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Preface

The 16th annual International Conference on the Principles and Practice of
Constraint Programming (CP 2010) was held in St. Andrews, Scotland, during
September 6-10, 2010. We would like to thank our sponsors for their generous
support of this event.

This conference is concerned with all aspects of computing with constraints,
including: theory, algorithms, applications, environments, languages, models and
systems.

We received a wide variety of submissions, each of which was reviewed by
at least three referees. Referees were chosen for each submission by an initial
bidding process where Program Committee members chose papers from their
area of interest. The range of expertise represented by the large Program Com-
mittee meant that almost all submissions were reviewed by subject experts on
the Program Committee, or by colleagues chosen by members of the Program
Committee for their particular expertise. Papers were solicited either as long (15
page), or short (8 page) submissions. Short-paper submissions were refereed to
exactly the same high standards as long-paper submissions but naturally were
expected to contain a smaller quantity of new material. Thus there is no distinc-
tion in these proceedings between short and long papers. I used the excellent
EasyChair conference management system to support this process of reviewing,
and for the collation and organization of these proceedings.

Submissions were made either to the applications track or to the research
track. There were 101 (23 short) research track submissions of which 36 (8 short)
were accepted, which is a 36% (35% of short) acceptance rate. Applications track
submissions received special consideration and the acceptance rate was signifi-
cantly higher than for the research track. There were 21 (2 short) applications
track submissions of which 11 (1 short) were accepted for a 52% (50% of short)
acceptance rate.

There were three invited talks from distinguished scientists: Robert Nieuwen-
huis, Edward Tsang and Moshe Vardi. These proceedings include abstracts of
each of their presentations. Details of the wide variety of workshops and the four
tutorials that took place as part of the conference are also included.

I would like to thank the Association for Constraint Programming (ACP)
for inviting me to be Program Chair. It has been a rewarding experience, not
only because of the high quality of the papers submitted, but also for the help
so readily given to me by friends and colleagues around the world.

I want to thank all of the authors for submitting such interesting papers. It
is their hard work that makes the conference so interesting, but the high quality
of the submissions also makes the decision process challenging. I would also like
to thank the members of the Program Committee for agreeing to help in the
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first place, and for the excellent standard of reviewing. My particular thanks go
to those people who provided fourth reviews when decisions were most difficult.

Several people deserve special mention. Karen Petrie, who, as Conference
Chair, saved my life on many occasions. Ian Gent, who, as the Program Chair
for CP 2009, was a source of invaluable information, warnings and good ad-
vice. Barry O’Sullivan for his speedy replies to questions, and general support.
Peter Stuckey, who was the Applications Track Chair, Pedro Meseguer for the
workshop organization, Thomas Schiex for managing the tutorials and Peter
Nightingale and Standa Zivny for running the doctoral program.

The local Organizing Committee always put in a great deal of work, often
unthanked, to make a conference like this successful. Andrea Rendl as Publicity
Chair and Neil Moore who ran the website helped me a lot during the build up
to CP 2010.

September 2010 David Cohen



Distinguished Papers

The Program Committee chose one paper from the Research Track, one paper
from the Applications Track and one Student Paper to be recognized as achieving
the highest standard submitted in their category.

Best Research Paper

Testing Expressibility Is Hard, by Ross Willard.

Best Applications Paper
Applying Constraint Programming to Identification and Assignment of Service

Professionals, by Sigal Asaf, Haggai Eran, Yossi Richter, Daniel P. Connors,
Donna L. Gresh, Julio Ortega and Michael J. Mcinnis.

Best Student Paper

Computing the Density of States of Boolean Formulas, by Stefano Ermon, Carla
Gomes and Bart Selman.



Workshops and Tutorials

Workshops

As part of CP 2010 a number of workshops took place the day before the main
conference, on September 6, 2010.

9th Workshop on Constraint Modelling and Reformulation (ModRef 2010)
10th Workshop on Symmetry in Constraint Satisfaction Problems (SymCon
2010)

7th Workshop on Local Search Techniques in Constraint Satisfaction (LSCS
2010)

Third Workshop on Quantification in Constraint Programming (QiCP 2010)
10th Workshop on Preferences and Soft Constraints (SofT 2010)

Third Workshop on Techniques for Implementing Constraint Programming
Systems (TRICS 2010)

First Workshop on Constraint Reasoning and Graphical Structures

Third Workshop on Constraint Reasoning and Optimization for Computa-
tional Sustainability (CROCS at CP-10)

Tutorials

Four tutorial presentations were given during the main program of the confer-
ence.

Distributed CSP, by Amnon Meisels.

SAT with Many Cores, by Youssef Hamadi.

The Valued CSP (VCSP), by Martin Cooper, Peter Jeavons and Simon de
Givry.

Backdoors in CSPs, by Barry O’SUllivan.
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Association for Constraint Programming

The Association for Constraint Programming (ACP) aims at promoting con-
straint programming in every aspect of the scientific world, by encouraging its
theoretical and practical developments, its teaching in academic institutions, its
adoption in the industrial world, and its use in applications.

The ACP is a non-profit association, which uses the profit of the organized
events to support future events or activities. At any given time members of the
ACP are all attendees CP conferences of the past five years, and all members of
the Program Committee of the current CP conference.

The ACP is led by an Executive Committee (EC), which takes all the deci-
sions necessary to achieve the goals of the association. In particular, the ACP
EC organizes an annual international conference on constraint programming: se-
lecting the venue and choosing the Program and Conference Chairs. This annual
conference includes a doctoral program, which is intended to encourage doctoral
students to work on CP and to participate in the CP conference.

The ACP EC maintains a website (http://www.4c.ucc.ie/adcp/) about all
aspects of CP, and publishes a quarterly newsletter about CP events.

ACP Executive Committee

President: Barry O’Sullivan

Secretary: Jimmy H.M. Lee

Treasurer: Thomas Schiex

Conference Coordinator: Pedro Meseguer
Others:

John Hooker
— Karen Petrie
Peter Stuckey
Roland Yap
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SAT Modulo Theories: Getting the Best of SAT
and Global Constraint Filtering

Robert Nieuwenhuis*

Technical Univ. of Catalonia (UPC), Barcelona, Spain

The propositional satisfiability problem (SAT) is one of the simplest instances
of Constraint Programming (CP): variables are bi-valued (can only take values
0 or 1), and all constraints are clauses (disjunctions of literals) like z V y V z
(meaning that x =1 or y = 0 or z = 0).

In spite of its simplicity, SAT has become very important for practical appli-
cations, especially in the multi-billion industry of electronic design automation
(EDA), and, in general, hardware and software verification. Research on SAT
has been pushed by these huge industrial needs and resources, in a very prag-
matic way: prestigious conferences are eager to publish papers describing how to
improve performance on their real-world problems, even if these improvements
are not based on highly original techniques (in contrast with conferences like
CP, which tend to prefer new ideas, even if they are tested only on academic
random or artificial problem instances).

As aresult, modern SAT solvers work impressively well on real-world problems
from many sources, using a single, fully automatic, push-button strategy. Hence,
modeling and using SAT is essentially a declarative task. On the negative side,
propositional logic is a very low level language and hence modeling and encoding
tools are required, and also optimization aspects are not that well studied.

Sophisticated encodings into SAT have been developed for many constraints
that are typical in EDA and verification applications, such as arrays, congru-
ences, or Difference Logic and other fragments of linear arithmetic. However,
in many cases such encodings become too large, and/or behave poorly. SAT
Modulo Theories (SMT) was developed as an answer to this situation. The idea
is to encode only part of the constraints into SAT. The remaining constraints
are considered as a background “theory”. Similarly to the filtering algorithms in
Constraint Programming, the Theory Solver uses efficient specialized algorithms
to detect additional propagations and inconsistencies with respect to this theory.

For example, given a large input with clauses such as 3z+4y<6 V z V ...
the SAT component of the SMT solver will consider the linear arithmetic literals
like 3z 44y <6 as any other (meaningless) propositional literal, but in addition
there is a Theory Solver using a simplex algorithm to check whether the current
set (conjunction) of linear arithmetic literals is T-consistent, or whether it T-
propagates some other arithmetic literal occurring in the clause set.

What distinguishes SMT from complete CP search techniques with global con-
straint filtering algorithms is that SMT maintains SAT’s extremely successful

* Partially supported by Spanish Min. of Science &Innovation, LogicTools-2 project
(TIN2007-68093-C02-01).

D. Cohen (Ed.): CP 2010, LNCS 6308, pp. 1 2010.
© Springer-Verlag Berlin Heidelberg 2010



2 R. Nieuwenhuis

tightly interconnected ingredients, such as clause learning, clause forgetting, con-
flict analysis, backjumping, and activity-based variable selection heuristics.

In this talk we first give an overview of SMT, the DPLL(T) approach to SMT
INOTOG], and its implementation in our Barcelogic SMT tool. Then we discuss
current work on the development of SMT technology for hard combinatorial
(optimization) problems outside the usual verification applications. The aim is
to obtain the best of several worlds, combining the advantages inherited from
SAT: efficiency, robustness and automation (no need for tuning) and CP features
such as rich modeling languages, special-purpose filtering algorithms (for, e.g.,
planning, scheduling or timetabling constraints), and sophisticated optimization
techniques. We give several examples and discuss the impact of aspects such
as first-fail heuristics vs activity-based ones, realistic structured problems vs
random or handcrafted ones, and lemma learning.

Further reading: The recent Handbook of Satisfiability [BHvMW09] has chap-
ters on all the main aspects of SAT, from underlying theoretical results to
implementation techniques and applications, with many further references. In
particular, it contains a very nice chapter on SMT [BSST09).

References

[BHVMWO09] Biere, A., Heule, M.J.H., van Maaren, H., Walsh, T. (eds.): Handbook
of Satisfiability. Frontiers in Artificial Intelligence and Applications,
vol. 185. I0S Press, Amsterdam (February 2009)

[BSSTO09] Barrett, C., Sebastiani, R., Seshia, S.A., Tinelli, C.: Satisfiability
Modulo Theories. In: Biere et al. [BHvMWO09], ch. 26, vol. 185, pp.
825-885 (February 2009)

[NOTO06] Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT Mod-
ulo Theories: from an Abstract Davis-Putnam-Logemann-Loveland
Procedure to DPLL(T). Journal of the ACM 53(6), 937-977 (2006)



Constraint-Directed Search in Computational
Finance and Economics

Edward Tsang

Centre for Computational Intelligence in Finance & Economics (CCFEA)
University of Essex, Colchester, UK
edward@essex.ac.uk

1 Use the Force

Constraints shield solutions from a problem solver. However, in the hands of
trained constraint problem solvers, the same constraints that create the prob-
lems in the first place can also guide problem solvers to solutions. Constraint
satisfaction is all about learning how to flow with the force of the constraints.

Examples of using constraints to guide one’s search are abundant in complete
search methods (e.g. see [1I2]). Lookahead algorithms propagate constraints in
order to (a) reduce the remaining problem to smaller problems and (b) de-
tect dead-ends. Dependency-directed backtracking algorithms use constraints to
identify potential culprits in dead-ends. This helps the search to avoid examining
(in vain) combinations of variables assignments that do not matter.

Constraint-directed search is used in stochastic search too. Constraints were
used in Guided Local Search (GLS) [3] and Guided Genetic Algorithm (GGA) [4]
to guide the search to promising areas of the search space. In stochastic methods,
a constraint satisfaction problem is handled as an optimization problem, where
the goal is to minimize the number of constraints violated. The approach in
GLS is to use constraints to augment the objective function. This helps local
search to escape local optima. GGA uses the GLS penalty scheme to change the
behaviour of genetic algorithms. This results in a more robust algorithm which
finds quality results consistently. GLS and GGA have been applied to many
optimization problems, including the well-known travelling salesman problem
and the quadric assignment problem.

The GLS idea was generalized to “penalties” and “incentives” in evolutionary
computation. This paper explains how such ideas were applied to two applica-
tions in finance and economics: financial forecasting and automated bargaining.

2 Constraints in Financial Forecasting

In forecasting, the goal is to predict the value of a variable, which defines the
target. The challenge in forecasting is (i) to find a set of variables, and (ii) to
find a function that maps these variables to the target. There is no limit in
the format of this function. It can be a mathematical function. It can also be a
program procedure.

D. Cohen (Ed.): CP 2010, LNCS 6308, pp. 3010.
© Springer-Verlag Berlin Heidelberg 2010



4 E. Tsang

There is no guarantee that such functions exist. If they do, then finding the
relevant variables is essential for their discovery. EDDIE (which stands for Evo-
lutionary Dynamic Data Investment Evaluator) is a framework for finding such
functions [5]. Experts channel their financial expertise into the system through
the suggestion of variables. EDDIE attempts to find functions that map these
variables to the target.

EDDIE attempts to predict a particular form of patterns: whether prices will
go up by r% or more within the next n days. (Here r could be a negative number).
In that case, the target can be represented by a Boolean variable T. If T is true,
it means prices will go up by r% or more within the next n days, which represents
an investment opportunity. For example, domain experts may suggest that the
current price, the “50 days moving average” and “volatility” (which could be
measured by the normalized standard deviation of the previous, say, 25 days)
are indicators of the future price. An example of a function is:

IF the current price is 6.24% above the 50 days moving average
THEN IF volatility is above 1.85,
THEN T is True;
ELSE T is False;
ELSE IF the current price is 12.49% below the 50 days moving average
THEN T is False;
ELSE T is True;

In this example, the function is represented by a tree. EDDIE is responsible for
finding the structure of the tree, as well as the thresholds such as 6.24%, 1.85.

The search for variables is crucial to the success of forecasting. This is the
job of the finance experts, which will not be discussed here. (This job can be
helped by EDDIE, see [6]). Faced by EDDIE is a huge search space of tree
structures and thresholds. EDDIE searches the space with genetic programming.
Pretty standard genetic programming techniques were adopted, except the use
of constraints, which is described below.

In EDDIE, precision refers to the percentage of “True” predictions that turn
out to be correct in reality. Recall refers to the percentage of investment oppor-
tunities that were correctly predicted “True” by EDDIE. Failure in picking an
opportunity is not as serious as making a wrong decision to invest, because the
latter could lead to losses. That means precision is more important than recall in
financial forecasting. Having said that, if a forecasting tool fails to pick up any
investment opportunities at all (i.e. recall=0), then this tool is useless. There-
fore, one would like to have a handle to balance between precision and recall.
This is attempted by FGP2, a version of EDDIE. Following is a brief summary
of FGP2; details can be found in [7].

FGP2 aims to concentrate the search on areas of the space where trees have
higher precision. To achieve that, FGP2 augmented the objective function with
a constraint. The augmented objective function encouraged trees that make a
certain percentage of their predictions “True”. If the percentage of “True” pre-
dictions by a tree is not within a range constrained by the user, its fitness is
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significantly reduced. This range constraint is set by the user; it typically re-
flects conditions of the current market.

Trees capture patterns in the data. The EDDIE experience was that, even with
variables drawn from text-books (namely technical trading indicators), patterns
could be found in some of the stocks [7]. With variables of better quality, pat-
terns with extremely high precision could be found [§]. Patterns do not appear in
all stocks. Besides, the market has been changing very fast in recent years (with
the significant growth of algorithmic trading), which hinders learning. Neverthe-
less, one does not have to find all patterns to benefit from forecasting. A single
opportunity, if detected, could provide a trader with valuable reward. Whenever
patterns exist, having a forecasting tool like EDDIE is better than not.

3 Constraints in Automated Bargaining

Game theory is often used in a political or military context to explain conflicts
between countries. More recently it has been used to map trends in the business
world, ranging from how cartels set prices to how companies can better sell their
goods and services in new markets. It has become an important area in eco-
nomics, for which Nobel Prizes have been awarded (e.g. Aumann and Schelling
in 2005).

Bargaining is a main subject in game theory. One of the fundamental bargain-
ing models was Rubinstein’s 1982 model. Under this model, two players bargain
to share a pie. They make alternative offers. For example, the first player may
offer to take 65% of the pie. The second player may either accept it or reject the
35% offerred. If he rejects this offer, he will have to give a counter offer, e.g. he
may ask for 51%. However, both players’ utilities drop exponentially over time.
That means getting 51% in the second round may not worth as much as accept-
ing 35% in the first round. This motivates both players to accept an offer as
soon as possible. It is worth pointing out that the two players may have different
utility discount rates. The value of the discount rate determines their bargaining
power. A player with a higher discount rate is in a weaker position to bargain.

A player’s optimal strategy depends on the other player’s strategy. Subgame
equilibrium is the optimal strategy by both players, given their belief of their
opponent’s strategies. To derive the subgame equilibrium, Rubinstein assumed
complete information, i.e. each player knows both discount rates, and knows that
the opponent knows. Rubinstein also assumed perfect rationality by both players
[9). Subgame equilibrium was derived recursively by Rubinstein: to calculate the
first player’s optimal strategy, one has to solve the subproblem of the second
player’s strategy. This in turn can be calculated by the first player’s optimal
strategy in the third round should the second player make a counter offer in
the previous round. The subproblems can be solved recursively till both players’
utilities drop to a fix point.

In game theory, subgame equilibrium is typically derived mathematically.
There are two serious drawbacks in this approach. Firstly, it assumes perfect ra-
tionality in decision making. In practice, decision making often involves
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computation (chess is a good example). Therefore, computational intelligence
determines the effective rationality (I call this the CIDER theory, see [10]). Sec-
ondly, mathematical derivation of subgame equilibrium is laborious. A slight
change of the bargaining model (for example, when a player has an outside op-
tion which guarantees him, say, 36% of the pie) would typically require complete
revision of the derivation.

The above drawbacks of the mathematical approach motivate a co-evolutionary
approach, where each of the two players is modelled by a population of strategies
[11]. A strategy’s fitness is evaluated through playing it with strategies by the op-
ponent. In evolutionary computation, a strategy’s chance of survival depends on
its fitness. That means under this approach, the perfect rationality assumption
is replaced by reinforcement learning, which is closer to reality. Besides, this ap-
proach is robust: it can easily cope with slight changes to the bargaining model.
It can easily capture asymmetric information or asymmetric ability by the two
players.

Jin et al used genetic programming to approximate subgame equilibrium [11].
Bidding strategies were represented by functions. Under this approach, each
player searches in the space of functions. Unfortunately, the search space is
huge. Besides, only a very small proportion of the functions in the search space
are sensible. For example, a random strategy would typically return a bid of
below 0% or above 100% of the pie. Standard genetic programming failed to
find sensible strategies consistently.

Following EDDIE’s experience, Jin and Tsang used constraints to guide the
search. To do so, desirable attributes were identified for bidding strategies.
Firstly, a strategy should return a value between 0 and 1. Secondly, the value that
a bidding strategy returns should ideally be inversely proportional to the player’s
own utility discount rate. Thirdly, the value that a strategy returns should ide-
ally be proportional to the opponent’s discount rate. These desirable attributes
were translated into incentives, which augmented the objective function.

With the help of incentives, the majority of the populations contained usable
bidding strategies (which demand a value between 0% and 100%). The subgame
equilibrium found by co-evolution was very close to the theoretical solutions
in Robinstein’s 1982 bargaining model. With minor modifications, the programs
were applicable to variations of Rubinstein’s bargaining model [9]. For these sim-
ple bargaining models, the subgame equilibrium found by co-evolution approx-
imated the theoretical solutions. These results suggest that constraint-directed
co-evolutionary is a useful approach to approximate subgame equilibrium in
bargaining.
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Abstract. We study the expressibility problem: given a finite constraint
language I" on a finite domain and another relation R, can I" express R?
We prove, by an explicit family of examples, that the standard witnesses
to expressibility and inexpressibility (gadgets/formulas/conjunctive
queries and polymorphisms respectively) may be required to be expo-
nentially larger than the instances. We also show that the full express-
ibility problem is co-NEXPTIME-hard. Our proofs hinge on a novel
interpretation of a tiling problem into the expressibility problem.

Keywords: constraint, relation, expressive power, inverse satisfiability,
structure identification, conjunctive query, primitive positive formula,
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1 Introduction

Given a fixed set I of basic constraint relations for building constraint programs
or satisfaction problems, there are typically other (perhaps useful) implicit rela-
tions which may treated as if they were actually present in I', without affecting
the expressiveness or complexity of I.

For example, consider the toy constraint language I' = {—, U} on the domain
D =10,1,2,3,4,5}, where — is the binary relation pictured in Figure [[]and U
is the unary relation {0, 3}.

=i
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|

Fig. 1. The binary relation —

The unary relation V' = {3,4,5} is an example of an implicit relation of
{—,U}. Indeed, whenever we wish to constrain a variable x to V, we can ac-
complish this by adding three new auxiliary variables a, b;,c, and imposing
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the basic constraints a, — by, b, — x, * — ¢, U(ay), and U(c,). We say that
I' can express V. We might similarly ask: can I" express the complement of V,
i.e., the unary relation W = {0, 1,2}? What about the complement of —?

These questions are instances of the expressibility problem (also known as the
existential inverse satisfiability problem [(I6] and the pp-definability problem [4]).
It is a structure identification problem in the sense of []]. Its answers define what
is called the expressive power of a constraint language [15], now a key tool in
the quest to classify which constraint languages are tractable (e.g., [1213]).

In this paper we give constructions which show that the general expressibility
problem is impossibly hard according to three natural measures.

We thank Matt Valeriote and Moshe Vardi for some helpful discussions.

2 Definitions, Basic Facts, and Statement of Results

Fix a constraint language I" on a finite domain D. Given an instance P =
(X, D, @) of CSP(I"), we shall use Sol(P) to denote the set of all solutions to P,
construed as functions X — D. If s = (s1,..., Sx) is a k-tuple of variables from
X, then we shall use ms(Sol(P)) to denote the restriction of Sol(P) to s; i.e.,

7s(Sol(P)) = {(F(s1),-.., f(sk)) : f € Sol(P)} C D*.

Definition 1 ([I5J5/13]). Given a constraint language I and a k-ary relation
R on a domain D, we say that I' expresses (or generates) R if there exists an
instance P = (X, D,C) of CSP(I") and a k-tuple s = (s1,...,s;) of variables
with ms(Sol(P)) = R. The pair (P,s) is a witness to the expressibility of R by I'.

Cohen and Jeavons [5] have called P a gadget and s a construction site in this
context. A witness (P,s) can be trivially re-formulated as a conjunctive query
over I (in database theory) or as a primitive positive formula over I' (in logic);
the latter is an expression of the form Jy; - - - Jy,[C1 & Co & - - - & C,], asserting
the existence of auxiliary variables satisfying (with s) the constraints of P.

Ezample 1. In the example from Section [I let P be the instance of CSP(I")
having variable set {a, b, ¢, x} and constraints ((a,b), —), ((b,2), —), ((z, ), —),
(a,U), and (¢, U). P has exactly four solutions; identifying each solution f; with
its 4-tuple of values (fi(a), fi(b), fi(x), fi(c)), we have

Sol(P) = {(0,4,3,0), (0,4,4,3), (0,4,5,3), (3,0,4,3)}.

As the projection of Sol(P) on its third coordinate (i.e., at z) is {3,4,5} =V,
(P, x) witnesses the fact that I" can express V. An equivalent primitive positive
formula witnessing this is Ja3bIcla - b & b — 2z & 2 — ¢ & U(a) & U(c)].

Definition 2. Suppose D is a finite domain, I' is a constraint language over
D, and n,k are positive integers. Let s = (s1,...,8;) be a k-tuple of elements
from D™, R a k-ary relation on D, and h : D™ — D.
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1. proj(s) = {(s1[i],...,sk[i]) : 1 <i<mn}. (Thus proj(s) C D¥.)

2. h preserves R at s if proj(s) € R or (h(s1),...,h(sk)) € R.

3. h preserves R if h preserves R at every k-tuple in (D™)F.

4. h is a polymorphism of I' (of arity n) if h preserves every relation in I.

One can show that, for every n > 1, there exists an instance of CSP(I") with
variable set D™ whose solutions are precisely the n-ary polymorphisms of I'.
Following Jeavons, Cohen and Gyssens [T4TIIT5)5], we call this CSP instance
the indicator problem for I' of order n and denote it by J,,(I").

It is well-known that the polymorphisms of I" (i) include the projections and
(ii) preserve all relations expressed by I" (see e.g. [15, Lemma 2.18]). From this
one can deduce the following connection between expressible relations, polymor-
phisms, and indicator problems.

Proposition 1. For any n,k > 1 and s € (D™)*, the relation S expressed
by (3,.(I"),s) (i) contains proj(s), and (ii) is contained in every k-ary relation
expressible from I' which contains proj(s). Le., S is the smallest k-ary relation
expressible from I’ containing proj(s).

Note that if R is k-ary and there exists an n-ary polymorphism h of I" which
does not preserve R at some s € (D™)*, then R is not expressible from I". When
this happens we say that h is a witness to the inexpressibility of R from I

Ezxample 2. Returning to the example in Section [, the 1-ary map h : D — D
when sends 1 — 3, 2 — 4, and fixes all other elements of D, is a polymorphism
of I'={—,U}. As 1 € W ={0,1,2} but h(1) ¢ W, h does not preserve W at
1; hence W is not expressible from ', and h is a witness.

For any k-ary relation R on D, if n is the number of rows of R (i.e., n = |R|),
then one can construct sV = (sy,...,s;) € (D™)* so that proj(s(®)) = R.
As R is expressible from I" exactly when the smallest k-ary relation expressible
from I and containing R is R itself, it follows from Proposition [l that either
(9.(I"),s™)) expresses R, or there exists an n-ary polymorphism of I" which
does not preserve R at s(/). Thus we get the following theoretical upper bounds
to the size of a witness to the expressibility or inexpressibility of R from I.

Corollary 1 ([9{IJI5]). Let I'U{R} be a set of relations on D, and let n = |R|.

1. If R is expressible from I', then R can be expressed by a CSP instance (or a
primitive positive formula) with variable set of size < |D|™.

2. R is not expressible from I' if and only if there exists a polymorphism of I
of arity < n which does not preserve R.

Ezample 3. Consider again the example in Section[Il The relation V = {3,4, 5}
on the 6-element domain {0,1,2,3,4,5} is expressible from I' = {—,U}, so
Corollary [ promises a CSP witness having < 62 = 216 variables. Conversely,
the complement - of — turns out to be not expressible from I'. Since - has
26 rows, Corollary [Il promises a witnessing polymorphism of arity < 26.



12 R. Willard

Note the ridiculousness of the bounds in Example Bl Corollary [I] guarantees a
CSP instance having < 216 variables to express V, when in fact we have an
instance using just 4 variables. Even worse is the promise of a 26-ary polymor-
phism witnessing the inexpressibility of —; just storing the values of a random
26-ary function on {0,1,2,3,4,5} would require over 5 x 10® terabytes. Yet the
l-ary polymorphism of Example @] fails to preserve - (e.g., at (2,2)) and so
already witnesses its inexpressibility.

Example B illustrates the fact that the upper bounds to the sizes of witnesses
guaranteed by Corollary [Il are exponential in the size of the test relation. It
is natural to ask if these upper bounds can be improved. For example, Cohen
and Jeavons [B] p. 313] pose as an open research question the identification of
circumstances under which sub-exponential sized CSP instances can be found
witnessing expressible relations. Our first theorem says “not always”:

Theorem 1. For infinitely many n there exist a constraint language I, and a
relation R,,, both on a 22-element domain, such that |R,| = n, R,, is expressible
from T, but every CSP(I,) instance expressing R, has at least 2"/ variables.

Dually, our next theorem shows that in general we cannot hope to detect inex-
pressibility with sub-exponential sized polymorphisms.

Theorem 2. For infinitely many n there exist a constraint language I, and
a relation R.,, both on a 22-element domain, such that |R.)| = n, R, is not
expressible from I, but every witnessing polymorphism has arity at least n/3.

We formally define EXPR to be the combinatorial decision problem which takes
as input a triple (D, I, R) (where D is a finite domain, I" is a finite constraint
language on D, and R is another relation on D), and asks whether R is ex-
pressible from I'. EXPR has also been called 3-INVSAT (the existential inverse
satisfiability problem) [7I6] and the pp-definability problem [4].

Corollary[Mland the discussion preceding it give a general algorithm for testing
—EXPR: among all functions h : D™ — D where n = |R|, search for one which
(i) is a polymorphism of I', and (ii) does not preserve R at s(). This naive
algorithm puts EXPR in co-NEXPTIME. Dalmau [7, p. 163] speculated that
perhaps there exists a better, more sophisticated algorithm which would place
EXPR in a lower complexity class. Suggestively, Creignou et al [6] have proved
that EXPR restricted to the boolean domain is in P.

At a workshop at AIM in 2008, a working group led by M. Vardi contrarily
conjectured that there is essentially no algorithm better than the naive one, in the
sense that EXPR restricted to 3-element domains is co-NEXPTIME-complete
[]. In our last theorem we very nearly confirm this conjecture:

Theorem 3. There exists d > 1 such that EXPR restricted to d-element domains
18 co-NEXPTIME-complete.

The remainder of this paper is devoted to proving Theorems [[H3] via an inter-
pretation of certain tiling problems defined by domino systems.
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3 Domino Systems and Tiling Problems

A tiling problem is a particular kind of constraint satisfaction problem whose
constraints are organized “horizontally and vertically.” More precisely:

Definition 3 ([1042]). 4 domino system is a triple D = (A, H,V) where A is
a finite nonempty set (of “tile types”) and H,V are binary relations on A (called
the horizontal and vertical adjacency constraint relations).

Notation 4. For N > 1 we will use [NxN] to denote the set
INxN] ={(i,§) : i,j €Z,0<i,j < N}.

We informally identify the element (i,5) € [N xN] with the unit square in the
z-y plane whose lower-left corner has coordinates (i, j). The kth row of [NXxN]
is the subset Rowy = {(i,k) : 0 <i < N}, while the kth column is the subset
Col,, = {(k,j) : 0 <j < N}. Figure Pl illustrates the board [4x4].

Definition 5. Suppose D = (A, H,V) is a domino system and N > 1. A tiling
of [NxN] by D is a mapping T : [NxN] — A assigning to each square (i,7) €
[N xN] a tile type T[i, j] € A, subject to the following constraints:

— For each pair (i,7), (i4+1, ) of horizontally adjacent squares in [NxN], the
corresponding pair (7[i, j], T[i4+1, j]) of tile types satisfies H.

— For each pair (i,j), (i,j+1) of vertically adjacent squares in [NxN], the
corresponding pair (T[4, j], T[i, j+1]) of tile types satisfies V.

Ezample 4. Define a domino system Dy = (A, H, V) where

A ={a,b,c,d, e, f}
H ={(a,b), (b,a), (b,d), (c,b), (d,c), (d,£), (e,b)}
V ={(a,b), (a,e), (b,b), (b,c), (c,d), (d,4d), (e,e), (f,£)}.

The map 7 : [4x4] — A pictured in Figure @ is a tiling of [4x4] by D;.

Y
4

(0,3) ] (1,3) | (2,3) | (3,3) e b d f
3

(0,2) ] (1,2) | (2,2) | (3,2) e b d £
2

(0,1) [(1,1) | (2,1) [ (3,1) | «— Rowy e b d £
1

(0,0)| (1,0 | (2,0)| (3,0) | «— Rowyo a | b d f

Fig. 2. The board [4x4] and one tiling of it by D



14 R. Willard

We need to be able to discuss partial tilings and tilings with initial conditions.
Definition 6. Suppose D = (A, H, V) is a domino system and N > 1.

1. Let w = (wg, ..., Wnm—1) € A™ with 0 <m < N, and let j < N. A tiling 7
of [NxN] by D satisfies the initial condition w if 7[i,0] = w; for all i < m.

2. If U C [NxN] then we may speak of tilings of U by D satisfying w; these
are mappings from U to A which satisfy those horizontal, vertical and initial
condition constraints that mention squares in U only.

3. Gwen a tiling T of [NxN] by D, we say that T has a repeated row if there ex-
ists z € AN and distinct j < k < N such that T makes the same assignment
to Row; and to Rowy; that is, T[i,j] = T[i, k] for all 0 <i < N.

Ezample 3 (continued). The tiling of [4x4] pictured in FigureQsatisfies the initial
condition (a,b). However, Dy cannot tile [4x4] with initial condition (b, a).

In this paper we will be particularly interested in the following “exponential
tiling problem,” which we define in both local and uniform versions.

Definition 7. 1. Given a domino system D = (A, H,V), EXPTILE(D) de-
notes the combinatorial decision problem whose input is a triple (D, m,w)
where m > 1 and w € A™, and which asks whether D tiles [2™x2™] with
initial condition w.

2. EXpPTILE = |5, EXPTILE(D).

3.1 A Domino System That Exponentially Counts
Our proofs of Theorems [Il and [2] will exploit the following fact.

Proposition 2. There exists a domino system Do = (Ae, He, Ve) with the fol-
lowing property: for all m > 2 there exist m-tuples Wy, w,, € (As)™ such that

1. D, does not tile [2™ x2™] with initial condition Wy, but D, does tile U with
initial condition W, for every U C [2"™Xx2™] satisfying |U| < 2™.

2. D tiles [2™x2™] with initial condition w,,, and moreover every tiling of
[2x2™] by D, with initial condition W, has no repeated row.

We describe one way to construct such a domino system D.. Our strategy is
to design D, so that its tilings of subsets of [2" x2™] force consecutive rows to
encode consecutive integers between 0 and 2™ —1.

Ifm>0andz€{0,1,2,3,...,2™ —1}, let Bin,, () denote the reverse m-bit
binary representation of x (least significant bit at the left).

Ezample 5. Bins(6) = (0,1,1,0,0).
We define some sets of new symbols; they will be the tile types for De:

Ao ={07,03,,0%,,05,08} Ay = {15,1%,, 13, 1%, 15}
AOl :A()UAl Ae = A01U{<l}.
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Definition 8. Suppose m > 2 and x € {0,1,2,3,...,2™ — 1}, with Bin,,(z) =
(bo,b1,---,bm—1). The annotated m-bit binary representation of x is the m-tuple
AnnBin,, (z) = (a0, a1, --,am—1) € (Ao1)™ given as follows: a; = (b;)% where

— XisLifi=0, Rifi=m—1, and M otherwise.
— If there exists j < i such that b; =1, then s is +. Otherwise, s is — if b; =0
while s is ¢ if by = 1.

Ezample 6. AnnBins(6) = (0;,1%,,14,,05,,0%).

Note that the “bases” of the entries of AnnBin,,(z) give the reverse m-bit binary
representation of x; the subscripts are exactly (L, M, ..., M, R); and the super-
scripts are one of the following patterns: (o, +,...,4+), (—, ..., —,0,+,...,+),
(=y...,—,0),0or (—,—,...,—), where ¢ occurs at the first bit of = equalling 1.

Fix m > 2 and define 7,,, to be the mapping [2"x2™] — A, which for each
0 < j < 2™ assigns AnnBin,,, (j) to the first m entries in Row;, and assigns < to
all remaining squares (see Figure []).

o [+ [1+ |1+
Rowis |17 |1y 112 « <]l a|alalala]la]<ala]a]«

ANANANNANA ANAANANAANANAANANAA NAAANANAA L

Rows |19 |03, (15|05« | a|<|a|a|<a|a]a|alala]|a

Rows |07 |04 |15/]05| | << a]a|<|a]|a]<|a]a|x

Rows |19 |13, (05|05« [ a|<|a|a|<a|a]a|alala]|a

=112, lo* | 0%
Rowa |07 (1537|0305 | < | Q| Q9| Q| Q| Q| Q| Q|| Q]| <Q]|A

Row1 10508, |0h | <« <]|a]af<]|alal<a|alal<]a

Rowo |07 |04/ 103|0z| Q@ | < | Q9| Q| Q| Q| Q| Q| |Q] |4

Fig. 3. 74 defined on [16x16]

Now let Do = (Ae, He, Vo) be the smallest domino system with respect to
which 74 is a tiling of [16x16]. That is, define

He = {07 }x{05,, 15,3 U {123x{03,, 13,3 U {05} x{05, 157, 05, 1%}
U {087 1 15,3 {037 137, 05, 13} U {05, 05, 1%, 15, <} x{<}

Ve = {(07,1%), (17,07), (037 05)s (0475 0%7)s (047, 150)s (13 13p)s (1 1),
(137, 030)s (0%, 0%), (0%,0%), (0%, 1%), (1%, 1%), (15, 15), (5,9}

The reader can check that D,, thus defined, satisfies Proposition 2] with w,,, =
AnnBin,, (1) and w/, = AnnBin,,(0). Indeed, 7, is the unique tiling by D, of
[2"%x2™] with initial condition w/,, and clearly 7, has no repeated rows. On

the other hand, D, cannot tile [2™ x2™] with initial condition w,, (as it cannot
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count past 2™ — 1), but if U C [2"x2™] with |U| < 2™, then there must exist
k < 2™ such that U is disjoint from Rowyg. In this case D, can easily tile U with
initial condition w,,, simply by assigning AnnBin,,(j+1) to the first m entries
of Row; for each j < k, assigning AnnBin,,(j) to the first m entries of Row; for
all k < j < 2™, and < to all remaining entries.

4 Interpreting Exponential Tiling into Expressibility

In this section we will describe the main (and most difficult) construction of this
paper. It takes as input an instance (D, m, w) of EXPTILE where m > 2 and m
is a power of 2, and produces as output an instance (D, I', R) of EXPR, so that

R is expressible from I' < D cannot tile [2™ x2™] with initial condition w.

Furthermore, the existence of “small” witnesses to the expressibility or inexpress-
ibility of R will be connected to the existence of “small” witnesses to untilability
or tilability (small subsets of [2 x 2™] that cannot be tiled, or tilings of [2™ x2™]
with repeated rows). Thus Proposition 2] will give us Theorems [I] and 21 Because
we also wish the construction (D, m,w) — (D, I, R) to give a logspace reduction
of this fragment of EXPTILE into —EXPR, the sizes of D, I', and the relations
in I U {R} must be bounded by a polynomial in |A| + m, and the construction
itself must be executable in logspace in |A| + m.

4.1 Defining the Domain D and Encoding [2™ X2™] in D™

For the remainder of Section @ we fix a domino system D = (A, H, V), an integer
m =2t (t > 1), and an m-tuple w = (wg, w1, ..., Wn_1) € A™.

Definition 9. The domain D for our constraint language is the disjoint union

of the sets A, P := {poo, Po1,P10,P11}, {0,1}, {a, b}, {T, L}, and {oo}.
We next explain how we will interpret [2x2™] in D™. For (z,y) € [2mx2™],
write Bin, (z) = (2o, 21,...,2Zm—1) and Bin,(y) = (Yo,Y1,-- -, Ym—1), the re-
verse m-bit binary representations of z and y respectively, and let p(z,y) € D™
be given by p(x,y)[i] = pa,y, for 0 < i < m. In this way the elements of [2" x2™]
are put in one-to-one correspondence with the elements of P™.
Ezample 7. If m = 8, then p(53,188) = (p10, Poo, P11, Po1, P11; P11, P00; Po1)-
Next we define ¢t 4+ 1 auxiliary elements So, 01, ..., 8t—1,7 in D™ (recall that
t = logy, m), first by example. If m = 8 (so t = 3), then

ﬁO = (07 1707 1707 1701 1)

ﬁl = (Oa 07 1a 17 Oa 07 1? 1)

ﬁ2 = (07 0,0,0,1,1,1, 1)

v=(b,b,a,b,a,a,a,b).

