
Parameterized Verification of Ad Hoc Networks

Giorgio Delzanno1, Arnaud Sangnier1, and Gianluigi Zavattaro2

1 University of Genova
2 University of Bologna

Abstract. We study decision problems for parameterized verification
of a formal model of Ad Hoc Networks with selective broadcast and
spontaneous movement. The communication topology of a network is
represented as a graph. Nodes represent states of individual processes.
Adjacent nodes represent single-hop neighbors. Processes are finite state
automata that communicate via selective broadcast messages. Reception
of a broadcast is restricted to single-hop neighbors. For this model we
consider verification problems that can be expressed as reachability of
configurations with one node (resp. all nodes) in a certain state from
an initial configuration with an arbitrary number of nodes and unknown
topology. We draw a complete picture of the decidability boundaries
of these problems according to different assumptions on communication
graphs, namely static, mobile, and bounded path topology.

1 Introduction

In recent years there has been an increasing interest in the formal specification of
protocols used in Ad Hoc Networks. Building on previous models like [7,19,21], in
[22] Singh, Ramakrishnan and Smolka define the ω-calculus as a formal model
of Ad Hoc Networks with selective broadcast and spontaneous movement. In
the ω-calculus a configuration consists of a finite set of processes. Each process
has a local state and an interface containing a finite set of group names. A
group name represents a possible communication link with other processes in the
network. From an abstract point of view, the structure underlying a configuration
of the ω-calculus is a finite graph that defines the communication topology of
a network. A node in the graph represents the current state of an individual
process. There exists and edge between two nodes if the corresponding interfaces
share a common group name. Adjacent nodes are called single-hop neighbors.
Processes communicate through selective broadcast. Specifically, a broadcast
message can be received only by the set of single-hop neighbors of the emitter.

When the number of nodes is fixed a priori, formal models of Ad Hoc Net-
works like those provided by the ω-calculus can be verified by using finite-state
model checking [11] or constraint-based model checking [22]. Lifting the study
of verification problems to the parameterized case in which networks have arbi-
trary size and possibly unknown topology is a challenging problem for this class
of distributed systems.

In the present paper we study parameterized verification problems for an
automata-based model of Ad Hoc Networks, we named AHN, inspired by the

P. Gastin and F. Laroussinie (Eds.): CONCUR 2010, LNCS 6269, pp. 313–327, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

314 G. Delzanno, A. Sangnier, and G. Zavattaro

ω-calculus of [22]. Each node of a network is modeled as a finite-state automa-
ton in which local transitions model either an internal action, a broadcast or a
reception of a message taken from a finite alphabet. A protocol is defined then
as the composition of a finite but arbitrary number of copies of the automaton
running in parallel. As in the ω-calculus a configuration can naturally be viewed
as a graph that defines the communication topology. We use group names and
interfaces to select the set of neighbors of an emitter that are capable to receive
a broadcast message. In our model we define verification problems parametric on
the size (number of nodes) and shape (topology of the communication graph) of
the initial configurations. Our investigations take into account different assump-
tions on the communication topology. Specifically, we consider configurations
either with static or mobile topology and with static and bounded path topol-
ogy. In the latter case we assume that there is an upper bound on the length of
simple paths in the communication graphs underlying the initial configurations.
For each of the above mentioned assumptions, we present a systematic analy-
sis of the following decision problems: (cover) reachability of a configuration
with one node in a given state, (target) reachability of a configuration with all
nodes in a given state, (repeat-cover) existence of a computation traversing
infinitely often configurations with at least one node in a given state.

Our main negative result is that all three parameterized problems are unde-
cidable for arbitrary static topology. The proofs are based on a simulation of a
Turing complete formalism which is correct only for topologies of a given size
and shape. As the topology is arbitrary, the simulation is preceded by a protocol
able to explore the current topology and to start the simulation only if it is of
the expected form.

Perhaps surprisingly, all three problems become decidable in the mobile case.
This result is similar to what happens in channel systems where introducing
lossiness simplifies the verification task [3]. For static bounded path topologies,
target and repeat-cover turn out to be undecidable while cover is still
decidable. The latter result is similar to those presented in [23,15] for bounded
depth processes with point-to-point communication. However, due to broadcast
communication we need to resort to a different proof technique. Namely, even
if we use the theory of well structured transition systems (WSTS) [1,2,12] as
in [15,23], we need to consider a stronger ordering on configurations based on
the induced subgraph ordering [5] instead of the subgraph embedding. To the
best of our knowledge, this is the first case of application of the induced sub-
graph ordering in the context of WSTS.

