses
a master-slave model and the notion of guiding-paths to split the search space and to
dynamically spread the load between clients. Learned clauses are exchanged between
all clients if they are smaller than a predefined limit on the number of literals. A client
incorporates a foreign clause when it backtracks to level 1 (top-level).

[20] uses an architecture similar to Gradsat. However, a client incorporates a foreign
clause if it is not subsumed by the current guiding-path constraints. Practically, clause
sharing is implemented by mobile-agents. This approach is supposed to scale well on
computational grids.

In [21], the input formula is dynamically divided into disjoint subformulas. Each
subformula is solved by a sequential SAT-solver running on a particular processor.
The algorithm uses optimized data structures to modify Boolean formulas. Additionally
workload balancing algorithms are used to achieve a uniform distribution of workload
among the processors.

MiraXT [2], is designed for shared memory multiprocessors systems. It uses a divide
and conquer approach where threads share a unique clause database which represents
the original and the learnt clauses. When a new clause is learnt by a thread, it uses a
lock to safely update the common database. Read access can be done in parallel.

PMSat uses a master-slave scenario to implement a classical divide-and-conquer
search [22]. The user of the solver can select among several partitioning heuristics.
Learnt clauses are shared between workers, and can also be used to stop efforts related
to search spaces that have been proven irrelevant. PMSat runs on networks of computer
through an MPI implementation.

[23] uses a standard divide-and-conquer approach based on guiding-paths. However,
it exploits the knowledge on these paths to improve clause sharing. Indeed, clauses can
be large with respect to some static limit, but when considered with the knowledge of
the guiding path of a particular thread, a clause can become small and therefore highly
relevant. This allows pMiniSat to extend the sharing of clauses since a large clause can
become small in another search context.

In [24] a SAT Solver c-sat, a parallelization of MiniSat using MPI is presented. It em-
ploys a layered master-worker architecture, where the masters handle lemma exchange,
deletion of redundant lemmas and the dynamic partitioning of search trees, while the
workers do search using different decision heuristics and random number seeds.

In [25] a new switching criterion based on the evenness or unevenness of the dis-
tribution of variable weights is presented. The proposed hybrid local search algorithm

Diversification and Intensification in Parallel SAT Solving 263

combines intensification and diversification by switching between two different heuris-
tics using this criterion.

Other portfolio-based solvers have been proposed in the sequential context, such as
Satzilla [26] or cpHydra [27], they mainly based on running several solvers on a set
of training instances in order to determine the most appropriate solver to solve a given
instance. They clearly differ from parallel portfolio based solvers, where all the solvers
of the portfolio are run in parallel and clauses are shared between them.

7 Conclusion

We have explored the two well-known principles of diversification and intensification
in portfolio-based parallel SAT solving. These dual concepts play an important role in
several search algorithms including local search, and appear to be a key point in modern
parallel SAT solvers. To study their tradeoff, we defined two roles for the computational
units. Some of them classified as Masters perform an original search strategy, ensuring
diversification. The remaining units, classified as Slaves are there to intensify their mas-
ter’s strategy.

Several important questions have been addressed. The first one is what information
should be given to a slave in order to intensify a given search effort? It appeared that
passing the set of literals found during previous conflict analysis gives the best results.
This strategy aims at directing the slave towards conflicts highly related to the master’s
conflicts, allowing masters and slaves to share highly relevant clauses.

The second one is, how often, a subordinated unit has to receive such information?
We have decided to exploit the restart policy of a master to refresh the information
given to its slave(s). As shown in other works, rapid restarts lead to better learning
[15] or to learnt clauses of small width [16]. Therefore, a rapid restarts strategy on the
master node reinforces the interests of the clauses shared with its slaves. In our context
it allows frequent intensification of a Slave leading to a tight synchronization of the
search efforts.

Finally, the question of finding the number of subordinated units along their connec-
tions with the search efforts had to be answered. Our tests have shown that balancing
the set of nodes between Masters and Slaves roles, and balancing the slaves to the
masters gives the best results. In particular, our best topology solves 9 more industrial
instances than the actual best solver, ManySAT. The results have also demonstrated the
relative performance of the intensification strategy on UNSAT problems. Remarkably,
our new strategy was able to close the 9dlx vliw at b iq* family by finding the proofs
of unsatisfiability for two open instances.

As future work, we would like to dynamically adapt the topology and roles in a port-
folio based on the perceived hardness of a given instance. This should benefit to hard
UNSAT proofs were several units could be used for intensification, and at the same
time, could preserve performances on difficult SAT problems where intensification is
less needed. A second interesting path for future research concerns the integration of
control based clause sharing [28] in this context. The third issue is to address scal-
ability, one of the most important challenge in parallel SAT solving. The framework
proposed in this paper is better suited to achieve this goal. Indeed, as the intensifica-
tion leads to clause sharing of better quality, we can allow such exchange between a

264 L. Guo et al.

Master and its Slave only. This will reduce the number of shared clauses while main-
taining the overall performance. Other measures of clause-quality need to be defined
in order to reduce the global number of exchanged clauses. Finally, we plan to extend
our proposed framework for solving other problems around SAT including constraint
satisfaction problems.

References

1. Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability. Frontiers
in Artificial Intelligence and Applications, vol. 185. IOS Press, Amsterdam (2009)

2. Lewis, M.D.T., Schubert, T., Becker, B.: Multithreaded sat solving. In: ASP-DAC, pp. 926–
931 (2007)

3. Zhang, H., Bonacina, M.P., Hsiang, J.: Psato: a distributed propositional prover and its appli-
cation to quasigroup problems. Journal of Symbolic Computation 21, 543–560 (1996)

4. Hamadi, Y., Jabbour, S., Sais, L.: ManySAT: a parallel SAT solver. Journal on Satisfiability,
Boolean Modeling and Computation - JSAT 6, 245–262 (2009)

5. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineering an ef-
ficient SAT solver. In: Proceedings of the 38th Design Automation Conference (DAC 2001),
pp. 530–535 (2001)

6. Eén, N., Sörensson, N.: An extensible sat-solver. In: Giunchiglia, E., Tacchella, A. (eds.)
SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)

7. Davis, M., Logemann, G., Loveland, D.W.: A machine program for theorem-proving. Com-
munications of the ACM 5(7), 394–397 (1962)

8. Gomes, C.P., Selman, B., Kautz, H.A.: Boosting combinatorial search through randomiza-
tion. In: Proceedings of the Fifteenth National Conference on Artificial Intelligence (AAAI
1998), Madison, Wisconsin, pp. 431–437 (1998)

9. Kautz, H.A., Horvitz, E., Ruan, Y., Gomes, C.P., Selman, B.: Dynamic restart policies. In:
AAAI/IAAI, pp. 674–681 (2002)

10. Marques-Silva, J.P., Sakallah, K.A.: GRASP - A New Search Algorithm for Satisfiability. In:
Proceedings of IEEE/ACM International Conference on Computer-Aided Design, pp. 220–
227 (November 1996)

11. Gomes, C.P., Selman, B., Crato, N., Kautz, H.A.: Heavy-tailed phenomena in satisfiability
and constraint satisfaction problems. J. Autom. Reasoning 24(1/2), 67–100 (2000)

12. Brisoux, L., Grégoire, É., Sais, L.: Improving backtrack search for SAT by means of re-
dundancy. In: Raś, Z.W., Skowron, A. (eds.) ISMIS 1999. LNCS, vol. 1609, pp. 301–309.
Springer, Heidelberg (1999)

13. Zhang, L., Madigan, C.F., Moskewicz, M.W., Malik, S.: Efficient conflict driven learning in
boolean satisfiability solver. In: ICCAD, pp. 279–285 (2001)

14. Audemard, G., Bordeaux, L., Hamadi, Y., Jabbour, S., Sais, L.: A generalized framework for
conflict analysis. In: Kleine Büning, H., Zhao, X. (eds.) SAT 2008. LNCS, vol. 4996, pp.
21–27. Springer, Heidelberg (2008)

15. Biere, A.: Adaptive restart strategies for conflict driven sat solvers. In: Kleine Büning, H.,
Zhao, X. (eds.) SAT 2008. LNCS, vol. 4996, pp. 28–33. Springer, Heidelberg (2008)

16. Pipatsrisawat, K., Darwiche, A.: Width-based restart policies for clause-learning satisfiability
solvers. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 341–355. Springer, Heidel-
berg (2009)

17. Sutcliffe, G., Suttner, C.B.: Evaluating general purpose automated theorem proving systems.
Artificial Intelligence 131(1-2), 39–54 (2001)

Diversification and Intensification in Parallel SAT Solving 265

18. Jurkowiak, B., Li, C.M., Utard, G.: A parallelization scheme based on work stealing for a
class of sat solvers. Journal of Automated Reasoning 34(1), 73–101 (2005)

19. Chrabakh, W., Wolski, R.: GrADSAT: A parallel sat solver for the grid. Technical report,
UCSB Computer Science Technical Report Number 2003-05 (2003)

20. Blochinger, W., Sinz, C., Küchlin, W.: Parallel propositional satisfiability checking with dis-
tributed dynamic learning. Parallel Computing 29(7), 969–994 (2003)

21. Böhm, M., Speckenmeyer, E.: A fast parallel sat-solver - efficient workload balancing. An-
nals of Mathematics and Artificial Intelligence 17(3-4), 381–400 (1996)

22. Gil, L., Flores, P., Silveira, L.M.: PMSat: a parallel version of minisat. Journal on Satisfia-
bility, Boolean Modeling and Computation 6, 71–98 (2008)

23. Chu, G., Stuckey, P.J.: Pminisat: a parallelization of minisat 2.0. Technical report, Sat-race
2008, solver description (2008)

24. Ohmura, K., Ueda, K.: c-sat: A parallel sat solver for clusters. In: Kullmann, O. (ed.) SAT
2009. LNCS, vol. 5584, pp. 524–537. Springer, Heidelberg (2009)

25. Wei, W., Li, C.M., Zhang, H.: A switching criterion for intensification and diversification in
local search for sat. Journal on Satisfiability, Boolean Modeling and Computation - JSAT 4(2-
4), 219–237 (2008)

26. Xu, L., Hutter, F., Hoos, H.H., Leyton-Brown, K.: Satzilla: Portfolio-based algorithm selec-
tion for sat. Journal of Artificial Intelligence Research (JAIR) 32, 565–606 (2008)

27. O’Mahony, E., Hebrard, E., Holland, A., Nugent, C., O’Sullivan, B.: Using case-based rea-
soning in an algorithm portfolio for constraint solving. In: Proceedings of the 19th Irish
Conference on Artificial Intelligence and Cognitive Science, AICS 2008 (2008)

28. Hamadi, Y., Jabbour, S., Sais, L.: Control-based clause sharing in parallel sat solving. In: Pro-
ceedings of the 21st International Joint Conference on Artificial Intelligence (IJCAI 2009),
pp. 499–504 (2009)

A Systematic Approach to MDD-Based
Constraint Programming

Samid Hoda, Willem-Jan van Hoeve, and J.N. Hooker

Tepper School of Business, Carnegie Mellon University

5000 Forbes Avenue, Pittsburgh, PA 15213, U.S.A.

{shoda,vanhoeve}@andrew.cmu.edu, john@hooker.tepper.cmu.edu

Abstract. Fixed-width MDDs were introduced recently as a more re-

fined alternative for the domain store to represent partial solutions to

CSPs. In this work, we present a systematic approach to MDD-based con-

straint programming. First, we introduce a generic scheme for

constraint propagation in MDDs. We show that all previously known

propagation algorithms for MDDs can be expressed using this scheme.

Moreover, we use the scheme to produce algorithms for a number of other

constraints, including Among, Element, and unary resource constraints.

Finally, we discuss an implementation of our MDD-based CP solver, and

provide experimental evidence of the benefits of MDD-based constraint

programming.

1 Introduction

The domain store is a fundamental tool for constraint programming (CP), be-
cause it propagates the results of individual constraint processing. It allows the
reduced domains obtained for one constraint to be passed to the next constraint
for further filtering. A weakness of the domain store, however, is that it trans-
mits a limited amount of information. It accounts for no interaction among the
variables, because any solution in the Cartesian product of the current domains
is consistent with it. This restricts the ability of the domain store to pool the
results of processing individual constraints and provide a global view of the
problem.

To address this shortcoming, Andersen, Hadzic, Hooker, and Tiedemann [1]
proposed replacing the domain store with a richer data structure, namely a mul-
tivalued decision diagram (MDD). In their approach, domain filtering algorithms
are replaced or augmented by algorithms that refine and update the MDD to
reflect each constraint. It was found that MDD-based propagation can lead to
substantial speedups in the solution of multiple AllDifferent constraints. The
idea was extended to equality constraints by Hadzic et al. [4]. A unified node-
splitting scheme for refining the MDD was proposed by Hadzic et al. [3] and
applied to certain configuration problems. For this reason, we will mainly focus
on filtering algorithms in this work.

MDDs have been applied before in CP. For example, in [6] and [2] MDDs are
applied to perform inferences (domain filtering) based on individual constraints.

D. Cohen (Ed.): CP 2010, LNCS 6308, pp. 266–280, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

A Systematic Approach to MDD-Based Constraint Programming 267

In [5], this is taken one step further, by passing structural information from one
constraint to the next. The key difference is that in these approaches, an MDD
is built and maintained for each individual constraint, whereas in MDD-based
constraint programming, the MDD is the information that is passed from one
constraint to the next. In other words, multiple constraints process the same
MDD, instead of each constraint processing its individual MDD.

The contributions of this work are threefold. First, we introduce a systematic
scheme for constraint propagation in MDDs, and we show that all previously
proposed filtering algorithms for MDD-based CP can be viewed as instantiations
of our scheme. Second, we apply our scheme to introduce new filtering algorithms
for other constraints; we present such algorithms for the Among, Element, and
unary resource constraints as an illustration of the versatility of the approach.
Third, we present computational results for the first pure MDD-based CP solver,
showing that i) this approach can scale up to realistic problem sizes, and ii)
enormous savings (in terms of time as well as search tree size) can be realized
when compared to solvers relying on the traditional domain store.

The remainder of the paper is organized as follows. In Section 2 we provide
the necessary background on MDDs and MDD-based constraint programming.
In Section 3 we present and discuss a systematic scheme for constraint propaga-
tion in MDDs. We apply our scheme to a variety of constraints in Section 4. In
Section 5 we provide a brief description of our MDD-based constraint program-
ming system. Experimental results using this system are reported in Section 6.
Finally, we conclude in Section 7.

2 MDDs and MDD-Based Constraint Solving

In this work, an ordered Multivalued Decision Diagram (MDD) is a directed
acyclic graph whose nodes are partitioned into n (possibly empty) subsets or
layers L1, . . . , Ln+1, where the layers L1, . . . , Ln correspond respectively to vari-
ables x1, . . . , xn. L1 contains a single top node T, and Ln+1 contains two bottom
nodes 0 and 1. The width of the MDD is the maximum number of nodes in
a layer, or maxn

i=1{|Li|}. In MDD-based CP, the MDDs typically have a given
fixed maximum width.

All edges of the MDD are directed from an upper to a lower layer; that is,
from a node in some Li to a node in some Lj with i < j. For our purposes it is
convenient to assume (without loss of generality) that each edge connects two
adjacent layers. Let L(s) denote the layer of the node s, and var(s) the variable
associated with L(s). Each edge out of layer i is labeled with an element of the
domain D(xi) of xi. The set E(s, t) of edges from node s to node t may contain
multiple edges, and we denote each with its label. Let Ein(s) denote the set of
edges coming into s, and Eout(s) the set of edges leaving s. For an edge e, tail(e)
is the tail of e and head(e) the head.

An edge with label v leaving a node in layer i represents an assignment xi = v.
Each path in the MDD from T to 0 or 1 can be denoted by the edge la-
bels v1, . . . , vn on the path and is identified with the assignment (x1, . . . , xn)

268 S. Hoda, W.-J. van Hoeve, and J.N. Hooker

x
1

x
2

x
3

{0,1}

{0,1,2}

{1,2} {1,2}

{1}

{0,1,2}{0,1,2}

{0} {1}

{1,2}
{1,2}

{1,2}

{0}
{1}

{0}

{2}{2}

{1}

{0}
{1}

{0}

{2} {2}

{2}
{1,2} {1} {1}

{1}

{0}
{1}

{0}

{2}

{1}{2}
{2}

(a) (b) (c) (d) (e)

Fig. 1. Refining and filtering an MDD of width one (a) for x1 �= x2 (b), x2 �= x3 (c),

and x1 �= x3 (d), yielding the MDD in (e). Dashed lines mark filtered values.

= (v1, . . . , vn). For our purposes, it is convenient to generate only the portion
of an MDD that contains paths from T to 1. A path v1, . . . , vn is feasible for a
given constraint C if setting (x1, . . . , xn) = (v1, . . . , vn) satisfies C. Constraint
C is feasible on an MDD if the MDD contains a feasible path for C.

A constraint C is called MDD consistent on a given MDD if every edge of
the MDD lies on some feasible path. Thus MDD consistency is achieved when
all redundant edges (i.e., edges on no feasible path) have been removed. Domain
consistency for C is equivalent to MDD consistency on an MDD of width one that
represents the variable domains. That is, it is equivalent to MDD consistency on
an MDD in which each layer Li contains a single node si, and E(si, si+1) = D(xi)
for i = 1, . . . , n.

Typically, MDD-based constraint programming starts with simple MDD (of
width one) that permits all solutions represented by the Cartesian product of
the domains. This MDD is then refined each time a constraint is processed.
Refinement is accomplished by adding some nodes and edges to the MDD so
as to exclude solutions that violate the constraint. Example 1 below gives an
illustration of this (see also Figure 1).

The basic operation of refinement is node-splitting, in which the edges entering
a given node are partitioned into equivalence classes, and ideally the node is split
into one copy for each equivalence class. The set of outgoing edges for each copy
is the same as the set of outgoing edges of the original node. We note that
determining the equivalence classes may be costly to compute in practice, in
which case an approximation of equivalence is used. We take care that the width
of the MDD (maximum number of nodes in a layer) remains within a fixed
bound. When splitting a node we merge equivalence classes when necessary in
order to respect this restriction. The resulting MDD is a relaxation in the sense
that it may fail to exclude all assignments that violate the constraint, but it is
a much stronger relaxation than a domain store. A principled approach to node
refinement in MDDs is introduced by Hadzic et al. [3].

We also update the MDD by deleting infeasible edges, an operation that
generalizes conventional domain filtering. We will refer to this operation as MDD
filtering. This can lead to further reduction of the MDD, if after the removal of
the edge some other edges no longer have a path to 1 or can no longer be

A Systematic Approach to MDD-Based Constraint Programming 269

reached by a path from the root. An MDD-based constraint solver is based on
propagation and search just as traditional CSP solvers, but the domain filtering
process at each node of the search tree is replaced (or supplemented) by an MDD
refinement and filtering process.

Example 1. Consider a CSP with variables x1 ∈ {0, 1}, x2 ∈ {0, 1, 2}, and x3 ∈
{1, 2}, and constraints x1 �= x2, x2 �= x3, and x1 �= x3. All domain values are
domain consistent (even if we were to apply the AllDifferent propagator on
the conjunction of the constraints), and the domain store defines the relaxation
{0, 1} × {0, 1, 2} × {1, 2}, which includes infeasible solutions such as (1, 1, 1).

The MDD-based approach starts with the MDD of width one in Figure 1(a), in
which multiple arcs are represented by a set of corresponding domain values for
clarity. We refine and filter each constraint separately. Starting with x1 �= x2,
we refine the MDD by splitting the node at layer 2, resulting in Figure 1(b).
This allows us to filter two domain values, based on x1 �= x2, as indicated in the
figure. In Figure 1(c) and (d) we refine and filter the MDD for the constraints
x2 �= x3 and x1 �= x3 respectively, until we reach the MDD in Figure 1(e). This
MDD represents all three solutions to the problem, and provides a much tighter
relaxation than the domain store.

3 A Systematic Scheme for MDD Propagation

In the literature, MDD propagation algorithms (in the sense of Section 2) have
been proposed for the following three constraint types: (one-sided) inequality
constraints [1], AllDifferent [1], and equality constraints [3]. The reasoning
used for designing propagation algorithms for each of these constraints seemed
to be ad-hoc. In this section we will present and analyze a systematic scheme
for designing MDD propagation algorithms. In the following section we use this
procedure to express the existing MDD propagation algorithms and introduce
new algorithms for the Among, Element, and unary resource constraints.

3.1 The General Scheme

Our scheme is based on the idea of ‘local information’ I(s) stored for each con-
straint at each node s. We will show that all MDD propagation schemes so far
introduced, and others as well, can be viewed as based on local information.
The precise nature of the local information depends on the propagation scheme,
which is characterized in part by what kind of local information is required to
apply it.

More precisely, the decision as to whether to delete an edge in E(s, t) is based
solely on I(s) and I(t)—that is, on local information stored at either end of
the edge. Furthermore, the local information can be accumulated by a single
top-down pass and a single bottom-up pass through the MDD.

It is convenient to regard I(s) as a pair (I↓(s), I↑(s)) consisting of the infor-
mation I↓(s) accumulated during the top-down pass, and the information I↑(s)
accumulated during the bottom-up pass. I↓(s) and I↑(s) can take several forms,

270 S. Hoda, W.-J. van Hoeve, and J.N. Hooker

such as a set of domain values or parameters related to the constraint, or a tuple
of such sets. What is common to all the schemes is that I↓(s) is computed solely
on the basis of local information at the opposite end of edges coming into s, and
I↑(s) on the basis of local information at the opposite end of edges leaving s.

Formally, we introduce an operation⊗ that processes information when travers-
ing an edge during a top-down or bottom-up pass. When traversing an edge e ∈
E(s, t) during the top-down pass, the information I↓(s) at node s is combined with
edge e to obtain updated information I↓(s) ⊗ e. We view this updated informa-
tion as an object I having the same form as I↓(s). When several edges enter node
t, we use an operation ⊕ to combine the information obtained by traversing the
incoming edges. The top-down information at t is therefore

I↓(t) =
⊕

e∈Ein(t)

I↓(tail(e))⊗ e

Similarly, the bottom-up information at s is

I↑(s) =
⊕

e∈Eout(s)

I↑(head(e))⊗ e

Several examples of this scheme appear in the following sections.
Since a top-down (bottom-up) pass of the MDD visits each edge exactly once,

the passes themselves involve an amount of work that is linear in the size of the
MDD (modulo the work required to compute ⊕ and ⊗ at each node).

The operators ⊗ and ⊕ can be implemented as high-level macros that are in-
stantiated differently for each constraint type. Our MDD-based CP solver follows
this idea very closely.

3.2 MDD Consistency

The scheme above can sometimes achieve MDD consistency in polynomial time.
In particular, if it can determine in polytime whether any particular assign-
ment xj = v is consistent with the MDD, then it achieves MDD consistency in
polytime due to the following theorem.

Theorem 1. Suppose that the feasibility of xj = v for a given constraint C on
a given MDD M can be determined in O(f(M)) time and space for any variable
xj in C and any v ∈ D(xj). Then we can achieve MDD consistency for C in
time and space at most O(poly(M)f(M)).

The proof is a straightforward shaving argument. For each edge e of M we
consider the MDD Me that consists of all the T–to–1 paths in M containing e.
Then e can be removed from M if and only if xj = e is inconsistent with C and
Me, where j = L(tail(e)). This can be determined in time and space at most
O(f(Me)) ≤ O(f(M)). By repeating this operation poly(M) times (i.e., on each
edge of M) we obtain the theorem.

To establish MDD consistency, the goal is to efficiently compute information
that is strong enough to apply Theorem 1. In the sequel, we will see that this can

A Systematic Approach to MDD-Based Constraint Programming 271

be done for inequality constraints and Among constraints in polynomial time, and
in pseudo-polynomial time for two-sided inequality constraints. Furthermore, we
have the following result.

Corollary 1. For binary constraints that are given in extension, our scheme
can be applied to achieve MDD consistency in polynomial time (in the size of
the constraint and the MDD).

To see how this is accomplished, suppose C is a binary constraint containing
variables xi, xj for i < j (the argument for j < i is similar). We let I↓(s) contain
all the values assigned to xi in some path from T to s, and I↑(t) contain all
the values assigned to xj in some path from s to 1. Then we can delete edge
e ∈ E(s, t) from M if and only if (a) L(s) = j and (xi, xj) = (v, e) satisfies C
for no v ∈ I↓(s), or (b) L(s) = i and (xi, xj) = (e, v) satisfies C for no v ∈ I↑(t).
Because |I↓(s)| and |I↑(t)| are polynomial in the size of M , we can perform this
check in time that is polynomial in the size of M and C. Also, we can compute
the local information by defining the ⊕ operator

I↓(s)⊗ e =
{{e} if L(s) = i

I↓(s) otherwise

I↑(t)⊗ e =
{{e} if L(s) = j

I↑(t) otherwise

with I↓(T) = I↑(1) = ∅, and the ⊕ operator

I ⊕ I ′ = I ∪ I ′

The top-down and bottom-up passes clearly require time that is polynomial in
the size of M . The corollary then follows from Theorem 1.

4 Specialized Propagators

We now present several MDD propagation algorithms that rely on local informa-
tion obtained as above. The filtering may not be as strong as for a conventional
domain store, in the sense that when specialized to an MDD of width one, it
may not remove as many values as a conventional filter would. However, a ‘weak’
filtering algorithm can be very effective when applied to the richer information
content of an MDD.

If one prefers not to design a filter specifically for MDDs, there is also the
option of using a conventional domain filter by adapting it to MDDs. This can
be done in a generic fashion that turns out to be yet another application of the
above scheme. Section 4.8 explains how this is done.

4.1 Equality and Not-Equal Constraints

We first illustrate MDD propagation of the constraints xi = xj and xi �= xj .
Because these are binary constraints, by Corollary 1 the scheme presented in

272 S. Hoda, W.-J. van Hoeve, and J.N. Hooker

Section 3.2 achieves MDD consistency in polytime. If we compute I↓ as described
in that section, we can achieve MDD consistency for xi = xj by deleting an edge
e ∈ E(s, t) whenever (a) L(s) = j and e �∈ I↓(s) or (b) L(s) = i and e �∈ I↑(t). We
can achieve MDD consistency for xi �= xj by deleting e whenever (a) L(s) = j
and I↓(s) = {e} or (b) L(s) = i and I↑(t) = {e}.

We note that this scheme generalizes directly to propagating fi(xi) = fj(xj)
and fi(xi) �= fj(xj) for functions fi and fj. The scheme can also be applied
to constraints xi < xj . However, in this case we only need to maintain bound
information instead of sets of domain values, which leads to an even more efficient
implementation.

4.2 Propagating Linear Inequalities

We next focus on the filtering algorithm for general inequalities, as proposed
in [1]. That is, we want to propagate an inequality over a separable function of
the form: ∑

j∈J

fj(xj) ≤ b (1)

We can propagate such constraint on an MDD by performing shortest-path
computations.

Recall that each edge e ∈ E(s, t) is identified with a value assigned to var(s).
Supposing that var(s) = xj , we let the length of edge e be fj(e) when j ∈ J and
zero otherwise. Thus the length of a T–to–1 path is the left-hand side of (1).

We let I↓(s) be the length of a shortest path from T to s, and I↑(s) the length
of a shortest path from s to 1. Then we delete an edge e ∈ E(s, t) when L(s) ∈ J
and every path through e is longer than b; that is,

I↓(s) + fL(s)(e) + I↑(t) > b

It is easy to compute local information in the form of shortest path lengths,
because we can define for e ∈ E(s, t)

I↓(s)⊗ e =
{
I↓(s) + fL(s)(e) if L(s) ∈ J

I↓(s) otherwise

I↑(t)⊗ e =
{
I↑(t) + fL(s)(e) if L(s) ∈ J

I↑(t) otherwise

with I↓(T) = I↑(1) = 0. We also define

I ⊕ I ′ = min{I, I ′}

This inequality propagator achieves MDD consistency as an edge e is always
removed unless there exists a feasible solution to the inequality that supports
it [1].

A Systematic Approach to MDD-Based Constraint Programming 273

4.3 Propagating Two-Sided Inequality Constraints

In this section, we present a generalization of the equality propagator described
by Hadzic et al. [3]. It extends the inequality propagator of Section 4.2, but now
we store all path lengths instead of only the shortest and longest paths.

Suppose we are given an inequality constraint l ≤
∑

j∈J fj(xj) ≤ u, where
l and u are numbers such that l ≤ u. Let I↓(s) be the set of all path lengths
from T to s, and I↑(s) the set of all path lengths from s to 1. We delete an edge
e ∈ E(s, t) when

v + e+ v′ �∈ [l, u], for all v ∈ I↓(s), v′ ∈ I↑(t)

The local information is computed by defining for e ∈ E(s, t)

I↓(s)⊗ e =

{{
v + e

∣∣ v ∈ I↓(s)
}

if L(s) ∈ J

I↓(s) otherwise

I↑(t)⊗ e =

{{
v + e

∣∣ v ∈ I↑(t)
}

if L(s) ∈ J

I↑(t) otherwise

with I↓(T) = I↑(1) = ∅. Also I ⊕ I ′ = I ∪ I ′.
When we delete an edge, the information stored at all predecessors and suc-

cessors becomes ‘stale’, and the information for these nodes must be recomputed
to guarantee MDD consistency. However, we will achieve MDD consistency if,
every time we delete an edge, we update the node information for all prede-
cessors and successors and repeat this filtering and updating until we reach a
fixed point. This follows because the filtering condition above is both necessary
and sufficient for an edge to be supported by a feasible solution. Observing that
the information can be computed in pseudo-polynomial time, by Theorem 1 this
algorithm runs in pseudo-polynomial time (see also [3]).

4.4 Propagating the AllDifferent Constraint

The constraint AllDifferent(xi, i ∈ J) requires that the variables xi for i ∈ J
take pairwise distinct values. We can frame the AllDifferent propagator pre-
sented in Andersen et al. [1] in terms of our scheme. Let I↓(s) = (A↓(s), S↓(s))
and I↑(s) = (A↑(s), S↑(s)). Here A↓(s) is the set of values that appear on all
paths from T to s—that is, the set of values v such that on all T–s paths, xj = v
for some j ∈ J . S↓(s) is the set of values v that appear on some T–s path. A↑(s)
and S↑(s) are defined similarly.

We can delete edge e ∈ E(s, t) for L(s) ∈ J when e ∈ A↓(s) ∪A↑(t). We can
also delete e when the variables above s, or the variables below s, form a Hall
set. To make this precise, let X↓

s = {xj | j ∈ J, j < L(s)} be the set of variables
in the AllDifferent constraint above s, and X↑

t = {xj | j ∈ J, j > L(s)} the
set of variables below s. Then if |X↓(s)| = |S↓(s)| (that is, X↓

s is a Hall set), the
values in S↓(s) cannot be assigned to any variable not in X↓(s). So we delete e
if e ∈ S↓(s). Similarly, if X↑(t) is a Hall set, we delete e if e ∈ S↑(t).

274 S. Hoda, W.-J. van Hoeve, and J.N. Hooker

Finally, we compute the local information by defining for e ∈ E(s, t)

I↓(s)⊗ e =
{
I↓(s) ∪ ({e}, {e}), if L(s) ∈ J

I↓(s), otherwise

I↑(t)⊗ e =
{
I↑(t) ∪ ({e}, {e}), if L(s) ∈ J

I↑(t), otherwise

where the unions are taken componentwise and I↓(T) = I↑(1) = (∅, ∅). Also we
define

I ⊕ I ′ = (A ∩A′, S ∪ S′).

4.5 Propagating the among Constraint

The Among constraint restricts the number of variables that can be assigned a
value from a specific subset of domain values. Formally, if X = (x1, . . . , xq) is
a sequence of variables, S a set of domain values, and �, u, q are constants with
0 ≤ � ≤ u ≤ q, then Among(X,S, �, u) requires that

� ≤ |{i ∈ {1, . . . , q} | vi ∈ S}| ≤ u

We can reduce propagating Among(X,S, �, u) to propagating a two-sided sep-
arable inequality constraint,

� ≤
∑

xi∈X

fi(xi) ≤ u,

where

fi(v) =
{

1, if v ∈ S
0, otherwise.

Because each fi(·) ∈ {0, 1}, we can compute the information in polynomial
time, and by Theorem 1 MDD consistency can be achieved in polynomial time
for Among constraints.

However, this filtering is too slow in practice. Instead, we propose to propagate
bounds information instead. That is, we can use the inequality propagator for
the pair of inequalities separately, and reason on the shortest and longest path
lengths, as in Section 4.2.

4.6 Propagating the Element Constraint

We next consider constraints of the form Element(xi, (a1, . . . , am), xj), where
the ak are constants. This means that the variable xj must take the xth

i value
in the list (a1, . . . , am); that is, xj = axi .

Because this is a binary constraint, we can achieve MDD consistency in poly-
time by defining I↓(s), I↑(t) as in the proof of Corollary 1. Supposing that i < j,
we delete an edge e ∈ E(s, t) when (a) L(s) = j and e = ak for no k ∈ I↓(s), or
(b) L(s) = i and ae �∈ I↑(t).

A Systematic Approach to MDD-Based Constraint Programming 275

4.7 Propagating the Unary Resource Constraint

We consider unary resource constraints of the following form. We wish to sched-
ule a set A of activities on a single resource (non-preemptively). Each activity
a ∈ A has a given release time ra, deadline da, and processing time pa. We model
the problem using variables X = (x1, . . . , x|A|), where xi = a implies that activ-
ity a is the ith activity to consume the resource. That is, we to find the order in
which to process the activities, from which the start times can be immediately
derived.

First, observe that in our representation the variables encode a permutation
of A, which means that we can immediately apply the AllDifferent propagator
from Section 4.4.

To enforce the time windows, let I↓(s) be the earliest start time of the activity
in position L(s) of the sequence, given the previous activities in the sequence.
Let I↑(t) be latest completion time of the activity in position L(t)−1, given the
subsequent activities. Then we can delete edge e ∈ E(s, t) if the time window is
too small to complete activity e; that is, if

max{I↓(s), re}+ pe > min{I↑(t), de}

The local information is computed

I↓(s)⊗ e = max
{
I↓(s) + pe, re + pe

}
I↑(t)⊗ e = min

{
I↑(t)− pe, de − pe

}

with I↓(T) = −∞ and I↑(1) = ∞. Also I ⊕ I ′ = (min{I↓, I↓′},max{I↑, I↑′}).

4.8 Using Conventional Domain Filters

An existing domain filter can be adapted to MDD propagation on the basis
of local information. However, the resulting propagator may not achieve MDD
consistency even when it achieves domain consistency.

The adaptation goes as follows. Following Andersen et al. [1], we define the
induced domain relaxation D×(M) of an MDD M to be a tuple of domains
(D×

1 (M), . . . , D×
n (M)) where each D×

i (M) contains the values that appear on
level i of M . That is,

D×
i (M) =

⋃
s, t

L(s) = i = L(t) − 1

E(s, t)

We can perhaps delete edges from a given level i of M by selecting a node s on
level i and applying the conventional filter to the domains

D×
1 (Ms), . . . , D×

i−1(Ms), Eout(s), D×
i+1(Ms), . . . , D×

n (Ms) (2)

where Ms is the portion of M consisting of all paths through node s. We remove
values only from the domain of xi, that is from Eout(s), and delete the corre-
sponding edges from M . This can be done for each node on level i and for each
level in turn.

276 S. Hoda, W.-J. van Hoeve, and J.N. Hooker

To compute D×(Ms), we can regard it as local information I↓(s) (bottom-up
information I↑(s) is not needed). Then for e ∈ E(s, t)

I↓(s)⊗ e = I↓(s) ∪ (∅, . . . , ∅, {e}, ∅, . . . , ∅)

where {e} is component L(s) of the vector, and the union is taken component-
wise. Also I ⊕ I ′ = I ∪ I ′.

This leads to the following lemma.

Lemma 1. The induced domain relaxation D×(Ms) can be computed for all
nodes s of a given MDD M in polynomial time (in the size of the MDD).

Again following Andersen et al. [1], we can strengthen the filtering by noting
which values can be deleted from the domains D×

j (Ms) for j �= i when (2) is
filtered. If v can be deleted from D×

j (Ms), we place the nogood xj �= v on each
edge in Eout(s). Then we move the nogoods on level i toward level j. If j > i,
for example, we filter (2) for each node on level i and then note which nodes on
level i + 1 have the property that all incoming edges have the nogood xj �= v.
These nodes propagate the nogood to all their outgoing edges, and so forth until
level j is reached, where all edges with nogood xj �= v and label v are deleted.

5 Implementation Issues

We have implemented a C++ system for MDD-Based Constraint Programming.
For a detailed description of the system, we refer to [7]. We next highlight some
of the most important design decisions we have made.

Even though MDDs can grow exponentially large to represent a given con-
straint perfectly, the basis of MDD-based constraint programming is to control
the size of the MDD by specifying a maximum width k. A MDD of width one is
equivalent to the conventional domain store, while increasing values of k allow
the MDD to converge to a perfect representation of the solution space. An MDD
on n variables therefore contains O(nk) nodes. Furthermore, by aggregating the
domain values corresponding to multiple (parallel) edges between two nodes, the
MDD contains O(nk2) edges. Therefore, for fixed k, all bottom-up and top-down
passes take linear time.

In our system, we do not propagate the constraints until a fixed point. Instead,
by default we allocate one bottom-up and top-down pass to each constraint.
The bottom-up pass is used to compute the information I↑. The top-down pass
processes the MDD a layer at a time, in which we first compute I↓, then refine
the nodes in the layer, and finally apply the filtering conditions based on I↑

and I↓.
Our outer search procedure is currently implemented using a priority queue,

in which the search nodes are inserted with a specific weight. This allows to easily
encode depth-first search or best-first search procedures. Each search tree node
contains a copy of the MDD of its parent, together with the associated branch-
ing decision. When applying a depth-first search strategy, the total amount of

A Systematic Approach to MDD-Based Constraint Programming 277

space required to store all MDDs is polynomial, namely O(n2k2). We note that
‘recomputation’ strategies that are common in conventional CP systems, cannot
be easily applied in this context, because the MDD may change from parent to
child node, due to the node refinement procedure.

6 Experimental Results

In this section, we provide detailed experimental evidence to support the claim
that MDD-based constraint programming can be a viable alternative to con-
straint programming based on the domain store. All the experiments are
performed using a 2.33GHz Intel Xeon machine with 8GB memory, using our
MDD-based CP solver. For comparison reasons, our solver applies a depth-
first search, using a static lexicographic-first variable selection heuristic, and
a minimum-value-first value selection heuristic. We vary the maximum width of
the MDD, while keeping all other settings the same.

Multiple Among Constraints. We first present experiments on problems
consisting of multiple Among constraints. Each instance contains 50 (binary)
variables, and each Among constraint consists of 5 variables chosen at random,
from a normal distribution with a uniform-random mean (from [1..50]) and stan-
dard deviation σ = 2.5, modulo 50. As a result, for these Among constraints the
variable indices are near-consecutive, a pattern encountered in many practical
situations. Each Among has a fixed lower bound of 2 and upper bound of 3, spec-
ifying the number of variables that can take value 1. In our experiments we vary
the number of Among constraints (from 5 to 200, by steps of 5) in each instance,
and we generate 100 instances for each number. We note that these instances
exhibit a sharp feasibility phase transition, with a corresponding hardness peak,
as the number of constraints increases. We have experimented with several other
parameter settings, and we note that the reported results are representative for
the other parameter settings; see Hoda [7] for more details.

In Figure 2, we provide a scatter plot of the running times for width 1 versus
width 4, 8 , and 16, for all instances. Note that this is a log-log plot. Points on the
diagonal represent instances for which the running times, respectively number
of backtracks, are equal. For points below the diagonal, width 4, 8, or 16 has a
smaller search tree, respectively is faster, than width 1, and the opposite holds
for points above the diagonal.

We can observe that width 4 already consistently outperforms the domain
store, in some cases up to six orders of magnitude in terms of search tree size
(backtracks), and up to four orders of magnitude in terms of computation time.
For width 8, this behavior is even more consistent, and for width 16, all instances
can be solved in under 10 seconds, while the domain store needs hundreds or
thousands of seconds for several of these instances.

Nurse Rostering Instances. We next conduct experiments on a set of in-
stances inspired by nurse rostering problems, taken from [8]. The instances are
of three different classes, and combine constraints on the minimum and maxi-
mum number of working days for sequences of consecutive days of given lengths.

278 S. Hoda, W.-J. van Hoeve, and J.N. Hooker

backtracks time

100

101

102

103

104

105

106

107

100 101 102 103 104 105 106 107

ba
ck

tr
ac

ks
 w

id
th

 4

backtracks width 1

10-2

10-1

100

101

102

103

104

10-2 10-1 100 101 102 103 104

tim
e

w
id

th
 4

 (
s)

time width 1 (s)

100

101

102

103

104

105

106

107

100 101 102 103 104 105 106 107

ba
ck

tr
ac

ks
 w

id
th

 8

backtracks width 1

10-2

10-1

100

101

102

103

104

10-2 10-1 100 101 102 103 104

tim
e

w
id

th
 8

 (
s)

time width 1 (s)

100

101

102

103

104

105

106

107

100 101 102 103 104 105 106 107

ba
ck

tr
ac

ks
 w

id
th

 1
6

backtracks width 1

10-2

10-1

100

101

102

103

104

10-2 10-1 100 101 102 103 104

tim
e

w
id

th
 1

6
(s

)

time width 1 (s)

Fig. 2. Scatter plots comparing width 1 versus width 4, 8, and 16 (from top to bottom)

in terms of backtracks (left) and computation time in seconds (right) on multiple Among
problems

That is, class C-I demands to work at most 6 out of each 8 consecutive days
(max6/8) and at least 22 out of every 30 consecutive days (min22/30). For class
C-II these numbers are max6/9 and min20/30, and for class C-III these numbers
are max7/9 and min22/30. In addition, all classes require to work between 4 and
5 days per calendar week. The planning horizon ranges from 40 to 80 days.

The results are presented in Table 1. We report the total number of backtracks
upon failure (BT) and computation time in seconds (CPU) needed by our MDD
solver for finding a first feasible solution, using widths 1, 2, 4, 8, 16, 32, and
64. Again, the MDD of width 1 corresponds to a domain store. For all problem
classes we observe a nearly monotonically decreasing sequence of backtracks

A Systematic Approach to MDD-Based Constraint Programming 279

Table 1. The effect of the MDD width on time in seconds (CPU) and backtracks (BT)

when finding one feasible solution on nurse rostering instances

instance width 1 width 2 width 4 width 8 width 16 width 32 width 64

size BT CPU BT CPU BT CPU BT CPU BT CPU BT CPU BT CPU

C-I 40 61,225 55.63 22,443 28.67 8,138 12.64 1,596 3.84 6 0.07 3 0.09 2 0.10
50 62,700 88.42 20,992 48.82 3,271 12.04 345 2.76 4 0.08 3 0.13 3 0.16
60 111,024 196.94 38,512 117.66 3,621 19.92 610 6.89 12 0.24 8 0.29 5 0.34
70 174,417 375.70 64,410 243.75 5,182 37.05 889 12.44 43 0.80 13 0.59 14 0.90
80 175,175 442.29 64,969 298.74 5,025 44.63 893 15.70 46 1.17 11 0.72 12 1.01

C-II 40 179,743 173.45 60,121 79.44 17,923 32.59 3,287 7.27 4 0.07 4 0.07 5 0.11
50 179,743 253.55 73,942 166.99 9,663 38.25 2,556 18.72 4 0.09 3 0.12 3 0.18
60 179,743 329.72 74,332 223.13 8,761 49.66 1,572 16.82 3 0.13 3 0.18 2 0.24
70 179,743 391.29 74,332 279.63 8,746 64.80 1,569 22.35 4 0.18 2 0.24 2 0.34
80 179,743 459.01 74,331 339.57 8,747 80.62 1,577 28.13 3 0.24 2 0.32 2 0.45

C-III 40 91,141 84.43 29,781 38.41 5,148 9.11 4,491 9.26 680 1.23 7 0.18 6 0.13
50 95,484 136.36 32,471 75.59 2,260 9.51 452 3.86 19 0.43 7 0.24 3 0.20
60 95,509 173.08 32,963 102.30 2,226 13.32 467 5.47 16 0.50 6 0.28 3 0.24
70 856,470 1,986.15 420,296 1,382.86 37,564 186.94 5,978 58.12 1,826 20.00 87 3.12 38 2.29
80 882,640 2,391.01 423,053 1,752.07 33,379 235.17 4,236 65.05 680 14.97 55 3.27 32 2.77

and solution time as we increase the width up to 64. Furthermore, the rate of
decrease appears to be exponential in many cases, and again higher widths can
yield savings of several orders of magnitude. A typical result (the instance C-III
on 60 days) shows that where an MDD of width 1 requires 95,509 backtracks
and 173.08 seconds of computation time, an MDD of width 32 only requires 6
backtracks and 0.28 seconds of computation time to find a first feasible solution.

7 Conclusion

We have introduced a generic scheme for propagating constraints in MDDs, and
showed that all existing MDD-based constraint propagators are instantiations
of this scheme. Furthermore, our scheme can be applied to systematically design
propagators for other constraints, and we have illustrated this explicitly for the
Among, Element, and unary resource constraints. We further provide experimen-
tal results for the first pure MDD-based constraint programming solver, showing
that MDD-based constraint programming can yield savings of several orders of
magnitude in time and search space as compared to the conventional domain
store.

References

[1] Andersen, H.R., Hadzic, T., Hooker, J.N., Tiedemann, P.: A Constraint Store Based

on Multivalued Decision Diagrams. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741,

pp. 118–132. Springer, Heidelberg (2007)

[2] Cheng, K., Yap, R.: Maintaining Generalized Arc Consistency on Ad Hoc r-

Ary Constraints. In: Stuckey, P.J. (ed.) CP 2008. LNCS, vol. 5202, pp. 509–523.

Springer, Heidelberg (2008)

[3] Hadzic, T., Hooker, J.N., O’Sullivan, B., Tiedemann, P.: Approximate Compilation

of Constraints into Multivalued Decision Diagrams. In: Stuckey, P.J. (ed.) CP 2008.

LNCS, vol. 5202, pp. 448–462. Springer, Heidelberg (2008)

280 S. Hoda, W.-J. van Hoeve, and J.N. Hooker

[4] Hadzic, T., Hooker, J.N., Tiedemann, P.: Propagating Separable Equalities in an

MDD Store. In: Perron, L., Trick, M.A. (eds.) CPAIOR 2008. LNCS, vol. 5015, pp.

318–322. Springer, Heidelberg (2008)

[5] Hadzic, T., O’Mahony, E., O’Sullivan, B., Sellmann, M.: Enhanced Inference for the

Market Split Problem. In: Proceedings of ICTAI, pp. 716–723. IEEE, Los Alamitos

(2009)

[6] Hawkins, P., Lagoon, V., Stuckey, P.J.: Solving Set Constraint Satisfaction Prob-

lems Using ROBDDs. JAIR 24(1), 109–156 (2005)

[7] Hoda, S.: Essays on Equilibrium Computation, MDD-based Constraint Program-

ming and Scheduling. PhD thesis, Carnegie Mellon University (2010)

[8] van Hoeve, W.-J., Pesant, G., Rousseau, L.-M., Sabharwal, A.: New Filtering Al-

gorithms for Combinations of Among Constraints. Constraints 14, 273–292 (2009)

A Complete Multi-valued SAT Solver

Siddhartha Jain1, Eoin O’Mahony2, and Meinolf Sellmann1,�

1 Brown University, Department of Computer Science
P.O. Box 1910, Providence, RI 02912, U.S.A.

{sj10,sello}@cs.brown.edu
2 Cork Constraint Computation Centre
University College Cork, Cork, Ireland

e.omahony@4c.ucc.ie

Abstract. We present a new complete multi-valued SAT solver, based on current
state-of-the-art SAT technology. It features watched literal propagation and con-
flict driven clause learning. We combine this technology with state-of-the-art CP
methods for branching and introduce quantitative supports which augment the
watched literal scheme with a watched domain size scheme. Most importantly,
we adapt SAT nogood learning for the multi-valued case and demonstrate that
exploiting the knowledge that each variable must take exactly one out of many
values can lead to much stronger nogoods. Experimental results assess the bene-
fits of these contributions and show that solving multi-valued SAT directly often
works better than reducing multi-valued constraint problems to SAT.

1 Multi-valued SAT

One of the very successful solvers for constraint satisfaction problems (CSPs) is Su-
gar [23]. It is based on the reduction of CSP to the satisfiability problem (SAT). Sugar
first encodes the given problem as a SAT formula and then employs MiniSAT [7] to
solve the instance. Somewhat surprisingly, Sugar won the ACP global constraint com-
petition in the past two years [21]. Our work is highly motivated by the success of this
solver. Our objective is to provide a solver which could replace MiniSAT for reduction-
based CSP solvers and work with even better efficiency by taking into account that
CSP variables usually have non-boolean domains. To this end, let us begin by formally
defining the multi-valued SAT problem.

Definition 1 (Multi-Valued Variables). A multi-valued variable Xi is a variable that
takes values in a finite set Di called the domain of Xi.

Definition 2 (Multi-Valued Clauses)

– Given a multi-valued variable Xi and a value v, we call the constraint Xi = v a
variable equation onXi. A variable equationXi = v is called satisfiable iff v ∈ Di.

– Given a set of multi-valued variables X = {X1, . . . , Xn} and a set T ⊆ X , a
clause over T is a disjunction of variable equations on variables in X .

� This work was supported by the National Science Foundation through the Career: Cornflower
Project (award number 0644113).

D. Cohen (Ed.): CP 2010, LNCS 6308, pp. 281–296, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

282 S. Jain, E. O’Mahony, and M. Sellmann

Example 1. Given variables X1, X2, X3 with domains D1 = {1, . . . , 5}, D2 = {true,
false}, and D3 = {red, green, blue},

(X1 = 1 ∨ X1 = 3 ∨ X1 = 4 ∨ X2 = false ∨ X3 = red) (1)
is a multi-valued clause over X1, X2, X3.

Note that multi-valued clauses have no negation. A classic SAT clause would be written
as (X1 = false ∨X2 = true ∨X3 = false) in this notation. To save memory, it can be
very helpful to encode large sets of allowed values by specifying the disallowed values
only. E.g., in the example above we may prefer to write

((X1 �= 2 ∧ X1 �= 5) ∨ X2 = false ∨ X3 = red). (2)
While the solver that we developed for this paper allows these inputs, they are not part
of the problem definition itself to keep the theory free from confusing implementation
details.

Definition 3 ((Partial) Assignments and Feasibility). Given a set of multi-valued
variables X = {X1, . . . , Xn}, denote with D the union of all domains D1, . . . , Dn.
Furthermore, denote with S, T subsets of X .

– A function α : S → D is called an assignment of variables in S. α is called partial
iff |S| < n, and complete otherwise. If |S| = 1, α is called a variable assignment.

– An assignment α is called admissible iff α(Xi) ∈ Di for all Xi ∈ S.
– An assignment α of variables in S is called feasible with respect to a clause over
T iff T \ S �= ∅ or if there exists a variable equation Xi = α(Xi) in the clause.

– Given a clause c, a complete, admissible, and feasible assignment is called a solu-
tion for c.

Definition 4 (Multi-Valued SAT Problem). Given a set X of multi-valued variables
and a set of clauses over subsets of X , the multi-valued SAT problem (MV-SAT) is to
decide whether there exists an assignment α that is a solution for all clauses.

As MV-SAT allows boolean variables, the problem is at least as hard as SAT and is thus
NP-hard. On the other hand, using standard CP encodings (direct encoding, support
encoding, or order encoding [24,10,23]), we also know that MV-SAT can be reduced to
SAT which makes the problem NP-complete.

Although the problems are equivalent in complexity (as all NP-complete problems
are) and also very similar in structure, we consider MV-SAT an interesting generaliza-
tion of SAT. In [1] it was shown that many problems which are currently being solved
as SAT problems do in fact model problems with multi-valued variables. Moreover,
many applications, especially in verification, naturally exhibit multi-valued variables.
The purpose of this paper is to show that handling multi-valued variables directly rather
than encoding them by means of boolean variables can lead to substantial improvements
in computational efficiency.

2 Efficient Incremental Clause Filtering

The main inference mechanism in CP and SAT is constraint filtering. That is, for a given
constraint we want to identify those variable assignments that cannot be extended to a
solution for a given constraint and the current domains. The corresponding domain val-
ues are then removed and the process is iterated until no constraint can remove further
domain values.

A Complete Multi-valued SAT Solver 283

2.1 Unit Propagation in SAT

A classic SAT clause only ever removes a value (true or false) from a variable domain
when all other variables in the clause have been assigned a value which does not satisfy
the clause. In this case, we speak of a unit clause and the process of filtering clauses in
this way is called unit propagation.

An elegant way of incrementally performing the filtering of SAT clauses was
proposed in [18]. Each clause watches only two variable equations. In SAT, these are
commonly referred to as literals. As long as both watched literals can be satisfied,
no filtering can take place. When one watched literal cannot be satisfied anymore, we
search for another second literal that can still be satisfied. Only when no second satisfi-
able literal can be found is the clause unit and we commit the only remaining variable
assignment that can still satisfy the clause.

The beauty of this way of performing unit propagation is that it is not necessary to
traverse all clauses that involve any variable that has been set to a value. In essence,
the two watched literals give us an effective pre-check whether a clause can filter any
values. Only when this pre-check fails, i.e. when one of the watched literals is affected,
we need to perform any work. Otherwise the cost is not even constant per unaffected
constraint, there is in fact no work to do for them at all. This last fact is key for handling
problem instances with many constraints and for learning a large number of redundant
clauses during search.

Note that we always start the search for a replacement watched literal at the old lost
literal and then wrap around if the tail of the clause did not contain a valid support. This
prevents us from looking at the same lost supports over and over again which would
happen if we always started the search at the first literal in the clause. The method
guarantees that each clause literal will be looked at most thrice on any path from the root
to any leaf in the search tree. Note further that this scheme is very backtrack friendly as
all non-unit constraints do not need to update their watched literals upon backtracking
as their current supports are obviously still valid for any ancestor node in the search tree.

2.2 Watched Variable Equations

For multi-valued clauses we can use the very same approach. Note however that multi-
valued clauses can trigger filtering earlier. As soon as all variable equations that can
still be satisfied regard just one variable, all domain values of this variable that do not
satisfy the clause can be removed from its domain. For example, consider the clause
from earlier: (X1 = 1 ∨ X1 = 3 ∨ X1 = 4 ∨ X2 = false ∨ X3 = red). As soon as
the domains of X2, X3 do not contain the values false and red anymore, respectively,
values 2 and 5 can be removed from D1.

To accommodate this fact we only need to ensure is that the two variable equations
that are watched cannot regard the same variable. This is automatically guaranteed in
SAT when we remove tautologies upfront. Although as we have seen earlier; multi-
valued clauses can have a number of variable equations in the same variable.

The two watched variable equations approach therefore watches two variable equa-
tions that regard two different variables. To this end, in each clause we group the vari-
able equations according to their respective variables, and we fix an ordering of the
variables and their allowed values in the clause. When a watched variable equality is

284 S. Jain, E. O’Mahony, and M. Sellmann

affected, we search for a replacement starting at the old variable and its old value. If that
does not lead to a replacement support, we continue with the next variable, whereby we
skip over the variable that is used for the second variable equality.

2.3 Quantitative Supports

In multi-valued SAT we can enhance this scheme by allowing a different kind of support
that is based on the size of the current domain of a variable. For a given clause c, let us
denote with ic the number of variable equations that regard Xi in c. Furthermore, let us
denote with di the size of the initial domain of Xi. The observation is that there must
exist at least one satisfiable variable equality for a given variable as long as the size of
the current domain is still bigger than the number of values that are disallowed by this
clause when all variable equations regarding other variables in this clause cannot be
satisfied. Formally: |Di| > di − ic ⇒ ∃v ∈ Di : Xi = v ∈ c.

Example 2. Given are two variablesX1, X2 with initial domainsD1 = D2 ={1, . . . , 6},
and a clause c = (X1 = 1 ∨X1 = 2 ∨X1 = 3 ∨X1 = 4 ∨X1 = 5 ∨X2 = 1). The
constraint just says that X2 = 1 or X1 �= 6. Now assume that the current domain of
X1 is D1 = {2, 3, 6}. The clause only disallows one value for X1, but three values are
still allowed: |D1| = 3 > 1 = 6 − 5 = d1 − 1c. Consequently, there must still exist a
variable equality on X1 in c that can still be satisfied, in our case e.g. X1 = 2.

The point of these quantitative supports is that we do not need to place a bet on any
particular value for a given variable. Instead, a clause only needs to be looked at when
the domain size of a watched variable falls below or equal the threshold di − ic, no
matter which particular values are lost until this happens. Especially when few values
are disallowed for a variable, watching quantitative supports can save us a lot of work.
Note that this type of support is not actually new in constraint programming. Solvers
like IBM CP Solver have long associated the filtering of constraints with certain events,
such as the event that a variable is bound (i.e. when its corresponding domain has shrunk
to size 1). The only difference here is that we allow multi-valued clauses to set their
own specific variable domain threshold which triggers when they need to be queued for
filtering again.

3 Learning Nogoods for Multi-valued SAT

We have seen in the previous section that multi-valued clauses offer the potential for
filtering even before the number of satisfiable variable equations is 1, as long as the
ones that remain satisfiable all constrain the same variable. Depending on the SAT en-
coding, a boolean SAT solver that learns redundant constraints can improve its filtering
effectiveness to achieve the same, but the fact that this filtering is guaranteed is already
an advantage of modeling a problem as multi-valued SAT over classic SAT.

A second and probably more important advantage of multi-valued SAT is that we
can learn better implied constraints by exploiting our knowledge that each variable
must take exactly one value. Before we explain how this can be achieved, let us begin
by reviewing conflict driven clause learning in SAT.

A Complete Multi-valued SAT Solver 285

3.1 Conflict Analysis

Unit propagation is an incomplete inference mechanism in so far as it does not guaran-
tee that all variable domains have size 1 at the end and that it is not guaranteed that a
variable domain will be empty even when the given formula has no solution. The only
facts that we know for sure are that variables that are unit must be set to the correspond-
ing value in any solution and, consequently, that the formula has no solution if unit
propagation finds a variable that can neither be set to true nor to false.

Due to this incompleteness of our filtering method we need to conduct a search for
a solution. We assign variables one after the other to values in their domain, whereby
after each assignment we perform unit propagation to simplify the formula or to detect
that our current partial assignment cannot be extended to a solution. In the latter case,
we speak of a failure and the variable that can neither be true nor false is called a conflict
variable.

At this point, we could just undo the last variable assignment and try a different one.
We can do much better, though. The power of modern SAT solvers lies in their ability
to analyze the cause of the failure and to construct a redundant constraint, a so-called
nogood, that will help prevent us from making the same error again. Crucial for this
conflict analysis is our ability to give the exact reasons why a constraint filters a value.
SAT clauses are very well suited for conflict analysis as we can trace exactly which
prior domain reductions triggered the filtering.

In particular, modern systematic SAT solvers set up a so-called implication graph. It
allows us to trace back the reasons why certain domain values have been removed. By
collecting all causes for the removal of all domain values of the conflict variable, we
can state a new constraint which forbids that a sufficient condition for a failure occurs.
The easiest way to explain how the implication graph is set up and used is by means of
an example which we will use throughout this section.

Example 3. Consider a constraint satisfaction problem (CSP) with five variables and
five constraints. The variables have domains D1 = D2 = D4 = {1, 2, 3}, D3 =
{1, . . . , 6}, D5 = {1, 2}. The constraints are X1 �= X4, X2 �= X3, X3 + 9 ≥ 5X4,
X3 + 4 ≥ 5X5, and X4 �= X5 + 1.

Say we model this problem by introducing boolean variables xij which are true iff
Xi = j. To ensure that each CSP variable takes exactly one value we introduce clauses
(∨jxij = true) for all i, and (xij = false ∨ xik = false) for all i and j < k. In
particular, we have a clause

(x31 = false ∨ x36 = false). (3)

We need to add multiple clauses for each CSP constraint. Among others, for constraints
X1 �= X4, X2 �= X3, and X4 �= X5 + 1 we add

(x11 = false∨x41 = false)∧ (x22 = false∨x32 = false)∧ (x42 = false∨x51 = false). (4)

Constraints X3 + 9 ≥ 5X4 and X3 + 4 ≥ 5X5 are enforced by the clauses

(x41 = true ∨ x42 = true ∨ x36 = true) ∧ (x51 = true ∨ x36 = true). (5)

The resulting SAT formula has no unit clauses, and so we begin our search. Assume
that we first commit x11 ← true. To record this setting, we add a node (x11 �= false)

286 S. Jain, E. O’Mahony, and M. Sellmann

X != false11

1

X != false22

2

X != true41

1

X != true32

2

X != false42

3

X != false31

3

X != true36

3

X != false51

3

X != true42

3

conflict

Conflict Partition

1−UIPUIP

X != true37

3

Fig. 1. SAT implication graph for Example 3. The solid nodes and arcs depict the relevant part
of the implication graph when D3 = {1, . . . , 6}. The dashed nodes and arcs are part of the
implication graph when D3 = {1, . . . , 7}.

to our implication graph,1 and we note that this node is added at search depth level 1
(compare with Figure 1 and ignore the dashed nodes and arcs). Among the clauses that
we consider for this example, only the first clause in (4) becomes unit, and we infer
(x41 �= true). We add also this node to the graph, mark it with depth level 1, and draw
an arrow from the second to the first node to record that the first variable inequality
implies the second.

After unit propagation is complete, we may next set x22 ← true. Again, we add a
node (x22 �= false) to our graph and note that it was added on depth level 2. By (4) we
infer (x32 �= true), add this node with depth mark 2, and add an arc to (x22 �= false).

Again after all unit propagation is complete, let us assume that we now commit
x31 ← true. Again, we add (x31 �= false), and by (3) we infer (x36 �= true) (both at
depth level 3, just like all nodes that follow). The first clause in (5) is now unit and we
add a new node (x42 �= false). We add arcs to node (x41 �= true) and to node (x36 �=
true), as both variable inequalities are needed to make this implication. The second
clause in (5) is also unit, and we infer (x51 �= false) which is implied by (x36 �= true).
The last clause in (4) is now unit and we add node (x42 �= true). Together with the
earlier implied (x42 �= false) we have now reached a conflict. In Figure 1 we show the
implication graph at this point (please ignore the dashed elements).

This graph is used to compute nogoods: Any set of nodes that represents a cut be-
tween the conflict node on one side and all branch nodes (i.e. nodes without outgoing
arcs) on the other defines a valid constraint. For example, all paths from the conflict
node to any branch node must visit either (x42 �= false) or (x36 �= true). Consequently,
it is sound to enforce that not both variable inequalities hold at the same time or, equiv-
alently, that (x42 = false∨x36 = true). Conveniently, this constraint is again a clause!
In terms of our CSP variables means that X4 = 2 implies X3 = 6.

1 Note that our notation is not standard in SAT. We use it here because it will naturally generalize
to multi-valued SAT later.

A Complete Multi-valued SAT Solver 287

Another cut set is the set of all reachable branch nodes, in our case (x11 �= false) and
(x31 �= false). This cut results in the clause (x11 = false) and (x31 = false), or X1 = 1
implies X3 �= 1. This latter fact is interesting as it obviously means that after our first
search decision we could already have inferred x31 �= true. Another way to put this is
to say that the second branching decision was irrelevant for the conflict encountered, a
fact that we can exploit to undo multiple search decisions, a process which is commonly
referred to as back-jumping or non-chronological backtracking.

In order to achieve immediate additional propagation by the newly learned clause
after back-jumping, we need to make sure that the clause contains only one node from
the last depth level. Then and only then the newly learned clause will be unit and thus
trigger more filtering after back-jumping. To find nodes that can be extended to a full cut
using only nodes from lower depth levels, we consider only paths between the conflict
node and the last branching decision. In Figure 1, this happens to be the subgraph
induced by the nodes marked with depth level 3 (in general it would be a subset of
the nodes on the lowest level). In this subgraph, we search for cut points, i.e., nodes that
all paths from conflict to branch node must visit. In SAT these are commonly referred
to as unit implication points (UIP).

Note that these UIPs can be computed in time linear in the number of edges of the
subgraph. In our case, there are two UIPs, (x36 �= true) and the branch node itself,
(x31 �= false). In [25] it was established that it is beneficial to consider the UIP that
is closest to the conflict. This is called the first UIP (1-UIP). Now, we group all nodes
between the 1-UIP and the conflict together (marked by the circle in Figure 1). The cut
set is then the set of all nodes that have a direct parent in this set. In our case, these are
(x36 �= true) and (x41 �= true), which gives the nogood (x36 = true ∨x41 = true); or, in
terms of the CSP variables, X4 �= 1 implies X3 = 6.

3.2 Unit Implication Variables

X != 3
1

1 X != 1
1

4

X != 2
1

1

X != 1
2

X != 3
2

2

2

X != 2
2

3

X != 1
3

3

X != 3
3

4

X != 2
3

5 X != 2
3

4
X != 6

3

X != 7
3

3

3

conflict

Conflict Partition

UIV

Fig. 2. MV-SAT Implication Graph

As the example shows, conflict analysis
can result in powerful inference. We will
now show how we can learn even stronger
nogoods in multi-valued SAT.

Consider again Example 3, but this
time let us assume that D3 = {1, . . . , 7}.
In our SAT model, the clauses enforcing
X3+9 ≥ 5X4 and X3+4 ≥ 5X5 change
to (x41 = true ∨ x42 = true ∨ x36 =
true ∨ x37 = true) and (x51 = true ∨
x36 = true ∨ x37 = true).

If we branch as before, the implication
graph at depth level 3 includes the dashed
arcs and nodes in Figure 1. We observe
that it has only one UIP now, and that is
the branch node itself. Consequently, the
nogood learned is much weaker, we only

288 S. Jain, E. O’Mahony, and M. Sellmann

infer (x31 = false ∨x41 = true); or, in terms of the CSP variables, that X4 �= 1
implies X3 �= 1.

In Figure 2 we show the implication graph for the corresponding multi-valued SAT
model. Note that this graph no longer contains a single node that corresponds to the
branching assignment. This is rather given as a number of variable inequalities. Observe
further that in this graph there does not exist a UIP at all anymore. However, recall from
Section 2 that a multi-valued clause can cause filtering even when multiple variable
equations are still satisfiable, as long as all of them regard the same variable. For us,
this means that we no longer need to find a cut point, but potentially an entire set of
nodes:

Definition 5 (Unit Implication Variable). Given a multi-valued SAT problem and an
implication graph G, assume that, if all nodes associated with variable X are removed
from G, there exists no path from the conflict node to any branch node on the lowest
branch level. Then, we call X a unit implication variable (UIV).

In our example, X3 is a UIV. Based on its associated cut set, we can again compute a
conflict partition and set the nogood as the negation of the conjunction of all variable
inequalities which have a direct parent in the conflict partition. In our example, we thus
find the multi-valued clause (X4 = 1 ∨X3 = 6 ∨X3 = 7). After backjumping to the
highest depth level after the conflict level in our learned clause (in our case level 1), this
clause is unit and prunes the domain of X3 to D3 = {6, 7}. That is, equipped with this
nogood the solver does not need to branch on X3 ← 2, X3 ← 3, X3 ← 4, and X3 ← 5
as all of these settings would fail for the very same reason as X3 ← 1 did.

The challenge here is to find UIVs efficiently. Unfortunately this task no longer con-
sists of the trivial linear computation of a cut point. We propose the following approach.
First, we compute the shortest (in the number of nodes) path from any conflict variable
node to any branch node. Only variables associated with nodes on this path can be
UIVs. We call this set of variables the candidate set. Next we update the costs of the
edges in the graph such that visiting a node associated with a variable in the candi-
date set incurs a cost of one, while all other nodes cost nothing. We compute another
shortest path based on this cost function. Again, only variables associated with nodes
on this path can be UIVs. We can therefore potentially reduce the candidate set. We
repeat this process as long as the candidate set keeps shrinking. Finally, we test each
remaining candidate by incurring a cost of one for nodes associated with the candidate
variable only. If and only if the cost of the shortest path is greater than zero, then this
implies that every path from a conflict node to a branch node must pass through a node
associated with the candidate variable, which is therefore a UIV. It follows:

Lemma 1. The set of all unit implication variables can be computed in time O(mn),
where m is the number of edges and n is the number of nodes in the subgraph of paths
between a conflict and a branch nodes.

Proof. Apart from the first and one other which establishes that the candidate set does
not shrink anymore, each shortest path computation reduces the candidate set by at least
one candidate. As there are at most n candidates, we require at most n+2 shortest path
computations. The implication graph is a directed acyclic graph, and therefore each
shortest path computation takes time Θ(m). ��

A Complete Multi-valued SAT Solver 289

X != 1
1

X != 1
1

X != 2
1

X != 2
1

X != 1
1

1

X != 2
1

1

2

3

3

2 4

X != 14

conflict

1
5

43

2

6

Fig. 3. Implication graph for a problem with four variables with domains D1 = D4 = {1, 2} and
D2 = D3 = {1, 2, 3}

While it is reassuring that UIVs can be computed in polynomial time, a time bound
of O(mn) is certainly not very appealing seeing that we need to compute a nogood at
every failure. In practice we can of course hope that way fewer than n shortest path
computations will be necessary. Fortunately, as our experiments will show, this hope is
very well justified.

3.3 Non-dominated UIVs

Recall that in SAT, if there are many UIPs, we choose the one that is closest to the con-
flict. In multi-valued SAT, we may also have multiple UIVs, whereby the last branching
variable is always one of them. The question arises which UIV we should prefer. It
is easy to see that there is no longer one unique UIV that dominates every other. For
example, see the implication graph in Figure 3.

Definition 6 (Non-Dominated UIV). We call a UIV non-dominated if there exists a
path from the conflict to a branch node where a node associated with the UIV is the first
node on the path that is associated with a UIV.

In our algorithm, we can easily compute a non-dominated UIV by testing the remaining
candidates in the order in which they appear on the first shortest path that we computed.
Our solver learns the nogood that corresponds to this UIV.

An important aspect of our computing non-dominated UIVs is that they give us a
good indication of the strength of the nogoods that we compute. In our experiments, we
found that on problems where the vast majority of UIVs coincides with the branching
variable, learning sophisticated nogoods is often a waste of time. Consequently, when
our solver detects that the number of UIVs that are different from the branching variable
drops below 5%, we no longer attempt to find improved, non-dominated UIVs and
simply use the branching variable to define the next nogood instead.

3.4 Nogood Management

Among others, our solver offers impacts for selecting the branching variable [17]. Im-
pacts measure the reduction in search space size achieved by propagation after each
branching step. The concept has been found very effective for selecting branching
variables.

As we learn more and more nogoods through the course of the search, an important
task for any conflict driven solver is the management of learned constraints. First, due
to limited memory it is simply not feasible to store all learned nogoods until an instance

290 S. Jain, E. O’Mahony, and M. Sellmann

is solved. Second, for the efficiency of the solver it is essential that we forget redundant
constraints which only cause work but rarely filter anything.

We use impacts to determine nogoods that can be deleted without losing much in-
ference power. Whenever a constraint filters some values during the propagation of the
effects of a branching decision, we associate the constraint with the entire reduction
in search space that all constraints achieve together. The rational behind looking at the
entire reduction is that a constraint may not remove many values but very important
ones which trigger lots of follow-up propagation.

We keep a running average of these reductions for each learned constraint. When the
number of learned clauses reaches a limit (which grows over time), we remove roughly
half of the learned clauses by removing all that have an average reduction below the
median of all learned clauses. To ensure the completeness of the approach, clauses are
protected from removal when they are currently unit.

This scheme works well in principle, but it has one major drawback: constraints
which are part of some high impact propagation and which then never become unit
again would clog up our system as their average reduction stays high. Therefore, in
regular intervals we decrease the expected reduction for each learned constraint by a
certain percentage. In our experiments, we decrease the expected reduction by 7% every
100 failures. In this way, constraints that have not been useful in a while get discounted.

4 Related Work

There are many approaches which reduce CSP to SAT and then employ a standard
boolean SAT solver. A number of different encodings have been proposed for this pur-
pose [24,10,23]. In the award-winning paper from Ohrimenko et al. [15], CSP prop-
agators themselves were encoded lazily as SAT clauses which gave very good results
on scheduling problems. The CSP solver Sugar [23], which won the ACP global con-
straints competition in the past two years, computes very efficient encodings for various
global constraints and then employs MiniSAT [7] to solve the resulting SAT problem.
Our work is heavily influenced by these studies and have motivated us to provide a
back-end SAT solver that could directly exploit the fact that variables must take exactly
one out of many values.

In [11,14], classical CSP nogoods [19] were generalized to accommodate multi-
valued variables better. Pioneering work on multi-valued SAT was presented in [2,3,4].
Here, the then state-of-the-art SAT solvers Chaff [18] and SATZ [12] were augmented
with domain-based branching heuristics. Very good speed-ups over the performance
over baseline SAT solvers were reported which were solely due to the ability of the
multi-valued solver to take domain sizes into account when branching.

An incomplete multi-valued SAT solver was presented in [8]. It is based on an adap-
tation of the well known local search solver WalkSAT [20]. It was shown that working
the knowledge that each variable must take exactly one out of many values into the
solver can lead to superior performance on instances from various problem classes with
larger variable domain sizes.

The only “pure” complete multi-valued SAT solver we know of was presented in [13].
It was named CAMA and like our own solver it features propagation based on watched

A Complete Multi-valued SAT Solver 291

D = {2} 1

1

D = {3} 3

1

2

1

D = {2,3} 3D = {1,3}
1

D = {3} 2

1

D = {2} 4

1

D = {} 4

1

Fig. 4. CAMA implication graph for the same example as in Figure 3

2

1

D = {2,3} D = {2} 3

1

D = {3} 2

1

D = {2} 4

1

D = {2} 5

1

D = {} 5

1

D = {2} 1

1

3
4

21 5

6

Fig. 5. CAMA implication graph for a problem with five variables with domains D1 = D3 =

D4 = D5 = {1, 2} and D2 = {1, 2, 3}

literals (albeit without quantitative supports) and a nogood learning method which ex-
ploits the knowledge about multi-valued variables. Like us the authors attempt to learn
improved nogoods.

In CAMA, a nogood is not constructed through the analysis of an implication graph
but through resolution. An implication graph is used only for the computation of a UIV.
The implication graph differs considerably from ours, though. As we will see, due to its
structure, CAMA is not able to identify non-dominated UIVs, for two reasons:

First, CAMA does not consider pure variable inequalities for learning nogoods, but
the entire domain of each variable after a value has been removed. The current domain,
however, reflects all domain reductions on the variable and not just the ones that are
relevant for the filtering that is triggered. Consequently, CAMA needs to trace back
the relevant domain reductions, and since it conservatively assumes that the relevant
domain reductions happened earlier during propagation, it may miss a unit implica-
tion point. In Figure 4 we show a CAMA implication graph for the same example
as depicted in Figure 3 where we also mark the order in which the nodes are added
to the graph. CAMA computes, in linear time, the cut point in this graph that is closest
to the conflict node. As we can see, due to the dashed edges which are needed to denote
the implications by earlier domain reductions on the same variable, the only cut point
is the branching node itself. CAMA thus finds variable X1 as UIV which is dominated
both by X2 and X3 as we can easily see in Figure 3.

The second reason why CAMA cannot identify non-dominated UIVs is that it is
simply unable to identify all UIVs by only considering cut points in its implication
graph. In Figure 5 we show a different example. Here, even when we ignore the dashed
arcs, the only cut point is the branch node, and CAMA chooses X1 as UIV which is

292 S. Jain, E. O’Mahony, and M. Sellmann

dominated by X2. In summary, CAMA’s nogood learning method runs in linear time,
but therefore the nogoods found are in general not as strong as they could be.

5 Numerical Results

We have introduced quantitative supports and non-dominated UIVs for nogood learning
in multi-valued SAT. We will now study these contributions and finally compare our
solver with standard SAT technology.

5.1 Benchmark Sets and Architecture

For our experiments, we use the following four classes of problems: quasi-group with
holes, random binary constraint satisfaction problems, n-queens, and graph coloring.

The quasi-group with holes instances were produced by the generator of Carla
Gomes. Instances of different sizes and different percentages of holes were used (40%
and 42% which is close and right at the phase transition). Ten instances were generated
for each parameter setting of the generator and collected in a set named qwh-[order]-
[percent holes].

Random binary constraint satisfaction problems were generated by the generator of
Christian Bessiere available at [5]. Instances vary in number of variables, domain size,
number of constraints, and constraint tightness. We fix the density of the constraint
graph at 0.5 and then derive the value for the critical constraint tightness using the
formula given in [16] which is the value for which the BCSP problems are generally
hard. We then generate instances with constraint tightness slightly above and below the
critical value. Ten instances were generated for each parameter setting of the generator
and collected in a set named b-[vars]-[vals]-[tightness].

The n-queens model consists of the standard three types of all different constraints;
one enforcing that queens cannot attack each other on the columns, and two enforcing
that the queens cannot attack each other on diagonals. In CMV-SAT-1 the all different
constraint is decomposed into a clique of not equal constraints. Not equal constraints are
transformed into disjunction of variable assignments. The SAT encoding of all different
constraints provided by Sugar is described in [22].

The graph coloring instances are part of the DIMACS standard [9]. The problems
were changed into decision problems as opposed to optimization problems by setting
the desired number of colors to the best known value. We use the subset of 44 instances
which could be solved in under one hour of CPU time.

For each instance, we report the average statistics (runtime, nodes, failures, etc.). For
all experiments including the ones on different configurations of CMV-SAT-1 we used
ten different seeds per instance and ran on Intel Core 2 Quad Q6600 processors with
3GB of RAM.

5.2 Quantitative Supports

In Table 1 we give the average time per choice point when using and when not using
quantitative supports. We see clearly that quantitative supports speed up the propagation
process considerably and almost independently of the type of problem that is solved.

A Complete Multi-valued SAT Solver 293

Table 1. Time [ms] per choice point when using (+Q) and not using (-Q) quantitative supports

QWH +Q -Q BCSP +Q -Q GraphCol +Q -Q

qwh-25-40 3.91 5.44 b-25-20-.43 0.70 0.90 fpsol2.i.1 1.14 1.74
qwh-25-42 3.04 4.18 b-25-25-.45 0.92 1.29 inithx.i.1 0.87 1.29
qwh-27-40 3.96 5.90 b-25-30-.47 1.15 1.60 inithx.i.2 0.38 0.62
qwh-27-42 3.21 5.06 b-25-40-.5 1.45 1.93 le450 15a 0.54 0.67
qwh-29-40 4.56 6.67 b-30-20-.37 0.75 0.96 le450 15b 0.36 0.49
qwh-29-42 3.55 4.48 b-30-25-.39 0.94 1.25 le450 25a 0.24 0.40
qwh-31-40 4.19 5.69 b-30-30-.33 1.05 1.36 le450 25b 0.24 0.38
qwh-31-42 3.29 5.07 b-30-40-.35 1.66 2.19 le450 5a 0.45 0.72
qwh-33-40 4.31 6.39 b-35-20-.26 0.82 1.02 le450 5c 1.95 2.70
qwh-33-42 3.71 5.32 b-35-25-.28 1.17 1.46 miles1500 2.23 3.52
qwh-35-40 5.33 6.79 b-35-30-.29 1.48 2.00 queen8 8 0.52 0.53
qwh-35-42 4.21 5.44 queen9 9 1.03 1.03

Table 2. Comparison between non-dominated (ND-UIV) and quick UIVs (Q-UIV). Time in [s].

ND-UIV Q-UIV ND-UIV Q-UIV

QWH Paths Time Fails Time Fails GraphCol Paths Time Fails Time Fails
qwh-25-40 2.37 0.61 90.7 0.68 94.4 fpsol2.i.1 1.09 0.38 35.6 0.39 35.6
qwh-25-42 2.34 0.32 33.7 0.43 44.7 inithx.i.1 1.01 0.49 24.4 0.47 24.4
qwh-27-40 2.43 0.72 85.3 1.10 130 inithx.i.2 0 0.20 0 0.20 0
qwh-27-42 2.39 0.58 62 1.02 117 le450 15a 2.16 3.69 2.93K 41.7 23.2K
qwh-29-40 2.44 2.83 331 3.87 442 le450 15b 2.08 1.64 1.27K 5.27 4.2K
qwh-29-42 2.47 3.14 360 3.06 329 le450 25a 0 0.11 0 0.11 0
qwh-31-40 2.43 2.12 210 2.70 228 le450 25b 0 0.10 0 0.11 0
qwh-31-42 2.40 1.14 97.9 1.62 141 le450 5a 2.04 3.06 4.42K 10.4 13.5K
qwh-33-40 2.44 4.39 394 7.23 658 le450 5c 1.90 0.12 51 0.13 65
qwh-33-42 2.41 2.43 200 4.12 351 miles1500 1.04 0.61 73.8 0.64 73.8
qwh-35-40 2.44 19.2 1.51K 33.9 2.14K queen8 8 1.90 18.1 24.1K 19.8 27.7K
qwh-35-42 2.44 6.18 482 17.2 1.19K queen9 9 1.93 108 79.8K 173 96.5K

The reduction in time per choice point is roughly 20%-30% on average. Given that
propagation does not make up for 100% of the work that has to be done per choice point
(there are also impact updates, nogood computations, branching variable selection etc.),
this reduction is substantial.

5.3 Non-dominated UIVs

Next we investigate the impact of computing non-dominated UIVs when learning
nogoods. Table 2 shows the results on quasi-group with holes and graph coloring in-
stances. We did not conduct this experiment on random binary CSPs as our solver de-
tects quickly that most often the branching variable is the only UIV and then switches
the optimization off.

294 S. Jain, E. O’Mahony, and M. Sellmann

Table 3. Comparison between minDomain and impact-based branching. Time in [s].

Imp MinDom Imp MinDom Imp MinDom

QWH Time Nodes Time Nodes BCSP Time Nodes Time Nodes GraphCol Time Nodes Time Nodes
qwh-25-40 0.61 166 0.81 193 b-25-20-.43 2.04 2.91K 2.51 2.90K fpsol2.i.1 0.38 362 0.28 375
qwh-25-42 0.32 107 0.45 132 b-25-25-.45 6.35 7.02K 7.66 6.64K inithx.i.1 0.49 587 0.96 777
qwh-27-40 0.72 187 0.86 229 b-25-30-.47 13.9 12.6K 16.9 11.7K inithx.i.2 0.20 558 0.22 599
qwh-27-42 0.58 179 0.83 227 b-25-40-.5 54.6 40.4K 69.2 35.5K le450 15a 3.69 6.84K 23.2 17.6K
qwh-29-40 2.83 585 4.54 742 b-30-20-.37 18.0 24.7K 19.5 20.6K le450 15b 1.64 3.24K 1.23 4.52K
qwh-29-42 3.14 645 2.02 551 b-30-25-.39 55.4 60.7K 62.5 51.7K le450 25a 0.11 438 0.10 438
qwh-31-40 2.12 497 2.44 576 b-30-30-.33 1.21 1.10K 1.69 1.33K le450 25b 0.10 438 0.09 438
qwh-31-42 1.14 350 1.38 389 b-30-40-.35 2.53 1.46K 4.89 2.09K le450 5a 3.06 5.67K 1.62 7.86K
qwh-33-40 4.39 861 5.22 1.07K b-35-20-.26 1.40 1.55K 1.70 1.63K le450 5c 0.12 73.5 0.10 69.1
qwh-33-42 2.43 641 2.75 769 b-35-25-.28 5.08 4.19K 5.13 3.63K miles1500 0.61 257 0.48 449
qwh-35-40 19.2 2.68K 12.8 2.79K b-35-30-.29 4.85 3.19K 9.91 4.54K queen8 8 18.1 27.8K 24.0 25.5K
qwh-35-42 6.18 1.28K 6.43 1.67K queen9 9 108 92.1K 135 72.5K

In the table we compare two variants of our solver. The first uses the O(mn) ap-
proach presented in Section 3.2 and ensures that non-dominated UIVs are used for
computing the nogood. The second approach works in linear time O(m) and uses the
branching variable as a basis for computing the nogood.

We see clearly that using non-dominated UIVs has a profound impact on the number
of failures which are almost always substantially lower than when potentially dominated
nogoods are used. Interestingly, our data shows that the time per choice point is not
measurably higher when using the advanced nogood learning scheme. In Table 2 we
show the average number of shortest path computations for each failure. As we can see,
it is usually very low, somewhere between two and three shortest paths are sufficient on
average to find a non-dominated UIV.

5.4 MinDomain vs. Impacts

The work in [2] suggested that augmenting a SAT solver with min-domain branching
can lead to substantial performance improvements. Since impacts have since become
a popular alternative to min-domain branching in CP, we investigated which method
performs better for multi-valued SAT. As Table 3 shows, on graph coloring both meth-
ods perform roughly the same, while on random binary CSPs and QWH impacts work
clearly better. We also tested activity-based branching heuristics commonly used in SAT
and min domain over weighted degree [6], but both were not competitive (the latter due
to the large number of constraints). Our solver therefore uses impact-based branching.

5.5 MV-SAT vs. SAT

In our last experiment, we compare our multi-valued solver with the well-known Mini-
SAT solver for boolean SAT. In particular, we use Sugar [23] to pre-compile the SAT
formulas from the XCSP model of each instance. The MV-SAT instances for our solver
are generated as explained before. In our experiment, we compare the pure solution
time of MiniSAT and CMV-SAT-1 on the resulting SAT and MV-SAT instances. Note
that this solution time does not include the time that Sugar needs to compile the SAT
formula, nor the time for reading in the input.

A Complete Multi-valued SAT Solver 295

Table 4. CMV-SAT 1 vs. MiniSAT. For the QWH and BCSPs we aggregate all instances in our
benchmark set that have the same domain size, for Graph Coloring and N-Queens we aggregate
all instances. Time in [s], timeout for the runs is 15 min.

CMV-SAT-1 MiniSAT
Class Time Nodes Time Outs Time Nodes Time Outs

GraphCol 137 138K 0 178 373K 3
N-Queens 168 12.4K 2 235 106K 0

qwh D=25 0.93 273 0 5.35 19.6K 0
qwh D=27 1.30 366 0 13.2 36.7K 0
qwh D=29 6.00 1.23K 0 48.0 94.4K 0
qwh D=31 3.26 847 0 64.0 119K 1
qwh D=33 6.82 1.5K 0 178 218K 14
qwh D=35 25.2 4K 0 338 318K 54
QWH Total 43.5 8.26K 0 647 806K 69

b D=20 21.4 30K 0 13.8 181K 0
b D=25 66.8 72K 0 64.2 524K 1
b D=30 20.0 17K 0 22.1 165K 0
b D=40 61.1 41K 0 103 423K 0
BCSP Total 169.3 160K 0 203.1 1293K 1

Table 4 summarizes our results. We observe that CMV-SAT-1 visits massively fewer
choice points than MiniSAT. Depending on the class of inputs the reduction is typically
between one and two orders of magnitude. We attribute this reduction in part to impact-
based branching, and in part to the use of sophisticated nogoods. Heavier inference,
however, results in an increased time per choice point when compared to MiniSat. This
increase is not so much due to the time needed to compute the advanced nogoods but
due to the time needed to process the implications of the enhanced inference.

Overall, we find that CMV-SAT-1 performs a little better than MiniSAT on graph
coloring and random BCS problems, whereby on both CMV-SAT-1 appears to work
slightly more robustly and thus causes fewer timeouts. On the quasi-groups with holes
problem, CMV-SAT-1 clearly outperforms MiniSAT. For all problems, the reduction in
the number of choice points is very substantial and overall the multi-valued SAT solver
runs up to twenty five times faster than the boolean SAT solver.

6 Conclusion

We have introduced CMV-SAT-1, a new complete multi-valued SAT solver which can
serve as a back-end for CSP solvers that are based on decomposition and reformulation.
We contributed the ideas of quantitative supports to augment the well-known watched
literal scheme, and a new method for learning multi-valued nogoods. Experiments sub-
stantiated the practical benefits of these ideas and showed that multi-valued SAT solving
offers great potential for improving classical boolean SAT technology.

296 S. Jain, E. O’Mahony, and M. Sellmann

References

1. Ansótegui, C.: Complete SAT solvers for Many-Valued CNF Formulas. PhD thesis, Univer-
sitat de Lleida (2004)

2. Ansótegui, C., Larrubia, J., Manyà, F.: Boosting chaff’s performance by incorporating CSP
heuristics. In: Rossi, F. (ed.) CP 2003. LNCS, vol. 2833, pp. 96–107. Springer, Heidelberg
(2003)

3. Ansótegui, C., Manyà, F.: Mapping Problems with Finite-Domain Variables to Problems with
Boolean Variables. In: Hoos, H., Mitchell, D.G. (eds.) SAT 2004. LNCS, vol. 3542, pp. 1–15.
Springer, Heidelberg (2005)

4. Ansótegui, C., Larrubia, J., Liu, C., Manyà, F.: Exploiting multivalued knowledge in variable
selection heuristics for SAT solvers. Ann. Math. Artif. Intell. 49(1-4), 191–205 (2007)

5. Bessiere, C.: http://www.lirmm.fr/˜bessiere/generator.html
6. Boussemart, F., Lecoutre, F., Sais, C.: Boosting systematic search by weighting constraints.

In: ECAI, pp. 146–150 (2004)
7. Eén, N., Sörensson, N.: An Extensible SAT-solver. In: Giunchiglia, E., Tacchella, A. (eds.)

SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)
8. Frisch, A., Peugniez, T.: Solving Non-Boolean Satisfiability Problems with Stochastic Local

Search. In: IJCAI, pp. 282–288 (2001)
9. Graph coloring instances, http://mat.gsia.cmu.edu/COLOR/instances.html

10. Gent, I.: Arc consistency in SAT. In: ECAI, pp. 121–125 (2002)
11. Katsirelos, G.: Nogood Processing in CSPs. PhD Thesis, University of Toronto (2009)
12. Li, C., Anbulagan, A.: Heuristics based on unit propagation for satisfiability problems. In:

IJCAI, pp. 366–371 (1997)
13. Liu, C., Kuehlmann, A., Moskewicz, M.: CAMA: A Multi-Valued Satisfiability Solver. In:

ICCAD, pp. 326–333 (2003)
14. Mitchell, D.: Resolution and Constraint Satisfaction. In: Rossi, F. (ed.) CP 2003. LNCS,

vol. 2833, pp. 554–569. Springer, Heidelberg (2003)
15. Ohrimenko, O., Stuckey, P., Codish, M.: Propagation=Lazy Clause Generation. In: Bessière,

C. (ed.) CP 2007. LNCS, vol. 4741, pp. 544–558. Springer, Heidelberg (2007)
16. Prosser, P.: An empirical study of phase transitions in binary constraint satisfaction problems.

Frontiers in Problem Solving: Phase Transitions and Complexity 81(1-2), 81–109 (1996)
17. Refalo, P.: Impact-Based Search Strategies for Constraint Programming. In: Wallace, M.

(ed.) CP 2004. LNCS, vol. 3258, pp. 557–571. Springer, Heidelberg (2004)
18. Moskewicz, M., Madigan, C., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineering an Efficient

SAT Solver. In: DAC, pp. 530–535 (2001)
19. Schiex, T., Verfaille, G.: Nogood Recording for Static and Dynamic Constraint Satisfaction

Problems. In: JAIT, pp. 48–55 (1994)
20. Selman, B., Kautz, H., Cohen, B.: Local Search Strategies for Satisfiability Testing. In: DI-

MACS, pp. 521–532 (1995)
21. International, C.S.P.: Competition Result Pages,

http://bach.istc.kobe-u.ac.jp/sugar/cpai08.html,
http://bach.istc.kobe-u.ac.jp/sugar/csc09.html

22. Tamura, N., Taga, A., Banbara, M.: System Description of a SAT-based CSP solver Sugar. In:
CPAI (2008), http://bach.istc.kobe-u.ac.jp/sugar/cpai08-sugar.pdf

23. Tamura, N., Taga, A., Kitagawa, S., Banbara, M.: Compiling Finite Linear CSP into SAT.
Constraints 14, 254–272 (2009)

24. Walsh, T.: SAT vs CSP. In: Dechter, R. (ed.) CP 2000. LNCS, vol. 1894, pp. 441–456.
Springer, Heidelberg (2000)

25. Zhang, L., Madigan, C., Moskewicz, M., Malik, S.: Efficient conflict driven learning in a
boolean satisfiability solver. In: ICCAD, pp. 279–285 (2001)

http://www.lirmm.fr/~bessiere/generator.html
http://mat.gsia.cmu.edu/COLOR/instances.html
http://bach.istc.kobe-u.ac.jp/sugar/cpai08.html
http://bach.istc.kobe-u.ac.jp/sugar/csc09.html
http://bach.istc.kobe-u.ac.jp/sugar/cpai08-sugar.pdf

Exact Cover via Satisfiability: An Empirical Study

Tommi Junttila1,� and Petteri Kaski2

1 Aalto University
Department of Information and Computer Science

PO Box 15400, FI-00076 Aalto, Finland
Tommi.Junttila@tkk.fi

2 Helsinki Institute for Information Technology HIIT
Aalto University

Department of Information and Computer Science
PO Box 15400, FI-00076 Aalto, Finland

Petteri.Kaski@tkk.fi

Abstract. Many tasks in combinatorial computation admit a natural formulation
as instances of the exact cover problem. We observe that the exact cover problem
can in turn be compactly translated to the satisfiability (SAT) problem, allowing
the basic Davis-Putnam-Logemann-Loveland procedure with no clause learning
to linearly simulate backtrack search for exact cover. This SAT-based approach is
empirically compared with a widely applied backtrack search algorithm, Knuth’s
“Dancing Links X” algorithm, on a set of benchmark problems arising in com-
binatorial enumeration. The experimental results indicate that the current model-
counting SAT solvers are in general superior in pruning the search space, but still
need to be optimized for running time.

1 Introduction

An exact cover instance is a pair P = 〈V, S〉, where V is a finite set of points and S is
a set of subsets of V . A solution to P is a subset S� of S such that each point v ∈ V
appears in exactly one set in S�. The exact cover problem has three natural variants:
decision, counting, and enumeration. The first variant asks us to determine whether a
solution exists, the second variant asks us to determine the number of solutions, and the
third variant asks us to explicitly construct every solution.

The exact cover problem occupies a notable position in combinatorial mathematics,
in particular in the study of highly regular structures such as designs (see [1]) that arise
in combinatorial analysis and applications in statistics. From a computational perspec-
tive, many of the questions under study in design theory can be formulated as specific
instances of the exact cover problem. For example, a celebrated result of Lam, Thiel,
and Swiercz on the nonexistence of finite projective planes of order 10 [2] reduces to
the observation that a specific instance of the exact cover problem on

(111
2

)
points has

no solution. Besides the decision variant, also the counting and enumeration variants of
the problem are of interest in combinatorics. In particular, one is recurrently interested
in listing (up to isomorphism) all the structures that meet a collection of constraints,

� Financially supported by the Academy of Finland (project 122399).

D. Cohen (Ed.): CP 2010, LNCS 6308, pp. 297–304, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

298 T. Junttila and P. Kaski

where the constraints can be modeled as an instance of exact cover (see [3]). The gist
of the matter is that one wants to push the envelope in terms of practical performance,
even for very specific instances of exact cover.

Given the success of the SAT community in engineering for practical performance, it
is warranted to put forth the question whether SAT-based techniques could be deployed
in the context of exact cover. Our objective in this paper is to explore the issue.

We adopt Donald Knuth’s “Dancing Links X” (DLX) algorithm [4] as our baseline
algorithm for exact cover. Algorithm DLX performs a backtrack search that covers
the points in V one at a time, whereby the next point selected for covering is always
a point that has the least number of choices in S for covering it. The name of the
algorithm stems from the data structure that records the search state, where doubly
linked lists enable fast update- and rewind operations to the state as points are covered
and uncovered.

Our contributions in this paper are as follows. First, we give rather natural encod-
ings for the exact cover problem as propositional satisfiability, pseudo-Boolean satisfi-
ability, and stable models logic programming problems. We then compare the best-case
behavior of Algorithm DLX to that of the basic, non-learning Davis-Putnam-Logemann-
Loveland (DPLL) algorithm for SAT: it turns out that DPLL can simulate DLX linearly
and is thus at least as efficient in theory. As a consequence, modern SAT solvers that
apply also advanced search space pruning techniques such clause learning as well as
restarts have the potential of solving much harder exact cover problems than DLX. To
find out whether this potential realizes in practise, we evaluate the performance of an
implementation of DLX against several state-of-the-art constraint solvers, especially
#SAT algorithms (for a review on techniques for model counting in SAT, see [5]). As
a benchmark set we use a collection of combinatorial design problems expressed as
instances of exact cover. We find that the DPLL-based approaches (with and without
clause learning) can indeed solve the problems by using much smaller search spaces,
as suggested by the analytic comparison. Unfortunately the current implementations do
not perform that well in terms of running time and some implementations run out of
memory quite quickly. Our hope is that the benchmark set we provide will foster fur-
ther development of constraint solvers so that in the future much harder instances of the
exact cover problem could be successfully attacked.

2 SAT and DPLL Search Trees

We assume the basic definitions of Boolean variables, literals, and conjunctive normal
form (CNF) formulas (e.g. [6]). A truth assignment τ for a formula ψ is a set of literals
over the variables occurring in ψ; τ is (i) inconsistent if both x ∈ τ and¬x ∈ τ for some
variable x, (ii) consistent if it is not inconsistent, and (iii) complete if either x ∈ τ or
¬x ∈ τ for each variable x occurring in ψ. A complete and consistent truth assignment
satisfies a formula if it assigns for each clause at least one literal in the clause to true.
Given a formulaψ, up(ψ, τ) denotes the set of literals implied by unit propagation on ψ
under τ ; formally, up(ψ, τ) is the smallest set U of literals satisfying (i) τ ⊆ U , and (ii)
if a clause (l1 ∨ ... ∨ ln) is in ψ and {¬l1, ...,¬li−1,¬li+1, ...,¬ln} ⊆ U , then li ∈ U .
Note that if ψ contains a unit clause (l), then l ∈ up(ψ, τ) for all truth assignments τ .

Exact Cover via Satisfiability: An Empirical Study 299

Given a formula ψ, the DPLL algorithm enumerating all satisfying truth assignments
of ψ can presented as the following pseudo-code, invoked with “DPLL(ψ,∅)”.

DPLL(ψ,τ)
let τ := up(ψ, τ) /* unit propagation */
if τ is inconsistent or ψ contains the empty clause (), then return /* failure */
if τ is complete for ψ, then report the assignment τ and return /* success */
heuristically select a variable x in ψ but not assigned by τ
call DPLL(ψ,τ ∪ {¬x})
call DPLL(ψ,τ ∪ {x})

A DPLL search tree of ψ is simply a call-tree of the procedure when invoked with
DPLL(ψ,∅). Thus each leaf node “DPLL(ψ,τ)” in a search tree is either (i) a solution
node when up(ψ, τ) satisfies ψ, or (ii) a bad node when up(ψ, τ) is inconsistent.

3 SAT Encodings for Exact Cover

Assume an exact cover problem P = 〈V, S〉 and, for each point v ∈ V , denote by
S[v] = {s ∈ S | v ∈ s} the sets in S that include v. The problem P can be formulated
as the CNF formula

cnf(P) :=
∧

v∈V

exactly-one({xs | s ∈ S[v]}).

For each set s ∈ S in the exact cover problem, the formula cnf(P) has the correspond-
ing Boolean variable xs and the “exactly one” constraints exactly-one(...) simply force,
for each point v ∈ V , exactly one set that includes v to be in the solution. Formally,
exactly-one(X) over a set X = {x1, ..., xn} of Boolean variables is a CNF formula
such that any complete truth assignment τ satisfies exactly-one(X) if and only if ex-
actly one variable in X is assigned to true by τ . We consider three encoding schemes
to build “exactly one” constraints (see [7]). For each scheme, exactly-one(∅) := ()
i.e. false, and exactly-one({x1}) := (x1). When n ≥ 2, different schemes define
exactly-one({x1, ..., xn}) as follows.

pairwise encoding is the most obvious scheme, simply excluding each pair in X ex-
plicitly. Thus it is composed of one n-ary clause and (n2 − n)/2 binary clauses:

exactly-one({x1, ..., xn}) := (x1 ∨ ... ∨ xn) ∧
∧

1≤i<j≤n

(¬xi ∨ ¬xj).

bitwise encoding uses k = �log2 n� new auxiliary Boolean variables a1, ..., ak whose
values are forced to be the binary representation of i whenever xi is true. Formally,

exactly-one({x1, ..., xn}) := (x1 ∨ ... ∨ xn) ∧
n∧

i=1

k∧
j=1

(¬xi ∨ li,j)

where li,j is aj if the jth bit in the binary representation of i is 1 and¬aj otherwise.
Thus this scheme requires n�log2 n� binary clauses and one n-ary clause.

300 T. Junttila and P. Kaski

ladder encoding uses n − 1 new auxiliary Boolean variables a2, ..., an in a way that
forces an ai to be true if and only if at least one of x1, ..., xi is true. Letting α ⇔
(β ∨ γ) abbreviate the conjunction (¬α∨β ∨ γ)∧ (α∨¬β)∧ (α∨¬γ), we define

exactly-one({x1, ..., xn}) := (a2 ⇔ (x1 ∨ x2)) ∧
∧

3≤i≤n
(ai ⇔ (ai−1 ∨ xi)) ∧

(¬x1 ∨ ¬x2) ∧
∧

3≤i≤n
(¬ai−1 ∨ ¬xi) ∧ (an).

Thus the encoding produces one unary, 3(n− 1) binary, and n− 1 ternary clauses.

In all three different encoding schemes, given a truth assignment τ , the formula ψ =
exactly-one(X) has the following properties:

1. If xi ∈ τ for an xi ∈ X , then all the other variables in X are forced to false by unit
propagation, i.e., ¬xj ∈ up(ψ, τ) for all xj ∈ X \ {xi}.

2. If all but one variable in X are false, then the remaining one is forced to true by unit
propagation: if xj ∈ X and ¬xi ∈ τ for all xi ∈ X \ {xj}, then xj ∈ up(ψ, τ).

3. If xi ∈ τ for an xi ∈ X , then the auxiliary Boolean variables used (if any) have
unique values determined by unit propagation.

Based on these, it is easy to argue that the solutions of an exact cover problem P =
〈V, S〉 and its CNF encoding cnf(P) have a one-to-one correspondence:

1. If S� ⊆ S is a solution of P , then there exists exactly one satisfying truth assign-
ment τ fulfilling τ ⊇ {xs | s ∈ S�} ∪ {¬xs | s /∈ S�} to the formula cnf(P).

2. If τ is a satisfying truth assignment to the formula cnf(P), then {s | s ∈ S ∧ xs ∈ τ}
is a solution of P .

3.1 Pseudo-Boolean and Logic Programming Encodings

In addition to propositional satisfiability, exact cover can also be encoded, even more
naturally, as a pseudo-Boolean satisfiability problem [8] or as a stable models logic pro-
gram with cardinality constraints [9]. Both of these formalisms natively support cardi-
nality constraints and thus also the exactly-one constraint, making the encodings rather
trivial.

An exact cover problem P = 〈V, S〉 can be formulated as the conjunction of linear
pseudo-Boolean constraints

∧
v∈V

(
∑

s∈S[v]

1 · xs = 1)

where xs is again the Boolean variable corresponding to the set s ∈ S in the exact cover
problem. As a logic program with cardinality constraints, the encoding is similarly just
a list of fact rules so that, for each point v ∈ V with S[v] = {s1, ..., sk}, there is a
cardinality constraint fact rule

1 {xs1 , ..., xsk
} 1.

enforcing that exactly one of the atoms xs1 ,...,xsk
is included in the model.

Exact Cover via Satisfiability: An Empirical Study 301

4 Algorithm DLX and Its Analytic Comparison to DPLL

Assume an exact cover problem instance P = 〈V, S〉. The Algorithm DLX for enumer-
ating all the solutions of P can be described as the following recursive procedure.

DLX(V ,S,S�)
/*V are the uncovered points, S the available sets, S� is a partial solution */
if V = ∅, then report the solution S� and return /* success */
if there is an v ∈ V such that S[v] = ∅, then return /* failure */
heuristically select a point v ∈ V to be covered next
for each s ∈ S[v], call DLX(V \ s, {s′ ∈ S | s′ ∩ s = ∅}, S� ∪ {s})

A DLX search tree for P is the invocation tree of the procedure when initiated with the
invocation DLX(V ,S,∅). In particular, each leaf node in the tree is either (i) a solution
node of form “DLX(∅,∅,S�)” or (ii) a bad node of form “DLX(V ′,S′,S�)” with S′[v] =
∅ for some v ∈ V ′. We observe that the standard heuristic for point selection (i.e. select
a point v ∈ V such that |S[v]| is minimized, breaking ties arbitrarily) in DLX in effect
induces a form of unit propagation: if in a non-leaf node “DLX(V ,S,S�)” there is a
v ∈ V such that |S[v]| = 1, then the heuristic guides us to augment the partial solution
S� with the unique set in S[v].

When comparing DPLL and DLX, we observe that, in theory, already the basic
DPLL without clause learning can linearly simulate Algorithm DLX:

Theorem 1. If an exact cover problem P = 〈V, S〉 has a DLX search tree of size K ,
then the CNF formula cnf(P) with any of the three encoding schemes has, subject to
an idealized variable selection heuristic, a DPLL search tree of size at most 2K .

Proof. Sketch. Starting from the root, we simulate each k-ary branch from a DLX node
“DLX(V ,S,S�)” using at most k−1 binary branches on the corresponding DPLL node
“DPLL(cnf(P),τ)” as follows. Let v be the point selected by DLX for covering. Let
S[v] = {s1, ..., sk}. Let Y = {x′s1

, ...x′sj
} ⊆ {xs | s ∈ S[v]} be the correspond-

ing variables not assigned by the truth assignment τ . Then, DPLL first branches with
x′s1

resulting in children “DPLL(cnf(P),up(cnf(P), τ)∪{x′s1
})” and “DPLL(cnf(P),

up(cnf(P), τ)∪ {¬x′s1
})”, then on the latter child with x′s2

, and so on up to x′sj−1
. ��

Therefore, DPLL is, when viewed as a proof system, at least as strong as DLX in solving
exact cover problems. Here it is important to observe that basic DPLL corresponds to
tree-like resolution, which is a strictly weaker proof system than the proof systems
underlying modern SAT solvers with clause learning and restarts (see e.g. [10,11]).
Thus, in theory, modern SAT solvers should allow us to solve much harder exact cover
instances than DLX.

5 Experimental Results

We now compare the performance of an implementation of Algorithm DLX, namely
libexact [12], to that of several constraint solvers operating on the CNF, pseudo-Boolean,
and logic program encodings.

302 T. Junttila and P. Kaski

As the benchmark set (available at http://www.tcs.hut.fi/˜tjunttil/
experiments/CP2010/), we use the following families of exact cover problems of
combinatorial origin; see [1] for a description of the relevant combinatorial objects.

bell-[n]. Set partitions of an n-element set. The number of solutions is the Bell number
Bn.

doublefact-[2n-1]. Perfect matchings in the complete graph K2n. The number of solu-
tions is the double factorial (2n− 1)!! = (2n)!/(2nn!).

triplesys-[v]-1. Steiner triple systems of order v for small orders.
latin[n]-blk. Latin squares of order n represented as transversal designs TD(3,n). One

block and its neighborhood have been completed to break symmetry.
sts[v]-blk. Steiner triple systems of order v. One block and its neighborhood have been

completed to break symmetry.
kts[v]-ptpt. Kirkman triple systems of order v. Two points have been completed to

break symmetry. We highlight the set kts21-ptpt as a combinatorial challenge (the
benchmark contains the first 100 instances out of a collection of 2977): a complete
classification of the Kirkman triple systems of order 21 is not known, and a fast
enumeration algorithm for the solutions of these 2977 instances would enable such
a classification.

To highlight the role of counting and enumeration variants of the exact cover problem
in connection with instances arising in combinatorics, we first compare libexact to the
following DPLL-based SAT solvers capable of model counting and enumeration: (i)
Cachet [13] version 1.22, (ii) sharpSAT [14] version 1.1b, (iii) Satz [15] version 215.2
modified to find all satisfying models instead of just one, (iv) relsat [16] version 2.02,
and (v) clasp [17] version 1.3.2. The #2clseq [18] and CQuest [19] systems were not
tested as they seem not to be publicly available. Figure 1 shows representative digests
of the results. The search spaces of the DPLL-based approaches are generally smaller
than those of libexact; as the best example, Fig. 1(a) shows that sharpSAT has one order
of magnitude smaller search space than libexact in most cases and seems to scale at least
polynomially better on the doublefact family. It should be noted that the search spaces
of some advanced DPLL-based model counting approaches, e.g. Cachet and sharpSAT,
can be smaller than the number of solutions due to the dynamic problem decomposi-
tion and caching techniques applied. Unfortunately, when we compare running times,
Fig. 1(b) for sharpSAT and Fig. 1(c) for clasp, we see that on nontrivial benchmarks the
DPLL-based approaches are consistently one to two orders of magnitude slower than
libexact (with the exception of sharpSAT on the doublefact family). In addition, Ca-
chet and sharpSAT run out of 4GB of memory on some instances. Of the DPLL-based
approaches tested, clasp has the best run time behavior and is also very insensitive to
the applied “exactly one” encoding scheme. For other solvers, the bitwise and pairs
encoding schemes were slightly better than the ladder scheme but the pairs encoding
sometimes results in prohibitively large CNF formulas.

An approach to #SAT that is not based on DPLL is taken in c2d [20]: the CNF
formula is translated into a deterministic and decomposable normal form from which
it is easy to compute the number of satisfying truth assignments. The run time results
on all families with the ladder encoding are shown in Fig. 1(d). This method scales
better than libexact on the doublefact family having a quite small point set and a very

http://www.tcs.hut.fi/~tjunttil/

Exact Cover via Satisfiability: An Empirical Study 303

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 1 10 100 1000 10000 100000 1e+06 1e+07 1e+08 1e+09

search space size

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0.01 0.1 1 10 100 1000 10000

time

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0.01 0.1 1 10 100 1000 10000

time

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0.01 0.1 1 10 100 1000 10000

time

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0.01 0.1 1 10 100 1000 10000

time

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 1 10 100 1000 10000 100000 1e+06 1e+07 1e+08 1e+09

search space size

Fig. 1. Some summary results comparing libexact to constraint solver approaches

large number of solutions; interestingly, this does only happen with the ladder encoding
involving the largest number of variables of all three CNF encodings presented, on the
other encodings the run times are much worse than those of libexact. On other families,
the method is not competitive.

We also experiment with the publicly available, state-of-the-art pseudo-Boolean solver
SCIP [21] version 1.2.0 (linked with SoPlex version 1.4.2) that is based on combining
constraint and mixed integer programming, and also capable of counting solutions [22].
As in the DPLL-case, the results in Figs. 1(e) and 1(f) show that the search spaces are
generally smaller but the run times much worse than those of libexact.

For the stable models logic program encoding, we again apply the stable models
solver clasp [17]. Even though clasp does not perform CNF translation internally, the
results are essentially the same as obtained when running clasp as a #SAT solver on the
CNF encodings, further highlighting the robustness of clasp on these benchmarks.

Finally, we would like to stress that the kts21-ptpt family presents a real challenge:
none of the approaches solved any of the tested instances. In fact, the state-of-the-art
SAT (decision) solver minisat2 [23] version 070721 was not able to solve the satisfiabil-
ity of any of the 20 instances tested within four hours. On the other benchmark families
minisat2 was able to deduce the satisfiability of each instance in less than one second
(except on the larger bell instances with bitwise and pairs encodings, where the formula
simplifying preprocessor consumes a lot of time if switched on).

In conclusion, we observe that instances of exact cover translated into satisfiabil-
ity present challenging benchmarks for the development of practical #SAT solvers.
Furthermore, we observe that solvers incorporating clause learning with caching and

304 T. Junttila and P. Kaski

dynamic problem decomposition exhibit superior performance in terms of search space
reduction; if it is possible to integrate these techniques with the fast and memory-
conservative algorithms of clasp, Algorithm DLX could perhaps be beaten also in terms
of run time.

References

1. Colbourn, C.J., Dinitz, J.H.: Handbook of Combinatorial Designs, 2nd edn. Chapman &
Hall/CRC (2007)

2. Lam, C.W.H., Thiel, L., Swiercz, S.: The nonexistence of finite projective planes of order 10.
Canadian Journal of Mathematics 41(6), 1117–1123 (1989)

3. Kaski, P., Östergård, P.R.J.: Classification Algorithms for Codes and Designs. Springer, Hei-
delberg (2006)

4. Knuth, D.E.: Dancing links. arXiv:cs/0011047 (November 2000)
5. Gomes, C.P., Sabharwal, A., Selman, B.: Model counting. In: [6], pp. 633–654
6. Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability. IOS Press,

Amsterdam (2009)
7. Prestwich, S.: CNF encodings. In: [6], pp. 75–97
8. Roussel, O., Manquinho, V.M.: Pseudo-boolean and cardinality constraints. In: [6], pp.695–

733
9. Simons, P., Niemelä, I., Soininen, T.: Extending and implementing the stable model seman-

tics. Artificial Intelligence 138(1-2), 181–234 (2002)
10. Beame, P., Kautz, H.A., Sabharwal, A.: Towards understanding and harnessing the potential

of clause learning. Journal of Artificial Intelligence Research 22, 319–351 (2004)
11. Pipatsrisawat, K., Darwiche, A.: On the power of clause-learning SAT solvers with restarts.

In: Gent, I.P. (ed.) CP 2009. LNCS, vol. 5732, pp. 654–668. Springer, Heidelberg (2009)
12. Kaski, P., Pottonen, O.: libexact user’s guide. HIIT Technical Reports 2008-1, Helsinki In-

stitute for Information Technology HIIT (2008)
13. Sang, T., Beame, P., Kautz, H.A.: Heuristics for fast exact model counting. In: Bacchus, F.,

Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp. 226–240. Springer, Heidelberg (2005)
14. Thurley, M.: sharpSAT — counting models with advanced component caching and implicit

BCP. In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 424–429. Springer,
Heidelberg (2006)

15. Li, C.M., Anbulagan: Look-ahead versus look-back for satisfiability problems. In: Smolka,
G. (ed.) CP 1997. LNCS, vol. 1330, pp. 341–355. Springer, Heidelberg (1997)

16. Bayardo Jr., R.J., Pehoushek, J.D.: Counting models using connected components. In: Proc.
AAAI/IAAI 2000, pp. 157–162. AAAI Press/The MIT Press (2000)

17. Gebser, M., Kaufmann, B., Schaub, T.: Solution enumeration for projected boolean search
problems. In: van Hoeve, W.-J., Hooker, J.N. (eds.) CPAIOR 2009. LNCS, vol. 5547, pp.
71–86. Springer, Heidelberg (2009)

18. Davies, J., Bacchus, F.: Using more reasoning to improve #SAT solving. In: Proc. AAAI
2007, pp. 185–190. AAAI Press, Menlo Park (2007)

19. Morgado, A., Marques-Silva, J.: Good learning and implicit model enumeration. In: Proc.
ICTAI 2005, pp. 131–136. IEEE Computer Society, Los Alamitos (2005)

20. Darwiche, A.: New advances in compiling CNF to decomposable negation normal form. In:
Proc. ECAI 2004, pp. 328–332. IOS Press, Amsterdam (2004)

21. Achterberg, T.: Constraint Integer Programming. PhD thesis, Technische Universität Berlin
(2007), http://opus.kobv.de/tuberlin/volltexte/2007/1611/

22. Achterberg, T., Heinz, S., Koch, T.: Counting solutions of integer programs using unrestricted
subtree detection. In: Perron, L., Trick, M.A. (eds.) CPAIOR 2008. LNCS, vol. 5015, pp.
278–282. Springer, Heidelberg (2008)

23. Eén, N., Sörensson, N.: An extensible SAT solver. In: Giunchiglia, E., Tacchella, A. (eds.)
SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)

http://opus.kobv.de/tuberlin/volltexte/2007/1611/

On the Complexity and Completeness of Static
Constraints for Breaking Row and Column Symmetry�

George Katsirelos1, Nina Narodytska2, and Toby Walsh2

1 CRIL-CNRS, Lens, France
gkatsi@gmail.com

2 NICTA and University of NSW, Sydney, Australia
{nina.narodytska,toby.walsh}@nicta.com.au

Abstract. We consider a common type of symmetry where we have a matrix
of decision variables with interchangeable rows and columns. A simple and ef-
ficient method to deal with such row and column symmetry is to post symmetry
breaking constraints like DOUBLELEX and SNAKELEX. We provide a number
of positive and negative results on posting such symmetry breaking constraints.
On the positive side, we prove that we can compute in polynomial time a unique
representative of an equivalence class in a matrix model with row and column
symmetry if the number of rows (or of columns) is bounded and in a number
of other special cases. On the negative side, we show that whilst DOUBLELEX

and SNAKELEX are often effective in practice, they can leave a large number
of symmetric solutions in the worst case. In addition, we prove that propagating
DOUBLELEX completely is NP-hard. Finally we consider how to break row, col-
umn and value symmetry, correcting a result in the literature about the safeness of
combining different symmetry breaking constraints. We end with the first exper-
imental study on how much symmetry is left by DOUBLELEX and SNAKELEX

on some benchmark problems.

1 Introduction

One challenge in constraint programming is to develop effective search methods to deal
with common modelling patterns. One such pattern is row and column symmetry [1]:
many problems can be modelled by a matrix of decision variables [2] where the rows
and columns of the matrix are fully or partially interchangeable. Such symmetry is a
source of combinatorial complexity. It is therefore important to develop techniques to
deal with this type of symmetry. We study here simple constraints that can be posted
to break row and column symmetries, and analyse their effectiveness both theoretically
and experimentally. We prove that we can compute in polynomial time the lexicograph-
ically smallest representative of an equivalence class in a matrix model with row and
column symmetry if the number of rows (or of columns) is bounded and thus remove all
symmetric solutions. We are therefore able for the first time to see how much symmetry
is left by these commonly used symmetry breaking constraints.

� Supported by ANR UNLOC project, ANR 08-BLAN-0289-01 and the Australian Govern-
ment’s Department of Broadband, Communications and the Digital Economy and the ARC.

D. Cohen (Ed.): CP 2010, LNCS 6308, pp. 305–320, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

306 G. Katsirelos, N. Narodytska, and T. Walsh

2 Formal Background

A constraint satisfaction problem (CSP) consists of a set of variables, each with a do-
main of values, and a set of constraints specifying allowed values for subsets of vari-
ables. When solving a CSP, we often use propagation algorithms to prune the search
space by enforcing properties like domain consistency. A constraint is domain con-
sistent (DC) iff when a variable in the scope of a constraint is assigned any value
in its domain, there exist compatible values in the domains of all the other variables
in the scope of the constraint. A CSP is domain consistent iff every constraint is do-
main consistent. An important feature of many CSPs is symmetry. Symmetries can
act on variables or values (or both). A variable symmetry is a bijection σ on the vari-
able indices that preserves solutions. That is, if {Xi = ai | i ∈ [1, n]} is a solution
then {Xσ(i) = ai | i ∈ [1, n]} is also. A value symmetry is a bijection θ on the val-
ues that preserves solutions. That is, if {Xi = ai | i ∈ [1, n]} is a solution then
{Xi = θ(ai) | i ∈ [1, n]} is also. A simple but effective method to deal with sym-
metry is to add symmetry breaking constraints which eliminate symmetric solutions.
For example, Crawford et al. proposed the general lex-leader method that posts lexico-
graphical ordering constraints to eliminate all but the lexicographically least solution in
each symmetry class [3]. Many problems are naturally modelled by a matrix of decision
variables with variable symmetry in which the rows and/or columns are interchangeable
[1]. We say that a CSP containing a matrix of decision variables has row symmetry iff
given a solution, any permutation of the rows is also a solution. Similarly, it has column
symmetry iff given a solution, any permutation of the columns is also a solution.

Running example: The Equidistant Frequency Permutation Array (EFPA) problem is
a challenging problem in coding theory. The goal is to find a set of v code words, each
of length qλ such that each word contains λ copies of the symbols 1 to q, and each pair
of code words is Hamming distance d apart. For example, for v = 4, λ = 2, q = 3,
d = 4, one solution is:

0 2 1 2 0 1
0 2 2 1 1 0
0 1 0 2 1 2
0 0 1 1 2 2

(a)

This problem has applications in communication theory, and is related to other combi-
natorial problems like finding orthogonal Latin squares. Huczynska et al. [4] consider
a model for this problem with a v by qλ array of variables with domains 1 to q. This
model has row and column symmetry since we can permute the rows and columns and
still have a solution.

3 Breaking Row and Column Symmetry

To break all row symmetry we can post lexicographical ordering constraints on the
rows. Similarly, to break all column symmetry we can post lexicographical ordering
constraints on the columns. When we have both row and column symmetry, we can
post a DOUBLELEX constraint that lexicographically orders both the rows and columns

On the Complexity and Completeness of Static Constraints 307

[1]. This does not eliminate all symmetry since it may not break symmetries which
permute both rows and columns. Nevertheless, it is often effective in practice.

Running example: Consider again solution (a). If we order the rows of (a) lexico-
graphically, we get a solution with lexicographically ordered rows and columns:

0 2 1 2 0 1
0 2 2 1 1 0
0 1 0 2 1 2
0 0 1 1 2 2

order
⇒

rows

0 0 1 1 2 2
0 1 0 2 1 2
0 2 1 2 0 1
0 2 2 1 1 0

(b)

Similarly if we order the columns of (a) lexicographically, we get a different solution in
which both rows and columns are again ordered lexicographically:

0 2 1 2 0 1
0 2 2 1 1 0
0 1 0 2 1 2
0 0 1 1 2 2

order
⇒

cols

0 0 1 1 2 2
0 1 0 2 1 2
0 1 2 0 2 1
0 2 2 1 1 0

(c)

All three solutions are thus in the same row and column symmetry class. However,
both (b) and (c) satisfy the DOUBLELEX constraint. Therefore DOUBLELEX can leave
multiple solutions in each symmetry class.

The lex-leader method breaks all symmetry by ensuring that any solution is the lex-
icographically smallest in its symmetry class [3]. This requires linearly ordering the
matrix. Lexicographically ordering the rows and columns is consistent with a lineariza-
tion that takes the matrix in row-wise order (i.e. appending rows in order). We therefore
consider a complete symmetry breaking constraint ROWWISELEXLEADER which en-
sures that the row-wise linearization of the matrix is lexicographically smaller than all
its row or column permutations, or compositions of row and column permutations.

Running example: Consider the symmetric solutions (a) to (c). If we linearize these
solutions row-wise, the first two are lexicographically larger than the third. Hence, the
first two solutions are eliminated by the ROWWISELEXLEADER constraint.

ROWWISELEXLEADER breaks all row and column symmetries. Unfortunately, post-
ing such a constraint is problematic since it is NP-hard to check if a complete assign-
ment satisfies ROWWISELEXLEADER [5,6]. We now give our first major result. We
prove that if we can bound the number of rows (or columns), then there is a polynomial
time method to break all row and column symmetry. For example, in the EFPA problem,
the number of columns might equal the fixed word size of our computer.

Theorem 1. For a n by m matrix, we can check if a complete assignment satisfies a
ROWWISELEXLEADER constraint in O(n!nm log m) time.

Proof: Consider the matrix model Xi,j . We exploit the fact that with no row sym-
metry and just column symmetry, lexicographically ordering the columns gives the lex-
leader assignment. Let Yi,j = Xσ(i),j be a row permutation of Xi,j . To obtain Zi,j , the
smallest column permutation of Yi,j we lexicographically sort the m columns of Yi,j in
O(nm log(m)) time. Finally, we check that [X1,1, . . . , X1,m, . . . , Xn,1, . . . , Xn,m] ≤lex
[Z1,1, . . . , Z1,m, . . . , Zn,1, . . . , Zn,m], where ≤lex is the lexicographic comparison of

308 G. Katsirelos, N. Narodytska, and T. Walsh

two vectors. This ensures that Xi,j is lexicographically smaller than or equal to any col-
umn permutation of this row permutation. If we do this for each of the n!−1 non-identity
row permutations, then Xi,j is lexicographically smaller than or equal to any row per-
mutation. This means that we have the lex-leader assignment. This can be done in time
O(n!nm log m), which for bounded n is polynomial. ��
This result easily generalizes to when rows and columns are partially interchangeable.
In the experimental section, we show that this gives an effective method to break all
row and column symmetry.

4 Double Lex

When the number of both rows and columns is large, breaking all row and column
symmetry is computationally challenging. In this situation, we can post a DOUBLELEX

constraint [1]. However, as we saw in the running example, this may not break all
symmetry. In fact, it can leave n! symmetric solutions in an 2n× 2n matrix model.

Theorem 2. There exists a class of 2n by 2n 0/1 matrix models on which DOUBLELEX

leaves n! symmetric solutions, for all n ≥ 2.

Proof: Consider a 2n by 2n matrix model with the constraints that the matrix contains
3n non-zero entries, and each row and column contains between one and two non-zero
entries. This model has row and column symmetry since row and column permuta-
tions leave the constraints unchanged. There exists a class of symmetric solutions to the
problem that satisfy a DOUBLELEX constraint of the form:

0 IR

IR P

Where 0 is a n by n matrix of zeroes, IR is the reflection of the identity matrix, and P
is any permutation matrix (a matrix with one non-zero entry on each row and column).
For example, as there are exactly two possible permutation matrices of order 2, there
are two symmetric 4 by 4 solutions with lexicographically ordered rows and columns:

0 0 0 1
0 0 1 0
0 1 1 0
1 0 0 1

and

0 0 0 1
0 0 1 0
0 1 0 1
1 0 1 0

In general, there are n! row and column symmetries of P . Hence, DOUBLELEX leaves
n! symmetric solutions. ��
Having decided to break row and column symmetry with DOUBLELEX, how do we
propagate it? One option is to decompose it into two LEXCHAIN constraints, one on
the rows and the other on the columns. A LEXCHAIN constraint ensures that a se-
quence of vectors are lexicographically ordered. Enforcing domain consistency on each

On the Complexity and Completeness of Static Constraints 309

LEXCHAIN constraint takes polynomial time [7]. However, this decomposition hinders
propagation. For example, in the matrix of decision variables with domains:

0/1 0/1 1
0/1 0 1
1 1 1

LEXCHAIN constraints on the rows and columns ensure the second row is lexico-
graphically larger than the first row and lexicographically smaller than the third, and
the second column is lexicographically larger than the first column and lexicographi-
cally smaller than the third. Both such LEXCHAIN constraints are DC. However, the
corresponding DOUBLELEX constraint is not since there is no solution in which the
top left variable is set to 1. We might therefore consider a specialized propagator for
the DOUBLELEX constraint. Unfortunately, whilst checking a DOUBLELEX constraint
takes polynomial time, enforcing DC on this constraint is NP-hard. Thus, even when
posting just DOUBLELEX to break row and column symmetry, there are computational
limits on our ability to prune symmetric branches from the search tree.

Theorem 3. Enforcing DC on the DOUBLELEX constraint is NP-hard.

Proof: (Outline) We reduce an instance of 1-in-3SAT on positive clauses to a partially
instantiated instance of the DOUBLELEX constraint with 0/1 variables. The constructed
DOUBLELEX constraint has a solution iff the 1-in-3 SAT formula is satisfiable. Hence,
it is NP-hard to enforce DC on the DOUBLELEX constraint [5], even with a bounded
number of values. The full proof appears in [8]. ��

5 Special Cases

We consider two special cases where we can check a constraint that breaks all row and
column symmetry in polynomial time. In both cases, we show that we can do even
better than check the constraint in polynomial time. We prove that in these cases we
can enforce DC on a constraint that breaks all row and column symmetry in polynomial
time. This provides a counterpoint to our result that enforcing DC on DOUBLELEX is
NP-hard in general.

5.1 All-Different Matrices

An all-different matrix is a matrix model in which every value is different. It was
shown in [1] that when an all-different matrix has row and column symmetry, then
ROWWISELEXLEADER is equivalent to ensuring that the top left entry is the smallest
value, and the first row and column are ordered. Let ORDER1STROWCOL be such a
symmetry breaking constraint.

Theorem 4. DC can be enforced on ORDER1STROWCOL in polynomial time.

Proof: Consider the n by m matrix model Xi,j . We post O(nm) constraints: X1,1 <
. . . < Xn,1, X1,1 < . . . < X1,m, X1,1 < X1+i,1+j for 1 ≤ i < n and 1 ≤ j < m.

310 G. Katsirelos, N. Narodytska, and T. Walsh

The constraint graph of this decomposition is acyclic. Therefore enforcing DC on the
decomposition achieves DC on ORDER1STROWCOL. Each constraint in the decompo-
sition can be made DC in constant time (assuming we can change bounds in constant
time). Hence, DC can be enforced on ORDER1STROWCOL in O(nm) time. ��
Note that, when applied to an all-different matrix with row and column symmetry, the
general method for breaking symmetry in all-different problems proposed in [9] will
post binary inequalities logically equivalent to ORDER1STROWCOL.