Note that the columns on the right-hand side of the above equations, restricted
to the f;’s, are Bins(0), Bins(1), Bins(2), ..., Bins(7) respectively. In general,
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Definition 10

1. Bo,...,Bi—1 € {0,1}™ are defined so that (Boli], f1lil, ..., Bi—1[i]) = Bing(i)
for all0 <i<m.

2. The element v € {a,b}™ is defined by V[i] = b if i = 2% — 1 for some k < t,
and v[i] = a otherwise.

3. s= (B0, B1,...,B-1,7) € (D™)"+1.

4. Ro = proj(s) = {(Bin(i),y[i]) : 0 <i<m}.

Ezample 8. If m = 8, then Ry = {(0,0,0,b), (1,0,0,b), (0,1,0,a), (1,1,0,b),
(0,0,1,a), (1,0,1,a), (0,1,1,a), (1,1,1,b)}.

The elements fy, ..., B:—1,7 € D™ and the relation Ry will help us coordinatize
P™. The element + helps to enforce some “rigidity” as explained in the next
lemma.

Lemma 1. Suppose o is a self-map from {0,1,...,t—1} to itself, and d =
(Bo(0)s Bo(1)s - - -+ Bo(t—1),7)- If proj(d) C Ro, then o(i) =i for all i <t.

Once the constraint language I has been constructed, we will be intensely in-
terested in the (¢t + 1)-ary relation S expressed by (J,,(I"),s). This relation is
equivalently defined as the set of images of (fo,...,B8t—1,7) under the m-ary
polymorphisms of I". We will be particularly interested in learning whether the
(t+1)-tuple (T, T,...,T) belongs to S. Call a map f : D™ — D special if it
satisfies f(Bo) = f(B1) = -+ = f(Bi—1) = f(y) = T. The intermediate aim of
the construction of I' is to achieve the following two competing goals:

1. If h: D™ — D is any special m-ary polymorphism of I, then h should map
P™ to A; moreover, the restriction of h to P™ should encode a tiling of
[2"x2™] by D with initial condition w.

2. Conversely, if 7 is any tiling by D of [2™ x2™] with initial condition w, then
there should exist a special m-ary polymorphism A of I" whose restriction to
P™ encodes T.

An immediate consequence of these goals, when achieved, is that the expressible
relation S will contain the constant tuple (T,T,...,T) if and only if D tiles
[2x2™] with initial condition w. This will somehow help us in achieving the
goals described at the beginning of Section [l

4.2 Defining the Constraint Language I' and the Test Relation R

Each relation in I" will be constructed using the following recipe. Fix £ = 1 or
2. Choose a k-ary relation H on P™ and a k-ary relation C' on A, subject to
the requirement that H factors as an m-fold product relation H = Hy x Hy X

- X H,,—1 for some k-ary relations Hgy, H1,...,Hpy—1 on P. Then define the
(k 4+t + 1)-ary relation Ry on D as follows:
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m—1

Ruc = [ {xy) € PP x (0,1} x {a,b}) : x € Hi, y = (Bing (i), 7[i])}
=0

U{(x,y) € AR x {T, L} . L e{y[0],...,y[t]} orx € C}
U {(o00,00,...,00)}.
Lemma 2. For any relation Ry—c constructed according to the recipe above:

1. Ry C (PR x{0,1} x {a,b}) U (AP x {T,L}*H1) U {oo}ktttl,
2. For anyc € (D™)*, proj(c, Bo, B1,- - -, Bi—1,7) € Ry=c if and only ifc € H.
3. For anyc € D*, (¢, T,T,...,T) € Ry=c if and only if c € C.

Our first family of relations will encode the adjacency constraints of D.

Definition 11. 1. For an integer 0 < x < 2™ define 1g(z) to be the largest
integer 0 < k < m such that 2k divides .
2. For 0<k <m let HA® VA® pe the following binary relations on P™:

HA® = {(p(x,y), pla+1,y)) : 0 <2,y <27, @ # 271, lg(a+1) = k}

VA® = {(p(z,),p(z,y+1)) : 0 <2,y < 27, y # 27—1, Ig(y+1) = k}.
Le., HA® is the binary relation on P™ encoding those pairs ((z,), (z+1,7))
of horizontally adjacent elements of [2™ x2™] for which the reverse binary rep-

resentation of x begins with k 1’s followed by 0. The reader should verify that
each of the relations ’HA(k),VA(k) factors as an m-fold product relation.

Ezxample 9. If m = 8 and k = 3, then

HA® = {(p10,P00), (P11, P0o1) }* x { (P00, P10), (P01, P11)}
x {(Poo; Poo); (Po1, Po1); (P10, P10), (P11,P11)} .
Definition 12. Recall that D = (A, H,V'). The set of adjacency relations is
A = {Ryamwopg : 0<k<m} U {Rpsmoy : 0<k<m}.
For each (z,y) € [2"™x2™], the singleton unary relation {p(x,y)} on P™ clearly
factors as an m-fold product relation.
Definition 13. Recall that w = (wyg, ..., wm—1). The set of initial relations is
T = Ripr0))={wn) * 0=k <mj.
Definition 14. Our constraint language is I' = A U T U {Rpnona}.

Finally, we define two further (¢ + 1)-ary relations on D. The first relation, R,
is an easily constructed relation whose expressibility from I" will be our chief
interest; it may be informally defined as Rt—  where T and L are here being
used to denote the 0-ary “true” and “false” relations on P™ and A respectively.
The second relation, S, is easily defined but not easily constructed and is not
claimed to be part of the output of our logspace construction.

Definition 15. Recall that Ry = proj(s) where s = (8o, b1, ..., Bt—1,7)-
R=Ro U ({T, L} \{(T,T,...., T} U {(o0,00,...,00)}
S ={(h(Bo), h(B1),...,h(Bt=1),h()) : h is an m-ary polymorphism of I'}.
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4.3 Connecting Polymorphisms, Tilings, and Expressibility
For convenience, define the notation T = (T,T,...,T)and o0 = (00, 00, ..., 00).

Lemma 3. 1. S is the smallest (t 4+ 1)-ary relation expressible from I’ and
containing Ro.

2. RCSCRU{T}.

3. R is expressible from I if and only if T Z8S.

Proof. S = 75(Sol(J,,(I))), i.e., S is the relation expressed by (J,,,(I"),s) where
s = (Bo,---,0t-1,7)- (1) follows from this observation, the definition of Ry, and
Proposition Il To prove S C RU {'T'}, it thus suffices to show that R U {'AF} is
expressible from I' (as it clearly contains Ry). This is easy, since the primitive
positive formula F2Rpm= (2,0, 21, ...,2¢) defines R U {"T'} As (3) follows
from (1) and (2), it remains only to prove R C S.

Clearly Ry C S by (1), and oo € S since the constant function D™ — {oo}
is a polymorphism of I". Suppose now that f = (fo,..., f;) € {T, L}+1\ {'T'}
Pick any dy € A and define hg : D™ — D by

do if x e P™
fi if x = 3; for some i < t
he(x) =  frifx=17

Lifxe{0,1}™U{a, b} \ {fo,.--, 01,7}
oo otherwise.

To prove f € S, it suffices to show that hg is a polymorphism of I". We will show
simply that h¢ preserves each initial relation Ryp(x,0y1={w,} at all (t+2)-tuples
in D™ the proofs for the other relations being similar. Indeed, if this were false,
then there would exist ¢ = (x, 2o, . ..,2) € (D™)"*? with

(a) proj(c) € Rip(k,0)}={ws}> but
(b) (he(x), he(z0), - - - he(2t)) & Rip(k,0)}= {wn}-

At least one of hg(x), he(zo),...,he(z:) must be different from oo. Hence by
definition of he, {x,2o,...,2:} is not disjoint from P™ U {0,1}™ U {a,b}"™. This
last fact, Lemma [2l(1), and item (a) above then yield x € P™, zg,...,2z;—1 €
{0,1}™, and z; € {a,b}™. Hence (h¢(x), h¢(20), ..., he(z:)) = (do, f§,-- -, fi) for
some fi,...,fi € {T,L} (by the definition of h¢). If dy = wy or at least one
fi is L, then clearly (do, fy, ..., f{) € R{p(k,0)}={ws}; hence do # wy, and all f]
are T. The definition of h¢ then implies that z; = v and there exists a selfmap
oon {0,1,...,t—1} such that z; = 3,(; for i < t. Lemma [ then implies that
o(i) =1 for all i < t, s0 ¢c = (x,00,...,0:-1,7) with x € P™. The definition
of hg then gives (do, T,...,T) = (do, fo,-- ., ft), contradicting the assumption
that £ # T. 0

We can now prove the desired connection between tilings and expressibility.

Proposition 3. The following are equivalent:
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1. R is not ezpressible from I.
2. TesS.
3. D tiles [2™x2™] with initial condition w.

Proof. (1) < (2) follows from Lemma 3

(2) = (3). Assume T € S; choose an m-ary polymorphism & of I' satisfying
h(Bo) = -+ = h(Bi—1) = h(y) = T. We first show that h maps P™ into A.
Indeed, let x € P™; then proj((x, 8o, - - -, 8t—17)) € Rpm=a by Lemmal2). As
h is a polymorphism of I', it preserves Rpm— A at (x, fo, ..., Bi—1,7); hence we
get (h(x),h(Bo), ..., h(Bi=1),h(7)) € Rpm=a, ie., (h(x),T,...,T) € Rpm=a.
This with Lemma [2(3) implies h(x) € A, as claimed.

Thus we may define a map 75, : [2"x2™] — A by 7[i, j] = h(p(i,7)). Using
the fact that h preserves the adjacency and initial relations at all tuples of the
form (x,%’, Bo, ..., Bt—1,7) or (X, Bo, - .-, Bt—1,7) respectively (x,x’ varying over
P™), and using Lemma [2(2,3), one can show that 7, is a tiling of [2"x2™] with
initial condition w.

(3) = (2). Assume that 7 is a tiling of [2™x2™] by D with initial condition
w. Define h, : D™ — D by

Tli, 7] if x = p(i,7) where (i,7) € [2"™%x2™]
h (X) — T ier{ﬁo,...,ﬂt_l,’Y}
T 1 ifxe{0,1}"uU{a,b}™\ {bo,...,0t—1,7}
oo otherwise.

It suffices to prove that h; is a polymorphism of I". We repeat the proof that he
preserves R{p(k,0)}={w,} in the proof of Lemma [3 replacing h¢ with h,. Again,
we suppose for the sake of contradiction that we have ¢ = (x,z,...,2) €
(D™)+2 with

(a) proj(c) € Ryp(k,0)}={ws}> but
(¢) (hr(x),hr(2z0),...,he(2¢)) & R{p(k,o)}é{wky

Arguing as before, we get

(d) ¢ = (X7 507 cee 7ﬁt717’y)3 and
(e) x € P™ and h,(x) # wg.

Ttems (a) and (d), with Lemma [ imply x = p(k,0). Hence h.(x) = [k, 0],
which with item (e) contradicts the fact that T satisfies w at Rowy. O

As |R| = 3m, Corollary [1l implies that if R is expressible from I" then R can
be expressed by a CSP(I") instance having |D|>™ variables, while if R is not
expressible from I then this is witnessed by a polymorphism of I" of arity 3m.
We can slightly improve this. On the one hand, Lemma [ clearly implies:

Corollary 2. If R is not expressible from I', then this is witnessed by an m-ary
polymorphism.

Conversely, a careful examination of the proof of Proposition Bl(2)=-(3) shows
that the only constraints on h needed to complete the proof are ones involving
the values of h at elements of P™ U {fy,...,0:—1,7}. Hence:
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Corollary 3. If R is expressible from I', then it can be expressed by an instance
of CSP(I") (or a primitive positive formula over I') with 2*™ +t + 1 variables.

4.4 Refining Proposition [3]

Proposition 4. Suppose R is not expressible from I' and this is witnessed by
some polymorphism of I' of arity k < m. Then there exists a tiling T of [2™x2™]
by D with initial condition w with the property that every row of T is repeated.

Proof. Let h be the k-ary polymorphism of I'; choose ¢ = (ag,a1,...,0¢) €
(D*)*+1 such that proj(c) C R but (h(ag), ..., h(as)) € R. Since S is expressible
from I', h preserves S at c, so (h(a),...,h(cr)) € S. As S\ R = {"T'}, we get
h(a;) =T for all i < ¢.

For each 1 <i <k let ¢; = (ao[i], ..., a[i]) € R. Define

MZ{i:CiGRo}

Q={i:ce{T,L}*\{T}

For each i € M, define o(i) to be the unique j € {0,1,...,m—1} such that
ci = (Boldl,- -+, Bi-1l4],7[j]). Now define a map A : 2™ x2™] — D* as follows:
given (x,y) € [2™x2™] and 1 < i < k,

p(z,y)ljlif i € M and o(i) = j
MMz, y)[i] = T ifie@
00 ifieZ.

We will use A to “represent” the elements of [2™ x2™] as elements of D (though
we will see below that A is not injective). We now loosely follow the proof of
Proposition Bl(2)=(3). Suppose (z,y) € [27x2™] and let x = A(x,y). One can
check that proj(x,aq,...,a:) € Rpmoa. As h is a polymorphism, this im-
plies (h(x), h(),...,h(ar)) € Rpmoa, ie., (h(x), T,..., T) € Rpm_ . Hence
h(x) € A. Thus we may define a map 7, : [2"x2™] — A by [z, y] = h(A(z,y)).
As in the proof of PropositionBl(2=-3), it will follow that 7, is a tiling of [27*x2™]
by D with initial condition w.

Observe that |[M| < k < m, so the map o is not surjective. Pick some 0 <
j < m with j € range(o). Then the map X\ has the property that if z, 2", y,y' €
{0,1,...,2™ — 1} and the binary representations of z and z’ (y and y’) agree
everywhere except at bit j, then A(z,y) = A(2/,y’). The same must therefore be
true of the tiling 73,. Hence every row (and every column) of 73, is repeated. O

Proposition 5. Suppose R can be expressed from I' by an instance of CSP(I")
(or primitive positive formula) with k < 2%™ variables. Then there exists a subset
U C [2mx2™] with |U| < k such that D does not tile U with initial condition w.

Proof. Choose an instance P = (X, D, @) of CSP(I') and a (t+1)-tuple s =
(S0, .-, 5¢) of variables from X such that (P,s) expresses R and |X| = k. Thus

R={(h(s0),...,h(st)) : h € Sol(P)}. 1)
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For each h € Sol(P) define ¢, = (h(so),...,h(st)) € R. Define

M = {h € Sol(P) : ci € Ry}
Q=1{heSol(P) : ¢, € {T, LI\ {T}}
Z ={h € Sol(P) : ¢, =3}.

Next define
A={ze X : [h(z) e PYhe M] & [h(z) € AVh € Q] & [h(z) = 0 Vh € Z]}.

Similarly, define B to be the set of all z € X whose values under h in M, Q, Z are
in {0,1}, {T, L} and {oo} respectively; and define € to be the set of all v € X
whose values under h in M, @, Z are in {a,b}, {T, L} and {co} respectively;

For each 0 < i < m choose h; € M so that (hi(so),. .., hi(st)) = (Bing(7), v[4]).
(Such h; must exist by equation[Il) Now define A : A — P™ as follows: for z € A
and 0 <14 < m, put A(x)[i] = h(z).

Define U = {(i,5) € [2™%x2™] : p(i,j) € range(\)}. Clearly |U|] < |A| <
| X | = k. We claim that D cannot tile U with initial condition w. Assume to the
contrary that 7: U — A is such a tiling. Define h,; : X — A by

7[i, 7] if € A and A(z) = p(, J)
T ifr=s;forsome0 <5<t
1 ifxeBUEN\{so,...,5t)
oo otherwise.

h(z) =

It can be shown, essentially following the proof of Proposition Bl(3=-2), that h.
is a solution of P. But this with the fact that (h-(so),...,h-(s¢)) = T € R
contradicts equation [1 g

5 Conclusion

Proof of Theorem [ Given n = 3m where m = 2!, t > 1, take D, and w,, as
in Proposition (1), and let (D, I}, R,) be the output of our construction on
input (De, m, Wy, ). (Note that D is independent of n, and |D| = 22 if we use the
specific domino system D, described in Subsection[31l) We have |R,,| = 3m = n.
By Proposition Bl R,, is expressible from I', but, by Proposition Bl not by any

CSP(I,) instance having fewer than 2™ variables. O
Proof of Theorem [ Follows similarly from Propositions [2(2), Bl and @ O

Proof sketch of Theorem[3 Let EXPTILEy(D) be the restriction of EXPTILE(D)
to inputs (D, m, w) where m = 2!, ¢ > 1. Standard modifications of the proof of
[2, Theorem 6.1.2], replacing the torus with the plane as in [I0], show that every
problem P € NEXPTIME has a logspace reduction to EXPTILE2(D) for some
domino system D. Via a “universal domino system” argument we can get a single
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domino system D, = (A, Hy, Vy) such that EXPTILEy(D,) is NEXPTIME-
complete. Let d = |Ay| + 11. Our construction and Proposition Bl give a logspace
reduction of EXPTILE2(D,) to the restriction of “EXPR to d-element domains.

a

We end with two questions.

1.
2.

Can d in Theorem [B] be reduced to d = 3, confirming the AIM conjecture?
Can Theorems [IH3] be improved so that both the domain and the constraint
language are fixed and only the test relation varies? (Such an improvement
of Theorem [B] would complement a result of Kozik for functions [16].)
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Abstract. Today many companies face the challenge of matching highly-
skilled professionals to high-end positions in large organizations and
human deployment agencies. Non-accurate matches in these businesses
can result in significant monetary losses and other negative effects. Un-
like traditional Workforce Management (WM) problems such as shift
scheduling, highly-skilled employees are professionally distinguishable
from each other and hence non-interchangeable. Therefore, the tech-
niques used for shift-scheduling can’t be applied to the highly-skilled WM
domain. Our work focuses on providing a Constraint Programming so-
lution for supporting the assignment of highly-skilled professionals. Our
experience shows that CP is well adapted to this problem. CP supports
very well the underlying constraints. In addition, the rich expressive lan-
guage supported by CP allows us to provide a convenient mechanism for
changing and adding new matching and preference constraints. Based on
this technology, we have built a tool that is currently being used by IBM
service organizations and provides strong business results.

1 Introduction

Today’s economy is witnessing a constantly increasing demand for skilled pro-
fessionals with specialized combinations of expertise, who are essential in ac-
complishing high-end projects. This trend can be observed in most markets and
industries. As a result, many large business organizations, as well as private and
public human placement agencies, face the Workforce Management (WM) Iden-
tification and Assignment (ID&Assign) problem of assigning skilled professionals
to positions with specialized requirements.

The ultimate goal therefore is to rapidly create matches that are accurate,
while maximizing generated revenue. Poor decisions can result in understaffing,
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under-qualification or over-qualification of assigned personnel, and high turnover
of poorly matched workers. While the importance of quality matching is clear,
promptly dealing with pools of hundreds of positions and professionals in a dy-
namic market is a serious challenge. Careful deployment of individuals is essential
for boosting productivity in today’s marketplace.

In spite of its importance, many companies address the WM challenge man-
ually. Resource deployment professionals (RDPs) search for best matches based
on their knowledge and their expertise, and are supported by simple query tools
which provide the ability to search for a professional who is characterized by
some criteria (e.g., search for a C++ developer, from New York). When the
lists of professionals and positions to be matched are larger than a few dozen,
this process results in assignments that are far from optimal and take a long
time to create. Moreover, each RDP is usually responsible for a small number of
positions and professionals and therefore takes into account only local consider-
ations. However, a global view, comprising all positions and professionals in the
pool, is essential for providing good assignments.

Given this complexity, an automated mechanism that produces a more accu-
rate list of matches, and provides recommendations of near-optimal assignments
is essential. However, developing such a system would be quite difficult both
in capturing the correct abstraction level of the workforce model/rules, and in
developing the underlying technology.

We applied constraint programming (CP) to develop a new tool, which suc-
cessfully provides prioritization lists and near-optimal assignments. These results
take into account all resources and positions in the pool, as well as the complex
constraints defining a good match. As its core engine, we use a systematic CP
solver developed in IBM (see [I]). The new tool was successfully piloted in 2005,
and has since been essential in helping resource managers and deployment man-
agers implement better assignments. Today it is widely deployed by IBM’s Global
Business Services (GBS) in all geographies.

A high-level overview of the tool was given in [2], along with many background
references. In [3], we presented some technological advancements including text
analysis and the flexibility feature that adjusts a given assignment when some
of the parameters (e.g., professional pool, position pool or the matching con-
straints) have changed. In this paper, we focus on the advantages of CP as a
supportive technology for a dynamic industry constraint problem. In addition,
we present experimental results, including practical uses, as identified by the
IBM Global Business Services organization (GBS).

Paper organization. In Section 2] we explain why we decided to use CP for this
domain and provide more background information. In Section B] we describe
the WM problem in more detail, and in Section F] we explain how we solve the
problem using CP. In SectionBlwe present our results. This includes experimental
results on real datasets and practical uses as identified by GBS. We conclude in
Section
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2 Why CP

Traditionally, typical WM problems address different variants of shift schedul-
ing. In these problems, there are usually a large number of professionals, roughly
divided into a small number of groups. Each group contains professionals with
similar skills, and is considered to be approximately homogeneous. Professionals
in the same group can be thought of (from the automation point of view) as
indistinguishable and interchangeable. Given this partition to distinct groups,
professionals are scheduled for shifts, where each shift requires a specific com-
bination of personnel. Such WM problems are widely solved using traditional
OR methods (e.g., linear and integer programming, reductions to other OR
problems) or by other methodologies, such as modern meta-heuristics (in partic-
ular tabu search and genetic algorithms) and multi-agent systems. For example,
SWOPS [4], a tool suitable for shift scheduling, is based on integer linear pro-
gramming. Resource capacity planning [5] is a different WM scenario, concerned
with aggregates of professionals rather than individuals. Here planning is per-
formed to estimate future gaps and gluts in the workforce. Here too, the problem
lends itself naturally to mathematical programming methods.

In contrast, the ID&Assign problem we are addressing is at the opposite
extreme: the individual professionals are highly-skilled, each with his or her
own unique combination of competencies, and are highly distinguishable and
non-interchangeable. Additionally, it is essential to find a good match between
professionals and their assigned positions; otherwise we run the risk of an under-
or over-qualified assignment, or understaffing, with the obvious contingent prob-
lems. This WM problem is also inherently different from the usual supply chain
problems in OR. Our entities are people rather than parts; we cannot model them
as pure sets of attributes. Individuals have their own unique skills, behaviors,
interests, and expectations.

This ID&Assign problem has not been addressed before in the literature and
seems to be harder to automate. The traditional OR methods listed above gen-
erally fail on this problem for a number of reasons. First, the constraints, which
depend on the particulars of professionals and positions, are complex and do not
translate easily to linear constraints. This as opposed to the simple constraints,
such as vacation-time and maximum daily work hours, seen in mainstream work-
force scheduling applications. Second, most OR methods rely on optimizing an
objective function. In our case, it is nearly impossible to put a price tag on most
of the variables involved. For example, how can we quantify the cost of a dissat-
isfied customer or a displeased professional resulting from a non-perfect match?
Finally, new rules and constraints arise frequently. To handle them quickly and
efficiently, the desired mechanism should have a rich expressive language that
will easily allow the formulation and maintenance of these constraints. Translat-
ing the problem into a linear model would create a maintenance nightmare as
the model would be very far from the original constraints.

Our tool relies on Constraint Programming (CP) methodology. The expressive
language of CP methodology is rich, natural, and modular, with many types
of constraints, therefore allowing the rapid development and maintenance of
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models. Additionally, the strong algorithmic foundation of CP allows for fast
execution and good optimality. Therefore, it suits the nature of our WM problem
better than traditional OR methods. In the past, there have been a few attempts
to employ CP in solving WM problems, although these cases were scheduling
problems of a more traditional nature (e.g., British Telecom used CP to solve a
real-life problem [6] that was later also solved in [7]. J. Metivier et el. solved the
nurse rostering problem in [§]).

3 Problem Definition

The tool’s main inputs consist of lists of available professionals and open po-
sitions, a set of matching rules, and a set of prioritization rules. These inputs
are dynamic in that the characteristics of the professionals and open positions,
as well as the matching and prioritization rules, are changed on a regular basis.
The problem characteristics can be different between different organizations, and
even between different areas of the same organization. Moreover, the problem
definition may be changed over time by the organization’s administration or by
an RDP exploring different possibilities. For example, the RDP may want to
check for a potential assignment given that the maximal allowed distance be-
tween the professional’s location and the position’s location is within 50 km, and
later check how the assignment differ given a maximal distance of 100 km.

In the following subsections, we describe in more detail the problem’s main
inputs, while concentrating on its dynamic nature.

3.1 Position and Professional Definition

Each professional is characterized by a set of attributes, such as availability
dates, set of skills, and location. In a similar way, each position is characterized
by a set of attributes, including start date and position duration. These sets of
attributes may be different for different problems.

A modeling interface should provide the ability to define these attributes. An
attribute definition includes a name and its type. The type can be a basic type
such as string, integer, and date, or a set of elements all from the same basic
type. For example, the attribute education for a professional may include the list
of courses the professional participated in.

3.2 Matching Rules
The matching rules can be of two types:

— Built-in matching rules — Basic set of matching rules such as availability
rule, location rule, or skill matching rule. These rules are controlled through a
set of parameters. For example, a possible integer parameter for the location
rule is “The maximum distance between the professional’s location and the
job location”. For the skill matching rule, we will find a boolean parameter
such as “Should we consider the professional’s secondary skills?”
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— Specific matching rules— Each matching problem may include specific match-
ing rules. For example, one may want to add a matching rule that considers
years of experience. CP naturally supports this type of matching rule, by sim-
ply adding a new constraint using CP language, such as [9] and [10]. For ex-
ample, consider the experience years matching rule as follow:

(position.exp level = beginner) — (person.exp years < 2) and

(position.exp level = expert) — (person.exp years > 6) and

(position.exp level = professional) — ((person.exp years >= 2) and
(person.exp years <= 6))

Another type of specific matching rules are those that correspond to a par-
ticular position or professional, as shown in the example below.

(position.identification = Al) — (person.degree € {MA, PHD})

3.3 Prioritization Scheme

As stated above, assigning the right professional to the right position requires
careful consideration. While the matching rules represent a threshold that needs
to be passed, the prioritization rules ensure high-quality solutions.

The prioritization mechanism ranks all professionals who match a specific
position, and ranks all positions that match a specific professional. This ranking
is considered later in the CP problem, when searching for the best solution.

The prioritization scheme contains an ordered list of prioritization rules such
as “prefer a professional who lives closer to the position.” The final ranking of
each pair is based on an aggregate calculation of these rules. Since it is nearly
impossible to put a price tag on most of the variables involved, the RDPs define
their desired priority hierarchy by picking an ordered list of relevant priority
rules. Given two possible matches, comparison is done according to the order
defined by the user, i.e., the match that satisfies a higher priority rule wins (i.e,
lexicographic order).

The prioritization scheme is dynamic. In each run, the RDPs may want to
explore different prioritization scheme by exploring different order of the rules,
different parameters for the rules or even adding special rules that are specific
to the current WM problem. A flexible modeling mechanism based on CP con-
structs naturally supports such an environment.

We propose two types of prioritization rules:

— Built-in prioritization rules. For example, “prefer a professional who lives
closer to the position location”.

— User-defined prioritization rules. For this, we expose the underlying opti-
mization language and provide constructs such as “minimize”, “maximize”,
and “order”. A declarative language for the prioritization rules provides the
ability to state expressions such as:
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e minimize|(position.required exp years — person.exp years)| —
prefers a match with a smaller gap between the position’s required years
of experience and the professional’s years of experience.

e match(City) — prefers a position and professional that are located in
the same city.

e order(person.employment status(RG, PT,SC)) —
prefers a regular professional over a part-time professional over a sub-
contractor professional

4 Modeling WM ID and Assign Using CP

There are two major types of WM challenges need to be considered.

— Complete Assignment — construct an explicit near-optimal assignment, at-
tempting to staff as many positions as possible, while enforcing a no-overlap
constraint — the same professional cannot be assigned to positions that over-
lap in time.

— Feasibility solution — Provide a list of feasible professionals for each posi-
tion and a list of feasible positions for each professional. The order of the
professionals/positions in the feasible lists follows the prioritization scheme
and may also consider global considerations such as the number of feasible
matches per each position and per each professional.

In this paper, we present in detail the CP solution for the Assignment problem.
For the Feasibility problem, we use the same modeling as used by the Assignment
problem. However, in the Feasibility problem, the solver stops after it reaches
the first arc-consistency state (For more information, see [I1])

4.1 The no-overlap Requirement

Our goal is to maximize the number of positions assigned, while maintaining
the best fit of professionals to their assigned positions. The basic constraint we
wish to enforce is that while the same professional can be assigned to multiple
positions, these positions cannot have overlapping execution times.

We model each position by a variable whose initial domain is the entire set
of professionals. As part of the first arc-consistency the domain is reduced to
include only the professionals who are qualified to perform it and are available
throughout its duration. Suppose every pair of positions overlapped in their ex-
ecution time. In that case, we could define a single alldifferent constraint over
all variables, thereby guaranteeing that no person is assigned to two positions.
Since, in general, not all positions overlap (for example, position A may end
in June, while position B starts in August), we employ the somedifferent con-
straint [12] instead. The somedifferent constraint is a natural generalization of
alldifferent that answers our needs. It is defined over a subset of the variables,
together with an underlying graph whose vertices are the participating variables.
The constraint requires that variables that are adjacent in the graph are assigned
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different values. (Note that the alldifferent constraint is the special case obtained
when the underlying graph is complete.) Formulated mathematically,

somedifferents(v1, ..., vg) =
{(a1,...,ax) : a; € D;, (v;,v;) € E(G) — a; # a;},

where E(G) is the set of edges of the graph G, and D, the domain of variable
v;. We note that defining a single constraint, rather than a separate constraint
for each pair of conflicting variables, guarantees better pruning during propaga-
tion. The only concern with somedifferent is that its propagation is an NP-hard
problem (since, e.g., it generalizes coloring problems), and therefore it is not
likely that an efficient (polynomial) propagator exists. However, there exists a
non-trivial propagator (see [12]), which together with a few heuristics, works
well in practice. Still, defining this constraint over a large set of variables is not
recommended.

4.2 The CSP Model

Variables and domains. Each position is modeled by a variable whose initial
domain is the entire set of professionals. As part of the first arc-consistency,
the domain is reduced to include only the professionals who are qualified to
perform it and are available throughout its duration. We define a single fictitious
value which we add to all domains. We treat this value specially: although we
admit it as viable in the instantiation phases, we ignore it in the propagation
phases, in effect allowing it to be assigned to overlapping positions. The reason
we introduce this fictitious value is because it is quite likely we will not be able
to staff all positions due to insufficient professionals. Ordinarily, in such cases
we would simply get an indication that the problem is unsatisfiable. By adding
the fictitious value, we can guarantee solvability, and by using value ordering,
we can direct the solver to prefer real professionals over the fictitious one. Of
course, once we obtain a solution, we remove the fictitious value and reject all
positions to which it has been assigned.

Hard constraints. The hard constraints should guarantee that the assigned
professionals match the positions, and that no professional is assigned to two
positions that overlap in time.

We guarantee that the professionals match the positions by adding all the
matching rules to the CP model.

The no-overlap requirement can be accomplished by using a single somedif-
ferent constraint whose underlying graph contains an edge between every two
overlapping positions. However, because the propagator for somedifferent cannot
be efficient (i.e., cannot run in worst-case polynomial time), we use the following
partitioning heuristic, which results in several somedifferent constraints, each
applying to a small underlying graph.

— Edges in the full somedifferent graph connecting pairs of variables with dis-
joint domains are obviously redundant. We delete them. We then partition
the resultant graph into its connected components.
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— We partition each connected component into clusters of size ¢ (a user-defined
threshold set by default to 10). If the size of the connected component is
not divisible by ¢, one of the clusters will be smaller than t. We apply a
somedifferent constraint to each cluster.

— We further add an approximate somedifferent constraint over each connected
component that is larger than ¢. The approximate constraint has the same
semantics as the ordinary one, but is associated with an efficient (polynomial)
propagator (see [12]). The drawback is that this propagator may not filter
all unsupported domain values.

When using an approximate some-different propagator, we risk creating subop-
timal staffing: the approximate propagator may result in sub-optimal pruning of
the search tree at the arc-consistency stage, possibly leading to collisions on the
same position, which may have been avoided had the propagation been exact. In
practice, our analysis shows that the suggested heuristic described above works
well and achieves a considerable speedup compared with both a single somedif-
ferent constraint and a single approximate somedifferent constraint, applied to
all variables.

Value ordering. We apply two types of value ordering. First, we prefer the
assignment of real versus fictitious persons. Second, we apply user preferences,
which are typically hard to quantify. We use the preference scheme as defined in
Section [3.3] to sort all the professionals who match a position. For each match,
we attach a match-quality object. The match-quality objects contain a match
quality indicator for each preference rule (e.g., the indicator for the location
preference rule describes the distance between the professional location and the
position location). Then we sort all the match quality objects that corresponds to
a specific position. The sort order follows the lexicographic order of the preference
rules as defined in the preference scheme. Finally, we choose the professionals
whose attached match-quality is located in the highest rank.

Support dynamic model. As stated in Section [3] the matching rules and the
prioritization scheme are changed frequently. They may vary between different
organizations and between different runs of the same organization.

CP naturally supports this type of problem through declarative constraint
language such as MiniZinc [9] and the Optimization Programming Language
(OPL [I0]). The constraint language provides a natural way for defining the
matching rules. Optimization constructs such as minimize and maximize provide
the additional layer for supporting the prioritization rules.

To support such a dynamic model, we expose the corresponding part of the
underlying CP language to the user. The built-in matching constraints are up-
dated by setting their corresponding parameters, and both the built-in matching
constraints and the user-defined matching constraints are added to the problem.

The preference rules define the value ordering of each position variable. The
value ordering is based on the match-quality objects as have been described in
the ‘value ordering’ subsection. Each match-quality objects include an indicator
for each built-in preference rule and for each user defined preference rule.
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5 Experiments and Practical Usage Discussion

The methods we described were integrated in IBM workforce management tool,
and provide new capabilities beyond traditional database queries (e.g., search for
all professionals with band 8). The solutions for the Feasibility problem help both
the RDPs and the professionals to identify potential matches, and the solutions
for the Assignment problem are mainly used for capacity planning.

In this section, we first present an analysis of the Assignment mode, including
running time and quality analysis. We then present in more detail the practical
usage scenarios of both the Feasibility problem and the Assignment problem.

5.1 Analysis of Experiments

We experimented with two real datasets from GBS. These were run on an In-
tel(R) Xeon(TM) 2.4 GHz machine with 2.5 GB of RAM. The tests, described
in detail in Table 1, included hundreds of available positions and thousands of
professionals. The last column presents the maximum number of positions that
are active on any given date. This provides some indication of the difficulty of
the assignment problem.

Table 1. Experiments: Details of the experimental datasets

Input Input description Number Number Max over-
of posi- of people lapping
tions positions

AP  Professionals and project 464 6232 351

positions in the Asia Pacific
region (i.e, China and other
countries in Southeast Asia)
USAMS Professionals and project 622 4882 195
positions targeted for the US
Application =~ Management
Services organization

Table 2] shows the results of generating the feasibility solutions on the two
datasets. The table presents the number of positions that one or more profes-
sionals match, and the maximum and the average (avg) number of professionals
that match a position. The same type of data is also presented for profession-
als. The last column presents the number of different priorities each position
has (e.g., two professionals that match the same position may have equal match
quality, or may have different priorities and therefore we would prefer one of
them over the other). The number of priorities for each position demonstrates
how well the priority rules used differentiate between the candidates. The re-
sults show that the number of priorities was close to the number of matching
candidates.
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Table 2. Results of the prioritization mode experiments

Input Time Num of Num of Positions People per Priorities
(sec) positions people per person position per position
matched matched (max/avg) (max/avg) (max/avg)
AP 21 351 862 20 / 0.46 77/ 8.13 58 / 8.71
USAMS 20 202 101 26 / 0.10 16 / 0.91 11 / 2.59

Table 3. Results of the assignment mode experiments

Input Time Number Percent Assignment
(sec) of assign- assigned priority
ments (max/avg)
AP 80 300 85% 19 / 2.69
USAMS 115 88 44% 7/ 177
105
100 F ey
95 | —
90
2
=3 85 | /
K 80 ’/’
g 75 |
2 T *
<C |
65 | |
60 |
55| |
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Fig. 1. Distribution of the assignment priorities

Finally, Table B] shows the results of the assignment mode run. The average
priority of an assignment provide an indication of the quality of the assignment.
In Figure[I] the distribution of the priorities is shown in more depth. The figure
shows that most positions are assigned their preferred first or second priority
professionals.
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5.2 Prioritization Mode Practical Usages

IBM’s Global Business Services (GBS) unit provides project-based professional
services to its customers through its workforce of over 100,000 consultants and
specialists worldwide. Assigning the correct mix of specific skills and expertise
levels is critical to the success of projects, both from the point of view of meeting
customer needs and from that of meeting IBM’s profit objectives.

GBS has been applying the new technology to address the problem of match-
ing professionals to project requirements. Analysis of the data required for both
professionals and positions as well as developing the right set of matching and
prioritization rules were done in conjunction with GBS Business leaders to define
possible ways of meeting project scheduling requirements, professional availabil-
ity, skills requirements, as well as to give higher priority to matches that will
result in improved profit performance.

Project managers and resource deployment professionals already have at their
disposal a number of search tools they can use to find professionals to fill project
positions. Similarly, professionals can search for projects that match their qualifi-
cations. However, the number of matches returned by a search can be daunting.
The new technology can find a more manageable set of high-quality matches
based on a relatively large number of pre-defined requirements.

The data available for the matching and the set of matching and prioritization
rules are key to generating good assignment suggestions. IBM has developed
databases and processes to support a collection of rich and high-quality data
about the professionals and positions. On top of this data, we developed the
corresponding matching and prioritization rules. The data for each professional
includes a set of qualifications, location, a list of languages the professional is
familiar with and at which level, the professional’s preference in terms of work
location (e.g., overseas positions), availability start-date and availability indi-
cators (e.g., a professional who reports less than 10 working hours a week can
be considered as available), and more. The data for each position includes the
position’s start and end dates, the required skill, the job location, whether the
position can be done remotely, which languages are required and at what level,
and more.

Matching skills is a key rule. IBM has developed a corporate skills taxonomy
with several thousand sets of skills that may be required by a position. A pro-
fessional is assigned a primary skill plus a set of secondary skills, and a set of
inferred skills. The last one is created automatically by analyzing the professional
data. (For example, the system may infer that a C++ developer is also qualified
for C coding). In simple skill searches, a professional may only be considered a
candidate for a position if his/her primary skill is the same as the skill requested
for the position. Our method allows the skill to be matched based on multiple
methods, including the secondary skills, the inferred skills, or by comparing the
degree of match between the textual description of a position requirements and
a professional’s resume. Thus, the new technology can often find positions that
were not considered in simpler skill searches.
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In addition, the tool allows for the specification of rules to match on multiple
languages required by the position, professional travel preferences, whether the
work can be done remotely or whether the customer will pay for travel, whether
the professional meets citizenship and security clearance requirements, and more.
This helps reduce the search to a reasonably small number of matches that can
then be more easily examined by RDPs or the interested professionals.

GBS has been employing the new technology in two scenarios: 1) Supporting
Project Managers and Resource Deployment Professionals in their daily activ-
ity of fulfilling project requirements or finding work for professionals with time
available to work on new projects, and 2) Supporting professionals in their search
for projects suitable to their skills.