Related Work. Formal models of networks in which all processes receive a
broadcast message at once are presented and analyzed in [6,8,19]. In our setting
this kind of broadcast is modeled by configurations whose underlying graph is
a clique. Selective broadcast has been studied in several process calculi for ad
hoc networks and wireless communication like those presented in [7,13,14,16,21],
some of which turn out to be extensions of the pi-calculus [17]. A distinguished
feature of the ω-calculus [21,22] is that mobility of processes is abstracted from

Parameterized Verification of Ad Hoc Networks 315

their communication actions, i.e., mobility is spontaneous and it does not involve
any communication. In [22] the authors define a constraint-based analysis for
configurations with a fixed number of nodes. The shape of topologies leading to
bad configurations is constructed in a lazy manner during a symbolic exploration
of the state space. The symbolic approach in [22] seems to improve verification
results obtained with more standard model checking tools like Uppaal [11]. In
the same paper the authors mention that, without name restriction, reachability
of a configuration from an initial one is decidable. In the present paper we lift our
reachability problems to the parameterized case in which the initial configuration
has unknown size and shape. For networks of arbitrary size, in [20] Saksena
et al. define a symbolic procedure based on graph-transformations to analyze
routing protocol for Ad Hoc Networks. The symbolic representation is based on
upward closed sets of graphs ordered by subgraph inclusion. The procedure is
not guaranteed to terminate. In our paper we use a different ordering on graphs,
namely induced subgraph, for ensuring termination of backward reachability on
graphs with paths of bounded length.

Due to lack of space, omitted proofs can be found in [4].

2 A Formal Model for Ad Hoc Network Protocols

Following [22], a configuration of an Ad Hoc Network is modeled as a tuple of
nodes 〈n1, . . . , nk〉 with k ≥ 1. A node ni maintains information about the cur-
rent state of an individual process and its current set of communication links.
The behavior of a single node is described by a finite-state automaton, called
process, in which transitions represent internal, broadcast, or reception actions.
Concerning the representation of communication links, a convenient way to de-
scribe the network topology is based on the use of group names. Specifically,
to each node we associate an interface that defines the set of group names to
which the node belongs. Two nodes are connected if their interfaces share at
least one common group name. The semantics of the transitions specifies how
different nodes interact in a global configuration. We assume that nodes cannot
dynamically be created or deleted.

Definition 1. An Ad Hoc Network Protocol (shortly AHN) is a pair 〈P,G〉
where P is a process definition and G is a denumerable set of group names.
A process P = 〈Q, Σ, E, Q0〉 defines the behavior of a single node of the net-
work. Here Q is a finite set of control states, Σ is a finite alphabet, E ⊆
Q × ({τ} ∪ {b(a), r(a) | a ∈ Σ}) × Q is the transition relation, and Q0 ⊆ Q
is a set of initial control states.

The label τ represents an internal action of a process, the label b(a) represents
the capability of broadcasting message a, and r(a) the capability of receiving
message a.

Definition 2. Assume P = 〈Q, Σ, E, Q0〉. A node n is a pair 〈q, I〉, where
q ∈ Q is called the state and I ⊆ G is the called the interface of the node. A

316 G. Delzanno, A. Sangnier, and G. Zavattaro

q4 q3 q2

q3 q1 q3

g1

g2
g3

g3

g3

g4

g4

g4

Fig. 1. Graph associated to a configuration

configuration γ is a tuple 〈n1, . . . , nk〉 of nodes with size k ≥ 1.
We use C to denote the set of configurations of any size.

A configuration γ defines a given network topology specified by the graph G(γ).
The vertices in G(γ) are in bijection with the nodes of γ. The label of a vertex
is the state of the corresponding node in γ. Furthermore, there exists an edge
between two vertices in G(γ) if and only if the intersection of the interfaces of
the corresponding nodes in γ is not empty.

For instance, consider a configuration γ with nodes n1 = 〈q4, {g1, g2}〉, n2 =
〈q3, {g1, g3}〉, n3 = 〈q3, {g2, g3}〉, n4 = 〈q1, {g3, g4}〉, n5 = 〈q2, {g4}〉, and n6 =
〈q3, {g4}〉, the communication topology induced by γ is depicted in Figure 1.

We define functions σ and ι to extract the state and the interface of a node,
i.e., σ(〈q, I〉) = q and ι(〈q, I〉) = I. We extend σ and ι to configurations in
the natural way. For a configuration γ, we sometimes consider σ(γ) as a set
rather than a vector and use q ∈ σ(γ) to denote that there exists a node ni in
γ such that σ(ni) = q. The set of indexes of nodes adjacent to a node ni in a
configuration γ = 〈n1, . . . , nk〉 (single-hop neighbors of ni in G(γ)) is defined as
Shn(γ, i) = {j ∈ [1..k] | ι(ni) ∩ ι(nj) 	= ∅ and j 	= i}. For a broadcast message
a ∈ Σ, we define the set of indexes Rec(γ, a) = {j ∈ [1..k] | (σ(nj), r(a), q) ∈
E for some q ∈ Q}. The set of nodes in γ enabled by a broadcast a sent by node
ni is then defined as Enabled(γ, i, a) = Shn(γ, i) ∩ Rec(γ, a).

Operational Semantics. The semantics of an AHN 〈P = 〈Q, Σ, E, Q0〉,G〉
is given by its associated transition system TS(P,G) = 〈C,⇒, C0〉 (we recall
that C is the set of configurations of all possible size), C0 is the set of initial
configurations defined as C0 = {γ ∈ C | σ(γ) ⊆ Q0} and ⇒ is the transition
relation in C × C defined as follows.