5.2 Matrix Models of Functions

A matrix model of a function is one in which all entries are 0/1 and each row sum is 1. If a
matrix model of a function has row and column symmetry then ROWWISELEXLEADER

ensures the rows and columns are lexicographically ordered, the row sums are 1, and
the sums of the columns are in decreasing order, as was shown in [10,11,1]. We de-
note this symmetry breaking constraint as DOUBLELEXCOLSUM. Enforcing DC on
DOUBLELEXCOLSUM takes polynomial time, in contrast to partial row and column
interchangeability in matrix models of functions, which is NP-hard [12].

Theorem 5. DC can be enforced on DOUBLELEXCOLSUM in polynomial time.

Proof: We will show that DOUBLELEXCOLSUM can be encoded with a set of REGULAR

constraints. Consider the n by m matrix model Xi,j . For each row i we introduce an extra
variable Yi and a REGULAR constraint on [Xi,1, . . . , Xi,m, #, Yi] where # is a delim-
iter between Xi,m and Yi. Each REGULAR constraint ensures that exactly one position in
the ith row is set to 1 and the variable Yi stores this position. The automaton’s states are
represented by the 3-tuple 〈s, d, p〉 where s is the row sum, d is the current position and
p records the position of the 1 on this row. This automaton has 4m states and a constant
number of transitions from each state, so the total number of transitions is O(m). The
complexity of propagating this constraint is O(m2). We also post a REGULAR constraint
over Y1, . . . , Yn to ensure that they form a decreasing sequence of numbers and the num-
ber of occurrences of each value is decreasing. The first condition ensures that rows and
columns are lexicographically ordered and the second condition ensures that the sums
of the columns are decreasing. The states of this automaton are 3-tuples 〈v, s, r〉 where
v is the last value, s is the number of occurrences of this value, and r is the number of
occurrences of the previous value. This automaton has O(n2m) states, while the number
of transition from each state is bounded. Therefore propagating this constraint requires
time O(n3m). This decomposition is logically equivalent to the DOUBLELEXCOLSUM

constraint, therefore it is sound. Completeness follows from the fact that the decompo-
sition has a Berge acyclic constraint graph. Therefore, enforcing DC on each REGULAR

constraint enforces DC on DOUBLELEXCOLSUM in O(m2n + n3m) time. ��

6 Value Symmetry

Problems with row and column symmetry also often contain value symmetries. For
example, the EFPA problem has row, column and value symmetry. We therefore turn to
the problem of breaking row, column and value symmetry.

On the Complexity and Completeness of Static Constraints 311

Running example: Consider again the solution (a). If we interchange the values 1 and
2, we get a symmetric solution:

0 2 1 2 0 1
0 2 2 1 1 0
0 1 0 2 1 2
0 0 1 1 2 2

⇒
(1 2)

0 1 2 1 0 2
0 1 1 2 2 0
0 2 0 1 2 1
0 0 2 2 1 1

(d)

In fact, all values in this CSP are interchangeable.
How do we break value symmetry in addition to breaking row and column symme-

try? For example, Huczynska et al. write about their first model of the EFPA problem:

“To break some of the symmetry, we apply lexicographic ordering (lex-ordering)
constraints to the rows and columns . . . These two constraint sets do not explic-
itly order the symbols. It would be possible to order the symbols by using value
symmetry breaking constraints. However we leave this for future work.” (page
53 of [4])

We turn to this future work of breaking row, column and value symmetry.

6.1 Double Lex

We first note that the interaction of the problem and DOUBLELEX constraints can in
some circumstances break all value symmetry. For instance, in our (and Huczynska
et al.’s) model of the EFPA problem, all value symmetry is already eliminated. This
appears to have been missed by [4].

Running example: Consider any solution of the EFPA problem which satisfies
DOUBLELEX (e.g. (b) or (c)). By ordering columns lexicographically, DOUBLELEX

ensures that the first row is ordered. In addition, the problem constraints ensure λ copies
of the symbols 1 to q to appear in the first row. Hence, the first row is forced to be:

λ︷ ︸︸ ︷
1 . . . 1

λ︷ ︸︸ ︷
2 . . . 2 . . .

λ︷ ︸︸ ︷
q . . . q

All value symmetry is broken as we cannot permute the occurrences of any of the values.

6.2 Puget’s Method

In general, value symmetries may remain after we have broken row and column symme-
try. How can we eliminate these value symmetries? Puget has given a general method
for breaking any number of value symmetries in polynomial time [13]. Given a sur-
jection problem in which all values occur at least once,1 he introduces variables Zj to
represent the index of the first occurrence of each value:

Xi = j ⇒ Zj ≤ i

Zj = i ⇒ Xi = j

1 Any problem can be turned into a surjection problem by the addition of suitable new variables.

312 G. Katsirelos, N. Narodytska, and T. Walsh

Value symmetry on the Xi is transformed into variable symmetry on the Zj . This vari-
able symmetry is especially easy to break as the Zj take all different values. We simply
need to post appropriate ordering constraints on the Zj . Consider, for example, the in-
version symmetry which maps 1 onto m, 2 onto m − 1, etc. Puget’s method breaks
this symmetry with the single ordering constraint: Z1 < Zm. Unfortunately Puget’s
method for breaking value symmetry is not compatible in general with breaking row
and column symmetry using ROWWISELEXLEADER. This corrects Theorem 6 and
Corollary 7 in [13] which claim that, provided we use the same ordering of variables in
each method, it is compatible to post lex-leader constraints to break variable symmetry
and Puget’s constraints to break value symmetry. There is no ordering of variables in
Puget’s method which is compatible with breaking row and column symmetry using the
lex-leader method (or any method like DOUBLELEX based on it).

Theorem 6. There exist problems on which posting ROWWISELEXLEADER and ap-
plying Puget’s method for breaking value symmetry remove all solutions in a symmetry
class irrespective of the ordering on variables used by Puget’s method.

Proof: Consider a 3 by 3 matrix model with constraints that all values between 0 and
8 occur, and that the average of the non-zero values along every row and column are
all different from each other. This problem has row and column symmetry since we
can permute any pair of rows or columns without changing the average of the non-zero
values. In addition, it has a value symmetry that maps i onto 9− i for i > 0. This maps
an average of a onto 9−a. If the averages were all-different before they remain so after.
Consider the following two solutions:

0 2 3
4 8 5
7 6 1

and
0 2 3
4 1 5
7 6 8

Both matrices satisfy ROWWISELEXLEADER as the smallest entry occurs in the top
left corner and both the first row and column are ordered. They are therefore both the
lex leader members of their symmetry class.

Puget’s method for breaking value symmetry will simply ensure that the first oc-
currence of 1 in some ordering of the matrix is before that of 8 in the same ordering.
However, comparing the two solutions, it cannot be the case that the middle square
is both before and after the bottom right square in the given ordering used by Puget’s
method. Hence, whichever ordering of variables is used by Puget’s method, one of these
solutions will be eliminated. All solutions in this symmetry class are thus eliminated. �

We can pinpoint the mistake in Puget’s proof which allows him to conclude incor-
rectly that his method for value symmetry can be safely combined with variable sym-
metry breaking methods like DOUBLELEX. Puget introduces a matrix of 0/1 variables
Yij ⇐⇒ Xi = j and observes that variable symmetries σ on variables Xi corre-
spond to row symmetries on the matrix Yij , while value symmetries θ of the variables
Xi correspond to column symmetries of the matrix. Using the lex-leader method on a
column-wise linearisation of the matrix, he derives the value symmetry breaking con-
straints on the Z variables. Finally, he claims that we can derive the variable symmetry
breaking constraints on the X variables with the same method (equation (13) of [13]).

On the Complexity and Completeness of Static Constraints 313

However, this requires a row-wise linearisation of the matrix. Unfortunately, combining
symmetry breaking constraints based on row and column-wise linearisations can, as in
our example, eliminate all solutions in a symmetry class.

In fact, we can give an even stronger counter-example to Theorem 6 in [13] which
shows that it is incompatible to post together variable and value symmetry breaking
constraints irrespective of the orderings of variables used by both the variable and the
value symmetry breaking method.

Theorem 7. There exist problems on which posting lex-leader constraints to break
variable symmetries and applying Puget’s method to break value symmetries remove
all solutions in a symmetry class irrespective of the orderings on variables used by both
methods.

Proof: Consider variables X1 to X4 taking values 1 to 4, an all-different constraint over
X1 to X4 and a constraint that the neighbouring differences are either all equal or are not
an arithmetic sequence. These constraints permit solutions like X1, . . . , X4 = 1, 2, 3, 4
(neighbouring differences are all equal) and X1, . . . , X4 = 2, 1, 4, 3 (neighbouring dif-
ferences are not an arithmetic sequence). They rule out assignments like X1, . . . , X4 =
3, 2, 4, 1 (neighbouring differences form the arithmetic sequence 1, 2, 3). This problem
has a variable symmetry σ which reflects a solution, swapping X1 with X4, and X2 with
X3, and a value symmetry θ that inverts a solution, swapping 1 with 4, and 2 with 3.
Consider X1, . . . , X4 = 2, 4, 1, 3 and X1, . . . , X4 = 3, 1, 4, 2. These two assignments
form a symmetry class of solutions.

Suppose we break variable symmetry with a lex-leader constraint on X1 to X4. This
will permit the solution X1, . . . , X4 = 2, 4, 1, 3 and eliminate the solution X1, . . . , X4
= 3, 1, 4, 2. Suppose we break the value symmetry using Puget’s method on the same
ordering of variables. This will ensure that 1 first occurs before 4. But this will eliminate
the solution X1, . . . , X4 = 2, 4, 1, 3. Hence, all solutions in this symmetry class are
eliminated. In this case, both variable and value symmetry breaking use the same order
on variables. However, we can show that all solutions in at least one symmetry class are
eliminated whatever the orders used by both the variable and value symmetry breaking.

The proof is by case analysis. In each case, we consider a set of symmetry classes of
solutions, and show that the combination of the lex-leader constraints to break variable
symmetries and Puget’s method to break value symmetries eliminates all solutions from
one symmetry class. In the first case, suppose the variable and value symmetry breaking
constraints eliminate X1, . . . , X4 = 3, 1, 4, 2 and permit X1, . . . , X4 = 2, 4, 1, 3. In the
second case, suppose they eliminate X1, . . . , X4 = 2, 4, 1, 3 and permit X1, . . . , X4 =
3, 1, 4, 2. This case is symmetric to the first except we need to reverse the names of the
variables throughout the proof. We therefore consider just the first case. In this case,
the lex-leader constraint breaks the variable symmetry by putting either X1 first in its
ordering variables or X3 first.

Suppose X1 goes first in the ordering used by the lex-leader constraint. Puget’s
method ensures that the first occurrence of 1 is before that of 4. Puget’s method therefore
uses an ordering on variables which puts X3 before X2. Consider now the symmetry
class of solutions: X1, . . . , X4 = 2, 1, 4, 3 and X1, . . . , X4 = 3, 4, 1, 2. Puget’s method
eliminates the first solution as 4 occurs before 1 in any ordering that put X3 before X2.

314 G. Katsirelos, N. Narodytska, and T. Walsh

And the lex-leader constraint eliminates the second solution as X1 is larger than its
symmetry X4. Therefore all solutions in this symmetry class are eliminated.

Suppose, on the other hand, X3 goes first in the lex-leader constraint. Consider now
the symmetry class of solutions: X1, . . . , X4 = 1, 2, 3, 4 and X1, . . . , X4 = 4, 3, 2, 1.
The lex-leader constraint eliminates the first solution as X3 is greater than its symmetry
X2. Suppose now that the second solution is not eliminated. Puget’s method ensures
the first occurrence of 1 is before that of 4. Puget’s method therefore uses an ordering
on variables which puts X4 before X1. Consider now the symmetry class of solutions:
X1, . . . , X4 = 1, 3, 2, 4 and X1, . . . , X4 = 4, 2, 3, 1. Puget’s method eliminates the
first solution as 4 occurs before 1 in any ordering that put X4 before X1. And the lex-
leader constraint eliminates the second solution as X3 is larger than its symmetry X2.
Therefore all solutions in this symmetry class are eliminated. ��

6.3 Value Precedence

We end with a special but common case where variable and value symmetry break-
ing do not conflict. When values partition into interchangeable sets, Puget’s method is
equivalent to breaking symmetry by enforcing value precedence [14,15]. Given any two
interchangeable values i and j with i < j, a value PRECEDENCE constraint ensures that
if i occurs then the first occurrence of i is before that of j. It is safe to break row and col-
umn symmetry with ROWWISELEXLEADER and value symmetry with PRECEDENCE

when value precedence considers variables either in a row-wise or in a column-wise or-
der. This is a simple consequence of Theorem 1 in [14]. It follows that it is also safe to
use PRECEDENCE to break value symmetry when using constraints like DOUBLELEX

derivable from the lex-leader method.

7 Snake Lex

A promising alternative to DOUBLELEX for breaking row and column symmetries is
SNAKELEX [16]. This is also derived from the lex leader method, but now applied to
a snake-wise unfolding of the matrix. To break column symmetry, SNAKELEX ensures
that the first column is lexicographically smaller than or equal to both the second and
third columns, the reverse of the second column is lexicographically smaller than or
equal to the reverse of both the third and fourth columns, and so on up till the penul-
timate column is compared to the final column. To break row symmetry, SNAKELEX

ensures that each neighbouring pair of rows, X1,i, . . . , Xn,i and X1,i+1, . . . , Xn,i+1
satisfy the entwined lexicographical ordering:

〈X1,i, X2,i+1, X3,i, X4,i+1, . . .〉 ≤lex 〈X1,i+1, X2,i, X3,i+1, X4,i, . . .〉

Like DOUBLELEX, SNAKELEX is an incomplete symmetry breaking method. In
fact, like DOUBLELEX, it may leave a large number of symmetric solutions.

Theorem 8. There exists a class of 2n by 2n+1 0/1 matrix models on which SNAKELEX

leaves O(4n/
√

n) symmetric solutions, for all n ≥ 2.

On the Complexity and Completeness of Static Constraints 315

Proof: Consider the following 4 by 4 matrix:

0 1 0 0
0 0 0 1
0 0 1 0
1 0 0 0

This is a permutation matrix as there is a single 1 on each row and column. It satisfies
the SNAKELEX constraints. In fact, we can add any 5th column which reading top to
bottom is lexicographically larger than or equal to 0010 and reading bottom to top is
lexicographically larger than or equal to 0010. We shall add a 4 bit column with 2 bits
set. That is, reading top to bottom: 1100, 1010, 0110 or 0011. Note that all 4 of these 4
by 5 matrices are row and column symmetries of each other. For instance, consider the
row and column symmetry σ that reflects the matrix in the horizontal axis, and swaps
the 1st column with the 2nd, and the 3rd with the 4th:

0 1 0 0 1
0 0 0 1 1
0 0 1 0 0
1 0 0 0 0

⇔
σ

0 1 0 0 0
0 0 0 1 0
0 0 1 0 1
1 0 0 0 1

In general, we consider the 2n by 2n permutation matrix:

0 1 0 0 0 0 . . . 0 0 0

0 0 0 1 0 0 . . . 0 0 0

0 0 0 0 0 0 . . . 0 0 0

0 0 0 0 0 1 . . . 0 0 0

...
...

...
...

...
...

...
...

...
0 0 0 0 0 0 . . . 1 0 0

0 0 0 0 0 0 . . . 0 0 1

0 0 0 0 0 0 . . . 0 1 0

...
...

...
...

...
...

...
...

...
0 0 0 0 1 0 . . . 0 0 0

0 0 1 0 0 0 . . . 0 0 0

1 0 0 0 0 0 . . . 0 0 0

This satisfies the SNAKELEX constraints. We can add any 2n + 1th column which
reading top to bottom is lexicographically larger than or equal to the 2n− 1th column
and reading bottom to top is lexicographically larger than or equal to the 2nth column.
In fact, we can add any column with eactly n of the 2n bits set. This gives us a set
of 2n by 2n + 1 matrices that are row and column symmetries of each other. There
are (2n)!/(n!)2 bit vectors with exactly n of 2n bits set. Hence, we have (2n)!/(n!)2

matrices which satisfy SNAKELEX that are in the same row and column symmetry
class. Using Stirling’s formula, this grows as O(4n/

√
n). ��

8 Experimental Results

The proof of Theorem 1 gives a polynomial method to break all row and column sym-
metry. This allows us to compare symmetry breaking methods for matrix models like

316 G. Katsirelos, N. Narodytska, and T. Walsh

DOUBLELEX and SNAKELEX, not only with respect to each other but for the first time
in absolute terms. Our aim is to evaluate: first, whether the worst-case scenarios identi-
fied in theorems 2 and 8 are indicative of what can be expected in practice; second, how
effective these methods are with respect to each other; third, in cases where they differ
significantly, how much closer the best of them is to the optimal.

To answer these questions, we experimented with different symmetry breaking con-
straints: DOUBLELEX, the column-wise SNAKELEX (SNAKELEXC) or the row-wise
SNAKELEX (SNAKELEXR) [16]. We use NOSB to denote no symmetry breaking con-
straints. For each problem instance we found the total number of solutions left by sym-
metry breaking constraints (#s) and computed how many of them were symmetric
based on the method outlined in the proof of Theorem 1. The number of non symmetric
solutions is equal to the number of symmetry classes (#ns) if the search space is ex-
hausted. In all instances at least one model exhausted the search space to compute the of
symmetry classes, shown in the column ROWWISELEX. We use ‘−’ to indicate that the
search is not completed within the time limit. As the NOSB model typically could not
exhaust the search space within the time limit, we use ‘>’ to indicate a lower bound on
the number of solutions. Finally, we used a variable ordering heuristic that follows the
corresponding lex-leader variable ordering in each set of symmetry breaking constraints
(i.e. row-wise snake ordering with SNAKELEXR). We ran experiments in Gecode 3.3.0
on an Intel XEON X5550, 2.66 GHz, 32 GB RAM with 18000 sec timeout.

Unconstrained problems. We first evaluated the effectiveness of symmetry breaking
constraints in the absence of problem constraints. This gives the “pure” effect of these
constraints at eliminating row and column symmetry. We considered a problem with a
matrix mr×c, r ≤ c = [2, 6], D(mr,c) = [0, d − 1], d = [2, . . . , 5] whose rows and
columns are interchangeable. Table 1 summarizes the results. The first part presents
typical results for 0/1 matrices whilst the second part presents results for larger do-
mains. The results support the exponential worst case in Theorems 2 and 8, as the ratio
of solutions found to symmetry classes increases from 1.25 (3,3,2) to over 6 (6,6,2),
approximately doubling with each increase of the matrix size. As we increase the prob-
lem size, the number of symmetric solutions left by DOUBLELEX and SNAKELEX

grows rapidly. Interestingly, SNAKELEXC achieves better pruning on 0/1 matrices,
while DOUBLELEX performs better with larger domains.

Constrained problems. Our second set of experiments was on three benchmark do-
mains: Equidistant Frequency Permutation Array (EFPA), Balanced Incomplete Block
Designs and Covering Array (CA) problems. We used the non-Boolean model of EFPA
[4] (Table 2), the Boolean matrix model of BIBD [1] (Table 3) and a simple model
of CA [17] (Table 4). We consider the satisfaction version of the CA problem with a
given number of vectors b. In all problems instances the DOUBLELEX, SNAKELEXR

and SNAKELEXC constraints show their effectiveness, leaving only a small fraction of
symmetric solutions. Note that SNAKELEXC often leaves fewer symmetric solutions.
However, it is significantly slower compared to DOUBLELEX and SNAKELEXR be-
cause it tends to prune later (thereby exploring larger search trees). For example, the
number of failures for the (5, 3, 3, 4) EFPA problem is 21766, 14072 and 1129085
for DOUBLELEX, SNAKELEXR and SNAKELEXC respectively. On EFPA problems,
SNAKELEXR is about twice as fast as DOUBLELEX and leaves less solutions. On the

On the Complexity and Completeness of Static Constraints 317

Table 1. Unconstrained problems. Number of solutions found by posting different sets of sym-
metry breaking constraints. r is the number of rows, c is the number of columns, d is the size of
the domains.

(r, c, d) ROWWISELEX NOSB DOUBLELEX SNAKELEX R SNAKELEX C

#ns #s #s / time #s / time #s / time
(3, 3, 2) 36 512 45 / 0.00 44 / 0.00 44 / 0.00
(4, 4, 2) 317 65536 650 / 0.00 577 / 0.00 577 / 0.00
(5, 5, 2) 5624 3.36·107 24520 / 0.05 18783 / 0.06 18783 / 0.06
(6, 6, 2) 251610 > 9.4·109 2.62 · 106 / 22.2 1.71 · 106 / 22.2 1.71 · 106 / 18.1

(3, 3, 3) 738 19683 1169 / 0.00 1232 / 0.00 1232 / 0.00
(3, 3, 4) 8240 2.62·105 14178 / 0.03 15172 / 0.02 15172 / 0.05
(3, 3, 5) 57675 1.95·106 1.02·105 / 0.19 1.09·105 / 0.15 1.09·105 / 0.21
(3, 3, 6) 289716 1.01·107 5.20·105 / 2.32 5.54·105 / 3.29 5.54·105 / 2.83

Table 2. Equidistant Frequency Permutation Array problems. Number of solutions found by post-
ing different sets of symmetry breaking constraints. v is the number code words, q is the number
of different symbols, λ is the size of the domains.

(q, λ, d, v) ROWWISELEX NOSB DOUBLELEX SNAKELEX R SNAKELEX C

#ns #s #s / time #s / time #s / time
(3, 3, 2, 3) 6 1.81·105 6 / 0.00 6 / 0.00 6 / 0.00
(4, 3, 3, 3) 8 > 3.88·107 16 / 0.01 16 / 0.01 16 / 0.16
(4, 4, 2, 3) 12 > 5.87·107 12 / 0.00 12 / 0.00 12 / 0.04
(3, 4, 6, 4) 1427 > 5.57·107 11215 / 5.88 10760 / 5.36 8997 / 493.87
(4, 3, 5, 4) 8600 > 2.03·107 61258 / 69.90 58575 / 51.62 54920 / 3474.09
(4, 4, 5, 4) 9696 > 5.45·106 72251 / 173.72 66952 / 132.46 66168 / 14374.82
(5, 3, 3, 4) 5 > 4.72·106 20 / 0.36 20 / 0.25 20 / 31.61
(3, 3, 4, 5) 18 > 2.47·107 71 / 0.17 71 / 0.13 63 / 30.08
(3, 4, 6, 5) 4978 > 2.08·107 77535 / 167.50 71186 / 137.88 −
(4, 3, 4, 5) 441 > 6.55·106 2694 / 19.37 2688 / 12.80 2302 / 5960.43
(4, 4, 2, 5) 12 > 6.94·106 12 / 0.02 12 / 0.01 12 / 1.60
(4, 4, 4, 5) 717 > 6.27·106 4604 / 38.15 4397 / 24.58 −
(4, 6, 4, 5) 819 > 4.08·106 5048 / 69.83 4736 / 44.83 −
(5, 3, 4, 5) 3067 > 2.39·106 20831 / 403.97 20322 / 216.93 −
(6, 3, 4, 5) 15192 > 2.16·106 1.11·105 / 4924.41 1.06·105 / 2006.19 −

Table 3. Balanced Incomplete Block Designs. Number of solutions found by posting different
sets of symmetry breaking constraints. v is the number of objects, k is the objects in each block,
every two distinct objects occur together in exactly λ blocks.

(v, k, λ) ROWWISELEX NOSB DOUBLELEX SNAKELEX R SNAKELEX C

#ns #s #s / time #s / time #s / time
(5, 2, 7) 1 > 0 1 / 0.01 1 / 0.02 1 / 73.26
(5, 3, 6) 1 > 1.51·109 1 / 0.00 1 / 0.00 1 / 0.82
(6, 3, 4) 4 > 1.29·109 21 / 0.01 25 / 0.00 21 / 12.62
(6, 3, 6) 6 > 1.21·109 134 / 0.04 146 / 0.07 134 / 1685.58
(7, 3, 4) 35 > 1.18·109 3209 / 0.33 9191 / 1.07 5270 / 7241.92
(7, 3, 5) 109 > 1.09·109 33304 / 4.15 85242 / 11.90 −

318 G. Katsirelos, N. Narodytska, and T. Walsh

Table 4. Covering Arrays. Number of solutions found by posting different sets of symmetry
breaking constraints. b is the number of vectors, k is the length of a vector, g is the size of the
domains, t is the covering strength.

(t, k, g, b) ROWWISELEX NOSB DOUBLELEX SNAKELEX R SNAKELEX C

#ns #s #s / time #s / time #s / time
(2, 3, 2, 4) 2 48 2 / 0.00 2 / 0.00 2 / 0.00
(2, 3, 2, 5) 8 1440 15 / 0.00 15 / 0.00 15 / 0.00
(2, 3, 3, 9) 6 4.35·106 12 / 0.00 12 / 0.00 12 / 1.95

(2, 3, 3, 10) 104 > 5.08·108 368 / 0.00 370 / 0.03 372 / 7.06
(2, 3, 3, 11) 1499 > 5.56·108 6824 / 0.23 6905 / 0.24 6892 / 26.29
(2, 3, 4, 16) 150 > 0 576 / 0.72 576 / 0.70 −
(2, 3, 4, 17) 8236 > 0 43368 / 12.43 43512 / 12.82 −
(2, 3, 5, 25) 27280 > 0 1.61·105 / 1166.94 1.61·105 / 1178.14 −
(2, 4, 2, 5) 5 1920 10 / 0.00 10 / 0.00 10 / 0.00
(2, 4, 2, 7) 333 1.60·107 2285 / 0.04 2224 / 0.07 1850 / 0.04
(2, 4, 3, 9) 5 2.61·107 36 / 0.02 36 / 0.01 26 / 1102.30

CA problems DOUBLELEX and SNAKELEXR show similar results, while DOUBLELEX

performs better on BIBD problems in terms of the number of solution left.
Overall, our results show that DOUBLELEX and SNAKELEX prune most of the sym-

metric solutions. SNAKELEXC slightly outperforms DOUBLELEX and SNAKELEXR in
terms of the number of solutions left, but it explores larger search trees and is about two
orders of magnitude slower. However, there is little difference overall in the amount of
symmetry eliminated by the three methods.

9 Other Related Work

Lubiw proved that any matrix has a row and column permutation in which rows and
columns are lexicographically ordered and gave a nearly linear time algorithm to com-
pute such a matrix [18]. Shlyakhter and Flener et al. independently proposed elimi-
nating row and column symmetry using DOUBLELEX [10,11,1]. To break some of the
remaining symmetry, Frisch, Jefferson and Miguel suggested ensuring that the first row
is less than or equal to all permutations of all other rows [19]. As an alternative to or-
dering both rows and columns lexicographically, Frisch et al. proposed ordering the
rows lexicographically but the columns with a multiset ordering [20]. More recently,
Grayland et al. have proposed SNAKELEX, an alternative to DOUBLELEX based on
linearizing the matrix in a snake-like way [16]. An alternative way to break the symme-
try of interchangeable values is to convert it into a variable symmetry by channelling
into a dual 0/1 viewpoint in which Yij = 1 iff Xi = j, and using lexicographical order-
ing constraints on the columns of the 0/1 matrix [1]. However, this hinders propagation
[15]. Finally, dynamic methods like SBDS have been proposed to remove symmetry
from the search tree [21]. Unfortunately, dynamic techniques tend not to work well
with row and columns symmetries as the number of symmetries is usually too large.

10 Conclusions

We have provided a number of positive and negative results on dealing with row and
column symmetry. To eliminate some (but not all) symmetry we can post static

On the Complexity and Completeness of Static Constraints 319

constraints like DOUBLELEX and SNAKELEX. On the positive side, we proposed the
first polynomial time method to eliminate all row and column symmetry when the num-
ber of rows (or columns) is bounded. On the negative side, we argued that DOUBLELEX

and SNAKELEX can leave a large number of symmetric solutions. In addition, we proved
that propagating DOUBLELEX completely is NP-hard. Finally, we showed that it is not
always safe to combine Puget’s value symmetry breaking constraints with row and col-
umn symmetry breaking constraints, correcting a claim made in the literature.

References

1. Flener, P., Frisch, A., Hnich, B., Kiziltan, Z., Miguel, I., Pearson, J., Walsh, T.: Breaking
row and column symmetry in matrix models. In: Van Hentenryck, P. (ed.) CP 2002. LNCS,
vol. 2470, p. 462. Springer, Heidelberg (2002)

2. Flener, P., Frisch, A., Hnich, B., Kiziltan, Z., Miguel, I., Walsh, T.: Matrix Modelling. Techni-
cal Report APES-36-2001, APES group, Presented at Formul 2001 (Workshop on Modelling
and Problem Formulation), CP 2001 post-conference workshop (2001)

3. Crawford, J., Ginsberg, M., Luks, G., Roy, A.: Symmetry breaking predicates for search
problems. In: Proceedings of 5th International Conference on Knowledge Representation
and Reasoning (KR 1996), pp. 148–159 (1996)

4. Huczynska, S., McKay, P., Miguel, I., Nightingale, P.: Modelling equidistant frequency per-
mutation arrays: An application of constraints to mathematics. In: Gent, I.P. (ed.) CP 2009.
LNCS, vol. 5732, pp. 50–64. Springer, Heidelberg (2009)

5. Bessiere, C., Hebrard, E., Hnich, B., Walsh, T.: The complexity of global constraints.
In: Proceedings of the 19th National Conference on AI. AAAI, Menlo Park (2004)

6. Bessiere, C., Hebrard, E., Hnich, B., Walsh, T.: The complexity of global constraints. Con-
straints 12(2), 239–259 (2007)

7. Carlsson, M., Beldiceanu, N.: Arc-consistency for a chain of lexicographic ordering con-
straints. Technical report T2002-18, Swedish Institute of Computer Science (2002)

8. Katsirelos, G., Narodytska, N., Walsh, T.: Breaking Generator Symmetry. In: Proceedings
of SymCon 2009 - 9th International Workshop on Symmetry and Constraint Satisfaction
Problems, Colocated with CP 2009 (2009)

9. Puget, J.F.: Breaking symmetries in all different problems. In: Proceedings of 19th IJCAI,
International Joint Conference on Artificial Intelligence, pp. 272–277 (2005)

10. Shlyakhter, I.: Generating effective symmetry-breaking predicates for search problems. Elec-
tronic Notes in Discrete Mathematics 9, 19–35 (2001)

11. Flener, P., Frisch, A., Hnich, B., Kiziltan, Z., Miguel, I., Pearson, J., Walsh, T.: Symmetry in
matrix models. Technical Report APES-30-2001, APES group. Presented at SymCon 2001
(Symmetry in Constraints), CP, post-conference workshop (2001)

12. Walsh, T.: Breaking Value Symmetry. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741,
pp. 880–887. Springer, Heidelberg (2007)

13. Puget, J.F.: Breaking all value symmetries in surjection problems. In: van Beek, P. (ed.) CP
2005. LNCS, vol. 3709, pp. 490–504. Springer, Heidelberg (2005)

14. Law, Y., Lee, J.: Global constraints for integer and set value precedence. In: Wallace, M. (ed.)
CP 2004. LNCS, vol. 3258, pp. 362–376. Springer, Heidelberg (2004)

15. Walsh, T.: Symmetry breaking using value precedence. In: Brewka, G., Coradeschi, S.,
Perini, A., Traverso, P. (eds.) ECAI 2006, pp. 168–172. IOS Press, Amsterdam (2006)

320 G. Katsirelos, N. Narodytska, and T. Walsh

16. Grayland, A., Miguel, I., Roney-Dougal, C.: Snake lex: An alternative to double lex.
In: Gent, I.P. (ed.) CP 2009. LNCS, vol. 5732, pp. 391–399. Springer, Heidelberg (2009)

17. Hnich, B., Prestwich, S., Selensky, E., Smith, B.: Constraint models for the covering test
problem. Constraints 11, 199–219 (2006)

18. Lubiw, A.: Doubly lexical orderings of matrices. SIAM J. on Computing 16, 854–879 (1987)
19. Frisch, A., Jefferson, C., Miguel, I.: Constraints for breaking more row and column sym-

metries. In: Rossi, F. (ed.) CP 2003. LNCS, vol. 2833, pp. 318–332. Springer, Heidelberg
(2003)

20. Frisch, A., Hnich, B., Kiziltan, Z., Miguel, I., Walsh, T.: Multiset ordering constraints.
In: Proceedings of 18th IJCAI, International Joint Conference on Artificial Intelligence
(2003)

21. Gent, I., Smith, B.: Symmetry breaking in constraint programming. In: Horn, W. (ed.) Pro-
ceedings of ECAI-2000, pp. 599–603. IOS Press, Amsterdam (2000)

Ensemble Classification for Constraint Solver
Configuration

Lars Kotthoff, Ian Miguel, and Peter Nightingale

University of St Andrews

{larsko,ianm,pn}@cs.st-andrews.ac.uk

Abstract. The automatic tuning of the parameters of algorithms and

automatic selection of algorithms has received a lot of attention recently.

One possible approach is the use of machine learning techniques to learn

classifiers which, given the characteristics of a particular problem, make

a decision as to which algorithm or what parameters to use. Little re-

search has been done into which machine learning algorithms are suitable

and the impact of picking the “right” over the “wrong” technique. This

paper investigates the differences in performance of several techniques

on different data sets. It furthermore provides evidence that by using a

meta-technique which combines several machine learning algorithms, we

can avoid the problem of having to pick the “best” one and still achieve

good performance.

1 Introduction

The automatic selection of algorithms or parameters of algorithms is a prob-
lem that has been recognised for decades [19], but systematic investigation has
only started relatively recently. Nowadays, systems that incorporate automatic
selection of algorithms provide major performance improvements [17,22,12].

Most of these approaches use machine learning to uncover how the attributes
of a particular problem affect the performance of a set of algorithms or a set of
parameters for one algorithm. The designers of such systems face several difficult
challenges. Which attributes are needed to capture the important effects on
performance? Is the set of training instances representative and are the results
likely to be applicable in general? Is the learned classifier overfitted?

The success or failure of such systems does not only depend on these factors,
but also on the selection of an appropriate machine learning algorithm. This
problem has received little attention so far – the choice is usually justified by
the success of the system. But has the most appropriate technique been chosen
and how likely is it that the chosen technique is also the best one in general?

We investigate this very question by applying many different machine learn-
ing techniques to two different algorithm selection problems. We propose an
ensemble classification approach, which uses many different machine learning
algorithms. We show that its performance is as good as and sometimes better
than the performance of the best individual technique and at the same time
more predictable and stable.

D. Cohen (Ed.): CP 2010, LNCS 6308, pp. 321–329, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

322 L. Kotthoff, I. Miguel, and P. Nightingale

2 Background

The underlying problem is the algorithm selection problem, which was first de-
scribed in [19]. Given a choice of algorithms and parameter settings, we want to
choose the algorithm-parameter combination that delivers the best performance
for a specific problem. Machine learning is an established approach for solving
this problem, used for example in the Pythia [20] and Multi-Tac [16] systems.

Two successful approaches in SAT are SATzilla [22] and SATenstein [12]. In
CP, CP-Hydra uses a similar approach [17]. Multi-Tac configured aspects of
a solver based on instances. ACE [7] and Bain et al [2] learn search heuristics
from instances. Genetic algorithms have been shown to be effective as well [1].

In machine learning, the combination of several classifiers is a well-established
technique. In so-called ensemble learning [6], there are many different methods
for creating different classifiers and combining their predictions, such as boot-
strap aggregating, boosting and stacking [21].

The difference between different parameter settings for the same algorithms
can have a more profound effect than choosing a different algorithm [14]. Select-
ing the most suitable machine learning algorithm and parameters for a set of
instances is an area of active research in machine learning itself [4].

3 Algorithm Selection Data Sets

We investigate the performance of different machine learning algorithms on two
algorithm selection problems. First, we decide whether to use g-nogood learn-
ing with lazy explanations [9] or not. Second, we consider the nine different
versions of the alldifferent constraint detailed in [10]. These problems represent
different important areas in constraint solver design. Lazy learning affects the
search procedure, while the alldifferent constraint affects strength and efficiency
of propagation. For lazy learning in particular, selecting different implementa-
tions instead of using a default one can provide a speedup of orders of magnitude.

We selected benchmark instances from Lecoutre’s XCSP repository1 and from
our own stock of problems, which includes many instances from previous CSP
solver competitions. For lazy learning, we used 2028 problem instances from 46
different problem classes. Within a time limit of 5000 seconds, both the standard
and the learning solvers were able to solve 1773 instances. For the alldifferent
constraint, we used 1313 different instances from 16 different problem classes.
We imposed a time limit of 3600 seconds; 1221 instances were solved by at least
one of the candidate solvers within this limit. We took the median of three runs
as the run time.

All experiments were run with binaries compiled with g++ version 4.4.3 and
Boost version 1.40.0 on machines with 8 core Intel E5430 2.66GHz, 8GB RAM
running CentOS with Linux kernel 2.6.18-164.6.1.el5 64Bit. Our reference solver
is Minion [8] version 0.9. The binaries and instances required to reproduce the
results are available from the authors on request.
1 http://tinyurl.com/y6hpphs

http://tinyurl.com/y6hpphs

Ensemble Classification for Constraint Solver Configuration 323

4 Instance Attributes and Their Measurement

We measured 38 attributes of the problem instances. They describe a wide range
of features such as constraint and variable statistics and a number of attributes
based on the primal graph. The primal graph g = 〈V, E〉 has a vertex for every
CSP variable, and two vertices are connected by an edge iff the two variables
are in the scope of a constraint together.

Edge density. The number of edges in g divided by the number of pairs of
distinct vertices.

Clustering coefficient. For a vertex v, the set of neighbours of v is n(v). The
edge density among the vertices n(v) is calculated. The clustering coefficient is
the mean average of this local edge density for all v.

Normalised degree. The normalised degree of a vertex is its degree divided by
|V |. The minimum, maximum, mean and median normalised degree are used.

Normalised standard deviation of degree. The standard deviation of ver-
tex degree is normalised by dividing by |V |.

Width of ordering. The width of a vertex v in an ordered graph, given by the
variable ordering, is its number of parents (i.e. neighbours that precede v in the
ordering). The width of the ordering is the maximum width over all vertices [5]
and normalised by the number of vertices.

Width of graph. The width of a graph is the minimum width over all possible
orderings, normalised by the number of vertices.

Variable domains. The quartiles and mean over the domains of all variables.
Constraint arity. The quartiles and the mean of the arity of all constraints
(the number of variables constrained by it), normalised by the number of
constraints.

Multiple shared variables. The proportion of pairs of constraints that share
more than one variable.

Normalised mean constraints per variable. For each variable, we count the
number of constraints on the variable. The mean average is taken, and this is
normalised by dividing by the number of constraints.

Normalised SAC literals. The number of literals pruned by singleton consis-
tency preprocessing, as a proportion of all literals.

Ratio of auxiliary variables to other variables. The ratio of auxiliary
variables to other variables.

Tightness. The tightness of a constraint is the proportion of disallowed tuples.
The tightness is estimated by sampling 1000 random tuples from the variable
domains and testing if the tuple satisfies the constraint. The tightness quartiles
and the mean over all constraints are used.

Proportion of symmetric variables. In many CSPs, the variables form
equivalence classes where the number and type of constraints a variable is
in are the same. The first stage of the algorithm used by Nauty [15] detects
this property. Given a partition of n variables generated by this algorithm, we
transform this into a number between 0 and 1 by taking the proportion of all
pairs of variables which are in the same part of the partition.

324 L. Kotthoff, I. Miguel, and P. Nightingale

Alldifferent statistics. The size of the union of all variables in an alldifferent
constraint divided by the number of variables |V |. We used the quartiles and
the mean over all alldifferent constraints.

We intended to cover a wide range of possible factors that affect the performance
of the different algorithms with these attributes. We normalised attributes that
would be specific to problem instances of a particular size. This is based on the
intuition that similar instances of different sizes are likely to behave similarly
with respect to the investigated algorithms. Computing the attributes took about
15 seconds per instance on average.

Not all attributes were applicable for both of the algorithm selection problems.
For lazy learning, the alldifferent statistics did not apply. For alldifferent, we
did not use the number of literals that SAC removes because it is different for
different versions of the constraint.

5 Learning Classifiers

We annotated each benchmark instance with the algorithmvariant that performed
best on it based on the run times of the candidate algorithms for the specific algo-
rithm selection problem. For the decision between the different implementations of
the alldifferent constraint, we additionally considered the number of search nodes
per second. If the problem instance was solved by no candidate within the time-
out, we assigned the annotation “don’t know”. This data was given to the machine
learning algorithms to learn a classifier that, given an instances, predicts which one
of the algorithms will have the best performance on it.

We used the WEKA [11] machine learning software through the R interface to
learn classifiers. We used almost all of the WEKA algorithms that were applica-
ble to our problems – decision rules, decision trees, Bayesian classifiers, near-
est neighbour and neural networks. Our selection is broad and includes almost
all major machine learning methodologies. The specific classifiers we used are
BayesNet, BFTree, ConjunctiveRule, DecisionTable, FT, HyperPipes, IBk,
J48, J48graft, JRip, LADTree, MultilayerPerceptron, NBTree, OneR, PART,
RandomForest, RandomTree and REPTree, all of which are described in [21].

We decided to measure the performance of the learned classifiers not in terms
of the usual machine learning performance measures, but in terms of misclassi-
fication penalty [22]. The misclassification penalty is the additional CPU time
we need to solve a problem instance if not choosing the optimal algorithm. This
is based on the intuition that we do not particularly care about classifying as
many instances correctly as possible; we rather care that the instances that are
important to us are classified correctly. The higher the potential gain for an
instance, the more important it is to us. If the selected algorithm was not able
to solve the problem, we assumed the timeout value minus the CPU time the
fastest algorithm took to be the misclassification penalty. This only gives a weak
lower bound, but the correct value cannot be estimated easily.

Ensemble Classification for Constraint Solver Configuration 325

We furthermore decided to assign the maximum misclassification penalty (or
the maximum possible gain) as a cost to each instance to bias machine learning
towards the instances we care about most. Each instance was attached a cost of
max(1, 1 + log2(penalty)). Note that we used the absolute and not the relative
cost value – if the difference in absolute time is only 0.1 seconds, it does not
matter if the relative difference is orders of magnitude.

To combine the different classifiers, we take the predictions of each classifier
for an individual problem and choose the one that occurs most often; breaking
ties by alphanumeric ordering. A thorough investigation in [3] showed that voting
performs better in general than other techniques.

For each data set of the different algorithm selection problems, we generated
partitions as follows. First, we removed the instances of a randomly selected
problem class. Then we removed about 33% of the remaining instances at ran-
dom. This data was used for training and the removed instances for testing. For
both data sets, we generated 10 different partitions of approximately equal size
this way.

The most important issue we are addressing is the generality of the learned
classifier – given its performance on the data set we are using for testing, will
it perform equally well on unknown data? There are two different cases. The
unknown data could be new instances from a problem class which the classifier
has seen before or the data could consist of unknown instances from unknown
problem classes. We address both scenarios by removing individual problem
classes and random instances from the original data set. Using this method, we
test for overfitted classifiers at the same time.

We ran each machine learning algorithm on each training partition and eval-
uated its performance in terms of misclassification penalty through stratified
10-fold cross-validation [13]. The median of the 10 folds denotes our overall per-
formance estimate. We then evaluated the performance of each of these classifiers
on the respective test partition.

6 Results

Figure 1 shows the performance on the different partitions. It is obvious that the
performance on one set of data, even when using cross-validation, is not a good
predictor of the performance on another set of data, as shown by the length of
the arrows. In only one of twenty cases, the classifier which performs best on
the training partition is also the best one on the test partition. In two cases, the
best classifier actually becomes the worst on new data. It also becomes clear that
this effect is attenuated by using the ensemble classifier – in almost all cases, the
performance differences on different sets of data are less pronounced, as denoted
by the lengths of the arrows starting at the crosses (ensemble classifier) versus
the ones starting at the circles (single classifier). The ensemble classifier is more
robust in that its performance is predictable more reliably. The algorithm with
the best average performance over all the data was BFTree; the difference to the
ensemble classifier was about 1%.

326 L. Kotthoff, I. Miguel, and P. Nightingale

lazy learning

●
● ● ● ● ● ● ● ● ●

●

●
● ● ● ● ●

● ●
●

relative misclassification penalty

0.0

0.2

0.4

0.6

0.8

1.0

alldifferent

●

●
● ● ●

● ●
●

● ●

●

●
● ●

●

●

● ●

●

●

Fig. 1. Classifier performance on the different partitions. The misclassification penal-

ties were normalised by the best classifier across all partitions (i.e. the misclassification

penalty of the best classifier is always 1) and then scaled between best and worst clas-

sifier to make the different data sets comparable (i.e. the best classifier is now 0 and

the worst 1). In absolute terms, the difference between best and worst is up to several

orders of magnitude. The black circles show the performance of the classifier which

performed best during cross-validation. The larger, grey circles show the performance

of the classifier which was the best one on the test partition. The cross denotes the

performance of the ensemble classifier during cross-validation. The end of the arrows

denotes the performance on the test partition for best individual and ensemble clas-

sifiers. The length of the arrow denotes the uncertainty of the prediction of classifier

performance from cross-validation.

lazy learning

● ● ● ● ● ● ● ● ● ●
●

●

●
● ●

● ●
●

●
●

relative misclassification penalty

0.0

0.2

0.4

0.6

0.8

1.0

alldifferent

● ● ● ● ● ● ● ● ● ●● ● ● ●
●

● ● ● ●

●

Fig. 2. Classifier performance for three different classifiers. Note that in five cases the

performance of the ensemble classifier was better than that of an individual best one.

The figure furthermore shows that for several different partitions, our ensem-
ble classifier performs better than the “best” individual algorithm on a single
partition most of the time and is often close to or even better than the individual
classifier that would be the best on unseen data. We achieve significant improve-
ments without time-consuming inspection and evaluation of individual machine
learning algorithms to select the most suitable one and tune its parameters.

Ensemble Classification for Constraint Solver Configuration 327

Our results do not depend on a large number of machine learning algorithms.
Figure 2 shows the results with just three algorithms from different machine
learning methodologies – BayesNet, MultilayerPerceptron (a neural network
algorithm) and J48 (an implementation of the well-known C4.5 algorithm [18]).
The improvements over using a single classifier are comparable to the ones shown
in Figure 1. In some cases we even achieve an improvement over the best indi-
vidual classifier through the combination of the predictions of several classifiers.
Note that these three individual algorithms were not selected because of par-
ticularly good overall performance – none of them was the best on average and
they often performed worse than the ensemble classifier.

In terms of solve time, the ensemble classification approach improves over al-
ways making a default decision. The improvement is substantial for lazy learning
and marginal for alldifferent.

7 Conclusions

We have presented a thorough and in-depth investigation into the variability of
the performance of different machine learning algorithms and techniques on two
real-world algorithm selection problems. We based our investigation on exper-
imental results for a large number of diverse problems and a large number of
different machine learning techniques. Although much research has been done
in the field of algorithm selection and algorithm tuning, no similar evaluation of
the methodology has been undertaken, to the best of our knowledge.

Our results conclusively show that the performance of a machine learning
algorithm is so variable that predictions as to its generality and performance on
new data cannot be made without investing significant effort into substantiating
these claims. Furthermore, an algorithm which may have a low performance and
therefore appear unsuitable on test data has the potential for performing much
better on unknown data.

The technique we are proposing for the configuration of constraint solvers,
ensemble classification by combining the predictions of several classifiers by ma-
jority vote, improves on this. Our experiments provide strong evidence that its
performance on several data sets will in general be better than the performance
of an individual best classifier on one data set. Indeed it will be close to the
performance achieved by the classifier in the ensemble which is the best for a
given data set. We furthermore observed cases in which the ensemble classifier
was better than a single classifier even on a single data set.

While combining several classifiers adds significant overhead in the offline
phase when more classifiers need to be learned, the overhead in the online phase
when new instances are classified was negligible in our experiments. The time
required to compute the instance attributes was much higher than the time
for running additional classifiers and combining their predictions in all cases.
In particular, running an individual classifier on a single problem instance only
takes a few milliseconds on average.

328 L. Kotthoff, I. Miguel, and P. Nightingale

The main advantage of ensemble classification is that individual machine
learning algorithms can be combined without intrinsic knowledge about each
one of them. The level of machine learning expertise required is reduced signifi-
cantly without affecting the results significantly. Note that this does not mitigate
the need for domain knowledge to select relevant features for example. Ensemble
classification enables practitioners without a lot of machine learning knowledge
to apply machine learning to their problems.

Acknowledgements

We thank Chris Jefferson for the description of one of the problem attributes
used in the analysis, Jesse Hoey for useful discussions about machine learning,
and anonymous reviewers for their feedback. Lars Kotthoff is supported by a
SICSA studentship. This work was supported by EPSRC grant EP/H004092/1.

References

1. Ansótegui, C., Sellmann, M., Tierney, K.: A gender-based genetic algorithm for

the automatic configuration of algorithms. In: Gent, I.P. (ed.) CP 2009. LNCS,

vol. 5732, pp. 142–157. Springer, Heidelberg (2009)

2. Bain, S., Thornton, J., Sattar, A.: Evolving Variable-Ordering heuristics for con-

strained optimisation. In: van Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp. 732–

736. Springer, Heidelberg (2005)

3. Bauer, E., Kohavi, R.: An empirical comparison of voting classification algorithms:

Bagging, boosting, and variants. Mach. Learn. 36(1-2), 105–139 (1999)

4. Chen, F., Jin, R.: Active algorithm selection. In: AAAI, pp. 534–539 (2007)

5. Dechter, R.: Constraint Processing. Elsevier Science, Amsterdam (2003)

6. Dietterich, T.G.: Ensemble methods in machine learning. In: First International

Workshop on Multiple Classifier Systems, pp. 1–15 (2000)

7. Epstein, S., Freuder, E., Wallace, R., Morozov, A., Samuels, B.: The adaptive

constraint engine. In: Van Hentenryck, P. (ed.) CP 2002. LNCS, vol. 2470, pp.

525–542. Springer, Heidelberg (2002)

8. Gent, I., Jefferson, C., Miguel, I.: Minion: A fast scalable constraint solver. In:

ECAI, pp. 98–102 (2006)

9. Gent, I.P., Miguel, I., Moore, N.C.A.: Lazy explanations for constraint propagators.

In: Carro, M., Peña, R. (eds.) PADL 2010. LNCS, vol. 5937, pp. 217–233. Springer,

Heidelberg (2010)

10. Gent, I., Miguel, I., Nightingale, P.: Generalised arc consistency for the alldifferent

constraint: An empirical survey. Artif. Intell. 172(18), 1973–2000 (2008)

11. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.: The

WEKA data mining software: An update. SIGKDD Explorations 11(1) (2009)

12. KhudaBukhsh, A., Xu, L., Hoos, H., Leyton-Brown, K.: SATenstein: Automatically

building local search SAT solvers from components. In: IJCAI, pp. 517–524 (2009)

13. Kohavi, R.: A study of Cross-Validation and bootstrap for accuracy estimation

and model selection. In: IJCAI, p. 1137–1143 (1995)

14. Lavesson, N., Davidsson, P.: Quantifying the impact of learning algorithm para-

meter tuning. In: AAAI, pp. 395–400 (2006)

Ensemble Classification for Constraint Solver Configuration 329

15. McKay, B.: Practical graph isomorphism. In: Numerical Mathematics and Com-

puting, pp. 45–87 (1981)

16. Minton, S.: Automatically configuring constraint satisfaction programs: A case

study. Constraints 1(1/2), 7–43 (1996)

17. O’Mahony, E., Hebrard, E., Holland, A., Nugent, C., O’Sullivan, B.: Using case-

based reasoning in an algorithm portfolio for constraint solving. In: Irish Conf. on

AI (2008)

18. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann, San Fran-

cisco (1993)

19. Rice, J.: The algorithm selection problem. Adv. Computers 15, 65–118 (1976)

20. Weerawarana, S., Houstis, E.N., Rice, J.R., Joshi, A., Houstis, C.E.: PYTHIA:

a knowledge-based system to select scientific algorithms. ACM Trans. Math.

Softw. 22(4), 447–468 (1996)

21. Witten, I., Frank, E.: Data Mining: Practical Machine Learning Tools and Tech-

niques with Java Implementations. Morgan Kaufmann, San Francisco (2005)

22. Xu, L., Hutter, F., Hoos, H., Leyton-Brown, K.: SATzilla: Portfolio-based algo-

rithm selection for SAT. JAIR 32, 565–606 (2008)

On Testing Constraint Programs

Nadjib Lazaar1, Arnaud Gotlieb1, and Yahia Lebbah2

1 INRIA Rennes Bretagne Atlantique, Campus Beaulieu, 35042 Rennes, France

{nadjib.lazaar,arnaud.gotlieb}@irisa.fr
2 Université d’Oran Es-Senia, Lab. LITIO, B.P. 1524 EL-M’Naouar,

31000 Oran, Algerie

Université de Nice–Sophia Antipolis, I3S-CNRS, France

ylebbah@gmail.com

Abstract. The success of several constraint-based modeling languages

such as OPL, ZINC, or COMET, appeals for better software engineer-

ing practices, particularly in the testing phase. This paper introduces a

testing framework enabling automated test case generation for constraint

programming. We propose a general framework of constraint program de-

velopment which supposes that a first declarative and simple constraint

model is available from the problem specifications analysis. Then, this

model is refined using classical techniques such as constraint reformu-

lation, surrogate and global constraint addition, or symmetry-breaking

to form an improved constraint model that must be thoroughly tested

before being used to address real-sized problems. We think that most

of the faults are introduced in this refinement step and propose a pro-

cess which takes the first declarative model as an oracle for detecting

non-conformities. We derive practical test purposes from this process to

generate automatically test data that exhibit non-conformities. We im-

plemented this approach in a new tool called CPTEST that was used to

automatically detect non-conformities on two classical benchmark pro-

grams, namely the Golomb rulers and the car-sequencing problem.

1 Introduction

Constraint programs such as those written in modern Constraint Programming
languages and platforms (e.g. OPL1, COMET2, ZINC 3, CHOCO4, GECODE5,
...), aim at solving industrial combinatorial problems that arise in optimiza-
tion, planning, or scheduling. Recently, a new trend has emerged that propose
also to use CP programs to address critical applications in e-Commerce [5], air-
traffic control and management [3,6], and critical software development [1,4].
While constraint program debugging drew the attention of some researchers,
few supports in terms of software engineering and testing have been proposed to
1 www.ilog.com/products/oplstudio/
2 www.dynadec.com/support/downloads/
3 www.g12.cs.mu.oz.au/
4 choco.sourceforge.net
5 www.gecode.org

D. Cohen (Ed.): CP 2010, LNCS 6308, pp. 330–344, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

On Testing Constraint Programs 331

help verify critical constraint programs. Automatic debugging of constraints pro-
grams has been an important topic of the OADymPPaC6 project, that resulted
in the definition of generic trace models [2,7], the development of post-mortem
trace analyzers, such as Codeine for Prolog, Morphine [7] for Mercury, ILOG
Gentra4CP, or JPalm/JChoco. These models and tools help understand con-
straint programs and contribute to their optimization and correction, but they
are not dedicated to systematic fault detection. Indeed, functional fault detec-
tion requires the definition of a reference (called an oracle in software testing) in
order to check the conformity between an implementation and its reference[11].
Automatic fault detection also requires the definition of test purpose to decide
when to stop testing[12]. Whereas conventional software development benefits
from research advances in software verification (including static analysis, model
checking or automated test data generation), developers of constraint programs
are still confined to perform systematic verification by hand.

Automatic constraint program testing cannot be easily handled by existing
testing approaches because of the two following reasons: firstly, constraint pro-
grams are intrinsically non-deterministic as they represent sets of solutions and
conventional definitions of conformity do not apply ; secondly, the refinement
process of constraint programs is specific to CP. Indeed, developers usually start
with an initial declarative constraint model of the problem, which faithfully
translates the problem specifications, without granting interest to its perfor-
mances. As this model cannot handle large-sized instances of the problem, they
exploit several refinement techniques to build an improved model. For exam-
ple, usual refinement techniques include the use of dedicated data structures,
constraint reformulation, global constraints addition, redundant and surrogate
constraint addition, as well as constraints which break symmetries (these con-
straints usually improve considerably the effectiveness of the solving process).
The refinement process, carried out by the developer, is an error-prone process
and we believe that most of the faults are introduced during this step.

In this article, we propose a testing framework for checking the correctness
of a constraint program implementation. The oracle for the constraint program
under test is an initial declarative model considered to be valid w.r.t. the user
requirements. Our framework is based on the definition of four distinct confor-
mity relations to handle constraint satisfaction problems as well as optimiza-
tion problems. A practical consequence of these definitions is the proposal of
test purposes for evaluating the conformance of constraint programs. Note that
this paper does not address another essential topic of CP verification which
is the correction of solvers or optimizers. We propose an algorithm for check-
ing the correction of the CP program under test that solves a set of derived
constraint problems able to exhibit non-conformities. We implemented our ap-
proach in a tool called CPTEST that seeks non-conformities in OPL programs.
For evaluating the proposed testing process, CPTEST was used to find non-
conformities in various faulty OPL constraint programs of the Golomb rulers and

6 Contraintes/OADymPPaC/

332 N. Lazaar, A. Gotlieb, and Y. Lebbah

the car-sequencing problem. It was also used to assess the conformity for small
instances of the problem.

The rest of the paper is organized as follows: Sec. 2 illustrates our testing
framework on a simple case in order to show a typical non-conformity case.
Sec. 3 gives the definition of conformity relations required in the framework. In
Sec. 4, the testing process we derive from these definitions is introduced and
illustrated on a simple example. Sec. 5 presents the CPTEST tool and details
our experimental evaluation. Finally, Sec. 6 concludes the paper and draws some
perspectives to this work.

2 An Illustrative Example

Let us illustrate some of the refinement techniques on the classical problem
of the Golomb rulers, which has various applications in fields such as Radio
communications or X-Ray crystallography.

A Golomb ruler [8] is a set of m marks 0 = x1 < x2 < ... < xm such as
m(m − 1)/2 distances {xj − xi| 1 ≤ i < j ≤ m} are distinct. A ruler is of
order m if it contains m marks, and it is of length xm. The goal is to find a
ruler of order m with minimal length (minimize xm). A declarative model of
this problem is given in part A of Fig.1 while part B presents a refined and
improved model. It is easy to convince a human that model A actually solves the
Golomb rulers problem, but this is much more difficult for model B. Indeed, model

int m=...; int m=...;
dvar int+ x[1..m]; dvar int x[1..m] in 0..m*m;
minimize x[m]; tuple indexerTuple { int i; int j;}
subject to { {indexerTuple} indexes={<i,j>|i,j in 1..m: i < j};
c1: forall (i in 1..m-1) dvar int d[indexes];

x[i] < x[i+1]; minimize x[m];
c2: forall (i,j,k,l in 1..m : subject to {

(i < j && k < l && cc1: forall (i in 1..m-1)
(i != k || j != l))) x[i] < x[i+1];
x[j] - x[i] != x[l] - x[k]; cc2: forall(ind in indexes)

} d[ind] == x[ind.i]-x[ind.j];
cc3: x[1]=0;
cc4: x[m] >= (m * (m - 1)) / 2;

// cc5: allDifferent(all(ind in indexes) d[ind]);
cc6: x[2] <= x[m]-x[m-1];
cc7: forall(ind1 in indexes, ind2 in indexes,

ind3 in indexes: (ind1.i==ind2.i)&&
(ind2.j==ind3.j) &&(ind1.j==ind3.j)&&
(ind1.i<ind2.j < ind1.j)) d[ind1]==d[ind2]+d[ind3];

cc8: forall(ind1,ind2,ind3,ind4 in indexes:
(ind1.i==ind2.i)&&(ind1.j==ind3.j)&&
(ind2.j==ind4.j)&&(ind3.i==ind4.i)&&(ind1.i<m-1)
&&(3<ind1.j<m+1)&&(2<ind2.j<m)&&(1<ind3.i<m-1)&&

(ind1.i < ind3.i < ind2.j < ind1.j))
d[ind1]==d[ind2]+d[ind3]-d[ind4];

cc9: forall(i in 2..m, j in 2..m, k in 1..m : i < j)
x[i]=x[i-1]+k => x[j] != x[j-1]+k;

}
- A - - B -

Fig. 1. Mx(k) and Px(k) of Golomb rulers problem in OPL

On Testing Constraint Programs 333

B uses a matrix as data structure (d[indexes]), statically breaks symmetries
(cc6), it contains redundant and surrogate constraints (cc7,cc8,cc9) and global
constraints (allDifferent). In this paper, we address the fundamental question
of revealing non-conformities in between the constraint program under test B and
the model-oracle A. Testing B before using it on large instances of the problem
(when m > 15) is highly desirable as computing the global minimum of the
problem for these instances may require computation time greater than a week.
Note that B is syntactically correct and provides correct Golomb rulers for small
values of m. Our testing framework tries to find an instantiation of the variables
that satisfies the constraints of B and violates at least one constraint of A. This
testing process is detailed in section 4. With m = 8, our CPTEST framework
computes x = [0 1 3 6 10 26 27 28] in less than 6sec on a standard machine,
indicating that B does not conform A and then contains a fault. Indeed, x is not
a Golomb ruler as 27 − 26 = 1 − 0 = 1. In fact, this non-conformity can easily
be tackled by removing the comment on constraint cc5 in part B. Doing so;
CPTEST provides a conformity certificate saying that the CP program actually
computes the global minimum in 10034.69sec (about 3hours). However, note that
this certificate is only valid for m = 8. Note also that our framework can handle
non-conformities of the Golomb rulers where the global minimum requirement
is relaxed in order to deal with larger instances (when m > 30).

3 Testing Constraint Programs

3.1 Notations

In the rest of the paper, x denotes a vector of variables and (x\xi) stands for
substituting x by the valuation xi.

Model Mx(k)⎧⎪⎨
⎪⎩

C1(x)

...

Cn(x)

Solve()

A constraint program includes a constraint model Mx(k),
which is a conjunction of constraints Ci(x) over variables x pa-
rameterized by k, the parameters vector of the model. Note that
x may depend on k. For the Golomb rulers, k is the order of the
ruler while x represents the vector of marks. If k = 3 then one
seeks for a ruler with 3 marks (e.g., x=[0 1 3]) while if k = 4
one seeks for a ruler with 4 marks (e.g., x=[0 1 4 6]). Solve()
is a generic procedure representing either the call to a constraint
solver in the case of constraint satisfaction problem or the call to

an optimization procedure. In this latter case, we note f the cost function (for
the sake of clarity, f will be a minimization function but maximization problems
can be tackled as well). We consider that k belongs to K the set of possible
values of the parameters for which Mx(k) has at least one solution. sol(Mx(k))
denotes the set of solutions of Mx(k) and while Projy(sol(Mx(k))) expresses the
projection of sol(Mx(k)) on the set y when y ⊆ x. In optimization problems, one
usually starts with feasible solutions ranging in a cost interval [l, u]. Therefore,
we introduce the set

Boundsf,l,u(Mx(k)) = {x|x ∈ sol(Mx(k)), f(x) ∈ [l, u]}

334 N. Lazaar, A. Gotlieb, and Y. Lebbah

To clarify these notations, Fig. 2 shows an example of a real objective function
where point x1 is a global minimum with a cost f(x1) = b and points x0, x3
belongs to Boundsf,l,u(Mx(k)). Note that x1 as well as x2 do not necessarily
belong to Boundsf,l,u(Mx(k)).

3.2 Constraint Models and Programs

Fig. 2. Objective solutions

In our framework, we consider the initial declara-
tive constraint model to be a testing oracle, called
the Model – Oracle , and noted Mx(k). Mx(k) rep-
resents all the solutions of the problem and strictly
conforms the problem specifications. We suppose
that, for any parameter instantiation, Mx(k) pos-
sesses at least one solution. Considering unsatisfi-
able Model–Oracles could be interesting for some
applications (such as software verification [4]) but
we excluded these cases in order to avoid considering equivalence of unsatisfi-
able models. The Constraint Program Under Test (CPUT) is a constraint model
Pz(k) (possibly unsatisfiable) which has to be tested for correction against the
Model–Oracle. Pz(k) is intended to solve difficult instances of the problem. We
built our framework on the hypothesis that checking whether M(x\x0)(k0) is
true where x0 is a point of the search space is not hard, while finding such an
x0 satisfying the constraints may be hard. Given a CPUT Pz(k) and its Model-
Oracle Mx(k), we suppose that x ⊆ z as Pz(k) was obtained by refining Mx(k).
Hence, the set of variables in z distinct of x are dependant variables that are
automatically instantiated when x is instantiated.

3.3 Conformity Relations

The correction of a CPUT w.r.t. a Model–Oracle can be approached through
the usage of conformity relations. These relations aim at assessing the correction
of the CPUT, a notion that can be expressed with various levels of depth. We
propose four set-based definition of conformity divided on two groups: conformity
relations adapted to constraint satisfaction problems and conformity relations
for optimization problems.

Conformity relations for constraint satisfaction problems. The simplest
definition of correction, well-adapted for problems where a single solution is
sought, is given by the following conformity relation:

Definition 1 (confone)

P confk
one M ⇔ Projx(sol(Pz(k))) �= ∅ ∧ Projx(sol(Pz(k))) ⊆ sol(Mx(k))

P confone M ⇔ (∀k ∈ K, P confk
one M)

Roughly speaking, for a given instance k, confk
one asks the solutions of the

CPUT to be included in the solutions of the Model-Oracle. As an example,

On Testing Constraint Programs 335

Fig. 3. confone on Pz(k) and Mx(k)

Fig.3 presents both the sets sol(Mx(k)) noted M and solx(Pz(k)) noted P, where
points in red x raise non-conformities (i.e., faults in the CPUT) while points in
green o are conform w.r.t. the Model–Oracle. Parts (a)(b)(c) of Fig.3 exhibit
non-conformities as solving Pz(k) can lead to solutions which do not satisfy
Mx(k). Part (d) does not exhibit any non-conformity but, as P does not contain
any solution, it does not conform the Model–Oracle for confone. This example
also shows that unsatisfiable models must be considered as non-conform w.r.t.
Model–Oracles, in order to tackle faulty unsatisfiable CPUTs. On the contrary,
part (e) of Fig.3 shows that Pz(k) conforms Mx(k) for confone, as P cannot
contain any non-conformity points.

Whenever all the solutions are sought, another definition of conformity is
useful:

Definition 2 (confall)

P confk
all M ⇔ Projx(sol(Pz(k))) = sol(Mx(k)) (�= ∅)

P confall M ⇔ (∀k ∈ K, P confk
all M)

Roughly speaking, confall asks for both set of solutions to be the same. Satis-
fying this conformity relation is very demanding and not always pertinent. For
instance, the CPUT in part B of Fig.1 includes constraints that break symmetries
of the problem (e.g., cc6), which yields to lose solutions from the Model-Oracle.
As a result, those two models cannot be conform w.r.t. confall.

In Fig. 4, parts (a)(b)(c) and (d) exhibit non-conformities. Part (d) shows
a solution of the Model–Oracle which is not solution of the CPUT ; therefore,
the CPUT is a faulty over-constrained model. Part (c) exhibits the opposite
case where the CPUT is a faulty under-constrained model. Proving that Pz(k)
conforms Mx(k) for one of these two conformity relations is highly desirable.
Unfortunately, such a proof would require not only to find all the solutions of
the CPUT which is an NP-hard problem for some constraint languages (e.g., the

Fig. 4. confall on Pz(k) and Mx(k)

336 N. Lazaar, A. Gotlieb, and Y. Lebbah

Fig. 5. confbounds on Px(k) and Mx(k)

finite domains constraint language), but also to perform this for any value of k.
This seems to be intractable in general (probably undecidable) and then we will
confine ourselves to the search of non-conformities within finite resources.

Conformity relations for optimization problems. Conformity relations
for optimization problems is harder to define, as practicians usually start their
refinement process by the definition of bounds for the optimal case [9] . Note
also that non-conformities may arise in the cost function itself and we wanted
our conformity relations to be able to tackle those cases.

Fig.5 presents the conformity relation where feasible solutions of the CPUT
are sought in [l′, u′]. BP denotes the set Boundsf ′,l′,u′(Px(k)), BM denotes the
set Boundsf,l,u(Mx(k)) while B is the set of global minima of Mx(k). Part (a)
exhibits four non-conformities as these points are not feasible solutions of the
Model–Oracle Mx(k) in [l, u]. For the same reason, Part (b) exhibits two non-
conformities as two feasible solutions of BP with cost in [l′, u′] do not belong to
BM . Part (c) presents also a non-conformity as BP does not contain any feasible
point meaning that the minimization problem cannot find a feasible solution with
cost in [l′, u′]. On the contrary, part (d) shows conformity because solutions of
BP belong to BM . Formaly speaking,

Definition 3 (confbounds)

P confk
bounds M ⇔ Projx(boundsf ′,l′,u′(Pz(k))) �= ∅

∧ Projx(boundsf ′,l′,u′(Pz(k))) ⊆ boundsf,l,u(Mx(k))

Note that the definition of confbounds does not require that f = f ′ and then cases
where the cost function has been refined can also be handled. This conformity
relation is useful for addressing hard optimization problems as it does not require
the computation of global minima. As a result, it can be used to assess the
correction of models on relaxed instances of the global optimization problems.
We will come back on this advantage in the experimental validation section.
However, for some problems, it may be useful to assess not only the correction
but also the fact that the CPUT actually computes optimal solutions. This can
be performed by using the following definition which ensures that the global
optimum belongs to [l′, u′].

Definition 4 (confbest)

P confk
best M ⇔

⎧⎪⎨
⎪⎩
P confk

bounds M,

boundsf,−∞,l(Mx(k)) = ∅,
boundsf ′,−∞,l′(Pz(k)) = ∅

On Testing Constraint Programs 337

4 A CP Testing Framework

Testing a CPUT w.r.t. an model-oracle requires to select test data. In this con-
text, a test datum defines an instance of the CPUT and a point of the search
space.

Definition 5 (Test datum). Given a CPUT Pz(k) and a Model–Oracle Mx(k),
a test datum is an instantiated pair (k0, x0) of parameters and variables.

Note that evaluating Mk(x) on the test datum (k0, x0) results true when x0 is a
solution of the model and false otherwise. Test execution is realized by evaluating
both Pz\z0(k0) and Mx\x0(k0)7 and checks whether the results (either true or
false) are the same. Depending on the selected conformity relation, a test verdict
can be issued. This elementary process can be repeated as long as one wishes,
but it is more interesting to guide the test data generation process by the use
of test purposes. Seeking non-conformities implies finding test data such as the
CPUT is satisfied and the Model–Oracle is violated. This enables to detect faults
in CPUT, and helps the constraint programmer to revisit its refinements. Based
on the selection of a conformity relation, non-conformities can be sought with
the following test purposes:

confone. Given k, find a solution to Pz(k)∧¬Ci where Ci is a constraint of the
Model-Oracle Mx(k). The idea here is to isolate a non-conformity by looking
independently at each constraint of the model-oracle. Considering all the
constraints of the model-oracle would also be possible but less efficient to
detect non-conformities as more constraints would be involved. Note that
heuristics can be defined on the order of constraints to consider first. Note
also that proving the unsatisfiability of Pz(k) ∧ ¬Ci for all Ci ∈ Mx(k)
permits to issue a conformity certificate saying that P confk

one M .
confall. Given k, find a solution to (Mx(k)∧¬C′

i)∨(Pz(k)∧¬Ci) where Ci (resp.
C′

i) is a constraint of the Model-Oracle Mx(k) (resp. Pz(k)). In this case,
proving the unsatisfiability of these constraints permits to issue the confor-
mity certificate P confk

all M , but this is not often desirable as constraint
solving usually requires to issue a single solution instead of all solutions.

confbounds. Given k and [l′, u′], find a solution to Pz(k)∧¬Ci ∧ f ′(z) ∈ [l′, u′]∧
f(x) ∈ [l, u] where f, f ′ are the cost functions of the Model-OracleMx(k) and
the CPUT Pz(k). Proving that these constraints are unsatisfiable permits to
issue a certificate P confk

bounds M .
confbest. Given k, find a solution to (P¬confk

boundsM)∨boundsf,−∞,l(Mx(k)) �=
∅ ∨ boundsf ′,−∞,l′(Pz(k)) �= ∅. Proving that these constraints are unsatisfi-
able permits to issue a conformity certificate P confk

best M .

Interestingly, any solution found by the guidance of one of these test purposes
can be stored for further investigations. Indeed, it can be used to debug the
CPUT by looking at the violated constraint and it can also enrich a test set that
will serve to assess the correction of future versions of the CPUT. In addition,
7 z0 is obtained by extending x0 with values depending on x0.

338 N. Lazaar, A. Gotlieb, and Y. Lebbah

conformity certificates are essential for those who want to convince third-party
certification authorities that their CP programs can be used in critical systems
[5,4]. So, the proposed testing framework has a role to play in various phases of
the constraint program development.

We now propose a simple but generic algorithm for searching non-conformities:

Algorithm 1. one negated(B, {C1, ...Cn})
Input : B, {C1, ...Cn} sets of constraints.
Output: conf when {C1, ...Cn} conform B, ¬conf(+ non-conformity point) otherwise

nc ← ∅
X ← vars(B)
foreach Ci ∈ {C1, ..., Cn} do

V ← vars(Ci)/X
if V = ∅ then nc ← Solve(B ∧ ¬Ci)
else nc ← Solve(B ∧ ¬ProjX(Ci))
if nc then return ¬conf(nc)

end
return conf

where Solve(B) denotes the algorithm to find the first solution of the constraints B, vars(B)

denotes the set of variables in B and ProjX(C) denotes the constraint projection on variables X.

Algorithm 1 takes two constraint sets as input and returns either conf when
both sets conform with relation confone or ¬conf(non-conformity point) where
a non-conformity point has been found. Note that the other conformity re-
lations can easily be implemented using this algorithm just by adjusting the
call parameters. Special care has to be taken when building the negation of a
model. For example, consider a Model-Oracle M with x-y!=x-z; x-y!=y-z;
x-z!=y-z; and a CPUT P with c1: x-y=d1; c2: x-z=d2; c3: y-z=d3; c4:
allDiff(d1,d2,d3);. Here, it is trivial to see that P confall M but if c1 is
selected for negation, M ∧ ¬c1 has solutions as d1 is out of the scope of M.
In the definitions of the conformity relations, these cases were discarded by the
use of projections on the variables of the model-oracle. As computing general
projections are expensive, improvements and pragmatic solutions are available
in our implementation (see Sec.5).

Providing that the underlying constraint solver is sound and complete, this
algorithm is sound as it cannot report conf if there exists a non-conformity
point. Indeed, given k, upon completion of the algorithm the unsatisfiability of
Pz(k) ∧ ¬Mx(k) is demonstrated showing that both models conform with the
selection conformity relation. It is also complete as it cannot report false non-
conformities.

A keypoint of our approach is that test data can be automatically gener-
ated using the same constraint solver as the one used for solving the CPUT.
Recall that we rely on the solver and we are only interested in detecting non-
conformities in models.

On Testing Constraint Programs 339

5 Experimental Validation

5.1 Implementation

We implemented the testing framework shown above in a tool called CPTEST
for OPL (Optimization Programming Language [10]). We chose OPL because
it is one of the main programming environments for developing constraint pro-
grams and also critical constraint programs [3]. CPTEST is based on ILOG CP
Optimizer 2.1 from ILOG OPL 6.1.1 Development Studio. All our experiments
were performed on Quadcore IntelXeon 3.16Ghz machine with 16GB of RAM
and all the models we used to perform these experiments are available online at
www.irisa.fr/celtique/lazaar/CPTEST.

CPTEST includes a complete OPL parser and a backend process that pro-
duces dedicated OPL programs as output. These OPL programs must be solved
in order to find non-conformities. If a solution is found, then CPTEST stops
and reports the non-conformity to the user. Whenever all these OPL programs
are shown to be inconsistent, then a conformity certificate is issued. The tool is
parameterized by several options, including the chosen conformity relation, the
instance of the problem, etc. CPTEST handles the overall OPL language and can
negate most of the constraints that can be expressed in OPL. However, it cannot
negate all the global constraints available, such as the cumulative or circuit
global constraint. Tab.1 summarizes the syntax of OPL constraints handled by
CPTEST. OPL includes two aggregators, namely forall and or. The universal
qualifier forall is used to declare a collection of closely related constraints and to
build global constraints. Interestingly, the or aggregator can be used to negate
forall, as or implements existential quantification. The OPL If-then-else
statement is less general than it may appear as its condition cannot contain
decision variables. Its negation can be computed by negating the Then-part
and Else-part without any loss of generality, as our goal is only to find non-
conformities instead of computing the negation of a general model. Our CPTEST
tool handles several global constraints over discrete values, namely allDifferent,

allMinDistance, inverse, forbiddenAssignments, allowedAssignments and pack.
These constraints can be represented as an aggregation of constraints and
then computing their negation becomes trivial with the rules presented
above and using the other global constraints. For example, the negation ofC:
allDifferent(all(i in R) x[i]) is or(ordered i,j in R) x[i] = x[j]
as C rewrites to forall(ordered i,j in R) x[i] != x[j], and the negation
ofs forbiddenAssignments is simply allowedAssignments.

Table 1. Syntax of OPL expressions handled by CPTEST

Ctrs ::= Ctr | Ctrs
Ctr ::= rel | forall(rel) Ctrs| or(rel) Ctrs | if(rel) Ctrs else Ctrs

| allDifferent(rel) | allMinDistance(rel) | inverse(rel)| forbiddenAssignments(rel)
| allowedAssignments(rel)| pack(rel)

w

340 N. Lazaar, A. Gotlieb, and Y. Lebbah

Table 2. Faulty versions of the Golomb Ruler

constraints of P present in the CPUT

CPUT1 cc1, cc9
CPUT2 cc1, cc2, cc7, cc9
CPUT3 cc1, cc2, cc7, cc8, cc9
CPUT4 cc1, cc2, cc3, cc4, cc6, cc7, cc8, cc9, cc10

We implemented algorithm 1 in CPTEST with several improvements. In par-
ticular, by noticing that it is unnecessary to search for non-conformities on
constraints that are included in both the CPUT and the Model-Oracle, we im-
plemented a simple rewriting system to check equality modulo Associativity-
Commutativity (≡AC). The system implements the following rules:⎧⎨
⎩

x ◦ y → y ◦ x, (x ◦ y) ◦ z → x ◦ (y ◦ z), x+ 0 → x,
x ∗ 1 → x, x ∗ 0 → 0, x× (y • z) → (x× y) • (x × z),

x < y ↔ y > x, x ≤ y ↔ y ≥ x, x− 0 → x,

⎫⎬
⎭

where ◦ ∈ {+, ∗,∧,∨}, × ∈ {∗,∧,∨} and • ∈ {+,∧,∨}. In algorithm 1, the
constraint Ci is discarded whenever there exists C′i in D such as C′

i ≡AC (Ci).
In addition, practical solutions for the handling of local variables and the

computation of constraint projection exist: (a) Annotating the CPUT with con-
straints that define local variables ; (b) Computing constraint projection with
Fourier’s elimination in the case of linear constraints ; (c) Eliminating false
alarms with constraint checking. In CPTEST, we implemented (a) and (c).

The goal of our experimental evaluation was to check that CPTEST is able
to detect faults in OPL programs. We fed CPTEST with faulty models coming
from initial constraint program development. Indeed, we developed optimized
models of two well-known CP problems, namely the Golomb rulers and the car
sequencing problem, and we kept first versions of these models for which faults
were found.

5.2 The Golomb Ruler Problem

The model-oracle of the Golomb rulers is given in part A of Fig.1 while part B con-
tains a conform version of an optimized version of the model when the comment
on constraint cc5 is removed. Let us call P this version. The four intermediate
versions of the Golomb rulers we kept from our initial program development
contain realistic faults, not invented for the experiment. Tab.2 shows the four
faulty versions expressed with the constraints of P. Note that constraint cc6
breaks symmetries in the problem and then it removes solutions (valid Golomb
rulers) w.r.t. the model-oracle. Constraint cc10 is not documented in P, it corre-
sponds to forall(i in m..3*m) count(all(j in indexes)d[j],i)==1. For
each CPUT, we studied its conformity w.r.t. the model-oracle (part A) using the
four conformity relations. The results we got for an instance parameterm = 8 are
given in Tab.3. For the confbounds relation, the interval [50, 100] was used to feed
the relation, knowing that the global minimum is xm = 34 when m = 8. Each

On Testing Constraint Programs 341

Table 3. Non-conformities found by CPTEST in various CPUTs of the Golomb rulers

problem (timeout = 5 400s)

m = 8 confone confall confbounds confbest

Non-conf points [0 7 8 18 24 26 35 44] [17 18 20 25 34 45 49 55] [0 2 3 6 11 58 72 86] [0 1 3 6 10 15 24 33]

CPUT1 T(s) 4.29s 21.45s 5.64s 7.31s

Non-conf points [0 4 5 26 28 31 47 63] [17 18 20 25 34 45 49 55] [0 18 39 43 45 46 55 64] [0 3 4 9 13 15 24 33]

CPUT2 T(s) 5.62s 40.78s 4.64s 174.43s

Non-conf points [0 4 5 26 28 31 47 63] [0 4 5 26 28 31 47 63] [0 18 39 43 45 46 55 64] [0 3 4 9 13 15 24 33]

CPUT3 T(s) 9.53s 45.78s 7.15s 389.04s

Non-conf points [0 12 18 20 29 33 34 39] [1 2 10 22 33 55 57 60] [0 21 30 32 42 45 46 50] [0 6 13 21 22 25 27 32]

CPUT4 T(s) 12.60s 0.15s 9.01s 12.53s

Non-conf points conf [0 7 9 12 37 54 58 64] conf —

P T(s) 3 448.46s 0.18s 3 658.13s timeout

time a non-confirmity was found, it was reported with the CPU time required to
find it. Firstly, the four faulty CPUT were reported as being non-conforms and
the time required for finding these non-conformities is acceptable (less than a few
minutes in the worst case). Secondly, this experiment shows that the most prac-
tical conformance relations (i.e., confone and confbounds) are preferable to the
other ones for efficiency reason. Indeed, for the first three CPUT, these relations
gave results less than 10sec. Note that non-conformities are represented either by
invalid Golomb rulers (e.g., 44−35 = 35−26 = 9 in the CPUT1/confone case) or
by valid Golomb rulers (e.g., CPUT1/confall case). In fact, a valid Golomb ruler
r can be produced when the model-oracle is satisfied by r while the CPUT is re-
futed by r. These non-conformities correspond to cases where the CPUT misses
solutions of the problem. Interestingly, P is shown as being non-conform with the
confAll relation and the non-conformity that is found represent a valid Golomb
ruler (i.e., [0 7 9 12 37 54 58 64]). In fact, recalling that P includes constraints
that break the symmetries, this result was expected. Finally, note that confor-
mity of P when confbest is selected was impossible to assess within the allocated
time (timeout=5 400s). In fact, computing the global minimum of the Golomb
ruler rapidly becomes hard even for small values of m (e.g., CPUT3/confbest).

Our experimental evaluation also had the goal to check that computing non-
conformities with CPTEST was less difficult than computing solutions. For that,
Fig. 6 shows: A) the CPU time required to find a global optimum for instances
of the Golomb rulers (square points) and B) the CPU time required to find non-
conformities with CPTEST with the confbounds conformity relation (lozenge
points). The search heurisitic used in both cases is the default heuristic of OPL,
i.e. depth-first search with restarts, and branch-and-bound for the global opti-
mization problem. CPTEST can find non-conformities when m < 22 in a rea-
sonable amount of time because the hard global optimization problem has been
relaxed in a simpler satisfaction problem, in order to deal with larger instances.
This is the essence of the confbounds conformity relation.

342 N. Lazaar, A. Gotlieb, and Y. Lebbah

Fig. 6. Testing time and solving time comparison on the Golomb rulers

5.3 The Car Sequencing Problem

The car sequencing problem (CSeq) illustrates interesting features of CP in-
cluding wide parameter settings, redundant, surrogate and global constraints
addition, and specialized data structures definition. This is a constraint satis-
faction problem that amounts to find an assignment of cars to the slots of a
car-production company, which satisfies capacity constraints.

As a model-oracle of this problem, we took the model given in the OPL book
[10]. In this model, capacity constraints are formalized by using constraints r
outof s, saying that from each sub-sequence of s cars, a unit can produce at
most r cars with a given option. Starting from this model, we built an opti-
mized model by introducing several refinements, including a new data structure
setup[o,s] which takes value 1 if option o is installed on slot s, redundant and
global constraint addition (e.g., pack constraint). When building our improved
model of car sequencing, we recorded four faulty constraint models that are used
for experiments. Here again, the idea was to keep models that represent realis-
tic faults instead of a posteriori injected faults. These four models are available
online on the site mentioned above.

Tab.4 gives the results of CPTEST on two instances of the problem: an as-
sembly line of 10 cars, 6 classes and 5 options ; an assembly line with 55 cars, 7
classes and 5 options. Using confone, CPTEST reports non-conformities for the
three first CPUT in less than 1sec for both instances. CPUT4 has no solution
as the fault introduced on the pack constraint prunes dramatically the search
space. This case is interesting as detecting this fault is really difficult. With the
confall relation, the results are balanced as three instances were not detected as
non-conformant within the allocated time slot. For example, in CPUT2, the ca-
pacity constraint of the first option is violated (1 out of 2). This fault results
from a bad formulation but it is quickly detected with confone. When confall

is selected, more constraints have to be negated and then our algorithm has to
backtrack a lot, which explains the failure. The non-conformity reached in this
case satisfies the model-oracle and violates CPUT2, so it represents a correct

On Testing Constraint Programs 343

Table 4. Non-conformities found by CPTEST in various CPUTs of the car sequencing

problem (timeout = 5 400s)

Confone Confall

10 slots 55 slots 10 slots 55 slots
Non-conf points 4 5 3 6 4 6 5 1 3 2 p1 4 5 4 6 3 6 5 1 3 2 —

CPUT1 T(s) 0.30s 1.23s 2.49s timeout

Non-conf points 4 6 3 1 5 2 3 5 4 6 p2 5 4 3 5 4 6 2 6 3 1 —

CPUT2 T(s) 0.85s 1.65s 1.20s timeout

Non-conf points 5 2 3 6 1 4 3 6 4 5 p3 5 4 3 5 4 6 2 6 3 1 —

CPUT3 T(s) 0.24s 0.70s 90.73s timeout

Non-conf points conf conf 1 3 6 2 6 4 5 3 4 5 p4

CPUT4 T(s) 0.96s 1.06s 1.26s 100.22s

Non-conf points conf — 6 4 5 3 4 5 2 6 3 1 —

P T(s) 3.01s timeout 0.17s timeout

p1 = 6 5 6 4 5 2 4 4 4 3 5 6 7 6 3 3 3 5 6 4 5 5 2 2 7 3 4 2 5 5 5 4 1 3 4 1 6 4 3 1 5 3 3 6 1 6 7 7 7 2 6 3 1 6 4

p2 = 7 1 6 3 4 6 1 7 3 2 5 1 7 3 5 4 2 6 6 6 4 3 6 5 3 4 4 2 4 6 1 3 7 5 5 2 5 5 3 7 6 3 1 6 4 3 5 4 2 4 6 5 5 4 3

p3 = 4 3 1 5 6 5 5 1 2 4 2 3 6 6 6 3 2 5 2 1 7 4 4 4 3 3 3 5 4 3 6 4 6 6 4 1 7 3 1 5 6 4 2 5 7 6 3 5 5 6 7 4 3 7 5

p4 = 1 3 6 2 5 4 3 5 2 6 4 5 3 4 5 2 6 3 5 4 4 5 3 7 6 4 1 3 6 7 1 7 6 3 1 4 6 7 5 2 6 3 1 7 6 4 5 4 3 5 4 6 2 5 3

assembly line that CPUT2 excludes from its solutions. Therefore, we can con-
clude that CPUT2 adds and removes solutions which make it difficult to detect
as non-conform.

6 Conclusion

In this paper, we introduced for the first time a testing framework that is adapted
to standard CP development processes. The framework is built on solid notions
such as conformity relations, oracles and test purposes that are specific to CP. We
also presented CPTEST an implementation of our framework dedicated to the
testing of OPL programs and evaluated it on difficult instances of two well-known
constraint problems, namely the Golomb ruler and car-sequencing problem. Our
experimental evaluation shows that CPTEST can efficiently detect non-trivial
faults in faulty versions of those two problems. A desirable extension of our
framework and tool concerns its application to other more open CP plateforms.
In particular, we would like to apply our conformity relations, oracles and testing
notions to GECODE or CHOCO programs as we could intervene on the core
constraint solver of these systems. Developing notions of test coverage similar of
those that can be found in conventional programming requires instrumenting the
solver, something that was just not possible with the black-box solver of OPL.

Acknowledgment

We are very grateful to Olivier Lhomme who pointed us the problem of out-of-
scope variables. Many thanks also to Michel Rueher, Laurent Granvilliers and
Nicolas Beldiceanu for helpful comments on early presentations.

344 N. Lazaar, A. Gotlieb, and Y. Lebbah

References

1. Collavizza, H., Rueher, M., Van Hentenryck, P.: Cpbpv: A constraint-programming

framework for bounded program verification. In: Stuckey, P.J. (ed.) CP 2008.

LNCS, vol. 5202, pp. 327–341. Springer, Heidelberg (2008)

2. Deransart, P., Ma�luszyński, J. (eds.): DiSCiPl 1999. LNCS, vol. 1870. Springer,

Heidelberg (2000)

3. Flener, P., Pearson, J., Agren, M.: Garcia-Avello C., M. Celiktin, and S. Dissing.

Air-traffic complexity resolution in multi-sector planning. Journal of Air Transport

Management 13(6), 323–328 (2007)

4. Gotlieb, A.: Tcas software verification using constraint programming. The Knowl-

edge Engineering Review (2009) (accepted for publication)

5. Holland, A., O’Sullivan, B.: Robust solutions for combinatorial auctions. In: ACM

Conference on Electronic Commerce (EC-2005), pp. 183–192 (2005)

6. Junker, U., Vidal, D.: Air traffic flow management with ilog cp optimizer. In:

International Workshop on Constraint Programming for Air Traffic Control and

Management, 7th EuroControl Innovative Research Workshop and Exhibition, INO

2008 (2008)

7. Langevine, L., Deransart, P., Ducassé, M., Jahier, E.: Prototyping clp(fd) tracers:

a trace model and an experimental validation environment. In: WLPE (2001)

8. Rankin, W.T.: Optimal golomb rulers: An exhaustive parallel search implementa-

tion. Master’s thesis, Duke University, Durham (1993)

9. Sahinidis, N.V., Twarmalani, M.: Convexification and Global Optimization in Con-

tinuous and Mixed-Integer Nonlinear Programming. Kluwer Academic Publishers,

Dordrecht (2002)

10. Van Hentenryck, P.: The OPL optimization programming language. MIT Press,

Cambridge (1999)

11. Weyuker, E.J.: On testing non-testable programs. Computer Journal 25(4), 465–

470 (1982)

12. Zhu, H., Hall, P.A.V., May, J.H.R.: Software unit test coverage and adequacy. ACM

Comput. Surv. 29(4), 366–427 (1997)

On the Containment of Forbidden Patterns
Problems

Florent Madelaine

LIMOS, UMR CNRS 6158, Campus des Cézeaux,

IUT informatique, B.P. 86, 63172 AUBIERE, France

fmadelaine@u-clermont1.fr

Abstract. Forbidden patterns problems are a generalisation of (finite)

constraint satisfaction problems which are definable in Feder and Vardi’s

logic mmsnp [1]. In fact, they are examples of infinite constraint sat-

isfaction problems with nice model theoretic properties introduced by

Bodirsky [2]. In previous work [3], we introduced a normal form for

these forbidden patterns problems which allowed us to provide an effec-

tive characterisation of when a problem is a finite or infinite constraint

satisfaction problem. One of the central concepts of this normal form is

that of a recolouring. In the presence of a recolouring from a forbidden

patterns problem Ω1 to another forbidden patterns problem Ω2, contain-

ment of Ω1 in Ω2 follows. The converse does not hold in general and it

remained open whether it did in the case of problems being given in our

normal form. In this paper, we prove that this is indeed the case. We

also show that the recolouring problem is Πp
2 -hard and in Σp

3 .

Keywords: Constraint Satisfaction, Graph Homomorphism, Logic in

Computer Science, Monadic Second Order Logic, Computational

Complexity.

1 Introduction

Feder and Vardi [1] conjectured nearly 20 years ago that the class of non-uniform
constraint satisfaction problems (csp) has a dichotomy, that is that every prob-
lem in this class is either tractable or NP-complete. In contrast, it is believed
that NP does not have the dichotomy property, as by Ladner’s theorem [4], if
P �= NP, then there are problems in NP which are neither in P nor NP-complete.
The dichotomy conjecture remains open though progress has been made using
the central notion of polymorphisms in the mid nineties by Cohen, Jeavons and
others and at the turn of the century great progress followed from Bulatov’s pow-
erful algebraic approach involving tame congruence theory (see [5] for a recent
survey).

Descriptive complexity theory seeks to classify problems, i.e., classes of finite
structures, as to whether they can be defined using formulae of some specific
logic, in relation to their computational complexity. One of the seminal results
in descriptive complexity is Fagin’s theorem [6] which states that a problem

D. Cohen (Ed.): CP 2010, LNCS 6308, pp. 345–359, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

346 F. Madelaine

can be defined in existential second-order logic (eso) if, and only if, it is in
the complexity class NP. In their influential paper [1], Feder and Vardi also
introduced the logic mmsnp, a syntactic fragment of monotone monadic eso
which is intimately linked to csp. It is thought to be the largest such fragment
to exhibit a dichotomy1 and the derandomisation by Kun [7] of a lemma used
by Feder and Vardi implies that mmsnp exhibits a dichotomy if, and only if, the
dichotomy conjecture for csp holds.

The logic mmsnp does not capture csp: every problem in csp can be defined in
mmsnp but there are problems in mmsnp which are not in csp [1,8]. In previous
work with Iain Stewart [9,3], we provided an effective method to decide given a
sentence of mmsnp whether it defines a problem in csp or not. It turns out that
these problems in mmsnp that are not in csp are actually constraint satisfaction
problems with an infinite domain, whose templates have nice model theoretic
properties, introduced by Bodirsky [10]. So our previous result provides in fact
a decision procedure that can tell whether a sentence of mmsnp defines a finite
or an infinite csp problem. In contrast, when the input of a problem definable
in mmsnp is restricted to be of bounded degree, or from a proper minor closed
class or more generally of bounded expansion, the restricted problem becomes a
restricted finite csp [11]. It is important to note that though there are infinite csp
à la Bodirsky which are not definable in mmsnp, this logic defines a large infinite
class of natural infinite csp which are worth studying in their own rights. For
example, the complexity of problems in mmsnp have recently been investigated
in the special case of monochromatic and loopless forbidden patterns [12].

Combinatorially, a problem in csp can be seen as a homomorphism problem
represented by a finite structure T, the so-called template. It is well known that
the containment of csp corresponds exactly to the existence of a homomorphism
from one template to another. More precisely, the csp with template T1 is con-
tained in the csp with template T2 if, and only if, there is a homomorphism
from T1 to T2. Therefore the category of relational structures and homomor-
phisms crops up naturally in the study of csp [13].

Combinatorially, a problem in mmsnp can be represented by a finite set of
coloured obstructions, the so-called forbidden patterns, and an instance is ac-
cepted if, and only if, it can be coloured while avoiding the presence of these
patterns. The key ingredient of our previous result was to refine Feder and Vardi’s
normal form of mmsnp to take into account the fact that some colours might
actually be redundant in the representation of the problem. To formalise this, we
introduced the notion of a recolouring from a forbidden patterns problem Ω1 to
another forbidden patterns problem Ω2 and showed that in the presence of such
a recolouring, containment of the problem Ω1 in the problem Ω2 followed. The
converse does not hold in general and it remained open whether it did in the case
of problems being given in our normal form. In this paper, we prove that this is
indeed the case. It follows that representations of forbidden patterns problems
given in a normal form and recolourings provide us with the right category in

1 Feder and Vardi showed that monotone monadic snp with �= does not have a

dichotomy.

On the Containment of Forbidden Patterns Problems 347

the context of mmsnp. It would be interesting to settle the complexity of the
containment of forbidden patterns problems. We investigate as a first step the
complexity of the recolouring problem and show that it is in Σp

3 and that it is
Πp

2 -hard.
This paper is organised as follows. In the next section, as the reader may

not be familiar with mmsnp, we shall introduce key concepts informally, mostly
by discussing examples, prove simple cases of our main result to illustrate our
method, and finally state our main result. In Section 3, we detail and adapt the
computational equivalence between csp and mmsnp given by Feder and Vardi.
In Section 4, we prove our main result. We conclude with a discussion of the
complexity of some related problems.

2 Preliminaries

Existential Second Order Logic. Fagin’s theorem equates definability in eso with
membership in the complexity class NP. For example, the class of 3-colourable
graphs can be defined using a sentence of the following form.

Φ1 := ∃R,G,B, three sets partitioning the vertices

∀x, y, ¬
(
E(x, y) ∧R(x) ∧R(y)

)
∧ ¬

(
E(x, y) ∧G(x) ∧G(y)

)
∧ ¬

(
E(x, y) ∧B(x) ∧B(y)

)

A graph is represented as a relational structure whose domain consists of ver-
tices equipped with a single binary predicate E representing the edge relation.
The above sentence has two kinds of quantifiers: second-order variables (always
upper-case) are interpreted as relations, like R which is interpreted as a set
of vertices, and first-order variables (always lower case), like x, which is inter-
preted as a vertex. The three second order predicates R, G and B stand for three
colours, say red, green and blue and the sentence asserts that the vertices may
be coloured with these three colours in such a way that for every edge in the
graph, the extremities have different colours.

In this paper, we shall only need second-order predicates that are sets, the
so-called monadic predicates, and we shall only allow them to be existentially
quantified as in the above example. Note that finitely many sets of vertices
correspond essentially to a partition of the vertices in distinct colours. In com-
binatorial terms this means that in order to check a property we have to guess
some colours for each vertex before verifying some first-order property over the
coloured graph. Let us clarify this with another example.

Φ2 := ∃M,N ∀x, y, ¬(¬M(x) ∧ ¬N(x)
)

∧ ¬
(
E(x, y) ∧M(x) ∧N(x) ∧M(y) ∧N(y)

)
∧ ¬

(
E(x, y) ∧ ¬M(x) ∧N(x) ∧ ¬M(y) ∧N(y)

)
∧ ¬

(
E(x, y) ∧M(x) ∧ ¬N(x) ∧M(y) ∧ ¬N(y)

)

348 F. Madelaine

There are two monadic predicates M and N in Φ2 and for a given vertex x there
are four cases to consider: x is in both M and N (M(x) ∧N(x) holds), x is in
M but not in N (M(x)∧¬N(x) holds) etc. So the above sentence disallows one
of the colour (with the conjunct ¬(¬M(x) ∧ ¬N(x)

)
) and states for the three

other colours that an edge can not have both extremities of the same colour. In
other words, this sentence defines also the fact that a graph is 3-colourable.

Monotone Monadic Strict NP without inequalities. The two sentences Φ1 and Φ2
have a particular syntactic form: ∃ monadic predicates, ∀ variables ranging over
vertices, followed by a quantifier-free first-order formula. Such sentences form
the fragment snp of eso. It turns out that many combinatorial problems are
definable in snp, in particular every problem in csp can be defined by a snp
sentence. For example, in the case of 3-colourability, we may use the sentence
Φ2. Let us explain in a bit more detail how we may build this sentence in a
systematic fashion. Recall first that for a csp with template T, a structure A is
a yes-instance if, and only if, there exists a homomorphism from A to T. That
is, a mapping h from the domain of A to that of T such that every arc in A is
mapped to an arc in T (assuming we deal with digraphs for now for the sake
of simplicity). The 3-colourability problem, recast as a digraph problem, has as
template T the digraph with 3 vertices and all possible arcs that are not self-
loops. Viewing the 3 elements of T as colours, we have readily explained how
to use 2 monadic predicates M and N and one forbidden combination of them
¬(¬M(x)∧¬N(x)

)
to encode three colours. In order to enforce a homomorphism,

we now encode the non-arcs of T by adding negated conjuncts, one for each non-
arc. For example, if M(x) ∧ N(x) stands for the colour corresponding to the
first vertex of T and since there is no self-loop around this vertex, we add the
following negated conjunct to the sentence:

¬
(
E(x, y) ∧M(x) ∧N(x) ∧M(y) ∧N(y)

)
.

Doing this with every non-arc, we obtain the sentence Φ2 given above. It is
important to note that the sentence we build this way uses only monadic pred-
icates. Furthermore, the first-order part is a conjunction of negated conjuncts;
and, in every negated conjunct atoms from the input (the edge symbol E in our
examples) appears always positively. This means that the sentence is monotone.
Finally, we never use the symbol �=. We have therefore built a sentence of snp
that is monadic, monotone and without inequality. The sentences of snp sat-
isfying these three restrictions form the logic mmsnp introduced by Feder and
Vardi. As we may build such a sentence for every template, we now know that

csp ⊆ mmsnp.

Some sentences of mmsnp give rise to problems that are not in csp and are
in fact constraint satisfaction problems with an infinite template. For example,

Ψ1 := ∀x, ∀y, ∀z, ¬
(
E(x, y) ∧E(y, z) ∧ E(z, x)

)

On the Containment of Forbidden Patterns Problems 349

expresses that there are no oriented 3-cycles in a digraph (and also no self-loop
as the variables may be equal). It is not difficult to see that this problem is
not in csp. Assume for contradiction that there exists a template T with n
elements for this problem. We may build a yes-instance A for ψ1 as follows:
take n+ 1 vertices and add between any pair of distinct vertices a directed path
of length 3. By assumption, there exists a homomorphism from A to T. This
homomorphism must identify two distinct elements joined by a directed 3-path.
Hence, T contains a loop or an oriented 3-cycle and is a no-instance which is
absurd as the template is always a yes-instance.

The problem defined by Ψ1 is in fact a csp with an infinite template. It is
not difficult to construct an infinite template for this problem: simply take as
a template the disjoint union of its yes-instances2. This infinite template is
not particularly interesting, however, we may also construct for this problem an
infinite template that has a nice model theoretic property called ω-categoricacity.
From now on, by infinite csp, we mean a problem with such a nice template.
This property means in particular that the Galois-connection used in the finite
case can be successfully adapted and that some logico-algorithmic results such
as those involving Datalog still hold. We will refrain from going into more details
and refer to Bodirsky’s survey [2] on his pioneering work on infinite csp.

Obstructions and containment. Note that the negated conjunct

¬
(
E(x, y) ∧E(y, z) ∧ E(z, x)

)
in Ψ1 essentially forbids the occurrence of an oriented 3-cycle. However, since the
variables x, y and z may take the same value, this means in fact that we forbid the
existence of a homomorphism from the oriented 3-cycle to the instance. Hence,
the problem defined by Ψ1 can be seen as a dual problem to a csp. Whereas in
the case of csp we ask whether there is a homomorphism from the instance A

to the template T, we will ask here whether there is no homomorphism from an
obstruction F to the instance A. In the case of more than one obstruction, we
have essentially the fragment of mmsnp that has no monadic predicate (sentences
of mmsnp that are also first-order). In general, such a problem is known to be
an infinite csp [14]. Let us consider two such problems Ω1 and Ω2 given by two
sets of obstructions F1 and F2. We will insist for simplicity for the obstructions
to be connected3. We say that the problem Ω1 is contained in Ω2 if, and only
if, for any instance A, if A is a yes-instance of Ω1 then A is a yes-instance of
Ω2. When is Ω1 contained in Ω2? A simple criteria defined in terms of existence
of homomorphisms between the obstructions characterises containment in this
simple case.

Proposition 1 ([9], see also [15]). Ω1 is contained in Ω2 if, and only if, for
every obstruction F2 in F2 there exists an obstruction F1 in F1 such that there
is a homomorphism from F1 to F2.
2 This is true in general for any monotone problem that is closed under disjoint union.
3 This is not a strong hypothesis as a problem with a disconnected obstruction is in

fact the disjoint union of problems with connected obstructions.

350 F. Madelaine

The main result of this paper is a generalisation of the above result to the case
where the obstructions are coloured, that is when the corresponding mmsnp
sentences are no longer first-order sentences.

Forbidden patterns problems. Another example of a problem that is in mmsnp
but not in csp is:

Ψ2 := ∃M, ∀x, y, z, ¬
(
E(x, y) ∧ E(y, z) ∧E(z, x) ∧M(x) ∧M(y) ∧M(z)

)
∧ ¬

(
E(x, y)∧ E(y, z)∧E(z, x) ∧¬M(x) ∧ ¬M(y)∧¬M(z)

)
.

We have a single monadic predicate which encodes two colours, say white and
black. The two negated conjuncts forbid two vertex-coloured structures, namely
a white oriented 3-cycle F′

1 and a black oriented 3-cycle F′
2. Thus, the problem

defined by Ψ2 accepts an instance A whenever its vertices can be coloured in
white and black into a structure A′ such that there is neither a homomorphism
from F′

1 to A′ nor a homomorphism from F′
2 to A′.

In general a forbidden patterns problem Ω is given by a finite set of coloured
structures. We insist that each structure is connected and contains at least one
tuple. It makes sense to formalise the (vertex-)colouring of a structure by a
homomorphism into some structure describing the colours. So Ω is given by a
structure T representing the colours and a set F ′ of T-coloured structures, the
so-called forbidden patterns.

A T-coloured structure is a pair (F, f) where f is a homomorphism from F

to T which describes the colouring. The notion of structure homomorphism gen-
eralises naturally to coloured structures: given two T-coloured structures (F, f)
and (G, g), a homomorphism h from (F, f) to (G, g) is simply a homomorphism
from F to G that preserves the colours, that is such that f = g ◦ h.

An instance A of the problem Ω is a yes-instance if, and only if, there exists
a homomorphism h from A to T such that there is no homomorphism from any
forbidden pattern (F, f) in F ′ to (A, h).

When h is not a homomorphism or when there is a homomorphism from some
forbidden pattern (F, f) in F ′ to (A, h), we say that (A, h) is not valid w.r.t. Ω.
We denote by fpp the class of forbidden patterns problems. Forbidden patterns
problems are known to be infinite csp [10] and every sentence in mmsnp captures
a finite union of problems in fpp [3].

Recolouring. A recolouring is a homomorphism which states how the colours of
a problem Ω1 can be transformed into colours of a problem Ω2. Let us recall the
formal definition before looking at an example.

Definition 2 (recolouring [9,3]). Let Ω1 (respectively, Ω2) be a forbidden
patterns problem given by T1 and a set F ′

1 of T1-coloured forbidden patterns
(respectively, T2 and F ′

2).
A recolouring from Ω1 to Ω2 is a homomorphism r from T1 to T2 such that

for every (F2, f2) forbidden by Ω2, any of its inverse image (F2, f1) under r is
not valid w.r.t. Ω1. In other words, for every T2-coloured pattern (F2, f2) in F ′

2,

On the Containment of Forbidden Patterns Problems 351

c3

c1
c2

w

w

w

b

b b

c3
c3c2

c3

c3c2

c2c2

c1 c1

c1 c1

c1

T1 F′
1

T2 F′
2

b w

Fig. 1. Two forbidden patterns problems

and for any T1-coloured structure (F2, f1) such that f2 = r ◦ f1, there exists a
forbidden pattern (G1, g1) in F ′

1 and a homomorphism h from (G1, g1) to (F2, f1).

Note how this definition generalises the condition between the obstructions given
in Proposition 1. We already know that the existence of a recolouring implies
containment.

Proposition 3 ([9,3]). If there is a recolouring r from a forbidden patterns
problem Ω1 to a forbidden patterns problem Ω2 then Ω1 is contained in Ω2.

Example 4. We consider the two forbidden patterns given on Figure 1 (note how
the colours of the vertices of a forbidden pattern are simply given by labelling
a vertex with its colour). The problem represented by T2 and F ′

2 is a variant of
the problem defined by Ψ2 in which triangles have arcs in both directions. Let
r be the mapping from the colours of the first problem, namely {c1, c2, c3} to
those of the second problem, namely {b, w}, that maps c1, c2 and c3 to b. Note
that r is indeed a homomorphism from T1 to T2. The only forbidden pattern of
the second problem whose colours are in the image of r is the black triangle (the
first forbidden pattern of F ′

2 listed on the figure). We need to show that every
triangle whose vertices is coloured via r−1 are invalidated by the first problem.
This can happen in two ways: the colouring may not be a homomorphism to
T1, or some forbidden pattern in F ′

1 invalidates it. If the colours of the three
vertices of the triangle are replaced by c1, then the 5-cycle (the first forbidden
pattern of F ′

1 listed on the figure) invalidates this choice of colours. Similarly, if
the vertices are all coloured by c2 only or c3 only then the two next forbidden
patterns on the figure invalidate these choices. If the colours of the three vertices
of the triangle are replaced by c1 and other colours then the colouring is not a
homomorphism to T1. If the colours are replaced by c2 and c3 but not c1 then
the last forbidden pattern listed on the figure invalidates this choice. This shows
that r is a recolouring from the first problem to the second problem.

352 F. Madelaine

Normal Form for Forbidden Patterns Problems. In this paper, we prove that the
converse of Proposition 3 holds, when the two problems are given in the normal
form. Note that this can always be done.

Theorem 5 ([3]). Every forbidden patterns problem can be given by a repre-
sentation in the normal form.

We shall recall shortly what conditions this normal form entails. Let us first
introduce some vocabulary. We say that a coloured structure is weakly valid
w.r.t. a forbidden patterns problem if there is no injective homomorphism from
a forbidden pattern into it. A forbidden patterns that consists of a coloured
structure with a single tuple that mentions each element exactly once4 is said
to be conform. When a forbidden pattern is conform, we may drop it from the
list of forbidden patterns and enforce its constraint by amending the structure T

accordingly (by removing the corresponding tuple from T). A forbidden patterns
problem Ω is given by a structure T and a set of forbidden T-coloured structures
F ′. The pair (T,F ′) is called a representation of Ω. If every recolouring from
(T,F ′) to itself is an automorphism of T then we say that the representation
(T,F ′) is a core.

Definition 6 (Normal Form [3]). A representation (T,F ′) of a forbidden
patterns problem Ω is said to be in the normal form if, and only if it satisfies
the following six conditions.

(p1). An instance is valid if, and only if, it is weakly valid.
(p2). Every pattern of F ′ is a core (as a coloured structure).
(p3). It is not the case that (F1, f1) is a substructure of (F2, f2), for any distinct

patterns (F1, f1) and (F2, f2) in F ′.
(p4). No pattern of F ′ is conform.
(p5). Every forbidden pattern is biconnected.
(p6). The representation (T,F ′) is a core.

Example 7. Let Ω4 be the problem given on the top of Figure 2. We shall discuss
briefly how its normal form is computed without explaining why the obtained
problem is equivalent, for further details please refer to [3].

First we enforce p1 to p3 simply by taking the homomorphic image of the
forbidden pattern, keeping only the minimal ones with respect to injective ho-
momorphisms. Note that p4 holds also in the representation of the problem we
obtain this way which is given in the second row on the figure.

Next, we enforce p5 by splitting the path of length two along its articulation
point and copying its colour c into two new colours b and w, one for the sub-
structure to the left of this articulation point, one for the substructure to the
right of this articulation point. Replacing elsewhere the colour c by w and b in all
possible ways and simplifying again by keeping the minimal patterns to enforce
p3, we obtain the representation which is given in the fourth row of the figure.
Note that it no longer satisfies p4.

4 Self-loops and their generalisation like R(x, x, y) are not conform.

On the Containment of Forbidden Patterns Problems 353

c

c
c c c

c c c
c

c c

w

w

w c cc
c

normal form
Ω3 b w

T3

T4 F′
4

F′
3 = ∅

bcb w

p1 to p3

enforcing p5

bb w b ww b w b

b w ww b w

enforcing p4

Ω4

Fig. 2. Computing the normal form

We enforce progressively p4 by removing the conform forbidden patterns and
removing the corresponding tuple in the structure describing the colours. We
also remove any forbidden pattern that is no longer a coloured structure. We
finally obtain this way the problem Ω3 given in the last row on the figure.

The mapping r which sends w and b to the single colour c of Ω4 is a recolouring
from Ω3.

Conversely, there is no recolouring fromΩ4 toΩ3 as there is no homomorphism
from T4 to T3, since the former is a self-loop and the latter has no self-loop.

Note that the two problems Ω3 and Ω4 coincide and that Ω3 is given in the
normal form but that Ω4 is not (its only forbidden pattern fails to be bicon-
nected).

We are now ready to state the main result of this paper.

Theorem 8 (main result). Let Ω1 and Ω2 be two forbidden patterns problems
given in the normal form over the relational signature σ. Ω1 is contained in Ω2
if, and only if, there is a recolouring from Ω1 to Ω2.

Another case where it is not too hard to see that the converse of Proposition 1
holds is when Ω2 is in csp. Though this case is subsumed by our main result, its
proof will serve as a good warm-up. In particular, it will allow us to introduce
a key ingredient which is a generalisation by Feder and Vardi of a result due to
Erdös.

Proposition 9. Let Ω1 and Ω2 be two forbidden patterns problems. If both prob-
lems are given in the normal form and Ω2 is in csp then Ω1 is included in Ω2
if, and only if, there is a recolouring r from Ω1 to Ω2.

354 F. Madelaine

Recall that the girth of a structure is the length of its shortest cycle (and so if
there are no cycles then the structure has infinite girth).

Lemma 10 (Erdös lemma [1]). Fix two positive integers r and s. For every
structure B, there exists a structure D such that: the girth of D is greater than r;
there is a homomorphism from D to B; and for every structure C of size at most
s, there is a homomorphism from B to C if, and only if, there is a homomorphism
from D to C.

Proof (of Proposition 9). As Ω2 is in the normal form and in csp, this means
that that F ′

2 = ∅ [3]. Thus, in this case a recolouring is nothing other than a
homomorphism from T1 to T2. In particular if T1 is a yes-instance of Ω1 then we
are done. However, this is in fact not true in general.

By assumption Ω1 is given in the normal form. This means that T1 is a no-
instance of Ω1 unless F ′

1 = ∅ [3]. We use Erdös Lemma: we choose r greater than
the largest forbidden patterns in F ′

1; s to be |T2|, the size of T2; and B := T1.
We claim that the structure D obtained from the lemma in this way is in fact

a yes-instance of Ω1. This is because the homomorphism, say d1, given by the
lemma from D to B = T1 gives us a valid colouring w.r.t. Ω1. To see this, we
use the fact that Ω1 is given in the normal form: it suffices to show that (D, d1)
is weakly valid; and, for every forbidden pattern (F1, f1), the structure F1 is
biconnected and must contain a cycle, so it can not occur as a substructure of
D which has a girth greater than the size of any forbidden patterns.

By containment of Ω1 in Ω2 it follows that D is a yes-instance of Ω2 and that
there is a homomorphism from D to T2. Hence, by construction of D this means
that there is a homomorphism from B = T1 to T2 and that we are done. ��

3 From Forbidden Patterns Problem to CSP and Back

The following result is an adaptation of the ideas of Feder and Vardi’s reduction
of mmsnp to csp [1] to forbidden patterns problems. We shall only sketch the
proof. A detailed proof using the same notation is available in [9]. There is a
small difference here, as the signature of the csp is now parameterised by a set
of patterns that must include the patterns from the forbidden patterns problem
considered but may include more. This result is one of the ingredient of the
proof of our main result. We denote by csp(−,T) the (non-uniform) constraint
satisfaction problem with template T and by csp(girth > γ,T) its restriction to
input of girth greater than γ.

Theorem 11. Let Ω be a forbidden patterns problem given in the normal form
over the relational signature σ. Let F be a set of biconnected σ-structures that
includes all structures involved in patterns forbidden by Ω. Let γ be a fixed integer
greater than the largest structure in F .

There exists a relational signature τ , a τ-structure TΩ, and two first-order
interpretations Π and Π−1 such that:

– τ extends σ with new symbols, one symbol RF of arity |F| for each F in F ;

On the Containment of Forbidden Patterns Problems 355

b

b b w

w

w

b w
b w

F′
T

Fig. 3. No-Monochromatic-Triangle

– Π is a quantifier-free first-order interpretation using conjunction only;
– Π−1 is a first-order interpretation;
– Π−1 ◦Π is the identity over σ-structures;
– Ω reduces to csp(−,TΩ) via Π; and,
– csp(girth > γ,TΩ) reduces to Ω via Π−1.

We sketch the proof of this result in the remaining of this section, providing an
example to help the reader understand the main ideas5.

Example 12. We consider the forbidden patterns problem defined by the sen-
tence Ψ2 in the introduction. It is a variant of the well-known NP-complete
problem No-Monochromatic-Triangle. It is given in its normal form on Fig-
ure 3. The signature of this problem is σ = 〈E〉 where E is binary which we
extend to a new signature τ = 〈E,R, S〉 where R is ternary and S unary (R
encodes the 3-cycles and S the self-loops). The interpretation Π from σ to τ is
given by: ϕR(y1, y2, y3) := E(y1, y2) ∧ E(y2, y3) ∧ E(y3, y1), ϕS(y1) := E(y1, y1)
and ϕE(y1, y2) := E(y1, y2). The interpretation Π−1 from τ to σ is given by the
formula ψE which is as follows:
(
E(y1, y2)

)
∨
(
y1 = y2 ∧ S(y1)

)
∨
(
∃x R(y1, y2, x) ∨R(x, y1, y2) ∨R(y2, x, y1)

)
.

The structure TΩ has two elements b and w and, relations E := {b, w}2, S := ∅
and T := {b, w}3 \ {(b, b, b) (w,w,w)}. ��

Signature of the csp. The problem Ω is represented by a σ-structure T and a
list of forbidden T-coloured structures {(F1, f1), (F2, f2), . . . , (Fn, fn)}. Let F
be the set of the σ-structures that consists of the structures Fi considered up
to isomorphism. For every F in F , we introduce a new symbol RF of arity |F|.
Let τ be the signature that consists of the symbol of σ together with the new
symbols RF.

Interpretation from the forbidden patterns problem to the csp. Let ϕF be the
quantifier-free part of the canonical conjunctive query of F, that is:

ϕF :=
∧

R∈σ

∧
RF(x̄) holds

R(x̄)

5 We advise the reader to go through the proof and progress in parallel on the example.

356 F. Madelaine

Let ϕR := R(x̄). Let Π be the interpretation from σ to τ given by the formulae
ϕF and the formulae ϕR. Note that Π is a quantifier-free interpretation of width
one using only conjunction.

Interpretation from the csp to the forbidden patterns problem. Let Π−1 be the
interpretation from τ to σ given by reversing in a natural way the interpretation
Π:

ψR := R(ȳ) ∨
∨

F∈F

∨
RF(ȳ) holds

∃x̃RF(x̃, ȳ) ∧ ε(x̃, ȳ)

In the above sentence x̃ represent the elements of F not present among ȳ and in
RF(x̃, ȳ), the reader should understand that the variables x̃, ȳ are reordered in a
suitable fashion. The sentence ε is a conjunction of equalities between variables
among x̃, ȳ.

By construction, Π−1 ◦Π is the identity over σ-structures.

Construction of the template of the csp. We build the τ -structure TΩ as an
extension of the σ-structure T describing the colours of the forbidden patterns
problem Ω. So on σ both structures agree and for every n-ary new symbol RF

and for every n-tuples of colours c1, c2, . . . , cn we set RF(c1, c2, . . . , cn) to hold
unless,

• it is explicitly forbidden by a pattern (F, f) where f(xi) = ci; or,
� the coloured structure (F, f) is implicitly forbidden by (G, g) in F ′ where G

is a substructure of F and g agrees with f(xi) = ci where defined6.

Computational equivalence. By construction, the forbidden patterns problem Ω
reduces to csp(−,TΩ) via the interpretation Π. The converse interpretation Π−1

is not a reduction in general. It is a reduction for the τ -structures that will “not
change too much” under Π ◦ Π−1. More formally, let B be the image of a τ -
structure A under Π ◦Π−1. The monotonic nature of the interpretations means
that A is necessarily a substructure of B and that we only need to show that if
A is a yes-instance then so is B. The colouring certificate for A will validate B

provided that if a new tuple involving RG appeared in B it is a consequence of
a larger tuple RF where F and G are patterns in F and G is a substructure of
F. This holds because of the condition � in the construction of TΩ.

In particular, we can guarantee that Π ◦ Π−1 will not change too much a
τ -structure A if it is of sufficiently high girth, say a girth higher than γ, the
number of elements of the largest pattern in F (this is because all patterns in
F are biconnected). This proves that Π−1 is a reduction for instances of girth
greater or equal to γ.

Note that we may extend F with any biconnected σ-structure without affect-
ing the constructions or the result. This concludes the proof. ��
6 This second case � allows to channel constraints from one symbol in τ to another as

all information regarding the relationship between the forbidden patterns is lost in

the new signature τ .

On the Containment of Forbidden Patterns Problems 357

4 Recolouring Captures Containment

This section is a proof of our main result (Theorem 8).
Let F be the set of biconnected structures involved as patterns in both Ω1

and Ω2. Let γ be the size of the largest structure in F . We use Theorem 11 for
each problem, using F as a parameter, and obtain a τ -structure TΩ1 for Ω1 and
a τ -structure TΩ2 for Ω2.

Lemma 13. If Ω1 is contained in Ω2 then csp(girth > γ,TΩ1) is contained in
csp(girth > γ,TΩ2).

Proof. Let A be a τ -structure of girth greater than γ such that there is a homo-
morphism from A to TΩ1 . Since Π−1 is a reduction to Ω1, it follows that Π−1(A)
is a yes-instance of Ω1. By inclusion of Ω1 in Ω2 it follows that Π−1(A) is also a
yes-instance of Ω2. Since Π is a reduction from Ω2 to csp(−,TΩ2), the structure
B := Π ◦ Π−1(A) is a yes-instance of csp(−,TΩ2). Hence, there is a homomor-
phism from B to TΩ2 . Since A is a substructure of B by monotonicity of the
interpretations, it follows that there is a homomorphism from A to TΩ2 . ��
Using Erdös Lemma we will derive the following.

Lemma 14. The following are equivalent.

(i) csp(girth > γ,TΩ1) is contained in csp(girth > γ,TΩ2).
(ii) csp(−,TΩ1) is contained in csp(−,TΩ2).
(iii) There is a homomorphism from TΩ1 to TΩ2 .

Proof. The equivalence between (ii) and (iii) is easy and well known. The im-
plication from (ii) to (i) holds trivially.

We prove that (i) implies (iii). Let D be the structure obtained from Erdös
Lemma from B := TΩ1 with s := |TΩ2 | and g := γ. We know that there is
a homomorphism from D of girth greater than γ to TΩ1 . It follows from our
assumption (i) that there is also a homomorphism from D to TΩ2 . Appealing to
Erdös Lemma again for C := TΩ1 , we finally have that there is a homomorphism
from B = TΩ1 to C = TΩ2 . ��
Lemma 15. If r is a homomorphism from TΩ1 to TΩ2 then r is a recolouring
from Ω1 to Ω2.

Proof. Recall that T1 (respectively T2) the structure used to colour the for-
bidden patterns of Ω1 (respectively Ω2) is by construction the σ-reduct of TΩ1

(respectively, TΩ2). Hence, r is readily a homomorphism from TΩ1 to TΩ2 .
It remains to show that for any T2-coloured pattern (F2, f2) forbidden by Ω2,

any of its inverse image under r– that is a T1-coloured structure (F2, f1) such
that f2 = r ◦ f1– is not valid w.r.t. Ω1. Let (F2, f2) and (F2, f1) be as above.
By construction of TΩ2 , the tuple RF2(f2(x̄)) does not hold in TΩ2 . Since r is
a homomorphism such that f2 = r ◦ f1, the tuple RF2(f1(x̄)) does not hold in
TΩ1 . By construction of TΩ1 , this is because either a coloured pattern (G1, g1)
forbidden by Ω1 with pattern F2 or a substructure of F2 disallowed this tuple.
In any case, we have that (G1, g1), which is forbidden by Ω1 occurs in (F2, f1).
This shows that (F2, f1) is not valid w.r.t. Ω1. ��

358 F. Madelaine

Our main result follows directly from the three previous lemmas.

Proof (of the main result). The definition of a recolouring implies containment
as proved in Proposition 3. We now prove the converse. Suppose that Ω1 is
contained in Ω2. By Lemma 13, it follows that csp(girth > γ,TΩ1) is contained
in csp(girth > γ,TΩ2). By Lemma 15, it follows that there is a homomorphism
r from TΩ1 to TΩ2 . Finally, by Lemma 15 it follows that r is a recolouring from
Ω1 to Ω2. ��

We can strengthen our main result by relaxing some hypothesis as follows7.

Corollary 16. Let Ω1 and Ω2 be two forbidden patterns problems over the re-
lational signature σ. If Ω1 is given in a form that satisfies properties p1 to p5
then Ω1 is contained in Ω2 if, and only if, there is a recolouring from Ω1 to Ω2.

5 Closing Remarks

Feder and Vardi argued that mmsnp containment is decidable [1]. However a
precise complexity was not given. Every sentence of mmsnp captures a finite
union of forbidden patterns problems [3] so this motivates us to reformulate the
question in terms of forbidden patterns problems.
fpp-Containment:

– Input: forbidden patterns problemsΩ1 andΩ2 given by (T1,F ′
1) and (T2,F ′

2).
– Question: is Ω1 contained in Ω2?

It is not difficult to see that the problem is at least NP-hard. Indeed, in the
restricted case when the problems have no forbidden patterns, we have in fact
the csp-containment problem (also known as the uniform constraint satisfaction
problem) which is NP-complete. In the restricted case when Ω1 is given by
a representation (T1,F ′

1) which satisfies properties p1 to p5, the question is
equivalent to the following decision problem (see Corollary 16).
Recolouring:

– Input: forbidden patterns problemsΩ1 andΩ2 given by (T1,F ′
1) and (T2,F ′

2).
– Question: is there a recolouring from Ω1 to Ω2?

The complexity of this problem is at most in Σp
3 . This third level of the poly-

nomial hierarchy is obtained directly from the definition of a recolouring. Guess
a homomorphism r, for every inverse image of every forbidden pattern, guess
that it is non valid. There are not many known complete problems in the third
level of the polynomial hierarchy to choose from. There are however a myriad
of problems in the second level. Using Generalised Graph Colouring [16] we
can easily show that.

Proposition 17. The restriction of Recolouring where Ω2 has a single colour
is Πp

2 -complete. Consequently, Recolouring is Πp
2 -hard.

7 Note that this is the best we can do as we may not do without property p5 as

example 7 shows.

On the Containment of Forbidden Patterns Problems 359

In future work, we will try to pinpoint more accurately the complexity of
Recolouring, which should be complete for Σp

3 . Our hope is that a suitable
generalisation of recolouring will enable us to derive that the complexity of
fpp-Containment and Recolouring are the same. The long term aim is to
classify the complexity of mmsnp containment. Though the translation to fpp
is exponential, we hope that the insight gained in the combinatorial world of
forbidden patterns problems can be used to solve the problem in the logical
world of mmsnp.

References

1. Feder, T., Vardi, M.Y.: The computational structure of monotone monadic SNP

and constraint satisfaction: a study through datalog and group theory. SIAM J.

Comput. 28, 57–104 (1999); An initial version of this paper appeared in STOC

1993

2. Bodirsky, M.: Constraint satisfaction problems with infinite templates. In: Com-

plexity of Constraints, pp. 196–228 (2008)

3. Madelaine, F., Stewart, I.A.: Constraint satisfaction, logic and forbidden patterns.

SIAM Journal on Computing 37(1), 132–163 (2007)

4. Ladner, R.E.: On the structure of polynomial time reducibility. J. Assoc. Comput.

Mach. 22, 155–171 (1975)

5. Bulatov, A.A., Valeriote, M.: Recent results on the algebraic approach to the CSP.

In: Complexity of Constraints, pp. 68–92 (2008)

6. Fagin, R.: Generalized first-order spectra and polynomial-time recognizable sets.

In: Karp, R.M. (ed.) Complexity of Computation, pp. 43–73 (1974)

7. Kun, G.: Constraints, MMSNP and expander relational structures.

arXiv:0706.1701v1 (June 2007)

8. Madelaine, F., Stewart, I.A.: Some problems not definable using structures homo-

morphisms. Ars Combinatoria LXVII (2003)

9. Madelaine, F.: Constraint satisfaction problems and related logic. PhD thesis,

University of Leicester, Department of Maths and Computer Science (2003)

10. Bodirsky, M., Dalmau, V.: Datalog and constraint satisfaction with infinite tem-

plates. In: Durand, B., Thomas, W. (eds.) STACS 2006. LNCS, vol. 3884,

pp. 646–659. Springer, Heidelberg (2006)

11. Madelaine, F.R.: Universal structures and the logic of forbidden patterns. Logical

Methods in Computer Science 5(2) (2009)

12. Bodirsky, M., Chen, H., Feder, T.: On the complexity of MMSNP (November 2009)

13. Hell, P., Nešetřil, J.: Graphs and homomorphisms. Oxford University Press, Oxford

(2004)

14. Cherlin, G., Shelah, S., Shi, N.: Universal graphs with forbidden subgraphs and

algebraic closure. Adv. Appl. Math. 22(4), 454–491 (1999)

15. Foniok, J., Nesetril, J., Tardif, C.: Generalised dualities and maximal finite an-

tichains in the homomorphism order of relational structures. Eur. J. Comb. 29(4),

881–899 (2008)

16. Schaefer, M., Umans, C.: Completeness in the polynomial-hierarchy: part I.

SIGACT news 33(3), 32–49 (2002); SIGACT news complexity theory column 37,

Guest column, introduced by Lane A. Hemaspaandra

Improving the Floating Point Addition
and Subtraction Constraints�

Bruno Marre1 and Claude Michel2

1 CEA, LIST, Gif-sur-Yvette, F-91191 France
Bruno.Marre@cea.fr
2 I3S (CNRS/UNSA)

930, Route des Colles - BP 145, 06903 Sophia Antipolis Cedex
Claude.Michel@i3s.unice.fr

Abstract. Solving constraints over the floating point numbers is a key
issue in the process of software validation and verification. Techniques to
solve such constraints on the basis of projection functions have been suc-
cessfully developed. However, though correct, this approach can lead to
slow convergence phenomena for very common constraints like addition
and subtraction constraints. In this paper, we introduce new addition
and subtraction constraints which, thanks to a new floating point sub-
traction property, directly compute optimal bounds for the domain of
the variables at a low cost. Preliminary experiments have shown that
these constraints can drastically speed up the filtering process.