In the first scenario, a daily report is published for each GBS geographic or-
ganization listing all project positions and a small number of feasible candidates
for each position. Project managers can then choose to further investigate a pro-
fessional’s qualifications and propose them for a project. Since finding the right
professional for each project position is essential to the success of the project,
personal interviews of a small group of candidates is the norm before making a
final assignment. Similarly, a report is generated listing professionals that each
RDP is responsible for, along with matching positions for each one of them.
RDPs can then work with these professionals, propose suitable positions, and
work to help them make it to the short list for personal interviews.

In the second scenario, the objective was to provide actionable information to
the people that have the strongest motivation for finding a project position, i.e.,
professionals that have completed or will soon complete their involvement in a
project and are thus in need of finding a new project assignment. The matching
results of the new technology are used to create a tailored set of suitable project
positions for these professionals. This list is sent directly to the professionals
via email on a weekly basis. If they are interested, the professionals can then
obtain more information about these suitable positions and contact their RDPs
or market themselves to the positions’ project managers, thus giving them more
control of their own future.

5.3 Assignment Mode Practical Usages

One may ask why we do not simply provide the optimal set of assignments,
but rather provide a number of feasible matches. When we built the initial
tool version, we focused on the assignment problem, thinking that the users
of the tool would obviously want an assignment that maximized the number
of assigned positions, while maintaining high quality matches. However, during
early testing of the tool, early users of the tool reported dissatisfaction with
proposed assignments. Although the assignments generated by the tool adhered
to the mandatory matching rules and prioritization schemes, the RDPs often
had additional information about the open seats or the professionals they would
use to invalidate a proposed match or suggest what they believed to be better
match. For example, the RDP may know that the proposed candidate does not
get along with the project manager of the project corresponding to the open seat.
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An RDP may want to assign a different professional to an open seat because the
RDP believes the assignment would be a good job-growth exercise for that other
professional. The RDPs felt that the optimized assignment was too rigid for
them. They could easily poke holes in the assignment using their information
and objectives. We recognized that in this space of workforce management, the
new decision support tool we developed needed to be more flexible and so we
created the feasibility mode as an alternative method of producing assignments.

Still, there is an important practical scenario which makes full use of the as-
signment problem. Resource managers and deployment managers are very con-
cerned about overdue open seats, that is, open seat positions that should have
already started work but are unfilled, and open seats that are due to start in
the near-future, for example, the next thirty days. For open seats beyond thirty
days, the managers usually have enough time to consider other sources of sup-
ply, such as contractors, or they can upskill or train an existing professional to
perform the work. Typically for overdue open seats and open seats due to start
in the next month or so, contracts have been signed or the work has been com-
mitted to, so the professional and deployment managers must try to fill those
open seats. To help them determine where they will have problems filling these
open seats, we run the new technology in the assignment mode. We consider the
open seats that are overdue and those that are due to start in the next thirty
days. We consider the professionals that are currently available and those profes-
sionals that will become available in the next thirty days. After running the tool
in the assignment mode, we then report the open seats that were not matched
in the assignment, the missed assignments. The missed assignment report gives
the resource and deployment managers a good idea of how many assignments
they will be able to fill and which assignments will be troublesome to fill in the
near-future.

6 Concluding Remarks

We described a CP approach to the ID&Assign problem of highly-skilled pro-
fessionals. CP has many advantages over traditional OR methods in solving this
problem, most notably its separation between problem modeling and algorithmic
foundations, which enables easy modeling of complex rules, and rapid adjust-
ment to newly created constraints. The tool we developed demonstrates the
applicability of CP to the problem, and shows that large industrial-scale prob-
lems can be solved with near-optimal results and with real-time performance.
It is aimed at automating the tedious and repetitive tasks performed manu-
ally by resource deployment managers, while allowing them to concentrate on
real decision-making. As such, our main direction of current development is in
modeling and solving complex CSPs that arise when building coherent teams of
professionals for assignment to large projects.

Acknowledgments. We would like to thanks Steve Heise, Crystal Howell, and
Will Riddle from GBS for their contribution in applying the technology in a
business environment.
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Abstract. In this paper we consider the problem of computing the den-
sity of states of a Boolean formula in CNF, a generalization of both
MAX-SAT and model counting. Given a Boolean formula F, its den-
sity of states counts the number of configurations that violate exactly
FE clauses, for all values of E. We propose a novel Markov Chain Monte
Carlo algorithm based on flat histogram methods that, despite the hard-
ness of the problem, converges quickly to a very accurate solution. Using
this method, we show the first known results on the density of states
of several widely used formulas and we provide novel insights about the
behavior of random 3-SAT formulas around the phase transition.

1 Introduction

Boolean satisfiability (SAT) solvers have been successfully applied to a wide
range of problems, ranging from automated planning to hardware and software
verification. In all these applications, the original problem is encoded into a
Boolean formula and the task is that of deciding whether it is satisfiable or not.

Given the tremendous success of SAT solvers, a lot of attention has been di-
rected toward extending this technology to the model counting problem ([T1213]),
that is the problem of computing the number of distinct satisfying assignments
for a given propositional formula. This task is also very important because of its
wide range of applications. For example, several probabilistic inference problems
in graphical models such as Bayesian inference can be effectively translated into
model counting ([5]). Moreover, when a SAT encoding is used to solve hard
combinatorial problems arising in other domains, knowledge of the number of
solutions can usually provide useful insights into the original problem.

Another very active line of research is devoted to the study of the optimization
version of SAT, namely the maximum satisfiability problem (MAX-SAT). In
MAX-SAT the goal is to find a truth assignment that satisfies the maximum
possible number of clauses of a given Boolean formula in conjunctive normal form
(CNF). This problem is important because many fundamental graph theoretic
problem such as MAX-CUT, MAX-CLIQUE, Minimum Vertex Cover have linear
time encodings as MAX-SAT. Moreover MAX-SAT has direct applications in a
wide range of domains such as routing problems and expert-systems (see e.g. [6])

In this paper we consider the problem of computing the density of states of a
Boolean formula in CNF, which is a generalization of both MAX-SAT and model
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counting. The density of states (DOS) counts the number of truth assignments or
configurations that violate exactly E clauses, for all values of E. In other words,
the problem is to compute the number n(FE) of configurations that leave exactly
E clauses unsatisfied, for all possible values of E. The density of states is a very
detailed characterization of the configuration space associated to a formula. In
particular, n(0) is the number of satisfying assignments or models of the formula.
The lowest value of E with a non-zero density (i.e. ming{E|n(E) > 0}) is the
solution of the corresponding MAX-SAT problem.

Given that computing n(0) is equivalent to model counting, the problem of
computing the entire density of states is at least as hard as model counting and
therefore it is # P-hard.

The name density of states is borrowed from statistical and condensed matter
physics, where the density of states (DOS) of a system describes the number of
states at each energy level that are available to be occupied. For SAT instances,
we simply define the energy E(o) of a configuration o to be the number of
clauses that are not satisfied by o. In physics the density of states represents a
deep characterization of the system, that is used to investigate various physical
properties of matter and to explain a number of quantum mechanical phenom-
ena. Analogously, in SAT the density of states gives a fine characterization of
the search space which can provide further insights into the development of new
algorithms.

We propose MCMC-FlatSat, a novel Markov Chain Monte Carlo sampling
technique to estimate the DOS for Boolean formulas, that is inspired by re-
cent methods introduced to estimate the DOS for statistical physics models [7].
Our technique outperforms standard Metropolis sampling by overcoming the the
often impractical mixing times. Moreover our method is especially suitable to
deal with rough energy landscapes with multiple local minima in the free energy
that are typical of combinatorial problems.

We empirically demonstrate that MCMC-FlatSat converges quickly to a very
accurate solution. Using this new method, we obtain novel insights about the
behavior of random 3-SAT formulas around the phase transition. Moreover, we
are able to show the first known results on the shape of the density of states
for several widely used formulas from the SATLib benchmark. Our results are
very promising and we expect that this new approach will find many other
applications both to counting and inference problems.

2 Density of States: Problem Definition

In this paper we consider the problem of computing the density of states of a
given Boolean formula F' in conjunctive normal form (CNF). A clause C is a
logical disjunction of a set of (possibly negated) variables. A formula F' is said
to be in CNF form if it is a logical conjunction of a set of clauses C.

We define V' to be the set of propositional variables in the formula, where
|V| = n. A variable assignment o : V' — {0, 1} is a function that assigns a value
in {0, 1} to each variable in V. As usual, the value 0 is interpreted as FALSE and
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the value 1 as TRUE. A variable assignment ¢ will also be interchangeably called
a configuration, a term that refers to an element of {0,1}", a set isomorphic to
the set of all possible variable assignments.

Let F be a formula in CNF over the set V' of variables with m = |C| clauses
and let o be a variable assignment. We say that o satisfies a clause C' if at least
one signed variable of C' is TRUE. We define the energy of a configuration E(o)
to be the number of clauses that are unsatisfied when F' is evaluated under o.
If E(o) =0, then o satisfies F' and o is called a model, solution, a ground state
or satisfying assignment for F.

Given a Boolean formula F, the density of states (DOS) n(-) is the function
n:[0,...,m] — N that maps energy levels to the number of configurations with
that energy level:

E v |{oc €{0,1}"|E(c) = E}|.

It is clear from the definition that the DOS of any formula F' satisfies the nor-
malization constraint Y p_, n(E) = 2.

3 Prior Work

Despite the rich literature devoted to the study of model counting and MAX-
SAT, there is little prior work on the more general problem of the computation
of the density of states.

In [8] the authors propose sampling uniformly at random N configurations
01,...,0n and then estimating the DOS with an energy histogram h(E) based on
the samples. This approach is clearly unpractical because it requires an enormous
number of samples to get an accurate description of the DOS. In particular, any
attempt to sample at least a constant fraction of the whole configuration space
is doomed to have exponential complexity.

A more sophisticated sampling scheme is proposed in [9]. The authors pro-

pose the use of a Monte Carlo simulation with standard Metropolis transition
E;—E;
probabilities between configurations o; and o; given by p;—.; = min{l,e ! 1,

where Ej; is the number of unsatisfied clauses by o; and T is a temperature
parameter. Upon convergence, it is well known that the steady state distribu-
tion P(i) is Boltzmann distributed with the correct energy function E(-) (that
measures the number of unsatisfied clauses). The density of states can then be
obtained from the canonical ensemble rule n(E) = P(E)e™ 7. It is well known
that the Metropolis algorithm can have very slow mixing times, especially when
dealing with rough energy landscapes with multiple local minima in the free
energy ([710]). Unfortunately combinatorial energy landscapes, such as the one
corresponding to the energy used here, are known to have many free energy min-
ima and a similar problem of long tunneling times between local minima arises.
These reasons intuitively explain why the use of the Metropolis algorithm is un-
practical to deal with Boolean formulas. In the experiments we conducted, we
observed convergence only on very small instances and only for certain temper-
ature ranges.
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4 A Novel Sampling Strategy: The Flat Histogram
Method

We propose a Markov Chain Monte Carlo method to compute the density of
states based on the flat histogram idea that is inspired by recent work devel-
oped by the statistical physics community [7] to avoid Metropolis sampling. The
central idea of this method is that if we perform a random walk in the configu-
ration space {0,1}" such that the probability of visiting a given energy level E
is inversely proportional to the density of states n(E), then a flat histogram is
generated for the energy distribution of the states visited. Suppose we define a
random walk with the following transition probability

Poser = min {1, :((5,)) } (1)

of going from a configuration o with energy E to a configuration ¢’ with energy
E’. The detailed balance equation

P(o)pp—p = P(0')pp—&

is satisfied when P(o) o< 1/n(F). This leads to a flat histogram of the energies
of the states visited because P(E) =} . p(,—p P’(0) = const.

Since the density of states is unknown a priori, and computing it is precisely
the goal of the algorithm, it is not possible to construct a random walk with
transition probability (). However it is possible to start from an initial guess of
the DOS and keep changing the current estimate g(FE) in a systematic way to
produce a flat energy histogram and simultaneously make the density of states
converge to the true value n(E).

MCMC-FLATSAT(¢)

1 Start with g(E) =1 for all E
2 Start with a modification factor F' = Fy
3 repeat
4 repeat
5 Generate a new state and accept with prob. given by eq. (1)
6 Adjust g(E) : g(E) =g(E) x F
7 Increase visit histogram H(E) «+ H(E) +1
8 until until H is flat
9 Reduce F
10 Reset the visit histogram H

11 until F' is close enough to 1
12 Normalize g
13 return g

To generate a new configuration we randomly flip a variable with uniform
probability, but other strategies are possible as well. The modification factor F’
plays a critical role because it controls the tradeoff between the convergence rate
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of the algorithm and its accuracy. Large initial values of F' imply a substantial
diffusion rate and therefore fast convergence to a rather inaccurate solution. This
rough initial estimate is subsequently refined as the value of F' decreases until
F =~ 1, at which point when a flat histogram is produced ¢g(F) has converged to
the true density n(E).

Due to statistical fluctuations, a perfectly flat histogram occurs with an ex-
tremely low probability. Therefore in our implementation we use a flatness pa-
rameter; in our experiments it is set so that an histogram is considered flat when
all the values are between 90% and 100% of the maximum value. The value of
F is reduced according to the schedule F «— /F, with an initial value Fy = 1.5;
the impact of the schedule on the convergence rate is an open research question.
By construction the DOS is obtained only up to constant factors: the normal-
ization of g ensures that ), g(E) = 2", where n is the number of variables in
the formula.

5 Effectiveness and Validation of MCMC-FlatSat

The goal of this section is to verify the convergence of MCMC-FlatSat and to
empirically evaluate the accuracy of the solution obtained. To accomplish these
results, we first empirically check the accuracy of the results obtained for small
structured formulas, for which we can compute the true density by exact enumer-
ation of the entire (exponentially large) state space. We also test MCMC-FlatSat
on larger synthetic formulas for which we derive an analytical expression for the
true density of states, as well as on random 3-SAT formulas. For larger struc-
tured instances, for which no known method can be used to compute the true
DOS, we make use of partial consistency checks to validate the results.

When the true DOS is known, we employ two metrics to evaluate the accu-
racy of the results: the relative error for each data point and a global measure
represented by the Kullback-Leibler divergence between the true and the esti-
mated densities. The Kullback-Leibler divergence between the true density n(-)
and the estimated one g(-) is defined as:

m

Dir(nllg) =Y n(ZE) log (SEQ)

E=0

where Z = 2" is used to normalize the DOS to probability distributions. In fact,
the KL divergence is a standard information theoretic non-symmetric measure
of the difference between two probability distributions P and @. In information
theoretic terms, the KL divergence measures the expected number of extra bits
required to code samples from P when using a code based on @, rather than
using a code based on P.

5.1 Structured Problems: Exact Counts

In figure [[I we compare the true and estimated log-densities for several small
instances (all with less than 28 variables) from the MAXSAT-2007 competition
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Fig. 1. The density of states of a Boolean formula counts the number of configurations
that violate exactly FE clauses, for all values of E. We present a comparison of the
estimated density (g(F)) and the exact one (n(E)) computed by explicit enumeration
for several small instances from the MaxSAT-2007 benchmark. Figures [L(a)il(b)| are
relative to the Ramsey Theorem instance ram k3 n8.ra0.cnf (28 variables, 126 clauses).
Figures [1(c)l1(d)| are relative to the Spin Glass instance t3pm3-5555.spn.cnf (27 vari-
ables, 162 clauses, unsat). Figures[1(e)lfL (f)|are relative to the Clique instance johnson8-
2-4.clg.cnf (28 variables, 420 clauses, unsat). A comparison in terms of Kullback-Leibler

divergence is presented in table ().
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Table 1. Comparison with exact enumerator. Kullback-Leibler divergence between the
true density of states and the estimated one.

Instance variables clauses KL-divergence D, (nl||g)
ram k3 n7.ra0.cnf 21 70 0.00003956
ram k3 n8.ra0.cnf 28 126 0.0000119634
johnson8-2-4.clq.cnf 28 420 0.0000458743
t3pm3-5555.spn.cnf 27 162 0.0000130045
Synth. formula (3]) 50 100 0.0000118838
Synth. formula (@) 200 750 0.000000125958

benchmark. The true density is computed by exact enumeration. We chose in-
stances that are encodings of three different class of problems (Ramsey Theorem,
Spin Glass, Max Clique) and we plotted log-densities because of the large range
of values involved.

Although by the effect of the logarithmic scale the two densities in the plots are
overlapping to the eye and therefore are not distinguishable, the corresponding
relative error plots show that there is small error, that is never greater than 5%.
The impressive degree of accuracy obtained is confirmed by the Kullback-Leibler
divergences presented in table [Tl

We also notice that even though the shape of the DOS is a distinctive char-
acteristic of the original problem class, in all cases the distribution concentrates
almost all the probability weight on a small energy range.

5.2 Synthetic Formulas: Exact Analytic Counts

The simplest analytical results can be obtained for a k-SAT formula with m
clauses such that each variable appears in exactly one clause (so there are n = km
variables). In this case the density of states is

o) = ()pra-pr -t~ (1) (;)E (1- 21k)mE2" @

where p = 1/2" is the probability that a clause is unsatisfied by an assignment
chosen uniformly at random.

A more interesting class of instances with a closed form solution can be con-
structed in the following way:

1 N\ T2 /\($1 \/$2) /\(.Tl \/$2) /\.T3/\$4/\(.T3 \/$4) A ($3 \/.T4) N... (3)
ANxp_1 Nxp N\ (.Z‘g_l vV $[) A ($g_1 V .Z‘g)
Each subformula of the form z1 A zo A (21 V x2) A (21 V 22) has a density of

satisfied clauses that is uniform in the interval [1,4]. Using the fact that the
probability that the sum of n s-sided dices is k can be written as

k—n
1LSJ

Iy (—W(’j) ("C;Sjl‘l) .

Fls,n, k] =
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We therefore have that the number of configurations satisfying k clauses of a
formula constructed as in equation @) is F'[4, g,k}Qz and from that the density
of states is

n(E) = F[4, ﬁ,% — E)2° (4)

More generally, consider a (small) formula ¢ for which we know the density of
states ng(E). We can construct a larger formula F' by taking the conjunction of
{ copies of ¢, each one involving a different set of variables x1, ..., zy:

F(x1,...,m0) = ¢(x1) A dp(aa) A... Ao(z).

Given the independence assumption implied by the fact that by construction
the subformulas do not share variables, the DOS np(-) of the larger formula F
can be obtained in closed form using a multinomial distribution. Moreover, by
noticing that the subformulas in F' do not share variables, it is easy to see that
np(E) can be computed as a multiple convolution of ng(-):

np(E) = (ng*...xng)(E), (5)

where * is the convolution operator. This result is analogous to the fact that
the probability density function (PDF) of the sum of independent random vari-
ables is equal to the convolution of the PDF's of the addends (concentrating the
measure on the mean).

In particular, let P,(z) be the standard CNF encoding of a Pigeon Hole
problem with n holes and n + 1 pigeons, with n + 1 clauses which say that a
pigeon has to be placed in some hole and a set of clauses ensuring that only one
single pigeon is placed into each hole. This encoding leads to n(n + 1) variables
and to (n + 1) + n(n(n + 1)/2) clauses. Now we consider the following CNF
formula:

Pixy,...,x0) = Py(z1) A Polx2) A ... A Po(xg) (6)

where z; Nz; = () whenever i # j. Using (@), the DOS of formula (@) can be
obtained as the convolution of the DOS of a single P, () with itself £ — 1 times.

We test the effectiveness of MCMC-FlatSat on large synthetic instances, for
which exact enumeration would not be possible, by comparing the estimated
DOS with the analytical results we just derived. In figure and we com-
pare the results of MCMC-FlatSat on a formula constructed as in equation (3)
with the theoretical density of states given by (). In the experiment presented
in figure and we evaluate the DOS of a single Py(x) by explicit enu-
meration, and then we compute the exact DOS of Pj%(z1,...,x10) by carrying
over the convolutions. This is compared with the approximate result given by
MCMC-FlatSat when used directly on the large formula (). Even in this case,
the log-densities in the plots are overlapping and therefore are not distinguish-
able to the eye, and the corresponding relative error is never greater than 3%,
as confirmed by the small Kullback-Leibler divergences reported in table [Il
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Fig. 2. Comparison of the estimated DOS and the exact analytical results obtained in
section In figure and we used a formula constructed as in equation (6]
with n = 4, £ = 10, resulting in 200 variables, 750 clauses. In figure and we
used a formula constructed as in equation ([B]) with 50 variables and 100 clauses.

5.3 Random Formulas

In this section we present a detailed study of the behavior of the DOS for random
3-SAT formulas as a function of the ratio clauses to variables a. In particular, we
compute the average DOS over 1000 random instances for each value of « in the
range considered. By studying the behavior of g(0) (the number of estimated
models) in figure and we recover the well known phase transition
between the SAT and UNSAT phase, occurring at the critical ratio a. = 4.27.
Notice that we have E[g(0)] > 0 for a > a. because even if it is true that in that
region most of the formulas are not satisfiable, the ones that are contributing to
the average with large numbers of solutions (see [I1]).

We discovered a similar phase transition behavior for g(i), ¢ > 0 as reported
in figures and To the best of our knowledge, this is the first time
these phase transition phenomena have been discovered experimentally. Notice
however that the average DOS (E[g(i)]) for random k-SAT formulas can be
obtained using equation (). This is because given a truth assignment o, the
probability of having a clause that is violated by ¢ is 1/2* when the k-SAT
formula is chosen uniformly at random. The comparison with the analytic result
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Fig. 3. Average DOS and fraction of instances that have g(i) > 0 for random 3-SAT
formulas as functions of the ratio clauses to variables «. The number of variables is
n = 50 (see pdf for color version of figures).

@) in figure confirms the good accuracy of the DOS estimation algorithm.
Moreover, by using a Markov bound P[g(i) > 0] < E[g(¢)] we can get upper
bounds on the phase transition thresholds we see in ﬁgure For instance, we
obtain that P[g(¢) > 0] < 0.001 for « greater than 6.22,6.80,7.30 for i =0, 1,2
respectively. Interestingly, using the same Markov bound one can also show that
Plg(i) > 0] — 0 for a >logg /72 =5.19... for n — oo and i € o(n/log(n)).
With the density of states we can use canonical average formulas to cal-
culate exactly macroscopic properties such as the log-partition function Z(T')

at temperature T, defined as Z(T') = log (ZE g(E)e_il“E). This property is of
considerable theoretical and practical interest because its zero temperature limit
limy_,o Z(T') counts the number of models. Several analytical and algorithmic

attempts ([T2/T3]) have been made to estimate its value in the low tempera-
ture range. Our findings reported in ﬁgure suggest that small but non-zero
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Fig. 4. Log partition function and runtime for random 3-SAT formulas as functions
of the ratio clauses to variables and temperature. Notice that the value of Z(0) corre-
sponds to the model count given by g(0) in figure

temperature approximations of Z(T') can indeed provide accurate information
on the number of models for random 3-SAT formulas.

Of practical interest is also the study of the running time of the algorithm
presented in figure We find an increased complexity as we approach the
critical threshold «. that is typical of local search methods. However, given the
peculiar nature of this local search method, we can study its behavior even for
a > .. In that range, the runtime increases with a smaller slope, that we
believe is caused by the additional effort required to estimate an histogram with
an increasing number of energy levels.

5.4 Large Structured Instances

In this section we present the results obtained on large structured formulas
for which the exact DOS is unknown and direct enumeration is not feasible.
Given that we are not aware of any complete solver that is able to compute
the exact DOS, we need to resort to partial consistency checks to assess the
accuracy of MCMC-FlatSat. In particular, when it is possible, one can compare
9(0) with the exact model count given by a complete solver such as Cachet ([14]).
A further consistency check can be obtained by looking at the moments of the
DOS. Intuitively, the moments represent a quantitative measure of the shape of
a set of points and therefore they can be used to check that the probability mass
is concentrated in the right regions. The k-th order moment is defined as

_ 9(E)
M(k) = ZE:E’“ e

where Z = 2" is again used to normalize to a probability distribution. For ex-
ample, M (1) is the average number of violated clauses by a random assignment.
This value is compared with the sample k-th moment
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Table 2. Comparison of the moments. Sample moments estimated with £ = 10° uni-
formly sampled truth assignments. Exact model counting is done with Cachet.

Instance var clauses g(0) # models Ms(1) M(1) Ms(2) M(2)
brock400 2.clq.cnf 40 1188 0 297.014 297.024 88365.9 88372.3

0
spinglass5 10.pm3.cnf 125 750 0 0 187.498 187.492 35249.2 35247
MANN a27.clg.cnf 42 1690 0 0 422.49 422.483 178709 178703
bw large.a.cnf 459 4675 1 1 995.298 995.322 996349 996634
holelO.cnf 110 561 0 0 137.482 137.562 19621.7 19643.8
sw100-1.cnf 500 3100 8.04 x 10%7 753.072 753.06 571718 571863

where X1, Xo, ..., X; are samples drawn uniformly from all possible assignments.
Given that the space of all possible assignments is exponentially large, the sam-
ples X1, Xo, ..., Xy will be representative only of high probability regions of that
space. While this is precisely the reason why the method of uniform sampling
cannot be used to estimate an entire DOS, it can still be used to check that the
probability mass is concentrated in the right regions.

In figure Bl we present the estimated DOS for several instances from the
MaxSAT-2009 benchmark and SATLib ([I5]). These kind of results are, to the
best of our knowledge, novel. Even though we cannot provide a formal guarantee
that our results are accurate, the experimental validation in the previous sections
suggests that they should be accurate. Moreover we have a perfect correspondence
both with Model Counters and in terms of sample k-th moments, as confirmed by
the results presented in table 2l In all these instances, we see that the shape of
the DOS appears to be a characteristic property of the class of problems that was
translated into SAT, and that the probability weight is again concentrated in a
small energy range. We believe this type of information can be used to improve
local search strategies targeted to a particular class of encodings.

5.5 Model Counting

Even if computing the DOS is a more general and more difficult problem than
model counting, comparing MCMC-FlatSat with model counters still provides
some useful insights. In particular, we can show that when the number of clauses
in the formula is not too big, that is the overhead derived from computing the
entire DOS is not overwhelming, MCMC-FlatSat competes against state of the art
model counters, both in terms of accuracy and running times. We compared the
performance of MCMC-FlatSat with two approximate model counters: Sample-
Count ([2]) and SampleMiniSATExact ([I]). The instances used are taken from
the benchmark used in [II2]. The results in table Bl show that MCMC-FlatSat
generally achieves a greater accuracy, even though it does not provide any guar-
antee on the results (as [II2] do). When the ratio of clauses to variables is not
too high, it has comparable if not favorable running times. However, when the
number of clauses is too large, the overhead caused by the computation of the
entire DOS becomes too large and the comparison in terms of running times
becomes unfair, even though it still wins in terms of accuracy.

A more detailed comparison is beyond the scope of this paper, but we believe
that a fairly straightforward implementation that forces the random walk to



Computing the Density of States of Boolean Formulas 51

Table 3. Comparison with model counters on formulas from the benchmark in [2]
with a small number of clauses. Timings for SampleCount and SampleMiniSATExact
are taken from the respective papers [II2]. MCMC-FlatSat timings are obtained on a
comparable 3Ghz machine.

Instance n m Exact # SampleCount SampleMiniSAT  MCMC-FlatSat
Models Time Models Time Models Time

2bitmax 6 252 766 2.10 x 10%° > 2.40 x 10%® 29 2.08 x 10%° 345 1.96 x 10%° 1863
wif-3-3.5 150 525 1.40 x 10'* > 1.60 x 10'® 240 1.60 x 10'® 145 1.34 x 10** 393
wif-3.1.5 100 150 1.80 x 102! > 1.00 x 10%° 240 1.58 x 102! 128 1.83 x 10%! 21

wi-4-5.0 100 500 > 8.00 x 10*® 120 1.09 x 10'7 191 8.64 x 10'® 189
Is8-norm 301 1603 5.40 x 10** > 3.10 x 10*° 1140 2.22 x 10** 168 5.93 x 10'! 2693

stay inside low energy regions, without wasting time exploring the high energy
space, could have dramatic impact on model counting. The reason is that the
random walk used by estimating DOS is explicitly designed to count, while other
sampling-based strategies are built on top of systems that might be too biased
towards greedy heuristics when they perform random walks in the configuration
space. Moreover, the information collected on how many configurations are not
models (that is g(4),7 > 0) can be effectively used to infer about ¢(0), given the
normalization constraint > g(i) = 2.

6 Conclusions and Future Work

We described MCMC-FlatSat, a Markov Chain Monte Carlo technique based on
the flat histogram method to estimate the density of states of Boolean formulas.
We demonstrated the effectiveness of MCMC-FlatSat, both in terms of conver-
gence and accuracy, on a broad range of structured and synthetic instances.
Using our method, we also provided new insights about the phase transition
phenomena of random 3-SAT formulas. We believe that the results presented
in this paper are very promising and that the very detailed characterization
of the configuration space provided by MCMC-FlatSat will open the way for a
new set of heuristics for local search methods, and will provide further insights
about random k-SAT formulas as well. Moreover, considered the generality of
the flat histogram idea, we expect that this new approach will find many other
applications both to counting and inference problems.
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Abstract. We introduce a parallelized version of tree-decomposition
based dynamic programming for solving difficult weighted CSP instances
on many cores. A tree decomposition organizes cost functions in a tree
of collection of functions called clusters. By processing the tree from
the leaves up to the root, we solve each cluster concurrently, for each
assignment of its separator, using a state-of-the-art exact sequential al-
gorithm. The grain of parallelism obtained in this way is directly related
to the tree decomposition used. We use a dedicated strategy for building
suitable decompositions.

We present preliminary results of our prototype running on a cluster
with hundreds of cores on different decomposable real problems. This
implementation allowed us to solve the last open CELAR radio link
frequency assignment instance to optimality.

1 Introduction

Graphical model processing is a central problem in AI. The optimization of the
combined cost of local cost functions, central in the valued CSP framework [12],
captures problems such as weighted Max-SAT, Weighted CSP or Maximum
Probability Explanation in probabilistic networks. It has applications in resource
allocation [2], combinatorial auctions, optimal planning, bioinformatics. Valued
constraints can be used to code classical crisp constraints and cost functions.

Because these problems are NP-hard, however, there are always relevant prob-
lems which cannot be solved in reasonable time. With the current trend of in-
creasing number of cores per machine and increasing number of machines in
clusters or grids, it is only natural to try to exploit problem decomposability by
distributing the workload on a large number of computing resources.

In this paper, we use tree decompositions as a source of workload distribu-
tion. Tree decomposition has repeatedly been used to solve reasoning problems
in graphical models, from constraint satisfaction [4] to bayesian networks [7].
In constraint satisfaction, different algorithms such as Adaptive Consistency,
Bucket Elimination or Cluster Tree Elimination rely on a tree decomposition to
decompose the original problem and improve the worst-case time complexity.

On a single core, our algorithm can be described as a block by block elimi-
nation process in non serial dynamic programming as proposed in [I]. In a CSP
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context, it can also be described as a simplified version of Cluster Tree Elimina-
tion [5] that performs only one pass over the problem.

We show how the tree decomposition can be exploited to distribute the work-
load on many cores and how the granularity of the distribution can be controlled
by modifying the tree decomposition itself. We define specific operations on tree
decompositions allowing to reach a suitable tree decomposition, when it exists.
We then perform an empirical evaluation of the algorithm on different hard
instances coming from bioinformatics (haplotyping problems) and resource allo-
cation (CELAR radio frequency assignment problems) and analyze the influence
of the number of cores on the time needed to solve the problem.

2 Background

A weighted CSP (WCSP) is a pair (X, W) where X = {1,...,n} is a set of n
variables and W a set of cost functions. Each variable ¢ € X has a finite domain
D; of values than can be assigned to it. The maximum domain size is d. For a
set of variables S C X, Dg denotes the Cartesian product of the domain of the
variables in S. For a given tuple of values t, ¢[S] denotes the projection of ¢ over
S. A cost function wg € W, with scope S C X, is a function wg : Dg — [0, k]
where k is a maximum integer cost used for forbidden assignments (expressing
hard constraints). It can be described by a table or by an analytic function.
Cost functions can be manipulated by two operations. For two cost functions
wg and wgs, the combination wg & wg: is a cost function wgyg: defined as
wsus' (t) = ws(¢[S]) + wsr (t[S']). The marginal wsls of wg on S” C S is a cost
function over S’ defined as ws|s: (t') = mingepg y51=p ws(t) for all t’ € Dg.
The weighted Constraint Satisfaction Problem is to find a complete assign-
ment ¢ minimizing the combined cost function »_, _cy ws(¢[S]). This optimal
cost can be defined using combination and marginalization as (., cw ws)le-
This optimization problem has an associated NP-complete decision problem.
The hypergraph of a WCSP is an hypergraph H = (X, E) with one vertex for
each variable and one hyperedge S for every cost function wg € W. The primal
graph of H is an undirected graph G = (X, F) s.t. there is an edge (4,5) € F for
any two vertices i,j € X that appear in the same hyperedge S in H.
A tree decomposition for a WCSP (X, W) is a triple (T, x,%) where T =
(V, E) is a tree and x, ¢ are labelling functions that associate with each vertex
v € V a set of variables y(v) C X and a set of cost functions (v) C W s.t.:

1. for each wg € W, there is exactly one vertex v € V s.t. wg € ¥(v)
2. if wg € ¥(v) then S C x(v)
3. Vie X, theset {v eV |ié€ x(v)}} induces a connected subtree of T.

The treewidth of a tree decomposition, denoted by w, is the size of the largest
set x(v) minus one. For a given v € V', the WCSP (x(v), 1(v)) is a subproblem of
the master WCSP (X, W). Two subproblems defined by two vertices in the tree
may share variables, but not cost functions (property [Il). A tree decomposition
can be rooted by choosing a root v € V. For a vertex v € V, the separator of v
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is s(v) = x(v) N x(father(v)) (where father(v) is the father of v in T or @ for the
root). The variables of x(v) \ s(v) are said to be the proper variables of v.

The rationale behind tree decompositions is that acyclic problems can be
solved with a good theoretical complexity as it decomposes a master problem in
subproblems (called clusters) organized as a tree.

This is illustrated on the right,
where the graph of a frequency
assignment problem is covered by
clusters (the sets x(v)) defining a tree
decomposition. Locality of informa-
tion in space or time often yield such
nice decompositions in real problems.

Different algorithms have been
proposed to exploit such tree decom-
positions. We focus in this paper on
elimination algorithms such as vari-
able or bucket elimination (BE) [3I/].
In BE, a variable is chosen, all the
cost functions that involve this vari-
able are removed from the problem,
and the marginal of the combination of these functions on the rest of the prob-
lem is added to the original problem. The problem obtained has one less variable
and the same optimal cost as the original problem [3]. By repeatedly eliminating
all variables, we ultimately get the optimal cost. One can show [5] that an im-
plicit rooted tree decomposition lies behind BE and the complexity of the whole
elimination process depends on this tree decomposition.

Instead of eliminating one variable after the other, one may eliminate several
variables at once. This is called block-by-block elimination [I]. Typically, all
the proper variables of a leaf cluster v € T are eliminated in one step. This
is done repeatedly until the root cluster is eliminated, leaving the optimal cost
to read as a constant. This approach has been sophisticated in Cluster Tree
Elimination (CTE [5]) which may compute the marginals for each variable in
two passes. Such algorithms have been parallelized in the context of inference,
with no pruning [13].

3 Parallelization of Block by Block Elimination

In this paper, since we are just interested in computing the global optimum,
we use the one pass block-by-block elimination algorithm described in [I] for
optimization and adapt it to WCSP. Given an initial WCSP (X, W) together
with a tree decomposition (T, x, 1) of the WCSP, the elementary action of the
algorithm is to process a leaf cluster v € T', by eliminating all its proper variables:

1. we compute the marginal cost function F' on the separator s(v):

F = @ ws )] s(v)

ws€P(v)
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2. we remove v from T, ¥ (v) from W and all proper variables of v from X
3. we add F to both ¢ (father(v)) and W

As in BE, the problem obtained has less variables and the same optimum [I] and
the updated triple (7, x, %) is a tree decomposition of this problem. The process
can be repeated on any leaf of the new tree T' until an empty tree is obtained.
The last marginal function F' computed is a constant (a marginal on an empty
set of variables) and its value is the optimum of the problem.

Theorem 1. The time complexity for processing one cluster v € T is O((|¢(v)|+
#sons).dXW) and the space complexity is O(d1*™)) where d is the domain size
and Fsons the number of sons of v in the original T'.

Proof. There are at most dX(*)| costs to compute and ((|1)(v)| 4+ #sons) cost
functions in v. For space, there are d/*)| costs to store for the projection.

The overall sequential complexity is obtained by summing on all clusters leading
to a time complexity of O((e + |T']).d*) and a space complexity of O(|T|.d")
where w is the treewidth and r = max,(|s(v)|) is the maximum separator size.
To parallelize this algorithm, two sources of non determinism can be exploited.

— The first lies in the computation of the marginal cost function F. It can be
computed independently for each possible assignment ¢ of the separator s(v)
by assigning the separator variables with ¢ in the WCSP (x(v), % (v)) and
solving the WCSP obtained using a state-of-the-art DFBB algorithm.

— the second source of non determinism lies in the fact that the tree 7' may
have several leaves. Whenever all the sons of a vertex v € T have been
processed, v becomes a leaf and can be processed.

To get an idea of the speedups that can be reached in ideal (inexistent) con-
ditions, we consider a PRAM machine with an unbounded number of cores, a
constant time memory access, with a constant sequential setup time “s“ for
starting a new process.

Theorem 2. With an unbounded number of cores, the time complexity for pro-
cessing one cluster v is O((|1(v)|+ #sons).dX) =50 1 5. dlsO) and the space
complexity is O(dI*®)).

Proof. The complexity of solving (x(v),%(v)) after its separator assignment is
O(|Y(v)| + #sons).dx®) =3y gince only |x(v) — s(v)| variables remain unas-
signed. In parallel, the complete projection can be done in the same bound. The
extra setup time for the dI*®)| jobs is O(s.dl*()!).

Since a cluster v cannot be processed until all its sons have been processed, the
overall complexity is controlled by the longest path from the root to any leaf
where the length of a path is the sum of the processing times of its clusters.
Compared to the sequential complexity, one see the impact of the sources of
parallelism exploited. The separator assignment based parallization shifts com-
plexity from an exponential in w (max. cluster size) to one in the maximum
number of proper variables but we get an additive (instead of multiplicative) ex-
ponential term in r (max. separator size). The use of the T itself as a source of
parallelism replaces a factor related to tree size by a factor related to its height.
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4 Producing a Suitable Tree Decomposition

There has been a lot of work on tree decompositions. Usually, the problem con-
sidered is to produce a decomposition with a minimum treewidth, an NP-hard
problem. We used Min-Fill and MCS heuristics, very usual heuristics aimed at
the production of tree-decompositions with small treewidth [10].

Because of space complexity, separator size, instead of treewidth, is the main
restricting factor for elimination algorithms. In our case, this is reinforced by the
influence of setup times on time complexity. More precisely, for a separator s(v),
the limiting factor is the associated separator space SS(v), defined as the size of
the Cartesian product of the domains. These can be summed up over all v € T
to compute the overall separator space (and number of jobs) associated with the
decomposition. We use decompositions with a bounded separator space.

A traditional approach to get rid of a large separator is the so-called “super-
bucket” approach [B] which simply consists in merging the two separated clusters
v and father(v) into one if the separator s(v) contains more than ry,,x variables.