Definition 3. For γ = 〈n1, . . . , nk〉 and γ′ = 〈n′
1, . . . , n

′
k〉, γ ⇒ γ′ iff one of the

following conditions holds:

Internal. There exists i ∈ [1..k] such that (σ(ni), τ, σ(n′
i)) ∈ E, ι(ni) = ι(n′

i),
and n′

j = nj for all j ∈ [1..k] \ {i}.
Broadcast. There exists a ∈ Σ and i ∈ [1..k] such that (σ(ni),b(a), σ(n′

i)) ∈ E,
ι(ni) = ι(n′

i), and the following conditions hold:
– For all j ∈ Enabled(γ, i, a), (σ(nj), r(a), σ(n′

j)) ∈ E and ι(n′
j) = ι(nj);

– For all p /∈ (Enabled(γ, i, a) ∪ {i}), n′
p = np.

We denote by ⇒∗ the reflexive and transitive closure of ⇒. An execution is a
sequence γ0γ1 . . . such that σ(γ0) ⊆ Q0 and γi ⇒ γi+1 for i ≥ 0.

Parameterized Verification of Ad Hoc Networks 317

As an example, consider a process definition in which Q = {q1, q2, q3, q4},
Σ = {a}, and E contains the rules

(q1, τ, q2), (q2,b(a), q4), (q1, r(a), q2), and (q3, r(a), q2)}

Starting from a connected component in which nodes have label q1 or q3, once an
alarm is detected by a q1 node (τ action), it is flooded (broadcast of message a)
to all single-hop neighbors which, in turn, forward the alarm to their neighbors,
and so on. After some steps, the alarm reaches all multi-hop neighbors yielding
a configuration in which all nodes (in the connected component) have label
q4.

3 Decision Problems

In this section we consider decision problems related to verification of safety and
liveness properties like those studied for Petri nets [9,10]. We remark that in our
formulation the size and the shape of of the initial configurations is not fixed
a priori. In the following definitions we assume an AHN 〈P,G〉 with transition
system TS(P,G) = 〈C,⇒, C0〉.

The first problem is control state reachability (cover) defined as follows: given
a control state q of P , do there exist γ ∈ C0 and γ′ ∈ C such that γ ⇒∗ γ′ and
q ∈ σ(γ′)?
We recall that a configuration γ is initial if σ(γ) ⊆ Q0. Notice that being initial
does not enforce any particular constraint on the topology. Thus, assume that
the state q represents an error state for a node of the network. If we can solve
cover, then we can decide if there exists a topology of the network and a
sufficient number of processes from which we can generate a configuration in
which the error is exposed.

The second problem is target reachability (target) which we define as follows:
given a subset of control states F of P , do there exist γ ∈ C0 and γ′ ∈ C such
that γ ⇒∗ γ′ and σ(γ′) ⊆ F?
Assume that the subset F represents blocking states for nodes of the network. If
we can solve target, then we can decide if there exists a topology of the network
and a sufficient number of processes from which we can reach a configuration in
which processes can no longer move.

Finally we will also study the repeated control state reachability problem
(repeat-cover): given a control state q of P , does there exist an infinite exe-
cution γ0 ⇒ γ1 ⇒ . . . such that the set {i ∈ N | q ∈ σ(γi)} is infinite?
This problem is a classical extension of the cover problem that can be used, for
instance, to verify whether a protocol is able to react to the occurrence of errors
by reaching a state from which errors do not occur any longer. Assume that q
represents the error state. If we can solve repeat-cover, then we can decide if
there exists a topology of the network and a sufficient number of processes that
can generate a computation including infinitely many error states.

318 G. Delzanno, A. Sangnier, and G. Zavattaro

ErrA0

r(req) r(ack)

A1

b(req)

A2

r(ack)
r(ack)

A3

b(ok)

B0
r(ack)

B1

r(req)

r(ack)r(req)

r(ok)

B2

b(ack)

B3

r(ok)

Fig. 2. The RAO (Req/Ack/Ok) protocol

4 Static Topology

In this section, we will prove that cover, target and repeat-cover are
all undecidable problems. We first recall that in our decision problems there are
no assumptions on the number of nodes and on the communication topology
of the initial configurations. Furthermore, the model does not admit dynamic
reconfigurations of the topology. Broadcast communication can be used however
to ensure that a specific protocol succeeds only if the network topology has a
certain form. To be more precise, consider the protocol specified by the process
Req/Ack/Ok (RAO) of Figure 2 where A0 and B0 are the initial states. The
following property then holds.

Proposition 1. Let G be a denumerable set of group names and γ an initial
configuration of the AHN 〈RAO,G〉. If γ′ is a configuration such that γ ⇒∗ γ′

and such that B3 ∈ σ(γ′), then the graph G(γ′) has the following properties:

– each node n labeled with B3 is adjacent to a unique node labeled with A3 (we
denote this node by f(n))1;

– for each node n labeled with B3, all the nodes adjacent to n or f(n) are
labeled with Err (except of course n and f(n)).

Proof. Assume n is a node of γ′ in state B3. Since n has received a message
ok to reach B3, it is necessarily adjacent to a node in state A3. No other node
adjacent to n can be in state A3. Indeed, if n receives two req messages before
sending an ack, then n moves to state Err. Furthermore, if n sends an ack,
then all adjacent nodes that are in states A0 (ready to send a req) move to
state Err. Rule (A0, r(req), Err) ensures that, in G(γ′), no node labeled Ai

is adjacent to a node labeled A3. Rules (B0, r(ack), Err) and (B1, r(ack), Err)
ensure that, when n has label B3, its single-hop neighbors cannot have label Bi.
Rule (B1, r(ok), Err) ensures that a node different from n but adjacent to f(n)
must have state different from Bi. Indeed, if such a node is in state B1, then
the broadcast ok sent by f(n) sends it to Err, and if such a node moves to B2

sending ack then it sends node f(n) to Err before it can reach A3. �
1 Two nodes are adjacent iff there is an edge between them.