1 Introduction

Constraint programming is one of the successful techniques applied to the vali-
dation and verification of software. It has been used to generate test cases [7,3]
and functional test sequences [3], or to verify the conformity of a program with
its specification [2]. For such applications, handling constraints over the floating
point numbers is a critical issue as more and more critical software make use of
floating point computations.

Constraints over the floating point numbers must not be mixed up with con-
straints over the reals. Both of them use intervals bounded by floating point
numbers. However, constraints over the floating point numbers handle intervals
of floating point numbers while constraints over the real numbers handle inter-
vals of real numbers. Moreover, as underlined in [5,4], they do not have the same
set of solutions1. E.g., 16.0 + x > 16.0, with x < 0, has no solution over the
reals while it has numerous solutions over the floating point numbers. Solving
constraints over the floating point numbers requires thus dedicated solvers.

Constraints over the floating point numbers have been solved using an adap-
tation of box-consistency [5] or the more efficient projection functions introduced

� This work has been partially supported by the “CAVERN” ANR-07-SESUR-003
project.

1 Even when restricted to floating point numbers.

D. Cohen (Ed.): CP 2010, LNCS 6308, pp. 360–367, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Improving the Floating Point Addition and Subtraction Constraints 361

in [4] and extended in [1]. All these projection functions compute a safe bounding
of the domains of the variables. However, sometimes, the computed domains are
rough over-approximations of the set of solutions. Moreover, these projections
functions can led to slow convergence phenomena. Such behaviors occur for the
two most common operations, the addition and the subtraction. To overcome
this problem, we introduce here two new constraints, one for the addition and
one for the subtraction, which, thanks to a new property of the subtraction,
can drastically improve the set of computed solutions and speed up the filtering
process.

Let us illustrate our motivations through a very simple example. Consider the
addition constraint z = x⊕+∞ y, where ⊕+∞ is the floating point addition with
a rounding mode set to +∞ and z, x, and y are 80 bits floating point numbers
as available on an Intel platform. Assume that, after a partial setting, z = 2−,
the predecessor of 2, and that x, the domain of x, and y, the domain of y, are
restricted to [−100.0, 100.0]. Using the projection functions defined in [4], the
solver attempts first to reduce the domain of z according to x and y:

z = z ∩ [−200.0, 200.0] = [2−, 2−]

The domain of z being a degenerated interval, this projection can not reduce its
domain. However, the reader may have noted that the bounds of the interval of
possible values computed by the projection function, [−200.0, 200.0], have actual
support values in x and y. Inverse projections, i.e., trying to reduce the domain
of x and y according to z and, respectively, y and x, is more successful:

x = x ∩ [−98.0, 102.0−] = [−98.0, 100.0]

y = y ∩ [−98.0, 100.0−] = [−98.0, 100.0−]

At this step, two observations can be done. First, the computed intervals over-
approximate the set of possible solutions as for e.g. x = −98.0 has no support in
y. Second, the upper bound of y has been reduced from one floating point number
when compared to the one of x. This is where our slow convergence process takes
its roots. Next iteration step of the filtering process will still reduce the domain
of x and y:

x = x ∩ [−98.0−, 100.0−] = [−98.0−, 100.0−]

y = y ∩ [−98.0−, (100.0−)−] = [−98.0−, (100.0−)−]

where each bound of x and y domains diminishes of exactly one floating point
number. The filtering process will go on for hours2, withdrawing one floating
point number on each bound of the intervals at each iteration step, until it
reaches the following fix point:

z = [2.0−, 2.0−], x = [−2.0−, 4.0−], y = [−2.0−, 4.0−]
2 Four hours of computation was not enough to read the fix point. Note that more

than 1020 iterations are required to reach the fix point.

362 B. Marre and C. Michel

Note that the bounds of the resulting intervals, x and y, are solutions of the
subtraction, i.e., 4.0− ⊕+∞ −2.0− = 2.0−.

Projection functions as introduced in [4] have been built for unary functions.
They rely on the correctly rounded property, an essential property to reason
about floating point arithmetic which establishes a relation between an operation
over the real numbers and its implementation over the floating point numbers. As
a consequence, they take only into account the relationship between the floating
point function and its corresponding real function. Though sufficient to handle
unary functions, these projection functions tend to overestimate the domains of
variables involved in binary functions. The new constraints we introduce here
will not only overcome slow convergence issues but also offer a better bounding
of the domains of the variables.

This paper is organised as follows: next section gives basic notations and
definitions. Section 3 introduces a property of the subtraction and extends it
to intervals. Finally, section 4 shows some experiments and is followed by a
conclusion.

2 Notations and Definitions

The set of floating point numbers is a finite set of numbers usually used to
simulate real numbers on a computer. In this paper, we restrict ourselves to
the commonly available set of binary floating point numbers as described in the
IEEE standard for floating point arithmetic revised in 2008. This section only
recalls the basics of floating point arithmetic required to understand this paper.

A binary floating point number x is triple (s, e,m) where s is the sign bit of x,
e, its exponent, and m, its significand (or mantissa). The value of x is given by:

x = (−1)s ∗m ∗ 2e = (−1)s ∗ b1.b2· · ·bp ∗ 2e

where the bi are the bits which make up the significant and b2· · ·bp denotes a
sequence of p−1 bits. Note that p, the number of bits of the significand also gives
the representation precision. In the sequel, F will denote a set of binary floating
point numbers and Fp,q will denote a set of binary floating point numbers where
p is the number of bits of the significand and q the number of bits of the exponent.
We will also use Fp,+∞, a set of floating point numbers whose significand has p
bits and whose exponent has not limitation.

Operations on floating point numbers do not usually yield a floating point
number. Floating point arithmetic resorts to rounding operations to get the most
appropriate floating point representation according to a rounding direction. The
standard requires that the four basic operations ⊕,%,⊗,& (which stand for,
respectively, floating point addition, subtraction, multiplication, and division)
are correctly rounded:

x⊕ y = ◦(x+ y)

i.e., the result of the operation over the floating point numbers, an addition here,
must be equal to the rounding, denoted by ◦, of the result of the same operation

Improving the Floating Point Addition and Subtraction Constraints 363

over the real numbers. This property is a key property to reason about floating
point numbers.

Domains of variables will be represented by intervals of floating point numbers:

x = [x,x] = {x ∈ F ,x ≤ x ≤ x}

Note that, in this paper, unless otherwise explicitly stated, intervals will always
be intervals of floating point numbers and not intervals of real numbers.

In the sequel, x+ denotes the smallest floating point number superior to x
while x− denotes the biggest floating point number inferior to x.

3 Improving the Addition and Subtraction Constraints

3.1 Upper Bounds for the Subtraction

We introduce here a new property of the floating point subtraction which allows
to compute upper bounds for its operands knowing its result. Intuitively, this
property is based on the following observation: given a floating point number
x, the smallest floating point number greater than 0 that can be obtained by
subtraction to x is x − x−. Note that the subtraction handled here is a true
subtraction, i.e., that it actually subtracts x from y. These upper bounds for x
and y, respectively, β and α, are given by :

Proposition 1. Let z ∈ Fp,+∞, with +∞ > z > 0 and assume that

z = 1.b2· · ·bi0· · ·0 ∗ 2ez with bi = 1

α = 1.1· · ·1 ∗ 2ez+nbz with nbz = p− i

β = α⊕ z

then, there is no x ∈ Fp,+∞, x > β and no y ∈ Fp,+∞, y > α such that x%y = z.
Moreover, β % α = β − α = z.

Proof. First, let us consider β, that is to say, α ⊕ z. Using a correctly rounded
addition, α ⊕ z = ◦(α + z). Thus, the binary addition adds the two following
numbers:

α+ z = 1.1· · ·1 ∗ 2ez+nbz + 1.b2· · ·bi−110· · ·0 ∗ 2ez

The first step is to scale z to the same exponent than β:

α+ z = 1.1· · ·1 ∗ 2ez+nbz + 0.0· · ·01b2· · ·bi−11 ∗ 2ez+nbz

Splitting z on its lsb3 and the rest yields:

α+ z = (1.1· · ·1 ∗ 2ez+nbz + 0.0· · ·01 ∗ 2ez+nbz) + 0.0· · ·01b2· · ·bi−1 ∗ 2ez+nbz+1

= 1.0· · ·0 ∗ 2ez+nbz+1 + 0.0· · ·01b2· · ·bi−1 ∗ 2ez+nbz+1

= 1.0· · ·01b2· · ·bi−1 ∗ 2ez+nbz+1

3 lsb stands for least significant bit.

364 B. Marre and C. Michel

The result of this addition can be directly represented over Fp,+∞ (β requires
nbz + i = (p − i) + i = p bits for its mantissa). Thus, β = α ⊕ z = α + z is
computed exactly and so should be β % α.
Now, consider β % α. Using a correctly rounded subtraction, we can first do a
binary subtraction:

β − α = 1.0· · ·01b2· · ·bi−1 ∗ 2ez+nbz+1 − 1.1· · ·1 ∗ 2ez+nbz

= 1.0· · ·01b2· · ·bi−1 ∗ 2ez+nbz+1 − 0.1· · ·1|1 ∗ 2ez+nbz+1

where | separates the p representable bits from additional ones and the scaled
α requires a guard bit |1 to be fully represented. Here, β is split on its msb4

yielding:

β − α=0.0· · ·01b2· · ·bi−1∗2ez+nbz+1+(1.0· · ·0∗2ez+nbz+1 − 0.1· · ·1|1 ∗ 2ez+nbz+1)

= 0.0· · ·01b2· · ·bi−1 ∗ 2ez+nbz+1 + 0.0· · ·0|1 ∗ 2ez+nbz+1

= 0.0· · ·01b2· · ·bi−1|1 ∗ 2ez+nbz+1

= 0.0· · ·01b2· · ·bi−11 ∗ 2ez+nbz

which, after a normalization process directly yields z:

β − α = 1.b2· · ·bi−110· · ·0 ∗ 2ez

Like expected, β%α = β−α is computed exactly and yields z. Thus, the floating
point numbers β and α provide a solution to x% y = z.
The last issue is to prove that there is no x′ > β and no y′ > α such that
x′ % y′ = z.
A first observation is that z is a solution of the subtraction: let ẏ = z, then
ẋ = ẏ ⊕ z = ◦(z + z) = 2 ∗ z = ż, which belongs to Fp,+∞, and ẋ % ẏ =
ż % z = ◦(2 ∗ z − z) = z. Thus, if y′ exists then y′ ≥ z > 0. Moreover, as
x′ = y′ ⊕ z ≤ y′ ⊕ y′ = 2 ∗ y′ and, as x′ % y′ = z > 0, we have

0 < z ≤ y′ ≤ x′ ≤ 2 ∗ y′

Notice that, thanks to these conditions, Sterbenz’s property5 [6] applies and
thus, if x′ and y′ exist, x′ % y′ = x′ − y′ and y′ ⊕ z′ = y′ + z′.
As y′ ≤ x′ ≤ 2 ∗ y′, ey′ ≤ ex′ ≤ ey′ + 1. Therefore, scaling y′ to x′ requires at
most one guard digit. α being the biggest floating point number whose exponent
is equal to ez +nbz, if y′ exists, y′ > α and, ey′ > ez +nbz. As z mantissa requires
p − nbz bits and as the scaling uses at most one guard digit, normalizing the
result of the subtraction requires to add at most nbz + 1 to its exponent. Thus,
with ey′ ≥ ez +nbz +1, either ex′ = ey′ and the normalization will remove nbz to
the exponent result (which is greater or equal to ez +nbz+1), or ex′ = ey′ +1 and

4 msb stands for most significant bit.
5 Sterbenz’s property states that if the two floating point numbers x and y are such

that y
2
≤ x ≤ y, then the subtraction x � y = x − y, i.e., is exactly computed.

Improving the Floating Point Addition and Subtraction Constraints 365

the normalization will remove nbz + 1 to the exponent result (which is greater
or equal to ez + nbz + 2). In both cases, the exponent result of the subtraction
will be greater or equal to ez + 1, and thus, is greater than z. �

For the sake of simplicity, proposition 1 relies on the idealized set of floating
point numbers Fp,+∞ and, thus, does not take into account IEEE 754 exponent
limitations. Here, two cases have to be handled: subnormal number and fmax,
the biggest floating point number. As a matter of fact, proposition 1 also holds
on subnormal numbers6 and thus, the only requirement is to ensure that neither
β nor α are bigger that fmax.

3.2 Interval Extension of the Property

Proposition 1 sets upper bounds for x and y provided z is a strictly positive
floating point number. In order to use it in a constraint solver, it now needs
to be extended to intervals. Note that the property can easily be extended to
negative values by symmetry. Therefore, this section handles only positive values
for z.

When z belongs to an interval z = [z, z], with z > 0, the subtraction upper
bounds grow with respect to z exponent and the number of successive zero bits
on the right of z mantissa, i.e., nbz. Thus, upper bounds for the whole interval
are given by ζ, the value of z which maximizes these two criteria.

Two cases can be distinguished: either ez �= ez or not. In the former case,
ζ = 1.0· · ·0 ∗ 2ez belongs to z and is the floating point number with the highest
exponent and the maximum number of binary zeros on its right. Therefore, this
is the value that will have the biggest upper bounds for the subtraction. In the
other case, i.e., if ez = ez, the floating point number with the highest upper
bounds is the one with the most zeros on its right. Thus, either z = 1.0· · ·0 ∗ 2ez

and ζ = z, or ζ = 1.b2· · ·bi10· · ·0∗2ez where the b2· · ·bi are identical leading bits
of z and z. To sum up, we have:

ζ=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1.0· · ·0 ∗ 2ez iff ez �= ez

z iff z = 1.0· · ·0 ∗ 2ez

1.b2· · ·bi10· · ·0 ∗ 2ez with

{
z = b1.b2· · ·bi0bi+2· · ·bp ∗ 2ez and
z = b1.b2· · ·bi1b′i+2· · ·b′p ∗ 2ez

otherwise

Once ζ is known, α and β, i.e., upper bounds for a true subtraction of x and y,
can be computed. As the bounds for a true addition are always lower than the
one of the true subtraction, this result can easily be extended to the subtraction:

if z = x% y then

{
x = x ∩ [−α, β]
y = y ∩ [−β, α]

6 An essential observation here is that subnormal numbers can be handled without
“normalizing” them i.e. 0.b2· · ·bp ∗2−126 for simple floating point numbers. Then, the
subtraction must preserve the same number of bits (i.e. 0.b2· · ·bi).

366 B. Marre and C. Michel

const
accuracy = 1e-8;
max_move = 10.0;

node null_up_to_accuracy(V: real)
returns (null: bool);
let

null = -accuracy <= V and V <= accuracy;
tel;

node normal_move(In:real)
returns (OK:bool);
var

diff_previous: real;
let

assert In >= 0.0 and In <= 1e40;

diff_previous = 0.0 -> (In - pre(In));
OK = if null_up_to_accuracy(diff_previous)

then true
else -max_move <= diff_previous and diff_previous <= max_move;

/*! reach OK and not(null_up_to_accuracy(diff_previous)) !*/

Fig. 1. A data acquisition procedure in Lustre

and to the addition:

if z = x⊕ y then

{
x = x ∩ [−α, β]
y = y ∩ [−α, β]

Note that the computation of these projections are much more efficient than
our previous projection functions, especially when a slow convergence occurs.
However, classical projection functions will still improve the domain of x and y
when the new projection function does not provide any reduction.

4 Preliminary Experiments

First, let us see what the projections introduced here can do on our initial
example where z = x ⊕+∞ y with z = 2−. z has no zero on its right. Thus,
α = 1.1· · ·1 ∗ 2ez = 2−. As α = z, computing β is easy: β = α ⊕ z = 2 ∗ α =
1.1· · ·1 ∗ 2ez+1 = 4−. As a consequence, x ∈ [−2−, 4−] and y ∈ [−2−, 4−] which
is nothing but the fix point that has been reached after hours of computations.

Now, let us consider an experiment of test case generation from a data acqui-
sition procedure written in LUSTRE, a declarative language often used to build
synchronous reactive critical software. Figure 1 procedure7 checks that data is-
sued from a sensor evolve smoothly. The goal, defined in last algorithm line, is
to generate test data that reach the else branch of the OK definition. Note that
floating point variable type is double here. To reach this goal, GATeL [3] pro-
duces two different cases which negate “null_up_to_accuracy(diff_previous)”:

1. diff_previous > 1e-8 : the domains of “In” and “PIn”, the variable associ-
ated to “pre(In)”, are both reduced to [0.0, 1e40] while “diff_previous” is

7 In LUSTRE each variable denotes the data flow of its successive values at each cycle
of reaction. Thus, expression "0.0 -> (In - pre(In))" yields 0.0 at the first computation
cycle and the difference between the current value of "In" and its previous value at
each other cycle.

Improving the Floating Point Addition and Subtraction Constraints 367

reduced to [1.0000000000000002e− 8, 10.0]. Using classical projection func-
tions, constraint “In - PIn = diff_previous” initiates a slow convergence
process. Thanks to the subtraction property, “In” is immediately reduced to
[1.0000000000000002e− 8, 72057594037927936.0], while “Pin” is reduced to
[0.0, 72057594037927928.0,] and “diff_previous” to [1.0000000000000002e−
8, 10.0].

2. diff_previous < -1e-8 : the domains of “In” and “PIn” are both reduced to
[0.0, 1e40]while “diff_previous” is reduced to [−10.0,−1.0000000000000002e−
8]. There is again a slow convergence linked to “In - PIn = diff_previous” con-
straint while the subtraction property allows an immediate reduction of “In”
to [0.0, 72057594037927928.0], “PIn” to [1.0000000000000002e− 8, 720575940
37927936.0] and “diff_previous” to [−10,−1.0000000000000002e− 8].

These examples illustrate the benefit of the new projection functions which not
only suppress the slow convergence phenomenon but also gives some solutions
to the constraints. The new projection functions, which require far less than a
millisecond of computation, drastically speed up the convergence process based
on old projection functions which requires many hours of computation to reach
its fix point.

5 Conclusion

In this paper, we have introduced new projection functions for the floating point
addition and subtraction which, thanks to a property of the subtraction, drasti-
cally improve the solving of floating point constraints. The cost of these projec-
tions is negligible especially when compared to a slow convergence phenomenon.
Preliminary experiments show the benefits of these projections and are really
encouraging. Other constraints linked to multiplication and division are now
studied to see if there is any possibility for such an improvement.

References

1. Botella, B., Gotlieb, A., Michel, C.: Symbolic execution of floating-point computa-
tions. Softw. Test., Verif. Reliab. 16(2), 97–121 (2006)

2. Collavizza, H., Rueher, M., Hentenryck, P.: CPBPV: a constraint-programming
framework for bounded program verification. Constraints 15(2), 238–264 (2010)

3. Marre, B., Blanc, B.: Test selection strategies for lustre descriptions in gatel. Electr.
Notes Theor. Comput. Sci. 111, 93–111 (2005)

4. Michel, C.: Exact projection functions for floating point number constraints.
In: AMAI (2002)

5. Michel, C., Rueher, M., Lebbah, Y.: Solving constraints over floating-point num-
bers. In: Walsh, T. (ed.) CP 2001. LNCS, vol. 2239, pp. 524–538. Springer,
Heidelberg (2001)

6. Sterbenz, P.: Floating point computations. Prentice-Hall, Englewood Cliffs (1974)
7. Williams, N., Marre, B., Mouy, P., Roger, M.: Pathcrawler: Automatic generation of

path tests by combining static and dynamic analysis. In: Dal Cin, M., Kaâniche, M.,
Pataricza, A. (eds.) EDCC 2005. LNCS, vol. 3463, pp. 281–292. Springer, Heidelberg
(2005)

The Lattice Structure of Sets of Surjective
Hyper-Operations

Barnaby Martin�

School of Engineering and Computing Sciences, Durham University

Science Labs, South Road, Durham, DH1 3LE, UK

barnabymartin@gmail.com

Abstract. We study the lattice structure of sets (monoids) of surjec-

tive hyper-operations on an n-element domain. Through a Galois connec-

tion, these monoids form the algebraic counterparts to sets of relations

closed under definability in positive first-order (fo) logic without equality.

Specifically, for a countable set of relations (forming the finite-domain

structure) B, the set of relations definable over B in positive fo logic with-

out equality consists of exactly those relations that are invariant under

the surjective hyper-endomorphisms (shes) of B. The evaluation problem

for this logic on a fixed finite structure is a close relative of the quantified

constraint satisfaction problem (QCSP).

We study in particular an inverse operation that specifies an auto-

morphism of our lattice. We use our results to give a dichotomy theorem

for the evaluation problem of positive fo logic without equality on struc-

tures that are she-complementative, i.e. structures B whose set of shes is

closed under inverse. These problems turn out either to be in L or to be

Pspace-complete.

We go on to apply our results to certain digraphs. We prove that the

evaluation of positive fo without equality on a semicomplete digraph is

always Pspace-complete. We go on to prove that this problem is NP-hard

for any graph of diameter at least 3. Finally, we prove a tetrachotomy for

antireflexive and reflexive graphs, modulo a known conjecture as to the

complexity of the QCSP on connected non-bipartite graphs. Specifically,

these problems are either in L, NP-complete, co-NP-complete or Pspace-
complete.

1 Introduction

We continue the study of the evaluation problem for positive equality-free first-
order (fo) logic, on a fixed finite structure B, denoted {∃, ∀,∧,∨}-FO(B), started
in [5]. This problem is a close relative of the constraint satisfaction problem,
CSP(B), and an even closer relative of the quantified CSP, QCSP(B). In fact, it
is noted in [5] that among a wide family of problems, the only interesting case,
other than the CSP and QCSP, is the one addressed in this paper. The bulk of
the theoretical research into CSPs concerns the so-called dichotomy conjecture:
� The author is supported by EPSRC grant EP/G020604/1.

D. Cohen (Ed.): CP 2010, LNCS 6308, pp. 368–382, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

The Lattice Structure of Sets of Surjective Hyper-Operations 369

that the complexity of the problem of evaluating a primitive positive sentence
on a fixed finite B, CSP(B), is either in P or is NP-complete. This was solved
for structures with two-element domains in [11] and improved to encompass
structures with three-element domains in [3]. The most successful approach to
date, and the method used in [3], has been the so-called algebraic method, in
which the problem of classification reverts to classes of functions under which the
relevant relational systems are invariant. A similar algebraic approach has been
successful in the study of the evaluation problem for positive Horn sentences,
QCSP(B), and, while no formal trichotomy has there been conjectured, the only
known attainable complexities are P, NP-complete and Pspace-complete (see
trichotomies in [2,8]).

In [5], the complexity of {∃, ∀,∧,∨}-FO(B) is studied through an analagous
algebraic method to that used for CSP(B). The paper culminates in a full clas-
sification – a tetrachotomy – as B ranges over structures with three-element do-
mains. Specifically, the problems {∃, ∀,∧,∨}-FO(B) are either Pspace-complete,
NP-complete, co-NP-complete or in L. In a recent paper [9] this tetrachotomy is
extended to four-element domains.

These results come from studying sets of surjective hyper-operations (shops)
under which the relational B may be invariant. These sets, always containing
the identity and closed under composition and sub-shops, are known as down
shop-monoids (DSMs). In this paper we study the structure of the lattice of
DSMs on a k-element domain. We give a full Galois connection proving an iso-
morphism between the lattice of DSMs (over a k-element domain) and the lattice
of k-element structures closed under definabilty in positive fo without equality
(in previous papers, only the relational side of this connection appeared). We
study in particular the automorphism born of the inverse operation on shops.
DSMs that are closed under inverse have a fundamentally group-like structure –
what we call blurred permutation subgroups (BPSs). Using this characterisation,
we prove a dichotomy for our evaluation problem on structures that we term
she-complementative, i.e whose set of surjective hyper-endomorphisms (shes) is
closed under inverse. Specifically, these problems are either in L or are Pspace-
complete. We conclude with some natural examples of she-complementative
classes, namely tournaments and structures that for each of their relations R
contain also the complement R.

We go on to use our results in the study of {∃, ∀,∧,∨}-FO(H) where H is a
semicomplete digraph – extending the result for tournaments – or a certain type
of graph. In the first case, whereH is a semicomplete digraph, {∃, ∀,∧,∨}-FO(H)
is proved to be Pspace-complete. In the case where H is a graph of diameter at
least 3 we prove that {∃, ∀,∧,∨}-FO(H) is NP-hard (this result is optimal in the
sense that there is a graph of diameter 2 such that the problem is in co-NP).
Finally, when H is an antireflexive graph or a reflexive graph, we rely on a
conjecture from QCSP in [8] to derive our classification. Modulo that conjecture
we derive that the problem {∃, ∀,∧,∨}-FO(H) is either in L (if H is trivial), is
NP-complete (if H is non-trivial with an isolated vertex), is co-NP-complete (if
H is non-trivial with a dominating vertex) and is Pspace-complete, otherwise.

370 B. Martin

The paper is organised as follows. In Section 2 we give the necessary prelimi-
naries and introduce the Galois connection. In Section 3, we discuss the structure
of our lattices, with particular emphasis on an automorphism born of an inverse
operation. We go on to prove the main characterisation theorem and use it to de-
rive our complexity dichotomy for she-complementative structures. In Section 4,
we go on to prove the further complexity results for digraphs and in Section 5,
we make some final remarks.

2 Preliminaries

Throughout, let B be a finite structure, with domain B, over an at most count-
able relational signature σ. Let {∃, ∀,∧,∨}-FO be the positive fragment of first-
order (fo) logic without equality. An extensional relation is one that appears in
the signature σ. We will usually denote extensional relations of B by R and other
relations by S (or by some formula that defines them). In {∃, ∀,∧,∨}-FO the
atomic formulae are exactly substitution instances of extensional relations. The
problem {∃, ∀,∧,∨}-FO(B) has:

– Input: a sentence ϕ ∈ {∃, ∀,∧,∨}-FO.
– Question: does B |= ϕ?

QCSP(B) is the restriction of this problem to formulae involving no disjunction,
what in our notation would be {∃, ∀,∧}-FO. When B is of size one, the evaluation
of any FO sentence may be accomplished in L (essentially, the quantifiers are
irrelevant and the problem amounts to the boolean sentence value problem, see
[4]). In this case, it follows that {∃, ∀,∧,∨}-FO(B) is in L. Furthermore, by inward
evaluation of the quantifiers, {∃, ∀,∧,∨}-FO(B) is readily seen to always be in
Pspace.

For a structure B define the complement structure B to be over the same
domain B with relations which are the set-theoretic complements of those of B.
That is, for each r-ary R, RB = Br \RB. Similarly, for a relation R ⊆ Br, let R
denote Br \R.

Consider the finite set D = [n] := {1, . . . , n} and its power set P(D). A hyper-
operation on D is a function f : D → P(D) \ {∅} (that the image may not be
the empty set corresponds to the hyper-operation being total, in the parlance of
[1]). If the hyper-operation f has the additional property that

– for all y ∈ D, there exists x ∈ D such that y ∈ f(x),

then we designate (somewhat abusing terminology) f surjective. A surjective
hyper-operation (shop) in which each element is mapped to a singleton set is
identified with a permutation (bijection). A surjective hyper-endomorphism (she)
of a set of relations (forming the finite-domain structure) B over D is a shop f
on D that satisfies, for all relations R of B,

– if (x1, . . . , xi) ∈ R then, for all y1 ∈ f(x1), . . . , yi ∈ f(xi), (y1, . . . , yi) ∈ R.

The Lattice Structure of Sets of Surjective Hyper-Operations 371

More generally, for r1, . . . , rk ∈ D, we say f is a she from (B; r1, . . . , rk) to
(B; r′1, . . . , r

′
k) if f is a she of B and r′1 ∈ f(r1), . . . , r′k ∈ f(rk). A she may

be identified with a surjective endomorphism if each element is mapped to a
singleton set. On finite structures surjective endomorphisms are necessarily au-
tomorphisms.

2.1 Galois Connections

Relational side. For a set F of shops on the finite domain B, let Inv(F) be
the set of relations on B of which each f ∈ F is a she (when these relations are
viewed as a structure over B). We say that S ∈ Inv(F) is invariant or is preserved
by (the shops in) F . Let shE(B) be the set of shes of B. Let Aut(B) be the set of
automorphisms of B.

Let 〈B〉{∃,∀,∧,∨}-FO and 〈B〉{∃,∀,∧,∨,=}-FO be the sets of relations that may be
defined on B in {∃, ∀,∧,∨}-FO and {∃, ∀,∧,∨,=}-FO, respectively.

Lemma 1 ([5]). Let r := (r1, . . . , rk) be a k-tuple of elements of the finite-
signature B. There exists:

(i). a formula θr(u1, . . . , uk) ∈ {∃, ∀,∧,∨,=}-FO s.t. (B, r′1, . . . , r′k) |= θr(u1, . . . ,
uk) iff there is an automorphism from (B, r1, . . . , rk) to (B, r′1, . . . , r′k).

(ii). a formula θr(u1, . . . , uk) ∈ {∃, ∀,∧,∨}-FO s.t. (B, r′1, . . . , r′k) |= θr(u1, . . . , uk)
iff there is a she from (B, r1, . . . , rk) to (B, r′1, . . . , r′k).

Proof. For Part (i), let b1, . . . , b|B| an enumeration of the elements of B
and ΦB(v1, . . . , v|B|) be the associated conjunction of positive facts. Set
θr(u1, . . . , uk) :=

∃v1,. . . , v|B|ΦB(v1, . . . , v|B|)∧∀v (v = v1∨. . .∨v = v|B|)∧u1 = vλ1∧. . .∧uk = vλk
,

where r1 = bλ1 , . . . , rk = bλk
. The forward direction follows since B is finite,

so any surjective endomorphism is necessarily an automorphism. The backward
direction follows since all fo formulae are preserved by automorphism.

[Part (ii).] This will require greater dexterity. Let r ∈ Bk, s := (b1, . . . , b|B|)
be an enumeration of B and t ∈ B|B|. Recall that ΦB(r,s)(u1, . . . , uk, v1, . . . , v|B|)
is a conjunction of the positive facts of (r, s), where the variables (u,v) corre-
spond to the elements (r, s). In a similar manner, ΦB(r,s,t)(u1, . . . , uk, v1, . . . , v|B|,
w1, . . . , w|B|) is the conjunction of the positive facts of (r, s, t), where the vari-
ables (u,v,w) correspond to the elements (r, s, t). Set θr(u1, . . . , uk) :=

∃v1, . . . , v|B| ΦB(r,s)(u1, . . . , uk, v1, . . . , v|B|)∧∀w1 . . .w|B|
∨

t∈B|B|

ΦB(r,s,t)(u1, . . . , uk, v1, . . . , v|B|, w1, . . . , w|B|).

See [5] for a full proof of correctness.

The following is the main theorem of [5].

372 B. Martin

Theorem 1 ([5]). For a finite-signature structure B we have

(i). 〈B〉{∃,∀,∧,∨,=}-FO = Inv(Aut(B)) and
(ii). 〈B〉{∃,∀,∧,∨}-FO = Inv(shE(B)).

Proof. Part (i) is well-known and may be proved in a similar, albeit simpler,
manner to Part (ii), which we now prove.

[ϕ(v) ∈ 〈B〉{∃,∀,∧,∨}-FO ⇒ ϕ(v) ∈ Inv(shE(B)).] This is proved by induction
on the complexity of ϕ(v) (see [5] for a full exposition).

[S ∈ Inv(shE(B)) ⇒ S ∈ 〈B〉{∃,∀,∧,∨}-FO.] Consider the k-ary relation S ∈
Inv(shE(B)). Let r1, . . . , rm be the tuples of S. Set

θS(u1, . . . , uk) := θr1(u1, . . . , uk) ∨ . . . ∨ θrm(u1, . . . , uk).

Manifestly, θS(u1, . . . , uk) ∈ {∃, ∀,∧,∨}-FO. For ri := (ri1, . . . , rik), note that
(B, ri1, . . . , rik) |= θri(u1, . . . , uk) (the ‘identity’ shop will be formally introduced
in the next section). That θS(u1, . . . , uk) = S now follows from Part (ii) of
Lemma 1, since S ∈ Inv(shE(B)).

Theorem 2. For a countable-signature structure B we have

(i). 〈B〉{∃,∀,∧,∨,=}-FO = Inv(Aut(B)) and
(ii). 〈B〉{∃,∀,∧,∨}-FO = Inv(shE(B)).

Proof. Again, Part (i) is well-known and may be proved in a similar, but simpler,
manner to Part (ii), which we now prove. The direction [ϕ(v) ∈ 〈B〉{∃,∀,∧,∨}-FO

⇒ ϕ(v) ∈ Inv(shE(B))] is proved as before.
For [S ∈ Inv(shE(B)) ⇒ S ∈ 〈B〉{∃,∀,∧,∨}-FO], we proceed similarly to before,

but using finiteness of the domain B, which will rescue us from the pitfalls of an
infinite signature. Consider the finite disjunction we previously built:

θS(u1, . . . , uk) := θr1(u1, . . . , uk) ∨ . . . ∨ θrm(u1, . . . , uk).

Let R1, R2, . . . be an enumeration of the extensional relations of B. Let Bi be
the reduct of B to the signature 〈R1, . . . , Ri〉. For j ∈ [m] let θi

rj
(u1, . . . , uk)

be built as in Lemma 1, but on the reduct Bi. The relations θ1
rj

(u1, . . . , uk),
θ2
rj

(u1, . . . , uk), . . . are monotone decreasing on Bk – the shes must preserve an
increasing number of extensional relations – and therefore reach a limit lj s.t.
θ

lj
rj (u1, . . . , uk) =θrj (u1, . . . , uk). Let l := max{l1, . . . , lm} and build θS(u1,. . . , uk)

over the finite-signature reduct Bl. The result follows.

In the following, ≤L indicates the existence of a logspace many-to-one reduction.

Theorem 3. Let B and B′ be structures over the same domain B s.t. B′ is
finite-signature.

(i). If Aut(B) ⊆ Aut(B′) then {∃, ∀,∧,∨,=}-FO(B′) ≤L {∃, ∀,∧,∨,=}-FO(B).
(ii). If shE(B) ⊆ shE(B′) then {∃, ∀,∧,∨}-FO(B′) ≤L {∃, ∀,∧,∨}-FO(B).

The Lattice Structure of Sets of Surjective Hyper-Operations 373

Proof. Again, Part (i) is well-known and the proof is similar to that of Part
(ii), which we give. If shE(B) ⊆ shE(B′), then Inv(shE(B′)) ⊆ Inv(shE(B)). From
Theorem 1, it follows that 〈B′〉{∃,∀,∧,∨}-FO ⊆ 〈B〉{∃,∀,∧,∨}-FO. Recalling that B′

contains only a finite number of extensional relations, we may therefore effect a
logspace reduction from {∃, ∀,∧,∨}-FO(B′) to {∃, ∀,∧,∨}-FO(B) by straightfor-
ward substitution of predicates.

Down-shop-monoids and the functional side. Consider the finite domain
D. The identity shop idD is defined by x �→ {x}. Given shops f and g, define
the composition g ◦ f by x �→ {z : ∃y z ∈ g(y)∧ y ∈ f(x)}. Finally, a shop f is a
sub-shop of g – denoted f ⊆ g – if f(x) ⊆ g(x), for all x. A set of surjective shops
on a finite set B is a down-shop-monoid (DSM), if it contains idD, and is closed
under composition and sub-shops1 (of course, not all sub-hyper-operations of a
shop are surjective – we are only concerned with those that are). idB is a she
of all structures with domain B, and, if f and g are shes of B, then so is g ◦ f .
Further, if g is a she of B, then so is f for all (surjective) f ⊆ g. It follows that
shE(B) is always a DSM. If F is a set of permutations, then we write 〈F 〉G to
denote the group generated by F . If F is a set of shops on B, then let 〈F 〉DSM

denote the minimal DSM containing the operations of F . If F is the singleton
{f}, then, by abuse of notation, we write 〈f〉 instead of 〈{f}〉. We will mark-up,
e.g., the shop 1 �→ {1, 2}, 2 �→ {2}, 3 �→ {1, 3} as

1 12
2 2
3 13

.

For a shop f , define its inverse f−1 by x �→ {y : x ∈ f(y)}. Note that f−1 is
also a shop and (f−1)−1 = f , though f ◦ f−1 = idB only if f is a permutation.
For a set of shops F , let F−1 := {f−1 : f ∈ F}.

A permutation subgroup on a finite set B is a set of permutations of B closed
under composition. It may easily be verified that such a set contains the identity
and is closed under inverse. A permutation subgroup may be identified with a
particular type of DSM in which all shops have only singleton sets in their range.

Theorem 4. Let F be a set of permutations (Part (i)) or shops (Part (ii)) on
the finite domain D. Then

(i) 〈F 〉G = Aut(Inv(F)), and
(ii) 〈F 〉DSM = shE(Inv(F)).

Proof. Part (i) is well-known but we give a proof for illustrative purposes.
[〈F 〉G⊆Aut(Inv(F)).] By induction. One may easily see that if f, g∈Aut(Inv(F))

then f ◦ g ∈ Aut(Inv(F)). Further, if f ∈ Aut(Inv(F)) then f−1 ∈ Aut(Inv(F)) as
the set of automorphisms is closed under inverse.

[Aut(Inv(F)) ⊆ 〈F 〉G.] Let |D| = n. One may easily see that Inv(F) =
Inv(〈F 〉G) (for the forward containment, note that inverse follows from the fact
that F is a set of bijections on a finite set). Let R be the n-ary relation that
lists the permutations in 〈F 〉G (e.g., the identity appears as (1, 2, . . . , n)); R is
preserved by 〈F 〉G. We will prove Aut(Inv(〈F 〉G)) ⊆ 〈F 〉G by contraposition. If g

1 Closure under sub-shops is termed down closure in [1], hence the D in DSM.

374 B. Martin

is a permutation not in 〈F 〉G, then g /∈ R and g does not preserve R as it maps
the identity to g. Therefore g /∈ Aut(Inv(〈F 〉G)) and the result follows.

[Part (ii).]
[〈F 〉DSM ⊆ shE(Inv(F)).] By induction. One may easily see that if f, g ∈

shE(Inv(F)) then f ◦ g ∈ shE(Inv(F)). Similarly for sub-shops and the identity.
[shE(Inv(F)) ⊆ 〈F 〉DSM .] Let |D| = n. One may easily see that Inv(F) =

Inv(〈F 〉DSM). Let R be the n2-ary relation that lists the shes of 〈F 〉DSM in the
following manner. Consider the n2 positions enumerated in n-ary, i.e. by (i, j) s.t.
i, j ∈ [n]. Each she f gives rise to many tuples in which the positions (i, 1),. . . ,
(i, n) are occupied in all possible ways by the elements of f(i). Thus, f0 :=

1 12
2 2
3 3

generates the following eight tuples

(1, 1, 1, 2, 2, 2, 3, 3, 3)
(1, 1, 2, 2, 2, 2, 3, 3, 3)
(1, 2, 1, 2, 2, 2, 3, 3, 3)
(1, 2, 2, 2, 2, 2, 3, 3, 3)
(2, 1, 1, 2, 2, 2, 3, 3, 3)
(2, 1, 2, 2, 2, 2, 3, 3, 3)
(2, 2, 1, 2, 2, 2, 3, 3, 3)
(2, 2, 2, 2, 2, 2, 3, 3, 3)

Let pi,j ∈ [n] be the element at position (i, j). We describe as a full coding
of f any such tuple s.t., for all i, {pi,1, . . . , pi,|D|} = f(i). In our example, all
tuples except the first and last are full codings of f0. Note that R is preserved
by 〈F 〉DSM . We will prove shE(Inv(〈F 〉G)) ⊆ 〈F 〉DSM by contraposition. If g
is a shop not in 〈F 〉DSM , then g does not appear fully coded in R and g does
not preserve R as it maps the identity to all tuples that are full codings of g.
Therefore g /∈ shE(Inv(〈F 〉DSM)) and the result follows.

2.2 Lattice Isomorphism

Consider sets of relations Γ on the normalised domain D = [n], closed under
{∃, ∀,∧,∨}-FO-definability (such sets may be seen as countable signature struc-
tures D). Let Rn be the lattice of such sets ordered by inclusion. Let the lattice
Fn be of DSMs on the set [n], again ordered by inclusion.

Corollary 1. The lattices Rn and Fn are isomorphic and the operators Inv and
shE induce isomorphisms between them.

Proof. From the second parts of Theorems 2 and 4.

The permutation subgroups form a lattice under inclusion whose minimal el-
ement contains just the identity and whose maximal element is the symmet-
ric group S|B|. As per Theorem 3, this lattice classifies the complexities of
{∃, ∀,∧,∨,=}-FO(B) (again there is an isomorphism between this lattice and
sets of relations closed under positive fo-definability). In the lattice of DSMs,

The Lattice Structure of Sets of Surjective Hyper-Operations 375

〈
1 12

2 21

〉

〈
1 1

2 12

〉

���������� 〈
1 2

2 1

〉

��

〈
1 12

2 2

〉

����������

〈
1 1

2 2

〉

����������

�� ����������

Fig. 1. The lattice F2

Fig. 2. The lattice F3. At the bottom is the DSM containing only the identity, at

the top is the DSM containing all shops. The author is grateful to his brother for

calculating and drawing F3. The circular node at the top of the diagram is superfluous

to the lattice, being a figment of the imagination of the graph drawing package.

Fn, the minimal element still contains just idB, but the maximal element con-
tains all shops. However, the lattice of permutation subgroups always appears
as a sub-lattice within the lattice of DSMs. In the case of F2, Figure 1, we have
5 DSMs, two of which are the subgroups of S2. In the case of F3, Figure 2,
we have 115 DSMs, only six of which are the subgroups of S3 – so the lattice
complexity jumps very quickly.

376 B. Martin

3 The Structure of Fn

3.1 Blurred Permutation Subgroups and Diagonals

Many of the DSMs of Ln are reminiscent of subgroups of the symmetric group
Sm for some m ≤ n. We say that a shop f on the domain [n] is a blurred
permutation if it may be built from (the shop associated with) the permutation
g on the domain [m] (m ≤ n) in the following manner.

(*) Let P1, . . . , Pm be a partition of [n] s.t. i ∈ Pi for i ∈ [m] and each Pi may
be listed di,1, . . . , di,li . Set f(di,1) = . . . = f(di,li) = Pg(i).

We say that a DSM N over domain [n] is a blurred permutation subgroup (BPS)
if one may build it from (the DSM associated with) a subgroup M of Sm, m ≤ n
by replacing each permutation g ∈M by the blurred permutation f created as in
(∗), and then taking the closure under sub-shops. We do not feel it necessary to
elaborate on this construction save for the example that the group M := 〈 1 2

2 1 〉

– becomes the BPS N := 〈
1 234
2 1
3 1
4 1

〉 when P1 := {1} and P2 := {2, 3, 4}, and

– becomes the BPS N := 〈
1 24
2 13
3 24
4 13

〉 when P1 := {1, 3} and P2 := {2, 4},

and the permutation
1 1
2 3
3 2

becomes the blurred permutation
1 1
2 34
3 2
4 2

when P1 := {1},

P2 := {2} and P3 := {3, 4}. From a blurred permutation (respectively, BPS)
one may read the partitions P1, . . . , Pm, for some suitably chosen permutation
(respectively, group) on domain [m]. A blurred symmetric group is a BPS built
in the manner described from a symmetric group.

With an arbitrary shop f on D, we may associate the digraph Gf on D in
which there is an edge (x, y) if f(x) ' y. The condition of totality ensures Gf has
no sinks and the condition of surjectivity ensures Gf has no sources. f contains
the identity as a sub-shop iff Gf is reflexive. There is an edge from a to some y
in Gg and an edge from y to b in Gf iff there is an edge from a to b in Gf◦g. In
this fashion, it is easy to verify that there is a directed path of length n from a
to b in Gf iff b ∈ fn(a).

Call a shop f diagonal if, for all a and b, we have a ∈ f(b) iff b ∈ f(a).
Examples of diagonal shops are idD and

1 12
2 12
3 3

. It not hard to see that f is diag-

onal iff f = f−1 iff Gf is symmetric (undirected). Diagonal shops are blurred
permutations built in the manner (∗) from an identity shop.

Lemma 2. For all shops f , f ◦ f−1 = f−1 ◦ f is a diagonal shop.

Proof. It is sufficient to prove that f ◦ f−1 is diagonal. Let a ∈ f ◦ f−1(b). Then
there exists y s.t. b ∈ f−1(y) and y ∈ f(a). Thus, y ∈ f(b) and a ∈ f−1(y), i.e.
b ∈ f ◦ f−1(a).

The Lattice Structure of Sets of Surjective Hyper-Operations 377

Let f and g be diagonal shops on the domain D. The minimal diagonal shop h
containing both f and g as a sub-shop is said to be the join of f and g. The union
(f ∪ g) of f and g is the shop given by, for all x ∈ D, (f ∪ g)(x) := f(x) ∪ g(x).

Lemma 3. Let f and g be diagonal shops on the domain [n]. The join of f and
g is (f ∪ g)n = (f ◦ g)n = (g ◦ f)n. In particular, DSMs are closed under join.

Proof. Consider the union f ∪ g. Since idn is a sub-shop of both f and g, i.e. Gf

and Gg are both reflexive, we can see f ∪g ⊆ f ◦ g ⊆ (f ∪g)2 and f ∪g ⊆ g ◦ f ⊆
(f ∪ g)2. The join h of f and g contains exactly those a ∈ h(b) and b ∈ h(a) for
which there is a path in f ∪ g from a to b (and b to a). By reflexivity of f ∪ g
this is equivalent to there being an n-path between a and b in (f ∪ g), which is
equivalent to there being an edge in (f ∪ g)n. Noting (f ∪ g)n = (f ∪ g)2n, the
result follows.

It follows that there is a unique maximal diagonal shop in any DSM M , where
the diagonals are ordered by sub-shops. Let g be a diagonal shop on the domain
[n] with associated partitions P1, . . . , Pm. We say that a shop f respects g if
neither

(i) exists a, b and c, d s.t. a, b are in the same partition Pi and c, d are in distinct
partitions Pj , Pk, respectively, and c ∈ f(a) and d ∈ f(b), nor

(ii) exists a, b and c, d s.t. a, b are in distinct partitions Pj , Pk, respectively, and
c, d are in the same partition Pi and c ∈ f(a) and d ∈ f(b).

Lemma 4. If f does not respect the diagonal g, then either (f ◦ g) ◦ (g ◦ f−1)
or (f−1 ◦ g) ◦ (g ◦ f) is a diagonal shop that is not a sub-shop of g.

Proof. If f does not respect g because of Item (i) above, then h := (f ◦ g) ◦ (f ◦
g)−1 is diagonal s.t. h(c) ⊇ {c, d}. The result follows as (f ◦ g) ◦ (f ◦ g)−1 =
(f ◦ g) ◦ (g ◦ f−1).

If f does not respect g because of Item (ii) above, then f−1 does not respect
g because of Item (i) above. The result follows.

Lemma 5. If g is the maximal diagonal in a DSM M and f is a blurred per-
mutation that respects g, then f ∈M iff there exists f ′ ⊆ f s.t. f ′ ∈M .

Proof. The forward direction is trivial. The backward direction follows from the
observation that f ⊆ f ′ ◦ g, for any f ′ ⊆ f .

3.2 Automorphisms of Fn

The lattice Fn has a collection of very obvious automorphisms corresponding to
the permutations of Sn, in which one transforms a DSM M to M ′ by the uniform
relabelling of the elements of the domain according to some permutation. We
will not dwell on these automorphisms other than to give the example that
M := 〈 1 12

2 2
3 3
〉 maps to M ′ := 〈 1 1

2 2
3 23
〉 under the permutation {1 �→ 3, 2 �→ 2, 3 �→ 1}.

378 B. Martin

There is another, more interesting, automorphism of Fn, which we will call
the inverse automorphism. We do not close our DSMs under inverse because
they were defined in order that the given Galois connections held. It is not hard
to verify that if M is a DSM, then {f−1 : f ∈ M} is also a DSM, which we
call the inverse and denote M−1. It is also easy to see that f = (f−1)−1 and
M = (M−1)−1, from where it follows that inverse is an automorphism of Fn.

3.3 Properties of Inverse

Call a structure B she-complementative if shE(B) = shE(B)−1. Note that, if F is a
DSM, then so is F−1. In fact, this algebraic duality resonates with the de Morgan
duality of ∃ and ∀, and the complexity-theoretic duality of NP and co-NP [5].

Lemma 6. For all B, shE(B) = shE(B)−1.

Proof. It follows from the definition of she that f is a she of B iff f−1 is a she
of B.

We are now in a position to derive our main classification theorem.

Theorem 5. A DSM N is a BPS iff N = N−1.

Proof. It is straightforward to see that a BPS N is s.t. N = N−1. Specifically,
if f ∈ N then f is derived from a shop g of a permutation in a group M . The
inverse f−1 may be derived in the same manner from the inverse g−1 of g.

Now suppose N is s.t. N = N−1. Let g be the maximal diagonal shop in
N . Let P1, . . . , Pm be the associated partitions of g in the manner previously
discussed. Let M be the blurred symmetric group formed from Sm by the parti-
tions P1, . . . , Pm. We claim N ⊆M . This follows from Lemmas 3 and 4, since, if
N ⊆/ M , then some shop f ∈ N fails to respect g, contradicting the maximality
of the diagonal g. From Lemma 5, it follows that N contains a blurred permu-
tation f of M iff it contains any sub-shop f ′ ⊆ f . From closure under inverse
and sub-shops it follows that N must be a BPS.

We may now give a complexity classification for she-complementative structures
based on the following result of [5].

Lemma 7 ([5]). If shE(B) is a BPS derived from Sm, for m≥2, then {∃, ∀,∧,∨}
-FO(B) is Pspace-complete.

Corollary 2. If B is she-complementative then {∃, ∀,∧,∨}-FO(B) is either in
L or is Pspace-complete.

Proof. We know from Theorem 5 that shE(B) is a BPS. If it is a BPS formed
from the trivial group S1, then shE(B) contains all shops. It is easy to see that
{∃, ∀,∧,∨}-FO(B) is in L (indeed one may evaluate the quantified variables in
an instance arbitrarily - for more details see [5]). If shE(B) is a BPS formed from
Sm, with m ≥ 2, then {∃, ∀,∧,∨}-FO(B) is Pspace-complete by Lemma 7.

The Lattice Structure of Sets of Surjective Hyper-Operations 379

3.4 She-Complementative Classes

We now consider natural classes that are she-complementative. A tournament is
a digraph H s.t. for each x, y ∈ H exactly one of (x, y) and (y, x) is in EH.

Lemma 8. Tournaments are she-complementative.

Proof. Let H be a tournament and let f ∈ shE(H). We will prove f−1 ∈ shE(H).
Suppose y1 ∈ f−1(x1) and y2 ∈ f−1(x2) and (x1, x2) ∈ EH; we must prove that
(y1, y2) ∈ EH. The case x1 = x2 is not possible as H has no self-loops. The case
x1 �= x2 but y1 = y2 is also not possible, since it implies {x1, x2} ⊆ f(y1) (by the
pigeonhole principle there must be y′ �= y′′ s.t. there is x′ with x′ ∈ f(y′) and
x′ ∈ f(y′′) – but H has either (y′′, y′) ∈ EH or (y′, y′′) ∈ EH but no self-loop
(x′, x′)). Finally, we may assume x1 �= x2 and y1 �= y2. One of the edges (y1, y2)
or (y2, y1) is in EH, and it can not be (y2, y1) as this would force (x2, x1) ∈ EH

by the she f . The result follows.

Analysis of the proof of Lemma 8, together with Lemma 7, now gives us the
following.

Corollary 3. If H is a tournament on at least two vertices, then {∃, ∀,∧,∨}-FO
(H) is Pspace-complete.

We conclude this section with another example of a class of structures that
are she-complementative. The proof of the following is a simple application of
Lemma 6

Lemma 9. If B is such that, for each R ∈ B we also have the (set-theoretic)
complement R ∈ B, then B is she-complementative.

Note that dichotomy of {∃, ∀,∧,∨}-FO(B)whenB satisfies the condition of the pre-
vious lemma follows from the classification for {¬, ∃, ∀,∧,∨}-FO(B) given in [6].

4 Digraph Templates

We now extend the result for tournaments of the previous section. A semicomplete
digraph is an H s.t. for each x, y ∈ H at least one of (x, y) and (y, x) is in EH.

Lemma 10. Let H be a semicomplete digraph. Then shE(H) is a permutation
subgroup.

Proof. We will prove that shE(H) is a permutation subgroup, whereupon the
result will follow from Lemma 6 as shE(H) would be closed under inverse.

Since H is semicomplete, H is reflexive digraph with no induced clique of
size > 1. Consider f ∈ shE(H). For each x ∈ H , |f(x)| = 1 – for suppose
f(x) ⊇ {y1, y2} with y1 �= y2, then the self-loop at x implies there is a double
edge (y1, y2) and (y2, y1), which is impossible as there is no induced clique of
size > 1. It follows that shE(H) is a permutation subgroup.

Lemma 7 now gives us the following.

380 B. Martin

Corollary 4. If H is a semicomplete digraph on at least two vertices, then
{∃, ∀,∧,∨}-FO(H) is Pspace-complete.

Recall that a graph is a digraph whose edge relation is symmetric (and may have
self-loops). A graphH is trivial if EH = ∅ or H2. An isolated vertex x in H is s.t.
∀y ∈ H (x, y), (y, x) /∈ EH. Conversely, a dominating vertex x in H is s.t. ∀y ∈ H
(x, y), (y, x) ∈ EH. A graph is bipartite if its vertices admit a partition into two
sets s.t. all edges are strictly between the two partition sets. In a graph H the
distance between vertices x and y, d(x, y), is the minimal length of a path that
connects them (or infinity otherwise). It follows, under this definition, that the
distance between a vertex and itself is at most two, unless that vertex is isolated.
The diameter of a graph H is the maximum value of {d(x, y) : x, y ∈ H}. We
will use the following result from [7,6,5]

Lemma 11 ([7]). If H is a graph with an isolated vertex, some edge and no
self-loops (respectively, dominating vertex, some non-edge and no loopless vertex)
then {∃, ∀,∧,∨}-FO(H) is NP-complete (respectively, co-NP-complete).

Proof (Sketch). We sketch the argument for NP (that for co-NP is symmetric).
Membership of NP comes from the fact that in the evaluation of a sentence φ
of {∃, ∀,∧,∨}-FO on H one may evaluate all of the universal variables as the
isolated vertex x. For completeness, one reduces from the NP-hard evaluation
problem for existential positive fo logic without equality (see [6]).

Theorem 6. If H is a graph of diameter at least 3 then {∃, ∀,∧,∨}-FO(H) is
NP-hard.

Proof. We will prove the result for H of diameter 3 – the proof for larger di-
ameters is similar. We will give a reduction from not-all-equal 3-satisfiability
(see [10]). From an instance I of not-all-equal 3-sat we build a sentence φ of
{∃, ∀,∧,∨}-FO in the following manner. Firstly, we must find x, y s.t. d(x, y) = 3,
so φ begins ∀x, y E(x, y) ∨ ∃z E(x, z) ∧E(z, y) Note that any x, y for which
this is not already satisfied are s.t. d(x, y) = 3 (and such x, y exist). Now φ
continues . . . ∃z1, z2 E(x, z1)∧E(z1, z2)∧E(z2, y) Define the unary relations
u ≈ z1 to be E(x, u) ∧E(u, z2) and u ≈ z2 to be E(z1, u) ∧E(u, y). The crucial
observation is that the sets {u : u ≈ z1} and {u : u ≈ z2} are necessarily dis-
joint and may be used to encode the true and false of not-all-equal 3-sat. In the
following diagram u1 ≈ z1 and u2 ≈ z2.

u2
x

y

z1

u1

z2

For each variable Vi in the instance I we introduce ∃vi to the interior of φ.
For each triple (Va1 , Va2 , Va3) constrained to be not-all-equal, we introduce the
sequence (va1 ≈ z1 ∧ va2 ≈ z1 ∧ va3 ≈ z2) ∨ (va1 ≈ z1 ∧ va2 ≈ z2 ∧ va3 ≈ z1)∨
etc., where we have all possible not-all-equal assignments. That I is satisfiable
by a not-all-equal assignment iff φ is true on H is clear by construction.

The Lattice Structure of Sets of Surjective Hyper-Operations 381

We note that this result is optimal in the sense that there is a graph H2
of diameter 2 that is unlikely to have {∃, ∀,∧,∨}-FO(H2) being NP-hard, as
{∃, ∀,∧,∨}-FO(H2) is in co-NP (take H2 with vertices {1, 2, 3} and edge set
{(1, 2), (2, 1), (2, 2), (2, 3), (3, 2)}, and appeal to Lemma 11). The following is a
conjecture about the complexity of QCSPs from [8].

Conjecture 1 ([8]). If H is a connected non-bipartite graph then QCSP(H) is
Pspace-complete.

Theorem 7. Let H be an antireflexive graph or a reflexive graph,then

– if H is trivial, then {∃, ∀,∧,∨}-FO(H) is in L.
– if H is non-trivial and with an isolated vertex, then {∃, ∀,∧,∨}-FO(H) is

NP-complete.
– if H is non-trivial and with a dominating vertex, then {∃, ∀,∧,∨}-FO(H) is

co-NP-complete.

And, assuming Conjecture 1,

– otherwise, {∃, ∀,∧,∨}-FO(H) is Pspace-complete.

Proof. In the L case, shE(H) contains all shops – it is easy to see that {∃, ∀,∧,∨}-
FO(H) is in L (evaluate the quantified variables in an instance arbitrarily – see
[5]). The NP-complete and co-NP-complete cases follow from Lemma 11.

For the Pspace-complete case, we may reduce from QCSP(H) – essentially
a subproblem of {∃, ∀,∧,∨}-FO(H) – if H is antireflexive, connected and non-
bipartite (appealing to Conjecture 1). We may do likewise if H is such a graph.
This is because {∃, ∀,∧,∨}-FO(H) and the complement of {∃, ∀,∧,∨}-FO(H)
are polynomially equivalent (by de Morgan duality – H |= φ iff H |=/ φ′ where
φ′ is derived from φ by swapping all instances of ∃ and ∀, and all instances
of ∧ and ∨ see [6]) and Pspace is closed under complementation. We are left
with the cases where H is antireflexive and bipartite or not connected (and their
reflexive complements). In both of these cases we can {∃, ∀,∧,∨}-FO define some
H′ that is the union of m ≥ 2 reflexive cliques (whereupon hardness follows from
Lemma 7 as shE(H′) is a BPS derived from Sm). In the disconnected case, for
|H | = n, we will define the edge relation in H′ to be given by being in the same
connected component, vis

E(x, y) ∨
n∨

j=1

∃w1, . . . , wj E(x,w1) ∧ . . . ∧E(wj , y).

For the bipartite case we will just consider even length paths, defining the edge
relation by

(∃w1 E(x,w1) ∧ E(w1, y)) ∨
n∨

j=1

∃w1, . . . , w2j+1 E(x,w1) ∧ . . . ∧ E(w2j+1, y).

Note that this provides all self-loops, as there are no isolated vertices in either
of these cases.

382 B. Martin

5 Final Remarks

We have continued the study of the complexity of the problems {∃, ∀,∧,∨}-FO(B)
through an analysis of the lattice Fn.

It would be interesting to try to derive a generalisation of Corollary 2 for
the case that shE(B) does not necessarily equal, but is isomorphic to, shE(B)−1.
This includes several interesting new cases (see [9]), but we would hope that
dichotomy between L and Pspace-complete still holds.

It would also be interesting to improve Theorem 6 to Pspace-completeness. In
fact, in all cases we know, one can rely on ad-hoc arguments to prove Pspace-
hardness; but we know of no general mechanism for this result.

References

1. Börner, F.: Total multifunctions and relations. In: AAA60: Workshop on General

Algebra, Dresden, Germany (2000)

2. Börner, F., Krokhin, A., Bulatov, A., Jeavons, P.: Quantified constraints and sur-

jective polymorphisms. Tech. Rep. PRG-RR-02-11, Oxford University (2002)

3. Bulatov, A.A.: A dichotomy theorem for constraint satisfaction problems on a 3-

element set. J. ACM 53 (1), 66–120 (2006)

4. Lynch, N.: Log space recognition and translation of parenthesis languages. J.

ACM 24, 583–590 (1977)

5. Madelaine, F., Martin, B.: The complexity of positive first-order logic without

equality. In: Symposium on Logic in Computer Science, pp. 429–438 (2009)

6. Martin, B.: First order model checking problems parameterized by the model. In:

Beckmann, A., Dimitracopoulos, C., Löwe, B. (eds.) CiE 2008. LNCS, vol. 5028,

pp. 417–427. Springer, Heidelberg (2008)

7. Martin, B.: Model checking positive equality-free FO: Boolean structures and di-

graphs of size three. CoRR abs/0808.0647 (2008)

8. Martin, B., Madelaine, F.: Towards a trichotomy for quantified H-coloring. In:

Beckmann, A., Berger, U., Löwe, B., Tucker, J.V. (eds.) CiE 2006. LNCS, vol. 3988,

pp. 342–352. Springer, Heidelberg (2006)

9. Martin, B., Martin, J.: The complexity of positive first-order logic without equality

II: the four-element case. To appear CSL (2010)

10. Papadimitriou, C.: Computational Complexity. Addison-Wesley, Reading (1994)

11. Schaefer, T.: The complexity of satisfiability problems. In: STOC (1978)

Constraint Based Scheduling to Deal with
Uncertain Durations and Self-Timed Execution�

Michele Lombardi and Michela Milano

DEIS, Università di Bologna V.le Risorgimento 2, 40136, Bologna, Italy

Abstract. In this paper we propose off-line and on-line extensions to

the Resource Constrained Project Scheduling Problem. The off-line ex-

tension is a variant of RCPSP with time lags and uncertain, bounded

activity durations. In this context we improve over our previous work pre-

sented in [12] by proposing an incremental flow computation for finding

minimal conflict sets and a set of filtering rules for cumulative constraint

propagation. The on-line extension is based instead on considering an

on-line semantics such as the Self-Timed Execution and take it into ac-

count in the scheduling process. Adding the on-line aspect to the prob-

lem makes the CSP framework no longer suitable. We have extended the

CSP framework to take into account general search decisions and aux-

iliary unbound variables. An extensive set of experimental results show

an improvement of up to two orders of magnitude over our previous

approach.

1 Introduction

In this paper we consider two notable extensions to the traditional Resource Con-
strained Project Scheduling Problem (RCPSP) that are widely used in practice.
The classical RCPSP is defined on a set of activities that are linked via precedence
relations and use a given amount of limited available cumulative resources. A so-
lution of a RCPSP is an assignment of starting time to activities such that all tem-
poral and resource constraints are satisfied and the completion time minimized.

Practically useful extensions to the RCPSP mainly concern two aspects: the
off-line model and the on-line execution. Off-line extensions of the classical
RCPSP include:

– time windows on the activity starting time,
– minimum and maximum time lags between the execution of two activities
– uncertain (bounded) durations: activity durations cannot be decided but

range at run time between minimum and maximum known values.

In particular, uncertain durations make the extended problem no longer suit-
able for scheduling by assignment of starting times. Similarly to the Precedence
� The work described in this publication was supported by the PREDATOR Project

funded by the European Community’s 7th Framework Programme, Contract FP7-

ICT-216008 and by the ARTEMIS project SMECY, ARTEMIS-2009-1-100230.

D. Cohen (Ed.): CP 2010, LNCS 6308, pp. 383–397, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

384 M. Lombardi and M. Milano

Constraint Posting approach we hence assume the RCPSP solution to be an
extended project graph with additional precedence constraints; this must be re-
source conflict free for all combination of activity durations. In the off-line
setting the main contribution of this work are two improvements over our previ-
ous paper [12] and namely, the incremental flow computation for finding minimal
conflict sets and a set of filtering rules for cumulative constraint propagation.

The on-line execution schema is also taken into account in this paper as a ma-
jor contribution. The extended graph derived by the addition of new precedence
constraints has some flexibility that can be exploited at run time. However, we
can suppose that a run-time semantics makes some on-line executions infeasible.
One widely used execution semantics in the field of system design is the Self-
Timed Execution (STE); this policy requires that, if all predecessors of a task
i have completed their execution, task i cannot be delayed. Additional prece-
dence constraints (added to ensure the network is dynamically controllable and
conflict-free) should obey STE restrictions as well.

Adding the on-line aspect to the problem complicates the overall picture and
makes the CSP framework no longer suitable; the last important contribution of
this paper is a extension of the CSP definition to take into account (1) search
decisions not in the form of variable assignments and (2) auxiliary variables not
necessarily bound in the final solution.

We present an extensive set of experimental results, showing the algorithm
achieves up to two orders of magnitude speed ups w.r.t. the approach proposed
in [12]. In addition, having considered the on-line execution schema has substan-
tially reduced the number of precedence constraints added, therefore improving
flexibility.

2 Problem Description

Constraint based scheduling stems out of the classical Resource Constrained
Project Scheduling Problem (RCPSP), consisting in scheduling a set A of prece-
dence connected activities ai over a set R of limited capacity resources rk. The
structure of the precedence relations is usually captured in the RCPSP via a
directed graph G = 〈A,E〉 (project graph), where E is the set of arcs (ai, aj).
Each activity requires an amount rqik of each resource rk ∈ R (where rqik = 0
to denote no requirement) and ck is the capacity of rk. Resources are renewable
(i.e. the consumed capacity is released when an activity is over) and activities are
assumed to have fixed durations (e.g. di); a schedule is defined as an assignment
of start times to activities and a common RCPSP objective is to minimize the
project makespan; resource capacity cannot be exceeded at any point of time.
Figure 1A shows a project graph, with all activities requiring different amounts
(reported next to the nodes) of a single resource with capacity 3.

In CP based scheduling activities are usually modeled by pairs of finite, integer
variables Si, Ei, respectively representing the start/end of activity ai. Start/end
variables must satisfy Ei = Si + di. Precedence relations (denoted as ai ≺ aj)
can be modeled as simple inequalities Ei ≤ Sj; unlike in the basic RCPSP, time

Constraint Based Scheduling to Deal with Uncertain Durations 385

windows on the activity execution, specified via release times rsi and deadlines
dli are naturally taken into account in CP by posting Si ≥ rsi and Ei ≤ dli.
Resource over-usages are prevented by means of the cumulative constraint,
enforcing:

∑
Si≤t<Ei

rqik ≤ ck ∀k, ∀t = 0, . . . eoh (1)

Where eoh (End Of Horizon) is the same as the maximum deadline (i.e. eoh =
maxi(dli)).

Finally, minimum/maximum time lags on the precedence relations (δij/Δij)
can be easily taken into account in CP by replacing the simple inequalities
Ei ≤ Sj with δij ≤ Ei − Sj ≤ Δij . As in the basic RCPSP, a schedule consists
into an assignment of start times to activities.

2.1 Uncertain, Bounded Durations

Here, as in the foregoing work [12] we assume activities have uncertain duration,
bounded by a minimum value di and a maximum Di. Unlike variable durations,
which can be decided at search time and may depend on other problem vari-
ables, uncertain durations can only be observed. Here, we require that temporal
and resource constraints are met for every possible execution scenario: this is a
mandatory requirement whenever hard temporal constraints are to be (e.g. in a
real time scenario).

a0

a1 a2

a5

a6

a7

usg

t

1

a3 a4

2

2

2

11

2

2
a0

a1 a3

a2

a4

a5 a6

a7

3

usg

t
a0

a1 a3

a2

a4

a5 a6

a7

3

A B C

Fig. 1. A) A project network; B) A sample fixed-time schedule; C) Idle time appearing

if durations are shorter

Even with uncertain durations, a feasible schedule can be provided by as-
suming worst case durations and fixing start times, as depicted in Figure 1B.
However, if at run time some duration turns out to be shorter, then maximum
time lags may be violated and a lot of idle time may be inserted (Figure 1C).

Ideally, one would like to be able to anticipate activities in case they last
shorter. This is tackled in Precedence Constraint Posting approaches by assum-
ing the presence of a simple on-line dispatcher with the ability to assign an actual
start time to each ai; the dispatcher proceeds by choosing a start in the time
window of Si, compatible with the completion time of its predecessors aj . In this

386 M. Lombardi and M. Milano

setting, a solution to the scheduling problem is a set set E′ of additional prece-
dence constraints, such that (A) the dispatcher always produces a time feasible
schedule (i.e. dynamic controllability [17] holds) and (B) no resource conflict can
arise at run-time.

Condition (B) holds if and only if the graph contains no Conflict Set, i.e. no
set of possibly overlapping activities collectively overusing a resource. Formally:

Definition 1. A Conflict Set is a set CS of activities such that:

1. ∃rk ∈ R :
∑

ai∈CS rqik > ck
2. ∀ai, aj ∈ CS, ai �= aj : ai * aj is consistent with the temporal constraints.

The decision version of the resulting scheduling problem consist in finding such
a set E′ of additional precedence constraints. A related optimality problem is
that of determining the tightest global deadline eoh for which such a set E′ can
be provided. The number of added precedence relations |E′| can be considered
a second cost metrics, as it impacts the flexibility of the provided solution, i.e.
the amount of computation time which can be saved if activity durations are
not maximum at run time.

2.2 Run-Time Semantics

The depicted setting, with an on-line dispatcher assigning the actual start time, is
often the exact description of how the schedule is executed in practice. Moreover,
in some cases such a dispatcher may be subject to further restrictions, collectively
referred to as run-time semantics.

One of the main contribution of this paper is an extension of the outlined
scheduling model to incorporate run-time semantics; as those are basically on-
line enforced constraint, the integration of such an element is not straightforward.
In particular, we focus here on dispatchers restricted to follow the so-called Self
Timed Execution (STE dispatchers); STE forbids to delay an activity at run-time
once all its predecessors are over.

In the following, we also refer to the dispatcher assumed by usual PCP ap-
proaches as NULL dispatcher (as it is subject to no additional restriction); this
satisfies two important theorems:

Theorem 1. The Conflict Sets of the input graph G in a PCP approach relying
on the NULL dispatcher are the same as in a conventional scheduling approach
where start times are fixed.

Theorem 2. By adding a new precedence constraint, we can only remove some
of the Conflict Sets of the input graph G with the NULL dispatcher.

Proofs are omitted due to lack of space. Note Theorem 1 does not hold in the
general case. I particular, with STE:

1. the CS in G are a subset of those with the NULL Dispatcher (hence Theo-
rem 1 does not hold);

Constraint Based Scheduling to Deal with Uncertain Durations 387

2. by adding a new precedence constraint, we can both add and remove CS
from G (hence Theorem 2 does not hold).

Basically, the restrictions enforced by STE avoid all CS which could result from
delaying an activity; however, the addition of a precedence relation may “push”
an activity along the timeline until new overlaps (and thus new conflicts) arise.
This is in principle a major difference with conventional CP problems, where
possible infeasibilities can only be removed as search deepens.

3 Related Work

The Resource Constrained Project Scheduling Problem has been extensively
studied both in the CP and in Operations Research communities.

In particular, most of the RCPSP related work comes from an OR background;
the full literature body is too large to fit the available space, hence only some key
references are given. Work [4] represents and excellent (although a little dated)
survey and proposes a widely popular notation. For more recent surveys, the
reader may refer to [6], or to [9] for heuristic solution approaches.

Minimum and maximum time lags have been considered in the context of
RCRPSP problem with fixed activity durations only; for a list of recent ap-
proaches one may refer to [6]. Uncertain durations are traditionally taken into
account by Stochastic RCPSP (see [7] for a survey and [15] for a seminal work).
Here the focus on expected makespan minimization; to the best of the author
knowledge, deadlines and maximum time lag constraints have never be taken
into account in the context of Stochastic RCPSP. For a broader discussion of
scheduling techniques in the presence of uncertainty, see [2].

On the CP side, the book [1] stands as a main reference, while [10,3] (among
the others) propose more advanced filtering techniques for the cumulative con-
straint.

The Precedence Constraint Posting approach is best formalized in [14], but
has been extensively used in the past (see [11] and [15] as examples). The idea
of branching over Conflict Sets was in fact introduced in [8] (in 1983).

Dynamic Controllability was introduced in [17] over Simple Temporal Net-
works with Uncertainty, for which controllability is achievable in polynomial
time (see [13]). Finally, observe that the simple on-line dispatcher taken into
account by our approach has nothing to do with the advanced on-line tech-
niques used in [16]: in our approach, all computationally expensive optimization
is performed prior to execution.

4 A Brief Revisitation of CSPs

The outlined scheduling setting present unique features hardly fitting the usual
CSP definition; on one side, solving a problem does not require all variables to
be assigned (rather, all possible resource conflicts must be wiped out); on the

388 M. Lombardi and M. Milano

other, the lack of validity of Theorem 2 seems to compromise the underlying
principles of CP dept first search.

We observe that similar issues are often encountered in practice, and equally
often solved by seamlessy diverging from the usual CSP framework. We argue
that such oddities rather point out the lack in the CSP definition of some im-
portant elements we all are familiar with. As a solution, we introduce, in the
context of the tackled scheduling problem, a so-called Extended CSP (ECSP).

Definition 2. An ECSP is a 4-tuple 〈X,D, C, T 〉 where X = {Xi} is the set
of variables, D = {Di} is the set of corresponding domains and C = {Cj} is a
set of constraints; T = {τk} is second set of constraints representing the possible
decisions.

In a nutshell, the following main differences with a conventional CSP exist and
will be exemplified on the problem at hand:

#1: We assume problem constraints to embed a required consistency level; in
detail, a constraint Cj does not list the allowed tuples, but rather allowed domain
states. For example, suppose we have X0, X1 ∈ [1..3] and a constraint X0 < X1
wit required GAC. Then the constraint is satisfied when domains (D1, D2) are
([1], [2]), ([1], [3]), ([2], [3]) as well as ([1], [2..3]), ([1..2], [3]), ([1..2], [2..3]).

#2: A solution of aECSP is a subset of decisionsT ′ ⊆ T such that 〈X,D, C ∪ T ′, ∅〉
is consistent. This accommodates many practical situations where there are aux-
iliary variables which may not need to be instantiated to get a solution. Search
proceeds by moving decisions from the initial set T to C.

#3: Filtering is decision-aware. Formally, filtering can remove any value v in a
domain which is not consistent with any subset T ′ of possible decisions (T ′ ∈ 2T).
This has an important consequence: checking whether a search node is a solution
amounts to temporary assume no more decisions can be taken (i.e. T = ∅) and
testing consistency; now, as filtering is decision-aware, assuming T = ∅ may allow
additional propagation and make consistent a previously inconsistent state.

5 The Proposed Scheduling Framework

Specifying a scheduling framework amounts to show how each of the elements
presented in Section 2 can be modeled and tackled in the 〈X,D,C, T 〉 tuple.
Precedence Constraint Posting and MCS based search serve as a basis for our
model and our solution method.

5.1 Variables, Domains and Temporal Constraints

To represent activities and their relations over time, we rely on the temporal
model we presented in [12], closely related to Simple Temporal Networks with
Uncertainty (STNU, [17]). The model provides the following building blocks:

Constraint Based Scheduling to Deal with Uncertain Durations 389

– Time event variables (Ti), for which a time window is specified; for each
Ti, the domain Di is the time window itself.

– Free constraints (Ti
[dij,Dij]−−−−−→ Tj), meaning that at least a value d′ in the

interval [dij , Dij] must exist such that Tj = Ti+d′; 0 ≤ dij ≤ Dij must hold.

– Contingent constraints (Ti
[dij:Dij]−−−−−→ Tj), meaning that Ti and Tj must

have enough flexibility to allow Tj = Ti + d′ for each value d′ ∈ [dij , Dij];
0 ≤ dij ≤ Dij must hold.

The required consistency level is Generalized Arc Consistency, which is equiv-
alent in this case to dynamic controllability. GAC can be enforced efficiently
on the temporal network by means of linear cost propagations (see [12]). Fig-
ure 2 shows a very simple temporal network featuring four event variables, two
contingent constraints and a free constraint.

[10:20] [10,20] [10:20]

[0,0,30,30] [10,20,50,50] [20,30,60,60] [30,50,80,80]

T0 T1 T2 T3

sp so eo ep

Fig. 2. The 4 value time window of time event variables

The time window of each event variable Ti is specified by means of 4 time
values, namely sp(Ti), so(Ti), eo(Ti), ep(Ti). Values sp(Ti) and ep(Ti) delimit
the so-called possible span and specify the time span where the event may take
place at run time; formally, let Σ be the set of possible execution scenarios σ
(i.e. combination of task durations):

∀t ∈ [sp(Ti), ep(Ti)], ∃σ ∈ Σ such that event “i” occurs at time t

Values so(Ti) and eo(Ti) bound the so-called obligatory span; if an event is forced
to occur out of its obligatory span (i.e. if sp > eo or ep < so) dynamic controlla-
bility is compromised. Formally:

∀σ ∈ Σ, event “i” occurs in]0, so(Ti)[∪]eo(Ti), eoh] ⇒ no dyn. controllability

The 4 points time window allows one to test constant time whether a contingent
or free constraint can be consistently added with the current CSP state.

Each activity ai is modeled by introducing two event variables (referred to
as Si and Ei from now on) to represent its start/end time. Pairs of start/end
variables related to the same activity are linked by a contingent constraint, while
free constraint are used to model precedence relations; overall we have:

Si ∈ [rsi..eoh], Ei ∈ [0..dli] ∀ai ∈ A (2)

Si
[di:Di]−−−−→ Ei ∀ai ∈ A (3)

Ei
[δij ,Δij]−−−−−→ Sj ∀(ai, aj) ∈ E (4)

390 M. Lombardi and M. Milano

where we recall that di,Di respectively are the minimum and maximum duration
of activity ai, while δij , Δij are the minimum and maximum time lag associated
to arc (ai, aj); rsi is the release time of ai and dli the corresponding deadline.
Figure 3 shows an outline of the temporal model corresponding to the project
graph in Figure 1A/3A; contingent constraints are represented as solid arcs,
while dashed arcs represent free constraints.

5.2 Resource Constraints

Renewable resources, such as those described in Section 2 are modeled by means
of the cumulative global constraint, extended in order to deal with time event
variables and uncertain durations. The required consistency level is achieved if and
only if the time network is resource conflict free. Both the extended cumulative
filtering and the consistency check procedure are described in the followings.

a0

a1 a2

a5

a6

a7

1

a3 a4

2

2

2

11

2

2

A

2

B C

2 (2)

2 (2)

4 (2)

2 (2)

2 (2)

1 (1) 1 (1)

4 (1)

S/T cut

22

1
1 2

2
1

1

2

S0

E0

E1

E3 E4

E2

E5

E6

E7

S2

S5

S6

S4

S7

S3

S1

0 0

0

0

Fig. 3. A) The reference project Graph B) An outline of the corresponding temporal

model C) Solving a minimum flow problem over the temporal network (minimum flow

requirements are between round brackets)

Consistency Check: Checking consistency for cumulative constraint basically
consists in detecting possible resource conflicts. We recall (see Definition 1) that
a Conflict Set CS is a set of activities ai such that:

1. ∀ai, aj ∈ CS, ai �= aj : ai * aj and aj * ai are consistent with the current
state of the CSP.

2. ∃rk ∈ R :
∑

ai∈CS rqik > ck

In the context of the current time model, ai * aj translates to Ei
[0,eoh]−−−−→ Sj; the

consistency of the constraint ai * aj can be checked in constant time (thanks
to the four-point time window).

Note that, due to property (1), a Conflict Set is always a stable set on the
project graph G = 〈A,E〉; as G is transitive and acyclic, its maximum weight
stable set can be found in polynomial time by solving a minimum flow problem
(see [5]). By weighting activities with their resource requirement, if we found that

Constraint Based Scheduling to Deal with Uncertain Durations 391

the maximum weight stable set does not exceed the capacity, then the current
CSP contains no conflict.

In practice (see [12]) the process is performed by i) selecting a target resource
rk, ii) annotating arcs in the temporal network corresponding to activities with
their rqik values as minimum flow requirements; then by iii) augmenting with
so-called discovered precedence constraints (i.e. pairs Ti, Tj such that ep(Ti) ≤p

(Tj)). Finally, the minimum flow is computed via the (inverse) Edmond-Karp
algorithm (an embodiment of the Ford-Fulkerson method); the S/T cut identifies
the maximum weight stable set.

Note that, during the consistency check, the set of search decision taken so far
is considered final (T = ∅ in Section 4); this may enable additional propagation
due to STE constraints (see forthcoming Section 5.3) and lead to the discovery of
more precedence constraints. For example, Figure 3C shows the minimum flow
for the graph in Figure 3A; since STE does not allow activities do be delayed,
assuming no more ordering decision can be taken lead to the discovery of E3 → S6,
E4 → S6, E1 → S6, E1 → S5.

The chosen algorithm requires to start from a feasible flow; this should be as
tight as possible, as its value directly impacts the complexity of Edmond-Karp
(this is O(|A| · F), where F is the value of the feasible flow). In this work, we
improved the method by using the minimum flow computed at a search node n′

as feasible flow for each child node n′′.

A

2 (2)

2 (2)

4 (2)

2 (2)

2 (2)

1 (1) 1 (1)

4 (1)

22

1
1 2

2
1

1

2
0 0

0

0

B

2 (2)

2 (2)

4 (2)

2 (2)

2 (2)

1 (1) 1 (1)

4 (1)

22

1
1 2

2
1

1

2
0 0

0

0

fake source

fake sink

2

1 1

Fig. 4. A) Minimum flow at a search node, disrupted by the addition of a precedence

relation B) Repaired flow

Note however that, since (with STE semantic) scheduling decisions may in-
validate some previously discovered arcs, a flow-fixing phase must precede each
minimization. In detail, this is done by introducing a fake source and fake sink
event in the network, requiring 0 unit of each resource and having free constraint
respectively to/from every event in the network. Then, for each arc (ti, tj) (with
flow value f > 0) at node n, no longer present at node n′, we:

– route f flow units from the source to tj and
– route f flow units from ti to the sink.

392 M. Lombardi and M. Milano

The fixing procedure is completed in O(n2) and provides a feasible flow for
n′, usually having pretty good quality. Figure 4A shows the minimum flow,
disrupted by the addition of a precedence constraint a2 * a1; Figure 4B depicts
the corresponding repaired flow.

Extended Cumulative Filtering: Classical Propagation techniques for the
cumulative constraint (such as edge finder [1], or balance [10]) can be used with
uncertain, bounded durations by associating contingent constraints (introduced
to model the activities in the project graph) to a pair of standard CP activities.

More in detail, the possible span of Si is used as the domain for the start
variable of a so-called minimal CP activity, having variable (as opposed to un-
certain) duration in the interval [di, Di]. The start of a maximal CP activity,
with fixed duration equal to Di is instead attached to the obligatory span. Note
this technique in principle enables weaker results compared to a the use of ad-
hoc filtering with uncertain durations, but allows one to easily leverage all the
propagation techniques provided by state of the art CP solvers.

5.3 Handling STE and Global Consistency Check

Taking into account Self Timed Execution Semantic is the main contribution
of this paper. In detail, that can be done by requiring each activity to start
when the last of its explicit predecessors ends. Formally, let A+(ai) be the set

of activities such that Ej
[δij ,Δij]−−−−−→ Sj; then the following constraint must be

satisfied by the on-line start time assignment and included in the C set:

Si =

⎧⎨
⎩

0 if |A+(ai)| = 0

max
ai∈A+(ai)

(
Ej + δij

)
otherwise (5)

Note that the maximum time lag Δij does not appear in the STE fundamental
constraint. The required consistency level for the STE constraints is GAC.

Unfortunately, (5) is a conjunctive constraint when propagating from time 0
to eoh, but a disjunctive constraint during propagation from time eoh to 0. Due
to the disjunctive part, the constraint polytope is not convex and GAC cannot
be enforced in polynomial time in general.

As an exception, polynomial time GAC enforcement becomes feasible when,
during the consistency check, T is set to ∅ (i.e., the current decision set is marked
as final). This allows STE constraint to perform a much stronger propagation
during the consistency check. In such a situation STE propagation enforces:

sp(Si) =

⎧⎨
⎩

0 if |A+(ai)| = 0

max
ai∈A+(ai)

(
sp(Ej) + δij

)
otherwise (6)

so(Si) =

⎧⎨
⎩

0 if |A+(ai)| = 0

max
ai∈A+(ai)

(
so(Ej) + δij

)
otherwise (7)

eo(Si) = ep(Si) = so(Si) (8)

Constraint Based Scheduling to Deal with Uncertain Durations 393

In other words, every activity is moved as close as possible to the schedule ori-
gin. Filtering rule 8, in particular, strongly reduces the ep value of Si variables
(and consequently that of Ei). This may produce a large number of discoverable
precedence relations (i.e. when ep(Ei) ≤ sp(Ei)) which must be taken into ac-
count when checking the consistency of cumulative constraints (see Section 5.2).
Note the effect of the additional propagation must be undone when moving to
the next search node.

5.4 Possible Decisions

The purpose of decision constraints is to solve inconsistencies in 〈X,D, C, ∅〉.
Essentially:

– some resource conflict may still exist (resource infeasibility)
– resource propagation and time window constraint may require and activity

to be delayed and thus violate STE (STE infeasibility)

Therefore, decision constraints must be defined to fix both the situations; in
detail, we introduce Conflict and STE Resolvers.

Conflict Resolvers: A resolver for conflict set CS is a free precedence relation

Ei
[0,eoh]−−−−→ Sj with ai, aj ∈ CS, posted in order to reduce the overall resource

consumption of CS. If the conflict set is minimal (i.e. such that by removing any
ai from CS no resource over-usage occurs), then posting a single resolver wipes
out the whole conflict.

STE Resolvers: An STE resolver for an infeasibility on ai consists in choosing an
arbitrary activity aj as its last explicit predecessor. Once the activity is chosen,

the resolver consists in the constraint Ej
[δij,δij]−−−−−→ Si, where δij is assumed to be

0 if aj is not an explicit predecessor of ai (aj /∈ A+(ai)).

5.5 The Search Process

Once variables, domains, constraints (with the required consistency levels) and
decisions are given, specifying the search process becomes a much simpler task.
In particular, we adopt for the provided scheduling framework a Depth First
Search method.

As in any CP approach, the computation at each node of the search tree
starts by performing propagation, then proceeds with the consistency check:
this involves (temporary) propagating STE constraints and running min-flow
based conflict detection. If neither resource nor STE infeasibilities are reported,
a solution has been hit, otherwise a choice point is opened. The actual behavior
depends on the type of the detected infeasibility; priority is given to resource
infeasibilities if both types are detected.

394 M. Lombardi and M. Milano

Solving Resource Infeasibilities: if a Conflict Set CS is identified on a resource
rk, the search proceeds by extracting an MCS from CS by applying greedy min-
imization; this consists in iteratively removing from CS the activity yielding the
best reduced conflict set. Note that the additional propagation in the consis-
tency check rules out Conflict Sets wit no chance to occur, given the current set
of ordering decisions, thus avoiding the insertion of useless constraints.

The quality of a CS is assessed as in [11] as an estimate of the preserved
search space. In detail, preserved possible span and obligatory span must be
distinguished; MCS with lower preserved obligatory span are preferred, while
the preserved possible span is used to break ties.

The choice point in this case has a branch for each resolver compatible with the
current CSP state; resolvers are then ranked by highest preserved obligatory span
(the preserved possible span is used to break ties); in particular, let ρ0, ρ1 . . . be
the ranked resolvers. Along each branch k, resolvers rho0, . . . ρk−1 are forbidden
(as the corresponding branches have already been explored) and resolver ρk is

posted. Forbidding a resolver Ei
[0,eoh]−−−−→ Sj amounts to posting Sj

[1,eoh]−−−−→ Ei.

Solving STE Infeasibilities: If STE infeasibilities are detected on multiples ac-
tivities ai, the one with the lowest sp(Si) is chosen; moreover.

Then all resolvers compatible with the current CSP state are identified and
ranked according to the gap between ai and the candidate predecessor aj. Pref-
erence is accorded to resolvers between aj and ai having the smallest absolute
difference |so(Ej)− so(Si)| (while |sp(Ej)− sp(Si)| is used to break ties). Finally,
a choice point is opened with a branch for every resolver ρk; unlike CS resolvers,
in the current implementation STE resolvers are not forbidden on the right most
branches.

6 Experimental Results

The proposed framework was implemented on top of IBM/ILOG Solver and
Scheduler 6.7. The approach was tested on a RCPSP problem with uncertain du-
rations and Self Time Execution semantic, arising in the design flow of real-time
embedded systems. In detail, we considered four benchmarks sets of instances1

(the same used in [12]), corresponding to two original groups of software appli-
cation, mapped to two different platform.

Both original application groups were synthetically obtained through a spe-
cific instance generator, designed to mimic structure and features of real-world
programs. Applications in group one have constant branching factor (number of
successors of the activity starting a parallel session), ranging from 3 to 5, and
scale in the number of software tasks; each software task can correspond to one
or more activities, depending on the platform mapping. Applications in group
2 have fixed number of tasks (40) and scale along the branching factor, ranging
from 2/4 to 6/8, exposing increasing parallelism.

1 Available at www.lia.deis.unibo.it/Staff/MicheleLombardi/

Constraint Based Scheduling to Deal with Uncertain Durations 395

We solved the scheduling problem in its optimality version, where the objec-
tive is to find the tightest deadline for which guarantees can be given (and the
corresponding schedule). This was solved as a sequence of feasibility problem
by applying binary search; the main advantage of the approach is to provide a
lower bound on the tightest deadline as well as a feasible solution. All experi-
ments were performed on a Core2 T7200, 2GHz with a time limit of 900 seconds.
The solver described in this paper is compared with the one presented in [12].

Table 1. Results for application group 1

STE solver Previous MinFlow solver

si
ze

n
od

es

ar
cs

n
p
re

c

ti
m

e

#
M

C
S

tm
cs

/t
im

e

>
T

L
lb

/u
b

n
p
re

c

ti
m

e

#
M

C
S

tm
cs

/t
im

e

>
T

L

lb
/u

b

P
la

tf
or

m
A 20 41/49 50/62 14 0.21(0.04) 256 0.08 0 19 0.46(0.18) 222 0.94 0

30 56/66 67/85 20 0.37(0.06) 523 0.25 0 28 91.2(284.72) 29373 0.95 1 0.83
40 75/82 93/105 24 1.33(2.68) 2060 0.19 0 37 3.5(1.46) 394 0.98 0
50 93/103 115/133 38 0.96(0.62) 1345 0.38 0 57 189.49(375.91) 18533 0.98 2 0.84
60 110/119 138/155 47 7.09(14.9) 5779 0.78 0 74 554.32(461.47) 27302 0.98 6 0.95

P
la

tf
or

m
B 20 29/36 38/49 7 0.15(0.02) 109 0.03 0 13 0.13(0.06) 105 0.86 0

30 41/52 52/71 9 0.26(0.05) 127 0.11 0 15 0.45(0.45) 175 0.86 0
40 54/60 72/82 10 0.37(0.05) 137 0.11 0 17 0.58(0.3) 153 0.88 0
50 65/78 89/108 17 0.57(0.08) 226 0.12 0 27 91.9(284.28) 11522 0.95 1 0.99
60 78/86 106/122 25 0.75(0.12) 446 0.11 0 37 93.31(283.63) 11711 0.97 1 0.98

Table 1 and 2 respectively show results for the first and the second set of orig-
inal applications, mapped to the two considered hardware platforms. In detail,
platform A features 16 unary resource (representing processors) and 32 cumula-
tive resources (representing point to point communication channels). Platform B
has 4 cumulative resource representing multi-core clusters and 8 to model com-
munication channels. Each row summarizes results for a group of 10 instances;
column tells the number of tasks before mapping, while bfactor in Table 2
specifies the branching factor for the row. Columns nodes an arcs tell the mini-
mum/maximum number of arcs after the mapping (i.e. the actual input for the
scheduling process). For both solvers, nprec reports the number of additional
precedence constraint, while time is the average solution time (with standard
deviation between round brackets). Column #MCS reports the average number
of considered Minimal Conflict Set , tmcs/time is the ration between the total
solution time and the time spend in MCS detection; finally > TL tells the num-
ber of timed out instances and lb/ub the ratio between the lower bound an upper
bound on the tightest achievable global deadline, computed by binary search.

One can see how the new solver obtains up to two order of magnitude speed-
ups compared to the previously presented one; this is mainly due to the in-
troduced support for standard CP propagation (namely, timetable + balance)
algorithms and of the use of STE semantic to focus on MCS with an actual
chance to occur with the currently posted precedence constraints. A second rel-
evant difference is the relative amount of time spent in MCS detection, which

396 M. Lombardi and M. Milano

Table 2. Results for application group 2

STE solver Previous MinFlow solver

b
fa

ct
or

n
od

es

ar
cs

n
p
re

c

ti
m

e

#
M

C
S

tm
cs

/t
im

e

>
T

L

lb
/u

b

n
p
re

c

ti
m

e

#
M

C
S

tm
cs

/t
im

e

>
T

L

lb
/u

b

P
la

tf
or

m
A 2/4 74/84 90/108 22 0.6(0.11) 437 0.13 0 34 121.21(288.9) 16173 0.96 1 0.97

3/5 78/84 98/109 30 0.68(0.1) 701 0.22 0 45 192.79(374.98) 26066 0.97 2 0.9
4/6 78/88 99/115 38 0.81(0.17) 1107 0.61 0 55 534.6(455.86) 78117 0.95 5 0.83
5/7 79/90 100/119 38 90.32(282.55) 1189 0.55 1 0.97 54 184.61(377.86) 18452 0.98 2 0.5
6/8 83/95 107/126 47 2.86(5.8) 5198 0.9 0 69 633.74(430.84) 89446 0.96 7 0.88

P
la

tf
or

m
B 2/4 55/62 73/86 9 0.4(0.05) 124 0.05 0 16 0.67(0.66) 169 0.87 0

2/4 55/66 75/88 14 0.43(0.04) 270 0.21 0 27 91.16(284.59) 17969 0.91 1 0.94
2/4 57/69 78/95 19 0.44(0.06) 289 0.19 0 34 94.11(283.65) 20649 0.95 1 0.98
2/4 52/72 73/101 21 0.45(0.11) 403 0.35 0 32 91.92(284.13) 5954 0.96 1 0.83
2/4 58/67 84/98 25 0.47(0.07) 521 0.26 0 39 181.96(378.89) 35361 2 0.8

takes the largest portion of the search time for the previous solver, but is con-
siderably lower for the new solver. Once again, this is a combined effect, due
to the much larger time required by advanced propagation and the faster MCS
detection enabled by incremental flow correction. Finally, taking into account
Self Timed Execution enabled the solver to obtain feasible schedules by posting
consistently fewer precedence constraint; this is a significant result in the con-
text of scheduling for Embedded System Design, since all additional precedence
constraints have to be implemented by means of actual changes to the original
application and their number should be ideally minimized.

7 Conclusion

An efficient complete solver for facing a significant variant of Resource Con-
straint Project Scheduling with minimum and maximum time lags and variable
durations is proposed. The concept of durations here is particularly challenging
as we have to consider constraint feasibility for each possible activity duration
combination. In addition, we propose a notable extension of the traditional off-
line RCPSP that takes into account the Self-Timed Execution semantics and
ensures dynamic controllability and resource-conflict free solutions.

References

1. Baptiste, P., Le Pape, C., Nuijten, W.: Constraint-based scheduling. Kluwer Aca-

demic Publishers, Dordrecht (2001)

2. Beck, J.C., Davenport, A.J.: A survey of techniques for scheduling with uncertainty

(2002),

http://www.eil.utoronto.ca/profiles/chris/gz/uncertainty-survey.ps
3. Beldiceanu, N., Poder, E.: A Continuous Multi-resources umulative Constraint

with Positive-Negative Resource Consumption-Production. In: Van Hentenryck,

P., Wolsey, L.A. (eds.) CPAIOR 2007. LNCS, vol. 4510, pp. 214–228. Springer,

Heidelberg (2007)

http://www.eil.utoronto.ca/profiles/chris/gz/uncertainty-survey.ps

Constraint Based Scheduling to Deal with Uncertain Durations 397

4. Brucker, P., Drexl, A., Möhring, R., Neumann, K., Pesch, E.: Resource-constrained

project scheduling: Notation, classification, models, and methods. European Jour-

nal of Operational Research 112(1), 3–41 (1999)

5. Golumbic, M.: Algorithmic Graph Theory And Perfect Graphs, 2nd edn. Elsevier,

Amsterdam (2004)

6. Hartmann, S., Briskorn, D.: A survey of variants and extensions of the resource-

constrained project scheduling problem. European Journal of Operational Research

(2009)

7. Herroelen, W., Leus, R.: Project scheduling under uncertainty: Survey and research

potentials. European Journal of Operational Research 165(2), 289–306 (2005)

8. Igelmund, G., Radermacher, F.J.: Preselective strategies for the optimization

of stochastic project networks under resource constraints. Networks 13(1), 1–28

(1983)

9. Kolisch, R., Hartmann, S.: Experimental investigation of heuristics for resource-

constrained project scheduling: An update. European Journal of Operational Re-

search 174(1), 23–37 (2006)

10. Laborie, P.: Algorithms for propagating resource constraints in AI planning and

scheduling: Existing approaches and new results. Artif. Intell. 143(2), 151–188

(2003)

11. Laborie, P.: Complete MCS-Based Search: Application to Resource Constrained

Project Scheduling. In: Proc. of IJCAI, pp. 181–186. Professional Book Center

(2005)

12. Lombardi, M., Milano, M.: A Precedence Constraint Posting Approach for the

RCPSP with Time Lags and Variable Durations. In: Gent, I.P. (ed.) CP 2009.

LNCS, vol. 5732, pp. 569–583. Springer, Heidelberg (2009)

13. Morris, P.H., Muscettola, N., Vidal, T.: Dynamic control of plans with temporal

uncertainty. In: Proc. of IJCAI, pp. 494–502 (2001)

14. Policella, N., Cesta, A., Oddi, A., Smith, S.F.: From precedence constraint

posting to partial order schedules: A CSP approach to Robust Scheduling. AI

Commun. 20(3), 163–180 (2007)

15. Stork, F.: Stochastic resource-constrained project scheduling. PhD thesis, Technis-

che Universitat Berlin (2001)

16. Van Hentenryck, P., Bent, R., Mercier, L., Vergados, Y.: Online stochastic reser-

vation systems. Annals of Operations Research 171(1), 101–126 (2009)

17. Vidal, T., Fargier, H.: Handling contingency in temporal constraint networks: from

consistency to controllabilities. J. Exp. Theor. Artif. Intell. 11(1), 23–45 (1999)

Local Consistency and SAT-Solvers

Justyna Petke and Peter Jeavons

Oxford University Computing Laboratory

Wolfson Building, Parks Road, Oxford, UK

{justyna.petke,Peter.Jeavons}@comlab.ox.ac.uk

Abstract. In this paper we show that the power of using k-consistency

techniques in a constraint problem is precisely captured by using a partic-

ular inference rule, which we call positive-hyper-resolution, on the direct

Boolean encoding of the CSP instance. We also show that current clause-

learning SAT-solvers will deduce any positive-hyper-resolvent of a fixed

size from a given set of clauses in polynomial expected time. We combine

these two results to show that, without being explicitly designed to do

so, current clause-learning SAT-solvers efficiently simulate k-consistency

techniques, for all values of k. We then give some experimental results

to show that this feature allows clause-learning SAT-solvers to efficiently

solve certain families of CSP instances which are challenging for conven-

tional CP solvers.

1 Introduction

One of the oldest and most central ideas in constraint programming, going right
back to Montanari’s original paper in 1974 [22], is the idea of using local consis-
tency techniques to prune the search space [11]. The idea of arc-consistency was
introduced in [21], and generalised to k-consistency in [16]. Modern constraint
solvers generally employ specialised propagators to prune the domains of vari-
ables to achieve some form of generalised arc-consistency, but do not attempt to
enforce higher levels of consistency, such as path-conistency.

By contrast, the software tools developed to solve propositional satisfiability
problems, known as SAT-solvers, generally use logical inference techniques, such
as unit propagation and clause-learning, to prune the search space.

One of the most surprising empirical findings of the last few years has been the
remarkably good performance of general SAT-solvers in solving constraint sat-
isfaction problems. To apply such tools to a constraint satisfaction problem one
first has to translate the instance into a set of clauses using some form of Boolean
encoding [26,27]. Such encoding techniques tend to obscure the structure of the
original problem, and may introduce a very large number of Boolean variables
and clauses to encode quite easily-stated constraints. Nevertheless, in quite a few
cases, such approaches have out-performed more traditional constraint solving
tools [4,3,24].

In this paper we draw on a number of recent analytical approaches to try
to account for the good performance of general SAT-solvers on many forms of

D. Cohen (Ed.): CP 2010, LNCS 6308, pp. 398–413, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Local Consistency and SAT-Solvers 399

constraint problems. Building on the results of [6,7,18], we show that the power
of using k-consistency techniques in a constraint problem is precisely captured
by using a single inference rule in a standard Boolean encoding of that problem.
We refer to this inference rule as positive-hyper-resolution, and show that any
conclusions deduced by enforcing k-consistency can be deduced by a sequence
of positive-hyper-resolution inferences involving Boolean clauses in the original
instance and positive-hyper-resolvents with at most k literals. Furthermore, by
using the approach of [5] and [25], we show that current clause-learning SAT-
solvers will make all such deductions in polynomial expected time, even with a
random branching strategy. Hence we show that, although they are not explicitly
designed to do so, running a clause-learning SAT-solver on the simplest encoding
of a constraint problem efficiently simulates the effects of enforcing k-consistency
for all values of k.

2 Preliminaries

Definition 2.1. An instance of the Constraint Satisfaction Problem (CSP)
is specified by a triple (V,D,C), where

– V is a finite set of variables;
– D = {Dv | v ∈ V } where each set Dv is the set of possible values for the

variable v, called the domain of v;
– C is a finite set of constraints. Each constraint in C is a pair (Ri, Si) where

• Si is an ordered list of mi variables, called the constraint scope;
• Ri is a relation over Dv of arity mi, called the constraint relation.

Given any CSP instance (V,D,C), a partial assignment is a mapping f from some
subset W of V to

⋃
D such that f(v) ∈ Dv for all v ∈ W . A partial assignment

satisfies the constraints of the instance if, for all (R, (v1, v2, . . . , vm)) ∈ C such
that vj ∈W for j = 1, 2, . . . ,m, we have (f(v1), f(v2) . . . , f(vm)) ∈ R. A partial
assignment that satisfies the constraints of an instance is called a partial solution1

to that instance. The set of variables on which a partial assignment f is defined
is called the domain of f , and denoted Dom(f). A partial solution f ′ extends a
partial solution f if Dom(f ′) ⊇ Dom(f) and f ′(v) = f(v) for all v ∈ Dom(f).
A partial solution with domain V is called a solution.

One way to derive new information about a CSP instance, which may help
to determine whether or not it has a solution, is to use some form of constraint
propagation to enforce some level of local consistency [11]. For example, it is
possible to use the notion of k-consistency, as in the next definition. We note
that there are several different but equivalent ways to define and enforce k-
consistency described in the literature [11,13,16]. Our presentation follows [6],
which is inspired by the notion of existential k-pebble games introduced by
Kolaitis and Vardi [20].

1 Note that not all partial solutions extend to solutions.

400 J. Petke and P. Jeavons

Definition 2.2. [6] For any CSP instance P , the k-consistency closure of P
is the set H of partial assignments which is obtained by the following algorithm:

1. Let H be the collection of all partial solutions f of P with |Dom(f)| ≤ k+1;
2. For every f ∈ H with |Dom(f)| ≤ k and every variable v of P , if there is

no g ∈ H such that g extends f and v ∈ Dom(g), then remove f and all its
extensions from H;

3. Repeat step 2 until H is unchanged.

Note that computing the k-consistency closure according to this definition cor-
responds precisely to enforcing strong k + 1-consistency according to the defini-
tions in [11,13,16].

Throughout this paper, we shall assume that the domain of possible values
for each variable in a CSP instance is finite. It is straightforward to show that
for any fixed k, and fixed maximum domain size, the k-consistency closure of an
instance P can be computed in polynomial time [6,13].

Note that any solution to P must extend some element of the k-consistency
closure of P . Hence, if the k-consistency closure of P is empty, for some k, then P
has no solutions. The converse is not true in general, but it holds for certain spe-
cial cases, such as the class of instances whose structure has tree-width bounded
by k [6], or the class of instances whose constraints are “0/1/all relations”, as
defined in [14], or “connected row-convex” relations, as defined in [15]. For these
special kinds of instances it is possible to determine in polynomial time whether
or not a solution exists simply by computing the k-consistency closure, for an ap-
propriate choice of k. Moreover, if a solution exists, then it can be constructed
in polynomial time by selecting each variable in turn, assigning each possible
value, re-computing the k-consistency closure, and retaining an assignment that
gives a non-empty result.

The following result gives a useful condition for determining whether the k-
consistency closure of a CSP instance is empty.

Lemma 2.3. [20] The k-consistency closure of a CSP instance P is non-empty
if and only if there exists a non-empty family H of partial solutions to P such
that:

1. If f ∈ H, then |Dom(f)| ≤ k + 1;
2. If f ∈ H and f extends g, then g ∈ H;
3. If f ∈ H, |Dom(f)| ≤ k, and v /∈ Dom(f) is a variable of P , then there is

some g ∈ H such that g extends f and v ∈ Dom(g).

A set of partial solutions H satisfying the conditions described in Lemma 2.3 is
sometimes called a strategy for the instance P [9,20].

One possible approach to solving a CSP instance is to encode it as a propo-
sitional formula over a suitable set of Boolean variables, and then use a pro-
gram to decide the satisfiability of that formula. Many such programs, known
as SAT-solvers, are now available and can often efficiently handle problems with
thousands, or sometimes even millions, of Boolean variables [29].

Local Consistency and SAT-Solvers 401

Several different ways of encoding a CSP instance as a propositional for-
mula have been proposed [26,27]. Here we consider only a very straightforward
encoding, known as the direct encoding. In this encoding, for a CSP instance
P = (V,D,C) we introduce a set of Boolean variables of the form xvi for each
v ∈ V and each i ∈ Dv. The Boolean variable xvi will be assigned True if and
only if the original variable v is assigned the value i. To ensure that at least
one value is assigned to each variable v, we include the clause

∨
i∈Dv

xvi. To en-
sure that at most one value is assigned to each variable v, we include all binary
clauses of the form ¬xvi ∨ ¬xvj for all i, j ∈ Dv with i �= j. Finally, to ensure
that each constraint (R,S) ∈ C is satisfied, we include a clause

∨
v∈S ¬xvf(v) for

each partial assignment f that does not satisfy the constraint.
Given any set of clauses we can often deduce further clauses by applying

certain inference rules. For example, if we have two clauses of the form C1 ∨ x
and C2 ∨ ¬x, for some (possibly empty) clauses C1, C2, and some variable x,
then we can deduce the clause C1 ∨ C2. This form of inference is known as
propositional resolution; the resultant clause is called the resolvent [12].

In the next section, we shall establish a close connection between the k-
consistency algorithm and a form of inference called positive-hyper-resolution,
which we define as follows:

Definition 2.4. If we have a collection of clauses of the form Ci ∨ ¬xi for
i = 1, 2, . . . , r, where each xi is a Boolean variable, and a purely positive clause
x1 ∨ x2 ∨ · · · ∨ xr, then we can deduce the clause C1 ∨ C2 ∨ · · · ∨ Cr.

We call this form of inference positive-hyper-resolution and the resultant
clause C1 ∨ C2 ∨ · · · ∨ Cr the positive-hyper-resolvent.

Note that positive-hyper-resolution is equivalent to a sequence of standard reso-
lution steps. The reason for introducing positive-hyper-resolution is that it allows
us to deduce the clauses we need in a single step without needing to introduce
intermediate clauses (which may be longer than the positive-hyper-resolvent).
By restricting the size of the clauses we use in this way we are able to obtain
better performance bounds for the SAT-solvers.

A positive-hyper-resolution derivation of a clause C from a set of initial clauses
Φ is a sequence of clauses C1, C2, . . . , Cm, where Cm = C and each Ci follows by
the positive-hyper-resolution rule from some collection of clauses, each of which
is either contained in Φ or else occurs earlier in the sequence. The width of this
derivation is defined to be the maximum size of any of the clauses Ci. If Cm is
the empty clause, then we say that the derivation is a positive-hyper-resolution
refutation of Φ.

3 k-Consistency and Positive-Hyper-Resolution

It has been pointed out by many authors that enforcing local consistency is
a form of inference on relations analogous to the use of the resolution rule on
clauses [8,11,12,18,19]. On the direct encoding of a CSP instance, our positive-
hyper-resolution rule corresponds to the “nogood resolution” rule defined in [18].

402 J. Petke and P. Jeavons

The precise strength of the standard resolution inference rule on the direct en-
coding of a CSP instance was considered in [26], where it was shown that unit
resolution (where one of the clauses being resolved consists of a single literal),
corresponds to enforcing a weak form of local consistency known as forward
checking. In [18] it was pointed out that the standard resolution rule with no
restriction on clause length is able to simulate all the inferences made by a
k-consistency algorithm. In [7] it was shown that the standard resolution rule
restricted to clauses with at most k literals can be characterised in terms of the
Boolean existential (k + 1)-pebble game. It follows that on CSP instances with
Boolean domains this form of inference corresponds to enforcing k-consistency.

Here we extend these results a little, to show that for CSP instances with
arbitrary finite domains, applying the positive-hyper-resolution rule on the di-
rect encoding to obtain clauses with at most k literals corresponds precisely to
enforcing k-consistency. Note that the bound, k, that we impose on the size of
the positive-hyper-resolvents, is independent of the domain size. In other words,
using this inference rule we only need to consider inferred clauses of size at most
k, even though we make use of clauses in the encoding whose size is equal to the
domain size, which may be arbitrarily large.

Theorem 3.1. The k-consistency closure of a CSP instance P is empty if and
only if its direct encoding as a set of clauses has a positive-hyper-resolution
refutation of width at most k.

The proof is broken down into two lemmas inspired by Lemmas 2 and 3 in [7].

Lemma 3.2. Let P be a CSP instance, and let Φ be its direct encoding as a
set of clauses. If Φ has no positive-hyper-resolution refutation of width k or less,
then the k-consistency closure of P is non-empty.

Proof. Let V be the set of variables of P , where each v ∈ V has domain Dv,
and let X = {xvi | v ∈ V, i ∈ Dv} be the corresponding set of Boolean variables
in Φ. Note that the clauses in Φ are either of the form

∨
i∈Dv

xvi for some
v ∈ V , or else consist entirely of negative literals. Let Γ be the set of all clauses
having a positive-hyper-resolution derivation from Φ of width at most k. By the
definition of positive-hyper-resolution and the observation about Φ, every clause
in Γ consists entirely of negative literals.

Now let H be the set of all partial assignments for P with domain size at
most k + 1 that do not falsify any clause in Φ ∪ Γ (under the direct encoding).

Consider any element f ∈ H . By the definition of H , f does not falsify any
clause of Φ, so by the definition of the direct encoding, every element of H is
a partial solution to P . Furthermore, if f extends g, then g is also an element
of H , because g makes fewer assignments than f and hence cannot falsify any
additional clauses to f .

If Φ has no positive-hyper-resolution refutation of width at most k, then Γ
does not contain the empty clause, so H contains (at least) the partial solution
with empty domain, and hence H is not empty.

Now let f be any element of H with |Dom(f)| ≤ k and let v be any variable
of P that is not in Dom(f). For any partial assignment g that extends f and

Local Consistency and SAT-Solvers 403

has Dom(g) = Dom(f) ∪ {v} we have that either g ∈ H or else there exists a
clause in Φ ∪ Γ that is falsified by g. Since g is a partial assignment, any clause
C in Φ∪Γ that is falsified by g, must consist entirely of negative literals. Hence
the literals of C must either be of the form ¬xwf(w) for some w ∈ Dom(f), or
else ¬xvg(v). Moreover, any such clause must contain the literal ¬xvg(v), or else
it would already be falsified by f .

Assume, for contradiction, that H does not contain any assignment g that
extends f and has Dom(g) = Dom(f)∪{v}. In that case, we have that, for each
i ∈ Dv, Φ ∪ Γ contains a clause Ci consisting of negative literals of the form
¬xwf(w) for some w ∈ Dom(f), together with the literal ¬xvi. Now consider
the clause, C, which is the positive-hyper-resolvent of these clauses Ci and the
clause

∨
i∈Dv

xvi. The clause C consists entirely of negative literals of the form
¬xwf(w) for some w ∈ Dom(f), so it has width at most |Dom(f)| ≤ k, and
hence is an element of Γ . However C is falsified by f , which contradicts the
choice of f . Hence we have shown that for all f ∈ H with |Dom(f)| ≤ k, and
for all v ∈ V , there is some g ∈ H such that g extends f and v ∈ Dom(g).

We have shown that H satisfies all the conditions required by Lemma 2.3, so
we conclude that the k-consistency closure of P is non-empty. ��

Lemma 3.3. Let P be a CSP instance, and let Φ be its direct encoding as a
set of clauses. If the k-consistency closure of P is non-empty, then Φ has no
positive-hyper-resolution refutation of width k or less.

Proof. Let V be the set of variables of P , where each v ∈ V has domain Dv, and
let X = {xvi | v ∈ V, i ∈ Dv} be the corresponding set of Boolean variables in Φ.

By Lemma 2.3, if the k-consistency closure of P is non-empty, then there exists
a non-empty set H of partial solutions to P which satisfies the three properties
described in Lemma 2.3.

Now consider any positive-hyper-resolution derivation Γ from Φ of width at
most k. We show by induction on the length of this derivation that the elements
of H do not falsify any clause in the derivation. First we note that the elements
of H are partial solutions, so they satisfy all the constraints of P , and hence do
not falsify any clause of Φ. This establishes the base case. Assume, for induction,
that all clauses in the derivation earlier than some clause C are not falsified by
any element of H .

Since the clauses in Φ are either of the form
∨

i∈Dv
xvi for some v ∈ V , or else

consist entirely of negative literals, it follows that any clause in the derivation
obtained by positive-hyper-resolution consists entirely of negative literals.

If f ∈ H falsifies C ∈ Γ , then the literals of C must all be of the form ¬xvf(v),
for some v ∈ Dom(f). Hence we may assume, without loss of generality, that
C is the positive-hyper-resolvent of a set of clauses Δ = {Ci ∨ ¬xvi | i ∈ Dv}
and the clause

∨
i∈Dv

xvi. Since the width of the derivation is at most k, C
contains at most k literals, and hence we may assume that |Dom(f)| ≤ k. But
then, by the choice of H , there must exist some extension g of f in H such that
v ∈ Dom(g). Any such g will falsify some clause in Δ, which contradicts our
inductive hypothesis. Hence no f ∈ H falsifies C, so C cannot be empty.

404 J. Petke and P. Jeavons

It follows that no positive-hyper-resolution derivation of width at most k can
contain the empty clause. ��

4 Positive-Hyper-Resolution and SAT-Solvers

In this section we adapt the machinery of [5] and [25] to show that for any fixed
k, the existence of a positive-hyper-resolution refutation of width k is likely to
be discovered by a SAT-solver in polynomial-time using standard clause learning
and restart techniques, even with a totally random branching strategy.

Note that previous results about the power of clause-learning SAT-solvers
have generally assumed an optimal branching strategy [10,25] - they have shown
what solvers are potentially capable of doing, rather than what they are likely
to achieve in practice. The exception is [5], which gives an analysis of likely
behaviour, but relies on the existence of a standard resolution proof of bounded
width. Here we show that the results of [5] can be extended to hyper-resolution
proofs, which can be much shorter and narrower than their associated standard
resolution proofs.

We will make use of the following terminology from [5]. For a clause C, a
Boolean variable x, and a truth value a ∈ {0, 1}, the restriction of C by the
assignment x = a, denoted C|x=a, is defined to be the constant 1, if the as-
signment satisfies the clause, or else the clause obtained by deleting from C any
literals involving the variable x. For any sequence of assignments S of the form
(x1 = a1, x2 = a2, . . . , xr = ar) we write C|S to denote the result of computing
the restriction of C by each assignment in turn. If C|S is empty, then we say
that the assignments in S falsify the clause C. For a set of clauses Δ, we write
Δ|S to denote the set {C|S | C ∈ Δ} \ {1}.

Most current SAT-solvers operate in the following way [5,25]. They maintain
a database of clauses Δ and a current state S, which is a partial assignment of
truth values to the Boolean variables in the clauses of Δ. A high-level description
of the algorithms used to update the clause database and the state, derived from
the description given in [5], is shown in Algorithm 1 (a similar framework, using
slightly different terminology, is given in [25]).

Now consider a run of the algorithm shown in Algorithm 1, started with the
initial database Δ, and the empty state S0, until it either halts or discovers a
conflict (i.e., ∅ ∈ Δ|S). Such a run is called a round started with Δ, and we repre-
sent it by the sequence of states S0, . . . , Sm, that the algorithm maintains. Note
that each state Si extends the state Si−1 by a single assignment to a Boolean
variable, which may be either a decision assignment or an implied assignment.

An initial segment S0, S1, . . . , Sr of a round started with Δ is called an incon-
clusive partial round if Δ|Sr is non-empty, does not contain the empty clause,
and does not contain any unit clauses. Note that for any clause C ∈ Δ, if
S0, S1, . . . , Sr is an inconclusive partial round started with Δ, and Sr falsifies all
the literals of C except one, then it must satisfy the remaining literal, and hence
satisfy C. This property of clauses is captured by the following definition.

Local Consistency and SAT-Solvers 405

Algorithm 1. Framework for typical clause-learning SAT-solver
Input: Δ : set of clauses;

S : partial assignment of truth values to variables.

1. while Δ|S �= ∅ do
2. if ∅ ∈ Δ|S then Conflict
3. if S contains no decision assignments then
4. print “UNSATISFIABLE” and halt

5. else
6. apply the learning scheme to add a new clause to Δ
7. if restart policy says restart then
8. set S = ∅
9. else

10. select most recent conflict-causing unreversed decision assignment in S
11. reverse this decision, and remove all later assignments from S
12. end if
13. end if
14. else if {l} ∈ Δ|S for some literal l then Unit Propagation
15. add to S the implied assignment x = a which satisfies l
16. else Decision
17. apply the branching strategy to choose a decision assignment x = a
18. add this decision assignment to S
19. end if
20. end while
21. print “SATISFIABLE” and output S

Definition 4.1. [5] Let Δ be a set of clauses, C a non-empty clause, and l a
literal of C. We say that Δ absorbs C at l if every inconclusive partial round
started with Δ that falsifies C \ {l} satisfies C.

If Δ absorbs C at each literal l in C, then we simply say that Δ absorbs C.

Note that a clause that is not absorbed by a set of clauses Δ is referred to in [25]
as 1-empowering with respect to Δ.

Lemma 4.2. [5] Let Δ and Δ′ be sets of clauses, and let C and C′ be non-empty
clauses.

1. If C belongs to Δ, then Δ absorbs C;
2. If C ⊆ C′ and Δ absorbs C, then Δ absorbs C′;
3. If Δ ⊆ Δ′ and Δ absorbs C, then Δ′ absorbs C;
4. If Δ ⊆ Δ′′ and Δ absorbs C and Δ entails Δ′′, then Δ′′ absorbs C.

To allow further analysis, we need to make some assumptions about the learning
scheme, the restart policy and the branching strategy used by our SAT-solver.

The learning scheme is a rule that creates and adds a new clause to the
database whenever there is a conflict. Such a clause is called a conflict clause, and
each of its literals is falsified by some assignment in the current state. If a literal is
falsified by the i-th decision assignment, or some later implied assignment before

406 J. Petke and P. Jeavons

(i+1)-th decision assignment, it is said to be falsified at level i. If a conflict clause
contains exactly one literal that is falsified at the maximum possible level, it is
called an asserting clause [28,25].

Assumption 1. The learning scheme chooses an asserting clause.

Most learning schemes in current use satisfy this assumption [28,25], including
the learning schemes called “1UIP” and “Decision” described in [28].

We make no particular assumption about the restart policy. However, our
main result is phrased in terms of a bound on the expected number of restarts.
If the algorithm restarts after r conflicts, our bound on the expected number of
restarts can simply be multiplied by r to get a bound on the expected number
of conflicts. This means that the implications will be strongest if the algorithm
restarts immediately after each conflict. In that case, r = 1 and our bound will
also bound the expected number of conflicts. Existing SAT-solvers typically do
not employ such an aggressive restart policy, but we note the remark in [25]
that “there has been a clear trend towards more and more frequent restarts for
modern SAT solvers”.

The branching strategy determines which decision assignment is chosen after
an inconclusive partial round. In most current SAT solvers the strategy is based
on some heuristic measure of variable activity, which is related to the occurrence
of a variable in a conflict clause [23]. However, to simplify the probabilistic
analysis, we will make the following assumption.

Assumption 2. The branching strategy chooses a variable uniformly at random
amongst the unassigned variables, and assigns it the value TRUE.

As noted in [5], the same analysis we give below can also be applied to any
other branching strategy that randomly chooses between making a heuristic-
based decision or a randomly-based decision, provided that the second case has
non-negligible probability p. In that case, the bounds we obtain on the expected
number of restarts can simply be multiplied by p−k.

An algorithm that behaves according to the description in Algorithm 1, and
satisfies the assumptions above, will be called a standard randomised SAT-solver.

Theorem 4.3. If a set of non-empty clauses Δ over n Boolean variables has a
positive-hyper-resolution refutation of width k and length m, where all derived
clauses contain only negative literals, then the expected number of restarts re-
quired by a standard randomised SAT-solver to discover that Δ is unsatisfiable
is less than mnk2

(
n
k

)
.

Proof. Let C1, C2, . . . , Cm be a positive-hyper-resolution refutation of width k
from Δ, where each Ci contains only negative literals, and Cm is the first oc-
currence of the empty clause. Since each clause in Δ is non-empty, Cm must
be derived by positive-hyper-resolution from some collection of negative literals
¬x1,¬x2, . . .¬xd and a purely positive clause x1 ∨ x2 ∨ · · ·xd.

Now consider a standard SAT-solver started with database Δ. Once all of the
unit clauses ¬xi are absorbed by the current database, then, by Definition 4.1,

Local Consistency and SAT-Solvers 407

any further inconclusive partial round of the algorithm must assign all variables
xi false, and hence falsify the clause x1∨x2∨· · ·xd. Since this happens even when
no decision assignments are made, the SAT-solver will report unsatisfiability.

It only remains to bound the expected number of restarts required until each
clause Ci is absorbed, for 1 ≤ i < m. Let each Ci be the positive-hyper-resolvent
of clauses Ci1, Ci2, . . . , Cid, each of the form C′

ij ∨ ¬xj , together with a purely
positive clause Ci0 = x1 ∨ x2 ∨ · · · ∨ xd from Δ. Assume also that each clause
Cij is absorbed by Δ.

If Δ absorbs Ci, then no further learning or restarts are needed, so assume
now that Δ does not absorb Ci. By Definition 4.1, this means that there exists
some literal l and some inconclusive partial round R started with Δ, that falsifies
Ci \ {l} and does not satisfy Ci. Note that R must leave the literal l unassigned,
because one assignment would satisfy Ci and the other would force all of the
literals ¬xj used in the positive-hyper-resolution step to be satisfied, because
each Cij is absorbed by Δ, so Ci0 would be falsified, contradicting the fact that
R is inconclusive.

Hence, if the branching strategy chooses to falsify the literals Ci\{l} whenever
it has a choice, it will construct an inconclusive partial round R′ where l is
unassigned (since all the decision assignments in R′ are also assigned the same
values in R, any implied assignments in R′ must also be assigned the same
values2 in R, but we have shown that R leaves l unassigned). If the branching
strategy then chooses to falsify the remaining literal l of Ci, then the algorithm
would construct a complete round R′′ where Ci0 is falsified, and all decision
assignments falsify literals in Ci. Hence, by Assumption 1, the algorithm would
then learn some asserting clause C′ and add it to Δ to obtain a new set Δ′.

Since C′ is an asserting clause, it contains exactly one literal, l′, that is falsified
at the highest level in R′′. Hence, any inconclusive partial round R started with
Δ′ that falsifies Ci \ {l} will falsify all but one literal of C′, and hence force
the remaining literal l′ to be satisfied, by unit propagation. If this new implied
assignment for l′ propagates to force l to be true, then R satisfies Ci, and hence
Δ′ absorbs Ci at l. If not, then the branching strategy can once again choose to
falsify the remaining literal l of Ci, which will cause a new asserting clause to
be learnt and added to Δ. Since each new asserting clause forces a new literal
to be satisfied after falsifying Ci \ {l} this process can be repeated fewer than n
times before it is certain that Δ′ absorbs Ci at l.

Now consider any sequence of k random branching choices. If the first k − 1
of these each falsify a literal of Ci \ {l}, and the final choice falsifies l, then we
have shown that the associated round will reach a conflict, and add an asserting
clause to Δ. With a random branching strategy, as described in Assumption 2,
the probability that this happens is at least the probability that the first k − 1
random choices consist of a fixed set of variables (in some order), and the final
choice is the variable associated with l. The number of random choices that fall
in a fixed set follows the hypergeometric distribution, so the overall probability
of this is 1

(n
k−1)

1
(n−k+1) = 1/(k

(
n
k

)
).

2 See Lemma 3 of [5] for a more formal statement and proof.

408 J. Petke and P. Jeavons

To obtain an upper bound on the expected number of restarts, consider the
worst case where we require n asserting clauses to be added to absorb each clause
Ci at each of its k literals l. Since we require only an upper bound, we will treat
each round as an independent trial with success probability p = 1/(k

(
n
k

)
), and

consider the worst case where we have to achieve (m−1)nk separate consecutive
successes to ensure that Ci for 1 ≤ i < m is absorbed. In this case the total
number of restarts will follow a negative binomial distribution, with expected
value (m − 1)nk/p. Hence in all cases the expected number of restarts is less
than mnk2

(
n
k

)
. ��

A tighter bound on the number of restarts can be obtained if we focus on the
Decision learning scheme [5,28], as the next result indicates.

Theorem 4.4. If a set of non-empty clauses Δ over n Boolean variables has a
positive-hyper-resolution refutation of width k and length m, where all derived
clauses contain only negative literals, then the expected number of restarts re-
quired by a standard randomised SAT-solver using the Decision learning scheme
to discover that Δ is unsatisfiable is less than m

(
n
k

)
.

Proof. The proof is similar to the proof of Theorem 4.3, except that the Deci-
sion learning scheme has the additional feature that the literals in the chosen
conflict clause falsify a subset of the current decision assignments. Hence in the
situation we consider, where the decision assignments all falsify literals of some
clause Ci (in any order), this learning scheme will learn a subset of Ci, and
hence immediately absorb Ci, by Lemma 4.2(1,2). Hence the maximum number
of learnt clauses required is reduced from (m− 1)nk to (m− 1), and the proba-
bility is increased from 1/(k

(
n
k

)
) to 1/

(
n
k

)
, giving the tighter bound. ��

Note that a similar argument shows that the standard deviation of the number
of restarts is less than the standard deviation of a negative binomial distribution
with parameters m and 1/

(
n
k

)
, which is less than

√
m
(

n
k

)
. Hence, by Chebyshev’s

inequality (one-tailed version), the probability that a standard randomised SAT-
solver using the decision learning scheme will discover that Δ is unsatisfiable
after (m +

√
m)

(
n
k

)
restarts is greater than 1/2.

5 k-Consistency and SAT-Solvers

By combining Theorem 3.1 and Theorem 4.4 we obtain the following result
linking k-consistency and SAT-solvers.

Theorem 5.1. If the k-consistency closure of a CSP instance P is empty, then
the expected number of restarts required by a standard randomised SAT-solver
using the Decision learning scheme to discover that the direct encoding of P is
unsatisfiable is O(n2kd2k), where n is the number of variables in P and d is the
maximum domain size.