From the theoretical parallel complexity, one should a priori favor decom-
positions with a small maximum number of proper variables. However, time
complexity is controlled by a tight (s.d") term for setup times and a much looser
upper bound in O(dP) for solving assigned problems.

Therefore, the number of proper
variables should not be too small or
the overall time will be dominated
by setup times. We therefore extend
the “super-bucket” strategy, merging
a cluster v with father(v) whenever
the number of proper variables of v
is smaller than a bound Zmiy.

In the previously shown tree de-
composition, we merge vs and v4 be-
cause the separator space is too large,
and similarly we merge vs; and wg
because vg has too little proper vari-
ables, leading to the updated tree de-
composition in the figure on the right.

Note that our elimination algorithm computes the cost of an optimal solution,
but not the optimal solution itself. Producing an optimal solution afterwards can
be done by solving each cluster once from root to leaves, using the projection of
the optimal solution found for the father cluster on the separator of the current
cluster as the initial values of the separator variables of the son. This takes less
time than calculating the minimum cost itself.

5 Implementation and Results

To evaluate the practical interest of parallel block-by-block elimination, we have
experimented it on hard decomposable problems. We preprocess a WCSP by
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eliminating all variables with a small degree (2 or 3). An initial tree decomposi-
tion is produced by the Min-Fill and MCS heuristics [10]. For all values of rpyax
and Tmin in [1,25] and [1, 33] respectively, the super-bucket strategy is applied
and the corresponding separator space S5 and treewidth w are computed. If no
decomposition with SS < 2.10° exists, the method is said to be unsuitable for
this instance. Else, we select a decomposition with minimum treewidth, unless
an alternative decomposition exists that has a treewidth close to the minimum
and a significantly smaller separator space (used for instances with a * in the
table below). The decomposition is rooted in the cluster with maximum |x(v)]|.

This process has been applied to the CELAR radio link frequency assignment
instances scen06, scen07, and scen08 (still open) and to hard genetics haplo-
typing instances, which have been tackled by a parallel AND/OR branch and

bound approach in [9]. .
The table on the right gives, Na;éi |§(2‘ 463 LV([Q Z()) ‘:;‘ 3515(;5 TH;X ﬂﬁrgm
for each instance, the number seent % V!
of variables, maximum domain scen07* 16244 927 56 5 4.10 3 13
size, cost fl,mctions treewidth scen08 365 441905 85 13 2100 4 15
) ) ) * 5
number of clusters and separa- ped7™ 293 4 667 141 28 2'106 145
ped19* 484 5 1092 79 40 1.10° 15 7

tor s btained aft .
OF Sbace obtaned atiet PIEDIO™ 0d31* 513 5 1106 132 300 4.10° 12 1
cessing and “super-bucketing

with corresponding ryax and Ty (using MCS for scen* and Min-Fill for ped®).

The resolution of the WCSP (x(v), 1 (v)) with a specific separator assignment
is done using a Depth First Branch and Bound (DFBB) algorithm maintaining
Existential Directional Arc Consistency [6] with a variable ordering combining
Weighted Degree with Last Conflict [§] and using an upper bound produced by
an initial restart strategy using Limited Discrepancy Search with a randomized
variable ordering. Cost functions of arity above 3 are preprojected onto binary
and ternary scopes. This corresponds to executing toulbar2] with options hlL.

The parallel elimination process has been performed on a cluster with 400
cores (L5420 Xeon, 2.5 GHz with 4GB RAM per core) managed by the Sun
Grid Engine. SGE uses a “fair share” strategy which may drastically change the
number of cores allocated during execution. This makes a precise analysis of the
effect of parallelization impossible. We therefore measured the CPU-time, num-
ber of nodes and backtracks of every toulbar2 execution. These times are used
as input to a k-core simulator using real individual CPU- times. This simulation
is played for different numbers of cores (k = 1, 15, 100, 1,000) using a 10 second
job setup time for multi-core executions only (this is the scheduler interval
used in the SGE configuration and it is consistent with real time: scen08 took less
than 2 days to solve). Each job is in charge of solving 100 separator assignments.
For two instances, solved with 100 reserved cores, we report the wall-clock time
(inside parenthesis). We then give the CPU-time (on the same hardware, 1 core)
of BTD-RDS [11], a state-of-the-art sequential branch and bound algorithm ex-
ploiting the same tree decomposition. A “-” indicates the problem could not be

! http://mulcyber.toulouse.inra.fr/projects/toulbar2 version 0.9.1.2.
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solved after 7 days. Finally, lower/upper bounds on the time needed to rebuild
a solution on 1 core (sum of the min/max time in each cluster) is given.

Name 1 core 15cores 102 cores 103 cores BTD-RDS rebuild (1/u)
scen06 13h 08" 1h28 15’39” (20°53") 3’327 17267 2447 /2’477

scen07 1d6h  2h09’ 23’277 (42°02”) 10°07” - 3°08”/3’10”
scen08 127d 14h 8d 15h 1d 7h 3h 13’ - 1h32’/1h 37
ped7 40°52” 22’557 337 357 1’6” 117 /117
ped19 30d3h 2d2h 7h 32’ 58'18” 1d,12h 1'177/1°47”
ped31 20727 41’037 6’ 55” 1725”7 3h 37 447 /457

For the smallest scen06 problem, which is easily solved using BTD-RDS, the
approach is counter productive. For harder RLFAP problems, block elimination
is capable of exploiting the full power of parallelism, enabling us to solve for
the first time scen08 to optimality. The haplotyping problem instances ped7,
19 and 31 have been selected among the hard instances solved in [J] using a
parallel AND/OR branch and bound with mini-buckets on similar CPUs. Our
decomposition strategy gives again good results. If ped7 is too simple (less than
2" with BTD-RDS) to benefit from parallelization, for ped19 and ped3l, we
obtain good results. The elimination algorithm can be slower on 15 cores than
on 1 core because of the 10” setup times. This is the case for ped31, because the
100 assignment jobs have a duration which is very short compared to setup time.
In this case, a large part of the gain comes from the elimination algorithm itself,
which is more efficient than BTD-RDS even in a sequential context. These times
can be compared, with caution (these are simulated executions), with the best
parallel (15 cores) times of [9]: 53’567, 8159’ and 2h09’ respectively: elimination,
which is restricted to decomposable problems, gives better results on 100 cores.
Contrarily to [9], which observed a large variability in the job durations, we
observed a relatively limited variability of job durations inside a cluster. This
could be explained by the small separator sizes (the different problems solved
for a given cluster are not so different) and the upper-bounding procedure that
adapts to each assignment. Note that sufficient separator space is needed to avoid
starvation which occurs for example in scen07 on 1000 cores: scen07 defines only
400 jobs of 100 assignments. However, on the problems tested, job granularity
seems relatively well handled by our super-bucket strategy. It could be improved
by tuning the number of assignments per jobs according to the separator space,
number of cores, tree decomposition topology and mean job duration.

6 Conclusion and Future Work

This paper presents a parallelization of an elimination algorithm for WCSP. The
approach is suitable for difficult problems that can be decomposed into a tree-
decomposition with small separator size. This can be tested beforehand. Two
sources of parallelization have been used in this process: the dominating one is
based on partial problem assignments in separators, the second one comes from
the branching of the tree-decomposition itself. The application of our prototype
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on different real hard decomposable problems shows that a large number of cores
can be effectively exploited to solve hard WCSP. This allowed us to solve to opti-
mality the last CELAR radio link frequency assignment problem open instance.

Obviously, more extensive experiments are needed on other decomposable
problems. Beyond this, the most obvious way to improve the method is to tune
the granularity of the jobs processed. We have used the super-bucket strategy
and a fixed number of assignment solved per job to reach a suitable granularity,
with good results on hard problems. Such tuning should ideally be done based
on the problem at hand or even better, dynamically, as it is done in Branch and
and Bound parallelization. Existing B&B parallization strategies could also be
exploited inside each cluster resolution. Ultimately smarter scheduling strategies,
taking into account precedences between clusters, could further improve the
overall efficiency of the implementation.
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Abstract. A new interval constraint propagation algorithm, called
MOnotonic Hull Consistency (Mohc), has recently been proposed. Mohc
exploits monotonicity of functions to better filter variable domains. Em-
bedded in an interval-based solver, Mohc shows very high performance
for solving systems of numerical constraints (equations or inequalities)
over the reals. However, the main drawback is that its revise procedure
depends on two user-defined parameters.

This paper reports a rigourous empirical study resulting in a variant of
Mohc that avoids a manual tuning of the parameters. In particular, we
propose a policy to adjust in an auto-adaptive way, during the search,
the parameter sensitive to the monotonicity of the revised function.

1 Introduction

Interval-based solvers can solve systems of numerical constraints, i.e., nonlinear
equations or inequalities over the reals. Their reliability and increasing perfor-
mance make them applicable to various domains such as robotics design [10],
dynamic systems in robust control or robot localization [8], robust global opti-
mization [7JT2] and bounded-error parameter estimation [6].

To find all the solutions of a numerical CSP, an interval-based solving strategy
starts from an initial search space called a bozx (an interval for every variable in
the handled system) and builds a search tree by following a Branch & Contract
scheme. Filtering or contraction algorithms reduce the search space, i.e., improve
the bounds of the corresponding variable intervals, with no loss of solution.
Mohc is a new contraction algorithm based on interval constraint propagation [2].
Mohc-Revise exploits monotonicity of functions to improve contraction/filtering.
Monotonicity is generally verified for a few functions at the top of the search
tree, but can be detected for more functions when smaller boxes are handled.
In practice, experiments shown in [2[T] highlight very high performance of Mohc,
in particular when it is used inside 3BCID [I3]. The combination 3BCID(Mohc)
appears to be state of the art in this area.

The Mohc-Revise algorithm handles two user-defined parameters falling in
[0,1]: a precision ratio e and another parameter called Tyone that reflects a
sensitivity to the degree of monotonicity of the handled function f. This paper
mainly presents a rigourous empirical study leading to a policy for tuning 7,,ohnc
in an adaptive way for every function f. An adjustment procedure is run in a
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preprocessing phase called at every node of the search tree. Its cost is negligible
when Mohc is called in combination with 3BCID.

2 Intervals and Numerical CSPs

Intervals allow reliable computations on computers by managing floating-point
bounds and outward rounding.

Definition 1 (Basic definitions, notations)

IR denotes the set of intervals [v] = [a,b] C R, where a, also denoted v, and b,
also denoted v, are floating-point numbers.

Diam([v]) := v — v denotes the size, or diameter, of [v].

A box [V] = ([v1], ..., [vn]) represents the Cartesian product [v1] X ... X [vy].

Interval arithmetic has been defined to extend to IR elementary functions over
R [11]. For instance, the interval sum is defined by [v1] 4 [v2] = [v1 + va, v1 +v2].
When a function f is a composition of elementary functions, an extension of
f to intervals TR must be defined to ensure a conservative image computation.
The natural extension [f]y of a real function f replaces the real arithmetic by
the interval arithmetic. The monotonicity-based extension is particularly useful
in this paper. A function f is monotonic w.r.t. a variable v in a given box [V] if
the evaluation of the partial derivative of f w.r.t. v is positive (resp. negative)
or null in every point of [V]. For the sake of conciseness, we sometimes write
that the variable v is monotonic.

Definition 2 (fmins fmaz, monotonicity-based extension)

Let f be a function defined on variables V' of domains [V]. Let X C V be
a subset of monotonic variables. Consider the values 7 and x; such that: if
x; € X is an increasing (resp. decreasing) variable, then x; = x; and :E;" =ux;
(resp. x; = x; and 7 = x;). Consider W = V \ X the set of variables not
detected monotonic. Then, we define

Fmaz(W) = f(a, .zt W)
Finally, the monotonicity-based extension [f]ar of f in the box [V] produces the

interval image [f1ar([V]) = |[fmin]n ((W]), [fmaw]N([WD}

Consider for example f (21,2, w) = —23 + 2129 + Tow — 3w.
[F1n([6,8],[2,4],[7,15]) = —[6,8]* 4 [6, 8] x [2,4] 4 [2,4] x [7,15] — 3 x [7,15] =
[—83,35]. o (x1,72) = =221 + x2. Since [ [n([6,8],[2,4]) = [-14,-8] < 0,

we deduce that f is decreasing w.r.t. 1. With the same reasoning, x5 is increas-
ing and w is not detected monotonic. Following Def. 2], the monotonicity-based
evaluation yields:

[F1ar (VD) = [ (@1, @2, ), [fn (@1, @2, [w])] = [(f]n (8,2, 17, 15]), [f1v (6,4, 7, 15))] = [79,27]
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The dependency problem is the main issue of interval arithmetic. It is due
to multiple occurrences of a same variable in an expression that are handled
as different variables by interval arithmetic and produce an overestimation of
the interval image. Since the monotonicity-based extension replaces intervals by
bounds, it suppresses the dependency problem for the monotonic variables. It
explains why the interval image computed by [f]as is sharper than or equal to
the one produced by [f]n-

This paper deals with nonlinear systems of constraints or numerical CSPs.

Definition 3 (NCSP). A numerical CSP P = (V,C,[V]) contains a set of
constraints C, a set V of n variables with domains [V] € IR".
A solution S € [V] to P satisfies all the constraints in C.

The interval-based solving strategies follow a Branch & Contract process to find
all the solutions of an NCSP. We present two existing interval constraint
propagation algorithms for contracting the current box in the search tree with
no loss of solution. HC4 and Box [3I14] perform a constraint propagation loop
and differ in their revise procedure handling the constraints individually. The
procedure HC4-Revise traverses twice the tree representing the mathematical
expression of the constraint for narrowing all the involved variable intervals.
Since the different occurrences of a same variable are handled as different vari-
ables, HC4-Revise is far from bringing an optimal contraction (dependency prob-
lem). The BoxNarrow revise procedure of Box is more costly and stronger than
HC4-Revise [5]. For every pair (f,z), where f is a function of the considered
NCSP and z is a variable involved in f, BoxNarrow first replaces the other a vari-
ables in f by their interval [y1], ..., [ya]. Then, it uses a shaving principle where
slices [z;] at the bounds of [z] that do not satisfy the constraint are eliminated
from [z]. BoxNarrow is not optimal in case the variables y; different from x also
have multiple occurrences.

These algorithms are used in our experiments as sub-contractor of 3BCID [13],
a variant of 3B [J]. 3B uses a shaving refutation principle that splits an interval
into slices. A slice at the bounds is discarded if calling a sub-contractor (e.g.,
HC4) on the resulting subproblem leads to no solution.

3 Overview of the Mohc Algorithm

The MOnotonic Hull-Consistency algorithm (in short Mohc) is a recent constraint
propagation algorithm that exploits monotonicity of functions to better contract
a box [2]. The contraction brought by Mohc-Revise is optimal (with a precision
€) when f is monotonic w.r.t. every variable z involved in f in the current
box. Mohc has been implemented with the interval-based C++ library Ibex [4].
It follows a standard propagation loop and calls the Mohc-Revise procedure for
handling one constraint f(V) = 0 individually (see Algorithm [T]).

Mohc-Revise starts by calling HC4-Revise. The monotonicity-based contrac-
tion procedures (i.e., MinMaxRevise and MonotonicBoxNarrow) are then called
only if V' contains at least one variable that appears several times (function
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Algorithm 1. Mohc-Revise (in-out [V]; in f, V, pmohe, Tmohe, €)
HC4-Revise (f(V) =0, [V])
if MultipleOccurrences(V') and pmonc[f] < Tmohe then
(X, Y, W, fmaz, fmin, |G]) < PreProcessing(f, V,[V])
MinMaxRevise ([V], fmaz, fmin, Y, W)
MonotonicBoxNarrow ([V], fmaz, fmin, X, [G], €)
end if

MultipleOccurrences). The other condition is detailed below. The procedure
PreProcessing computes the gradient of f (stored in the vector [G]) and deter-
mines the two functions fy.;, and fiaz, introduced in Definition [ that exploit
the monotonicity of f. The gradient is also used to partition the variables in V'
into three subsets X, Y and W:

— variables in X are monotonic and occur several times in f,

— variables in Y occur once in f (they may be monotonic),

— variables w € W appear several times in f and are not detected monotonic,
ie,0¢€ [gg}]N([V]) (They might be monotonic — due to the overestimation
of the evaluation — but are considered and handled as non monotonic.)

The next two routines are in the heart of Mohc-Revise. Using the monotonicity of
fmin and fimaz, MinMaxRevise contracts [Y] and [W] while MonotonicBoxNarrow
contracts [X]. MinMaxRevise is a monotonic version of HC4-Revise. It applies
HC4-Revise on the two constraints: frm([Y UW]) <0 and 0 < frq.([Y UW]).
MonotonicBoxNarrow performs a loop on every monotonic variable x € X. If f is
increasing w.r.t. x, it performs a first binary search with f,,4, to improve z, and
a second one with f,,;, to improve z. A binary search runs in time O(log( i ),
where € is a user-defined precision parameter expressed as a percentage of the
interval size.

The user-defined parameter T,onc € [0, 1] allows the monotonicity-based pro-
cedures to be called more or less often during the search (see Algorithm [I]). For
every constraint, the procedures exploiting monotonicity of f are called only if
Pmonelf] < Tmohe- The ratio pmonc[f] = gzzz(([[?]]x(([[“//]])))) indicates whether the
monotonicity-based image of a function is sufficiently sharper than the natural
one. pmonc|f] is computed in a preprocessing procedure called after every bi-
section/branching. Since more cases of monotonicity occur on smaller boxes,
Mohc-Revise activates in an adaptive way the machinery related to monotonic-
ity. This ratio is relevant for the bottom-up evaluation phases of MinMaxRevise,
and also for MonotonicBoxNarrow in which a lot of evaluations are performed.

4 Making Mohc Auto-Adaptive

The procedure Mohc-Revise has two user-defined parameters, whereas Box—
Narrow has one parameter and HC4-Revise has no parameter. The goal of this
paper is to avoid the user fixing the parameters of Mohc-Revise.
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All the experiments have been conducted on the same Intel 6600 2.4 GHz
over 17 NCSPs with a finite number of zero-dimensional solutions issued from
COPRIN’s web page maintained by J.-P. Merlet[] Ref. [2] details the criteria
used to select these NCSPs with multiple occurrences All the solving strate-
gies use a round-robin variable selection. Between two branching points, three
procedures are called in sequence. First, a monotonicity-based existence test [I]
cuts the current branch if the image computed by a function does not contain
zero. Second, the evaluated contractor is called : 3BCID (Mohc) or 3BCID (Amohc)
where Amohc denotes an auto-adaptive variant of Mohc. Third, an interval New-
ton is run. The shaving precision ratio in 3BCID is 10% ; a constraint is pushed
into the propagation queue if the interval of one of its variables is reduced more
than 10%. '

We have first studied how the ratio Ti:fe%eg’ﬁ%l(?%ﬁ?ﬁ))
decreases, i.e., when the required precision in MonotonicBoxNarrow increases.
LazyMohc [I] is a variant of Mohc that does not call MonotonicBoxNarrow. The
measured ratio thus underlines the additional contraction brought by this binary
search. For all the tested instances, the best value of € falls between 312 and é,
which led us to fix € to 10%. Further decreasing € turns out to be a bad idea
since the ratio remains quasi-constant (see Fig. 4.4-left in [I]).

The main contribution of this paper is an empirical analysis that has led us
to an automatic tuning of the 7,,on. parameter during the search.

Table [1l contains the main results useful for our analysis. It reports the CPU
time (first row of a multi-row) required by the solving strategy described above
(based on 3BCID(Mohc)) in function of 7,,0ne. The NCSPs are sorted by decreas-
ing gains in performance of 3BCID(Amohc) w.r.t. 3BCID(HC4) (column G/3B).

The entries of columns 2 to 10 also contain (second row of a multi-row) a gain
Time(3BCID(Mohc))
Time(3BCID(Oracle)

Mohc variant that would be able to select the best value (yielding the results in
bold in the table) for T,one-

The first 10 columns highlight that the best value of 7,45 nearly always falls
in the range [50%,99.99%]. The value 50% yields always better results than (or
similar t0) Tmone = 40% or less [I]. Also, Tmone = 99.99% is better than or similar
to 100% (except in ButcherA). Note that Mohc with 7,00 = 0% is identical to
HC4 (see Algorithm [).

Second, a significant correlation can be observed on Table [l and on the
graphic shown in Fig. [[I The curves show how the application frequency of

. ber of calls(pmone
the monotonicity-based procedures (""" °/ O}ac;l(l’; ?M‘;’ﬁc[fﬁvqgg’)”)) evolves when

Tmohe increases. (Of course, the frequency becomes 1 when 7,0n. = 1.) The
correlation can be observed vertically for any value of T,,0ne, although this is
clearer for intermediate values. For instance, with the abscissa Tione = 60%,

evolves when €

falling in [0, 1]. The gain is )» where Oracle is a theoretical

I See www-sop.inria.fr/coprin/logiciels/ALTAS /Benches/benches.html

2 Compared to [2], the NCSP kin1 has been removed because it can be solved with
3BCID(HC4) in less than 100 choice points. ButcherB has been added. ButcherA (with
[a] = [-50, —1.1]) and ButcherB (with [a] = [—0.9, 50]) are two sub-instances of the
NCSP Butcher. Merlet has manually removed the value a = 1 to avoid a singularity...
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Table 1. Experimental results. The column G/3B =
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Time(3BCID(HC4))
Time(3BCID(Amohc))

highlights

the gain of our 3BCID(Amohc) contractor w.r.t. the standard 3BCID(HC4) (column 2).

NCSP

#var #s0l Tmone 0%

ButcherA
3

DirectKin
11 2

Virasoro
8 224

ButcherB

Geneig
6 10

Yam.1-10
10 9

Hayes
4 1

Fourbar

4 3
Trigo1-10
10 9
Pramanik
3 2

Caprasse
4 18

15

10 30
Brent-10
10 1008

Trigexp2-11

Eco9
9 16
Redeco-8
8 8

Katsura-12

12 7
Average

29882
0.02

12863
0.12

3157
0.15

655
0.22

318
0.18

73.1
0.29

1968
0.33

214
0.39

65.9
0.5

3.91
0.83

87.0
0.85

33.3
0.98

139
0.98

22.1
0.98

9.58
1

64.7
0.99

0.52

Mohc

Amohc G/3B Amohc

40% 50% 60% 70% 80% 90% 99.99% 100% policy 1 policy 2
492480 67134 33560 16380 9317 6134 4071 31382949 3371 146 3988
0.01 0.04 0.09 0.18 0.32 0.48 0.72 0.94 1 087 0.74
2911 1479 1075 741 608 599 605 680 617 48.4 960
0.21 041 0.56 0.81 098 1 0.99 0.88 0.97 0.62
9268 5338 3050 1844 1660 1657 1544 1554 1552 8.29 2047
0.17 0.29 0.51 0.84 0.93 0.93 1 0.99 1 0.75
1752 1364 1100 914 705 579 471 479 459 6.87 474
0.27 0.35 0.43 0.52 0.67 0.81 1 098 1.03 1
421 293 219 181 161 150 143 163 143 4.60 140
0.34 0.49 0.65 0.79 0.89 0.95 1 0.88 1 1.02
121 79.1 65.558.4 59.1 64.6 73.2 93.1 74.2 429 80.5
048 0.74 0.89 1099 090 0.80 0.63 0.79 0.73
54.9 52.8 47.2 32.221.1 21.5 23.1 22.8 20.8 3.51 23.5
0.38 0.4 045 0.66 1098 092 093 1.01 0.9
942 782 706 664 647 643 651 659 648 3.04 660
0.68 0.82 091 097 099 1 0.99 098 0.99 0.97
146 974 84.2 95.1 94.1 114 123 115 108 1.99  80.0
0.58 0.86 10.89 0.89 0.74 0.69 0.73 0.78 1.05
45.8 40.4 37.1 34.532.8 33.2 36.0 45.2 36.1 1.83 32.1
0.72 081 0.880.95 1099 091 0.73 091 1.02
3.84 359 3.72 3.74 3.843.26 3.4 333 352 1.11 3.72
0.85 091 0.88 0.87 0.85 1 0.96 0.98 0.92 0.88
82.9 80.0 77.1 75.6 74.6 73. 6 79.0180.2 79.5 1.09 78.0
0.89 0.92 0.95 0.97 0.99 0.93 041 0.93 0.94
33.3 32.7 33.0 35.6 44.9 50.6 73.5 727 327 1.02 525
0.98 1 0.99 092 0.73 0.65 0.44 0.45 1 0.62
136 136 136 139 136 140 182 225 136 1.02 193
1 1 1 0.98 1097 0.75 0.61 1 0.71
21.6 21.5 21.7 22.1 23.5 27.5 41.3 46.6 22.3 0.99 23.0
1 1 099 098 092 0.78 0.52 046 0.97 0.94
9.58 9.61 9.75 9.89 10.9 12.2 16.9 19.5 9.78 0.98 10.2
1 1 0.98 0.97 0.88 0.78 0.57 0.49 0.98 0.94
65.7 64.3 73.0 87.9 168 249 232 234 85.5 0.76  69.2
0.98 1 0.88 0.73 0.38 0.26 0.28 0.28 0.75 0.93
0.62 0.71 0.77 0.83 0.86 0.85 0.80 0.73 0.94 0.87

the application frequencies of Katsura, Redeco, Eco9, Trigexp2, Brent and I5
are inferior to 10%. It appears that these instances are not very well solved
by 3BCID(Mohc) with Tene = 100% (compared to 3BCID(HC4)). This suggests
that when the application frequency is low (resp. high), 7yone should rather be
tuned to a low (resp. high) value. Intuitively, a high frequency means that a lot
of monotonicity-based evaluations produce a sharp interval image, so that Mohc
should well exploit these sharp evaluations.

This study has led us to a simple auto-adaptive 7,,,nc tuning policy following
three significant choices:

— Since Mohc-Revise exploits the monotonicity of a single function f, there is
no reason that 7,,,nc be the same for all constraints. This prevented the user
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Fig. 1. Application frequency of the monot. Based procedures in function of 7p,onc-

from specifying a 7,,0nc parameter for each function f, but this simplification
is no more relevant in an adaptive tuning policy.

— For any constraint f, Tpmonc[f] is fixed to one of both values 50% and 99.99%.
Indeed, if we had an oracle able to select in any instance the best value
for Tone among 50% and 99.99%, the loss in performance w.r.t. an oracle
knowing the best value of Tyone would be only 4%. Tynone = 50% (resp.
99.99%) is generally the most relevant value when the gain in CPU time of
3BCID(Mohc) compared to 3BCID(HC4) is the smallest (resp. greatest).

— The application frequency is updated at each node of the search tree. It is
more and more accurate as the number of measurements increases.

These choices lead to the tuning policy 1 based on Algorithm 2l The proce-
dure ComputeRhoMohc is run for every constraint at each node of the search
tree, before running the contraction procedures. nb calls[f] and nb interes-
ting[f], related to a given constraint f, are initialized to 0 before the search.
The ratios tau mohc[£f] are set to 99.99% during the first 50 nodes before being
adjusted in ComputeRhoMohc. The results are not sensitive to a fine tuning of
RHO INTERESTING and TAU FREQ, empirically fixed to 65% and 10% respectively.
The performance of this policy is illustrated by the last line of Table [l The
loss in performance w.r.t. an oracle knowing the best value of Ty onc (Timohe being
common to all the constraints in a given NCSP) is 6% on average (at worst 25%;
around 0% in 7 NCSPs). The obtained average gain (94%) highlights that Amohc
is better than any fixed value of 7,,0ne (i-€., 86% for T0ne = 80%). The column
G/3B is also very convincing because 3BCID (Amohc) and 3BCID(HC4) have the
same number of parameters, i.e., 0 coming from HC4-Revise and Amohc-Revise.

3 This explains why our auto-adaptive versions of Mohc sometimes (slightly) outper-
form the oracle so that the corresponding gains in the table are greater than 1.
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Algorithm 2. ComputeRhoMohc (in f: a function, V: variables, [V]: domains)
nb calls[f]++

rho mohc [£] « 2iemAa(VID /% rho mohc[£] is computed */

. Diam([f]n([V]) .
if rho mohc[£f] < RHO INTERESTING then nb interesting[f]++; end if
interesting freq « ™ ;?Zﬁ::]g[ﬂ

if nb calls[f] > 50 and interesting freq < TAU FREQ then

tau mohc [f] «— 50%

else

tau mohc [f] «— 99.99%

end if

An alternative policy 2 is based on contraction. Each time the monotonicity-

based procedures of Algorithm 1 are applied, two ratios of box perimeters are

(¢10)

mputed: r. is the gain in perimeter brought by HC4-Revise w.r.t. the initial

box; 7., is the gain brought by MinMaxRevise+MonotonicBoxNarrow w.r.t. the

pr

evious box. If 1, is better (enough) than 7., then 7,,0n. is slightly incremented;

if r, is better than r,,, then it is decremented.

th

As shown in Table [Il the policy 2 is not so bad although less efficient than
e policy 1 on average (87%). Unfortunately, this adaptive policy is the worst

when Mohc is the most useful (e.g., see ButcherA, DirectKin, Virasoro).
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Abstract. Max Restricted Path Consistency (maxRPC) is a local consistency
for binary constraints that can achieve considerably stronger pruning than arc
consistency. However, existing maxRPC algorithms suffer from overheads and
redundancies as they can repeatedly perform many constraint checks without trig-
gering any value deletions. In this paper we propose techniques that can boost
the performance of maxRPC algorithms. These include the combined use of two
data structures to avoid many redundant constraint checks, and heuristics for the
efficient ordering and execution of certain operations. Based on these, we pro-
pose two closely related maxRPC algorithms. The first one has optimal O(end®)
time complexity, displays good performance when used stand-alone, but is ex-
pensive to apply during search. The second one has O(en?d?) time complex-
ity, but a restricted version with O(end®) complexity can be very efficient when
used during search. Both algorithms have O(ed) space complexity when used
stand-alone. However, the first algorithm has O(end) space complexity when
used during search, while the second retains the O(ed) complexity. Experimental
results demonstrate that the resulting methods constantly outperform previous al-
gorithms for maxRPC, often by large margins, and constitute a more than viable
alternative to arc consistency.

1 Introduction

maxRPC is a strong domain filtering consistency for binary constraints introduced in
1997 by Debruyne and Bessiere [5]. maxRPC achieves a stronger level of local consis-
tency than arc consistency (AC), and in [6] it was identified, along with singleton AC
(SAC), as a promising alternative to AC. Although SAC has received considerable at-
tention since, maxRPC has been comparatively overlooked. The basic idea of maxRPC
is to delete any value a of a variable z that has no arc consistency (AC) or path consis-
tency (PC) support in a variable y. A value b is an AC support for a if the two values
are compatible, and it is also a PC support for a if this pair of values is path consistent.
A pair of values (a, b) is path consistent iff for every third variable there exists at least
one value, called a PC witness, that is compatible with both a and b.

The first algorithm for maxRPC was proposed in [5], and two more algorithms have
been proposed since then [[7U10]]. The algorithms of [5] and [10] have been evaluated on
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random problems only, while the algorithm of [7] has not been experimentally evalu-
ated at all. Despite achieving considerable pruning, existing maxRRC algorithms suf-
fer from overhead and redundancies as they can repeatedly perform many constraint
checks without triggering any value deletions. These constraint checks occur when a
maxRPC algorithm searches for an AC support for a value and when, having located
one, it checks if it is also a PC support by looking for PC witnesses in other variables.
As a result, the use of maxRRC during search often slows down the search process
considerably compared to AC, despite the savings in search tree size.

In this paper we propose techniques to improve the applicability of maxRPC by
eliminating some of these redundancies while keeping a low space complexity. We also
investigate approximations of maxRPC that only make slightly fewer value deletions
in practice, while being significantly faster. We first demonstrate that we can avoid
many redundant constraint checks and speed up the search for AC and PC supports
through the careful and combined application of two data structures already used by
maxRPC and AC algorithms [7U10J2|8l9]. Based on this, we propose a coarse-grained
maxRPC algorithm called maxRPC3 with optimal O(end®) time complexity. This algo-
rithm displays good performance when used stand-alone (e.g. for preprocessing), but is
expensive to apply during search. We then propose another maxRPC algorithm, called
maxRPC3"™. This algorithm has O(en?d*) time complexity, but a restricted version
with O(end*) complexity can be very efficient when used during search through the
use of residues. Both algorithms have O(ed) space complexity when used stand-alone.
However, maxRPC3 has O(end) space complexity when used during search, while
maxRPC3"™ retains the O(ed) complexity.

Similar algorithmic improvements can be applied to light maxRPC (ImaxRPC), an
approximation of maxRPC [10]. This achieves a lesser level of consistency compared
to maxRPC but still stronger than AC, and is more cost-effective than maxRPC when
used during search. Experiments confirm that ImaxRPC is indeed a considerably better
option than maxRPC.

We also propose a number of heuristics that can be used to efficiently order the
searches for PC supports and witnesses. Interestingly, some of the proposed heuristics
not only reduce the number of constraint checks but also the number of visited nodes.

We make a detailed experimental evaluation of new and existing algorithms on vari-
ous problem classes. This is the first wide experimental study of algorithms for maxRPC
and its approximations on benchmark non-random problems. Results show that our
methods constantly outperform existing algorithms, often by large margins. When ap-
plied during search our best method offers up to one order of magnitude reduction in
constraint checks, while cpu times are improved up to four times compared to the best
existing algorithm. In addition, these speed-ups enable a search algorithm that applies
ImaxRPC to compete with or outperform MAC on many problems.

2 Background and Related Work

A Constraint Satisfaction Problem (CSP) is defined as a tuple (X, D, C') where: X =
{z1,...,x,} is a set of n variables, D = {D(z1),...,D(x,)} is a set of domains,
one for each variable, with maximum cardinality d, and C = {¢1,...,c.} isasetof e
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constraints. Each constraint ¢ is a pair (var(c), rel(c)), where var(c) = {z1,...,zm}
is an ordered subset of X, and rel(c) is a subset of the Cartesian product D(z1) X ... x
D(z,,) that specifies the allowed combinations of values for the variables in var(c). In
the following, a binary constraint ¢ with var(c) = {z;, x;} will be denoted by c¢;;, and
D(x;) will denote the current domain of variable ;. Each tuple 7 € rel(c) is an ordered
list of values (ai,...,a,) such that a; € D(x;),j = 1,...,m. A tuple 7 € rel(c;)
is valid iff none of the values in the tuple has been removed from the domain of the
corresponding variable.

The process which verifies whether a given tuple is allowed by a constraint c is called
a constraint check. A binary CSP is a CSP where each constraint involves at most two
variables. We assume that binary constraint checks are performed in constant time. In a
binary CSP, a value a; € D(x;) is arc consistent (AC) iff for every constraint ¢;; there
exists a value a; € D(x;) s.t. the pair of values (a;, a;) satisfies ¢;;. In this case a; is
called an AC-support of a;. A variable is AC iff all its values are AC. A problem is AC
iff there is no empty domain in D and all the variables in X are AC.

2.1 maxRPC

A value a; € D(x;) is max restricted path consistent (maxRPC) iff it is AC and for
each constraint ¢;; there exists a value a; € D(x;) that is an AC-support of a; s.t. the
pair of values (a;, a;) is path consistent (PC) [5]]. A pair of values (a;, a;) is PC iff for
any third variable x, there exists a value ar € D(zy) s.t. ax is an AC-support of both
a; and a;. In this case a; is a PC-support of a; in x; and ay, is a PC-witness for the
pair (a;,a;) in . A variable is maxRPC iff all its values are maxRPC. A problem is
maxRPC iff there is no empty domain and all variables are maxRPC.

To our knowledge, three algorithms for achieving maxRPC have been proposed
in the literature so far. The first one, called maxRPC1, is a fine-grained algorithm
based on AC6 and has optimal O(end?®) time complexity and O(end) space complex-
ity [5]. The second algorithm, called maxRPC2, is a coarse-grained algorithm having
O(end?) time and O(ed) space complexity [7]]. Finally, maxRPC™™ is a coarse-grained
algorithm based on AC3"™ [10]. The time and space complexities of maxRPC"™ are
O(en?d*) and O(end) but it has some advantages compared to the other two because
of its lighter use of data structures. Among the three algorithms maxRPC2 seems to
be the most promising for stand-alone use as it has a better time and space complexity
than maxRPC"™ without requiring heavy data structures or complex implementation
as maxRPC1 does. On the other hand, maxRPC"™" can be better suited for use during
search as it avoids the costly maintainance of data structures.

Central to maxRPC2 is the LastPC data structure, as we call it here. For each con-
straint ¢;; and each value a; € D(z;), LastPC’zi’amj gives the most recently discov-
ered PC-support of a; in D(z;). maxRPC2 maintains this data structure incrementally.
This means that the data structure is copied when moving forward during search (i.e.
after a successfully propagated variable assignment) and restored when backtracking
(after a failed variable assignment). This results in the following behavior: When look-
ing for a PC-support for a; in D(x;), maxRPC2 first checks if Last PCy, 4, ; is valid.
If it is not, it searches for a new PC-support starting from the value immediately after
LastPCy, q;,; in D(z;). In this way a good time complexity bound is achieved. On
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the other hand, maxRPC"™ uses a data structure similar to Last PC to store residues,
i.e. supports that have been discovered during execution and stored for future use, but
does not maintain this structure incrementall. When looking for a PC-support for a;
in D(x;), if the residue LastPCy, 4, ., is not valid then maxRPC™™ searches for a
new PC-support from scratch in D(z;). This results in higher complexity, but crucially
does not require costly maintainance of the Last PC' data structure during search.

A major overhead of both maxRPC2 and maxRPC"™ is the following. When search-
ing for a PC-witness for a pair of values (a;, a;) in a third variable x, they always start
the search from scratch, i.e. from the first available value in D(zy). As these searches
can be repeated many times during search, there can be many redundant constraint
checks. In contrast, maxRPC1 manages to avoid searching from scratch through the
use of an additional data structure. This saves many constraint checks, albeit resulting
in O(end) space complexity and requiring costly maintainance of this data structure
during search. The algorithms we describe below largely eliminate these redundant
constraint checks with lower space complexity, and in the case of maxRPC3"™ with
only light use of data structures.

3 New Algorithms for maxRPC

We first recall the basic ideas of algorithms maxRPC2 and maxRPC"™ as described in
[7] and [1O]. Both algorithms use a propagation list L where variables whose domain
is pruned are added. Once a variable x; is removed from L all neighboring variables
are revised to delete any values that are no longer maxRPC. For any value a; of such
a variable x; there are two possible reasons for deletion. The first, which we call PC-
support loss hereafter, is when the unique PC-support a; € D(z;) for a; has been
deleted. The second, which we call PC-witness loss hereafter, is when the unique PC-
witness a; € D(x;) for the pair (a;, ai), where ay, is the unique PC-support for a; on
some variable x, has been deleted. In both cases value a; is no longer maxRPC.

We now give a unified description of algorithms maxRPC3 and maxRPC3"". Both
algorithms utilize data structures Last PC and Last AC which have the following func-
tionalities: For each constraint ¢;; and each value a; € D(x;), LastPmehzj and
LastACy, a,,z; give (point to) the most recently discovered PC and AC supports of a; in
D(x;) respectively. Initially, all LastPC and Last AC pointers are set to a special value
NIL, considered to precede all values in any domain. Algorithm maxRPC3 updates the
LastPC and Last AC structures incrementally like maxRPC2 and AC2001/3.1 re-
spectively do. In contrast, algorithm maxRPC3""™ uses these structures as residues like
maxRPC™™ and AC™™ do.