Parameterized Verification of Ad Hoc Networks 319

Using an extension of the RAO protocol, we can define an AHN which simulates
the execution of a deterministic two-counter Minsky machine and reduce the
halting problem to cover. A deterministic Minsky machine manipulates two
integer variables c1 and c2, which are called counters, and it is composed of a
finite set of instructions. Each of the instruction is either of the form (1) L : ci :=
ci + 1; goto L′ or (2) L : if ci = 0 then goto L′ else ci := ci − 1; goto L′′

where i ∈ {1, 2} and L, L′, L′′ are labels preceding each instruction. Furthermore
there is a special label LF from which nothing can be done. The halting problem
consists then in deciding whether or not the execution that starts from L0 with
counters equal to 0 reaches LF .

The intuition behind the reduction is as follows. In the first phase we use a
variant of the RAO protocol to select a control node and two list of nodes, with
state representing value 0 or 1, used to simulate the content of the counters.
The length of each list must be sufficient to represent the maximum value stored
in each counter during the simulation. All other nodes in the vicinity of the
control state and of the two lists are sent to an error state during the execution
of the first phase. In the second phase the control node starts the simulation of
the instructions. It operates by querying and changing the state of the nodes in
the two lists according to the type of instructions to be executed. In this phase
all nodes in the same list behave in the same way. Requests are propagated back
and forth a list by using broadcast sent by a node to its (unique) single-hop
successor/predecessor node. The protocols that define the two phases are fairly
complicated; the corresponding automata are described in detail in [4]. From the
undecidability of the halting problem for two-counter Minsky machines [18], we
obtain the following result.

Theorem 1. cover is an undecidable problem.

Furthermore, we have the following corollary.

Corollary 1. target and repeat-cover are undecidable problems.

Proof. Assume P = 〈Q, Σ, E, Q0〉 and let G be a denumerable set of group
names and q ∈ Q. To reduce cover to repeat-cover we simply add a loop
of the form (q, τ, q) to E. To reduce cover to target, we build the process
P ′ = 〈Q′, Σ′, E′, Q′

0〉 defined as follows:

– Q′ = Q � {r0, r1, rF } (with Q ∩ {r0, r1, rF } = ∅);
– Σ′ = Σ � {F1, F2} (with Σ ∩ {F1, F2} = ∅);
– E′ = E � {(q,b(F1), rF), (r0, r(F1), r1), (r1,b(F2), rF)} ∪ {(q′, r(F2), rF) |

q′ ∈ Q};
– Q′

0 = Q0 � {r0}.
Let TS(P,G) = 〈C,⇒, C0〉 and TS(P ′,G) = 〈C′,⇒′, C′

0〉. It is then easy to see
that there exist γ2 ∈ C′

0 and γ′
2 ∈ C′ such that γ2 ⇒′∗ γ′

2 and σ(γ′
2) ⊆ {rF } if

and only if there exists γ1 ∈ C0 and γ′
1 ∈ C such that γ1 ⇒∗ γ′

1 and q ∈ σ(γ′
1). In

fact, in TS(P ′,G) after being in the state q a node can broadcast the message
F1 which launches a protocol whose goal is to send all the other nodes in the
state rF . �

320 G. Delzanno, A. Sangnier, and G. Zavattaro

5 Mobile Topology

In this section we consider a variant on the semantics of AHN obtained by adding
spontaneous movement of nodes as in [22]. Node mobility is modeled by non-
deterministic updates of their interfaces. Formally, let 〈P,G〉 be a AHN with
TS(P,G) = 〈C,⇒, C0〉. The semantics of 〈P,G〉 with mobility is given by the
transition system TSM (P,G) = 〈C,⇒M , C0〉 where the transition ⇒M is defined
as follows.

Definition 4 (Transition Relation with Mobility). For γ, γ′ ∈ C with
γ = 〈n1, . . . , nk〉 and γ′ = 〈n′

1, . . . , n
′
k〉, we have γ ⇒M γ′ iff one the follow-

ing conditions holds:

– γ ⇒ γ′ (no movement);
– there exists i ∈ [1..k] such that, σ(n′

i) = σ(ni) (state does not change),
ι(n′

i) ⊆ G (interface changes in an arbitrary way), and for all j ∈ [1..k]\{i},
n′

j = nj (all other nodes remain unchanged) (movement).

We prove next that cover, repeat-cover and target are decidable for AHN
with mobility. Intuitively, this follows from the observation that the topology of
the network changes in an unpredictable and uncontrollable manner. Hence, ev-
ery broadcast message sent by a node is received by a non-deterministically cho-
sen set of nodes, namely those in the transmission range of the emitter at the time
the message is sent. Formally, we reduce cover, target and repeat-cover re-
spectively to the marking coverability, marking reachability and repeated marking
coverability problems for Petri nets, which are known to be decidable [9,10].