Local Consistency and SAT-Solvers 409

Proof. The length m of a positive-hyper-resolution refutation of width k is
bounded by the number of possible no-goods of length at most k for P , which
is

∑k
i=1 d

i
(
n
i

)
. Hence, by Theorem 3.1 and Theorem 4.4 we obtain a bound of(∑k

i=1 d
i
(

n
i

)) (
nd
k

)
, which is O(n2kd2k). ��

Hence a standard randomised SAT-solver with a suitable learning strategy will
decide the satisfiability of any CSP instance with tree-width k with O(n2kd2k)
expected restarts, even when it is set to restart immediately after each conflict.
In particular, the satisfiability of any tree-structured CSP instance (i.e., with
tree-width 1) will be decided by such a solver with at most O(n2d2) expected
conflicts, which is comparable with the growth rate of an optimal arc-consistency
algorithm. Note that this result cannot be obtained directly from [5], because
the direct encoding of an instance with tree-width k is a set of clauses whose
tree-width may be as high as dk.

Moreover, a standard randomised SAT-solver will decide the satisfiability of
any CSP instance, with any structure, within the same polynomial bounds, if
the constraint relations satisfy certain algebraic properties that ensure bounded
width [9]. Examples of such constraint types include the “0/1/all relations”,
defined in [14], and the “connected row-convex” relations, defined in [15], which
can both be decided by 2-consistency.

6 Experimental Results

The bounds we obtain in this paper are very conservative, and are likely to be
met very easily in practice.

To investigate how an existing SAT-solver performs in practice, we measured
the performance of the MiniSAT solver [2] version 2-070721 on a family of CSP
instances that can be decided by a fixed level of consistency. We ran the exper-
iments with preprocessing switched off, in order to get a solver that uses only
unit propagation and conflict-directed learning with restarts.

We also modified the MiniSAT solver to follow the random branching strategy
described above. Our modified solver does not delete any learnt clauses and uses
an extreme restart policy that makes it restart whenever it encounters a conflict.
We refer to this modified solver as simple-MiniSAT.

For all of the results, the times given are elapsed times on a Lenovo 3000
N200 laptop with an Intel Core 2 Duo processor running at 1.66GHz with 2GB
of RAM. For our simple-MiniSAT solver, each generated instance was run three
times and the mean times and mean number of restarts are shown.

Example 6.1. We consider a family of instances specified by two parameters, w
and d. They have ((d − 1) ∗ w + 2) ∗ w variables arranged in groups of size w,
each with domain {0, ..., d− 1}. We impose a constraint of arity 2w on each pair
of successive groups, requiring that the sum of the values assigned to the first of
these two groups should be strictly smaller than the sum of the values assigned
to the second. This ensures that the instances generated are unsatisfiable. An

410 J. Petke and P. Jeavons

instance with w = 2 and d = 2 is shown diagrammatically and defined using the
specification language MiniZinc [1] in Figure 1.

The structure of these instances has a simple tree-decomposition as a path of
nodes, with each node corresponding to a constraint scope. Hence the tree-width
of these instances is 2w−1, and they can be shown to be unsatisfiable by enforcing
2w − 1 consistency. However, these instances cannot be solved efficiently using
standard propagation algorithms which only prune individual domain values.

(a) Graphical representation.

array[1..4] of var 0..1 : X1;

array[1..4] of var 0..1 : X2;

constraint

forall(i in 1..3)(
X1[i] + X2[i]
<
X1[i + 1] + X2[i + 1]);

solve satisfy;

(b) Specification in MiniZinc.

Fig. 1. An example of a CSP instance with w = 2, d = 2 and tree-width = 3

Table 1. Performance of CP-solvers and SAT-solvers on instances from Example 6.1

group domain CSP Minion G12 MiniSAT simple- simple-

size size variables MiniSAT MiniSAT

(w) (d) (n) (sec) (sec) (sec) (sec) restarts

2 2 8 0.010 0.238 0.004 0.004 17

2 3 12 0.012 0.246 0.007 0.008 175

2 4 16 0.026 0.273 0.021 0.038 866

2 5 20 0.043 0.525 0.052 0.146 2 877

2 6 24 1.040 6.153 0.157 0.626 7 582

2 7 28 47.554 205.425 0.433 2.447 17 689

2 8 32 > 20 min > 20 min 1.273 10.169 35 498

2 9 36 > 20 min > 20 min 3.301 44.260 65 598

2 10 40 > 20 min > 20 min 8.506 135.215 108 053

3 2 15 0.012 0.240 0.005 0.008 176

3 3 24 0.370 1.120 0.103 0.377 4 839

3 4 33 > 20 min > 20 min 1.942 22.357 43 033

3 5 42 > 20 min > 20 min 29.745 945.202 209 094

Table 1 shows the runtimes of simple-MiniSAT and the original MiniSAT solver
on this family of instances, along with times for two state-of-the-art CP solvers:
Minion [17] and G12 [1]. Note that MiniSAT is remarkably effective in solving
these instances, compared to the CP solvers, even though they are encoded into a
large number of clauses with a much larger tree-width than the original instance.
Although our modified SAT solver takes a little longer, it still performs better on

Local Consistency and SAT-Solvers 411

these instances than the CP solvers and the number of restarts (and hence the
number of conflicts) is much lower than the polynomial upper bound obtained
in Theorem 5.1 (see Figure 2).

Fig. 2. Log-log plot of the number of restarts/conflicts used by simple-MiniSAT on

the instances from Example 6.1. Circles show values for w = 2; squares show values

for w = 3; solid lines show the functions d2
(

n/2
3

)
(lower line) and d4

(
n/3
3

)
(upper line).

Note that these experimentally determined growth functions are much lower than the

worst-case bound calculated in Theorem 5.1.

7 Conclusion

We have shown that the notion of k-consistency can be precisely captured by
a single inference rule on the direct encoding of a CSP instance, restricted to
deriving only clauses with at most k literals. We used this to show that a clause-
learning SAT-solver with a purely random branching strategy will simulate the
effect of enforcing k-consistency in expected polynomial time, for all fixed k.
This is sufficient to ensure that such solvers are able to solve certain problem
families much more efficiently than conventional CP solvers relying on GAC-
propagation.

In principle clause-learning SAT-solvers can also do much more. It is known
that, with an appropriate branching strategy and restart policy, they are able
to p-simulate general resolution [10,25], and general resolution proofs can be
exponentially shorter than the negative resolution proofs we have considered
here [18]. In practice, it seems that current clause-learning SAT-solvers with
highly-tuned learning schemes, branching strategies and restart policies are of-
ten able to exploit structure in the encoding of a CSP instance even more effec-
tively than local consistency techniques. Hence considerable work remains to be
done in understanding the relevant features of instances which they are able to
exploit, in order to predict their effectiveness in solving different kinds of CSP
instances.

412 J. Petke and P. Jeavons

References

1. G12/MiniZinc constraint solver. Software,

http://www.g12.cs.mu.oz.au/minizinc/download.html
2. MiniSat solver. Software, http://minisat.se/MiniSat.html
3. 2nd internat. CSP solver competition, http://www.cril.univ-artois.fr/CPAI06/
4. 3rd international CSP solver competition, http://cpai.ucc.ie/08/
5. Atserias, A., Fichte, J.K., Thurley, M.: Clause-learning algorithms with many

restarts and bounded-width resolution. In: Kullmann, O. (ed.) SAT 2009. LNCS,

vol. 5584, pp. 114–127. Springer, Heidelberg (2009)

6. Atserias, A., Bulatov, A.A., Dalmau, V.: On the power of k-consistency. In: Arge,

L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596,

pp. 279–290. Springer, Heidelberg (2007)

7. Atserias, A., Dalmau, V.: A combinatorial characterization of resolution width.

Journal of Computer and Systems Science 74(3), 323–334 (2008)

8. Bacchus, F.: GAC Via Unit Propagation. In: Bessière, C. (ed.) CP 2007. LNCS,

vol. 4741, pp. 133–147. Springer, Heidelberg (2007)

9. Barto, L., Kozik, M.: Constraint satisfaction problems of bounded width. In: Pro-

ceedings of FOCS 2009, pp. 595–603. IEEE Computer Society, Los Alamitos (2009)

10. Beame, P., Kautz, H.A., Sabharwal, A.: Towards understanding and harnessing the

potential of clause learning. Journal of Artificial Intelligence Research 22, 319–351

(2004)

11. Bessiére, C.: Constraint propagation. In: Handbook of Constraint Programming,

ch. 3, pp. 29–83. Elsevier, Amsterdam (2006)

12. Bordeaux, L., Hamadi, Y., Zhang, L.: Propositional satisfiability and constraint

programming: A comparative survey. ACM Computing Surveys 38(4) (2006)

13. Cooper, M.C.: An optimal k-consistency algorithm. Artificial Intelligence 41, 89–95

(1989)

14. Cooper, M.C., Cohen, D.A., Jeavons, P.G.: Characterising tractable constraints.

Artificial Intelligence 65, 347–361 (1994)

15. Deville, Y., Barette, O., van Hentenryck, P.: Constraint satisfaction over connected

row convex constraints. In: Proceeedings of IJCAI 1997, pp. 405–411 (1997)

16. Freuder, E.C.: Synthesizing constraint expressions. ACM Comm. 21, 958–966

(1978)

17. Gent, I., Jefferson, C., Miguel, I.: Minion: A fast scalable constraint solver. In:

Proceeedings of ECAI 2006, pp. 98–102. IOS Press, Amsterdam (2006)

18. Hwang, J., Mitchell, D.: 2-way vs. d-way branching for CSP. In: van Beek, P. (ed.)

CP 2005. LNCS, vol. 3709, pp. 343–357. Springer, Heidelberg (2005)

19. Rish, I., Dechter, R.: Resolution versus search: Two strategies for SAT. Journal of

Automated Reasoning 24(1/2), 225–275 (2000)

20. Kolaitis, P.G., Vardi, M.Y.: A game-theoretic approach to constraint satisfaction.

In: Proceedings of AAAI 2000, pp. 175–181 (2000)

21. Mackworth, A.K.: Consistency in networks of relations. Artificial Intelligence 8,

99–118 (1977)

22. Montanari, U.: Networks of constraints: Fundamental properties and applications

to picture processing. Information Sciences 7, 95–132 (1974)

23. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineer-

ing an efficient SAT solver. In: International Design Automation Conference, DAC,

pp. 530–535 (2001)

http://www.g12.cs.mu.oz.au/minizinc/download.html
http://minisat.se/MiniSat.html
http://www.cril.univ-artois.fr/CPAI06/
http://cpai.ucc.ie/08/

Local Consistency and SAT-Solvers 413

24. Petke, J., Jeavons, P.G.: Tractable benchmarks for constraint programming. Tech-

nical Report RR-09-07, Computing Laboratory, University of Oxford (2009)

25. Pipatsrisawat, K., Darwiche, A.: On the power of clause-learning SAT solvers with

restarts. In: Gent, I.P. (ed.) CP 2009. LNCS, vol. 5732, pp. 654–668. Springer,

Heidelberg (2009)

26. Walsh, T.: SAT v CSP. In: Dechter, R. (ed.) CP 2000. LNCS, vol. 1894, pp. 441–

456. Springer, Heidelberg (2000)

27. Tamura, N., Taga, A., Kitagawa, S., Banbara, M.: Compiling finite linear CSP into

SAT. Constraints 14(2), 254–272 (2009)

28. Zhang, L., Madigan, C.F., Moskewicz, M.W., Andmalik, S.: Efficient conflict driven

learning in a Boolean satisfiability solver. In: Proceedings of the International Con-

ference on Computer-Aided Design (ICCAD 2001), pp. 279–285 (2001)

29. Zhang, L., Malik, S.: The quest for efficient Boolean satisfiability solvers. In:

Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 641–653.

Springer, Heidelberg (2002)

Heuristics for Planning with SAT

Jussi Rintanen

NICTA and the Australian National University
Canberra, Australia

Abstract. Generic SAT solvers have been very successful in solving hard com-
binatorial problems in various application areas, including AI planning. There
is potential for improved performance by making the SAT solving process more
application-specific. In this paper we propose a variable selection strategy for AI
planning. The strategy is based on generic principles about properties of plans,
and its performance with standard planning benchmarks often substantially im-
proves on generic variable selection heuristics used in SAT solving, such as the
VSIDS strategy. These improvements lift the efficiency of SAT based planning to
the same level as best planners that use other search methods.

1 Introduction

Planning is one of several problems that have been successfully solved with SAT algo-
rithms [1]. Most works have used a generic SAT solver, which recently use the conflict-
directed clause learning (CDCL) algorithm and the VSIDS heuristic [2].

In this work we investigate SAT solving for planning with CDCL but with a heuristic
that radically differs from VSIDS and is based on a simple property all solutions to a
planning problem have to satisfy. The work is motivated by the need to better understand
why SAT solvers are successful in solving AI planning and related problems, and by the
need and opportunity to develop more powerful, problem-specific heuristics for SAT.

Our heuristic chooses action variables that contribute to the goals or (current) sub-
goals. The principle is extremely simple: for a given (sub)goal, choose an action that
achieves the (sub)goal and that can be taken at the earliest time in which the (sub)goal
can become (and remain) true. After choosing an action, its preconditions become new
subgoals, for which supporting actions are found in the same way. This principle is easy
to implement: start from a goal (or a subgoal), go backwards step by step until a time
point in which the goal is false, and choose any of the actions that achieve the goal and
are possible at that time point. If such an action existed in the plan already, perform the
procedure recursively with the preconditions of the action as the subgoals.

The above principle is so simple that it is surprising that it alone, without any further
heuristics, is, for satisfiable problems representing standard planning benchmark prob-
lems, very often far more effective than the VSIDS heuristic found in the best current
SAT solvers. Furthermore, the new heuristic lifts the efficiency of SAT-based planning
to the same level with the best existing planning algorithms that are based on other
search methods, including heuristic state space search. This result is extremely sur-
prising because the currently best state-space search planners, which have their origins
in the work of Bonet and Geffner [3] more than ten years ago, use far more complex

D. Cohen (Ed.): CP 2010, LNCS 6308, pp. 414–428, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Heuristics for Planning with SAT 415

heuristics, and were in most cases developed with the very benchmark problems in mind
which they are usually evaluated on. In contrast, our heuristic relies on a very natural
and simple principle that represents common intuitions about planning.

We view the new heuristic as a step toward developing better SAT-based techniques
for planning and other related problems such as model-checking and discrete-event
systems diagnosis. More advanced heuristics for these applications are likely to also
incorporate features from VSIDS, including the computation of weights of variables
based on their occurrence in recently learned clauses.

As already mentioned, the new heuristic is better than VSIDS with satisfiable for-
mulas representing standard planning benchmarks, and worse with unsatisfiable ones.
Heuristics in SAT solving have two complementary roles. For satisfiable formulas,
heuristics help in finding a satisfying assignment quickly, hopefully avoiding much of
the brute-force search resulting from wrong choices of variables and truth-values. This
is similar to heuristics in state-space search for planning which help in finding a path (a
state sequence) to a goal state. For an unsatisfiable formula, heuristics help the solver
to efficiently find a refutation proof. Our heuristic only indirectly addresses unsatisfia-
bility proofs by avoiding actions that cannot possibly contribute to the refutation proof.
Heuristics should more explicitly try to make finding the unsatisfiability proofs easier,
but we did not have this as an objective for our new heuristics.

The two roles of heuristics in SAT solving are both important, but their importance
depends on the type of planning being done. If the objective is to find an optimal plan,
one has to prove that no better plans exist. For this one needs efficient detection of
unsatisfiability. If the objective is to just find a plan, with no quality guarantees, the im-
portance of efficient unsatisfiability proofs is much smaller. The experiments we will be
presenting later address this duality. We leave the problem of improving the efficiency
of unsatisfiability for future work.

In addition to improved efficiency of finding satisfying valuations, another benefit
our variable selection heuristic has over VSIDS, from the point of view of planning
research, is that it is easy to understand, and there are obvious avenues to improving
the scheme, and obvious avenues for expressing follow-up questions about it, for exam-
ple concerning the difficulty of finding unsatisfiability proofs. Addressing these things
in the context of the VSIDS heuristics seems quite a bit trickier because of a lack of
intuitive explanations of what VSIDS does in terms of search for plans.

The structure of the paper is as follows. Sect. 2 describes the background of the work
in planning with SAT. In Sect. 3 we explain the CDCL algorithm. In Sect. 4 we present
the variable selection scheme for planning, experimentally evaluate it in Sect. 5, and
discuss related work in Sect. 6 before concluding the paper in Sect. 7.

2 Planning as Satisfiability

The classical planning problem involves finding a sequence of actions from a given initial
state to a goal state. The actions are deterministic, which means that an action and the
current state determine the successor state uniquely. In the simplest formalization of
planning actions are pairs (p, e) where p and e are consistent sets of propositional literals
on the finite setA of state variables, respectively called the precondition and the effects.

416 J. Rintanen

Actions described this way are often known as STRIPS actions for historical reasons.
An action (p, e) is executable in a state s if s |= p. A state s : A → {0, 1} is a valuation
of all state variables. For a given state s and an action (p, e) which is executable in s, the
unique successor state s′ = exec(p,e)(s) is determined by s′ |= e and s′(a) = s(a) for all
a ∈ A such that a does not occur in e. This means that the effects are true in the successor
state and all state variables not affected by the action retain their values. Given an initial
state I , a solution to the planning problem with goal G (a set of literals) is a sequence
of actions o1, . . . , on such that execon(execon−1(· · · execo2(execo1(I)) · · ·)) |= G.

Kautz and Selman [1] proposed finding plans by reduction to SAT. The reduction is
similar to the reduction of NP Turing machines to SAT used in Cook’s proof of NP-
hardness of SAT [4]. The reduction is parameterized by a horizon length T ≥ 0. The
value of each state variable a ∈ A in each time point t ∈ {0, . . . , T } is represented
by a propositional variable a@t. Additionally, it is often useful to have the actions rep-
resented as propositional variables, so for each action o and t ∈ {0, . . . , T − 1} we
similarly have a propositional variable o@t indicating whether action o is taken at t.

In this paper, we use an encoding of planning which allows several actions to be
taken at the same time point in parallel. The “parallelism” (partial ordering) is allowed
when it is possible to totally order the actions to a sequential plan as defined above.
There are different possibilities in defining this kind of parallel plans [5,6].

To represent planning as a SAT problem, each action o = (p, e) and time point
t ∈ {0, . . . , T −1} is mapped to formulas o@t→∧

l∈p l@t and o@t→∧
l∈e l@(t+1).1

These two formulas respectively correspond to the executability condition and the first
part of the definition of successor states. The second part, about state variables that do
not change, is encoded as follows, for the case in which in several actions can be taken
in parallel. For each state variable a ∈ A we have the formula

(¬a@t ∧ a@(t+ 1))→(oa
1@t ∨ · · · ∨ oa

n@t)

where oa
1 , . . . , o

a
n are all the actions which have a as an effect. Similarly we have for

each a ∈ A the formula

(a@t ∧ ¬a@(t + 1))→(o¬a
1 @t ∨ · · · ∨ o¬a

m @t)

for explaining possible changes from true to false, where o¬a
1 , . . . , o¬a

m are all the actions
with ¬a as an effect. These formulas (often called the frame axioms) allow to infer that
a state variable does not change if none of the actions changing it is taken.

Finally, to rule out solutions that don’t correspond to any plan because parallel ac-
tions cannot be serialized2, further formulas are needed. In this work we have used the
linear-size ∃-step semantics encoding of Rintanen et al. [5].

There is one more component in efficient SAT encodings of planning, which is logi-
cally redundant but usually critical for efficiency: invariants (mutexes). Invariants l ∨ l′
express dependencies between state variables. Many of the standard planning bench-
marks represent multi-valued state variables in terms of several Boolean ones, and a

1 For negative literals l = ¬a, l@t means ¬(a@t), and for positive literals l = a it means a@t.
2 For example, actions ({a}, {¬b}) and ({b}, {¬a}) cannot be made to a valid sequential plan,

because taking either action first would falsify the precondition of the other.

Heuristics for Planning with SAT 417

typical invariant ¬xa ∨ ¬xb says that a multi-valued variable x can only have one of
the values a and b. To compute these invariants, we used the algorithm of Rintanen [7]
which is defined for the general (ground) PDDL language which includes STRIPS.

For a given set A of state variables, initial state I , set O of actions, goals G and
horizon length T , we can compute (in linear time in the product of T and the sum of
sizes of A, I , O and G) a formula ΦT such that ΦT ∈ SAT if and only if there is a plan
with horizon 0, . . . , T . ΦT includes the formulas described above, and for all a ∈ A
the unit clause a@0 if I(a) = 1 and ¬a@0 if I(a) = 0, and l@T for all l ∈ G. These
formulas are in CNF after trivial rewriting.

A planner can do the tests Φ0 ∈ SAT, Φ1 ∈ SAT, Φ2 ∈ SAT, and so on, sequentially
one by one, or it can make several of these tests in parallel (interleave them). For this we
will later be using Algorithm B of Rintanen et al. [5] which allocates CPU time to dif-
ferent horizon lengths according to a decreasing geometric series, so that horizon length
t+1 gets γ times the CPU the horizon length t gets, for some fixed γ ∈]0, 1]. In general,
the parallelized strategies can be orders of magnitudes faster than the sequential strat-
egy because they do not need to complete the test Φt ∈ SAT (finding Φt unsatisfiable)
before proceeding with the test Φt+1 ∈ SAT. This explains why, in this setting, it is far
more important to efficiently determine satisfiability than unsatisfiability.

3 The CDCL Algorithm for SAT

In this section we briefly describe the standard conflict-directed clause learning (CDCL)
algorithm for the SAT problem. This algorithm is the basis of most of the currently
leading SAT solvers in the zChaff family [2].

For a general overview of the CDCL algorithm see standard references [8,9]. The
main loop of the CDCL algorithm (see Fig. 1) chooses an unassigned variable, assigns
a truth-value to it, and then performs unit propagation to extend the current valuation v
with forced variable assignments that directly follow from the existing valuation by the
unit resolution rule. If one of the clauses is falsified, a new clause which would have pre-
vented the current valuation is learned. This new clause is a logical consequence of the
original clause set. Then, some of the last assignments are undone, and the assign-infer-
learn cycle is repeated. The procedure ends when the empty clause has been learned (no
valuation can satisfy the clauses) or a satisfying valuation has been found.

The selection of the decision variable (line 5) and its value (line 6) can be arbitrary
(without compromising the correctness of the algorithm), and can therefore be based
on a heuristic. The heuristic is critical for the efficiency of the CDCL algorithm. On
line 7 the standard unit propagation algorithm is run. It infers a forced assignment for a
variable x if there is a clause x∨l1∨· · ·∨ln or¬x∨l1∨· · ·∨ln and v |= ¬l1∨· · · ¬∨ln.

The inference of a new clause on line 10 is the key component of CDCL. The clause
will prevent generating the same unsatisfying assignment again, leading to traversing a
different part of the search space.

4 A New Heuristic for Planning

The goal of the current work is to present a new way of choosing the decision variables
(lines 5 and 6 in the CDCL procedure in Fig. 1) specific to planning. Generic CDCL

418 J. Rintanen

1: procedure CDCL(C)
2: Initialize v to satisfy all unit clauses in C;
3: extend v by unit propagation with v and C;
4: while C does not contain the empty clause do
5: choose a variable a with v(a) unassigned;
6: assign v(a) := 1 or v(a) := 0;
7: extend v by unit propagation with v and C;
8: if v falsifies a clause in C
9: then

10: infer a new clause c and add it to C;
11: undo assignments until a so that c is not falsified;
12: end if
13: end while

Fig. 1. Outline of the CDCL algorithm

solvers choose the decision variables based on the variables’ weights calculated from
their occurrence in recently learned conflict clauses. Our proposal only affects the vari-
able selection part, and hence it doesn’t affect the correctness or completeness of the
underlying CDCL algorithm.

4.1 Variable Selection to Satisfy Goals and Subgoals

Our heuristic is based on the following observation: each of the goal literals has to be
made true by an action, and the precondition literals of each such action have to be
made true by another action (or they have to be true in the initial state.)

The main challenge in defining a variable selection scheme is its integration in the
overall SAT solving algorithm in a productive way. To achieve this, the variable se-
lection depends not only on the initial state, the goals and the actions represented by
the input clauses, but also the current state of the SAT solver. The state of the solver
is primarily characterized by A) the current set of learned clauses and B) the current
(partial) valuation reflecting the decisions (variable assignments) and inferences (with
unit propagation) made so far. We have restricted the variable selection to use only part
B of the SAT solver state, the current partial valuation.

Our algorithm identifies one (sub)goal that is not at the current state of search sup-
ported (made true) by an action or the initial state. The search for such support proceeds
from the goal literals G at the last time point T in the horizon.

The first step is to find the earliest time point at which a goal literal can become and
remain true. This happens by going backwards from the end of the horizon to a time
point t in which A) an action making the literal true is taken or B) the literal is false
(and it is true or unassigned thereafter.) The third possibility is that the initial state at
time point 0 is reached and the literal is true there, and hence nothing needs to be done.

In case A we have an action, and in case B we choose any action that could change
the literal from false to true between t and t + 1.3 In case A we find support for the

3 Such an action must exist because otherwise the literal’s frame axiom would force the literal
false also at t + 1.

Heuristics for Planning with SAT 419

preconditions of the action in the same way. The first action found will be used as the
next decision variable in the CDCL algorithm.

The computation is started from scratch at every step of the CDCL procedure because
a particular support for a (sub)goal, for example the initial state, may become irrelevant
because of a later decision, and a different support needs to be found.

When no (sub)goal without support is found, the current partial assignment repre-
sents a plan. The assignment can be made total by assigning the unassigned action
variables to false and the unassigned fact variables the value they have in the closest
preceding time point with a value (inertia).

The algorithm is given in Fig. 2. It takes a stack containing the top-level goals as
input, and it returns the empty set or a singleton set {o@t} for some action o and time
t. Our operation for pushing elements in the stack marks them, and already marked ele-
ments are later ignored. This is to prevent subgoal literals occurring in the computation
repeatedly. We define prec((p, e)) = p and eff((p, e)) = e.

1: procedure support(Stack, v)

2: while Stack is non-empty do
3: pop l@t from the Stack;
4: t′ := t − 1;
5: found := 0;
6: repeat
7: if v(o@t′) = 1 for some o ∈ O with l ∈ eff(o)
8: then
9: for all l′ ∈ prec(o) do push l′@t′ into the Stack;

10: found := 1;
11: else if v(l@t′) = 0 then
12: o := any o ∈ O such that l ∈ eff(o) and v(o@t′) �= 0;
13: return {o@t′};
14: t′ := t′ − 1;
15: until found = 1 or t′ < 0;
16: end while
17: return ∅;

Fig. 2. Finding support for one unsupported subgoal

Example 1. We illustrate the search for an unsupported (sub)goal and the selection of
an action with a problem instance with goals a and b and actions X = ({d}, {a}),
Y = ({e}, {d}), and Z = ({¬c}, {b}).

variable 0 1 2 3 4 5 6
a 0 0 0 1
b 0 0 0 1 1
c 0 0
d 0 0 0
e 1

The timed literals that are considered to be changing from false to true are shown in
boldface. For goal a, the latest time at which a is false is 4.

420 J. Rintanen

Let’s assume that X@4 is unassigned, and hence could make a true at 5, and we
chooseX@4 as a support. If this action was already in the partial plan, the precondition
d of X would be the next unsupported (sub)goal, and it could be made true by Y at time
2. Hence Y would be the support of d in that case. The precondition e of Y is supported
by the initial state and wouldn’t need further support.

For the top-level goal b, assume that Z@2 is assigned true and hence explains the
change of b from false to true between time points 2 and 3. Since Z’s precondition ¬c
is satisfied by the initial state, again no further action is required.

4.2 Complexity of the Variable Selection Algorithm

If there are n state variables and the horizon length is T , there are nT variables that
represent state variables at different time points. Because each literal is pushed into the
stack at most once, the algorithm does the outermost iteration on line 2 for each goal or
subgoal at most once, and hence at most nT times in total. The number of iterations of
the inner loop starting on line 6 is consequently bounded by nT 2.

The actual runtime of the algorithm is usually much lower than the above upper
bound. A better approximation for the number of iterations of the outer loop is the
number of goals and the number of preconditions in the actions in the plan that is
eventually found. In practice, the runtime of the CDCL algorithm with our heuristic is
still strongly dominated by unit propagation, similarly to CDCL with VSIDS, and the
heuristic takes somewhere between 5 and 30 percents of the total SAT solving time.

4.3 Integration in the CDCL Algorithm

Our variable selection scheme is embedded in the CDCL algorithm of Fig. 1 by re-
placing lines 5 and 6 by the code in Fig. 3. Note that some actions are inferred by
unit propagation on line 7 in the CDCL algorithm, and these actions are later handled
indistinguishably from actions chosen by the heuristic.

1: empty Stack;
2: for all l ∈ G do push l@T into the Stack;
3: S := support(Stack, v);
4: if S = {o@t} for some o and t then v(o@t) := 1

5: else
6: if there are unassigned a@t for a ∈ A and t ≥ 1

7: then v(a@t) := v(a@(t − 1)) for one with minimal t
8: else v(o@t) := 0 for any o ∈ O and t ≥ 0 with o@t unassigned;

Fig. 3. Variable selection replacing lines 5 and 6 in Fig. 1

The choice of o on line 12 of Fig. 2 and the ordering of the goal literals in the stack on
line 3 of Fig. 3 are arbitrary, but for efficiency reasons they must be fixed. In particular,
it is important that on line 12 of Fig. 2 the same action is chosen as long as the condition
v(o@t′) �= 0 condition is satisfied. Intuitively, this is important to avoid losing focus in
the CDCL search.

Heuristics for Planning with SAT 421

When support(Stack, v) = ∅, all goals and all action preconditions in the current
plan are supported by another action or the initial state, and no further actions are
needed. The valuation of the SAT solver is usually still partial, because many of the
variables corresponding to actions that are not needed are still unassigned, and vari-
ables that do not change between two distant time points may be unassigned in some
of the intermediate time points. To complete the assignment, we choose, starting from
time point 1, unassigned fact variables and assign them the same value they have in
the preceding time point (line 7 in Fig. 3). This also sets most of the unassigned action
variables false. The remaining action variables (usually there are none left) are assigned
false one by one (line 8 in Fig. 3.)

5 Evaluation

We will show that our variable selection heuristic beats VSIDS with satisfiable formu-
las, but not with unsatisfiable ones. Further, we will show that our heuristics lead to a
planner that is competitive with one of the best planners that don’t use SAT.

We used our own SAT solver which is based on CDCL, VSIDS [2], and the phase
selection heuristic from RSAT [10]. We tried different clause learning schemes, and it
seemed to us that for our problems the Last UIP scheme has a small edge over First UIP
[9]. We use the former. We will comment on the relative efficiency of our SAT solver
with respect to other solvers later.

As test material we chose 968 problem instances from the biennial international
planning competitions from 1998 to 2008. Since our new heuristic is defined for the
restricted STRIPS language only, we use all of the STRIPS problems from the plan-
ning competitions, except some from the first competition, nor an earlier variant of any
benchmark domain that was used in two competitions.

As discussed in Sect. 2, our planner is based on the linear-size ∃-step semantics en-
coding of Rintanen et al. [5]4, and the algorithm B with parameter γ = 0.9. We consid-
ered the horizon length parameter T ∈ {0, 5, 10, 15, 20, . . .}, and let the planner solve
at most 18 SAT instances simultaneously. Most of the problem instances are solved with
less than 500 MB of memory, but a couple of dozen required 2 GB or more, up to the
3.5 GB boundary where we could not allocate more memory. The memory restriction
was dictated by the 32-bit Ubuntu Linux for which we compiled our programs. All the
experiments were run in an Intel Xeon CPU E5405 at 2.00 GHz with a minimum of 4
GB of main memory and using only one CPU core.

To test the performance of the heuristic for both satisfiable and unsatisfiable formu-
las, with emphasis on the unsatisfiable ones that are important for proofs of optimality
of plans, we set up our planner to use the traditional sequential strategy which goes
through horizon lengths 0, 1, 2, 3 and so on, until it finds a satisfiable formula. The
results of this experiment are summarized in Fig. 4. The plot shows the number of prob-
lem instances that are solved (finding a plan) in n seconds or less when using VSIDS
and when using the new heuristic (indicated by P). The solver with VSIDS solves about
15 per cent more instances when 300 seconds is spent solving each problem instance.

4 Results for the standard parallel plans (∀-step semantics) and for sequential plans are similar
in terms of the improvement our new heuristic yields over VSIDS.

422 J. Rintanen

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 50 100 150 200 250 300

nu
m

be
r

of
 s

ol
ve

d
in

st
an

ce
s

time in seconds

P
VSIDS

Fig. 4. Number of instances that can be solved in a given time with the sequential strategy

When the optimality proof is required (to show that a plan has the optimal parallel
length), usually almost all of the effort is spent on the unsatisfiability tests for formulas
right below the parallel length of the shortest parallel plan.

When optimality is not required, we use the planner with its default settings, as
described earlier, interleaving the solving of several SAT instances for different plan
lengths, thus avoiding the completion of the difficult unsatisfiability proofs. In this sce-
nario any improvements in determining satisfiability, i.e. quickly finding a satisfying
assignment corresponding to a plan, becomes much more important. The results of this
experiment are given in Fig. 5. In this case the new heuristic has a clear advantage over

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 50 100 150 200 250 300

nu
m

be
r

of
 s

ol
ve

d
in

st
an

ce
s

time in seconds

P
VSIDS
LAMA

PRECOSAT
RSAT

Fig. 5. Number of instances solved by different planners in a given time

Heuristics for Planning with SAT 423

Table 1. Number of instances solved in 300 seconds by benchmark domain

VSIDS P LAMA PRECO RSAT

1998-GRIPPER 20 20 20 20 18 20
1998-MPRIME 20 16 18 20 13 13
1998-MYSTERY 19 16 17 19 16 17
2000-BLOCKS 102 71 85 51 52 64
2000-LOGISTICS 76 76 76 76 74 74
2002-DEPOTS 22 21 21 16 21 21
2002-DRIVERLOG 20 15 20 20 18 18
2002-FREECELL 20 4 5 18 5 4
2002-ZENO 20 18 20 20 17 19
2004-AIRPORT 50 40 42 37 22 26
2004-OPTICAL-TELEG 14 14 14 2 14 14
2004-PHILOSOPHERS 29 29 29 BUG 29 29
2004-PIPESWORLD-NOTANK 50 15 20 44 0 0
2004-PSR-SMALL 50 50 49 50 49 50
2004-SATELLITE 36 29 32 30 23 27
2006-PIPESWORLD 50 9 10 38 8 10
2006-ROVERS 40 40 40 40 25 33
2006-STORAGE 30 29 30 18 23 25
2006-TPP 30 26 26 30 30 29
2006-TRUCKS 30 19 29 8 18 19
2008-ELEVATORS 30 13 30 30 16 17
2008-OPENSTACKS 30 15 11 30 12 12
2008-PARCPRINTER 30 30 30 28 30 30
2008-PEGSOLITAIRE 30 25 21 29 30 28
2008-SCANALYZER 30 19 16 27 14 19
2008-SOKOBAN 30 2 4 18 2 2
2008-TRANSPORT 30 10 12 28 1 3
2008-WOODWORKING 30 30 30 28 30 30
total 968 701 757 775 610 653
average number of actions 82.51 61.22 67.13

VSIDS. The diagram also plots the runtimes of the 2008 International Planning Com-
petition winner LAMA [11]5. The performance is almost at the same level, in terms of
the number of solved problems in a given time, although the sets of solved instances
differ quite a bit. Due to a bug in one of its components LAMA is not able to solve
the first instance of OPTICAL-TELEGRAPH and the first 13 instances of PHILOSO-
PHERS (the rest take longer than 300 seconds.) Some earlier planners have roughly the
same performance as LAMA but do much worse with hard problems from the phase
transition region or even with easy ones [12].

We also break down the results to different benchmark domains, showing the num-
bers of problem instances solved in 300 seconds by each planner in Table 1, and show
the average number of actions for instances solved by both variants of our planner and

5 Following instructions from the authors of LAMA, we decreased the maximum invariant gen-
eration time to 60 seconds, to match our time out limit 300 seconds.

424 J. Rintanen

LAMA. The numbers of actions in the plans LAMA produces are in general about the
same, but for the blocks world problems LAMA’s plans are substantially worse.

We also compared our results to the winners of the application/industrial category
of the SAT competition in 2009 and 2007, Precosat and RSAT [10]. We translated all
the test problems into DIMACS CNF for horizon lengths 0, 10, 20, . . . , 1006 and solved
them with a 100 second time limit per instance7, and then calculated the corresponding
Algorithm B runtimes with γ = 0.9. The Precosat and RSAT runtimes exclude the
construction of the CNF formulas and the writing and reading of DIMACS CNF files.

The main reason for the differences between our SAT solver and Precosat and RSAT
is preprocessing: for many large SAT instances that we can solve almost immediately,
RSAT and Precosat spend considerable time with the preprocessing before starting the
search phase. We intend to later investigate better preprocessing strategies for SAT
solvers in the planning context. Since the SAT instances for different horizon lengths of
one planning instance are closely related, parts of the CNF preprocessing can be shared.
This is one of the main avenues to improving preprocessing for planning with SAT.

Precosat is very good with the Peg Solitaire benchmark, presumably because of the
preprocessor, but in general it seems that preprocessing in RSAT and Precosat starts to
pay off only if there are ten minutes or more available to complete the planning task.

Many of the standard planning benchmarks lead to large SAT problems. The largest
SAT problems Precosat solves (within the time bounds explained earlier) are instance 41
of Airport (417476 variables, 92.9 million clauses) and instance 26 of Trucks (926857
variables, 11.3 million clauses). Our planner solves instance 45 of Airport with a com-
pleted unsatisfiability test for horizon length 60 (582996 variables and 140.7 million
clauses) and a plan for horizon length 70 (679216 variables, 164.1 million clauses).
Our planner, with the new heuristic, also solves instance 34 of Satellite, with a plan
found for horizon length 40 (8.5 million variables, 29.9 million clauses) backtrack-free
in 20.01 seconds excluding translation into SAT and including effort to find unsatisfia-
bility proofs for shorter horizon lengths. These are extreme cases. Most of the instances
have less than 1 million variables and at most a couple of million clauses.

6 Related Work

6.1 Earlier Planning Algorithms

Many earlier algorithms add actions to incomplete plans to support an existing goal
or subgoal, for example the partial-order planning algorithms [13]. The LPG planner
[14] does stochastic local search in the space of incomplete plans with parallel actions
similar to the SAT-based approach. LPG’s choice of actions to be added in the cur-
rent incomplete plan is based on the impact of the action on violations of constraints
describing the solutions.

Heuristic search [15] has long been an essential for problem solving in AI, but its use
in planning was limited until the ground-breaking work of Bonet et al. [16]. Research

6 We use the step 10 to reduce the time to perform the experiment. This affects the runtimes
negligibly. For the blocks world problems we used horizon lengths up to 200.

7 This is more than enough to determine the planners’ runtimes up to time out limit 300 seconds.

Heuristics for Planning with SAT 425

quickly focused on state-space search guided by heuristics derived from declarative
problem descriptions in a generic, problem-independent manner. A main emphasis in
the research on classical planning has been in finding better heuristics, with very limited
efforts to try something else than state-space search.

The Graphplan algorithm [17] uses backward search, constrained by the planning
graph structure which represents approximate (upper bound) reachability information.
The action selection of GraphPlan’s search may resemble our action selection: given
a subgoal l at time t, the choice of an action to reach l is restricted to actions in the
planning graph at level t− 1. This same constraint on action selection shows up in any
extraction of action sequences from exact distance information, for example in BDD-
based planning [18] and corresponding model-checking methods. However, the data
structures representing the distances (the planning graph or the BDDs) are not used as
a heuristic as in our work: when the action choice for achieving l is not restricted by
the contents of the planning graph, Graphplan will choose an arbitrary action with l
as an effect. Another major difference is of course that our heuristic leverages on the
search state of the CDCL algorithm (the learned clauses). This is the main reason why
our heuristic, despite its extreme simplicity, is more informative than the more complex
heuristics earlier used in AI planning.

6.2 Earlier Planners That Use SAT

The best known planner that uses SAT is BLACKBOX by Kautz and Selman [19].
Rintanen et al. [5] demonstrate that their ∀-step semantics encoding is often substan-
tially faster than the BLACKBOX encoding, sometimes by a factor of 20 or more.
Both encodings use the same definition of parallel plans. Runtime data in Sideris and
Dimopoulos [20] indicates that newer planners in the BLACKBOX family implement
slower encodings than BLACKBOX. For example, SATPLAN06 is often twice as slow
as BLACKBOX. The only other encoding that is comparable to the ∀-step semantics en-
coding of Rintanen et al. in terms of efficiency and size is the recent factored encoding
of Robinson et al. [21].

The more relaxed notion of parallel plans used in our planner, the ∃-step semantics
[5,22], allows shorter horizons and smaller formulas, and therefore leads to substantial
efficiency improvements. This and parallelized search strategies [6] often mean further
one, two or more orders of magnitudes of speed up over other SAT-based planners.

6.3 Domain-Specific Heuristics for SAT Solving

Not much is known about using problem specific heuristics in SAT solving or the work-
ings of SAT solvers when solving planning problems. Beame et al. [8] demonstrate the
utility of a problem-specific variable selection heuristic for a clause-learning algorithm
solving a combinatorial problem (pebbling formulas.) They demonstrate an improve-
ment in finding unsatisfiability proofs.

The decision variable heuristic proposed in this paper focuses on action variables,
and only assigns fact variables at the last stages to complete the assignment. Theoretical

426 J. Rintanen

results indicate that the efficiency of CDCL is decreased if variable assignments are
restricted to a subset of the variables only, even if those variables are sufficient for
determining satisfiability and unsatisfiability [23]. It is not clear to us what the prac-
tical or theoretical implications of these results are in our setting, more specifically
because planning and state-space reachability problems are only a subset of all satisfia-
bility problems. The experiments of Järvisalo and Junttila with instances from bounded-
model checking style deadlock detection and LTL model-checking suggest that a CDCL
solver with VSIDS restricted to a subset of decision variables fares worse than VSIDS
without the restriction. In contrast, we have a heuristic that has such limitations, and
the unlimited decision heuristic (VSIDS) with our test material fares in general worse.
Of course, the results of Järvisalo and Junttila could be seen as saying that there are
more effective variants of our heuristic which sometimes also choose fact variables as
decision variables. Further, all known restrictions on SAT solving efficiency (in a given
proof system) apply to unsatisfiability proofs only, which are not the focus of our work.

7 Conclusions and Future Work

The contribution of this paper is a simple yet powerful variable selection strategy for
clause-learning SAT solvers that solve AI planning problems, as well as an empirical
demonstration that the strategy outperforms VSIDS for standard planning benchmarks
when no proofs of the optimality of the horizon length is required. A main additional
benefit over VSIDS is that the variable selection strategy is understandable in terms of
the planning problem, and that there are obvious and intuitive avenues for developing
it further. The basic variable selection strategy is particularly promising because the
features that makes it strong are largely complementary to the important features of
VSIDS, making it possible to combine them, for example by adopting the weights of
literals from VSIDS to the planning heuristic. This is a focus of future work, as is
finding ways of doing the unsatisfiability proofs more efficiently.

Immediate improvement opportunities arise for example from the possibility of chang-
ing the order in which the top-level goals and the preconditions of an action are consid-
ered. Our initial experimentation in this area has demonstrated that the approach can
be dramatically strengthened further, leading to planners that substantially outperform
modern planners such as LAMA.

The main ideas in this work are quite general, and could be easily adapted to other
applications of SAT and constraint-satisfaction, for example model-checking [24] and
diagnosis [25], and of more expressive logics, such as QBF [26].

Acknowledgements

NICTA is funded by the Australian Government as represented by the Department of
Broadband, Communications and the Digital Economy and the Australian Research
Council through the ICT Centre of Excellence program. We thank Hector Geffner and
Patrik Haslum for comments on earlier versions of this paper.

Heuristics for Planning with SAT 427

References

1. Kautz, H., Selman, B.: Planning as satisfiability. In: Neumann, B. (ed.) Proceedings of the
10th European Conference on Artificial Intelligence, pp. 359–363. John Wiley & Sons,
Chichester (1992)

2. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineering an
Efficient SAT Solver. In: Proceedings of the 38th ACM/IEEE Design Automation Conference
(DAC 2001), pp. 530–535. ACM Press, New York (2001)

3. Bonet, B., Geffner, H.: Planning as heuristic search. Artificial Intelligence 129(1-2), 5–33
(2001)

4. Cook, S.A.: The complexity of theorem proving procedures. In: Proceedings of the Third
Annual ACM Symposium on Theory of Computing, pp. 151–158 (1971)

5. Rintanen, J., Heljanko, K., Niemelä, I.: Planning as satisfiability: parallel plans and algo-
rithms for plan search. Artificial Intelligence 170(12-13), 1031–1080 (2006)

6. Rintanen, J.: Planning and SAT. In: Biere, A., Heule, M.J.H., van Maaren, H., Walsh, T. (eds.)
Handbook of Satisfiability. Frontiers in Artificial Intelligence and Applications, vol. 185, pp.
483–504. IOS Press, Amsterdam (2009)

7. Rintanen, J.: Regression for classical and nondeterministic planning. In: Ghallab, M., Spy-
ropoulos, C.D., Fakotakis, N. (eds.) ECAI 2008. Proceedings of the 18th European Confer-
ence on Artificial Intelligence, pp. 568–571. IOS Press, Amsterdam (2008)

8. Beame, P., Kautz, H., Sabharwal, A.: Towards understanding and harnessing the potential of
clause learning. Journal of Artificial Intelligence Research 22, 319–351 (2004)

9. Mitchell, D.G.: A SAT solver primer. EATCS Bulletin 85, 112–133 (2005)
10. Pipatsrisawat, K., Darwiche, A.: A lightweight component caching scheme for satisfia-

bility solvers. In: Marques-Silva, J., Sakallah, K.A. (eds.) SAT 2007. LNCS, vol. 4501,
pp. 294–299. Springer, Heidelberg (2007)

11. Richter, S., Helmert, M., Westphal, M.: Landmarks revisited. In: Proceedings of the 23rd
AAAI Conference on Artificial Intelligence (AAAI-2008), pp. 975–982. AAAI Press, Menlo
Park (2008)

12. Rintanen, J.: Phase transitions in classical planning: an experimental study. In: Zilberstein,
S., Koehler, J., Koenig, S. (eds.) ICAPS 2004. Proceedings of the Fourteenth International
Conference on Automated Planning and Scheduling, pp. 101–110. AAAI Press, Menlo Park
(2004)

13. McAllester, D.A., Rosenblitt, D.: Systematic nonlinear planning. In: Proceedings of the 9th
National Conference on Artificial Intelligence, vol. 2, pp. 634–639. AAAI Press/The MIT
Press (1991)

14. Gerevini, A., Serina, I.: Planning as propositional CSP: from Walksat to local search tech-
niques for action graphs. Constraints Journal 8, 389–413 (2003)

15. Pearl, J.: Heuristics: Intelligent Search Strategies for Computer Problem Solving. Addison-
Wesley Publishing Company, Reading (1984)

16. Bonet, B., Loerincs, G., Geffner, H.: A robust and fast action selection mechanism for plan-
ning. In: Proceedings of the 14th National Conference on Artificial Intelligence (AAAI
1997) and 9th Innovative Applications of Artificial Intelligence Conference (IAAI 1997),
pp. 714–719. AAAI Press, Menlo Park (1997)

17. Blum, A.L., Furst, M.L.: Fast planning through planning graph analysis. Artificial Intelli-
gence 90(1-2), 281–300 (1997)

18. Cimatti, A., Giunchiglia, E., Giunchiglia, F., Traverso, P.: Planning via model checking: a
decision procedure for AR. In: Steel, S., Alami, R. (eds.) ECP 1997. LNCS, vol. 1348,
pp. 130–142. Springer, Heidelberg (1997)

428 J. Rintanen

19. Kautz, H., Selman, B.: Unifying SAT-based and graph-based planning. In: Dean, T.
(ed.) Proceedings of the 16th International Joint Conference on Artificial Intelligence,
pp. 318–325. Morgan Kaufmann Publishers, San Francisco (1999)

20. Sideris, A., Dimopoulos, Y.: Constraint propagation in propositional planning. In: ICAPS
2010. Proceedings of the Twentieth International Conference on Automated Planning and
Scheduling, pp. 153–160. AAAI Press, Menlo Park (2010)

21. Robinson, N., Gretton, C., Pham, D.N., Sattar, A.: SAT-based parallel planning using a split
representation of actions. In: Gerevini, A., Howe, A., Cesta, A., Refanidis, I. (eds.) ICAPS
2009. Proceedings of the Nineteenth International Conference on Automated Planning and
Scheduling, pp. 281–288. AAAI Press, Menlo Park (2009)

22. Wehrle, M., Rintanen, J.: Planning as satisfiability with relaxed ∃-step plans. In: Orgun,
M.A., Thornton, J. (eds.) AI 2007. LNCS (LNAI), vol. 4830, pp. 244–253. Springer, Heidel-
berg (2007)

23. Järvisalo, M., Junttila, T.: Limitations of restricted branching in clause learning. Constraints
Journal 14, 325–356 (2009)

24. Biere, A., Cimatti, A., Clarke, E.M., Zhu, Y.: Symbolic model checking without BDDs.
In: Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 193–207. Springer, Hei-
delberg (1999)

25. Grastien, A., Anbulagan, R.J., Kelareva, E.: Diagnosis of discrete-event systems using satis-
fiability algorithms. In: Proceedings of the 22nd AAAI Conference on Artificial Intelligence
(AAAI 2007), pp. 305–310. AAAI Press, Menlo Park (2007)

26. Rintanen, J.: Asymptotically optimal encodings of conformant planning in QBF. In: Proceed-
ings of the 22nd AAAI Conference on Artificial Intelligence (AAAI 2007), pp. 1045–1050.
AAAI Press, Menlo Park (2007)

Value-Ordering Heuristics: Search Performance
vs. Solution Diversity

Yevgeny Schreiber

Intel Corporation, Haifa, Israel

yevgeny.schreiber@intel.com

Abstract. We examine the behavior of dynamic value-ordering heuris-

tics in a CSP under the requirement to generate a large number of di-

verse solutions as fast as possible. In particular, we analyze the trade-off

between the solution search performance and the diversity of the gener-

ated solutions, and propose a general probabilistic approach to control

and improve this trade-off. Several old/new learning-reuse heuristics are

described, extending the survivors-first value-ordering heuristics family.

The proposed approach is illustrated on a real-world set of examples from

the Automatic Test Generation problem domain, as well as on several

sets of random binary CSPs.

Keywords: Automatic Test Generation, Learning Reuse, Solution Di-

versity, Survivors-First, Value Ordering CSP Heuristic.

1 Introduction

A Constraint Satisfaction Problem (CSP) is defined as a set X = {x1, . . . , xn}
of variables, a set D = {d1, . . . , dn} of the corresponding value domains, and a
set C = {c1, . . . , cm} of constraints that define the allowed value combinations
of the variables. A CSP solution is an assignment of values to variables so that
all the constraints in C are satisfied.

The general solution search method can be described as follows: (a) Repeat-
edly select an unassigned variable x ∈ X , (b) try to assign to x one of the
remaining values in its domain, and (c) propagate every constraint c ∈ C that
involves x, by removing the conflicting values from the domains of all the other
variables that are involved in c. If, as a result of the constraint propagation, a
variable domain becomes empty, the search backtracks, the value that has been
assigned to x is removed from its domain, and all the domains that have been
reduced after the last assignment of x are restored.

A value-ordering heuristic determines which value is selected by the algorithm
at step (b). If the problem is solvable, then, on average, a solution can be reached
more quickly if the selected value maximizes the number of possibilities to assign
variables that are still unassigned (that is, has a little chance of leading to a
conflict). Various existing methods use this heuristic and attempt to evaluate,
a priori, a possible search-space reduction effect of an assignment. For example,
Geelen’s Promise [2] computes for each value the product of the numbers of

D. Cohen (Ed.): CP 2010, LNCS 6308, pp. 429–444, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

430 Y. Schreiber

supports in the domains of the unassigned variables. Refalo [14] suggested a
method based on learning the results of previous assignments on one hand and
on look-ahead techniques on the other hand. Another family of value-ordering
heuristics was introduced by Zhang and Epstein [17]. These heuristics, called
survivors-first, use simple statistics accumulated during the search to select the
value that has been involved in less conflicts than others. The survivors-first
heuristics are easy to implement, their run-time and memory overhead is low,
and, as it is shown in [17], they can be quite helpful in many cases.

However, there is a class of applications where the cost of using these and
other value-ordering heuristics comprises an additional factor. Sometimes it is
required to find several solutions of a given problem; moreover, these solutions
should often be as different from each other as possible. The latter requirement
is called solution diversity. Hebrard et al [5] distinguish between off-line diver-
sity/similarity problems where the whole required set of solutions is computed
at once, and their on-line counter-part where the solutions are computed in-
crementally. The MaxDiversekSet problem of computing k (approximately)
maximally diverse solutions of a given CSP is defined and studied in [5]; the ap-
proach is demonstrated on k = 3. In particular, the authors compare a random
value shuffle with a value-ordering heuristic that first selects values that have
been least used in previous solutions.

In this paper we concentrate on the on-line version of the problem, with the
following motivation. The solution diversity requirement is very important in the
Automatic Test Generation Problem (ATGP) (see [4,6,11,13,15]). The problem
is to generate automatically a valid test for a given specification (usually, of some
hardware), which is a sequence of a large number of instructions. These instruc-
tions have to be diverse, in order to trigger as many as possible different hardware
events. Van Hentenryck et al [6] propose to solve this MaxDiversekSet ATGP
using the constraint-based local search techniques, and demonstrate their solu-
tion on a (small scale) ATGP; in particular, they mention the trade-off between
the solution diversity and the performance of their algorithm.

We continue and extend the above lines of work in the following direction.
The computation time is usually very important for ATGP, since thousands
of tests have to be generated even for a small subset of a modern hardware
specification. Moreover, when measuring the quality of the tests, it often makes
sense to consider the overall quality of the whole test-base; therefore generating
a small number of high-quality (diverse) tests can be less useful than generating
a large number of somewhat less diverse tests. We can therefore talk about a
trade-off between the search performance and the solution diversity.

Since the computation time is important, we concentrate on the case where
it is too expensive to look for an optimal solution of the MaxDiversekSet —
rather, we are interested in an approximation whose computational cost is as
close as possible to the cost of k independent searches for a single solution. To
reach this goal we use value-ordering heuristics. First, we analyze the trade-off
between the search performance and the solution diversity, as a function of the
value-ordering heuristic. Second, we suggest general methods to characterize and

Value-Ordering Heuristics: Search Performance vs. Solution Diversity 431

extend value-ordering heuristics so that this trade-off could be easily controlled.
Finally, we show that several value- ordering heuristics can obtain a relatively
good performance/quality trade-off.

Before we continue, note the difference between solution diversity and solution
distribution. There are several works (see e.g. [1,3]) that provide methods for
generating a uniformly random sample of solution space. The goal there is to
produce each solution with probability that is as close as possible to 1

N , where
N is the total number of solutions. However, the uniform distribution does not
necessarily lead to a sample of solutions that are highly different from each
other. For example, consider a solution space composed of a small subset S1 of
solutions where each variable is assigned a different value, and a much larger set
of solutions S2 so that only a single variable is assigned a different value in each
solution. Then there is a high probability that most of the produced solutions
in a uniformly random sample would belong to S2 rather than to S1. Obviously,
the diversity of the produced solutions would be relatively low.

The rest of the paper is organized as follows. In the next section we analyze
the relation between value-ordering heuristics and the diversity of the produced
solution set. In Section 3 we describe several simple value-ordering heuristics
that generalize and extend the survivors-first heuristics family introduced in [17]
by using a few simple techniques that allow to control and improve the trade-
off between the search performance and the solution diversity. This approach
is illustrated in Section 4 on random binary CSPs and on a full scale ATGP
involving thousands of variables and constraints, where many variables have
huge domains. In Section 5 we summarize the discussion.

2 Analysis

Given a CSP P , the MaxDiversekSet problem is defined in [5] as computing
a set S of k solutions of P that maximizes δ(S) =

∑
s,s′∈S δ(s, s

′), where δ(s, s′)
measures the distance between a pair of solutions.

It is often convenient to use the Hamming distance as δ. That is, given
s = 〈s1, . . . , sn〉 and s′ = 〈s′1, . . . , s′n〉, we define Hi(s, s′) = 1 if si �= s′i and
Hi(s, s′) = 0 otherwise, for 1 ≤ i ≤ n. Then δ(s, s′) is defined as

∑n
i=1 Hi(s, s′).

Note that δ(S) can be normalized to remove the dependence on n and k by
dividing it by nk(k−1)

2 .
For the purpose of the analysis in this paper we assume that δ is the Hamming

distance; however, it is also possible to apply a similar approach for other metrics
as well (e.g. the more general weighted Hamming distance, where each Hi(s, s′)
is multiplied by a respective weight, etc).

Consider a probabilistic search algorithm AH that selects the values at the
search tree nodes according to some value-ordering heuristic H; AH(P) stops
when a solution of P is found or until it reaches the conclusion that P does not
have a solution. Given a solution s = 〈s1, . . . , sn〉 found by AH(P), let si be the
value assigned to xi ∈ X in s, and let u be a value in di. Then p(si = u) is
defined to be the probability that si = u. Denote by d̃i ⊆ di the set of values u

432 Y. Schreiber

for which xi = u is part of at least one solution of P . (Obviously, p(si = v) = 0
for each v ∈ di \ d̃i.)

Definition 1. The uniform value distribution property is the set of equalities
p(si = u) = 1

|d̃i| for each xi ∈ X and each u ∈ d̃i.

Lemma 1. If the uniform value distribution property holds, then the expected
value E [δ(S)] for a random set S of solutions found by AH(P) is maximal.

Proof. Since E [δ(S)] =
∑

s,s′∈S E [δ(s, s′)], and since E [δ(s, s′)] is equal for each
pair of random solutions in S, it is sufficient to show that when the uniform value
distribution property holds, E [δ(s, s′)] =

∑n
i=1 E [Hi(s, s′)] is maximal.

Since it is given that s and s′ are solutions of P , we have

E [Hi(s, s′)]=
∑
u∈d̃i

p(si = u) (1− p(si = u)) =
∑
u∈d̃i

p(si = u)−
∑
u∈d̃i

(p(si = u))2 .

Using the fact that
∑

u∈d̃i
p(si = u) = 1 and 0 < p(si = u) ≤ 1 for each u ∈ d̃i,

it is not difficult to see that this function reaches the maximum of 1− 1
|d̃i| when

the uniform value distribution property holds. (To see this, define a uniformly
random variable X whose possible values are p1, . . . , pm so that

∑m
i pi = 1; then

the variance of X equals to 1
m

∑m
i p2

i− 1
m2 , which equals to 0 when each pi = 1

m .)
As a consequence,

∑n
i=1 E [Hi(s, s′)] reaches the maximum of n−

∑n
i=1

1
|d̃i| . ��

Note that Lemma 1 neither shows how to reach the uniform value distribution
property, nor even states that this property is possible for every P .

Let σj be a partial assignment 〈x1 = s1, . . . , xj = sj〉, for j < n, and denote
by p(xi = u | σi−1) the probability of AH(P) to assign u to xi at the search node
where the variables x1, . . . , xi−1 are assigned according to σi−1. By Lemma 1, in
order to maximize E [δ(S)], we would like to set all the probabilities p(x = u | σ)
so that the uniform value distribution property would hold. Unfortunately, it
is an NP-hard problem [8]. There exist several approximation methods [9,12]
that can deal with the so called distribution constraints, in which the desired
distribution of values of some variables in the solution can be specified. However,
such methods are not applicable here since they can usually deal with only a
limited number of distribution constraints, while we would like the uniform value
distribution property to hold for each xi ∈ X .

Another approximation method attempts to maximize E [δ(S)] interactively,
as follows. Let S′ be a set of already produced k′ < k solutions. Denote by
p̃(si = u) an approximation of p(si = u), evaluated according to the behavior
of AH(P) during the k′ searches. Then the uniform value distribution property
can be approximated by the condition p̃(si = u) = p̃(si = v) for each u, v ∈ di.
Note that we use di instead of d̃i in this approximation, since d̃i is unknown a
priori. However, selecting a value in di \ d̃i does not affect the resulting value of
E [δ(S)] if the search is not limited and it runs until a solution is found.

Value-Ordering Heuristics: Search Performance vs. Solution Diversity 433

Each term of the sum
∑n

i=1 E [Hi(s, s′)] can be greedily maximized indepen-
dently, by assigning to xi a value u whose p̃(si = u) is minimal in di. A variant
of this approach where u participates in the smallest number of solutions with
si = u in S′ was used in [6] (among other heuristics); we describe a few addi-
tional variants of this approach in Section 3. When a new solution is added to
S′, all the evaluated approximations are updated.

Unfortunately, such greedy maximization attempt of each E [Hi(s, s′)] does
not necessarily lead to a maximization of

∑n
i=1 E [Hi(s, s′)], since it can decrease

several other terms of the sum, and so there is no guarantee that the resulting
E [δ(S)] would be higher than if using a different value ordering heuristic. More-
over, attempts to maximize E [δ(S)] are likely to increase the probability of
selection of values whose probability to survive until the end of the search are
relatively low, and therefore to increase the runtime of the search.

We verify the correctness of this analysis by experiments that are described
in Section 4. Before that, in the next section we describe several value-ordering
heuristics and practical techniques that provide some control over the trade-off
between the performance and the solution diversity.

3 Value-Ordering Heuristics

The most basic value-ordering heuristic that comes to mind when considering
solution diversity is the Random heuristic, which simply selects a uniformly
random value from di.1 It is observed in [5] and confirmed by our experiments
described in the next section that this simple heuristic often achieves relatively
high solution diversity in problem instances that have many possible solutions
(which is usually the interesting case when considering the solution diversity
requirement), and that in such problems Random performs relatively fast.

This observation can be explained by the fact that in such problems there
is usually a relatively large number of values in every domain whose selection
does not lead to a conflict, and therefore there is a relatively high probability for
Random to select a value without paying a high performance penalty for a uni-
formly random selection. Moreover, the procedure itself of randomly selecting a
value from a domain is very fast. Still, by using the following learning-reuse value
ordering heuristics we attempt to achieve a better trade-off between performance
and solution diversity than Random does.

In the following definitions of value ordering heuristics H we denote by p(xi, v)
the probability for a random algorithm AH to select the value v at a search node
where the variable xi is assigned.

1. LeastFails (similar to RVO in [17]) assigns xi a value v with the lowest
recorded number b(xi, v) of attempts to assign v to xi that have led to a
conflict (and therefore to a removal of v from the domain of xi); if there are
k such values in di, then p(xi, v) = 1

k for each such v, and p(xi, v) = 0 for
every other value in di.

1 Here and below di denotes the “current” subset of values from the original domain

that have not been removed by the constraint propagation process so far.

434 Y. Schreiber

2. BestSuccessRatio (similar to RSVO in [17]) assigns xi a value v with the
lowest ratio of b(xi, v) over the total recorded number a(xi, v) of attempts
to assign v to xi; if there are k such values v in di, then p(xi, v) = 1

k .
3. ProbLeastFails is a probabilistic version of LeastFails: it assigns xi a

value v with a probability that is inversely proportional to b(xi, v); that
is, p(xi, v) = B

b(xi,v) , where B =
∑

u∈di

1
b(xi,u) does not depend on v. (We

assume here that b(xi, v) > 0; the case with b(xi, v) = 0 is discussed further
in this section.)

4. ProbBestSuccessRatio is a probabilistic version of BestSuccessRatio:
it assigns xi a value v with the a probability that is proportional to 1− b(xi,v)

a(xi,v) ;

that is, p(xi, v) = a(xi,v)−b(xi,v)
(|di|−C)a(xi,v) , where C =

∑
u∈di

b(xi,u)
a(xi,u) does not depend

on v. (We assume here that a(xi, v) > 0; the case with a(xi, v) = 0 is
discussed below.)

5. ProbMostFails (extending a related heuristic used in [5]) assigns xi a
value v with a probability that is proportional to b(xi, v); that is, p(xi, v) =

b(xi,v)∑
u∈di

b(xi,u) (assuming that
∑

u∈di
b(xi, u) > 0).

6. ProbWorstSuccessRatio (extending a related heuristic used in [5]) as-
signs xi a value v with a probability that is proportional to b(xi,v)

a(xi,v) ; that is,

p(xi, v) = b(xi,v)
Ca(xi,v) (as above, assuming that a(xi, v) > 0).

According to the analysis in Section 2, the heuristics ProbMostFails and
ProbWorstSuccessRatio greedily attempt to maximize each E [Hi(s, s′)] in-
teractively in order to get a better Hamming distance between the generated
solutions. (Note that here we only use the probabilistic versions of such heuris-
tics, since always selecting a value which usually leads to a conflict is expected
to lead to an unbearable performance penalty.) The heuristics LeastFails and
BestSuccessRatio attempt to find a solution as fast as possible, and Prob-
LeastFails and ProbBestSuccessRatio try to stay in the middle, sacrificing
some of the solution diversity for the sake of performance.

We observe two factors that can affect the trade-off between the solution di-
versity and the search performance of each of the above value-ordering heuristics,
within the framework of the general policy of the heuristic. We call these factors
the conservativeness and the aggressiveness.

The conservativeness can only be considered for a heuristic that does not
necessarily determine a full order between all the values in a domain. For exam-
ple, the above learning-reuse heuristics can only order values that have already
been attempted to be assigned to variables in the past. In this and other cases
it must be decided what p(xi, u) should be used for the values u ∈ di whose
order cannot be currently determined by the heuristic. The more conservative a
heuristic H is, the lower is the probability p(xi, u) to select such an “unordered”
value. We can define the conservativeness of a value-ordering heuristic H sepa-
rately for each xi whose domain contains at least one unordered value u ∈ di as
Ci(H) = 1−p(xi, u). A low Ci(H) can lead to a more random behavior in the first
few times that xi is assigned, which can sometimes result in an inferior search

Value-Ordering Heuristics: Search Performance vs. Solution Diversity 435

performance. However, this allows to prevent situations where many unordered
values are never selected and therefore never become ordered. It is natural to
control Ci(H) using a parameter α that represents an “initial score” of an un-
ordered value u: for LeastFails, ProbLeastFails, and ProbMostFails this
can be some initially expected value of b(xi, u), and for BestSuccessRatio,
ProbBestSuccessRatio, and ProbWorstSuccessRatio, α can represent
some initially expected ratio b(xi, u)/a(xi, u).

The aggressiveness of a heuristic is a measure of non-uniformness of p(xi, v)
over all v ∈ di. It can be defined separately for each xi ∈ X as

Ai(H) = max
v∈di

{p(xi, v)} −min
v∈di

{p(xi, v)} .

(Note that there are more than one way to define the measure of non-uniformness
of p(xi, v); we have selected one that is convenient for analysis.) Here we as-
sume that for every v ∈ di some p(xi, v) is set, including unordered values
whose p(xi, v) is set according to Ci(H). The less aggressive a heuristic is,
the more similar to Random it behaves. For the heuristics ProbLeastFails,
ProbBestSuccessRatio, ProbMostFails, and ProbWorstSuccessRa-
tio it is natural to control Ai(H) as follows: The distribution of p(xi, v) over
all v ∈ di can be smoothed using a parameter β > 0, or amplified using
−minv∈di{p(xi, v)} < β < 0:

pnew(xi, v) =
p(xi, v) + β

1 + β |di|
, so the new aggressiveness is :

Ai(H)
1 + β |di|

.

Note that setting β > 0 allows to avoid all the cases in the definition of these
heuristics where b(xi, v) = 0 or a(xi, v) = 0.

For the heuristics LeastFails and BestSuccessRatio, which cannot select
a value whose score is not the highest in the domain, a tie-range parameter
0 ≤ γ ≤ 1 can be used to smooth differences between “sufficiently close” values.
(In [17] a constant γ = 0.05 is used in a related context.) Let d′i be the set
of all the values v ∈ di so that (1 + γ)p(xi, v) ≥ maxu∈di p(xi, u). Then for
each v in d′i: pnew(xi, v) = 1

|d′
i|
∑

u∈d′
i
p(xi, u). Let u′ ∈ di be the value whose

p(xi, u
′) is minimal. If pnew(xi, u

′) = p(xi, u
′) then pnew(xi, u

′) = p(xi, u
′) = 0,

and therefore Ai(H)
1+γ ≤ Ai(H)new ≤ Ai(H); otherwise the new aggressiveness

Ai(H)new = 0, and the resulting behavior is similar to Random.
Note that all the learning-reuse heuristics, including the six heuristics de-

scribed above, collect information during the search and update the probabili-
ties p(x, v) on the fly. As a result, if the parameters β, γ that control Ai(H) are
only set once at the beginning of the search, the aggressiveness of H grows as
the search progresses. Moreover, during the search, as more and more initially
unordered values become ordered by the heuristic, the conservativeness of H
plays less and less important part. Note also that, as usual with learning-reuse
heuristics, no information is available at the beginning of the search for a first
solution. As a consequence, all the values in each domain di are initially un-
ordered, p(xi, u) = 1

|di| for each u ∈ di, and Ai(H) = 0, which means that each
above heuristic in the beginning of the first search is equivalent to Random.

436 Y. Schreiber

3.1 Adaptive Aggressiveness

There is an additional conclusion that can be made from the analysis in Section 2
and from the fact that the computation of Hamming distance is symmetric with
respect to the element order in the compared vectors. The performance/diversity
trade-off can be improved as follows, when it is possible to identify a subset
X ′ ⊂ X of variables that form a sub-problem that (a) is difficult to satisfy, and
(b) is quite disconnected from the rest of the variables (that is, assigning vari-
ables in X ′ does not cause “much” domain reduction for variables outside X ′).
We could make the behavior of the heuristic more performance-oriented for vari-
ables in X ′, and more diversity-oriented for the rest of the variables. However,
it is difficult to identify such relatively independent subsets of variables (char-
acteristic (b)) without applying additional techniques, which are out of scope of
this paper and are left for future research. On the other hand, characteristic (a)
can be approximated quite easily, using the values of a(xi, v) and b(xi, v) that
are collected by the learning-reuse techniques described above.

We can therefore define, for each of the six learning-reuse heuristics H de-
scribed above, an adaptive version Had that corrects during the search the ini-
tially given Ai(H), individually for each xi ∈ X , according to the estimation
r(xi) of the average 1

b(xi,v) (for all the heuristics that do not consider a(xi, v))

or a(xi,v)
b(xi,v) (for the heuristics that consider both a(xi, v) and b(xi, v)) over all

v ∈ di. In particular, the adaptive versions of LeastFails and BestSuccess-
Ratio (ProbLeastFails and ProbBestSuccessRatio) use the parameter γ
(respectively, β) to increase Ai(H) for xi with low r(xi). This results in a more
uniform selection of values from a domain of a variable that is not involved in
“tight” constraints than for a variable whose assignments often fail. On the other
hand, the adaptive versions of ProbMostFails and ProbWorstSuccessRa-
tio use β to decrease Ai(H) for xi with low r(xi), to make the heuristic less
aggressive for variables whose assignments often fail.

4 Experiments

We ran the experiments on the following two sets of problems:
(1) Randomly generated problems, with the 〈a, b, c, d〉 notation: a is the number
of variables, b is the domain size of each variable, c is the number of binary con-
straints, and d is the number of incompatible value pairs in each constraint. We
used 〈50, 10, 225, 35〉 and 〈50, 10, 225, 37〉, with 30 problems in each set; we have
also tested our results on 〈50, 10, 450, 20〉 and the results are quite similar, but are
not shown here due to space limitations. We looked for 30 solutions of each prob-
lem and measured the Hamming distance between each pair of solutions. Note
that the constraints in 〈50, 10, 225, 37〉 are tighter than those in 〈50, 10, 225, 35〉,
and as a result these problems are much harder, but both sets of problems are
still not in the transition phase [16], and therefore have many solutions. (We are
not interested in transition phase problems in our experiments since the question
of solution diversity is much less relevant there.) All the random problems were

Value-Ordering Heuristics: Search Performance vs. Solution Diversity 437

solved using the variable ordering heuristic that always picked the variable with
the currently minimal domain.
(2) Automatic Test Generation problems. Each ATGP involves thousands of vari-
ables and constraints that model Intel 64 and IA-32 processor architecture [7].
Additionally, each ATGP contains a small set of constraints that cause the gen-
erated instruction sequence (the solution of ATGP) to trigger a specific set of
interesting events when executed on a corresponding processor. In general, the
goal is to find a set of solutions (test instructions) that (a) satisfy all these con-
straints and (b) are as different from each other as possible. Here we use the
〈n,m〉 notation: n is the number of problems in the set, and m is the average
number of instructions that is required to generate for each problem. We experi-
mented with two sets of ATG problems: 〈15, 21〉 and 〈26, 7〉; we have also tested
our results on 〈15, 41〉 and the results are similar, but are not presented here.
The set 〈26, 7〉 was added to the experiment in order to test the behavior of the
heuristics with only a relatively small number of required solutions.

Except the complexity of the problems, there are many additional differences
between the ATGP and the random CSP benchmark; we mention here two differ-
ences that are relevant for our experiments. First, even when all the constraints
are identical for each ATGP instruction, computing a sequence of n instructions
is not quite equivalent to finding n solutions for the same problem. The reason
is that each instruction in the sequence modifies the architectural state of the
processor, which is modeled as part of the CSP. As a result, the problem is a lit-
tle different each time that we are looking for a new solution, which reduces the
efficiency of the learning-reuse heuristics. (See [4,15] for a description of methods
that deal with the architectural state change in ATGP.) Another difference is the
computation of distance between the ATGP solutions. ATGP is a complicated
problem, where the existence of many variables depends on values of other vari-
ables, and is therefore modeled as Conditional CSP (CCSP, or Dynamic CSP
in [10]); see [6,11] for a detailed description of this complication and of methods
to compute distance between solutions of a CCSP.

4.1 Results

We compare the Random heuristic with each of the heuristics described above
(six basic and six adaptive versions). Each of the twelve heuristics is used with
nine sets of parameters that control its aggressiveness and conservativeness. In
total, each problem in the test bench is solved using 109 different value selection
heuristic configurations. Each of the following four tables summarizes the results
for one set of problems; it contains 108 entries of the form 〈A,B,C,D,E〉, where:

A is the acronym of the name of the heuristic. For example, ProbMostFails
is denoted by pmf, and AdaptiveBestSuccessRatio by absr.

B is the value of α that was used as the “initial score” of an unordered value.
C is the value of either β or γ, depending on the heuristic: as described in

Section 3, β is used to control the aggressiveness of LeastFails, BestSuc-
cessRatio, and their adaptive versions, while γ is used for all the rest.

438 Y. Schreiber

D is the ratio of the average time that was required for the current heuristic
configuration to find a single solution, over the time that was required for the
Random heuristic.

E is the ratio of the average normalized Hamming distance between the solutions
that were found by the current heuristic configuration, over the distance that
was achieved by the Random heuristic.

All the entries in each table are sorted by the ratio D
E : the lower the ratio, the

better is the performance/quality ratio relatively to the trade-off achieved by
the Random heuristic. Each table is divided by a horizontal line into two parts :
above the line appear the heuristic configurations with D ≤ E (and therefore
we consider their trade-off to be better than that of Random), and below the
line are the heuristic configurations with D > E. (Note that Random does not
appear in the tables, since its D = 1 and E = 1.)

As discussed at the beginning of Section 3, it is hard to achieve a better
solution diversity than that of the Random heuristic for such problems as those
that are used in this benchmark. Indeed, in each table there are only a few entries
with E > 1, and in all such entries the delta E − 1 is insignificant. On the other
hand, there are many heuristic configurations whose solution diversity was much
worse than that of Random: for example, many configurations of LeastFails,
BestSuccessRatio, and their adaptive versions, with high aggressiveness and
conservativeness, have low values of E.

The picture is different when comparing the runtime of the different heuristics
to that of Random. There are many heuristic configurations that run much
faster than Random; many non-probabilistic heuristics run twice as fast as
Random, or in some cases even 10 or 20 times faster (e.g., see the entries of
LeastFails in Table 1). Unfortunately (but expectedly), in many cases where
the speed-up is very high, the loss of solution diversity is also very significant.

Nevertheless, at the beginning of each table there are at least several entries
of heuristic configurations that achieve a relatively good speed-up without a
significant loss of solution diversity. For example, at the beginning of Table 1
(set 〈50, 10, 225, 35〉) several configurations of BestSuccessRatio run about
twice as fast as random (0.498 ≤ D ≤ 0.593) while losing only a relatively
small portion of solution diversity (0.916 ≤ E ≤ 0.929). Some configurations of
ProbLeastFails, ProbBestSuccessRatio, and AdaptiveProbBestSuc-
cessRatio achieve a lesser speed-up (0.798 ≤ D ≤ 0.838), but almost do not
lose any solution diversity (0.951 ≤ E ≤ 0.991).

The results in Table 2 are even better. All configurations of BestSuccess-
Ratio achieve about ×4 speed-up (0.235 ≤ D ≤ 0.264), while losing only about
15–20% of solution diversity (0.761 ≤ E ≤ 0.843). All configurations of Prob-
LeastFails achieve lower speed-up (0.701 ≤ D ≤ 0.802), but their loss of
solution diversity is insignificant (0.955 ≤ E ≤ 0.982). Many configurations of
ProbBestSuccessRatio also achieve similar results. AdaptiveProbLeast-
Fails is a little slower than the non-adaptive version, but it practically does not
lose solution diversity.

Value-Ordering Heuristics: Search Performance vs. Solution Diversity 439

Table 1. 〈50, 10, 225, 35〉 results (relative to the Random heuristic)

heur α β|γ time/R HD/R heur α β|γ time/R HD/R heur α β|γ time/R HD/R

alf 0.25 0.05 0.062 0.12 apmf 2 0.25 0.937 0.98 pwsr 0.25 1 1.034 0.998

bsr 0.5 0.15 0.498 0.918 pbsr 0.5 0.25 0.942 0.985 pwsr 0.75 0.05 1.038 0.997

bsr 0.25 0.05 0.524 0.924 aplf 0.9 3 0.96 1.004 pbsr 0.25 0.05 1.029 0.985

bsr 0.5 0.45 0.531 0.92 apbsr 0.25 0.05 0.911 0.949 apwsr 0.75 0.5 0.973 0.926

bsr 0.25 0.45 0.546 0.921 aplf 0.5 0.25 0.966 1.002 alf 0.9 0.45 0.081 0.077

bsr 0.25 0.15 0.548 0.916 apwsr 0.5 0.5 0.9 0.931 pmf 2 0.25 1.033 0.976

lf 0.25 0.05 0.064 0.102 apwsr 0.25 0.05 0.916 0.947 apwsr 0.75 1 0.992 0.937

bsr 0.75 0.15 0.593 0.929 absr 0.25 0.45 0.972 0.998 pmf 1 0.25 1.042 0.984

bsr 0.75 0.45 0.626 0.923 apbsr 0.5 0.05 0.926 0.943 pmf 2 0.75 1.034 0.973

alf 0.25 0.15 0.094 0.136 alf 0.9 0.05 0.084 0.085 apbsr 1 0.25 1.005 0.932

bsr 0.75 0.05 0.655 0.911 absr 0.75 0.15 0.987 1.001 apbsr 0.5 0.25 1.039 0.96

lf 0.5 0.45 0.09 0.122 absr 0.5 0.05 0.988 1 pwsr 0.5 0.5 1.082 0.999

bsr 0.5 0.05 0.697 0.92 plf 0.9 3 0.974 0.984 lf 0.25 0.15 0.062 0.057

plf 0.9 0.75 0.826 0.991 plf 0.25 0.75 0.978 0.985 pmf 2 3 1.061 0.975

pbsr 1 0.25 0.824 0.986 plf 0.5 3 0.989 0.991 aplf 0.9 0.75 1.099 1

apbsr 1 0.05 0.798 0.951 apmf 0.5 3 0.982 0.98 apmf 2 3 1.082 0.98

pbsr 1 0.05 0.838 0.994 pwsr 0.75 0.5 1.004 1.001 alf 0.5 0.05 0.191 0.171

lf 0.5 0.15 0.05 0.058 absr 0.25 0.15 1.006 1.002 pmf 0.5 3 1.091 0.978

pwsr 0.25 0.5 0.868 1 plf 0.5 0.25 0.995 0.988 apwsr 0.5 1 1.051 0.933

plf 0.25 0.25 0.866 0.994 absr 0.75 0.05 1.008 1 alf 0.25 0.45 0.135 0.12

apmf 1 0.25 0.855 0.976 pwsr 0.75 1 1.01 1 alf 0.5 0.15 0.134 0.118

pbsr 0.5 0.05 0.88 0.986 apbsr 0.25 0.25 0.954 0.942 aplf 0.5 0.75 1.141 1.002

absr 0.5 0.45 0.899 1.001 pmf 0.5 0.25 0.99 0.978 apwsr 0.25 0.5 1.066 0.929

pbsr 1 0.5 0.886 0.982 aplf 0.25 0.25 1.015 1.002 apwsr 0.5 0.05 1.118 0.94

absr 0.5 0.15 0.904 1.001 absr 0.75 0.45 1.015 1.001 pmf 0.5 0.75 1.159 0.974

alf 0.5 0.45 0.11 0.121 pbsr 0.5 0.5 1.008 0.99 apmf 0.5 0.75 1.18 0.978

apmf 0.5 0.25 0.904 0.981 aplf 0.9 0.25 1.025 1.004 pmf 1 3 1.182 0.977

apbsr 1 0.5 0.867 0.938 pmf 1 0.75 0.997 0.974 apmf 1 0.75 1.186 0.977

aplf 0.5 3 0.928 1.001 plf 0.25 3 1.015 0.991 lf 0.25 0.45 0.099 0.082

apbsr 0.5 0.5 0.876 0.942 absr 0.25 0.05 1.023 0.998 alf 0.9 0.15 0.087 0.072

plf 0.9 0.25 0.932 0.991 pwsr 0.25 0.05 1.026 0.999 lf 0.9 0.05 0.081 0.064

aplf 0.25 0.75 0.945 1.002 pwsr 0.5 0.05 1.028 0.997 apwsr 0.25 1 1.183 0.928

apbsr 0.25 0.5 0.895 0.944 plf 0.5 0.75 1.019 0.988 apwsr 0.75 0.05 1.282 0.927

pbsr 0.25 0.25 0.936 0.985 aplf 0.25 3 1.034 1.002 lf 0.9 0.15 0.082 0.057

apmf 1 3 0.937 0.983 apmf 2 0.75 1.014 0.98 lf 0.9 0.45 0.13 0.085

pbsr 0.25 0.5 0.943 0.989 pwsr 0.5 1 1.034 0.999 lf 0.5 0.05 0.112 0.063

The effect on the ATGP benchmark is less prominent, but also noticeable.
In Table 3 (ATGP〈15, 21〉) the AdaptiveProbLeastFails with α = 0.25, γ =
0.25 achieves about 17% speed-up while practically not losing any solution di-
versity (D = 0.858, E = 0.991), and several other heuristic configurations at
the beginning of the table also achieve similar (although somewhat weaker)
results. As expected, ATGP〈26, 7〉 (Table 4) is less affected by the learning-
reuse heuristics, since only a small number of solutions is required here. Still,
AdaptiveProbBestSuccessRatio with α = 1, γ = 0.05 achieves about 12%

440 Y. Schreiber

Table 2. 〈50, 10, 225, 37〉 results (relative to the Random heuristic)

heur α β|γ time/R HD/R heur α β|γ time/R HD/R heur α β|γ time/R HD/R

bsr 0.5 0.05 0.239 0.835 lf 0.5 0.15 0.181 0.195 pwsr 0.75 0.05 1.251 0.985

bsr 0.5 0.15 0.245 0.829 absr 0.25 0.15 0.999 1.005 pwsr 0.5 0.5 1.286 1.006

bsr 0.75 0.15 0.245 0.82 absr 0.5 0.05 1.011 1 apmf 2 3 0.997 0.775

bsr 0.5 0.45 0.249 0.833 apbsr 0.5 0.5 0.868 0.858 apmf 2 0.75 1.073 0.822

bsr 0.75 0.05 0.254 0.843 absr 0.25 0.45 1.008 0.995 pwsr 0.75 1 1.304 0.985

bsr 0.25 0.15 0.24 0.786 apbsr 1 0.25 0.885 0.868 apwsr 0.75 0.5 1.12 0.846

bsr 0.75 0.45 0.25 0.808 absr 0.75 0.05 1.018 0.997 alf 0.9 0.45 0.235 0.176

bsr 0.25 0.45 0.235 0.761 absr 0.5 0.15 1.015 0.993 apmf 1 0.25 1.096 0.818

bsr 0.25 0.05 0.264 0.805 absr 0.75 0.45 1.037 1.005 apwsr 0.25 0.05 1.076 0.796

plf 0.5 0.75 0.701 0.962 absr 0.5 0.45 1.03 0.997 alf 0.5 0.05 0.172 0.124

plf 0.25 0.25 0.729 0.973 absr 0.75 0.15 1.04 1.006 apwsr 0.25 1 0.992 0.702

plf 0.9 0.75 0.737 0.955 absr 0.25 0.05 1.044 0.995 apmf 1 0.75 1.068 0.754

plf 0.9 0.25 0.754 0.969 apbsr 1 0.5 0.885 0.839 lf 0.5 0.05 0.254 0.178

pbsr 1 0.25 0.778 0.982 apbsr 0.25 0.25 0.913 0.862 apmf 0.5 0.75 1.124 0.786

plf 0.5 0.25 0.759 0.957 apbsr 0.25 0.5 0.904 0.847 alf 0.25 0.45 0.17 0.118

plf 0.9 3 0.76 0.958 apbsr 0.25 0.05 0.93 0.847 pmf 2 0.75 1.439 0.986

plf 0.25 3 0.76 0.957 apwsr 0.5 0.05 0.884 0.8 pmf 1 3 1.435 0.979

pbsr 0.25 0.25 0.781 0.983 apmf 2 0.25 0.997 0.901 alf 0.5 0.15 0.284 0.192

plf 0.5 3 0.769 0.96 apbsr 1 0.05 0.918 0.829 pmf 0.5 0.75 1.455 0.969

pbsr 0.5 0.25 0.775 0.957 apbsr 0.5 0.25 0.967 0.871 pmf 0.5 3 1.454 0.966

pbsr 1 0.05 0.807 0.994 apbsr 0.5 0.05 0.943 0.843 apwsr 0.75 0.05 1.154 0.758

pbsr 0.5 0.5 0.788 0.963 lf 0.25 0.15 0.204 0.182 pmf 2 3 1.511 0.989

plf 0.25 0.75 0.802 0.977 apwsr 0.5 1 0.924 0.813 lf 0.25 0.05 0.164 0.107

pbsr 1 0.5 0.804 0.979 lf 0.5 0.45 0.263 0.224 pmf 2 0.25 1.485 0.961

pbsr 0.5 0.05 0.818 0.993 apmf 1 3 1.013 0.848 alf 0.9 0.15 0.183 0.118

aplf 0.25 3 0.828 1.003 lf 0.25 0.45 0.179 0.15 pmf 0.5 0.25 1.459 0.937

pbsr 0.25 0.5 0.807 0.973 apmf 0.5 0.25 1.014 0.843 pmf 1 0.25 1.447 0.91

pbsr 0.25 0.05 0.815 0.981 apmf 0.5 3 1.031 0.841 apwsr 0.75 1 1.057 0.659

aplf 0.9 0.25 0.848 1.014 pwsr 0.5 0.05 1.254 1.018 alf 0.25 0.05 0.207 0.129

aplf 0.25 0.75 0.828 0.991 pwsr 0.75 0.5 1.234 0.998 pmf 1 0.75 1.473 0.911

aplf 0.9 0.75 0.837 0.999 pwsr 0.25 0.5 1.256 1.008 lf 0.9 0.45 0.272 0.167

aplf 0.5 3 0.842 1.001 pwsr 0.25 1 1.234 0.989 lf 0.9 0.15 0.219 0.123

aplf 0.9 3 0.841 0.986 pwsr 0.5 1 1.239 0.993 lf 0.9 0.05 0.222 0.124

aplf 0.25 0.25 0.859 0.996 pwsr 0.25 0.05 1.232 0.988 alf 0.25 0.15 0.263 0.125

aplf 0.5 0.75 0.85 0.975 apwsr 0.25 0.5 1.08 0.862 alf 0.5 0.45 0.282 0.132

aplf 0.5 0.25 0.878 0.972 apwsr 0.5 0.5 0.959 0.756 alf 0.9 0.05 0.271 0.095

speed-up while practically not losing any solution diversity, and some config-
urations of AdaptiveBestSuccessRatio and ProbBestSuccessRatio get
similar (but a little weaker) results.

We can also categorize the heuristic groups according to their behavior. As
expected, the heuristics LeastFails and BestSuccessRatio, which attempt
to find a solution as fast as possible, usually achieve very high speed-up, but
it is often accompanied by a significant loss of solution diversity; their adaptive
versions also show similar behavior (although less dramatically). Nevertheless,

Value-Ordering Heuristics: Search Performance vs. Solution Diversity 441

Table 3. ATGP〈15, 21〉 benchmark results (relative to the Random heuristic)

heur α β|γ time/R HD/R heur α β|γ time/R HD/R heur α β|γ time/R HD/R

aplf 0.25 0.25 0.858 0.991 aplf 0.25 0.75 0.996 0.993 apwsr 0.75 1 1.133 0.864

plf 0.5 0.75 0.879 0.985 apbsr 0.5 0.25 0.925 0.92 pmf 1 0.75 1.428 0.995

bsr 0.75 0.45 0.874 0.975 apbsr 0.5 0.5 0.9 0.895 apwsr 0.25 1 1.101 0.76

aplf 0.5 0.25 0.901 0.985 apmf 2 0.75 0.977 0.97 pwsr 0.25 0.05 1.555 0.997

absr 0.5 0.05 0.809 0.874 absr 0.75 0.45 0.997 0.989 pwsr 0.75 0.05 1.594 1.004

pbsr 0.5 0.05 0.898 0.965 aplf 0.9 0.75 1.008 0.989 pwsr 0.5 0.05 1.669 1.012

pbsr 0.5 0.5 0.921 0.987 plf 0.25 0.75 0.983 0.964 pmf 0.5 3 2.04 0.95

plf 0.9 3 0.936 1 apwsr 0.75 0.05 1.017 0.996 pmf 2 0.25 3.191 0.977

apwsr 0.5 0.05 0.918 0.976 pwsr 0.75 1 1.031 1.006 pmf 1 0.25 3.76 0.975

pbsr 0.25 0.05 0.889 0.944 aplf 0.9 0.25 1.011 0.983 pmf 0.5 0.25 3.751 0.961

absr 0.75 0.05 0.894 0.946 aplf 0.25 3 1.025 0.989 bsr 0.25 0.45 0.536 0.035

plf 0.25 3 0.944 0.997 pbsr 0.25 0.5 1.009 0.973 bsr 0.25 0.15 0.623 0.033

plf 0.9 0.25 0.915 0.966 pmf 1 3 1.024 0.978 bsr 0.25 0.05 0.624 0.033

apmf 2 3 0.926 0.972 apmf 1 0.75 1.024 0.968 alf 0.9 0.45 0.536 0.025

pbsr 0.25 0.25 0.932 0.977 plf 0.25 0.25 0.965 0.906 alf 0.5 0.45 0.538 0.025

aplf 0.5 0.75 0.949 0.995 pmf 2 3 1.063 0.997 alf 0.9 0.05 0.539 0.025

aplf 0.9 3 0.966 1.007 plf 0.5 0.25 0.991 0.926 alf 0.9 0.15 0.539 0.025

pbsr 1 0.05 0.935 0.97 pwsr 0.25 0.5 1.071 1.001 lf 0.9 0.15 0.541 0.025

apbsr 1 0.25 0.924 0.957 apwsr 0.75 0.5 0.984 0.914 bsr 0.5 0.45 0.536 0.025

pbsr 1 0.5 0.951 0.984 apbsr 0.25 0.25 0.948 0.881 lf 0.9 0.45 0.543 0.025

apbsr 1 0.5 0.91 0.935 apmf 0.5 0.25 1.048 0.963 alf 0.2 0.45 0.526 0.018

pbsr 1 0.25 0.956 0.978 apmf 1 3 1.038 0.954 alf 0.2 0.15 0.526 0.018

apbsr 0.5 0.05 0.948 0.969 pwsr 0.75 0.5 1.092 1.001 alf 0.5 0.05 0.527 0.018

pbsr 0.5 0.25 0.956 0.976 apbsr 0.25 0.5 0.96 0.872 alf 0.5 0.15 0.527 0.018

apmf 2 0.25 0.975 0.994 apmf 0.5 0.75 1.053 0.952 alf 0.2 0.05 0.528 0.018

aplf 0.5 3 0.993 1.009 absr 0.25 0.05 0.834 0.742 lf 0.9 0.05 0.529 0.018

apbsr 1 0.05 0.964 0.979 pwsr 0.5 0.5 1.121 0.99 bsr 0.75 0.15 0.529 0.018

apbsr 0.25 0.05 0.947 0.959 apmf 1 0.25 1.088 0.956 lf 0.2 0.05 0.529 0.018

absr 0.75 0.15 0.979 0.988 apwsr 0.5 0.5 1.029 0.892 lf 0.5 0.05 0.529 0.018

plf 0.9 0.75 0.967 0.973 pwsr 0.25 1 1.142 0.983 bsr 0.75 0.05 0.53 0.018

absr 0.5 0.15 0.981 0.986 apmf 0.5 3 1.111 0.921 lf 0.2 0.45 0.53 0.018

absr 0.25 0.45 0.983 0.988 pmf 0.5 0.75 1.198 0.977 lf 0.2 0.15 0.531 0.018

plf 0.5 3 0.99 0.993 apwsr 0.5 1 1.009 0.818 lf 0.5 0.45 0.533 0.018

absr 0.5 0.45 0.991 0.993 apwsr 0.25 0.5 1.037 0.827 lf 0.5 0.15 0.533 0.018

pwsr 0.5 1 0.992 0.992 apwsr 0.25 0.05 1.232 0.974 bsr 0.5 0.15 0.526 0.018

absr 0.25 0.15 0.933 0.93 pmf 2 0.75 1.307 1.008 bsr 0.5 0.05 0.526 0.018

in the randomly generated sets the solution diversity loss by these heuristics
was often much lower than the speed-up gain. Note also that such heuristics can
achieve good solution diversity when lowering the aggressiveness and conserva-
tiveness considerably: for example, BestSuccessRatio with α = 0.75, β = 0.45
gets E = 0.975 for ATGP〈15, 21〉 (Table 3) and high values for other problem
sets as well, while its runtime is relatively low.

The heuristics ProbMostFails and ProbWorstSuccessRatio and their
adaptive versions usually do not achieve a better solution diversity than Ran-
dom, but can be much slower.

442 Y. Schreiber

Table 4. ATGP〈26, 7〉 benchmark results (relative to the Random heuristic)

heur α β|γ time/R HD/R heur α β|γ time/R HD/R heur α β|γ time/R HD/R

apbsr 1 0.05 0.89 0.989 apbsr 0.5 0.05 0.904 0.821 absr 0.5 0.05 0.773 0.52

absr 0.75 0.15 0.9 0.978 apbsr 0.25 0.05 0.872 0.792 apmf 1 0.75 1.384 0.876

pbsr 1 0.05 0.912 0.984 pmf 2 0.25 1.085 0.981 apwsr 0.75 1 0.987 0.582

absr 0.5 0.45 0.929 0.994 pwsr 0.5 0.5 1.109 1.002 apmf 1 3 1.439 0.82

absr 0.75 0.45 0.932 0.994 apwsr 0.5 0.05 0.991 0.894 apwsr 0.75 0.5 1.251 0.654

bsr 0.75 0.45 0.899 0.957 pwsr 0.25 0.05 1.099 0.986 apwsr 0.5 0.5 1.141 0.594

aplf 0.9 0.75 0.95 0.997 pbsr 0.5 0.25 0.936 0.837 absr 0.25 0.05 0.736 0.37

aplf 0.9 3 1.01 1.059 pmf 0.5 3 0.949 0.844 apwsr 0.5 1 1.279 0.525

plf 0.25 3 0.904 0.942 pbsr 0.25 0.05 0.909 0.792 apwsr 0.25 0.5 1.353 0.527

aplf 0.5 0.25 0.887 0.923 pwsr 0.5 1 1.033 0.897 apwsr 0.25 1 1.26 0.468

absr 0.5 0.15 0.838 0.863 apbsr 0.5 0.5 0.87 0.754 alf 0.2 0.45 0.673 0.179

absr 0.25 0.45 0.96 0.987 apbsr 1 0.25 0.948 0.817 lf 0.5 0.05 0.674 0.179

aplf 0.25 3 0.958 0.982 pmf 1 3 0.972 0.833 lf 0.5 0.45 0.675 0.179

pbsr 1 0.25 0.983 1.003 apmf 0.5 0.25 1.11 0.94 lf 0.2 0.05 0.675 0.179

plf 0.9 3 0.951 0.958 apbsr 0.25 0.25 0.907 0.755 lf 0.2 0.15 0.676 0.179

aplf 0.9 0.25 0.936 0.941 plf 0.9 0.25 1.016 0.844 lf 0.2 0.45 0.677 0.179

pbsr 0.25 0.25 0.941 0.943 apmf 2 0.25 1.173 0.975 lf 0.5 0.15 0.677 0.179

aplf 0.5 0.75 1.048 1.047 pwsr 0.25 1 1.007 0.831 lf 0.9 0.05 0.678 0.179

aplf 0.5 3 0.981 0.973 pmf 0.5 0.75 1.156 0.95 alf 0.2 0.05 0.681 0.179

pwsr 0.5 0.05 1.002 0.991 plf 0.5 0.75 0.987 0.81 alf 0.5 0.05 0.682 0.179

aplf 0.25 0.75 1.026 1.004 pwsr 0.25 0.5 1.025 0.839 alf 0.2 0.15 0.693 0.179

pmf 1 0.25 1.032 1 apmf 2 3 1.13 0.911 alf 0.5 0.15 0.709 0.179

pmf 2 3 0.996 0.963 absr 0.75 0.05 0.787 0.632 bsr 0.5 0.45 0.679 0.164

pbsr 1 0.5 0.961 0.92 apbsr 1 0.5 1.049 0.831 bsr 0.75 0.05 0.677 0.158

pmf 2 0.75 0.996 0.944 apmf 2 0.75 1.154 0.912 bsr 0.75 0.15 0.692 0.158

pwsr 0.75 0.05 1.085 1.02 apbsr 0.5 0.25 0.976 0.766 bsr 0.5 0.05 0.682 0.155

pwsr 0.75 1 1.021 0.954 pbsr 0.25 0.5 1.001 0.775 bsr 0.25 0.05 0.707 0.155

pmf 1 0.75 1.05 0.981 apmf 0.5 0.75 1.173 0.907 bsr 0.5 0.15 0.708 0.155

pwsr 0.75 0.5 1.037 0.969 apwsr 0.25 0.05 1.057 0.801 alf 0.5 0.45 0.668 0.144

pbsr 0.5 0.05 0.927 0.863 plf 0.5 0.25 1.119 0.829 bsr 0.25 0.15 0.7 0.149

plf 0.25 0.75 0.926 0.859 apmf 0.5 3 1.078 0.785 alf 0.9 0.05 0.694 0.144

plf 0.9 0.75 0.995 0.922 apmf 1 0.25 1.337 0.959 lf 0.9 0.45 0.702 0.142

pbsr 0.5 0.5 0.94 0.869 apbsr 0.25 0.5 0.899 0.637 lf 0.9 0.15 0.706 0.142

plf 0.5 3 1.025 0.947 absr 0.25 0.15 0.819 0.579 alf 0.9 0.45 0.71 0.142

pmf 0.5 0.25 1.008 0.923 apwsr 0.75 0.05 1.224 0.845 alf 0.9 0.15 0.711 0.142

aplf 0.25 0.25 1.013 0.927 plf 0.25 0.25 0.913 0.624 bsr 0.25 0.45 0.669 0.131

On the other hand, the ProbLeastFails, ProbBestSuccessRatio, and
their adaptive versions often achieve a moderate speed-up without sacrificing
much solution diversity, as can be seen in all the parts of our benchmark. The
adaptive versions usually achieve somewhat higher solution diversity, but are
slower than the non-adaptive versions.

Note also that in all the above results the performance was measured as
a function of runtime. When measuring other parameters, such as number of
failures or the number of the search-tree nodes that were traversed during the
search, the relative gain of all the above learning-reuse heuristics comparing

Value-Ordering Heuristics: Search Performance vs. Solution Diversity 443

to the Random heuristic is much higher. This is easily explained by the fact
that the value selection function of Random is much faster than that of its
competitors, and by the fact that the usage of Random incurs no overhead of
the learning functionality, which is required by the learning-reuse heuristics.

5 Summary and Further Research

We have analyzed the trade-off between the CSP search performance and the
solution diversity, as a function of the value-ordering heuristic. We have also
suggested methods to categorize and control this trade-off using different heuris-
tics and their parameters. The heuristics were tested on a benchmark of ran-
domly generated CSPs and on real-life ATG problems, where the goal was to
find many diverse solutions as fast as possible. The results show that while the
simple Random heuristic reaches quite reasonable solution diversity, there are
learning-reuse heuristics that can reach almost the same level of diversity with
a significant performance speed-up.

We have also suggested using adaptive heuristic versions that modify the value
selection parameters depending on the attributes of each variable. While in many
cases this modification has improved the performance/diversity trade-off of the
heuristic, the implementation of the adaptive heuristic versions in our experi-
ment did not reach its full potential due to the difficulty of efficiently identifying
relatively independent subsets of variables, as discussed in Section 3.1. Contin-
uing the research in this direction can probably improve the effectiveness of the
adaptive heuristics; we leave this for further research.

It is also worth mentioning other interesting related directions for future re-
search, such as formal analysis of the relation between the solution distribution
and solution diversity, influence of variable selection heuristics on solution diver-
sity, etc.

Acknowledgments. The author is very grateful to Anna Moss and Boris
Gutkovich for valuable comments and discussions, and to Alexander Libov for
a very useful framework of gathering statistics of the ATGP experiments. The
author is also grateful to the anonymous referees for many useful suggestions.

References

1. Dechter, R., Kask, K., Bin, E., Emek, R.: Generating random solutions for con-

straint satisfaction problems. In: AAAI 2002, pp. 15–21 (2002)

2. Geelen, P.A.: Dual viewpoint heuristics for binary constraint satisfaction problems.

In: 10th Europ. Conf. on Artif. Intell. (ECAI 1992), pp. 31–35 (1992)

3. Gogate, V., Dechter, R.: A new algorithm for sampling CSP solutions uniformly at

random. In: Benhamou, F. (ed.) CP 2006. LNCS, vol. 4204, pp. 711–715. Springer,

Heidelberg (2006)

4. Gutkovich, B., Moss, A.: CP with architectural state lookup for functional test gen-

eration. In: 11th Annu. IEEE Internat. Worksh. on High Level Design Validation

and Test, pp. 111–118 (2006)

444 Y. Schreiber

5. Hebrard, E., Hnich, B., O’Sullivan, B., Walsh, T.: Finding diverse and similar

solutions in constraint programming. In: AAAI 2005, pp. 372–377 (2005)

6. Van Hentenryck, P., Coffrin, C., Gutkovich, B.: Constraint-based local search for

the automatic generation of architectural tests. In: Gent, I.P. (ed.) CP 2009. LNCS,

vol. 5732, pp. 787–801. Springer, Heidelberg (2009)

7. Intel R© 64 and IA-32 architectures software developer’s manual (2009)

8. Koller, D., Megiddo, N.: Constructing small sample spaces satisfying given con-

straints. SIAM J. Disc. Math. 7(2), 260–274 (1994)

9. Larkin, D.: Generating random solutions from a constraint satisfaction problem

with controlled probability. In: 1st Internat. Worksh. on Constraints in Functional

Verification of CP 2002 (2002)

10. Mittal, S., Falkenhainer, B.: Dynamic constraint satisfaction problems. In: 8th

National Conf. on Artif. Intell., pp. 25–32 (1990)

11. Moss, A.: Constraint patterns and search procedures for CP-based random test

generation. In: Yorav, K. (ed.) HVC 2007. LNCS, vol. 4899, pp. 86–103. Springer,

Heidelberg (2008)

12. Moss, A., Gutkovich, B.: Functional test generation with distribution constraints.

In: 5th Internat. Haifa Verification Conf. (HVC 2009). LNCS (to appear, 2010)

13. Naveh, Y., Rimon, M., Jaeger, I., Katz, Y., Vinov, M., Marcus, E., Shurek, G.:

Constraint-based random stimuli generation for hardware verification. AI Maga-

zine 28(3), 13–30 (2007)

14. Refalo, P.: Impact-based search strategies for constraint programming. In: Wallace,

M. (ed.) CP 2004. LNCS, vol. 3258, pp. 557–571. Springer, Heidelberg (2004)

15. Schreiber, Y.: Cost-driven interactive CSP with constraint relaxation. In: Gent,

I.P. (ed.) CP 2009. LNCS, vol. 5732, pp. 707–722. Springer, Heidelberg (2009)

16. Smith, B.M.: Phase transition and the mushy region in constraint satisfaction

problems. In: ECAI 1994, pp. 100–104 (1994)

17. Zhang, Z., Epstein, S.L.: Learned value-ordering heuristics for constraint satisfac-

tion. In: STAIR 2008 Workshop at AAAI (2008)

A New O(n2 log n) Not-First/Not-Last Pruning
Algorithm for Cumulative Resource Constraints�

Andreas Schutt1 and Armin Wolf2

1 National ICT Australia, Department of Computer Science & Software Engineering,

The University of Melbourne, Australia

aschutt@csse.unimelb.edu.au
2 Fraunhofer FIRST, Kekuléstr. 7, D-12489 Berlin, Germany

armin.wolf@first.fraunhofer.de

Abstract. The recent success of the lazy clause generator (a hybrid of a

FD and a SAT solver) on resource-constrained project scheduling prob-

lems (RCPSP) shows the importance of the global cumulative constraint

to tackle these problems. A key for an efficient cumulative propagator

is a fast and correct pruning of time-bounds. The not-first/not-last rule

(which is not subsumed by other rules) detects activities that cannot

be run at first/last regarding to an activity set and prunes their time

bounds. This paper presents a new sound not-first/not-last pruning al-

gorithm which runs in O(n2 log n), where n is the number of activities.

It may not find the best adjustments in the first run, but after at most

n iterations. This approach of iteration fits the setup of constraint prop-

agation quite naturally offering the opportunity that a fixed point is

reached more efficiently. Moreover, it uses a novel approach of gener-

ation of some “artificial” activities in the context of triggering pruning

rules correctly. In experiments on RCPSP amongst others from the well-

established PSPLib we show that the algorithm runs negligible more of-

ten than a complete algorithm while taking its advantage from the lower

– to the best of our knowledge the lowest known – runtime complexity.

1 Introduction

Scheduling of capacity-consuming activities on commonly shared cumulative re-
sources has strong practical relevance. There, the activities have to be scheduled
such that the capacities of the cumulative resources are never exceeded. Such
problems occur in resource-constrained project scheduling (RCPSP) as well as in
production planning if resources like water, fuel, electric power, consumables or
even human skills have to be assigned to activities requiring these resources. Due
to its practical relevance and its high complexity – these problems are in general
NP-complete in the strong sense [4]– scheduling on cumulative resources is one
important research topic in constraint-based scheduling (c.f. [2,3,5,9]). Thanks

� This work was partly funded by the European Union (EFRE) and the state Berlin,

grant no. 10023515 and by the German Federal Ministry of Education and Research

(BMBF), grant no. 13N10598. The core of the published results is already presented

in the master thesis of Schutt [11].

D. Cohen (Ed.): CP 2010, LNCS 6308, pp. 445–459, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

446 A. Schutt and A. Wolf

to the “energetic nature” of cumulative scheduling the achieved results are also
valid for other scheduling problems like scheduling of activities on alternative
disjunctive resources or non-overlapping placement of rectangles in a restricted
two-dimensional area (for some recent applications see e.g. [15,19]).

Generalized pruning rules exist that are adapted from disjunctive resource
scheduling as well as algorithms performing these generalized rules – overload
checking, (extended) edge-finding, and not-first/not-last detection. However, a
detailed examination of some of these algorithms presented in [2,9] showed that
they are incomplete, i.e. pruning, which is possible regarding the rules, is not
performed by the corresponding algorithms, resulting in weak search space re-
ductions. Mercier and van Hentenryck [8] and ourselves independently recognized
the incompleteness of (extended) edge-finding and, in parallel, worked out com-
plete algorithms that have the same runtime complexity (not presented here).

In [14] we showed the incorrectness as well as the incompleteness of the not-
first/not-last pruning algorithms presented in [9]. Furthermore, we presented
a sophisticated and complete not-first/not-last pruning algorithm reducing the
O(n4) time complexity of a naive algorithm to O(n3 logn) where n is the number
of the considered activities. This algorithm uses balanced binary trees similar to
the algorithms for disjunctive resource scheduling presented in [16,18]. To our
knowledge, our O(n3 logn) algorithm is currently the best known (complete)
algorithm for not-first/not-last detection according to runtime complexity.

Recently, Schutt et al. [13,12] used the lazy clause generator [10] (a hybrid of
a finite domain and a SAT solver) to explain the propagation of the cumulative
constraint. They take the advantage of the efficient no-good learning facility and
the conflict-driven search from the SAT solver in order to minimize the makespan
of RCPSP. Currently, this method is the best exact method known so far.

In this paper we will present a new O(n2 logn) algorithm which may perform
weaker pruning per iteration based on not-first/not-last detection, but has the
same pruning power as a complete algorithm if it is iterated sufficiently often. In
order to achieve the desired propagation “artificial” activities, i.e. pseudo-tasks,
are introduced what is to our best knowledge a new approach (in this context).
Experiments on RCPSP instances taken from [1,7] indicate that the new algo-
rithm only needs a few iterations for its completeness, and it is faster than the
other published not-first/not-fast algorithms especially on large instances.

The paper is organized as follows. In the next section the considered cumula-
tive scheduling problems are formally defined and then the not-last detection is
presented on the more general pruning rule already introduced in [14].1 Follow-
ing this, the new not-last algorithm is presented and its correctness and reduced
complexity is formally proven. The same section introduces balanced binary trees
which are used for efficiency reasons by this algorithm. The paper concludes with
the results of some experiments, a summary of the performed and future work.

2 Notations

The (non-preemptive) cumulative scheduling problem (CuSP) represents the fact
that some activities or tasks i, j, t, . . . requiring capacities ci, cj , ct, . . . have to be
1 Considerations about not-first detection are omitted due to the duality of both rules.

A New O(n2 log n) Not-First/Not-Last Pruning Algorithm 447

scheduled on a common resource offering a constant capacity C such that the
tasks are processed without interruption and without exceeding the capacity of
the resource at any time. Formally, this problem is defined as follows:

Definition 1 (Cumulative Scheduling Problem – adopted from [8]). A
cumulative scheduling problem (CuSP) is specified by a cumulative resource of
capacity C and a finite task set T . Each task i ∈ T is specified by its release
date ri, its due date or deadline di, its processing time pi, and its capacity
requirement ci, all being natural numbers.

The problem is to find a schedule, i.e. a solution that assigns a start time si

to each task i ∈ T such that this start time and its end time si + pi are feasible
(left expression), and the cumulative constraint (right expression) is satisfied for
all time units τ :

∀i ∈ T : ri ≤ si ≤ si + pi ≤ di, ∀τ :
∑

i∈T,si≤τ<si+pi

ci ≤ C

The CuSP is solvable if such a schedule exists; otherwise it is unsolvable. Finally,
let n := |T | be the number of tasks and ei := ci ·pi be the energy of any task i ∈ T .

In the following, we assume an underlying CuSP with its resource and tasks as
specified in Definition 1, unless otherwise stated. We also generalize the notions
of release dates, due dates or deadlines, and energies for task sets, i.e.

rΩ := min
j∈Ω

rj , dΩ := max
j∈Ω

dj , and eΩ :=
∑
j∈Ω

ej

where Ω ⊆ T is any task set, especially the empty set. In this special case let
r∅ := −∞, d∅ := ∞, and e∅ := 0.

A constraint-based scheduling approach to CuSP checks in general necessary
conditions for the existence of a solution and further uses pruning rules to get
rid of infeasible start times or end times that are not part of any solution.
Obviously, a CuSP has no schedule if there is a subset of tasks which requires
within its release date and its deadline more energy than available. This leads
directly to the following definition:

Definition 2 (E-Feasibility). A CuSP specified by a task set T and a capac-
ity C is E-feasible if ∀Ω ⊆ T : C · (dΩ − rΩ) ≥ eΩ holds.

In the following, we assume that the underlying CuSP is E-feasible, unless other-
wise stated. E-feasibility can be checked withO(n log n) time complexity (cf. [19]).

2.1 The Not-Last Detection Rule

In addition to the edge-finding rules, not-first/not-last detection rules offer an-
other fundamental technique to remove infeasible start and end times in disjunc-
tive as well as in cumulative scheduling. Due to the symmetry of these rules, the
work presented in this paper focuses on the pruning of the tasks’ end times while
using the not-last detection rule.2

2 The adaptation for not-first detection is straightforward and thus omitted.

448 A. Schutt and A. Wolf

The not-last detection rule is the pendant to the edge-finding instance that
finds the “edge” between a task that ends after some other tasks end – the “edge”
is the latest task. Not-last detection finds a task that is “not-last”: it must end
before at least one of some other tasks starts, i.e. the detected task is not the
latest. In other words, there is no feasible schedule of the underlying CuSP such
that the end time of the detected task is greater than the latest start times of
the other tasks.

Definition 3 (Latest Start Time). Let a CuSP be specified by a task set T and
a capacity C. The latest start time of a task i ∈ T is defined as lsti := di − pi.
The latest start time of a task set Ω is defined as lstmaxΩ := max{lsti | i ∈ Ω}
for Ω �= ∅ and lstmax∅ := −∞.

With these notions, the core of the not-last detection rule is formally given by
the following proposition:

Proposition 1 (The (Simplified) Not-Last Detection Rule). Let a CuSP
be specified by a task set T and a capacity C. Then, for each subset of tasks Ω ⊆ T
and each task i ∈ T \Ω it holds: If the not-last condition

lstmaxΩ < di ∧ eΩ + ci(dΩ −max(lsti, rΩ)) > C(dΩ − rΩ) (1)

is satisfied, then all end times later than lstmaxΩ are inconsistent, i.e. for each
schedule of the CuSP it holds that si + pi ≤ lstmaxΩ.

Proof. The proof is shown in [14]. ��

Definition 4 (Least Upper Bound). The least upper bound UB[i] on the
due date of a task i ∈ T regarding the rule is defined as

UB[i] := min
Ω⊆T\{i}|α

lstmaxΩ

where α holds if the condition (1) is satisfied for i and Ω.

The following example shows the application of the rule and is used as running
example throughout the rest of the paper.

Example 1. Let (T = {a, b, c, i}, C = 2) be CuSP instance with

r d c p e
a 5 9 2 2 4
b 7 10 1 1 1
c 9 10 1 1 1
i 1 10 1 6 6

The not-last detection rule only holds for i and Ω = {a, b, c} because lstmaxΩ =
9 < 10 = di and eΩ + ci(dΩ − max(lsti, rΩ)) = 6 + 1 · (10 − 5) = 11 > 10 =
C(dΩ − rΩ). Hence, UB[i] = 9.

A New O(n2 log n) Not-First/Not-Last Pruning Algorithm 449

τ

C = 2
a

i

1 3 9
τ

C = 2

a

i

1 lsti

eet{a}

9

Fig. 1. An example that Viĺım’s algorithm is not applicable for CuSP. Left: The tasks a
and i can be run in parallel. Right: The earliest end time eet{a} is greater than lsti,
Viĺım’s algorithm would incorrectly restrict di to lsta = 3.

A complete algorithm regarding the not-last rule finds the least upper bound
UB[i] for any task i. An incomplete algorithm which will be introduced in the
next section finds an upper bound UB′[i] such that UB[i] ≤ UB′[i] < di holds
if UB[i] < di and UB′[i] = di otherwise. This means that a weaker algorithm
must be run several times to find the least upper bound for all tasks.

In the following considerations about an efficient algorithm applying the not-
last rule the earliest end time of a task set plays an important role. This is a
non-trivial lower bound of the end times of all tasks in a task set where different
release dates of the tasks are taken into account:

Definition 5 (Earliest End Time). Let a CuSP be specified by a task set T and
a capacity C. The earliest start time of a task i ∈ T is defined as eeti := ri+pi.
The earliest end time of a task set Ω ⊆ T is defined as

eetΩ := max{rΩ′ +
eΩ′

C
| Ω′ ⊆ Ω} .

3 A New Not-Last Algorithm

In this section we introduce a new not-last algorithm with O(n2 logn) time
and O(n) space complexity. It is based on Viĺım’s not-last algorithm for the
disjunctive case of the CuSP where C = 1 holds. Viĺım’s not-last algorithm [16]
works essentially as follows: For each task i ∈ T it checks whether there is a task
j ∈ T such that eetΩ\{i} > lsti holds for the task set Ω = {k ∈ T | lstk ≤
lstj < di}. If so, it updates di = lstj. This is correct in the disjunctive case,
but unfortunately it cannot applied in the general case of the CuSP with C > 1
as the following example shows.

Example 2. Let T = {a, i} and C = 2 specify a CuSP with ra = ri = 1, da =
di = 9, pa = pi = 6, ca = ci = 1 and ea = ei = 6. Considering the task i there
is the task a with lsta < di and eetΩ\{i} = eet{a} = 7. Due to the fact that
lsta = lsti = 3 holds, Viĺım’s algorithm restricts the latest end time di wrongly
to 3 because the not-last condition is not satisfied (see Fig. 1).

Nevertheless, at first we describe how the earliest end times of task sets can
be used to check the not-last condition in spite of the approach followed in

450 A. Schutt and A. Wolf

τ

C = 2

i

a

b

c

1 5 7 9 10
τ

C = 2

a b c

1 5 7 9

eet{a,b,c}

10

Fig. 2. The instance from Ex. 3 is shown. Left: The normal view of the tasks. Right:
The energetic view of the tasks for calculation of eet{a,b,c} = 9.5.

Viĺım’s algorithm. At second, the usage of a binary balanced tree for an efficient
computation of the earliest end times of task sets is described and a new not-last
algorithm is presented. At last the correctness of the computation based on a
balanced tree and of the new algorithm is proven as well as its complexity.

A task i ∈ T and a task set Ω ⊆ T \ {i} satisfy the not-last condition if
lstmaxΩ < di and eΩ +ci(dΩ−max(lsti, rΩ)) > C(dΩ−rΩ) hold. Thus adapting
Viĺım’s approach directly for the CuSP in general the following inequality has to
be checked for the earliest end time of any task set Ω ⊆ T \ {i}:

eetΩ > dΩ′ − ci
C

(dΩ′ −max(lsti, rΩ′)) (2)

where Ω′ ⊆ Ω satisfies eetΩ = rΩ′ + eΩ′/C. If this inequality holds then the
not-last rule applies for i and Ω′, but the converse argument does not hold in
general. This means that if the inequality does not apply for Ω then there can
still exist a subset of Ω that satisfies the not-last rule. At next an example
is given that demonstrates this issue and shows that is not sufficient to only
consider Ω(i) := {j ∈ T \ {i} | lstj < di} as for the disjunctive case.

Example 3. Let us consider our example from Ex. 1 and what is shown in Fig. 2.
The not-last rule only holds for the task i and the task set Ω(i) = {a, b, c}.
However, since its subset Ω′ = {c} determines the earliest end time eet{a,b,c} =
9.5 the inequality (2) is not satisfied.

A closer analysis of Ex. 3 shows that inequality (2) is not satisfied since the
required energy for i’s execution is not considered if i starts at its latest start
time. Therefore, our idea is to model this energy ci(dΩ(i)− lsti) that is not free
for the tasks in Ω(i) as “artificial” tasks. We call them pseudo-tasks in order to
distinguish them from tasks in T and denote their set as S. Thus, the energy
which is not free for the tasks in Ω(i) is the sum of the energy ci(min(dΩ(i), di)−
lsti) which is reserved for i’s execution, and ci(dΩ(i) −min(dΩ(i), di)) which is
blocked after i’s end because each task j ∈ Ω(i) starts by definition before di.

Definition 6 (Pseudo-Tasks). Let a task set T be given. Further let Z =
z1, z2, . . . , zm be the sequence of the release and due dates in {rj | j ∈ T }∪ {dj |
j ∈ T } sorted in increasing order. For a task i ∈ T let l be the smallest index
with lsti < zl. Then S(i) = {s1, . . . , sm−l+1} is the set of pseudo-tasks that is
composed as follows where f(k) = k − l + 1 for k = l, . . . ,m

rsf(k) = zk−1, dsf(k) = zk, csf(k) = ci, psf(k) = dsf(k) − rsf(k) .

A New O(n2 log n) Not-First/Not-Last Pruning Algorithm 451

τ

C = 2

i

a

b

c

s1 s2 s3 s4

1 5 7 9 10
τ

C = 2

s1 s2

a

s3

b

s4

c

1 5 7 9

eet{a,b,c,s1,s2,s3,s4}

10

Fig. 3. The figure depicts the instance from Ex. 3 with the corresponding pseudo-tasks

s1, s2, s3, s4 concerning i where i and {a, b, c} satisfy the not-last rule. Left: The

normal view of all tasks. Right: The energetic view of all tasks for the determination

of eet{a,b,c,s1,s2,s3,s4} = 10.5.

Note that for n = |T | at most (2n − 1) pseudo-tasks are generated for any
task j ∈ T because at most 2n different release and due dates exist in Z. In
Fig. 3 the pseudo-tasks for task i are shown for the CuSP in Ex. 3.

The following theorem shows how pseudo-tasks determine the tasks sets that
satisfy the condition of the not-last rule:

Theorem 1. Let a CuSP be specified by a task set T and a capacity C. For each
task i ∈ T there exists a task set Ω ⊆ T \ {i} satisfying the condition of the
not-last rule if and only if there is a task j in Ω(i) = {k ∈ T \ {i} | lstk < di}
such that for S(i, dj) = {s ∈ S(i) | ds ≤ dj} holds

eetΩ(i,dj)∪S(i,dj) > dj . (3)

The proof of Theorem 1 uses the following lemma which shows: if a task set
Ψ ′ ⊂ Ψ determines eetΨ then it includes all tasks t ∈ Ψ with rΨ ′ ≤ rt.

Lemma 1. Let Ψ be a set of tasks, C be a resource capacity, and Ψ ′ ⊆ Ψ with
rΨ ′ + eΨ ′/C = eetΨ . Then it holds: Ψ ′ = {t ∈ Ψ | rΨ ′ ≤ rt}.

Proof (by contradiction). Let us assume that there is a task t ∈ Ψ with rΨ ′ ≤ rt

and t �∈ Ψ ′. Because of et > 0 it holds eetΨ = rΨ ′ +eΨ ′/C < rΨ ′∪{t} +eΨ ′∪{t}/C,
which contradicts the choice of Ψ ′. ��

Proof (of Theorem 1). Let CuSP be specified by a task set T and a capacity C
and i ∈ T be any task. At first we show the forward and then the backward
direction of the equivalence.
“⇒”: There is a subset Ω ⊆ T \ {i} such that the condition of the not-last
rule holds for Ω and i, i.e. lstmaxΩ < di and eΩ + ci(dΩ − max(lsti, rΩ)) >
C(dΩ − rΩ). We have to show the existence of a task j ∈ Ω(i) that satisfies
eetΩ(i,dj)∪S(i,dj) > dj .

Let p, q ∈ Ω be tasks with rp = rΩ and dq = dΩ . Because of lstmaxΩ < di

it holds Ω ⊆ Ω(i). Moreover, let S(i, rp, dq) = {s ∈ S(i, dq) | rp ≤ rs} be
the set of pseudo-tasks that must be run in the time window [rp, dq). Due to
Def. 6 – amongst others the earliest start and latest end times of tasks in Ω(i)

452 A. Schutt and A. Wolf

also are the earliest start and latest end times of the pseudo-tasks – it holds
eS(i,rp,dq) = ci(dq −max(lsti, rp)). From this it follows that

dq < rp +
eΩ + ci(dq −max(lsti, rp))

C
= rp +

eΩ + eS(i,rp,dq)

C
≤ eetΩ∪S(i,rp,dq) ≤ eetΩ(i)∪S(i,dq) .

Hence, the inequality holds for the task q.
“⇐”: Let j ∈ Ω(i) be a task that satisfies the inequality eetΩ(i,dj)∪S(i,dj) > dj .
We have to show the existence of a subset Ω ⊆ T \ {i} such that the condition
of the not-last rule is satisfied.

Let Ψ = Ω(i, dj) ∪ S(i, dj) be the considered task set and Ψ ′ ⊆ Ψ be its
subset that determines eetΨ , i.e. eetΨ = rΨ ′ + eΨ ′/C. Thanks to Lemma 1 it
follows Ψ ′ = {t ∈ Ψ | rΨ ′ ≤ rt}. Thus, S(i, rΨ ′, dj) must be a subset of Ψ ′ and
Ψ ′ \ S(i, rΨ ′, dj) must be a subset of Ω(i, dj). From this it follows that

dj < eetΨ = rΨ ′ +
eΨ ′

C
= rΨ ′ +

eΨ ′\S(i,rΨ′ ,dj) + eS(i,rΨ′ ,dj)

C

= rΨ ′ +
eΨ ′\S(i,rΨ′ ,dj) + ci(dj −max(lsti, rΨ ′))

C

because there is a task s ∈ S(i, rΨ ′, dj) (due to Def. 6) and a task t ∈ Ψ ′ with
rs = rt = rΨ ′ . Therefore, the not-last rule holds for i and Ψ ′ \ S(i, rΨ ′ , dj). ��

For efficiency reasons, the earliest end time of a task set Ψ is calculated by a
binary balanced tree as proposed by Viĺım, here called the Ψ -tree. There, a task
j ∈ Ψ is represented by a node containing the values EV (j) and EETV (j) which
are derived from its children, and where V (j) denotes the task set of all tasks in
the subtree rooted at j and j itself. The nodes in Ψ are sorted in non-increasing
order according to the earliest start times of their tasks:3 rs ≤ rj holds for each
task s in the left subtree of a task j and rj ≥ rt holds for each task t in the right
subtree. The values E and EET are derived as follows:

EV (j) := EV (left(j)) + ej + EV (right(j))

EETV (j) := max{ EETV (left(j)) + (ej + EV (right(j)))/C ,

rj + (ej + EV (right(j)))/C ,

EETright(j) } ,

where left(j) (right(j)) denotes the left (right) child of j. If j has no left (right)
child, i.e. left(j) = nil (right(j) = nil), then EV (nil) = 0 and EETV (nil) = −∞
holds by convention. The Ψ -tree for the CuSP in Ex. 3 is shown in Fig. 4.

Theorem 2. Let Ψ be a set of tasks and C be a resource capacity. Then for the
values EΨ and EETΨ of the Ψ -tree it holds EΨ = eΨ and EETΨ = eetΨ .

Proof. Let Ψ be a set of n tasks and w ∈ Ψ the root of the Ψ -tree. This means
that it holds EV (w) = EΨ and EETV (w) = EETΨ . The theorem is proved by
induction over the number of tasks in Ψ .
3 In the following, we do not distinguish between tasks and their corresponding nodes.

A New O(n2 log n) Not-First/Not-Last Pruning Algorithm 453

rs3 = 7
es3 = 2

EV (s3) = 12
EETV (s3) = 10.5

rs4 = 9
es4 = 1

EV (s4) = 3
EETV (s4) = 10

rc = 9
ec = 1

EV (c) = 1
EETV (c) = 9.5

rb = 7
eb = 1

EV (b) = 1
EETV (b) = 7.5

rs2 = 5
es2 = 2

EV (s2) = 7
EETV (s2) = 8

ra = 5
ea = 4

EV (a) = 4
EETV (a) = 7

rs1 = 4
es1 = 1

EV (s1) = 1
EETV (s1) = 4.5

Fig. 4. A Ψ -tree for the tasks {a, b, c} and C = 2 (cf. Ex. 3) including the pseudo-tasks

regarding the task i. A visualization of EETV (s3) = eetΨ = 10.5 is shown in Fig. 3.

Base case: n = 1. The sole task in Ψ is the root w. Due to the definition of
E and EET it follows EΨ = ew = eΨ and EETΨ = rw + ew/C = eetΨ .
Induction step: n → n + 1. The precondition is the validity of the theorem
for task sets with at most n elements.

Let Ψ be a task set with |Ψ | = n + 1, Ψ ′ ⊆ Ψ with eetΨ = rΨ ′ + eΨ ′/C, and
t ∈ Ψ ′ be the left-most task in the Ψ -tree from Ψ ′, i.e. Ψ ′ ∩ V (left(t)) = ∅ and
�t′ ∈ Ψ ′ : t ∈ V (right(t′)), with rt = rΨ ′ .