The pseudocode for the unified description of maxRPC3 and maxRPC3"™ is given
in Algorithm[Iland Functions2l 3l @l We assume the existence of a global Boolean vari-
able RM which determines whether the algorithm presented is instantiated to maxRPC3
or to maxRPC3"™. If RM is true, the algorithm used is maxRPC3""™. Otherwise, the
algorithm is maxRPC3.

Being coarse-grained, Algorithm [I] uses a propagation list L where variables that
have their domain filtered are inserted. If the algorithm is used for preprocessing then,

' maxRPC™™ also uses residues in a different context.
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during an initialization phase, for each value a; of each variable z; we check if a; is
maxRPC. If it is not then it is deleted from D(x;) and x; is added to L. The initialization
function is not shown in detail due to limited space. If the algorithm is used during
search then L is initialized with the currently assigned variable (line 3).

In the main part of Algorithm[I] when a variable x ; is removed from L, each variable
x; constrained with z; must be made maxRPC. For each value a;, € D(x;) Algorithm
[l like maxRPC2 and maxRPC"™, establishes if a; is maxRPC by checking for PC-
support loss and PC-witness loss at lines 8 and 12.

Algorithm 1. maxRPC3 /maxRPC3""™

1: if preprocessing then

2: if —initialization(L, LastPC, LastAC) then return FAILURE;
3: else L = {currently assigned variable};

4: while L # @ do

5:  L=L—{z;};

6: foreachz; € Xst.c;; € Cdo

7: for each a; € D(z;) do

8: if —searchPCsup(a;, x;) then

9: delete a;;

10: L=LU {z;};

11: else

12: if ~checkPCwit(a;, x ;) then

13: delete a;;

14: L=L U {z;};

15: if D(x;) is empty then return FAILURE;

16: return SUCCESS;

First, function searchPCsup is called to check if a PC-support for a; exists in D(x;).
If value LastPCy, a;,«, is still in D(x;), then searchPCsup returns TRUE (lines 1-
2). If LastPCxi’amj is not valid, we search for a new PC-support. If maxRPC3 is
used, we can take advantage of the LastPC and LastAC pointers to avoid starting
this search from scratch. Specifically, we know that no PC-support can exist before
LastPthamj , and also none can exist before LastAth%xj, since all values before
LastACy, q; =, are not AC-supports of a;. Lines 5-6 in searchPCsup take advantage of
these to locate the appropriate starting value b;. Note that maxRPC2 always starts the
search for a PC-support from the value after Last PCy, 4, ;. If the algorithm is called
during search, in which case we use maxRPC3""" then the search for a new PC-support
starts from scratch (line 8), just like maxRPC"™ does.

For every value a; € D(z;), starting with b;, we first check if is an AC-support of a;
(line 10). This is done using function isConsistent which simple checks if two values are
compatible. If it is, and the algorithm is maxRPC3, then we can update Last ACy; 4, x;
under a certain condition (lines 12-13). Specifically, if LastACIi,ai,zj was deleted
from D(x;), then we can set LastAC,, q,, to a; in case LastACy, a,0;, >
LastPCy; q;,0;- If LastACy, a;2; < LastPCy, o, 2, then we cannot do this as there
may be AC-supports for a; between Last ACy, 4, », and LastPCy, 4, ., in the lexico-
graphical ordering. We then move on to verify the path consistency of (a;, a;) through
function searchPCwit.
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Function 2. searchPCsup(a;, xj):boolean
L if LastPCy;,a;,0; € D(x;) then

2 return true;

3: else

4 if = RM then

5: if LastACq, a;,2; € D(x;) then bj = max(LastPCy;,a;,0;+1,LastACs; a0,
6 else b; = max(LastPCy, q, TJ +1 ,LastACmi Jaj.j +1);

7 else

8 b; = first value in D(x;);

9 for each a; € D(z;),a; > b; do

10: if isConsistent(a;, a;) then

11: if “RM then

12: if LastACq; a;,0; & D(z;) AND LastACy, a;,2; > LastPCy; a;,x; then
13: LastAC, pxy = a3

14: if searchPCwit(a;, a;) then

15: LastPCmi,ai,zj = aj;

16: ifRM then LastACq; ,a;,0; = ;3 LastPCuj a;,0; = aii

17: return true;
18: return false;

If no PC-support for a; is found in D(z;), searchPCsup will return FALSE, a; will be
deleted and x; will be added to L. Otherwise, LastPCxi’an is set to the
discovered PC-support a; (line 15). If maxRPC3""" is used then we update the residue
LastACy, q, ; since the discovered PC-support is also an AC-support. In addition, to
exploit the multidirectionality of residues, maxRPC3"™ sets LastPC’_tj,a]m to a;, as
in [10].

Function searchPCwit checks if a pair of values (a;,a;) is PC by doing the fol-
lowing for each variable xj constrained with x; and x ;4. First, it checks if either
LastACy, a, z, is valid and consistent with a; or Last ACy, 4, «, is valid and consis-
tent with a; (line 3). If one of these conditions holds then we have found a PC-witness
for (a;,a;) without searching in D(xy) and we move on to the next variable constrained
with x; and z;. Note that neither maxRPC2 nor maxRPC"™ can do this as they do not
have the LastAC structure. Experimental results in Section [5] demonstrate that these
simple conditions can eliminate a very large number of redundant constraint checks.

Function 3. searchPCwit(a;, a;):boolean

1: foreachz;, € V s.it.c;x € Candcj, € C do

2:  maxRPCsupport=FALSE;

3: if (LastACy;,a;,2,, € D(zx) AND isConsistent(LastACy, a;,z; ,a;)) OR (LastAC’zj,aj,wk S
D(zy) AND isConsistent(LastACw]. jaj @ a;)) then continue;

4:  if = RM then

5: if ~seek AC support(z;, a;, x) OR ~seekAC support(z;, aj, ) then return false;
6: by = max(LastACmi,ai,mk, LastACm].Y,,,j‘mk);

7: else by, = first value in D(zy);

8: for each aj, € D(xy), ap > by, do

9: if isConsistent(a;, ar, ) AND isConsistent(aj, aj) then

10: if RMthen LastACu, a;,0), = LastACs; a ., = ks

11: maxRPCsupport=TRUE; break;

12: if “maxRPCsupport then return false;
13: return true;

2 Since AC is enforced by the maxRPC algorithm, we only need to consider variables that form
a 3-clique with z; and z;.
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If none of the conditions holds then we have to search in D(x}) for a PC-witness. If
the algorithm is maxRPC3 then we can exploit the Last AC' structure to start this search
from by = max{LastACy, 4, .z, LastACy, q; 2, } (line 6). But before doing this,
we call function seekACsupport (not shown for space reasons), first with (x;, a;, x)
and then with (x;,a;, z)) as parameters, to find the lexicographically smallest AC-
supports for a; and a; in D(xy) (line 5). If such supports are found, LastACy, q, 2,
and LastACy; 4, =, are updated accordingly. In case no AC-support is found for either
a; or a; then seekACsupport returns FALSE, and subsequently searchPCwit() will also
return FALSE.

If the algorithm used is maxRPC3"™ then we start search for a PC-witness from
scratch (line 7), as maxRPC2 and maxRPC™" always do. If a PC-witness ay, is found
(line 9) and we are using maxRPC3"™ then both residues LastACYy, q; ., and
LastACy; q; 2, are set to ay as they are the most recently discovered AC-supports.
If no PC-witness is found then we have determined that the pair (a;,a;) is not PC and
as a result FALSE will be returned and searchPCsup will move to check if the next
available value in D(z;) is a PC-support for a;.

Function 4. checkPCwit(a;, x;):boolean

1: foreachz;, € V s.t.c;x € Candcx; € C do

2: witness=FALSE; findPCsupport=FALSE;

3:  ifar = LastPCq; a;,z, € D(x) then

4: if (LastAC’zi,ai,zj € D(xz;) AND isConsistent(LastACmi,ai,w]. ,ar)) OR (LastAC’zk,ak,w]. S
D(zj) AND isConsistent(Last ACz, o, i a;)) then

5 witness=TRUE;

6: else

7: if - RM then

8: if seek AC' support(x;,a;, ;) AND seekAC support(xy, ay, x;) then
9 b; = maz(LastACmi,ai,wj , LastAka,ak,zj );

10: else findPCsupport=TRUE;

11: else b; = first value in D(z;);

12: if = find PC support then

13: for each a; € D(z;), a; > b; do

14: if isConsistent(a;, a;) AND isConsistent(ay, a;) then

15: ifRM then LastACq, a;,0; = LastACs, ay a; = aj;

16: witness=TRUE; break;

17: if ~witness AND exists ar, > LastPCq, a;,2, € D(x3) then

18: if -~ RM then

19: if LastACy; a;,2), € D(z},) then by, = max(LastPCmiya,i,mk+l,LastACmi,ai,mk);
20: else by, = max(LastPCmi,ai ,mk+l,LastACmiy,,,i,mk+l

21: else

22: by, = first value in D (xy);

23: for each ay, € D(xy), ar > by do

24: if isConsistent(a;, aj) then

25: if = RM then

26: if LastACy; a;,2;, & D(2x) AND LastACy; a;,2, > LastPCy; o, x, then
27: LastACy; a;,2), = ak}

28: if searchPCwit(a;, ay) then

29: LastPCmi,ai,mk = ag;

30: if RM then LastACq, a; 2, = aki LastPCay o) »; = Qi

31: witness=TRUE; break;

32: if —witness then return false;

33: return true;
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If value a; is not removed by searchPCsup in Algorithm [Il function checkPCwit
is called to check for PC-witness loss. This is done by iterating over the variables
that are constrained with both x; and x;. For each such variable xj, we first check
if ar, = LastPCy, 4,5, 18 still in D(xy) (line 3). If so then we check if there still
is a PC-witness in D(xz;). This is done by first checking if either LastACy, 4, «;
is valid and consistent with ag or LastACzk,ak@j is valid and consistent with a;
(line 4). If neither of these conditions holds then we search for a PC-witness starting
from b; = max{LastACy, a;.«,, LastACy, q, .z, } in case of maxRPC3 (line 9), after
checking the existence of AC-supports for a; and ay, in D(x;), by calling seekACsup-
port (line 8). If there is no AC-support in D(z;) for either a; or aj we set the auxiliary
Boolean variable findPCsupport to TRUE to avoid searching for a PC-witness.

If maxRPC3"™ is used, we start searching for a PC-witness from scratch (line 11).
Note that maxRPC2 does not do the check of line 4 and always starts the search for
a PC-witness from the first value in D(z;). In contrast, maxRPC™™ avoids some re-
dundant checks through the use of special residues, albeit resulting in O(end) space
complexity. When using maxRPC3"™, for each value a; € D(z;) we check if it is
compatible with a; and aj, and move the Last AC pointers accordingly (lines 14-15),
exploiting the multidirectionality of residues,

If LastPCy, q,,z, has been removed or a; has no PC-witness in D(acj), we search
for a new PC-support for a; in D(zy). As in function searchPCsup, when maxRPC3 is
used this search starts at an appropriate value calculated taking advantage of
LastPCy, 4;.4, and LastACy, o, o, (lines 18-20). When maxRPC3"™ is used we
start from scratch. If an AC-support for a; is found (line 24), we check if it is also
a PC-support by calling function searchPCwit (line 28). If maxRPC3 is used then
LastACy, q,.2, is updated when necessary (lines 26-27). If a PC-support is found,
LastPCy, q; .z, is set accordingly (line 29). If maxRPC3"™ is used then the residue
LastAC;, o, «, is also updated, as is LastPCy, 4, »; (bidirectionality). If the search
for a PC-support fails then FALSE will be returned, a; will be deleted, and z; will be
added to L.

3.1 Light maxRPC

Light maxRPC (ImaxRPC) is an approximation of maxRPC that only propagates the
loss of AC-supports and not the loss of PC-witnesses [[L0]. This ensures that the obtained
algorithm enforces a consistency property that is at least as strong as AC.

ImaxRPC is a procedurally defined local consistency, meaning that its description
is tied to a specific maxRPC algorithm. Light versions of algorithms maxRPC3 and
maxRPC3"™", simply noted 1maxRPC3 and 1maxRPC3"™ respectively, can be ob-
tained by omitting the call to the checkPCwit function (lines 11-14 of Algorithm[I)). In
a similar way, we can obtain light versions of algorithms maxRPC2 and maxRPC"™.

As already noted in [10], the light versions of different maxRPC algorithms may
not be equivalent in terms of the pruning they achieve. To give an example, a brute
force algorithm for ImaxRPC that does not use any data structures can achieve more
pruning than algorithms 1maxRPC2, 1maxRPC3, and lmaxRPC", albeit being much
slower in practice. Consider that any of these three algorithms will return TRUE in case
LastPC’zi’amj is valid. However, although LastPCxi,ai,Ij is valid, it may no longer
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be a PC-support because the PC-witness in some third variable may have been deleted,
and it may be the last one. In a case where LastPCy, 4,,.; Was the last PC-support in
x; for value a;, the three advanced algorithms will not delete a; while the brute force
one will. This is because it will exhaustively check all values of x; for PC-support,
concluding that there is none.

The worst-case time and space complexities of algorithm 1maxRPC2 are the same as
maxRPC2. Algorithm 1maxRPC"™ has O(n3d*) time and O(ed) space complexities,
which are lower than those of maxRPC"". Experiments with random problems using
algorithms 1maxRPC"™ and maxRPC""" showed that the pruning power of ImaxRPC is
only slightly weaker than that of maxRPC [10]. At the same time, it can offer significant
gains in run times when used during search. These results were also verified by us
through a series of experiments on various problem classes.

3.2 Complexities

We now discuss the complexities of algorithms maxRPC3 and maxRPC3""" and their
light versions. To directly compare with existing algorithms for (I)maxRPC, the time
complexities give the asymptotic number of constraint checks. Folllowing [9], the node
time (resp. space) complexity of a (I)maxRPC algorithm is the worst-case time (resp.
space) complexity of invoking the algorithm after a variable assignment. The corre-
sponding branch complexities of an (I)maxRPC algorithm are the worst-case complex-
ities of any incremental sequence of £k < n invocations of the algorithm. That is, the
complexities of incrementally running the algorithm down a branch of the search tree
until a fail occurs.

Proposition 1. The node and branch time complexity of (1) maxRPC3 is O(end?).

Proof. The complexity is determined by the total number of calls to function isCon-
sistent in searchPCsup, checkPCwit, and mainly searchPCwit where most checks are
executed.

Each variable can be inserted and extracted from L every time a value is deleted from
its domain, giving O(d) times in the worst case. Each time a variable x; is extracted
from L, searchPCsup will look for a PC-supportin D(z;) for all values a; € D(z;), s.t.
¢ij € C. Foreach variable z;, O(d) values are checked. Checking if a value a; € D(z;)
is a PC-support involves first checking in O(1) if it is an AC-support (line 10 in Function
) and then calling searchPCwit. The cost of searchPCwit is O(n + nd) since there are
O(n) variables constrained with both z; and z; and, after making the checks in line
3, their domains must be searched for a PC-witness, each time from scratch with cost
O(nd). Through the use of LastPC no value of x; will be checked more than once
over all the O(d) times z; is extracted from L, meaning that for any value a; € D(z;)
and any variable x;, the overall cost of searchPCwit will be O(dn + nd?) = O(nd?).
Hence, searchPCsup will cost O(nd?) for one value of x;, giving O(nd?) for d values.
Since, in the worst case, this process will be repeated for every pair of variables x; and
x; that are constrained, the total cost of searchPCsup will be O(end?). This is the node
complexity of 1maxRPC3.

3 However, constraint checks do not always reflect run times as other operations may have an
equal or even greater effect.
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In checkPCwit the algorithms iterate over the variables in a triangle with x; and x;.
In the worst case, for each such variable ., D(mj) will be searched from scratch for
a PC-witness of a; and its current PC-support in x;. As x; can be extracted from L
O(d) times and each search from scratch costs O(d), the total cost of checking for a
PC-witness in D(z;), including the checks of line 4 in Function @ will be O(d + d?).
For d values of x; this will be O(d®). As this process will be repeated for all triangles
of variables, whose number is bounded by en, its total cost will be O(end?). If no PC-
witness is found then a new PC-support for a; in D(xy,) is seeked through searchPCwit.
This costs O(nd?) as explained above but it is amortized with the cost incurred by the
calls to searchPCwit from searchPCsup. Therefore, the cost of checkPCwit is O(end?).
This is also the node complexity of maxRPC3.

The branch complexity of (1) maxRPC3 is also O(end?). This is because the use of
LastPC ensures that for any constraint ¢;; and a value a;, € D(z;), each value of z;
will be checked at most once for PC-support while going down the branch. Therefore,
the cost of search PCwit is amortized. a

Proposition 2. The node and branch time complexities of 1lmaxRPC3™" and
maxRPC3"™ are O(end*) and O(en?d*) respectively.

Proof. The proof is not given in detail due to lack of space. The main difference with
1maxRPC3 is that since last PC' is not updated incrementally, each time we seek a PC-
support for a value a; € D(z;) in x;, D(z;) will be searched from scratch in the worst
case. This incurs an extra O(d) cost to searchPCsup and searchPCwit. Hence, the node
complexity of 1maxRPC3"™ is O(end*). Also, the total cost of searchPCwit in one
node cannot be amortized. This means that the cost of searchPCwit within checkPCwit
is O(nd?). Hence, the node complexity of maxRPC3"™ is O(en?d*). The branch com-
plexities are the same because the calls to searchPCwit are amortized. a

The space complexities of the algorithms are determined by the space required for
data structures Last PC and Last AC. Since both require O(ed) space, this is the node
space complexity of (1)maxRPC3 and (1) maxRPC3™™. (1)maxRPC3 has O(end)
branch space complexity because of the extra space required for the incremental update
and restoration of the data structures. As (1) maxRPC3""™ avoid this, its branch space
complexity is O(ed).

4 Heuristics for maxRPC Algorithms

Numerous heuristics for ordering constraint or variable revisions have been proposed
and used within AC algorithms [[1113/1]]. Heuristics such as the ones used by AC al-
gorithms can be also used within a maxRPC algorithm to efficiently select the next
variable to be removed from the propagation list (line 5 of Algorithm [I). In addition
to this, maxRPC and ImaxRPC algorithms can benefit from the use of heuristics else-
where in their execution. Once a variable x; has been removed from the propagation
list, heuristics can be applied as follows in either a maxRPC or a ImaxRPC algorithm
(we use algorithm (1) maxRPC3 for illustration):
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1. After a variable z; is removed from L all neighboring variables x; are revised.
ImaxRPC (resp. maxRPC) will detect a failure if the condition of PC-support loss
(resp. either PC-support or PC-witness loss) occurs for all values of z;. In such sit-
uations, the sooner x; is considered and the failure is detected, the more constraint
checks will be saved. Hence, the order in which the neighboring variables of x; are
considered can be determined using a fail-first type of heuristic.

2. Once an AC-support a; € D(z;) has been found for a value a; € D(x;), search-
PCsup tries to establish if it is a PC-support. If there is no PC-witness for the pair
(@i, a;) in some variable xj, then a; is not a PC-support. Therefore, we can again
use fail-first heuristics to determine the order in which the variables forming a tri-
angle with z; and x; are considered.

The above cases apply to both ImaxRPC and maxRPC algorithms. In addition, a maxRPC
algorithm can employ heuristics as follows:

3. For each value a; € D(x;) and each variable xj, constrained with both x; and z;,
Functiond checks if the pair (a;, aj) still has a PC-witness in D(z;). If there is no
PC-witness or LastPCy, 4, z, is not valid then a new PC-support in zy, is seeked.
If none is found then a; will be deleted. Again heuristics can be used to determine
the order in which the variables constrained with z; and x; are considered.

4. In Functiondif LastPCy, 4, », is not valid then a new PC-support for a; in D(zy,)
is seeked. The order in which variables constrained with both z; and ;. are consid-
ered can be determined heuristically as in Case 2 above.

As explained, the purpose of such ordering heuristic will be to “fail-first”. That is, to
quickly discover potential failures (Case 1 above), refute values that are not PC-supports
(Cases 2 and 4) and delete values that have no PC-support (Case 3). Such heuristics
can be applied in any coarse-grained maxRPC algorithm to decide the order in which
variables are considered in Cases 1-4. Examples are the following:

dom. Consider the variables in ascending domain size. This heuristic can be applied in
any of the four cases.

del ratio. Consider the variables in ascending ratio of the number of remaining values
to the initial domain size. This heuristic can be applied in any of the four cases.

wdeg. In Case 1 consider the variables x; in descending weight for the constraint c;;.
In Case 2 consider the variables xj, in descending average weight for the constraints
¢;1 and c;. Similarly for Cases 3 and 4.

dom/wdeg. Consider the variables in ascending value of dom/wdeg. This heuristic can
be applied in any of the four cases.

Experiments demonstrated that applying heuristics in Cases 1 and 3 are particularly ef-
fective, while doing so in Cases 2 and 4 saves constraint checks but only marginally
reduces cpu times. All of the heuristics mentioned above for Cases 1 and 3 offer cpu
gains, with dom/wdeg being the most efficient. Although the primal purpose of the
heuristics is to save constraint checks, it is interesting to note that some of the heuristics
can also divert search to different areas of the search space when a variable ordering
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heuristic like dom/wdeg is used, resulting in fewer node visits. For example, two dif-
ferent orderings of the variables in Case 1 may result in different constraints causing
a failure. As dom/wdeg increases the weight of a constraint each time it causes a fail-
ure and uses the weights to select the next variable, this may later result in different
branching choices. This is explained for the case of AC in [[1].

5 Experiments

We have experimented with several classes of structured and random binary CSPs taken
from C.Lecoutre’s XCSP repository. Excluding instances that were very hard for all
algorithms, our evaluation was done on 200 instances in total from various problem
classes. More details about these instances can be found in C.Lecoutre’s homepage.
All algorithms used the dom/wdeg heuristic for variable ordering [4] and lexicographic
value ordering. In case of a failure (domain wipe-out) the weight of constraint c;; is
updated (right before returning in line 15 of Algorithm [I). The suffix *+H’ after any
algorithm’s name means that we have applied the dom/wdeg heuristic for ordering the
propagation list [1], and the same heuristic for Case I described in Section 4. In absense
of the suffix, the propagation list was implemented as a FIFO queue and no heuristic
from Section 4 was used.

Table[Ilcompares the performance of stand-alone algorithms used for preprocessing.
We give average results for all the instances, grouped into specific problem classes. We
include results from the two optimal coarse-grained maxRPC algorithms, maxRPC2
and maxRPC3, from all the light versions of the coarse-grained algorithms, and from
one of the most competitive algorithms (maxRPC3) in tandem with the dom/wdeg
heuristics of Section M (1maxRPC3+H). Results show that in terms of run time our
algorithms have similar performance and are superior to existing ones by a factor of
two on average. This is due to the elimination of many redundant constraint checks as
the cc numbers show. Heuristic do not seem to make any difference.

Tables 2 and [3] compare the performance of search algorithms that apply ImaxRPC
throughout search on RLFAPs and an indicative collection of other problems respec-
tively. The algorithms compared are 1maxRPC™ and 1maxRPC3""™ with and without

Table 1. Average stand-alone performance in all 200 instances grouped by problem class. Cpu
times (t) in secs and constraint checks (cc) are given.

Problem class maxRPC2 maxRPC3 ImaxRPC2 ImaxRPC3 ImaxRPC""" ImaxRPC3"™ ImaxRPC3+H
RLFAP t 6.786 2.329 4.838 2.043 4.615 2.058 2.148
(scen,graph) cc 31M M 2IM M 2IM IM SM
Random t 0.092 0.053 0.079 0.054 0.078 0.052 0.056
(modelB,forced) cc  0.43M 0.18M 0.43M 0.18M 0.43M 0.18M 0.18M
Geometric t 0.120 0.71 0.119 0.085 0.120 0.086 0.078
cc  0.74M 0.35M 0.74M 0.35M 0.74M 0.35M 0.35M
Quasigroup t 0.293 0.188 0.234 0.166 0.224 0.161 0.184
(qcp,qwh,bqwh) cc  1.62M 0.59M 1.28M 0.54M 1.26M 0.54M 0.54M
QueensKnights, t 87.839 47.091 91.777 45.130 87.304 43.736 43.121
Queens,QueenAttack cc  489M 188M 487M 188M 487M 188M 188M
driver,blackHole t 0.700 0.326 0.630 0.295 0.638 0.303 0.299

haystacks,job-shop cc  4.57M 1.07M 4.15M 1.00M 4.15M 1.00M 1.00M
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Table 2. Cpu times (t) in secs, nodes (n) and constraint checks (cc) from RLFAP instances.
Algorithms that use heuristics are denoted by their name + H. The best cpu time among the
ImaxRPC methods is highlighted.

instance AC™  ImaxRPC"™ ImaxRPC3"™ ImaxRPC"™ +H ImaxRPC3"™ +H
scenll t 5.4 13.2 4.6 12.5 4.3
n 4,367 1,396 1,396 1,292 1,292
cc M 92M 29M 90M 26M
scenl1-f10 ¢ 11.0 29.0 12.3 223 9.8
n 9597 2,276 2,276 1,983 1,983
cc 11M 141M 51M 114M 41M
scen2-f25 t 27.1 109.2 43.0 79.6 32.6
n 43,536 8,310 8,310 6,179 6,179
cc 44M 427M 151M 315M 113M
scen3-f11 t 7.4 30.8 12.6 17.3 7.8
n 7962 2,309 2,309 1,852 1,852
cc M 132M 46M SOM 20M
scenl1-f7 t  4,606.5 8,307.5 3,062.8 6,269.0 2,377.6
n 3,696,154 552,907 552,907 522,061 522,061
cc 4,287 35,897M 9,675M 22,899M 6,913M
scenl1-f8 t 521.1 2,680.6 878.0 1,902.4 684.7
n 345877 112,719 112,719 106,352 106,352
cc  638M 10,163M 3,172M 7,585M 2,314M
graph8-f10  t 16.4 16.8 9.1 11.0 6.3
n 18,751 4,887 4,887 3,608 3,608
cc 14M 7IM 31M 5IM 21IM
graph14-f28 t 314 4.1 3.1 2.6 2.1
n 57,039 2,917 2,917 1,187 1,187
cc 13M 17M SM 13M 6M
graph9-f9 ¢ 2735 206.3 101.5 289.5 146.9
n 273,766 26,276 26,276 49,627 49,627
cc 158M T29M 290M 959M 371M

the use of heuristic dom/wdeg for propagation list and for Case 1 of Section 4l We
also include results from MAC"™™ which is considered the most efficient version of
MAC [89].

Experiments showed that 1lmaxRPC"™ is the most efficient among existing algo-
rithms when applied during search, which confirms the results given in [10]. Accord-
ingly, 1maxRPC3"" is the most efficient among our algorithms. It is between two and
four times faster than maxRPC3"™™ on hard instances, while algorithms 1maxRPC3
and 1maxRPC2 are not competitive when used during search because of the data struc-
tures they maintain. In general, when applied during search, any maxRPC algorithm
is clearly inferior to the corresponding light version. The reduction in visited nodes
achieved by the former is relatively small and does not compensate for the higher run
times of enforcing maxRPC.

Results from Tables 2] and 3] demonstrate that 1lmaxRPC3"" always outperforms
1maxRPC"™, often considerably. This was the case in all 200 instances tried. The use of
heuristics improves the performance of both ImaxRPC algorithms in most cases. Look-
ing at the columns for 1maxRPC"™ and 1lmaxRPC3"™+H we can see that our methods
can reduce the numbers of constraint checks by as much as one order of magnitude (e.g.
in quasigroup problems qcp and qwh). This is mainly due to the elimination of redun-
dant checks inside function searchPCwit. Cpu times are not cut down by as much, but
a speed-up of more than 3 times can be obtained (e.g. scen2-f25 and scen11-£8).

Importantly, the speed-ups obtained can make a search algorithm that efficiently ap-
plies ImaxRPC competitive with MAC on many instances. For instance, in scen11-f10
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Table 3. Cpu times (t) in secs, nodes (n) and constraint checks (cc) from various instances

instance AC™  ImaxRPC"™ ImaxRPC3"™ ImaxRPC"™ +H ImaxRPC3"™ +H
rand-2-40-8 t 4.0 47.3 21.7 37.0 19.0
-753-100-75 n 13,166 8,584 8,584 6,915 6,915
cc ™ 289M 82M 207M 59M
2e050-20 t 102.7 347.7 177.5 273.3 150.3
d4-75-1 n 181,560 79,691 79,691 75,339 75,339
cc  191M 2,045M 880M 1,437TM 609M
qcp150-120-5 t 52.1 89.4 50.2 80.0 553
n 233311 100,781 100,781 84,392 84,392
cc  2TM 320M 53M 224M 36M
qcp150-120-9 t 226.8 410.7 238.1 239.9 164.3
n 1,195,896 583,627 583,627 315,582 315,582
cc 123M 1,613M 250M 718M 112M
qwh20-166-1 t 52.6 64.3 38.9 21.2 14.9
n 144,653 44,934 44,934 13,696 13,696
cc 19M 210M 23M 53M 6M
qwh20-166-6 t  1,639.0 1,493.5 867.1 1,206.2 816.5
n 4,651,632 919,861 919,861 617,233 617,233
cc  633M 5,089M 566M 3,100M 351IM
qwh20-166-9 t 41.8 41.1 25.0 39.9 28.5
n 121,623 32,925 32,925 26,505 26,505
cc 15M 135M I15SM 97T™M 11M
blackHole t 1.8 14.4 3.8 12.1 3.6
4-4-e-8 n 8,661 4,371 4,371 4,325 4,325
cc 4M 83M 12M 68M 10M
queens-100 t 15.3 365.3 106.7 329.8 103.0
n 7,608 6,210 6,210 5,030 5,030
cc 6M 1,454M 377M 1,376M 375M
queenAttacking5 t 34.3 153.1 56.7 136.0 54.8
n 139,534 38,210 38,210 33,341 33,341
cc  35M 500M 145M 436M 128M
queensKnights t 217.0 302.0 173.6 482.0 283.5
-15-5-mul n 35445 13,462 13,462 12,560 12,560
cc 153M 963M 387M 1,795M 869M

Table 4. Average search performance in all 200 instances grouped by class

Problem class AC"™™ ImaxRPC""" ImaxRPC3"™ ImaxRPC"™ + H lmaxRPC3"™ + H
RLFAP t 2428 556.7 199.3 416.3 157.3
(scen,graph) cc 233M 2,306M 663M 1,580M 487TM
Random t 84 28.0 14.8 28.5 17.1
(modelB,forced) cc 14M 161M 60M 137M 51M
Geometric t 215 72.2 37.2 57.6 32.1
cc 39M 418M 179M 297M 126M
Quasigroup t 147.0 162.5 94.9 128.9 89.6
(qep,qwh,bqwh) cc 59M 562M 68M 333M 40M
QueensKnights, t 90.2 505.2 180.3 496.4 198.1
Queens,QueenAttack cc  74M 1,865M 570M 1,891M 654M
driver,blackHole t 3.2 17.1 9.1 11.9 7.0
haystacks,job-shop cc 1.8M 55M 6.4M 36.7M 5.1IM

we achieve the same run time as MAC while 1maxRPC"™ is 3 times slower while in
scenl1-f7 we go from 2 times slower to 2 times faster. In addition, there are several
instances where MAC is outperformed (e.g. the graph RLFAPs and most quasigroup
problems). Of course, there are still instances where MAC remains considerably faster
despite the improvements.

Table ] summarizes results from the application of ImaxRPC during search. We give
average results for all the tested instances, grouped into specific problem classes. As
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can be seen, our best method improves on the existing best one considerably, mak-
ing ImaxRPC outperform MAC on the RFLAP and quasigroup problem classes. Over-
all, our results demonstrate that the efficient application of a maxRPC approximation
throughout search can give an algorithm that is quite competitive with MAC on many
binary CSPs. This confirms the conjecture of [6] about the potential of maxRPC as an
alternative to AC. In addition, our results, along with ones in [[10], show that approxi-
mating strong and complex local consistencies can be very beneficial.

6 Conclusion

We presented maxRPC3 and maxRPC3"™, two new algorithms for maxRPC, and their
light versions that approximate maxRPC. These algorithms build on and improve ex-
isting maxRPC algorithms, achieving the elimination of many redundant constraint
checks. We also investigated heuristics that can be used to order certain operations
within maxRPC algorithms. Experimental results from various problem classes demon-
strate that our best method, lmaxRPC3"™, constantly outperforms existing algorithms,
often by large margins. Significantly, the speed-ups obtained allow 1lmaxRPC3"™ to
compete with and outperform MAC on many problems. In the future we plan to adapt
techniques for using residues from [9] to improve the performance of our algorithms
during search. Also, it would be interesting to investigate the applicability of similar
methods to efficiently achieve or approximate other local consistencies.
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Abstract. Branch-and-Check, introduced ten years ago, is a generaliza-
tion of logic-based Benders decomposition. The key extension is to solve
the Benders sub-problems at each feasible solution of the master problem
rather than only at an optimal solution. We perform the first systematic
empirical comparison of logic-based Benders decomposition and branch-
and-check. On four problem types the results indicate that either Benders
or branch-and-check may perform best, depending on the relative diffi-
culty of solving the master problem and the sub-problems. We identify
a characteristic of the logic-based Benders decomposition runs, the pro-
portion of run-time spent solving the master problem, that is valuable
in predicting the performance of branch-and-check. We also introduce a
variation of branch-and-check to address difficult sub-problems. Empir-
ical results show that this variation leads to more robust performance
than both logic-based Benders decomposition and branch-and-check on
the problems investigated.

1 Introduction

Logic-based Benders decomposition (LBBD) [Il2] has been proposed as a frame-
work for hybrid techniques that combine mixed-integer programming (MIP) and
constraint programming (CP). Informally, LBBD requires the decomposition of
a problem into a master problem and a set of sub-problems. The solution ap-
proach solves the master to optimality, solves the sub-problems, and then adds
constraints (“Benders cuts”) to the master problem based on the sub-problem
results. The approach iterates between solving the master problem and the sub-
problems until a globally optimal solution is found and proved.

Branch-and-Check (B&C) [1I3] is a generalization of LBBD where the sub-
problems are solved during the search for a solution to the master problem.
In Thorsteinsson’s formulation [3], the sub-problems are solved every time a
feasible master solution is found, and the cuts are added to the master problem,
if necessary. B&C, therefore, is essentially a branch-and-cut search with the
Benders sub-problems being the source of the cuts.

Despite the increasing interest in LBBD and speculation (e.g., [4]) that B&C
could result in a significant improvement over LBBD, there does not appear
to have been a systematic evaluation of B&C. We do not have a clear picture
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of how B&C performs on different problems nor what problem characteristics
contribute to its behavior. The contributions of this paper, therefore, are:

1. The first systematic empirical comparison of logic-based Benders decompo-
sition and branch-and-check.

2. The identification of a characteristic of the behavior of LBBD that appears
to be correlated to whether an improvement in performance can be expected
from B&C.

3. The introduction and evaluation of a variation on B&C that addresses the
poor performance of B&C when the sub-problems are difficult.

The following section provides the necessary background. We then turn to the
empirical investigations which result in the first two contributions of this paper.
Section M proposes and evaluates the variation of B&C while Section [l discusses
our results and concludes.

2 Background

In this section, logic-based Benders decomposition and branch-and-check are
defined, the literature on branch-and-check is reviewed in detail, and the formal
definitions of the problems studied in this paper are presented.

2.1 Logic-Based Benders Decomposition and Branch-and-Check

Logic-based Benders decomposition [2] is a generalization of classical Benders
decomposition that is based on the division of a problem into a master problem
(MP) and a set of sub-problems (SPs). The MP is a projection of the global model
to a subset of decision variables, denoted y, and the constraints and objective
function components that involve only y. The rest of the decision variables, x,
define the sub-problems. Solving a problem by Benders decomposition involves
iteratively solving the MP to optimality and using the solution to fix the y
variables, generating the sub-problems. The duals of the SPs are solved to find
the tightest bound on the (global) cost function that can be derived from the
original constraints and the current MP solution. If this bound is less than
or equal to the current MP solution (assuming a minimization problem), then
the MP solution and the SP solutions constitute a globally optimal solution.
Otherwise, a constraint, called a “Benders cut,” is added to the MP to express
the violated bound and another iteration is performed.

Branch-and-check (B&C) [3] moves the SP solving into a branch-and-cut
search to solve the MP. Rather than waiting until the MP is solved to optimal-
ity, the B&C algorithm solves the SPs at each feasible MP solution, generates
the Benders cuts, and immediately adds them to the branch-and-cut tree. The
current feasible MP solution is therefore rejected and search continues. Because
only globally feasible MP solutions are accepted, the MP is solved only once:
there are no MP-SP iterations as in LBBD.

Intuitively, B&C may out-perform LBBD because the MP is not repeatedly
solved from scratch. Furthermore, a cut introduced based on one sub-optimal
MP solution may cut-off other sub-optimal MP solutions whereas in LBBD these
sub-optimal solutions may be enumerated in each iteration.
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2.2 Literature Review

Thorsteinsson [3] introduced the name branch-and-check and performed experi-
ments on a planning and scheduling problem. A significant speed-up was shown
when compared to an LBBD model due to Jain & Grossmann [5]. These results
were attributed to the claim that the MP was hard to solve, relative to the SPs,
and therefore adding the SP cuts based on feasible MP solutions (rather than
waiting for optimality) sped-up the overall solving process. A significant weak-
ness of the work, however, is that the B&C implementation did not actually
solve the SPs during the MP branch-and-cut search: each time the SPs were
solved, the MP search was restarted.

Bockmayr & Pisaruk [6] adopt an approach very similar to B&C, except that
cuts are added at each node in the MP branch-and-cut tree rather than only
at integer feasible nodes[] The relaxed solution at each node is used to derive
bounds that are then used to define the SPs. Computational results show that
solving the SPs more often results in an improvement over the results of Jain &
Grossmann. No comparison is done against Thorsteinsson’s approach.

Sadykov & Wolsey [7] address the same scheduling problem as the above au-
thors with a B&C approach. They state that solving the SPs at integral MP
nodes only is an important feature distinguishing their algorithm from Bock-
mayr & Pisaruk. However, Sadykov & Wolsey use a tighter MP formulation
than Bockmayr & Pisaruk and so it is not possible to attribute their improved
performance solely to the more frequent solution of the SPs. In fact, Sadykov &
Wolsey state that they believe that the main reason for their performance is the
tighter MP model. Follow-up work [8] solves a one-machine minimum weighted
number of late activities problem using B&C: the SP is solved at each feasi-
ble MP solution and the MP branch-and-cut search continues with the added
Benders cuts. However, no LBBD algorithm is used for comparison.

In summary, we have been able to find only four papers [BI6I7I8] that have
implemented a B&C-like approach. Thorsteinsson and Bockmayr & Pisaruk use
the same model as Jain & Grossmann and so these three papers vary only on the
frequency with which the sub-problems are solved. Jain & Grossmann solve the
sub-problems the least, only when an optimal MP solution is found. Thorsteins-
son solves the SP at each feasible MP solution, restarting the MP search each
time. Bockmayr & Pisaruk solve the SPs most often, at each node in the MP
tree. Both Thorsteinsson and Bockmayr & Pisaruk show better performance
than Jain & Grossmann but their approaches have not been compared to each
other. The fourth work, Sadykov & Wolsey, also solves the SPs at each feasible
MP solution and shows stronger results than Bockmayr & Pisaruk but uses a
tighter MP formulation.