A Petri net (see e.g. [9]) is a tuple N = (S, T, m0), where S and T are finite sets
of places and transitions, respectively. A finite multiset over the set S of places is
called a marking, and m0 is the initial marking. Given a marking m and a place p,
we say that the place p contains m(p) tokens in the marking m if there are m(p)
occurrences of p in the multiset m. A transition is a pair of markings written in the
form m′ �→ m′′. The marking m of a Petri net can be modified by means of transi-
tions firing: a transition m′ �→ m′′ can fire if m(p) ≥ m′(p) for every place p ∈ S;
upon transition firing the new marking of the net becomes n = (m\m′)�m′′ where
\ and � are the difference and union operators for multisets, respectively. This is
written as m → n. We use →∗ [resp. →+] to denote the reflexive and transitive
closure [resp. the transitive closure] of →. We say that m′ is reachable from m if
m →∗ m′. The coverability problem for marking m consists of checking whether
m0 →∗ m′ with m′(p) ≥ m(p) for every place p ∈ S. The reachability problem
for marking m consists of checking whether m0 →∗ m. Finally, the repeated cover-
ability problem for marking m consists of checking wether there exists an infinite
execution m0 →+ m1 →+ m2 →+ . . . such that for all i ∈ N, mi(p) ≥ m(p) for ev-
ery place p ∈ S. The coverability, reachability and repeated coverability problems
are decidable for Petri nets [9,10].

We now show how to build a Petri net which simulates the behavior of an
AHN with mobility. Figure 3 gives an example of a Petri net associated to a
process. In the Petri net, each control state q has a corresponding place q, and

Parameterized Verification of Ad Hoc Networks 321

q

q′′

r(m)

q′

b(m)

•start

q ok

b(m)

m ↑

r(m)

q′b

q′

q′′r

q′′

Fig. 3. A Petri net which simulates an AHN with mobility

each node 〈q, I〉 of the network is represented by a token in the place q. The
interfaces of nodes (thus also the network topology) are abstracted away in
the Petri net. In the first phase, the net non-deterministically puts tokens in the
places corresponding to the initial control states of the process. Then it produces
a token in the place ok and the simulation begins. The broadcast communication
is modeled by a broadcast protocol whose effect is to deliver the emitted message
to a non-deterministically chosen set of potential receivers. More precisely, the
broadcast protocol can be started by a token in a place q such that (q,b(m), q′);
then the token is moved to a transient place q′b and a token is produced in the
place m ↑. During the execution of the protocol, every token in a place r such
that (r, r(m), r′) can receive the message moving in a transient place r′r . The
protocol ends when the token in the transient place q′b moves to the place q′.
The tokens in the transient places r′r can move to the corresponding places r′ only
when no broadcast protocol is running (when a broadcast protocol is running,
there is no token in the place ok). This broadcast protocol does not faithfully
reproduce the broadcast as formalized in the AHN model: in fact, in the Petri
net there is no guarantee that the tokens in the transient places r′r move to the
corresponding places r′ at the end of the execution of the protocol. A token that
remains in those transient places (thus losing the possibility to interact with
the other tokens in the Petri net) corresponds to a node in the AHN model that
disconnects, due to mobility, from the other nodes in the system. Testing whether
there is an execution in the AHN with mobility which ends in a configuration
where one of the nodes is in the control state q can be done by testing whether
the marking {q, ok} can be covered in the associated Petri net. Hence:

Theorem 2. There exists a reduction from the cover problem for AHN with
mobility to the marking coverability problem for Petri nets.

Using the same construction, we also obtain:

322 G. Delzanno, A. Sangnier, and G. Zavattaro

Theorem 3. There exists a reduction from the repeat-cover problem for
AHN with mobility to the marking repeated coverability problem for Petri nets.

In order to reduce target to marking reachability we need to extend the Petri
net associated to an AHN, adding a final stage in the computation, dedicated
to the elimination of tokens from the places corresponding to the final states in
F . Intuitively we add a transition of the form {ok} �→ {end} and for each q ∈ F
we add a transition {end, q} �→ {end} and we then test if the marking where all
the places are empty except the place end is reachable.

Theorem 4. There exists a reduction from the target problem for AHN with
mobility to the marking reachability problem for Petri nets.

From these three last theorems and from the fact that the marking coverability,
marking repeated coverability and marking reachability problems are decidable
for Petri nets, we finally deduce:

Corollary 2. cover, repeat-cover and target are decidable for AHN with
mobility.

6 Static Bounded Path Topology

Let us go back to the AHN model with static topology. The possibility for
a message to pass through an unbounded number of new nodes is a key fea-
ture in the proof of Theorem 1 (undecidability of cover for static topology).
For this reason, it seems natural to study cover, target and repeat-cover
for a restricted class of configurations in which, for a fixed K, a message can
pass through at most K-different nodes. Formally, given an AHN 〈P,G〉 with
TS(P,G) = 〈C,⇒, C0〉 our class of restricted configurations is defined as follows:

Definition 5. Given an integer K ≥ 1, a configuration γ is a K-bounded path
configuration if the longest simple path in the associated graph G(γ) has length
at most K.