At first we prove EΨ = eΨ and then EETΨ = eetΨ . According to the calcula-
tion formula and the precondition it follows that

EΨ = EV (w) = EV (left(w)) + ew + EV (right(w))

= eV (left(w)) + ew + eV (right(w)) = eΨ .

Given that the Ψ -tree is sorted by the earliest start times it holds that rV (left(w))≤
rw ≤ rV (right(w)). The equality of EETΨ = eetΨ is proved in two cases.
EETΨ ≤ eetΨ : Due to rV (left(w)) ≤ rw ≤ rV (right(w)) and the precondition

the following inequalities are satisfied.

EETV (left(w)) +
ew + EV (right(w))

C
= eetV (left(w)) +

ew + eV (right(w))

C
= eetV (left(w))∪{w}∪V (right(w)) ≤ eetΨ ,

rw +
ew + EV (right(w))

C
= rw +

ew + eV (right(w))

C
= eet{w}∪V (right(w)) ≤ eetΨ ,

EETV (right(w)) = eetV (right(w)) ≤ eetΨ .

From these inequalities it follows that EETΨ ≤ EETV (w) ≤ eetΨ .

454 A. Schutt and A. Wolf

EETΨ ≥ eetΨ : If t ∈ V (left(w)) is in the left subtree of the root w then
{w} ∪ V (right(w)) ⊆ Ψ ′ (cf. Lemma 1), rV (left(w)) ≤ rt ≤ rw ≤ rV (right(w)) and
the precondition holds for V (left(w)). Let L′ := Ψ ′ \ ({w} ∪ V (right(w))) be the
task set of Ψ ′ in the left subtree rooted at w. Now, the following applies:

eetΨ = rΨ ′ + eΨ ′/C = rL′ + (eL′ + e{w}∪V (right(w)))/C

= eetL′ + e{w}∪V (right(w))/C

≤ eetV (left(w)) + e{w}∪V (right(w))/C

= EETV (left(w)) + (ew + EV (right(w)))/C ≤ EETΨ .

If t = w is the root of the Ψ -tree then Ψ ′ = {w}∪V (right(w)) thanks to Lemma 1
and it follows:

eetΨ = rΨ ′ + eΨ ′/C = rw + (ew + eV (right(w)))/C

= rw + (ew + EV (right(w)))/C ≤ EETΨ .

If t ∈ V (right(w)) holds, Ψ ′ ⊆ V (right(w)) holds due to the choice of t. From
the precondition it follows

eetΨ = rΨ ′ + eΨ ′/C = EETV (right(w)) ≤ EETΨ .

Therefore, the hypothesis is shown. ��

Based on the results shown in Theorems 1 and 2 we are able to formulate the
L-n2l algorithm. It is presented in Alg. 1 and works as follows: The outer loop
(lines 2–16) iterates over all tasks i ∈ T and initializes the Ψ -tree by the empty
tree, lstmaxΨ by −∞, z by 1, and pretime by lsti in the first steps (line 3). The
last two variables are used to build the pseudo-tasks and lstmaxΨ stores the
latest start time of a task j in the Ψ -tree. The inner loop (lines 4–16) iterates
over the array Y sorted in non-decreasing order of the latest end times. It extends
stepwise the Ψ -tree by tasks from Ω(i) (lines 5–6) and the corresponding pseudo-
tasks s (line 10) which are built in a while loop (8–13). Hence, the nodes in the
Ψ -tree are equal to the set Ω(i, dY [y])∪ S(i, dY [y]) in the y-th iteration after the
insertion of the tasks and pseudo-tasks (after line 13).

In line 14 the existence of a subset of Ω(i, dY [y]) that satisfies with i the not-
last rule is checked by the inequality EETΨ > dY [y]. If the inequality holds then
the “new” latest end time UB′[i] is replaced by min(lstmaxΨ , UB

′[i]), and the
inner loop terminates; Otherwise, the algorithm remains in the inner loop.

Theorem 3. The L-n2l is sound, its time complexity is O(n2 logn) and its
space complexity is O(n).

Proof (Theorem 3). At first we show the soundness and then the complexity.
Soundness: Here, it means that the algorithm calculates any new upper bound
UB′[i] for each task i ∈ T given the CuSP instance (T,C) as follows:

UB[i] ≤ UB′[i] < di, if UB[i] < di and UB′[i] = di, otherwise ,

where UB[i] is the lowest upper bound for i concerning the not-last rule.

A New O(n2 log n) Not-First/Not-Last Pruning Algorithm 455

Algorithm 1. L-n2l Applies the not-last rule in O(n2 logn).
Input : Y an array of tasks sorted in non-decreasing order of the latest end

times (dY [1] ≤ · · · ≤ dY [n]).

Input : Z an array of the tasks’ earliest start and latest end times sorted in

non-decreasing order of the time points (Z[i] < Z[i + 1]).

Private: Ψ a balanced binary tree sorted by the tasks’ earliest start times.

Result: UB′ an array of the new uper bounds on the task end time.

foreach i ∈ T do UB′[i] := di;1

for i ∈ T do2

Ψ := ∅, lstmaxΨ := −∞, z := 1, pretime := lsti;3

for y := 1 to n do4

if Y [y] ∈ Ω(i) then5

insert Y [y] in Ψ -tree with value rY [y];6

lstmaxΨ := max(lstY [y], lstmaxΨ);7

while z ≤ Z. length and Z[z] ≤ dY [y] do8

if Z[z] > lsti then9

build the pseudo-task s concerning i by rs := pretime,10

ds := Z[z], cs := ci, and ps := ds − rs;

insert s in Ψ -tree with value rs;11

pretime := Z[z];12

z := z + 1;13

if EETΨ > dY [y] then14

UB′[i] := min(lstmaxΨ , UB′[i]);15

break;16

foreach i ∈ T do di := UB′[i];17

The algorithm initializes the array UB′ in line 1 by the latest end times of all
tasks. Because the value UB′[i] is only updated by min(lstmaxΨ , UB

′[i]) (line
15) it follows that UB′[i] ≤ di.

Apparently, if the algorithm is in its i-th iteration of the outer loop and y-th
iteration of the inner loop with Y [y] ∈ Ω(i) before line 14 then it holds that
the Ψ -tree contains the tasks in Ω(i, dY [y]) ∪ S(i, dY [y]). Therefore, it checks
all necessary inequalities eetΩ(i,dj)∪S(i,dj) > dj (j ∈ Ω) for the not-last rule
in the line 14 due to the Theorems 1 and 2. If all inequalities are not satis-
fied then the algorithm will not compute a new latest end time for i and thus
UB′[i] = di holds. Otherwise, let y′ be the first iteration in the inner loop that
satisfies the inequality. In this case the algorithm determines the new latest end
time by min(lstmaxΨ , UB

′[i]) where lstmaxΨ = lstmaxΩ(i,dY [y′]). Because of
the initialization of lstmaxΨ by −∞ and its update by max(lstY [y], lstmaxΨ)
for Y [y] ∈ Ω(i, dY [y′]) (line 7) it holds that UB′[i] ≤ lstmaxΩ(i,dY [y′]) < di.
Hence, the algorithm is sound.

Complexity: The time complexityO(n2 logn) is determined by the outer loop
(lines 2–16) whereas the complexity for the sorting of the arrays Y and Z, the
initialization of UB′ (line 1), and the update of the latest end times (line 17)
are negligible.

456 A. Schutt and A. Wolf

The outer loop iterates over all tasks i ∈ T . For each task i a Ψ -tree is
generated. Before the loop the Ψ -tree is empty. During the loop it is extended
stepwise by tasks and pseudo-tasks which all are inserted once in the Ψ -tree.

The pseudo-tasks are built in a while loop (lines 8–13) that iterates over the
variable z which is initialized with 1 before the inner loop. At each iteration of
the while loop z is incremented by 1, so that the while loop is traversed at most
2n for i. Hence, at most 2n pseudo-tasks are inserted in the Ψ -tree.

Therefore, the Ψ -tree contains at most 3n tasks. As the result of that an
insertion and a deletion cost O(log n) in the tree. All other operations in the
algorithm can be performed in constant time. Therefore, the time complexity
of the inner loop is O(n log n) and the overall time complexity of the algorithm
O(n2 log n). Obviously, the space complexity of the algorithm is O(n). ��

Theorem 4. L-n2l computes the lowest upper bounds UB[i] concerning the
not-last rule for each i ∈ T after at most |{lstmaxj | j ∈ T }| iterations.

Proof. In the following we first prove by contradiction that L-n2l computes the
upper bounds UB[i] concerning the not-last rule for each i ∈ T after a finite
number of iterations. Therefore, we assume that after k iterations of L-n2l
not any due date di is updated in line 17 but there is a task c ∈ T such that
UB[c] < dc holds. Thus any further iteration will result in the same situation,
i.e. at least one lowest upper bound will be not reached, because the input
of the deterministic L-n2l will not change after the k-th iteration. However,
there is a task set Ω ⊆ Ω(c) satisfying the not-last rule such that lstmaxΩ =
UB[c] holds. According to Theorem 1 there is another task j ∈ Ω(c) satisfying
eetΩ(c,dj)∪S(c,dj) > dj where S(c, dj) := {s ∈ S(c) | ds ≤ dj}. This means that in
the k+ 1 iteration of L-n2l the bound UB′[c] is updated (cf. line 15) such that
UB′[c] ≤ lstmaxΩ(c,dj) < dc holds by definition of Ω(c) changing dc eventually.
Obviously this contradicts the assumption that after k iterations a fixed point is
reached. Further, these considerations also show that each di will be improved in
each iteration of L-n2l as long as the lowest upper bound is not reached. Thus,
UB[i] = di holds for each i ∈ T after at most |{lstmaxj | j ∈ T }| iterations. ��

It follows that the time complexity for the computation of the best upper bounds
using L-n2l is O(n3 logn) in the worst case and thus equal to the time com-
plexity of the currently most efficient, complete not-last algorithm [14].

4 Experiments

Experiments were carried out in order to compare complete and incomplete al-
gorithms on the numbers of iterations necessary for fixed point computations
and on their absolute runtimes for problems of different sizes. The latter indi-
cates if and for which problem sizes the reduced complexity pays off. Therefore,
examinations were performed on RCPSP4 from the well-established benchmark
library PSPLib [7] and the library of Baptiste and LePape [1] (BL). The firstCS
constraint solver [6] was used to evaluate the different filtering algorithms.
4 RCPSP consists of a set of tasks requiring one or more resources for their execution,

precedences between tasks and a set of renewable resources.

A New O(n2 log n) Not-First/Not-Last Pruning Algorithm 457

Table 1. Comparison between different not-first/not-last algorithms

BL20 BL25 J30 J60 J90

solved time #it time #it time #it time #it time #it

L-n2l no 18.1 34016 30.9 37987 69.2 36776 157.7 29040 276.2 23419

yes 3.5 6344 2.2 3084 0.8 652 6.5 1078 22.3 1611

L-n3 no 9.9 34002 19.5 37956 57.8 36757 158.6 29028 333.7 23391

yes 1.9 6343 1.3 3082 0.6 652 6.1 1078 25.1 1611

C-n3l no 19.2 33941 38.3 37901 100.3 36666 344.3 28922 *842.1 *23203

yes 3.8 6326 2.8 3082 1.1 652 14.8 1078 69.6 1611

In order to compare the number of iterations for the different not-first/not-
last algorithm an upper limit on the number of backtracks (bts) of 5000 (20000)
was imposed for PSPLib (BL) instances. This limit also has the advantage that
the main runtime differences can be only caused by the algorithms, once it was
hit. The number of the limits were chosen in this way that the algorithms were
sufficiently often iterated and hit the bts limit within one hour runtime for almost
all instances. Moreover, the search was stopped after one hour if it did not reach
the bts limit. The time limit was only reached in some cases.

A cumulative resource in RCPSP was modeled by one cumulative propagator
for all tasks requiring this resource and one disjunctive propagator for all tasks
requiring more than the half of the resource capacity. Both propagators are idem-
potent, i.e. the execution of their filtering algorithms is repeated until no further
pruning is performed. The order of the algorithms for the cumulative propagator
was chosen as follows: time-table, edge-finding, one of the examined implementa-
tions of the considered not-first/not-last algorithms and overload checking. This
sequence was repeated until the fixed point was reached.

A (standard) dichotomic branch&bound optimization was applied to find the
minimal makespan, i.e. the smallest end time for the project. The underlying
search selected the task with the smallest start time in its start domain. If there
is a tie between several tasks then the task with the smallest latest start time
is picked. If a tie remains, the first task in the order of occurrence is selected.
Before the smallest start time is assigned to the start variable of the selected
task a choicepoint is created. If the propagation or the further search fails then
the search backtracks to the recently created choicepoint and the smallest start
time that yields the failure is excluded from the variable’s domain.

Table 1 compares the average time in seconds either for reaching the bts limit
or for finding a solution, and the average number of the iteration (#it) of the not-
first/not-last algorithm. For table entries that are marked by “*” the time limit
was hit before the bts limit for some instances. The classes J30, J60, and J90 are
from the PSPLib containing 480 instances with 30, 60, and 90 tasks respectively,
and the classes BL20, and BL25 are from Baptiste and Le Pape containing 20
instances with 20, and 25 tasks respectively. We compared the new, incomplete
algorithm L-n2l with the corrected, but still incomplete O(n3) algorithm L-n3
and with the complete O(n3 logn) algorithm C-n3l both presented in [14].

458 A. Schutt and A. Wolf

The algorithm L-n3 is the fastest for the considered instances with up to 60
tasks. For the instances with 90 tasks the algorithm L-n2l5 is faster. The com-
plete algorithm C-n3l is always inferior. One reason is that the new incomplete
algorithm only iterate less than 1% more than the complete algorithm. The other
reason is that the time complexity of C-n3l is higher than L-n2l and Ln3 due
to its completeness.

We also run the experiments without disjunctive constraints, edge-finding,
and/or not-first/not-last. The results with not-first/not-last were very similar
to the results in Tab. 1. The results without not-first/not-last were inferior in
terms of the number of found solutions within the given limits. The reader is
encouraged to see the detailed results in [11].

5 Conclusion and Future Work

In this paper we presented a new pruning algorithm concerning the not-first/not-
last rule for cumulative resources in time complexity O(n2 logn) and space com-
plexity O(n). Its soundness and its complexity were proved. This new algorithm
is incomplete, i.e. it might not find the best pruning at once, but at least one. We
compared this algorithm with (all) other not-first/not-last algorithm on RCPSP
instances from the PSPLib and Baptiste and Le Pape. The results show that the
new algorithm is superior to a complete not-first/not-last algorithm already for
small instances and to an incomplete not-first/not-last algorithm starting from
problems with 60 tasks.

Future work will concentrate on finding a complete algorithm with O(n2 logn)
time complexity which can be important e.g. for building minimal explanations
of time bound adjustments in a constraint system using no-good learning like
the lazy clause generator [10]. Recently, the time complexity for pruning based
on edge-finding dropped to O(kn log n) [17] which indicates that there might be
a more efficient not-first/not-last algorithm possibly with the same complexity.

Acknowledgments. NICTA is funded by the Australian Government as rep-
resented by the Department of Broadband, Communications and the Digital
Economy and the Australian Research Council.

References

1. Baptiste, P., Le Pape, C.: Constraint propagation and decomposition techniques

for highly disjunctive and highly cumulative project scheduling problems. Con-

straints 5(1-2), 119–139 (2000)

2. Baptiste, P., Le Pape, C., Nuijten, W.: Constraint-Based Scheduling. International

Series in Operations Research & Management Science, vol. 39. Kluwer Academic

Publishers, Dordrecht (2001)

3. Beldiceanu, N., Contejean, E.: Introducing global constraints in CHIP. Mathemat-

ical and Computer Modelling 12, 97–123 (1994)

5 The performance of the not-first/not-last algorithms can be improved if a pre-sorted

array is used to represent the Ψ -tree instead of the AVL tree used in the experiments.

A New O(n2 log n) Not-First/Not-Last Pruning Algorithm 459

4. Blazewicz, J., Lenstraand, J.K., Rinnooy Kan, A.H.G.: Scheduling subject to re-

source constraints: classification and complexity. Discrete Applied Mathematics 5,

11–24 (1983)

5. Caseau, Y., Laburthe, F.: Cumulative scheduling with task intervals. In: Maher,

M.J. (ed.) Joint International Conference and Symposium on Logic Programming

– JICSLP 1996, pp. 363–377. MIT Press, Cambridge (1996)

6. Hoche, M., Müller, H., Schlenker, H., Wolf, A.: firstCS - A Pure Java Constraint

Programming Engine. In: Hanus, M., Hofstedt, P., Wolf, A. (eds.) 2nd Interna-

tional Workshop on Multiparadigm Constraint Programming Languages – Multi-

CPL 2003 (September 2003),

uebb.cs.tu-berlin.de/MultiCPL03/Proceedings.MultiCPL03.RCoRP03.pdf
7. Kolisch, R., Sprecher, A.: PSPLIB – A project scheduling problem library. Euro-

pean Journal of Operational Research 96(1), 205–216 (1997)

8. Mercier, L., Van Hentenryck, P.: Edge finding for cumulative scheduling. IN-

FORMS Journal on Computing 20(1), 143–153 (2008)

9. Nuijten, W.P.M.: Time and Resource Constrained Scheduling. PhD thesis, Eind-

hoven University of Technology (1994)

10. Ohrimenko, O., Stuckey, P.J., Codish, M.: Propagation via lazy clause generation.

Constraints 14(3), 357–391 (2009)

11. Schutt, A.: Entwicklung suchraumeinschränkender Verfahren zur constraint-

basierten Lösung kumulativer Ressourcenplanungsprobleme. In: Diplomarbeit,

Humboldt Universität zu Berlin, Berlin, Germany (September 2006) (in German)

12. Schutt, A., Feydy, T., Stuckey, P.J., Wallace, M.G.: Explaining the cumulative

propagator. To appear in Constraints

13. Schutt, A., Feydy, T., Stuckey, P.J., Wallace, M.G.: Why cumulative decomposition

is not as bad as it sounds. In: Gent, I.P. (ed.) CP 2009. LNCS, vol. 5732, pp. 746–

761. Springer, Heidelberg (2009)

14. Schutt, A., Wolf, A., Schrader, G.: Not-first and not-last detection for cumula-

tive scheduling in O(n3 log n). In: Umeda, M., Wolf, A., Bartenstein, O., Geske,

U., Seipel, D., Takata, O. (eds.) INAP 2005. Schutt, A., Wolf, A., Schrader, G,

vol. 4369, pp. 66–80. Springer, Heidelberg (2006)

15. Simonis, H., O’Sullivan, B.: Search strategies for rectangle packing. In: Stuckey,

P.J. (ed.) CP 2008. LNCS, vol. 5202, pp. 52–66. Springer, Heidelberg (2008)

16. Viĺım, P.: O(n log n) filtering algorithms for unary resource constraint. In: Régin,

J.-C., Rueher, M. (eds.) CPAIOR 2004. LNCS, vol. 3011, pp. 335–347. Springer,

Heidelberg (2004)

17. Viĺım, P.: Edge finding filtering algorithm for discrete cumulative resources in

O(kn log n). In: Gent, I.P. (ed.) CP 2009. LNCS, vol. 5732, pp. 802–816. Springer,

Heidelberg (2009)

18. Viĺım, P., Barták, R., Čepek, O.: Unary resource constraint with optional activities.

In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 62–76. Springer, Heidelberg

(2004)

19. Wolf, A., Schrader, G.: O(kn log n) overload checking for the cumulative constraint

and its application. In: Umeda, M., Wolf, A., Bartenstein, O., Geske, U., Seipel,

D., Takata, O. (eds.) INAP 2005. LNCS (LNAI), vol. 4369, pp. 88–101. Springer,

Heidelberg (2006)

uebb.cs.tu-berlin.de/MultiCPL03/Proceedings.MultiCPL03.RCoRP03.pdf

A Generic Visualization Platform for CP

Helmut Simonis1, Paul Davern1, Jacob Feldman1,
Deepak Mehta1, Luis Quesada1, and Mats Carlsson2,�

1 Cork Constraint Computation Centre
Department of Computer Science, University College Cork, Ireland

2 Swedish Institute of Computer Science
SICS AB,Uppsala Science Park, SE-751 83 Uppsala, Sweden

h.simonis@4c.ucc.ie

Abstract. In this paper we describe the design and implementation of CP-VIZ,
a generic visualization platform for constraint programming. It provides multiple
views to show the search tree, and the state of constraints and variables for a post-
mortem analysis of a constraint program. Different to most previous visualization
tools, it is system independent, using a light-weight, intermediate XML format
to exchange information between solvers and the visualization tools. CP-VIZ is
available under an open-source licence, and has already been interfaced to four
different constraint systems.

1 Introduction

Visualization1 is one of the best techniques for understanding the behavior of constraint
programs, allowing us to directly observe the impact of changes by visual inspection
instead of using tedious debugging. So far, most constraint visualization tools have been
closely linked to specific solvers, making it difficult to compare alternative solvers and
to reuse development effort spent on other systems. Previous attempts [4] at generic
tools did not find widespread use largely due to the complexity of the specification
and the level of detail captured. The new, light-weight CP-VIZ system provides a sim-
ple XML based interface for solvers, and can be easily extended for new systems and
constraints. In CP-VIZ, we try to visualize the search tree and the state of variables
and (global) constraints in parallel views. The search tree shows choices, assignments
and failures, modeled on the tree display in the Oz Explorer [14] and later in CHIP [16].
Constraints and variables are shown in a 2D layout defined by the user, individual global
constraints are shown in custom visualizations similar to [17]. A new constraint can be
added to the package by simply deriving a new class with a custom drawing method.

� This work was supported by Science Foundation Ireland (Grant Number 05/IN/I886). The
support of Cisco Systems and of the Silicon Valley Community Foundation is gratefully ac-
knowledged.

1 Visualization relies heavily on the use of colors, with a potential loss of information if seen
in black&white only. An on-line version of the paper with colored diagrams can be down-
loaded from the URL http://4c.ucc.ie/˜hsimonis/cpviz.pdf. Also note that in
the electronic version you can zoom into all SVG diagrams, revealing additional information.

D. Cohen (Ed.): CP 2010, LNCS 6308, pp. 460–474, 2010.
© Springer-Verlag Berlin Heidelberg 2010

http://4c.ucc.ie/~hsimonis/cpviz.pdf

A Generic Visualization Platform for CP 461

The design of the visualization tool was driven by user-requirements, coming mainly
from the development of an ECLiPSe ELearning course.

Visualization has played a significant role in demonstrating the use of constraint
programming, and helping to develop successful applications. Systems like CHIP [6]
relied on Prolog-based coroutines to visualize the assignment of variables changing
throughout a search process. Visualizations were written as application specific tools
which were co-developed with the constraint model. This approach restricted re-use of
components and was tightly linked to a logic-programming host language. Meier [12]
was the first to abstract visualization types based on collections of variables and to
propose different views for them. The visualization of the search tree was pioneered
in the Oz Explorer [14], its interactive use tightly linked to the generalized branching
possibilities of the Oz environment. The DISCiPl project [5] produced a multitude of
results for constraint debugging and visualization, the ones most relevant for this paper
are the search tree tool for CHIP [16] and the idea of specialized visualizers for global
constraints [17]. The French OADymPPaC project [4] considered a system independent
view of visualization. But the XML-based specification for post-mortem traces was
quite complex and achieved limited acceptance, and seems no longer to be actively
maintained. The main design aim for the OADymPPaC trace format was to capture
all possible information about program execution. The visualization tools would then
extract those pieces which were of interest to them. While this allowed different tools
to work at different abstraction levels, it also required rather deep integration into each
supported CP solver to generate the trace, and led to very large trace files for even
relatively small problems. The visualization tools for Comet [7] provide an environment
for developing visualizations for constraint-based local search, which mix generic and
application specific aspects of the visualization inside the modeling language.

2 Design Aims

The design of CP-VIZ was largely driven by the development of an ECLiPSe ELearning
course [15], for which we wanted to be able to show and explain the solving of various
models for application programmers. We did not want to restrict the use of the visualizer
to ECLiPSe only, but rather tried to design a constraint system independent architecture.
This led to a number of key design decisions:

– We decided to concentrate on post-mortem analysis, which minimizes the require-
ments of interaction between the constraint solver and the visualization environ-
ment, but still provides most of the information required for analysis.

– The output of the visualization can be studied on-screen, but can also be provided as
high-quality, colored, vector based print output. Data feeds for other visualization
tools are also provided.

– The tools are solver independent, written in a general purpose language (Java) and
can be easily extended and specialized by deriving new classes from existing visu-
alization classes.

– We added invariant checking at each search node to the functionality, this allows a
solver independent validation of the results, and can highlight missing propagation
in individual constraints.

462 H. Simonis et al.

– The system is platform independent, and is provided as open source. The system
specific XML generation requires minimal effort.

At the same time, these choices restricted some functionality that is provided in other
visualization tools [14,16].

– The tool currently is not designed for interactive problem solving, controlling the
search from within the visualization by making manual decisions on how the search
should progress. To allow this in a system independent way seems quite difficult,
and would require rather deep interaction with each solver. At the same time, there
is limited evidence that such an interactive use helps application programmers in
developing strategies which solve problems automatically.

– We are not considering individual propagation steps, showing in which order
constraints are woken and how they make detailed domain restrictions. For most
application programmers, this level of abstraction is too detailed, and it is too
time consuming to follow the execution of constraint propagators through a longer
search process.

– We don’t collect and display the constraint graph. Many existing tools for display-
ing constraint graphs [9,8] seem to work only for binary constraints, and heavily
rely on graph layout algorithms, without finding usable displays for larger problem
sizes.

Which type of design choices can be improved when using visualization? Figure 1
shows the well-known example of a Sudoku puzzle expressed in constraint program-
ming, which compares three different consistency levels for the ALLDIFFERENT con-
straints in the model. The same problem is modeled using forward checking, bounds
consistency and domain consistency; the pictures show the state after the initial set-up,
before search is started. The variables are shown in form of a two-dimensional ma-
trix, each cell corresponds to a variable, which shows the current values in the domain
(small, in green) or the assigned value (large, in red). For this carefully selected, didac-
tic example, different consistency levels lead to different amounts of propagation, but
this is not universally true. In many applications the visualization can help to decide

Forward Checking Bounds Consistency Domain Consistency

Fig. 1. Sudoku: Consistency Level Comparison

A Generic Visualization Platform for CP 463

Tree Display Failure Level Failure Causes

Fig. 2. Search Tree Analysis - Different Views of Search Tree Data

Fig. 3. Invariant Checks for Cumulative Scheduling Problem

which consistency level to use in order to find the right compromise between speed,
propagation and problem solving stability.

Figure 2 shows different diagrams for visualization of the search tree. If the search
space is small, the full tree can be shown (on the left). For more complex problems,
this is no longer possible, and a more compact form, originally proposed in [14], which
abstracts failed sub-trees, can be displayed (see Figure 7 for an example). But often this
detailed analysis is not required, it suffices to have a simple quantitative analysis, as
shown in the middle part of Figure 2. It plots the number of success and failure nodes
with the depth of the search tree. The shape of the plot often is enough to understand
how well a model is able to explore the search space. On the right we show a treemap
visualization which indicates the size of the generated subtree below a top-level choice
in the search. This can help to understand more clearly if the search strategy globally is
making the right choices.

Finally, the diagrams in Figure 3 show an example where invariant checking was
used to detect nodes in the search where the constraint propagation was not sufficient.
The pictures are from a cumulative scheduling problem proposed by Robert

464 H. Simonis et al.

Nieuwenhuis [13] solved in ECLiPSe. It highlights two problems with the CUMULA-
TIVE constraint implementation of ECLiPSe, which is based on edge finding. In the
left picture, some tasks in a partial assignment are restricted sufficiently so that oblig-
atory parts (dark, in red) are generated. The sum of these obligatory parts exceeds the
resource limit, which is not detected by the propagator. Invariant checking highlights
the constraint and has also marked the problem in the search tree. On the right, a num-
ber of tasks have been assigned, and their resource profile reaches the resource limit,
but the start times of unassigned tasks are not updated properly. This not only shows
some missing propagation, but affects the search routine as well, as the heuristic for
task selection will pick the wrong tasks to be assigned next. The problem was resolved
by developing another propagator for CUMULATIVE based on obligatory parts.

3 Architecture

Figure 4 shows the basic architecture of the CP-VIZ system. The visualization is driven
by annotations in the constraint program. When run in the solver, two XML log files
(one for the search tree, the other for the constraint and variable visualization) are pro-
duced. These files are then parsed in the main CP-VIZ application, producing graphical
output as SVG, or as input for other tools (tree maps, graphs, statistics). The SVG out-
put can be displayed interactively in the CP-VIZTOOL, or can be used in multiple ways
to produce annotated or converted output for print or WEB media.

We use XML text files to link the generation of the log files to the creation of the
visualization. This should allow almost any constraint programming system to be linked
to the CP-VIZ visualization with minimal effort.

Program + Annotation

CP Solver

Search Tree Log Constraint and Variable Log

CP-VIZ

SVGTreemap Graph Statistics

Inkscape BatchBrowser CP-VIZTool

Annotated Image PDF

Fig. 4. CP-VIZ System Architecture

A Generic Visualization Platform for CP 465

Search Tree Log. The log file consists of a single tree element, which contains a se-
quence of node elements which describe the search tree. There is an initial root node,
which defines the start of the search, and try and fail nodes for successful and failed
choices. In each node we have a node id, the node id of the parent node, the name of the
variable currently assigned, the size of its domain, and the value assigned. A variant of
these types also allows to handle arbitrary choices, not based on variable assignment.
These alternatives can be useful to describe more complex branching schemes, but their
analysis is slightly more restricted. A solution node is used to mark choice nodes which
complete an assignment, i.e. to mark nodes where all constraints are satisfied. The for-
mat does not assume chronological depth first search, nodes can be added for any parent
at any time.

Constraint and Variable Log. The second log file is used to describe snapshots of con-
straints and variables. Its top element is visualization, which contains a list of visualizer
elements, describing the constraints and variables to be displayed. This is followed by a
sequence of state elements, each containing a snapshot of the execution at a given time
point. Inside each state, the visualizer state elements describe the current state of a con-
straint or collection of variables. The syntax used roughly follows the syntax used in the
global constraint catalog [3]. Constraints can be described by their named arguments,
which may contain collections of basic types or tuples, which describe structures of dis-
parate types. The basic types currently allowed are integers and finite domain variables,
integer sets and domain variables over finite sets, plus some more specialized types.

3.1 System Dependent XML Generators

For every constraint system that wishes to use the CP-VIZ environment, we need to
define an interface to generate the XML logs. Figure 5 shows such an interface for Java,
based on two classes, VisualSolver and VisualProblem. The methods for the search tree
log are contained in the VisualSolver interface, each adds or annotates a search node in
the tree.

The methods for the VisualProblem class are split into two groups. The application
programmer can use the method register() to register a constraint or a collection of
variables with the visualization. There is also a method snapshot() which triggers the
creation of a snapshot of all registered constraints and variables at a given program
point. The snapshot is created by sending a snapshot() message to each registered con-
straint. This is then responsible for saving the current state of the constraint into the
log. For this it might use the remaining methods of the VisualProblem class, which log
XML elements of different types for the constraint.

3.2 CP-VIZ

The main CP-VIZ application parses the XML log files and creates SVG output for
the user. The search tree is parsed completely before generation, while the constraint
and variable snapshots are handled one at a time. In order to see which changes have
occurred to the variables by the current search step, the tool keeps a stack of snapshots
for all parents of the current node in memory. This not only allows to see the domain

466 H. Simonis et al.

p u b l i c i n t e r f a c e V i s u a l S o l v e r extends V i s u a l {
p u b l i c void addRootNode (i n t i d) ;
p u b l i c void addSuccessNode (i n t id , i n t p a r e n t I d ,

S t r i n g var iableName , i n t s i z e , i n t v a l u e) ;
p u b l i c void addSuccessNode (i n t id , i n t p a r e n t I d ,

S t r i n g var iableName , i n t s i z e , S t r i n g c h o i c e) ;
p u b l i c void a d d F a i l u r e N o d e (i n t id , i n t p a r e n t I d ,

S t r i n g var iableName , i n t s i z e , i n t v a l u e) ;
p u b l i c void a d d F a i l u r e N o d e (i n t id , i n t p a r e n t I d ,

S t r i n g var iableName , i n t s i z e , S t r i n g c h o i c e) ;
p u b l i c void l a b e l S o l u t i o n N o d e (i n t i d) ;

}

p u b l i c i n t e r f a c e V i s u a l P r o b l e m extends V i s u a l {
p u b l i c void r e g i s t e r (C o n s t r a i n t c o n s t r a i n t) ;
p u b l i c void r e g i s t e r (Var v a r) ;
p u b l i c void r e g i s t e r (Var [] v a r A r r a y) ;
p u b l i c void r e g i s t e r (Var [] [] v a r M a t r i x) ;
p u b l i c void s n a p s h o t () ;

/ / f o r i m p l e m e n t o r s o n l y
p u b l i c void s t a r t T a g A r g u m e n t (S t r i n g i n d e x) ;
p u b l i c void s t a r t T a g A r g u m e n t (i n t i n d e x) ;
p u b l i c void endTagArgument () ;

p u b l i c void s t a r t T a g C o l l e c t i o n (S t r i n g i n d e x) ;
p u b l i c void s t a r t T a g C o l l e c t i o n (i n t i n d e x) ;
p u b l i c void e n d T a g C o l l e c t i o n () ;

p u b l i c void s t a r t T a g T u p l e (S t r i n g i n d e x) ;
p u b l i c void s t a r t T a g T u p l e (i n t i n d e x) ;
p u b l i c void endTagTuple () ;

void t a g V a r i a b l e (Var v a r) ;
void t a g V a r i a b l e (S t r i n g index , Var v a r) ;
void t a g V a r i a b l e (i n t index , Var v a r) ;

void t a g I n t e g e r (S t r i n g index , i n t v a l u e) ;
void t a g I n t e g e r (i n t index , i n t v a l u e) ;

}

Fig. 5. VisualSolver and VisualProblem Interface Definition

updates of the variables, but also permits to generate path based visualizations [16],
which display the evolution of a variable or some parameter through all parent nodes
from the root to the current node.

A Generic Visualization Platform for CP 467

Internally, the CP-VIZ application uses an event-based SAX-2 XML parser, so that
it can minimize which part of the XML tree it needs to keep in memory. Experiments
have shown that log files of several hundred Mb do not pose any problems.

3.3 CP-VIZ Tool

Figure 6 shows the CP-VIZTOOL, a Java application which displays the result of the
visualization on the screen. The application has a time-line at the top, where the user
can select a state of the execution for display. The tool will then display the state of
the search tree in the left main pane, and the corresponding snapshot of the constraint
and variable visualization in the right pane. The user can also step forward/backwards
through the execution, or display the complete solution process as a movie, progressing
automatically through the different snapshots.

Fig. 6. Interactive CP-VIZ Tool for Car Sequencing Problem

4 Invariant Checking

By providing snapshots of the execution at fix points only, when all constraints have
performed their consistency checking, CP-VIZ also provides data for systematic test-
ing of execution traces. We have implemented an invariant checker, which for ev-
ery snapshot calls an invariant() method for each registered constraint. This method
may return TRUE, also the default value, or one of the values INTERESTING, MISS-
ING PROPAGATION, INCONSISTENT or FALSE. Combining all invariant checks for
a snapshot, the visualizer then marks the node in the search tree accordingly and high-
lights any failed assertions in the constraint visualization. We explain the meaning of

468 H. Simonis et al.

the values for the example of a CUMULATIVE [1] constraint. The CUMULATIVE con-
straint states that the resource consumption of a collection of n tasks with start times
si geq0, fixed duration di and resource use ri must stay below the resource limit l and
within the scheduling period p. A ground solution must satisfy the equations

∀ 0 ≤ t < p :
∑

{i | si≤t<si+di}
ri ≤ l (1)

∀ 1 ≤ i ≤ n : si + di ≤ p (2)∑
1≤i≤n

di ∗ ri ≤ l ∗ p (3)

Inequality (3) is implied by the others, but is used as it provides a good basis for de-
veloping invariants. If for a ground instance one of these equations is not satisfied, then
the invariant checker will return FALSE.

We can rewrite constraint (3) to consider upper bounds on domain variables l and p.
This produces

p ≥
⌈∑

di ∗ ri

l

⌉
(4)

If in any snapshot this invariant does not hold, then the snapshot is inconsistent, i.e.
the constraint propagator should have failed for this node. The invariant checker returns
INCONSISTENT. A weaker invariant checks the lower bound of p instead:

p ≥
⌈∑

di ∗ ri

l

⌉
(5)

If this invariant is violated, the lower bound of p has not been updated correctly, but
other values in the domain of p might satisfy the condition, so the invariant checker
returns MISSING PROPAGATION. In a similar way we can derive

∀ 0 ≤ t < p : l <
∑

{i | si≤t<si+di}
ri ⇒ INCONSISTENT (6)

∀ 0 ≤ t < p : l <
∑

{i | si≤t<si+di}
ri ⇒ MISSING PROPAGATION (7)

We are cumulating the resource use over all obligatory parts, i.e. time periods where we
know that a task will be active.

The weakest value is INTERESTING, which can be used to mark snapshots where
a constraint detects a special condition that the user is interested in. We will show its
use in section 5.3 to mark nodes where no propagation of a global method was pos-
sible. One key advantage of an invariant checker inside a system independent tool is
that the invariant code can be shared for all constraint systems that implement a given
constraint. As it is written independently from any specific propagation methods, it
avoids problems when reused, buggy code in the validation precludes detection of an
error. Finally, the invariant checks enhance chances to detect subtle differences in the
declarative meaning of a global constraint between systems.

A Generic Visualization Platform for CP 469

5 Implementation

In this section we discuss the platforms which currently have been integrated with the
CP-VIZ tool set, and note some details of the effort required to connect a new system
to the visualizer.

5.1 ECLiPSe

We have linked the finite domain ic library of the Prolog based ECLiPSe system to CP-
VIZ as part of the ECLiPSe ELearning course development. The main requirement was
to display sufficient information of the constraint propagation to the students, without
overwhelming them with unwanted detail. As custom search routines are very easy to
write in ECLiPSe, we also needed an interface which could visualize such routines with
minimal overhead. The current interface does not require hooks in the predefined search
routines or constraint implementations, but rather uses logic programming features to
express the visualization as annotations of the user programs. Visualizers for some 15
global constraints have been implemented so far, together with a series of example
programs, based on the course material.

5.2 SICStus

We are currently extending the clpfd library module of SICStus Prolog with exported
predicates producing XML files for CP-VIZ. The work is being carried out as a port of
the interface code for ECLiPSe. Like for ECLiPSe, we do not use any special hooks of
SICStus Prolog or its clpfd library module and we rely on user program annotations.
The implementation replaces the normal labeling/2 procedure, which takes a list
of domain variables, by another procedure taking a list of domain variables annotated
with information for display purposes, e.g. variable name. ECLiPSe and SICStus pro-
vide different libraries of global constraints, and so the main implementation effort lies
in implementing visualizers for the global constraints not provided by ECLiPSe. In par-
ticular, we plan to implement 2D and 3D visualizers for the generic multi-dimensional
geost constraint [2]. The XML files are currently being written with standard Prolog I/O
predicates. For efficiency, this is likely to be replaced later by specific XML I/O code.

5.3 Visualization of the Global Constraint SOFTPREC

As a case study for visualizing individual global constraints, consider the visualization
of the SOFTPREC constraint arising in the context of the feature subscription problem
for telecommunication services. A feature subscription problem is a configuration prob-
lem defined by a set of possible features, a set of hard precedence constraints, a set of
soft precedence constraints, and a function that maps each feature and each soft prece-
dence constraint to a non-zero integer weight. The objective is to maximize the value
of the subscription, which is defined to be the sum of the weights of the features and
soft precedences that are included. The soft global precedence constraint SOFTPREC

is proposed for solving the feature subscription problem in [11] and [10]. It holds if
and only if there is a strict partial order on the selected features subject to the relevant

470 H. Simonis et al.

hard precedence constraints and the selected soft (user) precedence constraints, and the
value of the subscription is within the provided bounds.

The algorithms for the pruning rules of SOFTPREC have been implemented in Choco
(http://www.emn.fr/z-info/choco-solver), which is a Java library for
constraint programming. In order to visualize the search tree and the propagation carried
out at each node of the search tree, the implementation of SOFTPREC was extended in
order to generate and save the trace in the CP-VIZ format. The implementation of this
extension was fairly simple. We had to extend two classes of Choco and override some
of their methods. While generating the required data for visualization is quite easy,
deciding what to visualize and how to visualize it required several iterations.

A distinct advantage of the visualizer is that it is easy to get a sense of the solutions.
Visualizing solutions can give more insight than just knowing the numerical value of
the solution. It can help a user in deciding whether a given solution with the optimal
value is really optimal for him/her or not. The arguments of SOFTPREC that an end-user
might be interested in visualizing are the states of the variables associated with optional
features, soft precedences, and the value of the subscription being computed. Some of
the interesting states are whether a feature (or a user precedence) is included, excluded
or undecided, or whether the current state is a result of the last choice or the previous
choices.

Figure 7 depicts the search tree (on the left, generated by a branch and bound search
algorithm) explored until the node number 38 and the states of the variables (after con-
straint propagation) at that node, when solving an instance of feature subscription with
20 features and 10 user precedences. In Figure 7 leaf-nodes of the search tree corre-
sponding to feasible solutions are shown in green (light gray), dead-ends are shown in
red (dark gray), and the current node (node number 38) is shown in blue (larger size).
Figure 7 (right) visualizes the state of the variables after reaching the fix point complet-
ing the propagation at node number 38.

The states of the features are visualized using a vector of cells (shown at the bottom
and to the right). When a feature is undecided the corresponding cell is unlabeled. If a
feature is included or excluded then the cell is labeled with either 1 or 0. The difference
between the features that are included/excluded in the current node from those that are
decided in the earlier nodes is made through the difference in the background color of
the cells. The states of the variables associated with the soft precedence constraints are
visualized through a matrix of cells. Each soft precedence constraint i ≺ j is associated
with a cell in row i and column j. If a soft precedence i ≺ j holds then the correspond-
ing cell is labeled with 1 and if it is violated then the corresponding cell is labeled with
0, and undecided soft precedence is labeled with 01. The bounds of the value of the
subscription being computed is displayed on the left bottom of Figure 7 (right).

SOFTPREC internally maintains transitivity on the hard precedence constraints. A
hard precedence constraint, i ≺ j, means that if features i and j are included then i
must precede j. From a developer’s point of view it is interesting to visualize the states
of these variables, which is done through the background colors of the cells in the ma-
trix. SOFTPREC also elicits and maintains incompatibilities between undecided features
through the states of these variables. An incompatibility between undecided features i
and j is visualized by placing a box around the cell in row i and column j. For example,

http://www.emn.fr/z-info/choco-solver

A Generic Visualization Platform for CP 471

in Figure 7 (right) the cell in the second row and fifth column is surrounded by a red
box which denotes that feature 2 and feature 5 are incompatible. This helps in seeing
patterns in the incompatibilities between pairs of features. Within SOFTPREC bounds
are computed by associating a graph with a set of incompatibilities, and computing
the violation cost of each component of the graph. The components are also visual-
ized by using different colors for the incompatibilities of different components. When
it comes to describing the pruning rules of SOFTPREC it is much easier to explain them
through visualization. Initially it was agreed to implement a static variable ordering for
SOFTPREC that chooses variables associated with soft precedences before the variables
associated with features. However, after visualizing the search tree, we discovered that
the intended variable ordering was not implemented in the right way. Another advan-
tage of visualization is that it can help in understanding the impact of the strength of
different pruning rules.

Search Tree Constraint Propagation

Fig. 7. Example of SOFTPREC Global Constraint Visualization

5.4 JSR331

The Java Specification Request (JSR) 331 (http://jcp.org/en/jsr/detail?
id=331) is a working group in the Java Community Process trying to propose an open,
standard constraint programming API for Java. As part of a reference implementation
we have considered the use of CP-VIZ as an example of a visualization extension for
the standard API. Figure 8 shows a code example for an annotated N-queens program
in the proposed standard syntax. For most classes (Problem, Solver, individual global
constraints), variants which incorporate the visualization capabilities of CP-VIZ are
provided. By creating for example a new constraint from ALLDIFFERENTVISUAL in-
stead of ALLDIFFERENT , a visualization for this constraint will be provided. Note
that not all constraints and variables need to be annotated, the user can concentrate on
only parts of the model, if required. Figure 9 shows an UML sequence diagram for the

http://jcp.org/en/jsr/detail?id=331
http://jcp.org/en/jsr/detail?id=331

472 H. Simonis et al.

p u b l i c c l a s s QueensVi sua l {
p u b l i c s t a t i c void main (S t r i n g [] a r g s) {

P r o b l e m V i s u a l problem = new P r o b l e m V i s u a l (” Queens ”) ;
i n t s i z e = 1 6 ;
problem . s t a r t V i s u a l i z a t i o n (” QueensProblem . l o g ”) ;
Var [] x = problem . v a r A r r a y (” x” , 0 , s i z e −1, s i z e) ;
Var [] x1 = new Var [s i z e] ;
Var [] x2 = new Var [s i z e] ;
f o r (i n t i = 0 ; i < s i z e ; i ++) {

x1 [i] = x [i] . add (i) ;
x2 [i] = x [i] . sub (i) ;

}
problem . r e g i s t e r (x) ;
new A l l D i f f e r e n t V i s u a l (x) . p o s t () ;
problem . s n a p s h o t () ;
new A l l D i f f e r e n t (x1) . p o s t () ;
new A l l D i f f e r e n t (x2) . p o s t () ;
S o l v e r V i s u a l s o l v e r = new S o l v e r V i s u a l (problem) ;
s o l v e r . s t a r t V i s u a l i z a t i o n (” QueensS olve r . l o g ”) ;
S o l u t i o n s o l u t i o n = s o l v e r . f i n d S o l u t i o n () ;
s o l v e r . s t o p V i s u a l i z a t i o n () ;
problem . s t o p V i s u a l i z a t i o n () ;

}
}

Fig. 8. JSR 331 Example: Visualization of N-Queens Problem

interaction of the Application, VisualProblem, VisualSolver and Constraint classes
which shows how the JSR331 implementation builds on the interface of Figure 5.

6 Future Work and Conclusions

While the current CP-VIZ system already provides many useful features for under-
standing and improving constraint programs, there are a number of features that would
improve its capabilities:

– At the moment the system can tell the user which choice led to a failure, but can not
provide a more detailed explanation. It would be helpful if we can integrate some
explanation tools which can provide automatically derived explanations of failures.

– Much of the development time for a constraint application is taken up with compar-
ing different possible design choices. We will study how to best compare search trees
and constraint and variable visualizations from multiple runs in a single display.

– The invariant checker provides a useful paradigm for concentrating effort on inter-
esting parts of the search effort, but at the moment the checks are compiled as part
of the tool itself. It might be interesting to allow users to specify checks interac-
tively, and display such search results inside the visualization.

A Generic Visualization Platform for CP 473

Fig. 9. UML Sequence Diagram - Message Flow between Application and Visualization Classes

By providing an open-source, system independent visualization platform, CP-VIZ can
help to reduce the amount of duplicated and redundant work required by system devel-
opers, while allowing specific, new features to be added without too much effort. The
current documentation and software for CP-VIZ can be found at http://4c.ucc.
ie/˜hsimonis/CPVIZ/index.htm.

References

1. Aggoun, A., Beldiceanu, N.: Extending CHIP in order to solve complex scheduling prob-
lems. Journal of Mathematical and Computer Modelling 17(7), 57–73 (1993)

2. Beldiceanu, N., Carlsson, M., Poder, E., Sadek, R., Truchet, C.: A generic geometrical
constraint kernel in space and time for handling polymorphic k-dimensional objects. In:
Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 180–194. Springer, Heidelberg (2007)

3. Beldiceanu, N., Carlsson, M., Rampon, J.X.: Global constraint catalog. Technical Report
T2005:08, SICS (May 2005)

4. Deransart, P.: Main results of the OADymPPaC project. In: Demoen, B., Lifschitz, V. (eds.)
ICLP 2004. LNCS, vol. 3132, pp. 456–457. Springer, Heidelberg (2004)

5. Deransart, P., Hermenegildo, M.V., Małuszyński, J.: DiSCiPl 1999. LNCS, vol. 1870.
Springer, Heidelberg (2000)

6. Dincbas, M., Van Hentenryck, P., Simonis, H., Aggoun, A., Graf, T., Berthier, F.: The con-
straint logic programming language CHIP. In: FGCS, pp. 693–702 (1988)

7. Dooms, G., Hentenryck, P.V., Michel, L.: Model-driven visualizations of constraint-based
local search. Constraints 14(3), 294–324 (2009)

http://4c.ucc.ie/~hsimonis/CPVIZ/index.htm
http://4c.ucc.ie/~hsimonis/CPVIZ/index.htm

474 H. Simonis et al.

8. Epstein, S.L., Li, X.: Cluster graphs as abstractions for constraint satisfaction problems. In:
Bulitko, V., Beck, J.C. (eds.) SARA. AAAI, Menlo Park (2009)

9. Hulubei, T.: Refutation Analysis for Constraint Satisfaction Problems. PhD thesis, University
College Cork (2007)

10. Lesaint, D., Mehta, D., O’Sullivan, B., Quesada, L., Wilson, N.: A Soft Global Precedence
Constraint. In: IJCAI 2009, Pasadena, CA, USA (2009)

11. Lesaint, D., Mehta, D., O’Sullivan, B., Quesada, L., Wilson, N.: Consistency techniques
for finding an optimal relaxation of a feature subscription. In: Proceeding of the 20th IEEE
International Conference on Tools with Artificial Intelligence (ICTAI 2008), pp. 283–290
(2008)

12. Meier, M.: Debugging constraint programs. In: Montanari, U., Rossi, F. (eds.) CP 1995.
LNCS, vol. 976, pp. 204–221. Springer, Heidelberg (1995)

13. Nieuwenhuis, R.: A cumulative scheduling problem. Personal Communication (2008)
14. Schulte, C.: Oz Explorer: A visual constraint programming tool. In: ICLP, Leuven, Belgium,

pp. 286–300 (1997)
15. Simonis, H.: An ECLiPSe ELearning course (2009),

http://4c.ucc.ie/˜hsimonis/ELearning/index.htm
16. Simonis, H., Aggoun, A.: Search-tree visualisation. In: Deransart et al [5], pp. 191–208.
17. Simonis, H., Aggoun, A., Beldiceanu, N., Bourreau, E.: Complex constraint abstraction:

Global constraint visualisation. In: Deransart et al [5], 299–317

http://4c.ucc.ie/~hsimonis/ELearning/index.htm

Database Constraints and Homomorphism Dualities�

Balder ten Cate1, Phokion G. Kolaitis1,2, and Wang-Chiew Tan1,2

1 University of California Santa Cruz
2 IBM Research-Almaden

Abstract. Global-as-view (GAV) constraints form a class of database constraints
that has been widely used in the study of data exchange and data integration.
Specifically, relationships between different database schemas are commonly de-
scribed by a schema mapping consisting of a finite set of GAV constraints. Such
schema mappings can be viewed as representations of an infinite set of data ex-
amples. We study the following problem: when is finite set of GAV constraints
uniquely characterizable via a finite set of data examples? By establishing a tight
connection between this problem and homomorphism dualities, we obtain a sim-
ple criterion for unique characterizability. We also pinpoint the computational
complexity of the corresponding decision problem.

1 Introduction and Summary of Results

Since the early days of the relational data model, constraints have played a major role
in both the theory and the practice of database systems. In the 1970s and the 1980s, sev-
eral different types of database constraints, also known as database dependencies, were
introduced and studied; these include functional dependencies, inclusion dependencies,
multi-valued dependencies, and several other classes of dependencies that were used to
capture a variety of semantic restrictions that the allowable data must satisfy (see [1]
for a survey). In recent years, database dependencies have been used to formalize and
study different facets of information integration, which is the problem of accessing and
processing data residing in multiple heterogeneous sources. Two prominent facets of
information integration are data exchange and data integration (see the surveys [2] and
[3]). A key role in the formalization of both data exchange and data integration, as well
as of other information integration tasks, is played by the notion of a schema mapping.
Intuitively, a schema mapping is a specification that describes the relationships between
two database schemas, a source schema and a target schema. More precisely, a schema
mapping is a tripleM = (S,T, Σ) with S a source schema, T a target schema disjoint
from S, and Σ a finite set of constraints involving the schemas S and T. The constraints
in Σ are typically expressed as formulas of a logical formalism. In particular, the class
of source-to-target tuple-generating dependencies (in short, s-t tgds) is the most exten-
sively studied and widely used collection of schema mapping constraints to date, as it
strikes a good balance between expressive power and desirable algorithmic properties.
By definition, an s-t tgd is a first-order formula of the form

∀x(ϕ(x) → ∃yψ(x,y)),
� Ten Cate, Kolaitis, and Tan are supported by NSF grant IIS-0430994 and NSF grant IIS-

0905276. Tan is also supported by a NSF CAREER award IIS-0347065.

D. Cohen (Ed.): CP 2010, LNCS 6308, pp. 475–490, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

476 B. ten Cate, P.G. Kolaitis, and W.-C. Tan

where ϕ(x) is a conjunction of atoms over S, each variable in x occurs in at least
one atom in ϕ(x), and ψ(x,y) is a conjunction of atoms over T with variables in
x and y (here, an atom is a formula P (x1, . . . , xm), where P is a relation symbol
and x1, . . . , xm are variables, not necessarily distinct). Intuitively, an s-t tgd asserts
that whenever a certain “pattern” is realized in the source, then another “pattern” must
be realized in the target. Schema mappings specified by s-t tgds contain as important
special cases the class of global-as-view (GAV) schema mappings and the class of local-
as-view (LAV) schema mappings; both GAV and LAV schema mappings are widely
used and are supported by many information integration tools. A GAV schema mapping
is a schema mapping M = (S,T, Σ) such that every constraint in Σ is an s-t tgd in
which the right-hand side consists of a single atom, that is, it has the form

∀x(ϕ(x) → T (x)),

where T (x) is an atom over the target schema. Intuitively, a GAV constraint specifies
that a target relation is described in terms of certain source relations. A LAV schema
mapping is a schema mappingM = (S,T, Σ) such that every constraint in Σ is an s-t
tgd in which the left-hand side consists of a single atom, that is, it has the form

∀x(S(x) → ∃yψ(x,y)),

where S(x) is an atom over the source schema. Intuitively, a LAV constraint
specifies that a source relation is described in terms of certain target relations.
For example, suppose that we wish to form a target relation by deleting the last
column from a ternary source relation. This is captured by an s-t tgd of the form
∀x, y, z(S(x, y, z) → U(x, y)); note that this is both a GAV and a LAV con-
straint. Similarly, suppose that we wish to form a target relation by appending a
column to some binary source relation. This is captured by an s-t tgd of the form
∀x, y(R(x, y) → ∃zT (x, y, z)), which is a LAV constraint, but not a GAV constraint.
Finally, suppose that we wish to form a target relation by joining two binary source re-
lations along the second column of the first relation and the first column of the second.
This is captured by an s-t tgd of the form ∀x, y, z(P (x, y) ∧ R(y, z) → T (x, y, z)),
which is a GAV constraint, but not a LAV constraint.

Background on Schema Mappings and Data Examples. Let M = (S,T, Σ) be
a schema mapping in which Σ is a finite set of s-t tgds. A data example is a pair
(I, J) such that I is a source database and J is a target database. If a data example
(I, J) satisfies every s-t tgd in Σ, then we say that J is a solution for I w.r.t. M.
Every schema mappingM gives rise to the following data exchange problem: given a
source database I , construct a solution J for I w.r.t. M. In general, a source database
I may have an infinite number of solutions. This raises the question: which solution
J for I should we chose to materialize in solving the data exchange problem? This
question was addressed in [4], where the notion of a universal solution was introduced.
By definition, a universal solution J for I w.r.t. a schema mapping M is a solution J
for I such that for every solution K for I w.r.t.M, there is a (not necessarily surjective)
homomorphism h : J → K that is constant on every element of J occurring in I .
Intuitively, a universal solution for I is a “most general” solution for I; moreover, a

Database Constraints and Homomorphism Dualities 477

universal solution represents, in a precise technical sense, the entire space of solutions
for I . Finally, as shown in [4], given a source database I , a canonical universal solution
for I can be constructed in time bounded by a polynomial in the size of I using the
chase procedure. By now, universal solutions have become the standard semantics in
data exchange (see [5] for a recent survey).

A schema mappingM = (S,T, Σ), where Σ is a finite set of s-t tgds, is a syntactic
object that provides a finite representation for the infinite space

{(I, J) : (I, J) is a data example and J is a solution for I w.r.t.M}.

In [6], the following problem was investigated: can this infinite space of data examples
be “captured” by a finite set of data examples? The motivation for this problem is that,
since schema mappings arising in real-life applications can be quite complex, one would
like to use “good” data examples that illustrate the schema mapping at hand and aid
in its understanding and refinement. The problem of “capturing” a schema mapping
by finitely many data examples was formalized by introducing the notion of unique
characterizability of a schema mapping via a finite set of data examples of a certain
type w.r.t. to a class of s-t tgds. The main focus of [6] was on universal examples, where
a universal example forM is a data example (I, J) such that J is a universal solution
for I w.r.t.M. In this case, the concept of unique characterizability takes the following
precise form. Let M = (S,T, Σ) be a schema mapping, let C be a class of s-t tgds
such that Σ ⊆ C, and let U be a finite set of universal examples forM. We say thatM
is uniquely characterized by U w.r.t. to C if, whenever M′ = (S,T, Σ′) is a schema
mapping such that Σ′ ⊆ C and every data example in U is a universal example for
M′, then Σ′ is logically equivalent to Σ. In other words, up to logical equivalence,
M is the only schema mapping with s-t tgds from C for which U is a set of universal
examples. One of the main results in [6] is that every LAV schema mapping is uniquely
characterized by a finite set of universal examples w.r.t. the class of all LAV constraints.
On the other hand, it is also shown in [6] that there are natural GAV schema mappings
that cannot be uniquely characterized by any finite set of universal examples w.r.t. to
the class of GAV schema mappings. It should be noted that the proof of this result made
use of a generalization ([7, Theorem 3.15]) of Erdős’ well known theorem asserting the
existence of graphs of arbitrary large girth and chromatic number.

Summary of Results. Our aim in this paper is to address the following questions.
Which GAV schema mappings are uniquely characterizable by a finite set of universal
examples w.r.t. the class of all GAV schema mappings? Is there an algorithm to tell
whether or not a given GAV schema mapping is uniquely characterizable by a finite
set of universal examples w.r.t. the class of all GAV schema mappings? If so, what is
the exact complexity of this problem? For simplicity, from now on, the term “uniquely
characterizable” will mean uniquely characterizable by a finite set of universal examples
w.r.t. the class of all GAV schema mappings. Our first main result yields a necessary
and sufficient condition for a GAV schema mapping to be uniquely characterizable.
This criterion unveils a tight (and rather unexpected) connection between unique char-
acterizability and homomorphism dualities, which we describe in what follows.

Informally, a homomorphism duality is an equivalence between the existence of a
homomorphism to a structure and the non-existence of a homomorphism from the same

478 B. ten Cate, P.G. Kolaitis, and W.-C. Tan

Source schema: {Manages}; Target schema: {CEO, TopManager}
GAV constraints:

(σ1) ∀x (Manages(x, x) → CEO(x))

(σ2) ∀x, y, z (Manages(x, x) ∧ Manages(x, y) ∧ Manages(y, z) → TopManager(y))

Fig. 1. Example of a GAV schema mapping

structure. The prototypical example of a homomorphism duality is the well-known
characterization of 2-colorability: for every graph G, there is a homomorphism from
some odd cycle C2k+1 to G if and only if there is no homomorphism from G to the
complete graph K2 with two nodes. Let → be the existence-of-a-homomorphism re-
lation between structures over the same schema, i.e., B → C means that there is
a homomorphism from B to C. Assume that F and D are two collections of struc-
tures over the same schema. Following [8], we say that the pair (F ;D) is a homo-
morphism duality if for every structure A, there exists a structure F ∈ F such that
F → A if and only if there is no structure D ∈ D such that A → D; in sym-
bols,

⋃
F∈F(F→) =

⋂
D∈D(�→D). If (F ;D) is a homomorphism duality, then we

say that F is an obstruction set for D. Thus, the aforementioned characterization of
2-colorability is equivalent to the assertion that the pair ({C2k+1 : k ≥ 1}; {K2}) is a
homomorphism duality; moreover, {C2k+1 : k ≥ 1} is an obstruction set for {K2}.

For every GAV schema mapping M = (S,T, Σ) and every relation symbol T in
T, we construct a finite set FM,T of relational structures over a signature consisting
of the relations from the source schema S plus finitely many constant symbols, and
show thatM is uniquely characterizable if and only if each FM,T is an obstruction set
for some finite set DM,T of structures. This result provides the aforementioned neces-
sary and sufficient condition for unique characterizability of GAV schema mappings;
however, it does not yield immediately an algorithm for testing whether or not a given
schema mapping is uniquely characterizable. In [8], it was shown that a finite set F of
homomorphically incomparable core structures is an obstruction set for some finite set
D if and only if every structure in F obeys a certain acyclicity condition. This result
holds for structures over a signature with relation symbols but no constant symbols.
Here, we show that this characterization can be extended to structures over a signa-
ture with both relation symbols and constant symbols. In particular, we show that a
GAV schema mappingM = (S,T, Σ) is uniquely characterizable if and only if every
structure in the aforementioned finite sets FM,T obeys a weaker acyclicity condition,
which we call c-acyclicity. Moreover, there is an algorithm that, given such a GAV
schema mapping, computes a uniquely characterizing set of examples. Informally, the
c-acyclicity condition allows for cycles, but every cycle must contain (the interpreta-
tion of) a constant symbol. This gives rise to a powerful tool for determining whether
or not a given GAV schema mapping is uniquely characterizable. As an illustration
of the power of this tool, it follows immediately that the GAV schema mapping M
specified by the single s-t tgd ∀x, y, z(E(x, z) ∧ E(z, y)→ P (x, y)) is uniquely char-
acterizable. In contrast, the GAV schema mapping M′ specified by the single s-t tgd
∀x, y, z, w(E(x, z) ∧ E(z, y) ∧ E(w, w) → P (x, y)) is not uniquely characterizable.

Database Constraints and Homomorphism Dualities 479

Finally, from a computational-complexity standpoint, we show that the following
problem is NP-complete: given a GAV schema mappingM = (S,T, Σ), is it uniquely
characterizable? We also show that the computational complexity of this problem drops
down to LOGSPACE, ifM is in a certain normalized form in which the left-hand sides
of the s-t tgds in Σ are cores. In addition, we obtain results concerning the decidability
and computational complexity of several other natural algorithmic problems involving
GAV schema mappings, universal examples, and unique characterizability.

Most proofs in this paper are omitted for lack of space.

2 Basic Concepts and Preliminaries

Signatures, Structures, Schemas and Databases. In logic, a signature is a collection
of relation symbols, function symbols, and constant symbols. Here, we will be con-
cerned only with signatures consisting of finitely many relation symbols R1, . . . , Rn

of designated arities and finitely many constant symbols c1, . . . , ck. A structure A over
such a signature is a tuple A = (D, RA

1 , . . . , RA
n , cA

1 , . . . , cA
k), where D is a set, called

the domain of A, each RA
i is a relation on D whose arity matches the arity of the re-

lation symbol Ri, and each cA
j is an element of D. If no constant symbols are present,

then we talk about a relational signature and about relational structures over that sig-
nature. In what follows, we will assume that all structures considered are finite, that is,
the domain and the relations of the structure are finite. For simplicity of notation and
when the structure A at hand is understood from the context, we will often use Ri to
denote both the relation symbol Ri and the relation RA

i interpreting it on A.
In databases, a schema is a finite collection of relation symbols R1, . . . , Rn of des-

ignated arities, i.e., a schema is a relational signature. A database I over such a schema
is a tuple I = (RI

1, . . . , R
I
n) of finite relations over some domain. Every database I can

be identified with a relational structure (adom(I), RI
1, . . . , R

I
n), where adom(I) is the

active domain of I , that is, the set of all values occurring in the relations of I . In what
follows, we will use relational structures and databases in an interchangeable way.

A homomorphism from A to B is a function h from the domain of A to the do-
main of B such that for every relation symbol Ri and every constant symbol cj : (1) if
(a1, . . . , am) ∈ RA

i , then (h(a1), . . . , h(am)) ∈ RB
i ; and (2) h(cA

j) = cB
j .

Schema Mappings and Universal Solutions. A schema mapping is a triple M =
(S,T, Σ), where S and T are disjoint schemas, called the source schema and the target
schema, and Σ is a set of source-to-target tuple generating dependencies, as defined in
Section 1. If Σ consists entirely of GAV constraints, then M is called a GAV schema
mapping; if Σ consists entirely of LAV constraints, thenM is a LAV schema mapping.
In this paper, our main focus will be on GAV schema mappings.

Figure 1 contains an example of a GAV schema mapping; it will be our running
example throughout paper. In this example, the source database contains information
about managerial relationships in a company using a binary relation “Manages”, while
the target database contains information about managerial roles, using the unary rela-
tions “CEO” and “TopManager”. Incidentally, note that σ1 is both a GAV constraint
and a LAV constraint, while σ2 is a GAV constraint but not a LAV constraint.

480 B. ten Cate, P.G. Kolaitis, and W.-C. Tan

LetM = (S,T, Σ) be a schema mapping. A data example is a pair (I, J), where I
is a source database (i.e., a database over S) and J is a target structure (i.e., a database
over T). If I is a source database, then a solution for I w.r.t. M is a target database J
such that the data example (I, J) satisfies every constraint in Σ. A universal solution
for I w.r.t. M is a solution J for I w.r.t. M such that for every solution J ′ for I w.r.t
M, there is a homomorphism h : J → J ′ such that h is constant on the active domain
adom(I) of I , i.e., h(a) = a, for each a ∈ adom(I) ∩ dom(h). It was shown in [4]
that if M is any schema mapping specified by s-t tgds, then every source structure
I has a canonical universal solution CanSolM(I), which can be constructed in time
bounded by a polynomial in the size of I . If M is a GAV schema mapping and I is a
source database, then the active domain of CanSolM(I) is contained in adom(I). In
fact, in the case of GAV schema mappings, CanSolM(I) is the only universal solution
for I such that its active domain is contained in adom(I). Moreover, the relations of
CanSol(I) consist precisely of all tuples that are “dictated” by the GAV constraints of
M, in the sense that they are the right-hand-side of a GAV constraint σ of M, under a
variable assignment that makes the left-hand-side of σ true in I . Note, however, that the
state of affairs is more complicated for non-GAV schema mappings (and, in particular,
for LAV schema mappings), since the active domain of CanSol(I) may contain values
not occurring in adom(I).

Characterizing Schema Mappings via Data Examples. In [6], different notions of
data examples were considered for “illustrating” the semantics of a schema mapping,
such as positive examples, negative examples, and universal examples.

• A positive example (I, J) for a schema mapping M is a data example for M such
that J is a solution for I w.r.t.M.

• A negative example (I, J) for a schema mappingM is a data example for M such
that J is not a solution for I w.r.t.M.

• A universal example (I, J) for a schema mappingM is a data example forM such
that J is a universal solution for I w.r.t.M.

Among these, universal examples were shown in [6] to be the most promising type of
data example for capturing the semantics of a schema mapping. Specifically, the central
question studied in [6] is the unique characterizability problem: can a schema mapping
be “captured” by a finite set of data examples of particular types w.r.t. a class of s-t tgds?
In the context of universal examples, the unique characterizability problem is defined as
follows. First, ifM is a schema mappingM and U is a set of data examples, we say that
M fits the universal examples U if all data examples in U are universal examples ofM.
We say that a schema mappingM is uniquely characterized by a finite set of universal
examples U w.r.t. a class of s-t tgds C if M fits U and for every finite set Σ′ ⊆ C such
that M′ = (S,T, Σ′) fits U , we have that Σ and Σ′ are logically equivalent. Similar
definitions apply in the case of positive examples and negative examples.

The following results were established in [6]. First, there are LAV schema mappings
that are not uniquely characterizable by any finite set of positive and negative examples
w.r.t. to the class of all LAV constraints. In contrast, every LAV schema mapping is
uniquely characterized by some finite set of universal examples w.r.t. the class of all
LAV constraints. Moreover, this positive result extends to the much broader classes
of n-modular schema mappings [9], where n is a positive integer. The state of affairs

Database Constraints and Homomorphism Dualities 481

for GAV schema mappings and universal examples turned out to be quite different, as
revealed by the next result.

Theorem 1. ([6]) The following statements are true.

• The schema mapping specified by the GAV constraint ∀x, y(S(x, y) → T (x, y)) is
uniquely characterizable w.r.t. the class of GAV constraints by the universal exam-
ples given in Figure 2.

• The schema mapping specified by the GAV constraint ∀x, y, z(S(x, y) ∧ R(z, z) →
T (x, y)) is not uniquely characterizable by any finite set of universal examples
w.r.t. the class of GAV constraints.

a b

c d

e

I1

a b

c d

e

J1

I2 J2

a b a b

I3 J3
a a

Fig. 2. Universal examples uniquely
characterizing the copy constraint
∀x, y (S(x, y) → T (x, y))

The constraint in the first part of Theorem 1 can be
thought of as a “copy” constraint that copies the re-
lation S into the relation T . The constraint in the
second part of Theorem 1 can be thought of as a
“copy constraint with a trigger”: S is copied into T ,
provided the relation R contains a self-loop. What
is the reason that these two GAV constraints have
such different properties? More generally, which
GAV schema mappings are uniquely characteriz-
able via universal examples w.r.t. to the class of all
GAV constraints? Is the associated decision prob-
lem (whether or not a given GAV schema mapping
is uniquely characterizable) decidable?

Before embarking on the study of these ques-
tions, we point out that unique characterizability of
GAV schema mappings via universal examples w.r.t. the class of all GAV constraints is
equivalent to unique characterizability via positive and negative examples.

Proposition 1. For GAV schema mappings M, the following are equivalent w.r.t. the
class of all GAV constraints:
1. M is uniquely characterizable by positive and negative examples,
2. M is uniquely characterizable by universal examples,
3. M is uniquely characterizable by positive, negative, and universal examples

Proposition 1 shows that, in the GAV setting, unique characterizability is a particularly
robust notion, in the sense that it does not depend on whether we consider universal ex-
amples, or positive and negative examples. As we will focus on GAV schema mappings,
we will therefore simply speak of unique characterizability, meaning unique charac-
terizability by a finite set of universal examples w.r.t. the class of GAV constraints.

3 Homomorphism Dualities and Unique Characterizations

In this section, we establish a connection between unique characterizations of GAV
schema mappings on the one hand, and homomorphism dualities for relational struc-
tures on the other. Specifically, we show that the problem of testing whether a GAV
schema mapping is uniquely characterizable can be reduced to a certain problem con-
cerning the existence of a homomorphism duality; furthermore, the problem of testing

482 B. ten Cate, P.G. Kolaitis, and W.-C. Tan

whether a GAV schema mapping is uniquely characterized by a given set of universal
examples can be reduced to the question of whether a given pair of sets of structures is a
homomorphism duality. Since these two problems concerning homomorphism dualities
are decidable (cf. Section 4), we will be able to derive decidability results for the two
problems concerning unique characterizations (cf. Section 5).

Homomorphism Dualities. As described in Section 1, a homomorphism duality is
an equivalence between the existence of a homomorphism to a structure and the non-
existence of a homomorphism from the same structure. We will work with a finite sig-
nature consisting of relation symbols and constant symbols; recall that all structures
considered here are assumed to be finite. Given a structure A, we denote by A→ the set
of all structures (over the same signature) that A has a homomorphism into; in symbols,
A→ = {B : A → B}. Similarly, �→A is the set of all structures that do not have a
homomorphism into A, i.e., �→A = {B : B �→ A}.

Definition 1. Let F and D be two sets of structures. We say that the pair (F ;D) is a
homomorphism duality if

⋃
F∈F(F→) =

⋂
D∈D(�→D). If (F ;D) is a homomorphism

duality, then we say that F is an obstruction set for D.

If (F ;D) is a homomorphism duality, it means that the class of all structures is par-
titioned into two disjoint subclasses, namely, the subclass

⋃
F∈F (F→) of those struc-

tures that some structure in F has a homomorphism into, and the subclass
⋃

D∈D(→D)
of those structures that have a homomorphism into some structure in D. This is illus-
trated in Figure 3 (where, intuitively, the direction of homomorphisms is upward).

Fig. 3. A homomorphism duality

A homomorphism duality in which both sets of
structures are singletons is called a simple homomor-
phism duality pair, and is typically written without
curly braces. Homomorphism dualities, and in partic-
ular simple homomorphism duality pairs, have been
studied extensively in graph theory (where they are
used to gain understanding of the structure of the lat-
tice of graphs and homomorphisms, cf. [7]) and in the
context of constraint satisfaction problems (where they
have been used in order to identify classes of tractable
constraint satisfaction problems, cf. e.g., [10]).

Homomorphism Dualities and Unique Characterizations. We will now establish
the fundamental connection between unique characterizations of GAV schema map-
pings and homomorphism dualities. In order to state the result, we associate a canonical
structure with every GAV constraint. Specifically, consider a GAV constraint

σ = ∀x1, . . . , xm(φ(x1, . . . , xm)→ T (y1, . . . , yk))

over a source schema S = {S1, . . . , Sn} and a target schema T = {T, . . .}, with
y1, . . . , yk ∈ {x1, . . . , xm}. The canonical structure associated with σ is the following
structure Aσ over the signature {S1, . . . , Sn, c1, . . . , ck}:

Aσ = ({x1, . . . , xm}, SAσ
1 , . . . , SAσ

n , cAσ
1 , . . . , cAσ

k)

Database Constraints and Homomorphism Dualities 483

where each relation SAσ

i consists of the tuples in the atoms of φ that involve Si, and each
cAσ

j = yj . In database-theory terms, Aσ is the canonical instance of the left-hand side of
σ (viewed as a conjunctive query), expanded with constant symbols marking the exact
sequence of exported variables y1, . . . , yk. For a GAV schema mappingM = (S,T, Σ)
and a target relation T ∈ T, we denote by FM,T the set of all canonical structures of
GAV constraints σ ∈ Σ that use the target relation T in their right-hand-side.

Theorem 2. A GAV schema mapping M = (S,T, Σ) is uniquely characterizable if
and only if for each T ∈ T, FM,T is an obstruction set for a finite set of structures.

Before we present the proof of Theorem 2, let us illustrate the result by revisiting our
running example in Figure 1. The canonical structures Aσ1 and Aσ2 of the GAV con-
straints σ1, σ2 can be depicted as � · c1 and � · −→ ·c1 −→ · , respectively, where

an arrow indicates that two elements stand in the Manages relation. Since σ1 and σ2
use different target relations, Theorem 2 tells us that, in order to determine whether this
GAV schema mapping is uniquely characterizable, it is enough to test whether each of
these structures, taken as a singleton set, is an obstruction set for a finite set of struc-
tures. As it turns out, {Aσ1} is indeed an obstruction set for a finite set of structures
(in fact, the reader may easily verify that (Aσ1 ; B) is a simple homomorphism duality

pair, with B the structure depicted by ·c1 ←→ · �). On the other hand, {Aσ2} is not an
obstruction set for any finite set of structures, as will follow from results presented in
Section 4. It follows that our example schema mapping is not uniquely characterizable.

We will now proceed with the proof of Theorem 2. We will use the follow-
ing convenient notation, familiar from logic. If A is a structure over the signature
{S1, . . . , Sn}, and a1, . . . , ak is a sequence of (not necessarily distinct) elements of
the domain of A, then we denote by 〈A, a1, . . . , ak〉 the structure over the signature
{S1, . . . , Sn, c1, . . . ck} that has the same domain as A and agrees with A on the de-
notation of the relations S1, . . . , Sn, and in which each constant symbol ci denotes the
element ai. In other words, 〈A, a1, . . . , ak〉 is identical to A except that the elements
a1, . . . , ak are named using fresh constant symbols.

Proof (of Theorem 2). First, we show that, when it comes to the question of unique
characterizability, we can restrict attention to schema mappings for a single target rela-
tion. This is stated by the next lemma. For any relation T ∈ T, we denote by M|T the
schema mapping (S, {T }, Σ′) where Σ′ ⊆ Σ consists of all GAV constraints whose
right-hand side contains the target relation T .

Lemma 1. M is uniquely characterizable if and only if for each T ∈ T, the schema
mappingM|T is uniquely characterizable.

We will also make use of the following fact concerning canonical universal solutions of
GAV schema mappings (cf. [9]):

Lemma 2. For all source structures I1, I2, every homomorphisms h : I1 → I2 is also
a homomorphism h : CanSolM(I1) → CanSolM(I2).

We now proceed with the main proof. By Lemma 1, we may assume T = {T }, and
show thatM is uniquely characterizable if and only if FM,T is an obstruction set for a
finite set of structures.

484 B. ten Cate, P.G. Kolaitis, and W.-C. Tan

(⇒) Let U be a set of universal examples uniquely characterizing M. Let D be
the set {〈I,a〉 | (I, J) ∈ U ,a ∈ dom(I)k \ T J}. We claim that (FM,T ;D) is a
homomorphism duality. To see this, it is enough to observe that, for all source structures
I and for all tuples a, we have that:

• 〈F,b〉 → 〈I,a〉 for some 〈F,b〉 ∈ FM,T if and only if T (a) ∈ CanSolM(I),
• 〈I,a〉 → 〈D,b〉 for some 〈D,b〉 ∈ D if and only if T (a) �∈ CanSolM(I).
The first item follows immediately from the construction of F . The left-to-right direc-
tion of the second item follows from Lemma 2. The right-to-left direction of the second
item can be shown by contradiction: suppose CanSolM(I) does not contain T (a) and
〈I,a〉 does not homomorphically map into any 〈D,b〉 ∈ D. LetM′ extendM with an
extra GAV constraint, namely the canonical GAV constraint of 〈I,a〉. Clearly,M′ is not
logically equivalent to M, but it is not hard to see that M′ fits the universal examples
U , contradicting the fact that the universal examples U uniquely characterizeM.

(⇐) Let D be a finite set of structures such that (FM,T ;D) is a homomorphism
duality. Let U = {(I, CanSolM(I)) | 〈I,a〉 ∈ FM,T ∪ D}. We claim that U uniquely
characterizesM. For, consider any schema mappingM′ fitting the universal examples
in U , any source structure I and any k-tuple a of elements from the domain of I , where
k is the arity of T . There are two cases:

The first case is where 〈F,b〉 → 〈I,a〉 for some 〈F,b〉 ∈ FM,T . By construction
of FM,T , we have that CanSolM(F), hence also CanSolM′(F), contains T (b). It
follows by Lemma 2 that CanSolM(I) and CanSolM′(I) contain T (a).

The second case is where 〈I,a〉 → 〈D,b〉 for some 〈D,b〉 ∈ D. It follows from
the duality and from the construction of FM,T that CanSolM(D), and therefore also
CanSolM′(D), does not contain T (b). It follows by Lemma 2 that CanSolM(I) and
CanSolM′(I) both do not contain T (a).

This shows that CanSolM(I) = CanSolM′(I). In other words, M and M′ are
logically equivalent, and henceM is uniquely characterized by U . ��

The above result links the notion of unique characterizability to that of being an ob-
struction set of a finite set of structures. In a similar fashion, we can link unique charac-
terizations themselves to homomorphism dualities. This is expressed by the following
Theorem. The proof is a variation of that of Theorem 2.

Theorem 3. Let M = (S,T, Σ) be a GAV schema mapping and U a set of universal
examples for M. For each T ∈ T, let FT = {〈I, a〉 | (I, J) ∈ U , a ∈ T J} and let
DT = {(〈I, a〉 | (I, J) ∈ U , a ∈ dom(I)k \ T J}, where k is the arity of T . Then the
following statements are equivalent:

1. U uniquely characterizesM.
2. For each T ∈ T, (FT ;DT) is a homomorphism duality.

Theorem 2 and 3 reduce questions about unique characterizations to questions about ho-
momorphism dualities. In the remainder of this section, we show that the same applies
the other way around (so that we will be able to transfer not only complexity theoretic
upper bounds for these questions, but also lower bounds). To state these results, we need
a way to associate to each structure a GAV constraint. Given a structure

A = ({a1, . . . , am}, SA
1 , . . . , SA

n , cA
1 , . . . , cA

k)

Database Constraints and Homomorphism Dualities 485

with cA
1 = ai1 , . . . , c

A
k = aik

, we associate with it the canonical GAV constraint

σA = ∀x1, . . . , xm(
∧

1≤i≤n

(aj1 ,...,aj�
)∈SA

i

Si(xj1 , . . . , xj�
) → T (xi1 , . . . , xik

))

over the source schema S = {S1, . . . , Sn} and a target schema T = {T }, where T is
a k-ary target relation. In other words, the antecedent of σA is the atomic diagram of
(the purely relational part of) A, while the conclusion of σA lists the elements denoted
by the constant symbols in order. The reader may verify that, by this definition, the
canonical GAV constraint of the canonical structure of a GAV constraint σ is just σ
itself (up to renaming of variables and reordering of conjuncts). The canonical GAV
schema mappingMF of a finite set of structures F is the schema mapping defined by
the canonical GAV constraints of the structures in F .

Theorem 4. Let F be a finite set of structures for a signature {S1, . . . , Sn, c1, . . . , ck}.
Then F is an obstruction set for a finite set of structures if and only if MF is uniquely
characterizable.

Theorem 5. Let F ,D be finite sets of structures for a signature
{S1, . . . , Sn, c1, . . . , ck}. Let UF ,D be the set of all pairs (I, CanSolMF (I))
where I = (D, SA

1 , . . . , SA
n) for some A = (D, SA

1 , . . . , SA
n , cA

1 , . . . , cA
k) ∈ F ∪ D.

The following are equivalent:

1. (F ;D) is a homomorphism duality
2. MF is uniquely characterized by UF ,D, and, moreover, for each structure

A = (D, SA
1 , . . . , SA

n , cA
1 , . . . , cA

k) ∈ D, CanSolMF (A) does not contain
T (cA

1 , . . . , cA
k).

4 Results on Homomorphism Dualities

In this section, we will present a characterization of the finite sets of structures F that
are an obstruction set for a finite set of structuresD. For the case of relational signatures
without constant symbols, an elegant characterization of such sets F was established
in [8]. Our main contribution in this section is to show that the characterization can be
extended in a natural way to structures with constant symbols.

We now introduce some terminology and state two basic facts concerning homo-
morphism dualities. Recall that, for structures A, B, we write A → B if there is a
homomorphism from A to B. We say that A and B are homomorphically equivalent if
A → B and B → A, and we say that A and B are homomorphically incomparable
if there are neither A → B, nor B → A. Every finite structure A is known to have
a unique (up to isomorphism) smallest homomorphically equivalent substructure that
is homomorphically equivalent to A, which is known as the core of A [11]. A struc-
ture is said to be a core if it is its own core. For a set X of structures, we denote by
coreX the set of cores of structures in X , we denote by max X any subset Y ⊆ X
consisting of homomorphically incomparable structures such that for all A ∈ X , there
is a B ∈ Y with A → B; in a dual manner, we denote by min X any subset Y ⊆ X

486 B. ten Cate, P.G. Kolaitis, and W.-C. Tan

consisting of homomorphically incomparable structures such that for all A ∈ X , there
is a B ∈ Y with B → A. If one reflects on the definition of homomorphism dualities,
and keeps in mind Figure 3, the following fact becomes evident (note that, if A → B,
then (B →) ⊆ (A →) and (→ A) ⊆ (→ B)):

Fact 6. Let F and D be finite sets of structures. Then (F ;D) is a homomorphism du-
ality if and only if (min coreF ; max coreD) is a homomorphism duality.

By construction, min coreF and max coreD have the property that they consist of pair-
wise homomorphically incomparable core structures. Hence, we may restrict attention
to sets F and D consisting of pairwise homomorphically incomparable core structures.

The second fact states that for any given finite set of structuresF , there is at most one
finite set of structures D for which F is an obstruction set, assuming that D consists of
pairwise incomparable core structures. The proof, which we omit, is elementary, using
the definition of homomorphism duality and the fact that homomorphisms compose.

Fact 7. Let F ,D,D′ be finite sets of homomorphically incomparable core structures
such that (F ;D) and (F ;D′) are homomorphism dualities. ThenD andD′ contain the
same structures up to isomorphism.

Known Results for Structures without Constant Symbols. Consider signatures con-
sisting only of relation symbols. The main result from [8] states that a finite set of
homomorphically incomparable core structures F for such a signature is an obstruction
set for a finite set of structures D if and only if each structure from F obeys a certain
acyclicity condition, which we will now define.

A fact of a structure A is an expression R(a1, . . . , am) such that R is one of the
relations of A and (a1, . . . , am) ∈ R. The incidence graph inc(A) of a structure A is
the undirected (bi-partite) graph whose vertices are the elements and the facts of A, and
with an edge between an element and a fact if the element occurs in the fact. We call
a structure A acyclic if inc(A) is acyclic and no fact of A contains the same element
twice. Note that the second condition has to be included explicitly in the definition,
since it is not implied by the first (however, in [8], an equivalent definition is given in
terms of an incidence multi-graph that may contain several edges between the same fact
and element, so that the second condition is not needed).

Theorem 8 ([8]). Consider a signature consisting of relation symbols only, and let F
be a finite set of homomorphically incomparable core structures. Then F is an ob-
struction set for a finite set of structures if and only if every structure in F is acyclic.
Moreover, there is an algorithm that, given such a setF consisting of acyclic structures,
computes a finite set D such that (F ;D) is a homomorphism duality.

Incidentally, the algorithm for computing D from F given in [8] runs in double expo-
nential time, and no matching lower bound is known (cf. also [12] for improved bounds
in the special case of simple homomorphism duality pairs). Foniok et al. [8] also con-
sider the problem of testing whether a given finite set of structures F has a finite ob-
struction set. They show (for structures without constant symbols) that this problem is
NP-complete and that one can effectively compute an obstruction set if it exists.

A Generalization for the Case with Constant Symbols. In the presence of constant
symbols, acyclicity is no longer a necessary condition for being an obstruction set for

Database Constraints and Homomorphism Dualities 487

a finite set of structures. For instance, consider the structure A depicted by · ←→ · ,
and let A′ be the expansion of A with a constant symbol c1 denoting the left-most ele-
ment, as in c1 · ←→ · . Since the incidence graph of A contains a cycle, by Theorem 8
there is no finite set of structures D such that ({A};D) is a homomorphism duality.
The situation for A′ is very different. Indeed, if we let B′ be the structure depicted by

� · −→ · c1 −→←−−−−−−→ · � , then (A′; B′) is a simple homomorphism duality pair.

Nevertheless, Theorem 8 can be extended in a natural way to structures with con-
stant symbols. To this end, we call a structure A over a signature consisting of relation
symbols and constant symbols c-acyclic if the following both hold:

1. Every cycle in inc(A) passes through an element named by a constant symbol,
2. If a fact of A contains the same element a twice, a is named by a constant symbol.

Note that for structures without constant symbols, c-acyclicity is equivalent to acyclic-
ity. Also note that the structure A′ we discussed above is c-acyclic.

The proof of the following Theorem is based on a reduction to Theorem 8.

Theorem 9. Consider a signature consisting of relation symbols and constant symbols,
and let F be a finite set of homomorphically incomparable core structures. Then F is
an obstruction set for a finite set of structures if and only if every structure in F is c-
acyclic. Moreover, there is an algorithm that, given such a set F consisting of c-acyclic
structures, computes a finite set D such that (F ;D) is a homomorphism duality.

From Theorem 9, we can derive the following computability and complexity results
(using the fact that undirected reachability is in LOGSPACE [13]).

Corollary 1. The following problem is NP-complete: given a finite set of structures F ,
determine if F is an obstruction set for a finite set of structures. The same problem is in
LOGSPACE if the input is a set of homomorphically incomparable core structures.

Corollary 2. The following problem is decidable: given finite sets of structures F and
D, determine if (F ;D) is a homomorphism duality.

5 An Effective Characterization of Unique Characterizability

We now put the results from the previous sections to use. Our main result is an effective
characterization of the uniquely characterizable GAV schema mappings.

We say that a GAV schema mappingM is normalized if (i) the canonical structure of
the left-hand-side of each GAV constraint is a core, and (ii) for any two GAV constraints
for the same target relation, the canonical structures are homomorphically incompara-
ble. Note that every GAV schema mapping is equivalent to a normalized GAV schema
mapping, of the same size or smaller, which can be computed in exponential time (in
fact, in polynomial time using an NP oracle). For example, consider the schema map-
pingM defined by the following GAV constraints:

(σ1) ∀x, y, z (S(x, y, z)→ T (x))
(σ2) ∀x, y (S(x, y, y)→ T (x))
(σ3) ∀x, y (S(x, x, x) ∧ S(x, y, x)→ V (x))

488 B. ten Cate, P.G. Kolaitis, and W.-C. Tan

This schema mapping is not normalized. It violates the first requirement because the
canonical structure of σ3 is not a core, and it violates the second requirement because
there is a homomorphism from the canonical structure of σ1 to the canonical structure
of σ2. A logically equivalent normalized schema mappingM′ can be obtained fromM
by removing the conjunct S(x, y, x) from σ3 and by removing the entire constraint σ2.

We call a GAV schema mapping c-acyclic if the canonical structure of each of its
GAV constraints is c-acyclic.

Given a GAV constraint σ, a join cycle of σ is a sequence
x1, F1, x2, F2 . . . , xnFnxn+1 (n > 1) where x1, x2, . . . are variables, xn+1 = x1, each
Fi is an atom from the left-hand-side of σ containing both xi and xi+1, and Fi �= Fi+1
for all i < n (this is to exclude trivial cycles traversing the same edge twice in opposite
directions). An exported variable of σ is a variable occurring in the right-hand side of
σ. Using these two notions, it is easy to see that c-acyclicity is equivalent to saying that
the following two conditions hold:

• atoms may not contain two occurrences of the same non-exported variable
• each join cycle passes through an exported variable.

The schema mappingM described above is not c-acyclic, as the non-exported variable
y of σ2 occurs twice in the same conjunct. However, the normalized schema mapping
M′, where σ2 is removed and the conjunct S(x, y, x) removed from σ3, is c-acyclic.
The example schema mapping in Figure 1 is normalized and not c-acyclic.

From Theorem 9, we obtain the following characterization of the uniquely charac-
terizable GAV schema mappings:

Theorem 10. Every c-acyclic GAV schema mapping is uniquely characterizable, and
a uniquely characterizing set of universal examples can be effectively computed from a
given c-acyclic GAV schema mapping. Conversely, every uniquely characterizable GAV
schema mapping M is logically equivalent to a c-acyclic GAV schema mapping; in
fact,M is c-acyclic after normalization.

It follows that, for instance, the schema mapping defined by the GAV constraint
∀x1, . . . , xn(S(x1, x2)∧ · · · ∧S(xn−1, xn)→ T (x1, xn)) is uniquely characterizable,
as are schema mappings defined by GAV constraints whose variables are all exported.

In the remainder of this section, we analyze the complexity of various decision prob-
lems concerning unique characterizability and unique characterizations. In our com-
plexity analysis, we assume that the source schema and target schema are fixed (and
finite). This makes all reductions described in Section 3 polynomial time computable.

Corollary 3. The following problem is NP-complete: given a GAV schema mapping,
is it uniquely characterizable? If the schema mapping is normalized, the problem is in
LOGSPACE.

Corollary 4. The following problem is decidable: given a GAV schema mapping M
and a finite set of universal examples U , does U uniquely characterizeM?

Below, we will consider two additional decision problems.

Database Constraints and Homomorphism Dualities 489

Theorem 11. The following problem is DP-complete: given a finite set of universal
examples U , is there a GAV schema mapping fitting U? If the input consists of ground
universal examples, the problem is coNP-complete. In both cases, the hardness holds
already for a single universal example.

Here, by a ground data example we mean a data example (I, J) such that the domain
of J is a subset of the domain of I . The proof of Theorem 11, in effect, establishes
something stronger: from any given finite set of universal examples U , it is possible
to compute in polynomial time a candidate GAV schema mapping MU , such that if
any GAV schema mapping fits the universal examples U , then MU fits (in fact, MU
is guaranteed to be the logically weakest fitting schema mapping, meaning that for any
other schema mapping M′ fitting the universal examples U , the GAV constraints of
MU logically imply those ofM′).

Theorem 12. The following problem is decidable: given a finite set of universal exam-
ples U , is there a unique schema mappingM that fits them?

6 Concluding Remarks

We have established a tight connection between unique characterizability of GAV
schema mappings via data examples, and homomorphism dualities, and we used this
connection to obtain criteria and complexity results of unique characterizability for
GAV schema mappings, and other related results.

The homomorphism dualities we considered in this paper consist of finite sets of
structures. In the literature on constraint satisfaction problems, more general types of
homomorphism dualities have been studied, for instance where one of the sets consists
of infinitely many structures of bounded treewidth [10]. This raises the question whether
known results about such dualities can be used to obtain further insights into the unique
characterizability of schema mappings.

References

1. Fagin, R., Vardi, M.Y.: The Theory of Data Dependencies - A Survey. In: Proc. of Sym-
posia in Applied Mathematics. Mathematics of Information Processing, vol. 34, pp. 19–71
(1986)

2. Kolaitis, P.G.: Schema Mappings, Data Exchange, and Metadata Management. In: ACM
Symposium on Principles of Database Systems (PODS), pp. 61–75 (2005)

3. Lenzerini, M.: Data Integration: A Theoretical Perspective. In: ACM Symposium on Princi-
ples of Database Systems (PODS), pp. 233–246 (2002)

4. Fagin, R., Kolaitis, P.G., Miller, R.J., Popa, L.: Data Exchange: Semantics and Query An-
swering. Theoretical Computer Science (TCS) 336(1), 89–124 (2005)

5. Barceló, P.: Logical foundations of relational data exchange. SIGMOD Record 38(1), 49–58
(2009)

6. Alexe, B., Kolaitis, P.G., Tan, W.C.: Characterizing schema mappings via data examples.
In: ACM Symposium on Principles of Database Systems, PODS (2010)

490 B. ten Cate, P.G. Kolaitis, and W.-C. Tan

7. Hell, P., Nešetřil, J.: Graphs and Homomorphisms. Oxford University Press, Oxford (2004)
8. Foniok, J., Nesetril, J., Tardif, C.: Generalised dualities and maximal finite antichains in the

homomorphism order of relational structures. Eur. J. Comb. 29(4), 881–899 (2008)
9. ten Cate, B., Kolaitis, P.G.: Structural Characterizations of Schema-Mapping Languages.

In: International Conference on Database Theory (ICDT), pp. 63–72 (2009)
10. Nešetřil, J., Zhu, X.: On bounded treewidth duality of graphs. Journal of Graph Theory 23(2),

151–162 (1998)
11. Hell, P., Nešetřil, J.: The core of a graph. Discrete Mathematics 109, 117–126 (1992)
12. Nešetřil, J., Tardif, C.: Short answers to exponentially long questions: Extremal aspects of

homomorphism duality. SIAM J. of Discrete Mathematics 19(4), 914–920 (2005)
13. Reingold, O.: Undirected st-connectivity in log-space. In: STOC 2005: Proceedings of the

ACM Symposium on Theory of Computing, pp. 376–385. ACM, New York (2005)

A Box-Consistency Contractor Based on
Extremal Functions

Gilles Trombettoni, Yves Papegay, Gilles Chabert, and Odile Pourtallier

COPRIN INRIA, Université Nice–Sophia, LINA Ecole des Mines de Nantes

{Gilles.Trombettoni,Yves.Papegay,Odile.Pourtallier}@sophia.inria.fr,

Gilles.Chabert@emn.fr

Abstract. Interval-based methods can approximate all the real solu-

tions of a system of equations and inequalities. The Box interval

constraint propagation algorithm enforces Box consistency. Its main pro-

cedure BoxNarrow handles one function f corresponding to the revised

constraint, and one variable x, replacing the other variables of f by their

current intervals. This paper proposes an improved BoxNarrow proce-

dure for narrowing the domain of x when f respects certain conditions.

In particular, these conditions are fulfilled when f is polynomial. f is first

symbolically rewritten into a new form g. A narrowing step is then run

on the non-interval extremal functions that enclose the interval function

g. The corresponding algorithm is described and validated on several

numerical constraint systems.

1 Motivation

Interval-based solvers can solve systems of numerical constraints (i.e., nonlinear
equations or inequalities over the reals). Their reliability and increasing perfor-
mance make them applicable to various domains such as robotics design and
kinematics [9], proofs of conjectures [12], robust global optimization [7,11] and
bounded-error parameter estimation [6].

Two main types of contraction algorithms allow solvers to filter variable
domains, i.e., to reduce the intervals of each variable, without loss of solutions
of the system: interval (numerical) analysis methods, like Interval Newton [10],
and constraint propagation algorithms from constraint programming. The HC4
and Box algorithms [2,14] are very often used in solving strategies. They per-
form a propagation loop and filter the variable domains with a specific revise
procedure (called HC4-Revise and BoxNarrow) handling the constraints individ-
ually. For every pair (c, x) in the system, where c is the numerical constraint
f(x, y1, . . . , yk−1) = 0, the BoxNarrow contraction procedure is applied to x by
considering the uni-variate constraint: f[Y](x) = f(x, [y1], . . . , [yk−1]) = 0. That
is, f[Y] is a function where each variable yi ∈ Y = {y1, . . . , yk−1} of f has been
replaced by its interval of variation. The important point is that f[Y] is an in-
terval function: to any x ∈ R, f[Y](x) is an interval. Thus, the iterative process
run by BoxNarrow may be very slow in some cases. The main idea of PolyBox
is to work with two non-interval functions instead of f[Y]. These non-interval

D. Cohen (Ed.): CP 2010, LNCS 6308, pp. 491–498, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

492 G. Trombettoni et al.

functions are obtained by a symbolic manipulation preprocessing that rewrites
f into a new form g for which the two extremal functions enclosing g[Y] can
be easily extracted. Then, during constraint propagation, PolyBoxRevise calls
BoxNarrow on the two extremal functions of g[Y]. This implies a faster contrac-
tion. In addition, when g[Y] is a low-degree polynomial, the computation of the
new bounds of [x] follows simple evaluations using the real roots of the extremal
functions identified analytically.

2 Background

Intervals allow reliable computations on computers by managing floating-point
bounds and outward rounding.

Definition 1 (Basic definitions, notations)
IR denotes the set of intervals [v] = [a, b] ⊂ R where a, also denoted v, and b,
also denoted v, are floating-point numbers. v − v is the size of [v].
An interval vector, or box, [V] = ([v1], . . . , [vn]) represents the Cartesian
product [v1] × . . . × [vn]. Its size is the maximal size of its components [vi], i =
1, . . . , n.

Interval arithmetic has been introduced to extend the real arithmetic to inter-
vals [10]. For instance, we have straightforwardly [v1] + [v2] = [v1 + v2, v1 + v2].
This allows us to extend real valued functions to intervals. Such an extension
must be defined so as to be conservative, i.e., ∀V ∈ R

k f(V) = [f](V) and
∀[V] ∈ IR

k [f]([V]) ⊇ {f(V), V ∈ [V]}.
The natural extension [f]N of a real function f replaces arithmetic over the

reals by interval arithmetic. Consider for instance the real function f(x1, x2) =
x2

1 − 2x1x2 + x2
2. The natural extension [f]N from IR

n to IR is defined by
[f]N ([x1], [x2]) = [x1]2 − 2[x1][x2] + [x2]2. Evaluated on the intervals [x1] =
[x2] = [0, 1], we obtain [f]N ([x1], [x2]) = [−2, 2]. Note that the natural extension
of f depends upon its symbolic expression, and consequently is not unique. As a
matter of fact, f may also be rewritten as (x1−x2)2 and yields the natural exten-
sion ([x1]− [x2])2. Note that ([x1]− [x2])2 = [0, 1] = {f(x1, x2), x1 ∈ [x1], x2 ∈
[x2]} ⊂ [f]N ([0, 1], [0, 1]). This illustrates the dependency problem which is a
major concern in interval arithmetic. f has multiple occurrences of variables
that are handled as different variables by interval arithmetic. In general, the
dependency problem implies an overestimation of the interval image. It renders
NP-hard the problem of finding the optimal interval image of a polynomial [8].
This raises the need to symbolic manipulations of expression before calculations
so as to reduce overestimation.

The PolyBox algorithm presented in this paper aims at solving nonlinear
systems of constraints or Numerical CSPs. An NCSP P = (V,C, [V]) contains
a set of constraints C, a set V of n variables with domains [V] ∈ IR

n. A solution
S ∈ [V] to P satisfies all the constraints in C. To approximate all the solutions
of an NCSP with interval-based techniques, the solving process starts from an
initial box representing the search space and builds a search tree, following a

A Box-Consistency Contractor Based on Extremal Functions 493

Branch & Contract scheme. A Branching operation bisects the current box on
one dimension (variable), generating two sub-boxes. At each node of the search
tree, contraction/filtering algorithms improve the bounds of the current box
with no loss of solutions. The process terminates with boxes of size smaller than
a given positive ω.

The constraint programming community proposes constraint propagation al-
gorithms that perform a propagation loop like AC3. Contracting optimally a box
w.r.t. an individual constraint is referred to as hull-consistency problem. Simi-
larly to the optimal interval image computation, due to the dependency problem,
hull-consistency is not tractable. The main procedure of our algorithm is com-
pared to two state-of-the-art revise algorithms that handle the constraints indi-
vidually. HC4-Revise [2] is known to achieve the hull-consistency of constraints
having no variable with multiple occurrences, provided that the function1 is con-
tinuous. It traverses twice the tree representing the mathematical expression of
the constraint for narrowing all the involved variable intervals. BoxNarrow [2,14]
is stronger than HC4-Revise [4] and can enforce hull-consistency of a constraint
when it contains one variable with multiple occurrences. In the general case, it
enforces the Box-consistency property [2].

Definition 2 An NCSP (X,C, [X]) is box-consistent if every pair (c, x), c ∈
C, x ∈ X is box-consistent. Consider the pair (c, x), where the constraint is
described by c : f(x, y1, . . . , yk−1) = 0, f : R

k → R, and the univariate interval
function f[Y](x) = f(x, [y1], . . . , [yk−1]). The pair (c, x) is box-consistent (with
respect to the natural extension [f]N) on the domain [x] = [x, x], if:
0 ∈ [f[Y]]N ([x,+]) and 0 ∈ [f[Y]]N ([−, x]), where [x,+] and [−, x] denote
intervals of size one u.l.p.2 at the bounds of [x].

In practice, for every pair (f, x), starting with an interval [x], the BoxNarrow
procedure returns a reduced interval [x′] ⊆ [x] such that [x′,+] (resp. [−, x′])
is the smallest (resp. largest) ε-solution3 of the equation f[Y](x) = 0. Existing
procedures use a shaving principle to narrow [x]: “Slices” [x, x+η] (resp. [x−η, x])
are discarded from [x] if 0 /∈ [f[Y]]N ([x, x+η]) (resp. 0 /∈ [f[Y]]N ([x−η, x])). This
test sometimes uses a uni-variate interval Newton procedure.

Figure 1 illustrates that f[Y] is an interval function. It also shows the steps
followed by BoxNarrow. The top (resp. the bottom) side of the figure details the
“dichotomic” work performed by LeftNarrow (resp. RightNarrow) on slices/inter-
vals of decreasing size, starting from [x]. For LeftNarrow, if the size of the current
interval [l] is less than or equal to 1 u.l.p. and 0 ∈ [f[Y]]N ([l]), then the procedure
returns [l]. The last step 17 replaces the interval [x] by the new interval [l, r].
Observe that at the end of RightNarrow (step 16), [r] does not contain any zero
of the function but an ε-zero. The slicing performed by BoxNarrow on a variable
x limits the overestimation effect on x, but not on the other variables yi if they
also occur several times.
1 Along with projection functions used during the second top-down tree traversal...
2 One Unit in the Last Place is the gap between two successive floating-point numbers.
3 x ∈ R

n is an ε-solution of f(x) = 0, if [−ε, ε] ∩ f(x) �= ∅.

494 G. Trombettoni et al.

[l]

[r]

x

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17
f[y]

Fig. 1. The BoxNarrow procedure. The algorithm returns the interval computed in the

step 17. (The additional contraction performed by Newton is not considered.)

3 Description of the PolyBoxRevise Procedure

The aim of our new PolyBoxRevise procedure is to limit the overestimation due
to multiple occurrences of variables yi and to speed up the iterative narrowing
process introduced above. Before solving the system, in a preprocessing phase,
for every pair (c, x) given by c : f(x, y1, . . . , yk−1) = 0, we use symbolic manipu-
lation to rewrite f into a new form g(x, y1, . . . , yk−1). This preprocessing allows
the PolyBoxRevise procedure to rapidly extract, during constraint propagation,
non-interval extremal functions that enclose g[Y], before contracting [x].

Symbolic Manipulation and Extremal Functions

For any pair (c, x) and any box ([x], [y1], . . . , [yk−1]), the aim would be to extract
the optimal extremal real (i.e., non-interval) functions h(x) and h(x) defined by
h(x) = minyi∈[yi] f(x, y1, . . . , yk−1) and h(x) = maxyi∈[yi] f(x, y1, . . . , yk−1),
∀x ∈ [x]. Then a necessary and sufficient condition for x ∈ [x] to satisfy c is
0 ∈ [h(x), h(x)]. Unfortunately, it is generally not tractable to determine h and
h due to the overestimation implied by the dependency problem (see Section 2
and [8]), and we have to be satisfied with functions g and g such that for any
x ∈ [x] we have g(x) ≤ h(x) ≤ f(x, y1, . . . , yk−1) ≤ h(x) ≤ g(x), ∀x ∈ [x], ∀yi ∈
[yi], i ∈ {1, . . . , k−1}. Now the test 0 ∈ [g(x), g(x)] is only a necessary condition.
We will refer to g and g as minimal and maximal extremal functions.

The aim is to automatically and rapidly identify extremal functions. This can
clearly not be done for any function f and we have restricted our attention to
the class of functions that can be described by

A Box-Consistency Contractor Based on Extremal Functions 495

f(x, y1, . . . , yk−1) =
∑d

i=0 fi(y1, . . . , yk−1).hi(x)

where d is a positive integer and hi has a finite number of zeros in [x] that can
be computed exactly. In addition, the sign of hi(x) is known for any x ∈ [x]. We
have in mind elementary functions such as xi, log(x) or ex.

We have used the symbolic manipulation tool Mathematica [15] for automati-
cally identifying functions fi and hi, and to rewrite them in the most appropriate
manner. The procedure FullSimplify of Mathematica computes automatically
several possible forms for every fi (heuristically) and selects the form minimizing
a given criterion. The criterion we have specified is the number of occurrences of
each variable yi. During the solving, like BoxNarrow, the PolyBoxRevise proce-
dure first replaces, in the new analytic form g, the variables yi by their domains.
We thus obtain g[Y](x) =

∑d
i=0[fi]N ([Y])hi(x), [Y] = ([y1], . . . , [yk−1]). Given

the box [Y], the coefficients [fi]N ([Y]), denoted [ci], are now numerical intervals.
Due to the assumptions on hi, the following two functions g[Y] and g[Y] are re-
spectively minimal and maximal extremal functions, computed at the bounds of
the interval coefficients [ci]:

g[Y](x) =
d∑

i=1

c−i (x)hi(x) and g[Y](x) =
d∑

i=1

c+i (x)hi(x)

with
{
c−i (x) = ci, c+i (x) = ci, if hi(x) ≥ 0
c−i (x) = ci, c+i (x) = ci, if hi(x) ≤ 0

Example. Consider the function: f(x, y1, y2) = (y1 + y2)x2 +(2y1y2)x+ sin(y2).
For the domains [y1] = [0.5, 1], [y2] = [1, 2], we have
g[Y](x) = [1.5, 3]x2 + [1, 4]x+ [0.84147, 1] and then

g[0.5,1],[1,2](x) =
{

1.5x2 + x+ 0.84147, if x ≥ 0
1.5x2 + 4x+ 0.84147, if x ≤ 0

g[0.5,1],[1,2](x) =
{

3x2 + 4x+ 1, if x ≥ 0
3x2 + x+ 1, if x ≤ 0

Remark. g[Y] and g[Y] are optimal extremal functions of g[Y]. However, although
f and g are the same, the interval functions f[Y] and g[Y] are different because
the replacement of the variables yi by [yi], occurring several times in f , produce
different overestimations. Hence, g[Y] and g[Y] constitute only approximate non-
interval functions enclosing f . Also, Box-consistencies of f[Y] and g[Y] are not
comparable. That is why our contractor starts by calling systematically the
cheap HC4-Revise procedure on the initial form f before performing the process
described below.

For a given [Y], once the extremal functions have been determined, we proceed
with the contraction part of PolyBoxRevise (during constraint propagation).
Starting with an initial interval [x], let us detail how the new and improved
left bound l ([l] is 1 u.l.p. large) of [x] is determined. (A symetric process is
performed for the right bound.) PolyBoxRevise first determines with which
extremal function to work with. Three cases occur:

496 G. Trombettoni et al.

1. If g[Y](x) ≤ 0 and 0 ≤ g[Y](x) : l = x (no contraction)
2. If g[Y](x) > 0 : g[Y] is selected
3. If g[Y](x) < 0 : g[Y] is selected (situation depicted in the left side of Fig. 1)

The smallest root [l] of g[Y](x) = 0 in [x] can now be computed using the
standard BoxNarrow (i.e., LeftNarrow) procedure applied to the extremal func-
tion selected. The advantage is a faster convergence since BoxNarrow is run with
a non-interval function.

We have implemented the polynomial case, where hi(x) = xi, i = 0, . . . , d.
In particular, when the degree d is smaller than 4, instead of using BoxNarrow
to determine the real roots of g[Y](x) = 0, we have used explicit analytical
expressions of the roots. For d = 3, we have used the Cardano’s expressions4 of
the real roots. We have adapted these symbolic methods to manage rounding
errors due to floating point calculation by first replacing all the coefficients by a
degenerate interval (of null size).

Finally, we have implemented a new procedure PolyBoxRevise based on the
Box algorithm variant called BC4 [2]. If f(x, y1, . . . , yk−1) has a single occurrence
of x, PolyBoxRevise calls HC4-Revise (like BC4 does). Otherwise, it uses the
rewritten form g (with appropriate symbolic expressions for the fi(y1, . . . , yk−1))
of f produced automatically by the FullSimplify procedure of Mathematica [15]
in the preprocessing. Four cases occur:

1. f is not polynomial w.r.t. x: the procedure calls BoxNarrow (or HC4-Revise
in a hybrid version because it is less time consuming).

2. g[Y](x) contains only one occurrence of x: HC4-Revise is applied to g[Y](x).
3. g[Y](x) has multiple occurrences of x and d < 4:

analytic determination of the smallest root of g[Y](x) in [x].
4. g[Y](x) has multiple occurrences of x and d ≥ 4:

numerical determination of the smallest root of g[Y](x) in [x], using
BoxNarrow.

Remarks. The second case above can be illustrated by an equation of the system
Caprasse (tested below): −2x + 2txy − z + y2z = 0 that our symbolic tool
rewrites into : (−2 + 2ty)x + (−1 + y2)z = 0 (for the contraction of [x] or [z]).
Observe that the new form makes disappear the multiple occurrences of x and
z. The decrease in occurrences of x and z illustrates a successful transformation
leading to a gain in CPU time. An equation of the instance 6body shows a
counterproductive transformation of 5(b1 − d1) + 3(b2 − d2)(b1 + d1 − 2f1) = 0
into b1(5+3(b2−d2))+(−5+3b2−3d2)d1+6(−b2+d2)f1 = 0. Indeed, for obtaining
an expanded form on b1 or d1, the transformation increases the overestimation
because of the additional occurrences of variables a2, b2 and d2.

Comparison with the Box Algorithm of Numerica

Van Hentenryck, Michel et Deville have also used extremal functions (without
using this vocabulary) in their interval-based solver Numerica [14]. The principle
4 G. Cardano. Ars magna, sive de regulis algebraicis liber unus, Nuremberg, 1545.

A Box-Consistency Contractor Based on Extremal Functions 497

is introduced in one page in a technical article [13]. Numerica manages different
forms of the handled system, and a separate constraint propagation is run on
the system in an entirely expanded form for using extremal functions.

PolyBox follows on the contrary a scheme close to BC4. It manages a unique
system with revise procedures adapted to every pair (f, x), which causes an
overestimation smaller than the entirely expanded form used by Numerica. In
addition, like BC4, PolyBox also uses HC4-Revise when x occurs only once in f .
Finally, the analytic solving of low degree polynomials is added.

4 Experiments

We have compared our PolyBox algorithm to BC4 and HC4. The symbolic
manipulation of all pairs (f, x) is achieved in a fraction of a second in a pre-
processing by Mathematica [15]. All the contractors have been implemented in
the free Ibex interval-based C++ library [3]. To find all the solutions to the tested
NCSPs, the solving strategy bisects the variables in a round-robin way. Between
two branching points in the search, constraint propagation (i.e., PolyBox, HC4
or BC4) is performed before an interval Newton.

Table 1. Results. The entries in the last four columns are the CPU time in second

(first row) and the number of nodes in the search tree (second row).

Name #var #sol HC4 BC4 PolyBox-- PolyBox

Caprasse 4 18 5.53 37.2 2.34 2.16
9539 6509 2939 2939

Yamamura1 8 7 34.3 13.4 5.79 2.72
42383 4041 2231 2231

Extended Wood 4 3 0.76 1.94 1.34 1.12

4555 1947 3479 3479

Broyden Banded 20 1 > 3600 0.62 0.16 0.09
? 1 1 1

Extended Freudenstein 20 1 > 3600 0.19 0.22 0.11
? 121 121 121

6body 6 5 0.58 2.93 0.73 0.73

4899 4797 4887 4887

Rose 3 18 > 3600 > 3600 4.00 4.10
? ? 12521 12521

Discrete Boundary 39 1 179 29.5 41.8 16.1
185,617 3279 3281 3281

Katsura 12 7 102 404 103 104
14007 11371 13719 13719

Eco9 8 16 66 191 71 71

132,873 125,675 131,911 131,911

Broyden Tridiagonal 20 2 470 495 403 350
269,773 163,787 164,445 164,445

Geneig 6 10 3657 > 7200 3508 3363
79,472,328 ? 4,907,705 4,907,705

498 G. Trombettoni et al.

Among the 44 polynomial systems with isolated solutions found in COPRIN’s
Web page5, we have selected the 12 instances that are solved by at least one of
the 3 strategies in a time comprised between 1 second and 1 hour (on a Pentium
3 GHz) and have equations with multiple occurrences of the variables.

Table 1 reports interesting speedups brought by PolyBox on these instances.
The column PolyBox-- in the table corresponds to a variant of PolyBox in which
the low degree polynomials are not handled analytically but by BoxNarrow. The
additional gain brought by the analytic process is significant in only two NCSPs.

Our first results are promising, so that it should be worthwhile hybridizing
PolyBox with other algorithms, especially those achieving the Box-consistency
or a weaker form of it [1,5]. An idea would be to keep the rewritten forms only if
they are of degrees 2 and 3, and add them as global and redundant constraints
in the system for improving the constraint propagation.

References

1. Araya, I., Trombettoni, G., Neveu, B.: Making Adaptive an Interval Constraint

Propagation Algorithm Exploiting Monotonicity. In: Proc. CP. LNCS (2010)

2. Benhamou, F., Goualard, F., Granvilliers, L., Puget, J.-F.: Revising Hull and Box

Consistency. In: Proc. ICLP, Conf. on Logic Programming, pp. 230–244 (1999)

3. Chabert, G.: Ibex – An Interval Based EXplorer (2010), http://www.ibex-lib.org

4. Collavizza, H., Delobel, F., Rueher, M.: Extending Consistent Domains of Numeric

CSP. In: Proc. IJCAI, pp. 406–413 (1999)

5. Goldsztejn, A., Goualard, F.: Box Consistency through Adaptive Shaving. In: Proc.

ACM SAC, pp. 2049–2054 (2010)

6. Jaulin, L.: Interval Constraint Propagation with Application to Bounded-error Es-

timation. Automatica 36, 1547–1552 (2000)

7. Kearfott, R.B.: Rigorous Global Search: Continuous Problems. Kluwer, Dordrecht

(1996)

8. Kreinovich, V., Lakeyev, A.V., Rohn, J., Kahl, P.T.: Computational Complexity

and Feasibility of Data Processing and Interval Computations. Kluwer, Dordrecht

(1997)

9. Merlet, J.-P.: Interval Analysis and Robotics. In: Symp. of Robotics Research

(2007)

10. Moore, R.E.: Interval Analysis. Prentice-Hall, Englewood Cliffs (1966)

11. Rueher, M., Goldsztejn, A., Lebbah, Y., Michel, C.: Capabilities of Constraint

Programming in Rigorous Global Optimization. In: NOLTA (2008)

12. Tucker, W.: A Rigorous ODE Solver and Smale’s 14th Problem. Found. Comput.

Math. 2, 53–117 (2002)

13. Van Hentenryck, P., McAllester, D., Kapur, D.: Solving Polynomial Systems Using

a Branch and Prune Approach. SIAM J. on Num. Analysis 34(2) (1997)

14. Van Hentenryck, P., Michel, L., Deville, Y.: Numerica: A Modeling Language for

Global Optimization. MIT Press, Cambridge (1997)

15. Wolfram, S.: Mathematica, 4th edn. Cambridge University Press, Cambridge

(1999)

5 See www-sop.inria.fr/coprin/logiciels/ALIAS/Benches/benches.html. These

benchmarks have been proposed by the interval community and some of them

correspond to real problems.

http://www.ibex-lib.org

Exponential Propagation for Set Variables

Justin Yip and Pascal Van Hentenryck

Brown University, Box 1910, Providence, RI 02912, USA

Abstract. Research on constraint propagation has primarily focused

on designing polynomial-time propagators sometimes at the cost of a

weaker filtering. Interestingly, the evolution of constraint programming

over sets have been diametrically different. The domain representations

are becoming increasingly expensive computationally and theoretical re-

sults appear to question the wisdom of these research directions. This

paper explores this apparent contradiction by pursuing even more com-

plexity in the domain representation and the filtering algorithms. It

shows that the product of the length-lex and subset-bound domains im-

proves filtering and produces orders of magnitude improvements over

existing approaches on standard benchmarks. Moreover, the paper pro-

poses exponential-time algorithms for NP-hard intersection constraints

and demonstrates that they bring significant performance improvements

and speeds up constraint propagation considerably.

1 Introduction

Constraint programming (CP) is often seen as a computational methodology for
tackling constraint satisfaction problems (CSPs) characterized by the slogan

Constraint Programming = Filtering + Search.

Since most CSPs are NP-complete, CP uses filtering algorithms and constraint
propagation to reduce the variable domains and hence the search tree to explore.
The hope is that the reduction in the search space is sufficient to solve problems
of interest in reasonable time. In general, researchers have focused on design-
ing polynomial-time algorithms for filtering, leaving the potentially exponential
behavior in the search component. There are exceptions of course, and we will
review some of them later, but researchers overwhelmingly focus on polynomial-
time filtering algorithms, sometimes at the expenses of enforcing arc or bound
consistency. This paper takes the other road and argues that exponential filter-
ing algorithms and constraint propagation may be highly beneficial in practice.
It is motivated by the fact that reasonable exponential behavior in the filtering
algorithm may produce significant reduction of search space and can therefore
be cost-effective. Moreover, such a reasonable exponential behavior has benefi-
cial effects on constraint propagation allowing further reduction of the search
space, an observation made by Bessiere and Régin in [1] where they solve CSPs
on the fly to achieve arc consistency on a global constraint. Finally, since the
overall approach is exponential in the worst case, it may be preferable to shift

D. Cohen (Ed.): CP 2010, LNCS 6308, pp. 499–513, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

500 J. Yip and P. Van Hentenryck

some of the exponential behavior from the largely agnostic search to the filtering
component where we can exploit the semantics of the constraints and locality.

This paper evaluates this idea in the context of CSPs over set variables. Set
variables are natural objects for modeling classes of combinatorial problems but
they raise fundamental computational issues. Since their domains often repre-
sent an exponential number of sets, maintaining an explicit enumeration of the
domain values is computationally expensive and hence much effort has been
devoted to approximating a set domain or using a compact and precise repre-
sentation. The subset-bound domain was introduced in the early 90s and is now
available in many CP-solvers (e.g., [2,3]). It maintains two sets r, p and defines
its domain as {s | r ⊆ s ⊆ p}. The subset-bound domain supports polynomial-
time filtering algorithms for a variety of constraints but the pruning it offers is
generally weak.1 As a result, much research has been devoted to design richer
representations of set domains. Sometimes the subset-bound domain is enhanced
with a cardinality component to restrict the cardinality of the set variable [4,5],
which often results in much stronger propagation. However, Bessiere and al.
in [6] have shown that some natural global constraints become intractable when
moving to this domain. Some exact representations of sets use ordered binary de-
cision diagrams and their propagation algorithms can obviously take exponential
time[7]. The length-lex representation takes a dual perspective by primarily cap-
turing the cardinality and lexicographical information [8]. A length-lex domain
is defined by two bounds l, u as {s | l * s * u} where * is the (total) length-
lex ordering. Here the filtering algorithms for many elementary constraints are
typically polynomial-time but the constraint-propagation algorithm may take
exponential time to converge to a fixpoint [9].2 There is thus an abundance of
negative theoretical results on richer set representations. Yet, on a wide variety
of standard benchmarks, the richer representations bring orders of magnitude
improvements compared to the subset-bound domain or traditional encodings in
terms of finite-domain variables[7,14].

The goal of this paper is thus to explore whether it is beneficial to boost
constraint propagation over set variables even further. It explores two ideas:
the product of the length-lex and subset-bound domains which has never been
evaluated before and exponential propagators for intersection constraints. Its
main contributions are as follows:

1. It shows that the propagation of simple unary constraints in the length-lex
domain may take exponential time to converge, yet the length-lex domain
brings orders of magnitude improvements over other representations.

2. It demonstrates that the product of the subset-bound and length-lex do-
mains brings additional pruning on intersection constraints and significant
improvements in efficiency.

1 Note that, even with this compact representation, many intractable problems can

be encoded by a unary constraint over a single set variable.
2 The fact that constraint-propagation algorithms may take exponential time to con-

verge is not specific to set variables. It appears for instance in numerical continuous

CSPs (e.g., [12]) and the propagation of cumulative constraints [13].

Exponential Propagation for Set Variables 501

3. It proves the W [1]-Hardness and NP-completeness of unary intersection con-
straint for the subset-bound with cardinality and length-lex domains.

4. It proposes exponential but complete filterings for these intersection con-
straints and shows that they bring again an order of magnitude improvement
in efficiency compared to existing approaches.

5. It shows that these exponential filtering algorithms speeds up the conver-
gence of the constraint propagation algorithm considerably.

The rest of the paper is organized as follows. Section 2 reviews common set
representations and formally specifies the consistency notion to establish the
theoretical results of the paper. Section 3 discusses intractability issues for set
variables. Section 4 contrasts the theoretical results with an experimental evalu-
ation of the various domains. Section 5 proposes an exponential-time propagator
for a W [1]-hard unary intersection and Section 6 evaluates the effectiveness and
efficiency of the proposed constraint. Section 7 discusses some of the related
work. Section 8 concludes the paper.

2 Domain Representations and Consistency Notions

This section reviews the domain representation for set variables and the consis-
tency notions for set constraints.

Notations. For simplicity, we assume that sets take their values in a universe
U(n) of integers {1, . . . , n} equipped with traditional set operations. n,m are
integers denoting the size of a universe, the number of variables, or both. X ,
possibly subscripted, is a set variable. Elements of U(n) are denoted by the
letter e. Sets are denoted by l, u, s, r, p. A subset s of U(n) of cardinality c is
called c-set and is denoted as {s1, s2, ..., sc} where s1 < s2 < ... < sc. The length-
lex ordering *, proposed in [8], totally orders sets first by cardinality and then
lexicographically.

Definition 1 (Length-Lex Ordering). The length-lex ordering is defined by

s * t iff s = ∅ ∨ |s| < |t| ∨ |s| = |t| ∧ (s1 < t1 ∨ s1 = t1 ∧ s \ {s1} * t \ {t1})

Its strict version is defined by s ≺ t iff s * t ∧ s �= t.

Example 1. Given U(4) = {1, . . . , 4}, we have ∅ ≺ {1} ≺ {2} ≺ {3} ≺ {4} ≺
{1, 2} ≺ {1, 3} ≺ {1, 4} ≺ {2, 3} ≺ {2, 4} ≺ {3, 4} ≺ {1, 2, 3} ≺ {1, 2, 4} ≺
{1, 3, 4} ≺ {2, 3, 4} ≺ {1, 2, 3, 4}.

Definition 2 (ll-domain). A length-lex domain (ll-domain) is a pair of sets
ll〈l, u, n〉. It contains all sets (inclusively) in the universe U(n) between l and u
in the length-lex ordering:

ll〈l, u, n〉 ≡ {s ⊆ U(n)|l * s * u}.

502 J. Yip and P. Van Hentenryck

Example 2. The length-lex domain ll〈{1, 3, 8}, {1, 5, 8}, 8〉 denotes the set
{{1, 3, 8}, {1, 4, 5}, {1, 4, 6}, {1, 4, 7}, {1, 4, 8}, {1, 5, 6}, {1, 5, 7}, {1, 5, 8}}.
Definition 3 (ll-bound consistency). A set constraint C(X1, ..., Xm) (Xi are
set variables using the ll-domain) is said to be ll-bound consistent if and only if
∀1 ≤ i ≤ m,

∃x1 ∈ d(X1), ..., xm ∈ d(Xm) s.t. C(x1, .., xi−1, lXi , xi+1, .., xm)
∧ ∃x1 ∈ d(X1), ..., xm ∈ d(Xm) s.t. C(x1, .., xi−1, uXi , xi+1, .., xm)

where d(Xi) = ll〈lXi , uXi , nXi〉 denotes the domain of Xi.

Enforcing ll-bound consistency assures that the bounds of each variable appears
in a solution to the constraint, which corresponds to the traditional notion of
bound consistency on finite-domain variables. It is a rather strong property for
set domains and is well-defined because the length-lex ordering is total.

Definition 4 (sbc-domain). A subset-bound + cardinality domain (sbc-domain)
sbc〈r, p, č, ĉ〉 consists of a required set r and a possible set p, a minimum and
maximum cardinalities č and ĉ, and represents the set of sets

sbc〈r, p, č, ĉ〉 ≡
{
s | r ⊆ s ⊆ p ∧ č ≤ |s| ≤ ĉ

}
Example 3. The sbc-domain sbc〈{1}, {1, 3, 4, 5, 7, 8}, 3, 3〉 denotes the set
{{1, 3, 4}, {1, 3, 5}, {1, 3, 7}, {1, 3, 8}, {1, 4, 5}, {1, 4, 7}, {1, 4, 8}, {1, 5, 7}, {1, 5, 8},
{1, 7, 8}}.
Definition 5 (sbc-bound consistency). A set constraint C(X1, ..., Xm) (Xi

are set variables using the sbc-domain) is said to be sbc-bound consistent if and
only if ∀1 ≤ i ≤ m,

∃x1 ∈ d(X1), ..., xm ∈ d(Xm) s.t. C(x1, ..., xm)

∧ rXi =
⋂

∀1≤j≤m,xj∈d(Xj):C(x1,...,xm)

xi ∧ pXi =
⋃

∀1≤j≤m,xj∈d(Xj):C(x1,...,xm)

xi

∧ ∃x1 ∈ d(X1), ..., xm ∈ d(Xm) s.t. |xi| = ˇcXi ∧ C(x1, ..., xm)
∧ ∃x1 ∈ d(X1), ..., xm ∈ d(Xm) s.t. |xi| = ˆcXi ∧ C(x1, ..., xm)

where d(Xi) = sbc〈rXi , pXi , ˇcXi , ˆcXi〉 denotes the domain of Xi.

Note that this definition requires the constraint to have a solution consistent with
the domains of the variables (first condition) and to have solutions consistent
with each of the cardinality bounds of the variables (fourth and fifth conditions).
We now define the product of the length-lex and subset-bound domain. (Similar
hybrid domain representations were proposed in [10,11].)

Definition 6 (ls-domain). A length-lex + subset-bound domain (ls-domain) is
the intersection of the two aforementioned domains. A ls-domain ls〈l, u, n, r, p〉
consists of two bounds l, u for the length-lex ordering, a universe size n, a required
set r, and a possible set p. It represents the set of sets

ls〈l, u, n, r, p〉 ≡ ll〈l, u, n〉 ∩ sbc〈r, p, |l|, |u|〉

Exponential Propagation for Set Variables 503

Example 4. The ls-domain ls〈{1, 3, 8}, {1, 5, 8}, 8, {1}, {1, 3, 4, 5, 7, 8}〉 (which
is the intersection of domains in Example 2 and 3) denotes the set
{{1, 3, 8}, {1, 4, 5}, {1, 4, 7}, {1, 4, 8}, {1, 5, 7}, {1, 5, 8}}.