It appears, therefore, that the most we can conclude from previous work is
that for a specific scheduling problem, solving the SPs more frequently than is
done in LBBD leads to improved performance. We have not been able to find
any work that directly compares B&C (without restarting the MP search) to

! The idea of solving the sub-problems more often than at each feasible MP solution
appears in Hooker’s original formulation [IJ.
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LBBD. Moreover, work on B&C has been restricted to a single problem type,
limiting the generality of the resulting conclusions.

2.3 Problems and Models

In this section, we define the four problems used in this study. Each of these
problems has an existing LBBD model in the literature. We study three planning
and scheduling problems and one location-allocation problem.

CostMinUnary. CostMinUnary is the problem studied by Jain & Grossmann,
Thorsteinsson, and Bockmayr & Pisaruk. The problem is defined by a set of
jobs, j € J, each with an individual release date, R;, and deadline, S;, which
must be scheduled on a set of resources, I. A job can be assigned to any resource;
however, its processing time, p;;, and cost, f;;, depend on the resource, i € I, to
which it is assigned. The objective is to assign the jobs to resources so that they
can execute within their time-windows [R;,S;], no jobs on the same resource
overlap, and the cost of the resource assignment is minimized.

Following existing work [I/5/4], the master problem in an LBBD model can
be defined as follows, with y;; being a 0-1 variable expressing whether job j is
assigned to resource i:

minimize Z fijVij (1)
ij
sty g =1 all j (2)
i
pr‘yz’j < mjax{Sj} - mjin{Rj} all 4 (3)
J
Yo (-yy) =1 allih=1,...H—1 ()
J€Jni
Yij € {0, 1} all i,j

The objective function (1) minimizes the cost of assigning jobs to resources,
subject to the constraint that all jobs must be assigned to exactly one resource
(2). Constraint (3) is a relaxation of the sub-problem expressing that the sum of
the durations of the jobs assigned to any resource must be less than or equal to
the time between the minimum release date and maximum due date. Constraints
(4) are the Benders cuts, where Jy; is the set of jobs assigned to resource i in
iteration h and that led to an infeasibility in the sub-problem. The cut simply
expresses that, in order to form a feasible schedule, at least one job in Jp; must
be assigned to a different resource.

The sub-problems are then straightforward to define using constraint pro-
gramming: they are single-machine scheduling problems with release dates and
due dates where the goal is to find a feasible schedule. Explicitly, if ¢; is the start
time of job j, the sub-problem for resource ¢ for all j with y;; = 1 is:

tj = Ry ()
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tj +pij <5; (6)
cumulative(t;, p;;,1,1) (7)

The global constraint cumulative [9] represents a single-machine scheduling
problem to assign values to all start times, ¢;, taking into account the durations
of each job and the capacities. The capacity required by each job is represented
in the vector 1 and the capacity of the resource is 1.

CostMinMulti. The CostMinMulti problem is the same as CostMinUnary
except that the resources are no longer unary and each job may require more
than one unit of the resource. The model [4] has the objective function (1),
constraint (2), and the Benders cuts (4) as in CostMinUnary. The sub-problem
relaxation (3) is different to account for the discrete resource capacity and the
fact that all the problems solved here have a release date of 0 and the same
due date, represented by do. Letting C; be the capacity of resource i and c;;
the amount of resource ¢ required by job j during its processing time, the sub-
problem relaxation expresses that the area of resource availability (i.e., capacity
multiplied by the time horizon: C; x (dp — 0)) must be greater than or equal to
the sum of the areas of the jobs assigned to i (pj;ci;jyij). Therefore, constraint
(8) replaces constraint (3).

1 .
C E DijCijYi; < do,all i (8)
v

The sub-problem formulation is also changed to reflect the discrete capacity.
Thus, constraint (7) becomes:

cumulative(t;, pij;, ¢ij, C;) (9)

MkspMinMulti. MkspMinMulti is a multi-capacity planning and scheduling
problem with the objective of makespan minimization. In Hooker’s model [4],
M represents the makespan and the master problem is defined as follows:

minimize M (10)
s.t. > y=1 all j (11)
i
1 )
M > c, Zpijcijyij all ¢ (12)
J
M > M= Y (I—yy)pjalli,h=1,.. . H-1 (13)
J€JIni
vij € {0,1} all 4,5

The differences from CostMinMulti are the sub-problem relaxation (12) and
the Benders cut (13). The sub-problem relaxation is, in fact, a restatement of
constraint (8) with a variable end of horizon, M, rather than the fixed one, dy,
and as such is based on exactly the same reasoning. The Benders cut makes
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use of My, the minimum makespan on resource ¢ in iteration h. The expression
that is subtracted from Mj;; relies on the fact that the maximum reduction in
makespan that can come from removing job j from resource i (i.e., by setting
yij to 0) is the duration of that job, p;;.

Unlike the other two scheduling problems, in MkspMinMulti, the sub-problem
is an optimization problem as follows:

minimize M; (
s.t. M; > t; + pyj (1
t;>0 (1
cumulative(t;, p;j, ¢ij, C;) (1

LocAlloc. The LocAlloc problem is a facility location, customer allocation,
and truck allocation problem. Given the set J of potential sites and the set I
of clients, the goal is to choose which sites to open, to assign each customer to
a single open site, to assign a number of trucks to each site, and to assign each
customer to a single truck. Multiple customers can be assigned to the same truck
provided the sum of their travel distances is less than a given maximum distance
for the truck. For each site j there is an opening cost, f;, and a capacity, b;.
The demand of the clients, d;, assigned to a site must be less than or equal to
the site capacity. Each vehicle has a fixed utilization cost, u, and a maximum
total driving distance, £. Serving client ¢ from site j generates a driving distance,
t;;, for the vehicle performing the service and has an associated cost, c;;. The
available vehicles at a site are indexed in set K with parameter k > |K| being
the maximum number of vehicles at any site.

In the LBBD model presented by Fazel-Zarandi & Beck [I0], the master prob-
lem determines the open sites, the assignment of customers to sites, and the
number of trucks at each site. The sub-problems are then separate feasibility
problems which attempt to assign the customers to trucks.

The master problem decision variables are:

~_J 1,if site j is opened
bi= 0, otherwise

S 1, if client ¢ is served by site j
7771 0, otherwise

num Veh; = number of vehicles assigned to facility j

The master problem can then be modeled as:

minimize Z fipj + Z Z CijTij + U Z num Veh; (18)

jeJ i€l jeJ JjeJ
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sty wi=1 iel (19)

jeJ
Ztijxij </l k jeJ (20)
il
tijl‘i]‘ </ iEI,jEJ (21)
> dizij < bjp; jed (22)
i€l
g
numVeh; > {2261 , ”x”} je (23)
num Veh; > numVeh;h - Z (1—wij)j € Jn (24)
iteh
xijgpj iel,jed (25)
zi5,p; € {0,1} iel,jeld (26)

The objective (18) is to minimize the total cost of opening facilities, serving
customers from a site, and allocating vehicles to a site. Constraint (19) ensures
that all clients are served by exactly one facility. The distance limitations are
defined by constraints (20) and (21). Constraint (22) limits the demand assigned
to facility j. Constraint (23) defines the minimum number of vehicles assigned
to each site.

Constraint (24) is the Benders cut. Inspired by the makespan cut in the Mk-
spMinMulti problem, this cut makes use of the optimal number of trucks at
facility j in iteration h, num Veh;h, and subtracts from it an upper-bound on the
reduction in the number of trucks that can arise from removing one customer.

The sub-problem is a feasibility problem to determine if the customers can be
feasibly assigned to the allocated trucks. In order to generate a cut, however, we
must solve the optimization version of the problem, finding the minimum number
of vehicles that the assigned clients can be packed into. This is a bin-packing
problem that can be modeled in CP as follows:

min num VehBinPacking;

s.t. pack(loady, truck;, dist;) (27)
numVeh; < numVehBinPacking; < numVehFFD; (28)

The variables of the sub-problem are load},, the total travel distance for truck
k based on its assigned clients and truck;, the index of the truck assigned to
client 7. The distances between site j and client ¢ are represented in the data
vector dist;. The pack global constraint (27) maintains the load of the vehicles
given the distances and assignments of clients to vehicles [I1]. The upper and
lower bounds on the number of vehicles are represented by constraint (28). These
bounds are derived from the MP solution (num Veh;) and heuristic preprocessing
(numVehFFD;).

3 A Systematic Evaluation of Branch-and-Check

The next sub-section describes the problem instances for each of our problems as
well as providing the experimental details. We then compare logic-based Benders
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decomposition and branch-and-check experimentally and present insights into
the performance comparison through a deeper analysis of the results.

3.1 Experimental Setup

We use existing problem instances in all of our experiments. For the two multi-
capacity scheduling problems we use Hooker’s instances [4]: 75 instances with
2 resources, 60 instances with 3 resources, and 60 instances with 4 resources.
The number of jobs varies between 10 and 38. The unary capacity problem in-
stances are generated by modifying the multi-capacity instances by setting the
capacity equal to 1 and modifying the time windows of each activity. The overall
scheduling horizon is extended by a factor of 3.6, a value chosen after experi-
mentation in order to guarantee that all instances have a feasible solution. The
horizon change resulted in two other changes: as in Hooker’s work the possible
window for an activity is set to one-third of the (now extended) horizon and,
unlike Hooker, the release of each job was drawn with uniform probability from
the first two-thirds of the horizon. All other parameters (cost, processing times,
etc.) are exactly as in Hooker’s instances.

For the Location-Allocation problems, 300 instances are taken from Fazel-
Zarandi & Beck [10]. In half of these instances, the cost of serving a customer
from a specific location is correlated with the distance to the location, while in
the remaining half, distance and cost are uncorrelated. The problem sizes (i.e.,
number of possible facilities x number of clients) are: {20 x 10, 30 x 15,40 x 20}.

All experiments were run with a 7200-second time limit on a Duo Core AMD
720 CPU with 1 MB cache, 4 GB of memory, running Red Hat Enterprise 4. The
MIP solver is CPLEX 12.1 and the CP solver is ILOG Solver/Scheduler 6.7.

3.2 Logic-Based Benders Decomposition vs. Branch-and-Check

The comparison of logic-based Benders decomposition with branch-and-check is
shown in Table For each problem set, we present the mean and median dif-
ference in CPU time (LBBD minus B&C). This formulation means that positive
numbers favor B&C (i.e., it has a lower mean CPU time) and negative entries
favor LBBD. Using a bootstrap paired-t test [12], we also indicate the statistical
significance at p < 0.005.

Our results are consistent with previous work on the CostMinUnary problems:
B&C shows a clear benefit, especially with an increased number of resources.
However, the advantage for B&C disappears for the other scheduling problems
to the point that LBBD shows significantly lower mean run-time overall and
on three of the six subsets of CostMinMulti and MkspMinMulti. Finally, for
LocAlloc, B&C again shows a significant advantage over LBBD.

3.3 A Deeper Analysis

Table 2] presents further data: the number of iterations and the percentage of
the run-time spent on the master problem and the sub-problems.

2 The OPT15 columns are discussed in Section E11
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Table 1. Summary of B&C and OPT15 Performance. Mean and Median are the cor-
responding average differences in run-time (in seconds) between B&C and LBBD and
between OPT15 and LBBD. A negative value indicates that LBBD achieves a lower
run-time. The symbols * and 1 indicate a significant difference in mean run-time at
p < 0.005, for the corresponding B&C variation and LBBD, respectively.

B&C OPT15
Problem Set Mean Median Mean Median
2 *110.9 0.1 *110.9 0.1
CostMinUnary 3 *164.8 1.2 *200.2 1.2
4 *1049.7 19.7 *1038.7 19.7
all *416.3 0.7 *423.8 0.7

2 1-206.4 0 1-207.3 0
CostMinMulti 3 -194.8 0.1 1-224.6 0.1
4 -15.1 0.9 -8.6 0.9
all 1-144.0 0 +-151.5 0
2 -106.8 0 -58.7 0
MkspMinMulti 3 1-361.7 0 -215.2 0
4 1-804.3 -0.1 -163.9 0.2
all 1-400.0 0 -139.2 0
LocAlloc cor *999.4 66.8 *948.1 12.9

uncor *812.5 11.4 *848.5 11.7
all *905.9 23.9 *898.3 12.4

Table 2. Details of the logic-based Benders decomposition vs. Branch-and-Check ex-
periment. On the left-hand side, we present the mean (and median) number of master
problem iterations and the percentage of time spent solving the master problem (%
MP) and the sub-problems (% SP). On the right-hand side, branch-and-check data is
presented: the number of iterations of the sub-problem (i.e., the number of times that
the set of sub-problems is solved-recall that the master problem is solved only once), as
well as the percentages of the run-time spent on the master problem and sub-problems.

LBBD B&C

Problem Set  Iterations % MP % SP SP Iterations % MP % SP
2 62.8 (6) 75.9 (91.5) 22.8 (7.9)  165.4 (11) 32.0 (28.0) 57.3 (64.5)

CostMinUnary 3 138.9 (24) 90.4 (95.1) 9.6 (4.9) 1047.5 (40) 44.1 (42.7) 54.2 (57.1)
4 258.2 (81.5) 96.2 (99.3) 3.8 (0.7) 1022.4 (160) 53.5 (50.8) 46.5 (49.2)

all  146.3 (23) 86.6 (97.0) 12.9 (2.8)  700.5 (50) 42.4 (42.5) 53.0 (55.6)

2 2.6 (1)  12.8 (0) 81.9 (100) 4.1(2) 8.1 (0) 90.5 (100)

CostMinMulti 3 23.6 (14.5) 51.3 (66.5) 48.7 (33.5)  47.2 (26.5) 15.9 (3.7) 84.1 (96.2)

4 35.2(22) 68.8 (93.4) 31.2 (6.6) 69.4 (45.5) 22.7 (18.1) 77.3 (81.9)

all  19.1 (7) 41.9 (11.2) 56.1 (73.5) 37.4 (17) 15.0 (0.5) 84.5 (99.4)

2 189 (5) 9.0 (0) 91.0 (100) 20.8 (6) 3.7 (0) 96.3 (100)

MkspMinMulti 3 59.0 (25.5) 37.4 (33.3) 62.6 (66.7)  69.9 (28.5) 13.0 (1.2) 87.0 (98.8)
4 51.3 (20) 55.5 (60.0) 44.5 (40.0) 70.2 (36) 17.4 (8.7) 82.6 (91.4)

all  41.2 (13) 32.0 (21.5) 68.0 (78.5) 51.1 (20) 10.8 (0.3) 89.2 (99.7)

cor 7.2 (1.5) 99.9 (100) 0.1 (0) 70.6 (19) 99.4 (100) 0.6 (0)

LocAlloc uncor 5.9 (2) 99.9 (100) 0.1 (0) 87.2 (23.5) 98.4 (100) 1.6 (0)
all 6.5 (2) 99.9 (100) 0.1 (0) 78.9 (21.5) 98.9 (100) 1.1
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The statistics for LBBD indicate that it has significantly different behavior
on the four problems. Using the median, we see that in CostMinUnary, LBBD
spends over 97% of the run-time solving the MP and does 23 iterations. This is
a substantial difference from the other two scheduling problems: a median 11%
and 21% of their run-times is spent on the MP and they perform a median of
7 and 13 iterations, respectively. LocAlloc is different again, spending 100% of
the run-time on the master problem but only requiring two iterations.

The branch-and-check results show a large increase in both the number of
times that the SPs are solved and a corresponding increase in the proportion of
CPU time spent solving them. This pattern is not seen for LocAlloc as, though
there is a substantial increase in the number of SP iterations, most of the run-
time is still spent solving the master problem.

The positive differences in CPU time in Table [ correspond to problem sets
where a significant portion of the run-time is spent on the master problems.
Figure [ plots the mean difference in run-time between LBBD and B&C against
the proportion of time spent solving the MP by LBBD. We have aggregated the
latter data into 10 buckets corresponding to intervals of size 0.1. The pattern
that can be observed is that unless LBBD spends about 80% or more of its time
solving the master problem, the benefits from branch-and-check are rare. In
contrast, with master run-time proportions approaching 1, both the magnitude
and the frequency of benefits from using B&C are much higher.

These results can be understood by noting that LBBD and B&C embody
different expectations with respect to relative sub-problem difficulty. In LBBD,
the SPs are solved once for every (optimal) MP solution. In B&C, the SPs are
solved at each feasible solution to the MP. If the MP is much harder to solve than
the SPs, solving the MP once and using the cuts that are generated inexpensively
from repeated SP solutions should result in lower overall run-time. In contrast, if
the SPs are not easily solved, then frequently solving them is counter-productive.
It would be better to solve the SPs only when necessary: when an optimal master
problem needs to be either confirmed or cut-off. This is precisely the link between
the results in Tables [l and 2

The generality and analytical understanding of this pattern remain to be
explored. However, we believe that, as a broad measure, the portion of run-time
spent by LBBD on solving the master problem is a promising indicator of the
benefit that can accrue from applying B&C. Minimally, it can be employed by
practitioners when they are deciding if spending the time to implement B&C is
likely to be worthwhile.

4 A Variation on Branch-and-Check

The experiments above indicate that the difficulty in solving sub-problems is
important to the performance differences between LBBD and B&C. Additionally,
we make two observations.

1. A feasible MP solution may be very different from an optimal one. The cuts
that are generated to remove the former may be irrelevant to cutting off
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Fig.1. A plot of the proportion of run-time spent solving the master problem, ag-
gregated into 10 buckets ([0 0.1), [0.1 0.2) ...[0.9 1.0]), against the mean difference
in CPU time (LBBD minus B&C). Note that the LocAlloc data all fall into the final
bucket and therefore form only a single point.

optimal MP solutions that are not globally feasible and, therefore, the work
of solving the SPs and generating cuts may be wasted.

2. The sub-problems in a given problem instance are not equally difficult. For
example, on the scheduling problems we have observed poor but feasible
MP solutions that place most or all activities on one machine, inducing the
worst-case in terms of SP difficulty.

These observations suggest that the avoidance of difficult and irrelevant sub-
problems may lead to better performance. Therefore, we propose a variation of
B&C that solves the SPs more frequently than LBBD but less often than B&C
by filtering the feasible MP solutions for which it solves the SPs. Our simple idea,
denoted OPT15, is as follows: within the B&C algorithm, rather than solving
SPs for each feasible MP solution, we solve the SPs corresponding to feasible
MP solutions with an optimality gap of less than 15% Feasible solutions with
larger gaps are accepted as globally feasible.

The completeness of B&C is compromised by this change unless a feasible
MP solution with a gap of less than 15% is subsequently found and proved

3 This gap is between the cost of the incumbent MP solution and the best current
lower bound on the MP solution.
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Table 3. The mean (and median) number of sub-problem iterations (SP Iter.) and
percentage of problem instances (% Best) for which the algorithm’s run-time was within
10 seconds of the best run-time. Bold entries indicate the highest percentage in a row.

LBBD B&C OPT15

Problem Set % Best SP Iter. % Best SP Iter. % Best SP Iter.

2 853 628 (6) 100.0 1654 (11) 100.0 165.0 (11)
CostMinUnary 3 75.0 138.9 (24) 98.3 1047.5 (40) 98.3 1008.3 (34)

4 41.7 258.2 (81 5 96.7 1022.4 (160 91.7 1045.7 (13

all 68.7 146. 3 ( 98.4 700. 5 ( 96.9 695. 4 (

2 08.7 6(1) 88.0 1(2)  88.0 1(2

CostMinMulti 3 83.3 23.6 (14 5 76.7 47.2 (26

1)

4) 0)

) ) 9)

3) 0) 0)

) ) )

) ) 783 459 (26 5)

4 800 352(22) 8LT 694 (45.5) 85.0 745 (41.5)

all 88.2  10.1(7) 826 374 (17) 841  38.6 (16)

2 90.7 189 (5) 853  208(6) 867  19.5 (6)
) ) 5
0) 6) 6)
3) 0) 7)
5) 9) 5
) ) 0)
) ) 8)
) ) )

MkspMinMulti 3 85.0 59.0 (25.5 68.3 69.9 (28.5 80.0 62.6 (26.5)
4 883 5L3(20) 667 70.2(36) 850 71.6 (2
all  88.2 41 2 (1 74.4 51.1 (2 84.1 48.8 (1

LocAlloc cor 35.3 ( 82.0 706 (1 71.3 62.7 (15.5)
uncor  45.3 9 (2 74.0 87.2(23.5 84.0 69.3 (2
all  40.3 5(2) 78.0 789 (215) 777 66.0 (1

All 67.7 47 8 (6 82.7 200.9 (23 84.7 194.9 (19

to be globally feasible. If such a new MP solution is not found, we preserve
completeness by running a second iteration of B&C without the 15% threshold.
The second iteration has two significant advantages over the first iteration: all the
cuts from solving the SPs in the first iteration are incorporated and the warm-
start functionality of the MIP solver typically allows a good initial feasible MP
solution to be found in the pre-solve phase.

The choice of 15% is arbitrary and based on examination of preliminary ex-
periments. No tuning was done to investigate different choices for the threshold.

4.1 Experimental Evaluation

The right-hand side of Table [ in Section presents the mean and median
run-time difference between LBBD and OPT15. The problem instances and ex-
perimental setup are the same as described in Section [3.11

The empirical results indicate that OPT15 performs more robustly than LBBD
or B&C. On the problems where B&C does significantly better than LBBD
(CostMinUnary and LocAlloc), OPT15 performs about the same as B&C, achiev-
ing a statistically significant difference when compared to LBBD run-time and
achieving equivalent performance in terms of mean run-time as B&C. The only
statistic that is significantly different is the median run-time for LocAlloc, which
is considerably smaller for OPT15. On problems where B&C performs poorly
compared to LBBD, OPT15 performs approximately the same as B&C on Cost-
MinMulti and much better on MkspMinMulti. In fact, there is no statistically
significant difference between LBBD and OPT15 on the latter set.
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A different perspective on this data is presented in Table[3l The table presents
two pieces of data: the mean and median number of times that the set of SPs is
solved (SP Tter.) and the percentage of problem instances for which the algorithm
achieved a run-time within 10 seconds of the best run-time achieved by any
algorithm. For example, on the two-machine instances of CostMinUnary, LBBD
is within the 10 seconds of the best run-time on 85.3% of the problem instances,
while B&C and OPT15 are within the threshold on all instances.

The SP iteration data demonstrate that, indeed, OPT15 tends to solve the
sub-problems less frequently than B&C. The difference, however, is small.

The % Best data indicates that OPT15 is seldom best on a given subset:
it is alone with the highest percentage on two subsets (CostMinMulti/4 and
LocAlloc/uncor), while LBBD is uniquely the best on 5 sets and B&C on 2.
However, it is never the worst performer while LBBD and B&C have poor results
on different problem sets. Overall, the performance of OPT15 results in it being
within the 10-second threshold on 84.7% the problems compared to 82.7% and
67.7% for B&C and LBBD, respectively.

5 Discussion and Conclusion

This paper has presented the first systematic comparison of logic-based Ben-
ders decomposition and branch-and-check. Using four different problems from
the scheduling and facility location literature, we have demonstrated that B&C
can lead to a significant improvement over LBBD but that the improvement is
dependent on the difficulty of solving the sub-problems relative to that of solving
the master problem. For problems where the sub-problem is difficult, B&C can
result in significantly longer run-times than LBBD. We have also shown that
the proportion of run-time used in LBBD to solve the master problem is a good
measure of the likelihood of the benefit from implementing a B&C algorithm.
Our results show that unless at least 80% of the LBBD run-time is spent on the
master problem, benefits from B&C are small and rare.

The generality of these conclusions is still in question, as we have only evalu-
ated four problem types, three of which are related scheduling problems. It would
be interesting to perform similar experiments with radically different problems.
Despite the problem similarities, however, three different behaviors were ob-
served in terms of the proportion of CPU time spent solving the sub-problems
and the number of master problem iterations (see Table ). Furthermore, our
results are consistent with our understanding of the increased emphasis on solv-
ing sub-problems that is embodied by B&C. We are, therefore, optimistic that
the conclusions here will be confirmed in follow-up research.

In our experiments, the sub-problem relaxation and the Benders cut were
not independent variables. These are two critical components of an LBBD-style
algorithm and changing these model components may change the relative perfor-
mance of LBBD and B&C on a given problem. However, we conjecture that the
fundamental conclusion regarding the proportion of effort in solving the mas-
ter problem versus the sub-problems would still be valid. Specifically, a tighter,
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harder-to-compute Benders cut should result in fewer iterations but may re-
sult in much more expensive sub-problems. Depending on the strength and
computational cost of the cut, the new model may spend either a higher or
lower proportion of its run-time on the sub-problems. Our results suggest that
if the new cut shifts the run-time toward the master problem then B&C has an
improved likelihood of out-performing LBBD when compared with the weaker
cut. The reverse is true if the new cut results in a larger proportional effort
on the sub-problems. In contrast, a tighter, more expensive sub-problem relax-
ation should increase the effort required in solving the master problem while
reducing the number of times that the sub-problems must be solved. This shift
suggests that a tighter sub-problem relaxation would tend to favour B&C over
LBBD.

This paper also introduces OPT15, a B&C variation that achieves more robust
performance by avoiding sub-problems that are difficult and irrelevant to cutting
off optimal master solutions. It achieves this goal by only solving sub-problems
for master problem solutions with an optimality gap of 15% or less.

The relative performance of OPT15 and B&C depends on the quality of the
feasible MP solutions that are found. Experiments using an earlier version of
CPLEX (version 11.0) demonstrated significantly worse B&C performance and
correspondingly larger OPT15 improvement on the CostMinMulti and Mksp-
MinMulti problems. The performance change with CPLEX 12.1 was due to an
improvement in the quality of the first feasible MP solution found. With CPLEX
11.0, the initial MP solutions often induced worst-case SPs that, by themselves,
exhausted the 7200-second time limit. It would be interesting to repeat the above
experiments with different CPLEX settings (e.g., preferring optimal to feasible
solutions) and with other MIP solvers to further investigate the importance of
the initial feasible MP solution. We expect the performance of OPT15 to increase
when the initial feasible MP solutions are of poorer quality.

OPT15 investigates “middle ground” between solving sub-problems only for
optimal MP solutions versus solving them for each feasible MP solution. As a
relatively simple idea, it is unclear if OPT15 specifically deserves further de-
velopment. However, as an example of a technique that interpolates between
LBBD and B&C, it opens the possibility for more sophisticated approaches.
Our choice of using a threshold on the optimality gap and the specific choice of
that threshold were arbitrary. One might instead set a small time-limit on sub-
problem searches. For easy sub-problems, the performance would be identical to
B&C while for harder sub-problems, performance may approach that of LBBD.
One could consider adaptively learning such time limits for given problems or
problem instances.
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Spatial, Temporal, and Hybrid Decompositions
for Large-Scale Vehicle Routing with Time Windows
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Abstract. This paper studies the use of decomposition techniques to quickly
find high-quality solutions to large-scale vehicle routing problems with time win-
dows. It considers an adaptive decomposition scheme which iteratively decouples
a routing problem based on the current solution. Earlier work considered vehicle-
based decompositions that partitions the vehicles across the subproblems. The
subproblems can then be optimized independently and merged easily. This pa-
per argues that vehicle-based decompositions, although very effective on various
problem classes also have limitations. In particular, they do not accommodate
temporal decompositions and may produce spatial decompositions that are not
focused enough. This paper then proposes customer-based decompositions which
generalize vehicle-based decouplings and allows for focused spatial and tempo-
ral decompositions. Experimental results on class R2 of the extended Solomon
benchmarks demonstrates the benefits of the customer-based adaptive decom-
position scheme and its spatial, temporal, and hybrid instantiations. In particu-
lar, they show that customer-based decompositions bring significant benefits over
large neighborhood search in contrast to vehicle-based decompositions.

1 Introduction

The scale of optimization problems and the need for finding high-quality solutions has
grown steadily in recent years as optimization systems are increasingly deployed in
operational, integrated settings. This trend generates significant issues for optimization
research, changing the focus from finding optimal solutions to delivering high-quality
solutions under time constraints. This paper examines the underlying algorithmic issues
in the context of multiple vehicle routing with time windows (VRPTWs), which arise
in many transportation applications including courier services, the scheduling of repairs
in telecommunication companies, and supply-chain logistics. VRPTWs are particularly
interesting in this respect, since instances with as few as 100 customers have not been
solved optimally despite intense research. Hence finding high-quality solutions under
time constraints for problems with 1,000 customers is a significant challenge.

Spatial and temporal decouplings [[17] are natural avenues for speeding up optimiza-
tion algorithms. Unfortunately, they do not apply easily to large-scale VRPTWs that
involve complex spatial and temporal dependencies. To remedy this limitation, the con-
cept of adaptive decoupling was proposed in [4]. Its key idea is to iteratively select sub-
problems that are optimized independently and reinserted into an existing solution. The
successive decouplings are adaptive as they depend on the current solution, not simply

D. Cohen (Ed.): CP 2010, LNCS 6308, pp. 92010.
(© Springer-Verlag Berlin Heidelberg 2010
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the instance data. The benefits of this approach were demonstrated by a vehicle-based
adaptive spatial decomposition VASD scheme which produces high-quality solutions
significantly faster than large neighborhood search (LNS) on the class RC1 of the ex-
tended Solomon benchmarks. Informally speaking, the VASD scheme partitions the
vehicles of an existing solution to obtain two subproblems, reoptimizes one of these
subproblems using LNS, and reinsert the optimized vehicle routes to obtain a new so-
lution. The VASD scheme is attractive since it makes it easy to merge the solutions
of decoupled problems. However, it also has a number of limitations. Because it is
vehicle-based, it is not as spatially focused as possible since vehicles may often travel
across large regions, especially early in the optimization process. Moreover, vehicle-
based decompositions cannot really accommodate temporal decouplings, since vehicles
generally serve customers with a wide variety of time windows.

This paper remedies these limitations and proposes a customer-based adaptive de-
composition (CAD) scheme which can be naturally instantiated to spatial, temporal,
and hybrid decouplings. Its key idea is to select a set of customers based on a spatial,
temporal, or hybrid property and to define a generalized multi-depot VRPTW involving
these customers only. The CAD scheme thus allows for more focused spatial decom-
positions, tight temporal decompositions, or a combination thereof. The generalized
VRPTW is also designed to allow for an easy merging of its reoptimized solution into
the existing solution.

The benefits of the CAD scheme are demonstrated on the class R2 of the extended
Solomon benchmarks. The experimental results indicate that the CAD scheme signif-
icantly outperforms LNS and the VASD scheme on this class. They also indicate the
complementarity between spatial and temporal decompositions and hence the value of
hybrid decompositions.

The rest of this paper is organized as follows. It first reviews VRPTWs and the adap-
tive decomposition scheme. It then presents the earlier work on vehicle-based adaptive
spatial decompositions and the novel contributions on customer-based adaptive decou-
plings. The paper then presents several instantiations of the CAD scheme, including
spatial, temporal, and randomized decouplings. The experimental results and the re-
lated work concludes the paper.

2 VRPTWs

A VRPTW instance is specified by a set C of customers, a set of departure depots D,
a set of arrival depots DT, and a set of vehicles V such that |[D~| = |[DT| = |V|. A
single depot problem is easily generalized into a multi-depot problem by creating mul-
tiple depots at the same location. We use multiple depots since it enables us to specify
decoupled problems as VRPTWs. The sites of the VRPTW instance are elements of
Sites = C U D~ UD™. Every site ¢ has a demand g. > 0 and a service time s. > 0
which is the duration spent at each customer location. The travel cost between sites ¢
and j is t;;. Each site ¢ has a time window [e,, [.] constraining when it can be visited,
where e, and [, represent the earliest and latest arrival times. Vehicles must arrive at
site ¢ before the end of the time window [.. They may arrive early but they have to wait
until time e, to be serviced. Each vehicle has a capacity ). The recursive computation



Spatial, Temporal, and Hybrid Decompositions for Large-Scale Vehicle Routing 101

of earliest and latest arrival times is specified in detail in [2] and is omitted here for
space reasons.

Solutions are specified in terms of vehicle routes and routing plans. A vehicle route
starts from a depot d—, visits a number of customers at most once, and returns to a de-

pot d™. It is thus a sequence (d~, c1, ..., cp, dT) where all sites are different. The cus-
tomers of a route r = (d~,c1,...,cn,d"), denoted by cust(r), is the set {c1,...,cn}
and the route r of a customer in {cy,...,¢,} is denoted by route(c). The size of a

route, denoted by ||, is |cust(r)|. The demand of a route, denoted by ¢(r), is the sum
of the demands of its sites, i.e., ¢(r) = ¢(d~) + Y., q(¢;) + g(d™). A route satisfies
its capacity constraint if ¢(r) < Q. We use ¢(c) to denote the amount of capacity used
by a route up to site c. The travel cost #(r) of aroute r = (d™, ¢y, . .., Cn,d ") is the cost
of visiting all its sites, i.e., t(r) = d(d~,c1)+d(c1,c2)+. .. +d(cpn-1,cn)+d(cn,dT).

A routing plan is a set of routes in which every customer is visited exactly once
and every depot at most once. Observe that a routing plan assigns a unique earliest
arrival time a, for each site c. It also assigns a unique return time a(r) to its destination
depot d* for each route r. The routing plan also assigns a departure time for each site
¢, denoted by .. The routing plan also assigns a critical arrival time for each site ¢,
denoted by z.. This is the latest time a vehicle can feasibly arrive at c.

A solution to the VRPTW is a routing plan o satisfying the capacity and time win-
dow constraints, i.e., Vr € 0 : ¢q(r) < Q & Ve € Sites : a. < l.. The ordering
of the customers on a route in ¢ implicitly defines a predecessor and successor site
for each site ¢, denoted by pred(o, ¢) and succ(o, ¢). When the context is clear, o is
dropped from the notation for brevity. The size |o| of a routing plan ¢ is the number
of non-empty routes in 0. The VRPTW problem consists of finding a solution ¢ which
minimizes a lexicographic function consisting of the number of vehicles and the total
travel cost, i.e., f(0) = (|o], >, c, t(r)). Modern algorithms for the VRPTW are often
organized in two stages, first minimizing the number of vehicles and then minimizing
travel distance [2.19]].

3 The Adaptive Decomposition Scheme

This paper aims at finding decouplings to speed up the solving of large-scale VRPTWs.
The goal of the decouplings is to decompose a VRPTW P into two sub-VRPTWs P,
and Ps that can be solved independently and whose solutions can be merged into a
solution of P. In general, finding static decompositions is difficult. For this reason, we
proposed in [4] to use the current solution o of P to find a decoupling (P,, Ps) with
projected solution o, and os. The VRPTW P, is then reoptimized and its solution is
merged with o, to obtain a new solution to P. More precisely, the Adaptive Decompo-
sition Scheme (ADS) is based on two main principles:

1. Starting from plan oy, it produces a sequence of plans o1, . .. , o such that f(og) >
flo) > ... > f(ay).

2. At step i, the scheme uses o;_1 to obtain a decoupling (P,, Ps) of P with pro-
jected solutions o, and 0. It reoptimizes P, to obtain ¢} and the new plan o; =
MERGE(0}, 0,-1)
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One of the most challenging aspects of ADS is how to perform the merging of the
decoupled solutions, i.e, 0; = MERGE(o%,0;—1). In [4]], we addressed this challenge
by choosing P, such that the customers of entire vehicles are removed. The merging
operation is then trivial, since the vehicles in (P, and Ps) are disjoint. We now review
this scheme to emphasize its strengths and limitations.

4 Vehicle-Based Spatial Adaptive Decompositions

The decomposition presented in [4] is a vehicle-based adaptive decoupling (VAD). It
partitions the vehicles to obtain P, and P, reoptimizes P,, and uses the new optimized
routes, and the routes in P, to obtain a new solution. Only spatial decompositions were
considered in [4]. The idea was to view the customer region as a circle, randomly selects
a wedge W, and partitions the vehicles into those serving at least one customers in W
and the others. The resulting Vehicle-Based Spatial Adaptive Decomposition VASD
is particularly effective and produced high-quality solutions quickly on instances with
up to 1,000 vertices. Its main benefits are the simple definition of P, and the trivial
implementation of merging, which simply uses the optimized routes of P, to replace
the old routes in the existing solution.

The VAD scheme has a number of limitations however. First, because the decoupling
is vehicle-based, the customers can be located significantly outside the selected wedge.
This is illustrated in Figure[Tlwhich depicts the behavior of the VASD scheme visually.
The left part of Figure [1] shows the initial plan o (left) and the plan o1 (right) after
the first decoupling and optimization. The customers in the subproblem P, are in red,
the remaining ones in blue. The right part of Figure [I shows the projected solution
o, for subproblem P, (left) and its reoptimization o, (right). As can be seen, the first
subproblem is quite spread out, illustrating the spatial decomposition is not as tight
as desired.

More important however is the fact that the VAD scheme does not scale to other
decomposition criteria and, in particular, to temporal decompositions. Indeed, unless
the time windows are wide, it is very unlikely that good solutions cluster customers with
similar time windows on the same vehicle, since the vehicle will be inactive for most

Fig. 1. The First Decoupling of VASD
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of the time horizon. Since it uses a vehicle-based decomposition, the VASD scheme is
not well-adapted to exploit temporal locality.

5 Customer-Based Adaptive Decompositions

To remedy this limitation, this paper proposes a Customer-based Adaptive Decompo-
sition (CAD) scheme. A decoupled problem in the CAD scheme is given by a set of
customer sequences and has a new set of depots and constraints so that the solutions of
o can be inserted into o5, while ensuring feasibility of the resulting plan.

Given a sequence of customers (c;, .. .,c;) for the decoupling, the depots of the
subproblem are constructed as follows:

— d~ = pred(c;): the origin depot is the predecessor of the sequence.

— dT = succ(c;): the destination depot is the successor of the sequence.

— €4- = Opred(c,): the departure time of ¢; is the earliest departure time for d~.

= la+ = Zsuce(c;)" the critical arrival time of succ(c;) is the latest arrival for d+.

— q4- = q(pred(c;)): the demand of d~ is the cumulative demand up to pred(c;).
- qq+ = q(succ(cj)) — g(c;): the demand of d is the cumulative demand after c;.

By constructing depots using the border regions of a sequence, any feasible route be-
tween d~ and d* can be reinserted between pred(c;) and succ(c;) of o;—1, while
maintaining the feasibility of P;.

The CAD scheme is formalized in Figure [2l The core of the algorithm is in lines
3-6 which selects a set of customers (line 3), extracts the customers as a VRPTW
(line 4), reoptimizes subproblem P, using algorithm A (line 5), and merges the new
optimized subplan ¢ to obtain the new solution (line 6). These main steps are repeated
until the time limit is reached. The extraction step is given by the EXTRACT function,
which collects all vehicles serving a customer in the decomposition (line 1), collects all
the customers served by these vehicles in between customers of .S, and constructs the
depots (lines 2-10). The customers and depots so obtained define the subproblem (line
11). The CONSTRUCTARRIVALDEPOT and CONSTRUCTDEPARTUREDEPOT functions
describe how to create depots for P, that allows ¢} to be feasibly merged into o. Finally,
the MERGE function shows how ¢, is merged into o.

6 Instantiations of the CAD Scheme

This section presents a variety of instantiations of the CAD scheme. Each such instan-
tiation only has to specify how the function SELECTCUSTOMERS is implemented. We
start with the vehicle-based spatial decomposition proposed in [4], generalize it, and
then present temporal and random decompositions.