We denote by CK the set of K-bounded path configurations. The semantics
of the AHN 〈P,G〉 resticted to K-bounded path configurations is given by the
transition system TSK(P,G) = 〈CK ,⇒K , CK

0 〉 where the transition relation ⇒K

is the restriction of ⇒ to CK × CK and CK
0 = C0 ∩ CK . For fixed K, the class of

K-bounded path configurations contains an infinite set of graphs. To give some
examples, stars with a center node and any number of satellite nodes have always
3-bounded paths, whereas cliques of arbitrary size may have paths of unbounded
length.

6.1 Decidability of cover

In order to study cover restricted to bounded path configurations, we first
introduce some definitions and prove auxiliary properties. First of all, we give
the definition of the induced subgraph relation.

Parameterized Verification of Ad Hoc Networks 323

a b

c

�is

a b

c d

G1

(a)
G2

(b)
G3 G2

a b

c

��is

a b

c d

Fig. 4. Examples of the induce subgraph relation

Definition 6. For configurations γ1 and γ2, we define γ1 �is γ2 if there exists
a label preserving injection h from nodes of G1 = G(γ1) to nodes of G2 = G(γ2)
such that (n, n′) is an edge in G1 if and only if (h(n), h(n′)) is an edge in G2,
i.e., G1 is isomorphic to an induced subgraph of G2.

Notice that the induced subgraph relation is stronger than the subgraph relation.
The subgraph ordering requires only a homomorphic embedding of G1 into G2.
To illustrate, in Fig. 4 (a) G1 is isomorphic to an induced subgraph of G2, hence
G1 �is G2. In (b) G3 is obtained from G1 by removing the edge from node a
to node c. The induced graph of G2 with nodes a, b, c is no more isomorphic to
G3, hence G3 	�is G2. Notice, however, that G3 is still a subgraph of G2. The
following lemma then holds.

Lemma 1. Given K ≥ 1, (CK , �is) is a well-quasi ordering (shortly wqo), i.e.,
for every infinite sequence of K-bounded path configurations γ1γ2 . . . there exist
i < j s.t. γi �is γj.

Proof. It immediately follows from Ding’s Theorem (Theorem 2.2 in [5]).

Given a subset S ⊆ CK we define S ↑= {γ′ ∈ CK | γ ∈ S and γ �is γ′}, i.e.,
S ↑ is the set of configurations generated by those in S via �is. A set S ⊆ CK is
an upward closed set w.r.t. to (CK , �is) if S ↑= S. Since (CK , �is) is a wqo, we
obtain that every set of configurations that is upward closed w.r.t. (CK , �is) has
a finite basis, i.e., it can be finitely represented by a finite number of K-bounded
path configurations. We can exploit this property to define a decision procedure
for cover. For this purpose, we apply the methodology proposed in [1]. The
first property we need to prove is that the transition relation induced by our
model is compatible with �is.

Lemma 2 (Monotonicity). For every γ1, γ2, γ
′
1 ∈ CK such that γ1 ⇒K γ2 and

γ1 �is γ′
1, there exists γ′

2 ∈ CK such that γ′
1 ⇒K γ′

2 and γ2 �is γ′
2.

Proof. For lack of space, we focus here on the application of a broadcast rule
with label b(a). Assume that the rule is applied to a node n adjacent in G(γ1)
to nodes N = {n1, . . . , nk}. Assume that the subset N ′ of N contains nodes that
are enabled by message a. By applying the operational semantics, the state of
n and the states of nodes in N ′ are updated simultaneously Assume now that
G(γ1) is isomorphic to an induced subgraph of G(γ′

1) via the injection h. Then,

324 G. Delzanno, A. Sangnier, and G. Zavattaro

h(n) is adjacent to the set of nodes h(N) (there cannot be more connections
since h(G(γ1)) is an induced subgraph of G(γ′

1)). Thus, the same rule is enabled
in h(n) and in h(N ′) and yields the same effect on the labels. Thus, we obtain
γ′
2 such that G(γ2) �is G(γ′

2). �
Monotonicity ensures that if S is an upward closed set of configurations (w.r.t.
(CK , �is)), then the set of predecessors of S accroding to ⇒K , defined as preK(S)
= {γ | γ ⇒K γ′ and γ′ ∈ S}, is still upward closed. We now show that we can
effectively compute a finite representation of S ∪ preK(S).

Lemma 3. Given a finite basis B of an upward closed set S ⊆ CK , there exists
an algorithm to compute a finite basis B′ of S∪preK(S) s.t. S∪preK(S) = B′ ↑.
Proof. We focus on the the backward application of a broadcast rule (q,b(a), q′)
to a configuration in the upward closure of B. The computation of the set B ↑
∪ preK(B ↑), where preK(B ↑) = {γ | γ ⇒K γ′ and γ′ ∈ B ↑} is done according
to the following steps.
Initially, we set B′ := B.
Then, for each γ ∈ B:

1. For each vertex n labeled with q′ in the graph G(γ), let N be the set of
nodes adjacent to q′, we apply then the following rule:
– If there exists a node in N with state r such that (r, r(a), r′) is a rule in

the model, then we add no predecessor to B′ (because every node n′ ∈ S
in state r must react to the broadcast);

– otherwise, for any subset N ′ = {n1, . . . , nk} of nodes in N such that ni

has state r′i and (ri, r(a), r′i) is a rule in the model, we build a predecessor
configuration γ′ in which the label of n is updated to q and the label of
ni is updated to ri for i ∈ {1, . . . , k} and if there is no γ′′ in B′ such that
γ′′ �is γ′, we add γ′ to B′ (Note that we have to select all possible subset
N ′ of N because we must consider the cases in which nodes connected
to n are already in the target state of some reception rule).