Definition 7 (ls-bound consistency). A set constraint C(X1, ..., Xm) (Xi are
set variables using the ls-domain) is said to be ls-bound consistent if and only if
∀1 ≤ i ≤ m,

lXi ∈ d(Xi) ∧ ∃x1 ∈ d(X1), ..., xm ∈ d(Xm) : C(x1, .., xi−1, lXi , xi+1, .., xm)
∧ uXi ∈ d(Xi) ∧ ∃x1 ∈ d(X1), ..., xm ∈ d(Xm) : C(x1, .., xi−1, uXi , xi+1, .., xm)

∧ rXi =
⋂

∀1≤j≤m,xj∈d(Xj):C(x1,...,xm)

xi ∧ pXi =
⋃

∀1≤j≤m,xj∈d(Xj):C(x1,...,xm)

xi

where d(Xi) = ls〈lXi , uXi , nXi , rXi , pXi〉

We now show that the ls-domain is strictly stronger than the conjunction of the
ll-domain and sbc-domain.

Lemma 1. Enforcing bound consistency on a ls-domain is strictly stronger than
enforcing bound consistency separately on the decomposition of the ll-domain and
sbc-domain.

Proof. Clearly enforcing bound consistency on the ls-domain is at least as
strong. Consider a unary constraint |X ∩ {4, 5, 7}| ≤ 1 and the ls-domain in
Example 4. It is bound-consistent for the decomposition, since the lower and
upper bounds satisfy the constraint and the required and possible sets are
bound-consistent. However, for the ls-domain, only three domain values, i.e.,
{1, 3, 8}, {1, 4, 8}, {1, 5, 8}, satisfy the constraint. Element 8 belongs to all solu-
tions and thus to the required set. Enforcing bound consistency for the ls-domain
yields ls〈{1, 3, 8}, {1, 5, 8}, 8, {1, 8}, {1, 3, 4, 5, 7, 8}〉. ��

3 Theoretical Results on Intersection Constraints

We now present a number of theoretical results, which shed light on the be-
havior and complexity of filtering algorithms and constraint propagation on set
domains. In the following, we use bcθ〈C〉 to denote a bound-consistency propa-
gator and hsθ〈C〉 to denote a feasibility routine for constraint C on a θ-domain.

The first result we mentioned is well-known but quite interesting and concerns
the sbc-domain.

Theorem 1. hssbc〈|Xi ∩Xj | ≤ 1, ∀i < j〉 is NP-hard. [6]

We consider a special case of this constraint in which all but one variables are
bounded. We show that, even in this simple unary case, enforcing bound consis-
tency on both the sbc-domain and the ll-domain is fixed-parameter intractable.

Definition 8 (atmost1). atmost1({s1, .., sm}, X) ≡ |X ∩ si| ≤ 1, ∀1 ≤ i ≤ m

504 J. Yip and P. Van Hentenryck

Theorem 2. hssbc〈atmost1({s1, .., sm}, X)〉 is NP-hard.

Proof. Reduction from k-Independent Set. Instance: Graph G = (V,E) and a
positive integer k ≤ |V |. Question: Does G contains an independent set of size
k, i.e. a k-subset V ′ of V such that no two vertices in V ′ join by an edge in E.

We construct an instance of CSP with one sbc-variable X and one constraint
atmost1({s1, .., sm}, X). Intuitively, X corresponds to a independent set and
each set si corresponds to the neighborhood of vertex i and itself. Hence, X can
take at most 1 element from each set corresponds to the restriction that no two
vertices in the independent set join by an edge.

Formally, for every i ∈ V , si = {i} ∪ adj(i) (where adj(i) denotes the neigh-
borhood of vertex i), and X ∈ sbc〈∅, V, k, k〉. The CSP has a solution if and
only if G has a independent set of size k. ⇒ Given a k independent set V ′, we
can construct a solution by setting X = V ′ since every element in X actually
corresponds to a vertex. When X takes an element i, since the size of intersec-
tion is at most 1, it cannot take any other element from set si (i.e. adj(i)), the
definition of independent set guarantees this. ⇐ Given a consistent assignment
of X , it is a independent set since any edge corresponds to taking two element
from the same set which violates the atmost1 constraint. ��

Corollary 1. hssbc〈atmost1({s1, .., sm}, X)〉 is W [1]-hard.

Proof. k-Independent Set is a W [1]-Complete problem.[15] ��

Corollary 2. hsll〈atmost1({s1, .., sm}, X)〉 is W [1]-hard.

Proof. For any sbc-domain that contains only all k-sets of some universe, there
exists an equivalent ll-domain sbc〈∅, V, k, k〉 ≡ ll〈�k,,k, |V |〉 with �k =
min�{s | s ⊆ V ∧ |s| = k} and ,k = min�{s | s ⊆ V ∧ |s| = k}. ��

This result has an interesting corollary. Consider the propagation of a set of
unary constraints of the form |X ∩ si| ≤ 1 (1 ≤ i ≤ n). These constraints enjoy
a polynomial-time bound-consistency algorithm in the length-lex domain. By
definition of bound consistency, constraint propagation terminates in a failure
or in a state where the bounds of the variable are solutions. Hence, by Corollary
2, constraint propagation cannot run in time O(f(k)nO(1)) in the worst case.

Corollary 3. The propagation algorithm for a collection of bcll〈|X ∩ si| ≤ 1〉
over X cannot run in time O(f(k)nO(1)) in the worst case unless FPT = W [1].

Similar results hold for other intersection constraints.

Definition 9 (exact1). exact1({s1, .., sm}, X) ≡ |X ∩ si| = 1, ∀1 ≤ i ≤ m

Theorem 3. hssbc〈exact1({s1, .., sm}, X)〉 is NP-hard.

Proof. Reduction from 1-in-3 SAT. Instance: Set of n variables and m clauses,
where each clauses consists of exactly three literals and each literal is either

Exponential Propagation for Set Variables 505

a variable or its negation. Question: Does there exist a truth assignment to
variables such that each clause has exactly one true literal?

Given a instance of 1-in-3 SAT, we construct a CSP with a exact1 constraint.
A set variable X associated with a sbc-domain sbc〈∅, {1,−1, .., n,−n}, n, n〉 cor-
responds to a truth assignment. i ∈ X means variable i is true and vice versa.
There are two types of sets. Set si = {i,−i} (1 ≤ i ≤ n) ensures a vari-
able can either be true or false. Set tj = {p,−q, r} corresponds to a clause
(xp∨¬xq∨xr) guarantees that exactly one of its literal is true. Hence, we post the
constraint exact1〈{s1, .., sn, t1, .., tm}, X〉. Clearly, the input instance has feasible
assignment if and only if the CSP has a solution. ��

Similarly, a NP-hardness proof for the feasibility routine of atleast1 is obtained
from Theorem 3 by changing the input instance to 3SAT.

As mentioned earlier, the potentially exponential behavior of constraint propa-
gation was pointed out in [9] for knapsack constraints and similar results exist for
continuous constraints and edge-finding algorithms for cumulative constraints.
What is somewhat surprising here is the simplicity of the constraint involved,
which are simple unary intersection constraints. This abundance of negative the-
oretical results may lead researchers to conclude that the sbc-domain and, even
more so, the ll-domain are unworthy of any consideration. Experimental results
however clearly indicate otherwise as we now discuss.

4 Experimental Behavior of Domain Representations

The experimental results in this section compare the ll-domain and ls-domain, as
well as the hybrid BDD-SAT recently proposed in [16] which provides state-of-
the-art results in this area. The models use efficient complete filtering algorithms
for binary constraints on these different domains [16,17,18,14,19]. We evaluate
them on two standard CSP benchmarks: the social golfer problem and the steiner
triple system. These models run on a 2.4GHz Core 2 Duo laptop with 4GB of
memory. The time limit is 1800 seconds and × indicates a timeout. Note that
these are the first experimental results on the product of the length-lex and
subset-bound with cardinality domains.

Social Golfer Problem. The ll-domain uses the model and propagators given in
[17,14]. The sbc-domain uses the model in [20] and the pairatmost1 propagator
in [18]. The ls-domain uses both models, with a channeling constraint to link
the corresponding variables in the two models. The models use the same static
labeling technique: variables are labeled in a week-wise fashion and, within each
week, the variable with the largest domain is selected first (ties are broken by
smaller group index first), and the choice consists in inserting the smallest ele-
ment first and to exclude it on backtracking. BDD-SAT-VSIDS encodes the set
domains with binary decision diagrams (BDDs) which are then integrated with
a SAT solver for clauses generation and no-good learning. The SAT formulation
employs a VSIDS search [21] that features a variable selection heuristics and

506 J. Yip and P. Van Hentenryck

Table 1. The Behavior of Set Domains on the Social Golfer Problem

ll-domain ls-domain BDD-SAT-VSIDS

g,s,w Time Fails Time Fails Time

48 Easy 1.52 181 1.38 137 6.14

4,3,5 0.05 69 0.04 64 0.46

5,3,6 3.93 2728 2.47 1991 0.8
5,3,7 17.06 7650 12.1 6274 6.32
5,4,5 0.35 218 0.19 147 0.98

5,5,4 0.17 89 0.14 77 0.05
5,5,5 0.25 87 0.22 75 0.07
5,5,6 0.21 60 0.17 47 0.15
5,5,7 0.01 1 0.01 1 3.28

6,5,5 51.52 17197 21.61 9948 15.24
7,6,2 0.04 14 0.03 14 1.44

10,3,9 1.15 82 0.77 5 16.66

10,3,10 1.52 82 1.08 12 110.8

Total 77.77 28458 40.2 18792 162.39

restarts. BDD-SAT-VSIDS runs on a 3.00GHz Core 2 Duo with 2 GB of mem-
ory. Table 1 gives a comprehensive comparison between these approaches on the
social golfer problem. The ls-domain explores the smallest search tree and is the
most robust overall. It is about twice as fast as the ll-domain and 4 times faster
than BDD-SAT-VSIDS, which provides state-of-the-art results. The ll-model is
also more than twice as fast as the BDD-SAT-VSIDS.

The Steiner Triple System. The steiner triple system with n elements is a special
class of balanced incomplete block design by setting v = n, b = n(n− 1)/6, r =
(n − 1)/2, k = 3, λ = 1 [22]. It can be modeled using a dual set of set variables
in which a primal variable Xi (1 ≤ i ≤ v) corresponds to a point and a dual
variable Yj (1 ≤ j ≤ b) corresponds to a block. In steiner triple system, every
pair of points have exactly one common element (i.e., |Xi ∩ Xj | = 1, ∀i �= j).
Complete filtering algorithm for the ll-domain is given in [17]. For the sbc-
domain, the problem can be expressed as a conjunction of pairatmost1 [18] and
nonEmptyIntersection [19]. The ls-domain uses both model with channeling
constraints to link them. All models apply a static smallest-index first label-
ing technique in the primal variable. For the BDD-SAT formulation, two search
strategies are given: a static labeling and the VSIDS search discussed above.

Table 2 compares different approaches on Steiner Triple System. In the BDD-
SAT formulation, × indicates a timeout of 900 seconds, and unreported instances
are left as blanks. The ls-domain is the fastest in average and on most instances.
It may bring significant benefits compared to the ll-domain and, especially over
BDD-SAT. In particular, the BDD-SAT formulation appears much less robust.
Once again, the experimental results indicate that the rich ls-domain provide
state-of-the-art performance, despite its potentially high complexity.

Exponential Propagation for Set Variables 507

Table 2. The Behavior of Set Domains on Steiner Triple System

ll-domain ls-domain BDD-SAT-static BDD-SAT-VSIDS

n Time Fails Time Fails Time Time

7 0.01 0 0.01 0 0.01 0.03

9 0.01 1 0.01 1 0.02 0.02

13 0.01 1 0.02 51 0.06 0.02

15 0.03 1 0.04 73 0.07 0.32

19 0.12 6 0.17 140 0.37 0.07

21 0.29 30 0.35 192 0.82 39.19

25 4.84 943 5.63 912 7.1 ×
27 14.01 650 12.61 1826 12.88 229.59

31 2.86 0 2.03 0 5.38 ×
33 35.94 627 24.32 1714 443.07 19.3
37 × × 1345.34 16178
39 1001.74 12040 505.57 5248

Algorithm 1. bcls〈atmost1({s1, .., sm})〉(Xls = ls〈l, u, n, r, p〉)
1: S ← {

s ∈ Xls | ∧1≤i≤m |s ∩ si| ≤ 1
}

2: l′, u′ ← min� S ,max� S
3: r′, p′ ← ⋂

s∈S s,
⋃

s∈S s
4: return ls〈l′, u′, n, r′, p′〉

5 Exponential Filtering for Intersection Constraints

The previous sections reported intriguing theoretical and experimental results.
The theory indicated that constraint propagation of even simple constraints
may take exponential time in the worst case for the length-lex domain, while the
experimental results clearly showed that the product of length-lex and subset-
bound domains led to the best and most robust performance on some
standard benchmarks. In this section, we reconsider the intractable unary inter-
section constraint. Instead of decomposing them into simpler unary constraints,
we propose simple exponential algorithms for enforcing bound consistency on the
ll- and ls-domains. Our motivation is twofold:

1. An exponential filtering algorithm enables us to move the potentially expo-
nential behavior from the rather agnostic constraint propagation algorithm
into the constraint itself where the constraint semantics can be exploited.

2. The stronger filtering further increases the pruning of the search and may
lead to additional domain reduction through constraint propagation of other
constraints, an observation already pointed out in [1].

Algorithm 1 implements bcls〈atmost1({s1, .., sm}, X)〉 and is self-explanatory.
The set S maintains a logical enumeration of all possible solutions. All four
bounds of the ls-domain are determined according to the ls-bound-consistency
definition. Corollary 3 implies that there are no fixed-parameter tractable
algorithm for Algorithm 1 since hsll〈C〉 is a special case for bcls〈C〉.

508 J. Yip and P. Van Hentenryck

Algorithm 2. bcll〈atmost1({s1, .., sm})〉(Xls = ls〈l, u, n, r, p〉)
1: l′ ← min�

{
s ∈ Xls | ∧1≤i≤m |s ∩ si| ≤ 1

}
2: u′ ← max�

{
s ∈ Xls | ∧1≤i≤m |s ∩ si| ≤ 1

}
3: return ls〈l′, u′, n, r, p〉

Theorem 4. Algorithm 1 runs in time O(ncmc) where c = |u|.

Proof. Xls contains at most O(nc) sets. Each set takes O(mc) time to verify if
it satisfies the constraint. ��

Sometimes enumerating all possible solutions is not cost-effective and hence we
also consider an exponential filtering algorithm (Algorithm 2) for the length-lex
bounds only. Obviously, lines 1–2 do not compute the set of solutions explicitly
but only searches for the smallest and largest solution in the length-lex ordering.
Algorithm 2 has the same worst case time complexity as Algorithm 1, since its
feasibility routine is W [1]-hard, but it may be significantly faster in practice.
The same principles can be applied to other unary intersection constraints.

6 Experimental Results

Social Golfer Problem. Since the model uses a vanilla week-wise labeling strat-
egy, when we label week w, all variables Xw′,g′ in earlier weeks (∀w′ < w) are
bounded. As a consequence, we can set si = Xw′,g′ and introduce the atmost1
constraint. We apply the following rule for all variables Xw,g:

∀w′ < w, g′ : Xw′,g′ is bounded
∀w′ < w, g′ : |Xw,g ∩Xw′,g′ | ≤ 1 �−→ atmost1({Xw′,g′ | w′ < w}, Xw,g)

Table 3 reports the experimental results on the atmost1 propagator using in-
stances in Table 1 and 40 larger and harder instances. The ls-domain model with
bcls〈atmost1〉 is the only model to solve all instances within the time limit. It is
the fastest model for all but one instance. On the traditional instances, the model
is more than 6 times faster than the BDD-SAT-VSIDS approach. It is important
to note that the search procedure is static and completely uninformed: All the
reasoning is taking place in the propagation. The results also show the comple-
mentary between the exponential propagator and the richer domain, since the
ll-domain, even with the exponential propagator for the length-lex component,
is not as fast and robust.

The exponential propagators proposed in this paper have two roles: They in-
crease the amount of filtering and they accelerate the convergence of the fixpoint
algorithm. Table 4 shows that the effects are cumulative on the social golfer prob-
lem. The results are obtained on two difficult instances from the standard bench-
marks in Table 1 (as the remaining ones are too easy) as well as from larger and
more difficult instances. The results compare the ls-domain with three versions

Exponential Propagation for Set Variables 509

Table 3. The Benefits of the atmost1 Constraint on the Social Golfer Problem

BDD-SAT ls-domain ll-domain + ls-domain +

-VSIDS bcll〈atmost1〉 bcls〈atmost1〉
g,s,w Time Time Fails Time Fails Time Fails

58 Easy 140.83 6.49 2570 9.67 3649 5.98 1808
5,3,7 6.32 12.1 6274 17.82 7660 10.31 5373
6,5,5 15.24 21.61 9948 36.26 17245 8.42 4841

Sub-total 162.39 40.2 18792 63.75 28554 24.71 12022

5,4,6 196.2 104570 258.6 130658 102.5 56174
6,5,6 232.8 65734 352.2 107362 79.06 29578
6,6,4 × × × × 1775 890645
7,3,8 0.2 12 0.21 13 0.17 8
7,4,6 0.14 5 0.15 6 0.14 20

7,5,5 0.38 96 0.57 228 0.15 11
7,6,4 0.61 196 0.66 312 0.24 58
7,7,4 272.8 44954 2.82 895 1.6 333
8,3,10 478.6 59610 1435 222609 166.2 26282
8,4,7 2.49 416 14.57 5125 0.62 111
8,5,6 11.42 2448 29.16 10166 1.07 333
8,6,5 37.34 7080 43.06 15740 2.64 1081
8,7,4 6.68 1592 10.42 4160 1.18 413
9,3,11 49.96 4254 191.7 26745 16.46 1990
9,4,8 29.75 4031 73.29 16732 3.26 496
9,5,7 414.5 46835 × × 16.08 3462
9,6,6 × × × × 55.56 17332
9,7,5 × × × × 20.9 6923
9,8,4 657 97659 1164 282668 37.21 14609

10,3,12 12.48 909 × × 2.33 61
10,4,9 20.34 1926 363.7 54956 2.56 137
10,5,7 4.21 572 79.36 14340 1.59 64
10,6,6 17.33 2386 13.39 2125 3.36 454
10,7,5 11.54 1673 115.4 21687 3.18 286
10,8,4 39.98 3457 85.17 12595 38.9 3560

11,3,13 8.19 310 135.4 14005 3.42 18
11,4,10 11.68 606 849.3 98803 2.18 12
11,5,8 628.3 62145 76.52 10199 15.09 2331
11,6,7 1497 115092 × × 18.17 2687
11,7,5 5.15 100 3.66 144 3.21 81
11,8,3 427.5 26379 274.9 36739 187.8 30144

11,9,3 338 38996 465.5 60785 283.6 43524

11,10,3 24.09 2545 43.35 5454 22.09 3045

12,3,14 12.38 382 864.79 77133 8.85 217
12,4,11 × × × × 84.9 5459
12,5,9 × × × × 70.05 8639
12,6,7 132.7 19374 76.29 7403 6.25 114
12,7,6 21.91 622 × × 20.24 424
12,8,4 39.45 2502 49.44 3019 41.18 2630

510 J. Yip and P. Van Hentenryck

Table 4. An Analysis of the Benefits of the Atmost1 Constraint

ls-domain ls-domain + ls-domain + ls-domain +

bcll〈atmost1〉 bcsb〈atmost1〉 bcls〈atmost1〉
(g,s,w) Time Fails Time Fails Time Fails Time Fails

5,3,7 12.1 6274 11.73 6250 10.55 5376 10.31 5373
5,4,6 196.2 104570 169.4 102385 112 56260 102.5 56174
6,5,5 21.61 9948 15.88 9536 10.52 4849 8.42 4841
6,5,6 232.8 65734 169.5 63113 97.21 29639 79.06 29578
6,6,4 × × 1687 958106 × × 1775 890645

9,3,11 49.96 4254 31.67 4248 20.06 1989 16.46 1990

9,4,8 29.75 4031 15.17 3994 5.09 495 3.26 496

9,5,7 414.5 46835 156.1 44247 31.77 3460 16.08 3462

9,6,6 × × 1718 566144 121.6 17332 55.56 17332
9,7,5 × × × × 59.31 6923 20.9 6923
9,8,4 657 97659 172.5 72688 107.6 14609 37.21 14609

12,3,14 12.38 382 11.75 382 9.33 217 8.85 217
12,4,11 × × 1018 99989 128.3 5457 84.9 5459

12,5,9 × × × × 97.76 8639 70.05 8639
12,6,7 132.7 19374 126.1 19370 13.08 114 6.25 114
12,7,6 21.91 622 19.77 626 50 424 20.24 424
12,8,4 39.45 2502 46.1 2631 52.76 2630 41.18 2630

of the exponential propagator: bcll which only updates the length-lex bounds,
bcsb which only updates the required and possible, and the complete propagator
bcls. bcls〈atmost1〉 and bcsb〈atmost1〉 should produce the same search tree, while
bcll〈atmost1〉 and ls-domain should also explore the same but larger tree since
these models do not have extra propagation on the required and possible sets.3

Therefore the comparison between bcls〈atmost1〉 and bcsb〈atmost1〉 on the one
hand and bcll〈atmost1〉 and ls-domain on the other hand measures how much the
atmost1 propagator speeds up the convergence of the fixpoint algorithm. The
comparison between bcls〈atmost1〉 and bcll〈atmost1〉 measures the benefits from
the additional pruning obtained by propagating both bounds simultaneously.

Observe first that bcsb〈atmost1〉 can be significantly slower than bcls〈
atmost1〉. Instance (9,8,4) is particularly interesting in that regard. bcls〈atmost1〉
takes about 37 seconds, while bcsb〈atmost1〉 completes in about 107 seconds. So,
on this instance, bcls〈atmost1〉 speeds up the propagation by a factor close to
3 by using an exponential propagator. However, the results for bcll〈atmost1〉
show the significant benefits of additional propagation coming from the prod-
uct of the length-lex and subset-bound domains. Since both of them use the
exponential propagator for the length-lex component, the benefits come from

3 There are some differences between the number of failures in our implementation

since the fixpoint algorithm can halt prematurely, i.e., when the number of iterations

exceeds a threshold based on the number of constraints. Similar techniques are used

for continuous constraint propagation.

Exponential Propagation for Set Variables 511

Table 5. The Benefits of the exact1 Constraint on the Steiner Triple System

ls-domain ls-domain + ls-domain +

bcll〈exact1〉 bcls〈exact1〉
n Time Fails Time Fails Time Fails

7 0.01 0 0.01 0 0.01 0
9 0.01 1 0.01 1 0.01 1
13 0.02 51 0.01 1 0.02 1
15 0.04 73 0.04 1 0.04 1
19 0.17 140 0.15 0 0.19 0
21 0.35 192 0.26 0 0.40 0
25 5.63 912 0.55 0 2.66 0
27 12.61 1826 0.89 0 4.74 0
31 2.03 0 2.22 0 2.95 0
33 24.32 1714 4.33 1 19.47 0
37 1345.76 16178 24.24 0 1443.32 0
39 505.57 5248 21.92 0 1307.45 0
43 × × 403.20 0 × ×
45 × × 1344.79 0 × ×

the additional filtering, not the speed of the fixpoint algorithm. The experimental
results show significant improvements in efficiency in favor of the richer domain.
For instance, bcsb〈atmost1〉 terminates after 20 and 70 seconds on instances
(9, 7, 5) and (12, 5, 9), while bcll〈atmost1〉 does not terminate after 1,800 seconds.

Steiner Triple System. The model uses a static smallest index variable first
labeling strategy. When we label variable Xi, all lower indexed variables Xi′

(∀i′ < i) are bounded. We set si′ = Xi′ and introduce the exact1 constraint.

∀i′ < i : Xi′ is bounded
∀i′ < i, |Xi ∩Xi′ | = 1 �−→ exact1({Xi′ | i′ < i}, Xi)

Table 5 reports the experiment results on the exact1 propagator using the in-
stances in Table 2. Here the ls-domain with the length-lex bound propagator
(bcll〈exact1〉) gives the best results and improves the state-of-the-art consider-
ably. It solves two more instances that are unsolvable by the original model and
is several orders of magnitude faster than the original model and the BDD-SAT
formulations. What is particularly remarkable is that the model has almost no
failure on these instances and that the only benefit of the exponential propagator
is to speed up the computation of the fixpoint algorithm. The complete filter-
ing algorithm (bcls〈exact1〉) is much slower since it must explore a considerable
number of sets. The additional pruning that it brings is not compensated by the
increased computational costs. What this benchmarks shows is that speeding
up the fixpoint algorithm by exponential propagators may produce substantial
improvements in efficiency.

512 J. Yip and P. Van Hentenryck

7 Related Work

This section briefly reviews some related work on exponential propagation and
propagators. Perhaps the closest related work is the work on box consistency
in the Numerica system [23]. The key idea of box consistency was to avoid the
decomposition of a complex constraints into elementary ternary constraints. By
enforcing box consistency on the original constraint, these systems improve the
pruning, addresses the so-called dependency effect of interval propagation, and
tackle the fact that the fixpoint algorithm can take a long time to converge. Box
consistency was enforced by a potentially exponential algorithm. The Newton
and Numerica systems also include conditions to terminate the fixpoint algo-
rithm prematurely when the propagation was not reducing the search space
enough. Lebbah and Lhomme [12] considered the use of extrapolation methods
to speed up the convergence of filtering algorithms for continuous CSPs, also dra-
matically the efficiency on these problems. These techniques could potentially
be applied to set domains as well, but this paper took another, simpler, route:
Using exponential propagators that have a more global view of the problem at
hand. Also closely related is the work of Bessiere and Régin on solving CSPs on
the fly. They recognize that, on certain applications, the pruning offered by the
solver was not strong enough. They isolated a global constraint (i.e., the sum
of n variables taking different values) for which they did not design a specific
propagator. Instead, they use the CP solver recursively and solved CSPs on the
fly to enforce arc consistency. Once again, the result is to move some of the
exponential behavior from the search to the constraint propagation. Note also
that several pseudo-polynomial algorithms have also been proposed in the past,
including the well-known filtering algorithm for knapsack constraints [24].

8 Conclusion

Most research in constraint programming focuses on designing polynomial-time
filtering algorithms. This paper explored, for set CSPs, the idea of shifting some of
the exponential behavior from the search component to the filtering component,
and from the constraint-propagation algorithm to the propagators. It showed that
the product of the length-lex and subset-bound domains improves state-of-the-art
results significantly despite a potential exponential propagation algorithm. More
importantly, it presented exponential-time propagators for intractable unary in-
tersection constraints and demonstrated that they bring considerable performance
improvement by speeding up constraint propagation and increasing filtering. They
indicate that it may sometimes be beneficial to embrace complexity in the filtering
component and exploit the constraint semantics and locality, instead of relying on
rather agnostic search and constraint propagation algorithms.

References

1. Bessière, C., Régin, J.C.: Enforcing arc consistency on global constraints by solving

subproblems on the fly. In: Jaffar, J. (ed.) CP 1999. LNCS, vol. 1713, pp. 103–117.

Springer, Heidelberg (1999)

Exponential Propagation for Set Variables 513

2. Puget, J.F.: Pecos a high level constraint programming language. In: Proc. of Spicis

(1992)

3. Gervet, C.: Interval propagation to reason about sets: Definition and implementa-

tion of a practical language. Constraints 1(3), 191–244 (1997)

4. Sadler, A., Gervet, C.: Global reasoning on sets. In: Proceedings of Workshop on

Modelling and Problem Formulation (FORMUL 2001), held alongside CP-2001

(2001)

5. Azevedo,F.:Cardinal:Afinite setsconstraint solver.Constraints12(1),93–129(2007)

6. Bessière, C., Hebrard, E., Hnich, B., Walsh, T.: The complexity of global con-

straints. In: McGuinness, D.L., Ferguson, G. (eds.) AAAI, pp. 112–117 (2004)

7. Peter Hawkins, V.L., Stuckey, P.J.: Solving set constraint satisfaction problems

using robdds. Journal of Artificial Intelligence Research 24, 109–156 (2005)

8. Gervet, C., Van Hentenryck, P.: Length-lex ordering for set csps. In: AAAI (2006)

9. Sellmann, M.: On decomposing knapsack constraints for length-lex bounds con-

sistency. In: Gent, I.P. (ed.) CP 2009. LNCS, vol. 5732, pp. 762–770. Springer,

Heidelberg (2009)

10. Sadler, A., Gervet, C.: Hybrid set domains to strengthen constraint propagation

and reduce symmetries. In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 604–

618. Springer, Heidelberg (2004)

11. Malitsky, Y., Sellmann, M., Van Hoeve, W.: Length-Lex Bounds Consistency for

Knapsack Constraints. In: Stuckey, P.J. (ed.) CP 2008. LNCS, vol. 5202, pp. 266–

281. Springer, Heidelberg (2008)

12. Lebbah, Y., Lhomme, O.: Accelerating filtering techniques for numeric csps. Artif.

Intell. 139(1), 109–132 (2002)

13. Mercier, L., Van Hentenryck, P.: Edge finding for cumulative scheduling. IN-

FORMS Journal on Computing 20(1), 143–153 (2008)

14. Yip, J., Van Hentenryck, P.: Evaluation of length-lex set variables. In: Gent, I.P.

(ed.) CP 2009. LNCS, vol. 5732, pp. 817–832. Springer, Heidelberg (2009)

15. Downey, R.G., Fellows, M.R.: Fixed-parameter tractability and completeness ii:

On completeness for w[1]. Theor. Comput. Sci. 141(1&2) (1995) 109–131

16. Gange, G., Lagoon, V., Stuckey, P.: Fast set bounds propagation using a bdd-sat

hybrid. To appear in JAIR (2010)

17. Van Hentenryck, P., Yip, J., Gervet, C., Dooms, G.: Bound consistency for binary

length-lex set constraints. In: Fox, D., Gomes, C.P. (eds.) AAAI, pp. 375–380 (2008)

18. van Hoeve, W.J., Sabharwal, A.: Filtering atmost1 on pairs of set variables. In: Per-

ron, L., Trick, M.A. (eds.) CPAIOR 2008. LNCS, vol. 5015, pp. 382–386. Springer,

Heidelberg (2008)

19. Yip, J., Van Hentenryck, P., Gervet, C.: Boosting set constraint propagation for

network design. In: Lodi, A., Milano, M., Toth, P. (eds.) CPAIOR 2010. LNCS,

vol. 6140, pp. 339–353. Springer, Heidelberg (2010)

20. Barnier, N., Brisset, P.: Solving the kirkmanös schoolgirl problem in a few seconds.

In: Van Hentenryck, P. (ed.) CP 2002. LNCS, vol. 2470, pp. 477–491. Springer,

Heidelberg (2002)

21. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineer-

ing an efficient sat solver, pp. 530–535 (2001)

22. Colbourn, C.J., Dinitz, J.H., Ii, L.C., Jajcay, R., Magliveras, S.S. (eds.): The crc

handbook of combinatorial designs (1995)

23. Van Hentenryck, P., Michel, L., Deville, Y.: Numerica: a Modeling Language for

Global Optimization. The MIT Press, Cambridge (1997)

24. Trick, M.A.: A dynamic programming approach for consistency and propagation

for knapsack constraints. Annals OR 118(1-4), 73–84 (2003)

An Empirical Study of Optimization
for Maximizing Diffusion in Networks�

Kiyan Ahmadizadeh, Bistra Dilkina, Carla P. Gomes, and Ashish Sabharwal

Department of Computer Science, Cornell University, Ithaca NY 14853, USA

{kiyan,bistra,gomes,sabhar}@cs.cornell.edu

Abstract. We study the problem of maximizing the amount of stochas-

tic diffusion in a network by acquiring nodes within a certain limited bud-

get. We use a Sample Average Approximation (SAA) scheme to translate

this stochastic problem into a simulation-based deterministic optimiza-

tion problem, and present a detailed empirical study of three variants

of the problem: where all purchases are made upfront, where the budget

is split but one still commits to purchases from the outset, and where

one has the ability to observe the stochastic outcome of the first stage in

order to “re-plan” for the second stage. We apply this to a Red Cockaded

Woodpecker conservation problem. Our results show interesting runtime

distributions and objective value patterns, as well as a delicate trade-off

between spending all budget upfront vs. saving part of it for later.

1 Introduction

Many real-world processes are diffusive in nature, giving rise to optimization
problems where the goal is to maximize or minimize the spread of some en-
tity through a network. For example, in epidemiology, the spread of infectious
diseases in a human or animal network is a diffusion-based process. In ecology,
so-called metapopulation models capture the diffusion of species in a fragmented
landscape of habitat patches. Similarly, the adoption of a certain marketed prod-
uct by an individual may trigger his or her friends or fans to adopt that product
as well, suggesting viral marketing strategies in human networks. In the social
network setting, particularly in Internet-based networks such as Facebook and
Twitter, the spread of information between individuals is yet another diffusion
process. The stochastic nature of such diffusion processes, or cascades, and how
best to intervene in order to influence their outcomes, has been the study of
several recent papers in these areas [e.g. 2, 4, 6, 8, 10, 11, 13]. A key question
in this context is, if one had limited resources to purchase part of the network
to use either as the initially “active” nodes or as nodes that may participate in
the diffusion process, which nodes should one purchase?

We study this question with a focus on the case where the intervention bud-
get, instead of all being available upfront, is split into two or more time steps.
� Supported by NSF (Expeditions in Computing award for Computational Sustain-

ability, 0832782; IIS grant 0514429) & AFOSR (IISI, grant FA9550-04-1-0151). The

authors thank Yahoo! for generously providing access to their M45 compute cloud.

D. Cohen (Ed.): CP 2010, LNCS 6308, pp. 514–521, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

An Empirical Study of Optimization 515

We evaluate our techniques on a specific conservation problem in which the
diffusion process of interest is the dispersal and territory establishment of an en-
dangered bird species, the Red-Cockaded Woodpecker (RCW) [3, 5, 15]. Using
a stochastic model of the diffusion of RCW through geographic maps, we study
the solutions of three optimization variants that differ in when the conservation-
ist is allowed to make purchase decisions. The methodology and results apply
not only to RCW conservation but also to many other problems in the field
of computational sustainability [7], where maximizing or minimizing diffusion
is a commonly encountered problem in areas ranging from ecology to poverty
mitigation through food networks.

Formally, we pose this optimization task as a stochastic Mixed Integer Pro-
gramming (MIP) problem. Even extremely simple classes of stochastic linear pro-
grams are #P-hard [cf. 15]. However, an effective solution method with stochastic
optimality gap guarantees is the Sample Average Approximation (SAA) [14]. The
application of SAA to a formulation of the RCW conservation problem has been
previously evaluated on a real-life size instance, motivated by the actual data
for the RCW population in North Carolina [15]. In order to better understand
the effectiveness and scalability of this solution methodology from a computa-
tional perspective, we introduce a synthetic problem generator1 that uses real
map data as a basis for generating random instances. This analysis reveals sev-
eral interesting computational trends: an easy-hard-easy runtime pattern as the
budget fraction is varied, an increase in hardness as the “self-colonization” prob-
ability is increased, more runtime variation for instances that are harder to solve
(for a fixed budget), and a roughly inverse relation between the computational
hardness and the solution objective value (again for a fixed budget).

We also study a natural and realistic generalization of the problem where the
total budget is actually not available to be spent at the beginning but is rather
split into two stages. This modification significantly increases the computational
difficulty of the problem and makes it non-trivial to apply the SAA methodol-
ogy which was originally designed for the case where stochastic samples can be
drawn right upfront, rather than adaptively. Indeed, the most general approach,
a truly multi-stage stochastic version of the problem [1], has very limited scala-
bility. Instead, we consider two simpler problem variants that are more scalable:
committing to both first and second time step purchase decisions upfront (the
single-stage method for the split-budget problem) or committing to purchase de-
cisions for the first time step but re-evaluating what is best to purchase in the
second time step after observing the stochastic outcome of the first stage (the
two-stage re-planning method). Our experiments show that the re-planning ap-
proach, although computationally more expensive, does pay off—the solution
objective obtained through an SAA-style implementation of re-planning is often
significantly better than that obtained by the single-stage split-budget with all
purchase decisions made upfront; more interestingly, the value of information
gained from first stage observations can result in a re-planning objective that is
better than spending all budget upfront.

1 http://www.cs.cornell.edu/∼kiyan/rcw/generator.htm

516 K. Ahmadizadeh et al.

2 Problem Description, Model, and Solution Methods

A diffusion process can be quite complex; patch-based models [8] represent dif-
fusion as occurring on a network of nodes which become active upon the arrival
of the dispersing entity. Given a network of nodes (i.e., an undirected graph), a
network dispersion model specifies for each pair of nodes (r1, r2) the probability
that node r2 will become active at the next time step, given that r1 is currently
active. Similarly, if node r is currently active, it remains so after one time step
with a specified survival probability. In our optimization setting, we assume that
the process can only spread to nodes that have been purchased. We divide the
nodes into disjoint node sets with an associated cost and assume that a manager
making purchase decisions is limited by a budget in each time step. Given the
stochastic nature of the dispersion process, the overall goal is to maximize the
expected number of active nodes at a specified time horizon.

For our experiments, we consider a specific instance of this problem in which
the diffusing entity is the Red-Cockaded Woodpecker (RCW). Geographic ter-
ritories suitable for RCW inhabitance represent graph nodes, with territories
grouped into real estate parcels available for purchase. Node activity here rep-
resents the settlement of a territory by RCW members dispersing from other
territories. As in most conservation settings, the geographic territories must be
owned and maintained by conservationists for species members to survive there.

We formulate this problem as a stochastic Mixed Integer Program (MIP),
shown below. (One can create alternative MIP formulations of this problem as
well, using, e.g., network flow.) Let R be the number of nodes in the network,
P the number of node sets, H the planning horizon, C(p) the cost of node set
p ∈ {1..P}, B(t) the budget available at time step t ∈ {0..H− 1}, P (r) the node
set that node r ∈ {1..R} belongs to, and I(r) the 0-1 indicator of whether node
r is initially active (node sets containing an initially active node are assumed
to be already owned). Binary variables {y(p, t) | p ∈ {1..P} , t ∈ {0..H− 1}} cor-
respond to the action of buying node set p at time step t. Binary variables
{x(r, t) | r ∈ {1..R} , t ∈ {0..H− 1}} correspond to r being active at time t. The
constraints of the MIP encode the basic requirements discussed earlier in the
problem description. For lack of space, we refer the reader to [15] for details
and mention here only that the budget constraint (2) has been generalized to
include a time-step-specific budget and that ξt−1

r′,r are the stochastic coefficients
that follow the dispersion model probability for r′ and r.

In reality, we cannot directly optimize this stochastic MIP. Instead, we use
the Sample Average Approximation (SAA) method [14, 18], which uses random
samples from the underlying probability distribution of the stochastic parameters
to generate a finite number of scenarios and creates a deterministic MIP to
optimize the empirical average (rather than the true expectation) of the number
of active territories over this finite set of sampled scenarios. We will describe this
shortly. In this deterministic version of our stochastic MIP defined over a set of k
scenarios S1, S2, . . . , Sk, we still have one purchase variable for each node set at
each time step but k different activity variables for each node at each time step,
capturing the different diffusion activity in the k different scenarios. In other

An Empirical Study of Optimization 517

maximize
R�

r=0

x(r,H) such that

y(p, 0) = 1 ∀p ∈ initial (free) parcels (1)

P�

p=1

C(p) × y(p, t) ≤ B(t) ∀t ∈ {0..H − 1} (2)

H−1�

t=0

y(p, t) ≤ 1 ∀p ∈ {1..P} (3)

x(r, t) ≤
t�

t′=0

y(P (r), t′) ∀r ∈ {1..R} , ∀t ∈ {1..H} (4)

x(r, t) ≤
R�

r′=1

ξt−1
r′,r

x(r′, t − 1) ∀r ∈ {1..R} , ∀t ∈ {1..H} (5)

x(r, 0) = I(r) ∀r ∈ {1..R} (6)

words, the purchase decisions are synchronized amongst the different scenarios
but activity variables differ depending on which nodes were occupied in which
scenario. For the objective function, we simply sum up the activity variables
at the horizon for all k scenarios, thus optimizing the sum of active territories
(or, equivalently, the average activity) over the k scenarios at the horizon. This
results in an expanded deterministic formulation very similar to the one above,
and we denote it by MIP(S1, S2, . . . , Sk).2

While our MIP allows a budget constraint for each time step, in our exper-
iments we consider two variants. In the upfront variant, all budget is spent at
time step T = 0. In the split variant, the budget is split into (b1, b2) in a given
proportion between T1 = 0 and T2 < H , and is set to 0 for other time steps.

2.1 Sample Average Approximation and Re-planning

The SAA approach has been instrumental in addressing large-scale stochastic
optimization problems [14, 18]. It provides provable convergence guarantees—it
may over-fit for a small number of scenarios, but converges to the true opti-
mum with increasing training samples and provides a statistical bound on the
optimality gap. The SAA procedure works in three phases. In the TRAINING
phase, we generate N candidate solutions by creating N SAA MIPs with k train-
ing scenarios each and solving them to optimality. In the VALIDATION phase,
we generate M1 new validation scenarios, evaluate each of the N candidate so-
lutions on these scenarios, and choose the solution s∗ with the best validation
objective. In the TEST phase, we generate M2 fresh scenarios to re-evaluate
s∗, thus obtaining and reporting an estimate of the true objective value of s∗.
2 In the deterministic MIP, we add redundant constraints that force any variable x(r, t)

of a scenario to be set to 1 whenever the corresponding node set has been bought

and there was dispersal from nodes active at the previous time step.

518 K. Ahmadizadeh et al.

The test objective of s∗ is a lower bound on the true optimum while the av-
erage of the MIP objective of all N candidate solutions is a (stochastic) upper
bound on the optimum (see [15] for more details). The above procedure is ap-
plied to both the upfront and split budget models. For our experiments we set
N = 100, k = 10, M1 = 1000, M2 = 5000.

In the split budget setting, it is quite pessimistic to assume that decision mak-
ers cannot adjust purchase decisions based on first stage observations. The true
objective evaluation of a split budget purchase plan needs to be more “dynamic”
in nature—at the second decision time step T2 one can observe the events of the
past time steps and accordingly re-plan how to spend b2. Given a set of purchase
decisions for T1, we describe how to evaluate the expected objective value under
re-planning, assuming that at the second decision point T2, one would again
apply the SAA solution method to select purchase decisions. The re-planning
evaluation of a candidate solution s, representing purchase decisions made at T1
in the split budget model, is done as follows. We generate a sample set of F “pre-
fix scenarios” over the years 0..T2 − 1. For each prefix scenario and considering
all nodes sets purchased in s as being available for free at T2, we perform an SAA
evaluation as if we are at time step T2 and are solving the upfront model for the
remaining years and with budget b2. The SAA here is performed for N = 20,
k = 10, M1 = 100 and M2 = 500, for each of F = 100 prefix scenarios. Finally,
the re-planning objective of s is reported as the average SAA objective over the
F = 100 prefix scenarios.

3 Experimental Results

We use a graph of nodes derived from a topology of 411 territories grouped into
146 parcels, representative of a region on the coast of North Carolina of interest
to The Conservation Fund for RCW preservation. The dispersion model used for
this study is based on a habitat suitability score (an integer in [0, 9]) for each ter-
ritory as well as known parameters about the ability of birds to disperse between
territories at various distances [12]. Suitability scores were estimated using GIS
data from the 2001 USGS National Land Cover Dataset (NLCD) [16]. Parcels
(corresponding to node sets) were constructed using the US Census Bureau’s
“census block” divisions [17]. Using the base topology, we created several ran-
domized instances of the problem by (a) perturbing the suitability value by ±1
and (b) selecting different sets of initially active territories by randomly choosing
clusters of territories with high suitability.

We used Yahoo!’s M45 cloud computing platform running Apache Hadoop
version 0.20.1 to perform independent parts of our solution methods massively
in parallel. IBM ILOG CPLEX v12.1 [9] was used to solve all MIPs involved.

Runtime Distributions and Objective Value of MIP. We study the runtime to solve
the SAA MIPs (with k = 10 scenarios over H = 20 years) under different budgets
expressed as a fraction of the total cost of all parcels in the instance. Results are
presented in Fig. 1. Each point in these plots corresponds to the average runtime

An Empirical Study of Optimization 519

0.0 0.1 0.2 0.3 0.4 0.5
Budget

0

10

20

30

40

50
R

un
tim

e
(s

ec
on

ds
)

Mean Runtime (Budget Upfront)

80% Surv. Prob.
75% Surv. Prob.
70% Surv. Prob.
65% Surv. Prob.

0.0 0.1 0.2 0.3 0.4 0.5
Budget

0

50

100

150

200

250

300

350

400

450

R
un

tim
e

(s
ec

on
ds

)

Mean Runtime (Budget Split)

80% Surv. Prob.
75% Surv. Prob.
70% Surv. Prob.
65% Surv. Prob.

Fig. 1. Runtime (y-axis) as a function of budget (x-axis) for various extinction rates.

Left: all budget available upfront. Right: budget split into two time steps.

100 101 102 103 104

log Runtime (seconds)

10-5

10-4

10-3

10-2

10-1

100

lo
g

P
er

ce
nt

 M
IP

s
S

ol
ve

d

Log-Log Survivor Function of Runtimes

Fig. 2. Runtime distribu-

tion for instance map4-

30714 exhibits power-law

decay (log-log scale)

0 5 10 15 200

50

100

150

200

250

300

R
un

tim
e

(s
ec

on
ds

)

0

100

200

300

400

500

600

700

800

C
ol

on
iz

ed
 T

er
rit

or
ie

s

Mean Runtime and Objective 10% Budget Upfront

runtime
objective

0 5 10 15 200

100

200

300

400

500

600

700

800

R
un

tim
e

(s
ec

on
ds

)
0

100

200

300

400

500

600

700

800

C
ol

on
iz

ed
 T

er
rit

or
ie

s

Mean Runtime and Objective 10% Budget Split

runtime
objective

Fig. 3. The high variation in runtime on some instances

(lower curve) and the corresponding average MIP objec-

tive values (higher curve)

over 100 different samples of k = 10 scenarios of each of 20 different variations of
the basic map described earlier. The left pane shows the results when all budget
is available upfront, while the right pane considers the split-budget case. These
curves demonstrate an easy-hard-easy pattern as the budget parameter is varied,
and also indicate that the problem becomes harder to solve for higher survival
rates. Comparing the left and right plots, we see that the split-budget variant of
the problem is roughly 10x harder to solve than when all budget is available up-
front (notice the scales on the y-axis).

We evaluate in more detail the performance with 70% survival rate. Fig. 2
shows the distribution of the runtime for one particular variation of the base
map, called map4-30714, for 10% budget. All budget is available upfront and the
plot is derived from 100,000 runs. This figure demonstrates the typical runtime
distribution seen on this suite of instances: a power-law decay, indicated by the
near-linear (or super-linear) drop in the probability of “failure” or timeout (y-
axis) as a function of the runtime (x-axis) when plotted in log-log scale.

We next consider the relation between the running time and the objective
value of the SAA MIP, for both the upfront and split budget cases. The lower
curves in the plots of Fig. 3 show the average runtime and standard deviation
over 100 runs of each of 20 variations of the base map, where the 20 instances

520 K. Ahmadizadeh et al.

0.0 0.1 0.2 0.3 0.4 0.5
Budget

40

50

60

70

80

90

100

E
xp

ec
te

d
C

ol
on

iz
ed

 T
er

rit
or

ie
s

Objective Upper and Lower Bounds (Upfront and Split)

Upfront MIP
Split MIP
Upfront Test
Split Test

Fig. 4. SAA upper and lower bounds on

obj. value for upfront and split budgets

0.0 0.1 0.2 0.3 0.4 0.5
Budget

40

50

60

70

80

90

100

E
xp

ec
te

d
C

ol
on

iz
ed

 T
er

rit
or

ie
s

Test Objective Values (Upfront, Split, and Replanning)

Replanning

Upfront
Split

Fig. 5. Objective value of re-planning,

compared to upfront and split budgets

are ordered from low to high runtime. The upper curves show the corresponding
average objective value achieved for each instance (the variation in the objective
value was small). These plots indicate that for our test suite, instances that are
hard to solve often have a significantly higher runtime variation than instances
that are easy to solve. Moreover, the harder to solve instances typically result in
a lower objective value.

Evaluation of Sample Average Approximation and Re-Planning. We evaluate the
solution quality of the SAA approach as a function of the budget fraction. Fig. 4
presents results for both the upfront and split budget problems where the budget
is divided evenly between T1 = 1 and T2 = 10. The curves marked Upfront MIP
and Split MIP present the average MIP objective over the N = 100 candidate
solutions and are hence a stochastic upper bound on the true optimum. The
curves marked Upfront Test and Split Test are the estimated true quality of
the solution chosen (and hence provide a lower bound on the quality of the
true optimum). The difference between Upfront Test and Split Test measures
the penalty of not having all funds available in the first stage. The relatively
small gap between the upper and lower bounds confirms that our choice of SAA
parameters is good and that the solutions provided are very close to optimal.

Finally, we evaluate the advantage of re-planning in the stochastic setting of
our problem. Recall that we would like to understand the tradeoff between spend-
ing all available budget upfront vs. re-planning with a portion of investments at
a later stage after making stochastic observations. The balance is, in fact, quite
delicate. By spending too much money upfront, we leave little room for “adjust-
ing” to the stochastic outcome of the first stage. On the other hand investing too
little upfront limits the amount of possible variation in dispersion, thus limiting
the worth of stochastic observations. When splitting the budget evenly, making
second stage decisions at T2 = 10, re-planning often did not yield as good a re-
sult as investing all money upfront. Nonetheless, for other parameters such as a
30-70 split with T2 = 5, we found that re-planning begins to pay off, as is shown
in Fig. 5. The top curve in the plot corresponds to re-planning and shows that it

An Empirical Study of Optimization 521

can result in the occupation of more territories in our bird conservation example
than spending all budget upfront (the middle curve) or splitting the budget but
providing a single-stage style solution that commits to a certain set of purchase
decisions at the outset (the lowest curve).

In summary, our experiments have examined the complexity of optimizing
stochastic diffusion processes and the value of different planning methodologies.
Our results show the considerable benefits of making decisions upfront (e.g. in a
single-stage), and the benefits that re-planning based on stochastic observations
can have when decisions must be made in multiple stages.

References

[1] S. Ahmed. Introduction to stochastic integer programming. COSP Stochastic
Programming Introduction – http: // stoprog. org , 2004.

[2] Anderson, R., May, R.: Infectious diseases of humans: dynamics and control. Ox-

ford University Press, Oxford (1992)

[3] Conner, R., Rudolph, D., Walters, J., James, F.: The Red-cockaded Woodpecker:

surviving in a fire-maintained ecosystem. Univ. of Texas Press (2001)

[4] Domingos, P., Richardson, M.: Mining the network value of customers. In: KDD,

pp. 57–66 (2001), ISBN 1-58113-391-X

[5] US Fish and Wildlife Service. Red-cockaded woodpecker recovery plan (2003)

[6] Goldenberg, J., Libai, B., Muller, E.: Talk of the network: A complex systems look

at word-of-mouth. Marketing Letters 12(3), 211–223 (2001)

[7] Gomes, C.P.: Computational Sustainability: Computational methods for a sus-

tainable environment, economy, and society. The Bridge, NAE 39(4) (2009)

[8] Hanski, I.: Metapopulation ecology. Oxford University Press, USA (1999)

[9] IBM ILOG, SA. CPLEX 12.1 Reference Manual (2009)

[10] Kempe, D., Kleinberg, J., Tardos, É.: Maximizing the spread of influence through

a social network. In: KDD, pp. 137–146 (2003)

[11] Leskovec, J., Adamic, L., Huberman, B.: The dynamics of viral marketing. ACM

Transactions on the Web (TWEB) 1(1), 5 (2007)

[12] Letcher, B.H., Priddy, J.A., Walters, J.R., Crowder, L.B.: An individual-based,

spatially-explicit simulation model of the population dynamics of the endangered

red-cockaded woodpecker, picoides borealis. Biol. Conserv. 86(1), 1–14 (1998)

[13] McDonald-Madden, E., Baxter, P.W., Possingham, H.P.: Making robust decisions

for conservation with restricted money and knowledge. Appl. Ecol. 45(9), 1630–

1638 (2008)

[14] Shapiro, A.: Monte Carlo sampling methods. In: Ruszczynski, A., Shapiro, A.

(eds.) Stochastic Programming. Handbooks in Operations Research and Manage-

ment Science, vol. 10, pp. 353–426 (2003)

[15] Sheldon, D., Dilkina, B., Elmachtoub, A., Finseth, R., Sabharwal, A., Conrad,

J., Gomes, C.P., Shmoys, D., Allen, W., Amundsen, O., Vaughan, B.: Optimal

network design for the spread of cascades. Technical report, Cornell University

(April 2010), http://hdl.handle.net/1813/14917
[16] The USGS Land Cover Institute (LCI). USGS land cover (2001)

[17] US Census Bereau. Census data: 2009 TIGER/Line shapefiles (2009)

[18] Verweij, B., Ahmed, S., Kleywegt, A., Nemhauser, G., Shapiro, A.: The sample

average approximation method applied to stochastic routing problems: a compu-

tational study. Computational Optimiz. and Applications 24(2), 289–333 (2003)

http://stoprog.org
http://hdl.handle.net/1813/14917

An Integrated Modelling, Debugging, and Visualisation
Environment for G12

Andreas Bauer1,2, Viorica Botea1, Mark Brown1, Matt Gray1,2,
Daniel Harabor1,2, and John Slaney1,2

1 National ICT Australia (NICTA)�
2 The Australian National University

Abstract. We present G12IDE, a front-end for the G12 platform aimed at help-
ing users create and work with constraint models in a manner independent from
any underlying solver. G12IDE contains tools for writing and evaluating models
using Zinc and provides a feature rich debugger for monitoring a running search
process. Debugging a search, as opposed to debugging sequential code, requires
concepts such as breakpoints and queries to be applied at a higher level than in
standard debuggers. Our solution is to let users define special events which, once
reached in a search, cause the debugger to halt and give back, possibly in a vi-
sual manner, useful information on the current state of the search. G12IDE also
includes a number of visualisation tools for drawing graphs and trees, and ad-
ditionally allows users to create arbitrary domain-specific visualisations, such as
the drawing of a sequential plan when the constraint problem is in fact a planning
problem. The inclusion of such powerful and flexible visualisation toolkit and
its tight integration with the available debugging facilities is, to the best of our
knowledge, completely novel.

1 Introduction

G12 [15] is a software platform for solving combinatorial optimisation problems. It
supports linear and mixed integer programming, constraint propagation and inference
and a variety of other search and inference-based approaches for solving complex prob-
lems. Like several other modern modelling languages [5,6], it separates the “concep-
tual” or constraint model from the constraint program. In G12, the constraint model is
written in Zinc, a purely declarative language that can be mapped to a range of lower-
level models, and ultimately to constraint programs, which may solve the problem in
quite different ways. The clear separation of modelling from solving requires a shift
from thinking about problem solving in terms of programs and execution to thinking in
terms of models and search. This change in paradigm calls for new tools that directly
support working at such a high level.

In this paper we present G12IDE, a novel integrated modelling, debugging and visu-
alisation environment which has been developed largely in parallel to the rest of G12.

� NICTA is funded by the Australian Government as represented by the Department of Broad-
band, Communications and the Digital Economy and the Australian Research Council through
the ICT Centre of Excellence program.

D. Cohen (Ed.): CP 2010, LNCS 6308, pp. 522–536, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

An Integrated Modelling, Debugging, and Visualisation Environment for G12 523

Built on top of the Eclipse platform,1 G12IDE has a similar look-and-feel to a classical
programming environment. It offers support for the modelling of constraint problems
via an integrated Zinc editor, performs automatic builds and allows step-wise debugging
of an active search process.

Our debugging system is built around an explicitly defined (and solver agnostic)
schema which specifies a wide range of “interesting” search events that a user may
“subscribe” to. For example, it is possible to pause the search when a variable has
become grounded, when the search has reached a fixpoint or when a solution has been
found. Furthermore, existing search events can be combined together to create new
custom search events. This allows for a high degree of control over the search process
at varying levels of granularity.

Our environment also allows constraint problems to be visualised. Users can choose
between pre-defined visualisations, such as a constraint graph and search tree, or alter-
natively may define their own. The latter is facilitated by drawing objects in a simple
graphics editor and animating them using a dedicated scripting language. In this way,
not only are generic views (trees, graphs) available, but it is also possible to visualise
problems in a more domain-specific manner. For example, a planning problem can be
visualised by drawing the execution of the plan so far as well as the possible choices in
the current search node. The inclusion of such a powerful and flexible visualisation tool
in the IDE, and its tight integration with the available debugging facilities, is to the best
of our knowledge, completely novel.

Outline. The rest of this paper is organised as follows. In the next section, we provide
more conceptual details on debugging a running search, outlining the differences from
classical debugging and the specific challenges of our domain. In Sec. 3, we give a brief
architectural overview on the G12IDE, and explain its main components, or layers. The
modelling layer is explained in greater detail in Sec. 4, and the visualisation layer in
Sec. 5. The technical realisation of our debugging layer, or rather its relation to the
underlying constraint solver, is explained in Sec. 6. Finally, Sec. 7 contains references
to related work, while a brief summary and conclusions of our paper are to be found in
Sec. 8.

2 Debugging Search

Bugs—errors or infelicities—may exist anywhere in the software system. They may af-
flict the model, the data, the mapping down to solvers or the underlying programs. Bugs
in the code of solvers are not our present concern: we assume the constraint program
and its associated constraint solvers work perfectly unless forced to conclude otherwise.
Instead, we focus on bugs that may arise during the development of a constraint model.

Errors in the model may call for correctness debugging, if they affect semantics by
allowing unintended solutions or by excluding intended ones. It is also common for
models to contain logically correct but poorly expressed constraints. Such situations
can frequently limit the effects of propagation and so performance debugging of the
model may also be required. We thus require debugging tools which detect either static

1 http://www.eclipse.org/

524 A. Bauer et al.

features of constraint models or dynamic features of the search process, and report them
to us in a form appropriate to the high level at which we wish to think about constraint
problems.

In a sense, this is a radical departure, but in another sense it is little different from
the concept of debugging at other levels. Consider a debugger for C programs, for in-
stance. It works with an ontology appropriate to programming at that level. It allows
breakpoints to be set on lines of the C code or on C functions, not on assembly-level in-
structions, and when stepping to the next instruction, it breaks on the next C line rather
than on the next machine instruction or the next clock cycle. When it reports the values
of variables, these are variables declared in C, not the contents of registers and accumu-
lators. Moving up from the level of program and execution to that of model and search
is more of the same. Breakpoints and steps for our purposes should make sense in terms
of search: “step to the next node of the search tree” and “break whenever propagation
reaches a fixpoint” belong at this level, whereas “step over the next function call in the
SAT solver” does not. Similarly, when we ask for the values of variables, we want to
know the domains of decision variables declared in the Zinc model, not the details of
whatever data structures these have turned into after mapping to solvers.

The task of our debugger is to monitor the search process, which requires it to place
breakpoints in low-level code in order to collect information with which it can maintain
models of the current search state, and then to pass just the right information, on de-
mand, to the front-end tools which display it. Managing this in a systematic way seems
to be new in constraint programming, so we have had to design an architecture for the
search debugger at the same time as experimenting with modes of visual presentation
in order to present abstractions of the search states which are likely to be useful. Details
of our design decisions and the resulting tools are presented in the next sections.

3 Architectural Overview

Our environment can be described in terms of a three-tier architecture comprising a
Modelling Layer, a Solving Layer and a Visualisation Layer. Fig. 1 illustrates this idea.

The Modelling Layer is where most of the interaction with the user takes place. It
comprises two components: The first is a dedicated code editor for Zinc which offers
features such as syntax checking, syntax highlighting, and standard Eclipse function-
ality such as project-based code separation. The second component is a Visualisation
Editor which includes a simple canvas for drawing objects and an associated text editor
for writing animation scripts. The idea is to create a custom visualisation by drawing
objects on the canvas and then writing a script to define their behaviour in response to
specified search events (e.g. changing the colour or position of an object in response
to a variable becoming grounded). Sec. 4 describes the components of the Modelling
Layer in more detail.

The Solving Layer comprises the main interface to the rest of the G12 platform (i.e.,
the different solvers) and our environment. Given a Zinc model, the Solving Layer is
responsible for invoking the solvers, maintaining communication between the solver
monitor and the debugging interface and is responsible for sending any updates regard-
ing the state of the running search process to the appropriate visualisers. Sec. 6 contains
a detailed discussion of the different components in the Solving Layer.

An Integrated Modelling, Debugging, and Visualisation Environment for G12 525

Fig. 1. The G12IDE architecture. Most features can be categorised into one of three distinct lay-
ers: modelling, solving or visualisation.

The Visualisation Layer is comprised of three dedicated visualisers: a Constraint
Graph Viewer (CGV), a Search Tree Viewer (STV) and a Custom Visualisation Viewer
(CVV). The first two are highly specialised, offering a range of features specific to the
display of graphs and trees. The CVV on the other hand is extremely generic; while
intended principally for 2-dimensional diagrams, it can display arbitrary graphics. Its
applicability is thus limited only by the constraint programmer’s imagination. Each
visualiser requires certain input files to function. In the case of CGV and STV the
model itself suffices. The CVV also requires a visualisation script. For details on these
viewers as well as the scripting language, see Sec. 5.

4 The Modelling Layer

Two components make up the Modelling Layer: a Zinc Editor and a Visualisation Edi-
tor. To better illustrate these tools and their use, we shall refer to the meet-pass problem
as a running example. This is a standard (if not very difficult) benchmark problem in AI
planning, described as follows:

The Meet-Pass Problem

Five sectors of railway track, S1, . . .S5, are linearly connected. There is a sid-
ing accessible from S3 big enough to hold one train. Initially, there are trains
in sectors S1, S2 and S4. The safety rules are that no two trains may be in the
same sector at the same time, and no train may enter a sector occupied by an-
other train, even if that other train is about to move on. Trains may only move
to adjacent sectors, of course. Find the shortest plan that moves the train on S1
to S5 and returns the other two trains to their starting positions.

While this is a toy example, the problem class from which it comes is real enough:
meet-pass planning is a constant issue in scheduling train movements. Fig. 2 shows a

526 A. Bauer et al.

Fig. 2. Meet-pass planning problem in MiniZinc

MiniZinc encoding of the problem given that the optimal plan length is known to be 12
moves (13 timesteps). The four constraints are quite simple: the first is a safety condition
which could be written using the all different global if we wished; the second is
trivial; the third says that trains can’t jump and the fourth encodes the remaining safety
condition.

4.1 The Zinc Editor

The Zinc Editor (shown in Fig. 3(a)) allows users to write constraint models in the main
input languages of the G12 platform: Zinc and MiniZinc [12]. It has a range of features
which are typical for code editors in other integrated development environments. For
example, automatic syntax checking and highlighting, in-line error reporting, and an
outline window to assist with code navigation are standard. Another largely standard
feature offered by the Zinc Editor is project-based code management, which simplifies
the task of keeping models, data files and related visualisation scripts together. Since
the Zinc Editor directly extends the standard Eclipse code editor it is easy to augment
its functionality via third party libraries or “plugins”. For example, it is trivial to add
support for other programming languages (such as java) or add features to help with
revision control.

An Integrated Modelling, Debugging, and Visualisation Environment for G12 527

(a) The Zinc Editor includes features com-
mon to many programming environments:
syntax highlighting (1), outline views (2)
and project-based code management (3) are
all standard.

(b) The Visualisation Editor drawing tool.
Shown are some domain-specific shapes
(trains, tracks) that we have drawn for the
Meet-pass problem.

Fig. 3. The two main built-in editors of the G12 IDE

4.2 The Visualisation Editor

The Visualisation Editor is a vector-oriented drawing tool and an associated script editor
which together are used to define arbitrary visualisations of the model as it is being
solved.

A new visualisation is created by first drawing a small set of shapes (in the drawing
tool) where each shape represents an object or concept specific to the domain of the
constraint problem. In the case of Meet-pass for example we might draw a train and
some different types of tracks (as shown in Fig. 3(b)). Next, a visualisation script is
created which animates the drawn objects – usually in response to some search data
received from the solving process. Our visualisation scripts are written in the Lua lan-
guage and thus both flexible and powerful. We chose Lua because it is portable and
lightweight but as we will discuss in Sec. 5, G12IDE can be extended to support any
arbitrary programming language.

The basic operation of a visualisation script is straightforward: Each shape defined
via the drawing tool is available as a template that can be instanced by the script. Once
an instance is created the shape can be programmatically positioned to anywhere on
the canvas. Other attributes of the templated shapes (such as their size, colour, orien-
tation and opacity) can be likewise modified at any point. Further details related to
the integration of the scripting language into G12IDE and the operation of the Custom
Visualisation Viewer are given in Sec. 5.

5 The Visualisation Layer

G12IDE offers three distinct visualisers: a Constraint Graph Viewer (CGV), a Search
Tree Viewer (STV) and a Custom Visualisation Viewer (CVV). The first two are pre-
defined and highly optimised visualisations specific to constraint problems and search.

528 A. Bauer et al.

(a) A typical constraint graph. Nodes repre-
sent variables and edges, constraints.

(b) A typical search tree. Each node is a do-
main split. The deltas are collapsed subtrees.

Fig. 4. The search tree and constraint graph visualisers

The third is more general; it can display any arbitrary visualisation which has been
developed with the Visualisation Editor (see Sec. 4). We discuss each in turn.

5.1 Pre-defined Visualisations

The STV visualises a constraint solver exploring the search space. It expands and draws
a search tree in a step-wise manner that shows decision points, backtracking operations,
domains of variables and other information which is useful when inspecting a search
tree. Fig. 4(b) shows a typical result. A range of controls is available to speed up, slow
down, pause and resume the solving process. It is also possible to collapse and expand
entire branches of the tree to speed up drawing time. Additionally, as tree search al-
gorithms can take a long time to complete, we have implemented the “recursive tree
estimator” of Kilby et al [10] to provide the user with some indication of how long the
solving process is likely to take.

The CGV visualises the solving process using a constraint graph—a useful represen-
tation of the structure of a problem. In its simplest form a constraint graph is composed
of a set of nodes representing decision variables and a set of edges which represent con-
straints between them. An alternative representation draws each constraint as a node
and adds an edge only if two constraints share a decision variable. CGV supports both
types. Updating CGV during the solving process usually amounts to either highlighting
or graying out or even hiding instantiated variables and satisfied constraints, and then
recovering them on backtracking. This allows the user to see the search progressing
through the constraint graph or maybe jumping from one part of it to another. Adding
and deleting constraints during the search is less common, but occurs for example when
SAT solvers learn nogoods. As the number of constraints and variables in a typical model
can be quite large a natural problem which arises is how best to draw the graph. We solve
this issue by adopting various force-directed layout algorithms [13,7]. Fig. 4(a) shows a
typical result for a scheduling problem. For small graphs, the user may prefer to position
nodes by hand: CGV also provides a drag-and-drop facility to support this. The same set
of controls used by the STV over the solving process also apply to CGV. In fact, both
CGV and STV can be displayed at the same time.

An Integrated Modelling, Debugging, and Visualisation Environment for G12 529

5.2 Custom Visualisations

Both CGV and STV are problem-independent and always available. However, it is often
the case that a constraint problem lends itself to a domain-specific visualisation which is
more informative. This might show a partial plan for a planning problem, an unfinished
Gantt Chart for a scheduling problem or, in the case of one well known CSP problem,
queens on a chess board.

Accordingly, we have developed a Custom Visualisation Viewer (CVV) which al-
lows users to create their own domain-specific visualisations in two steps: first, users
draw some domain specific objects in the Visual Editor’s drawing tool; e.g., a train, a
queen, and so forth. Second, users write a short script which controls how these shapes
should be drawn on the canvas. To facilitate the creation of such scripts G12IDE offers a
very simple API that allows for arbitrary scripting languages to be integrated and used.
As a proof of concept we currently provide support for the Lua [8] language.

Any arbitrary visualisation script will, as a minimum, need to implement a step()
method which will be invoked every time the debugger is paused as a result of reaching
some break condition (see Sec. 6 for more details about break conditions). In the course
of the step() function the script will usually need to call one or both of the following
methods (possibly multiple times):

– g12GetFromData(var). This method fetches the current contents of the decision
variable var and makes its value available to the script.

– g12Draw(obj, props). This method sets a list of properties, props, for object obj,
where props may contain items such as the object’s positions on the canvas, colour,
opacity, scaling factor, etc.

5.3 Support for Other Scripting Languages

The choice to use Lua as the default language of the CVV was a simple one: it is
portable, lightweight and often used in similar contexts (for example by the video games
industry). Lua also offers an intuitive syntax, straightforward control and data structures
as well as a simple type system that can be picked up with minimal effort by anyone fa-
miliar with an existing programming language. However, we could as well have chosen
Python, Lisp, or any other language which supports Java integration. If besides Lua, we
wished to offer, say, Python as a scripting language, we would basically have to imple-
ment the above g12-* calls in a Python program that in turn invokes the corresponding
methods of our IDE. There are only two files specific to the integration of Lua, whose
length is less than 1000 loc: the first file is a Lua script which contains the API calls
to the IDE, and the second a Java class handling the invocation of the Lua interpreter.
How this interaction between the script, the underlying interpreter and the main IDE is
technically realised is schematically depicted in Fig. 5. The aforementioned two files
are depicted as “Lua Plugin”, written entirely in Java, and “Lua API”, written in Lua.
Strictly speaking, the latter is part of the Lua Plugin itself and provided by it. The user
who writes a Lua script, merely has to include this file to be able to issue the relevant
g12-* calls from inside the Lua script.

530 A. Bauer et al.

Fig. 5. Schematic overview of visualisation of user-defined scripts. Note that the Lua Plugin pro-
vides a bridge between the Custom Visualisation Viewer (not shown) and the Lua Interpreter.

5.4 Performance Debugging with the Custom Visualisation Viewer

Since all visualisations have in common that they are able to be displayed in real-time,
i.e., synchronised with relevant events in an ongoing search, they are also often useful
for performance debugging. Performance debugging concerns the effectiveness of the
encoding of a given problem. For example, in the meet-pass problem, one of the con-
straints says that a train may not enter a sector if there is already a train there, even if
that train is about to move on. This can be read: “you cannot have a track sector occu-
pied by trains at successive times, except in the degenerate case where it’s one train that
does not move,” and formulated in Zinc as:

constraint
forall(t in 1..ntrains, x in 2..nsteps)(
pos[x,t] == pos[x-1,t] \/
forall(u in 1..ntrains)(pos[x-1,u] != pos[x,t]));

While logically correct, this does not cause all the propagation of constraints to happen
that one would expect. In particular, at the start of the search, one would expect the
solver to have worked out that train 1 (i.e., the left top-most/red train) has to be in
track sector 1 at time 2. However, as can be seen in the visualisation, the propagation
effectively places trains 1 and 2 on sectors 1 and 2 at time 1, but somehow fails to
remove sector 2 from the domain of pos[2,1]. While it may be possible to deduce
this situation merely from looking at the assignments of variables in the debugger’s data
view, it is far easier to spot in the custom visualisation (see Fig. 6).

Noting this, we rephrased the above requirement as “No two different trains can
occupy the same sector at successive times,”:

constraint
forall(t,u in Trains where t != u)(
forall(x in 2..nsteps)(pos[x-1,u] != pos[x,t]));

The expected propagation then happens. In our experiments, we have found that custom
visualisations like this are not only useful to display results, but also to detect perfor-
mance bottle-necks that stem from weak propagations like these.

An Integrated Modelling, Debugging, and Visualisation Environment for G12 531

Fig. 6. The missing train: pictures of meet-pass at the start of a search. Propagation should de-
duce the position of the train at the second timestep (top picture), but in the original formulation
(bottom picture) it failed to do so.

6 The Solving Layer

The Solving Layer is comprised of three components: the solver platform itself, a solver
monitor which collects detailed information about the solving process, and a debugging
interface which is used to control the stopping and starting of the solving process. Fig. 7
provides an overview of our architecture. The solver monitor and the debugging inter-
face run in separate processes; communication between them is achieved by way of
an XML-based messaging system where each message is validated against an exter-
nal XML Schema2. The same schema also defines the set of supported Zinc data types
which the monitor recognises and tracks during search.

Conceptually, the communication between solvers and the IDE is purely event-driven.
Debugger events are defined separately from the solver code. A number of pre-defined
API calls are inserted at the relevant points in the solver to trigger the events if a debug-
ging run has subscribed to them; that is, enabled their sending by the solver when they
occur. Events that are subscribed to may simply update the debugger’s search model or
may also suspend the search until the user decides to continue. At such breakpoints, the
front-end debugging tools query the internal model of the search for the information
they need by following the XML-based communication protocol between the IDE and

2 http://www.w3.org/XML/Schema

532 A. Bauer et al.

Fig. 7. A closer view of the solving layer. The debugger may be invoked once a model is passed
to the constraint program. Note however that the debugger never communicates with the solver
directly; rather all communication is via the solver monitor. In addition to controlling the starting
and stopping of the solving process the debugger is also responsible for forwarding incremental
updates about progress of the solver to the various visualisers.

the solver monitor. The solver adhering to the solver monitor’s API, however, does not
have to implement this protocol, which is already handled by the solver monitor.

Our two-process system is highly flexible; by removing any direct dependencies be-
tween the solver and interface we are able to transparently substitute one solver for
another. A further advantage arising from such a separation is that the solving process
can be executed on a completely different (and possibly faster) machine than the one
which is running G12IDE. It is entirely possible therefore to commoditize the solving
program as an online “service” to which users submit constraint models and from which
they receive solutions that can be later visualised in domain-specific terms.

6.1 The Solver Monitor

Invoking the solving process with a debugging flag enables the solver monitor that is
attached to the solver. The monitor adheres to a “certainty principle”: it observes the
solving process without affecting its course in any way. Before solving commences,
a two-way communication channel is opened between the monitor and the debugging
interface. We use separate sockets for the requests to and responses from the monitor.
This avoids latency problems if a large number of requests need to be sent at one time.

There are three kinds of requests made to the solver monitor: configuration requests
that modify the state of the monitor by setting and resetting print or break conditions,
status requests that ask for information about the state of the solver (when stopped)
and resume requests that cause the solver either to step to the next event or continue
until reaching a break condition. Configuration requests may be specific to a particular
variable or constraint but can equally apply to an entire class of events. For example, it
is possible to pause the search when the solver splits on a particular variable or on any
arbitrary variable. Meanwhile a status request can be used to find out the domain of a
particular variable or to query the solver about some aspect of its search strategy.

Responses from the monitor include: solver events, status updates and messages
indicating when the solver has stopped. Status updates are generated in direct response

An Integrated Modelling, Debugging, and Visualisation Environment for G12 533

to status requests. Solver events meanwhile are generated whenever the monitor detects
that the solving process has reached a point corresponding to a print or break condition.
For example, it is possible to generate a solver event message in response to changes to
variables and constraints, progression through the search (such as the beginning or end
of a propagation phase, or upon reaching a choicepoint or fixpoint) and on the creation
of new variables and constraints.

One significant challenge in designing the solver monitor was to resolve the follow-
ing dilemma: in order to provide maximum flexibility to the visualisation components
we need to be able to report detailed information about fine grained search events; at the
same time we need to limit the communication between the monitor and the debugging
interface as the amount of generated data could easily grow to gigabytes. Our solution is
for the solver monitor to maintain an internal table of print and break conditions. Each
entry in the table determines what data to send when the solver generates a correspond-
ing search event. Initially the table is empty, optimising the monitor for the “do nothing”
case. However, when the solver is paused, configuration requests from the debugging
interface are able to modify the table and add (or remove) print or break conditions as
required. This way, if a custom visualisation only looks at part of the model it need not
incur any overhead associated with processing unrelated events.

6.2 The Debugging Interface

The debugging interface (Fig. 8) provides a variety of mechanisms for controlling
the search process and inspecting the model instance under evaluation. A number of
“stepping” commands, each operating at varying levels of granularity, are available to
progress the search to any given point. Analogues of familiar debugging commands
such as “step into”, “step over” and “step return” are available to direct the solver to the
next event, the (beginning and end of the) next propagation phase and the next solution
respectively.

The familiar Eclipse debugging views, which traditionally show information about
the call stack of the current program and the variables on its heap, have been adapted
to display information about the solving process. Variables and constraints are shown
in an expanding tree, with attributes associated with each such as variable domain or
constraint status (whether it is awake, asleep or killed). After each stepping command
attributes that have changed are highlighted, similarly to the highlighting of changed
data structures in other Eclipse debuggers.

Fig. 8. The debugging controls

534 A. Bauer et al.

Fig. 9. User-defined breakpoints view. The C button advances the solver to the next event speci-
fied by the user.

In addition to the pre-defined debugging commands, the IDE allows for custom de-
bugging commands definition, to include only search events that are of interest for the
user. For instance, the user might be interested only in changes made to the bounds of
decision variables. In such a case, they can create a new breakpoint that contains only
the “min” and “max” events. The bottom left part of Fig. 9 shows an example of such a
breakpoint, called “Variables changed“, whereas the bottom right part shows the search
events that the breakpoint is made of. The tick mark next to the breakpoint name shows
which breakpoint is currently enabled. Pressing the C button sends a request asking for
a break every time one of the events belonging to the selected breakpoint occurs.

7 Related Work

There already exist a number of IDEs to support constraint programming systems, some
of which provide facilities for visualising constraints in various ways. ECLiPSE CLP
[3] for example, allows the modeller to draw a range of charts and graphs of the solver
output, whereas ILOG OPL Studio [2] offers a search tree view similar to the one of-
fered by the G12IDE. Choco [1], on the other hand, is more geared towards Java devel-
opers who will write their own visualisation tools from scratch, and integrate the Choco
Java library as a solver.

There has been work on the use of abstract views of constraints and search to support
debugging of constraint programs. The most systematic account is probably that of the
DiSCiPl project [4] about a decade ago, which produced a sophisticated search tree
viewer and a number of other tools for use with CHIP. OzExplorer [14] was developed
at about the same time.

An Integrated Modelling, Debugging, and Visualisation Environment for G12 535

Declarative debugging [11] for Prolog and other logic programming and functional
programming languages is related to our approach and could be applied to CP search.
It has been studied over many years and many tools were developed. However, it is
focused on correctness debugging, which in our experience is rarely the main concern
in Zinc modelling. Moreover, the existing tools generally operate at a lower level than
those we have developed for G12: we regard debugging a G12 constraint program as a
very different activity from debugging the Zinc model.

Drawing tools producing scriptable SVG images are of course well known, and some
of them are much more highly developed than the rather simple one we provide. The use
of custom views as a way of presenting solutions is also quite standard [9]. However,
coupling such a generic tool, including the Lua script editor, to the rest of the debugging
package is new with G12IDE.

8 Summary and Conclusions

We presented G12IDE, a front-end for the G12 platform aimed at helping users create
and work with constraint models in a manner independent from any underlying solver.
Besides offering users an intuitive interface for the G12 platform, it provides advanced
features such as debugging a running search and the (custom) visualisation of this process.

Debugging search is in several ways fundamentally different from classical debug-
ging of code. We first had to create a mental model of this process, i.e., define what the
relevant concepts and notions are to make this process useful and technically feasible,
before attempting an implementation as part of our IDE. Our model is based on a solver
monitor which notifies the IDE when relevant events, defined by the user, have occurred
in the search to pass control back to the IDE. When this happens, users have the free-
dom to chose between pre-defined visualisations also known from other, similar IDEs,
but also to run their own in this step-wise manner. While supporting this novel model
of debugging, we saw it as important to stick as closely as possible to the interface of a
classical debugger in order to leverage the application of this new idea. It is also worth
noting that there is no opposition between this form of debugging and classical offline
profiling: both are useful and one can use both to get a better understanding of how
a problem gets solved. Tighter integration of profiling and debugging tools is, in fact,
subject to future work and therefore beyond the scope of the present paper.

Custom visualisations, as we have demonstrated using the example of the meet-pass
trains, are a useful tool not only to demonstrate high-level and rather coarse properties
of a constraint problem, such as the size of its domains, but also to highlight internals
of the actual solving process, such as the order of constraint propagation which takes
place. As such, visualisations are a useful tool for debugging.

To the best of our knowledge, these core features together with the extensibility of
the G12IDE are unmatched in similar front-ends to constraint programming systems.
G12IDE is available from the central MiniZinc homepage currently located at the ad-
dress http://www.g12.cs.mu.oz.au/minizinc/.

Acknowledgements. We thank the NICTA G12 team for their valued help and assistance
in the development of this work.

536 A. Bauer et al.

References

1. Choco Constraint Solving Toolkit., http://www.emn.fr/z-info/choco-solver/
2. ILOG OPL Studio, http://www.ilog.com/products/oplstudio/
3. Apt, K., Wallace, M.: Constraint logic programming using ECLiPSe. Cambridge University

Press, Cambridge (2007)
4. Deransart, P., Hermenegildo, M.V., Maluszynski, J. (eds.): DiSCiPl 1999. LNCS, vol. 1870.

Springer, Heidelberg (2000)
5. Flener, P., Pearson, J., Ågren, M.: Introducing ESRA, a relational language for modelling

combinatorial problems. In: Bruynooghe, M. (ed.) LOPSTR 2004. LNCS, vol. 3018, pp.
214–232. Springer, Heidelberg (2004)

6. Gent, I.P., Miguel, I., Rendl, A.: Tailoring solver-independent constraint models: A case
study with ESSENCE and MINION. In: Proc. 7th Symposium on Abstraction, Reformulation
and Approximation (SARA), pp. 184–199 (2007)

7. Harel, D., Koren, Y.: A fast multi-scale method for drawing large graphs. J. Graph Algorithms
Appl. 6(3), 179–202 (2002)

8. Ierusalimschy, R., de Figueiredo, L.H., Filho, W.C.: Lua—an extensible extension language.
Softw. Pract. Exper. 26(6), 635–652 (1996)

9. Jones, C.V.: Visualization and Optimization. Kluwer, Boston (1996)
10. Kilby, P., Slaney, J.K., Thiébaux, S., Walsh, T.: Estimating search tree size. In: Proc. of the

Twenty-First National Conference on Artificial Intelligence (AAAI). AAAI Press, Menlo
Park (2006)

11. Lee, N.: A declarative debugging scheme. Journal of Functional and Logic Programming,
1997(3) (April 1997)

12. Nethercote, N., Stuckey, P.J., Becket, R., Brand, S., Duck, G.J., Tack, G.: MiniZinc: Towards
a standard CP modelling language. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp.
529–543. Springer, Heidelberg (2007)

13. Quigley, A.J., Eades, P.: Fade: Graph drawing, clustering, and visual abstraction. In: Graph
Drawing, pp. 197–210 (2000)

14. Schulte, C.: Oz explorer: A visual constraint programming tool. In: Proc. of the 14th Inter-
national Conference on Logic Programming (ICLP), pp. 286–300. MIT Press, Cambridge
(1997)

15. Wallace, M., The G12 team: G12 - Towards the Separation of Problem Modelling and Prob-
lem Solving. In: van Hoeve, W.-J., Hooker, J.N. (eds.) CPAIOR 2009. LNCS, vol. 5547, pp.
8–10. Springer, Heidelberg (2009)

http://www.emn.fr/z-info/choco-solver/
http://www.ilog.com/products/oplstudio/

D. Cohen (Ed.): CP 2010, LNCS 6308, pp. 537–551, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Global Constraints on Feature Models

Ahmet Serkan Karataş, Halit Oğuztüzün, and Ali Doğru

Middle East Technical University, Department of Computer Engineering,
06531 Ankara, Turkey

{karatas,oguztuzn,dogru}@ceng.metu.edu.tr

Abstract. Feature modeling has been found very effective for modeling and
managing variability in Software Product Lines. The nature of feature models
invites, sometimes even requires, the use of global constraints. This paper lays
the groundwork for the inclusion of global constraints in automated reasoning
on feature models. We present a mapping from extended feature models to
constraint logic programming over finite domains, and show that this mapping
enables using global constraints on feature attributes, as well as features, for a
variety of analysis operations on feature models. We also present performance
test results and discuss the benefits of using global constraints.

Keywords: Global constraints, feature models, constraint logic programming
over finite domains.

1 Introduction

Production lines aim to reduce the development costs, enhance the quality of
products, reduce maintenance efforts and ease project management. Within the recent
decades, as software products and software-intensive systems became larger and more
complex, Software Product Lines (SPLs) attracted more attention in both academic
and industrial communities.

A key concept in SPLs is capturing the commonality and the variability in the
family of the products within the scope. Among different proposals, feature modeling
[11] has proven to be very effective for modeling and managing variability in SPLs. A
feature is a distinguishable characteristic of a concept (e.g. context, system,
component, functionality) that is relevant to some stakeholder of the concept [15]. A
Feature Model is a hierarchically arranged set of features, the relationships among
these features that determine the composition rules and the cross-tree constraints, and
some additional information, such as trade-offs, rationale, and justifications for
feature selection.

A number of analysis operations have been proposed to reason about feature
models. These operations are used to reveal certain characteristics of a feature model.
For instance, questions such as “how many products can be derived from this feature
model?”, “which are the core features, which are the variant features?”, “is this a
valid product with respect to this feature model?” are answered using analysis
operations. However, industrial experiences showed that feature models often grow
large with hundreds, even thousands of features and complex cross-tree relationships

538 A.S. Karataş, H. Oğuztüzün, and A. Doğru

among features and attributes of features, which closes the door on manual analysis of
feature models. Thus, automated analysis of feature models is a necessary, yet still to
be improved issue.

In this paper we explore the use of global constraints in the automated analysis of
feature models, which has recently become feasible [13]. We present a mapping from
extended feature models to constraint logic programming over finite domains,
designated CLP(FD), that enables imposing global constraints on the attributes of
features, as well as features. Then, we present some examples, where using some of
the well known types of global constraints would significantly simplify the work of
both the modeler and the constraint solver, and discuss the benefits of using global
constraints. We also present performance results of an off-the-shelf constraint solver
on a sample model.

The organization of this paper is as follows. In Section 2, we briefly discuss feature
models and automated reasoning on feature models. In Section 3, we state the
problem in detail and present the reasons to choose CLP(FD) as the reasoning base. In
Section 4, we introduce our mapping proposal, discuss how and when some of the
well known global constraints can be used on feature models, and present the
performance test results. Section 5 presents conclusions and points to future work.

2 Background

2.1 Feature Models

Feature models have been exceedingly popular in Software Product Line Engineering
since their introduction by Kang et al. as part of Feature Oriented Domain Analysis
(FODA) [11]. After Kang et al.’s initial proposal several extensions to feature models
have been devised. We refer the reader to [14] for a detailed survey on the feature
models. Here we shall briefly discuss basic feature models and their important
extensions.

The first type of relationship, which defines the decomposition rules among
features, includes four relations: mandatory relation, optional relation, alternative
relation, and or relation. No child feature in a decomposition relation can be included
in a configuration that does not include its parent feature. However, these four
relations exhibit different semantics when the parent feature in the relation is included
(see Table 1). The second type of relationship, which defines cross-tree constraints in
feature models, includes the requires and excludes relations.

One of the extensions proposed on feature models is the introduction of the UML-
style cardinalities, which allows to express multiplicities such as 1, 0...1, 0...*, 1...*,
0...n, 1...n, and so on [14]. These cardinalities are used in decomposition relations.
Another important extension has been the introduction of feature attributes to provide
further information about features. An attribute of a feature is any characteristic of the
feature that can be measured. Every attribute belongs to a domain, the space of
possible values where the attribute takes its values [5]. Kang et al. mentioned
relations between features and feature attributes in [11] and “non-functional” features
related to feature attributes in [12]. Using attributes in feature models were introduced

 Global Constraints on Feature Models 539

Table 1. Symbols we have used for design of feature models

Symbol Name Explanation

Mandatory
Relation

Let P and C be two features, where P is the
parent of C, in a mandatory relation. Then, C
is included in a configuration if and only if P
is included in the configuration.

Optional
Relation

Let P and C be two features, where P is the
parent of C, in an optional relation. If P is
included in a configuration then C may or
may not be included in the configuration.

Alternative
Relation

Let P, C1, C2, …, and Cn be features, where P is
the parent of C1, C2, …, and Cn, in an
alternative relation. If P is included in a
configuration, exactly one of the child features
C1, C2, …, Cn must be included in the
configuration.

Or Relation

Let P, C1, C2, …, and Cn be features, where P is
the parent of C1, C2, …, and Cn, in an or
relation. If P is included in a configuration, a
nonempty subset of {C1, C2, …, Cn} must be
included in the configuration.

Group
Cardinality

Let P, C1, C2, …, and Cn be features, where P is
the parent of C1, C2, …, and Cn, in a
decomposition with the group cardinality <i - j>.
If P is included in a configuration then at least i
at most j of the child features must be included
in the configuration.

Feature
Attribute
(F.attr)

Feature attributes are used to supply some
additional information (e.g. priority, cost, size,
speed) about features. A feature attribute
consists of a name, a domain, and a value
(possibly an interval).

Requires

If a feature X requires a feature Y, the inclusion
of X in a configuration implies the inclusion of
Y in such a configuration.

Excludes

If a feature X excludes a feature Y, the inclusion
of X in a configuration implies the exclusion of
Y in such a configuration.

540 A.S. Karataş, H. Oğuztüzün, and A. Doğru

by Czarnecki et al. in [7], where such feature models were called extended feature
models. Later Benavides et al. [5] proposed a notation for extended feature models. In
this paper we have adopted a notation similar to the one proposed by Benavides et al.
in [5], which is summarized in Table 1.

2.2 Automated Reasoning on Feature Models

Proposals on automated analysis of feature models can be divided into four groups:
propositional logic based analyses, description logic based analyses, constraint
programming based analyses, and other proposals. We refer the reader to [3] for a
detailed literature review on automated analysis of feature models; here we shall
briefly discuss the constraint programming based proposals.

Benavides et al. [2] were the first to propose using constraint programming to
reason on feature models. They have presented an algorithm to transform an extended
feature model into a constraint satisfaction problem (CSP) [1] and also provided tool
support [4]. In their mapping features make up the set of variables, where the domain
of each variable is the set {true, false}, and they represent extra-functional features
and relations in the feature model as constraints [2]. The authors have also shown that
several kinds of analysis and optimization operations on extended feature models can
be supported by means of constraint programming.

However, in some cases feature models contain complex cross-tree constraints
including feature attribute relationships such as “feature 3D Car Race Application
requires Memory.size ≥ 512”. We have proposed a mapping from extended feature
models to CLP(FD) to handle such cases, and showed that it is possible to take
advantage of automated reasoning for the analysis operations on such extended
feature models using off-the-shelf CLP(FD) constraint solvers in [13]. We have also
presented a sample implementation using the clp(FD) constraint solver [6].

3 The Problem and CP

3.1 Global Restrictions on a Product

During the project management phases it is often the case that developers face
requirements that impose restrictions on all or a set of features rather than a feature
alone. Requirements such as “total power consumption of the units in a mobile phone
shall not exceed the power supplied by the battery”, “total cost of the product must
reside in the prescribed interval to suit the targeted budget limits”, or “each PCI card
to be installed on a computer board must be installed into a different PCI slot for a
valid configuration of the computer” are examples of such restrictions.

Consider the requirement on the installation of the PCI cards into the PCI slots of
the computer board, where each PCI card is modeled as a feature and the number of
the PCI slot the card is to be installed into is kept in an attribute, slot no, of the PCI
card features. This requirement can easily be represented by a clique of inequalities
on the slot no attributes of the PCI card features. However, for instance if there are 6
PCI cards, it will take 15 binary constraints to represent a single requirement. Also
note that sometimes it may not be possible to express some of the global requirements
using simple (or any) binary decompositions.

 Global Constraints on Feature Models 541

Representing these types of requirements by binary constraints would cause an
increase in the number of constraints to represent the feature model, and lead to a
tedious coding process for the modeler. Consequently, readability of the code
decrease while chances to make errors increase. Moreover, it would also complicate
the task of the constraint solver, which would have to deal with a greater number of
constraints. As one of the central ideas of constraint programming is the propagation-
search technique, the solver would try to detect “dead-ends” as early as possible and
run filtering algorithms on each constraint in the CSP [9]. Thus, more constraints
would mean necessity for more filtering in most cases.

Clearly using global constraints to represent such requirements on feature models
would significantly simplify the task of both the modeler and the constraint solver, as
global constraints provide the following advantages [9]: i) global constraints provide
shorthand for frequently recurring patterns, which simplifies the programming task,
ii) global constraints facilitate the work of the constraint solver by providing it with a
structural view of the problem. Thus, we believe that using global constraints can
provide a significant facility for the automated reasoning on feature models.

3.2 Why CP?

As feature models often grow too large to analyze manually, automated reasoning is
regarded as the only practical solution. The main reason we have chosen CP as the
reasoning base is that, as we discuss in the following section it is possible to map
feature attributes to CLP(FD) variables while translating an extended feature model to
a CP problem, which enables using global constraints to represent global
requirements imposed on the attributes of features, as well as the features.

Another advantage of choosing CP as the reasoning base is the wide variety of tool
support [8]. The CLP(FD) solvers have been used for many real-life applications, and
evolved to provide efficient implementations for the computationally expensive
procedures that had proven to be very effective for modeling discrete optimization
and verification problems. The concept of global constraints is a well-studied area in
CP, and most of the off-the-shelf solvers provide effective implementation techniques
for global constraints. Thus, this enables the application of the techniques presented in
this paper by using any CP solver supporting global constraints.

Moreover, due to their declarative style, CLP systems lead to highly readable
solutions. CLP systems provide a wide variety of facilities for the users and the global
constraints we focus on this paper is one of these. Thus, it becomes straightforward to
code many of the important analysis operations (see Section 4.3) in CLP.

4 Global Constraints and Feature Models

4.1 The Mapping

In [13] we have proposed a mapping from extended feature models, which may
include complex feature-feature, feature-attribute and attribute-attribute cross-tree
relations, to constraint logic programming over finite domains. The two key ideas
behind our proposal are (i) mapping attributes of the features to CLP variables, and

542 A.S. Karataş, H. Oğuztüzün, and A. Doğru

(ii) representing all the relations in the feature model (i.e. feature decomposition
relations and cross-tree relations) as constraints among the features and attributes. In
this paper we shall briefly summarize the first idea, which enables us to use global
constraints on feature models.

Attributes of features are mapped to CLP(FD) variables using the following rule:

Rule 1 (Mapping Attributes): Let F be a feature, a an attribute of F, and dom F.a
denote the domain of a, then this attribute is represented with the CLP(FD) variable F.a ∈ dom F.a.

For instance, suppose a computer configuration may include two CPUs with the
possible clock speeds (in MHz) {1600, 1800, 2000}, then the speed attributes of the
CPUs can be mapped as follows: CPU1.speed ∈ {1600, 1800, 2000} ∧ CPU2.speed ∈ {1600, 1800, 2000}
The attributes may have any domain as long as it is finite. If, for instance some
arithmetic constraint must be expressed on the value of an attribute where the domain
of the attribute is not compatible (i.e. having nonnumeric values), a conversion may
be introduced from the domain of the attribute to a set of integers.

CLP systems provide a large variety of constraints such as arithmetic constraints,
membership constraints, propositional constraints, combinatorial constraints, and
user-defined constraints. Therefore, once the mapping of the feature attributes to
CLP(FD) variables is complete it is possible to represent the relations defined on
feature attributes by imposing constraints on these variables. For instance, assume that
a requirement states that “The clock speed of the first CPU cannot be slower than the
clock speed of the second CPU”, then this requirement is represented as follows: CPU1.speed ≥ CPU2.speed (1)

However, every relation in a feature model involves at least one feature; therefore
features must be mapped to CLP(FD) variables as well. In order to treat features and
attributes uniformly, we assume that every feature has an implicit attribute named selected that ranges over the domain {false, true} (or {0, 1} respectively). This
attribute gets the value true if the feature is selected to be included in the product and false otherwise. Implicit attributes are defined as follows:

Definition 1 (Implicit Attribute): Let FM be a feature model, and F denote the set of
features in FM, then each feature F ∈ F has an attribute named selected with dom F.selected = {false, true}.
For instance, the implicit attributes of the features CPU1 and CPU2 are mapped as: CPU1.selected ∈ {false, true} ∧ CPU2.selected ∈ {false, true}
As the value of an attribute is relevant to a constraint only if the feature it belongs to
is included in the product, we augment the formula (1) using the implicit attributes as
follows: CPU1.speed ≥ CPU2.speed ∧ CPU1.selected ∧ CPU2.selected

 Global Constraints on Feature Models 543

However, as we have discussed in Section 3.1, global requirements are defined on a
non-fixed set of feature attributes. As the set of features that will be included in a
product may differ from product to product, attributes of those features that have not
been selected must be filtered out before checking the satisfaction of the global
constraints.

Rule 2 (Filter): Let T be a set of pairs of the form (b, t), where b is either true or false, and t is any term. Then, filter(T) is defined as follows: filter (T) = {t | (true, t) ∈ T }
We utilize the filter operation as follows. Let GC be a global constraint defined on a
set of attributes A, and let T be a set of the pairs (F.selected, a) where a ∈ A and F is
the feature a belongs to. Our mapping applies filter(T) to find the set of attributes that GC will be applied on by the constraint solver for a particular product.

Note that, any global constraint can alternatively be represented, without making
use of the filter, by enumerating the possible conditions using the guarded constraints
(i.e. constraints of the form Guard ⇒ Constraint) described in [13], as follows: ((F1.selected ∧ F2.selected ∧ … ∧ Fn.selected) ⇒ GC(F1.a1, …, Fn.am)) ∧ ((¬F1.selected ∧ F2.selected ∧ … ∧ Fn.selected) ⇒ GC(F2.a1, …, Fn.am)) ∧ … ((F1.selected ∧ ¬F2.selected ∧ … ∧ ¬Fn.selected) ⇒ GC(F1.a1, …, F1.ak))
Definition 2 (Neutral Value): Let GC be a global constraint defined on a set of
variables X = {x1, …, xn}, and V a subset of X. Let B be a set of bindings of the form νi / xi, where each xi in V occurs exactly once and νi is a ground term. B is said to be
neutralizing V for GC if the set of solutions for GC applied on X with B is the same as
the set of solutions for GC applied on X – V. In this situation each νi is called a neutral
value for GC.

Global constraints often possess neutral values. For instance, for the global constraints
sum and knapsack (see the following section) 0 acts as a neutral value, which happens
to be the only one. Assume that an attribute is involved in a sum constraint, but the
feature it belongs to is not selected. Clearly this attribute must not figure in checking
the satisfaction of the constraint. However, if the attribute has the value 0, the additive
identity, the result would not be affected with the attribute figured in. Hence, as we
discuss in the remainder of this section, under certain circumstances it would be
possible to get the same effect without applying the filter, thereby avoiding the
overhead incurred by filtering.

Definition 3 (Common Neutral Value): Let F.a be an attribute involved in one or more
global constraints. A Common Neutral Value for the attribute F.a is a neutral value
with respect to each of these global constraints. Note that, a common neutral value,
designated νF.a, may or may not be an element of dom F.a.

Note that a common neutral value is defined only for the attributes involved in one or
more global constraints. As it is the case for the illustrative example presented in
Section 4.3, it is often possible to find common neutral values for the attributes
involved in global constraints. However, if it is not possible to find a common neutral

544 A.S. Karataş, H. Oğuztüzün, and A. Doğru

value for some of the attributes (e.g. for an attribute that is involved in two global
constraints where the value of the attribute is involved in a summation in one of the
constraints and in a multiplication in the other), one can simply make use of the filter
on such attributes, which is the general solution for applying global constraints.

Next, we revise the mapping rule for attributes with a common neutral value.

Rule 3 (Mapping an Attribute with a Common Neutral Value): Let F be a feature, a
an attribute of F with the domain dom F.a and the common neutral value νF.a. Then, the
attribute is mapped as follows: F.a ∈ dom F.a ∪ {νF.a } ∧ (F.selected ⇒ F.a ∈ dom F.a) ∧ (¬F.selected ⇒ F.a = νF.a)
4.2 Using Global Constraints

In this section we discuss how and when some of the well-known types of global
constraints provided by the CLP systems can be used in the automated reasoning on
feature models. Note that the examples presented in the following subsections do not
provide an exhaustive listing of the global constraints that can be used on feature
models. As the nature of feature models invites, sometimes even requires, the use of
global constraints, we impose no limitations on the number or types of global
constraints to be used. Once the feature model is translated to a CP program using the
mapping discussed in the previous section, the modeler can use any global constraint
provided by the solver, and if the solver provides such a facility, may also define
his/her own global constraints.

4.2.1 The Sum Constraint
The sum constraint is one of the most common constraints used in applications. The
definition of the sum constraint is as follows [9]: ݔ)݉ݑݏଵ, … , ,௡ݔ ,ݖ ܿ) ؠ ݖ = ෍ ܿ௜ݔ௜௡௜ୀଵ

As an example, consider the sample feature diagram, which is a part of a feature
model for a mobile phone, given in Figure 1. Assume that a global requirement, GR,
states that; total power consumption of the electronic components in the mobile phone
cannot exceed the power supplied by the battery. This global requirement can be
represented using the sum constraint as follows: FS = filter((Btooth.selected, Btooth.pc), …, (Camera.selected, Camera.pc)) ∧ sum(FS, total, 1) ∧ (total ≤ Battery.power)
An alternative representation, if the attributes involved in GR has 0 as the common
neutral value, would be: sum(Btooth.pc, CPU.pc, GPS.pc, RAM.pc, Screen.pc, Camera.pc, total, 1) ∧ (total ≤ Battery.power)
The attributes involved in the sum constraint are, then, mapped as: (Btooth.selected ⇒ Btooth.pc ∈ {…}) ∧ (¬Btooth.selected ⇒ Btooth.pc = 0) ∧ Btooth.pc ∈ {…} ∪ {0} ∧ … ∧ Camera.pc ∈ {…} ∪ {0} ∧ (Camera.selected ⇒ Camera.pc ∈ {…}) ∧ (¬Camera.selected ⇒ Camera.pc = 0)

 Global Constraints on Feature Models 545

Fig. 1. Part of a sample feature model for a mobile phone

4.2.2 The Knapsack Constraint
The knapsack constraint is a variant of the sum constraint. It requires the sum be
within a lower bound l and upper bound u. It is defined as follows [9]: ݇݊ܽݔ)݇ܿܽݏ݌ଵ, … , ,௡ݔ ,ݖ ܿ) ؠ (ݖ)ܦ ݊݅݉ ≤ ݖ = ∑ ܿ௜ݔ௜௡௜ୀଵ ≤ max (ݖ)ܦ

As an example, consider the sample feature diagram, which is a part of a feature
model for a mobile phone, given in Figure 2. Assume that a global requirement states
that; for the mobile phone products targeting the medium budget segment, total cost
of the electronic components must be greater than or equal to 200USD and less than
or equal to 400 USD. This requirement can be represented using the knapsack
constraint as follows: FS = filter((Btooth.selected, Btooth.cost), …, (Camera.selected, Camera.cost)) ∧ total ∈ [200, 400] ∧ knapsack(FS, total, 1)
Note that 0 would be the common neutral value for the attributes involved in a
knapsack constraint, if it is possible (depending on other global constraints on these
attributes) to introduce a common neutral value for such attributes.

Fig. 2. Part of a sample feature model for a mobile phone

4.2.3 The Alldifferent Constraint
The alldifferent constraint is one of the best-known, most influential and most studied
global constraints in the constraint programming, and it is defined as follows [9]:

546 A.S. Karataş, H. Oğuztüzün, and A. Doğru

,ଵݔ)ݐ݊݁ݎ݂݂݈݈݁݅݀ܽ … , (௡ݔ = {(݀ଵ, … , ݀௡)|݅׊ ݀௜ ∈ ,(௜ݔ)ܦ ௜ஷ௝݀௜׊ ് ௝݀}

where x1, …, xn are variables.
As an example, consider the sample feature diagram, which is a part of a feature

model for a computer family, given in Figure 3.

Fig. 3. Part of a sample feature model for a computer

Assume that a number of PCI Cards may be included in a computer. Clearly each
PCI Card must be installed into a different PCI Slot. This requirement can be easily
represented using the alldifferent constraint as follows: FS = filter((Graphics.selected, Graphics.sn), …, (WiFi.selected, WiFi.sn)) ∧ alldifferent(FS)
Alternatively n distinct common neutral values such that; ߥ௜ ב dom xଵ ∪ … ∪ dom x୧ିଵ ∪ domx୧ାଵ ∪ … ∪ dom x୬

can be used for the attributes involved in an alldifferent constraint, if it is possible
(depending on other global constraints on these attributes) to introduce such common
neutral values.

4.2.4 The Global Cardinality Constraint
The global cardinality constraint gcc(x1, . . . , xn, cv1 , . . . , cvn’) is a generalization of
the alldifferent constraint. There are n’ count variables, cv1 through cvn’, and GCC
requires that each value vi is assigned to exactly cvi assignment variables, where x1
through xn make the set of assignment variables. The global cardinality constraint is
defined as follows [9]:

,ଵݔ)ܿܿ݃ … , ,௡ݔ ܿ௩ଵ, … , ܿ௩௡ᇱ) ,ଵݓ)} = … , ,௡ݓ ,௩ଵ݋ … , ௝ݓ ݆׊| (௩௡ᇲ݋ ∈ ,௝൯ݔ൫ܦ ,௜ݒ)ܿܿ݋ ݅׊ ,ଵݓ) … , ((௡ݓ = ௜݋ ∈ {(௩௜ܿ)ܦ

Where, x1, . . . , xn are assignment variables whose domains are contained in {v1, …,
vn’}, { cv1 , . . . , cvn’} are count variables and occ(v, t) is the number of occurrences of
v in t.

As an example, consider the sample feature diagram, which is a part of a feature
model for a software intensive family, given in Figure 4.

In the sample case a product includes 3 communication channels to be used by the
n communication routines. Each channel has a designated capacity, say c1, c2, and c3

 Global Constraints on Feature Models 547

that should not be exceeded. A valid product must obey these constraints. These
requirements can be represented using the global cardinality constraint as follows: FS1 = filter((CR 1.selected, CR 1.ch), …, (CRN.selected, CR N.ch)) ∧ FS2 = filter((Chan1.selected, (1, v1)), …, Chan3.selected, (3, v3))) ∧ gcc(FS1, FS2) ∧ v1 ∈ [0, c1] ∧ v2 ∈ [0, c2] ∧ v3 ∈ [0, c3]
Note that 0 would be the common neutral value for v1, v2, and v3 if it is possible.

Similarly, it is straightforward to apply the global cardinality constraint with costs,
when there is a cost function in the model.

Fig. 4. Part of a sample feature model for a software intensive family

4.3 A Sample Case

As an illustrative example consider the sample feature model, designed for a
computer product family, given in Figure 5. The feature model has one concept
feature (the root feature), 28 mandatory features, 12 optional features, 8 alternative
features, and 3 or features. Assume we have the following five global constraints:

• Each PCI Card that is a part of the product must be installed on a different PCI slot.
• Each data collector, 1 through 4, must be assigned to a data communication

channel, 1 through 3. Each data communication channel has a designated capacity
and these capacities must not be exceeded.

• Total power consumption of the hardware parts cannot exceed the capacity of the
power supply.

• Total cost of a product cannot exceed a designated budget.
• Memory size must be greater than the total memory consumption of the system

software plus memory consumption of the application with the highest memory
requirement among the applications chosen to be a part of the product.

In addition to these global constraints we have some cross-tree constraints such as:

• Task Scheduler requires CPU 1.speed ≥ CPU 2.speed.
• Data Collectors 1 and 2 cannot be assigned to the same channel.

We have implemented the following analysis operations on the sample feature
model FM. These operations are defined in [3], on an arbitrary feature model,
say M:

• Void Feature Model: Does M represent any products?
• Valid Product: Does the given product belong to the set of products represented

by M?

548 A.S. Karataş, H. Oğuztüzün, and A. Doğru

• Valid Partial Configuration: Is the given partial configuration valid (i.e. does not
include any contradiction) with respect to M?

• All Products: Compute all products represented by M.
• Number of Products: Compute the number of products represented by M.
• Commonality: Compute the percentage of products represented by M including a

given configuration.
• Filter: Compute all products, including a given configuration, represented by M.
• Core Features: Compute the set of features that are part of all the products.
• Variant Features: Compute the set of features that appear in some but not all of

the products.
• Dead Features: Compute the set of features that are not part of any product.
• False Optional Features: Compute the set of features that, although modeled as

optional, are part of all the products.
• Optimization: Compute the products fulfilling the criteria established by the given

objective function.

Fig. 5. A sample feature model, FM, for a computer product family

For implementation we have used clp(FD) [6], which is available as a library
module for SICStus Prolog [10]. The clp(FD) provides a large variety of global
constraint library predicates and we have used some of them such as all_different,
global_cardinality, sum, maximum, labeling and so on to represent the global
constraints on the feature model. The tool also provides a facility to introduce
user-defined global constraints but we have not used this option as the library
global constraints were sufficient for the present modeling and analysis tasks. We
have also expressed the global constraints without making use of the library
predicates in a separate equivalent program to observe their effect on the
performance (see Table 2).

 Global Constraints on Feature Models 549

Table 2. Performance results for the analysis operations

Analyses Operation
≈ Time (seconds)

Gain With library
GC predicates

Without library
GC predicates

Void feature model 0.015 0.023 35%
Valid product 0.005 0.005 -
Valid partial configuration 0.015 0.022 32%
All products 16.305 20.360 20%
Number of products 16.322 20.375 20%
Commonality1 26.609 33.427 21%
Filter1 10.422 12.974 20%
Core features 0.217 0.362 40%
Variant features 0.218 0.364 40%
Dead features 0.218 0.363 40%
False optional features 0.218 0.364 40%
Optimization (maximize cost) 0.109 0.246 56%
Optimization (minimize cost) 0.089 0.234 62%

We have performed the tests on a computer with an Intel Core 2 Duo T5500 1.66
GHz CPU and 2 GB RAM, and running Microsoft Windows XP Professional. Note,
however, that although the computer had 2 GB of physical memory, the SICStus
Prolog version we have could utilize only 256 MB of memory on 32 bit systems [10].

The tool automatically derived 338,928 products from the sample feature model.
For the operations number of products and commonality we have generated the set of
all products to find the answer. It should be possible to implement these operations
without actually generating the set of all products; however this is not an issue we are
intending to address in the present work. For the optimization operation we have
asked the tool to derive the most and the least expensive products. Performance results
for the aforementioned analysis operations are presented in Table 2.

5 Discussion and Conclusion

Our experiments suggest that using global constraints can simplify the task of model
validation, for both the modeler and the constraint solver, by providing an elegant
way to express global project requirements. For instance, we had to introduce 16
constraints, each being conjunctions of 15 binary constraints and an implication, to
decompose the global constraint maximum that was defined on 16 feature attributes,
which increased the number of constraints to be considered by the solver while
decreasing the readability and maintainability of the code.

1 Time for these operations heavily depend on the input configuration. For both of the

operations we have used “products including CPU 2” as the input configuration.

550 A.S. Karataş, H. Oğuztüzün, and A. Doğru

Comparative performance test results presented in Table 2 show that using the
global constraint predicates has paid-off in terms of performance measures as well. As
the results indicate, using global constraints increased efficiency up to 20% in the
most time consuming analysis operations such as all products, commonality, and
filter. The increase in the efficiency was even above 50% in optimization operations.

In this paper we have focused on application of the CP technology to the field of
software product line engineering. As the mapping from extended feature models to
CLP(FD) has a well-defined structure, it is possible to incorporate it into existing
feature modeling and analysis tools or develop new tools. Such a tool should
comprise the following components:

• A file i/o component to read in the feature models represented in an input
language. The input language must be rich enough to represent the features,
attributes of the features and their domains, decomposition relations among
features, cross-tree relations among features and attributes of features, and widely
used global constraints. Such a language can be defined as an extension of a
feature markup language [4, 5].

• A preprocessor to carry out such tasks as finding possible common neutral values
for attributes involved in global constraints, possibly with user guidance, and
introducing the implicit attributes.

• A mapping component to perform the translation to targeted CLP(FD) notation.
• An analysis component that will utilize an off-the shelf constraint solver for the

analysis operations.
• A postprocessor to output and comment on the results produced by the solver.

As product line engineers may not necessarily be competent in constraint solving, the
tool must employ a user-friendly interface, and hide the details of the solver as much
as possible while enabling the users to communicate their constraints to the tool. It
seems worthwhile to design a language (or extend existing ones) to represent
extended feature models with complex cross-tree and global constraints and
implement the envisioned tool.

References

1. Benavides, D., Ruiz-Cortés, A., Trinidad, P.: Coping with automatic reasoning on software
product lines. In: Proceedings of the 2nd Groningen Workshop on Software Variability
Management (November 2004)

2. Benavides, D., Ruiz-Cortés, A., Trinidad, P.: Using constraint programming to reason on
feature models. In: The Seventeenth International Conference on Software Engineering
and Knowledge Engineering, SEKE 2005, pp. 677–682 (2005)

3. Benavides, D., Segura, S., Ruiz-Cortés, A.: Automated Analysis of Feature Models: A
Detailed Literature Review. Information Systems 35(6), 615–636 (2010)

4. Benavides, D., Segura, S., Trinidad, P., Ruiz-Cortés, A.: FAMA: Tooling a framework for
the automated analysis of feature models. In: Proceeding of the First International
Workshop on Variability Modeling of Software-intensive Systems (VAMOS), pp. 129–
134 (2007)

 Global Constraints on Feature Models 551

5. Benavides, D., Trinidad, P., Ruiz-Cortés, A.: Automated Reasoning on Feature Models. In:
Pastor, Ó., Falcão e Cunha, J. (eds.) CAiSE 2005. LNCS, vol. 3520, pp. 491–503.
Springer, Heidelberg (2005)

6. Carlsson, M., Ottosson, G., Carlson, B.: An Open-Ended Finite Domain Constraint Solver.
In: Proc. Programming Languages: Implementations, Logics, and Programs (1997)

7. Czarnecki, K., Bednasch, T., Unger, P., Eisenecker, U.: Generative programming for
embedded software: An industrial experience report. In: Batory, D., Consel, C., Taha, W.
(eds.) GPCE 2002. LNCS, vol. 2487, pp. 156–172. Springer, Heidelberg (2002)

8. Fernandez, A., Hill, P.M.: A comparative study of eight constraint programming languages
over the Boolean and finite domains. Journal of Constraints 5, 275–301 (2000)

9. van Hoeve, W., Katriel, I.: Global Constraints. In: Handbook of Constraint Programming.
Elsevier, Amsterdam (2006)

10. http://www.sics.se/isl/sicstuswww/site/index.html
11. Kang, K., Cohen, S., Hess, J., Novak, W., Peterson, S.: Feature-Oriented Domain Analyses

(FODA) Feasibility Study. Technical Report CMU/SEI-90-TR-21, Software Eng. Inst.,
Carnegie Mellon Univ., Pittsburgh (1990)

12. Kang, K., Kim, S., Lee, J., Kim, K.: FORM: A feature-oriented reuse method with
domain-specific reference architectures. Annals of Software Engineering 5, 143–168
(1998)

13. Karataş, A.S., Oğuztüzün, H., Doğru, A.: Mapping Extended Feature Models to Constraint
Logic Programming over Finite Domains. To be Presented in the 14th International
Software Product Line Conference (SPLC 2010), South Korea (2010)

14. Schobbens, P., Trigaux, J.C., Heymans, P., Bontemps, Y.: Generic semantics of feature
diagrams. Computer Networks 51(2), 456–479 (2007)

15. Simos, M., et al.: Software Technology for Adaptable Reliable Systems (STARS)
Organization Domain Modeling (ODM) Guidebook Version 2.0. In: STARS-VC-
A025/001/00, Lockheed Martin Tactical Defense Systems, Manassas, VA (1996)

Constraint Programming
for Mining n-ary Patterns

Mehdi Khiari, Patrice Boizumault, and Bruno Crémilleux

GREYC, CNRS - UMR 6072, Université de Caen Basse-Normandie,

Campus Côte de Nacre, F-14032 Caen Cedex, France

{Forename.Surname}@info.unicaen.fr

Abstract. The aim of this paper is to model and mine patterns com-

bining several local patterns (n-ary patterns). First, the user expresses

his/her query under constraints involving n-ary patterns. Second, a con-

straint solver generates the correct and complete set of solutions. This

approach enables to model in a flexible way sets of constraints combining

several local patterns and it leads to discover patterns of higher level.

Experiments show the feasibility and the interest of our approach.

1 Introduction

Knowledge Discovery in Databases involves different challenges, such as the dis-
covery of patterns of a potential user’s interest. The constraint paradigm brings
useful techniques to express such an interest. If mining local patterns under con-
straints is now a rather well-mastered domain including generic approaches [3],
these methods do not take into account the interest of a pattern with respect to
the other patterns which are mined: the useful patterns are lost among too much
trivial, noisy and redundant information. In practice, a lot of patterns which are
expected by the data analyst (cf. Section 2.2) require to consider simultaneously
several patterns to combine the fragmented information conveyed by the local
patterns. It also explains why the question of how to turn collections of local
patterns into global models such as classifiers or clustering receives a large at-
tention [13]. That is why the discovery of patterns under constraints involving
combinations of local patterns is a major issue. In the following, such constraints
are called n-ary constraints and they define n-ary patterns.

There are very few attempts on mining patterns involving several local pat-
terns and the existing methods tackle particular cases by using devoted tech-
niques [19]. One explanation of the lack of generic methods may be the difficulty
of the task: mining local patterns under constraints requires the exploration of
a large search space but mining patterns under n-ary constraints is even harder
because we have to take into account and compare the solutions satisfying each
pattern involved in the constraint. We think that the lack of generic approaches
restrains the discovery of useful patterns because the user has to develop a new
method each time he wants to extract a new kind of patterns. It explains why
this issue deserves our attention.

D. Cohen (Ed.): CP 2010, LNCS 6308, pp. 552–567, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Constraint Programming for Mining n-ary Patterns 553

In this paper, we propose a generic approach for modeling and mining n-ary
patterns using Constraint Programming (CP). Our approach proceeds in two
steps. First, the user specifies the set of constraints which has to be satisfied.
Such constraints handle set operations (e.g., inclusion, membership) but also
numeric properties such as the frequency or the length of patterns. A constraint
solver generates the correct and complete set of solutions. The great advantage
of this modeling is its flexibility, it enables us to define a large broad of n-ary
queries leading to discover patterns of higher level. It is no longer necessary
to develop algorithms from scratch to mine new types of patterns. To the best
of our knowledge, it is the first generic approach to express and mine patterns
involving several local patterns.

Cross-fertilization between data mining and CP is a research field in emer-
gence and there are very few attempts in this area. A seminal work [8] proposes
a formulation in CP of constraints on local patterns but it does not address rich
patterns such as n-ary patterns. We did a preliminary work [12] based on a joint
use of local patterns constraint-based mining and CP in order to discover n-ary
patterns and to investigate such relationships.

This paper is organized as follows. Section 2 sketches definitions and presents
the context. Our approach is described in Section 3, we illustrate it from several
kinds of n-ary queries. Section 4 describes the modeling of such n-ary queries
as Constraint Satisfaction Problems (CSP). Section 5 presents a background on
pattern discovery and our hybrid method for mining n-ary patterns. In Section 6,
we go further in CP area and we propose a full-CP method to mine n-ary queries.
Section 7 compares the two methods. Finally we conclude (Section 8) giving
several research issues on using CP for pattern discovery.

2 Definitions and First Examples

2.1 Local Patterns

Let I be a set of distinct literals called items, an itemset (or pattern) is a non-null
subset of I. The language of itemsets corresponds to LI = 2I\∅. A transactional
dataset is a multi-set of itemsets of LI . Each itemset, usually called a transaction
or object, is a database entry. For instance, Table 1 gives a transactional dataset r
where 9 objects o1, . . . , o9 are described by 6 items A, . . . , c2.

Constraint-based mining task selects all the itemsets of LI present in r and
satisfying a predicate which is named constraint. Local patterns are regularities
that hold for a particular part of the data. Here, locality refers to the fact
that checking whether a pattern satisfies or not a constraint can be performed
independently of the other patterns holding in the data.
Example. Let X be a local pattern. The frequency constraint focuses on pat-
terns occurring in the database a number of times exceeding a given minimal
threshold: freq(X) ≥ minfr. An other interesting measure to evaluate the rel-
evance of patterns is the area [15]. The area of a pattern is the product of its
frequency times its length: area(X) = freq(X) × length(X) where length(X)
denotes the cardinality of X .

554 M. Khiari, P. Boizumault, and B. Crémilleux

Table 1. Example of a transactional context r

Trans. Items

o1 A B c1

o2 A B c1

o3 C c1

o4 C c1

o5 C c1

o6 A B C D c2

o7 C D c2

o8 C c2

o9 D c2

2.2 N-ary Patterns

In practice, the data analyst is often interested in discovering richer patterns
than local patterns and he/she is looking for patterns that reveal more complex
characteristics from the database. The definitions relevant to such patterns rely
on properties involving several local patterns and are formalized by the notions
of n-ary constraint and n-ary pattern leading to n-ary queries :

Definition 1 (n-ary constraint). A constraint q is said n-ary if it involves
several local patterns.

Definition 2 (n-ary pattern). A pattern X is said n-ary if it is defined by a
n-ary constraint.

Definition 3 (n-ary query). A n-ary query is a conjunction of n-ary con-
straints.

2.3 Motivating Examples

N-ary queries enable us to design a lot of patterns requested by the users such as
the discovery of pairs of exception rules without domain-specific information [19]
or the simplest rules in the classification task based on associations [21].

Example 1. An exception rule is defined as a pattern combining a strong rule
and a deviational pattern to the strong rule, the interest of a rule of the pattern
is highlighted by the comparison with the other rule The comparison between
rules means that these exception rules are not local patterns. This enables us
to distinguish exception rules from rare rules where a rare rule is a rule with a
very low frequency value. This is useful because in practice rare rules cannot be
straightforwardly used because many of them arise by chance and are unreliable.
More formally, an exception rule is defined within the context of a pair of rules
as follows (I is an item, for instance a class value, X and Y are local patterns):

e(X → ¬I) ≡
{

true if ∃Y ∈ LI such that Y ⊂ X, one have (X\Y → I) ∧ (X → ¬I)

false otherwise

Constraint Programming for Mining n-ary Patterns 555

Such a pair of rules is composed of a common sense rule X\Y → I and an
exception rule X → ¬I since usually if X\Y then I. The exception rule isolates
unexpected information. This definition assumes that the common sense rule
has a high frequency and a rather high confidence and the exception rule has
a low frequency and a very high confidence (the confidence of a rule X → Y is
freq(X ∪Y)/freq(X)). Assuming that a rule X → Y holds iff at least 2/3 of the
transactions containing X also contains Y , the rule AC → ¬c1 is an exception
rule in our running example (see Table 1) because we jointly have A → c1 and
AC → ¬c1. Note that Suzuki proposes a method based on sound pruning and
probabilistic estimation [19] to extract the exception rules, but this method is
devoted to this kind of patterns.

Example 2. In the context of genomics, data are often noisy and the search
of fault-tolerant patterns is very useful to cope with the intrinsic uncertainty
embedded in the data [2]. Defining n-ary queries is a way to design such fault-
tolerant patterns candidate to be synexpression groups: larger sets of genes with
few exceptions are expressed by the union of several local patterns satisfying the
area constraint previously introduced and having a large overlapping between
them. It corresponds to the following n-ary query:

(area(X) > minarea) ∧ (area(Y) > minarea) ∧ (area(X ∩ Y) > α×minarea)

where minarea denotes the minimal area and α is a threshold given by the user
to fix the minimal overlapping between the local patterns X and Y .

3 Examples of n-ary Queries

In this section, we present the modeling of several n-ary queries within our
approach. Some of them were introduced in Section 2.2.

3.1 Exception Rules

Let freq(X) be the frequency value of the pattern X . Let Y be a pattern, I and
¬I ∈ I (I and ¬I can represent two class values of the dataset). Let minfr,
maxfr, δ1, δ2 ∈ N. The exception rule n-ary query is formulated as it follows:

– X\Y → I is expressed by the conjunction: freq((X \ Y)�1 I) ≥ minfr ∧
(freq(X \ Y)− freq((X \ Y) � I)) ≤ δ1 which means that X\Y → I must
be a frequent rule having a high confidence value.

– X → ¬I is expressed by the conjunction: freq(X�¬I) ≤ maxfr ∧(freq(X)−
freq(X �¬I)) ≤ δ2 which means that X → ¬I must be a rare rule having a
high confidence value.

1 The symbol � denotes the disjoint union operator. It states that for a rule, patterns

representing respectively premises and conclusion must be disjoint.

556 M. Khiari, P. Boizumault, and B. Crémilleux

To sum up:

exception(X,Y, I) ≡

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∃Y ⊂ X such that:
freq((X \ Y) � I) ≥ minfr ∧
(freq(X \ Y)− freq((X \ Y) � I)) ≤ δ1 ∧
freq(X � ¬I) ≤ maxfr ∧
(freq(X)− freq(X � ¬I)) ≤ δ2

3.2 Unexpected Rules

Padmanabhan and Tuzhilin [17] propose the notion of unexpected rule X → Y
with respect to a belief U → V where U and V are patterns. Basically, an
unexpected rule means that Y and V logically contradict each other. It is defined
in [17] by (1) Y ∧ V � False, (2) X ∧ U holds (it means XU frequent), (3)
XU → Y holds (XU → Y frequent and has a sufficient confidence value), (4)
XU → V does not hold (XU → V not frequent or XU → V has a low confidence
value). Given a a belief U → V , an unexpected rule un.(X,Y) is modeled by the
following n-ary query:

un.(X, Y) ≡

⎧⎪⎨
⎪⎩

freq(Y ∪ V) = 0 ∧
freq(X ∪ U) ≥ minfr1 ∧
freq(X ∪ U ∪ Y) ≥ minfr2 ∧ (freq(X ∪ U ∪ Y)/freq(X ∪ U)) ≥ minconf∧
(freq(X ∪ U ∪ V) < maxfr ∨ (freq(X ∪ U ∪ V)/freq(X ∪ U)) < maxconf)

3.3 Synexpression Groups

From n local patterns, the search of synexpression groups is expressed by the
following n-ary query:

synexpr(X1, ..., Xn) ≡

⎧⎪⎪⎨
⎪⎪⎩

∀ 1 ≤ i < j ≤ n,
area(Xi) > minarea ∧
area(Xj) > minarea ∧
area(Xi ∩Xj) > α×minarea

where minarea denotes the minimal area (defined in Section 2.1) and α is a
threshold given by the user to fix the minimal overlapping between the local
patterns. This example illustrates how a n-ary query enables us to easily express
complex and fault-tolerant patterns such as candidate synexpression groups.

3.4 Classification Conflicts

In classification based on associations [21], the quality of the classifier is based
on the combination of its local patterns. By taking into account several local
patterns, n-ary queries are very useful to help to design classifiers. Let c1 and
c2 be the items denoting the class values. A classification conflict can be defined
by a pair of frequent rules X → c1 and Y → c2 with a confidence greater than
a minimal threshold minconf and a large overlapping between their premises.

classif. conflict(X,Y) ≡

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

freq(X) ≥ minfr ∧
freq(Y) ≥ minfr ∧
(freq(X � {c1})/freq(X)) ≥ minconf ∧
(freq(Y � {c2})/freq(Y)) ≥ minconf ∧
2× length(X ∩ Y) ≥ (length(X) + length(Y))/2

Constraint Programming for Mining n-ary Patterns 557

Table 2. Primitive constraints for the exception rules

N-ary constraints Primitive constraints

F2 ≥ minfr
freq((X \ Y) � I) ≥ minfr ∧ I ∈ X2

∧ X1 � X3

freq(X \ Y) − freq((X \ Y) � I) ≤ δ1 F1 − F2 ≤ δ1

∧ X2 = X1 � I

freq(X � ¬I) ≤ maxfr F4 ≤ maxfr
∧ ¬I ∈ X4

freq(X) − freq(X � ¬I) ≤ δ2 F3 − F4 ≤ δ2

∧ X4 = X3 � ¬I

The first four constraints correspond to the usual frequent classification. The
last constraint expresses the overlapping between the premises: the two rules
share at least half of the items of their premises. When a rule of this pair of
rules is triggered by an unseen example, it means that it is likely that the other
rule of the pair concluding to the another class value is also triggered and thus a
classification conflict appears. The user can modify the parameters of the n-ary
query and/or add new constraint to model specific classification conflicts.

4 CSP Modeling

We present the CSP modeling shared by the two approaches. Both of the ap-
proaches are based on two inter-related CSPs that we introduce in this section.
The next section sketches the hybrid approach. Its main feature is to distinguish
local constraints from n-ary ones. On the contrary, the full-CP approach does
not make such a distinction, but all constraints will have to be reformulated
using decision variables and reified constraints (see Section 6).