6.1 The VASD Scheme

We first show how the VASD scheme can be viewed as an instantiation of CAD. The
VASD decomposition scheme is depicted in Figure [3] and aims at choosing wedges
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CAD(A,00)

1 o« oo;

2 while time limit unreached

3 do S < SELECTCUSTOMERS(P,0);
4 Po < EXTRACT(S, P, 0);

5 o5« A(Po);

6 0 < MERGE(P,,0,,0);

7 return o

EXTRACT(S, P, o)
1 R—{re€o|3cer:cliesin S}
2 C, 0
3 D «— Q];
4 Df
5 forreR
6 doi«— argminc,ng) Gc;
7 J < argmax .c,ng) Gc;
8 Co = Co Ul (cerya;<ac<as’
9 D, < D, U CONSTRUCTDEPARTUREDEPOT(pred(7));
10 D} « DJ U CONSTRUCTARRIVALDEPOT(succ(5));
11 return (C,, Df, D, );
CONSTRUCTARRIVALDEPOT(p)
1 d= «—p;
2 [edfvld*] — [517700];
3 g~ —qlp);
4 returnd;

CONSTRUCTDEPARTUREDEPOT(S)
1 df —s;

2 [ed+7ld+] — [07 ZS};

3 qq+ < q(s) —q(pred(s));

4 returnd';

MERGE(P,, 0}, 0)

forc e P,

do succ(o, pred(c)) < ¢;
pred(o, succ(c)) «— ¢;
succ(o, ¢) — succ(oy,c);
pred(o,c) < pred(o},c);

return o;

[ NN I SRS S

Fig.2. The CAD Scheme
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SELECTDECOMPOSITIONVASD(P, o)
1 select a € [0, 359];
select 3 > a such that the wedge W «— (a, 3);
(a) contains at least N customers;
(b) is the smallest wedge satisfying (a);
Vi—{veV | Jcer,:cliesin W},
return | J, v, cust(ry);

[©) WV I S US I 9]

Fig. 3. The VASD Scheme for VRPTW Decouplings

SELECTDECOMPOSITIONCASD(P, o)

1 select a € [0, 359];

2 select 3 > a such that the wedge W — (a, B);
3 (a) contains at least N customers;

4 (b) is the smallest wedge satisfying (a);

5 return | c lies in W;

Fig. 4. The CASD Scheme for VRPTW Decouplings

producing roughly the same number IV of customers. It first chooses the lower angle o
of the wedge randomly (line 1). It then selects the upper angle (3 as the smallest angle
greater than « producing the smallest wedge with at least N customers (lines 2—4).
Finally, all customers of vehicles within in the wedge are included in the decomposition.

6.2 The CASD Scheme

We now present a customer-based spatial decomposition CASD that generalizes the
VASD scheme. This generalization is especially important when considering problems
(such as the class 2 problems of the extended Solomon benchmarks) where the vehicles
serve many customers and can travel across many portions of the space. Under these
conditions, VASD loses some of its locality as shown in Figure[Il In contrast, CASD
algorithm preserves the spatial boundaries and improves the results of spatial decou-
plings on the class 2 extended Solomon benchmarks. Figure 4] gives the formalization
of CASD which is a simplification of VASD. Figure[3] shows how the CASD scheme
performs a decoupling from the same starting solution as Figure[Il The right hand pic-
ture shows all routes with decoupled customers, with the decoupled customers shown
in red and the remaining ones in blue. It is interesting to compare this with Figure [11
CASD is clearly better at respecting spatial boundaries and allows customers of more
vehicles to be considered in the decomposition.

6.3 The CATD Scheme

We now present a temporal instantiation (CATD) of the CAD scheme. The CATD
scheme chooses random time slices and returns all of the customers that are served
within that time slice. Figure [6] provides the implementation of this algorithm where
lines 1-4 select a random slice that contains at least N customers. The mechanism for
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Fig. 5. The First Decoupling of CASD

SELECTDECOMPOSITIONCATD(P, o)
select a € [0, l4ep];
select 3 > o such that the time period T = («, 8);
(a) contains at least N customers;
(b) is the smallest time period satisfying (a);
return | J ¢ served in T

[ O R

Fig. 6. The CATD Scheme for VRPTW Decouplings

Fig.7. The First Decoupling of CATD

choosing a time period is similar to that of CASD. First, « is chosen randomly from
the interval [0, lqep]. 0 is then incremented from o + 1 until the desired number of
customers appear in the interval (or when 3 = l4ep). Figure [7] demonstrates a decou-
pling based on the CATD scheme. Unlike prior decouplings, the temporal decoupling
crosses most of the vehicles as seen by the number of routes included in the righthand
side of the figure.
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SELECTDECOMPOSITIONCARD(P, o)
1 S« 0
while |S| < N
do select o« € C'\ S}
select 3 € C'\ S such that route(a) = route(8) A da < 9;
S — SUJc € C such that route(c) = route(a) A da < dc < da;
return S;

[©) NNV TN S US I 9]

Fig. 8. The CARD Scheme for VRPTW Decouplings

6.4 The CARD Scheme

This section describes a simple random decoupling scheme (CARD) used to provide
a basis to evaluate the structured decoupling schemes described in the prior sections.
Figure[8lshows the implementation. The scheme iterates by selecting random sequences
of customers (lines 3—4) until the desired number of customers is achieved (line 2).

7 Experimental Results

This section presents the experimental results for the 1,000 customer extended Solomon
benchmarks (www . top.sintef .no/vrp/benchmarks.html). The benchmarks
contain a mix of loose and tight time windows and different types of spatial distribu-
tions. Recall that the difficulty in these problems, once two-stage algorithms are con-
sidered, is mostly in optimizing travel distances. Hence the experimental results mostly
focus on this second stage, and uses a fixed solution with the minimal number of vehi-
cles from the first phase. The experimental results use large neighborhood search (LNS)
[29] for algorithm A. LNS is one of the most effective algorithms for optimizing ve-
hicle routing problems [291312/26l24]; it also has the benefits of easily accommodating
side constraints [3]], which is important in practical implementations. The experiments
report the solution quality under various time constraints (i.e., 2.5, 5, 10, and 15 min-
utes). Each reported result is the average of 50 runs on an AMD Athlon Dual Core
Processor 3800.

For space reasons, we focus only on class R2. In general, the results on RC1 and R1
show that VASD(LNS) is the best implementation and produces significant improve-
ments in solution quality under time constraints. In average, it produces improvements
of 35%, 29%, 17%, and 6% over LNS when the time constraints require solutions to
be found within 1, 2.5, 5, and 10 minutes respectively on RC1 problems. Both VASD
and CASD outperform LNS on all RC1 and R1 instances and the results of CATD
and CARD are good after the first 2.5 minutes. In general, good solutions to RC1 and
R1 are characterized by vehicles serving very few customers in narrow regions, making
spatial decompositions very natural. It is also important that the decomposition scheme
provides highly competitive solutions when run for about an hour and improves some
of the best-known solutions on these benchmarks.
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Table 1. R2 Solution Quality Under Time Constraints

BK R2101 R2102 R2103 R2104 R2105R2106 R2107 R2108 R2109 R210 10 Avg
UB 42294.31 33459.32 24938.95 17880.11 36258.34 30073.6 23253.89 17509.69 33068.74 30312.5

LNS (1) 56336.2 43864.4 42620.2 33281.9 47352.4 40907.5 38056.6 29516.6 44540.9 40973.8
VASD (1) 67937.5 48391.3 47151.0 29349.6 59075.1 49561.9 38104.1 26981.8 55860.8 47982.2

oImpr. -20.6 -10.3 -10.6 11.8 -248 212 -0.1 8.6 -25.4 -17.1 -11.0
CASD (1)  68108.7 50337.8 47611.1 28388.1 56962.9 50430.3 37210.3 25543.2 56308.1 51254.3
oImpr. -20.9 -14.8 -11.7 14.7 -203  -233 22 135 -26.4 -25.1 -11.2
CATD (1) 51346.6 423523 41823.3 34448.2 46275.7 43460.7 38282.0 31186.8 42321.8 42122.2
oImpr. 8.9 3.4 1.9 -3.5 2.3 -6.2 -0.6 -5.7 5.0 28 03
CARD (1)  76915.0 63039.1 57772.6 40365.4 59084.6 60321.9 48678.5 35275.7 66420.1 62966.8
YoImpr. -36.5 -43.7 -35.6 -21.3 -248 475 -27.9 -19.5 -49.1 -53.7 -36.0

LNS (2.5)  53667.5 41260.3 37907.6 30007.5 44941.5 38028.4 33939.7 26921.2 42134.0 38351.7
VASD (2.5) 58759.6 41955.8 38316.4 24632.8 49847.5 38975.1 32055.8 23029.9 46152.3 40896.1

JoImpr. -9.5 -1.7 -1.1 17.9 -10.9 -2.5 5.6 14.5 -9.5 -6.6 -0.4
CASD (2.5) 54423.3 40426.1 33387.2 22717.8 46063.0 38462.0 29460.6 20837.6 43235.2 39663.2
oImpr. -1.4 2.0 11.9 243 -2.5 -1.1 13.2 22.6 -2.6 -34 63
CATD (2.5) 46203.4 38061.9 33749.0 28799.4 40220.7 36499.3 32848.3 26997.1 37653.3 34791.7
%oImpr. 13.9 7.8 11.0 4.0 10.5 4.0 32 -0.3 10.6 93 74
CARD (2.5) 65820.0 50880.9 43792.2 31651.3 56636.9 47119.1 37598.2 25336.4 54375.1 50583.8
oImpr. -22.6 -23.3 -15.5 -5.5 -26.0  -239 -10.8 59 -29.1 -31.9 -18.3

LNS (5) 51877.8 39871.7 34873.2 27549.9 43616.4 36400.2 31500.3 25323.0 40647.4 37109.6
VASD (5) 54743.7 40546.3 345403 22899.2 46174.3 36959.9 30188.5 21775.7 42417.0 38351.2

%oImpr. -5.5 -1.7 1.0 16.9 -5.9 -1.5 4.2 14.0 -4.4 33 1.4
CASD (5) 494543 38194.8 30138.7 215782 42203.5 34796.8 27451.5 20837.6 38577.2 35847.8
YoImpr. 4.9 4.4 15.7 27.7 33 4.6 14.7 21.5 5.4 3.5 10.6
CATD (5) 446339 36339.7 31647.7 26463.1 39040.4 34816.3 29354.2 25357.9 36014.8 33517.4
oImpr. 14.0 8.9 9.2 3.9 10.5 4.4 6.8 -0.1 11.4 9.7 19
CARD(5) 58595.0 44269.4 37808.6 27458.0 49889.9 40801.7 32854.8 23217.5 47379.4 43606.2
YoImpr. -5.5 -1.7 1.0 16.9 -5.9 -1.5 42 14.0 -4.4 33 14

LNS (10) 50763.2 38737.0 34873.2 25195.6 42848.5 35342.0 29752.8 23665.7 39802.5 36378.8
VASD (10) 51950.6 39427.7 32426.1 221852 44327.2 35842.8 29264.1 21164.4 40519.9 37099.5

JoImpr. -2.3 -1.8 7.0 11.9 -3.5 -1.4 1.6 10.6 -1.8 20 1.8
CASD (10) 47371.3 373432 28991.6 21010.5 40890.2 33852.4 26566.4 20290.5 37112.5 34632.8
oImpr. 6.7 3.6 16.9 16.6 4.6 4.2 10.7 14.3 6.8 48 89
CATD (10) 44172.2 36339.7 31358.7 25469.9 38445.3 33830.0 29354.2 243719 35221.8 32786.1
%oImpr. 13.0 6.2 10.1 -1.1 10.3 43 1.3 -3.0 11.5 99 6.2
CARD (10) 52845.8 40408.6 33549.5 24331.5 45462.6 36987.2 29852.5 23217.5 42537.3 38638.1
JoImpr. -4.1 -4.3 3.8 3.4 -6.1 -4.7 -0.3 1.9 -6.9 -6.2 23

Benefits of CAD. Table[Ildescribes the solution quality under various time constraints
for LNS and various instantiations of CAD(LNS) on R2 problems. Each column de-
scribes a R2 instance with 1,000 customers and the best-known number of vehicles. The
clusters of rows consider various time constraints: 1, 2.5, 5, and 10 minutes. The row
BK specifies the travel distance of the best known solution (prior to this research). The
rows %Impr describes the improvement in solution quality of CAD(LNS) with respect
to LNS. CAD(LNS) is run with N = 200, i.e., the decomposition must contain at least
200 customers.

It is interesting to observe that Table [[] provides very different conclusions than the
results on classes RC1 and R1. High-quality solutions to R2 problems are characterized
by fewer vehicles serving many more customers over wide temporal regions. This puts
VASD at a disadvantage as decompositions typically violate the natural spatial bound-
aries of the wedge due to the need to include all customers of vehicles. This is best
illustrated by the 5 minute results, when the CASD scheme vastly outperforms VASD.
After 2.5, 5, and 10 minutes, CASD produces average improvements of 6.3%, 10.6%,
and 8.9% over LNS, while VASD degrades the performance after 2.5 minutes and
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Fig. 9. Benefits of CAD on R2 10 1 and R2 10 3

produces improvements of 1.4% and 1.6% for 5 and 10 minutes. On some benchmarks,
CASD produces more than 10% over LNS. Interestingly, CATD produces excellent re-
sults on class R2 and produces average improvements of 0.3%, 7.5%, 7.9%, and 6.2%
after 1, 2.5, 5, and 10 minutes. Moreover, it significantly outperforms other decomposi-
tions on several benchmarks where it can produce improvements up to 14%. On closer
inspection, CATD performs very well on those problems whose customers have narrow
time windows. The explanation for this behavior is interesting: when a customer has a
wide time window, it can be served early or late. If it is initially served early when it
should be served late, it is impossible to find a solution that moves the customer to a
later time period, unless every intermediate temporal decoupling provides an improving
solution. On problems with customers with narrow time windows, the problem struc-
ture itself enforces the correct temporal locations of the customers, making a temporal
decomposition very natural.

Figure[Qdepicts the typical behavior of LNS and CAD(LNS) on two benchmarks in
the R2 class. In the left graph, the R2 problem has narrow time windows and CATD is
clearly the best, further demonstrating the natural benefits of this decomposition when
customers have narrow time windows. It also shows the limitations of the VASD ap-
proach under the conditions of class 2 problems. The right part of the figure shows
results on a class 2 problem with wide time windows. Here we see a reversal of the ef-
fectiveness of CATD where CASD is clearly better. Note also that CASD(LNS) and
CATD(LNS) still dominates LNS when both algorithms run for an hour.

Overall, these results clearly show the benefits of customer-based decompositions
and the complementary between spatial and temporal decompositions.

Hybrid Implementations. To exploit this complementarity, We also considered some
hybrid approaches between CASD and CATD to determine if a single approach would
perform well on all instances (for example good on both R2 10 1 and R2 10 3). Two
hybrids worked quite well. The first hybrid chooses to either follow a CATD decou-
pling or a CASD decoupling randomly at each iteration. The second hybrid creates a
decoupling at each iteration that contains N/2 customers from a CATD selection and
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Fig. 10. Benefits of Hybrid Approaches

N/2 from CASD selection. Both schemes generated very consistent results on all prob-
lems, in general being within 1% of the best CASD or CATD result on each problem.
This indicates that when problem structure is unknown or varied, a hybrid approach
may produce the best results. Figure [10] demonstrates how the first hybrid approach
smoothes out performance.

8 Related Work

There are literally hundreds of papers discussing vehicle routing problems and their
variations and it is beyond the scope of this paper to provide a comprehensive litera-
ture review. The reader is invited to see [8I9U1 1416l27125] for recent surveys. Almost all
papers focus on problems of relatively small size which, as mentioned earlier, are al-
ready extremely difficult. Unfortunately, many of the proposed techniques do not scale
well and some recent papers specifically address large-scale problems. We now focus
attention on recent work that have considered decomposition ideas.

Decomposition comes in many different varieties in literature. In some papers, like
[546], decomposition focuses on decomposing the search strategy space (as opposed
to problem structure). Related to this idea is the view of decomposition across at-
tributes (variables) of the problems. Multi-stage approaches such as [1512/21118/1047]
can be classified in this way (i.e., first minimizing the number vehicles required and
then minimizing the travel distance). [[12] suggests a general framework for breaking
problems across attribute boundaries using evolutionary algorithms. The different sub-
problems communicate results via population exchanges. The framework is tested on
the VRPTW. They key difference between attribute decomposition and CAD is that
our approach retains information about the entire problem and simplifies the problem
by decreasing their scale.

Recent and concurrent work has focused on dividing the problem into smaller sub-
problems across structural boundaries that is very much in the spirit of VASD. [20]
presents a deterministic hierarchical decomposition scheme for evolutionary algorithms.
The VRPTW spatial region is divided into rectangles, defining sub problems that are
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solved independently. The rectangles are recursively merged into larger subproblems
which rely on the smaller problems as starting solutions for the larger subproblems. [[1]]
introduces spatial-based decomposition ideas in a genetic algorithm. Their approach
randomly applies the evolutionary operations to either the whole problem or spatially
defined sub regions. [23122] presents some interesting spatial decomposition approaches
based on clustering (POPMUSIC). At a high level, POPMUSIC iteratively chooses
routes and creates subproblems based on nearness to that route (different approaches to
defining nearness are explored). The algorithm iterates until it has created subproblems
on all routes without improvement. Finally, the work of [13] proposes a decoupling
scheme for the air-taxi problem based on spatial boundaries.

In many ways, all of these approach can be viewed as variations of VASD. The key
difference between these approaches and our framework is that they decompose prob-
lems based on routes as opposed to customers. This makes the merging of solutions
from the subproblems to the global problem easy. However, by structuring the decom-
positions on a customer basis, we are able to create subproblems within routes, a prop-
erty that is very important when routes cross multiple spatial and temporal boundaries.
But is important to note that this related work also supports our claim that decomposi-
tion improves algorithm performance.

It is useful to contrast the deconstruction steps of LNS ([29/26/28l24]]) and the CAD
scheme. In LNS, the basic step consists of removing related customers (often based
on spatial or temporal relationships) from a plan ¢ and to reinsert them in o using
an optimization algorithm. The CAD scheme can also be thought of as removing re-
lated customers with two fundamental differences: 1) the removed customers defines
a VRPTW subproblem of (significantly) smaller size which can solved independently
and 2) Subproblems restrict neighborhood explorations to being within the decomposi-
tion itself. This is critical for finding high-quality solution quickly. Obviously, the two
approaches are synergetic since our results are obtained using CAD(LNS).

Finally, it is useful to relate CAD to the approach in [[1'7]] which impose specific tem-
poral constraints to obtain decouplings. CAD uses spatial and temporal decouplings
that constrain specific subsets of customers to be served by designated vehicles. More-
over, the use of decoupling is fundamentally different. The idea is to iteratively obtain
new decouplings to optimize an existing plan by re-optimizing subproblems. This use
of decouplings also contrast with traditional decomposition techniques in constraint
satisfaction [[14].

9 Conclusion

This paper reconsidered the adaptive decomposition framework to quickly find high-
quality solutions to large-scale vehicle routing problems with time windows. Earlier
work had focused vehicle-based decompositions that partition the vehicles across the
subproblems which makes it easy to define the subproblems and merge their solutions.
Although vehicle-based spatial decompositions are very effective on classes R1 and
RC1 of the extended Solomon benchmarks, the paper identified some of their limita-
tions and, in particular, the difficulty in adapting them to temporal decompositions. This
paper then proposed customer-based decompositions which generalize vehicle-based
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decouplings and allow for focused spatial and temporal decompositions. Experimen-
tal results on class R2 of the extended Solomon benchmarks demonstrated the benefits
of the customer-based adaptive decomposition scheme and its spatial, temporal, and
hybrid instantiations. In particular, the results show significant benefits over the use
of large neighborhood search and vehicle-based spatial decompositions. For instance,
customer-based temporal decompositions yield an average improvement of 7.4% over
LNS after 2.5 minutes, while the vehicle-based spatial decomposition degrades the per-
formance by 0.4% in average. Similarly, customer-based spatial decompositions yield
an average improvement of 10.6% over LNS after 5 minutes, while the vehicle-based
spatial decomposition improves the performance by only 1.4% in average. The com-
plementary between spatial and temporal decompositions was also highlighted and hy-
bridizations were shown to be particularly effective in producing robust results across
all benchmarks. An intriguing future research direction is to determine whether the de-
composition can be chosen automatically from the instance structure.
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Abstract. We study decompositions of the global NVALUE constraint. Our main
contribution is theoretical: we show that there are propagators for global con-
straints like N VALUE which decomposition can simulate with the same time com-
plexity but with a much greater space complexity. This suggests that the benefit
of a global propagator may often not be in saving time but in saving space. Our
other theoretical contribution is to show for the first time that range consistency
can be enforced on NVALUE with the same worst-case time complexity as bound
consistency. Finally, the decompositions we study are readily encoded as linear
inequalities. We are therefore able to use them in integer linear programs.

1 Introduction

Global constraints are one of the distinguishing features of constraint programming.
They capture common modelling patterns and have associated efficient propagators for
pruning the search space. For example, ALL-DIFFERENT is one of the best known
global constraints that has proven useful in the modelling and solving of many real
world problems. A number of efficient algorithms have been proposed to propa-
gate the ALL-DIFFERENT constraint (e.g. [1L2l3]]). Whilst there is little debate that
ALL-DIFFERENT is a global constraint, the formal definition of a global constraint
is more difficult to pin down. One property often associated with global constraints is
that they cannot be decomposed into simpler constraints without impacting either the
pruning or the efficiency of propagation [4]]. Recently progress has been made on the
theoretical problem of understanding what is and isn’t a global constraint. In particular,
whilst a bound consistency propagator for the ALL-DIFFERENT constraint can be ef-
fectively simulated with a simple decomposition [3], circuit complexity lower bounds
have been used to prove that a domain consistency propagator for ALL-DIFFERENT
cannot be polynomially simulated by a simple decomposition [6].

In this paper, we turn to a strict generalization of the ALL-DIFFERENT constraint.
NVALUE counts the number of values used by a set of variables; the ALL-DIFFERENT
constraint ensures that this count equals the cardinality of the set. From a theoretical
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perspective, the NVALUE constraint is significantly more difficult to propagate than the
ALL-DIFFERENT constraint since enforcing domain consistency is known to be NP-
hard [7]. Moreover, as NVALUE is a generalization of ALL-DIFFERENT, there exists no
polynomial sized decomposition of NVALUE which achieves domain consistency [6].
Nevertheless, we show that decomposition can simulate the polynomial time algorithm
for enforcing bound consistency on NVALUE but with a significant space complexity.
We also prove, for the first time, that range consistency on NVALUE can be enforced
in the same worst case time complexity as bound consistency. This contrasts with the
ALL-DIFFERENT constraint where range consistency takes O(n?) time [2] but bound
consistency takes just O(n logn) time [3].

The main value of these decompositions is theoretical as their space complexity is
equal to their worst case time complexity. When domains are large, this space complex-
ity may be prohibitive. In the conclusion, we argue why it appears somewhat inevitable
that the space complexity is equal to the worst case time complexity. These results sug-
gest new insight into what is and isn’t a global constraint: a global constraint either
provides more pruning than any polynomial sized decomposition or provides the same
pruning but with lower space complexity. There are several other theoretical reasons
why the decompositions studied here are interesting. First, it is technically interest-
ing that a complex propagation algorithm like the bound consistency propagator for
NVALUE can be simulated by a simple decomposition. Second, these decompositions
can be readily encoded as linear inequalities and used in linear programs. In fact, we
will report experiments using both constraint and integer linear programming with these
decompositions. Since global constraints are one of the key differentiators between con-
straint and integer programming, these decompositions provide us with another tool to
explore the interface between constraint and integer programming. Third, the decompo-
sitions give insights into how we might add nogood learning to a NVALUE propagator.

2 Background

A constraint satisfaction problem (CSP) consists of a set of variables, each with a fi-
nite domain of values, and a set of constraints. We use capitals for variables and lower
case for values. We assume values are taken from the set 1 to d. We write dom(X;) for
the domain of possible values for X;, min(X;) for the smallest value in dom(X;),
max(X;) for the greatest, and range(X;) for the interval [min(X;), max(X;)].
Constraint solvers typically use backtracking search to explore the space of partial as-
signments. After each assignment, propagation algorithms prune the search space by
enforcing local consistency properties like domain, range or bound consistency. A con-
straint is domain consistent (DC) iff when a variable is assigned any of the values in
its domain, there exist compatible values in the domains of all the other variables of
the constraint. Such an assignment is called a support. A CSP is domain consistent iff
every constraint is domain consistent. A constraint is disentailed iff there is no possi-
ble support. A propagator which enforces domain consistency will detect disentailment,
but a propagator that detects just disentailment will not enforce domain consistency. A
constraint is range consistent (RC) iff, when a variable is assigned any of the values in
its domain, there exist compatible values between the minimum and maximum domain
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value for all the other variables of the constraint. Such an assignment is called a bound
support. A constraint is bound consistent (BC) iff the minimum and maximum value
of every variable of the constraint belong to a bound support. A CSP is bound con-
sistent iff every constraint is bound consistent. We compute the total amortized cost of
enforcing a local consistency down an entire branch of the search tree. This captures the
incremental cost of propagation. Finally, we will assume that a propagator is invoked
at most once for each domain change and that the solver uses an optimal propagator
to enforce BC on sum and channeling constraints. Such assumptions hold for modern
solvers like Gecode and Ilog Solver. However, we make no assumption about the order
of invocation of the constraints in a decomposition. The upper bounds we give hold
regardless of the order in which constraints are processed.

A global constraint is one in which the arity of the constraint n is a parameter. A
decomposition of a global constraint is a CSP involving the n variables of the global
constraint (and possibly others), involving only constraints with fixed arity (no global
constraint) or constraints that are themselves decomposable, such that the size of the
CSP is polynomial in the sum of the sizes of the domains of the n original variables, and
such that the projection of its solutions on those n variables corresponds to the solutions
of the global constraint. A useful notion is algorithmic globality [4]. Informally, given
a local consistency property, a global constraint is algorithmically global if there is no
decomposition on which this local consistency is achieved in the same time and space
complexity. We suggest here two refinements of this notion of algorithmic globality.
First, we will separate the space and time complexity. That is, given a local consistency
property, a global constraint is algorithmically global with respect to time (space) if
there is no decomposition on which this local consistency is achieved in the same time
(space) complexity. Second, unlike [4], we consider decompositions that may introduce
new variables. Our results will show that, when we introduce new variables, NVALUE
is not algorithmically global with respect to time but is global with respect to space.

3 NVALUE Constraint

Pachet and Roy first proposed the NVALUE constraint [§8]. Formally
NVALUE([X1,...,X,], N) ensures that N = [{X; | 1 < ¢ < n}|. This gener-
alizes several other global constraints including ALL-DIFFERENT (which ensures
that the number of values taken by a set of variables equals the cardinality of the set)
and NOT-ALL-EQUAL (which ensures a set of variables take more than one value).
Enforcing domain consistency on the NVALUE constraint is NP-hard (Theorem 3 in
[7]) even when N is fixed (Theorem 2 in [9]). In fact, just computing the lower bound
on N is NP-hard (Theorem 3 in [[10]). In addition, enforcing domain consistency on
the NVALUE constraint is not fixed parameter tractable since it is W [2]-complete [11].
However, several polynomial propagation algorithms have been proposed that achieve
bound consistency and some closely related levels of local consistency [[1209413]].

3.1 Simple Decomposition

Global constraints can often be decomposed into simpler, more primitive and small ar-
ity constraints. For example, the ALL-DIFFERENT constraint can be decomposed into
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a quadratic number of binary inequalities. However, such decomposition often hinders
propagation and can have a significant impact on the solver’s ability to find solutions
[[14]]. We can decompose the NVALUE constraint by introducing 0/1 variables to repre-
sent which values are used and posting a sum constraint on these introduced variables:

Xi=j—Bj=1 Vl<i<nl<j<d (1)
Bi=1-Vi_ Xi=j vVl<j<d 2)
i Bj=N 3)

Note that constraint 3]is not a fixed arity constraint, but can itself be decomposed to
ternary sums without hindering bound propagation. Unfortunately, this simple decom-
position hinders propagation. It can be BC whereas BC on the corresponding NVALUE
constraint detects disentailment.

Theorem 1. BC on NVALUE is stronger than BC on its decomposition into (1) to (3).

Proof: Clearly BC on NVALUE is at least as strong as BC on the decomposition. To
show strictness, consider X; € {1,2}, X, € {3,4}, B; € {0,1} for1 < j < 4, and
N = 1. Constraints (@) to (@) are BC. However, the corresponding NVALUE constraint
has no bound support and thus enforcing BC on it detects disentailment. O

We observe that enforcing DC instead of BC on constraints (IJ) to (3) in the example
of the proof above still does not prune any value. To decompose NVALUE without
hindering propagation, we must look to more complex decompositions.

3.2 Decomposition into ATMOSTNVALUE and ATLEASTN VALUE

Our first step in decomposing the NVALUE constraint is to split it into
two parts: an ATMOSTNVALUE and an ATLEASTNVALUE constraint.
ATLEASTNVALUE([X,..., X,],N) holds iff N < |{X;]1 < i < n}| whilst
ATMOSTNVALUE([ X7, ..., X,], N) holds iff [{ X;|1 <i <n}| < N.

Running Example. Consider a NVALUE constraint over the following variables and

values:

12345
X1 % k% %
Xa *
X3 * ok ok
X4 *
X5 * %k
N *x % *

Suppose we decompose this into an ATMOSTN VALUE and an ATLEASTNVALUE con-
straint. Consider the ATLEASTN VALUE constraint. The 5 variables can take at most
4 different values because X, X3, X4, and X5 can only take values 2, 3 and 4. Hence,
there is no bound support for N = 5. Enforcing BC on the ATLEASTNVALUE con-
straint therefore prunes N = 5. Consider now the ATMOSTNVALUE constraint. Since
X5 and X4 guarantee that we take at least 2 different values, there is no bound support
for N = 1. Hence enforcing BC on an ATMOSTNVALUE constraint prunes N = 1. If



118 C. Bessiere et al.

X1 =1, 3orb, or X5 = 3 then any complete assignment uses at least 3 different val-
ues. Hence there is also no bound support for these assignments. Pruning these values
gives bound consistent domains for the original NVALUE constraint:

12345
X1 ok
Xo %
X3 * ok ok
X4 *
X5 *
N *

To show that decomposing the NVALUE constraint into these two parts does not
hinder propagation in general, we will use the following lemma. Given an assignment
S of values, card(S) denotes the number of distinct values in S. Given a vector of
variables X = X ... X, cardy(X) = maz{card(S) | S € IIx,exrange(X;)} and
card)(X) = min{card(S) | S € IIx,exrange(X;)}.

Lemma 1 (adapted from [13])). Consider NVALUE([ X1, ..., Xp], N). If dom(N) C
[card| (X), cardy(X)], then the bounds of N have bound supports.

Proof: Let S,,;, be an assignment of X in ITx,c xrange(X;) with card(Spmin) =
card) (X) and S,,4, be an assignment of X in ITx, e xrange(X;) with card(Smaz) =
cardy(X). Consider the sequence Spin, = S0, S1, - - ., Sn = Smaz Where Sg41 is the
same as Sy except that X1 has been assigned its value in S,,,4, instead of its value in
Smin. |card(Sky1) — card(Sk)| < 1 because they only differ on X} 1. Hence, for any
p € [card) (X), card; (X)), there exists k € 1..n with card(Sg) = p. Thus, (Sk,p)isa
bound support for p on NVALUE([ X1, ..., X,], N). Therefore, min(N) and maz(N)
have a bound support. O

We now prove that decomposing the NVALUE constraint into ATMOSTN VALUE and
ATLEASTNVALUE constraints does not hinder pruning when enforcing BC.

Theorem 2. BC on NVALUE([Xy,...,X,],N) is equivalent to BC on
ATMOSTNVALUE([X7, ..., X,], N) and on ATLEASTNVALUE([X1, ..., X,], N).

Proof: Suppose the ATMOSTNVALUE and ATLEASTNVALUE constraints are BC.
The ATMOSTNVALUE constraint guarantees that card;(X) < min(N) and the
ATLEASTNVALUE constraint guarantees that card;(X) > max(N). Therefore,
dom(N) € [card|(X), card; (X)]. By Lemmal[ll the variable NV is bound consistent.
Consider a variable/bound value pair X; = b. Let (Slbeast, p1) be a bound support
of X; = b in the ATLEASTNVALUE constraint and (S%,,.,,p2) be a bound sup-
port of X; = b in the ATMOSTNVALUE constraint. We have card(S?,..,) > p1
and card(S%,,.;) < p2 by definition of ATLEASTNVALUE and ATMOSTNVALUE.
Consider the sequence S2, .., = S§,5%,...,8% = S5 .. where S? 41 is the same
as SP except that X5 has been assigned its value in S, instead of its value in
5P st lcard(Sp, 1) — card(Sp)| < 1 because they only differ on X ;. Hence,
there exists k € 1..n with min(py,p2) < card(S,’;) < maz(p1,p2). We know
that p; and po belong to range(N) because they belong to bound supports. Thus,
card(S?) € range(N) and (SP,card(S?)) is a bound support for X; = b on
NVALUE([X1, ..., X,], N). a
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When enforcing domain consistency, Bessiere et al. [13] noted that decomposing the
NVALUE constraint into ATMOSTNVALUE and ATLEASTNVALUE constraints does
hinder propagation, but only when dom (V) contains just card) (X) and card; (X) and
there is a gap in the domain in-between (see Theorem 1 in [13]] and the discussion that
follows). When enforcing BC, any such gap in the domain for N is ignored.

4 ATMOSTNVALUE Constraint

We now give a decomposition for the ATMOSTN VALUE constraint which does not hin-
der bound consistency propagation. To decompose the ATMOSTNVALUE constraint,
we introduce 0/1 variables, A;;,, to represent whether X; uses a value in the interval
[, u], and “pyramid” variables, Mj,, with domains [0, min (v — ! + 1, n)] which count
the number of values taken inside the interval [I, u]. To constrain these introduced vari-
ables, we post the following constraints:

Ajjy =1 <= X;el,u] V1<i<n,1<I<u<d 4)
Ay < My, Vi<i<mnl<l<u<d )
My = Mg+ Mgy, V91<k<u<d (6)
Mg < N (7

Running Example. Consider the decomposition of an ATMOSTNVALUE constraint
over the following variables and values:
12345

X1 % k% %

Xo %

X3 * ok ok

X4 *

X5 * ok

Observe that we consider that value 5 for N has already been pruned by
ATLEASTNVALUE, as will be shown in next sections. Bound consistency reasoning
on the decomposition will make the following inferences. As Xo = 2, from @) we
get Asss = 1. Hence by @), Mao = 1. Similarly, as Xy = 4, we get Ay = 1
and Myy = 1. Now N € {1,2} By GZI) and ([61), Mis < N, M5 = My + Mss,
Mg = M3 + Mayg, M1z = Mio + M3s, Mia = M1 + Maa. Since Moy = Myy =1,
we deduce that N > 1 and hence N = 2. This gives M1, = M3s3 = Ms5 = 0. By (3),
A111 = A133 = A155 = A533 = 0. Finally, from (E]), we get X1 = 2 and X5 = 3. This
gives us bound consistent domains for the ATMOSTN VALUE constraint.

We now prove that this decomposition does not hinder propagation in general.

Theorem 3. BC on constraints () to Q) is equivalent to BC on ATMOSTNVALUE
([X1,...,Xn], N), and takes O(nd>) time to enforce down the branch of the search
tree.

Proof: First note that changing the domains of the X variables cannot affect the upper
bound of N by the ATMOSTNVALUE constraint and, conversely, changing the lower
bound of N cannot affect the domains of the X variables.
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LetY = {X,,,..., Xp,} be a maximum cardinality subset of variables of X whose
ranges are pairwise disjoint (i.e., range(X,,) Nrange(X,,) = 0,Vi, j € 1.k,i # j).
Let Iy = {[b;, ;] | by = min(Xp,), ¢; = max(X,,), Xp, € Y} be the corresponding
ordered set of disjoint ranges of the variables in Y. It has been shown in [9] that |Y'| =
card) (X).

Consider the interval [b;, ¢;] € Iy. Constraints (8) ensure that the variables My, ., i =
[1,..., k] are greater than or equal to 1 and constraints (@) ensure that the variable M4
is greater than or equal to the sum of lower bounds of variables My, .,, i = [1,...,k],
because intervals [b;, ¢;] are disjoint. Therefore, the variable N is greater than or equal
to card| (X ) and it is bound consistent.

We show that when N is BC and dom(N) # {card;(X)}, all X variables are BC.
Take any assignment S € IIx,cxrange(X;) such that card(S) = card;(X). Let
S[X; < b] be the assignment S where the value of X in S has been replaced by b, one
of the bounds of X;. We know that card(S[X; <« b]) € [card(S) — 1, card(S) + 1] =
[card; (X) — 1, card| (X )+ 1] because only one variable has been flipped. Hence, any
assignment (S, p) with p > card;(X) + 1 is a bound support. dom(N) necessarily
contains such a value p by assumption.

The only case when pruning might occur is if the variable N is ground and
card|(X) = N. Constraints (6) imply that M, equals the sum of variables M , 1 +
My, i +Me,11,0—1 - -+ My ey +Mcy+1,4- The lower bound of the variable M, ,
is greater than one and there are |Y'| = card| (X) = N of these intervals. Therefore, by
constraint (7)), the upper bound of variables M., ,4+1,,—1 that correspond to intervals
outside the set Iy are forced to zero.

There are O(nd?) constraints (@) and constraints (3)) that can be woken O(d) times
down the branch of the search tree. Each requires O(1) time for a total of O(nd*) down
the branch. There are O(d?) constraints (6) which can be woken O(n) times down the
branch and each invocation takes O(1) time. This gives a total of O(nd?). The final
complexity down the branch of the search tree is therefore O(nd?). ad

The proof of theorem [3]also provides the corollary that enforcing range on consistency
on constraints @] enforces range consistency on ATMOSTN VALUE. Note that theorem3]
shows that the BC propagator of ATMOSTNVALUE [12] is not algorithmically global
with respect to time, as BC can be achieved with a decomposition with comparable
time complexity. On the other hand, the O(nd?) space complexity of this decomposi-
tion suggests that it is algorithmically global with respect to space. Of course, we only
provide upper bounds here, so it may be that ATMOSTN VALUE is not algorithmically
global with respect to either time or space.

5 Faster Decompositions
We can improve how the solver handles this decomposition of the ATMOSTN VALUE

constraint by adding implied constraints and by implementing specialized propagators.
Our first improvement is to add an implied constraint and enforce BC on it:

d
Mg = ZMu (8)
i=1
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This does not change the asymptotic complexity of reasoning with the decomposition,
nor does it improve the level of propagation achieved. However, we have found that the
fixed point of propagation is reached quicker in practice with such an implied constraint.

Our second improvement decreases the asymptotic complexity of enforcing BC on
the decomposition of Section 4l The complexity is dominated by reasoning with con-
straints (@) which channel from X; to A;;,, and thence onto M, (through constraints
([@D). If constraints (@) are not woken uselessly, enforcing BC costs O(1) per constraint
down the branch. Unfortunately, existing solvers wake up such constraints as soon as a
bound is modified, thus giving a cost in O(d). We therefore implemented a specialized
propagator to channel between X; and M, efficiently. To be more precise, we remove
the O(nd?) variables A;,, and replace them with O(nd) Boolean variables Z;;. We
then add the following constraints

Zij=1 <= X; <3 1<j<d 9
Zigo1y =1V Zin = 0V My, > 0 l<l<u<dl<i<n (10)

These constraints are enough to channel changes in the bounds of the X variables to
Mj,,. There are O(nd) constraints (9), each of which can be propagated in time O(d)
over a branch, for a total of O(nd?). There are O(nd?) clausal constraints (IQ) and each
of them can be made BC in time O(1) down a branch of the search tree, for a total cost
of O(nd?). Since channeling dominates the asymptotic complexity of the entire decom-
position of Section [ this improves the complexity of this decomposition to O(nd?).
This is similar to the technique used in [S]] to improve the asymptotic complexity of the
decomposition of the ALL-DIFFERENT constraint.