2. Let Γ ′ be the set of configurations γ′ in CK obtained by adding a node n
in state q′ to γ such that in G(γ′), n is adjacent to at least one node (i.e.
in Γ ′ we have all the configurations obtained by added a connected node to
γ and which are still K-bounded path configurations). We then apply the
precedent rule 1. to each configuration in Γ ′ considering the added node n
labeled with q′. �

We can now state the main theorem of this section.

Theorem 5. For K ≥ 1, cover is decidable for AHN restricted to K-bounded
path configurations.

Proof. From Lemmas 1, 2, and 3 it follows that the transition system induced
by any AHN is well structured with respect to (CK , �is). The theorem then
follows from the general properties of well structured transition systems [1,2,12].
The decision algorithm is based on a symbolic backward exploration of the state
space that, starting from a graph with a single node denoting the target state,
saturates the set of symbolic predecessors computed using the operator described

Parameterized Verification of Ad Hoc Networks 325

q0

one1

one2

one1

one2

one1

zero1

g1 g2

g3

g4

g5

g6

Fig. 5. Configuration 〈q0, c1 = 3, c2 = 2〉 for c1 ∈ [0, 4] and c2 ∈ [0, 2]

in Lemma 3. Termination is ensured by the wqo property of the induced subgraph
relation over K-bounded path configurations. �

6.2 Undecidability of target and repeat-cover

In order to show that target is undecidable for K-bounded path configura-
tions, we show how to model a Minsky machine in such a way that the machine
terminates if and only if the corresponding AHN has a computation (restricted
to K-bounded path configurations) that reaches a configuration in which all
nodes are in some specific final state. For this purpose, we design a protocol that
succeeds only on star topologies in which the center node represents the current
control state and the satellite nodes the units of the two counters. Such units are
initially in the zeroi state (with i ∈ {1, 2}). The number of satellite nodes needed
to guess the maximal values reached by the counters during the computation is
non-deterministically chosen in a preliminary part of the simulation. Only runs
that initially guess a sufficient number of satellite nodes can successfully ter-
minate the simulation. A satellite node moves from the zeroi to the onei state
when the i-th counter is incremented, and a single node moves from the onei

back to the zeroi state when the counter is decremented. For instance, the star
in Figure 5 represents a configuration with control state q0 and counters c1 = 3
(with maximal value equals to 4), and c2 = 2 (with maximal value equals to 2).

The simulation of instructions with zero-test is a more difficult task. The
problem is that it is not possible to check the absence of neighbors with state
onei. Nevertheless, it is possible to ensure that no node is in the state onei after a
test for zero is executed. It is sufficient to use broadcast communication to move
all the satellite nodes in the onei state to a special sink state. If the simulation
terminates exposing the final control state and no node is in the sink state (i.e.
a configuration is reached in which all the nodes are in the final control state, in
the zeroi, or the onei state), we can conclude that the simulated computation
is correct, thus also the corresponding Minsky machine terminates.

Note that the number of satellite nodes is not fixed a priori. However the
graph have bounded path (the construction works for paths of length 3), so we
can conclude what follows:

Theorem 6. target is undecidable for AHN restricted to K-bounded path con-
figurations (with K ≥ 3).

326 G. Delzanno, A. Sangnier, and G. Zavattaro

As a corollary we now prove the undecidability of repeat-cover. We need to
slightly modify the way we model Minsky machines. The idea is to repeatedly
simulate the computation of the Minsky machine, in such a way that the final
control state can be exposed infinitely often if and only if the simulated Minsky
machine terminates.

Every simulation phase simulates only a finite number of steps of the Minsky
machine, and if the final control state is reached then a new simulation phase is
started. This is achieved by including in the initial star topology also satellite
nodes in the free state, and ensuring that every simulated action moves one of
those nodes to the done state. In this way, a simulation cannot perform more
steps than the number of free nodes in the initial star topology. If the final
control state is reached, a new simulation is started by moving all the nodes from
the done to the free state, all the nodes from the onei to the zeroi state, and
by restarting from the initial control state. Notice that nodes reaching the sink
state (due to a wrong execution of a test for zero action) are no longer used in
the computation. For this reason, as every time a wrong test for zero is executed
some node moves in the sink state, we are sure that only finitely many wrong
actions can occur. Hence, if the final control state is exposed infinitely often, we
have that only finitely many simulation phases could be wrong, while infinitely
many are correct. As all simulation phases reach the final control state (necessary
to start the subsequent phase), we have that the corresponding Minsky machine
terminates. Hence, we have the following Corollary of Theorem 6:
Corollary 3. repeat-cover is undecidable for AHN restricted to K-bounded
path configurations (with K ≥ 3).