4.1 General Overview

Let r be a dataset having m transactions, and I the set of all its items. The
itemset mining problem is modeled by using two inter-related CSPs P and P ′:

1. Set CSP P = (X ,D, C) where:
– X = {X1, ..., Xn}. Each variable Xi represents an unknown itemset.
– D = {DX1 , ..., DXn}. Initial domain of Xi is the set interval [{} .. I].
– C is a conjunction of set constraints handling set operators (∪,∩,∈, ...)

2. Numeric CSP P ′ = (F ,D′, C′) where:
– F = {F1, ..., Fn}. Each variable Fi is the frequency of the itemset Xi.
– D′ = {DF1 , ..., DFn}. Initial domain of Fi is the integer interval [1 .. m].
– C′ is a conjunction of numeric constraints.

For each unknown itemset i, variables Xi and Fi are tied together (see Section
5.2 for the hybrid approach and Section 6.2 for the full-CP approach).

558 M. Khiari, P. Boizumault, and B. Crémilleux

4.2 Example: Modeling the Exception Rules

Table 2 provides the primitive constraints for the exception rules n-ary query
modelled in Section 3.1.

– Set variables {X1, X2, X3, X4} represent the four unknown itemsets:
• X1 : X \ Y , and X2 : (X \ Y) � I for the common sense rule,

• X3 : X, and X4 : X � ¬I for the exception rule.

– Integer variables {F1, F2, F3, F4} represent their frequency values.
– Set constraints: C = {(I ∈ X2), (X2 = X1 � I), (¬I ∈ X4), (X4 = X3 � ¬I),

(X1 � X3})
– Numeric constraints: C′ = {(F2 ≥ minfr), (F1 − F2 ≤ δ1), (F4 ≤ maxfr),

(F3 − F4 ≤ δ2)}

5 Related Work

5.1 Pattern Discovery Approaches in Data Mining

There are a lot of works to discover local patterns under constraints [7,15] but
there are no so many methods to combine local patterns. Recent approaches -
pattern teams [14], constraint-based pattern set mining [9] and selecting pat-
terns according to the added value of a new pattern given the currently selected
patterns [5] - aim at reducing the redundancy by selecting patterns from the
initial large set of local patterns on the basis of their usefulness in the context
of the other selected patterns. Even if these approaches explicitly compare pat-
terns between them, they are mainly based on the reduction of the redundancy
or specific aims such as classification processes. We argue that n-ary queries are
a flexible way to take into account a bias given by the user to direct the final
set of patterns toward a specific aim such as the search of exceptions. General
data mining frameworks based on the notion of local patterns to design global
models are presented in [13,11]. These frameworks help to analyze and improve
current methods in the area.

5.2 A Hybrid Method

We did a preliminary work [12] based on a joint use of local patterns constraint-
based mining and CP in order to discover n-ary patterns and to investigate such
relationships. In this section, we provide an overview of the method highlighted
by the example of the exception rules n-ary query (see Section 4.2).
i) General overview. The hybrid approach consists in three steps:
1. Modeling the n-ary query as a CSP, then splitting constraints into local ones

and n-ary ones.
2. Solving the local constraints using a local patterns extractor (Music-dfs2)

[18] which produces an interval condensed representation of all patterns sat-
isfying the local constraints.

2 http://www.info.univ-tours.fr/~soulet/music-dfs/music-dfs.html

http://www.info.univ-tours.fr/~soulet/music-dfs/music-dfs.html

Constraint Programming for Mining n-ary Patterns 559

3. Solving the n-ary constraints using ECLiPSe3. The domain of each variable
results from the interval condensed representation (computed in the Step-2).

ii) Splitting the set of constraints. The whole set of constraints (C ∪ C′) is
split into two subsets as follows:
– Cloc is the set of local constraints to be solved (by Music-dfs). Solutions

are given in the form of an interval condensed representation.
– Cn is the set of n-ary constraints to be solved where the domains of the vari-

ables Xi and Fi will be deduced from the interval condensed representation.
For the exception rules (see Table 2) this splitting is performed as follows:
– Cloc = {(I ∈ X2), (F2 ≥ minfr), (F4 ≤ maxfr), (¬I ∈ X4)}
– Cn = {(F1 −F2 ≤ δ1), (X2 = X1 � I), (F3 −F4 ≤ δ2), (X4 = X3 �¬I), (X1 � X3)}

iii) Solving the local constraints. Music-dfs is a local patterns extractor
which offers a set of syntactic and aggregate primitives to specify a broad spec-
trum of local constraints in a flexible way [18]. Music-dfs mines soundly and
completely all the patterns satisfying a given set of local constraints. The local
patterns satisfying all the local constraints are provided in a condensed repre-
sentation made of intervals (each interval represents a set of patterns satisfying
the constraint and each pattern appears in only one interval. The lower bound
of an interval is a prefix-free pattern and its upper bound is the prefix-closure
of the lower bound [18].

For the hybrid method, local constraints are solved before and regardless n-
ary constraints. So that, the search space for n-ary constraints will be reduced
to the space of solutions of local constraints. The set of local constraints Cloc is
split into a disjoint union of Ci (for i ∈ [1..n]) where each Ci is the set of local
constraints related to Xi and Fi. Each Ci can be separately solved. Let CRi be
the interval condensed representation of all the solutions of Ci. CRi =

⋃
p(fp, Ip)

where Ip is a set interval verifying: ∀x ∈ Ip, freq(x) = fp.
So domains for variable Xi and variable Fi are:

– DFi : the set of all fp in CRi

– DXi :
⋃

Ip∈CRi
Ip

Example: Let us consider Cloc the set of local constraints for the exception rules.
The respective values for (I,¬I,minfr, δ1,maxfr, δ2) are (c1, c2, 2, 1, 1, 0). The
set of local constraints related to X2 and F2, C2 = {c1 ∈ X2, F2 ≥ 2}, is solved
by Music-dfs with the following query showing that the parameters can be
straightforwardly deduced from Cloc.

./music-dfs -i donn.bin -q "{c1} subset X2 and freq(X2)>=2;"

X2 in [A, c1]..[A, c1, B] U [B, c1] -- F2 = 2 ;

X2 in [C, c1] -- F2 = 3

iv) Solving the n-ary constraints. Domains of the variables Xi and Fi are
deduced from the condensed representation of all patterns satisfying local con-
straints. Solving n-ary constraints using ECLiPSe enables then to obtain all
the solutions satisfying the whole set of constraints (local ones and n-ary ones).
3 http://www.eclipse-clp.org

http://www.eclipse-clp.org

560 M. Khiari, P. Boizumault, and B. Crémilleux

Example: Let us consider Cn the set of n-ary constraints for the exception rules.
The respective values for (I,¬I,minfr, δ1,maxfr, δ2) are still the same. The
following ECLiPSe session illustrates how all pairs of exception rules can be
directly obtained by using backtracking:

[eclipse 1]:

?- exceptions(X1, X2, X3, X4).

Sol1 : X1 = [A,B], X2=[A,B,c1], X3=[A,B,C], X4=[A,B,C,c2];

Sol2 : X1 = [A,B], X2=[A,B,c1], X3=[A,B,D], X4=[A,B,D,c2];

.../...

6 A Full-CP Approach

This section presents a new approach keeping the previous modeling (see Section
4) but using a new solving technique. We call full-CP this approach because it
only uses a CP solver and no longer a local patterns extractor. Section 7 analyzes
in depth the two methods.

Numeric constraints and set constraints are modeled in three steps: linking
the data and the patterns involved in the n-ary constraint, then modeling the
patterns and finally formulating numeric constraints and set constraints.

We use the CP system Gecode4. For the first step (see Section 6.1), we use the
implementation of the Itemset Mining system FIM CP5 which is an approach
using CP for pattern mining [8]. This approach addresses in a unified framework
a large set of local patterns and constraints such as frequency, closedness, max-
imality, constraints that are monotonic or anti-monotonic or variations of these
constraints but it does not deal with n-ary constraints.

In the remainder of this section, let r be a dataset where I is the set of its
n items and T the set of its m transactions, and let d be the 0/1 (m,n) matrix
where ∀t ∈ T , ∀i ∈ I, (dt,i = 1) ⇔ (i ∈ t).

6.1 Modeling an Unknown Local Pattern

Let M be the unknown local pattern. FIM CP establishes the link between the
data set and M by introducing two kinds of variables, each of them having {0, 1}
for domain: {M1,M2, ...,Mn} where (Mi = 1) ⇔ (i ∈ M), and {T1, T2, ..., Tm}
where (Tt = 1) ⇔ (M ⊆ t). So, freq(M) =

∑
t∈T Tt and length(M) =

∑
i∈I Mi.

The relationship between M and T is modeled by reified constraints, stating
that, for each transaction t, (Tt = 1) iff t is covered by M :

∀t ∈ T , (Tt = 1) ⇔
∑
i∈I

Mi × (1− dt,i) = 0 (1)

4 http://www.gecode.org
5 http://www.cs.kuleuven.be/~dtai/CP4IM/fim_cp.php

http://www.gecode.org
http://www.cs.kuleuven.be/~dtai/CP4IM/fim_cp.php

Constraint Programming for Mining n-ary Patterns 561

Each reified constraint (see Equation 1) is solved as follows: if the solver deduces
(Tt=1) (resp. Tt=0), then the sum must be equal to 0 (resp. must be differ-
ent from 0). The propagation is also performed, in a same way, from the sum
constraint toward the equality constraint.

6.2 Modeling the k Patterns We Are Looking for

Let X1, X2, ..., Xk be the k patterns we are looking for. First, each pattern Xj is
modeled by n variables {X1,j, X2,j, ..., Xn,j} having {0, 1} for domain and such
that (Xi,j = 1) iff item i belongs to pattern Xj:

∀i ∈ I, (Xi,j = 1) ⇔ (i ∈ Xj) (2)

m variables {T1,j, T2,j, ..., Tm,j} having {0, 1} for domain are associated with
each pattern Xj such that (Tt,j = 1) iff transaction t is covered by pattern Xj :

∀t ∈ T , (Tt,j = 1) ⇔ (Xj ⊆ t) (3)

So, freq(Xj)=
∑

t∈T Tt,j and length(Xj)=
∑

i∈I Xi,j . The relationship between
each pattern Xj and T is modeled by reified sum constraints, stating that, for
each transaction t, (Tt,j = 1) iff t is covered by Xj:

∀j ∈ [1..k], ∀t ∈ T , (Tt,j = 1) ⇔
∑
i∈I

Xi,j × (1− dt,i) = 0 (4)

6.3 Reformulating Numeric and Set Constraints

Let operator op ∈ {<,≤, >,≥,=, �=}; numeric constraints are reformulated as
follows:
– freq(Xp) op α → ∑

t∈T Tt,p op α
– length(Xp) op α → ∑

i∈I Xi,p op α

Some set constraints (such that equality, inclusion, membership) are directly
reformulated using linear numeric constraints:
– Xp = Xq → ∀i ∈ I, Xi,p = Xi,q

– Xp ⊆ Xq → ∀i ∈ I, Xi,p ≤ Xi,q

– io ∈ Xp → Xi0,p = 1

Other set constraints (such that intersection, union, difference) can easily be
reformulated into boolean constraints using the conversion function (b :: {0, 1} →
{False, T rue}) and the usual boolean operators:
– Xp ∩ Xq = Xr → ∀i ∈ I, b(Xi,r) = b(Xi,p) ∧ b(Xi,q)

– Xp ∪ Xq = Xr → ∀i ∈ I, b(Xi,r) = b(Xi,p) ∨ b(Xi,q)

– Xp\Xq = Xr → ∀i ∈ I, b(Xi,r) = b(Xi,p) ∧ ¬b(Xi,q)

Finally, reified constraints (linking the dataset and the patterns, see Equation 4),
numeric constraints and set constraints are all managed by Gecode .

562 M. Khiari, P. Boizumault, and B. Crémilleux

6.4 Experiments

This section shows the practical usage and the feasibility of our approach.

i) Experimental setup. Experiments were performed on several datasets from
the UCI repository6 and a real-world dataset Meningitis coming from the
Grenoble Central Hospital7. This last dataset gathers children hospitalized for
bacterial or viral meningitis. Table 3 summarizes the characteristics of these
datasets. Experiments were conducted with several kinds of n-ary queries: ex-
ception rules, unexpected rules and classification conflicts. We use a PC having a
2.83 GHz Intel Core 2 Duo processor and 4 GB of RAM, running Ubuntu Linux.

Table 3. Description of the datasets

dataset #trans #items density

Mushroom 8142 117 0.18

Australian 690 55 0.25

Meningitis 329 84 0.27

ii) Soundness and Flexibility. As the resolution performed by the CP solver
is sound and complete, our approach is able to mine the correct and complete set
of patterns satisfying n-ary queries. Figure 1 (the upper part) depicts the number
of pairs of exception rules according to minfr and δ1 and Figure 1 (the bottom
part) indicates the number of classification conflict rules according to the two pa-
rameters minfr and minconf . These figures show the feasibility of our approach
that mines the correct and complete set of all patterns satisfying the n-ary queries
from these various sets of parameters. We tested other combinations of the param-
eters: as they provided similar results, they are not indicated here. As expected,
the lower minfr is, the larger the number of pairs of exception rules. Results are
similar when δ1 varies: the higher δ1 is, the larger the number of pairs of exception
rules (when δ1 increases, the confidence decreases so that there are more common
sense rules).

iii) Highlighting useful patterns. As already said, exception rules are a par-
ticular case of rare rules (cf. Section 2.2). There are few attempts to extract
the whole set of rare rules [20]. But, even if these rules can be extracted, it is
impossible to pick the exception rules among the set of all the rare rules. That is
a strong limitation because most of the rare rules are unreliable and it highlights
the interest of pairs of exceptions rules. Figure 2 quantifies the number of pairs
of exception rules on the Meningitis dataset versus the number of rare rules
(the number of rare rules which depends on maxfr corresponds to the line at the
top of the figure). Looking for pairs of exception rules reduces on several orders
of magnitude the number of outputted patterns (the Y-axis is on a logarithmic
scale). A n-ary constraint enables to straightforwardly discover the proper set of
exception rules.
6 http://www.ics.uci.edu/~mlearn/MLRepository.html
7 The authors would like to thank Dr P. François who provided the meningitis dataset.

http://www.ics.uci.edu/~mlearn/MLRepository.html

Constraint Programming for Mining n-ary Patterns 563

Fig. 1. Number of solutions

Fig. 2. Number of pairs of exception rules versus number of rare rules (Meningitis)

Unexpected rules may reveal useful information. For example, on Meningitis
dataset, such a rule has a premise made of a high percentage of immature band
cells and the absence of neurological deficiency and its conclusion is a normal
value of the polynuclear neutrophil level. This rule is unexpected with the belief
that high values of the white cells count and the polynuclear percentage lead
to a bacterial etiological type. Experts appreciate to have n-ary constraints to
address such patterns.

iv) Computational Efficiency. This experiment quantify runtimes and the
scalability of our approach. In practice, runtimes vary according to the size of the
datasets and the tightness of constraints (a constraint is said tight if its number
of solutions is low compared to the cardinality of the cartesian product of the
variable domains, such as constraints defined by high frequency and confidence
thresholds).

For Meningitis and Australian, the set of all solutions is computed in a
few seconds (less than one second in most of the cases). On Mushroom, runtimes

564 M. Khiari, P. Boizumault, and B. Crémilleux

Fig. 3. Runtimes

vary from few seconds for tight constraints to about an hour for low frequency
and confidence thresholds. So we have conducted further experiments on this
dataset. Figure 3 details the runtime of our method on Mushroom according to
different thresholds of confidence and frequency. We observe that the tighter
the constraint is, the smaller the runtime is. Indeed, tight constraints enable a
better filtering of the domains and then a more efficient pruning of the search
tree. Runtimes also depend on the size of the dataset: the larger the dataset is,
the larger the resulting CP program (cf. Section 6).

Obviously, our generic n-ary approach can be used for mining local patterns.
We obtain on this task the same runtimes as [8] which were competitive with
state of the art miners. With exception rules, we cannot compare runtimes be-
cause they are not indicated in [19].

7 Discussion

The hybrid approach (see Section 5.2) and the full-CP approach proposed in
this paper (see Section 6) follow the same modeling described in Section 4.
But, they have different solving methods. The hybrid approach uses a local
patterns extractor in order to produce an interval condensed representation (of
all patterns satisfying the local constraints) that will be used for constituting the
domains of the Set CSP variables. The full-CP approach only uses a CP solver
and no longer a local patterns extractor.

7.1 Hybrid Approach: Pros and Cons

With the hybrid approach, the modeling of the n-ary query can be directly
provided to a Set CSP solver without any reformulation. Thus, a prototype can
quickly be developed by using a Set CSP solver such as ECLiPSe.

But, Set CSP solvers [10] do not well manage the union of set intervals. In
order to establish bound consistency, the union of two set intervals is approx-
imated by its convex closure8. To circumvent this problem, for each variable

8 The convex closure of [lb1 .. ub1] and [lb2 .. ub2] is defined as [lb1 ∩ lb2 .. ub1 ∪ ub2].

Constraint Programming for Mining n-ary Patterns 565

Xi with the condensed representation CRi =
⋃

p(fp, Ip), a search is successively
performed upon each Ip. If this approach is sound and complete, it does not fully
profit from filtering because value removals are propagated only in the handled
intervals and not in the whole domains.

This fact could seem to be prohibitive, but the number of set intervals strongly
decreases according to local constraints. Table 4 indicates the number of set inter-
vals constituting the domain of variable X2 according to several local constraints
(see the exception rules example Section 5.2).

An alternative solution would be to use non-exact condensed representations
to reduce the number of produced intervals (e.g., a condensed representation
based on maximal frequent itemsets [6]). In this case, the number of intervals
representing the domains will be rather small, but, due to the approximations,
it should be necessary to memorize forbidden values.

7.2 Full-CP Approach: Pros and Cons

First, the reformulation of n-ary constraints to low level constraints can be per-
formed in an automatic way. Moreover, the filtering of reified constraints per-
formed by Gecode is very effective and performant. But, the resulting number of
constraints must be high for very large datasets. Let us consider a dataset with
n items and m transactions and a n-ary query involving k unknown patterns.
Linking the dataset and the unknown patterns requires (k×m) constraints, each
of them involving at most (n+1) variables (see Equation 4 in Section 6.2). So,
the number of constraints necessary to model very large datasets could be pro-
hibitive. In practice, this approach is able to tackle a large set of databases.

To summarize. The two approaches mainly differ in the way they consider the
whole dataset. The hybrid approach uses a local patterns extractor and the re-
sulting CSP owns a very small number of constraints, but variables with large
domains. On the other hand, the full-CP approach requires a large number of
constraints over decision variables. Experiments show that the full-CP approach
is significantly more performant than the hybrid one on large datasets. Ra-
tios between their respective runtimes are up to several orders of magnitude.
This is due to the lower quality of the filtering of the hybrid approach (see
Section 7.1).

Table 4. Number of intervals according to several local constraints (case of DX2)

Local constraint Number of intervals in DX2

- 3002

I ∈ X2 1029

I ∈ X2 ∧ freq(X2) >= 20 52

I ∈ X2 ∧ freq(X2) >= 25 32

566 M. Khiari, P. Boizumault, and B. Crémilleux

8 Conclusion and Future Works

In this paper, we have presented an approach to model and mine n-ary patterns.
To the best of our knowledge, it is the first generic approach to express and mine
patterns involving several local patterns. The examples described in Section 3
illustrate the generality and the flexibility of our approach. Experiments show
its relevance and its feasibility in spite of its generic scope.

For CSPs, all variables are existentially quantified. Further work is to intro-
duce the universal quantification: this quantifier would be precious to model
important constraints such as the peak constraint (the peak constraint compares
neighbor patterns; a peak pattern is a pattern whose all neighbors have a value
for a measure lower than a threshold). For that purpose, we think that Quantified
CSPs [1,4] could be appropriate and useful.

On the other hand, extracting actionable and interesting knowledge from data
is a human-guided, iterative and interactive process. The data analyst should
only consider a high-level vision of the pattern discovery system and handle a
set of primitives to declaratively specify the pattern discovery task. Even if CP is
a new approach to tackle this problem [8,12,16], it appears to be very promising
for building such a high level and interactive system.

References

1. Benedetti, M., Lallouet, A., Vautard, J.: Quantified constraint optimization.

In: Stuckey, P.J. (ed.) CP 2008. LNCS, vol. 5202, pp. 463–477. Springer, Heidelberg

(2008)

2. Besson, J., Robardet, C., Boulicaut, J.-F.: Mining a new fault-tolerant pattern type

as an alternative to formal concept discovery. In: ICCS 2006, Aalborg, Denmark,

pp. 144–157. Springer, Heidelberg (2006)

3. Bonchi, F., Giannotti, F., Lucchese, C., Orlando, S., Perego, R., Trasarti, R.: A

constraint-based querying system for exploratory pattern discovery. Inf. Syst. 34(1),

3–27 (2009)

4. Bordeaux, L., Monfroy, E.: Beyond NP: Arc-consistency for quantified constraints.

In: Van Hentenryck, P. (ed.) CP 2002. LNCS, vol. 2470, pp. 371–386. Springer,

Heidelberg (2002)

5. Bringmann, B., Zimmermann, A.: The chosen few: On identifying valuable pat-

terns. In: 12th IEEE Int. Conf. on Data Mining (ICDM 2007), pp. 63–72 (2007)

6. Burdick, D., Calimlim, M., Flannick, J., Gehrke, J., Yiu, T.: Mafia: A performance

study of mining maximal frequent itemsets. In: FIMI 2003. CEUR Workshop Pro-

ceedings, vol. 90, CEUR-WS.org (2003)

7. Calders, T., Rigotti, C., Boulicaut, J.-F.: A survey on condensed representations

for frequent sets. In: Boulicaut, J.-F., De Raedt, L., Mannila, H. (eds.) Constraint-

Based Mining and Inductive Databases. LNCS (LNAI), vol. 3848, pp. 64–80.

Springer, Heidelberg (2006)

8. De Raedt, L., Guns, T., Nijssen, S.: Constraint Programming for Itemset Mining.

In: ACM SIGKDD Int. Conf. KDD 2008, Las Vegas, Nevada, USA (2008)

9. De Raedt, L., Zimmermann, A.: Constraint-based pattern set mining. In: 7th SIAM

Int. Conf. on Data Mining. SIAM, Philadelphia (2007)

Constraint Programming for Mining n-ary Patterns 567

10. Gervet, C.: Interval Propagation to Reason about Sets: Definition and Implemen-

tation of a Practical Language. Constraints 1(3), 191–244 (1997)

11. Giacometti, A., Khanjari Miyaneh, E., Marcel, P., Soulet, A.: A framework for

pattern-based global models. In: Corchado, E., Yin, H. (eds.) IDEAL 2009. LNCS,

vol. 5788, pp. 433–440. Springer, Heidelberg (2009)

12. Khiari, M., Boizumault, P., Crémilleux, B.: Combining CSP and constraint-based

mining for pattern discovery. In: Taniar, D., Gervasi, O., Murgante, B., Pardede,

E., Apduhan, B.O. (eds.) ICCSA 2010. LNCS, vol. 6017, pp. 432–447. Springer,

Heidelberg (2010)

13. Knobbe, A., Crémilleux, B., Fürnkranz, J., Scholz, M.: From local patterns to

global models: The lego approach to data mining. In: Int. Workshop LeGo co-

located with ECML/PKDD 2008, Antwerp, Belgium, pp. 1–16 (2008)

14. Knobbe, A., Ho, E.: Pattern teams. In: Fürnkranz, J., Scheffer, T., Spiliopoulou,

M. (eds.) PKDD 2006. LNCS (LNAI), vol. 4213, pp. 577–584. Springer, Heidelberg

(2006)

15. Ng, R.T., Lakshmanan, V.S., Han, J., Pang, A.: Exploratory mining and pruning

optimizations of constrained associations rules. In: Proceedings of ACM SIGMOD

1998, pp. 13–24. ACM Press, New York (1998)

16. Nijssen, S., Guns, T., De Raedt, L.: Correlated itemset mining in ROC space: a

constraint programming approach. In: KDD 2009, pp. 647–655 (2009)

17. Padmanabhan, B., Tuzhilin, A.: A belief-driven method for discovering unexpected

patterns. In: KDD, pp. 94–100 (1998)

18. Soulet, A., Klema, J., Crémilleux, B.: Efficient mining under rich constraints de-

rived from various datasets. In: Džeroski, S., Struyf, J. (eds.) KDID 2006. LNCS,

vol. 4747, pp. 223–239. Springer, Heidelberg (2007)

19. Suzuki, E.: Undirected Discovery of Interesting Exception Rules. Int. Journal of

Pattern Recognition and Artificial Intelligence 16(8), 1065–1086 (2002)

20. Szathmary, L., Napoli, A., Valtchev, P.: Towards Rare Itemset Mining. In: Proc.

of the 19th IEEE ICTAI 2007, Patras, Greece, vol. 1 (2007)

21. Yin, X., Han, J.: CPAR: classification based on predictive association rules.

In: Proceedings of the 2003 SIAM Int. Conf. on Data Mining, SDM 2003 (2003)

An Integrated Business Rules and Constraints
Approach to Data Centre Capacity Management

Roman van der Krogt, Jacob Feldman, James Little, and David Stynes

Cork Constraint Computation Centre
Department of Computer Science, University College Cork, Ireland

Abstract. A recurring problem in data centres is that the constantly
changing workload is not proportionally distributed over the available
servers. Some resources may lay idle while others are pushed to the limits
of their capacity. This in turn leads to decreased response times on the
overloaded servers, a situation that the data centre provider wants to
prevent. To solve this problem, an administrator may move (reallocate)
applications or even entire virtual servers around in order to spread the
load. Since there is a cost associated with moving applications (in the
form of down time during the move, for example), we are interested in
solutions with minimal changes. This paper describes a hybrid approach
to solving such resource reallocation problems in data centres, where
two technologies have to work closely together to solve this problem in
an efficient manner.

The first technology is a Business Rules Management System (BRMS),
which is used to identify which systems are considered to be overloaded
on a systematic basis. Data centres use complex rules to track the be-
haviour of the servers over time, in order to properly identify overloads.
Representing these tracking conditions is what the BRMS is good for.
It defines the relationships (business constraints) over time between dif-
ferent applications, processes and required resources that are specific to
the data centre. As such, it also allows a high degree of customisation.

Having identified which servers require reallocation of their processes,
the BRMS then automatically creates an optimisation model solved with
a Constraint Programming (CP) approach. A CP solver finds a feasible
or the optimal solution to this CSP, which is used to provide recommen-
dations on which workload should be moved and whereto. Notice that
our use of a hybrid approach is a requirement, not a feature: employing
only rules we would not be able to compute an optimal solution; using
only CP we would not be able to specify the complex identification rules
without hard-coding them into the program. Moreover, the dedicated
rule engine allows us to process the large amounts of data rapidly.

1 Introduction

Data centres are “buildings where multiple servers and communication gear are
colocated because of their common environmental requirements and physical se-
curity needs, and for ease of maintenance” [1]. They have become increasingly

D. Cohen (Ed.): CP 2010, LNCS 6308, pp. 568–582, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

An Integrated Business Rules and Constraints Approach 569

more important due to two trends. Firstly, there is a need to process larger
and larger workloads and store ever increasing amounts of data. An obvious
example of this would be search engines on the World Wide Web, but also con-
sider supermarkets that use loyalty cards to track what their customers buy.
More companies storing and analysing larger amounts of data means that an
increased amount of computing power is needed to satisfy the demand. At the
same time, computing and storage is moving from PCs to internet services and
so more centralised storage and computing power is required. Besides reasons of
scale and ease of management (such as centralised backups), there is also a large
economical reason: applications run at a lower cost per user, as servers may be
shared by many active users and many more inactive ones. Virtualisation is the
latest trend in this area. One can now acquire virtual servers, that scale with
the computing resources required (cloud computing). Many such virtual servers
can reside on the same physical server, providing low cost solutions.

However, data centres also come with new computational challenges. The
problem we will focus on in this paper is due to the dynamic nature of the
environment. Most processes behave in a very erratic way, switching from using
few resources to many and back.1 For example, consider a mail server. This
remains dormant until email arrives at which point it wakes up and processes
the email. One can have many dormant processes on a server, but only a limited
number of active ones. When too many are active, the response times decrease
and the service level goes down. This results in the appearance of an application
running slow and hence affects the user experience.

Similar concerns arise in cloud computing. Many small virtual servers can be
hosted on a single physical server, but when too many want to scale up simul-
taneously (whether in terms of CPU capacity, available memory, bandwidth or
otherwise) there is simply not enough room to accommodate all of them. Such
situations are currently dealt with through human operators. From their con-
trol room, they are able to see the characteristics of the servers (including the
current CPU load, memory and bandwidth consumption, and possibly including
factors such as power usage and temperature). When they recognise unwanted
patterns (e.g. a server being overloaded for a certain period) they will investi-
gate and manually solve the problem by moving processes around. The current
state-of-the-art support tools for data centre administrators (as, e.g. the Capac-
ityAnalyzer product of VKernel [2]) provide them not only with a monitoring
tool, but can also diagnose or even predict problems and bottlenecks, i.e. in-
dicate which servers are running critical . However, the tools do not provide a
recommendation as to which process should be moved, or whereto. The system
we describe in this paper is a comprehensive system, that

1. Acts as an early warning system for potential problems with the servers in
the data centre; and

1 For convenience, we will use the term “process” to refer to the particular objects that
we can reallocate between servers. These could be processes in the traditional sense,
but in different circumstances, it could mean a complete virtual server consisting of
many traditional processes.

570 R. van der Krogt et al.

2. Proposes solutions in the event problems are indeed detected.

The problem naturally decomposes into two separate subproblems of (i) prob-
lem identification and formulation and (ii) problem resolution. Correspondingly,
the proposed system uses two different solution techniques, each most suited to
the particular subproblem. We will use a Business Rule Management System
(BRMS) to analyse the information stream that is provided by the monitoring
software. To this end, we define in the BRMS the relationships between the dif-
ferent applications, processes and required resources. Using this information, the
BRMS can efficiently track the state of the servers over time. By applying busi-
ness rules, it identifies resource overloading situations and potential bottlenecks.
If there are any issues detected, we will formulate an appropriate resource reallo-
cation problem to be solved using Constraint Programming (CP). The purpose
of the CP formulation is to find a set of minimal changes to the current config-
uration in order to resolve the identified problem. (For example, in the case of a
CPU overload, a busy application could be moved from the server to one with a
low level of CPU utilisation.) As different types of data centres prefer different
kinds of reallocations, the user can specify their objectives through the BRMS
and have them taken into account when generating the CSP.

A key contribution of our work is the fact that the CP formulation is automat-
ically derived through the rule engine. It puts the business specialists (i.e. data
centre operators) in charge of the workload re-configuration process allowing
them to concentrate on what they want to achieve, instead of how this should
be achieved. Existing combinations of BRMS and optimisation (which we will
discuss in a later section) have used rules to provide the input to the optimi-
sation problem, and/or use rules to direct the search. In contrast, the entire
problem formulation is driven by the rules in our approach. The rules that are
triggered will add variables and constraints to the model, thus constructing it in
real-time, based on the actual, data centre-specific situation. A second contribu-
tion is derived from the integration of CP within Business Rules, which allows
people with no expert knowledge of optimisation in general, or CP in particular,
to express and change their problem simply through the rule editor. This makes
it easier for business analysts (to whom the modern business rules systems are
oriented) to maintain CP models.

The remainder of the paper is organised as follows. First, we provide a for-
mal problem specification. Then, in Section 3, we detail the proposed solution.
Section 4 provides an experimental analysis of our approach. After discussing
related work, we draw conclusions and provide pointers for future work.

2 Formal Problem Specification

Our data centre consists of a set S = 〈s1, . . . , sn〉 of n servers. Depending on the
type of data centre, these servers can be used to provide computing power, data
storage, a combination of these, or any other purpose. This is of no consequence
to the model itself. Furthermore, there is a set P = 〈p1, . . . , pm〉 of processes. At
regular time intervals, a set of l sensors provide information on the processes,

An Integrated Business Rules and Constraints Approach 571

e.g. their CPU load, the amount of memory required or energy consumption. A
function σt

i : P → R ∪ {⊥} , i ∈ [0, l] provides the output of a sensor for a given
time point and a given process, i.e. σt

i(p) equals the value measured by sensor i
at time t for the process p. If a process is not active at a certain time point t (e.g.
because it has finished), the output of σt

i , i ∈ [0, l] is undefined, i.e. σt
i = ⊥. By

default, sensor 0 returns the server that the process is running on, i.e. σt
o(p) = j

iff p runs on sj at time t.
The total requirements placed on a server sj can be computed from the pro-

cesses running on that server as follows:

σt
i(sj) =

∑
{p |σt

0(p)=j}
σt

i(p) i ∈ [1, l]

We will use σt(s) = 〈σt
0(s), . . . , σ

t
l (s)〉 to denote the set of values of all sensors

for a given server at a particular time. We let Σ denote the set of all possible
combinations of sensor readings, i.e. σt(s) ∈ Σ.

To identify which servers are of interest, we introduce a classification S of pos-
sible labels (for example, this could be equal to S = {critical, high,medium, low}).
We assume there is a function Δ : S×Σz → S that, given a set of sensor readings
for the past z time steps, can give the state a server is in. In order to optimise
our solution, we introduce a cost function cost : S → R

+ that, given a label,
returns a virtual cost value for that particular label.

Through the classification of servers, we may identify that an unwanted situa-
tion has arisen. For example, we may find a number of servers that are classified
as critical. To address this issue, we could move processes away from these servers
onto others. Thus, a solution is a reallocation of processes that brings the data
centre to an improved state. In terms of the model, we want to compute a set
{σt+1

o (p) | p ∈ P}.
There are a number of constraints that should hold for a solution. Firstly,

there is a maximum value maxi that we want to satisfy for each sensor σt
i(s) of

a server s. Secondly, some processes may never run together, i.e. be present on
the same server. To this end, there is a function incompatible : P → 2P that
given some process returns the list of all processes that cannot share the same
resources with that process.2 Finally, some processes may need a particular set
of servers. The function possible : P → 2S denotes the possible servers that a
process can run on. (Thus, possible(p) = S if there are no restrictions on p.)

The last aspect we introduce is a distance metric between servers. The function
δ : S × S → R

+ returns the distance between two servers. This could simply be
the physical distance, but is more likely to also take into account the network

2 A possible reason for such an incompatibility constraint may be that a critical ap-
plication is distributed over multiple servers to provide a level of fault tolerance. We
should then prevent that two instances of this application are running on the same
server, in order to guarantee the application is still available when the server crashes.
Security aspects are another typical example.

572 R. van der Krogt et al.

topology in the data centre. When moving processes, we want to minimise the
total distance of the processes that are moved. Note that, in general,

min
s∈S

cost(s) > max
s1,s2∈S

δ(s1, s2) (1)

That is, our first priority is in achieving acceptable levels for the states of the
servers, with minimum movements of secondary importance.3

The full problem statement can now be formalised as follows.

Given S = 〈s1, . . . , sn〉 servers
P = 〈p1, . . . pm〉 processes
σ0, . . .σt sensor readings, where σi = 〈σi

0, . . . , σ
i
l〉

Find σt+1
o (p) for each p ∈ P

Subject to ∀p ∈ P · σt+1
i (p) = σt

i(p), i = [1, l]
∀s ∈ S · σt+1

i (s) ≤ max i

∀p ∈ P · σt+1
0 (p) ∈ possible(p)

∀p1, p2 ∈ P · p1 ∈ incompatible(p2) =⇒ σt+1
o (p1) �= σt+1

0 (p2)

Minimising
∑
s∈S

cost(Δ(s, σt+1(s), . . .σt+1−z(s)))

+
∑
p∈P

δ(σt
0(p), σ

t+1
0 (p))

Thus, we are interested in finding a new allocation of processes to servers for
the next time step, i.e. computing σt+1

0 (p) for all p ∈ P , such that the allocation
satisfies all constraints. The cost of this allocation is mainly influenced by the
cost associated with the labelling of the servers. In the next section, we introduce
an approach that efficiently computes the labelling and solves the problem.

3 A Hybrid Approach

Our approach to solve the problem naturally breaks down into three stages:

1. The identification of servers which are at the different risk levels;
2. The formulation of the re-distribution problem; and
3. Solving the generated problem to compute a new workload allocation with

as few changes as possible.

3.1 Stage 1a: Rules-Based Problem Identification

The first stage relates to the implementation of the function Δ that we intro-
duced in the previous section. The problem here is that this function may be
3 However, note that cost(s) might equal cost(s) = 0, in which case these states should

be disregarded in Equation 1.

An Integrated Business Rules and Constraints Approach 573

very complex due to the many conditions over time that need to be taken into
account. The biggest cause of this complexity is a desire for stability. It would
be too costly to reallocate processes each time a certain sensor reading is too
high and therefore, we need to establish a pattern emerging over time before we
decide to take action. There is a also a second issue: flexibility. This is desired
because not all variations of the problem are known ahead of time, and this
allows a user to customise for their situation: the SLAs they have agreed with
users, standard procedures, etc.

Most data centres already use monitoring systems that provide performance,
resource utilisation and workload projection capabilities. The resource utilisation
data usually contains a number of samples taken over monitored time intervals
that range from 30 seconds to 30 minutes. This data indicates when and how
frequently different utilisation spikes occur. Business rules are an ideal way to
formulate the process of analysing the monitoring data and define spike frequen-
cies and overload thresholds.

For the purpose of this research, we consider a business rule to be a triplet
bχ = 〈e, c, a〉 [3], where χ is a list of variables, e describes an event that triggers
the rule, c describes a condition over χ that has to be met, and a specifies the
action to perform. Rules are grouped in rule sets. When an event happens, the
rules in each applicable rule set B = {b1, . . . , br} are evaluated in order, starting
from b1, and identifying the actual values with the variables χ. Depending on
the strategy the BRMS employs, one or more of the matching rules is executed.
Executing multiple matching rules allows more specific conditions to override
generic ones. This is the strategy taken by our system.

By enumerating the different cases described by Δ we can capture the be-
haviour of Δ in a rule set. The trigger event for each rule is the update in the
sensor readings; the condition describes the case to which it applies; and the
action specifies the label that Δ outputs for that particular case. For exam-
ple, consider the following very simple labeling function, with the number of
timesteps equal to z = 1, S = {high,medium, low}, and assuming σt

1 ∈ [0, 100]
measures the CPU load in percentages:

Δ(s, σ) =

⎧⎪⎨
⎪⎩

low if σ1(s) ≤ 60
medium if 60 < σ1(s) ≤ 90
high if 90 < σ1(s) ≤ 100

This can be efficiently represented using the rule set of Table 1, where ε denotes
an update to the sensor readings. More complicated functions can be represented
by rule sets in a similar fashion; for example differentiating between different
days of the week or time of day, or different kinds of processes. Given a proper
interface, such as can be provided by Excel (cf. Figure 1 below), the rules can be
defined and maintained by business analysts who understand the actual thresh-
olds for different resource types for different time periods. Thus, the rules can
be easily customised for different (types of) data centres.

574 R. van der Krogt et al.

Table 1. A simple rule set

event condition action
ε σ1 ≤ 100 set label = high

ε σ1 ≤ 90 set label = medium

ε σ1 ≤ 60 set label = low

Table 2. The previous rule set extended

event condition action additional constraints
ε σ1(s) ≤ 100 set label = high post σt+1

1 (s) ≤ 70

ε σ1(s) ≤ 90 set label = medium

ε σ1(s) ≤ 60 set label = low

3.2 Stage 1b: Building the Optimisation Model

At the problem identification stage we can also start to build the features of
the optimisation model in terms of the variables and constraints. Our solution
provides the facility to describe constraints within the Business Rules environ-
ment and to add them to a CP model. For example, we can extend the rules
in Table 1 with constraints on the utilisation of a server over the next period.
Again, let σ1 denote the CPU load, and assume that we want to constrain the
CPU load for servers with a high load to at most 70%. This can be reflected in
the business rules by including a statement that adds (posts) a new constraint,
as shown in Table 2. These same rules, but now specified in our Excel interface,
are shown in Figure 1. The developer view (the lightly coloured rows 4, 5 and 6)
is normally hidden from the user’s view, i.e. the business analyst would only see
rows 7-10, and can manipulate the data there to reflect their situation (including
the addition of rows to add more rules). The developer view shows how the rules
relate to the business objects (e.g. specifying how the “CPU load is less than”
condition is evaluated), and the effects on the business objects and the CSP. In
this case, for example, the effect on the CSP is the creation of a new variable and
the introduction of constraints on this variable, using the following Java snippet:

d.setMaxUtilisation(maximum);
Var [] appAssignments = d.getAppAssignments();
p.scalarProduct(appAssignments, p.getAppLoads()).le(maximum).post();

Besides the posting of simple constraints, we can introduce a certain amount of
intelligence in the building of the model at this stage. As the number of servers
can be very large, we believe that we should have the facility to limit the number
of servers to consider in the solution. For example, we could limit ourselves to
only those servers that have a high load, and those that have capacity to spare
(e.g. those servers s for which σ1(s) ≤ 30). Again, the rules interface allows a
data centre administrator to specify this efficiently.

An Integrated Business Rules and Constraints Approach 575

Fig. 1. The rule set of Table 2 specified in Excel

3.3 Stage 2: Solving the Optimisation Model

With the number of servers totaling potentially a very high number, the problem
may quickly become intractable. Therefore, we propose that a smaller model can
be generated, depending on the size and nature of the problem defined by the
rules. Our hypothesis is that a small problem will find better solutions within
the available time than a larger model, using the same search strategy.

To explore this hypothesis, we propose two models: a global one in which we
take into account the full problem, and a localised one. In the first (full) model,
we look at the state of all servers, identify which servers require a reallocation
of volumes and solve the resulting problem.

The second approach is described by the following two inter-leaving stages:

1. As each server is sequentially identified as high risk using the rules definition,
a small local model is created to solve the problem, but within a restricted
set of servers that have spare capacity available; followed by

2. An optimisation stage which generates a new workload allocation with as
few changes as possible.

This approach is particularly relevant where the presence of high risk servers is
fairly sparse and there is the opportunity to create several small problems.

4 Experimental Results

4.1 Experimental Setup

Following discussions with a large data centre hardware provider, we generated
a set of benchmark problems to test our system with. The benchmark set focuses
on the management of storage servers. Such servers do not run any applications,

576 R. van der Krogt et al.

Table 3. Classification rules, σ1
1 , . . . , σz

1 are the last z values of the load sensors; I is
the interval between readings. For brevity, the event column is omitted, as is the Java
code generating the model.

condition action

‖{σt
1|σt

1>45}‖
z

≥ 40 set label = medium

I ≥ 10 ∧ ∃i ∈ 1 . . . z · σi
1 ≥ 60 set label = high

I < 10 ∧ ∃i ∈ 1 . . . z · σi
1 ≥ 70 set label = high

I ≤ 15 ∧ ∃i ∈ 1 . . . z − 2 · [σi
1 ≥ 70 ∧ σi+1

1 ≥ 70 ∧ σi+2
1 ≥ 70

]
set label = very high

I ≥ 15 ∧ ∃i ∈ 1 . . . z − 1 · [σi
1 ≥ 70 ∧ σi+1

1 ≥ 70
]

set label = very high

I ≥ 30 ∧ ∃i ∈ 1 . . . z · [σi
1 ≥ 70

]
set label = very high

yet are dedicated to the storage and retrieval of information. Information is
stored on virtual disks (“volumes”) that may span many physical disks, even
across different servers. Each volume has a list of applications that are using
that particular volume, and a list of I/O operations per application. Different
volumes may occupy the same physical disk. Thus, the total amount of data that
is being transferred to/from a disk is determined by the activity of the different
volumes on it. If several volumes with high transfer rates are stored on the same
disk, the disk is overloaded and response times drop. In such a case, we want to
redistribute the volumes over the active disks in such a way as to alleviate any
bottle necks. Moving a volume is a costly operation, however, and so we want
to minimise the number of moves over time.

Due to the nature of the problem, a number of additional constraints are
present. These relate to the physical hardware that the systems employ. In par-
ticular, because of service level agreements that are in place, we can only move
(part of) a volume from one physical disk to another, if these disks are of the
same size, speed and type. Additionally, different parts of a RAID volume cannot
share the same physical disk.4

Table 3 lists the rules that are used to classify the servers. Notice that the
interval at which sensors are read differs between systems. Therefore, the time
between sensor updates is included in the rules.

Description of the Benchmark Sets. Our benchmark set consists of 100
problem instances that were randomly generated from actual data. The problems
have the following characteristics: we consider a storage array with n disks,
each of which is represented by a server in our model. The array is used by
2n applications, where each application ai requires space on between 1 and 3
disks (we say that the virtual disk for application ai requires between 1 and 3
volumes). If application ai requires, say, space on 2 disks, this gives rise to 2

4 A RAID configuration (Redundant Array of Inexpensive Disks) allows data to be
divided and replicated among multiple hard drives to increase data reliability and/or
increase performance. These benefits are lost when the parts of the array ends up
on the same disk.

An Integrated Business Rules and Constraints Approach 577

processes in our model, a1
i and a2

i , that we have to accommodate. For security
reasons, these cannot be allocated on the same disk (as they are part of the
same RAID device). Therefore, an incompatible constraint is imposed over such
sets of processes. Finally, only 4 applications can use a disk at the same time
due to space restrictions. To this end, we introduce a sensor σsize that reports
σt
size(p) = 25 for each time step t and each process p. For any given server s, we

require σsize(s) ≤ 100 for all time points. To reiterate, the disks in the storage
array are represented by the servers in our model; the volumes on those disks are
represented by the processes running on the servers. We assume unit distance
between all disks, in effect minimising the total number of changes we make to
the allocation of applications to disks.

The values of the load sensors were chosen such that either 1/4th or 1/8th of the
disks is considered to have a high or veryhigh load, and the goal of the system
is to achieve a maximum load of 60% for any given disk. As we specified the
interval between sensor readings to be I = 15, this corresponds to ensuring that
none of the disks will be classified as either high or very high when considering
just the next time point. For each combination of the total number of disks and
the number of overloaded ones, we generated 10 instances.

Models Considered. As indicated in Section 3.3, we consider two models. The
first is the “full” model, in which the full set of disks is taken into account. The
other model, referred to as “iterative” considers each disk in turn, and if the rules
indicate that this disk is classified as high or very high, we create a small CSP
to solve the reallocation problem for this disk. At first, this CSP is created using
the overloaded disk and all unclassified disks (i.e. those with a low level of load).
However, if we fail to find a solution for this CSP, we expand it to include all
disks classified as medium as well. In this manner, we process all disks until they
all have satisfactory load levels (or until we discover we cannot find a solution
to the problem).

Our hypothesis is that the larger (i.e. full) models suffer from scalability issues
(the full problem more so than the restricted one). The localised model is not
expected to suffer from such scalability issues, but does lead to lower quality
solutions: we expect to use more moves to rectify the situation.

Implementation. We used the ThinkSmart Technologies Intellify platform [4]
to build our system. Intellify is a Java platform that allows us to integrate the
OpenRules BRMS [5] as well as various CP solver implementations. The results
we present here are obtained using the Constrainer [6] solver. We also have work-
ing versions using Choco [7] and an initial implementation of the forthcoming
JSR-331 standard [8].

4.2 Results

The experimental data were generated using Java 1.6 on an Intel Core 2 Duo
P8700, running at 2.53 GHz and with 4 GB of memory available (although none

578 R. van der Krogt et al.

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0 20 40 60 80 100 120 140
 0

 10

 20

 30

 40

 50

 60

tim
e(

m
s)

nu
m

be
r

of
 c

ha
ng

es

number of disks

iterative time
full time

iterative changes
full changes

Fig. 2. Results with 12.5% of servers over loaded

of the experiments required more than 512 MB). We allowed each experiment a
maximum of 15 minutes of CPU time (i.e. 900 seconds).

Figures 2 and 3 show the results of our experiments, taking the average of the
10 instances for each number of disks tested. Notice that the figures represent
both the CPU time required to solve the instance, as well as the quality of the
resulting solution (as measured in the number of moves). The two figures show a
similar pattern: when the number of disks increases, solving the whole problem
as one quickly leads to performance issues, and we cannot prove that we have
found the optimal solution within 15 minutes. On the other hand, when we deal
with each overloaded disk in isolation (and finding an optimal result during each
iteration), it takes less than 10 seconds for the largest of problems. Thus, this
part of our hypothesis is confirmed by these experiments. A χ2 analysis shows
that this is a statistically significant difference, as shown in Table 4.

The other part of our hypothesis stated that we expect to find that by solving
iteratively, we produce lower quality solutions, i.e. we require more changes to
achieve the desired load levels. Again, the figures confirm this hypothesis, as
does the χ2 analysis (cf. Table 4).

A closer examination of the results, shows exactly why this happens. When
we look at the overloaded disks in isolation, the only way to deal with the issue
of one of the disks being overloaded is to move at least 1 application away from
the disk, and replace it with another volume (either belonging to some other
application with a lighter load, or even an unused volume from another disk).5
Thus, 2 changes are required to deal with the issue. For example, consider 3 disks,
d1, d2, and d3, each with two applications on them with loads: d1 = {40, 25},
5 Notice that the volumes in an array are of the same size. Disks are broken up into as

many volumes of that size as possible (even if one or more of these will be unused)
and thus no disks will have spare capacity to accommodate an additional volume.
Hence, we always have to swap volumes.

An Integrated Business Rules and Constraints Approach 579

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0 20 40 60 80 100 120 140
 0

 10

 20

 30

 40

 50

 60

tim
e(

m
s)

nu
m

be
r

of
 c

ha
ng

es

number of disks

iterative time
full time

iterative changes
full changes

Fig. 3. Results with 25% of servers over loaded

d2 = {40, 25} and d3 = {10, 10}. Suppose we want to achieve a maximum load
of 60, and consider disk d1 before disk d2. The local problem generated to deal
with d1 consists of disks d1 and d3 (d2 is not considered, since it’s overloaded).
It is straight-forward to see that we can achieve the objective by swapping the
application with load 25 with one of the applications from disk d3 (totaling 2
moves). The same holds when we consider d2, and we achieve a total of 4 moves.
Of course, in general, we may undo some of the moves we have made during
an earlier iteration in order to satisfy the load on other disks, so we expect to
see somewhere just under 2m changes given that there are m overloaded disks.
(This number is confirmed by the graphs above.)

On the other hand, when we consider the solutions found when solving the
whole problem at once, we observe that often, load is transferred between over-
loaded disks as well. In our previous example, for example, we can achieve a
solution with only 3 moves: Move the application with load 40 from d1 to d3,
move the one with load 25 from d2 to d1 and move the one with load 10 from d3
to d2. This requires that load is transferred between overloaded disks. Having
this global view helps in detecting such situations, which explains the difference
between the two approaches.

5 Related Work

There are a few instances of research in the combination of rules and constraints.
Many of these works [9,10,11,12,13,14] relate to translating business rules into
constraints and solving the problem with a single technology. This is not always
applicable since business rules on their own can be used to make decisions us-
ing a different technology based on the RETE algorithm [15]. Perhaps closest
to the research presented here is the work by Bousonville et al. [16], who use
Business Rules to generate the data input to a predefined optimisation model.

580 R. van der Krogt et al.

Table 4. χ2 analysis of the results, counting the number of problem instances one
approach out-performs the other

1/4th overloaded 1/8th overloaded
CPU time Quality CPU time Quality

full model 4 41 7 33
iterative 46 0 43 0

χ2 35.28 41 25.92 33
p �0.01 �0.01 �0.01 �0.01

In particular, they say, “we do not provide direct access to decision variables so
that only predefined constraints are possible”. This is quite in contrast to what
is demonstrated here. We indeed dynamically create constrained variables and
post additional constraints from within the business rules environment. Rules
are integral to solving the problem, not just as a pre-processor, but as an active
component.

LAURE [17] (and its successor CLAIRE [18]) is a system which allows the
use of rules to guide the optimisation search. Constraint Handling Rules (CHRs)
are a more general approach to solving CSPs using rules. An overview of CHR
approaches can be found in [19].

The automatic generation of dispatch rules (similar to business rules) for a
packaging problem [20] through a CP optimisation model shows another hybrid
configuration. However, there is a loose coupling between the technologies. Here
an optimisation model, reflecting the global demands over a time period, is used
to choose the parameters for a set of rules describing which task and which
packaging machine to consider next.

Finally, related to our work are several approached to load balancing in the
data centre, such as, e.g. [21]. However, load balancing addresses the issue of
how to distribute an incoming set of jobs (e.g. database queries or http requests)
over the available servers, which is a different problem than the one we address
here.

6 Conclusions and Future Work

In this paper, we describe a hybrid system that uses both a Business Rules
Management System and a Constraint Programming solver to solve resource
reallocation problems in large data centres. Such problems arise because the
applications assigned to a server fluctuate in their requirements for, e.g. CPU
power, memory, and bandwidth. When the demands on a server are larger than
what it can provide, the performance degrades, and a solution has to be found
through moving some of the workload to other servers.

In our solution, we use a BRMS to analyse the states of the servers over time.
Due to stability reasons, we only want to move applications when a pattern has
been established over several successive measurements, and the BRMS is used to

An Integrated Business Rules and Constraints Approach 581

describe under which exact conditions servers are considered to be overloaded.
Once the BRMS has established that one or more servers are overloaded, the
rules that have fired are also used to construct a CSP corresponding to the
problem. This is a distinguishing feature of our approach, as heretofore rules
have only been used to setup parametrised models or to provide input to a CSP
model. In contrast, our system allows the rules to create and access directly
the variables and constraints in the CSP. This gives the rule administrator full
control over how the problem is generated and solved, hence allowing the solution
to be customised to the specific circumstances in their data centre.

The combination of Business Rules and CP is a powerful approach to the
problem. For Business Rules, finding an optimal solution is problematic and
could conceivably lead to many rules which are difficult to maintain. For Con-
straint Programming, the creation of the instance of the problem model would
require much programming, and small changes to the underlying logic would
require reprogramming that part of the solution. By passing each challenge to
a different technology and linking them together at a low level delivers a fast,
easily maintainable solution.

We have tested the system using data from a large data storage centre. The
results show that while achieving optimal solutions is impractical for large prob-
lems (due to the time involved in constructing those optimal solutions), we are
able to solve the problem within seconds by iteratively dealing with each over-
loaded resource in turn. However, this comes at a price, as the quality of the
solution found is lower.

There are several areas for improvement to the current system. First of all, we
want to examine the trade-off between solving iteratively and solving the problem
as a whole. We identified specific conditions that improve the solution quality
when solving the full problem (i.e. moving applications between overloaded disks
in addition to the moving of applications between overloaded disks and those that
are not overloaded that happens in the iterative solution strategy). By solving
slightly larger problems, we may be able to achieve the best of both. This could
even be set by a rule in the BRMS, allowing the data centre administrators to
make the trade-off between solution quality and speed of achieving the solution.

Secondly, energy consumption is becoming a major issue for data centres.
For this reason, we want to introduce the ability to recommend shutting down
servers when not all servers are required, and vice versa, to recommend turn-
ing some additional servers on when there is a serious resource deficiency. This
can be modeled already within the formal model of Section 2 (by introducing
all-consuming dummy processes that are bound to servers when they are not
available), but we have not explored this aspect using real data yet.

Acknowledgments

This work is supported by Enterprise Ireland under Grant PC/2009/0224 “Ap-
plying Integrated Rules and Constraint Technology to Diagnose and Resolve Ca-
pacity Deficiency Problems for Large Data Centres”, CP/2009/0201 and CFTD/
06/209; and by Science Foundation Ireland under Grant 05/IN/I886.

582 R. van der Krogt et al.

References

1. Barroso, L., Hölzle, U.: The datacenter as a computer: An introduction to the de-
sign of warehouse-scale machines. Synthesis Lectures on Computer Architecture 4,
1–108 (2009)

2. http://www.vkernel.com/
3. Herbst, H., Knolmayer, G., Myrach, T., Schlesinger, M.: The specification of busi-

ness rules: A comparison of selected methodologies. In: Tools for the Information
System Life Cycle (1994)

4. http://www.thinksmarttechnologies.com/
5. http://www.openrules.com/
6. http://www.constrainer.sourceforge.net/
7. http://www.emn.fr/z-info/choco-solver/
8. http://4c110.ucc.ie/cpstandards/index.php/en/standards/java/jsr-331
9. Kameshwaran, S., Narahari, Y., Rosa, C., Kulkarni, D., Tew, J.: Multiattribute

electronic procurement using goal programming. European Journal of Operational
Research 179(2), 518–536 (2007)

10. Carlsson, M., Beldiceanu, N., Martin, J.: A geometric constraint over k-dimensional
objects and shapes subject to business rules. In: Stuckey, P.J. (ed.) CP 2008. LNCS,
vol. 5202, pp. 220–234. Springer, Heidelberg (2008)

11. Fages, F., Martin, J.: From rules to constraint programs with the Rules2CP mod-
elling language. In: Recent Advances in Constraints (2009)

12. Feldman, J., Korolov, A., Meshcheryakov, S., Shor, S.: Hybrid use of rule and
constraint engines (patent no: WO/2003/001322) (2003)

13. Feldman, J., Freuder, E.: Integrating business rules and constraint programming
technologies for EDM. In: The 11th International Business Rules Forum and The
First EDM Summit (2008)

14. O’Sullivan, B., Feldman, J.: Using hard and soft rules to define and solve optimiza-
tion problems. In: The 12th International Business Rules Forum (2009)

15. Forgy, C.: Rete: A fast algorithm for the many pattern/many object pattern match
problem. Artificial Intelligence 19, 17–37 (1982)

16. Bousonville, T., Focacci, F., Pape, C.L., Nuijten, W., Paulin, F., Puget, J.F.,
Robert, A., Sadeghin, A.: Integration of rules and optimization in plant powerops.
In: van Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp. 1–15. Springer, Heidelberg
(2005)

17. Caseau, Y., Koppstein, P.: A cooperative-architecture expert system for solving
large time/travel assignment problems. In: Proceedings of the International Con-
ference on Database and Expert Systems Applications, pp. 197–202 (1992)

18. Caseau, Y., Laburthe, F.: CLAIRE: Combining objects and rules for problem solv-
ing. In: Proceedings of the JICSLP 1996 Workshop on Multi-Paradigm Logic Pro-
gramming (1996)

19. Sneyers, J., van Weert, P., Schrijvers, T., de Koninck, L.: As time goes by: Con-
straint handling rules, a survey of chr research from 1998 to 2007. Theory and
Practice of Logic Programming 10, 1–48 (2010)

20. van der Krogt, R., Little, J.: Optimising machine selection rules for sequence de-
pendent setups with an application to cartoning. In: Proceedings of the 13th IFAC
Symposium on Information Control Problems in Manufacturing, pp. 1148–1153
(2009)

21. Pinheiro, E., Bianchini, R., Carrera, E.V., Heath, T.: Load balancing and un-
balancing for power and performance in cluster-based systems. In: Workshop on
Compilers and Operating Systems for Low Power (2001)

http://www.vkernel.com/
http://www.thinksmarttechnologies.com/
http://www.openrules.com/
http://www.constrainer.sourceforge.net/
http://www.emn.fr/z-info/choco-solver/
http://4c110.ucc.ie/cpstandards/index.php/en/standards/java/jsr-331

Context-Sensitive Call Control Using
Constraints and Rules

David Lesaint1, Deepak Mehta2, Barry O’Sullivan2, Luis Quesada2, and Nic Wilson2

1 BT Research & Technology, BT, UK
dvdlsnt@gmail.com

2 Cork Constraint Computation Centre, University College Cork, Ireland
{d.mehta,b.osullivan,l.quesada,n.wilson}@4c.ucc.ie

Abstract. Personalisation and context-awareness are fundamental concerns in
Telephony. This paper introduces a rule-based system - 4CRULES - which en-
ables context-sensitive call control by the means of feature configuration rules.
4CRULES is interoperable with standard context services and compositional fea-
ture architectures. It has been designed to resolve feature interactions, manage
conflicting preferences, and mitigate the uncertainty affecting context data. This
is achieved through a constraint optimisation model that maximises adherence
to user requirements and domain constraints. Experiments on a suite of instances
confirm the practicality of the approach and highlight performance- and adherence-
critical factors.

1 Introduction

Telecommunications services like instant messaging or internet telephony bring in-
creased flexibility to communicate at home, in the office or on the move. Their per-
vasiveness is also a source of disruptions and intrusions. Service providers are therefore
looking for personalisation solutions allowing users to control the timing and modalities
of their communications. In the case of telephony services, personalisation solutions are
built around call control features. Technically, a feature is an increment of functionality
that modifies the basic system behaviour. Dozens of call control features have been cre-
ated to address concerns such as mobility, privacy, presentation, or billing. Features are
optional and must be configured off-line to fulfil their role. Once configured, they exe-
cute by responding to call events (e.g., Call-Divert-On-Busy) and/or user actions (e.g.,
Call-Transfer) during calls.

Key requirements that drive the design of feature-rich telephony systems are: the
ability for users to parametrise features (e.g., “Call-Divert to mobile”), address caller
and callee scenarios (e.g., “Do-Not-Disturb and Speed-Dial”), combine or sequence
features (e.g., “Call-Screen then Call-Divert”), request context-sensitive feature config-
urations (e.g., “Mute during seminars”), and express preferences or priorities (e.g., call
policies imposed on a workforce). Different approaches ranging from scripting to policy
enforcement have been proposed to meet these requirements. None, however, provides
a comprehensive personalisation solution to: resolve undesirable feature interactions
arising due to compositionality; manage conflicting preferences; and handle the uncer-
tainty inherent to context data. To address these issues this paper presents a system

D. Cohen (Ed.): CP 2010, LNCS 6308, pp. 583–597, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

584 D. Lesaint et al.

for Context-sensitive Configuration of Call Control features using Rules (4CRULES).
4CRULES allows a user to describe the behaviour of the communication service through
a set of Feature Configuration Rules (FCRs). Conceptually, a FCR is weighted and as-
sociates a context condition to a feature subscription, which is defined to be a set of
features, and a set of precedence constraints prescribed by a user and the feature cata-
logue. Each time a user’s context is updated, the engine of 4CRULES infers a sequence
of features from his/her set of FCRs. This sequence is free of undesirable feature inter-
actions and it is applied to all calls involving the user until his context changes again.

A set of FCRs that are applicable for a given current context of a user could be in-
consistent due to a variety of reasons as explained in the later sections. The 4CRULES

engine computes a maximal subset of the applicable FCRs that is consistent and optimal
in some sense. The optimality is based on a strict weak ordering over FCRs, which is
obtained by evaluating a value for each FCR by combining priority of the FCR, concrete-
ness of the context condition of the FCR, and probability of applicability of the FCR. The
principle of the presented approach is to view FCRs processing as a constraint optimi-
sation task. Overall, the method ensures maximum adherence to user requirements and
interaction constraints. Experiments on a suite of instances confirm its practicality in
terms of response time and highlight performance- and adherence-critical factors.

The next section provides background and reviews prior art on the call feature con-
figuration. The architecture of 4CRULES and the principles of its implementation are
then introduced. This is followed by a description of the FCRs language and processing
method. The paper concludes with experiments using the existing implementation.

2 Related Work

From a user perspective, telephony systems that provide personalisation solutions must
provide support for:

– parameterisation: some features use operational data supplied by users;
– role-based selection: some features apply to outgoing calls, some to incoming calls

and others indistinctly (e.g., Call-Waiting);
– composition: features provide distinct functionalities and users need the flexibility

to combine them and, in some cases, prioritise their execution;
– contextualisation: call handling requirements often depend on context, i.e., on ex-

trinsic call characteristics such as user activity or location, and call service be-
haviour must be adapted accordingly;

– preferences and priorities: requirements may be weighted to enforce pre-emptive
rights when call control is shared or to help resolve conflicts; and

– uncertainty management: information on context may be imprecise (e.g., coarse-
grain localisation), incomplete (e.g., unclassified activity in a calendar service) or
unavailable (e.g., off-line presence service).

Another critical requirement is the ability to manage feature interactions [1]. A feature
interaction is “some way in which a feature modifies or influences the behaviour of an-
other feature in generating the system’s overall behaviour” [2]. Some interactions are

Context-Sensitive Call Control Using Constraints and Rules 585

desirable and must be enabled to achieve proper system behaviour, e.g., when the mod-
ules of a feature must interact. Other interactions are undesirable and must be avoided.
For instance, Call-Waiting-On-Busy and Call-Divert-On-Busy are triggered by the same
event but take conflicting actions, i.e., put the caller on hold or divert his call.

Modern telephony systems, notably those based on the Session Initiation Protocol
(SIP), rest upon compositional application architectures that are opened to personali-
sation and feature interaction management [3]. SIP is an application layer signalling
protocol used to establish, modify and terminate multimedia sessions [4,5]. Various ap-
plication programming interfaces (APIs) and domain-specific languages (DSLs) have
been proposed to develop SIP services. These capabilities hide away low-level SIP stack
operations to facilitate programmatic control over the call logic.

Scripting and policy languages are the main form of DSLs for SIP services. CPL [6]
and LESS [7], for instance, provide primitive events and actions to specify fine-grained
call control scripts. Scripts are uploaded to devices or application servers and interpreted
by scripting engines at runtime. Policy enforcement systems allow for more declarativ-
ity and expressiveness. Policies are well suited to capture trigger-response patterns that
commonly define feature behaviour. APPEL, for instance, supports an event-condition-
action syntax to guard call primitives with call events subject to context conditions
[8,9]. APPEL also supports conflict resolution policies [10]. Conflicts may occur when
different policies are triggered and alternative actions may be taken to process a call.
It is for the user to define which actions conflict and, if so, which resolution policy to
apply (e.g., discard or replace actions).

These solutions mostly rely on prioritisation to handle conflicts. In addition, they
provide limited support to capture constraints relating to application compositionality
and they do not handle context uncertainty. Constraint-based systems offer an alter-
native. Distributed Feature Compositions (DFC), for instance, is an abstract network
architecture designed to manage interactions through feature sequencing and exclusion
constraints [11,12,13]. Constraints are elicited by analysing pairs of features and identi-
fying those which are interaction-prone. This is achieved manually, formally or through
simulation and testing [14,15,16,17].

Features and constraints are recorded in a catalogue and users configure their sub-
scription by selecting and sequencing features accordingly. DFC routers then access
user subscriptions to activate features sequentially when calls are set up. [18] propose
a constraint optimisation approach to configure (context-agnostic) DFC feature sub-
scriptions based on user preferences. 4CRULES builds upon this method to compute
context-sensitive subscriptions.

3 Architecture and Principles of 4CRULES

4CRULES is a prototype designed to compute feature subscriptions of a user based
on his/her real-time context information and feature configuration rules. It assumes a
DFC-compliant telephony system that exposes a feature catalogue and accepts user
subscriptions. It also assumes a context acquisition system that delivers user context in-
formation collected from different sources. Its logical architecture comprises a registrar,
a rules-editor, a rules-store, a rules-engine, a context-log, and interfaces to the context
acquisition and telephony systems - see Figure 1.

586 D. Lesaint et al.

Users Addresses
Registrations

Rules Engine

Rules Store

Registrar

C
on

te
xt

 A
cq

ui
si

tio
n

Sy
st

em
Telephony System

Rules Editor

subscription
(address)

add/delete
address

add/delete
registration

context
record(user)

registrations(user)

FCR(registration)

ruleset(registration)

catalogue

FCR(registration)

add/delete
user

Context Log
Catalogue

Context Records

context log(user)

Rulesets

registration added
registration deleted

Fig. 1. The architecture of 4CRULES

The registrar associates users of the context acquisition system with addresses reg-
istered in the telephony system. The mapping between users and addresses is generally
one-to-many. For simplicity, we identify users with addresses. 4CRULES associates a
set of FCRs with each user. The rules-store maintains the rule-sets and the feature cata-
logue. The rules editor is the user interface to create, delete and update rule-sets.

The context acquisition system is responsible for tracking the context of users. It
notifies the rules-engine when the context of a user changes and passes a record of
the context of the user (context-record) which is also stored in the context-log. The
engine retrieves the associated set of FCRs from the rules-store and computes a context-
sensitive feature subscription. It then communicates the feature subscription to the tele-
phony system. This feature subscription will prevail in all calls involving the user until
a new context-record is received.

4CRULES shares a common meta-model with the context acquisition and telephony
systems. The context meta-model is simple enough to achieve interoperability with a
variety of services (e.g., GPS devices, calendar services, presence servers). It prescribes
a finite domain representation for each context dimension (e.g., location) which is as-
sumed to be exhaustive (i.e., no state omitted) and unambiguous (i.e., domain values
denote distinct states). The granularity of context domains is unconstrained (e.g., days
or quarters). Table 1 provides an example of a context model.

The (concrete) context of a user may thus be described with a single value from
each domain of each dimension at any time. However, it is not always feasible to ac-
quire concrete information about context dimensions. For this reason, 4CRULES ac-
cepts abstract contexts as input. Specifically, the context-records communicated by the

Context-Sensitive Call Control Using Constraints and Rules 587

acquisition system may include alternative values for each dimension to denote mul-
tiple states. For instance, the abstract context “Friday, PM, lunch or visit” denoted
〈D:{Friday},H:{PM},A:{lunch,visit}〉1 is a valid record in reference to the model
of Table 1. Notice that no assumption is made about the frequency of communications.
It is for the acquisition system to decide which record to communicate and when.

Table 1. A context model

Dimension DAY HOURS ACTIVITY LOCATION PRESENCE
Domain Monday AM journey home appearOffline

Tuesday PM lunch office away
Wednesday standBy anyOther beRightBack
Thursday visit busy
Friday anyOther doNotDisturb
Saturday offline
Sunday online

As far as the telephony system is concerned, the meta-models for feature catalogue
and feature subscription subsume that of DFC. A catalogue is a set of features and
precedence constraints, and the induced relation may be cyclic (i.e., some features may
be incompatible) and non-transitive. A feature subscription is a set of features, user-
defined precedence constraints, and a set of catalogue precedence constraints defined
on the selected features. It is consistent if the induced relation is acyclic. Catalogue and
subscription meta-models also accommodate parameter signatures for features.

The feature configuration rule language is built upon the context and the feature
catalogue meta-models. The antecedent of a FCR specifies an abstract context which
has Cartesian product semantics similarly to that of context-records. The consequent of
a FCR is a feature subscription augmented with feature exclusion constraints. Basically,
the user can express inclusion and exclusion constraints over individual features and
precedence constraints over the included features. The priority of a FCR is selected by
the user from a total order (e.g., low ≺ medium ≺ high). The region of a FCR is
target (resp., source) if the user is callee (resp., caller).

Figure 2 illustrates a set of FCRs. The identifier of the first FCR is 1, its priority is
high, its region target, and it prescribes the activation of feature divert with pa-
rameter value addr1 if the activity recorded for the user is journey or visit. This
means that all incoming calls received during journeys or visits should be forwarded to
address addr1. The second rule prescribes the activation of featuretScreen before fea-
ture divert as indicated by keyword BEFORE. The third rule excludes feature divert
as indicated by keyword DONT. In other words, this rule cannot be composed with a rule
that requires divert. The next rule restricts the two dimensions Day and Hour. The
last rule handles outgoing calls and is labelled with source instead of target.

Given an abstract context recorded for a user, and a set of FCRs provided by the user
the rules-engine proceeds in two steps. It first identifies the set of FCRs that are applica-
ble, i.e., whose antecedents intersect with the recorded abstract context. Notice that an
applicable FCR does not necessarily subsume the concrete context of the user. For this

1 We represent an abstract context by abbreviating dimensions with their initials (e.g., D for
DAY) and omitting those that are not restricted (LOCATION and PRESENCE in this example).

588 D. Lesaint et al.

[1,high,target] A:{journey,visit} → divert(addr1)
[2,high,target] L:{home} → tScreen(list1) BEFORE divert(addr1)
[3,low,target] A:{lunch} → play(away.mp3) DONT(divert)
[4,low,target] D:{Monday,Friday} AND H:{PM} → divertNoAnswer(addr2)
[5,low,target] L:{anyOther} → play(welcome.mp3)
[6,high,source] L:{anyOther} → oScreen(list2)

Fig. 2. A set of feature configuration rules

reason, the engine computes a probability of applicability for each FCR as described
in Section 6. The second step computes an interaction-free sequence of features that
is obtained by composing the consequents of applicable FCRs. Since applicable rules
may not be consistent as described in Section 5, the engine determines a consistent
relaxation, i.e., a subset of rules that are consistent. Since there may be many such re-
laxations, the engine computes an optimal relaxation using a lexicographic order based
on rule priority, concreteness and probability of applicability. The engine solves this
combinatorial optimisation problem using a constraint programming model.

The next sections present the notations and definitions related to the context and
catalogue meta-models, the rules language, the notions of probability of applicability
and relaxation, and the constraint programming formulation of the relaxation problem.

4 Context and Catalogue Meta-models

In this section we describe the context and catalogue meta-models.

4.1 Context Dimensions and Records

A context model is a tuple of context dimensions. A context dimension is represented
by a finite domain of values called context domain. Let M denote a context model, m
the number of context dimensions of M, Di, 1 ≤ i ≤ m, the domain associated with
the ith dimension of M, and d the size of the largest domain in M. Without loss of
generality we assume that each context domain is totally ordered.

An abstract context a = 〈a1, a2, . . . , am〉 over M is a tuple consisting of a (non-
empty) set of values per context domain. If all sets in a are singleton, a is said to
be concrete. For instance, 〈D:{Monday,Tuesday},A:{lunch,visit}〉 is an abstract
context while 〈D:{Monday},H:{PM},A:{lunch},L:{office},P:{offline}〉 is a
concrete context wrt. Figure 1. Whenever a dimension is not specified (e.g., L in the
previous abstract context) the full domain is assumed. A context-record is an abstract
context overM.

Let a = 〈a1, a2, . . . , am〉 be an abstract context over M. �a� denotes the Cartesian
product a1 × a2 × · · · × am. Let ai = 〈ai1 , . . . , aim〉 and aj = 〈aj1 , . . . , ajm〉 be two
abstract contexts overM. We say that ai subsumes aj , denoted by aj ⊆ ai if and only
if (aj1 ⊆ ai1) ∧ · · · ∧ (ajm ⊆ aim). The intersection of ai and aj , denoted by ai ∩ aj ,
is 〈(ai1 ∩aj1), . . . , (aim ∩ajm)〉. The complexity of context intersection is linear in the
number of dimensions and linear in the maximum domain size. The maximal abstract
context overM for subsumption is denoted D, i.e., D = 〈D1, . . . , Dm〉.

Context-Sensitive Call Control Using Constraints and Rules 589

4.2 Feature Catalogues and Subscriptions

A feature catalogue is a pair 〈F ,H〉, where F is a set of features andH is a set of hard
precedence constraints on F . A precedence constraint, i ≺ j ∈ H, means that if the
features i and j are part of a subscription then i must precede j in that subscription.
Two features i and j are mutually exclusive if they can never appear together in any
subscription. This is expressed by a pair of precedence constraints i ≺ j and j ≺ i.

The name of a feature together with the name and type of its parameters define the
signature of a feature. For instance, feature play in Figure 2 is parameterised with
the name of a media file whereas tScreen is parameterised with a list of addresses.
For each feature f ∈ F , sf denotes the signature of f . S denotes the set of feature
signatures, i.e., S = {sf |f ∈ F}, and s the largest number of parameters for a feature.

Formally, a feature subscription for a catalogue 〈F ,H〉 is a tuple 〈F, V,H ∪ P 〉,
where F ⊆ F , V is a set of feature parameter assignments complying with signa-
ture sf ∈ S for each f ∈ F , H is the projection of H on F , i.e., H ↓F = {(i ≺
j) ∈ H : i, j ∈ F}, and P is a set of user-defined precedence constraints on F .
A feature subscription 〈F, V,H ∪ P 〉 is defined to be consistent if and only if the di-
rected graph 〈F,H∪P 〉 is acyclic. For instance, a subscription 〈{tScreen, divert},
{tScreen:list=l1,divert:addr=a1}, {tScreen ≺ divert}〉 is acyclic and
hence it is consistent.

LetU1 = 〈F1, V1, H1∪P1〉 andU2 = 〈F2, V2, H2∪P2〉 be two feature subscriptions.
Let vfi ∈ Vi denote the parameter assignment for f ∈ Fi in Ui, 1 ≤ i ≤ 2. We say
that U1 and U2 are unifiable if and only if for all f ∈ F1 ∩F2, vf1 = vf2 . For instance,
〈{divert}, {divert:addr=a1}, ∅〉and 〈{tScreen,divert}, {tScreen:list=l1,
divert:addr=a1}, {tScreen≺divert}〉 are unifiable subscriptions since feature
divert has the same parameter assignment in each subscription. The composition of n
subscriptions 〈Fi, Vi, Hi∪Pi〉, 1 ≤ i ≤ n, is the subscription 〈Fc, Vc, Hc ∪Pc〉, where
Fc = F1 ∪ · · · ∪Fn, Vc = V1 ∪ · · · ∪Vn, Hc = H ↓Fc , and Pc = P1 ∪ · · · ∪Pn. For in-
stance, the composition of the two subscriptions 〈{divert}, {divert:addr=a1}, ∅〉
and 〈{divertNoAnswer}, {divertNoAnswer:addr=a2}, ∅〉 is the subscription 〈{di
vert,divertNoAnswer}, {divert:addr=a1,divertNoAnswer:addr=a2},{div
ertNoAnswer≺ divert,divert≺ divertNoAnswer}〉 if we assume that divert
and divertNoAnswer are mutually exclusive in the catalogue.

5 Feature Configuration Rules

A feature configuration rule (FCR) associates an abstract context to a consistent fea-
ture subscription. Let r be a FCR. ar = 〈ar1 , . . . , arm〉 denotes the abstract context
of r where ∀i, 1 ≤ i ≤ m, ari �= ∅. sr = 〈Fr , Vr, Hr ∪ Pr〉 denotes the consis-
tent feature subscription of r. We say that a FCR r is applicable to a given context-
record ς if and only if ar and ς have a common intersection, i.e., �ar ∩ ς� �= ∅. For
instance, FCR 1 in Figure 2 is applicable to 〈A:{journey,standBy}〉 but FCR 3 is
not. Let R be a set of FCRs. We say that R is applicable to an abstract context ς if
and only if ς intersects with each antecedent, i.e., ∀r ∈ R, �ar ∩ ς� �= ∅. We say that
the FCRs in R are mutually applicable to ς if and only if their antecedents and ς have
a common intersection, i.e., �

⋂
r∈R ar ∩ ς� �= ∅. For instance, the FCRs of Figure 2

590 D. Lesaint et al.

are individually applicable but they are not mutually applicable to the abstract context
〈A:{journey,lunch},L:{home,anyOther}〉.

We want to allow the possibility of expressing that some feature cannot be part of the
final subscription should the FCR be applied and composed with other FCRs. In order to
allow that, for each feature f ∈ F , a dummy feature f and two precedence constraints
f ≺ f and f . f are added to the catalogue to enforce mutual exclusion. The dummy
feature f can then be included in the subscription to specify the exclusion of f should
the rule be applied. This ensures that a FCR excluding f will be incompatible with a
rule requesting f . We say that R is compatible with the catalogue if and only if the
composition of the subscriptions prescribed by the rules of R denoted 〈FR, VR, HR ∪
PR〉 is consistent. For instance, the rule-set {1, 2} is compatible but {1, 3} is not due
to the mutual exclusion constraint between divert and divert in the catalogue. In
the following we shall also assume that features divert and divertNoAnswer are
mutually exclusive in the catalogue and that no other catalogue constraint applies to the
features used in the rule-set in Figure 2. Therefore, the rule-set {1, 4} is not compatible
with the catalogue.

We say that R is unifiable if and only if the feature subscriptions prescribed by
FCRs of R are pairwise unifiable. For instance, the rule-set in Figure 2 is not unifi-
able due to the assignment of feature play in rule 3 and 5. Figure 3 shows the pairs
of rules in Figure 2 that are not compatible, not unifiable or not mutually applicable
to the abstract context ς1 = 〈D:{Friday},H:{PM},A:{journey,lunch},L:{home,
anyOther},P:{office}〉.

4 2c

c a

1 6

c

c

c
a

a

3 5a
u

Fig. 3. Graph of inconsistent pairs of rules in Table 2 wrt. abstract context ς1. Nodes represent
rules and edges labelled with c (respectively, u, a) connect rules that are not compatible (resp.,
unifiable, mutually applicable to ς1).

Given a set of FCRs R which is applicable to an abstract context ς , we say that R is
consistent with ς if and only if the FCRs of R are mutually applicable to ς , R is unifi-
able, and R is compatible with the catalogue. For instance, the set of rules {3, 4, 6} in
Figure 2 is consistent with the abstract context ς1 and corresponds to one of the inde-
pendent sets in the inconsistency graph shown in Figure 3. Note that independence in
the inconsistency graph is necessary but insufficient in the general case to ensure con-
sistency since the rules of an inconsistent set of rules may be pairwise consistent. Each
FCR r is associated with a weight that includes a user-defined priority, a concreteness
measure, and a probability of applicability. The concreteness of a rule is fixed and rep-
resents the cardinality of its abstract context whereas its probability of applicability is
relative to the context-record being considered.

Context-Sensitive Call Control Using Constraints and Rules 591

Proposition 1. Let R be a set of FCRs applicable to an abstract context ς . The time
complexity of checking the consistency ofR with ς isO(|R|(|FR| s+md)+|HR∪PR|).

Proof. The time complexity of checking the applicability of R isO(|R|md), where m
is the number of context dimensions and d is the maximum domain size of the context
dimensions. This is because the time-complexity of computing the intersection of two
abstract contexts is O(md) and |R| such intersections are required. The complexity of
checking the compatibility of R is equivalent to checking the consistency of the feature
subscription 〈FR, VR, PR ∪HR〉, which is O(|FR| + |PR ∪HR|). The complexity of
checking the unifiability of FCRs is O(|FR| |R| s). This is because verifying whether a
feature has the set of parameter values in different rules is O(|R| s) and checking this
for all features is O(|FR| |R| s). Thus, the overall time complexity is O(|R|(|FR| s +
md) + |HR ∪ PR|).

6 Probability of Applicability of a FCR

4CRULES assumes that any context-record, ς , sent by the context acquisition system
for a user includes his/her current context, i.e., the concrete context denoting his state.
Consistently with this assumption, the rules-engine discards rules that are not applica-
ble, i.e, rules whose antecedents do not intersect with ς . Since their antecedents cannot
include the current context, it is safe not to apply them. The method, however, considers
any other rule as applicable. While this is safe for rules whose antecedents subsume the
context-record, and therefore includes the current context, this is not necessarily safe
for those rules whose antecedents do not subsume the context-record. For such rules,
it cannot be exactly ascertained whether the antecedent includes the current context or
not.

For this reason, the rules-engine computes a probability of applicability for each
rule with respect to the context-record. This probability is based on a probability dis-
tribution over the space of concrete contexts that is specific to the user. Given a user
u, the associated probability distribution, a context-record ς , and the antecedent ar of
a rule r associated with u, the probability that r is applicable to ς is the sum of the
probabilities of the concrete contexts that are common to ar and ς . By default, the
distribution may be assumed uniform, i.e., each concrete context is equally likely to
occur. In this case, the probability of applicability of a rule r to a context-record ς ,
denoted Pu(ar|ς), is defined by Pu(ar|ς) = |�ar ∧ ς�|/|�ς�|. For example, if ς =
〈L:{anyOther,office},A:{lunch}〉, then Pu(a6|ς) = 1/2. Here a6 denotes the ab-
stract context 〈L:{anyOther}〉 associated with FCR 6 in Figure 2. Notice that a6 ∧ ς
and ς differ only in the dimension Location: the former has only one value for the di-
mension Location while the latter has two values.

Alternatively, a frequency distribution may be used if the context-records produced
by the acquisition system are logged. The context-log of a user is a list of pairs 〈a, f(a)〉
where a is an abstract context and f(a) its frequency. The log is initialised with the pair
〈D, 1〉 corresponding to the maximal abstract context D. When the acquisition system
produces an abstract context a for the user, his/her context-log is extended with a new
pair 〈a, 1〉 if there is no pair whose first element is a or else the frequency of a is

592 D. Lesaint et al.

Algorithm 1. MCS(L,ς , R, k)
Require: L: context-log of a given user, ς: context-record of the user, R: set of FCRs of the user

applicable to context ς , and k: number of trials.
Ensure: Pfr is an approximation of Pf(ar|ς).
1: for 1 ≤ r ≤ |R| do
2: sr ← 0, tr ← 0

3: for 1 ≤ q ≤ k do
4: randomly select an abstract context a from L such that a∧ς �= ∅ favouring those contexts

with higher frequency.
5: for all r = 1 . . . |R| do
6: sr ← sr + |�a ∧ ς ∧ ar�|
7: tr ← tr + |�a ∧ ς�|
8: for r = 1 . . . |R| do
9: Pfr ← sr/tr

incremented by 1 in the existing pair 〈a, f(a)〉. Given a log of context-records L, the
probability of applicability of a rule r to a context-record ς , denoted Pf(ar|ς), is

Pf(ar|ς) =

∑
〈a,f(a)〉∈L |�a ∧ ς ∧ ar�| × f(a)∑

〈a,f(a)〉∈L |�a ∧ ς�| × f(a)
(1)

The denominator is the total count of the concrete contexts covered by the abstract
contexts subsumed by ς according to L, and the numerator is the number of times a user
has been in one of the concrete contexts subsumed both by ς and ar. Let size(L) =∑

a∈L f(a) be the size of a log L. The exact computation of Pf(ar|ς) is linear with
respect to size(L). If size(L) is large, a Monte-Carlo method such as Algorithm 1
can be used for generating a close approximation. Given a context-log L for a user
u, a context-record ς , a set of rules R applicable to ς , and an integer k, Algorithm 1
randomly selects k abstract contexts from the log favouring those contexts with higher
frequency and it updates two counters sr and tr for each rule r. Here tr denotes the
total count of the concrete contexts covered by k abstract contexts selected from the log
that are subsumed by ς , and sr denotes the portion of tr that is consistent with ar. The
algorithm returns the ratio of sr and tr which approximates Pf(ar|ς).

When size(L) is small, it is reasonable to use Pu(ar|ς) for computing the probability
of applicability. As size(L) increases, it is desirable to gradually switch to pf(ar|ς). In
order to achieve that, a weighted average of Pu(ar|ς) and Pf(ar|ς), denoted Pa(ar|ς),
may be used.

7 Optimal Relaxation of a Set of FCRs

Given a context-record ς and a set of FCRs R, the engine searches for a consistent set
of rules amongst R. Let R ⊆ R be the set of rules applicable to ς . If the rules in R
are mutually not applicable to ς , or R is non-unifiable, or it is incompatible with the
catalogue then R is inconsistent, in which case the task is to find a relaxation ofR that
is consistent. From now on, by relaxation we mean consistent relaxation. A consistent

Context-Sensitive Call Control Using Constraints and Rules 593

Algorithm 2. λ(ri, rj) : Boolean
1: If Paε(ari/ς) > Paε(arj /ς) then return true
2: else if Paε(ari/ς) < Paε(arj /ς) then return false
3: else if κ(ri) > κ(rj) then return true
4: else if κ(ri) < κ(rj) then return false
5: else if γ(ri) < γ(rj) then return true
6: else return false

relaxation R′ of R is maximal if there does not exist any relaxation R′′ verifying R′ ⊂
R′′. Since there may be many maximal relaxations, the engine searches for a maximal
relaxation that is optimal in some sense. The notion of optimality is defined using a
lexicographic order over sets of FCRs. A lexicographic order over maximal relaxations
can be derived from a strict weak ordering over rules.

A strict weak ordering is a binary relation on a set that is a strict partial order in
which the relation “neither a is related to b nor b is related to a” is transitive. Given a
rule ri ∈ R, Pa(ai|ς) denotes the probability that the rule is applicable to ς , κ(ri) de-
notes the priority of the rule, and γ(ri) denotes the concreteness of the rule. Algorithm 2
introduces a strict weak ordering λ which compares rules based on their probability of
applicability, priority, and concreteness. Given two rules, λ first compares their ap-
proximate probabilities of applicability. In the algorithm, Paε(ari/ς) means Pa(ari/ς)
rounded to the nearest ε. For example, if ε is set to being 0.1 and Pa(ari/ς) = 0.53
then Paε(ari/ς) = 0.5. If the probabilities are approximately equal then λ compares
their priorities. If the priorities are equal then λ compares their concreteness. If their
concreteness are also identical then the two rules are λ-incomparable, i.e., equally im-
portant with respect to λ. An alternative strict weak ordering can be obtained by com-
bining priority and probability of applicability, i.e., ri is preferred to rj if and only if
Pa(ari/ς)× κ(ri) > Pa(arj/ς)× κ(rj).

Given a strict weak ordering λ, Θλ(R) denotes the total ordering of R obtained by
ordering its elements using λ and breaking the ties between λ-incomparable rules using
their identifiers. Let R′ and R′′ be two consistent sets of rules such that Θλ(R′) =
〈r′1, . . . , r′p〉 and Θλ(R′′) = 〈r′′1 , . . . , r′′q 〉. R′ is lexicographically better than R′′ for λ,
denoted Θλ(R′) ≺lex Θλ(R′′) if and only if

– p > q and for all i, i ≤ q, neither λ(r′i, r
′′
i) nor λ(r′′i , r

′
i) holds, or

– there exists i ≤ min(p, q) such that λ(r′i, r
′′
i) holds and for all l < i, neither

λ(r′l, r
′′
l) nor λ(r′′l , r

′
l) holds.

In words, R′ is better than R′′ if there exists r′i ∈ Θλ(R′) and r′′i ∈ Θλ(R′′) such that
r′i is more important than r′′i with respect to λ and for all r′l and r′′l occurring before r′i
and r′′i , r′l and r′′l are equally important. This assumes that R′ and R′′ have the same
number of rules. If not, the smaller one is padded with “blank rules”, where a blank rule
is treated as a least important rule with respect to λ.

A relaxation R′ of R is optimal if and only if there does not exist any relaxation
R′′ of R such that Θλ(R′′) ≺lex Θλ(R′). By definition of ≺lex, an optimal relaxation
is necessarily maximal with respect to set inclusion. If λ generates a total order on R
then ≺lex is itself a total order and finding an optimal relaxation of R is polynomial.

594 D. Lesaint et al.

However, if λ is a strict weak order on R, then ≺lex is also a strict weak ordering and
finding an optimal relaxation of R is NP-hard. This can be proven by reducing the max-
imum independent set problem to the problem of finding a lexicographically optimal
relaxation of a set of rules. Given a graph, a node can be associated with a rule and an
edge between two nodes can be associated with an incompatibility between two rules.
As finding a maximum independent set is NP-hard, finding a lexicographically optimal
relaxation is also NP-hard. Notice that two rules can be incompatible: (1) when they are
mutually not applicable, i.e., when their abstract contexts do not intersect, (2) when they
are non-unifiable, i.e., when a common feature is assigned different parameter values,
or (3) when the composition of their configurations is inconsistent.

Let us consider an example to demonstrate the concepts of maximal relaxation and
optimal relaxation. Let ς1 = 〈D:{Friday},H:{PM},A:{journey,lunch},L:{home,
anyOther},P:{office}〉 be an abstract context. All the rules in Figure 2 are appli-
cable, since the intersection of ς1 with each of them is non-empty. The probability of
applicability of FCR 4 is 100%, while for others is 50%. The concreteness of FCR 4 is
210, that of FCR 3 is 294, that of FCRs 2, 5 and 6 is 490 and that of FCR 1 is 588. The
strict weak ordering on the rule-set with respect to λ is 4 ≺ {2, 6} ≺ 1 ≺ 3 ≺ 5. This
rule-set is not consistent with ς1 as shown in Figure 3. It has 4 maximal relaxations
which are A = {2, 1}, B = {1, 6, 5}, C = {4, 6, 3} and D = {4, 6, 5}. The lexico-
graphic ordering over maximal relaxations with respect to ≺lex is a strict total order
equal to C ≺ D ≺ B ≺ A. C is therefore the optimal relaxation.

8 A Constraint Optimisation Formulation

This section formulates the problem of finding a lexicographically optimal relaxation
of an inconsistent set of FCRs as a constraint optimisation problem (COP). The COP
is defined in terms of finite domain variables, constraints restricting the assignments of
values to the variables, and an objective function. The variables model the inclusion
of rules in the computed relaxation, the inclusion and positioning of features in the
computed subscription, and the satisfaction of user precedences. The constraints model
all the requirements —mutual applicability, unifiability and compatibility of the rule-
set— whereas the objective function models the lexicographic order over rule-sets.

Variables and Domains. A Boolean variable bri is associated with each rule ri ∈ R,
which is instantiated to 1 or 0 depending on whether ri is included in the computed
relaxation or not, respectively. Each fi ∈ FR is associated with two variables: a Boolean
variable bfi and an integer variable pfi. A variable bfi is instantiated to 1 or 0 depending
on whether fi is included in the computed subscription or not, respectively. The domain
of each variable pfi is {1, . . . , |FR|}. If fi is included then pfi denotes the position of
fi in a sequence. Each user precedence constraint pij ≡ (fi ≺ fj) ∈ PR is associated
with a Boolean variable bpij , which is instantiated to 1 or 0 depending on whether pij

is respected in the computed subscription or not, respectively.

Constraints. A catalogue precedence constraint (i ≺ j) ∈ HR can be expressed
as bfi ∧ bfj ⇒ (pfi < pfj), which is trivially satisfied when either bfi or bfj is

Context-Sensitive Call Control Using Constraints and Rules 595

instantiated to 0. A user precedence constraint (i ≺ j) ∈ PR can be expressed as
bpij ⇒ (bfi ∧ bfj ∧ (pfi < pfj)). If it holds then fi and fj are included in the
subscription and fi is placed before fj in the sequence. For each f ∈ FR, if f ∈
(Fri ∩ Frj) and vfi �= vfj , then the rules ri and rj are non-unifiable. In order to
ensure unifiability the constraint ¬bri ∨ ¬brj is added. The computed relaxation is a
mutually applicable set of rules which is expressed by �

∧
ri∈R∧bri=1 ai ∧ ς� �= ∅.

If ri is included in the computed relaxation then its subscription is included in the
computed subscription (i.e., the subscription induced by the computed relaxation). This
is expressed by the constraint bri ⇒ ∧

fj∈Fi
bfj ∧

∧
pkl∈Pi

bpkl.
A feature fj (respectively, a user precedence pkl) can only be included in the com-

puted subscription if it belongs to the subscription of a rule that is included in the
computed subscription. For each feature fj ∈ FR and each user precedence pkl ∈ PR,
we add the constraints bfj ⇒ ∨

(fj∈Fi)∧(ri∈R) bri and bpkl ⇒ ∨
(pkl∈Pi)∧(ri∈R) bri.

Objective Function. A solution of the COP model is a subscription induced from the
set of the rules that are included. Let I be a subset of rules of R that are included, i.e.,
{ri|ri ∈ R ∧ bri = 1}. The value of the solution is Θλ(I), which is an ordered set of
rules based on the comparator λ. The objective is to find an ordered set of rules, Θλ(I),
that is consistent and lexicographically optimal.

9 Empirical Evaluation

The purpose of our experiments was to get an insight into the behaviour of 4CRULES and
assess the feasibility of the optimisation approach for rules processing. Experiments were
carried out using an implementation of 4CRULES based on Choco, version 2.1, a Java li-
brary for constraint programming systems (http://choco.sourceforge.net/).

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 2 3 4 5 6 7 8 9 10
 0

 25

 50

 75

 100

 125

 150

 175

 200

 225

 250

ra
tio

 (
#a

pp
lie

d
ru

le
s

/ #
ap

pl
ic

ab
le

 r
ul

es
)

tim
e

(in
 m

ill
is

ec
on

ds
)

abstractness of the input context

ratio
time

Fig. 4. Behaviour of 4CRULES wrt. input context-records

We devised our experimen-
tal model based on practical
knowledge of feature catalogues
and context models to assess the
impact of input context-records
on response time and rules ap-
plicability. To do so, we created
a context model, a catalogue,
a rule-set and context records.
The context model has 4 con-
text dimensions of maximum
domain size 12, which is real-
istic for consumer applications.
The catalogue includes 25 fea-
tures and 125 precedence con-
straints and was randomly generated as specified in [18]. The generated catalogue is
similar in size to those found in academic literature [17] or used commercially [13]. The
rule-set includes 50 FCR which probably exceeds the number of situations a user might
really want to “control”. The rules were generated as follows: each rule antecedent was

http://choco.sourceforge.net/

596 D. Lesaint et al.

generated by randomly selecting 2 concrete values per dimension, and each consequent
was generated by randomly selecting 2 features. The same priority was used for all
rules. For i ranging from 1 to 10, we generated a context-record containing i concrete
values per dimension.

We ran the rules engine with each context-record using the rule-set and the cata-
logue. The results are shown in Figure 4. The x-axis represents the abstractness of the
context-record, that is, the parameter i. The y-axis depicts as the ratio of the number of
applied rules to the number of applicable rules (left axis) as well as the response time
(in milliseconds) for finding an optimal set of rules (right axis). Each point in the plot
is an average of 25 instances. The graph shows that as the abstractness of the context-
record increases the response time increases while the ratio of applicability decreases.
These results confirm the practicality of the proposed model in terms of response time.

10 Conclusion

We have introduced 4CRULES, a rule-based system that enables context-sensitive call
control using feature configuration rules. 4CRULES has been designed to be interoper-
able with standard context services and compositional feature architectures. 4CRULES

handles conflicting preferences and mitigates the uncertainty affecting context data. A
constraint optimization approach is used to compute configurations that meet the user
requirements to an optimum degree.

The approach adopted was to compute optimal consistent rule-sets by determining
the mutual applicability of rules to the input context, the compatibility of their config-
urations with feature interaction constraints, and their aggregate value using a lexico-
graphic ordering combining rule priority, concreteness, and probability of applicability.
Experiments on random test instances confirmed the practicality of the approach and
highlighted performance critical factors.

Future work will involve the investigation of the rules edition functionalities (e.g.,
validation, refactoring, compilation), richer ontological models for context domains and
catalogues (e.g., feature dependencies), and new application domains (e.g., smart RSS
feeds, software plug-in configurations).

Acknowledgments

This material is based upon work supported by the Science Foundation Ireland under
Grant numbers 05/IN/I886, 08/PI/I1912, and Embark Post Doctoral Fellowships num-
bers CT1080049908 and CT1080049909.

References

1. Calder, M., Kolberg, M., Magill, E.H., Reiff-Marganiec, S.: Feature Interaction: A Critical
Review and Considered Forecast. Computer Networks 41(1), 115–141 (2003)

2. Bond, G.W., Cheung, E., Purdy, H., Zave, P., Ramming, C.: An Open Architecture for Next-
Generation Telecommunication Services. ACM Transactions on Internet Technology 4(1),
83–123 (2004)

Context-Sensitive Call Control Using Constraints and Rules 597

3. Lesaint, D., Papamargaritis, G.: Personalised Communications. In: Voudouris, C., Owusu,
G., Dorne, R., Lesaint, D. (eds.) Service Chain Management - Technology Innovation for the
Service Business, pp. 187–203. Springer, Heidelberg (2008)

4. Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston, A.B., Peterson, J., Sparks, R., Han-
dley, M., Schooler, E.M.: SIP: Session Initiation Protocol. In: RFC 3261, IETF (June 2002)

5. Sparks, R.: SIP: Basics and Beyond. ACM Queue 5(2), 22–33 (2007)
6. Lennox, J., Wu, X., Schulzrinne, H.: Call Processing Language (CPL): A Language for User

Control of Internet Telephony Services. RFC 3880, IETF (October 2004)
7. Wu, X., Schulzrinne, H.: Handling Feature Interactions in the Language for End System

Services. In: Feature Interactions in Telecommunications and Software Systems VIII (ICFI
2005), Leicester, UK, pp. 28–30. IOS Press, Amsterdam (June 2005)

8. Turner, K.J., Reiff-Marganiec, S., Blair, L., Pang, J., Gray, T., Perry, P., Ireland, J.: Policy
Support for Call Control. Computer Standards & Interfaces 28(6), 635–649 (2006)

9. Reiff-Marganiec, S., Turner, K.J., Blair, L.: APPEL: The ACCENT Project Policy Environ-
ment/Language. Technical report, University of Stirling, Scotland (December 2005)

10. Blair, L., Turner, K.J.: Handling Policy Conflicts in Call Control. In: Reiff-Marganiec, S.,
Ryan, M. (eds.) Feature Interactions in Telecommunications and Software Systems VIII,
ICFI 2005, Leicester, UK, June 2005, pp. 39–57. IOS Press, Amsterdam (2005)

11. Jackson, M., Zave, P.: Distributed Feature Composition: a Virtual Architecture for Telecom-
munications Services. IEEE Transactions on Software Engineering 24(10), 831–847 (1998)

12. Jackson, M., Zave, P.: The DFC Manual. AT&T (November 2003)
13. Bond, G.W., Cheung, E., Goguen, H., Hanson, K.J., Henderson, D., Karam, G.M., Purdy,

K.H., Smith, T.M., Zave, P.: Experience with Component-Based Development of a Telecom-
munication Service. In: Heineman, G.T., Crnković, I., Schmidt, H.W., Stafford, J.A., Szyper-
ski, C., Wallnau, K. (eds.) CBSE 2005. LNCS, vol. 3489, pp. 298–305. Springer, Heidelberg
(2005)

14. Zave, P.: An Experiment in Feature Engineering. In: McIver, A., Morgan, C. (eds.) Program-
ming Methodology, pp. 353–377. Springer, Heidelberg (2003)

15. Zave, P., Cheung, E.: Compositional Control of IP Media. In: Diot, C., Ammar, M., da Costa,
C.S., Lopez, R., Leitao, A.R., Feamster, N., Teixtera, R. (eds.) Proc. of the 2nd Conf. on
Future Networking Technologies (CoNext 2006), Lisboa, Portugal, SIGCOMM, pp. 67–78
(December 2006)

16. Zave, P.: Audio Feature Interactions in Voice-over-IP. In: Bond, G.W., Schulzrinne, H.,
Sisalem, D. (eds.) Proc. of the 1st Int. Conf. on Principles, Systems and Applications of
IP Telecommunications (IPTComm), New York, NY, pp. 67–78 (July 2007)

17. Zimmer, A.P.: Prioritizing Features Through Categorization: An Approach to Resolving Fea-
ture Interactions. PhD thesis, University of Waterloo, Canada (September 2007)

18. Lesaint, D., Mehta, D., O’Sullivan, B., Quesada, L., Wilson, N.: Personalisation of Telecom-
munications Services as Combinatorial Optimisation. In: IAAI 2008, pp. 1693–1698. AAAI
Press, Menlo Park (2008)

Load Balancing and Almost Symmetries
for RAMBO Quorum Hosting�

Laurent Michel1, Alexander A. Shvartsman1,
Elaine Sonderegger1, and Pascal Van Hentenryck2

1 University of Connecticut, Storrs, CT 06269-2155
2 Brown University, Box 1910, Providence, RI 02912

Abstract. Rambo is the Reconfigurable Atomic Memory for Basic Ob-

jects, a formally specified algorithm that implements atomic read/write

shared memory in dynamic networks, where the participating hosts may

join, leave, or fail. To maintain availability and consistency in such dy-

namic settings, Rambo replicates objects and uses quorum systems that

can be reconfigured in response to perturbations in the environment.

This is accomplished by installing new quorum configurations and re-

moving obsolete configurations, while preserving data consistency. Given

the dynamic nature of the atomic memory service, it is vitally impor-

tant to reconfigure the system online, while making well-reasoned selec-

tions of new quorum configurations. This paper reexamines the quorum

hosting problem, concentrating on better load balancing models and a

novel use of almost symmetries for breaking similarities among hosts in

the target network. The resultant performance improvements allow more

reasonably-sized systems to be reconfigured online in a way that opti-

mizes hosting of quorums with respect to relevant performance criteria.

1 Introduction

Providing consistent shared objects in dynamic networked systems is one of the
fundamental problems in distributed computing. Shared object systems must be
resilient to failures and guarantee consistency despite the dynamically changing
collections of hosts that maintain object replicas. Rambo, which stands for Re-
configurable Atomic Memory for Basic Objects [6,4], is a formally specified dis-
tributed algorithm designed to support a long-lived atomic read/write memory
service in such a rapidly changing network environment. To maintain availabil-
ity and consistency of the memory service, Rambo uses reconfigurable quorum
systems, where each object is replicated at host computers that are quorum
members. The intersection among quorum sets is used to guarantee atomicity
(linearizability) of the replicated data objects, thereby ensuring behavior equiv-
alent to that of a centralized shared memory.

The ability to rapidly reconfigure quorum systems in response to failures and
delays is at the heart of the Rambo service. Any participant may request a new
� This work was partially supported through NSF awards CCF-0702670 and IIS-

0642906 and AFOSR Contract FA955007C0114.

D. Cohen (Ed.): CP 2010, LNCS 6308, pp. 598–612, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Load Balancing and Almost Symmetries for RAMBO Quorum Hosting 599

configuration of quorum system hosts, after which consensus is used to agree
on the new configuration to be installed. While the Rambo service permits any
new quorum configuration to be installed on-the-fly, it is important to install
configurations that benefit system performance. To this end, the quorums should
be composed of members who have been communicating with low latency, and
be well-balanced with respect to read and write operation loads. Configuration
selection must be done quickly, since a lengthy process may impact the liveness
and fault-tolerance of the system, as hosts may continue to fail and their observed
performance characteristics change over time.

The models in [7] focused on determining optimal quorum configurations.
Both constraint programming and local search techniques were used to demon-
strate the feasibility of finding high-quality configurations that positively affect
the performances of read and write operations and the liveness of the system.
CP and hybrid CP/CBLS models were implemented with Comet [14,15,8].

This work began by studying the optimal quorum configurations found in [7]
to better understand their properties. Patterns emerged for the attributes of
good quorum configurations and for the relationships between quorum systems
and their hosting network topologies. The insights led to a significantly better
constraint programming model for the Rambo quorum hosting problem.

While [7] offered a solution to an open problem, the benchmarks were based
on modestly sized quorum systems, and it was debatable whether the approach
would scale. The contributions of this paper address these questions. First, the
paper revisits the way load-balancing is modeled to deliver a more realistic and
robust model. Second, the paper offers a decomposition-based model that sepa-
rately optimizes the replica deployment with respect to the induced delays and
the quorum selection with respect to the balancing objective. Third, the pa-
per expands on the symmetry-breaking techniques found in [7] and exploits a
dominance relation also known as an “almost symmetry” [5,1]. The dominance
is handled with a dynamic symmetry breaking embedded in the search of the
first phase of the decomposition. Finally, the paper presents experimental re-
sults demonstrating that the extensions are transformative, bringing orders of
magnitude in performance improvements (up to 10,000 times faster) and ad-
dressing the scalability issues for network topologies endowed with symmetrical
structures. Although this work is presented in the context of Rambo, the results
can be applied to any distributed service that relies on dynamically introduced
quorum systems.

Section 2 presents Rambo and quorums in more detail. Section 3 introduces
a high-level model for the quorum hosting problem, and Section 4 presents the
CP models. Section 5 reports the experimental results, and Section 6 concludes.

2 RAMBO and Quorums

Rambo, like most data replication services for distributed systems, uses quo-
rums to ensure the atomicity of its data in the presence of failures. Quorum
systems [3,13] are collections of sets, called quorums, whose members are hosts

600 L. Michel et al.

that maintain replicas of the data; in a quorum system any two quorums have a
non-empty intersection. If each operation contacts a complete quorum of hosts
containing data replicas, then any operation is guaranteed to see the results of
the most recently completed operation because there must be at least one host
in the intersection of the two respective quorums that participate in the opera-
tions. Rambo uses a variant, called read/write quorum systems, where such a
system has two sets of quorums, read quorums and write quorums, with each
read quorum having a non-empty intersection with every write quorum.

Figure 1 shows four read/write quorum systems. Maj consists of six members
grouped into four read quorums and four write quorums, each of which is a
majority quorum [13]. For Wheel, 3x3, and 4x4, the horizontal ovals represent
the read quorums, and the more vertical shapes represent the write quorums.

3x3Wheel
4x4

Maj

Write

Read

WriteRead

Fig. 1. Examples of Read/Write Quorum Systems

The read and write operations in Rambo use a two-phase strategy. The first
phase gathers information from at least one read quorum of all active configura-
tions, and the second phase propagates information to at least one write quorum
of each active configuration.

What sets Rambo apart from other data replication services is its ability to
dynamically reconfigure the quorum system as hosts join, leave, and fail. Quorum
reconfiguration is performed concurrently with read and write operations. As
long as the members of at least one read quorum and one write quorum of the
active configurations are still functioning, reconfiguration can take place. The
4x4 quorum system, for example, can tolerate three failures, but not necessarily
four. Thus, speed of reconfiguration is paramount as failures and changes in
participants are detected.

Rambo configurations are “hosted” quorum systems. To optimize configu-
rations, this paper distinguishes between a configuration’s abstract “unhosted”
quorum system and its assignment of quorum members to host computers in
the target network. The Rambo quorum hosting problem is to assign each mem-
ber of a given quorum system to a participating host in such a way that the
total delays for hosts to contact read and write quorums are minimized. Once
an assignment is computed, the resulting configuration is augmented to include
information recommending the best read and write quorums for each host to

Load Balancing and Almost Symmetries for RAMBO Quorum Hosting 601

use, where use of the best quorums will result in minimum delays for read and
write operations and the most balanced load on replica hosts (until failures occur
in those best quorums). Of course, the use of this information is optional, and
a host can always propose another quorum system if it does not observe good
responses from the recommended system.

The selection of a new configuration should be made dynamically in re-
sponse to external stimuli and observations about the performance of the service.
Rambo participants have no knowledge of the underlying network, particularly
as nodes join and leave. Hence, each host measures (externally to Rambo) its
average message delays with every other host as the best available estimate of
network connections and host failures. Each host also measures the average fre-
quency of its read and write operations. The gathered information is shared
with the other hosts by piggy-backing this information onto routine messages of
Rambo. The overall guiding principle is that observations of current behaviors
are the best available predictors of future behaviors.

3 Modeling the RAMBO Quorum Hosting Problem

Model Parameters. The inputs for the Rambo quorum hosting model are:

– The set of hosts H .
– For every host h ∈ H , the average frequency fh of its read and write requests.
– For every pair of hosts h1, h2 ∈ H , the average round trip delay dh1,h2 of

messages from h1 to h2.
– The quorum system to be deployed on H , which consists of:

• The set of members M , whose hosts will maintain replicas of the data.
• The set of read quorums R ⊆ P(M).
• The set of write quorums W ⊆ P(M).

The quorum system must be well-formed, meaning ∀r ∈ R, ∀w ∈ W, r ∩ w �= ∅.

Decision Variables. A decision variable xm with domain H is associated with
each quorum system member m. xm = h when member m is deployed on host h.
Each host h also is associated with two decision variables readQh and writeQh

(with domains R and W) denoting, respectively, one read (write) quorum from
the minimum average delay read (write) quorums associated with h. Finally,
three auxiliary variables readLoadm, writeLoadm, and loadm represent the read,
write, and total loads on replica m that are induced by the traffic between the
hosts and their chosen read/write quorums.

The Objective. An optimal quorum hosting minimizes

∑
h∈H

fh ×
(

min
q∈R

(
max
m∈q

dh,xm

)
+ min

q∈W

(
max
m∈q

dh,xm

))

where each term in the summation captures the time it takes in Rambo for
a host h to execute the read/write phase of the protocol. Indeed, a read (or

602 L. Michel et al.

a write) in Rambo requires the client to contact all the members of at least
one read quorum before it can proceed to a write round of communication with
all the members of at least one write quorum to update the data item. The
maxm∈q dh,xm reflects the time it takes to contact all the members of quorum
q as one must wait for an answer from its slowest member. The outer minq∈R

reflects the fact that Rambo must hear back from one quorum before it proceeds,
and this happens when the “fastest” quorum replies.

The Constraints. A quorum hosting is subject to the following constraints. First,
all quorum system members must be deployed on separate hosts.

∀m,m′ ∈M : m �= m′ ⇒ xm �= xm′

An implementation of Rambo may use different strategies when contacting the
read and write quorums. A conforming implementation might simply contact
all the read quorums in parallel. Naturally, this does not affect the value of the
objective, but it induces more traffic and work on the hosts of quorum members.
Another strategy for Rambo is to contact what it currently perceives as the
fastest read quorum first and fall back on the other read quorums if it does
not receive a timely response. It could even select a read quorum uniformly
at random. These strategies strike different tradeoffs between the traffic they
induce and the workload uniformity. The model presented below captures the
greedy strategy, namely, Rambo contacts its closest quorum first, and the model
assumes that this quorum replies (unless a failure has occurred).

The model uses the readQh and writeQh variables of host h to capture which
read (write) quorum Rambo contacts. Recall that a read (write) quorum is a
set and therefore the domain of readQh is the set of read quorums (similarly for
writeQh). More formally,

readQh = r ⇒ max
m∈r

dh,xm = min
q∈R

(
max
m∈q

dh,xm

)

writeQh = w ⇒ max
m∈w

dh,xm = min
q∈W

(
max
m∈q

dh,xm

)

Each equation requires the chosen quorum to induce a minimal delay. Note that
several quorums might deliver the same minimal delay, so this constraint alone
does not determine a host’s ideal read (write) quorum.

The third set of constraints defines the read, write, and total loads of a quorum
system member as

readLoadm =
∑
h∈H

∑
m∈readQh

fh

writeLoadm =
∑
h∈H

∑
m∈writeQh

fh

loadm = readLoadm + writeLoadm

Clearly, the loads on m depend on which read and write quorums are chosen
among those that induce minimal delays.

Load Balancing and Almost Symmetries for RAMBO Quorum Hosting 603

3.1 Load Balancing

For load balancing, the Rambo deployment model in [7] uses an additional input
parameter α limiting the spread of loads by requiring the maximum load on a
quorum system member to be within a factor α of the minimum load.

One insight, driving the development of the new load-balancing models, is
that in order for a quorum system member to be useful in a data replication
system, not only must its total load be non-zero, but both its read and write
loads also must be non-zero. If a quorum system member is never used in a write
quorum, it can never have the most recent data value, and if a quorum system
member is never used in a read quorum, it does not matter whether or not it has
the most recent data value. This pathological setup is easily avoided by requiring
readLoadm > 0 and writeLoadm > 0.

Carrying this reasoning further, it is inappropriate to allow the load on a
quorum system member to be predominantly read requests or predominantly
write requests as is possible when only the total load on members is balanced.
Instead, read and write loads should be balanced separately.

The first model to consider uses the load factor α to separately constrain the
read and write loads. Unfortunately, this is not a sensible approach since, for
small values of α, many networks do not have satisfying quorum hostings. This
is particularly true when a few hosts send the bulk of the messages.

New Load-Balancing Model. The adopted approach uses two optimizations,
rather than a single optimization, to obtain a balanced hosting. The first op-
timization finds an assignment of quorum system members to hosts that mini-
mizes communication delays. The second, given a global optimum of the first,
finds an assignment of quorums to hosts that minimizes the load imbalances
among quorum system members. Compared to [7], this approach trades off load-
balancing among quorum members for faster quorum response times. The loads
may be even more balanced for some networks with this approach, however,
because the optimization does not stop with an assignment that satisfies the α
load-balancing factor. Note that the first optimization only delivers one global
optimum (when there might be several), and this specific solution might not lead
to the most balanced solution in the second optimization.

Two alternative load-balancing objectives are studied. The first minimizes the
differences in the read and write loads between the most heavily loaded and the
most lightly loaded quorum system members (or alternatively, minimizes α).

min
(

max
m∈M

readLoadm − min
m∈M

readLoadm

)

min
(

max
m∈M

writeLoadm − min
m∈M

writeLoadm

)

The second minimizes the standard deviations for the read and write loads.

min

(
|M | ·

∑
m∈M

(readLoadm)2 − (
∑

m∈M

readLoadm)2
)

604 L. Michel et al.

min

(
|M | ·

∑
m∈M

(writeLoadm)2 − (
∑

m∈M

writeLoadm)2
)

The second objective yields more middle-of-the-range loads for quorum system
members, but possibly a slightly larger range of values. Minimizing the standard
deviation of loads was found to be an effective technique for balancing work loads
among nurses [11], but its added cost may not be justifiable for this application.

3.2 Network Symmetries

Many network topologies have some symmetries among host nodes. Ideally, these
symmetries can be exploited in determining optimal quorum placements. Con-
sider, for example, the partial network illustrated in Figure 2. Hosts B, C, D,
E, and F have a single neighboring host A. To the rest of the network beyond
A, shown with three groups of · · ·, hosts B through F are equivalent because
they all are the same number of “hops” away. The maximum delay for these
unillustrated hosts to access a quorum consisting of hosts A and B, represented
by the solid oval, is the delay to get a response from B. Similarly, the maximum
delay to access a quorum of A and C, represented by the dashed oval, is the
delay to get a response from host C. Since both B and C are one hop beyond A,
these delays are approximately the same, and the two quorums are equivalent
for the hosts beyond A. The two quorums also are equivalent for host A.

C

D

F

B

E

A

...

...

...

10

5

4

7

3

Fig. 2. Network Topology

with an Almost Symmetry

The two quorums are not equivalent for hosts B
and C, however. If B uses the quorum with hosts A
and B, its maximum delay to access the quorum is
the time it takes to get a response from A, whereas
if B uses the quorum with hosts A and C, it also
must wait to get a response from C which is another
hop away. Thus, the quorum with hosts A and B,
represented with the solid oval, is a better quorum
for B to use. For C, the better quorum is the one
with hosts A and C, represented with a dashed oval.

An optimal quorum hosting minimizes the sys-
tem’s total communication for accessing quorums,
where each host’s contribution to the total delay is
its message frequency times the delays to contact
its best read and write quorums. Assume B has a
frequency of 10, and C has a frequency of 5. Then the overall objective would
be less using the solid quorum with A and B, rather than the dashed quorum
with A and C, because B’s message frequency is greater than C’s.

The relationship among hosts B through F is an almost symmetry [5,1], rather
than a true symmetry. The hosts are equivalent with respect to hosts outside the
group. Within the group, the frequencies impose a dominance relation among
hosts which requires special care in the search. Dominance in CP was studied
in [10], while almost symmetries received some attention for planning [9] and
graphs [2]. This realistic application demonstrates their true potential.

Load Balancing and Almost Symmetries for RAMBO Quorum Hosting 605

4 The CP Model for the Quorum Hosting Problem

The initial Comet program for the quorum hosting problem is shown in Fig-
ure 3. The data declarations in lines 2–8 correspond to the input data of the
Rambo model in Section 3. Line 9 declares an additional input used for break-
ing variable symmetries among the members of the quorum system. Lines 10–14
define derived data. Specifically, nbrQ[m] is the number of quorums in which
m appears, and degree[h] is the number of immediate neighbors of host h in
the network, as determined from the observed message delays. RQ and WQ
are the index sets of the read and write quorums, respectively. The auxiliary
matrices readQC and writeQC are encodings of quorum membership, e.g.,
readQC[i, j] = true ⇔ j ∈ R[i].

Lines 15–22 declare the decision variables. Variable x[m] specifies the host of
quorum system member m. Variables readD[h, r] and writeD[h,w] are the com-
munication delays for host h to access read quorum r and write quorum w. The
variables readQ[h] and writeQ[h] represent the read and write quorum selec-
tions for host h. Finally, the variables readLoad[m] and writeLoad[m] represent
the read and write communication loads on quorum system member m, given
the current deployment and quorum selections, and load[m] represents the total
communication load on member m. Note that the domains for readLoad[m] and
writeLoad[m] exclude zero.

Line 24 specifies the objective function, which minimizes the total communi-
cation delay over all operations. Line 26 specifies the fault tolerance requirement,
namely, all members of the quorum system must be deployed to distinct hosts.
The onDomains annotation indicates that arc-consistency must be enforced. Line
27 breaks the variable symmetries among the quorum system members [12].

Lines 28–39 constrain the auxiliary delay variables and quorum selection vari-
ables needed in the load-balancing constraint. The constraints on lines 28 and
29 capture the delays incurred by host h to use a read (write) quorum. Lines 31
and 32 require the quorums assigned to host h, namely readQ[h] and writeQ[h],
to be among the quorums with minimum delay for that host. Lines 35–37 specify
the read, write, and total communication loads on m as the sum of the operation
frequencies of each host for which m is a member of its assigned read and/or
write quorum. Line 39 is the load-balancing constraint requiring the load on the
most heavily loaded quorum system member to be no more than α times the
load on the most lightly loaded member.

The search procedure operates in two phases. The first phase (lines 41–45)
assigns quorum system members to hosts. The variable selection heuristic first
focuses on members that appear in many quorums, and the value selection heuris-
tic first considers hosts that have many neighbors “close by” as these would be
ideal locations for data replicas. The second phase (lines 46–49) finds an as-
signment of hosts to read and write quorums that satisfies the load-balancing
constraint. This second phase cannot impact the value of the objective function.
Rather, its role is to decide which quorum each host should use to meet the
load-balancing requirement. Clearly, only one such assignment is needed which
explains the once<cp> annotation on line 46. Lines 46–49 consider the most

606 L. Michel et al.

1 Solver<CP> cp();

2 range M= ...; // The members of the quorum system
3 set{int}[] R = ...; // An array storing all the read quorums of the quorum system
4 set{int}[] W = ...; // An array storing all the write quorums of the quorum system
5 range H = ...; // The host nodes
6 int[] f = ...; // The frequency matrix
7 int[,] d = ...; // The delays matrix
8 int alpha = ...; // The load factor
9 set{tuple{int low; int high}} Order = ...; // The order of quorum members

10 int nbrQ[m in M] = ...; // The number of quorums for each member
11 int degree[H] = ...; // The degree of a host (number of neighbors)
12 range RQ = R.getRange(); range WQ = W.getRange();

13 boolean readQC[RQ,M] = ...;

14 boolean writeQC[WQ,M] = ...;

15 var<CP>{int} x[M](cp,H);

16 var<CP>{int} readD[H,RQ](cp,0..10000);

17 var<CP>{int} writeD[H,WQ](cp,0..10000);

18 var<CP>{int} readQ[H](cp,RQ);

19 var<CP>{int} writeQ[H](cp,WQ);

20 var<CP>{int} readLoad[M](cp,1..10000);

21 var<CP>{int} writeLoad[M](cp,1..10000);

22 var<CP>{int} load[M](cp,0..10000);

23 minimize <cp>
24 sum(h in H) f[h] ∗ (min(r in RQ) readD[h,r] + min(w in WQ) writeD[h,w])

25 subject to {
26 cp.post(alldifferent(x), onDomains);
27 forall(o in Order) cp.post(x[o.low] < x[o.high]);

28 forall(h in H,r in RQ) cp.post(readD[h,r] == max(m in R[r]) d[h,x[m]]);

29 forall(h in H,w in WQ) cp.post(writeD[h,w] == max(m in W[w]) d[h,x[m]]);

30 forall(h in H) {
31 cp.post(readD[h,readQ[h]] == min(r in RQ) readD[h,r]);

32 cp.post(writeD[h,writeQ[h]] == min(w in WQ) writeD[h,w]);

33 }
34 forall(m in M) {
35 cp.post(readLoad[m] == sum(h in H) f[h] ∗ readQC[readQ[h],m]));

36 cp.post(writeLoad[m] == sum(h in H) f[h] ∗ writeQC[writeQ[h],m]));

37 cp.post(load[m] == readLoad[m] + writeLoad[m]);

38 }
39 cp.post(max(m in M) load[m] <= alpha ∗ min(m in M) load[m]);

40 } using {
41 while (sum(k in M) x[k].bound() < M.getSize())

42 selectMax(m in M: !x[m].bound()) (nbrQ[m])

43 tryall<cp>(h in H : x[m].memberOf (h)) by (− degree[h])

44 cp.label(x[m], h);

45 onFailure cp.diff(x[m], h);

46 once<cp> forall(h in H : !readQ[h].bound() || !writeQ[h].bound()) by (− f[h]) {
47 label(readQ[h]);

48 label(writeQ[h]);

49 }
50 }

Fig. 3. The Initial CP Model in Comet

Load Balancing and Almost Symmetries for RAMBO Quorum Hosting 607

“talkative” hosts first (by decreasing frequencies) and attempt to assign one of
the remaining legal (minimal delay) quorums from its domain.

Improvements to the Search Heuristic. Within the search, the variable selection
heuristic focuses on members that appear in many quorums. This works well for
quorum systems such as Maj and Wheel in Figure 1 where some members are in
more quorums than others, but it doesn’t work well for systems such as 3x3 and
4x4 where every member is in exactly two quorums. A better search heuristic
for 3x3 and 4x4 exploits the symmetries in the quorum system by focusing on
variables with smaller domains. The following search heuristic, which replaces
line 42 in Figure 3, combines both goals.

1 selectMin(m in M: !x[m].bound()) (x[m].getSize() − 4 ∗ nbrQ[m])

The factor of 4 is somewhat arbitrary, but its intent is to give more weight to
small differences in the number of quorums to which a member belongs.

Load-Balancing Improvements. Because the read and write loads are balanced
separately, the variables readLoad[m] and writeLoad[m] are independent of each
other. Thus, the search can be improved by replacing lines 46–49 in Figure 3
with

1 once<cp> forall(h in H : !readQ[h].bound()) by (− f[h])

2 label(readQ[h]);

3 once<cp> forall(h in H : !writeQ[h].bound()) by (− f[h])

4 label(writeQ[h]);

By dividing the single once<cp> block into two, the need to backtrack over a sat-
isfactory assignment of read quorums to hosts while searching for a satisfactory
assignment of write quorums to hosts is eliminated.

To optimize the load balances, the load-balancing constraint on line 39 is
deleted, and the optimization code is appended after line 50. Figure 4 contains
the code for optimizing the load balance for read operations; a similar fragment
optimizes the load balance for write operations with writeLoad[m].

Figure 4 begins with the definition of a new solver cpR for read-load bal-
ancing. Line 2 defines bestR as the difference between the heaviest and lightest
read loads using the quorum hosting assignments from the communication opti-
mization. New decision variables are declared in lines 3–5. Variable objR is the
objective to be minimized and starts off with an upper bound equal to bestR.
Variables readQ2[h] and readLoad2[m] correspond to the variables readQ[h]
and readLoad[m] from Figure 3.

The objective function, specified in lines 6–8, minimizes objR, the difference
between the heaviest and lightest read loads using the load-balancing quorum-
to-host assignments. The constraints on lines 10 and 12 define readQ2[h] to be
one of the read quorums with the fastest response for host h and readLoad2[m]
to be the resultant load on quorum system member m. These constraints mirror
the constraints on lines 31 and 35 of Figure 3. Finally, lines 14 and 15 assign
read quorums to hosts, beginning with the most “talkative” hosts.

608 L. Michel et al.

1 Solver<CP> cpR();

2 int bestR = max(m in M) readLoad[m] − min(m in M) readLoad[m];

3 var<CP>{int} objR(cpR,0..bestR);

4 var<CP>{int} readQ2[H](cpR,RQ);

5 var<CP>{int} readLoad2[M](cpR,1..10000);

6 minimize <cpR> objR

7 subject to {
8 cpR.post(objR == max(m in M) readLoad2[m] − min(m in M) readLoad2[m]);

9 forall(h in H)

10 cpR.post(readD[h,readQ2[h]] == min(q in RQ) readD[h,q]);

11 forall(m in M)

12 cpR.post(readLoad2[m] == sum(h in H)(f[h] ∗ readQC[readQ2[h],m]));

13 } using {
14 forall(h in H : !readQ2[h].bound()) by (− f[h])

15 label(readQ2[h]);

16 }

Fig. 4. Solver for Optimally Balancing Read Loads

To minimize the standard deviation of loads, line 2 of Figure 4 is replaced by

1 int bestR = M.getSize() ∗ sum(m in M)(readLoad[m] ˆ 2)

2 − (sum(m in M) readLoad[m]) ˆ 2;

and line 8 is replaced with

1 cpR.post(objR == M.getSize() ∗ sum(m in M)(readLoad2[m] ˆ 2)

2 − (sum(m in M) readLoad2[m]) ˆ 2);

Note that the spread global constraint cannot be used since the total load over
all quorum system members depends on the selected quorums for each host.

Breaking Almost Symmetries. Figure 5 shows the changes to break the almost
symmetries in the topology, where lines 6–15 replace lines 42–45 in Figure 3.

Lines 1–3 contain additional parameter declarations. Eq is the set of sets of
equivalent hosts used in the value symmetry breaking. The sets of immediate
neighbors for each host are computed first using the observed message delays, and
then two hosts are deemed equivalent placements for a quorum system member
if they have the same set of neighbors. The set notEq contains all the hosts not
in some set of Eq. For each quorum system member m, the variable minQSz[m]
is the size of smallest quorum of which m is a member.

The set searchH guides the search. domain, on line 7, is the set of hosts
currently in the domain of the selected member m, and searchH , on lines 8–11,
is the subset of hosts currently being considered for assignment to m. searchH
contains all the hosts in the domain of m that are not equivalent to any other
host, plus one additional unbound host from each equivalence set, if one exists.