Our third improvement is to enforce stronger pruning by observing that when
M, = 0, we can remove the interval [, u] from all variables, regardless of whether
this modifies their bounds. This corresponds to enforcing RC on constraints (). Inter-
estingly, this is sufficient to achieve RC on the ATMOSTNVALUE constraint. Unfortu-
nately, constraints (I0) cannot achieve this pruning and using constraints () increases
the complexity of the decomposition back to O(nd?). Instead we extend the decompo-
sition with O(d log d) Boolean variables B 4ory € [0,1],1 < i <n,1 <1<d,0 <
k < [logd]. The following constraint ensures that B;;; = 1 <= X; = j.

DOMAINBITMAP(X;, [Bi11, - - -, Bidd)) an

Clearly we can enforce RC on this constraint in time O(d) over a branch, and O(nd)
for all variables X;. We can then use the following clausal constraints to channel from
variables M, to these variables and on to the X variables. These constraints are posted
foreveryl < i <n,1 <l <wu<d1<j<dandintegers ksuchthat 0 < k <
|logd]:

Bij(j+2k'+171) =1 vV Bij(j+2k'71) - O (12)
Bij(jrar+i—1) = 1V Bi(jaak)(jarti—1) = 0 (13)
M, # 0V Byqor 1) =0 2F <u—l+1<2M a4

My # 0V Bj(y—2k 41y, =0 ¥ <u—l4+1<2M (15)
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The variable By 4or_1), similarly to the variables Aj,, is true when X; € [I,] +
2% —1], but instead of having one such variable for every interval, we only have them for
intervals whose length is a power of two. When M;,, = 0, with ok < —141 < 2kt1
the constraints (I4)—(I3) set to 0 the B variables that correspond to the two intervals of
length 2F that start at [ and finish at u, respectively. In turn, the constraints (I12)—(13)
set to 0 the B variables that correspond to intervals of length 2¥~1, all the way down to
intervals of size 1. These trigger the constraints (II), so all values in the interval [/, u]
are removed from the domains of all variables.

Example. Suppose X1 € [5,9]. Then, by @), Z14 = 0, Z19 = 1 and by [[0), M39 > 0.
Conversely, suppose Msg = 0 and X, € [1,10]. Then, by (IA)—(IL3), we get Biss = 0
and 3169 = 0. From Bl58 = 0 and m—m we get Bl56 = O, Bl78 = O, 3155 =
Bigs = B177 = Biss = 0, and by (T0), the interval [5, 8] is pruned from X;. Similarly,
Bigg = 0 causes the interval [6,9] to be removed from X1, so X1 € [1,4] U {10}.

Note that RC can be enforced on each of these constraints in constant time over a

branch. There exist O(ndlogd) of the constraints (I2)-(13) and O(nd?) of the con-
straints (I4)—(T3), so the total time to propagate them all down a branch is O(nd?).

6 ATLEASTNVALUE Constraint

There is a similar decomposition for the ATLEASTNVALUE constraint. We introduce
0/1 variables, A;;,, to represent whether X; uses a value in the interval [/, u], and integer
variables, Ej,, with domains [0, n] to count the number of times values in [, u] are re-
used, that is, how much the number of variables taking values in [, u] exceeds the
number v — [ + 1 of values in [, u]. To constrain these introduced variables, we post the
following constraints:

Ay =1 <= X, € [l,u] Vi<i<n,1<l<u<d (16)
En>>0" Ay —(u—1+1) V1<I<u<d (17)
Eru = E1k + Egyiy Vi<k<u<d (18)

N <n-Eyq (19)

Running Example. Consider the decomposition of an ATLEASTN VALUE constraint
over the following variables and values:

12345
X1 % k% %
Xo  *

X3 * ok ok
X4 *
X5 * ok
N *x % *

Bound consistency reasoning on the decomposition will make the following inferences.
As dom(X;) C [2,4] fori € 2..5, from (I6) we get Aj24 = 1 fori € 2..5. Hence, by
m, FEs>y > 1. By (DH), Fi5 = B4+ Ess, B4 = E11+ Eay. Since Eoy > 1 we deduce
that E15 > 1. Finally, from (I9) and the fact that n = 5, we get N < 4. This gives us
bound consistent domains for the ATLEASTNVALUE constraint.
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We now prove that this decomposition does not hinder propagation in general.

Theorem 4. BC on the constraints ({6) to (@9) is equivalent to BC on
ATLEASTNVALUE ([X1, ..., X,], N), and takes O(nd?) time to enforce down the
branch of the search tree.

Proof: First note that changing the domains of the X variables cannot affect the lower
bound of N by the ATLEASTN VALUE constraint and, conversely, changing the upper
bound of N cannot affect the domains of the X variables.

It is known [12] that card;(X) is equal to the size of a maximum matching M in
the value graph of the constraint. Since N < n — F14, we show that the lower bound of
E1q is equal to n — | M| [l We first show that we can construct a matching M (E) of size
n — min(FE14), then show that it is a maximum matching. The proof uses a partition of
the interval [1, d] into a set of maximal saturated intervals I = {[bj,¢;]}, j =1,...,k
such that min(Ey, o) = > i min(Aap,c,) — (¢; — bj + 1) and a set of unsaturated
intervals {[b;, cj]}such that min(Ep, ;) = 0.

Let I = {[bj,c;] | 7 € [L...k]} be the ordered set of maximal intervals such
that min(Ey, o) = > i min(Aa,c,) — (¢; — bj + 1). Note that the intervals in
I are disjoint otherwise intervals are not maximal An interval [b;, cl} is smaller than
[bj, ¢;] iff ¢; < b;. We denote the union of the first j intervals D} = (J/_, [bs, ¢i],
j=11,...,k],p = |D¥| and the variables whose domain is inside one of intervals I
X = {XPL|d0m( L) - Dk}

Our construction of a matching uses two sets of variables, X; and X \ X;. First, we
identify the cardinality of these two sets. Namely, we show that the size of the set X7 is
p + min(E 4) and the size of the set X \ Xy isn — (p + min(E1 q)).

Intervals I are saturated therefore each value from these intervals are taken by a
variable in X;. Therefore, X; has size at least p. Moreover, there exist min(E1,)
additional variables that take values from D’f, because values from intervals be-
tween two consecutive intervals in / do not contribute to the lower bound of the
variable F by construction of I. Therefore, the number of variables in D’I“ is at
least p + min(E 4). Note that constraints (I8) imply that F14 equals the sum of
variables F1 5, 1 + Fpye; + Feygipa—1--- + Fby e, + Fep1,4- As intervals in [
are disjoint then Zle min(Ep, ¢;) = |X1| — p. If | X1] > p + min(Ey,4) then
Zle min(Ep, ¢;) > min(E 4) and the lower bound of the variable E;4 will be in-
creased. Hence, | X7| = p + min(E1 q).

Since all these intervals are saturated, we can construct a matching M7 of size p using
the variables in X ;. The size of X \ X} is n—p—min(FE14). We show by contradiction
that we can construct a matching M p,_ D* of size n —p — min(F14) using the variables
in X \ X7 and the values D — D¥.

Suppose such a matching does not exist. Then, there exists an interval [b, ¢] such
that |(D \ D¥) N [b, ]| < Yiex\x; Min(Aip), ie., after consuming the values in
I with variables in X, we are left with fewer values in [b, ¢| than variables whose
domain is contained in [b, ¢]. We denote p’ = |[b, ¢] N D], so that p’ is the number of
values inside the interval [b, ¢] that are taken by variables in X;. The total number of

! We assume that E4 is not pruned by other constraints.
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variables inside the interval [b, ] is greater than or equal to y_;" | min(A;.). The total
number of variables X inside the interval [b, ¢] equals to p’ + min(Ey ). Therefore,
Diex\x Min(Aine) < 3070, min(Agpe) — p' — min(Ejp,c). On the other hand, the
number of values that are not taken by the variables X in the interval [b, c] is ¢ —
b+ 1 — p'. Therefore, we obtain the inequality c —b+ 1 —p’ < 7" | min(Aipe) —
p' — min(Ey,c) or min(Ep) < Y1 min(Ape) — (¢ — b+ 1). By construction of
I Y0 min(Ape) — (¢ — b+ 1) < min(Ep.), otherwise the intervals in [ that are
subsets of [b, ¢] are not maximal. This leads to a contradiction, so we can construct a
matching M (E) of size n — min(E14).

Now suppose that M (E) is not a maximum matching. This means that min(E14)
is overestimated by propagation on (I6) and (I9). Since M (F) is not a maximum
matching, there exists an augmenting path of M (F), that produces M’, such that
|M'| = [M(E)| 4+ 1. This new matching covers all the values that M (E) covers and
one additional value g. We show that ¢ cannot belong to the interval [1, d].

The value ¢ cannot be in any interval in I, because all values in [b;, ¢;] € T are used
by variables whose domain is contained in [b;, ¢;]. In addition, ¢ cannot be in an interval
[b, ¢] between two consecutive intervals in I, because those intervals do not contribute
to the lower bound of Ej4. Thus, M’ cannot cover more values than M (F) and they
must have the same size, a contradiction.

We show that when N is BC and dom(N) # {card;(X)}, all X variables are BC'
Take any assignment S € ITx,cxrange(X;) such that card(S) = card;(X). Let
S[X; < b] be the assignment S where the value of X; in S has been replaced by b, one
of the bounds of X;. We know that card(S[X; < b]) € [card(S) — 1, card(S) + 1] =
[card; (X) — 1, card; (X) 4 1] because only one variable has been flipped. Hence, any
assignment (.S, p) with p < card;(X) — 1 is a bound support. dom (V) necessarily
contains such a value p by assumption.

We now show that if N = card;(X), enforcing BC on the constraints (I6)—(TI9)
makes the variables X BC with respect to the ATLEASTNVALUE constraint. We first
observe that in a bound support, variables X must take the maximum number of dif-
ferent values because N = cardy (X ). Hence, in a bound support, variables X that are
not included in a saturated interval will take values outside any saturated interval they
overlap and they all take different values. We recall that min(E1q) = n — |M| =
n — cardy(X). Hence, by constraint {9, Fiq = n — N. We recall the the size
of set Xt equals p + E14. Constraints (I8) imply that F14 equals the sum of vari-
ables By, 1+ Ep,c; + Bert1by—1- -+ By + Eerr1.0and SSF_ min(By, .,) =
| X1| — p = min(FE14) = maz(E14). Hence, by constraints (I8)), the upper bounds of
all variables F}, ., that correspond to the saturated intervals are forced to min(Ep, , ).
Thus, by constraints (1) and (I7)), all variables in X \ X have their bounds pruned
if they belong to D¥. By constraints (I8) again, the upper bounds of all variables Ej,,
that correspond to the unsaturated intervals are forced to take value 0, and all variables
Eyy with [/, u'] C [I, u] are forced to 0 as well. Thus, by constraints (T6) and (7)), all
variables in X \ X have their bounds pruned if they belong to a Hall interval of other
variables in X \ X;. This is what BC on the ALL-DIFFERENT constraint does [5]].

There are O(nd?) constraints ([6) that can be woken O(d) times down the branch
of the search tree in O(1), so a total of O(nd®) down the branch. There are O(d?)
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constraints (I7) which can be propagated in time O(n) down the branch for a O(nd?).
There are O(d?) constraints (I8) which can be woken O(n) times each down the branch
for a total cost in O(n) time down the branch. Thus a total of O(nd?). The final com-
plexity down the branch of the search tree is therefore O(nd?). O

The complexity of enforcing BC on ATLEASTNVALUE can be improved to O(nd?)
in a way similar to that described in Section[3land in [3]]. As with ATMOSTNVALUE,
enforcing RC on constraints (I6) enforces RC on ATLEASTNVALUE, but in this case
we cannot reduce the complexity below O(nd?). Similarly to ATMOSTN VALUE, the-
orem[] shows that the bound consistency propagator of ATLEASTN VALUE is not algo-
rithmically global with respect to time and provides evidence that it is algorithmically
global with respect to space.

7 Experimental Results

As noted before, the main value of these decompositions is theoretical: demonstrating
that the bound consistency propagator of [[12] for the NVALUE constraint can be sim-
ulated using a simple decomposition with comparable time complexity over a branch
of the search tree but greater space complexity. To see when this space complexity hits,
we performed some experiments. We used a benchmark problem, the dominating set of
the Queen’s graph used in previous studies of NVALUE [[13]] and ran experiments with
Ilog Solver 6.2 and Ilog CPLEX 9.1 on an Intel Xeon 4 CPU, 2.0 Ghz, 4Gb RAM. The
dominating set of the Queen’s graph problem is to put the minimum number of queens
on an X n chessboard, so that each square either contains a queen or is attacked by one.
This is equivalent to the dominating set problem of the Queen’s graph. Each vertex in
the Queen’s graph corresponds to a square of the chessboard and there exists an edge
between two vertices iff a queen from one square can attack a queen from the other
square. To model the problem, we use a variable X; for each square, and values from
1 to n? and post a single ATMOSTNVALUE([X1, . .., X,,2], N) constraint. The value
Jj belongs to dom(X;) iff there exists an edge (i, j) in the Queen’s graph or j = i. For
n < 120, all minimum dominating sets for the Queen’s problem are either of size [n/2]
or [n/2 + 1] [15]. We therefore only solved instances for these two values of V.

We compare our decomposition with the simple decomposition of the
ATMOSTNVALUE constraint in Ilog Solver and Ilog CPLEX solvers. The simple de-
composition is the one described in Section[3.Texcept that in constraint (3), we replace
“=" by “<”. We denote this decomposition Occs and Occs®PLEX in Ilog Solver and
CPLEX, respectively. To encode this decomposition into an integer linear program, we
introduce literals b;;, 4,7 € [1,n?] and use a direct encoding with b;; for the truth of
X; = j and channeling inequalities 1 — b;; + B; > 1,4,5 € [1,n?]. We use the di-
rect encoding of variables domains to avoid using logic constraints, like disjunction and
implication constraints in CPLEX. The default transformation of logic constraints in
CPLEX appears to generate large ILP models and this slows down the search.

The BC decomposition is described in Section 4] which we call Pyramidgc and
Pyramidggj’ EX in Ilog Solver and CPLEX, respectively. In Ilog Solver, as explained
in Section 3] we channel the variables X; directly to the pyramid variables M, to
avoid introducing many auxiliary variables A;;,, and we add the redundant constraint
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Table 1. Backtracks and rumtime (in seconds) to solve the dominating set problem for the
Queen’s graph

n N Occs Pyramidpc OcesCPLEX  pyramidgELEX

backtracks time backtracks time backtracks time backtracks  time
53 34 0.01 7 0.00 1 0.05 3 0.4
63 540 0.16 118 0.03 2 0.16 183 9.6
7 4 195,212 84.50 83,731 15.49 130,010 1802.49 63 158
85 390,717 255.64 256,582 58.42 24,588 585.07 30 41.28

ZZ’; M;; = M, 2 to the decomposition to speed up the propagation across the pyra-
mid. We re-implemented the ternary sum constraint in Ilog for a 30% speedup.

To encode the BC decomposition into an integer linear program, we use the linear
encoding of variables domains [16]. We introduce literals c;; for the truth of X; < j,
and the channeling inequalities of the form c;;_1y + 1 — ¢ + My, > 1. We again

add the redundant constraint Z:il M;; = M, ,,2. Finally, we post constraints (@) as
lazy constraints in CLPEX. Lazy constraints are constraints that are not expected to
be violated when they are omitted. These constraints are not taken into account in the
relaxation of the problem and are only included when they violate an integral solution.

Results of our experiments are presented in Table [[I Our BC decomposition per-
forms better than the Occs decomposition, both in runtime and in number of back-
tracks needed by Ilog Solver or CPLEX. CPLEX is slower per node than Ilog Solver.
However, CPLEX usually requires fewer backtracks compared to ILOG Solver. In-
terestingly CPLEX performs well with the BC decomposition. The time to explore
each node is large, reflecting the size of decomposition, but the number of search
nodes explored is small. We conjecture that integer linear programming methods
like CPLEX will perform in a similar way with other decompositions of global con-
straints which do not hinder propagation (e.g. the decompositions we have proposed for
ALL-DIFFERENT and GCC). Finally, the best results here are comparable with those
for the ATMOSTN VALUE bounds consistency propagator in [13]].

8 Other Related Work

Bessiere et al. consider a number of different methods to compute a lower bound on the
number of values used by a set of variables [13]]. One method is based on a simple linear
relaxation of the minimum hitting set problem. This gives a propagation algorithm that
achieves a level of consistency strictly stronger than bound consistency on the NVALUE
constraint. Cheaper approximations are also proposed based on greedy heuristics and
an approximation for the independence number of the interval graph due to Turdn. De-
compositions have been given for a number of other global constraints. For example,
Beldiceanu et al. identify conditions under which global constraints specified as au-
tomata can be decomposed into signature and transition constraints without hindering
propagation [[L17]. As a second example, many global constraints can be decomposed
using ROOTS and RANGE which can themselves be propagated effectively using sim-
ple decompositions [18]]. As a third example, the REGULAR and CFG constraints can be
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decomposed without hindering propagation [[19120]. As a fourth example, decomposi-
tions of the SEQUENCE constraint have been shown to be effective [21]]. Most recently,
we demonstrated that the ALL-DIFFERENT and GCC constraint can be decomposed
into simple primitive constraints without hindering bound consistency propagation [5].
These decompositions also introduced variables to count variables using values in an
interval. For example, the decomposition of ALL-DIFFERENT ensures that no interval
has more variables taking values in the interval than the number of values in the inter-
val. Using a circuit complexity lower bound, we also proved that there is no polynomial
sized SAT decomposition of the ALL-DIFFERENT constraint (and therefore of its gen-
eralizations like NVALUE) on which unit propagation achieves domain consistency [6].
Our use of “pyramid” variables is similar to the use of the “partial sums” variables in the
encoding of the SEQUENCE constraint in [21]]. This is related to the cumulative sums
computed in [22].

9 Conclusions

We have studied a number of decompositions of the NVALUE constraint. We have
shown that a simple decomposition can simulate the bound consistency propagator for
NVALUE [12] with comparable time complexity but with a much greater space com-
plexity. This supports the conclusion that the benefit of a global propagator may of-
ten not be in saving time but in saving space. Our other theoretical contribution is to
show the first range consistency algorithm for NVALUE, that runs in O(nd?) time and
O(nd?) space. These results are largely interesting from a theoretical perspective. They
help us understand the globality of global constraints. They highlight that saving space
may be one of the important advantages provided by propagators for global constraints.
We have seen that the space complexity of decompositions of many propagators equals
the worst case time complexity (e.g. for the ALL-DIFFERENT, GCC, AMONG, LEX,
REGULAR, CFG and SEQUENCE constraints). For global constraints like REGULAR,
the space complexity of the decompositions does not appear to be that problematic.
However, for global constraints like NVALUE, the space complexity of the decompo-
sitions is onerous. This space complexity seems hard to avoid. For example, consider
encodings into satisfiability and unit propagation as our inference method. As unit prop-
agation is linear in time in the size of the encoding, it is somewhat inevitable that the
size of any encoding is the same as the worst-case time complexity of any propagator
that is being simulated. One other benefit of these decompositions is that they help us
explore the interface between constraint and integer linear programming. For exam-
ple, we saw that an integer programming solver performed relatively well with these
decompositions.
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Abstract. The state-of-the-art global constraint for bin packing is due to Shaw.
We compare two linear continuous relaxations of the bin packing problem, based
on the DP-flow and Arc-flow models, with the filtering of the bin packing con-
straint. Our experiments show that we often obtain significant improvements in
runtime. The DP-flow model is a novel formulation of the problem.

1 Introduction

The one-dimensional bin packing problem is ubiquitous in operations research. It is
typically defined as follows. Given a set S = {s1,..., s, } of n indivisible items each
of a known positive size s;, and m bins each of capacity C, can we pack all n items into
the m bins such that the sum of sizes of the items in each bin does not exceed C'? The
one-dimensional bin packing problem is NP-Complete. Amongst the many applications
of this problem are timetabling, scheduling, stock cutting, television commercial break
scheduling, and container packing.

Our motivation comes from a real-world timetabling problem in the Dental School
at University College Cork. An interesting characteristic of this problem is that the
core challenge relates to solving one-dimensional bin packing problems. This contrasts
with many other school timetabling problems which often have challenging list colour-
ings at their core. Our objective is to compare two continuous relaxations of the bin
packing problem with the state-of-the-art filtering algorithm used in the constraint pro-
gramming community [9]. Continuous relaxations have been developed for many global
constraints including cumulative (6], all-different, element and others [5]]. We believe
that continuous relaxations can be successfully used for the bin packing and knapsack
constraints [9410]. This paper presents our initial results in this direction.

2 Linear Programming Formulations for Bin Packing

Numerous linear programming models have been proposed for the bin packing prob-
lem [3]. A standard linear model is the following. For each bin j € {1,...,m} we
introduce a binary variable y; which we set to 1 if bin j is used in the packing, and 0
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AT

Fig. 1. An example of the graph used by the DP-FLOW model on S = {2,2,3,5,5},C=7

otherwise. For each item ¢ € {1,...,n} and each bin j we introduce a binary variable
x;; which we set to 1 if item 7 is packed into bin j, and O otherwise. The full model is:

minimize Z;"Zl Yj
Z;nzlxij:]-a ViE{l,...,n}
Yoy sixxy; < Cyj, Vje{l,...,m}
x5 € {0,1},y; € {0,1}

ey

The lower bound on the number of bins obtained by solving the continuous relaxation
of this model is referred to as L in the literature. It has been shown to be equal to
[, si/CT. Many other lower bounds have been designed, amongst which the most
widely used is the one due to Martello and Toth [7], referred to as Ls. In the remainder
of this section we will present two alternative formulations that give better lower bounds
on the number of bins. The first one, referred to the DP-FLOW model, is novel. The
second one is known as the ARC-FLOW model [2].

The DP-FLOW Model. We consider the directed graph construction used by Trick [[10]
to build a propagator for the knapsack constraint using dynamic programming; an ex-
ample is presented in Figure [l Consider a layered graph G(V, A) with n + 1 layers
labelled from 1 to n + 1, and a sink node, s. The nodes are labelled 7;, where ¢ denotes
the layer and b a value between 0 and C'. A path from the node of the first layer to a node
of the last layer represents a packing, i.e. a set of items assigned to the same bin. More
specifically a path using an edge starting at layer ¢ between two nodes ij, and (i + 1)p4s,
represents a packing that includes item 4, whereas the use of the edge (i, (i + 1)) ex-
cludes item ¢ from the packing. Edges are added between the nodes of the last layer of
the graph and the sink node, s. An example of such a graph is shown Figure [l for the
instance S = {2,2,3,5,5},C' = 7. The packing 2, 3 is the path shown in dashed line.

A solution to the bin packing problem corresponds to a minimum flow problem in
this graph, with an additional constraint stating that exactly one oblique edge from each
layer must be used. We consider a variable x, ; per edge (k,1) € A, 1, being the node
of the first layer, and the number of bins is represented by z 1, i.e. the flow circulating
in the graph:
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minimaise Ts,10
—Ts,1, if iy = 1o,
Z(j,ib)eij’ib _Z(ib,k)eA‘rib’k =<0 ifip s.iti € [2,71—&-1},()6 [0,0}
Ts1, ifly =35
2 (i i+ D JEA Ll (i) = 1 i € [L,n]
xg, > 0,integer V(k, 1) e A

A solution to the bin packing problem can be obtained by decomposing the resulting
flow into paths connecting the source node to the nodes of the final layer. This flow
decomposition is possible because the graph is acyclic. The number of variables and
constraints in this model is O(nC) since each node in the graph has at most two outgo-
ing edges. Notice that the formulation depends on the ordering of the items used to order
the layers of the graph; the size of the graph as well as the strength of the formulation
are also affected by this ordering.

The ARC-FLOW Model. Carvalho introduced an elegant ARC-FLOW model for the bin
packing problem [23]]. His model, which we present below, makes explicit the capacity
of the bins, and its size depends on the number of items of different sizes rather than
the total number of items.

Consider a graph G(V, A) with C' + 1 nodes labelled from 0 to C' in which there is
an edge (i,7) € A if there exists an item of size j — ¢ in S. Additional edges (4,7 + 1)
are added between consecutive pair of nodes. An example of such a graph is shown in
Figure[2lfor S = {2, 2,3} with C' = 5. Any path in this graph corresponds to a packing
of a single bin. For example, the path shown in dotted lines in Figure [2| corresponds to
a packing of two items of size 2, leaving the remaining capacity of the bin unused (the
last edge is a loss edge). More formally, a packing for a single bin corresponds to a flow
of one unit between vertices 0 and C'. A larger flow corresponds to the same packing
into multiple bins.

Such a formulation has many symmetries since the same solution can be encoded
by many different flows. Some reduction rules were given by Carvalho that help reduce
such symmetries [2]]. The graph presented in Figure3lis a simplied graph for the same
example as the one used for the DP-FLOW model. Firstly one can notice that the pack-
ings are ordered by decreasing value of the sizes of the items. Secondly, the loss edges
before Node 2, which is the smallest item size, have been removed as well. Finally,
the number of consecutive edges of a given size is bounded by the number of items of
this size. This is why no edges of size 2 are outgoing from Node 4 as this would not
correspond to any valid packing. However, all the symetries have not been eliminated.

Fig. 2. An example of the graph underlying the ARC-FLOW model for S = {2,2,3} and C' = 5.
The packing 2, 2 is shown with dotted lines.
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Fig. 3. An example of the graph underlying the ARC-FLOW model for S = {2,2,3,5,5},C=7

The bin packing problem can be formulated as a minimum flow between vertex O
and vertex C' with constraints enforcing that the number of edges of a given length used
by the flow must be greater than or equal to the number of items of the corresponding
size. Variables x;; are associated with the edges (7, j). xco denotes the flow variable
corresponding to the number of bins used. We will denote by S = {5/1, ey s;l,} the

set of different item sizes, and b; the number of items of size s; n’ is the number of
items of different sizes. The model is as follows:

minimaise Tcoo
—ZCo lf.j =0,
Dpeais — DgmeaTik =40 ifj=12....C-1,
Tco ifj =C
Z(k,k+s;)€A‘rk,k+s; > b; 1=1,2,...,n
x5 > 0,integer V(i,j) € A

A solution can be obtained again by decomposing the flow. The number of variables
in this model is O(n C'). However there are only C' flow conservation constraints, as
opposed to the nC' of our model, which makes this formulation clearly more compact.

3 Dealing with Partial Assignments

The bounds we have presented can be applied during search by transforming a partial
assignment into a reduced bin packing problem. Once items are assigned to bins we
have a bin packing problem in which some item sizes are missing, since they have
already been assigned, and not all bins have the same remaining capacity. Both previous
formulations can be modified to handle these cases.

For the DP-FLOW model we can simply add capacities to the edges between the
last layer of the graph and the sink node. These capacities express the number of bins
that have enough capacity to accommodate the corresponding size. For example, if we
dispose of three bins of capacity 10 and an item of size 2 has been assigned to each of
the first two bins, then sizes of value 9 and 10 are given a capacity of 1. Additionally, the
flows in the oblique edges corresponding to taking items already assigned are enforced
to zero. For the ARC-FLOW model a back edge, adding to the overall flow to minimize,
can be added from each node corresponding to an available capacity in the reduced bin
packing problem. In the previous example an edge would leave Node 8 as well as 10 to
go back to Node 0. The b; values of the linear model are also updated accordingly to
reflect the remaining items available.
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Table 1. Comparing the quality and time of various lower bounds on the B1 benchmark

L, Lo DP-FLOW ARC-FLOW ARC-FLOW+red
sum 74650.49 7794576  78114.48  78099.66 78113.4
avg time (in s) 0 0 2.96 0.07 0.02

It is possible to propagate with the LP lower bounds using a similar approach to
that adopted by Shaw [9]; that is, we simply commit items to bins, compute the corre-
sponding reduced problem and check whether the bound raises a contradiction or not, in
which case the item can be pruned from the corresponding bin. However, that approach
is suitable for very fast filtering rules only, but otherwise leads to significant overheads.

4 Experimental Results

We conducted a series of experiments on a single thread on a Dual Quad Core Xeon
CPU, 2.66GHz with 12MB of L2 cache per processor and 16GB of RAM overall, run-
ning Linux 2.6.25 x64. We put a 3GB limit on memory. CPLEX 12 was used for all
the linear models. We used two sets of publicly available instances as benchmarks. The
Falkenauer benchmark [4] comprises two classes of instances U and T with four sets of
20 instances in each class containing 120 to 1000 items. Class U comprises item sizes
uniformly distributed in [20, 100] to be packed into bins of size 150. Class T" consists of
triplets of items from [25, 50] to be packed into bins of size 100. Four sets are in class
T and instances were generated so that there is no slack. The second benchmark suite
used are the B1 and B2 sets studied in [8], made of 720 and 480 instances, respectively.
The number of items in these sets vary from 50 to 500; the capacity can reach 1000 in
the B2 set. We used the first 350 instances of B2. When quoting a benchmark we will
use either U, T or B as prefixes followed by the number of items to be packed, unless it
is otherwise obvious.

Experiment 1: Comparison of the Lower Bounds on the Number of Bins. We com-
pared four lower bounds: (a) L; is the continuous lower bound, (b) L3 is the well known

Table 2. Comparison between different variants of the bin packing constraint

benchmark ul20 w250 w500 ul0OO t60 t120 249 t501 Bl B2

CP Backt Med 0.00 3.13M 8.68M 2.95M 147.00 5518.00 1.79M  24IM 0.00 0.00
Sh Avg 14IM 483M 9.10M 3.01M 216.15 1.54M 28IM 237M 1.ISM 3.2IM
Time(s) Med 0.15 3600.00 3600.07 3600.09  0.07 3.06 3600.07 3600.09 0.34 0.06

Avg 371.61 1981.41 2992.87 3600.10 0.13 741.78 3265.10 3600.09 497.11 726.09

StDev 1038.75 1835.99 1302.88 0.06 0.14 1467.85 1033.12 0.06 1224.44 1439.92

NS 19 9 4 0 20 16 2 0 625 280

CpP Backt Med 15.00 76.00 175.00 285.00 313.00 1093.00 3604.00 8535.50 0.00 0.00
AC Avg 2575 87.80 177.85 268.45 318.20 1100.80 14676.05 16240.85 15.76 132.40
Time(s) Med 0.29 0.71 0.96 1.45 13.18 58.10 14251  208.05 0.21  29.26

Avg 0.34 0.73 1.02 145 1334 6492 379.02 408.70 0.54 246.49

StDev 0.12 0.11 0.15 0.08 437 3795 78856 75792 0.96 631.00

NS 20 20 20 20 20 20 19 19 720 343

CpP Backt Med 0.00 750 21.00 4050 7.00 33.00 173.50 645.00 0.00 0.00
Sh+AC Avg 395 2310 2415 46.10 7.50 39.65 4420.00 3981.50 3.65 6829
Time(s) Med 0.40 1.38 4.44 4886 3.73 5.65 29.10 76.75 0.48  19.56

Avg 0.39 1.53 486 61.84 372 1743 221.79 272.69 2.28 150.39

StDev 0.07 0.40 093 2506 198 1510 796.55 785.83 3.92 421.52

NS 20 20 20 20 20 20 19 19 720 349
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Fig. 4. A detailed comparison of our approach (x-axis) against the bin packing constraint of Shaw
on the y-axis - time and backtracks are presented

bound due to Martello and Toth [7]], (¢) the linear relaxation of the DP-FLOW model
where the ordering of the layers in the graph is done by non-decreasing item size, (d) the
linear relaxation of the ARC-FLOW model without the simplifications of the graph, and
(e) with the reductions. The lower bounds obtained on the Falkenauer benchmark at
the root node are not interesting, and mostly equal to the continuous bound L; with
few exceptions. The second benchmark, B1, exhibits more variety and we report in Ta-
ble [l the sum of the lower bounds found on all the instances of the B1 set by the five
lower bounds. The linear relaxation of DP-FLOW is the strongest but does not improve
ARC-FLOW-+red significantly and is also significantly more expensive to compute.
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Fig. 5. Comparison of the reasoning capabilities of Shaw’s global constraint against ours

Experiment 2: Comparison with the Bin Packing Constraint. We embedded the
ARC-FLOW+red bound within a bin packing global constraint to evaluate the strength
of the pruning we would get compared to that obtained using the state-of-the-art global
constraint designed by Shaw [9]]. We compared these three methods by optimally solv-
ing the bin packing problem: “CP Shaw” denotes the constraint described in [9]; “CP
Arc-flow” refers to a constraint that simply solves the linear relaxation of the ARC-
FLOW model with reductions and uses this lower bound to detect contradiction; “CP
Shaw+Arc-flow” first applies the filtering of Shaw’s bin packing constraint and then
computes the lower bound of the ARC-FLOW model.

We use similar settings to those in [9]]. The standard search heuristic decreasing best
fit is used, packing items in non-increasing size into the first bin with the least possible
space sufficient for the item. On backtracking a bin is removed from the domain of
an item and two symmetry breaking rules are used: the bin is also removed from the
domain of all equivalent items (items of the same size), and all equivalent bins (bins
with same load) are also pruned from the domains of these items. Two dominance rules
are also added. The first is applied before creating a new choice point: if all the bins are
equivalent for any item it is assigned to the first available one. The second ensures that
if an item can fit exactly in the remaining space of a bin it is assigned to this bin.

Our algorithms are implemented with Choco and CPLEX. Shaw’s bin packing con-
straint is available in Choco, which we used as a baseline. It differs from Shaw’s im-
plementation by using several dual feasible functions [1] that subsume the Lo bound
of Martello and Toth. The results presented in [9] are detailed for the T60 and U120
categories where all instances are solved, but /12019 requires 15 hours. We observed
a similar behavior: U120;9 was the only instance not solved within the one hour time
limit allowed for the Choco implementation of the bin packing constraint. Table [2] re-
ports the comparison giving for each category the median and average number of back-
tracks, time (in seconds), as well as the standard deviation in time and the number of
instances solved to optimality within the time limit (NS). Clearly the approach pre-
sented here significantly improves over Shaw’s bin packing constraint. In Figure ] we
present an instance by instance comparison for each benchmark suite using both Shaw’s
global constraint and our hybrid approach. Our approach tends to have a less variation
in the effort required to solve a bin packing problem. Finally, in Figure [3 we compare
the reasoning capabilities of the ARC-FLOW relaxation against that of Shaw’s global
constraint. A point below the diagonal means that Shaw has fewer backtracks than the
ARC-FLOW relaxation. The ARC-FLOW alone is usually better than Shaw, by capturing
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most of the benefits of more sophisticated filtering while achieving orders of magnitude
improvements in time.

5 Conclusion

We have presented a novel direction for handling bin packing constraints in constraint
programming. Our approach can give significant improvements in running time. The
DP-FLOW and ARC-FLOW models remain to be compared theoretically. A deeper
study of the DP-FLOW model focusing on the impact of the ordering of the layers
and graph reduction criteria is still to be carried out, although the ARC-FLOW model
appears to be much more promising. Furthermore we believe that the graph underlying
the ARC-FLOW model scales to much larger problems than the one used by the DP-
FLoW model. This immediately suggests that we could apply the same idea to knapsack
constraints. The resulting formulation would not be able to provide GAC for the knap-
sack constraint as opposed to [10] but should allow a very strong propagation in practice
while scaling to much bigger knapsacks.
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Abstract. The geost constraint has been proposed to model and solve
discrete placement problems involving multi-dimensional boxes (packing
in space and time). The filtering technique is based on a sweeping algo-
rithm that requires the ability for each constraint to compute a forbidden
box around a given fixed point and within a surrounding area. Several
cases have been studied so far, including integer linear inequalities. Mo-
tivated by the placement of objects with curved shapes, this paper shows
how to implement this service for continuous constraints with arbitrary
mathematical expressions. The approach relies on symbolic processing
and defines a new interval arithmetic.

1 Introduction

Sweeping [4] is a generic technique for filtering with constraints, like propagation
for instance. This technique has been fruitfully applied in the context of place-
ment problems (rectangle packing, container loading, warehouse management).
In particular, the filtering algorithm of the geost constraint [BI8I6], today im-
plemented in different systems like Choco [I], JaCop [10] or SICStus [9], is based
on a sweeping loop.

Propagation (e.g., AC3 [II]) requires a propagator for each constraint, that
is, an operator that removes inconsistent values. Symmetrically, we will see that
sweeping requires an inflater for each constraint, that is, an operator that returns
a set of unfeasible tuples.

Propagators can be built simply by checking consistency for each value. Like-
wise, inflaters can be built by enumerating values inside the cross product of
domains and checking for inconsistency.

However, such brute force methods, apart from being inefficient, are not possi-
ble with continuous domains (that are not countable). In previous publications,
inflaters have been proposed for several important classes of constraints: rectan-
gle inclusion and non-overlapping [5], linear equations, distance equations [2] as
well as constraints derived from business rules [§]. The method in [8] is generic
as it addresses a class of first-order formulae with linear constraints by way of
predicates. However, all these methods are restricted to discrete domains and
only propose ad-hoc solutions for (a few) nonlinear constraints.

The main contribution of this paper is a generic inflater that works for any
constraint on continuous domains, as long as the constraint has a mathematical
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expression made of usual operators (4,x,—,/) and functions (sqr, sqrt, sin, etc.).
The complexity of this inflater is linear in the length of the constraint expression
and optimal (i.e., the corresponding box cannot be extended any more in any
dimension) if variables have no multiple occurrences.

Hence, thanks to this new algorithm, the applicability of geost can be ex-
tended to a significantly larger class of placement problems: nonlinear inequal-
ities can indeed model, e.g., the non-overlapping of objects with curved shapes
(balls, cylinders, etc.) in two or three dimensions.

The paper is organized as follows. In Section 2] the sweeping algorithm is
recalled, but in a slightly revised form that makes it independent of the nature
of domains (discrete or continuous). In Section[3] a generic inflater is described.

2 Sweeping

Since this paper is dedicated to continuous domains, we will need notations to
represent and handle intervals of reals. Let us state them now.

Notations. Vectors will be represented by bold face letters. Intervals and boxes
(cross products of intervals) will be surrounded by brackets, e.g., [z] and [x].
The symbol IR represents the set of all intervals. If [z] is an interval, z and x
will stand for the lower and upper bound respectively of [z]. If [x] is a box, the
ith component of [x] is an interval [z]; (or [x;]) and the bounds of [x]; will be
denoted by z; and z;.

2.1 From Propagation to Sweeping

Consider first a classical propagation of constraints. We are comparing here
inference methods (not particular algorithms), but to fix idea one may think
about AC3. The principle of propagation is the same for continuous domains as for
discrete ones (except that only bounds are usually reduced for practical reasons).
In the situation depicted in Figure [[l(a), each constraint is able, separately, to
filter the domain of a variable. This results in “strips” removed from the domain
[x] = [z]1 x[z]2. For instance, when ¢; reduces the left bound of z; to #1, all the
tuples in the hatched strip are proven to be inconsistent.

In the situation of Figure[ll (b), propagation is blocked because all the bounds
(zq, 1, 4 