7 Conclusions

In this paper we have studied different types of verification problems for a formal
model of Ad Hoc Networks in which communication is achieved via a selective
type of broadcast. Perhaps surprisingly, a model with static topology turns out
to be more difficult to analyze with respect to a model with spontaneous node
movement. A similar dichotomy appears in verification of perfect and lossy chan-
nel systems. Studying the expressiveness of other variations on the semantics to
model for instance conflicts, noise and lossiness, is an interesting research direc-
tion for future works.

Acknowledgments. The authors would like to thank Prof. Barbara Koenig
for having pointed out to us the connection with bounded-depth processes, and
Prof. Guoli Ding for useful insights into the theory of graph orderings.

References

1. Abdulla, P.A., Čerāns, C., Jonsson, B., Tsay, Y.-K.: General decidability theorems
for infinite-state systems. In: LICS 1996, pp. 313–321 (1996)

2. Abdulla, P.A., Čerāns, C., Jonsson, B., Tsay, Y.-K.: Algorithmic analysis of pro-
grams with well quasi-ordered domains. Inf. Comput. 160(1-2), 109–127 (2000)

Parameterized Verification of Ad Hoc Networks 327

3. Abdulla, P.A., Jonsson, B.: Verifying programs with unreliable channels. Inf. Com-
put. 127(2), 91–101 (1996)

4. Delzanno, G., Sangnier, A., Zavattaro, G.: Parameterized verification of Ad Hoc
Networks (Extended version). DISI-TR-10-01 (June 2010),
http://www.disi.unige.it/index.php?research/techrep

5. Ding, G.: Subgraphs and well quasi ordering. J. of Graph Theory 16(5), 489–502
(1992)

6. Emerson, E.A., Namjoshi, K.S.: On model checking for non-deterministic infinite-
state systems. In: LICS 1998, pp. 70–80 (1998)

7. Ene, C., Muntean, T.: A broadcast based calculus for Communicating Systems. In:
IPDPS 2001, p. 149 (2001)

8. Esparza, J., Finkel, A., Mayr, R.: On the verification of Broadcast Protocols. In:
LICS 1999, pp. 352–359 (1999)

9. Esparza, J., Nielsen, M.: Decidability issues for Petri nets - a survey. Bulletin of
the EATCS 52, 245–262 (1994)

10. Esparza, J.: Some applications of Petri Nets to the analysis of parameterised sys-
tems. Talk at WISP 2003 (2003)

11. Fehnker, A., van Hoesel, L., Mader, A.: Modelling and verification of the LMAC
protocol for wireless sensor networks. In: Davies, J., Gibbons, J. (eds.) IFM 2007.
LNCS, vol. 4591, pp. 253–272. Springer, Heidelberg (2007)

12. Finkel, A., Schnoebelen, P.: Well-structured transition systems everywhere!
TCS 256(1-2), 63–92 (2001)

13. Godskesen, J.C.: A calculus for Mobile Ad Hoc Networks. In: Murphy, A.L., Vitek,
J. (eds.) COORDINATION 2007. LNCS, vol. 4467, pp. 132–150. Springer, Heidel-
berg (2007)

14. Merro, M.: An observational theory for Mobile Ad Hoc Networks. Inf. Com-
put. 207(2), 194–208 (2009)

15. Meyer, R.: On boundedness in depth in the pi-calculus. In: IFIP TCS 2008, pp.
477–489 (2008)

16. Mezzetti, N., Sangiorgi, D.: Towards a calculus for wireless systems. ENTCS 158,
331–353 (2006)

17. Milner, R.: Communicating and mobile systems: the pi-calculus. Cambridge Univ.
Press, Cambridge (1999)

18. Minsky, M.: Computation: finite and infinite machines. Prentice Hall, Englewood
Cliffs (1967)

19. Prasad, K.V.S.: A Calculus of Broadcasting Systems. Sci. of Comp. Prog. 25(2-3),
285–327 (1995)

20. Saksena, M., Wibling, O., Jonsson, B.: Graph grammar modeling and verification
of Ad Hoc Routing Protocols. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS
2008. LNCS, vol. 4963, pp. 18–32. Springer, Heidelberg (2008)

21. Singh, A., Ramakrishnan, C.R., Smolka, S.A.: A process calculus for Mobile Ad
Hoc Networks. In: Lea, D., Zavattaro, G. (eds.) COORDINATION 2008. LNCS,
vol. 5052, pp. 296–314. Springer, Heidelberg (2008)

22. Singh, A., Ramakrishnan, C.R., Smolka, S.A.: Query-Based model checking of Ad
Hoc Network Protocols. In: Bravetti, M., Zavattaro, G. (eds.) CONCUR 2009.
LNCS, vol. 5710, pp. 603–661. Springer, Heidelberg (2009)

23. Wies, T., Zufferey, D., Henzinger, T.A.: Forward analysis of depth-bounded pro-
cesses. In: Ong, L. (ed.) FOSSACS 2010. LNCS, vol. 6014, pp. 94–108. Springer,
Heidelberg (2010)

http://www.disi.unige.it/index.php?research/techrep

	Parameterized Verification of Ad Hoc Networks
	Introduction
	A Formal Model for Ad Hoc Network Protocols
	Decision Problems
	Static Topology
	Mobile Topology
	Static Bounded Path Topology
	Decidability of cover
	Undecidability of target and repeat-cover

	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