Because the host symmetries are almost symmetries rather than true sym-
metries, care must be taken both in the order in which hosts are added to

Load Balancing and Almost Symmetries for RAMBO Quorum Hosting 609

1 set{set{int}} Eq = ...; // The sets of equivalent hosts
2 set{int} notEq = ...; // The non−equivalent hosts
3 int minQSz[m in M] = ...; // The smallest quorum size for each member
4

5 while (sum(k in M) x[k].bound() < M.getSize())

6 selectMin(m in M: !x[m].bound())(minQSz[m], x[m].getSize()−4∗nbrQ[m]) {
7 set{int} domain = collect(h in H : x[m].memberOf(h)) h;

8 set{int} searchH = notEq inter domain;

9 forall(e in Eq : card(e inter domain) > 0)

10 selectMax(en in e inter domain) (f[en])

11 searchH.insert(en);

12 tryall<cp>(h in searchH) by (− degree[h])

13 cp.label(x[m], h);

14 onFailure cp.diff(x[m], h);

15 }

Fig. 5. Search Procedure with Almost Symmetry Breaking

searchH and in the order in which quorum system members are selected for
binding. Clearly, hosts should be added to searchH beginning with the hosts
with the highest message frequencies, as on line 10. The more subtle requirement
is that quorum system members must be assigned in increasing quorum size or-
der, as specified on line 6. To minimize the communication delays for the most
“talkative” hosts, those hosts should be only one “hop” away from the members
of their best read and write quorums, if possible. A host is zero hops from itself,
but two hops from the other hosts in its equivalence set. For small quorums,
this difference in hops is more likely to impact the delay to contact a complete
quorum. Hence, the members of small quorums must be assigned first.

5 Experimental Results

The Benchmarks. The benchmarks represent characteristics of common network
topologies and quorum systems. As illustrated in Figure 6, Stars3, Stars2, and
Stars2c3 arrange 15 hosts in clusters, Line arranges 15 hosts in a single line,
and Switch consists of 10 hosts on a switch and 4 other hosts hooked up via
point-to-point links. Hyper16 interconnects 16 hosts in a hypercube. Three larger
benchmarks, BigStars3, BigStars2, and BigStars2c3, are 21-host extensions
of Stars3, Stars2, and Stars2c3, with the extra hosts added to the “stars”.
Figure 6 shows the frequencies of the read/write operations for each host; the
delays are the number of “hops” between hosts. The quorum system benchmarks
are illustrated in Figure 1.

Model Comparisons. Table 1 compares results for different quorum hosting mod-
els using Comet 2.1 on a Core 2 at 2.4 GHz. Columns are grouped by model
type; the first column uses the model from [7], the second column adds non-
zero load constraints and separate load optimization, the third column is the

610 L. Michel et al.

1 2 5 3 7 10 1 1 2 6184510

5

1

3

10 1

10

2

2

6
8

5

4

7

11

5 1

3

10
12

10

2

6

8

5
4

7

11

5

10

3

1

4

1

1

2

5

8

2

10

6

71

Stars2

Stars2c3

Stars3 Switch

12 10

30

30 66 80 30 30

S
w
itc
h

Line

Fig. 6. Network Benchmarks Stars3, Stars2, Stars2c3, Switch, and Line

full load-balancing model, and the fourth column adds almost-symmetry break-
ing. Within each group, column Opt gives the objective for the optimal solution
found, Tend gives the time in seconds to prove optimality, and column Topt re-
ports the time in seconds to find the optimum. The table provides two rows
for each benchmark: the first reports the average and the second reports the
standard deviation over 50 runs. The 3x3 quorum system is used throughout.

It is useful to review these results in more detail.

1. For Stars2c3 the symmetry model is over 10,000 times faster than [7].
2. Exploiting almost symmetries in network topologies significantly impacts

performance, particularly for Stars2 and Stars2c3 that have many sym-
metric hosts. Note neither Line nor Hyper16 have network symmetries.

3. Hyper16 has more balanced loads with the new models; for the other bench-
marks the loads often are less balanced but the objective is smaller, reflecting
an improved tradeoff between response times and load balancing.

Table 1. Experimental Results Comparing Models with 3x3 Quorum System

Original Model Separate Load Independent Symmetry

From [7] Optimization Read & Write Breaking

Benchmark Opt Tend Topt Opt Tend Topt Opt Tend Topt Opt Tend Topt

Stars3 μ 284 39.83 12.52 284 43.77 10.30 284 24.51 0.45 284 2.01 0.12

σ 6.79 12.32 8.47 10.90 0.95 0.58 0.04 0.08

Stars2 μ 316 527.50 163.88 287 116.12 10.41 287 108.50 6.59 287 0.09 0.03

σ 375.07 366.84 15.37 12.09 5.50 3.63 0.01 0.01

Stars2c3 μ 268 1271.47 800.50 240 29.10 5.48 240 14.98 1.79 240 0.09 0.03

σ 460.78 648.67 4.91 4.90 0.98 0.86 0.01 0.01

Switch μ 620 47.57 32.53 620 34.87 19.54 620 3.60 0.01 620 0.35 0.02

σ 54.31 54.12 28.98 28.60 0.33 0.01 0.03 0.01

Line μ 517 388.41 269.31 499 156.04 71.66 499 211.05 111.78 499 206.05 109.11

σ 105.92 156.36 24.12 38.74 3.62 3.31 4.21 2.56

Hyper16 μ 249 438.84 215.74 249 421.40 212.98 249 295.60 57.66 249 294.26 58.15

σ 54.53 114.21 53.50 115.30 5.93 21.55 4.54 21.65

Load Balancing and Almost Symmetries for RAMBO Quorum Hosting 611

Table 2. Experimental Results Comparing Load-Balancing Models

Wheel Maj

Min. Difference Min. St. Dev. Min. Difference Min. St. Dev.

Benchmark Tend Topt #c Tend Topt #c Tend Topt #c Tend Topt #c

Stars3 μ 2.64 0.43 5.0 2.65 0.43 6.0 1.50 0.03 32.4 1.50 0.03 186.6

σ 0.05 0.29 0.0 0.05 0.29 0.0 0.02 0.01 11.1 0.01 0.01 25.1

Stars2 μ 0.20 0.07 36.0 0.20 0.07 59.0 0.31 0.03 717.2 1.18 0.03 10571.5

σ 0.01 0.01 0.0 0.01 0.01 0.0 0.04 0.01 271.0 0.29 0.01 2796.8

Stars2c3 μ 0.23 0.02 23.7 0.23 0.02 36.2 0.16 0.02 16.6 0.16 0.02 48.5

σ 0.01 0.01 46.4 0.01 0.01 112.9 0.01 0.01 8.8 0.01 0.01 10.4

Switch μ 0.89 0.25 10.0 0.89 0.24 12.0 0.14 0.02 574.2 1.04 0.02 11549.6

σ 0.02 0.04 0.0 0.01 0.04 0.0 0.04 0.01 562.7 1.16 0.01 13920.2

Line μ 60.78 29.13 20.2 62.77 30.05 52.3 22.16 4.03 4.6 22.16 4.02 115.5

σ 2.84 2.40 15.8 2.86 2.57 42.4 1.15 1.12 3.5 1.05 1.18 114.7

Hyper16 μ 80.07 4.93 70.3 81.52 4.97 508.4 53.12 2.74 90.3 54.80 2.81 2234.6

σ 2.46 0.65 23.4 2.88 0.63 28.9 1.32 0.35 32.3 2.40 0.35 205.4

4. With the new models, an optimal solution is found more quickly, allowing
reconfiguration to a good hosting before the proof of optimality completes.
The exception is Line which performs poorly with the new search heuristic.

5. The standard deviations for Tend and Topt are smaller with the new models.

Load Balancing Options. Table 2 compares two load-balancing options: mini-
mizing the difference between the largest and smallest loads and minimizing the
standard deviation among loads. Results are presented for the symmetry break-
ing model with Wheel and Maj quorum systems. Within each column group, #c
is the number of choices during load balancing, not the total number of choices.

When adopting the standard-deviation model, the additional delay is small
for Wheel, but more significant for some of the Maj benchmarks. The largest
impact is for BigStars2 with 4x4, shown in Table 3, which takes an addi-
tional 23 seconds to improve the loads from {15, 15, 17, 45} and {5, 5, 40, 42}
to {15, 16, 16, 45} and {5, 22, 23, 42}.

Larger Instances. Table 3 shows the almost-symmetry breaking model extends
nicely to larger networks and quorum systems.

Table 3. Experimental Results for Larger Networks with 4x4 Quorum System

BigStars3 BigStars2 BigStars2c3

Load Balancing Opt Tend Topt #c Opt Tend Topt #c Opt Tend Topt #c

Min. Difference μ 436 167.81 45.62 62.1 442 4.66 0.36 376.0 350 1.40 0.14 12.0

σ 17.14 24.70 7.7 1.14 0.31 0.0 0.13 0.09 0.0

Min. St. Dev. μ 436 161.68 38.87 696.6 442 27.62 0.34 104020.1 350 1.40 0.15 20.0

σ 13.61 24.48 122.9 1.70 0.36 15.2 0.13 0.10 0.0

612 L. Michel et al.

6 Conclusions

Quorums are an effective tool for implementing consistency and availability in
replicated distributed data services like Rambo. The study of optimal quorum
configurations led to significant performance improvements to the online quorum
hosting model, advancing the solution from the realm of feasible to practical. In
particular, better load balancing models and exploitation of almost symmetries
in network topologies were presented. While this paper focused on finite-domain
models, the improvements are likely to impact CBLS/hybrid models also.

References

1. Donaldson, A.F., Gregory, P.: Almost-Symmetry in Search (SymNet Workshop

Proceedings). Technical Report TR-2005-201, University of Glasgow (2005)

2. Fox, M., Long, D., Porteous, J.: Discovering near symmetry in graphs. In: Pro-

ceedings of AAAI (2007)

3. Gifford, D.K.: Weighted voting for replicated data. In: Proceedings of the Seventh

Symposium on Operating System Principles (SOSP), pp. 150–162 (1979)

4. Gilbert, S., Lynch, N.A., Shvartsman, A.A.: RAMBO II: Rapidly reconfigurable

atomic memory for dynamic networks. In: IEEE/IFIP International Conference on

Dependable Systems and Networks, pp. 259–268 (2003)

5. Long, D., Fox, M.: Symmetries in planning problems. In: SymCon 2003, CP Work-

shop (2003)

6. Lynch, N., Shvartsman, A.: RAMBO: A reconfigurable atomic memory service

for dynamic networks. In: Proceedings of the 16th International Symposium on

Distributed Computing, pp. 173–190 (2002)

7. Michel, L., Moraal, M., Shvartsman, A., Sonderegger, E., Van Hentenryck, P.:

Online Selection of Quorum Systems for RAMBO Reconfiguration. In: Gent, I.P.

(ed.) CP 2009. LNCS, vol. 5732, pp. 88–103. Springer, Heidelberg (2009)

8. Michel, L., See, A., Van Hentenryck, P.: Parallelizing constraint programs trans-

parently. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 514–528. Springer,

Heidelberg (2007)

9. Porteous, J., Long, D., Fox, M.: The identification and exploitation of almost sym-

metry in planning problems. In: K. Brown, editor, Proceedings of the 23rd UK

Planning and Scheduling SIG (2004)

10. Prestwich, S., Beck, J.C.: Exploiting dominance in three symmetric problems.

In: Fourth International Workshop on Symmetry and Constraint Satisfaction Prob-

lems, pp. 63–70 (2004)

11. Schaus, P., Van Hentenryck, P., Régin, J.-C.: Scalable Load Balancing in Nurse to

Patient Assignment Problems. In: van Hoeve, W.-J., Hooker, J.N. (eds.) CPAIOR

2009. LNCS, vol. 5547, pp. 193–207. Springer, Heidelberg (2009)

12. Smith, B.M.: Sets of symmetry breaking constraints. In: SymCon, vol. 5 (2005)

13. Thomas, R.H.: A majority consensus approach to concurrency control for multiple

copy databases. ACM Transactions on Database Systems 4(2), 180–209 (1979)

14. Van Hentenryck, P., Michel, L.: Constraint-Based Local Search. The MIT Press,

Cambridge (2005)

15. Van Hentenryck, P., Michel, L.: Nondeterministic control for hybrid search. Con-

straints 11(4), 353–373 (2006)

Testing Continuous Double Auctions with a
Constraint-Based Oracle

Roberto Castañeda Lozano1,2, Christian Schulte1, and Lars Wahlberg2

1 KTH – Royal Institute of Technology, Sweden

{rcas,cschulte}@kth.se
2 Cinnober Financial Technology AB, Stockholm, Sweden

{roberto.castaneda,lars.wahlberg}@cinnober.com

Abstract. Computer trading systems are essential for today’s financial

markets where the trading systems’ correctness is of paramount eco-

nomical significance. Automated random testing is a useful technique to

find bugs in these systems, but it requires an independent system to de-

cide the correctness of the system under test (known as oracle problem).

This paper introduces a constraint-based oracle for random testing of a

real-world trading system. The oracle provides the expected results by

generating and solving constraint models of the trading system’s contin-

uous double auction. Constraint programming is essential for the correct-

ness of the test oracle as the logic for calculating trades can be mapped

directly to constraint models. The paper shows that the generated con-

straint models can be solved efficiently. Most importantly, the approach

is shown to be successful by finding errors in a deployed financial trading

system and in its specification.

1 Introduction

A financial market is a system that allows buyers and sellers to trade and exchange
items of value. Nowadays, all major financial markets use computer systems to
support their trading activities (1). TRADExpress, developed by Cinnober Finan-
cial Technology AB, is an example of such a system. TRADExpress is deployed in
different markets around the world, such as the London Metal Exchange, Alpha
Trading Systems, or the Hong Kong Mercantile Exchange.

The predominant trading mechanism in financial markets are continuous dou-
ble auctions (2). In a continuous double auction, trade orders are entered contin-
uously and matched against each other as soon as their constraints are satisfied.
The numerous trading strategies render the order matching of TRADExpress
complex. At the same time, system failures can cause serious economic dam-
age: according to Cinnober’s risk assessment, a failure halting TRADExpress is
estimated to incur losses in the order of several million US dollars.

Automated random testing, as a complement to more systematic testing tech-
niques, is useful in finding bugs in trading systems (3). However, it presents an
inherent problem, commonly known as the test oracle problem: an independent
system called test oracle is needed to automatically decide the correctness of the

D. Cohen (Ed.): CP 2010, LNCS 6308, pp. 613–627, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

614 R. Castañeda Lozano, C. Schulte, and L. Wahlberg

TRADExpress

bid ask
...

...

random trader =?

test oracle

bid ask
...

...

trade order

trade order

actual trades

expected trades

test result

Fig. 1. Random test with the constraint-based test oracle

output generated by the system under test. The usual goals for designing test
oracles are correctness, completeness, accuracy, and low development cost (4).

This paper uses constraint programming to solve the test oracle problem that
arises for random testing of continuous double auctions. We present a constraint
model of the TRADExpress ’ continuous double auction derived from a set of
informal system requirements, and use the model as a test oracle for automated
random tests as shown in Fig. 1. The relevance of our approach is illustrated by
the number of defects found in the requirements during the modeling process
and failures detected during the execution of the random tests.

Related work. Constraint programming has typically been used for automatic
test data generation from formal specifications of the system under test (5; 6).
Nevertheless, the case where formal specifications are not available has not been
thoroughly explored by the constraint programming community, apart from some
efforts in the field of hardware testing (7). In the area of financial services, the
test oracle problem has typically been approached by developing simple failure
detection mechanisms (3). The lack of more complete test oracles has prevented
the large-scale application of random testing to trading systems. To the best of
our knowledge, there are no previous attempts to design a test oracle that covers
the complete functionality of a real-world trading system.

The study of continuous double auctions for other purposes than testing and
verification has attracted interest from different areas. Several articles present
theoretical models formulated using constraint programming (8) or closely re-
lated techniques such as integer programming (9). However, aspects like order
priority, which are common issues in most existent trading systems (10, Ch. 2,
Appx.), have not been previously considered in these research models.

Main contributions. The main contributions of this paper are as follows:

– a constraint-based model, for the first time, of a non-theoretical continuous
double auction;

Testing Continuous Double Auctions with a Constraint-Based Oracle 615

– results that show the success of a constraint programming approach to the
test oracle problem in financial systems, including the detection of several
documentation defects and two failures caused by relevant bugs in the system
under test;

– empirical evidence of the feasibility and cost-effectiveness of using formal
models in the verification of these systems.

Plan of the paper. Section 2 explains how the continuous double auction works
in TRADExpress. Section 3 defines the constraint programming model used as
a test oracle. Section 4 gives measures related to the main characteristics of the
test oracle and results obtained from the execution of random tests. Section 5
concludes and discusses future perspectives.

2 TRADExpress and the Continuous Double Auction

This section introduces the main elements related to the continuous double auc-
tion, and shows the details of the TRADExpress implementation which are nec-
essary to understand the developed model.

The order book. The component of a trading system where different trade
orders referring to a certain item are stored and matched is called order book.
The order book is usually represented as a table with two columns called sides.
These columns respectively contain the buy (bid) orders, and the sell (ask) orders
sorted in descending priority order (see Fig. 2).

Bid orders Ask orders

b0 : bid order with highest priority a0 : ask order with highest priority
...

...
bn : bid order with lowest priority am : ask order with lowest priority

Fig. 2. An order book

Trade orders. A trade order is a request to buy or sell a certain quantity of a
financial item. A TRADExpress order has the following main attributes:

– Side: bid or ask. The opposite side of “ask” refers to “bid” and vice versa.
– Quantity q: amount of units to trade.
– Minimum quantity mq: minimum part of the order quantity that must be

matched for the order to be allowed to trade.
– Limit price lp: worst price (highest if the order is a bid, lowest if the order

is an ask) that the order can accept in a trade. It can be either fixed by the
trader or derived by the system from the state of the order book: market

616 R. Castañeda Lozano, C. Schulte, and L. Wahlberg

price: the order gets a limit price so that it can match any other order in
the order book; pegged price: the order gets the same limit price as the best
order with a fixed limit price on its side.

– Duration: validity period of the order. Ranges from no limit to a single match
opportunity, where the order gets an opportunity to trade and is immediately
canceled if it does not succeed.

An order is written as q (≥ mq) @ lp, where lp is determined in one of the
three ways mentioned above. These attributes can be combined to form the
most common order types (listed in Table 1).

Table 1. Common order types and their attribute values

Order type mq lp Duration

Market 0 market price one match

Limit 0 fixed trading day

Fill-or-kill q fixed one match

Fill-and-kill 0 fixed one match

All-or-none q fixed trading day

Pegged 0 pegged price trading day

To encourage orders that increase the liquidity of the order book, the following
prioritization criteria, sorted by precedence, are applied to each side:

1. Limit price: orders with better limit prices (higher for bid orders, lower for
ask orders) get higher priority.

2. Minimum quantity: orders without minimum quantity get higher priority.
3. Time of entry: orders entered earlier get higher priority.

Matching mechanism. Continuous double auction is the applied trading
mechanism during most of the execution time of TRADExpress. In a contin-
uous double auction, traders are allowed to enter, update, and cancel orders in
the order book at any time. Whenever the trading rules allow it, bid and ask
orders are matched into trades.

The attributes of an order and its position in the order book determine if the
order can be matched against orders on the opposite side. In a valid matching,
minimum quantity constraints must always be satisfied, and the limit prices be-
tween matched orders must be compatible. Order priority is enforced by allowing
an order to match only if all the orders with higher priority and no minimum
quantity are matched as well.

Matching in TRADExpress is done in two steps. Every time a trade order is
entered or updated, a match attempt is performed, where the incoming order is
greedily compared with the orders on the opposite side. For performance reasons,
the capacity of the match to find trades is limited. Therefore, if the system
detects that there are still potential trades, a second match attempt called re-
match is performed. In the re-match, all possible combinations between orders
from both sides are explored (see Fig. 3).

Testing Continuous Double Auctions with a Constraint-Based Oracle 617

match re-match
potential matches

no potential match

Fig. 3. Two-step matching in the TRADExpress’ continuous double auction

In some scenarios, an order with high priority might block potential trades
where orders with lower priority are involved. This might happen, for example,
if the high-priority order cannot add its quantity to any other order on its side
for trading against an all-or-none order. In these cases, a cancellation of the
high-priority order gives way for the blocked orders to match. Because of this,
TRADExpress executes a re-match after an order cancellation.

3 The Test Oracle

To be able to provide the expected trades after every order action, the test oracle
holds a model of the state of the TRADExpress order book. In this model, orders
of all types shown in Table 1 are represented by their quantity q, minimum
quantity mq, limit price lp, and position in the order book.

Every time an order is entered, updated, or canceled, the order book model is
updated accordingly, and the limit price lp of each order is calculated following
the rules given in Section 2. Then, a corresponding order matcher problem is
generated and solved with the aid of a constraint programming system. The
order book model is updated with the results, and the process is repeated for
the re-matcher problem. Finally, the combination of calculated trades for both
problems is compared with the output generated by TRADExpress. Fig. 4 shows
the structure of the test oracle.

test oracle

order book model

order matcher model order re-matcher model

order matching framework

holds

uses uses

Fig. 4. Structure of the test oracle

618 R. Castañeda Lozano, C. Schulte, and L. Wahlberg

3.1 The Order Matching Framework

The order matching framework defines the integer variables that represent the
quantity matched between different orders, some auxiliary variables that are
useful in the modeling of more advanced rules and constraints that set the basic
limitations in how quantities can be distributed.

Input data. An order book with n bid orders and m ask orders sorted by
decreasing priority (n,m ≥ 1):

Bid orders Ask orders

b0 : qb0 (≥ mqb0) @ lpb0 a0 : qa0 (≥ mqa0) @ lpa0

...
...

bn−1 : qbn−1 (≥ mqbn−1) @ lpbn−1 am−1 : qam−1 (≥ mqam−1) @ lpam−1

where qb, mqb and lpb represent the quantity, minimum quantity and limit price
of the bid order b. For the sake of simplicity, we define the set of bid orders
B = {bi | 0 ≤ i < n} and the set of ask orders A = {aj | 0 ≤ j < m}.

Variables. The following non-negative integer variables represent how the quan-
tities of the given orders are distributed in a match:

a0 . . . am−1 total

b0 tqb0,a0 . . . tqb0,am−1 tqb0

...
...

...
...

...
bn−1 tqbn−1,a0 . . . tqbn−1,am−1 tqbn−1

total tqa0 . . . tqam−1 tq

where tqb,a represents the quantity traded between the bid order b and the
ask order a. The auxiliary variables tqb, tqa, and tq represent the total traded
quantity of the bid order b, the ask order a, and between all orders:

tqb =
∑
a∈A

tqb,a ∀b ∈ B and tqa =
∑
b∈B

tqb,a ∀a ∈ A

tq =
∑
b∈B

tqb =
∑
a∈A

tqa

Constraints. The framework constraints impose the basic rules on how quan-
tities can be distributed in a generic match problem, considering limit prices,
maximum and minimum quantities, and order priorities.

Limit price. Two orders can only match if the limit price of the bid order is
greater or equal than the limit price of the ask order:

Testing Continuous Double Auctions with a Constraint-Based Oracle 619

lpb < lpa =⇒ tqb,a = 0 ∀b ∈ B, a ∈ A (1)

Maximum quantity. Orders cannot trade over their maximum quantities:

tqx ≤ qx ∀x ∈ B ∪A

Minimum quantity. Orders can only trade above their minimum quantities or
not at all:

tqx ≥ mqx ∨ tqx = 0 ∀x ∈ B ∪A (2)

Order priority. An order without minimum quantity constraint cannot be by-
passed by another order with lower priority:

tqbi < qbi ∧ mqbi = 0 =⇒ tqbj = 0 ∀bi, bj ∈ B : i < j (3)

tqai < qai ∧ mqai = 0 =⇒ tqaj = 0 ∀ai, aj ∈ A : i < j (4)

3.2 The Order Matcher Model

The order matcher model corresponds to the first step in the TRADExpress ’
continuous double auction. In this problem, the incoming order is sequentially
matched against the opposite side, starting by the order with highest priority.

Input data. The input data to the order matcher model is the order book
inherited from the matching framework and the incoming order c together with
its side C : c ∈ C, C ∈ {B,A}.

Variables. The order matcher uses only the traded quantity variables inherited
from the matching framework (as described in the previous subsection).

Objective function. The solution must maximize the total traded quantity:

maximize(tq) (5)

Constraints. The order matcher constraints impose that only the incoming
order can trade on its side and the matching is performed sequentially.

Incoming order. The incoming order c is the only one that can trade on its side:

tqx = 0 ∀x ∈ C − {c} (6)

Sequential matching. An order on the non-incoming side whose quantity, added
to the accumulated traded quantity of orders with higher priority, still fits

620 R. Castañeda Lozano, C. Schulte, and L. Wahlberg

into the quantity of the incoming order c cannot be bypassed by orders with
lower priority:

c ∈ A ∧ atq(bi) + qbi ≤ qc ∧ tqbi < qbi =⇒ tqbj = 0 ∀bi, bj ∈ B : i < j (7)
c ∈ B ∧ atq(ai) + qai ≤ qc ∧ tqai < qai =⇒ tqaj = 0 ∀ai, aj ∈ A : i < j (8)

where atq(xi) is a function from orders to integers that represents the accumu-
lated traded quantity from x0 to xi−1:

atq(x0) = 0

atq(xi) =
{

atq(xi−1) + qxi−1 if atq(xi−1) + qxi−1 ≤ qc

atq(xi−1) otherwise for i > 0

Example. Let us consider the following order book, where the incoming order
a0 has received the highest priority on the ask side due to its limit price:

Bid orders Ask orders

b0 : 10 @ 10 → a0 : 18 @ 8
b1 : 10 (≥ 10) @ 9 a1 : 30 (≥ 30) @ 9
b2 : 5 (≥ 5) @ 9
b3 : 3 @ 7

The only order allowed to trade on the ask side is a0 (6). To maximize the
total traded quantity (5), b0 must trade all its quantity. Otherwise, the lower
priority orders b1, b2 and b3 would not be allowed to match at all (3). Given that
b0 trades all its quantity, b1 cannot trade due to its minimum quantity constraint
(2). Finally, b2 contributes to the objective by trading all its quantity. The limit
price of b3 is not compatible with that of a0 (1). Hence, the expected trades are:

b0 ↔ a0 : 10 b2 ↔ a0 : 5

As this example illustrates, the order matcher always finds a single valid
solution. This is enforced by the order priority (3, 4) and sequential matching
(7, 8) constraints.

3.3 The Order Re-matcher Model

The order re-matcher model corresponds to the second step in TRADExpress ’
continuous double auction (see Fig. 3). This problem is used as a complement
to the order matcher when this, due to its restrictive constraints, is not able to
calculate all potential trades in the order book. Although both problems share
the same basic structure, their variables and constraints differ. Because of this, it
is not possible for the order re-matcher to reuse the solution to the order match
problem.

Testing Continuous Double Auctions with a Constraint-Based Oracle 621

In an order re-match, all possible combinations between order quantities are
considered. All orders participating in trades must have a limit price compatible
with a reference price, called the equilibrium price, which is selected to maximize
the objective function. Orders without minimum quantity constraints and better
limit price than the equilibrium price are called must trade orders, because all
their quantity must be matched in a valid solution.

Input data. The input data is the order book inherited from the general match-
ing framework.

Variables. Apart from the traded quantity variables inherited from the match-
ing framework, the following variables are added for re-matching:

– A non-negative integer variable eqp, which represents the equilibrium price
of the order matching and whose domain is the set of different order limit
prices {lpx | x ∈ B ∪A}.

– An integer variable im representing the imbalance in a calculated matching:

im =
∑
b∈B:

lpb=eqp,mqb=0

(qb − tqb) −
∑
a∈A:

lpa=eqp,mqa=0

(qa − tqa) (9)

– Non-negative integer variables tq0, . . . , tqn+m−1, where tqk represents the
total traded quantity between orders whose indexes sum up to k:

tqk =
∑

bi∈B,aj∈A:
i+j=k

tqbi,aj ∀k : 0 ≤ k < n+ m

The main purpose of these variables is to reflect the total traded quantity
in different priority levels. Graphically, each priority level tqk corresponds to
a counter-diagonal in the traded quantity matrix. For example, a re-match
problem with n = m = 3 has five priority levels. tq0 corresponds to the
darkest diagonal in the following representation:

a0 a1 a2

b0 tqb0,a0 tqb0,a1 tqb0,a2

b1 tqb1,a0 tqb1,a1 tqb1,a2

b2 tqb2,a0 tqb2,a1 tqb2,a2

Objective function. In contrast to the order matcher problem, for an order
re-match problem it is possible to obtain several solutions that maximize the
total traded quantity tq. If this happens, it is desirable to get a solution where
the unmatched quantity of orders in the equilibrium price level is balanced on
both sides of the order book. This can be obtained by minimizing the abso-
lute imbalance |im|. If several solutions present the same total traded quantity

622 R. Castañeda Lozano, C. Schulte, and L. Wahlberg

and absolute imbalance, trades between orders positioned higher in the order
book are prioritized by lexicographically maximizing the different priority levels
tq0, . . . , tqn+m−1.

In summary, the solution must lexicographically maximize the following tuple
of integer variables (note that the absolute imbalance |im| is to be minimized):

maximize(〈tq, −|im|, tq0, . . . , tqn+m−1〉) (10)

Constraints. The order re-matcher constraints define the effect of the equilib-
rium price on which orders can trade and impose that the whole quantity from
must trade orders is always traded.

Equilibrium price. An order that has worse limit price than the equilibrium price
eqp cannot trade:

lpb < eqp =⇒ tqb = 0 ∀b ∈ B

lpa > eqp =⇒ tqa = 0 ∀a ∈ A (11)

Must trade quantity. The quantity from all must trade orders on both sides must
be completely matched:

∑
b∈B:

lpb>eqp,mqb=0

(qb − tqb) = 0 and
∑
a∈A:

lpa<eqp,mqa=0

(qa − tqa) = 0 (12)

Example. Let us consider the following order book:

Bid orders Ask orders

b0 : 10 (≥ 10) @ 19 a0 : 6 (≥ 6) @ 12
a1 : 9 (≥ 9) @ 12
a2 : 5 @ 16
a3 : 5 (≥ 5) @ 17

There are several possible pairs of ask orders that can trade the total quantity
of b0, maximizing the total traded quantity (10):

Pair eqp |im|
{a0, a2} 16 1
{a1, a2} 16 4
{a2, a3} 17 0

If one of the two first pairs is chosen, the equilibrium price is set to 16, so that
a2 can trade (11). In that case lpa2 = eqp, and a2 adds its unmatched quantity
to the imbalance (9). If the pair {a2, a3} is chosen, the equilibrium price becomes
17, and a2 becomes a must trade order, no longer contributing to the imbalance.

Testing Continuous Double Auctions with a Constraint-Based Oracle 623

Because the must trade constraint (12) is satisfied, and the absolute imbalance
|im| is minimized (10), the pair {a2, a3} is chosen to trade with b0:

b0 ↔ a2 : 5 b0 ↔ a3 : 5

3.4 Why Constraint Programming?

As mentioned in the introduction, accuracy and low development cost are two
essential goals in the design of test oracles. These goals require that the imple-
mentation of the test oracle is kept simple and easily traceable to the specifica-
tion. The main reason for using constraint programming has been therefore the
ease of implementing every concept from the matcher and re-matcher models,
including logical expressions (3) and lexicographic optimization (10).

In particular, the chosen system (Gecode) has allowed us to express the lex-
icographical optimization straightforwardly, by adding new lexicographic con-
straints every time a better solution is found. Another relevant factor in the
decision to use constraint programming has been the availability of solvers dis-
tributed as object-oriented libraries. This feature has contributed to a simpler
and thus less error-prone interface with Cinnober’s JUnit-based test framework.

4 Results

We evaluate the constraint programming approach to the test oracle problem
from two angles. First, we show the failures detected by the oracle in the execu-
tion of random tests against TRADExpress. Then, we complete the analysis by
giving results related to the design goals of the test oracle.

The constraint models used by the test oracle have been implemented in
the constraint programming system Gecode (11), version 3.2.0. The branching
strategy for all variables in both models has been to branch on the variable
with the smallest domain. The values are selected by splitting the domain into
two subsets, exploring the larger subset first. The search has been executed on a
single core. All tests and measurements have been performed on a Linux machine
with a Quad-Core Intel Xeon 2.5 GHz processor and 4 GB of main memory.

Random tests. We have considered a scenario designed to exploit all capabili-
ties of the test oracle. It includes three traders entering, updating, and canceling
random orders of different types. Table 2 shows the designed configuration, with
the probabilities of traders and actions being chosen in each cycle.

We have run 500 test cases with different random generator seeds. Each test
case comprises 100 order actions each, with prices generated in a range between
10 and 100, and quantities generated in a range between 2 and 50.

Although we planned a total of 50 000 order actions, premature terminations
in several test cases due to the detection of failures have reduced the total order
actions to 45 144. Table 3 shows the total match and re-match calculations with
positive traded quantity (called hits) and their corresponding expected trades.

624 R. Castañeda Lozano, C. Schulte, and L. Wahlberg

Table 2. Random traders, actions and probabilities in the executed test cases

Trader Probability Action Probability

A 30%

Enter a limit order 80%

Update an order 10%

Cancel an order 10%

B 30%

Enter a marker order 33.3%

Enter a fill-or-kill order 33.3%

Enter a fill-and-kill order 33.3%

C 40%

Enter an all-or-none order 40%

Enter a pegged order 40%

Update an order 10%

Cancel an order 10%

Table 3. Total match and re-match hits and expected trades in the test runs

Matching step Total hits Total trades

Match 10 895 17 037

Re-match 526 1189

Table 4. MTBF of the failures detected in the random test cases

Failure Occurrences MTBF (order actions)

Pegged order in empty order book 51 885

Incoming low priority order matches 37 1220

Total 88 513

After applying manual analysis to the failing test cases, we were able to iden-
tify two types of failures in TRADExpress reported by the test oracle. In order
to better understand the corresponding risks, we have calculated the individual
and total Mean Time Between Failures (MTBF) during the execution of the
random tests. The results, expressed in number of order actions, are shown in
Table 4. Further detail about each type of failure can be found in (12, Ch. 6):

A pegged order remains in an empty order book. An invariant of the order book in
TRADExpress is that a side that does not contain any limit order cannot contain
a pegged order, because pegged orders require limit orders to base their price
on. This invariant is verified by the test oracle at the end of the two-matching
step calculations, and was violated in several test scenarios.

An incoming order without best priority is allowed to match. In some specific
situations, constraints 3 and 4 in Section 3.2 were violated by TRADExpress,
allowing orders without the best priority to match when higher-priority orders
did not.

Testing Continuous Double Auctions with a Constraint-Based Oracle 625

These two failures correspond to bugs in the core of the TRADExpress match-
ing logic. Both bugs have been reported and fixed by the time of writing this
paper. These bugs had been most likely present in the system for several years.
However, the infrequent test cases needed to reproduce them had not been gener-
ated in more systematic testing approaches. Previous random testing approaches
were not able to detect them either, because of the lack of a complete test or-
acle (3, Ch. 6). The detection of these failures can be seen, thus, as empirical
evidence of the effectiveness of the constraint programming approach to the test
oracle problem.

Furthermore, in the requirements formalization process for formulating the
constraint model, we have detected six documentation defects, classified into two
categories: ambiguous statements due to the use of a natural language (English);
erroneous calculations in illustrative examples.

Main goals of the test oracle. As mentioned in the introduction, the main
goals for the design of the oracle have been completeness, correctness, accuracy,
and low development cost. Performance has been a secondary goal, because the
execution of the random tests does not require manual intervention and is not
subject to time pressure.

Completeness. Table 1 shows the main order types supported by TRADExpress.
A more complete list is given in (13). The order types Good till Date, Good for
Day, Good till Canceled, and Good until Next Uncross are special cases of the
limit order, differing only in their duration, and are thus covered by the test
oracle.

The test oracle covers 10 out of the 13 order types listed in (13), that is, a
77% of the order types supported by TRADExpress. Extending the model to
support the remaining Stop-loss, Iceberg and Dark order types is left as future
work.

Accuracy and correctness. The use of a declarative programming paradigm such
as constraint programming reduces the proof of correctness of the continuous
double auction model to verifying the specification itself. Furthermore, it makes
the oracle more independent from the system under test, which is developed
following an imperative paradigm. This independence contributes to the effec-
tiveness of the test oracle, as it reduces the likelihood of sharing design and
implementation bugs with the system under test (4).

Development cost. The development of the test oracle, including modeling, im-
plementation and testing, took approximately 200 person-hours. All used tech-
nologies, including the constraint programming system, are freely available. We
have estimated the maintainability by counting lines of code (14). The test ora-
cle has 1946 lines of code, approximately only 20% of the code that implements
the modeled functionality in TRADExpress. Furthermore, the declarative nature
of the model makes it easy to trace changes in the system requirements, which
contributes to lower maintenance costs.

626 R. Castañeda Lozano, C. Schulte, and L. Wahlberg

Performance. We have measured the average execution time taken by Gecode
to solve the different order match and re-match problems generated during the
execution of 60 test cases based on the scenario shown in Table 2. Due to the
limited accuracy of the time measurement functions in the considered orders of
magnitude, the average time of 50 executions has been taken for each match and
re-match problem.

In a total of 4256 instances, the order match problem is solved in 161 μs on
average, with a coefficient of deviation of 85%. The order re-match problem as a
more complex combinatorial problem takes 388 μs on average, with a coefficient
of deviation of 61%, for a total of 3534 instances. Some degenerate re-match
problems designed to stress-test the oracle take up to 155 ms to be solved,
which is still an order of magnitude more efficient than our initial design goal.

5 Conclusion and Future Work

This paper has introduced a constraint-based test oracle for a continuous double
auction from a real-life trading system. It has shown that constraint program-
ming meets the particular goals for the design of test oracles, providing accuracy
and ease of modeling in a cost-effective way. The significance of this approach
is witnessed by finding actual, relevant bugs in a widely-deployed, thoroughly
tested trading system. As a side benefit, several defects in the system require-
ments have been found.

The results obtained in this paper support the importance of using formal
models in the development of complex financial systems such as TRADExpress.
Constraint programming adds the ability to make these models executable with
low development cost. This application improves significantly the effectiveness
of the testing process, and has raised interest at Cinnober: the company plans
to continue the formalization process initiated by this research and to use the
test oracle for regression purposes.

An obvious way to improve the effectiveness of the test oracle is to extend the
continuous double auction model to cover additional order types supported by
TRADExpress, as suggested in Sect. 4. Considering a more global perspective,
the emergence of open protocols such as the Financial Information eXchange
protocol (FIX) (15) opens an opportunity to extend the application presented in
this paper to a variety of trading systems. Future work in this direction would
include the development of a constraint-based test oracle implementing a relevant
subset of a widely adopted protocol such as FIX.

Acknowledgments. The authors are grateful for helpful comments from Mikael
Z. Lagerkvist, Carles Tomás Mart́ı and the anonymous reviewers.

References

[1] Wagner, W.H.: Electronic trading: rival or replacement for traditional floor-based

exchanges? In: World of Exchanges: Adapting to a New Environment. Euromoney

Books (2007)

Testing Continuous Double Auctions with a Constraint-Based Oracle 627

[2] Friedman, D., Rust, J. (eds.): The double auction market: institutions, theories,

and evidence. Addison-Wesley, Reading (1993)

[3] Höjeberg, N.: Random tests in a trading system: random tests in a trading system

using simulations and a test oracle. Master’s thesis, School of Computer Science

and Communication. KTH Royal Institute of Technology, Sweden (2008)

[4] Hoffman, D.: Using oracles in test automation. In: Proceedings of Pacific North-

west Software Quality Conference, pp. 90–117 (2001)

[5] Gotlieb, A., Botella, B., Rueher, M.: Automatic test data generation using con-

straint solving techniques. SIGSOFT Softw. Eng. Notes 23(2), 53–62 (1998)

[6] Meudec, C.: ATGen: automatic test data generation using constraint logic pro-

gramming and symbolic execution. Software Testing Verification and Reliabil-

ity 11(2), 81–96 (2001)

[7] Bin, E., Emek, R., Shurek, G., Ziv, A.: Using a constraint satisfaction formula-

tion and solution techniques for random test program generation. IBM Systems

Journal 41(3), 386–402 (2002)

[8] Ryu, Y.U.: Hierarchical constraint satisfaction of multilateral trade matching in

commodity auction markets. Annals of Operations Research 71, 317–334 (1997)

[9] Kalagnanam, J.R., Davenport, A.J., Lee, H.S.: Computational aspects of clear-

ing continuous call double auctions with assignment constraints and indivisible

demand. Electronic Commerce Research 1(3), 221–238 (2001)

[10] Hasbrouck, J.: Empirical Market Microstructure: The Institutions, Economics,

and Econometrics of Securities Trading. Oxford University Press, Oxford (2007)

[11] Gecode Team: Gecode: Generic constraint development environment (2006),

http://www.gecode.org

[12] Castañeda Lozano, R.: Constraint programming for random testing of a trading

system. Master’s thesis, School of Information and Communication Technology.

KTH Royal Institute of Technology, Sweden (2010)

[13] Cinnober Financial Technology AB: TRADExpress Trading System product sheet

(2010), http://www.cinnober.com/files/TS_ProductSheet_0.pdf

[14] Zuse, H.: A Framework of Software Measurement. Walter de Gruyter & Co.,

Hawthorne (1997)

[15] FIX Protocol Limited: Financial Information eXchange Protocol (2010),

www.fixprotocol.org

http://www.gecode.org
http://www.cinnober.com/files/TS_ProductSheet_0.pdf
www.fixprotocol.org

A Safe and Flexible CP-Based Approach
for Velocity Tuning Problems

Michaël Soulignac1, Michel Rueher2, and Patrick Taillibert3

1 ISEN Lille, 41 Boulevard Vauban, 59046 Lille Cedex, France

michael.soulignac@isen.fr
2 Nice Sophia Antipolis University, I3S/CNRS, BP 145, France

michel.rueher@gmail.com
3 THALES Aerospace, 2 Avenue Gay Lussac, 78852 Elancourt, France

patrick.taillibert@fr.thalesgroup.com

Abstract. This paper introduces a new velocity tuning approach for

autonomous vehicles based on Constraint Programming (CP) over con-

tinuous domains. We use CP to compute a safe approximation of config-

urations where collisions with obstacles may occur or technological limits

may be violated. The use of CP leads to a flexible approach, facilitating

the incorporation of new characteristics, e.g., constraints modeling the

influence of currents. We illustrate these capabilities offered by CP in the

context of UAV missions. Experimental results obtained on actual wind

charts are provided.

1 Introduction

Recent advances made in the field of autonomous vehicles suggest that, in a
near future, Unmanned Air Vehicles (UAVs) or Autonomous Underwater Vehi-
cles (AUVs) will be more and more deployed in order to achieve various missions
such as surveillance, intelligence or search and rescue. For physical or strategic
reasons, these vehicles may not be able to receive directly orders from a head-
quarter in real-time. Thus, they have to embed their own motion planner. Be-
cause the environment is often changing or unknown, this planner has to be very
reactive.

Motion planning among mobile obstacles is commonly divided into two tasks:
path planning and velocity tuning. Numerous algorithms have been proposed
for specific instances of velocity tuning. The main drawback of these approaches
is that minor changes in the characteristics of the application may require deep
changes in the algorithms.

That is why we propose a flexible approach based on Constraint Program-
ming (CP) techniques. Practically, we use CP on continuous domains to identify
the unreachable regions of a 2D space-time, modeling potential collisions with
obstacles and/or violations of the technological limits of the vehicle. Thus, we
can ensure that the deduced time-minimal trajectory is collision-free and feasi-
ble. An essential contribution of CP comes from the fact that it allows to easily
incorporate new constraints. We illustrate this point by showing that constraints

D. Cohen (Ed.): CP 2010, LNCS 6308, pp. 628–642, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

CP-Based Velocity Tuning 629

modeling the presence of currents can be added to the initial constraint system
with a limited rework effort. First experimental results obtained on real wind
charts are encouraging.

2 The Problem

2.1 Informal Description

A punctual vehicle, starting from a site A, has to compute a time-optimal tra-
jectory to a goal site B, in a planar environment containing static and mobile
obstacles, as illustrated in figure 1. This computation is done in two steps.

First, a path planning step, computing a path P avoiding static obstacles.
Any path planning method from literature can be used in this step. The only
assumption about the path P is that it is made up of successive line segments.

Second, a velocity tuning step, minimizing the arrival time at B and avoiding
mobile obstacles, with a bounded velocity. This second problem is addressed in
this paper.

2.2 Formalization

The environment is modeled by a 2-D Euclidean space E, with a frame of refer-
ence R = (0, x, y). In R, the coordinates of a vector −→u are denoted (ux, uy) and
its magnitude u. In particular, the vehicle’s velocity vector relative to the frame
R (ground speed) is denoted −→v , and its magnitude v.

The path P is defined by a list V of n viapoints, denoted Vi. Each viapoint
Vi is located on P at curvilinear abscissa li. Two successive viapoints (Vi−1 and
Vi) are linked by a line segment. In other terms, P is made up of successive line
segments.

Each mobile obstacle Oi is modeled by a rectangle of size Six×Siy, performing
successive straight line moves at constant velocity (dashed lines in fig. 1). This
rectangle corresponds to a punctual mobile surrounded by a rectangular safety
zone. Note that this safety zone can be easily extended to a polygon.

B

A
O1

O2

x

y

P

V1

V2

V3

V4

V5
V6

Fig. 1. A velocity tuning problem with 2 mobile obstacles (grey rectangles). The pre-

computed path P already avoids static obstacles (dark regions).

630 M. Soulignac, M. Rueher, and P. Taillibert

Our problem consists in finding a timing function σ : M ∈ P /→ t ∈ [0, T]
minimizing the arrival time tB = σ(B), with respect to the following constraints:
(1) maximal velocity: v ≤ νmax, (2) mobile obstacles avoidance and (3) the
latest arrival time T to B, due for instance to the embedded energy or visibility
conditions. In other terms, our problem can be seen as mapping the path P to
a trajectory.

3 Why CP?

The existing velocity tuning approaches generally work in a 2-D space-time. The
first dimension l ∈ [0, L] (where L is the length of the path) is the curvilinear
abscissa on the path. The second one, t ∈ [0, T] (where T is the latest arrival
time), is the elapsed time since departure. As illustrated in figure 2, each point
of the path is represented by a vertical line in the space-time. In particular,
start and goal sites are represented by the extreme left and right vertical lines.
Moreover, each mobile obstacle Oi generates a set of collision surfaces Sj in the
space-time. These surfaces contain all pairs (l, t) leading to a collision between
the vehicle and Oi.

Once the space-time is built, the initial velocity tuning problem can be refor-
mulated into a path planning problem in this space-time. However, this space-
time has specific constraints, notably due to time monotony or velocity bounds.
Therefore, specific methods have been developed [10][20].

These methods are based on a discretization of the environment into elemen-
tary entities: line segments (fig. 3a) or polygonal cells (fig. 3b). These entities
are then modeled as nodes of a graph.

The initial -concrete- path planning problem is thus reformulated into an
abstract one: finding the shortest path in a graph. This problem is generally
solved by applying an adaptation of a classical search algorithm, such as A∗ [6]
or one of its numerous variants.

As we can see, in the above approaches, unreachable regions of the space-time
only materialize collisions with mobile obstacles. Other constraints about the
vehicle and the environment are implicit, and are taken into account in the search

B

0 L

T

10

10

15

S1

S2

A

l

t

Fig. 2. The space-time corresponding to the example of figure 1, containing two colli-

sion surfaces S1 and S2. A collision necessarily occurs at abscissa l = 10 between t = 10

and t = 15.

CP-Based Velocity Tuning 631

(a) (b)
l

t

Fig. 3. (a) path (in light grey) found using the visibility graph method [10]; (b) path

found using the cell decomposition method [20]

algorithm. This has two major drawbacks: (1) the space-time does not reflect all
the constraints of the problem, in particular the technological limits of the vehicle
and (2) the search algorithm is customized to exploit some particular properties
of the considered instance. Therefore, if the properties of this instance evolve, sig-
nificant changes in the design and the implementation of this algorithm may be
required.

The ability to add new constraints in a declarative way is the major advantage
of using CP.

4 How CP?

As said before, we use CP on continuous domains to compute a safe approxima-
tion of unreachable regions in the space-time. This is done in two steps:

The first step consists in computing the collision surfaces described in section
3, that is regions in the space-time materializing collisions between obstacles and
the vehicle. This step is done by solving a set of local CSPs, called ColSurf ij.

The second step consists in aggregating unreachable regions of the space-time,
due to mobile obstacles (collision surfaces) and those due to the technological lim-
its of the vehicle. This step is done by solving a global CSP, called UnreachReg.
We will show that this CSP can be easily extended to include new constraints
about the vehicle or the environment. We will illustrate this capability by adding
currents in the initial problem.

All CSPs are defined on continuous domains. This choice is first explained,
and next the two steps mentioned above are presented.

4.1 Modeling Space-Time Regions with Constraints over
Continuous Domains

Modeling space-time regions in velocity-tuning problems can be done either with
constraints over finite domains or over continuous domains. As explained in our

632 M. Soulignac, M. Rueher, and P. Taillibert

previous paper [18], discrete domains impose to discretize quantities which are con-
tinuous by nature in the tuning problem, such as time. This leads to two issues:

1. If both time horizon T and the required precision on time τ are high, domains
for variables modeling time may become huge. For instance, if T = 10h and
τ = 1s, each domain contains 36000 values.

2. Discretizing time may lead to ”miss” some collisions. Indeed, if no collision
is detected at time ti−1, and no collision is detected at ti = ti−1 + τ , it is
generally assumed that no collision can occur between ti−1 and ti. In fact,
this assumption becomes more and more probable when τ tends towards 0,
but it is never guaranteed.

To avoid these issues, we choose to model 2D space-time regions with constraints
over continuous domains. The weak point of constraints over continuous domains
is that they cannot in general guarantee that a solution exists in a box, even
if this box is very small. The strong property of constraints over continuous
domains is their refutation capabilities.

For this reason, the CSP described below is not used to model reachable
regions but to describe an over-approximation of unreachable regions.

Indeed, since unreachable regions are over-estimated the remaining regions
are necessarily reachable. However, as explained later, our approach is incom-
plete, because this over-estimation may eliminate the solutions of some very
constrained problems.

4.2 Preliminaries: Computing Collision Surfaces in the Space-Time

In a CSP that we call ColSurf ij (for ”Collision Surface”, pair of moves (i, j)),
we model the following situation: (1) the vehicle and a mobile obstacle are moving
on line segments i and j of their respective trajectory, and (2) a collision occurs
between them. Solving this CSP may lead to two results:

1. The CSP is inconsistent, then we are sure that no collision will occur during
this pair of moves.

2. The CSP is consistent, some collisions may occur in a time interval denoted
Dc

ij .

Therefore, if the interval Dc
ij is not empty, it represents a part of a collision

surface. By repeating the process described above for all possible values of i and
j, we are able to compute an outer approximation of collisions surfaces.

1) Formulation of the CSP LocalCol ij

Let us consider that the vehicle and a mobile obstacle are moving line segments
i and j of their respective trajectory:

– the vehicle is moving between viapoints Vi−1 = (xi−1, yi−1) and Vi = (xi, yi),

CP-Based Velocity Tuning 633

V i - 1

V i

v j

M j - 1

M j

Robo t : (x r , y r)

O b s t a c l e : (x o , y o)

v i

x

y

S x

S y

Fig. 4. A collision between the vehicle and a mobile obstacle: the vehicle lies to the

rectangular safety zone (dark grey)

– an obstacle, of size Sx×Sy is performing its jth straight line move, at velocity
vj , between two points Mj−1 = (xj−1, yj−1) and Mj = (xj , yj), starting at
time tj−1.

As depicted in figure 4, a collision between the vehicle and the obstacle occurs
if the vehicle lies to the rectangular safety zone.

If we denote (xr, yr) the position of the vehicle, (xo, yo) the position of the
obstacle, and tc the collision time between them, this situation can be modeled
by the following equations:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ai = yi−1 − yi

bi = xi − xi−1
ci = yi · xi−1 − xi · yi−1
ai · xr + bi · yr + ci = 0 (V ehicleMotion)
(xr − xi−1) · (xr − xi) ≤ 0
(yr − yi−1) · (yr − yi) ≤ 0

[The vehicle is moving on the line segment [Vi−1, Vi], of equation ai ·xr +bi ·yr +ci = 0]

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

djx = xj − xj−1
djy = yj − yj−1

dj =
√

dj
2
x + dj

2
y

vjx = vj · (djx/dj) (ObstMotion)
vjy = vj · (djy/dj)
xo = vjx · (tc − tj−1) + xj−1
yo = vjy · (tc − tj−1) + yj−1

[The obstacle is moving on the line segment [Mj−1, Mj] at velocity vj , starting at time

tj−1. The traveled distance is denoted dj]

⎧⎪⎪⎨
⎪⎪⎩

xr ≥ xo + Sx/2
xr ≤ xo − Sx/2 (Collision)
yr ≥ yo + Sy/2
yr ≤ yo − Sy/2

[The vehicle is within the rectangular safety zone of the obstacle, of size Sx × Sy]

634 M. Soulignac, M. Rueher, and P. Taillibert

In the above equations, the domain of variable tc represents the set of times
where vehicle may collide the obstacle. This domain is used later to approximate
collision surfaces.

Of course, in this very simple case –linear moves for the vehicle and obstacles–
the domain could be computed analytically or symbolically. However, symbolical
computation may become costly as soon as the constraints are more complex (e.g,
3D spaces). On top of it, our goal is to offer a great flexibility, and thus, we do
not want to use any adhoc technique.

For instance, consider that the vehicle has to perform a set of circles, mod-
eling a surveillance task. This could easily be done by replacing line equations
by circle equations in the above model whereas the analytic resolution would
require much more work.

2) Computing collision surfaces

Let us define the interval of collision times, denoted T col
i . This interval has

the following meaning: if ti ∈ T col
i , then the vehicle collides a mobile obstacle

between Vi−1 and Vi. Using the CSP described above, each interval T col
i can be

computed by the following procedure:
For each mobile obstacle Ok do:

1. Let Lk denote the number of line segments performed by Ok

2. For j from 1 to Lk:
(a) Initialize T col

i by : T col
i ← ∅

(b) Solve the CSP LocalCol ij
(c) If LocalCol ij is consistent

i. Let Dc
ij denote the domain of variable tc

ii. Update T col
i by: T col

i ← T col
i ∪Dc

ij

In the general case, the interval T col
i computed by this procedure is an union of

subintervals, i.e. T col
i = ∪si

j=1[t
−
j , t+j], where si is the number of possible collisions

between Vi−1 and Vi.
As shown in figure 5, the whole T col

i models an outer approximation of collision
surfaces introduced in section 3. Thus, all possible collisions are captured by T col

i .
That is, contrary to most existing approaches, even if forbidden surfaces are

approximated, our approach remains correct: the behavior of the vehicle is guar-
anteed to be safe. On the other hand, our approach is incomplete, because a
too rough approximation can obstruct the space-time. In those conditions, the
problem could be considered as unsolvable, even if solutions exist.

4.3 Computing the Unreachable Regions of the Space Time

We define a CSP, called UnreachReg (for ”Unreachable Regions”), which ag-
gregates the collision surfaces computed in the last step with the unreachable
regions due to the technological limits of the vehicle. Here, the only limits taken
into account are velocity bounds.

CP-Based Velocity Tuning 635

l i -1

T

l

t

V ii
co l

l i

Fig. 5. Collision times T col
i in the space-time of fig. 2, discretizing collision surfaces by

a set of bands

Note that only the principle of the CSP is explained below. A detailed de-
scription of constraints can be found in the chapter 7 of [16].

1) Unreachable regions due to excessive velocity

Let us consider a move of the vehicle on an arbitrary line segment [Vi−1, Vi].
If we denote respectively vi, ti and di the vehicle’s velocity, the travel time
and the traveled distance on this line segment, these variables are linked by
ti = ti−1 + di/vi.

Using this relationship, we can model a too early arrival at viapoint Vi, that is,
an arrival violating the maximal velocity constraint. Indeed, all times ti verifing
this relationship with vi > νmax, are, by definition, forbidden. The corresponding
constraints generate a ”floor” in the space-time, as illustrated in figure 6a.

The same reasoning can be done for too late arrival, with regard to the lattest
arrival time T . The corresponding constraints generate a ”ceiling” in the space-
time, as illustrated in figure 6b.

2) Merging unreachable areas

(a)
l

t

(b)

T

0

m a x i m a l
v e l o c i t y

Fig. 6. (a) floor modeling a too early arrival; (b) ceiling modeling a too late arrival.

Ceiling and floor are delimited by the dashed line of slope νmax.

Unreachable areas due to the mobile obstacles and the technological limits
of the vehicle are interconnected. For instance, we have to respect to velocity

636 M. Soulignac, M. Rueher, and P. Taillibert

l

t

0

(a) (b)

Fig. 7. (a) Shadows (dark grey) obtained by temporally shifting light grey regions (due

to velocity bounds); (b) the final space-time, containing extended ceiling and floor

bounds, if we want to speed up the vehicle so that it will arrive at a given point
before some obstacle.

In the space-time, collision surfaces will lead to a temporal shifting of the
ceiling and the floor of figure 6, as depicted in figure 7a.

Let us explain the shifting of the floor.
The presence of mobile obstacles extends the concept of a too early arrival.

Indeed, if an obstacle Oj occupies the viapoint Vi during Dj = [t−j , t+j], then all
arrival time lying in Dj have to the shifted to t+j . In other terms, if the vehicle
reach Vi at time ti ∈ Dj, then it will have to wait until time t+j (that is, until Vi

is obstacle-free).
The same reasoning can be done for the ceiling.
The corresponding constraints generate extended ceiling and floor in the

space-time (see figure 7b). These unreachable areas merge the effect of mov-
ing obstacles and technological limits of the vehicle. Graphically, they can be
interpreted as ”shadows” behind collision surfaces.

4.4 Deducing the Time-Minimal Path

Once the CSP is numerically solved, the final space-time, containing the extended
floor and ceiling is known. Two situations may arise:

1. A corridor exists between the floor and the ceiling (case of fig. 7b). In this
case, it is very simple to deduce the time-minimal path in this space-time.
For instance, it can be obtained by linking the upper edges of the floor, as
depicted in figure 8.

2. The space-time is obstructed (the floor intersects the ceiling). In this case the
problem is a priori unsolvable, but we cannot be sure about that. However,
it is possible that unreachable regions are too roughly approximated.

CP-Based Velocity Tuning 637

l

t

Fig. 8. The time-minimal path (in grey) obtained in the space-time of fig. 7b

4.5 Implementation

The approach introduced in this paper has been implemented in our trajectory
planner, Airplan, first described in [17].

In Airplan, the initial velocity tuning module, based on the clpfd solver [5]
(discrete domains + arc-consistency), has been replaced by another one, using
the Interlog solver [4] (continuous domains + 2B-consistency). This new version
of Airplan will be demonstrated during the conference.

We choose to use a weak local consistency like 2B-consistency [12], because it
is light to implement and computationally efficient in our case (see experimental
results). Of course, stronger consistencies like Box [7], HC4 / HC4-Revise [3],
Quad [11] or I-CSE [2] would probably provide sharper approximations but their
implementation is much more costly.

5 Added Value of CP

We showed that a first added value of CP on continuous domains was the correct-
ness: since non-solution spaces may be over-estimated, the computed trajectory
is guaranteed to be safe, that is, collision-free.

In this section, we illustrate another benefit of CP: flexibility. In section 4, we
presented a global CSP modeling the ”core” velocity tuning problem introduced
in section 2. Specific constraints have to be added to this CSP to take into
account some vehicle’s specificities, such as curvature or acceleration constraints,
sensors capacities or configuration, etc.

We focus here on the main specificity of Unmanned Aerial Vehicles (UAVs):
their sensibility to currents. This can be easily modeled by adding some con-
straints in the core model.

5.1 Constraints Formulation

In presence of currents, constraints related to the vehicle velocity have to model
two additional properties:

– velocity composition law: the velocity of the vehicle depends both on the
engine command and on the velocity of the current.

638 M. Soulignac, M. Rueher, and P. Taillibert

V i - 1
V i

d i

a

b

v i

c i

x

y
w i

Fig. 9. The velocity composition law between Vi−1 and Vi

– path following: the vehicle has to compensate the disturbances of the currents
to stay on the path. Specific methods have been developed to address this
problem [14], but here, the flexibility of CP avoids to use them.

To illustrate this point, let us consider the straight line move −→di , between the
viapoints Vi−1 and Vi. For this move, we define: (1) −→ci the average velocity of
the current, (2) −→vi the vehicle’s velocity relative to the frame R, and (3) −→wi the
vehicle’s velocity relative to −→ci .

As shown in figure 9, velocities −→vi and −→wi are linked by the composition law
−→vi = −→wi +−→ci .

Moreover, since we want to impose the vehicle to stay on the path, −→vi and −→di

are collinear.
Using the local frame Ri = (Vi−1,−→a ,

−→
b), with −→a = −→

di/di and −→a⊥−→b , un-
reachable regions due to an excessive velocity (i.e. greater than νmax) can be
expressed as follows in presence of currents:

{
vi = cia + wia (V ehicleV el)
0 = cib + wib

[velocity composition law in the frame Ri]

⎧⎨
⎩

ca = ci · cosα
cb = ci · sin α (CurrentV el)
cosα = −→ci ·

−→
di/ci · di = (ciadia + cibdib)/ci

[coordinates of −→ci in Ri]

{
wi

2 = wi
2
a + wi

2
b (V elBounds)

wi > νmax

[maximal velocity relative to the current ci]

To integrate the influence of currents on the vehicle, the unique constraint
v > νmax introduced in the problem statement has simply to be replaced by
the sets of equations (V ehicleV el), (CurrentV el) and (V elBounds) described
above.

CP-Based Velocity Tuning 639

5.2 Result

Figure 10 shows the impact of currents on the previous space-time, and on the
solution.

A

B

(a) (b)

Fig. 10. (a) Adding currents in the initial problem (grey arrow = velocity vectors). (b)

Corresponding space-time and solution.

6 Experimental Results

The key idea of this paper is that velocity tuning based on CP leads to a safe
and flexible approach. To evaluate the capabilities of this approach, we have
performed experiments on actual wind chart for UAV missions.

6.1 The Test-Cases

As shown in figure 11, a test-case is a simple UAV mission. The UAV takes off
at A, and then evolves on a precomputed path P until reaching B. The UAV
has to optimize its velocity on P , to take the wind and mobile obstacles into
account.

Each test-case has been generated as follows:

– Wind charts were daily collected during three months on the Meteo France
website [13], leading to 100 different realistic environments with currents.

– A (start) and B (goal) points: randomly placed on the wind chart.
– Path: computed using the sliding wavefront expansion, described in [19]. This

algorithm provided feasible and smooth paths, even in presence of strong
currents.

– Mobile obstacles: each mobile obstacle goes across the environment by per-
forming a straight line move P1 → P2 at constant velocity. P1 and P2 are
randomly chosen on two borders of the environment, until an intersection I
between the path P and the line segment [P1, P2] is detected. Their velocity
and size are randomly set in realistic intervals of values.

640 M. Soulignac, M. Rueher, and P. Taillibert

Note that, in the particular context of UAV missions, both the fact that mobiles
obstacles’ trajectories are piecewise linear and known in advance are realistic.
These assumptions model well flight plans of potential airplanes in the area
(possibly updated in real-time from the headquarter) or of other autonomous
vehicles, in other to perform a synchronized mission.

Fig. 11. A test-case with m = 2 mobile obstacles. The path is made up of n = 36

viapoints, which leads to a CSP containing about 400 variables and 650 constraints.

6.2 Computation Time

The resulting computation times are plotted in figure 12. Each dot is the mean
time obtained on 500 test-cases. These results have been obtained by running
the last version of Airplan on a 1.7Ghz PC with 1Go of RAM. Note that better
results could be obtained by using state of art software such as, for instance:
RealPaver [15], ALIAS [1], Icos [9] or Ibex [8].

From a strictly qualitative point of view, the global computation time re-
mains reasonable (under 1 second) even in presence of many moving obstacles.
Therefore, our approach is both flexible and computationally efficient.

From a statistical point of view, the computation time appears to be linear.
A linear regression confirms this assumption in the range of our tests (with a
coefficient of determination R2 > 0.999).

This seems natural, because the size of our CSP is in O(n ·m), where n is the
number of viapoints on the vehicle’s path P , and m the number of obstacles.
Therefore, it was expected that the average computation time was in O(ñ ·m),

CP-Based Velocity Tuning 641

0 2 4 6 8 10 12 14 16 18 20
150

200

250

300

350

400

450

500

550

600

m

t

Fig. 12. Computation time t (in ms) in presence of m moving obstacles (white dots:

experimental results; black line: linear regression)

where ñ is the average number of points on P (ñ ≈ 20 in our tests). However, a
deeper study is required to confirm these results in the general case.

7 Conclusion

In this paper, we proposed a constraint-based flexible approach for handling
velocity tuning problems. CP allows to model the ”core” velocity tuning prob-
lem, and then to easily extend it to more complex constraints, in particular the
presence of currents.

We also showed that CP techniques on continuous domains have interesting
properties: (1) the use of continuous domains allows not to discretize the time,
and thus to guarantee a collision-free solution; (2) in the particular case of ve-
locity tuning, 2B-consistency techniques are computationally efficient and thus
potentially usable in on-boards planners.

Future work could concern more complete experiments and the evaluation
of the capabilities of higher consistencies. Higher consistencies would probably
provide a sharper approximation but we have to check whether the computation
cost is not too high with respect to the constraints of on-board planners.

References

1. Alias website, http://www-sop.inria.fr/coprin/logiciels

2. Araya, I., Trombettoni, G., Neveu, B.: Filtering numerical cSPs using well-

constrained subsystems. In: Gent, I.P. (ed.) CP 2009. LNCS, vol. 5732, pp. 158–172.

Springer, Heidelberg (2009)

3. Benhamou, F., Granvilliers, L.: Continuous and Interval Constraints. In: Handbook

of Constraint Proof Constraint Programming, ch. 16. Elsevier, Amsterdam (2006)

4. Botella, B., and Taillibert, P. Interlog: constraint logic programming on numeric in-

tervals. In: International Workshop on Software Engineering, Artificial Intelligence

and Expert Systems (1993)

642 M. Soulignac, M. Rueher, and P. Taillibert

5. Carlsson, M., Ottosson, G., Carlson, B.: An open-ended finite domain constraint

solver. In: Proceedings of Programming Languages: Implementations, Logics, and

Programs (1997)

6. Dijkstra, E. W. A note on two problems in connexion with graphs. Numerische

Mathematik, 269–271 (1959)

7. Hentenryck, P. V., McAllester, D., Kapur, D.: Solving polynomial systems using a

branch and prune approach. SIAM Journal on Numerical Analysis 34 (1997)

8. Ibex website, http://www.ibex-lib.org

9. Icos website, http://sites.google.com/site/ylebbah/icos

10. Ju, M.-Y., Liu, J.-H., Hwang, K.-S.: Real-time velocity alteration strategy for

collision-free trajectory planning of two articulated robots. Journal of Intelligent

and Robotic Systems 33, 167–186 (2002)

11. Lebbah, Y., Michel, C., Rueher, M., Daney, D., Merlet, J.P.: Efficient and safe

global constraints for handling numerical constraint systems. SIAM Journal on

Numerical Analysis 42, 2076–2097 (2005)

12. Lhomme, O.: Consistency techniques for numeric csps. In: Proceedings of Interna-

tional Joint Conference on Artificial Intelligence, pp. 232–238 (1993)

13. Meteo france website,

http://marine.meteofrance.com/marine/accueil?51759.path=marine

%252Fimgmervent

14. Nelson, D., Barber, D.B., McLain, T.W., Beard, R.W.: Vector field path following

for small unmanned air vehicles. In: Proceedings of the American Control Confer-

ence (2006)

15. Real paver website, http://realpaver.sourceforge.net

16. Soulignac, M.: Planification de trajectoire en présence de courants. Applications

aux missions de drones. PhD Thesis - THALES/Nice Sophia-Antipolis university,

pp. 179–203 (2009)

17. Soulignac, M., Taillibert, P.: Fast trajectory planning for multiple site surveillance

through moving obstacles and wind. In: Proceedings of the Workshop of the UK

Planning and Scheduling Special Interest Group, pp. 25–33 (2006)

18. Soulignac, M., Taillibert, P., Rueher, M.: Velocity tuning in currents using con-

straint logic programming. In: Proceedings of the Workshop of the UK Planning

and Scheduling Special Interest Group, pp. 106–113 (2007)

19. Soulignac, M., Taillibert, P., Rueher, M.: Adapting the wavefront expansion in

presence of strong currents. In: Proceedings of International Conference on Robot-

ics and Automation, pp. 1352–1358 (2008)

20. van den Berg, J., Overmars, M.H.: Roadmap-based motion planning in dynamic

environments. Transactions on Robotics and Automation 21, 885–897 (2005)

Contingency Plans for Air Traffic Management

Karl Sundequist Blomdahl, Pierre Flener, and Justin Pearson

Department of Information Technology

Uppsala University, Box 337, SE – 751 05 Uppsala, Sweden

Karl.Sundequist Blomdahl.1559@student.uu.se,

{Pierre.Flener,Justin.Pearson}@it.uu.se

Abstract. We present two heuristics based on constraint technology

that solve the problem of generating air traffic management contingency

plans, which are used in the case of a catastrophic infrastructure failure

within EUROCONTROL, the European Organisation for the Safety of

Air Navigation. Of the heuristics presented, one is based on constraint-

based local search and tabu search, and the other one is a constraint

programming and large neighbourhood search hybrid algorithm. The

heuristics show that it is feasible to automate the development of contin-

gency plans, which is currently done by human experts; this is desirable

for several reasons, for example it would allow the contingency plans

to be generated with an increased frequency. The generated plans were

evaluated, by EUROCONTROL, to be as good as the human-made ones.

1 Air Traffic Management and Contingency Planning

Air traffic management (ATM) at EUROCONTROL, the European Organisa-
tion for the Safety of Air Navigation, is about managing and ensuring a safe,
efficient, and fair flow of air traffic, assuming a negligible amount of side-effects,
such as adverse weather conditions. During normal operation, the Central Flow
Management Unit (CFMU) of EUROCONTROL uses several stages, each in
increasing detail, to satisfy its operational goals:

1. A strategic stage, taking place several months before the day of operation.
2. A pre-tactical stage that starts six days before the day of operation.
3. An online tactical stage during the day of operation. This stage is called the

air traffic flow and capacity management (ATFCM) stage [2], and has two
main functions:
(a) Calculate the demand of each airspace volume using live flight plan in-

formation.
(b) Adjust the number of allocated departure slots of the involved aero-

dromes, such that they optimise the objectives defined in the pre-tactical
stage. These objectives typically include, but are not limited to, minimis-
ing the total flight delay and air volume overload.

During an average day, the ATFCM unit handles approximately 30 000 flights
spread over about 1 500 aerodromes.

D. Cohen (Ed.): CP 2010, LNCS 6308, pp. 643–657, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

mailto:Karl.Sundequist_Blomdahl.1559@student.uu.se
mailto:Pierre.Flener@it.uu.se

644 K.S. Blomdahl, P. Flener, and J. Pearson

Flow identifier Flow description Time span Hourly rate

EBBR1 From EBBR 00:00 – 06:00 2

To C EG EI K M 06:00 – 09:00 3

09:00 – 12:00 7

12:00 – 14:00 4

14:00 – 22:00 8

22:00 – 24:00 2

EBBR2 From EBBR 00:00 – 06:00 1

To B EDDH EDDW EE EF EH 06:00 – 17:00 4

EK EN ES 17:00 – 21:00 6

21:00 – 24:00 2

Fig. 1. A contingency plan excerpt, which describes the hourly take-off rates of two

flows originating from the aerodrome EBBR (Brussels national airport)

This study will focus on the special case of an ATFCM failure due to any rea-
son, such as downtime of the computer-assisted slot allocation (CASA) system.
In such a situation, where no timely updates from ATFCM are available and the
air controllers of each aerodrome have no idea whether it is proper to release a
flight or not, a safe alternative is necessary. EUROCONTROL addresses this by
a contingency plan, which contains a pre-defined number of allocated departure
slots for each major aerodrome in such a way that certain safety and efficiency
objectives are satisfied, for a maximum duration of one day. During the last
twelve years, such a situation has occurred once, for a few hours.

An excerpt from such a contingency plan can be seen in Figure 1. It defines the
number of departure slots that the aerodrome with the International Civil Avia-
tion Organization (ICAO) identifier EBBR (Brussels national airport, Belgium) is
allowed to release for each hour to each destination aerodrome. For example, from
09:00 to 12:00, a maximum of 7 flights in the flow EBBR1, which is defined by the
departure aerodrome EBBR and a destination aerodrome whose ICAO identifier
starts with C (Canada), EG (Great Britain), EI (Ireland), K (United States), or M
(Central America and Mexico) are allowed to take off. Similarly, only 4 flights
whose departure and destination aerodrome match the description of the flow
EBBR2 are allowed to take off per hour from 06:00 to 17:00. The current contin-
gency plan can always be downloaded from the CFMU homepage, in the upper-left
corner of https://www.cfmu.eurocontrol.int/PUBPORTAL/gateway/spec/.

The generation of ATM contingency plans within the EUROCONTROL Ex-
perimental Centre (EEC) and the CFMU is currently done by two human ex-
perts (using a process described in Section 2.2 below), who biannually develop
a three-fold plan, namely one for weekdays, one for Saturdays, and one for Sun-
days, with a total development time of two person-months per year. Therefore,
automated contingency planning is desirable. This paper presents two heuristics
that solve the subproblem of finding the optimal hourly numbers of departure
slots for pre-defined flows and time spans (which typically do not change much
between plans anyway), and is intended as a feasibility study about whether
it is possible to replace the human experts with constraint technology. Other

https://www.cfmu.eurocontrol.int/PUBPORTAL/gateway/spec/

Contingency Plans for Air Traffic Management 645

benefits with automating the process are that it could be done at the tacti-
cal level instead of the strategic level, which would increase the quality of the
generated contingency plans.

The rest of this paper is split into five parts, each of which deals with the prob-
lem in increasingly concrete terms. In order of appearance: a formal definition
of the problem (Section 2), a constraint model that implements the formal def-
inition (Section 3), heuristics that operate on the constraint model (Section 4),
experimental results (Section 5), and a conclusion (Section 6).

2 The Contingency Planning Problem

We give a detailed description of the contingency planning problem (CPP), the
current state of the art algorithm, and a comparison with other problems.

2.1 Formal Definition

Each instance of the CPP is defined by the following input and output data,
where identifiers starting with capital letters denote sets, subscripted identifiers
denote constants, identifiers with indices within square brackets denote deci-
sion variables, identifiers that are Greek letters denote parameters, and all time
moments are measured in seconds since some fixed origin:

– A set of flights F = {f1, . . . , fm}, where each flight f� has a departure aero-
drome adep�, a destination aerodrome ades�, an expected take-off time etot �,
an expected landing time eldt �, and a take-off delay delay [�]. All later spec-
ified sets of flights are subsets of F.

– A set of flows F = {F1, . . . ,Fn}, where each flow Ff consists of a set of
flights Ff and a set of span-rate pairs Rf = {r1, . . . , rof

}, where each span-
rate pair ri consists of a time span span i for when it is active, and an hourly
number of allocated departure slots rate[i]. Further, for any two span-rate
pairs ri and rj , where i �= j, their spans must not overlap; however, the union
of all spans does not need to be 00:00–24:00. There is also a set Ff ⊆ F for
each Ff that contains all flights matching the flow description. For example,
Figure 1 defines two flows EBBR1 and EBBR2, where the flights are defined by
a subset of F that matches the flow description, and the spans and rates are
defined by the two right-most columns.

– A set of air volumes AV = {av1, . . . , avp}, where each air volume ava ∈ AV
has a capacity capa that limits the hourly number of flights that can enter it
for the duration dura. There is also a set Fa ⊆ F for each ava that contains
all flights that pass through the air volume, where each flight f� ∈ Fa has
an expected entering time entera,�. In the real world, an air volume can
represent either a part of the airspace, or an aerodrome.

Recall that ATM has three operational goals: minimise the cost of the total flight
delay, ensure a safe flow of air traffic, and ensure a fair flow of air traffic. During
a crisis situation, safety is especially important.

646 K.S. Blomdahl, P. Flener, and J. Pearson

Cost of the Total Flight Delay. The take-off delay delay [�] of flight f� is the
difference between its calculated take-off time ctot [�] and expected take-off time
etot �, where ctot [�] is calculated using the allocated departure slots as defined
by the rate-span pairs for each flow. These slots are assigned to flights using the
first-scheduled, first-served principle [3]. For example, consider the flow EBBR1
(defined in Figure 1), where there are two departure slots allocated for each
hour between 00:00 and 06:00; if three flights with an etot � of 03:00, 03:10, and
03:20 were available, then they would get a ctot [�] of 03:00, 03:30, and 04:00, and
a delay of 0, 1200, and 2400 seconds, respectively. Similarly, each flight f� has
a calculated entering time cnter [a, �] into air volume ava, which is the sum of
entera,� and delay [�]. The cost of each flight delay is defined as a weight function,
which was suggested to us by our partners at the EEC:

delayCost [�] =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 if delay [�] < 3600 seconds
10 if 3600 ≤ delay [�] < 7200 seconds
20 if 7200 ≤ delay [�] < 10800 seconds
50 otherwise

The weight function scales exponentially because the real-world consequences
do; for example, a flight with a low delay will probably only cause a slight
interruption in the schedule, while a high delay might cause many flights to be
cancelled. The cost of the total flight delay is the sum of all flight delay costs.

Air Traffic Safety. The safety of air traffic is determined by how crowded the
air volumes are; for example the air volume ava is capable of handling up to capa

flights entering per hour, so any flight above this capacity creates an additional
risk. Hence, safety is here defined by the amount that each air volume’s hourly
capacity is exceeded. For each air volume ava, a set Ta is defined that contains
the beginning times of all one-hour-long time intervals that fit inside the air
volume’s capacity duration dura (with a five minute step):

Ta = {t ∈ dura | t+ 3600 ∈ dura ∧ t mod 300 = 0}

A demand overload is calculated for each time t ∈ Ta as the number of flights,
beyond the air volume capacity, entering the air volume during the right-open
interval [t, t+ 3600):

overload [a, t] = max (0, |{f� ∈ Fa | cnter [a, �] ∈ [t, t+ 3600)}| − capa)

The overload cost overloadCost [a, t] of each air volume ava and time t ∈ Ta

is a piecewise linear function of the overload percentage overload[a,t]
capa

, where a
weight is defined for the overload percentages 0%, 10%, 20%, 30%, and 40%.
An illustration of this function can be seen in Figure 2. Again, the cost scales
exponentially, because a small overload will likely only increase the workload
of the affected ATM personnel slightly, while a large overload might result in a
mistake by the ATM personnel. The cost of the total traffic demand overload is
the sum of the cost for each air volume and time.

Contingency Plans for Air Traffic Management 647

0 10 20 30 40
0

10
20
30
40

60

80

100

120

140

160

180

Overload Percentage (%)

ov
er

lo
ad

C
os

t[a
,t]

Fig. 2. An illustration of the overload cost overloadCost [a, t], for the overload percent-

ages between 0% and 40%

Air Traffic Fairness. The fairness of air traffic is here defined by how fairly the
departure slots are allocated among the flows. No formal definition of fairness
will be given at this point, as it is instead handled differently in each of our
heuristics.

The Objective Function. The objective function is a linear combination of
the total delay cost and the total overload cost, where α and β are parameters:

cost = α ·
∑
�∈F

delayCost [�] + β ·
∑

a∈AV

∑
t∈Ta

overloadCost [a, t] (1)

Experimental results and feedback from our partners at the EEC suggest that
α = 6 and β = 1 are good for our benchmark instances; however, they can
be changed to reflect a desired balance between a low delay and a low traffic
demand overload, for each problem instance.

2.2 Current State of the Art

The current state of the art, and the only known procedure, to solve the CPP
is the unpublished process used by the CFMU and EEC human experts. It has
been described to us in the following high-level steps:

1. A statistical analysis is performed in order to point out the airspace volumes
with a high demand. The duration and capacity of each air volume are
recorded (there may be several periods per volume).

2. An analysis of departing flows is made:
– For the major European airports (i.e., with more than 2 arrivals or de-

partures per hour on average), the traffic needs to be divided into main
flows, where several destinations are grouped into each flow.

648 K.S. Blomdahl, P. Flener, and J. Pearson

– For the other airports, flows are mainly divided into two categories: do-
mestic flights and international flights. If the number of domestic flights
is low, it seems better that a local flow manager handles this traffic.

Recall that it takes one person-month for two senior human experts to perform
this procedure, and that all this is done twice a year, for weekdays, Saturdays,
and Sundays.

2.3 Comparison with Other Problems

The CPP resembles several well-studied problems, especially scheduling prob-
lems. However, none of the studied problems can be used directly to solve the
CPP. A case study of a few selected problems follows, in order to highlight the
unique aspects of the CPP.

Cumulative Job Shop Scheduling. The cumulative job shop scheduling prob-
lem (CJSSP) is a well-studied multi-machine and multi-stage scheduling prob-
lem, and is proven NP-hard. An instance is given by a set of activities, a set of
resources AV , and a set of jobs F, where each job consists of a set of activities.
Each activity acta,� has a processing time and a demand for each resource to be
executed. Each resource ava ∈ AV has a capacity capa. A schedule is an assign-
ment to each activity’s starting time, and a schedule is feasible if it satisfies the
capacity constraints for each resource, which requires that no more than capa

units of each resource are required at once, as defined by the demand of each
running activity.

Comparison with the CPP. With some extensions, such as soft capacities [6], the
CJSSP is very closely related to the CPP. However, it cannot directly solve the
CPP because of the relationship between the flow rates and the flight take-off
delays, which causes the domain of any activity’s starting time to be a function
of all other activities’ starting times (since two activities in the same flow must
correspond to the same rate variable assignment). This complication means none
of the established heuristics for solving the CJSSP can be directly applied to the
CPP.

Multi-Commodity Flow. The multi-commodity flow problem (MCF) is a net-
work flow problem, which given a graph G = (V,E), a set of sources S ⊂ V ,
a set of sinks T ⊂ V , and a set of commodities C, minimises some cost as
the commodities C flow over the network from source vertices to sink vertices.
Since the MCF is a network flow problem, many well-studied extensions such as
limited commodity quantities, restricted commodity flow paths, edge capacities,
and dynamic flows (for modelling a notion of time) can be applied.

Comparison with the CPP. All state of the art solutions to the MCF are based
on linear programming. This poses a problem since the objectives of the CPP
are non-linear, and while rewriting them to linear expressions might be possible,
no further investigation of the MCF as a modelling tool has been done yet.

Contingency Plans for Air Traffic Management 649

3 The Constraint Model

Our constraint model implements the formal definition of the CPP using con-
straint technology. The model consists of five main parts: the decision variables
and their domains, the problem constraints, the channelling constraints between
the contingency plan and the flight delays, the channelling constraints between
the flight delays and the air volume overloads, and the objective function.

3.1 The Decision Variables and Their Domains

Recall that the decision variables of the model are the identifiers that use square
brackets rather than subscripts. In most cases, the domains of the decision vari-
ables can be derived from their definition; however, the following decision vari-
ables have explicitly defined domains:

– ∀f� ∈ F : delay [�] ∈ N (a smaller domain is calculated from Section 3.3)
– ∀Ff ∈ F , ri ∈ Rf : rate[i] ∈ [1, demandf,i], where demandf,i is the max-

imum number of flights that are planned to depart in flow Ff during the
time span span i, and Ti is defined like Ta, but for spani instead of dura:

demandf,i = max
t∈Ti

|{f� ∈ Ff | ctot [�] ∈ [t, t + 3600)}|

3.2 Problem Constraints

The following problem constraints for any flight f� and air volume ava:

ctot [�] = etot � + delay [�]
cnter [a, �] = entera,� + delay [�]

establish the relationships between computed and expected times.

3.3 Channelling between Contingency Plan and Flight Delays

The channelling between the contingency plan and the flight delays is defined by
the mappings Tf ∈ Af → Df for each flow Ff , where Af ⊆ N

|Rf |
0 is the Cartesian

product of the flow rate decision variable domains, and Df ⊆ N
|Ff |
0 are the take-

off delays according to each element in Af . For example, consider the flow Ff ,
where Rf = {r1, r2}, dom(rate[1]) = {1, 2}, and dom(rate[2]) = {3}; therefore
Af = {〈1, 3〉 , 〈2, 3〉} and Tf = {〈1, 3〉 �→ 〈. . .〉 , 〈2, 3〉 �→ 〈. . .〉}, where the actual
take-off delays as calculated by rate[1], rate[2] := 1, 3 or rate[1], rate[2] := 2, 3
have been omitted for space reasons.

In classical CP (by complete tree search interleaved with propagation at every
node), each mapping Tf can be implemented by a table constraint, such that
each row corresponds to one map x �→ y in some Tf . In constraint-based local
search (CBLS), Tf can instead be used as a look-up table for the take-off delays
whenever a rate decision variable changes. Further details, which have been
omitted for space reasons, can be found in [7].

650 K.S. Blomdahl, P. Flener, and J. Pearson

3.4 Channelling between Flight Delays and Air Volume Overloads

The channelling between the flight delays and the air volume overloads is mod-
elled as a cumulative job shop scheduling problem (CJSSP) with a time step of
five minutes, where each air volume ava is a resource, each flight f� a job, and
the activities are defined by the air volumes each flight passes through. Each
such activity acta,� has the following parameters:

– resource[acta,�] = a
– start [acta,�] = cnter [a, �]−cnter [a, �] mod 300 (this is the calculated entering

time rounded down to the closest five minute tick)
– duration [acta,�] = 3600 seconds (since capacity is defined hourly)
– end [acta,�] = start [acta,�] + duration [acta,�]
– demand [acta,�] = 1 unit

The capacity of each resource ava is capa. Further, as the time set Ta of an air
volume ava might not cover the entire day, one must make sure any overload
that occurs during a time not in Ta does not contribute to the air volume cost.
There are multiple ways of doing this: the chosen method is to add at most
two activities for each day, namely one starting at the beginning of the day
and ending at min (dura) (provided it is not empty), and the other starting at
max (dura) and ending at the end of the day (provided it is not empty), both
with a demand of −|Fa|. Since the worst-case scenario is that all flights are in
the one-hour interval starting at the same t, adding an activity with a demand
of −|Fa| ensures that overload [a, t] = 0.

Unfortunately, practice has shown that it is impossible, and sometimes unde-
sirable, to find a solution that satisfies such a cumulatives constraint, i.e., the
problem is often over-constrained. The chosen method is to use a soft cumula-
tive constraint (inspired by [6]), which calculates the cost of each air volume ava

and time t either by using a sweep-line algorithm [1], or by explicitly defining a
decision variable for each air volume and time. Which of the two approaches is
better depends on the circumstances: an explicit definition allows constant-time
updates of the cost when all values are fixed (and is therefore used in the CBLS
heuristic described in Section 4.1), but the sweep line provides reduced memory
use (and is therefore used in the large neighbourhood search heuristic described
in Section 4.2).

3.5 The Objective Function

The objective function of our model, to be minimised, is (1).

4 Local Search Heuristics

Our local search heuristics operate on the model, and based on their current
state try to modify their rate decision variables in such a way that the objec-
tive function is minimised. Two such heuristics have been devised, namely: (i)

Contingency Plans for Air Traffic Management 651

Fig. 3. To the left, the generalised local search machine (GLSM) [5] of our tabu search

heuristic (nodes are described in Section 4.1). To the right, the GLSM of our LNS

heuristic (nodes are described in Section 4.2).

a tabu search heuristic, and (ii) a large neighbourhood search (LNS) heuristic
that uses classical constraint programming (CP) to search its neighbourhood.
Both heuristics are described in detail in their respective sub-section, and their
generalised local search machines (GLSM) can be seen in Figure 3. A GLSM [5]
is a state machine that describes a local search heuristic by breaking it down
into smaller algorithms, such that each state represents an individual algorithm
and the edges represent the conditions for switching between these algorithms.

4.1 Tabu Search

Our first heuristic uses a tabu search as the core. It uses a slightly modified ob-
jective function, which adds a penalty term to (1) in order to guide the heuristic
toward a fair traffic flow, where Penalty is a set of integer invariants:

cost = α ·
∑
�∈F

delayCost [�] + β ·
∑

a∈AV

∑
t∈Ta

overloadCost [a, t] +
∑

p∈Penalty

p

The heuristic can be summarised in the following steps, where each step and
new terminology will be described in further details later:

1. Restart the search by assigning each rate[i] a random value in its domain.
2. Hill-climb the current solution, until a local minimum has been reached.
3. Do a single iteration of tabu search, and then:

(a) Pick a random real number u ∈ [0, 1]; if u < 0.05, then pick a rate[i]
decision variable with an unfair value, add its penalty to Penalty , and
go to Step 3; otherwise, do nothing and go to Step 3b.

(b) If more than 200 iterations have gone by since the last improvement,
then go to Step 1. Otherwise, repeat Step 3.

The main source of diversity is Step 1, the main source of intensification is Step 2,
and Step 3 performs mix of both.

652 K.S. Blomdahl, P. Flener, and J. Pearson

The Restart Mechanism. The restart mechanism is the main source of diver-
sity in the heuristic. It completely restarts the search by assigning each rate[i]
decision variable a random value in its domain. It also clears the tabu list.

Hill-climbing. The hill climbing algorithm is a non-greedy algorithm. During
each iteration, it picks the first 〈rate[i], v〉 move such that the objective function
is decreased, until no such move can be found, i.e., a local minimum has been
reached. The method used to find this assignment is through the use of a meta-
neighbourhood, which is a circular list of neighbourhoods {N1, . . . , Nq}, where q
is the number of rate decision variables, that are searched in successive order until
an improving assignment is found, where each neighbourhood Ni corresponds to
all variable-value pairs in {rate[i]}×dom(rate[i]). The algorithm terminates once
a cycle has been completed with no improving assignment found.

Tabu Search. The tabu search is the core of the heuristic. While it is the main
contributor of neither intensity nor diversity, it ensures that the tabu search
neighbourhood of a local minimum has been properly explored and no improve-
ments have been missed. During each iteration, it searches a neighbourhood (to
be defined later) for a best non-taboo move 〈rate[i], v〉 and, after making the in-
verse move taboo for the number of iterations defined by the tabu tenure, it does
the assignment rate[i] := v. The only exception to this process is the aspiration
criterion, which kicks in if the candidate solution is better than any solution
found so far. If this is the case, then the move is performed even if it is in the
tabu list. The current implementation uses a tabu tenure of τ = 8.

The tabu search uses an asymmetrical stochastic neighbourhood that is de-
signed to reduce the most severe overloads. It does so by finding the peak of
each air volume demand overload, and then picks one of these peaks to re-
duce at random, where the probability of each peak being picked is proportional
to its overload, hence higher peaks have a higher probability to be reduced.
Once a peak has been determined, all flows Ff that contain a flight contribut-
ing to this peak (flights that cannot be anywhere else can be ignored) have all
{rate[i]} × dom(rate[i]), where ri ∈ Rf , added to the current neighbourhood.

Penalty Invariant. The apply penalty state is the part of the heuristic that
tries to ensure a high level of air traffic fairness. It does so by modifying the
cost function at random points in time, such that the rate variable rate[i] with
the minimum rate[i]

demandf,i
quotient is deemed unfair and an expression that tries

to guide rate[i] toward a fairer value is added to Penalty . It is an exponential
expression that decreases the higher the value of rate[i]:

γ · e−8· rate[i]
demandf,i

where γ is a parameter that controls how aggressively the heuristic should be
guided toward fairness; the current implementation uses γ = 200, which is only
slightly aggressive.

Contingency Plans for Air Traffic Management 653

4.2 Large Neighbourhood Search

Our second heuristic is a hybrid heuristic based on classical constraint program-
ming (CP) and large neighbourhood search (LNS). Given a feasible solution, LNS
works by relaxing part of the solution, that is, it picks some decision variables
and restores their domains to their initial values, and uses constraint program-
ming to search the resulting search space for a better solution. Our LNS heuristic
can be summarised in the following steps, where each step and new terminology
will be described in further details later:

1. Set each rate[i] decision variable to the maximum of its domain, and go to
Step 3 in solve mode.

2. If in solve mode, use CP to find a feasible solution; else (in optimise mode)
use CP to find a feasible solution with the minimum cost.

3. Select a rate[i] decision variable from a fixed circular list that contains all
rate decision variables, in an arbitrary order:
(a) If a full circle in the list has gone by with no improvement, then restore

the domains of all rate variables, post a constraint that any next solution
must be better than the current best, and go to Step 2 in solve mode.

(b) If rate[i] is unfair, then post a constraint that rate[i] must be fair, relax
the neighbourhood of rate[i] according to Step 3c, and then go to Step 2
in optimise mode.

(c) Relax the neighbourhood of rate[i] using an algorithm based on maxi-
mum set coverage, post a constraint that a solution must be better than
the current best, and go to Step 2 in optimise mode.

Constraint Propagation & Search. The CP state uses constraint propaga-
tion and search to find feasible solutions. It can do this in two available modes of
operation: (i) the solve mode, in which it returns the first feasible solution, and
(ii) the optimise mode, in which it exhaustively searches for the best solution
using a depth-first search tree traversal. Which mode it uses depends on which
was requested by the incoming call (edge in Figure 3); it does not use any inter-
nal heuristics to determine which is better. The branching heuristic used is to
pick a variable rate[i] at random and the value max (dom(rate[i])). The reason
for this is that when searching a relaxed neighbourhood most of the search is
done using propagation rather than branching, hence even if a more complicated
heuristic were used not much improvement could be found.

Restart Strategy. The restart strategy, which is triggered when all neighbour-
hoods have been searched and no improving move has been found, restores the
domains of all decision variables of all flows. It also removes any constraints
added by the heuristic, except for the constraint that any next solution must be
better than the current best.

Relaxation. Relaxation is the most important part of the heuristic, as it de-
fines the neighbourhood searched during each iteration. This neighbourhood is

654 K.S. Blomdahl, P. Flener, and J. Pearson

a cyclic list of neighbourhoods {N1, . . . , Nn}, where each neighbourhood Nf is
designed to relax the decision variables closely interconnected with flow Ff . This
interconnectivity is defined by the number of air volumes that two flows have in
common. In more detail, for each flow Ff , a set Sf is defined that contains all
air volumes that some flight in Ff passes through:

Sf = {ava ∈ AV | Fa ∩ Ff �= ∅} (2)

The interconnectivity of the flows Ff and Fh is then defined as |Sf ∩ Sh|, the
number of common air volumes that flights in Ff and Fh pass through. How-
ever, more than one flow with high interconnectivity is necessary for a good
neighbourhood: what is desired is to give Ff a certain degree of freedom such
that it can actually change in a meaningful way when relaxed; hence the neigh-
bourhood of a flow Ff is defined as the maximum set coverage (MSC) of the
set Sf and the set collection S \ {Sf}, where S = {S1, . . . , Sn}, with the slight
modification that rather than limiting the number of sets that can be chosen,
as is typically done in the MSC problem, the size of the resulting search space
is instead limited, i.e.,

∏
V ∈S′

∏
i∈RV

| dom(rate[i])|, where S′ ⊆ S contains Sf

and the selected sets from S, and RV is the set Rf such that Sf is V . Luckily,
in practice the interconnectivity between the sets in S seems to be high, hence
this is not a very hard problem to solve. Using a greedy algorithm for solving
MSC problems is sufficient to produce on average over 90% coverage when using
a search space limit of δ = 100 000 candidate solutions.

During each iteration, the greedy algorithm maintains two auxiliary sets: (i)
U ⊆ Sf , which are the still uncovered elements of Sf , and (ii) S′ ⊆ {S1, . . . , Sn},
which are the sets picked as neighbours of Sf . Then, as long as S is not empty, it
picks a set V ∈ S \ S′ with the largest intersection with U (i.e., |V ∩U |), where
ties are broken by the largest intersection with Sf . Then, the auxiliary sets are
updated, such that all elements in V are removed from U , and V is added to
S′, unless doing so would make the solution space larger than the limit δ, in
which case V is instead discarded. Note that the U set can be empty during an
iteration; this is the reason for the lexicographic comparison when selecting a
V ∈ S \ S′. This algorithm can be seen in Algorithm 1.

Returning to the relaxation state, once S′ has been determined, the neigh-
bourhood Nf is defined for all decision variables rate[i], where ri ∈ Rf and
Sf ∈ S′. Then this neighbourhood is relaxed by restoring the domain of each of
the variables in Nf to its initial value, followed by adding two constraints: (i)
the cost of any next solution must be smaller than the current best, and (ii) for
each air volume, its maximum overload must not be larger than the maximum
overload of the same air volume in the current best solution. The first constraint
is a standard optimisation technique, whereas the second is there to improve
the propagation and to allow proper energy feasibility calculations in the soft
cumulative constraint [6].

Flow fairness. The fix flow fairness state addresses any unfair values assigned
to rate variables. It does this by adding a couple of constraints when a flow that

Contingency Plans for Air Traffic Management 655

Algorithm 1. The greedy maximum set coverage algorithm used to determine
the maximum set coverage (MSC) of flow Ff , with a maximum solution space
size δ
1: Calculate the set collection S = {S1, . . . , Sn} according to (2) for each flow in

F = {F1, . . . ,Fn}.
2: S′ ← {Sf}
3: S ← S \ {Sf}
4: U ← Sf

5: while S �= ∅ do {Invariant: U ⊆ Sf ∧ S ∩ S′ = ∅}
6: Select the set V among S with the maximum 〈|U ∩ V |, |Sf ∩ V |〉.
7: S′′ ← S′ ∪ {V }
8: if search space size of S′′ < δ then
9: S ← S \ {V }

10: S′ ← S′′

11: U ← U \ V
12: else
13: S ← S \ {V }
14: return S′

has a rate variable with an unfair value compared to all other flows is selected
for relaxation. A value is unfair if it has a statistically outlying qi = rate[i]

demandf,i

quotient compared to all other flows. A value qi is a statistical outlier if:

qi �∈ [E(q)− std (q) , E(q) + std (q)]

where E(x) is the expected value of the set x and std (x) its standard deviation.
If qi is a statistical outlier, then a constraint requiring that E(q)− std (q) ≤ qi ≤
E(q) + std (q) is added; the neighbourhood of Ff , where ri ∈ Rf , is relaxed as
previously described, and a solution is sought in optimise mode. Note that no
constraint requiring the solution to be better than the current best is added,
because fairness is more important than a low cost.

5 Experimental Results

EUROCONTROL maintains two yearly timetables, one for the summer and one
for the winter. Further, in each timetable weekdays, Saturdays, and Sundays
have distinct traffic patterns. We have been provided, by the EEC, three real-
life problem instances from the summer 2008 timetable that represent worst case
scenarios for each distinct traffic pattern and are comparable to those used by
EUROCONTROL when generating the official contingency plans:

– A Friday (June): 261 flows (320 rates), 36 161 flights, 348 air volumes.
– A Saturday (August): 256 flows (387 rates), 29 842 flights, 348 air volumes.
– A Sunday (August): 259 flows (397 rates), 31 024 flights, 348 air volumes.

656 K.S. Blomdahl, P. Flener, and J. Pearson

Table 1. The experimental results of the different algorithms

Contingency Plan E(delay[f]) p95(delay [f]) E(overload) p95(overload)

EEC 2008-06-27 645.6 sec 2340.0 sec 29% 100%

EEC 2008-08-30 528.1 sec 1800.0 sec 23% 61%

EEC 2008-08-31 407.0 sec 1500.0 sec 29% 68%

tabu 2008-06-27 310.2 sec 1200.0 sec 27% 72%

tabu 2008-08-30 316.1 sec 1200.0 sec 22% 56%

tabu 2008-08-31 345.9 sec 1264.5 sec 24% 57%

LNS 2008-06-27 535.5 sec 2185.0 sec 29% 100%

LNS 2008-08-30 512.1 sec 1800.0 sec 23% 60%

LNS 2008-08-31 504.1 sec 1628.0 sec 34% 100%

When translated into a constrained optimisation problem, each instance yields
approximately 150 000 constraints and 50 000 decision variables. All experimen-
tal results were done on a Linux x86-64 dual-core laptop with 4GB of primary
memory, 2MB of L2 cache, and a CPU frequency of 2.2GHz. The tabu search
heuristic have been implemented in Comet [8] version 2.0.1, and the LNS heuris-
tic using Gecode [4] version 3.3.1. The tabu search usually terminated after
approximately three CPU hours, while the LNS heuristic was interrupted after
one CPU week (details below).

A comparison between our heuristics and a few contingency plans generated by
the EUROCONTROL human experts (denoted by EEC) can be seen in Table 1,
where the cost is presented as the expected take-off delay, the 95th percentile of
the take-off delay, the expected air volume overload percentage (where overloads
equal to zero have been omitted), and the 95th percentile of the air volume
overload percentages (where overloads equal to zero have been omitted).

The first observation that can be made is that our heuristics decrease both
the take-off delay and the air volume overload of the contingency plans gener-
ated by the EUROCONTROL human experts; this was expected, due to the
similarities between the CPP and scheduling problems, which have been solved
successfully using constraint technology for decades. However, the observation
that our tabu search heuristic performs better than our LNS heuristic was un-
expected, because the neighbourhood of the tabu search is a subset of the LNS
neighbourhood, and should therefore perform at least as well as the tabu search
heuristic. This performance difference has been attributed to the lack of runtime
for the LNS heuristic, which was interrupted before reaching a local minimum,
even after one week of runtime; further, this lack of runtime can probably be
attributed to an inefficient implementation rather than a fault in our heuris-
tic. However, regardless of the difference in performance between our heuristics,
they show the feasibility of solving the CPP using constraint technology. The
relative performance of our heuristics has been reproduced by the EEC, using
their internal validation tool COSAAC and one of the current human planners.
They compared our and their contingency plans on realistic test flight plans (not
given to us), though not according to the objective function we used during the

Contingency Plans for Air Traffic Management 657

optimisation, but more realistically according to a CASA-style slot allocation,
as if CASA was actually not down.

6 Conclusion

This work is intended as a feasibility study about whether it is possible to auto-
mate the development of contingency plans for EUROCONTROL, the European
Organisation for the Safety of Air Navigation. Based on the experimental re-
sults, it seems to be possible efficiently with constraint technology. Recall that
this paper addresses the subproblem of finding the optimal number of allocated
departure slots for predefined flows and time spans. The latter have been pro-
duced by human experts, and do not change much from one year to another.
However, the dependency on predefined flows and time spans must be elimi-
nated. Currently, this is our most important issue; ideally the search for the
optimal set of flows and time spans could be integrated into our heuristics.

Acknowledgements

This work has been financed by the European Organisation for the Safety or
Air Navigation (EUROCONTROL) under its Care INO III programme (grant
08-121447-C). The content of the paper does not necessarily reflect the official
position of EUROCONTROL on the matter. We especially thank S. Manchon,
E. Petit, and B. Kerstenne at the EUROCONTROL Experimental Centre.

References

1. de Berg, M., van Kreveld, M., Overmars, M., Schwarzkopf, O.: Computational Ge-

ometry: Algorithms and Applications, 2nd edn. Springer, Heidelberg (2000)

2. EUROCONTROL. Air Traffic Flow & Capacity Management Operations

ATFCM Users Manual. 14.0 edition (2010), http://www.cfmu.eurocontrol.int/

j_nip/cfmu/public/standard_page/librar_handbook_supplements.html.

3. EUROCONTROL. General & CFMU Systems. 14.0 edition (2010),

http://www.cfmu.eurocontrol.int/j_nip/cfmu/public/standard_page/

library_handboo_supplements.html

4. Gecode Team. Gecode: Generic constraint development environment (2006),

http://www.gecode.org

5. Hoos, H., Stützle, T.: Stochastic Local Search: Foundations & Applications. Morgan

Kaufmann Publishers Inc., San Francisco (2004)

6. Petit, T., Poder, E.: Global propagation of practicability constraints. In: Perron, L.,

Trick, M.A. (eds.) CPAIOR 2008. LNCS, vol. 5015, pp. 361–366. Springer, Heidel-

berg (2008)

7. Sundequist Blomdahl, K.: Contingency Plans for Air Traffic Management. Master’s

thesis, Uppsala University (2010), http://www.it.uu.se/research/group/astra/

8. Van Hentenryck, P., Michel, L.: Constraint-Based Local Search. MIT Press,

Cambridge (2005)

http://www.cfmu.eurocontrol.int/j_nip/cfmu/public/standard_page/librar_handbook_supplements.html
http://www.cfmu.eurocontrol.int/j_nip/cfmu/public/standard_page/librar_handbook_supplements.html
http://www.cfmu.eurocontrol.int/j_nip/cfmu/public/standard_page/library_handboo_supplements.html
http://www.cfmu.eurocontrol.int/j_nip/cfmu/public/standard_page/library_handboo_supplements.html
http://www.gecode.org
http://www.it.uu.se/research/group/astra/

Author Index

Ahmadizadeh, Kiyan 514

Allouche, David 53

Araya, Ignacio 61

Asaf, Sigal 24

Bacchus, Fahiem 176

Balafoutis, Thanasis 69

Bauer, Andreas 522

Beck, J. Christopher 84

Beldiceanu, Nicolas 137

Bent, Russell 99

Bessiere, Christian 114

Boizumault, Patrice 552

Botea, Viorica 522

Brown, Mark 522

Cambazard, Hadrien 129

Carlsson, Mats 460

Castañeda Lozano, Roberto 613

Chabert, Gilles 137, 491

Cho, Jeremy 176

Connors, Daniel P. 24

Cooper, Martin C. 152

Crémilleux, Bruno 552

Dal Palù, Alessandro 167

Davern, Paul 460

Davies, Jessica 176

de Givry, Simon 53

Deville, Yves 191

Dilkina, Bistra 514

Doğru, Ali 537

Eran, Haggai 24

Ermon, Stefano 38

Eveillard, Damien 221

Feldman, Jacob 460, 568

Flener, Pierre 643

Gent, Ian P. 206

Goldsztejn, Alexandre 221

Gomes, Carla P. 38, 514

Gotlieb, Arnaud 330

Gray, Matt 522

Greco, Gianluigi 236

Gresh, Donna L. 24

Guo, Long 252

Hamadi, Youssef 252

Harabor, Daniel 522

Hoda, Samid 266

Hooker, J.N. 266

Hosobe, Hiroshi 221

Jabbour, Said 252

Jain, Siddhartha 281

Jeavons, Peter 398

Jefferson, Chris 206

Junttila, Tommi 297

Karataş, Ahmet Serkan 537

Kaski, Petteri 297

Katsirelos, George 114, 305

Khiari, Mehdi 552

Kolaitis, Phokion G. 475

Kotthoff, Lars 321

Lazaar, Nadjib 330

Lebbah, Yahia 330

Lesaint, David 583

Little, James 568

Lombardi, Michele 383

Madelaine, Florent 345

Marre, Bruno 360

Martin, Barnaby 368

Mcinnis, Michael J. 24

Mehta, Deepak 460, 583

Michel, Claude 360

Michel, Laurent 598

Miguel, Ian 206, 321

Milano, Michela 383

Möhl, Mathias 167

Mullier, Olivier 221

Narodytska, Nina 114, 305

Neveu, Bertrand 61

660 Author Index

Nieuwenhuis, Robert 1

Nightingale, Peter 206, 321

O’Mahony, Eoin 281

Ortega, Julio 24

O’Sullivan, Barry 129, 583

Oğuztüzün, Halit 537

Paparrizou, Anastasia 69

Papegay, Yves 491

Pearson, Justin 643

Petke, Justyna 398

Pourtallier, Odile 491

Quesada, Luis 460, 583

Quimper, Claude-Guy 114

Richter, Yossi 24

Rintanen, Jussi 414

Rueher, Michel 628

Sabharwal, Ashish 514

Sais, Lakhdar 252

Scarcello, Francesco 236

Schiex, Thomas 53

Schreiber, Yevgeny 429

Schulte, Christian 613

Schutt, Andreas 445

Sellmann, Meinolf 281

Selman, Bart 38

Shvartsman, Alexander A. 598

Simonis, Helmut 460

Slaney, John 522

Sonderegger, Elaine 598

Soulignac, Michaël 628

Stergiou, Kostas 69

Stynes, David 568

Sundequist Blomdahl, Karl 643

Taillibert, Patrick 628

Tan, Wang-Chiew 475

ten Cate, Balder 475

Trombettoni, Gilles 61, 491

Tsang, Edward 3

van der Krogt, Roman 568

Van Hentenryck, Pascal 99, 191,

499, 598

van Hoeve, Willem-Jan 266

Vardi, Moshe Y. 8

Wahlberg, Lars 613

Walsh, Toby 69, 114, 305

Willard, Ross 9

Will, Sebastian 167

Wilson, Nic 583

Wolf, Armin 445

Yip, Justin 499

Živný, Stanislav 152

	Title Page
	Preface
	Distinguished Papers
	Workshops and Tutorials
	Organization
	Association for Constraint Programming
	Table of Contents
	Invited Talks
	SAT Modulo Theories: Getting the Best of SAT and Global Constraint Filtering
	References

	Constraint-Directed Search in Computational Finance and Economics
	Use the Force
	Constraints in Financial Forecasting
	Constraints in Automated Bargaining
	References

	Constraints, Graphs, Algebra, Logic, and Complexity
	Reference

	Distinguished Papers
	Testing Expressibility Is Hard
	Introduction
	Definitions, Basic Facts, and Statement of Results
	Domino Systems and Tiling Problems
	A Domino System That Exponentially Counts

	Interpreting Exponential Tiling into Expressibility
	Defining the Domain D and Encoding [2m2m] in Dm
	Defining the Constraint Language and the Test Relation R
	Connecting Polymorphisms, Tilings, and Expressibility
	Refining Proposition 3

	Conclusion
	References

	Applying Constraint Programming to Identification and Assignment of Service Professionals
	Introduction
	Why CP
	Problem Definition
	Position and Professional Definition
	Matching Rules
	Prioritization Scheme

	Modeling WM ID and Assign Using CP
	The no-overlap Requirement
	The CSP Model

	Experiments and Practical Usage Discussion
	Analysis of Experiments
	Prioritization Mode Practical Usages
	Assignment Mode Practical Usages

	Concluding Remarks
	References

	Computing the Density of States of Boolean Formulas
	Introduction
	Density of States: Problem Definition
	Prior Work
	A Novel Sampling Strategy: The Flat Histogram Method
	Effectiveness and Validation of MCMC-FlatSat
	Structured Problems: Exact Counts
	Synthetic Formulas: Exact Analytic Counts
	Random Formulas
	Large Structured Instances
	Model Counting

	Conclusions and Future Work
	References

	Research Track
	Towards Parallel Non Serial Dynamic Programming for Solving Hard Weighted CSP
	Introduction
	Background
	Parallelization of Block by Block Elimination
	Producing a Suitable Tree Decomposition
	Implementation and Results
	Conclusion and Future Work
	References

	Making Adaptive an Interval Constraint Propagation Algorithm Exploiting Monotonicity
	Introduction
	Intervals and Numerical CSPs
	Overview of the Mohc Algorithm
	Making Mohc Auto-Adaptive
	References

	Improving the Performance of maxRPC
	Introduction
	Background and Related Work
	maxRPC

	New Algorithms for maxRPC
	Light maxRPC
	Complexities

	Heuristics for maxRPC Algorithms
	Experiments
	Conclusion
	References

	Checking-Up on Branch-and-Check
	Introduction
	Background
	Logic-Based Benders Decomposition and Branch-and-Check
	Literature Review
	Problems and Models

	A Systematic Evaluation of Branch-and-Check
	Experimental Setup
	Logic-Based Benders Decomposition vs. Branch-and-Check
	A Deeper Analysis

	A Variation on Branch-and-Check
	Experimental Evaluation

	Discussion and Conclusion
	References

	Spatial, Temporal, and Hybrid Decompositions for Large-Scale Vehicle Routing with Time Windows
	Introduction
	VRPTWs
	The Adaptive Decomposition Scheme
	Vehicle-Based Spatial Adaptive Decompositions
	Customer-Based Adaptive Decompositions
	Instantiations of the CAD Scheme
	The VASD Scheme
	The CASD Scheme
	The CATD Scheme
	The CARD Scheme

	Experimental Results
	Related Work
	Conclusion
	References

	Decomposition of the NVALUE Constraint
	Introduction
	Background
	NValue Constraint
	Simple Decomposition
	Decomposition into AtMostNValue and AtLeastNValue

	AtMostNValue Constraint
	Faster Decompositions
	AtLeastNValue Constraint
	Experimental Results
	Other Related Work
	Conclusions
	References

	Propagating the Bin Packing Constraint Using Linear Programming
	Introduction
	Linear Programming Formulations for Bin Packing
	Dealing with Partial Assignments
	Experimental Results
	Conclusion
	References

	Sweeping with Continuous Domains
	Introduction
	Sweeping
	From Propagation to Sweeping
	The Working Area
	Inflaters
	Algorithm
	Tradeoff between Sweeping and Propagation

	A Generic Inflater for Arithmetical Constraints
	Forward Phase
	Inner Inflaters
	Backward Phase
	Remark on the Area of Dummy Variables
	Algorithms for Inner Inflaters

	Discussion
	References

	A New Hybrid Tractable Class of Soft Constraint Problems
	Introduction
	Preliminaries
	VCSPs with Crisp Binary Constraints
	Joint-Winner Property
	Algorithm
	Maximality
	Conclusions
	References

	A Propagator for Maximum Weight String Alignment with Arbitrary Pairwise Dependencies
	Preliminaries
	Constraint Model
	The Alignment Propagator
	Problem Decomposition
	Results
	Discussion
	References

	Using Learnt Clauses in maxsat
	Introduction
	Background
	Learnt Clauses—The Hitting Set Connection
	Lower Bounding the Minimal Hitting Set
	Integer Programming Connection

	Learning Clauses
	Empirical Study
	Conclusions
	References

	Domain Consistency with Forbidden Values
	Introduction
	AC5
	NAC4
	Applications
	GNAC4: NAC4 for Non-binary Constraints
	Experimental Results
	Conclusion
	References

	Generating Special-Purpose Stateless Propagators for Arbitrary Constraints
	Introduction
	Theoretical Background
	Propagator Generation
	Generating Tree Propagators
	Generating Code
	Correctness

	Generating Smaller Trees
	Case Study: English Peg Solitaire
	Case Study: Low Autocorrelation Binary Sequences
	Case Study: Maximum Density Oscillating Life
	Related Work
	Conclusion
	References

	Including Ordinary Differential Equations Based Constraints in the Standard CP Framework
	Introduction
	Interval Analysis for Numerical CSPs
	Interval Analysis
	The Branch and Prune Algorithm
	Filtering Algorithms for NCSP

	Including ODE Based Constraints in CSPs
	The ODE Solution Operator and Its Derivatives
	An Academic Design Problem
	Parameter Estimation Problems
	Two-Point Boundary Value Problems

	Experiments
	Parameter Estimation Problems
	Two-Point BVPs

	Conclusion
	References

	Structural Tractability of Enumerating CSP Solutions
	Introduction
	Constraint Satisfaction and Decomposition Methods
	Enumeration Problems
	Contribution

	Relational Structures and Homomorphisms
	Decomposition Methods, Views, and Tree Projections
	Tree Projections for CSP Instances
	CSP Instances and tp-Coverings

	Enumerating Solutions of Output-Aware CSP Instances
	Tight Characterizations

	Enumeration over Arbitrary Output Variables
	References

	Diversification and Intensification in Parallel SAT Solving
	Introduction
	Technical Background
	Modern SAT Solvers
	ManySAT: A Parallel SAT Solver

	Towards a Good Intensification Strategy
	Towards a Good Search Tradeoff
	Experiments
	Related Works
	Conclusion
	References

	A Systematic Approach to MDD-Based Constraint Programming
	Introduction
	MDDs and MDD-Based Constraint Solving
	A Systematic Scheme for MDD Propagation
	The General Scheme
	MDD Consistency

	Specialized Propagators
	Equality and Not-Equal Constraints
	Propagating Linear Inequalities
	Propagating Two-Sided Inequality Constraints
	Propagating the AllDifferent Constraint
	Propagating the among Constraint
	Propagating the Element Constraint
	Propagating the Unary Resource Constraint
	Using Conventional Domain Filters

	Implementation Issues
	Experimental Results
	Conclusion
	References

	A Complete Multi-valued SAT Solver
	Multi-valued SAT
	Efficient Incremental Clause Filtering
	Unit Propagation in SAT
	Watched Variable Equations
	Quantitative Supports

	Learning Nogoods for Multi-valued SAT
	Conflict Analysis
	Unit Implication Variables
	Non-dominated UIVs
	Nogood Management

	Related Work
	Numerical Results
	Benchmark Sets and Architecture
	Quantitative Supports
	Non-dominated UIVs
	MinDomain vs. Impacts
	MV-SAT vs. SAT

	Conclusion
	References

	Exact Cover via Satisfiability: An Empirical Study
	Introduction
	SAT and DPLL Search Trees
	SAT Encodings for Exact Cover
	Pseudo-Boolean and Logic Programming Encodings

	Algorithm DLX and Its Analytic Comparison to DPLL
	Experimental Results
	References

	On the Complexity and Completeness of Static Constraints for Breaking Row and Column Symmetry
	Introduction
	Formal Background
	Breaking Row and Column Symmetry
	Double Lex
	Special Cases
	All-Different Matrices
	Matrix Models of Functions

	Value Symmetry
	Double Lex
	Puget's Method
	Value Precedence

	Snake Lex
	Experimental Results
	Other Related Work
	Conclusions
	References

	Including Ordinary Differential Equations Based Constraints in the Standard CP Framework
	Introduction
	Interval Analysis for Numerical CSPs
	Interval Analysis
	The Branch and Prune Algorithm
	Filtering Algorithms for NCSP

	Including ODE Based Constraints in CSPs
	The ODE Solution Operator and Its Derivatives
	An Academic Design Problem
	Parameter Estimation Problems
	Two-Point Boundary Value Problems

	Experiments
	Parameter Estimation Problems
	Two-Point BVPs

	Conclusion
	References

	Structural Tractability of Enumerating CSP Solutions
	Introduction
	Constraint Satisfaction and Decomposition Methods
	Enumeration Problems
	Contribution

	Relational Structures and Homomorphisms
	Decomposition Methods, Views, and Tree Projections
	Tree Projections for CSP Instances
	CSP Instances and tp-Coverings

	Enumerating Solutions of Output-Aware CSP Instances
	Tight Characterizations

	Enumeration over Arbitrary Output Variables
	References

	Diversification and Intensification in Parallel SAT Solving
	Introduction
	Technical Background
	Modern SAT Solvers
	ManySAT: A Parallel SAT Solver

	Towards a Good Intensification Strategy
	Towards a Good Search Tradeoff
	Experiments
	Related Works
	Conclusion
	References

	A Systematic Approach to MDD-Based Constraint Programming
	Introduction
	MDDs and MDD-Based Constraint Solving
	A Systematic Scheme for MDD Propagation
	The General Scheme
	MDD Consistency

	Specialized Propagators
	Equality and Not-Equal Constraints
	Propagating Linear Inequalities
	Propagating Two-Sided Inequality Constraints
	Propagating the AllDifferent Constraint
	Propagating the among Constraint
	Propagating the Element Constraint
	Propagating the Unary Resource Constraint
	Using Conventional Domain Filters

	Implementation Issues
	Experimental Results
	Conclusion
	References

	A Complete Multi-valued SAT Solver
	Multi-valued SAT
	Efficient Incremental Clause Filtering
	Unit Propagation in SAT
	Watched Variable Equations
	Quantitative Supports

	Learning Nogoods for Multi-valued SAT
	Conflict Analysis
	Unit Implication Variables
	Non-dominated UIVs
	NogoodManagement

	Related Work
	Numerical Results
	Benchmark Sets and Architecture
	Quantitative Supports
	Non-dominated UIVs
	MinDomain vs. Impacts
	MV-SAT vs. SAT

	Conclusion
	References

	Exact Cover via Satisfiability: An Empirical Study
	Introduction
	SAT and DPLL Search Trees
	SAT Encodings for Exact Cover
	Pseudo-Boolean and Logic Programming Encodings

	Algorithm DLX and Its Analytic Comparison to DPLL
	Experimental Results
	References

	On the Complexity and Completeness of Static Constraints for Breaking Row and Column Symmetry
	Introduction
	Formal Background
	Breaking Row and Column Symmetry
	Double Lex
	Special Cases
	All-DifferentMatrices
	MatrixModels of Functions

	Value Symmetry
	Double Lex
	Puget’sMethod
	Value Precedence

	Snake Lex
	Experimental Results
	Other RelatedWork
	Conclusions
	References

	Ensemble Classification for Constraint Solver Configuration
	Introduction
	Background
	Algorithm Selection Data Sets
	Instance Attributes and Their Measurement
	Learning Classifiers
	Results
	Conclusions
	References

	On Testing Constraint Programs
	Introduction
	An Illustrative Example
	Testing Constraint Programs
	Notations
	Constraint Models and Programs
	Conformity Relations

	A CP Testing Framework
	Experimental Validation
	Implementation
	The Golomb Ruler Problem
	The Car Sequencing Problem

	Conclusion
	References

	On the Containment of Forbidden Patterns Problems
	Introduction
	Preliminaries
	From Forbidden Patterns Problem to CSP and Back
	Recolouring Captures Containment
	Closing Remarks
	References

	Improving the Floating Point Addition and Subtraction Constraints
	Introduction
	Notations and Definitions
	Improving the Addition and Subtraction Constraints
	Upper Bounds for the Subtraction
	Interval Extension of the Property

	Preliminary Experiments
	Conclusion
	References

	The Lattice Structure of Sets of Surjective Hyper-Operations
	Introduction
	Preliminaries
	Galois Connections
	Lattice Isomorphism

	The Structure of Fn
	Blurred Permutation Subgroups and Diagonals
	Automorphisms of Fn
	Properties of Inverse
	She-Complementative Classes

	Digraph Templates
	Final Remarks
	References

	Constraint Based Scheduling to Deal with Uncertain Durations and Self-Timed Execution
	Introduction
	Problem Description
	Uncertain, Bounded Durations
	Run-Time Semantics

	Related Work
	A Brief Revisitation of CSPs
	The Proposed Scheduling Framework
	Variables, Domains and Temporal Constraints
	Resource Constraints
	Handling STE and Global Consistency Check
	Possible Decisions
	The Search Process

	Experimental Results
	Conclusion
	References

	Local Consistency and SAT-Solvers
	Introduction
	Preliminaries
	k-Consistency and Positive-Hyper-Resolution
	Positive-Hyper-Resolution and SAT-Solvers
	k-Consistency and SAT-Solvers
	Experimental Results
	Conclusion
	References

	Heuristics for Planning with SAT
	Introduction
	Planning as Satisfiability
	The CDCL Algorithm for SAT
	A New Heuristic for Planning
	Variable Selection to Satisfy Goals and Subgoals
	Complexity of the Variable Selection Algorithm
	Integration in the CDCL Algorithm

	Evaluation
	Related Work
	Earlier Planning Algorithms
	Earlier Planners That Use SAT
	Domain-Specific Heuristics for SAT Solving

	Conclusions and Future Work
	References

	Value-Ordering Heuristics: Search Performance vs. Solution Diversity
	Introduction
	Analysis
	Value-Ordering Heuristics
	Adaptive Aggressiveness

	Experiments
	Results

	Summary and Further Research
	References

	A New $O(n^2 log n)$ Not-First/Not-Last Pruning Algorithm for Cumulative Resource Constraints
	Introduction
	Notations
	The Not-Last Detection Rule

	A New Not-Last Algorithm
	Experiments
	Conclusion and Future Work
	References

	A Generic Visualization Platform for CP
	Introduction
	Design Aims
	Architecture
	System Dependent XML Generators
	CP-Viz
	CP-Viz Tool

	Invariant Checking
	Implementation
	ECLiPSe
	SICStus
	Visualization of the Global Constraint SoftPrec
	JSR331

	Future Work and Conclusions
	References

	Database Constraints and Homomorphism Dualities
	Introduction and Summary of Results
	Basic Concepts and Preliminaries
	Homomorphism Dualities and Unique Characterizations
	Results on Homomorphism Dualities
	An Effective Characterization of Unique Characterizability
	Concluding Remarks
	References

	A Box-Consistency Contractor Based on Extremal Functions
	Motivation
	Background
	Description of the PolyBoxRevise Procedure
	Experiments
	References

	Exponential Propagation for Set Variables
	Introduction
	Domain Representations and Consistency Notions
	Theoretical Results on Intersection Constraints
	Experimental Behavior of Domain Representations
	Exponential Filtering for Intersection Constraints
	Experimental Results
	Related Work
	Conclusion
	References

	Applications Track
	An Empirical Study of Optimization for Maximizing Diffusion in Networks
	Introduction
	Problem Description, Model, and Solution Methods
	Sample Average Approximation and Re-planning

	Experimental Results
	References

	An Integrated Modelling, Debugging, and Visualisation Environment for G12
	Introduction
	Debugging Search
	Architectural Overview
	The Modelling Layer
	The Zinc Editor
	The Visualisation Editor

	The Visualisation Layer
	Pre-defined Visualisations
	Custom Visualisations
	Support for Other Scripting Languages
	Performance Debugging with the Custom Visualisation Viewer

	The Solving Layer
	The Solver Monitor
	The Debugging Interface

	Related Work
	Summary and Conclusions
	References

	Global Constraints on Feature Models
	Introduction
	Background
	Feature Models
	Automated Reasoning on Feature Models

	The Problem and CP
	Global Restrictions on a Product
	Why CP?

	Global Constraints and Feature Models
	The Mapping
	Using Global Constraints
	A Sample Case

	Discussion and Conclusion
	References

	Constraint Programming for Mining n-ary Patterns
	Introduction
	Definitions and First Examples
	Local Patterns
	N-ary Patterns
	Motivating Examples

	Examples of n-ary Queries
	Exception Rules
	Unexpected Rules
	Synexpression Groups
	Classification Conflicts

	CSP Modeling
	General Overview
	Example: Modeling the Exception Rules

	Related Work
	Pattern Discovery Approaches in Data Mining
	A Hybrid Method

	A Full-CP Approach
	Modeling an Unknown Local Pattern
	Modeling the k Patterns We Are Looking for
	Reformulating Numeric and Set Constraints
	Experiments

	Discussion
	Hybrid Approach: Pros and Cons
	Full-CP Approach: Pros and Cons

	Conclusion and Future Works
	References

	An Integrated Business Rules and Constraints Approach to Data Centre Capacity Management
	Introduction
	Formal Problem Specification
	A Hybrid Approach
	Stage 1a: Rules-Based Problem Identification
	Stage 1b: Building the Optimisation Model
	Stage 2: Solving the Optimisation Model

	Experimental Results
	Experimental Setup
	Results

	Related Work
	Conclusions and Future Work
	References

	Context-Sensitive Call Control Using Constraints and Rules
	Introduction
	Related Work
	Architecture and Principles of 4Crules
	Context and Catalogue Meta-models
	Context Dimensions and Records
	Feature Catalogues and Subscriptions

	Feature Configuration Rules
	Probability of Applicability of a fcr
	Optimal Relaxation of a Set of fcrs
	A Constraint Optimisation Formulation
	Empirical Evaluation
	Conclusion
	References

	Load Balancing and Almost Symmetries for RAMBO Quorum Hosting
	Introduction
	RAMBO and Quorums
	Modeling the RAMBO Quorum Hosting Problem
	Load Balancing
	Network Symmetries

	The CP Model for the Quorum Hosting Problem
	Experimental Results
	Conclusions
	References

	Testing Continuous Double Auctions with a Constraint-Based Oracle
	Introduction
	Related work.

	TRADExpress and the Continuous Double Auction
	The Test Oracle
	The Order Matching Framework
	The Order Matcher Model
	The Order Re-matcher Model
	Why Constraint Programming?

	Results
	Conclusion and Future Work
	References

	A Safe and Flexible CP-Based Approach for Velocity Tuning Problems
	Introduction
	TheProblem
	Informal Description
	Formalization

	WhyCP?
	HowCP?
	Modeling Space-Time Regions with Constraints over Continuous Domains
	Preliminaries: Computing Collision Surfaces in the Space-Time
	Computing the Unreachable Regions of the Space Time
	Deducing the Time-Minimal Path
	Implementation

	Added Value of CP
	Constraints Formulation
	Result

	Experimental Results
	The Test-Cases
	Computation Time

	Conclusion
	References

	Contingency Plans for Air Traffic Management
	Air Traffic Management and Contingency Planning
	The Contingency Planning Problem
	Formal Definition
	Current State of the Art
	Comparison with Other Problems

	The Constraint Model
	The Decision Variables and Their Domains
	Problem Constraints
	Channelling between Contingency Plan and Flight Delays
	Channelling between Flight Delays and Air Volume Overloads
	The Objective Function

	Local Search Heuristics
	Tabu Search
	Large Neighbourhood Search

	Experimental Results
	Conclusion
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

